
HAL Id: tel-00586620
https://theses.hal.science/tel-00586620v2

Submitted on 20 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Commande faible coût pour une réduction de la
consommation d’énergie dans les systèmes électroniques

embarqués
Sylvain Durand

To cite this version:
Sylvain Durand. Commande faible coût pour une réduction de la consommation d’énergie dans
les systèmes électroniques embarqués. Autre. Université de Grenoble, 2011. Français. �NNT :
2011GRENT006�. �tel-00586620v2�

https://theses.hal.science/tel-00586620v2
https://hal.archives-ouvertes.fr

PhD Thesis

REDUCTION OF THE ENERGY
CONSUMPTION IN EMBEDDED

ELECTRONIC DEVICES WITH LOW
CONTROL COMPUTATIONAL COST

Sylvain DURAND

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Automatique et Productique

Arrêté ministérial : 7 août 2006

Présentée par

Sylvain DURAND

Thèse dirigée par Nicolas MARCHAND et Daniel SIMON

préparée au sein du centre de recherche INRIA Grenoble Rhône-Alpes,
du laboratoire GIPSA-Lab, département automatique
et de l’école doctorale Électronique, Électrotechnique, Automatique et
Traitement du Signal

Reduction of the energy consumption
in embedded electronic devices with
low control computational cost

Thèse soutenue publiquement le 17 janvier 2011,
devant le jury composé de :

Mazen ALAMIR, Président
Directeur de Recherche CNRS, GIPSA-Lab (Grenoble, France)
Patrick BOUCHER, Rapporteur
Professeur des Universités, Supélec (Paris, France)
Maurice HEEMELS, Rapporteur
Professor, Eindhoven University of Technology (Eindhoven, Pays-Bas)
Arben CELA, Examinateur
Maître de Conférences, ESIEE (Paris, France)
Jose-Fermi GUERRERO-CASTELLANOS, Examinateur
Profesor Investigador, BUAP (Puebla, Mexique)
Suzanne LESECQ, Examinatrice
Ingénieure de Recherche, CEA-Leti (Grenoble, France)
Laurent FESQUET, Invité
Maître de Conférences, TIMA (Grenoble, France)
Daniel SIMON, Directeur de thèse
Chargé de Recherche INRIA, INRIA Rhône-Alpes (Grenoble, France)
Nicolas MARCHAND, Co-Directeur de thèse
Chargé de Recherche CNRS, GIPSA-Lab (Grenoble, France)

à Cécile.

Aknowledgments

This thesis arose in part of research that has been done within the NeCS group in the INRIA
Rhône-Alpes research center and the control department of the GIPSA-Lab, in Grenoble.
This experience would not have been possible without the support of many people. This page
is dedicated to them.

First of all, I greatly indebted my two supervisors, Nicolas Marchand and Daniel Simon, for
the confidence they accorded to me. Their encouraging and personal guidance have provided a
good background for the present thesis.

I am also grateful to the jury members for the precious time they have spent for me. Thanks
to Prof. Mazen Alamir, for the interest he gave to this work by agreeing to be the president of
my jury. I am also thankful to the reviewers, Prof. Maurice Heemels and Prof. Patrick Boucher.
Their constructive suggestions on the thesis are really appreciated for me. My thanks also go
to Dr. Arben Cela for his commitment to take part in my jury.

Many thanks to Dr. Laurent Fesquet for his wide contribution in my research works, for
his patience when explaining the micro-electronics aspects or the asynchronous paradigm, and
his understanding on the control issues. I also thank him for accepting the invitation to be in
my jury committee. Furthermore, I wish to extend my thanks to all those who have helped me
in the ARAVIS project. In particular Hatem and Anne-Marie who contribute in merging my
work in a low and high level respectively. I do not forget the numerous WP2 meetings too, with
Carolina, Carlos, Yvain, Sylvain, Fabien, and all other people from TIMA, CEA-Leti, INRIA
and STMicroelectronics. I also thank Brigitte from the LJK for her collaboration in the
TATIE project.

I would like to express my deep regards to Dr. J-Fermi Guerrero Castellanos. I will not
forget how I was well received during “mi estancia en Puebla”, his availability at the university
to discuss on valuable ideas and his friendly attitude the weekend to visit his beautiful country.
Thanks also for agreeing to deem my work and for his courage when being present in my jury
committee in video conference at three in the morning in Mexico. I do not forget his family too,
especially his father Prof. Willy and his wife Esmeralda. I also thank Jonathan and the other
Mexican students for their attempt to get my Spanish. Eventually, my special thanks to Betsa
and her family for their warm welcome in Pachuca and their friendship.

I wish to thank Prof. Suzanne Lesecq for giving me the opportunity of a post-doc in order
to test my control strategies on a practical nanometric SoC. I am grateful for her acceptance to
take part in my jury committee too.

During this period, I have worked with many other colleagues for whom I have great regard
and I wish to extend my warmest thanks to all those who have helped me from a professional
and personal point of view. Especially to Luc for our great discussions, Émilie, Gabriel, Lara,
Nicolas, Valentina, Alexandre, Alain, Kateřina, Florine, Federica, Jonathan, Riccardo, Wenjuan
and other people from the NeCS team, Antoine, Lizeth, Charles, Corentin, Irfan and others
from the GIPSA-Lab.

I am also thankful to the secretaries, librarians and any administrative and technical support,
in particular Élodie, Myriam and Florence in INRIA, Marie-Thérèse, Patricia, Virginie and
Olivier in GIPSA-Lab, for helping and assisting me in many different ways.

My special thanks to my family and friends who support me through difficult period and
for providing to me their friendship, entertainment and attention. In particular, I would like
to thank Sébastien and Cyril who encouraged me in this direction. I also thank my brother
Nicolas for accommodating me when I had a party in Grenoble. Finally, I wish to thank Cécile,
Patricia, Denise and Suzanne who hand-made the “pot de thèse” which was perfect.

Lastly, my deep lovely thanks go to my wife Cécile for her emotional supports and her
continual and confident encouragement. I dedicate this work to her.

Table of contents

11 Table of contents

Table of contents 9

Summary of the thesis (in French) 15

A Problématiques de recherche 17

B Gestion du compromis énergie performance 19
B.1 Context et motivations . 19
B.2 Le système monocœur . 20

B.2.1 Commande intuitive de la fréquence et du niveau de tension 21
B.2.2 Commande de la vitesse de calcul . 21
B.2.3 Commande complètement discrète . 24

B.3 Le système multicœur . 25
B.4 Résultats de simulation . 25

C Commande déclenchée par événements 27
C.1 Context et motivations . 27
C.2 Commande PID et détection d’événement par franchissement de niveau 28

C.2.1 Commande sans limite de sécurité . 29
C.2.2 Commande avec condition d’échantillonnage minimum 30
C.2.3 Commande avec échantillons supplémentaires 31
C.2.4 Résultats de simulation . 31

C.3 Retour d’état et échantillonnage déclenché par une fonction de Lyapunov 31
C.3.1 Échantillonnage déclenché sur fonction de Lyapunov 31
C.3.2 Simplification du mécanisme d’échantillonnage 32
C.3.3 Commande avec condition d’échantillonnage minimum 33
C.3.4 Résultats de simulation . 33

C.4 Résultats expérimentaux . 33

General introduction 35
Research problematic and proposed solutions . 37
Structure of the thesis . 41

Part I
Energy-performance tradeoff in electronic systems 43

1 Context and motivations 45
1.1 Micro and nano-electronics . 46
1.2 Problems in nanometric technologies . 47
1.3 Suggested solutions . 48

1.3.1 Power management techniques . 48
1.3.2 Focus on the energy-performance tradeoff 51
1.3.3 Globally asynchronous locally synchronous paradigm 52

1.4 Handling the process variability . 53
1.4.1 Essential feedback control loops in nanotechnologies 53
1.4.2 Study case: The ARAVIS project . 56

Table of contents 12

2 Control of the energy-performance tradeoff in monocore systems 61
2.1 A single voltage scalable device to control . 62

2.1.1 The electronic device . 62
2.1.2 The actuators . 63

2.1.2.1 The Vdd-hopping to control the supply voltage 64
2.1.2.2 The oscillator to control the clock frequency 65

2.1.3 The monocore controller . 66
2.2 Frequency and voltage level control . 68

2.2.1 Frequency control . 68
2.2.2 Voltage level control . 71
2.2.3 Guarantee of the maximum delay over the critical path 73

2.2.3.1 Frequency restriction during the voltage transitions 74
2.2.3.2 Voltage measurement for a maximum gain 74
2.2.3.3 Self-management from the oscillator 75

2.2.4 Control algorithm . 75
2.3 Computational speed control . 76

2.3.1 Computational speed setpoint building . 77
2.3.1.1 The intuitive average speed setpoint 78
2.3.1.2 A more energy-efficient reference 78

2.3.2 Fast predictive control using the measured speed as a feedback 79
2.3.3 Fast predictive control using the speed setpoint as a feedback 81
2.3.4 Measurement of the maximum computational speeds 82
2.3.5 Frequency and voltage level controller for the new setpoints 82
2.3.6 Control algorithm . 84

2.4 Fully discrete control scheme . 85
2.4.1 Energy-efficient setpoint for a M -voltage level mechanism 86
2.4.2 Extension of the fast predictive control . 88
2.4.3 Clock-gating control . 89
2.4.4 Estimation of the maximum computational speeds 90
2.4.5 Control algorithm . 91

2.5 Simplification of the algorithms for a low control computational cost 92
2.6 Intuitive stability analysis . 94
2.7 Synthesis . 94

3 Global control in multicore systems 97
3.1 Several chips working together in the same power domain 98

3.1.1 A certain degree of freedom thanks to some frequency ratios 99
3.1.2 The multicore controller . 99

3.2 Extension of the monocore control strategies . 100
3.2.1 Full duplication of the monocore control strategy 101
3.2.2 Partial duplication for a lower control computational cost 102
3.2.3 Discrete values of the frequency ratios . 103
3.2.4 Fully discrete control scheme . 104

3.3 Several chips working with their own clock . 106
3.4 Synthesis . 107

4 Simulation results 109
4.1 Presentations . 110

4.1.1 Recap of the different control strategies 110
4.1.2 Controlled systems . 111

13 Table of contents

4.1.3 Test benches . 112
4.1.4 Indexes of performance . 113

4.2 Frequency and voltage level control to track a given computational speed setpoint 115
4.3 Computational speed control to build a more energy-efficient setpoint 117

4.3.1 Fast predictive control law . 117
4.3.2 Adaptation to a variation of the task information 118
4.3.3 Duplication of the monocore strategy . 120
4.3.4 Discrete values of the frequency ratios . 120

4.4 Fully discrete control scheme . 123
4.4.1 Results with small numbers of voltage and frequency levels 124
4.4.2 Robustness to process variability . 126
4.4.3 Extension to four computational nodes to control together 128

4.5 Performance analysis . 128
4.6 Synthesis . 132

Part II
Asynchronous control scheme for closed-loop systems 135

5 Context and motivations 137
5.1 Time-based vs. event-based sampling . 138
5.2 Event-driven sampling as an opportunity for embedded systems 139

5.2.1 Asynchronous needs in the different communities 139
5.2.2 Difficulties to untie some well-established paradigms 140
5.2.3 Study case: The TATIE project . 140

6 Event-based PID controllers using level-crossing detection 143
6.1 The conventional time-based approach . 144

6.1.1 Time-based PID control . 144
6.1.2 Time-based PI control . 145

6.2 New event-based strategies . 145
6.2.1 Årzén’s event-based PI control . 146
6.2.2 Discretization improvement for the Arzen’s PI control 147
6.2.3 Event-based PI control without safety limit condition 148

6.2.3.1 Algorithm 1: only without safety limit condition 151
6.2.3.2 Algorithm 2: saturation of the integral gain 151
6.2.3.3 Algorithm 3: exponential forgetting factor of the sampling interval151
6.2.3.4 Algorithm 4: hybrid strategy . 152
6.2.3.5 Algorithm 5: exponential forgetting factor of the sampling inter-

val with low-cost implementation 152
6.2.3.6 Algorithm 6: hybrid strategy with low-cost implementation . . . 154

6.2.4 Event-based PI control with minimum sampling condition 154
6.2.5 Event-based PI control with extra samples 155
6.2.6 Extension to event-based PID controllers 156

6.3 Recap of the different level-crossing strategies . 157
6.4 Intuitive stability and robustness analysis . 159
6.5 Indexes of performance . 159
6.6 Simulation results . 160

6.6.1 Application to a first-order system . 160
6.6.2 Application to a cruise control mechanism 170

Table of contents 14

6.7 Synthesis . 174

7 State-feedback controllers based on Lyapunov sampling 177
7.1 Theoretical background on state-feedback control 178

7.1.1 Feedback control for linear systems . 179
7.1.1.1 State feedback . 179
7.1.1.2 Output feedback . 179

7.1.2 Generalization for nonlinear systems . 180
7.1.3 From discrete-time to event-driven controllers 180

7.2 Lyapunov sampling for event-driven controllers 181
7.2.1 Stability and Lyapunov theory . 181
7.2.2 Event detection based on Lyapunov functions 183

7.2.2.1 Lyapunov sampling . 184
7.2.2.2 Stable Lyapunov sampling . 185
7.2.2.3 Event-detection improvement . 187

7.2.3 A less-conservative stable Lyapunov sampling 187
7.2.3.1 Relaxation 1: slowly decrease/drastically increase 188
7.2.3.2 Relaxation 2: improvement for an on-line running 188
7.2.3.3 Relaxation 3: slowly decrease/slowly increase 189
7.2.3.4 Relaxation 4: a more formal variation 189

7.2.4 Minimum sampling interval condition . 190
7.3 Recap of the different Lyapunov sampling mechanisms 191
7.4 Performance analysis . 193
7.5 Simulation results: application to a double integrator system 193
7.6 Synthesis . 199

8 Experimental results 201
8.1 Presentation of the system . 202

8.1.1 The electric motor . 203
8.1.2 The inverted pendulum . 204
8.1.3 The Matlab/Simulink interface . 205

8.2 First results in controlling the velocity and the position of an electric motor . . . 205
8.2.1 PID control strategy using level-crossing detection 205

8.2.1.1 Velocity of the electric motor . 206
8.2.1.2 Position of the cart . 209
8.2.1.3 Perturbations and robustness . 210

8.2.2 State-feedback control strategy using Lyapunov sampling mechanism . . . 212
8.2.2.1 Control of the position . 212
8.2.2.2 Perturbations and robustness . 217

8.3 Further results in stabilizing the inverted pendulum 217
8.4 Synthesis . 223

Conclusion and future works 225
Summary of the thesis and main contributions . 227
List of publications . 231
Perspectives . 233

References 235

Summary of the thesis
(in French)

Chapter

A

Problématiques de recherche

De nos jours, les systèmes embarqués sont de plus en plus présents et nous accompagnent
au quotidien. Nous les retrouvons ainsi dans les téléphones, PDAs ou autres assistants élec-
troniques, dans les véhicules et même dans les maisons avec la domotique florissante. Cette
omniprésence entraîne une course à la miniaturisation. Les circuits électroniques sont également
étudiés de manière à minimiser leur consommation et ainsi augmenter leur durée de vie. C’est
dans ce contexte que s’inscrit cette thèse puisque nous avons travaillé à réduire à la fois i) la con-
sommation d’énergie des circuits électroniques miniaturisés et ii) le coût de calcul du contrôleur
dans les systèmes en boucle fermée. Ces deux points constituent les deux parties principales de
la thèse.

Réduction de la consommation d’énergie

Il est possible de réduire la consommation d’énergie dans une puce électronique en dimin-
uant la tension d’alimentation et/ou la fréquence d’horloge mais ceci a pour conséquence de
diminuer la vitesse de fonctionnement du circuit en contrepartie. Une solution consiste toutefois
à réduire la consommation lorsque les tâches à exécuter sont peu nombreuses, et augmenter la
puissance dès qu’une charge de calcul plus importante doit être traitée. Une certaine stratégie
de commande est ainsi nécessaire afin de gérer dynamiquement un tel compromis. Dans cette
thèse, une architecture en boucle fermée permet cette approche. Deux actionneurs sont ainsi
commandés afin d’alimenter le circuit en tension et en fréquence. Une commande prédictive
rapide permet alors de calculer une consigne de vitesse à suivre de manière à ce que la consom-
mation d’énergie soit minimisée tout en garantissant un bon fonctionnement du système. Ce
principe est tout d’abord appliqué à un système monocœur puis le concept est ensuite généralisé
à un système multicœur, où plusieurs processeurs fonctionnent ensemble sur un même domaine
d’alimentation. Des résultats de simulation permettent finalement de mettre en évidence une
forte réduction de la consommation d’énergie dans les deux cas.

Outre le compromis énergie-performance, un second aspect doit également être pris en
compte dans les puces électroniques, notamment en ce qui concerne les circuits en technolo-
gie nanométrique. En effet, les performances après fabrication de telles puces ne peuvent plus
être complètement prédites à cette échelle (alors que les mêmes circuits n’avaient aucun problème

Summary of the thesis (in French) 18

dans les technologies précédentes). Ce phénomène, appelé variabilité du procédé de fabrication,
est la principale cause de défauts dans les puces. Il résulte en une certaine incertitude qui est
introduite dans le fonctionnement du circuit et les stratégies de commande implémentées de-
vront donc prendre en compte ces dispersions technologiques. Un point important de la thèse
est justement de proposer des lois de commande robustes, dont une notamment qui n’est basée
sur aucun paramètre du système.

Le résumé en français de ces travaux est ensuite présenté dans le chapitre B.

Réduction du coût de calcul du contrôleur

La commande d’un système conduit souvent à ajouter une partie logicielle et/ou matérielle
supplémentaire. Cela peut éventuellement poser problème dans les systèmes embarqués qui ont
d’importantes contraintes, notamment en terme de ressources. Pour cette raison, il devient
important de trouver des solutions afin de réduire le coût de calcul du contrôleur. C’est dans
cet optique que les systèmes asynchrones font leur apparition. Contrairement à un système
classique qui calcule la commande à chaque instant d’échantillonnage (constants et périodiques),
l’échantillonnage asynchrone est quant à lui déclenché par des événements (lorsque le signal de
mesure varie suffisamment de la consigne à suivre par exemple). Ce principe permet ainsi de
réduire le nombre d’échantillons et, par conséquent, d’économiser des ressources CPU, tout en
garantissant de bonnes performances. Néanmoins, peu de travaux existent dans ce domaine et
des outils qui prennent en compte la nature événementielle du système à commander manquent.
Dans cette thèse, nous nous intéressons au schéma asynchrone en proposons des contrôleurs
PID dont le calcul de la commande est déclenché par franchissement de niveaux du signal de
mesure. Une autre analyse propose ensuite des contrôleurs à retour d’état asynchrones où les
événements sont basés sur une fonction de Lyapunov. Enfin, des résultats de simulation, mais
surtout expérimentaux, permettent de valider l’intérêt de telles commandes et surtout le gain
en coût de calcul.

Ces travaux sont résumés dans le chapitre C.

Chapter

B

Gestion du compromis énergie
performance

Ce chapitre résume la première partie de la thèse concernant la gestion du compromis énergie-
performance dans les circuits électroniques.

B.1 Context et motivations

L’évolution des techniques de fabrication des semi-conducteurs est telle que le nombre de
transistors rapporté à la surface de la puce ne cesse d’augmenter. Les techniques actuelles
permettent ainsi de commercialiser des circuits en technologie nanométrique, ce qui permet
d’augmenter considérablement le nombre de fonctions électroniques sur une même puce. Cepen-
dant, certains effets physiques parasites - sans importance à plus grande échelle - deviennent
prépondérants à l’échelle sub-micrométrique. Un de ces effets est la variabilité du procédé de
fabrication qui est la principale cause de défauts et de délais dans les circuits intégrés. Ce
phénomène introduit une incertitude dans le fonctionnement du circuit : alors qu’un circuit
est prévu pour fonctionner à une certaine fréquence d’horloge, les performances de la puce fab-
riquée varient grandement. En d’autres termes, alors qu’une partie du circuit fonctionnera avec
les performances attendues, une seconde partie fonctionnera moins bien, voire une troisième
ne fonctionnera pas du tout. Ce comportement est illustré sur la figure 1. Finalement, les
architectures doivent être complètement repensées et adaptées afin de pallier ces contraintes
de dispersion technologique, en incluant notamment des boucles de commande qui deviennent
indispensables. Ainsi, les différentes zones de la puce seront commandées afin d’exécuter les
tâches les plus critiques sur les parties fonctionnant normalement et les tâches de fond sur les
parties fonctionnant moins bien. Les parties ne fonctionnant pas seront quant à elles connues et
non utilisées.

Une solution pour arriver à ce comportement est introduite dans le chapitre 1. Elle consiste
entre autres à appliquer le paradigme “globalement asynchrone localement synchrone” (GALS).
Ce concept revient à diviser la puce en plusieurs domaines de fréquence, où chaque domaine
fonctionne de manière synchrone par rapport à une horloge qui lui est propre alors que les
différents domaines sont asynchrones entre eux. Finalement, alors qu’une architecture classique
est régit par le temps mis pour parcourir le plus long chemin électrique existant dans toute la
puce (appelé le chemin critique), une architecture GALS va transposer le problème pour chaque

Summary of the thesis (in French) 20

domaine. Les variations technologiques sont ainsi réduites. De plus, une gestion dynamique
de la puissance est facilitée. Une telle méthode est primordiale pour espérer commander le
compromis énergie-performance de la puce. L’approche consiste à ajuster ensemble la tension et
la fréquence - en respectant certaines règles - afin de minimiser la consommation énergétique tout
en garantissant que les tâches à traiter soient terminées à leur échéance temporelle. Différentes
stratégies de commande sont ainsi proposées dans la première partie de cette thèse. Un système
monocœur est tout d’abord étudié, l’activité d’un seul système électronique (un processeur par
exemple) est alors régulée, puis une extension est ensuite proposée pour un système multicœur
où plusieurs processeurs fonctionnent ensemble sur un même domaine d’alimentation.

Manager

speed

Figure 1: Phénomène de variabilité technologique dans les circuits en technologie nanométrique.

Ces travaux ont été réalisés dans le cadre du projet ARAVIS dont les objectifs sont décrits
dans la sous-section 1.4.2.

B.2 Le système monocœur

Le chapitre 2 traite du compromis énergie-performance dans les systèmes monocœurs. Alors
qu’un processeur fonctionne généralement avec une tension d’alimentation et une fréquence
d’horloge nominales et constantes, il peut être intéressant de pouvoir faire varier dynamique-
ment ces deux grandeurs. Diminuer la puissance d’alimentation permet en effet d’abaisser la
consommation d’énergie. Ceci n’est toutefois pas sans conséquence puisque la capacité de calcul
du processeur est également réduite. Un compromis entre consommation et performance doit
donc être établit. Une architecture en boucle fermée, telle que proposée sur la figure 2, permet
une gestion dynamique de ce compromis. Deux actionneurs (un oscillateur en anneau et un Vdd-
hopping) fournissent respectivement la fréquence d’horloge fclk(t) et la tension d’alimentation
Vdd(t) au système électronique (dénommé device sur le schéma). Ces deux actionneurs sont
ensuite commandés par un contrôleur qui calcule les niveaux de fréquence flevel(t) et de tension
Vlevel(t) les plus adaptés pour que le système consomme le moins possible, tout en garantissant
que la charge de calcul à exécuter soit correctement traitée. Pour cela, la vitesse de calcul ω(t)
du système électronique est mesurée afin de la comparer à une certaine consigne ref(t). Cette
architecture est présentée plus en détail dans la section 2.1.

En fait la référence ref(t) est fournie par le système d’exploitation pour chaque tâche Ti à
traiter. Elle se décompose en deux signaux, à savoir i) la charge de calcul qui correspond au
nombre d’instructions à exécuter Ωi(t) et ii) l’échéance temporelle ou deadline ∆i(t). La laxité
Λi(t) est également intéressante. Elle correspond au temps restant avant la fin de la tâche et
peut être obtenue facilement à partir de l’échéance temporelle.

21 Chapter B - Gestion du compromis énergie performance

ω

ω

ref

flevel

Vlevel
Vdd

fclk

Monocore system

Monocore
controller

Vdd
hopping

Oscillator Device

Vdd

Figure 2: Architecture du système monocœur.

Dans un premier temps, le signal de commande envoyé au Vdd-hopping sera un signal discret
à deux valeurs, correspondant à deux niveaux de tension possibles, i.e. Vlow et Vhigh. Le signal
délivré à l’oscillateur, quant à lui, sera une fréquence désirée f(t) qui évolue de manière continue,
et non un niveau de fréquence discret comme décrit plus haut.

B.2.1 Commande intuitive de la fréquence et du niveau de tension

Une stratégie de commande intuitive, proposée dans la section 2.2, consiste en un simple
suivi de consigne. Les signaux de commande sont ainsi calculés de manière à ce que la vitesse de
calcul du système ω(t) suive une consigne de vitesse moyenne ωsp(t) = Ωi(t)/∆i(t), cette référence
correspondant à la valeur nécessaire pour que la tâche se termine exactement à son échéance
temporelle. Un bon suivi de consigne garantira ensuite que la tâche est correctement exécutée.
Les niveaux de fréquence et de tension sont calculés indépendamment, puis finalement ajustés
afin que le chemin critique soit respecté.

B.2.2 Commande de la vitesse de calcul

Une seconde approche est ensuite proposée dans la section 2.3 afin de réduire davantage
la consommation énergétique. La méthode précédente permet déjà une réduction puisque la
puissance d’alimentation est réduite pour traiter une faible charge de calcul. Cependant, une
meilleur consigne peut diminuer davantage le fonctionnement à tension haute, la tension étant
le paramètre le plus consommant en terme d’énergie du fait d’une relation (quasi) quadratique.
La figure 3 illustre ce principe. Dans la version intuitive - figure B.3(a) - une tâche est exécutée
tout le temps à tension haute lorsque la consigne moyenne est supérieure à la vitesse maximale
possible à tension basse, notée ωmax. C’est notamment le cas pour la tâche T2. En revanche,
la seconde approche - figure B.3(b) - va permettre de la traiter d’une part à tension haute
(puisqu’il faudra utiliser la tension haute de toute façon pour espérer terminer la tâche avant sa
deadline) puis ensuite à tension basse, ce qui va réduire d’autant la consommation. Pour arriver
à ce comportement, nous proposons que le système fonctionne à vitesse maximale lorsqu’il est
alimenté à tension haute de manière à réduire le temps de ce fonctionnement pénalisant en terme
de consommation. Ensuite, comme la tâche sera en avance par rapport à une consigne moyenne
pendant la première phase du traitement (du début de l’exécution de la tâche t2 jusqu’à un
certain temps k sur la figure), elle pourra fonctionner ensuite à une vitesse inférieure à ωmax -
et donc à tension faible - pour la fin du traitement (de l’instant k à t3). Le temps de passage
de tension haute à la tension basse - l’instant k - est donc nécessaire. Or il est difficilement
déterminable a priori. C’est pourquoi nous proposons d’utiliser une boucle de commande afin
de prédire le temps minimum de fonctionnement à tension haute. Cette seconde boucle va
maintenant calculer une consigne de vitesse meilleure en terme d’énergie, notée ωsp(t), à partir
des références Ωi(t) et ∆i(t) fournies par le système d’exploitation pour chaque tâche à traiter.

Summary of the thesis (in French) 22

average computational speed setpoint ωsp(t)

tVhigh

voltage

time

Ω2
∆2

Ω1
∆1

Ω3
∆3 T3

T2

T1

ωmax

ωmax

t2 t3 timet1

Vhigh

Vlow

t2 t3t1

(a) Construction intuitive

energy-efficient computational speed setpoint ωsp(t)

time

voltage

Vhigh

Vlow

time

tVhigh

t2 t3

Ω2
∆2

Ω1
∆1

Ω3
∆3 T3

T2

T1

ωmax

ωmax

t2 t3kt1

t1 k

(b) Construction efficace en terme d’énergie

Figure 3: Comparaison de différentes manières d’obtenir une consigne de vitesse et son impact
sur la consommation énergétique.

La présence d’échéance temporelle et d’horizon de temps pour compléter la tâche nous con-
duit naturellement vers une commande prédictive. Dans notre cas, l’horizon de temps est con-
tractant, ce qui signifie que le temps restant diminue au cours de l’exécution d’une tâche, jusqu’à
atteindre son échéance. Puis un nouvel horizon apparaît avec une nouvelle tâche à traiter. En
outre, la commande prédictive est souvent lourde à mettre en œuvre du fait d’une optimisation
requise. Cependant, l’approche que nous utilisons par la suite, appelée commande prédictive
rapide, consiste à prendre en compte la structure du système à commander afin de simplifier
la loi de commande. Deux architectures utilisant ce principe sont proposées dans la thèse. La
première calcule une consigne de vitesse en bouclant le système avec la vitesse mesurée. Ainsi,
la prédiction tient compte de ce qui a déjà été exécuté. La seconde boucle le système avec
la consigne elle-même afin de réduire davantage la consommation d’énergie. Cependant, elle a
l’inconvénient d’être plus complexe à implémenter. Seule la première approche sera détaillée
dans ce résumé en français.

Commande prédictive rapide

Comme expliqué précédemment, le but de cette commande est de minimiser le temps de
fonctionnement à tension haute. Pour cela, le contrôleur va calculer dynamiquement - pour
chaque tâche Ti à traiter - si le système doit fonctionner à tension haute et fréquence maximale
ou si la tension basse suffira pour terminer la tâche juste à sa deadline, compte tenu de ce
qui a déjà été fait. Le problème d’optimisation résultant équivaut à minimiser le temps de
fonctionnement à tension haute tVhigh

de manière à ce que le nombre d’instructions réellement
exécutées (c’est à dire l’intégrale de la vitesse de calcul mesurée ω(t) sur le temps d’exécution
de la tâche ∆i(t)) corresponde à la consigne Ωi(t) donnée par le système d’exploitation. Ceci
peut être exprimé mathématiquement comme suit :

min tVhigh
s.t.

∫

∆i(t)
ω(t) dt = Ωi(t)

Bien que ce critère d’optimisation permette de résoudre le problème de prédiction, il est toutefois
trop complexe pour être implanté sur un circuit électronique. Heureusement, la solution en
boucle fermée conduit à une expression plus simple et plus rapide à calculer. Il suffit en fait

23 Chapter B - Gestion du compromis énergie performance

de connaître i) la charge de calcul que le processeur doit traiter et ii) combien de temps on
dispose pour le faire. La vitesse nécessaire pour terminer la tâche exactement à son échéance -
dénommée la vitesse prédite δ(t) par la suite - est ensuite facilement obtenue comme étant le
rapport entre ce qu’il faut faire moins ce qui a déjà été fait (c’est à dire ce qu’il reste à faire) et
le temps qu’il reste avant d’atteindre la deadline de la tâche. Ceci s’exprime ainsi :

δ(tk+1) =
Ωi(tk)−∑tk−ti

ti
ω(tk)

Λi(tk)

La consigne de vitesse ωsp(t) est ensuite déduite directement à partir de la valeur de δ(t). Si
la prédiction indique que la vitesse requise pour terminer la tâche est supérieure à la vitesse
maximale à tension basse, c’est à dire si δ(t) > ωmax, alors il est nécessaire de fonctionner à
tension haute et à fréquence maximale, c’est à dire à vitesse maximale ωmax. En revanche, dès
que δ(t) devient inférieure à ωmax, alors le système peut passer à tension basse et ce niveau de
tension sera suffisant pour terminer la tâche (si les consignes Ωi(t) et/ou ∆i(t) ne changent pas
en cours d’exécution de la tâche). La relation suivante résume ce principe :

ωsp(tk) =

{
ωmax if δ(tk+1) > ωmax

δ(tk+1) otherwise

Finalement, une consigne de vitesse faible consommation est ainsi calculée. De plus, la tâche à
traiter sera correctement exécutée puisque, si le système est plus lent que prévu, alors la consigne
sera dynamiquement ajustée du fait de la contre réaction. De même, les retards éventuels dans
les changements de tension et/ou de fréquence sont déjà pris en compte et le calcul des variables
de commande est donc simplifié.

Notons que les vitesses maximales ωmax et ωmax sont directement mesurées dans un premier
temps. Elles sont ainsi simplement obtenues en cadençant le système électronique à fréquence
maximale, lorsque ce dernier est alimenté respectivement à tension basse et à tension haute.

Commande de la fréquence et du niveau de tension

La consigne de vitesse de calcul ωsp(t) fournie par la commande prédictive permet de réduire
le temps de fonctionnement à tension haute. Cette consigne étant différente de celle utilisée
dans la première stratégie, à savoir la consigne moyenne ωsp(t), le contrôle de la fréquence et du
niveau de tension doit par conséquent être modifié. Un simple correcteur intégral suffit pour le
calcul de la fréquence. On ajoute ensuite un système d’anti-windup afin de prendre en compte
les limitations de l’oscillateur, ce qui conduit à :

ε(tk) = ωsp(tk)− ω(tk)

σ(tk) =
ω(tk)
f(tk−1)

f(tk) = f(tk−1) + Ts ·
1

σ(tk)
·K · ε(tk)− Ts ·Ka ·

(
f(tk−1)− fsat(tk−1)

)

Concernant le niveau de tension, le système doit fonctionner à fréquence maximale lorsqu’il est
alimenté avec la tension haute. Une fonction hystéresis, représentée sur la figure 4, est alors
utilisée afin de faire la concordance entre les deux variables. Ainsi, le niveau de tension haut est
automatiquement appliqué dès que la fréquence est supérieure à la fréquence maximale possible
à tension haute, i.e. FVlowmax, c’est à dire :

Vlevel(tk) =

{
Vlevel_high if f(tk) ≥ FVlowmax

Vlevel_low otherwise

Summary of the thesis (in French) 24

Vhigh

Vlow

voltage

frequencyFVhighmax
(fclk)

(Vdd)

FVlowmaxFVlowmin

non-functional area

Figure 4: Hystéresis utilisée pour ajuster le niveau de tension en fonction de la fréquence calculée,
afin de minimiser le temps de fonctionnement à tension haute.

B.2.3 Commande complètement discrète

Afin de coller complètement avec l’architecture introduite plus haut sur la figure 2, une
dernière loi de commande est développée dans la section 2.4. Elle permet d’étendre la précédente
stratégie à des niveaux discrets de fréquence (alors qu’elle variait continuement avant) et de
généraliser le principe à un nombre plus important de niveaux de tension (alors que seul deux
niveaux étaient possible avant). Désormais, M niveaux de tension et N niveaux de fréquence
sont donc possibles. La généralisation est assez simple puisque le problème peut être ramené aux
deux niveaux qui encadrent la vitesse de calcul moyenne. Il faut ensuite minimiser le temps de
fonctionnement du niveau supérieur tout en garantissant que la tâche pourra être correctement
terminée avec le niveau inférieur. Le calcul des variables de commande flevel(t) et Vlevel(t) est
également simplifié puisqu’ils sont maintenant directement déduits de la valeur de la vitesse
prédite δ(t). De plus, la consigne de vitesse à suivre ωsp(t) n’est plus nécessaire, ce qui simplifie
grandement la loi de commande.

Du fait de ce fonctionnement discret, il est possible qu’une tâche soit terminée bien avant son
échéance si le seul niveau de fréquence possible est beaucoup plus important que celui requis.
C’est pourquoi nous avons ajouté une décision supplémentaire, basée sur le principe dit du clock-
gating. Il est ainsi possible de “désactiver” l’horloge du circuit lorsque la tâche est terminée afin
de réduire davantage la consommation.

Une autre amélioration est d’estimer dynamiquement les vitesses maximales possibles pour
chaque niveau de tension (précédemment notée ωmax et ωmax dans le cas où deux niveaux de
tension étaient possibles). Leur valeur est en effet nécessaire dans la loi de commande pour
prédire l’instant de changement du niveau de tension. Nous avons ainsi proposé d’utiliser une
moyenne pondérée de la vitesse mesurée, ce qui peut se résumer par :

ω̃m(tk) = (1− ν) · ω̃m(tk−1) + ν · ω(tk)

où ω̃m(t) est l’estimation de la vitesse ωm(t), et 0 ≤ ν ≤ 1 est la valeur de pondération. Ce
dernier paramètre a notamment besoin d’être borné afin de ne pas rendre le système instable.
Finalement, cette stratégie est très robuste aux dispersions technologiques présentes dans les
circuits nanométriques puisque la loi de commande ne repose sur aucun paramètre du système.

Pour terminer sur la gestion du compromis énergie-performance dans un système monocœur,
quelques simplifications sont suggérées dans la section 2.5 et une rapide analyse de stabilité du
système est décrite dans la section 2.6.

25 Chapter B - Gestion du compromis énergie performance

B.3 Le système multicœur

La gestion du compromis énergie-performance de plusieurs processeurs fonctionnant ensemble
sur une même puce est également étudiée, dans le chapitre 3 de cette thèse. L’architecture
multicœur - représentée sur la figure 5 - est en fait une généralisation de l’architecture monocœur
précédente (figure 2). Le principe est quasiment identique. Le contrôleur calcule dynamiquement
les niveaux de fréquence flevel(t) et de tension Vlevel(t) à envoyer aux actionneurs. X systèmes
doivent maintenant être commandés, ce qui signifie autant de références refX(t) et de signaux
de mesure ωX(t) que de circuits. Cependant, la commande des différents systèmes ne peut se
faire de manière indépendante puisqu’ils fonctionnent tous avec la même tension d’alimentation
et la même fréquence d’horloge. Une certaine liberté est toutefois possible grâce aux ratios de
fréquence ρX(t) qui autorisent un système à être cadencé moins vite que l’horloge globale. Cette
architecture est plus détaillée dans la section 3.1. Plusieurs extensions des différentes stratégies
de commande monocœur sont ensuite développées dans la section 3.2. Finalement, une seconde
architecture multicœur est proposée dans la section 3.3, où les différents processeurs fonctionnent
cette fois avec leur propre fréquence d’horloge. Ainsi, X oscillateurs cadencent désormais le
circuit, quand un seul Vdd-hopping continue d’alimenter l’ensemble.

ωXωX

refX fclk&Vdd

ρX

flevel

Vlevel

Multicore system

Multicore
controller

Actuators

Device 1

Device 2

Device 3

Device x

ω1

ω2

ω3

ωx

ρ1

ρ2

ρ3

ρx

Figure 5: Architecture du système multicœur.

Notations:

• ρX(t) (indice en majuscule) indique qu’il existe X signaux ρ(t), à savoir un pour chaque
circuit de la puce.

• ρd(t) (indice en minuscule) est utilisé pour référer au signal ρ(t) correspondant au circuit
d, où d ∈ {1, 2, . . . , X}.

• ρx(t) est utilisé pour le signal ρ(t) du dernier circuit.

B.4 Résultats de simulation

Afin de valider nos solutions pour une gestion dynamique du compromis énergie-performance,
différents tests de simulation sont réalisés dans le chapitre 4. Ils sont exécutés sous Mat-
lab/Simulink. Les résultats montrent que l’utilisation de la commande prédictive rapide permet
de réduire énormément la consommation d’énergie, que ce soit pour les systèmes monocœurs

Summary of the thesis (in French) 26

ou multicœurs, sans pour autant augmenter le coût de calcul du contrôleur. De plus, la loi de
commande s’adapte automatiquement lorsque la consigne donnée par le système d’exploitation
pour chaque tâche à traiter change, même si cette consigne est modifiée pendant l’exécution
de la tâche. En outre, une commande complètement discrète permet de réduire davantage la
consommation et le coût de calcul, tout en assurant une forte robustesse aux dispersions tech-
nologiques qui sont présentes dans les circuits en technologies nanométriques. Ce dernier point
était un objectif important à atteindre dans cette thèse.

Chapter

C

Commande déclenchée par
événements

Ce chapitre résume la seconde partie de la thèse traitant de la commande déclenchée par
événements.

C.1 Context et motivations

L’approche classique pour calculer une loi de commande en temps discret consiste à échan-
tillonner le système uniformément en temps, avec une période d’échantillonnage hnom constante.
La loi de commande est alors calculée et mise à jour périodiquement, c’est à dire à chaque instant
tk = k · hnom. Ce principe, illustré sur la figure C.1(a), correspond au cas synchrone dans le
sens où tous les échantillons sont synchrones. D’un autre côté, de récents travaux s’intéressent à
un échantillonnage asynchrone où les instants d’échantillonnage sont déclenchés par des événe-
ments, comme par exemple lorsque le signal de mesure franchit un certain niveau d’amplitude
qj = j · qnom. Cette seconde approche, représentée sur la figure C.1(b), est introduite dans le
chapitre 5.

hnomhnom

setpoint

measured signal

time

sampling instants

(a) Échantillonnage classique en temps

qnom

setpoint

measured signal

time

sampling instants

(b) Échantillonnage en amplitude (déclenché par
des événements)

Figure 1: Alors que le système à commandé est échantillonné uniformément en temps dans le
cas classique, le système est échantillonné en amplitude dans le cas asynchrone.

Summary of the thesis (in French) 28

Une technique asynchrone permet théoriquement de réduire le nombre d’échantillons, et par
conséquent d’économiser des ressources CPU du contrôleur. Ce nouveau schéma peut toutefois
être compliqué à mettre en œuvre, en particulier parce que le paradigme synchrone est bien
ancré dans les mœurs et qu’il est donc difficile de s’en affranchir. Les architectures de traitement
numérique doivent être complètement repensées et adaptées. C’est notamment un des objectifs
du projet TATIE dont les objectifs sont décrits dans la sous-section 5.2.3. Dans cette thèse
nous nous intéressons plus particulièrement aux méthodes de commande. Dans un premier
temps, les contrôleurs proportionnel intégral dérivé, très utilisés dans l’industrie, sont étudiés.
Un contrôleur plus général est étudié ensuite avec un retour d’état dynamique asynchrone.

C.2 Commande PID et détection d’événement par
franchissement de niveau

Le contrôleur PID est une architecture très répandue, notamment dans l’industrie, c’est
pourquoi nous avons cherché dans un premier temps à obtenir une version asynchrone de ce
dernier. Cette démarche est détaillée dans le chapitre 6. Un tel contrôleur calcule différentes
composantes à partir de l’erreur de mesure, à savoir les termes proportionnel, intégral et dérivé,
puis somme ces composantes afin de corriger le système. Cependant, alors qu’un contrôleur clas-
sique met à jour le signal de commande à chaque instant tk, un contrôleur dont l’échantillonnage
déclenché par des événements ne va calculer la commande que lorsque l’erreur de mesure fran-
chit un certain niveau d’amplitude. Karl-Erik Årzén a proposé un tel mécanisme pour une
commande PID. Le principe, décrit dans l’article [10], se compose de deux parties : i) un dé-
tecteur d’événements utilisé pour la détection de franchissement de niveau et ii) le contrôleur
à proprement parlé qui met à jour le signal de commande. Cette architecture est représen-
tée sur la figure 2. Alors que la première partie est échantillonnée en temps avec la période
d’échantillonnage hnom (la même que celle utilisée pour le contrôle classique), le calcul de la
commande est quant à lui déclenché par des événements. Des requêtes sont ainsi générées
lorsque le signal de commande doit être mis à jour. Les intervalles d’échantillonnage du con-
trôleur asynchrone, notés h(·), ne sont donc plus constants mais sont désormais définis par le
temps séparant deux requêtes. L’instant courant d’échantillonnage asynchrone est dénoté ta par
la suite.

hnom

Time-triggered event detector Event-triggered controller

event logic

control logic

h(ta)

request

e(ta)

e(t)

u(t)

Årzén’s event-based controller

AD
e(tk)

DA
u(ta)

clock

Figure 2: Architecture du contrôleur asynchrone proposé par Årzén.

Différentes façons de générer une requête existent. Dans l’approche initiale proposée par Årzén,
un événement est déclenché i) lorsque l’erreur relative franchit un certain seuil, i.e. abs

(
e(ta)−

e(ta−1)
)
> qnom, ou ii) si la période d’échantillonnage maximale est atteinte, i.e. h(ta) ≥ hmax.

Le fonctionnement est présenté dans les sous-sections 6.2.1 et 6.2.2. La dernière condition est
ajoutée afin de respecter le théorème d’échantillonnage de Nyquist-Shannon. Elle n’est toutefois
pas nécessaire du fait du fonctionnement événementiel du nouveau contrôleur. Nous proposons
donc de l’enlever.

29 Chapter C - Commande déclenchée par événements

Auparavant, nous proposons d’améliorer le contrôleur d’Årzén, concernant plus particulière-
ment la méthode de discrétisation utilisée pour obtenir le terme intégral de la commande. La
méthode d’Euler explicite permet de pré-calculer le terme intégral pour l’échantillon suivant.
Cela nécessite néanmoins de connaître a priori la période d’échantillonnage, ce qui n’est pas
possible dans le cas asynchrone (car contrairement au cas classique, le paramètre h(t) varie). Il
faut donc préférer la méthode d’Euler implicite qui calcule le terme intégral en fonction de ce
qui s’est passé avant.

C.2.1 Commande sans limite de sécurité

Comme expliqué plus haut, nous proposons d’enlever la condition h(ta) ≥ hmax introduite
par Årzén afin de simplifier le schéma asynchrone. Au final, une requête est donc seulement
générée lorsque les performances du système sont dégradées, c’est à dire lorsque l’erreur est
importante. Le fait d’enlever la condition nécessite néanmoins de prendre quelques précau-
tion car l’intervalle entre deux échantillons peut maintenant augmenter indéfiniment en absence
d’événement (lors du régime permanent). D’un autre côté, l’erreur peut également devenir
importante lorsque la consigne change. Or, le terme intégral de la commande est fonction du
produit entre ces deux grandeurs, i.e. h(·)e(·) (appelé le gain intégral par la suite, noté he(·)), ce
qui peut conduire à un gain énorme et par conséquent une trop forte compensation. En d’autres
termes, des effets indésirables de dépassements importants de la consigne vont se produire. En
observant de plus près le régime permanent, nous avons constaté qu’il peut en fait être découpé
en deux phases, comme illustré sur la figure 3. Durand la première, le système est stable et
l’erreur est donc inférieure au seuil de détection (sinon un événement est généré et le régime
permanent n’est alors pas atteint). L’intervalle augmente pendant ce temps. Ensuite, dès que
la consigne varie l’erreur devient importante mais, en revanche, cela dure seulement le temps de
la détection d’un nouvel événement, à savoir hnom.

e = ysp − y

y
ysp

time

time

hnom

h(ta)− hnom

qnom

steady state

ta−1 ta

Figure 3: Décomposition du régime permanent dans le cas d’une commande déclenchée par
événement.

Au final, la somme des deux phases conduit à borner le gain intégral tel que :

he(ta) ≤
(
h(ta)− hnom

)
· qnom + hnom · e(ta)

Summary of the thesis (in French) 30

Dans cette expression, seul l’un ou l’autre des deux paramètres est grand dans le produit entre
h(·) et e(·) et, de ce fait, l’erreur du système ne sera pas sur-compensée. Ceci est expliqué plus en
détail dans la sous-section 6.2.3. A partir de cette analyse, nous proposons ensuite de nouvelles
stratégies de commande PID asynchrone. Les six algorithmes peuvent être résumés comme suit.
Il est bon de noter que l’approche utilisée est assez similaire à celle utilisée dans un mécanisme
anti-windup, où l’erreur due à la saturation des actionneurs est compensée.

1. Algorithme seulement sans la condition de limite de sécurité :
Comme expliqué plus haut, si la condition est enlevée sans aucune précaution, alors des
dépassements importants de la consigne vont apparaître après un long régime permanent.

2. Algorithme avec saturation du gain intégral :
Nous proposons de borner la gain intégral afin de réduire son impact dans la loi de com-
mande, puisqu’en fait, seul h(·) ou e(·) est grand dans le produit he(·). A partir de cette
constatation, le gain intégral devient hesat(ta) =

(
h(ta)− hnom

)
· qnom + hnom · e(ta).

3. Algorithme avec facteur d’oubli exponentiel sur la période d’échantillonnage :
Puisque l’intervalle d’échantillonnage h(·) n’est plus limité, nous proposons d’appliquer un
facteur d’oubli afin de limiter son impact, notamment lorsque le régime permanent dure
longtemps. Ainsi, sa valeur devient hexp(ta) = h(ta) · exp

(
α ·
(
hnom − h(ta)

))
.

4. Algorithme hybride :
Nous proposons ensuite d’appliquer le facteur d’oubli sur la période d’échantillonnage et la
saturation du gain intégral, mélangeant ainsi les deux précédentes stratégies. Cela conduit
à hehybrid(ta) =

(
hexp(ta)− hnom

)
· qnom + hnom · e(ta).

Les algorithmes proposés permettent de réduire le gain intégral dans la loi de commande. Cepen-
dant, certains peuvent être difficiles à implémenter sur un système disposant de faible ressources,
notamment en ce qui concerne la fonction exponentielle hexp(·). Pour cette raison, nous pro-
posons d’améliorer les algorithmes concernés, en remplaçant l’exponentielle par une fonction
linéaire définie par morceaux moins coûteuse en terme de calcul.

5. Algorithme avec facteur d’oubli exponentiel sur la période d’échantillonnage et faible coût
d’implémentation :
Dans cette stratégie, le facteur d’oubli exponentiel devient heiexp(ta).

6. Algorithme hybride et faible coût d’implémentation :
De même, le facteur d’oubli exponentiel faible coût est remplacé dans l’algorithme hybride,
ce qui amène le gain intégral à heihybrid(ta) =

(
hi

exp(ta)− hnom

)
· qnom + hnom · e(ta).

Finalement, il est proposé dans cette thèse de changer la condition de détection de franchisse-
ment de niveau. L’erreur absolue plutôt que relative est ainsi préférée, i.e. abs

(
e(ta)

)
> qnom.

De cette manière, le nombre d’échantillons va inévitablement augmenter pendant les périodes de
transition mais, en revanche, il sera certain que le régime permanent est atteint lorsque l’erreur
est inférieure à qnom, ce qui n’était pas forcément vérifié avant.

C.2.2 Commande avec condition d’échantillonnage minimum

Dans le but de réduire davantage le nombre d’échantillons, une condition d’échantillonnage
minimale est introduite, i.e. h(ta) ≥ hmin. Ainsi un événement ne sera possible que si le temps
écoulé depuis la dernière mise à jour du signal de commande est supérieur à la valeur hmin. Ce
principe est détaillé dans la sous-section 6.2.4.

31 Chapter C - Commande déclenchée par événements

C.2.3 Commande avec échantillons supplémentaires

Enfin, dans le but de réduire l’erreur statique qui est inévitable dans le schéma asynchrone,
nous proposons d’ajouter quelques échantillons supplémentaires après le régime transitoire.
Ainsi, la marge d’erreur sera diminuée. Ces échantillons sont espacés d’une période hextra

et on arrête d’ajouter des échantillons dès que l’erreur passe en dessous d’un nouveau seuil de
détection qmin. Ceci est développé plus en détail dans la sous-section 6.2.5.

C.2.4 Résultats de simulation

Les différentes stratégies de commande PID proposées conduisent à une forte diminution du
nombre d’échantillons nécessaires pour suivre une certaine consigne. Des résultats de simulation
montrent dans la section 6.6 qu’une réduction de plus de 80 % est atteinte alors que les perfor-
mances du système sont toujours assurées. Cependant, ces résultats ne sont basés sur aucune
preuve réelle de stabilité, comme expliqué dans la section 6.4.

C.3 Retour d’état et échantillonnage déclenché par une
fonction de Lyapunov

Un contrôleur à retour d’état dynamique est également très pratique. Il consiste à multiplier
la sortie du système avec un certain gain, et d’appliquer ensuite le résultat comme la nouvelle
entrée du système. De plus, de nombreux outils méthodologiques existent pour ce type de
commande, notamment pour prouver la stabilité en utilisant la théorie de Lyapunov (voir la
sous-section 7.2.1 pour plus d’informations sur ce sujet). Pour cette raison, nous avons choisi un
retour d’état basé sur un échantillonnage déclenché par événement, afin de prouver qu’un système
peut être stable même si la commande n’est pas mise à jour pendant un long moment. Dans ce
cas, les requêtes ne sont plus générées par franchissement de niveau du signal de mesure. Nous
allons plutôt utiliser une fonction de Lyapunov qui va déterminer les instants d’échantillonnage.
Ces travaux sont développés dans le chapitre 7.

C.3.1 Échantillonnage déclenché sur fonction de Lyapunov

Le principe a été introduit parManel Velasco et al. dans l’article [68]. L’idée est de déclencher
un événement lorsque le système atteint un certain niveau d’énergie (défini par une fonction de
Lyapunov donnée). Le comportement attendu est représenté sur la figure 4 pour un système à
deux états, i.e. x1 et x2. La trajectoire du système franchit ainsi plusieurs ellipses dans le plan
(x1, x2), qui définissent une région avec un niveau d’énergie constant de plus en plus proche du
point d’équilibre. La mise à jour de la commande est effectuée seulement lorsqu’une courbe est
franchie de l’extérieur vers l’intérieur, ce qui est un comportement stable d’un point de vu de
Lyapunov puisque l’énergie diminue. Pour arriver à ce comportement, l’échantillonnage basé sur
Lyapunov est déclenché lorsque :

V
(
x(ta)

)
= η · V

(
x(ta−1)

)

où V est une fonction candidate de Lyapunov. Le facteur de gain énergétique η défini ainsi
la fréquence des événements, puisqu’une petite valeur va conduire à de large intervalles entre
deux échantillons. Par construction, la séquence d’échantillonnage est stable selon Lyapunov si
0 < η < 1. Cependant, la stabilité du système n’est pas encore assurée. En effet, si la trajectoire
du système augmente avant d’avoir franchi le niveau d’énergie suivant, alors aucun événement
ne sera généré et le système va diverger. Il faut donc garantir une séquence infinie d’échantillons.
Cela est également proposé par Manel Velasco et al. mais conduit à un algorithme très lourd

Summary of the thesis (in French) 32

qui nécessite d’être exécuté hors-ligne. Cet algorithme permet néanmoins d’assurer la stabilité
en calculant le facteur de gain énergétique minimum η∗. Ce paramètre garantit alors que le
prochain niveau sera franchit, en posant η∗ < η < 1. L’ensemble de ces travaux et rappelé dans
la sous-section 7.2.2.

x1

x2 control job execution

trajectory

Figure 4: Comportement du mécanisme d’échantillonnage déclenché par une fonction de Lya-
punov pour un système à deux états.

Une première amélioration est proposée dans cette thèse afin d’éviter que le système ne
diverge, lorsque la consigne change par exemple ou lorsqu’une perturbation apparaît. Cela se
traduit par le fait que la fonction de Lyapunov augmente et rien n’était prévu pour traiter ce
cas dans les travaux existants. Nous ajoutons donc la condition suivante :

∆V (ta) > 0
avec ∆V (ta) = V

(
x(ta)

)
− V

(
x(ta−1)

)

C.3.2 Simplification du mécanisme d’échantillonnage

Dans un soucis d’alléger la loi de commande, nous proposons de relaxer la restriction faite sur
η pour assurer une séquence d’échantillonnage infinie, i.e. η∗ < η < 1. En fait, comme expliqué
plus haut, l’algorithme utilisé pour calculer le facteur de gain énergétique minimum η∗ est très
lourd à mettre en œuvre en terme de calculs. Ce paramètre dépend du système à commander et
de la fonction de Lyapunov choisie. De plus, la méthode proposée est très conservative puisque
la valeur calculée est appliquée durant tout le fonctionnement du système alors que, en fait, la
séquence est stable pour un grand nombre de gain inférieurs à η∗. C’est pourquoi nous proposons
de faire varier dynamiquement le facteur de gain énergétique, qui devient donc η(t). La condition
de déclenchement d’un événement est par conséquent modifiée :

V
(
x(ta)

)
= η(ta−1) · V

(
x(ta−1)

)

avec 0 < η(·) < 1 par construction. Quatre nouveaux algorithmes sont finalement proposés dans
la sous-section 7.2.3 :

1. Diminution légère/augmentation brutale du facteur de gain énergétique :
Le premier algorithme consiste à diminuer η(t) plus que permis initialement dans la con-
dition η∗ < η < 1. Cependant, une telle relaxation peut rendre le système instable. Dès
que cela se produira, le facteur de gain énergétique est aussitôt remis à sa valeur stable η∗.

2. Amélioration pour un fonctionnement complètement en-ligne :
La valeur du facteur de gain énergétique minimum est toujours nécessaire dans le premier
algorithme, ce qui implique d’exécuter une partie de code hors-ligne pour obtenir η∗. Afin

33 Chapter 0 - Commande déclenchée par événements

de s’affranchir de cela, nous proposons de remplacer sa valeur par la borne supérieure
dans la condition de stabilité, à savoir 1 − ε. Le facteur de gain pourra ainsi être réduit,
et lorsque le système deviendra instable alors il retournera à cette valeur haute. Cela va
inévitablement augmenter le nombre d’échantillons mais a l’avantage d’être complètement
exécutable en-ligne.

3. Diminution/augmentation légère du facteur de gain énergétique :
Plutôt que de remettre le facteur de gain énergétique à une valeur très haute lorsque le
système devient instable, nous proposons de l’augmenter doucement. Le système devrait
être stabilisé moins vite mais le nombre d’échantillons devrait en revanche diminuer.

4. Variation plus formelle du facteur de gain énergétique :
En se basant sur les précédents algorithmes, nous proposons finalement de formaliser notre
idée de relaxation en utilisant le facteur de gain énergétique comme un état interne du
contrôleur, i.e. η̇(t). Après discrétisation, η(ta) est finalement ajusté en fonction de la
variation de la fonction de Lyapunov ∆V (ta) - qui a l’avantage d’être déjà calculé pour la
détection des événements - et de la période d’échantillonnage h(ta).

Les trois derniers algorithmes peuvent être exécutés complètement en-ligne. Ils autorisent le
système à devenir instable mais réagiront en conséquence lorsque cela se produira.

C.3.3 Commande avec condition d’échantillonnage minimum

Comme précédemment avec le cas du contrôleur PID, nous ajoutons une condition afin qu’un
événement ne soit possible que si un certain temps s’est écoulé depuis la dernière mise à jour du
signal de commande, i.e. h(ta) ≥ hmin. Ceci est détaillé dans la sous-section 7.2.4.

C.3.4 Résultats de simulation

Des résultats de simulation sur un système à double intégrateur montrent dans la section 7.5
que le nombre d’échantillons est grandement réduit sans pour autant sacrifier les performances
du système.

C.4 Résultats expérimentaux

Les différentes stratégies de commande asynchrone que nous proposons ont été testées en
simulation. Elles ont ainsi permis de valider nos intuitions de départ. Nous proposons ensuite
de les tester sur un système réel afin de prendre en compte les erreurs qui peuvent exister
(erreurs de modélisation, erreurs dues aux bruits de mesure, etc...). Le banc de test utilisé est
un pendule inversé de la société FeedBack Incorporated. Il est constitué d’un chariot sur
lequel est placé le pendule inversé. Un moteur permet alors de déplacer le chariot dans le but
de stabiliser l’ensemble. Ce système est très instable puisque les bras du pendule retombent dès
que la commande n’est plus appliquée. Une commande asynchrone, qui laisse la possibilité au
contrôleur de ne pas mettre à jour le signal de commande pendant un long moment, peut donc
être risqué. Toutefois, les résultats obtenus montrent le contraire puisque nous obtenons un
système qui fonctionne aussi bien qu’avec la méthode classique - sinon mieux - avec un nombre
d’échantillons est très réduit. Ces résultats sont présentés dans le chapitre 8.

General introduction

Research problematic and
proposed solutions

This document synthesizes the three-year PhD work realized under the supervision of Daniel
SIMON and Nicolas MARCHAND, in both the INRIA Rhône-Alpes1 research center and
the control department of GIPSA-lab2, in Grenoble, France. Actually, the demand of low-
power electronic devices in all embedded and miniaturized applications becomes more and more
important and encourages companies to develop new versions of the existing components. Our
work is in line with these requirements since we propose different solutions to i) reduce the
energy consumption in electronic devices and ii) soften the computational cost of the controller
in closed-loop architectures.

Reduction of the system energy consumption

An electronic device with a variable processing power is known to be a promising solution
for energy savings. Classical systems usually run with nominal and constant power supply (in
voltage and frequency), but it might be interesting to make these parameters dynamically varying
in order to control the energy consumption of the system. However, decreasing the power of the
device leads to run more slowly in return, which directly impacts the computational performance.
This is clearly an energy-performance tradeoff which needs to be managed. A solution is to save
energy when the computational load of the processor becomes low and increase the processing
power back as soon as an important computation has to be done. As a result, a control strategy
is required to monitor the activity of the system and decide the control variables. In this thesis,
we propose a closed-loop architecture which allows such a dynamical scheme. Two actuators
respectively provide the supply voltage and the clock frequency to the circuit. A fast predictive
control law then consists in providing an energy-efficient setpoint to track, while guaranteeing
that the computational load to treat is correctly executed. This is applied to a monocore system
- where a single processor runs on the chip - in a seminal analysis, before extending the principle
to a multicore system where several devices work together with the same power supply. Finally,
the proposed approaches clearly give an important reduction of the energy consumption in both
schemes.

Another aspect also occurs in electronic chips with the upcoming of nanometric technologies.
In fact, the system performance after fabrication is not fully predictable anymore since new

1INRIA Rhône-Alpes, one of the eight research centers of the French national institute for research in
computer science and control: http://www.inrialpes.fr/

2GIPSA-lab, laboratory in image, speech, signal and control of Grenoble: http://www.gipsa-lab.inpg.fr/

General introduction 38

problems - which did not influence the circuit at a higher scale - become very annoying at a sub-
micrometric scale. The process variability is notably one of the leading causes for chip failures
and delayed schedules. This phenomenon introduces an uncertainty about how the system will
perform. Although a circuit is designed to run at a nominal clock frequency, the fabricated
implementation may vary far from this expected performance. As a result, the control strategies
have to be robust to this inherent dispersion. Eventually, our last contribution is highly robust
to tackle variability since it is not based on any parameters of the system.

Reduction of the control computational cost

Controlling a device implies to add some extra hardware and software materials. This could
be a problem in embedded systems with high constraints, such as low allocated resources for
instance. For this reason, it becomes essential to find some solutions to reduce the control
computational cost. In this sense, many reasons are motivating event-driven system and, in
particular, because more and more systems with asynchronous needs are encountered. Although
a time-triggered framework simplifies the design and analysis in sampling the system uniformly
in time, it results in a conservative usage of resources since the control law is computed and
updated every periodic time instants, that is at the same rate regardless it is really required
or not. On the other hand, event-based sampling (also called asynchronous) allows resource-
aware implementations of the control law enforcing some events only when the measured signal
sufficiently changes. This scheme theoretically enables to reduce the number of samples and,
consequently, to save computations in the control law. This behavior has hence to be considered
in embedded low-power systems where a significant power consumption reduction would be very
appreciated. However, this original approach requires to develop new methodological tools which
take into account the even-driven nature of the system to control.

Actually, the different scientific communities begin to be very active in this field. In control
theory for instance, Karl-Erik Årzén proposed in 1999 an event-based PID controller. The basic
setup consists in two parts: a time-triggered event detector used for level-crossing detection and
an event-triggered controller which calculates the control signal. Whereas the first part runs
with a constant sampling period - that is the same than for the corresponding conventional
time-based controller - the second part is driven by some requests sent by the event detector. In
the original proposal, a request is activated either when the measurement changes and crosses
a given level or if a maximal sampling period is achieved. The second condition was added
for stability reasons in order to fulfill the condition of Nyquist-Shannon sampling theorem: a
new control signal is performed when the amount of time elapsed since the last sample exceeds
a certain limit. This clearly shows how it is difficult to untie the well-established synchronous
paradigms because, in fact, such a safety limit condition is no more consistent thanks to the level
detection mechanism. Consequently, we develop in this thesis some new event-based algorithms
without safety limit condition anymore. Finally, the proposals lead to a noticeable reduction of
the mean control computational cost (in simulation and practice), and besides, the performance
of the closed-loop system is also improved.

Whereas the previous approach updates the control law when required from a performance point
of view, it could be interesting to enforce events with respect to the controlled system stability.
Some theoretical tools would thus be useful to prove that an event-driven scheme can correctly
control a system, even if the system is not sampled during a long amount of time. Using a
Lyapunov function to decide when updating the control law is such a solution, for instance,
since the Lyapunov theory is powerful in stability analysis. Actually, the Lyapunov sampling
mechanism introduced by Manel Velasco et al. in 2009 enforces events only when the system
trajectory reaches a given value. A state-feedback strategy then updates the control signal

39 Research problematic and proposed solutions

with respect to the resulting requests. However, the existing work relies on the heavy off-line
computation of a parameter which is not acceptable in embedded devices since the key point
in such systems is to reduce the computational cost. A solution relaxing the event condition is
hence proposed here, which leads to a fully on-line algorithm while still ensuring the stability of
the system.

Eventually, this thesis covers different domains. Firstly, a skill on micro-electronics field is
needed in order to model the different systems and to be able to tackle the different problems
which occur in low-scale technologies. An awareness in computing is also interesting since some
tricks will be developed to program the different control algorithms and implement them in
real-time testbeds. The least knowledge is the most important. It concerns the control theory
which is the key point of all contributions in this thesis.

Structure of the thesis

As previously explained, the thesis focuses on reducing both the energy consumption and
the control computational cost in embedded electronic systems. Due to the dissimilar natures
of the objectives, the thesis is composed of two parts:

Part I deals with the energy-performance tradeoff in embedded electronic circuits. Actually,
a voltage scalable processor makes possible to reduce the energy consumption controlling
the power supply (the voltage and frequency), but this gain decreases the computational
activity of the processor in return. Furthermore, a high dispersion phenomenon could
occur in nanometric chips (such as those of the study case) and a certain robustness is
expected. Therefore, a control loop is required to decide the strategy to adopt in order to
reduce the energy consumption while guaranteeing some good computational performance.
The context and the motivations of this work are introduced in chapter 1. Then, a closed-
loop architecture is depicted in chapter 2 where a single processor has to be controlled, and
several control laws are also developed. This seminal scheme is finally extended in chapter 3
to a global structure where different devices have to work together. The devices are thus
power supplied with the same voltage and clock frequency. At the end, some simulation
results are performed in chapter 4 in order to highlight the gain achieved thanks to our
different proposals. The robustness to parameter variations is also demonstrated.

Part II is devoted to reducing the computational cost of the controller using an asynchronous
sampling mechanism. Contrary to the classical time-triggered scheme which calculates
the control signal in a periodic fashion, an asynchronous (or event-based) control strategy
updates the control signal only when the measured signal sufficiently changes. This allows
to highly reduce the number of samples and directly impacts the computational cost of the
system. The framework is introduced in chapter 5 together with the context of this research
topic. Then, a simple event-based scheme is studied in chapter 6. The PID control setup is
used in this first work where some events are enforced with respect to the measured system
error. Different strategies are developed and some simulation results confirm the interest
of such an approach. In chapter 7, the principle is extended to a state-feedback control
law using a Lyapunov function to decide when updating the control signal. Finally, some
experimental results are performed in chapter 8 on linear and nonlinear real-time systems.

Eventually, some conclusions and perspectives are drawn at the end of the thesis.

Part I

Energy-performance tradeoff in
electronic systems

Chapter

1

Context and motivations

The embedded electronic devices intend nowadays to be more and more efficient with impor-
tant low-power constraints and yet, this is clearly an energy-performance tradeoff which needs
to be wisely studied. Actually, with the upcoming of micro and nanometric technologies, the
number of transistors which can be fitted onto a chip continuously increases and the circuits are
now composed of millions of transistors. This allows to deal with some complex functions in a
minimum amount of time. On the other hand, these chips have reached some hardware limits
in terms of power consumption, computational efficiency and fabrication yield. The forthcom-
ing generations hence require several drastic technological evolutions. Furthermore, the system
performance after fabrication is not fully predictable anymore since new problems - which did
not influence the circuit at a higher scale - appear, notably the process variations which become
huge at the chip scale. This implies to develop new strategies for energy management which are
robust to the uncertainty of the chip. Therefore, some solutions including control loops become
essential and have to be considered.

This chapter starts introducing micro and nano-electronics in section 1.1. A survey of differ-
ent problems facing designers over the nanometric era is then detailed in section 1.2 while some
solutions are suggested in section 1.3. At the end, a framework to make such systems robust
to process variability using feedback control loops is developed in section 1.4. Different control
strategies will be proposed in the next chapters based on that. One could note that this work
was done within the ARAVIS project context - see subsection 1.4.2 - which aims at giving archi-
tectural solutions for manufacturing some integrated circuits in technology in limit of scalability
where high technological variability could occur into a single chip. However, the whole proposal
can be transposed to more general electronic systems and the robustness to process variability
could be applied to any uncertainties.

Part I - Energy-performance tradeoff in electronic systems 46

1.1 Micro and nano-electronics

Microelectronics is a subfield of electronics which, as the name suggests, is related to the
study and manufacture of electronic components at a very small scale, that is the micrometer
(denoted µm and corresponding to 10−6m). In order to have an idea on the order of magnitude, a
micrometer is about thirty times thinner than the thickness of a human hair. Some miniaturized
components are made from semiconductor material (such as Silicium) using different technologies
in such a way that classical components have their microelectronic equivalents. In particular,
this is the case of the transistor which is the main component in all logical operations since
several applications are possible. Thus, a transistor can control its output in proportion to
the input signal, that is, it can act as an amplifier. Alternatively, it can be used to turn the
current “on” or “off” in a circuit, such as an electrically controlled switch. Indeed, the transistor
is composed of three electrodes - labeled source, drain and gate - which could easily make the
component passing or blocking: no current is provided without any supply voltage at the gate,
but as soon as a positive voltage occurs an electrical current flows between the source and the
drain. This principle is illustrated in figure 1.1. Note that a transistor which is designed in a
10µm technology means the length of the gate of the transistor is 10µm.

gate

insulator

source drain

substrate

gate

insulator

source drain

substrate

Blocking transistor
(switch on)

Passing transistor
(switch off)

Figure 1.1: Transistor principle: the electrically controlled switch case.

The manufacture of semiconductors also allows to integrate several electronic functions on only
one surface. These so-made circuits are called chips or integrated circuits. Contrary to the
first electronic circuits which were an amount of several components connected together by
conductive wires, the connections in integrated circuits are designed before the fabrication in
order to use a shared support in Silicium. Finally, the chip is less bulky and less expansive.
Moreover, it integrates more components and, consequently, more functions could be realized.
For these reasons, the integrated circuits are present everywhere: they are in each room of the
house (TVs and DVD players, household electrical appliances, etc...), in mobile phones or in
automotive, and even in the wallet with the smart card on the credit cards.

The most advanced integrated circuit is the well-known microprocessor, the core of every
computers, which contains millions of transistors in order to deal with complex operations in
a minimum amount of time. The evolution of the manufacturing techniques for these circuits
is so important that the number of transistors which can be fitted onto a chip continuously
increases. The “Moore’s law ” - from the name of its author, Gordon Moore, the Intel co-founder
- incidentally predicts that this value will double approximately each eighteen months. Finally,
that is surprisingly accurate since 1971 which is the date where the first microprocessor was
manufactured. However, the ratio between the number of transistors and the surface of the chip
increases more slowly for few years. That is due to some power dissipation difficulties which

Note that this section was established with the help of the French web site on nanosciences and nanotech-
nologies (http://www.nanomicro.recherche.gouv.fr/) and some articles from the free encyclopedia Wikipedia
(http://fr.wikipedia.org/)

47 Chapter 1 - Context and motivations

avoid a faster frequency whereas the components are smaller. Nevertheless, the parallelism is a
solution which consists in multiplying the number of processors on a single chip. Furthermore,
the notion of System on Chip - afterwards denoted SoC - recently appeared and refers to a
single chip embedding a full system. A system on chip can hence integrate one or several
microprocessors, some memories, some interface peripherals, or all other components required
to realize an expected electronic function. Moreover, in order to facilitate the design of a SoC,
a lot of semiconductor Intellectual Property cores exist. Denoted IP-core or IP-block, such
a block is a reusable unit of logic, cell, or chip layout design that is the intellectual property of
one party. These IP-cores can then be used as some building blocks within chip designs or logic
designs.

Finally, the chips are even smaller and smaller and the current techniques of fabrication lead
to commercialize some circuits in 90nm technology or smaller. This means that a new leap was
taken since the length of the gate is now close to a nanometer (denoted nm and corresponding
to 10−9m). But some parasitic physical phenomena, which do not influence the circuit at a
higher scale, become very annoying at a sub-micrometric scale. As a result, the scalability - or
Moore’s law - is not persistent anymore. The next section lists these problems whereas some
solutions are proposed in sections 1.3 and 1.4.

1.2 Problems in nanometric technologies

With the upcoming nanotechnologies, the integrated system performance after fabrication
will not be fully predictable. Indeed, the embedded integrated systems have reached some limits
in terms of power consumption, computational efficiency and fabrication yield. The forthcoming
generations hence require several drastic technological evolutions. Notably, performance esti-
mation and management are today some key points in the new integrated systems and control
loops become essential in nanometric circuits. Thus, for example new strategies for a global en-
ergy management have to be used to meet energetic and real-time constraints. Some solutions,
such as dynamic voltage and frequency scaling techniques (DVFS), have to be considered for
instance. They have been explored and have shown significant energy savings while meeting
performance requirements (see subsection 1.3.1 for further details). Nevertheless, we are still
facing nowadays to some intrinsic problems with the nanometric technologies.

Process variability: The variability refers to the unpredictability, inconsistency, unevenness,
and changeability associated with a given feature or specification. Therefore, variability
has become one of the leading causes for chip failures and delayed schedules. In nano-
metric design flows, this is associated with design modes, power states, environmental
conditions, manufacturing steps, and the behavior of devices and interconnects. This is
why the process variability affects the entire physical design environment, from power
management, through timing and signal integrity closure to manufacturability. A major
problem facing the computer and semiconductor industries is the increasing amount of
CMOS process variability (note that the complementary metal oxide semiconductor is
the most commonly used technology to manufacture electronic components and integrated
circuits). Thus, variability in low-level circuit parameters - such as transistor gate length
and gate oxide thickness - complicates the system design by introducing an uncertainty
about how a fabricated system will perform [55]. Although a circuit or chip is designed to
run at a nominal clock frequency, the fabricated implementation may vary far from this
expected performance. In other words, a part of the circuit could run with the expected
computational speed whereas another part may run more slowly and another might not
run at all. This phenomenon is illustrated in figure 1.2 where a light speed gradient in-
dicates a well-running area and a darker gradient is used for a worst-running area. This

Part I - Energy-performance tradeoff in electronic systems 48

process variability becomes one of the main problems in nanotechnologies and some tricks
are hence required to manage its impact on the circuit manufacturing.

Leakage power: As voltage levels scale downward with geometries, the threshold voltages must
also decrease to gain performance advantages of the new technology. This reduction in
threshold voltages has led to an exponential increase in leakage current in transistors, while
thinner gate oxides have led to an increase in gate leakage current as well. Moreover, at
65nm and below the leakage power accounts for a significant portion of the total power in
high-performance designs [52], therefore its management is essential in the design process
of integrated circuits. The leakage power is a growing concern in the overall design process.
Unlike dynamic power - which can be managed by reducing switching activity - the leakage
power effect exists as long as the power is on. That is why current process technologies
are pushing designers to consider new design methods to reduce this issue.

Yield: Early on, the integrated circuit design rules were absolute and finite. The path to yield
was fairly simple: comply with all the design rules and yield would follow. Designers did
not need to worry too much about what happened in the fabrication after tape-out [51].
However, in the nanometric era the game has changed and a yield success is much harder
to achieve because of the increased number and complexity of variables affecting manufac-
turability. The designer’s strategy must hence shift from simple design rule compliance to
the definition and design of the optimal layout for the highest yield.

Manager

speed

Figure 1.2: Technological variability: representation of such a phenomenon which could appear
in sub-micrometric integrated circuits.

1.3 Suggested solutions

As the problems in nanometric technologies are numerous and important, the computational
architectures have to be completely (re)-designed from scratch and adapted to compensate the
technological constraints. Different solutions exist. For instance, some power management tech-
niques are presented in subsection 1.3.1 and a special focus on the energy-performance tradeoff
done in subsection 1.3.2. A parallelization paradigm is then introduced in subsection 1.3.3.

1.3.1 Power management techniques

Three main sources of power consumption exist in CMOS circuits, as explained in [24],
which can be sorted into i) a dynamic consumption due to the electrical gate switching, that

49 Chapter 1 - Context and motivations

is Pswitching(t), and ii) a static consumption induced by the short-circuit and leakage currents,
that are Pshort−circuit(t) and Pleakage(t) respectively. This yields

P (t) = Pswitching(t) + Pshort−circuit(t) + Pleakage(t)

= Kdyn · fclk(t) · Vdd(t)2 +Ksc · fclk(t) · Vdd(t) +Kleak · Vdd(t)
(1.1)

where P (.) is the total power consumption while Vdd(.) is the supply voltage and fclk(.) is the
clock frequency which both supply the device. These variables evolves with respect to time.
On the other hand, Kdyn, Ksc and Kleak are some constant parameters which depend on the
electronic circuit. The static and dynamic power consumption can be reduced (and consequently
the energy consumption). This is explained in the following subsections.

Static power management

As the gate length and threshold voltage are scaled down in today’s technology chips (see
section 1.2 for further details), the leakage power is a significant contributor to the total power.
Several techniques can be applied at the circuit level to reduce this leakage power, including
multi-threshold libraries, power gating and variable body biasing [39, 70]. Furthermore, since
in advanced technologies the associated processor leakage has an important contribution to the
system energy consumption, a sleep mode management can be required to put useless processors
into a sleep mode and hence limit their static power consumption.

Dynamic power management

For current integrated circuits, the average power consumption and the energy dissipation
are dominated by the switching power defined in equation (1.1). That arises from the charging
and discharging of the load capacitance. Finally, the previous relation becomes

Pavg(t) ∝ C · fclk(t) · Vdd(t)2

E(t) ∝ C · Vdd(t)2
(1.2)

where Pavg(.) is the average power consumption, E(.) is the energy dissipation and C is the
load capacitance. This relation suggests that minimizing the load capacitance, reducing the
supply voltage or slowing the clock frequency can reduce the power. However, while the load
capacitance can only be affected during the chip design - for example by minimizing the on
chip routing capacitances and reducing the external components access - a voltage scalable
processor and power controllable peripheral devices make possible to reduce the power and
control it by a dedicated digital hardware or by an operating system (OS). For instance, the
OS can control the processor frequency and its voltage and/or put the device in low-power sleep
states. This is called the dynamic power management in [41]. The power minimization can be
achieved by resolving an off-line stochastic optimization problem but this is not always possible.
Therefore the optimization has to be performed on-line by a control system dedicated to the
power management. Thus, some techniques will lead to run the processor slower at a reduced
voltage according to the instantaneous computational demand.

As highlighted with equation (1.2), reducing the clock frequency and the supply voltage
decreases the power consumption. The reduction is a quadratic function of the voltage and a
linear function of the frequency. Moreover, only decreasing the voltage impacts on the energy.
As a result, the dynamic voltage scaling (DVS) can be used to efficiently manage the chip
energy consumption [29]. The supply voltage can be reduced whenever a slack - i.e. an amount
of time - is available in the critical path - the longest electrical path a signal can travel to go

Part I - Energy-performance tradeoff in electronic systems 50

from one point of the circuit to another - but one has to take care that scaling the voltage of
a microprocessor changes its speed as well. Indeed, the propagation delay of transistors Td(.)
significantly increases as the voltage approaches the threshold voltage of the device Vt, as defined
by

Td(t) ∝ Vdd(t)
(
Vdd(t)− Vt

)2 .

Therefore, controlling the voltage is a power-delay tradeoff: the power consumption decreases
while the delay increases. Adapting the supply voltage is very interesting when possible but
this implies the use of dynamic frequency scaling (DFS) to keep the system behavior correct.
The addition of DFS to DVS is called the dynamic voltage and frequency scaling and DVFS
results in simultaneously managing the frequency and the voltage. In fact, in many cases of
application the only performance requirement is that the task meets a deadline, as depicted
in figure 1.3(a). Such a scheme creates some opportunities to run the processor at a lower
performance level and achieve the same perceived performance while consuming less energy.
Indeed, figure 1.3(b) shows that decreasing the processor clock frequency reduces the power
consumption but simply spreads the computation out over time, thereby consuming the same
total energy than before. On the other hand, figure 1.3(c) shows that decreasing the voltage level
as well as the clock frequency leads to achieve the expected goal of reduced energy consumption
at an appropriate performance level [67]. To sum up, dynamic power management is an energy-
performance tradeoff. Furthermore, the supply voltage and the clock frequency have to be
controlled together in order to ensure the maximum delay over the critical path. Clearly, it is
required to decrease the frequency before decreasing the voltage and, respectively, to increase
the voltage before increasing the frequency. Finally, the DVFS method leads up to an important

time

Pavg ∝ V 2
dd · fclk

Busy cycles

Hurry-up and wait

Idle cycles

E

deadline

(a)

time

Pavg ∝ V 2
dd ·

fclk

2

Frequency scaling

E

deadline

(b)

time

Pavg ∝
(

Vdd

2

)2

· fclk

2

Voltage and frequency scaling

E/4

deadline

(c)

Figure 1.3: Dynamic power management: energy consumption vs. power consumption.

51 Chapter 1 - Context and motivations

energy consumption reduction [53]. Moreover, it seems that most applications could run on a
voltage scalable device [21].

Clock gating

Contrary to power gating - introduced above in static power management - which affects the
leakage power, the clock-gating principle allows to decrease the dynamic power consumption.
Clock gating is used on many circuits. To save power, clock gating support adds more logic
to a circuit to prune the clock tree, thus disabling some portions of the circuitry in order their
switching power consumption goes to zero [39]. This behavior eventually leads in “pausing” the
clock frequency. That can hence be used if necessary to save energy when a task is performed
before its deadline.

1.3.2 Focus on the energy-performance tradeoff

Several behaviors are known to minimize the energy consumption while guaranteeing good
computational performance (see [36] for further details). Classically, each task has to be consid-
ered independently. Thus, when several tasks - with their own and different computational load
- have to be executed, the voltage level has to be calculated for each one rather than considering
a global scaling for all the tasks. Moreover, the execution time has to fit with the deadline
regardless the chip runs with a continuously or a discretely varying voltage range. Indeed, in
figure 1.4 one can see several possible behaviors to execute a given task with different possible
voltage levels. In this example, 1000M cycles have to be computed. The processor consumes
10nJ/cycle, 25nJ/cycle and 40nJ/cycle when it is running at 2, 5V , 4V and 5V respectively,
and the corresponding maximal frequencies are 25MHz, 40MHz and 50MHz. When only the
maximum voltage level is possible - as this is the case for a classical processor (without dynamic
voltage scaling) - the hurry-up and wait running is performed but leads to an important energy
consumption, as shown in figure 1.4(a). On the other hand, in figure 1.4(b) a continuously
varying voltage scaling allows using an unique level to fit with the deadline. The consumption is
hence optimal and cannot be decreased anymore. However, the energy consumption can also be
reduced with a discretely varying voltage scalable processor by using the available voltage levels
to fit the task with its deadline. In this case, the lowest energy consumption is achieved using
the two immediate neighbors of the optimal level. This is depicted in figure 1.4(c). Another
essential rule is that selecting some suitable voltage levels leads to a drastic energy reduction
even if the number of levels is very small. Anyway, a frequency range is available for each voltage
level [54]. This can be useful to fit the task with its deadline, else, the clock-gating principle -
presented in the previous subsection - could be an alternative solution.

A task scheduling can be a solution. In [30] for instance, a simple method consists in moni-
toring the total activity of the chip - without knowing task by task information - and applying
a high voltage when the processor is busy or a low voltage when it is idle. In [20, 21], the
different tasks are sorted into three possible throughput (the number of instructions to treat in
a given amount of time): compute intensive and short-latency processes for some tasks which
require the maximum performance and will be executed with a high voltage level, background
and high-latency processes for some non-critical tasks which will be computed at a lower voltage
and processor idle. The tradeoff between a maximal throughput and a minimal energy consump-
tion is thereafter the key point. More sophisticated scheduling policies propose to integrate a
DVFS scheduler and a feedback controller, as the one proposed in [76] where an EDF (earliest
deadline first) scheduler is mixed with a PID (proportional integral derivative) controller. As
a result, closed-loop control strategies are required to manage the energy-performance tradeoff
in electronic devices and some new laws are developed in this sense in the following chapters.

Part I - Energy-performance tradeoff in electronic systems 52

Finally, the main idea of the different proposals consists in i) reducing the penalizing supply
voltage so far as possible in order to minimize the energy consumption and ii) adapting the
clock frequency to the computational load to fit the task with its deadline.

time [s]

deadline

5 10 15 20 25

5.02

50MHz

1000Mcycles

Hurry-up and wait
E ∝ V 2

dd(
40J
)

(a)

5 10 15 20 25

4.02

40MHz

1000Mcycles

deadline

time [s]

Continuously varying voltage scaling
E ∝ V 2

dd(
25J
)

(b)

5 10 15 20 25

2.52

5.02

25MHz

250Mcycles750Mcycles

50MHz

deadline

time [s]

Discretely varying voltage scaling
(
32.5J

)E ∝ V 2
dd

(c)

Figure 1.4: Task scheduling: an issue to minimize the energy consumption of a task fitting its
execution time with the deadline.

1.3.3 Globally asynchronous locally synchronous paradigm

Embedded integrated systems have two means of implementation. Firstly, the conventional
clocked circuits with their global synchronization - in which is facing the huge challenge of
generating and distributing a low-skew global clock signal and reducing the clock tree power
consumption of the whole chip - makes them difficult for implementation. Secondly, systems
on chips, built with predesigned IP-blocks running at different frequencies, need to integrate
all the IP-blocks into a single chip (this notion is presented in section 1.1). Therefore, the
global synchronization tends to be impractical [28]. By removing the globally distributed clock,
globally asynchronous locally synchronous (GALS) circuits provide a promising solution for a
SoC design. Moreover, some GALS techniques allow to set independently the frequency and the
voltage of each locally synchronous modules, making scaling far more convenient than with the
standard synchronous approach. A dynamic power management - introduced in subsection 1.3.1
- is hence easier.

The GALS systems are chips split into multiple frequency domains, where each domain is
synchronous with respect to its clock. The different domains are mutually asynchronous in that
they may run at different clock frequencies. An asynchronous network on chip (ANoC) - a new
approach to design the communication into a SoC - can be used in this way for instance, such
as represented in figure 1.5. Thus, a GALS architecture can mitigate the impact of process and
temperature variations, since a globally asynchronous system does not require that the global

53 Chapter 1 - Context and motivations

frequency was dictated by the longest path delay of the whole chip (i.e. the critical path).
Indeed, in this case each clock domain frequency is only determined by the slowest path in its
domain.

Domain 1
2 GHz

5 GHz

1 GHz

3 GHz
A
No
C

Domain 3

Domain 4

Domain 2

Figure 1.5: Globally asynchronous locally synchronous (GALS) architecture.

Eventually, using both a NoC distributed communication scheme and a GALS approach offers
an easy integration of different functional units thanks to a local clock generation [38]. Moreover,
it can allow better energy savings since each functional unit can easily have its own independent
clock frequency and supply voltage. Hence, an architecture using NoC combined with a multi-
power domain GALS system appears as a natural enabler for distributed power management
systems as well as for local DVFS.

1.4 Handling the process variability

In a reconfigurable GALS system, the process variability and the fabrication yield can be
improved by smartly removing some tasks over fault or some low performance frequency domains
and assign them into other high performance ones. As each domain performance can be measured
by a sensor, a global system manager is able to distribute the tasks over them. The task
assignment takes into account the domain performance and the task processing load. The
main target of this manager is then to ensure an overall chip performance. With this kind of
approach, it is no more required to separately guaranty a performance for each domain which
hence relaxes the fabrication constraints and permits a yield enhancement. Based on that,
a solution is proposed in subsection 1.4.1 to manage the impact of process variability. An
important conclusion is that control loops become essential in the electronic chips fabricated
in nanometric technologies. Then, a study case is proposed in subsection 1.4.2 where a French
project is depicted. It aims at providing some architectural solutions for manufacturing such
circuits.

1.4.1 Essential feedback control loops in nanotechnologies

In a multiprocessor GALS system, one can choose to slow down some parts of the circuit
while allowing some others to operate at the maximum frequency. This approach enables more
energy saving opportunities than the conventional systems built around only one processor, and
allows adapting the clock speed to the local process quality. Moreover, it has also been shown
that multiple-clock design with voltage scaling is even better not only in terms of power and
performance, but also in terms of variability [44]. As a result, building a system based on the
implementation of hardware resources - whose performance is unpredictable at the fabrication
time - requires having some global management strategies of the performance. This can be
achieve by adapting the voltage/frequency in order to respect the real-time constraints of the
application and the allocated energy budget. Finally, we propose to use feedback control

Part I - Energy-performance tradeoff in electronic systems 54

loops based on i) the measurement of the real local performance of the chip, ii) the actuation
of the voltage/frequency variables and iii) the suitable hardware resource allocation for the
execution of a task in the assigned time-energy budget. Then, the idea is the use of a DVFS
mechanism with some task scheduling techniques to dynamically manage not only the energy
budget but also the activity of the different frequency domains. This is possible thanks to
some advanced closed-loop techniques. These techniques will allow an optimal regulation of the
power supply according to the computational load and the load distribution in the various GALS
processors. In order to compensate for the process variation due to the technology dispersion,
and optimize the operation of the circuit, the dynamic voltage/frequency regulation should
be self-adjustable with the variable loads and dispersion models and robust against process
variability.

One of the main points of interest of the proposal is to handle the uncertainty (due to the
process variability) of a given frequency domain - afterwards denoted a cluster - over a GALS
system and also to reduce its energy-consumption by means of automatic control methods.
Some activity sensors are supposed to be embedded in each processing unit. These sensors
provide a real performance measurement of the different processing nodes after the fabrication
process. This will be used afterwards by the operating system to distribute the tasks over
different nodes. For instance, some background tasks will be assigned over idle nodes while fault
circuits will be known and therefore not be used. This scheme means to be able to reschedule
the tasks in each processing node, in order to meet the new assigned deadlines, and this will be
achieved by controlling its voltage/frequency (which in accordance will control its consumption of
energy). Eventually, the control system uses three overlapped control loops, applied in different
architecture levels: control of the processing power (supply voltage and clock frequency), control
of the energy consumption and control of the quality of the running application. Voltage,
frequency and energy control loops are used in order to adapt the energy consumption and
the process variability effect. The other control loop is needed to deal with the quality of
service (QoS) at the application level, with the limitation of processing power and/or channel
of communication and with some constraints in energy consumption. The operating system
provides a set of information (required speed, number of instructions and deadline for each
task to treat) that can be statically inserted into the code or dynamically computed at run
time. There are also sensors embedded in each processing unit in order to provide some real-
time measurements of the computational speed of the processor. Therefore, this information
about the real-time requirements of the applications enables to create a computational load
profile with respect to time. Consequently, using such a profile makes possible to apply a fine-
grain power management allowing application deadlines to be met. The DVFS hardware part
contains voltage/frequency converters (such as a DC-DC converter and a programmable clock
generator). Then, a controller dynamically controls them to scale the supply voltage as well as
the clock frequency in order to satisfy the application computational needs with an appropriate
management strategy. Of course, the controllers should have a strong robustness against process
variability for a correct system behavior. This closed-loop architecture is finally detailed in the
following items.

A. Voltage and frequency control
Very low-level hardware systems control the actuators which supplied the different compu-
tational nodes, that are the voltage controller and the frequency controller, in such a way
that the supply voltage Vdd(t) and the clock frequency fclk(t) dynamically track a given
reference: the voltage level Vlevel(t) and the frequency level flevel(t) respectively. These
controllers lead to a stable power supply without non-desirable effect, some current peaks
could notably appear during a sudden voltage level transition. This low control level is

55 Chapter 1 - Context and motivations

drawn in figure 1.6 and fully detailed in [4, 74].

fclk

Computational
Nodes

Vdd

flevel

Vlevel

Frequency
Controller

Voltage
Controller

Figure 1.6: Essential control loops in chips: the voltage and frequency (low-level) control.

B. Energy-performance tradeoff control
A second feedback control loop then provides the references to the previous low control
level: an energy-performance controller calculates the voltage level Vlevel(t) and the fre-
quency level flevel(t) which minimize the energy consumption of the processors while guar-
anteeing some computational performance. Thus, the tasks to treat have to be correctly
executed and within the given amount of time. This is decided from the error between
the measured activity of the computational nodes - given by ω(t) which is the computa-
tional speed of the nodes - and a reference to track - given by ωsp(t) which is the expected
computational speed required to correctly execute the tasks - provided by the operating
system for each task to treat. This is represented in figure 1.7.

fclk

ω

Computational
Nodes

Vdd

flevel

Vlevel

ωsp − ω

ωsp

Frequency
Controller

Voltage
Controller

Energy/Performance
Controller

Cluster

Figure 1.7: Essential control loops in chips: the energy-performance tradeoff (middle-level) con-
trol.

The two first control levels are present into a cluster. This corresponds to a frequency domain and
more precisely to a power supply domain. Each cluster has its own voltage and frequency con-
trollers which supply the different nodes. This architecture also involves an energy-performance
controller by cluster. Finally, the last feedback control loop is placed outside the clusters in
order to be able to manage all of them. The latter controller could be placed near the OS for
instance.

C. Control of the applicative quality of service
The third controller has a global view of the whole set of clusters, as depicted in figure 1.8,
firstly in order to allocate the different tasks to treat to the different computational nodes
of each cluster, considering the capacity of each one. Thus, the critical tasks will be
executed with the best nodes whereas the background ones will be performed with slower
ones. Secondly, the controller calculates a quality of service in such a way that the running
application fulfils some criteria. For example, in a video coding/decoding mechanism, the
QoS controller could calculate the image resolution quality required to finish to watch the
movie with the remaining power in the battery. Several criteria exist regarding a given
application. The QoS controller, after having determined the criteria, ensures that the

Part I - Energy-performance tradeoff in electronic systems 56

running service λ(t) is as good as the expected service λsp(t). As a result, the last control
level will modify the activity reference ωsp(t) sent to the energy-performance controller
(the middle-level control loop) when the quality changes. Such a control is depicted in [7].

fclk

ω

Computational
Nodes

Vdd

flevel

Vlevel

ωsp − ω

ωsp

Frequency
Controller

Voltage
Controller

Energy/Performance
Controller

Cluster

λsp

λ

λsp − λ QoS Controller

Figure 1.8: Essential control loops in chips: the applicative quality of service (high-level) control.

These control algorithms will allow an optimal control of the supply voltage regarding the
computational load and a good allocation of the load into the different processors. The expected
gain is to compensate the process variability intrinsic to a nanometric technology and, therefore,
optimize the circuit. Sensing the computational activity becomes essential. Activity sensors
hence play a critical role and must be selected carefully. In [74], an instruction counter is
used to calculate the real speed of the processor in MIPS (million instructions per second)
by incrementing the counter each time a new instruction has been executed and calculating
the average value with respect to a reference clock. Activity sensors (current sensors) are also
disseminated into each processing node to locally evaluate the process quality. They consist in
an analog solution to monitor the activity of the system with respect to the amount of consumed
current. At the end, the output of such a monitoring can be used as a tool to decide how to adjust
the working conditions of the circuit and, therefore, get the best power-performance response.

These solutions - the three overlapped feedback control loops with some specific sensors to
monitor the activity of the chip - have now to be developed and implemented. This is done
within the ARAVIS project context which is now presented.

1.4.2 Study case: The ARAVIS project

The ARAVIS project (French acronym used for “advanced reconfigurable and asynchronous
architecture for video and software radio integrated on chip) proposes to give some architectural
solutions for manufacturing integrated circuits in a technology in limit of scalability. This is
when the Moore’s law (see section 1.1 for further information) is not applicable anymore due to
the high technological variability of the parameters into a single chip. This project targets more
particularly the computational platforms for embedded systems. Such architectures have to be
flexible because they have to implement algorithms which are more and more numerous and
customizable. This new demand hence transforms the fixed hardware-acceleration architectures
into reconfigurable software architectures. The ARAVIS project proposes to combine three key
technologies to make a system on chip in 32nm technology and give some parts of a solution
for the sub-micrometric challenges. These three technologies are i) a multiprocessor framework,
ii) a hardware/software asynchronous design and iii) a dynamical energy-performance control

57 Chapter 1 - Context and motivations

based on advanced control techniques. Furthermore, two applications with a high industrial and
marketing potential will finally run on a SoC ARAVIS demonstrator: video coding/decoding
application and software radio application. Therefore, the SoC ARAVIS will be dynamically
adapted by allocating the applicative load into the different processors of the chip, in order to
control the process variability and the energy consumption.

To deal with such an ambitious industrial project with high technological constraints - in par-
ticular the accessibility to the 32nm technology - several partners offered to contribute within
this project. Bringing together the different members of this consortium hence gives to the
ARAVIS project a large experience and a real expertness in several and different knowledge
domains, more particularly regarding asynchronous, multiprocessor and SoC architectures de-
signing, software tool development for embedded and nomad applications, or advanced control
techniques for complex systems.

STMicroelectronics1 is a worldwide leader in semiconductors and has a high experience
in designing and manufacturing embedded chips. The firm brings the ARAVIS project its
skill in embedded systems on Silicium, from the specifications to the manufacturing and
system validation.

CEA-Leti2 is one of the most important applicative research center in Europe and is princi-
pally assigned in helping the industry by improving its competitiveness with some tech-
nological innovations. The main activities are based on micro and nano-electronics. As
regards the project, the SCME department (service of conception for emerging microtech-
nologies) is expert for designing some complex SoCs and NoCs. Moreover, with the
technological variability growing in nanotechnology chips, the department works more
particularly on asynchronous system development and low-power techniques.

TIMA3 is a public laboratory. The research topics cover the specification, design, verification,
test, computer-aided tools and design methods for integrated systems, from basic analog
and digital components to multiprocessor systems. Two research groups contributes within
the ARAVIS project: SLS (system level synthesis) and CIS (concurrent integrated sys-
tems). The first one has a high experience in high-level hardware/software conception for
complex SoCs and NoCs whereas the second one develops efficient tools for asynchronous
circuits and systems. Both bring an expertness in designing and hardware/software inte-
grating for embedded systems on asynchronous chips.

INRIA4 is a research center which focus the information and communication sciences and
technologies. It fosters technology transfer in computer science and control. Two project-
teams provide a double skill within the project:

• Sardes (system architecture for reflective distributed computing environments) stud-
ies the construction of computer systems which can scale from resource-constrained
embedded systems to cloud-based systems. This project-team hence brings its ex-
pertness on component-based operating systems.

• NeCS (networked controlled systems) has a large experience in developing dynami-
cal control loops for complex systems with high constraints, such as computational
and communication limited resources or other actuator/sensor specific constraints.
Within the ARAVIS project, this project-team brings a huge expertness in control
theory in order to i) reduce the process variability effects and ii) dynamically control
the energy and the computations of the system.

Part I - Energy-performance tradeoff in electronic systems 58

The ARAVIS project is financed for a three-year period by the global competitive cluster Mi-
nalogic5 which channels in a single physical location - in Grenoble, France - a range of highly-
specialized skills and resources from knowledge creation to the development and production of
intelligent miniaturized services for industry.

The first objective of the ARAVIS project is an increase of the yield of an advanced Silicium
process, which means being able to use as many manufactured chips as possible. This boom
is possible controlling i) the configurability of the platform as regards the failings, ii) the pro-
grammability in function of the effective computational power (all parts of the circuit could be
allocated considering their own performance) and iii) the adaptability to technological variabili-
ties and environmental/ageing variations (an application could run regardless the chip, without
requiring any individual parametrization because of uncertainties nor reconfiguration after a
certain amount of time). Finally, the ARAVIS project aims at concretely giving some solutions
to the variability problematic and different realizations are expected in this sense.

F Proposal of a massively parallelized SoC architecture based on a set of mul-
tiprocessor clusters in 32nm technology. The circuit is divided into several parts,
denoted clusters, and each part itself is composed of several processors, denoted computa-
tional nodes. This architecture - represented in figure 1.9 - applies the GALS paradigm
(previously defined in subsection 1.3.3). Each cluster has its own frequency domain - in
order to independently work whatever the process variability is - and a cluster can com-
municate with another without any required synchronization, simply using an ANoC. On
the other hand, the computational nodes have an unique clock frequency - the one of the
corresponding frequency domain - which triggers the set of processors in such a way that
they are all synchronized together into a cluster.

Cluster 1
2 GHz

5 GHz

1 GHz

3 GHz
A
No
C

n2n1 n3 n4

n6n5

Cluster 3

Cluster 4

Cluster 2

synchronous bus

SoC ARAVIS

Cluster 4

nodes:

Figure 1.9: The SoC ARAVIS, a massively parallelized architecture.

F Proposal of new algorithms based on advanced control techniques to dynamically
control the energy and the activity of the SoC. The idea is to use an architecture in-
cluding some feedback control loops in order to have a robust system. Such an architecture

1STMicroelectronics: http://www.st.com/
2CEA-Leti, innovation for industry: http://www.leti.fr/
3TIMA, laboratory of techniques of informatics and microelectronics for integrated systems architecture:

http://tima.imag.fr/
4INRIA, the French national institute for research in computer science and control: http://www.inria.fr/
5Competitive cluster Minalogic - an unique hybrid of micro and nanotechnologies and embedded software:

http://www.minalogic.com/

59 Chapter 1 - Context and motivations

allows for instance to control the behavior of a complex non-deterministic system regard-
ing some specific dimensions. These well-known methodologies could then be adapted
to control the non-predictable asynchronous systems with performance and consumption
constraints which are quite close. Finally, three control levels were proposed into the SoC
ARAVIS. They were introduced in subsection 1.4.1.

F Proposal of a prototype circuit in 32nm technology running with two complex
applications. The software radio and multimedia applications, more precisely video cod-
ing/decoding, will be implemented on this prototype in order to demonstrate the following
advances:

• Contribution of the asynchronous logic in terms of robustness in this advanced sub-
micrometric technology.

• Gain on the yield manufacturing thanks to a massively parallelized architecture.

• Energy reduction of the whole system thanks to the dynamical power and activity
control.

• Relevancy of the proposed architecture for both types of application.

To summarize, some ambitious objectives are expected within the ARAVIS project. One of
them is to control the power supply (voltage and frequency) of the different clusters of the
SoC ARAVIS. The energy-performance tradeoff is hence a key point for each computational
node. The voltage and frequency levels have to be dynamically controlled in order to treat a
given computational load whatever the technological process variability. Therefore, the different
points to study are:

1. Analysis and modeling of a computational node.

2. Conception of different control laws to minimize the energy consumption of a node while
guaranteeing some computational performance.

3. Stability and robustness analysis.

4. Extension to the global activity to control a whole cluster.

These aspects will be analyzed more particularly in the following chapters: the monocore case is
treated in chapter 2 whereas the multicore is detailed in chapter 3. Eventually, some simulation
results are depicted in chapter 4 for both schemes.

Chapter

2

Control of the energy-performance
tradeoff in monocore systems

As suggested in chapter 1, an electronic device with variable supply voltage and clock fre-
quency allows energy savings. This is interesting, and more especially for embedded systems
where this point is crucial. It enables to reduce the general speed of the circuit - and therefore its
consumption - in order to fit with the computational needs, but this means to know the current
load of the system. As a result, a closed-loop architecture is presented in this chapter for a single
electronic device to control. This is firstly introduced in section 2.1. Several control strategies
are developed in order to scale the processing power while guaranteeing good performance of
the chip. An intuitive frequency and voltage control law is hence presented in section 2.2 while
a more energy-efficient one is developed in section 2.3. A fully discrete scheme - where only a
small number of voltage and frequency levels can be used - is also detailed in section 2.4. The
last proposal is strongly robust to tackle variability - since it is not based on any parameters
of the chip - and therefore suitable for 32nm technology or smaller implementations. Then,
the control computational cost is reduced so far as possible in section 2.5 - using some simple
tricks - in order to be suitable to embedded chips (where the resource allocation is often a hard
constraint). At the end, an approximated stability analysis is performed in section 2.6 before
synthesizing all the proposals in section 2.7. Eventually, one could note that some simulation
results will be presented in chapter 4.

Part I - Energy-performance tradeoff in electronic systems 62

2.1 A single voltage scalable device to control

Whatever the electronic device - a processor, a computational node or a single system on
chip - it usually runs with nominal and constant supply voltage and clock frequency. However, it
could be interesting to make these parameters dynamically varying in order to be able to reduce
the energy consumption. Thus, when the computational load of the processor becomes low,
the power supply can be decreased to save energy, and increased back as soon as an important
computation has to be done. Indeed, when the voltage and/or the frequency is decreased, the
power consumption decreases too, with the effect that the device runs more slowly in return.
This was detailed in section 1.3. Nevertheless, this is not a problem to correctly execute a
low computational load, but a control strategy is required to know the current activity of the
system. Therefore, in collaboration with the different partners of the ARAVIS project (see
subsection 1.4.2 for further details), we propose a closed-loop architecture which allows
a dynamical control of the power supply (in voltage and frequency). This architecture
is drawn in figure 2.1. Two actuators, the oscillator and the Vdd-hopping, respectively provide
the supply voltage Vdd(t) and the clock frequency fclk(t) to a single electronic system, denoted the
device. These two actuators are then controlled by the monocore controller which calculates the
most energy-efficient voltage level Vlevel(t) and frequency level flevel(t) while guaranteeing that
the computational load to treat is correctly done. In order to deal with this energy-performance
tradeoff, a feedback control loop is required: the measured computational speed ω(t) - relating
the activity of the device - is monitored and compared with a given reference ref(t) - provided
by the operating system for each task to treat - and so is obtained the error which is then used
by the controller to decide the control variables.

ω

ω

ref

flevel

Vlevel
Vdd

fclk

Monocore system

Monocore
controller

Vdd
hopping

Oscillator Device

Vdd

Figure 2.1: Architecture of the monocore system.

Before proposing some control strategies, each block has to be more detailed. Firstly, the elec-
tronic device behavior is explained in subsection 2.1.1. Then, the models of the two actuators are
given in subsection 2.1.2: the Vdd-hopping and the oscillator are depicted in subsections 2.1.2.1
and 2.1.2.2 respectively. Finally, the control principle is shortly introduced in subsection 2.1.3.

One could note that the different variables vary with respect to time because their dynamics
are needed in such a closed-loop architecture. Moreover, the Laplace domain is afterwards used
- where s is the Laplace variable - because the frequency-domain is more convenient to manage
some differential and integral equations in the transfer functions of dynamical systems.

2.1.1 The electronic device

As explained in the introduction, an electronic device usually runs at nominal supply voltage
and constant clock frequency but these quantities will now dynamically vary in order to be able
to reduce the energy consumption of the chip. Indeed, a dynamic voltage and frequency scaling
(DVFS) mechanism could lead to important energy savings (regarding the running application)
- this was notably explained in section 1.3 - and such a principle has to be adapted to the present

63 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

architecture. Different control strategies will be proposed in the next sections but the model of
the system to controlled as firstly to be known. The electronic device under study is supplied
with the voltage Vdd(s) and triggered with the clock frequency fclk(s). These parameters are
the two inputs of the system while the output is the resulting activity, i.e. the computational
speed ω(s), as represented in figure 2.2.

Device
Vdd

ω
fclk

Figure 2.2: Details of the architecture: the electronic device.

In order to build a behavioral model for a processing node, one has firstly to define the major
sources of its power dissipation. This was summarized in subsection 1.3.1 with equation (1.1).
Then, a fictive load that behaves more like a real loaded processor has been built in [74] using
the power equation and representing an output current waveform with power dissipation varia-
tions. This finally gives the current variation and the processed number of instructions of the
fictive processor which depends on the applied voltage and frequency values. As a result, the
computational speed is obtained. This yields the curve plotted in figure 2.3, where the speed is
drawn with respect to the frequency for two voltage levels; i.e. Vlow and Vhigh respectively.

ω Vdd = Vhigh

Vdd = Vlow

fclk

Figure 2.3: Behavior of the electronic device.

Finally, the model of the electronic device is a nonlinear relation which depends on the frequency
and the voltage. Nevertheless, this can be written as a linear function with respect to only the
frequency and where some parameters are function themselves of the voltage. This can be
resumed as

ω(s) = α
(
Vdd(s)

)
· fclk(s) + β

(
Vdd(s)

)

where α(.) and β(.) are the varying parameters. These parameters can eventually be considered
as some constant gains, that are α and β, due to the small impact of the voltage on the variables.
They are positive. Moreover, β can be discarded because its value does not influence the speed
so much and, anyway, α highly varies with respect to the temperature and the location on the
chip (process variability). Finally, the model could be simplified. It becomes

ω(s) ' α · fclk(s) (2.1)

2.1.2 The actuators

Two actuators control the electronic circuit: the Vdd-hopping and the oscillator which pro-
vide the supply voltage and the clock frequency respectively.

Part I - Energy-performance tradeoff in electronic systems 64

2.1.2.1 The Vdd-hopping to control the supply voltage

The application of DVS to a system requires the use of a source for supplying a variable
processing power. This is a DC/DC converter in the present case: a circuit that converts a
voltage source (of direct current) from one voltage to another. Two kinds of DC/DC converter
can be used. The first class is a continuous converter which provides an accurate supply voltage,
but with a weak efficiency. The second kind of converter is a digitally controlled step-converter
(called Vdd-hopping converter) that has a better efficiency but discrete output values. Due to
resource and space constraints in nanometric chips, the latter one is applied in our architecture.
Thus, the Vdd-hopping mechanism allows to supply an electronic circuit with several possible
voltage levels, with a given transition time and some dynamics that depend upon an internal
control strategy. A model of this system can be represented by a simple block, as drawn in
figure 2.4, where the supply voltage Vdd(s) (the output) is function of the expected voltage level
Vlevel(s) (the input).

Vdd
hopping VddVlevel

Figure 2.4: Details of the architecture: the Vdd-hopping.

The input of aM -voltage level mechanism belongs to aM -value set and such a Vdd-hopping
hence provides the voltage Vm when Vlevel(s) = Vlevel_m. We define m ∈ {1, 2, ...,M} and
Vm > Vm+1. Considering that this inner-loop is extremely fast with respect to the control
loop considered in this chapter, the dynamics of the Vdd-hopping can be neglected. However,
the complex transfer function between the supply voltage and the voltage level can be simply
expressed as

Vdd(s) = ϕ
(
Vlevel(s)

)
(2.2)

where ϕ(.) depicts the Vdd-hopping dynamics. Nevertheless, firstly we consider a less complex
Vdd-hopping scheme, initially detailed in [48, 4], where only two voltage levels are possible:

• The high voltage level, i.e. Vhigh, is the maximum possible voltage of the device. One
could note that this value is the one used in common electronic systems where only one
voltage level is available (systems without DVS mechanism).

• The low voltage level, i.e. Vlow, is lower than Vhigh and will be used to reduce the energy
consumption.

Thus, the supply voltage goes from Vlow to Vhigh (respectively from Vhigh to Vlow) when Vlevel(s)
becomes equal to Vlevel_high (respectively Vlevel_low). However, as explained before, the voltage
transition is not instantaneous and a transition time exists: in [48] the voltage tracks an intuitive
linear transition during the rising and falling times whereas a faster nonlinear transition is
proposed in [4] (see references for further details). This second scheme is depicted in figure 2.5.
Eventually, the function ϕ(.) in equation (2.2) defines the dynamics of the chosen behavior.

Note that the two-level Vdd-hopping mechanism will be used in our first and second proposals
of control strategies, in sections 2.2 and 2.3 respectively, before extending that to a M -level
scheme in section 2.4.

65 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

Vdd

Vlevel

Vlow

Vhigh

Vlevel low

Vlevel high

time
rising time falling time

Figure 2.5: Behavior of the Vdd-hopping.

2.1.2.2 The oscillator to control the clock frequency

The application of DFS to a system requires the use of a source for generating some ad-
justable clocks. For example these clocks can be derived from analog a voltage controlled oscil-
lator (VCO). However, VCOs have a limited operating range and require a stabilization time
when changing the frequency. Another solution is to use a standard clock divider, but this makes
the time resolution coarser, due to counting integer periods of the input frequency. In addition,
they give regular time step which implies irregular frequency step (usually frequency step follows
“ 1/x” curve). Self-timed rings are considered as a promising solution for generating clocks and
will hence be used in our architecture. In [75] they are efficiently used to generate high-resolution
timing signals. Their robustness against process variability in comparison to inverter rings is
proven in [32]. The present oscillator is based on the behavior of programmable/stoppable os-
cillator depicted in [73], and finally, the oscillator provides the triggering clock signal to the
electronic device. However, a so-fine grain is not necessary for the current analysis. Indeed, in
fact one can directly deduce the computational speed of the device from the value of the clock
frequency - and not the clock itself - since it is only function of the frequency, as defined in
equation (2.1). The clock frequency fclk(s) is hence chosen as the output of the oscillator. As
regards the inputs, they are the expected frequency level flevel(s) and the supply voltage Vdd(s),
as proposed in [27]. This is represented in figure 2.6.

Oscillator fclk
Vlevel

flevel

Figure 2.6: Details of the architecture: the oscillator.

While the relation between the clock frequency and the expected frequency is clear, the relation
with the voltage is more indirect. In fact, the oscillator is supplied with this voltage which
influences its behavior. Consequently, the clock frequency is reduced when the voltage decreases,
and inversely. Finally, the oscillator model is

fclk(s) = γ · f(s) · Vdd(s) (2.3a)

where γ is a positive constant and f(.) is the expected frequency. Moreover, this expected
frequency depends on the frequency level, using such a look-up table mechanism for instance.
This can be transposed as

f(s) = ψ
(
flevel(s)

)
(2.3b)

Part I - Energy-performance tradeoff in electronic systems 66

where ψ(.) depicts the relation between both variables.

Note that the clock frequency will be firstly continuously varying in the first proposed control
strategies, in sections 2.2 and 2.3, before really using some discrete levels in section 2.4. Thus,
a continuous behavior means an infinite number of frequency levels and in this case we set
the expected frequency such that f(s) = flevel(s). On the other hand, in a discrete case only
some limited frequency values are possible, i.e. flevel(s) = flevel_n, and switching from one to
another can be considered as instantaneous. This scheme also leads to have a limited number
of frequencies, i.e. f(s) = fn. We define n ∈ {1, 2, ..., N} and fn > fn+1, respectively flevel_n >
flevel_n+1. Moreover, we choose N ≥M because a frequency range is available for each voltage
level and several frequency levels are thus possible for each voltage. This was explained in
section 1.3 and one could refer to the introduction of section 2.4 for further details in this
choice. Eventually, an example of the discrete behavior is drawn in figure 2.7 for N = 5.

fclk

f

time

f1

flevel 1
flevel 2
flevel 3

flevel 5

flevel 4

f2

f3

f4

f5

Figure 2.7: Behavior of the oscillator.

As explained in introduction, in a complete modeling the oscillator would provide the clock
signal, denoted clk(s) that is a square signal whose period is directly the inverse of the clock
frequency fclk(s). Such a scheme is drawn in figure 2.8 in order to have an idea of the real
running of the oscillator.

clk

fclk

time

period

period = 1
fclk

Figure 2.8: Real (not modeled) behavior of the oscillator.

2.1.3 The monocore controller

This is the main component in a closed-loop architecture. Indeed, the controller aims at
calculating the control signals, i.e. the voltage level Vlevel(s) and the frequency level flevel(s) in
the present case, which minimize the energy consumption while guaranteeing good computational

67 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

performance. A strategy is required to control the energy-performance tradeoff of the chip -
denoted the monocore system - composed of the electronic device and the two actuators. This
block merging was firstly highlighted in figure 2.1 (with the doted line) and eventually is gathered
in figure 2.9.

Vlevel
ω

flevel
Monocore

system
ref Monocore

controllerω

Figure 2.9: Details of the architecture: the monocore controller.

The complete system model is given by the relation ω(s) ' α · γ · f(s) · Vdd(s). This is obtained
from the behaviors depicted above in equations (2.1), (2.2) and (2.3). It can finally be approxi-
mated by an affine function with respect to the expected frequency and the supply voltage, that
is

ω(s) ' µ · f(s) · Vdd(s) (2.4)

where µ = α · γ is a positive constant by construction.

Note that the controller intends to minimize the energy consumption and yet, two power
sources exist in such a system:

Pmonocore system(s) = Pcircuit(s) + Phopping(s) (2.5)

with

∣∣∣∣∣
Pcircuit(s) = Kdyn · fclk(s) · Vdd(s)2 +Ksc · fclk(s) · Vdd(s) +Kleak · Vdd(s)
Phopping(s) = Khopp · Pcircuit(s)

• The main source of consumption comes from the CMOS technology of the electronic
components (as explained in section 1.3) where the different parameters Kdyn, Ksc and
Kleak belong to the circuit. Reducing the voltage and the frequency will hence decrease
the energy consumption but with an increase of the delay in return.

• The Vdd-hopping is also consuming, in particular during the voltage transitions. This
is notably detailed in [48]: the parameter Khopp is higher during the transitions (about
20 %) than during the steady-state intervals (about 3 %) and a small number of voltage
transitions will hence save the energy consumption.

As a result, the strategy to control the energy-performance tradeoff of a single device consists
in reducing the energy consumption, minimizing the high voltage running time and the voltage
transitions, while guaranteeing some good computational performance, fitting the tasks with
their deadline thanks to the available frequency range. To do that, the two control variables are
the voltage level Vlevel(t) and the frequency level flevel(t) which directly control the actuators.
On the other hand, the current computational speed ω(t) (how many instructions are done per
second) is measured and compared to the computational load reference ref(t) (given by the
operating system for each task to treat). Several strategies are then proposed. In section 2.2,
a simple control of the frequency and the voltage level is thus detailed. Then, in sections 2.3
and 2.4, a predictive control law leads to save more energy by minimizing the high voltage
running time, for a system with two and M voltage levels respectively.

Part I - Energy-performance tradeoff in electronic systems 68

2.2 Frequency and voltage level control

As explained in subsection 2.1.3, the objective is to reduce the energy consumption while
guaranteeing good computational performance. This is apparently an energy-performance trade-
off. We previously defined the two control variables - in section 2.1 - and also explained that
both the frequency and the voltage levels have to be controlled together. Indeed, as explained in
section 1.3, the clock frequency has to be decreased before reducing the supply voltage - in order
to ensure the maximum delay over the electronic critical path of the circuit - and inversely, the
voltage has to be increased before growing the frequency. These rules have also to be applied
to the control variables. As a consequence, we propose to establish a frequency/voltage
level control law in order to handle the energy-performance tradeoff . The resulting
architecture is drawn in figure 2.10, where the frequency and voltage level controller compares
the measured computational speed ω(t) with a given reference. In this section, the reference is
the average computational speed setpoint ωsp(t), that is the ratio between a given number of
instructions to treat Ωi(t) and the given amount of time to do that ∆i(t) for each task Ti. This
yields ωsp(t) = Ωi(t)/∆i(t). One could note that the different parameters are piecewise defined
since they are constant for a given task but change for each task. This will be explained in detail
in subsection 2.3.1 where another and better reference is proposed. At the end, the difference
between the measurement and the setpoint allows to calculate the frequency level f(t) and the
voltage level Vlevel(t).

ω Vlevel
ω

fFrequency and
voltage level
controller

ωsp Monocore
system

Figure 2.10: Closed-loop system: the frequency and voltage level controller.

In spite of the fact that the two control variables have to be calculated together, we deliberately
divide the section into several parts: firstly, the frequency is calculated in subsection 2.2.1 in
such a way that the measured speed tracks the setpoint and secondly, the voltage level is chosen
in subsection 2.2.2 to reduce the energy consumption. The two variables are eventually adapted
together in subsection 2.2.3 to ensure the critical path, before sending them to the actuators.
At the end, a global algorithm summarizes all the control strategy in subsection 2.2.4.

Note that the frequency is continuously varying in this section, i.e. f(t) = flevel(t), as
explained in subsection 2.1.2.2. The expected frequency f(t) is thus used in this section instead
of the frequency level flevel(t). Moreover, for the same reasons than explained in section 2.1, we
afterwards use the Laplace domain to design the frequency control law.

2.2.1 Frequency control

The closed-loop system to control only the frequency is given in figure 2.11, where Cf (s)
is the frequency controller used to calculate the expected frequency f(s) which will be sent
to the system to control Σ(s). The error between the reference and the measurement, that is
ε(s) = ωsp(s)−ω(s), is used in this way. The well-known closed-loop transfer function, denoted
Hcl(s), is deduced from this scheme and yields

Hcl(s) =
ω(s)
ωsp(s)

=
Cf (s) · Σ(s)

1 + Cf (s) · Σ(s)

69 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

Cf (s) Σ(s)ωsp
ε+

−

ω

f
ω

Figure 2.11: Details of the frequency control loop.

The transfer function of the controller Cf (s) can now be calculated so that the system Σ(s)
correctly runs (executing the tasks to compute in the given amount of time). The current
computational speed ω(s) - the output of the closed-loop system - has hence to track the speed
setpoint ωsp(s) - the input - and a null static error between the output and the input is needed.
This means ε(s) = 0 after a certain transition time. However, this constraint is not hard enough
because the computational speed is lower than the one required during the transition intervals,
as highlighted with the darken surface area in figure 2.12(a). Thus, even if after the transition
time the measured computational speed tracks the given reference, finally the processor did
not compute as many instructions as it would do to correctly execute the task. To solve this
problem, the frequency controller has to compensate such a behavior by running faster during
a given amount of time, and so will be made up on the delay. This is depicted with the darken
area in figure 2.12(b). The area where the measured speed is below the reference has finally
to be equal to the one where the measurement is above the speed setpoint in such a way that
the average measured computational speed is finally equal to the speed setpoint. This intuitive
principle can be mathematically translated as rendering null the integral of the static error.

measured speed ω

speed setpoint ωsp

time
transition time

(a) Null static error

time
transition time

speed setpoint ωsp

measured speed ω

(b) Null static error’s integral

Figure 2.12: Frequency control: two possible methods to track a given computational speed
setpoint.

To summarize, the frequency controller has to ensure that i) the static error is null in order the
system output tracks the input during the steady-state intervals and ii) the integral of the error
is null to offset the missed computations during the transition intervals. The error ε(s) and the
error’s integral E(s) are defined as

ε(s) = ωsp(s)− ω(s)

= ωsp(s) ·
(

1−Hcl(s)
)

= ωsp(s) · 1
1 + Cf (s) · Σ(s)

E(s) =
1
s
· ε(s)

Part I - Energy-performance tradeoff in electronic systems 70

Splitting the frequency controller into a polynomial fraction, i.e. Cf (s) =
Cnum

f (s)

Cden
f (s)

, leads to

ε(s) = ωsp(s) ·
Cden

f (s)

Cden
f (s) + Cnum

f (s) · Σ(s)

Then, the so-called “final value theorem” ensures the above i) and ii) conditions. This theorem,
in mathematical analysis, is used to relate frequency domain expressions to the time domain
behavior as time approaches infinity. It allows the time domain behavior to be directly calculated
by taking a limit of a frequency domain expression, as opposed to converting to a time domain
expression and taking its limit. In our case, we need to have

lim
t→∞

ε(t) = lim
s→0

s · ε(s) = 0

lim
t→∞

E(t) = lim
s→0

s · E(s) = 0

Using the previous error expression and the Laplace transform of an unit step response, i.e.
ωsp(s) = 1/s, the theorem results become

lim
s→0

Cden
f (s)

Cden
f (s) + Cnum

f (s) · Σ(s)
= 0

lim
s→0

1
s · Cden

f (s)

Cden
f (s) + Cnum

f (s) · Σ(s)
= 0

which finally allow to conclude on the parameters of the frequency controller Cf (s) as follows

Cden
f (s) = s2 ·A(s)

Cnum
f (s) · Σ(s) = B(s)

(2.6)

with

∣∣∣∣∣
A(s) = a0 + a1 · s+ a2 · s2 + . . . ∀ a0, a1, a2, . . .

B(s) = b0 + b1 · s+ b2 · s2 + . . . ∀ b0 6= 0, b1, b2, . . .

The transfer function of the system to control can be seen as a varying gain σ(.) with
respect to the expected frequency, i.e. Σ(s) = ω(s)

f(s) ' σ(s). This comes from the system model
defined in subsection 2.1.3. Actually, the varying gain is function of the supply voltage since
σ(s) = µ · Vdd(s), from equation (2.4). Moreover, the system can be considered as a varying
gain because the voltage slowly varies due to the Vdd-hopping principle (see subsection 2.1.2.1
for further details). Conclusively, we can hence choose some values for the different parameters
of A(.) and B(.) described in equation (2.6), and one of the numerous possibilities is settled to
define the frequency controller. This yields

Cf (s) =
b0 + b1 · s
a0 · σ(s) · s2

=
1
s
· 1
σ(s)

·
(
Kp +

Ki

s

)
with

∣∣∣∣
Kp = b1/a0

Ki = b0/a0

(2.7)

At the end, the proposal is a simple proportional integral controller, with a varying
gain, applied to the integral of the error and not directly to the error. The parameters
Kp and Ki are the proportional and the integral tunable gains respectively. A discrete-time

71 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

frequency controller is then deduced (using the backward difference approximation) where the
frequency varies with respect to the measured error, that is

E(tk) = E(tk−1) + Ts · ε(tk)

fp(tk) =
1

σ(tk)
·Kp · E(tk)

fi(tk) = fi(tk−1) + Ts ·
1

σ(tk)
·Ki · E(tk)

f(tk) = fp(tk) + fi(tk)

(2.8)

where Ts is the sampling period and E(.) is the discrete integration of the error ε(.), while fp(.)
and fi(.) are respectively the proportional and the integral parts of the PI controller.

One could note that the varying gain σ(·) is required in the frequency controller equation
because in practice, nothing more than this gain can be measured - when measured - due to space
and time dispersion. Indeed, an approximation of the controlled system equation - modeled in
subsection 2.1.3 - is the varying gain σ(s) = µ · Vdd(s), where µ is neither known nor directly
measurable in practice. However, a trick consists in using the ω(.) and f(.) signals - from the
system transfer function definition, i.e. Σ(s) = ω(s)

f(s) ' σ(s) - which are themselves measurable.
This yields

σ(tk) ' ω(tk)
f(tk)

where the current value of the speed is measured but the one of the frequency is not calculated
yet. Consequently, we propose to use the previous value of the frequency to calculate
the varying gain. The equation becomes

σ(tk) ' ω(tk)
f(tk−1)

(2.9)

Finally, since the oscillator (introduced in subsection 2.1.2.2) can only provide a given fre-
quency range, we propose to apply an anti-windup mechanism in order to prevent windup
when the actuator is saturated. This consists in adding an extra term in the integral part of the
control law previously defined in equation (2.8), which is

fi(tk) = . . .− Ts ·Ka ·
(
f(tk−1)− fsat(tk−1)

)
(2.10)

where Ka is a tunable parameter while fsat(.) is the saturated value of f(.) (calculated at
the previous sampling time, regarding the frequency available range afterwards defined in the
following subsection).

2.2.2 Voltage level control

The voltage level can be easily deduced when knowing the expected frequency. Indeed,
the voltage scalable device can run with a given frequency range for a given voltage, and the
minimum voltage level will reduce the energy consumption so far as possible, as explained in
section 1.3. Basing our approach on this idea, a clock frequency range is hence available for each
supply voltage level. This is drawn in figure 2.13.

• A functional area is defined for each voltage level - two levels in our case, that are Vhigh

and Vlow respectively - with a corresponding frequency range, while the electronic circuit
does not work in the darken non-functional area.

Part I - Energy-performance tradeoff in electronic systems 72

• The minimal frequency Fmin comes from the oscillator designing (see subsection 2.1.2.2
for further details). Whatever the voltage level the electronic device could run at this
minimum frequency without malfunctioning, the system simply runs very slowly.

• On the other hand, the maximal frequencies have to ensure the maximum delay over
the critical path of the circuit and, therefore, are function of the voltage level. Thus,
the maximal frequency at high voltage FVhighmax is calculated for a given circuit in order
to ensure the maximum delay when this circuit is power supplied with Vhigh and this
maximal frequency. Respectively, FVlowmax is the maximal frequency at low voltage. By
not overshooting this maximal frequencies when running at the corresponding voltage will
assure that the computations are correct. A key point for the voltage level controller is
hence to verify that.

Vhigh

Vlow

voltage

frequencyFVhighmax
(fclk)

(Vdd)

FVlowmaxFmin

non-functional area

Figure 2.13: Voltage scalable device: representation of the possible frequency range for each
voltage level.

We also explained in the state of the art (in section 1.3) that the high voltage level is the
most energy consuming one. For this reason, we propose to reduce the frequency range
available at the high voltage level in such a way that the system runs more often at the low
voltage. The frequency range hence becomes

FVlowmin ≤ fclk(t) ≤ FVlowmax if Vdd(t) = Vlow

FVhighmin ≤ fclk(t) ≤ FVhighmax if Vdd(t) = Vhigh
(2.11)

where FVlowmin and FVhighmin are the minimal frequencies at low and high voltage respectively
(note that FVlowmin could still be equal to Fmin, the minimal possible frequency). By directly
using this new range definition, we propose an hysteresis function to describe the direct
relation between the frequency and the voltage. This is drawn in figure 2.14. The
depicted principle avoids to run at high voltage when the frequency is low, i.e. lower than
FVhighmin, in order to reduce the energy consumption. However, one could note that the clock
frequency fclk(·) and the supply voltage Vdd(·) are represented on the figure, whereas the control
variables are the expected frequency f(·) and the voltage level Vlevel(·). The principle has hence
to be adapted to the control variables and yet, we know that the expected frequency is equal
to the clock frequency, that is f(t) = flevel(t) in this continuously varying frequency scheme.
Moreover, the supply voltage slowly varies, as explained in subsection 2.1.2. Consequently, the
relation between the variables which act to the actuators can be transposed to the control ones.
Therefore, the voltage level directly varies with respect to the calculated frequency, using the
hysteresis behavior depicted in figure 2.14. Thus, if the expected frequency becomes above a
certain value FVlowmax the voltage level to apply is the high one, i.e. Vlevel_high, and when
the frequency goes below the FVhighmin value the voltage level can go back to Vlevel_low. The

73 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

equation which summarizes this behavior is

Vlevel(tk) =





Vlevel_high if f(tk) ≥ FVlowmax and f(tk−1) < FVlowmax

Vlevel_low if f(tk) ≤ FVhighmin and f(tk−1) > FVhighmin

Vlevel(tk−1) otherwise
(2.12)

A problem could still occur when going from one level to the other because of the critical
path. As a result, we depict several strategies to control the voltage transitions in the following
subsection.

Vhigh

Vlow

voltage

frequencyFVhighmax
(fclk)

(Vdd)

FVhighmin

FVlowmaxFVlowmin

non-functional area

Figure 2.14: Voltage scalable device: a hysteresis function used to adjust the supply voltage
with the clock frequency.

An important thing to remark in the previous paragraph is that the minimal frequency
FVlowmin and the maximal ones FVlowmax and FVhighmax directly comes from the electronic circuit
whereas the FVhighmin parameter is chosen by the control designer. Actually, this value defines
the window’s width of the hysteresis. It allows to reduce more or less the energy consumption
while increasing the number of voltage transitions in return (which consume too, as explained
in subsection 2.1.3). Indeed, with a value close to FVlowmax, the voltage often changes from
Vhigh to Vlow and so is increased the number of voltage switches, but the consumption is quite
reduced. Inversely, moving away this parameter reduces the transition number but the energy
is not saved as much as before. The choice of this parameter is hence not harmless. Eventually,
FVhighmin could be chosen regarding some specifications and/or the application to execute on
the chip.

2.2.3 Guarantee of the maximum delay over the critical path

The Vdd-hopping mechanism requires a given transition time to go from one voltage level
to another (as explained in subsection 2.1.2.1), and yet, the maximum delay over the critical
path has to be guaranteed during the voltage transitions. Indeed, it is required to decrease
the frequency before decreasing the voltage and, respectively, to increase the voltage before
increasing the frequency (see subsection 1.3.2 for further details). The voltage transition could
hence causes problems, in particular when the system goes from Vlow to Vhigh. There is no
really problem when the voltage is decreased because the frequency - which is already lower
than FVhighmin when the controller decides to change the voltage level thanks to equation (2.12)
- works for both voltage levels and so is ensured the maximum possible delay. Moreover, the
oscillator is power supplied by the voltage - as explained in subsection 2.1.2.2 - and the frequency
varies with respect to that variable. As a result, we propose different solutions to manage
the rising voltage transitions in the following subsections.

Part I - Energy-performance tradeoff in electronic systems 74

2.2.3.1 Frequency restriction during the voltage transitions

An intuitive solution is to lock the frequency at FVlowmax as long as the high voltage level
is not achieved during a rising transition. This extra constraint can be considered as a satura-
tion. The resulting equation which summarizes that - transposing the principle to the expected
frequency - is

f(tk) = FVlowmax if f(tk) ≥ FVlowmax and Vdd(tk) < Vhigh (2.13)

This condition implicates to measure the supply voltage Vdd(.). Actually, one only needs to
know if the high voltage or low voltage is achieved. That is, a simple discrete signal can be
sent from the Vdd-hopping rather than measuring the current value of the voltage. Thus, a
signal - which defines the voltage state Vstate(.) - would be equal to a given value Vstate_high

when Vdd(t) = Vhigh, Vstate_low when Vdd(t) = Vlow and Vstate_transition otherwise, for instance.
Eventually, the frequency restriction hence becomes

f(tk) = FVlowmax if f(tk) ≥ FVlowmax and Vstate(tk) 6= Vstate_high (2.14)

2.2.3.2 Voltage measurement for a maximum gain

An alternative to the previous proposal is to make the frequency varying during the voltage
transitions. Consequently, we suggest that the frequency linearly varies between the maximal
frequency at low voltage FVlowmax and the maximal one at high voltage FVhighmax during a rising
transition (and inversely during a falling transition), as represented in figure 2.15. This behavior
is possible because the non-functional area is convex and, therefore, the maximum delay over
the critical path cannot be violated.

Vhigh

Vlow

voltage
(Vdd)

frequencyFVhighmax
(fclk)

FVhighmin

FVlowmaxFVlowmin

non-functional area

Figure 2.15: Voltage scalable device: improvement of the hysteresis function.

The previous constraint in equation (2.13) is hence modified in order to add the linear relation
between both variables. It becomes

f(tk) = a · Vdd(tk) + b if f(tk) ≥ FVlowmax and Vdd(tk) < Vhigh (2.15)

with

∣∣∣∣∣∣∣

a =
FVhighmax − FVlowmax

Vhigh − Vlow

b = FVhighmax − a · Vhigh

Of course the same thing can be done for the falling transitions - as represented on the figure -
but that is not inevitably required. However, the effect in using that method is to maximize the
computational job. Thus, as many instructions as possible are executed when the system runs
at the penalizing high voltage (or at least a voltage higher than Vlow). This will save energy

75 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

since the load will be reduced faster. Otherwise, the falling transition does not need a safety
condition (as explained in the previous subsection).

Note that this second restriction on the frequency during the voltage transitions allows to op-
timize the computational speed of the device but needs the voltage measurement. Furthermore,
this measurement is required anyway since it is applied in the control law in equation (2.15),
and using the voltage state Vstate(tk) - as previously suggested in subsection 2.2.3.1 - does not
offer any interest here.

2.2.3.3 Self-management from the oscillator

The last proposal consists in an hardware solution where, in fact, the oscillator directly man-
ages the voltage transitions on its own. Indeed, the oscillator (introduced in subsection 2.1.2.2)
is power supplied by the supply voltage Vdd(·) and one can imagine that this device automat-
ically restricts the frequency with respect to the voltage, as defined in equation (2.13), (2.14)
or (2.15). In this case, ensuring the critical path does not have to be taken into account in the
control law and, as a result, this highly simplify the algorithm. For this reason, this solution
will be applied in the following control strategies (in section 2.3 and 2.4).

2.2.4 Control algorithm

Eventually, the control strategy consists in scaling the frequency in such a way that the
measured computational speed tracks a given speed setpoint, to fit the tasks to treat with their

over the critical path
ensure the maximum delay

read the task information measure the speed

caculate the average speed setpoint

Ωi(tk), ∆i(tk)

ωsp(tk) = Ωi(tk)
∆i(tk)

ω(tk)

ε(tk) = ωsp(tk)− ω(tk)
caculate the measured error

E(tk) = E(tk−1) + Ts · ε(tk)
caculate the integral of the error

fi(tk) = fi(tk−1) + Ts · 1
σ(tk) ·Ki · E(tk)

caculate the frequency
fp(tk) = 1

σ(tk) ·Kp · E(tk)

f(tk) = fp(tk) + fi(tk)

σ(tk) ' ω(tk)
f(tk−1)

caculate the varying gain

Vlevel(tk) =





Vlevel high if f(tk) ≥ FVlowmax

Vlevel low if f(tk) ≤ FVhighmin

Vlevel(tk−1) otherwise

caculate the voltage level

Ts

Figure 2.16: Algorithm: the frequency and voltage level controller.

Part I - Energy-performance tradeoff in electronic systems 76

deadline (see subsection 2.2.1 for further details). The lower voltage level is then applied as
often as possible rearding a hysteresis function, that is as soon as the computational speed
is low, in order to reduce the energy consumption since this parameter is very penalizing (see
subsection 2.2.2). At the end, both control variables are adapted together and, if necessary, a re-
striction is set in order to ensure the maximum delay over the critical path (see subsection 2.2.3).
The resulting algorithm is represented in figure 2.16.

2.3 Computational speed control

We previously presented, in section 2.2, a strategy to control the frequency and the voltage
level of an electronic system. We explained in particular that, in order to reduce the energy
consumption while guaranteeing some good computational performance, the penalizing high
voltage running time has to be minimized while the measured computational speed has to track
a given speed setpoint. However, in a first hand we used an intuitive reference whereas a
more complex one would be better. For this reason, we propose to improve the control
architecture in order to reduce even more the energy consumption. The structure of
the monocore controller - initially introduced in section 2.1 and then detailed in section 2.2 for
the intuitive control strategy - is hence modified and the new proposal can now be divided into
two parts. These parts are also represented in figure 2.17.

The computational speed controller provides an energy-efficient computational speed set-
point. Thus from some task information - the number of instructions Ωi(t) and the dead-
line ∆i(t) (these variables are more precisely defined in the next subsection) - given by
the operating system for each task to treat, this part of the controller calculates the best
speed reference ωsp(t) which minimizes the energy consumption while guaranteeing the
computational performance.

The frequency and voltage level controller fits the computational speed ω(t) of the elec-
tronic system with the speed setpoint ωsp(t) (calculated by the first part), by adapting the
control variables, that are the frequency level flevel(t) and the voltage level Vlevel(t).

One could note that the frequency is still continuously varying in this section, that is f(t) =
flevel(t) as explained in subsection 2.1.2.2, this is why the expected frequency f(t) is used
afterwards - and in figure 2.17 - instead of flevel(t).

ω Vlevel

ωsp

ω

∆i

Ωi

ω

f
Computational

speed
controller

Frequency and
voltage level
controller

Monocore
system

Figure 2.17: Closed-loop system: the computational speed controller (using the measured com-
putational speed as a feedback).

Two control architectures are proposed: the first one where the dynamical feedback loop of the
computational speed controller is realized with the measured computational speed ω(t), as shown
on the previous figure, while in the second architecture the closed-loop is done thanks to the
calculated speed setpoint ωsp(t). We begin presenting some different speed setpoint buildings
in subsection 2.3.1 while the two control schemes are detailed in subsection 2.3.2 and subsec-
tion 2.3.3 respectively. Then, the way to know the maximum computational speeds - required to
build an energy-efficient setpoint - is explained in subsection 2.3.4. The frequency and voltage

77 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

level control law is adapted (from the intuitive control in section 2.2) to the new architectures
in subsection 2.3.5. Finally, the general control algorithm is given in subsection 2.3.6.

2.3.1 Computational speed setpoint building

In order to calculate a computational speed setpoint ωsp(t) (in number of instructions per
second) some task information - backwards denoted ref(t) - are required. Indeed, for each task
Ti to treat the operating system provides some data to the controller regarding the computational
load: the computations to treat and the amount of time before the end of the task, also called
the number of instructions Ωi(t) and the deadline ∆i(t) respectively. In fact, the remaining
available time to execute the task - that is the laxity Λi(t) - will be used instead of the deadline
which is an absolute time. From a point of view of the electronic chip, these data correspond
to some variables: they are the piecewise defined functions which respectively correspond to
the instruction number, the deadline and the laxity of the running task at the given time t.
One could note moreover that these parameters can change during the running time of a task
if the operating system decides to update them for some reasons, this is why they are time-
dependant. Finally, these variables are shown in figure 2.18 for a three-task example, where ti
in time-coordinate is the beginning time of the task Ti. The idea is now to use these data as
well as possible in order to build an energy-efficient speed setpoint.

time

instruction number Ωi(t)

Ω2

Ω1

Ω3

t1 t2 t3 time

deadline ∆i(t)
laxity Λi(t)

T1

T2

T3 T1

T2

T3

∆2

∆1

∆3

t2 t3t1

Figure 2.18: References sent by the operating system for each task Ti to compute: the instruction
number Ωi and the deadline ∆i (or the laxity Λi).

Actually, the presence of deadline and time horizon to compute the tasks naturally leads to a
predictive control strategy. Indeed, a predictive control consists in finding an open-loop control
profile over some time horizons and applying it until the next sampling time instant. The control
problem is then reconsidered using the new state variables and a new control profile is generated.
At the end, this yields a closed-loop control where the stability relies in the way that the open-
loop control is chosen. The most classical strategy consists in taking the open-loop control
that minimizes some cost functions. The horizon can be constant, infinite or less classically, a
contractive horizon like in the present case. This notion means that the task horizon decreases
until achieving the deadline, then a new horizon has to be achieved again for a new task and so
on. For further details on predictive control, one can refer to [46]. Note that the key point of
the present control problem is the choice of the open-loop strategy and its computational cost.
Indeed, if the predictive control is known to be a robust approach, that is also often associated
to high computational cost which is not acceptable in an embedded chip. However, the strategy
adopted here is called fast predictive control and consists in taking advantage of the structure
of the dynamical system to fasten the search of the open-loop control [3]. The simplicity of the
system considered here is therefore very suitable for such strategies. The rest of the current
subsection explains intuitively the predictive strategy whereas its formal expression is given in
subsection 2.3.2 and 2.3.3 for two different closed-loop architectures.

Part I - Energy-performance tradeoff in electronic systems 78

2.3.1.1 The intuitive average speed setpoint

An intuitive reference is the average computational speed setpoint ωsp(t) (the one previously
used in section 2.2). This average speed is, for each task Ti, the ratio between the instruction
number to compute and the amount of time to do it, that is ωsp(t) = Ωi(t)/∆i(t). This intuitive
setpoint is very simple to compute from the given data. Moreover, it leads to reduce the energy
consumption by allowing the system to run sometimes at the low voltage level. One could see
in figure 2.19(a) that some maximal possible speeds are indicated. Thus, ωmax (superscript)
refers to the maximum computational speed when the system is running at high voltage. It
is defined such that ωmax = µ · FVhighmax · Vhigh from the system model in equation (2.4).
Respectively, ωmax (subscript) is the maximum possible speed at low voltage and is defined as
ωmax = µ · FVlowmax · Vlow. Note that how to measure these maximum speeds will be explained
in subsection 2.3.4. As a result, one can easily imagine that a task could be computed at
Vlow when its average speed setpoint is lower than ωmax, such as for the tasks T1 and T3 on
the example, and will run at Vhigh otherwise, such as for T2. Finally, this intuitive behavior
reduces the energy consumption but it could be improved again by reducing even more the high
voltage running time. This is really the key point in minimizing the consumption because of the
(quasi)-quadratic relationship between both variables, as explained in section 1.3.

2.3.1.2 A more energy-efficient reference

A better solution consists in avoiding the running of a whole task at the penalizing high
supply voltage level. In fact, a task whose average speed setpoint is higher than ωmax could
be divided into two parts, a highly consuming and a lower consuming part, which have to be
intelligently scheduled. Such an example is shown in figure 2.19(b) for the case of the task T2.
The idea is to begin the execution of the task at Vhigh (because this level is needed anyway to
be able to perform the task before its deadline). However, as this first part will consume a lot
because of its running at the penalizing high voltage, it has to be as short as possible by running
with the maximal possible speed, that is ωmax at high voltage. Therefore, we propose to apply
the maximum possible speed ωmax when the system is running at the penalizing high
voltage in order to go as fast as possible. Consequently, after a given high voltage and maximum
speed running time, the executed computational load will be advanced enough and the system
could run back to the low voltage level, and so begins the second part. This lower consuming part
will hence perform the end of the task at Vlow and with a low computational speed. To sum up,
the energy-efficient method performs a task by minimizing the penalizing high voltage running
time. In other words, a task with an important computational load (such as T2) will be executed
at Vhigh and the maximal speed ωmax, from its beginning (t2) until a certain amount of time (k).
Then the task could be finished at Vlow and a speed under ωmax, which will be enough to fit it
with its deadline (t3). At the end, the high voltage running time tVhigh

is strongly reduced - and
so is the energy consumption - while guaranteeing the same computational performance than
with the intuitive building. Indeed, the computational load used to treat a given task is equal
with both strategies since the darken surface areas of the task T2 are respectively the same on
both drawings in figure 2.19. Nevertheless, the time k could not be a priori known and therefore,
a predictive control law is required to dynamically calculate this switching time. That point
will be detailed in the following subsections. Furthermore, the task information given by the
operating system are not enough anymore to build such an energy-efficient computational speed
setpoint. We also need some information about the system resources, such as the maximum
speed for the different voltage levels, i.e. ωmax and ωmax. Moreover, we need to know what it
has already been done, and for this reason we propose to use a closed-loop system in order
to predict the minimum high voltage running time. Two feedbacks are hence suggested,

79 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

that are i) the measured computational speed and ii) the computational speed setpoint. Both
schemes are detailed in subsections 2.3.2 and 2.3.3 respectively.

average computational speed setpoint ωsp(t)

tVhigh

voltage

time

Ω2
∆2

Ω1
∆1

Ω3
∆3 T3

T2

T1

ωmax

ωmax

t2 t3 timet1

Vhigh

Vlow

t2 t3t1

(a) Intuitive average speed setpoint building

energy-efficient computational speed setpoint ωsp(t)

time

voltage

Vhigh

Vlow

time

tVhigh

t2 t3

Ω2
∆2

Ω1
∆1

Ω3
∆3 T3

T2

T1

ωmax

ωmax

t2 t3kt1

t1 k

(b) Energy-efficient speed setpoint building

Figure 2.19: Computational speed setpoint: different buildings and their impact on the energy
consumption.

2.3.2 Fast predictive control using the measured speed as a feedback

In this proposal the computational speed controller firstly uses the measured speed as a
feedback, as represented in figure 2.17, in order to calculate the energy-efficient speed setpoint
depicted in subsection 2.3.1.2. Thus, as previously explained, the energy consumption is mini-
mized by running the shortest possible amount of time with the penalizing high supply voltage.
To do that, the controller has to dynamically calculate if the system needs to run at Vhigh -
and at the maximum possible speed ωmax - or if the low voltage level - and a speed lower than
the maximal speed at Vlow, that is ωmax - will be enough to compute the task before its dead-
line. This principle could be formulated as an optimization problem: for each task Ti, what is
the computational speed setpoint which minimizes the high voltage running time tVhigh

while
guaranteeing that the executed instruction number is equal to the number of instructions to do,
which yields

min tVhigh
s.t.

∫

∆i(t)
ω(t) dt = Ωi(t) (2.16)

where
∫
ω(t) dt is the integral of the measured computational speed, which corresponds to the

executed number of instructions for the current task. On the other hand, Ωi(t) is the number
of instructions to do and ∆i(t) is the given amount of time to treat the task, i.e. its deadline.
Note that Ωi(.) and ∆i(.) - and also the laxity Λi(.) - are time-dependant for the reasons
already explained in subsection 2.3.1. The optimization criteria in equation (2.16) allows to
solve the predictive problem but is too complex to be implemented in an electronic chip with
low resources, as in the present case. Nevertheless, the closed-loop solution yields an easier and
faster algorithm. Indeed, one simply needs to know i) what the processor has to do and ii) how
much time is available to do it. As the speed setpoint is dynamically calculated the remaining
time before the end of the task is necessary, this is why the laxity Λi(t) will be used instead of
the deadline ∆i(t). Eventually, the speed required to perform the task exactly on its deadline -
afterwards denoted the predicted speed δ(.) - is calculated at each sampling instant. Then, the

Part I - Energy-performance tradeoff in electronic systems 80

discrete value of δ(t) can be easily described as the ratio between what the processor has to do to
compute the task minus what it has already done - that is corresponding to what it remains to do
- and the remaining time before the end of the task. In fact this principle can be mathematically
expressed as

δ(tk+1) =
Ωi(tk)−∑tk−ti

ti
ω(tk)

Λi(tk)
(2.17)

where tk and tk+1 are respectively the current and the next sampling time, and ti is the beginning
of the task Ti. Finally and in order to be implementable, this equation becomes

Ω(tk) = Ω(tk−1) + Ts · ω(tk) (2.18a)

δ(tk+1) =
Ωi(tk)− Ω(tk)

Λi(tk)
(2.18b)

where Ts is the sampling period of the controller and Ω(.) is the discrete integration of the com-
putational speed ω(.) (using the backward difference approximation). Furthermore, a conditional
instruction is added to be coherent. Indeed, in equation (2.17) the computational speed is inte-
grated on the running time of each task and so has to be Ω(t). Thus, when a task is computed
- i.e. in the last sampling time before its deadline - the variable Ω(t) is reset. More precisely,
this variable is not set to zero - to prevent the case where the task is not completely executed
at its deadline - but Ω(t) is adjusted with the difference between what it has already been done
and what it was required to do, that is

Ω(tk) = Ω(tk)− Ωi(tk) if Λi(tk) ≤ Ts (2.18c)

Finally, the predicted speed is very easy to calculate while the optimization problem defined
by equation (2.16) was initially not implementable. This so-called fast predictive control law
is hence a good solution to build the energy-efficient speed setpoint. A scheme of the possible
implementation is proposed in figure 2.20 to show the achieved simplicity, where a simple division
leads to calculate it. Moreover one could note that this division - which can be too complex in
a low-resource electronic device - will be removed in section 2.5 using some tricks.

1
s

Ccs(s)
δ

a

b

a
b

Ωi

Λi

ω

+
−

Ω

Π(s)
ωsp

Figure 2.20: Details of the computational speed control.

On the figure, let Π(s) be the transfer function between the measurement and the speed setpoint.
This block includes the frequency and voltage level controller plus the monocore system drawn
in figure 2.17. Eventually, the controller - denoted Ccs(s) - simply calculates ωsp(t) since the
computational speed setpoint is easily deduced from the value of δ(t). Indeed, if the predicted
speed is higher than the maximum speed at low voltage, i.e. δ(t) > ωmax, then the system has
to run with the penalizing high supply voltage and the maximum speed has to be achieved.
On the other hand, as soon as δ(t) becomes lower than ωmax, the system could switch to the
low voltage and it will be able to finish the task without going back to Vhigh (if the instruction

81 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

number and/or the deadline do not change). Moreover, the current value of δ(t) allows to fit
the task with its deadline. The relation which summarizes this behavior is

ωsp(tk) =

{
ωmax if δ(tk+1) > ωmax

δ(tk+1) otherwise
(2.19)

An energy-efficient computational speed setpoint is achieved thanks to this control law and
one can ensure that the number of instructions to do will be correctly done because, if the
system is slower than required, ωsp(t) will be dynamically adjusted thanks to the measurement
feedback loop. As explained in introduction, the frequency and voltage level controller has to
calculate the control variables in such a way that the measured speed tracks the speed setpoint
and consequently, this will be very easy because the computational speed controller already
compensates for some delays in voltage and/or frequency transitions. This is developed in
subsection 2.3.5.

2.3.3 Fast predictive control using the speed setpoint as a feedback

In subsection 2.3.2 we presented a computational speed controller which calculates an energy-
efficient speed setpoint using the measured speed as a feedback loop. Here, we propose to
improve again the energy consumption reduction in closing the system with the cal-
culated computational speed setpoint ωsp(t) (instead of the speed measurement), as drawn in
figure 2.21. This architecture modification directly impacts the optimization criteria presented
in equation (2.16) and, consequently, the corresponding algorithm previously detailed in subsec-
tion 2.3.2. The control problem becomes

min tVhigh
s.t.

∫

∆i(t)
ωsp(t) dt = Ωi(t) (2.20)

where
∫
ωsp(t) dt is the integral of the computational speed setpoint, which corresponds to the

instruction number setpoint. Thus, this criteria tries to minimize the high voltage running time
tVhigh

while guaranteeing that the final instruction number required to treat the current task is
equal to the number of instructions to do.

ω Vlevel

ωsp

ωsp

∆i

Ωi

ω

f
Computational

speed
controller

Frequency and
voltage level
controller

Monocore
system

Figure 2.21: Closed-loop system: the computational speed controller (using the computational
speed setpoint as a feedback).

In the same way, it is required to replace ω(t) by ωsp(t) in the predicted speed defined in equa-
tion (2.17) and δ(t) thus becomes the predicted speed setpoint δsp(.). Then, the implementable
version in equation (2.18) turns into

Ωsp(tk) = Ωsp(tk−1) + Ts · ωsp(tk) (2.21a)

δsp(tk+1) =
Ωi(tk)− Ωsp(tk)

Λi(tk)
(2.21b)

Ωsp(tk) = Ωsp(tk)− Ωi(tk) if Λi(tk) ≤ Ts (2.21c)

Part I - Energy-performance tradeoff in electronic systems 82

where Ωsp(.) is the discrete integration of the computational speed setpoint ωsp(.) (still using the
backward difference approximation). Then, the principle remains unchanged and the reference
- previously obtained in equation (2.19) - becomes

ωsp(tk) =

{
ωmax if δsp(tk+1) > ωmax

δsp(tk+1) otherwise
(2.22)

At the end, while the previous scheme adapts the speed setpoint with what it has really been
done, the new proposal does not care anymore about the possible system delay between what
it has been required to do and what it has really been done. This is because the measurement
feedback information does not exist anymore. Therefore, the high voltage running time decreases
again. Indeed, if one looks at figure 2.19(b), the optimal energy-efficient computational speed
setpoint for the task T2 implies to increase the voltage at time t2 and decrease it at time k.
However, the system speed is not instantaneously equal to ωmax at time t2 because of the
transition time required to increase the voltage with the Vdd-hopping (see subsection 2.1.2.1 for
further details). As regards the first controller architecture, this delay impacts on δ(t) and the
speed setpoint will finally drop under ωmax after the theoretical amount of time k. With the
new proposed feedback loop, the rising voltage transition time delay does not impact on δ(t)
and, as a result, the decrease of ωsp(t) will be exactly at time k. On the other hand, the delay
has yet to be considered and the frequency and voltage level controller results in a more complex
law to compensate, as detailed next in subsection 2.3.5.

2.3.4 Measurement of the maximum computational speeds

We defined in subsection 2.3.1 the maximum computational speeds at low and high voltage,
that are ωmax and ωmax respectively. These parameters are then useful in the predictive control
laws - detailed in subsections 2.3.2 and 2.3.3 - to decide the running supply voltage to apply.
However, their value are not a priori known and one needs a method to obtain them. In this
section, a simple solution would be preferred.

We already explained that the maximum speeds come from the system model given in equa-
tion (2.4). This leads to ωmax = µ ·FVlowmax ·Vlow and ωmax = µ ·FVhighmax ·Vhigh. Nevertheless,
neither the maximal frequencies nor the µ values are known, and more particularly µ cannot
be measured due to space and time dispersion. This parameter belongs to the electronic circuit
and could highly vary from one chip to another because of process variability (see section 1.2
for further details). Consequently, we propose to directly measure the maximum com-
putational speeds. That can be done off-line - or more precisely during the initialization
sequence when the chip starts - running the circuit at low voltage (respectively the high one)
and with the maximal frequency just for some measurements. The value of ωmax and ωmax are
eventually stored and then the system could really run and execute some real tasks. Note that
this measurements could be done several times during the system running in order to adjust the
maximum speed values with respect to environmental/ageing variations (due to the temperature
for instance). In this section, we hence choose to simply measure the maximum speeds but a
better method - which consists in estimating them - is afterwards developed in subsection 2.4.4.

2.3.5 Frequency and voltage level controller for the new setpoints

As already explained, the frequency and voltage level controller aims at calculating the
frequency level flevel(t) and the voltage level Vlevel(t) in order to track a given speed setpoint
ωsp(t). We already detailed in section 2.2 a control law for the average one. In this section, we

83 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

propose to adapt the frequency and voltage level control strategy to a more energy-
efficient setpoint (defined in subsection 2.3.1.2). Actually, two closed-loop architectures -
which were presented in subsections 2.3.2 and 2.3.3 - lead to two different computational speed
setpoints, and two frequency and voltage level control laws are so required. Both solutions are
detailed in the end of this subsection.

Computational speed setpoint feedback

With the closed-loop architecture presented in subsection 2.3.3, the speed setpoint is calcu-
lated in such a way that the final instruction number required to treat the current task is equal
to the number of instructions to do. Thus, the setpoint is not self-adapted to a possible problem
in the speed tracking. Indeed, the frequency controller has not only to track the computational
speed setpoint anymore, now it has also to compensate for an overshoot or undershoot of the
system speed - because there is no measured speed feedback loop (contrary to the measured
speed feedback case) - in order to ensure that what it is required to do is really done. For this
reason, a complex speed setpoint tracking is required since the frequency controller needs to
guarantee a null static error and a null integral of the error too. This was clearly explained
in subsection 2.2.1 and eventually results to a proportional integral controller applied to the
integral of the error, that is in frequency-domain

Cf1(s) =
1
s
· 1
σ(s)

·
(
Kp +

Ki

s

)
(2.23)

where Kp and Ki are some tunable parameters (the proportional and the integral parameters)
while the variable gain σ(s) - which is an approximation of the electronic device - was previously
defined in equation (2.9) in the previous section. The corresponding discrete-time controller was
given in equation (2.8) and is called back here. An anti-windup mechanism is added. This is

ε(tk) = ωsp(tk)− ω(tk)
E(tk) = E(tk−1) + Ts · ε(tk)

σ(tk) =
ω(tk)
f(tk−1)

fp(tk) =
1

σ(tk)
·Kp · E(tk)

fi(tk) = fi(tk−1) + Ts ·
1

σ(tk)
·Ki · E(tk)− Ts ·Ka ·

(
f(tk−1)− fsat(tk−1)

)

f(tk) = fp(tk) + fi(tk)

where Ka is the anti-windup parameter.

The voltage level is then deduced from the frequency according to the hysteresis behavior
represented in figure 2.22. This hysteresis is directly an improvement of the previous proposal
drawn in figure 2.15 in subsection 2.2.2. Indeed, only one frequency is now available for the high
voltage level Vhigh in order to minimize the penalizing high voltage running and so be coherent
with the energy-efficient speed setpoint building (see subsection 2.3.1.2 for further details).
Thus, the high voltage level is automatically set when the calculated frequency is higher than
the maximum frequency at low voltage level, i.e. FVlowmax. This finally yields

Vlevel(tk) =

{
Vlevel_high if f(tk) ≥ FVlowmax

Vlevel_low otherwise
(2.24)

Part I - Energy-performance tradeoff in electronic systems 84

Vhigh

Vlow

voltage

frequencyFVhighmax
(fclk)

(Vdd)

FVlowmaxFVlowmin

non-functional area

Figure 2.22: Voltage scalable device: new hysteresis function to adjust the voltage with the
frequency minimizing the penalizing high voltage running.

Furthermore, as it was initially explained in section 2.2, the two control variables are calcu-
lated in two times - the frequency is calculated in such a way that the measurement tracks the
setpoint and the voltage level is then chosen to reduce the energy consumption - but, at the end,
both are adapted together to ensure the maximum delay over the critical path. Several strategies
are possible. They are depicted in subsection 2.2.3 and the linearly varying one is represented
in figure 2.22 for instance. Nevertheless, in order to simplify the algorithm we assume that the
oscillator controls on its own the critical path (one could refer to subsection 2.2.3.3 for further
details).

Measured computational speed feedback

As regards the closed-loop architecture introduced in subsection 2.3.2, the speed setpoint is
calculated in such a way that the executed instruction number is equal to the number of instruc-
tions to do. Thus, if the measured speed does not track the setpoint as well as it would do, the
computational speed controller will compensate by dynamically changing ωsp(t) in consequence.
For this reason, a simple speed setpoint tracking is enough and the frequency controller hence
only needs to guarantee a null static error. One could refer to subsection 2.2.1 and adapt the
technique to the present case to find the control law. This eventually results to an integral
controller, that is in frequency-domain

Cf2(s) =
1

σ(s)
· K
s

(2.25)

where K is a tunable parameter (the integral parameter). As previously, an anti-windup mech-
anism is added. The corresponding discrete-time controller is

ε(tk) = ωsp(tk)− ω(tk)

σ(tk) =
ω(tk)
f(tk−1)

f(tk) = f(tk−1) + Ts ·
1

σ(tk)
·K · ε(tk)− Ts ·Ka ·

(
f(tk−1)− fsat(tk−1)

)

where Ka is the anti-windup parameter. Regarding the voltage level control, the previous
principle remains unchanged and equation (2.24) can hence still be used.

2.3.6 Control algorithm

Eventually, the control strategy consists in minimizing the penalizing high voltage running
time while guaranteeing good computational performance. The resulting algorithm is repre-

85 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

sented in figure 2.23. The algorithm for both feedback loops used in the control law (see sub-
sections 2.3.2 and 2.3.3) are quite similar but the one depicted here is when using the speed
measurement as a feedback.

read the task information measure the speed
Ωi(tk), Λi(tk) ω(tk)

ε(tk) = ωsp(tk)− ω(tk)
caculate the measured error

caculate the frequency

σ(tk) ' ω(tk)
f(tk−1)

caculate the varying gain

Vlevel(tk) =
{
Vlevel high if f(tk) ≥ FVlowmax

Vlevel low otherwise

caculate the voltage level

over the critical path
ensure the maximum delay

caculate the predicted speed
Ω(tk) = Ω(tk−1) + Ts · ω(tk)

δ(tk+1) =
Ωi(tk)− Ω(tk)

Λi(tk)
Ω(tk) = Ω(tk)− Ωi(tk) if Λi(tk) ≤ Ts

f(tk) = f(tk−1) + Ts · 1
σ(tk) ·K · ε(tk)

caculate the speed setpoint

ωsp(tk) =
{
ωmax if δ(tk+1) > ωmax
δ(tk+1) otherwise

measure the maximum speeds
ωmax(tk), ωmax(tk)

Ts

Figure 2.23: Algorithm: the computational speed controller.

2.4 Fully discrete control scheme

Two control strategies were presented in sections 2.2 and 2.3 for an electronic device with two
discrete voltage levels and a continuous frequency range for each level. However, considering a
continuously varying frequency is not realistic in practice and, for this reason, a discrete scheme
would be preferable. As a result, we propose to extend the previous control strategy
to a fully discrete control architecture. This means that the supply voltage and the clock
frequency can only take some values: M voltage and N frequency levels are hence considered
straight afterwards. Note that the definition ofM and N - which was initially given in section 2.1
- is called back here:

• The input of a M -voltage level Vdd-hopping belongs to a M -value set and, with such
a mechanism, the supply voltage Vm is provided when Vlevel(t) = Vlevel_m. We define
m ∈ {1, 2, ...,M} and Vm > Vm+1, respectively Vlevel_n > Vlevel_n+1. Considering that
this inner-loop is extremely fast with respect to the control loop considered here, the
dynamics of the Vdd-hopping can be neglected.

• The input of a N -frequency level oscillator belongs to a N -value set and, with such a
mechanism the clock frequency fn is provided when flevel(t) = flevel_n. We define n ∈

Part I - Energy-performance tradeoff in electronic systems 86

{1, 2, ..., N} and fn > fn+1, respectively flevel_n > flevel_n+1, and we choose N ≥M (for
the reasons explained just after in subsection 2.4.1). Eventually, switching from one level
to another is considered as instantaneous.

Finally, the control architecture of this discrete scheme is presented in figure 2.24. In fact this
is almost the same than the one depicted in section 2.3 where the control variables are now
the voltage level Vlevel(t) and the frequency level flevel(t), and not the expected frequency f(t)
anymore. Moreover, we decide to base this new control strategy on the measured computational
speed feedback scheme because the algorithm is less complex than the computational speed
setpoint feedback one (see subsections 2.3.2 and 2.3.3 respectively for further details), more
especially as regards the frequency and voltage level control laws (see subsection 2.3.5).

ω

ωsp

ω

∆i

Ωi

ω

Computational
speed

controller

Frequency and
voltage level
controller

Discrete controller

Vlevel

flevel
Monocore

system

Figure 2.24: Closed-loop system: the fully discrete controller.

The computational speed setpoint building is explained in subsection 2.4.1 for a M -voltage
level mechanism. Then an extension of the fast predictive control law is detailed in subsec-
tion 2.4.2. Thus, the discrete controller - highlighted in figure 2.24 - now allows to directly
calculate the control variables. It includes the computational speed controller and the frequency
and voltage level controller which were two different control blocks before and which required a
control law in two steps. At the end, an extra degree of freedom is proposed in subsection 2.4.3
using the clock-gating principle and a trick to estimate the maximum speeds - required in the
predictive control strategy - is depicted in subsection 2.4.4. The general control algorithm is
given in subsection 2.4.5.

2.4.1 Energy-efficient setpoint for a M-voltage level mechanism

As explained in subsection 2.3.1 for a two-voltage level mechanism, the supply voltage is the
penalizing parameter in an electronic device with an energy-performance tradeoff. Consequently,
the lower is the voltage level of the chip, the better the energy savings are. The system has
hence to run at the maximum possible computational speed for all the voltage levels - except
the lowest one - in order to reduce the high voltage level running time. For this reason, we
propose to use only one possible frequency fm per voltage level, which is chosen as
the maximal available frequency when the circuit is running at Vm. Then, the corresponding
(maximum) speed at Vm is ωm, defined such that ωm = µ · fm · Vm obtained from equation (2.4)
defined in section 2.1. We will see in subsection 2.4.4 how to obtain these maximum speeds
in practice. Note that this speed value is implicitly maximum by construction since fm is the
maximal value in the available frequency range. For example when the system runs with the
supply voltage V2 and the clock frequency f2, the corresponding computational speed is ω2. The
only case where several frequency levels are possible is for the lowest voltage level VM . Indeed,
the energy consumption could not be reduced anymore since no lower voltage level exists. The
degree of freedom on the frequency will thus allow to fit the task with its deadline (so far as
possible). Therefore, for the last voltage level VM , the electronic device could run with one of the
clock frequencies belonging to the set {fM , fM+1, ..., fN}. This leads to the computational speed

87 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

set {ωM , ωM+1, ..., ωN} available at low voltage. However, in order to simplify the afterwards
equations, one could note that Vx = VM ∀ M ≤ x ≤ N . An example of such a principle is
presented in figure 2.25. In this example, the system can run with three voltage levels, i.e. V1,
V2 and V3, and four frequency levels which hence leads to four maximum speeds, i.e. ω1, ω2,
ω3 and ω4. Thus, the possible cases are the voltage level V1 and the corresponding speed ω1, or
V2 and ω2, or V3 and ω3. Moreover, an extra possible speed is ω4, available to run at the last
voltage level V3.

Ω2
∆2

Ω1
∆1

Ω3
∆3

voltage

V1

V2

T3

T2

T1

ω1

ω3

ω4

ω2

V3

energy-efficient computational speed setpoint ωsp(t)

Ω2
∆2

Ω1
∆1

Ω3
∆3

voltage

T3

T2

T1

timet2 t3

timet2 t3

V1

V2

ω1

ω3

ω4

ω2

V3

average computational speed setpoint ωsp(t)

timet2 t3k2k1 k3t1

timet2 t3k2k1 k3t1t1

t1

Figure 2.25: Computational speed setpoint: extension of the energy-efficient computational
speed setpoint building for a M -voltage level mechanism.

Eventually, the control strategy remains the same than in the two-voltage level case (detailed in
section 2.3) since, for each task, the two computational speeds which are immediate neighbors
to the average speed setpoint minimize the energy consumption (see subsection 1.3.2 for further
details). As a result, we propose to calculate the two neighbor parameters in order
to reduce the problem to a two-level system. Of course, this has to be done for each
task to treat. Afterwards, ωj and ωj+1 are the neighbor speeds, with ωj > ωj+1 in such a way
that the task could be executed running firstly at Vj and then at Vj+1. In other words, the
discrete controller has finally to dynamically predict the switching time ki - for each task Ti -
to go from Vj to Vj+1 which minimizes the penalizing Vj running time while ensuring that the
task will not miss its deadline. One could refer to the energy-efficient speed setpoint building in
subsection 2.3.1.2, and more particularly with figure 2.19(b), since this is exactly what we did
by minimizing the high voltage running time (only two voltage existed there). On the proposed
example in figure 2.25, only one voltage level is used to compute a task with the intuitive
average speed building (left plot) - the voltage corresponding to the maximum speed just above
the average speed, i.e. the ratio Ωi(t)/∆i(t) for each task Ti to treat - whereas the energy-efficient
building requires two levels by task in order to reduce the energy consumption (right plot).
These two voltage levels are those corresponding to the maximum speeds immediately neighbors
to the average setpoint. Thus, for T1 we have ω2 > Ω1/∆1 > ω3 and the task will be executed
with the corresponding voltage levels V2 and V3. The idea is to begin with the highest one, that
is V2, and after a certain amount of time k1 the task could be finished at the lowest voltage level
V3. Respectively, the task T2 will be computed at V1 and then V2. Finally, the average speed of
the third task T3 is ω3 > Ω3/∆3 > ω4 and yet, the corresponding voltage is V3 for both neighbor
speeds. This task will hence be completely treated with the same voltage level but with two
different frequency levels in order to fit with its deadline, that are ω3 and ω4.

Part I - Energy-performance tradeoff in electronic systems 88

2.4.2 Extension of the fast predictive control

As for the two-level case (detailed in subsection 2.3.2), the aim of the predictive control is to
dynamically calculate the predicted speed δ(t). Let ωj > Ωi(t)/∆i(t) ≥ ωj+1 for the current task
Ti to treat, and so is ωj > δ(t) ≥ ωj+1 (in a first time). One hence needs to know if the task
has to be executed at the more penalizing voltage level Vj , or if Vj+1 will be enough to perform
it before its deadline. As previously, this principle could be formulated as an optimization
control problem: for each task Ti, what is the computational speed setpoint which minimizes
the high voltage running time while guaranteeing that the executed instruction number is equal
to the number of instructions to do. In order to not compute this optimization problem for each
voltage level, one needs to calculate the average speed ωsp(t) = Ωi(t)/∆i(t) of the current task Ti

and deduce the neighbor voltage levels Vj and Vj+1. Eventually, the problem can be formulated
as

min tVj s.t.
∫

∆i(t)
ω(t) dt = Ωi(t) and ωj > Ωi(t)/∆i(t) ≥ ωj+1 (2.26)

where
∫
ω(t) dt is the integral of the measured computational speed which corresponds to the

executed number of instructions for the current task. The fast predictive control problem then
consists in calculating the value of δ(t) which can be easily described as the ratio between what
it remains to do and the remaining time before the end of the task. This is quite similar to
the previous two-level case and, consequently, the computation of δ(t) remains the same than
before. The equation (2.18) becomes

Ω(tk) = Ω(tk−1) + Ts · ω(tk) (2.27a)

δ(tk+1) =
Ωi(tk)− Ω(tk)

Λi(tk)
(2.27b)

Ω(tk) = Ω(tk)− Ωi(tk) if Λi(tk) ≤ Ts (2.27c)

where Ts is the sampling period, Ω(.) is the discrete integration of the computational speed
ω(.) and equation (2.27c) is a conditional instruction to be coherent with the end of a task.
Finally, the difference between both algorithms is in calculating the control variables. Indeed,
the computational speed setpoint ωsp(t) is deduced from the dynamical value of δ(t) and so are
the voltage and frequency levels too. Thus the device runs with the more penalizing neighbor
speed ωj during an amount of time, which means the penalizing voltage Vj and the corresponding
frequency fj . Since the running computational speed of the device is higher than the average
speed - because ωj > δ(t) by construction - the value of δ(t) decreases until achieving the less
consuming speed ωj+1 and the task can then be finished with the less penalizing voltage Vj+1

and the frequency fj+1. In fact the computational speed setpoint is not really required since
the control variables are immediately deduced from the predicted speed δ(t), but we still notice
ωsp(t) anyway - for a well understanding - in the resulting algorithm which summarizes the
control decisions. This yields

ωsp(tk) = ωj

Vlevel(tk) = Vlevel_j

flevel(tk) = flevel_j





if δ(tk+1) > ωj+1

ωsp(tk) = ωj+1

Vlevel(tk) = Vlevel_j+1

flevel(tk) = flevel_j+1





otherwise

(2.28)

89 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

One could note that we assume here that the maximum delay over the critical path is ensured
thanks to the oscillator (see subsection 2.2.3.3 for further details). Furthermore, an anti-windup
mechanism is not required since the frequency level can only take a pre-defined value. Eventually,
we previously defined δ(t) as ωj > δ(t) ≥ ωj+1 for a given task, but, in practice, the predicted
speed can go out of these bounds. Indeed, if the measured computational speed goes faster than
expected - due to the dynamics of the Vdd-hopping for example (see subsection 2.1.2.1 for more
information) - δ(t) could become lower than ωj+1. Nevertheless, the algorithm depicted with
equation (2.28) still works: the value of the predicted speed simply becomes ωj+1 > δ(t) ≥ ωj+2.

At the end, the computational performance is guaranteed since the speed setpoint to track
is always higher or equal than required because of the measure computational speed feedback
used in this fast predictive control law. Indeed, as explained in introduction of this section, we
decided to base theM -level algorithm on the control closed-loop architecture with the measured
speed as a feedback, because the frequency and voltage level control strategy is less complex
than in the second case (see subsections 2.3.2 and 2.3.3 respectively). Above all, we chose
this scheme because it allows to directly calculate the control variables from the value of δ(t).
Thus, if some delays occur - due to the frequency and/or voltage transition time (especially
because of the Vdd-hopping behavior which does not instantaneously change the voltage level)
- the measurement will be impacted and the value of δ(t) recalculated in consequence (which
is not the case with the second proposal). Therefore, the robustness is ensured thanks to the
measurement feedback.

2.4.3 Clock-gating control

On top of the previous depicted strategy, we propose to add an extra control decision
based on the clock-gating principle. Indeed, it is possible to “deactivate” the clock of the
device when the task is completed, such as using the clock-gating technique (see subsection 1.3.1
for further details). In this case, the device will run with the lowest voltage VM and a null
frequency (in fact the clock is only paused but a null frequency will be used in simulation to
highlight the clock-gating intervals). This behavior is useful, especially when the number of
voltage and frequency levels is poor. Indeed, due to the small possible supply cases, a higher
frequency level than required will be used most of the time and, consequently, the computational
load of a task Ti will be executed before its deadline. Thus, it could be interesting to pause the
clock until the beginning of the next task Ti+1. However, in order to minimize the use of the
clock-gating principle, we will pause the clock only if the beginning of the next task is not too
close to the end of the current one, that is

if δ(tk+1) ≤ 0,

flevel(tk) =

{
0 if Λi(tk) > Λmin

flevel(tk−1) otherwise
(2.29)

where Λmin is a constant chosen by the designer. One could note that the condition of this
algorithm is δ(t) ≤ 0. In fact the clock-gating principle is applied if the task is finished. That is
the case when what the processor has to do to compute the task is equal to what it has already
done, i.e. Ωi(t) = Ω(t), and when δ(t) = 0 thanks to equation (2.27b). However, for such a
reason or another, what the device did could be higher than what it has to do. For this reason,
we prefer the inequality δ(t) ≤ 0.

Part I - Energy-performance tradeoff in electronic systems 90

2.4.4 Estimation of the maximum computational speeds

The control strategy - proposed in subsection 2.4.2 - is easy to implement, except for the
parameters ωm, i.e. the possible computational speeds when the device is supplied with the
voltage Vm and the clock frequency fm. Of course, these parameters could be calculated using
the system model equation (2.4), that leads to ωm = µ · fm ·Vm where the constant µ belongs to
the electronic circuit. However, we would like to have a controller robust to process variability
(see section 1.2 for further details) which means that the value of µ, fm and Vm are not known
and could vary. For this reason, we propose to dynamically estimate the maximum
speeds. Thus, ω̃m(.) is the estimation of the computational speeds ωm. The solution consists
in measuring the speed for each couple voltage/frequency. Therefore, the speed ωm is measured
when the system is running with the supply voltage Vm and the clock frequency fm. Moreover,
we propose to use a weighted average of the measured speed in order to filter the
(possible) fluctuations of the measurement. In such a weighted mean principle, some points
contribute more than others (instead of contributing equally to the final average). The resulting
algorithm which summarizes that principle is

if

{
Vlevel(tk−1) = Vlevel_m

flevel(tk−1) = flevel_m

,

ω̃m(tk) = (1− ν) · ω̃m(tk−1) + ν · ω(tk) (2.30)

where 0 ≤ ν ≤ 1 is the weighted value. Thus, the value of the estimated computational speeds
ω̃m(t) takes the measured speed ω(t) into account, but only for a small part, in order to soften
some high variations that could appear during the chip running.

Nonetheless, a problem could appear during the voltage transitions. Indeed, the previous
algorithm on equation (2.28) allows to dynamically calculate the predicted speed δ(t) and com-
pare this value with the computational speeds ωm. First of all, the algorithm has to be modified
in order to now compare δ(t) with the estimation of the speeds ω̃m(t). Then, for a given task,
the system will run with a given voltage Vj and the corresponding frequency fj when δ(t) is
higher than ω̃j+1, but as soon as δ(t) becomes lower or equal than ω̃j+1 the controller will be
able to change the voltage and frequency levels to Vj+1 and fj+1 in order to be less consuming.
However, during the level transition the estimated speed could vary - due to the fluctuations
in the estimation - and could become higher than the current value of δ(t). Because of this
phenomenon, the levels might switch and switch again and, therefore, a solution is required. For
this reason, we propose to dynamically calculate ν(t) and bound its value in such a way
that the variation of the estimation remains always lower than the variation of the predicted
speed. At the end, the proposed algorithm is divided into three parts, as detailed with some
items afterwards:

• First, let ∆ω̃m(t) denote the variation of the computational speed estimation, obtained
from equation (2.30). This yields

ω̃m(tk) =
(

1− ν(tk)
)
· ω̃m(tk−1) + ν(tk) · ω(tk)

∆ω̃m(tk) =
ω̃m(tk)− ω̃m(tk−1)

Ts

⇔ ∆ω̃m(tk) =
ν(tk)
Ts
·
(
ω(tk)− ω̃m(tk−1)

)

• Then, let ∆δ(t) denote the variation of the predicted speed, calculated from equation (2.27b),

91 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

that is

δ(tk+1) =
Ωi(tk)− Ω(tk)

Λi(tk)

=
Ωi(tk)−

(
Ω(tk−1) + Ts · ω(tk)

)

Λi(tk)

=
Ωi(tk)− Ω(tk−1)

Λi(tk)
− Ts · ω(tk)

Λi(tk)

Usually, the number of instructions does not change for a given task, which means Ωi(tk) =
Ωi(tk−1) = Ci. Moreover, the laxity is only different from a sampling period between two
measurements, i.e. Λi(tk) = Λi(tk−1)− Ts, and neglecting this leads to Λi(tk) ' Λi(tk−1).
The first term on the right hand can hence be approximated by δ(tk), which leads to

δ(tk) =
Ωi(tk−1)− Ω(tk−1)

Λi(tk−1)
' Ωi(tk)− Ω(tk−1)

Λi(tk)

⇔ δ(tk+1) ' δ(tk)− Ts · ω(tk)
Λi(tk)

Finally, the variation of δ(t) is given by

∆δ(tk) =
δ(tk+1)− δ(tk)

Ts

⇔ ∆δ(tk) ' − ω(tk)
Λi(tk)

• At the end, we need that the variation of the estimation is lower than the variation of the
predicted speed, that is

∆ω̃m(tk) ≤ ∆δ(tk)

⇔ ν(tk)
Ts
·
(
ω(tk)− ω̃m(tk−1)

)
≤ − ω(tk)

Λi(tk)

⇔ 0 ≤ ν(tk) ≤ − Ts · ω(tk)

Λi(tk) ·
(
ω(tk)− ω̃m(tk−1)

) (2.31)

This result is possible because i) ν(tk) ≥ 0 by construction and ii) we consider that
a problem could only appear during a decreasing switch of the voltage and frequency
levels, that is when ω(tk)− ω̃m(tk−1) ≥ 0. Therefore, equation (2.31) allows to bound the
parameter ν(.) and this bounding has to be considered in the implementation.

Furthermore, no information on the system parameters is required at all, which is very important
for process variability since the voltages and the frequencies are not known and could vary. Thus,
the controller just needs to measure the computational speed ω(t) and know the laxity Λi(t)
- provided by the operating system - in order to calculate ν(t) and estimate the value of the
computational speeds ωm(t).

2.4.5 Control algorithm

Eventually, the control strategy is the extension of the one depicted in the previous section,
for a fully discrete scheme running with M voltage and N frequency levels. As before, the

Part I - Energy-performance tradeoff in electronic systems 92

control law consists in minimizing the penalizing high voltage running time while guaranteeing
good computational performance. The estimation of the possible computational speeds is also
taken into account here. The resulting algorithm is represented in figure 2.26.

read the task information measure the speed
Ωi(tk), Λi(tk) ω(tk)

caculate the predicted speed
Ω(tk) = Ω(tk−1) + Ts · ω(tk)

δ(tk+1) =
Ωi(tk)− Ω(tk)

Λi(tk)
Ω(tk) = Ω(tk)− Ωi(tk) if Λi(tk) ≤ Ts

caculate the control variables
ωsp(tk) = ωj
Vlevel(tk) = Vlevel j
flevel(tk) = flevel j



 if δ(tk+1) > ω̃j+1

ωsp(tk) = ωj+1

Vlevel(tk) = Vlevel j+1

flevel(tk) = flevel j+1



 otherwise

Ts

deduce the maximum speeds immediate neighbors to the predicted speed
ω̃j(tk) > δ(tk) ≥ ω̃j+1

update the estimation of the maximum speeds

then ω̃m(tk) = (1− ν) · ω̃m(tk−1) + ν · ω(tk)

if
{
Vlevel(tk−1) = Vlevel m
flevel(tk−1) = flevel m

over the critical path
ensure the maximum delay

Figure 2.26: Algorithm: the fully discrete controller.

2.5 Simplification of the algorithms for a low control
computational cost

In order to simplify the different control algorithms (detailed in the previous sections), we
propose to apply some simplifications to the control algorithms. More especially,
several algorithms exist to perform divisions in digital designs, but it would be better just to
throw them off, in order to prevent from precision and overflow problems. For this reason, we
try to not have division in our algorithms at all.

The fast predictive control law - previously introduced in the computational speed controller
in section 2.3 - aims at dynamically calculating the so-called predicted speed δ(t). However,
as explained before, a fast predictive control takes advantage of the structure of the system
to control in order to fasten the computation of the control law (unlike classical predictive
control where an optimization problem has often to be solved and, therefore, leads to a high
computational cost). Nevertheless, one can remarks that a division still has to be executed to
obtain δ(t) in the referring control algorithm. In fact, the value of the predicted speed is required
in the computational speed control strategy to build an energy-efficient speed setpoint because
then, the voltage and frequency levels are calculated in order to track this setpoint. On the
other hand, the predicted speed is computed in the fully discrete control scheme also - detailed
in section 2.4 - but its value is not really needed. Just to bring back the algorithm, the idea is
to calculate the predictive average speed and then compare it with a given value to decide the

93 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

control variables. The expression of the predicted speed - defined in equation (2.27b) - is

δ(tk+1) =
Ωi(tk)− Ω(tk)

Λi(tk)

where Ωi(t) and Λi(t) are respectively the instruction number to do and the laxity (the remaining
amount of time) of the task Ti to treat, while Ω(t) is the measured number of instructions. Then,
in the discrete control scheme, δ(t) is compared to the maximum speed ωj+1 in order to directly
deduce the control variables. The control decision - defined in equation (2.28) - is

Vlevel(tk+1) = Vlevel_j

flevel(tk+1) = flevel_j

}
if δ(tk+1) > ωj+1

Vlevel(tk+1) = Vlevel_j+1

flevel(tk+1) = flevel_j+1

}
otherwise .

Note that the computational speed setpoint is also originally obtained, but only for information
and its value is then not needed in the algorithm. As a result, the predicted speed is only needed
in δ(tk+1) > ωj+1 and finally, a very simple trick can consist in modifying this inequality in order
to not have any division anymore. To do that, one can substitute the expression of δ(t) into the
inequality and change the denominator from the left side to the right side. The condition in the
previous relation hence becomes

if Ωi(tk)− Ω(tk) > ωj+1 · Λi(tk)

where no division occurs anymore.

Eventually, the same thing can be applied for the estimation of the maximum computa-
tional speeds. Indeed, a weighted average is presented in subsection 2.4.4 in order to filter the
fluctuations of the measured speed. The corresponding relation - defined in equation (2.30) - is

ω̃m(tk) =
(
1− ν(tk)

)
· ω̃m(tk−1) + ν(tk) · ω(tk)

where ω̃m(t) is the estimation of the maximum speed ωm while ν(t) is the weighted value. This
parameter is dynamically computed and a certain restriction was proposed in order to not change
too quickly the value of the estimation during a voltage transition. Thus, the restriction of the
weighted value - defined in equation (2.31) - is

0 ≤ ν(tk) ≤ − Ts · ω(tk)

Λi(tk) ·
(
ω(tk)− ω̃m(tk−1)

)

where Ts is the sampling period. A first approach consists in applying the upper bound as the
value of ν(tk) (if this value is not negative), but a better one exists. Summarizing the previous
idea yields

ω̃m(tk) =
(

1− ν(tk)
)
· ω̃m(tk−1) + ν(tk) · ω(tk)

= ω̃m(tk−1) + ν(tk) ·
(
ω(tk)− ω̃m(tk−1)

)

= ω̃m(tk−1)− Ts · ω(tk)

Λi(tk) ·
(
ω(tk)− ω̃m(tk−1)

) ·
(
ω(tk)− ω̃m(tk−1)

)

= ω̃m(tk−1)− Ts

Λi(tk)
· ω(tk)

At the end, the resulting expression still has a division to compute but this is quite simpler than
previously.

Part I - Energy-performance tradeoff in electronic systems 94

2.6 Intuitive stability analysis

The notion of stability is important in control theory and Lyapunov theory immediately
occurs in this field of knowledge. Consequently, basing our analysis on that is a natural way.
Note that a theoretical background on Lyapunov stability is introduced in the second part of the
thesis (in subsection 7.2.1). Anyway, the basic theorems are directly related to some particular
functions V (x) (continuous and positive definite) - denoted Lyapunov-candidate functions -
which are defined with respect to the state x. This variable represents the internal state of
the controlled system at any given time. Then, studying the time derivative of the Lyapunov-
candidate function and applying some well-known methods allows to discuss on the stability
of the system. Actually, the Lyapunov stability is based on a mathematical translation of an
elementary physical constatation: if the total energy of the system tends to continuously decline,
then this system is stable since it is going to an equilibrium state. For this reason, the Lyapunov-
candidate functions are often based on some energetic functions, that are most of time quadratic
functions of the state variables, such as

V (x) = xT · P · x

We decide to use this classical function. As a result, we now have to find x which leads to
continuously decrease V (x). A solution could be

x(tk) = Ωi(tk)−
tk−ti∑

ti

ω(tk) (2.32)

where Ωi(tk) is the number of instructions required to treat the task Ti while
∑tk−ti

ti
ω(tk) is

the sum of the measured computational speed which corresponds to the executed instruction
number for the current task (since tk is the current sampling time and ti is the beginning of the
task Ti). This expression comes from equation (2.17) in the fast predictive control law building
(depicted in subsection 2.3.2) and, eventually, the value of x(tk) refers to the remaining number
of instructions before the end of the task. Therefore, the Lyapunov function intuitively decreases
during the running time of a task because the computational speed of the controlled electronic
device can only be positive, and so is ensured the stability of a task. After that, one has to bring
back the fact that the time horizon is contractive in the present study case. This means that the
task horizon decreases for a given task until achieving its deadline. Then a new time horizon has
to be achieved for the next task to treat, where the different variables in equation (2.32) change
(since they depends on the task to treat). Finally, we can assume that the system is stable in
the Lyapunov sense.

2.7 Synthesis

This chapter defines an architecture in order to control the energy-performance tradeoff of
a single processing node. Actually, a voltage scalable processor makes possible to reduce the
computational speed of the device and, consequently, its power consumption by reducing the
supply voltage and/or the clock frequency. Two actuators respectively provide these variables
while a controller decides their inputs thanks to a feedback loop. Based on this architecture,
different control laws were then proposed:

• A frequency and voltage control strategy allows the measured computational speed to track
an intuitive speed setpoint. In this first scheme, the setpoint is the average speed required
to fit the task with its deadline. The strategy consists in calculating the (continuously

95 Chapter 2 - Control of the energy-performance tradeoff in monocore systems

varying) frequency required for the tracking and then applying the minimum possible
voltage (between two possible levels) in order to reduce the energy consumption. Of
course, the maximum delay over the critical path has to be ensured and both control
variables are finally restricted together.

• Based on this first work, a computational speed control strategy builds a more energy-
efficient speed setpoint in order to minimize the penalizing high voltage running time,
while still guaranteeing some computational performance. In fact, a task can now be
executed with two voltage levels whereas it was computed with the highest one during the
whole running time before. A fast predictive control law is applied to build this better
reference, and the previous frequency and voltage control strategy is adapted to this new
proposal.

• The computational speed control strategy is finally extended to a fully discrete scheme,
where M voltage levels are now possible while a discretely varying frequency can only
achieve N levels. Moreover, an estimation of the possible computational speeds (when
the system runs with a given voltage and frequency levels) allows to calculate the control
variables without any information on the system parameters. This proposal is hence
strongly robust to process variability which occurs in sub-micrometric electronic chips.

At the end, some tricks are also proposed to reduce the control computational cost of the
different strategies and an approximated stability analysis is performed to intuitively show that
the controlled system is stable when applying our proposals.

Chapter

3

Global control in multicore
systems

A closed-loop architecture was developed in chapter 2 in order to control the energy-perfor-
mance tradeoff in an electronic chip. Only a single device had to be controlled (in voltage and
frequency) in this seminal work. The goal was to minimize the energy consumption (reducing the
penalizing high voltage running time) while guaranteeing some good computational performance
(fitting the tasks to treat with their deadlines). In this chapter, an extension for several devices
working together on the same chip is proposed. A first multicore architecture is thus defined
in section 3.1, where the different devices are all power supplied with the same voltage and
frequency (or a ratio of the clock). Some extensions of the previous monocore proposals are
then detailed in section 3.2. They consist in scaling the voltage and the frequency of the
chip in order to reduce the energy consumption of the whole circuit while guaranteeing good
performance of each device. As previously, the control strategies are strongly robust to tackle
variability and therefore suitable for 32nm technology or smaller implementations. Another
multicore architecture is also depicted in section 3.3, where the different devices still work
together but now with their own clock frequency. This scheme is only shortly depicted without
developing any control laws. However, this second approach is in fact simpler than the first one
and, consequently, the multicore strategies can easily be transposed. Eventually, a synthesis is
performed in section 3.4. Some simulation results will be presented in chapter 4.

Part I - Energy-performance tradeoff in electronic systems 98

3.1 Several chips working together in the same power domain

We initially presented in chapter 2 a monocore system, where only one electronic device
has to be controlled. In this chapter, we propose to extend the monocore architecture
to a multicore system. The system architecture with several devices to control is shown
in figure 3.1. In fact this system is not so different from the monocore one - introduced in
section 2.1 and represented in figure 2.1 - since the principle remains (almost) the same: a
controller dynamically calculates the frequency level flevel(t) and the voltage level Vlevel(t) to
send to the actuators. They are a ring oscillator and a Vdd-hopping (see subsection 2.1.2 for
further details), which respectively provide the clock frequency fclk(t) and the supply voltage
Vdd(t) to the electronic devices (see subsection 2.1.1 for more information on the model of a single
processing node). The main difference is that there are now X devices to control , which means
as many references refX(t) given by the operating system (the computational load for each
task to treat) and as many measured speeds ωX(t) (the current activity) as devices. Therefore
the multicore controller has to control the whole system but devices do not work independently
since they are all supplied with the same voltage and clock frequency. This constraint has hence
to be taken into account in the multicore control strategy. Furthermore, a certain dimension of
freedom is allowed in triggering a device with a ratio of the clock. This principle is detailed in
subsection 3.1.1. As a result, the controller has also to provide the frequency ratios ρX(t).

ωXωX

refX fclk&Vdd

ρX

flevel

Vlevel

Multicore system

Multicore
controller

Actuators

Device 1

Device 2

Device 3

Device x

ω1

ω2

ω3

ωx

ρ1

ρ2

ρ3

ρx

Figure 3.1: Architecture of the multicore system.

Notations:

• ρX(t) (upper case superscript) means that there are X signals ρ(t), one for each device.

• ρd(t) (lower case superscript) denotes the signal ρ(t) of the device d, where d ∈ {1, 2, . . . , X}.

• ρx(t) denotes the signal ρ(t) of the last device.

This is valid for all the variables except the voltage and frequency ones which are still single sig-
nals. This is due to the multicore architecture which is composed of only one voltage/frequency
actuator.

One could note that, in the ARAVIS project case - see subsection 1.4.2 - this multicore
architecture defines a cluster of the SoC ARAVIS as represented in figure 1.9. Indeed, the chip
is divided into different clusters, whose each one corresponds to one power domain (only one

99 Chapter 3 - Global control in multicore systems

voltage/frequency actuator) in order to independently work regardless the process variability.
Then, several computational nodes have a single clock (and supply voltage) which triggers the
set of processors in such a way that they all work together into a cluster. These computational
nodes are the so-called electronic devices.

3.1.1 A certain degree of freedom thanks to some frequency ratios

As explained in introduction, the different electronic devices of the multicore architecture
work together, with the same supply voltage and clock frequency, and have hence to be controlled
in consequence. However, a certain degree of freedom is allowed in triggering a device with a
ratio of the clock because in fact, in practice, it is possible to dynamically add one or two NOPs
(i.e. No OPeration) between each instruction in such a way that the device runs twicetwo or
three times slower. Another alternative would be to use the clock-gating principle - introduced
in subsection 1.3.1 - in order to dynamically pause the clock and achieve the expected behavior.
Whatever the solution, a frequency ratio is important - and more interesting from a point of
view of the control - to not have all the devices running with the same computational speed.

3.1.2 The multicore controller

The controller aims at calculating the control signals which minimize the energy consump-
tion of the chip while guaranteeing some good computational performance of all the devices.
A strategy is hence required to control the energy-performance tradeoff of the whole system.
Afterwards denoted the multicore system, it is composed of the electronic devices and the two
actuators. The resulting block merging was firstly highlighted in figure 3.1 (with the doted line)
and eventually is gathered in figure 3.2.

Vlevel
ωX

flevel

Multicore
system

refX

Multicore
controllerωX

ρX

Figure 3.2: Details of the architecture: the multicore controller.

The complete system model which was given in subsection 2.1.3 for a single device remains
almost the same for several processors. Actually, the measured computational speed of a device
is an affine function with respect to the expected frequency f(s) - defined in subsection 2.1.2.2 -
and the supply voltage Vdd(s) (in the Laplace domain). Furthermore, a device in the multicore
architecture can be triggered with a ratio of the clock frequency and the measurement is hence
function of this ratio too. Thus, equation (2.4) becomes

ωd(s) ' µd ·
(
ρd · f(s)

)
· Vdd(s) (3.1)

where µd belongs to the electronic device d and could be different for each device because of
process variability (see section 1.2 for further details). The resulting computational speed of a
given device is also function of the frequency ratio ρd introduced in subsection 3.1.1. Moreover,
the power sources which exist in such a system are

Pmulticore system(s) =
X∑

d=1

P d
circuit (s) + Phopping(s) (3.2)

Part I - Energy-performance tradeoff in electronic systems 100

where Pcircuit(.) and Phopping(.) were previously defined in equation (2.5). Just to bring back
the idea, the first source comes from the CMOS technology and depends on the circuit whereas
the second are due to the voltage transitions. As a result, reducing the voltage/frequency will
decrease the energy consumption - but with an increase of the delay in return (see subsec-
tion 1.3.1) - and a small number of voltage transitions is required too. The difficulty in this
chapter is that all devices work together with the same supply voltage and frequency (or a ratio
of the clock frequency). Consequently, the energy-performance tradeoff controller has to reduce
the energy consumption of the critical device, minimizing its high voltage running time and the
voltage transitions, while guaranteeing a good computational performance of the whole system,
fitting the tasks with their deadline thanks to the frequency ratios. A key point also consists
in well defining the criticality of a task. The control variables are the voltage level Vlevel(t) and
the frequency level flevel(t) which directly control the actuators, and the frequency ratios ρX(t)
which manage the triggering mechanism of the different devices. On the other hand, the current
computational speeds ωX(t) are measured and compared to the computational load references
refX(t) to decide the control law.

In the following section, different extensions of the monocore control laws - initially depicted
in chapter 2 - are detailed.

3.2 Extension of the monocore control strategies

Considering the work presented in chapter 2, we propose to extend the monocore
control strategies to the multicore architecture where several electronic devices have to
be controlled together. Actually, the proposal developed in section 2.3 could be divided into two
overlapped parts (one can see the referring architecture in figure 2.17):

The computational speed controller provides an energy-efficient computational speed set-
point - using a fast predictive control law - in order to minimize the penalizing high voltage
running time (and so the energy consumption) while guaranteeing the computational per-
formance of the device.

The frequency and voltage level controller fits the measured computational speed with
this setpoint adapting the frequency and the voltage level.

Finally, the whole monocore controller leads to a robust control law and will hence be adapted
to the multicore case. One could remark that the frequency was continuously varying in the
considering monocore architecture and so is varying here too. This means f(t) = flevel(t), as
explained in subsection 2.1.2.2, and the expected frequency f(t) will hence be used afterwards
instead of the frequency level flevel(t). Furthermore, the multicore controller needs to calculate
the frequency ratios - defined in section 3.1 - which allow a certain dimension of freedom by
triggering a device with a ratio of the clock frequency. A third part has hence to be introduced
in the control architecture:

The ratio controller calculates the ratio between the clock frequency - that is the frequency
required to treat the critical task - and the frequency of the current device, for each device.

In the following subsections, two control frameworks are detailed: a first intuitive one which
duplicates the monocore principle as many times as devices in subsection 3.2.1, and a second
one which tries to minimize the computational cost of the controller in subsection 3.2.2. In both
strategies, the frequency ratios are considered continuously varying and, at the end, these extra
control variables are discretized in subsection 3.2.3.

101 Chapter 3 - Global control in multicore systems

On the other hand, another proposal was introduced in section 2.4 and also leads to a
robust control law. This refers to a fully discrete scheme where only a small number of voltage
and frequency levels are available to control the circuit. In this case, the control variables are
the frequency level flevel(t) and the voltage level Vlevel(t). As a result, the control strategy is
lightened and so is the computational cost. This is eventually adapted to the multicore controlled
system in subsection 3.2.4.

3.2.1 Full duplication of the monocore control strategy

An intuitive and easy way to control several devices is to consider the different devices work-
ing alone and then decide for a global strategy. Consequently, we propose to duplicate the
monocore control strategy as many times as devices. The resulting multicore architec-
ture - based on the work previously done in section 2.3 when the measured speed setpoint is
used as a feedback - is represented in figure 3.3 and could be divided into three steps:

ωX

fX

Vlevel

ρX

ωX
sp

ωX

∆X
i

ΩX
i

ωX

f

V X
level

Multicore
system

Comp. speed
controller Ratio

controller

Freq. &
volt. level
controller

Figure 3.3: Closed-loop system: the multicore controller based on full duplication of the mono-
core control strategy.

1. First, the computational speed controller dynamically calculates the speed setpoints ωX
sp(t)

for all the devices (using a predictive control law). The setpoint ωd
sp(t) is independently

calculated for each device d, using some task information given by the operating system -
the number of instructions Ωd

i (t) and the deadline ∆d
i (t) of the task Ti currently executed

on the device - and the measured speed ωd(t).

2. Then the frequency and voltage level controller independently calculates the expected fre-
quencies fX(t) and the voltage levels V X

level(t) usually required to control a single device.

3. Finally the ratio controller compares the calculated frequencies fX(t) to deduce the device
to control in priority. Thus, the critical task is the one which needs the maximal frequency
to fit with its deadline. The device which has to treat this task is afterwards denoted
the critical device and indexed with the letter c. The expected frequency f(t) and the
voltage level Vlevel(t) sent to the actuators are those from the critical device, i.e. f c(t) and
V c

level(t). Eventually, the frequency ratios ρN (t) are obtained by doing the ratio between
the frequency of the current device fd(t) and the one of the critical device f c(t).

Eventually, this intuitive strategy ensures that the tasks are correctly performed for all
devices because each device is independently controlled using the monocore strategy. Indeed,
the monocore strategy works for one device and we focus the frequency and the voltage level
decision on the critical one, tat is the device which has to treat the task with the highest
computational needs. Eventually, all the non-critical tasks will be executed with the critical
voltage level and a frequency lower than or equal to the critical frequency. Moreover, a non-
critical task could become the critical one when its computational needs increase and increase
again.

Part I - Energy-performance tradeoff in electronic systems 102

Finally, this intuitive full duplication of the monocore principle leads to reduce the energy
consumption of several devices working together while guaranteeing good computational per-
formance for the whole system. Nevertheless, a consequence is that the control computational
needs are multiplied as many times as devices and the number of variables significantly increases
too. Consequently, a better solution would be to duplicate only some parts of the monocore
control strategy. This is detailed in the following subsection.

3.2.2 Partial duplication for a lower control computational cost

A first intuitive multicore control architecture was presented in the previous subsection where
the monocore strategy is duplicated as many times as devices. However, a better solution -
still based on the work done in section 2.3 - would allow to reduce the control computational
cost and, in this perspective we propose to not intuitively duplicate all the monocore
control strategy. In fact, the frequency ratios ρX(t) require to be calculated and some parts
have necessary to be duplicated in order to obtain X signals. The aim is to repeat as least
code as possible. The best solution would be to use the references refX(t) - provided by the
operating system - to deduce the ratios without duplicating any part of the monocore strategy,
but these signals are not relevant enough. Indeed, the critical task could not be known only
from the number of instructions and the deadline because the computational load which was
already executed is necessary too. As a result, only the computational speed controller really
seems to have to be repeated anyway and hence needs to be duplicated. The resulting multicore
architecture is proposed in figure 3.4 where three steps are still needed:

ωX

ωsp

Vlevel

ρX

ωX
sp

ωX

∆X
i

ΩX
i

ωX

f

ω Multicore
system

Comp. speed
controller Ratio

controller

Freq. &
volt. level
controller

Figure 3.4: Closed-loop system: the multicore controller based on partial duplication of the
monocore control strategy.

1. First, the computational speed controller provides the speed setpoints ωX
sp(t), from which

the frequency ratios ρX(t) could be directly obtained since they provide information on
the remaining computational load.

2. Then the ratio controller compares all the speed setpoints ωX
sp(t) to deduce the device to

control in priority. Thus, the critical task is the one which needs the maximal speed to fit
with its deadline. The device which has to treat this task is also afterwards denoted the
critical device and indexed with the letter c. The speed setpoint ωsp(t) and the measured
speed ω(t) sent to the frequency and voltage level controller are those calculated for that
critical device, i.e. ωc

sp(t) and ωc(t), while the frequency ratios ρX(t) are obtained by doing
the ratio between the speed setpoint of the current device ωd

sp(t) and the one of the critical
device ωc

sp(t).

3. Finally the frequency and voltage level controller calculates the frequency f(t) and the
voltage level Vlevel(t) to send to the actuators only for the critical device.

103 Chapter 3 - Global control in multicore systems

With this partial duplication proposal, only the computational speed controller is repeated and
not the frequency and voltage level controller anymore. Consequently, one could hope a reduction
of the control computational cost without impacting the gain on energy savings.

Although all the devices are not independently controlled using the monocore strategy, the
computational performance is yet guaranteed for each device. Indeed, with this second architec-
ture, the monocore control strategy only ensures that the critical task will fit with its deadline,
since the monocore control strategy is only applied to the critical device. The frequency ratios
for the non-critical devices are then calculated from the computational load of the task of each
device which is finally adjusted thanks to the computational speed controller. As a result, all
the non-critical tasks are executed until their deadline anyway, or a task becomes the critical
one when its computational needs become more important.

3.2.3 Discrete values of the frequency ratios

The control frameworks proposed in both previous subsections were developed with ideal
continuously varying frequency ratios. However, as explained in section 3.1, some devices could
be triggered with a ratio of the clock frequency fclk(t) by adding NOPs between instructions,
for instance, in such a way that the device runs slower. This is why the frequency ratios could
only have discrete values in practice which refer to the number of NOPs. For instance, a value
of 1, 1/2 or 1/3 means that 0, 1 or 2 NOPs are respectively added between each instruction. Thus
we propose to calculate a discrete ratio from the continuously varying one which is
obtained thanks to the ratio controller (detailed in subsections 3.2.1 and 3.2.2). Afterwards, %r(.)
is the discrete frequency ratios. In order to implement such a behavior, one still has to calculate
the continuous ratios ρd(t) for each device d, that is ρd(t) = fd(t)/f c(t) for the multicore
control strategy based on full duplication and ρd(t) = ωd

sp(t)/ωc
sp(t) for the one based on partial

duplication. Then, some iterations have to be done in order to deduce the possible discrete
frequency ratio %d(t) immediate neighbors and just upper than the value of the continuous
ratios ρd(t). The following algorithm summarizes the principle:

%d =





1 if 1/2 < ρd ≤ 1
1/2 if 1/3 < ρd ≤ 1/2
1/3 if 0 < ρd ≤ 1/3

0 otherwise

(3.3)

Of course, the possible values can be chosen uniformly in the space or not, as this is the case
in the given algorithm. Moreover, a large number of frequency ratios is not so evident - as
explained in section 1.3 for the number of voltage levels - because a small number will lead to
a small degree of freedom but a low extra control computational cost, while a large number
will explode the computation of the algorithm. Indeed, the control computational needs would
increase with the number of possible ratios. Finally, this discrete ratio behavior would lead to a
less energy-efficient system because the frequencies of the non-critical devices will be higher than
required - thanks to equation (3.3) - contrary to the continuous case where these frequencies
correspond exactly to the expected ones.

As explained in section 2.5, it is important to remove divisions so far as possible in order
to reduce the control computational cost. As a result, we propose to avoid the divisions
needed to calculate the frequency ratios in the discrete case. Actually, the continuous
ratios ρd(t) are calculated from the speed setpoint or the frequency (regarding the chosen dupli-
cation scheme) and then compared with the possible discrete values. This eventually results in
testing the inequality 1/3 < ρd ≤ 1/2 for instance. In fact one can reduce the control cost simply

Part I - Energy-performance tradeoff in electronic systems 104

substituting the expression of the ratios directly into the inequality. The previous algorithm -
in the partial duplication case - hence yields

%d =





1 if 1/2 · ωc
sp(t)< ωd

sp(t) ≤ ωc
sp(t)

1/2 if 1/3 · ωc
sp(t)< ωd

sp(t) ≤ 1/2 · ωc
sp(t)

1/3 if 0 < ωd
sp(t) ≤ 1/3 · ωc

sp(t)
0 otherwise

Of course, this can also be applied to the full duplication case, replacing the speed setpoints by
the expected frequencies.

3.2.4 Fully discrete control scheme

Different control strategies were presented in the previous sections to control several elec-
tronic devices with two discrete voltage levels and a continuous frequency range for each level.
However, considering a continuously varying frequency is not realistic in practice and, for this
reason, a discrete scheme would be preferable. Thus, as previously done in the monocore case,
a fully discrete control scheme can be imagined. This means that the supply voltage and the
clock frequency can only take some values: M voltage and N frequency levels are hence con-
sidered straight afterwards. Note that the definition of M and N - which was initially given in
section 2.1 - is called back here just after. One could note that the control variables are now
the voltage level Vlevel(t) and the frequency level flevel(t), and not the expected frequency f(t)
anymore.

• The input of a M -voltage level Vdd-hopping belongs to a M -value set and, with such
a mechanism, the supply voltage Vm is provided when Vlevel(t) = Vlevel_m. We define
m ∈ {1, 2, ...,M} and Vm > Vm+1, respectively Vlevel_n > Vlevel_n+1. Considering that
this inner-loop is extremely fast with respect to the control loop considered here, the
dynamics of the Vdd-hopping can be neglected.

• The input of a N -frequency level oscillator belongs to a N -value set and, with such a
mechanism the clock frequency fn is provided when flevel(t) = flevel_n. We define n ∈
{1, 2, ..., N} and fn > fn+1, respectively flevel_n > flevel_n+1, and we choose N ≥M (for
the reasons explained in subsection 2.4.1). Eventually, switching from one level to another
is considered as instantaneous.

In the previous subsections we introduced two different ways of extending a monocore control
strategy to the multicore architectures. Both consist in i) calculating a speed setpoint in order to
minimize the penalizing high voltage running time and then ii) calculating the control variables
in such a way that the system speed tracks this setpoint. The first multicore architecture is
based on a full duplication of the monocore strategy, whereas the other one applies a partial
duplication in order to reduce the control computational cost (see subsections 3.2.1 and 3.2.2
respectively for further details). Actually, only the first part of the controller is repeated - in
the partial proposal - and the control variables are deduced from the critical speed setpoint.
However, in the monocore discrete control scheme (detailed in section 2.4) the control variables
are directly obtained from the calculated speed setpoint - or more precisely from the predicted
speed calculated thanks to the fast predictive control law - and no tracking is needed. In this
context, the full and/or partial duplications does not have any sense since the part which is not
duplicated in the second approach does not exist anymore. Anyway, a duplication remains here
a solution because the monocore discrete control strategy has a low computational cost (see
sections 2.4 and 2.5 for further details). As a result, we propose to adapt the monocore

105 Chapter 3 - Global control in multicore systems

discrete control strategy to the multicore scheme. Actually, in the full duplication the
frequency ratios ρX(t) are deduced from the frequencies fX(t) calculated for the different devices
to control while the partial duplication deduces them from the speed setpoints ωX

sp(t). Both
approaches could be transposed to discrete ones where these ratios would be calculated from the
frequency levels fX

level(t) and the predicted speeds δX(t) respectively. The control architectures
for both proposals are presented in figure 3.5.

ωX

Vlevel

ρX

V X
level

ωX

∆X
i

ΩX
i

ωX

f

Multicore
system

Discrete
controller

Ratio
controller

fX
level

(a) Frequency ratios deduced from the frequency levels (the discrete controller calcu-
lates the control variables and then, a ratio controller deduces the critical frequency
level and calculates the frequency ratios).

Vlevel

ρX

V X
level

ωX

∆X
i

ΩX
i

ωX

f

Multicore
system

Discrete
controller Ratio

controller

fX
level

δX

ωX

(b) Frequency ratios deduced from the predicted speeds (the discrete controller calcu-
lates the control variables and the predicted speeds and then, a ratio controller deduces
the critical prediction and calculates the frequency ratios).

Figure 3.5: Closed-loop system: the multicore controller based on discrete scheme.

In fact the discrete controller algorithm is really similar to the one of the full duplication
proposal but the control law is now simplified thanks to the discrete scheme. Indeed, this
controller dynamically calculates the predicted speeds for all the devices, which allow to directly
obtain the voltage and frequency levels. Then, the controller has to deduce the device to control
in priority. The corresponding critical device is indexed with the letter c and the frequency level
flevel(t) and voltage level Vlevel(t) sent to the actuators are finally those from the critical device,
i.e. f c

level(t) and V c
level(t). This depends on the proposal:

Ratios deduced from the frequency levels: in this first approach the critical task is the one
which has the maximal frequency level to fit with its deadline. In the previous subsections,
the frequency ratios ρN (t) are obtained by doing the ratio between the variable of the
current device and the one of the critical device. That variable would have to be fd

level(t)
in the present case. However, a ratio of the frequency levels is not possible since these
variables are not proportional to the clock frequency. Indeed, the frequency level values
are only some discrete numbers, only to indicate that the system has to run with the
frequency fn when the required level is flevel_n for instance. Consequently, the frequency
ratios can only be either 1 or 0 if the computational load of the current task is completed
or not.

Ratios deduced from the predicted speeds: in this second approach the critical task is

Part I - Energy-performance tradeoff in electronic systems 106

the one which has the maximal predicted speed to fit with its deadline. Eventually, the
frequency ratios ρN (t) are obtained by doing the ratio between the predicted speed of the
current device δd(t) and the one of the critical device δc(t). However, the predicted speed
was not really calculated in the original fully discrete control scheme (for a computational
cost reason) - as explained in section 2.5 - and, consequently, using them will complexify
the discrete algorithm.

Eventually, as for the full duplication scheme, the discrete control strategy ensures that the tasks
are correctly performed for all devices because each device is independently controlled using the
monocore strategy. Furthermore, this extension takes benefit from the robustness to process
variability developed in the monocore case, thanks to the estimation of some system parameters
(see subsection 2.4.4 for further details).

3.3 Several chips working with their own clock

In section 3.1, a multicore architecture was presented where all the devices to control work
together since they are all supplied with the same voltage and clock frequency. Here, we pro-
pose a new multicore architecture where each device is triggered with a different
oscillator. The new system architecture is shown in figure 3.6. The principle remains (almost)
the same: a controller dynamically sends the frequency level and the voltage level to the actu-
ators which respectively provide the clock frequency and the supply voltage to the electronic
devices. The main difference is that there are now X oscillators, which independently provide
a clock frequency to each device. As before, the new multicore controller has to control the
whole system but devices still do not work independently since they are all supplied with the
same voltage. This constraint has hence to be taken into account in the new multicore control
strategy. One could note that the control variables are now the voltage level Vlevel(t) and the
frequency levels fX

level(t), one for each device. Moreover, note that the frequency ratios ρX(t)
introduced in the initial multicore architecture do not exist anymore.

ωXωX

refX VddVlevel

fX
level

New
multicore
controller

Vdd
hopping

Device 1

Device 2

Device 3

Device x

ω1

ω2

ω3

ωx

f1
clk

f2
clk

f3
clk

fx
clk

New multicore system

Oscillator

Figure 3.6: Architecture of the new multicore system.

In fact the new multicore controller algorithm is really similar to the previous one, but the
control law is now simplified. Indeed, this controller now dynamically calculates the frequency
levels fX

level(t) for all the devices and deduces the device to control in priority. Thus, the critical
task is the one which has the maximal frequency level to fit with its deadline and the voltage

107 Chapter 3 - Global control in multicore systems

level Vlevel(t) sent to the Vdd-hopping is the one from the corresponding critical device.

Eventually, the different control strategies previously developed in section 3.2 can be easily
adapted to this new multicore architecture, but this will not be done here.

3.4 Synthesis

This chapter extends the monocore architecture - introduced in chapter 2 - to a multicore
one, where several processing nodes, working together on a single chip, are all power supplied
with the same voltage and frequency. However, a certain degree of freedom is possible thanks
to some frequency ratios (which allow the different devices to work with a ratio of the clock).
The monocore control strategies have hence been adapted to now control the whole system. The
proposed strategies consist in focusing on the critical task to treat (the task which requires the
maximal frequency/speed to fit with its deadline) and minimizing the penalizing high voltage
running time of the corresponding device - to reduce the energy consumption - while guaranteeing
the computational performance of the whole system. Different control schemes were hence
proposed:

• An intuitive multicore strategy based on the full duplication of the monocore one allows to
easily obtain a control algorithm but, as a result, this multiplies the control computational
cost as many times as devices existing on the chip. Furthermore, this first strategy keeps
the robustness and stability properties of the monocore proposals.

• A second strategy consists in not repeating the monocore scheme as many times as devices
in order to reduce the control cost. The proposal deduces the frequency ratios using
the calculated speed setpoint for each task. The controller hence does not need to be
fully duplicated since the control variables are then calculated only for the critical device.
Anyway, we developed a multicore control law which is still robust to process variability
and stable.

• A fully discrete control scheme is finally also proposed for an architecture working with
M voltage levels and N frequency levels.

At the end, another multicore architecture is depicted. This consists in controlling several chips
working with the same supply voltage but with their own clock frequency. This second scheme
is only presented but the resulting control laws are not detailed.

Chapter

4

Simulation results

Different architectures including one or several voltage scalable processors were presented
in chapter 2 and 3. Theses components allow to make both the supply voltage and the clock
frequency of the chip dynamically varying, in order to reduce the power consumption. However,
the computational speed of the devices is reduced also in return and an energy-performance
tradeoff has hence to be handled. Several control laws were developed for the monocore and the
multicore scheme. They are recaped in section 4.1 as well as a brief presentation of the systems.
The simulation test benches are also presented while some indexes are defined to evaluate the
performance of the different strategies. At the end, the proposals are tested: the intuitive
frequency and voltage controllers are executed in section 4.2, the more energy-efficient ones are
simulated in section 4.3 and the fully discrete schemes are studied in section 4.4. The robustness
to process variability was also demonstrated in these different sections. A performance analysis
finally compares all of them in section 4.5, before synthesizing all the simulation results in
section 4.6.

Part I - Energy-performance tradeoff in electronic systems 110

4.1 Presentations

Before performing some results, the context of the simulations is presented. This section
starts with a recap of the different control strategies in subsection 4.1.1 while the monocore and
multicore system parameters are given in subsection 4.1.2. The simulation test benches for both
architectures are then presented in subsection 4.1.3 and, finally, some performance indexes are
introduced in subsection 4.1.4.

4.1.1 Recap of the different control strategies

This subsection aims at summarizing all the control strategies developed in chapter 2 and 3
and afterwards used in simulations. Firstly, some basic existing strategies without power man-
agement (or quasi not) are introduced because they will be compared to our proposals:

System without DVFS mechanism: In a system without dynamic voltage and frequency
scaling mechanism, only one voltage level and one frequency level are possible, that are
the maximum ones. This is the usual running of all processors which are not voltage
scalable.

System without DVS mechanism: In a system without dynamic voltage scaling mechanism,
the clock frequency can vary. Thus the system speed has to track a given reference. The
intuitive average speed setpoint building principle - depicted in subsection 2.3.1.1 - is used
while the supply voltage is fixed to the most penalizing level. Moreover, the frequency is
now controlled in order to ensure that what the system has to do is really done and this
implies to use a complex law. That is a proportional integral controller applied to the
integral of the error between the speed setpoint and the measured system speed (for the
reasons explained in subsection 2.2.1).

These techniques do not really reduce the energy consumption since the supply voltage is the
penalizing parameter in a power management scheme. For this reason, we developed several
control strategies controlling both the frequency and the voltage levels. In a first hand, only a
monocore system was considered in chapter 2:

Frequency and voltage level control: This controller - developed in section 2.2 - consists in
scaling the frequency in such a way that the measured computational speed tracks a given
speed setpoint and then adapting the voltage level to reduce the energy consumption.
At the end, both control variables are adapted together to ensure the maximum delay
over the critical path of the device to control and different restrictions were proposed in
subsection 2.2.3. Two voltage levels and a continuously varying frequency allow such a
mechanism. As in the previous case, the setpoint to track is also the average speed setpoint
and a proportional integral controller has also to be applied to the integral of the error.

Computational speed control: This controller - detailed in section 2.3 - consists in mini-
mizing the penalizing high voltage running time while guaranteeing good computational
performance. This is possible in calculating a more energy-efficient speed setpoint thanks
to a fast predictive control law. Two different closed-loop architectures were proposed to
calculate the predicted speed and be able to obtain the control variables: i) a first one
using the speed setpoint itself as the feedback and ii) a second using the measured speed
instead. In the first scheme, the complex PI controller applied to the integral of the error
is still required while a simple integral controller applied to the error is enough in the
second case.

111 Chapter 4 - Simulation results

Fully discrete control scheme: The discrete controller - developed in section 2.4 - is an ex-
tension of the previous computational speed controller, for a fully discrete scheme running
with M voltage and N frequency levels. As before, the control law consists in minimizing
the penalizing high voltage running time while guaranteeing good computational perfor-
mance and the control variables are now directly deduced from the predicted speed. This
considerably reduces the complexity of the control law. Moreover, this proposal is highly
robust to process variability (see section 1.2 for further details) since no information on
the system is needed in the control law anymore.

Then, different strategies were also developed in chapter 3 for a multicore system, where several
devices work together, running with the same supply voltage and clock frequency (or a ratio of
the frequency). All the developed strategies consist in minimizing the penalizing high voltage
running time of the critical task while guaranteeing good computational performance of all the
devices:

Full duplication of the monocore strategy: This principle - introduced in subsection 3.2.1
- consists in repeating the monocore scheme as many times as devices and then deciding the
control variables regarding the critical task (the task which requires the maximal frequency
to fit with its deadline). This is based on the computational speed control law (depicted
above). Two voltage levels and a continuously varying frequency are hence available to
control the whole system.

Partial duplication: This second multicore proposal - detailed in subsection 3.2.2 - consists in
not repeating all the monocore strategy in order to decrease the control computational cost.
The critical task is deduced from the maximal speed setpoints, which leads to calculate
the control variables only for the critical device. As previously, the referring monocore
strategy is the computational speed control law.

Discrete frequency ratios: The two previous proposals consider continuously varying fre-
quency ratios which allow to individually reduce the frequency of the devices. However,
in practice, only discrete values are possible. Thus, some discrete frequency ratios are
calculated - see subsection 3.2.3 - from the corresponding continuous ones.

Discrete control: The discrete controllers - developed in subsection 3.2.4 - are an extension
of the full and partial duplication proposals, applied to the fully discrete control scheme
(presented above). M voltage andN frequency levels are available to control the processing
power of the different devices. Both approaches deduce the critical task either from the
maximal calculated frequency levels or from the maximal predicted speeds.

All these control strategies will be tested in simulation in the next sections.

4.1.2 Controlled systems

In both monocore and multicore system architectures, the model of the controlled devices -
introduced in subsection 2.1.1 - is ω(t) ' α · fclk(t) + β, where α = 0.08 and β = 38000.

Then, two actuators provide the supply voltage and the clock frequency. Their model were
presented in subsection 2.1.2. The first one is the Vdd-hopping and directly varies with respect
to the voltage level Vlevel(t). On the other hand, the oscillator model is function of the expected
frequency, that is fclk(t) = γ · f(t) · Vdd(t) where γ = 0.9038. Moreover, the available frequency
range - described in subsection 2.2.2 - is 0 < fclk(t) < 500MHz while the different power supply
schemes depicted in the previous subsection are summarized as follows:

Part I - Energy-performance tradeoff in electronic systems 112

1. In a first scheme, two voltage levels and a continuously varying frequency are possible.

• The voltages are Vhigh = 1.1065V and Vlow = 0.8V .
• On the other hand, the resulting frequency ranges are FVlowmin < fclk(t) < FVlowmax

when Vdd(t) = Vlow and FVhighmin < fclk(t) < FVhighmax when Vdd(t) = Vhigh,
where FVlowmin = 0, FVlowmax = 350MHz, FVhighmin = 250MHz and FVhighmax =
500MHz.
• The measured maximum computational speeds (used in the fast predictive con-

trol law, as explained in subsection 2.3.4) are ωmax = 40.038MIPS and ωmax =
20.282MIPS (in million of instructions per second).
• Finally, the linear restriction to ensure the maximum delay over the critical path -

introduced in subsection 2.2.3.2 - is f(t) = a ·Vdd(t)+b under some conditions, where
a = 4.8940 · 108 and b = −4.1517 · 107.

2. In the fully discrete scheme, the system could run with M voltage and N (discretely
varying) frequency levels. In fact, we will only simulate 2 and 3 voltages.

• In the first case, V1 = Vhigh and V2 = Vlow while the possible frequencies are Fhigh =
500MHz, Flow = 350MHz.
• In the second case, V1 = 1.1065V , V2 = 0.9533V and V3 = 0.8V while the possible

frequencies are F1 = 500MHz, F2 = 425MHz, F3 = 350MHz and F4 = 175MHz.
• Note that when the cock-gating principle - depicted in subsection 2.4.3 - is used, the

resulting frequency is F0 = 0 (in fact the clock is only paused but a null frequency
will be used in simulation to highlight the clock-gating intervals) and applying this
mechanism is possible only if Λi(t) > Λmin, where Λmin = 5 · Ts.

The sampling period used in all the control laws - developed in chapter 2 and 3 - is Ts =
4ns. The parameters used in the different frequency control strategies are Kp = 5 · 107 and
Ki = 6.25 · 1014 for the controller applied to the integral of the error, and K = 5 · 107 for the
controller applied directly to the error. The anti-windup parameter is Ka = 2.25 · 107 in both
cases.

Eventually, as the energy is the key point in this part of the thesis, the consumption is
calculated for the different architectures. The relation is detailed in subsections 2.1.3 and 3.1.2,
where the parameter values are Kdyn = 1.1435 · 10−8 J , Ksc = 1.2653 · 10−9 J , Kleak = 0.0633 J
and Khopp = 0.2 J during the voltage transitions or Khopp = 0.03 J during the steady-state
intervals.

4.1.3 Test benches

As the different control strategies recalled in subsection 4.1.1 will be simulated in the next
sections, some test benches are now detailed in order to be able to compare all the proposals.
We will depict a scenario i) for the monocore scheme and then ii) for the multicore scheme
(introduced in chapter 2 and 3 respectively).

Test bench for the monocore systems

Several tasks have to be executed in the monocore case. For each task the controller requires
the number of instructions to treat and the available amount of time to do that (its deadline).
These data are usually given by the operating system but here we propose to pre-define a
scenario for the simulation bench. In the monocore case, this is:

113 Chapter 4 - Simulation results

Monocore node: three tasks to execute. The first task starts with 4 instructions to do
in 0.5µs, then a 65 instruction task has to be executed in 2.5µs and the last one has to
compute 10 instructions in 1µs.

The scenario is finally represented in figure 4.1. The top plot shows the number of instructions
to compute for each task, with respect to time, and the amount has to be executed at the end
of a given task. The bottom plot shows the deadline and the laxity, also with respect to time.
As regards the deadline, the value indicates at the beginning instant the available amount of
time to treat the task. Note that the laxity - the remaining amount of time before the end of
the task - could be simply built: at the beginning of the task the laxity is equal to the deadline
and then, at each sampling interval the laxity is decreased of the value of the sampling time Ts

in order to be null at the end.

In
st

ru
ct

io
n

nu
m

be
r

0

40

80

T
im

e
[x

10
−

6 s
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2

instruction number

deadline
laxity

Task information (given by the operating system)

Task 1 Task 2 Task 3

Figure 4.1: References used in the simulation test bench: the monocore control case.

Test bench for the multicore systems

Extending the bench to several electronic devices to control consists in defining references
for each node. Four processing nodes have to be controlled together in the multicore case, with
a specific reference for each one:

Multicore node 1 : three tasks to execute. The first task starts with 4 instructions to do
in 0.5µs, then a 65 instruction task has to be executed in 2.5µs and the last one has to
compute 10 instructions in 1µs.

Multicore node 2 : three tasks also. A 15 instruction task to execute in 1.25µs, a task
with 45 instructions to do in 2.25µs and then 5 instructions to execute in 0.5µs.

Multicore node 3 : a single task of 40 instructions to do in 4µs.

Multicore node 4 : three tasks again. 10 instructions to compute in 0.75µs, a task with
20 instructions to do in 0.75µs and a last 40 instruction task to execute in 2.5µs.

These data (usually provided by the operating system) are represented in figure 4.2. As previ-
ously, the top plot shows the number of instructions and the bottom plot shows the deadline
and the laxity.

Note that, in the following multicore simulations, a legend will be shown only for the results
of the third device, in order to lighten the plots.

4.1.4 Indexes of performance

By running one or the other test bench with the different controllers will lead to some
simulation results in the next sections, where only the computational speeds - the measurement

Part I - Energy-performance tradeoff in electronic systems 114
In

st
ru

ct
io

n
nu

m
be

r

0

40

80

T
im

e
[x

10
−

6 s
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2

instruction number

deadline
laxity

In
st

ru
ct

io
n

nu
m

be
r

0

40

80

T
im

e
[x

10
−

6 s
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2

instruction number

deadline
laxity

In
st

ru
ct

io
n

nu
m

be
r

0

40

80

T
im

e
[x

10
−

6 s
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2

instruction number

deadline
laxity

In
st

ru
ct

io
n

nu
m

be
r

0

40

80

T
im

e
[x

10
−

6 s
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2

instruction number

deadline
laxity

Task information (given by the operating system)

Figure 4.2: References used in the simulation test bench: the multicore control case.

ω(t), the setpoint ωsp(t) or the predicted speed δ(t) - and the supply voltage Vdd(t) are drawn.
The clock frequency fclk(t), the expected frequency f(t) or the frequency level flevel(t), and the
voltage level Vlevel(t) are not plotted because they do not provide relevant information. Indeed,
the frequencies are directly proportional to the speed while the voltage level can be deduced
from the voltage. Note that these variables were previously defined in previous chapters. The
computational speeds are given in number of instructions per second (afterwards denoted IPS)
while the voltage is given in volt (denoted V). Both are represented with respect to time. Then,
the results are quantified in terms of energy consumption of the system and computational cost
of the control law:

Energy consumption of the system: The energy consumption is calculated in order to have
an idea of the reduction achieved thanks to our proposal. The power consumption is given
in equation (2.5) in the monocore case and equation (3.2) in the multicore one. They relate
to two parts, that are a consumption due to the electronic components plus a ratio added
due to the Vdd-hopping principle. Finally, an integration during the whole simulation
running time gives the total energy consumption. Note that this index of performance
is denoted E in the following plots of the simulation results and is given in joules (or
equivalent-joules afterwards denoted eJ).

Computational cost of the control law: The control law is compared in terms of computa-
tional needs, that are the number of operations required to calculate the control variables.
We base this analysis on the Lightspeed Matlab toolbox proposed by T. Minka in [49], which
provides a number of operations (afterwards denoted OPs) for each instruction. The cost
is different for an addition, a multiplication (twice the cost of an addition) or a division
(the most consuming operation which is eight times the cost of an addition) for instance.
Note that this index of performance is denoted C in the following plots of the simulation

115 Chapter 4 - Simulation results

results and is given in number of operations.

Finally, the proposed controllers are compared all together and with some classical systems
without power management technique. All were recaped in subsection 4.1.1.

4.2 Frequency and voltage level control to track a given
computational speed setpoint

The frequency and voltage level control strategy - introduced in section 2.2 and brought back
in subsection 4.1.1 - was developed for a system running with two voltage levels and a continu-
ously varying frequency. That consists in scaling the frequency in such a way that the measured
computational speed tracks the given speed setpoint - that is the intuitive average speed setpoint
here - to fit the tasks to treat with their deadline. Then, the lower voltage level is applied as
soon as the computational speed becomes low in order to reduce the energy consumption. At
the end, both control variables are adapted together and, if necessary, a restriction is set during
the voltage transitions in order to ensure the maximum delay over the critical path of the chip.
Indeed, it is required to decrease the frequency before decreasing the voltage and, respectively,
to increase the voltage before increasing the frequency (see subsection 1.3.2 for further details).
In this section, we propose to analyze the impact of the different restricting condi-
tions on the energy consumption of the system and their computational cost in the
control law. The different proposals are tested and lead to the simulation results plotted in
figure 4.3. The top plots show the average speed setpoint and the measured speed while the
bottom plots show the supply voltage.

• The first condition is to set the frequency constant during a voltage transition. Thus,
when the voltage increases from the low level to the high one - actually there is no prob-
lem when the voltage decreases - the frequency is fixed to the maximal possible frequency at
low voltage during the whole transition. This can be done i) measuring the supply voltage
(represented in figure 4.3(a)) or ii) simply knowing the current state of the voltage (rep-
resented in figure 4.3(b)). The system energy consumption and the control computational
cost are quite close in both cases. However, the first case requires a more complex hardware
solution to catch the voltage measurement while the state of the supply voltage can be
easily provided by the Vdd-hopping (the voltage actuator detailed in subsection 2.1.2.1).
For this reason, the second measured signal would be preferred.

• A second condition is to make the frequency linearly varying during the voltage transitions
in such a way that the system could run faster than in the previous (constant) case.
Applying this behavior is represented in figure 4.3(c). In fact the resulting control strategy
is more complex - and so is increased the control computational cost - while no gain is
really provided on the energy consumption of the system (because the voltage transitions
are very fast thanks to the Vdd-hopping mechanism). Moreover, this implies to measure
the supply voltage since a linear transition varies with respect to that variable.

• The last proposal does not take care about the critical path in the control law. This
problem is taken into account directly in the oscillator (the frequency actuator detailed in
subsection 2.1.2.2) which provides the clock frequency and is function of the supply voltage
anyway. The results without any restriction are given in figure 4.3(d). The complexity of
the control algorithm is reduced (about 10 % of operations less than before) without im-
pacting the system energy consumption. Note that this strategy will be applied afterwards
(for simplification reasons).

Part I - Energy-performance tradeoff in electronic systems 116

Finally, all simulation results allow the measurement to correctly track the setpoint. A reduc-
tion of the energy consumption of about 10 % is achieved compared to a system without DVS
mechanism, and 55 % compared to a system without DVFS mechanism. However, when a task
has an important computational load and that the high voltage level is required, the system runs

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Frequency and voltage level control
Constant frequency during the voltage transitions (based on voltage measurement) to guarantee the critical path

E = 1.46305 eJ

C = 43969 OPs

(a) Constant frequency (restriction based on the voltage measurement)

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Frequency and voltage level control
Constant frequency during the voltage transitions (based on voltage state measurement) to guarantee the critical path

E = 1.46294 eJ

C = 43983 OPs

(b) Constant frequency (restriction based on the voltage state measurement)

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Frequency and voltage level control
Linearly varying frequency during the voltage transitions (based on voltage measurement) to guarantee the critical path

E = 1.46304 eJ

C = 46962 OPs

(c) Linearly varying frequency

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Frequency and voltage level control
No restriction on frequency during the voltage transitions to guarantee the critical path

E = 1.46275 eJ

C = 40351 OPs

(d) No restriction in the control law

Figure 4.3: Simulation results of the frequency and voltage level controller: different proposals
to ensure the maximum delay over the critical path during the voltage transitions.

117 Chapter 4 - Simulation results

during the whole task at high voltage and therefore consumes a lot. At the end, the system runs
during more than 60 % of the simulation time at high voltage with the present test bench. A
more energy-efficient speed setpoint will then reduce much more the high voltage running time.
The corresponding simulation results are depicted in the next section.

4.3 Computational speed control to build a more
energy-efficient setpoint

The computational speed control strategy - introduced in section 2.3 and brought back in
subsection 4.1.1 - was also developed for a system running with 2 voltage levels and a continuously
varying frequency. The principle consists in minimizing the penalizing high voltage running time
- using a fast predictive control law - while guaranteeing good computational performance. In
this section, we propose to highlight the advantages of the predictive proposal in both
monocore and multicore controlled systems.

4.3.1 Fast predictive control law

In order to minimize again the energy consumption, a predictive control strategy is applied.
This consists in beginning a task with an important computational load at the high voltage level
and with the maximum possible speed. Thus, after a given amount of time, the system could
go back to the low voltage and the task be finished with this less penalizing level. Such tasks
are hence divided into two parts instead of being executed at high voltage for its whole running
(at this was the case in the previous section tracking the intuitive average speed setpoint).
Actually, the fast predictive control law allows to calculate an energy-efficient speed setpoint
- which minimizes the penalizing high voltage running time - and then, the frequency and
voltage level controller can make the speed measurement tracking this reference. Two closed-
loop systems were suggested in section 2.3 to build this computational speed setpoint: either i)
using the speed setpoint itself as a feedback or ii) using the measured speed as a feedback. Both
architectures are tested and lead to the simulation results plotted in figure 4.4. The top plot
shows the average speed setpoint (for guideline), the speed setpoint (calculated thanks to the
predictive control law) and the measured speed while the bottom plot shows the supply voltage.
One can verify that the penalizing voltage running time is drastically reduced compared to the
results in figure 4.3(d) (about 45 % of reduction of the penalizing high voltage running time
with the same test bench) and so is the energy consumption. Eventually, the main differences
between the two plots are during the voltage transitions:

• In the measurement feedback case, the computational speed setpoint is calculated regard-
ing what the device has really done. Thus, during the voltage transitions the setpoint is
adjusted with respect to the measured error, as one can see in figure 4.4(b): the setpoint
is reduced during falling transitions if the system ran faster than required (due to the
Vdd-hopping dynamics) and, inversely, the setpoint is increased during rising transitions.

• In the setpoint feedback case, the computational speed setpoint does not change with
respect to the speed measurement and the system speed has hence to adapt itself in order
to compensate. As a result, some overshoots appear during rising transitions (respectively
undershoots appear during falling transitions), as one can see in figure 4.4(a).

Anyway, in both cases the system runs during more than 80 % of the simulation time at low
voltage with the present test bench. A reduction of the energy consumption of about 35 % is
achieved compared to a system tracking the average speed setpoint (depicted in previous section),
30 % compared to a system without DVS mechanism and 65 % compared to a system without

Part I - Energy-performance tradeoff in electronic systems 118

DVFS mechanism. These results are quite interesting. Moreover, while the energy consumption
is very similar for both architectures, the control computational cost varies and the number of
operations needed in the measurement feedback case is about 20 % less than in the setpoint one.
This is due to the frequency control law which is more complex in the second case, as explained
in subsection 2.3.5. The measurement feedback is hence preferable and, consequently, will be
used afterwards.

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Computational speed control
Fast predictive control using the computational speed setpoint as a feedback

E = 1.14159 eJ

C = 57497 OPs

(a) Computational speed setpoint used as a feedback

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Computational speed control
Fast predictive control using the computational speed measurement as a feedback

E = 1.14256 eJ

C = 44462 OPs

(b) Computational speed measurement used as a feedback

Figure 4.4: Simulation results of the computational speed controller: interest of the fast predic-
tive control law.

4.3.2 Adaptation to a variation of the task information

As previously explained, both architectures adapt either the speed setpoint or the system
speed to compensate for a possible error in the tracking during the voltage transitions. For
this reason, the control strategy has to adapt itself to some variations of the reference given for
each task by the operating system. This is important when the exact number of instructions
to compute is not a priori known (when some loops exist in the code of the application for
instance) or the deadline. Such behaviors are depicted in figure 4.5 in the case where the
speed measurement is used as a feedback (this also works in the other case). The references
are represented on the simulation results in order to see when the variation happens. One
could remark that the controller decides to increase the high voltage running time when the
modification occurs before decreasing the voltage level, in order to be able i) to execute the
extra computations or ii) to fit the task with its new deadline, such as in figures 4.5(a) and (b)
respectively. On the other hand, when the modification occurs after decreasing the voltage level,
the system needs to run at high voltage again, such as in figure 4.5(c). Anyway, the tasks are
correctly executed in all cases. Note that if the modification occurs too late to correctly fit the
task with its deadline, the task will be performed anyway overlapping on the next one.

119 Chapter 4 - Simulation results
In

st
ru

ct
io

n
nu

m
be

r

0

40

80

T
im

e
[x

10
−

6 s
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2

instruction number

deadline
laxity

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Robustness −− Variation of the number of instructions
Fast predictive control using the computational speed measurement as a feedback

(a) Modification of the instruction number: 10 extra instructions to treat at time 1µs

In
st

ru
ct

io
n

nu
m

be
r

0

40

80

T
im

e
[x

10
−

6 s
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2

instruction number

deadline
laxity

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Robustness −− Variation of the deadline before decreasing the voltage level
Fast predictive control using the computational speed measurement as a feedback

(b) Modification of the deadline: at time 1µs, it finally remains 1.75µs to treat the task instead of 2µs as initially
planned

In
st

ru
ct

io
n

nu
m

be
r

0

40

80

T
im

e
[x

10
−

6 s
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2

instruction number

deadline
laxity

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
speed setpoint
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Robustness −− Variation of the deadline after decreasing the voltage level
Fast predictive control using the computational speed measurement as a feedback

(c) Modification of the deadline: at time 2.25µs, it finally remains 0.6µs to treat the task instead of 0.75µs as
initially planned

Figure 4.5: Simulation results of the computational speed controller: robustness to a variation
of the reference of the second task during its running time.

Part I - Energy-performance tradeoff in electronic systems 120

4.3.3 Duplication of the monocore strategy

As explained in chapter 3, we suggested to duplicate the monocore control strategy in order
to control four devices working together. The first idea was to i) fully duplicate the architecture
as many times as devices and, at the end, decide the control variables regarding the critical task
(the task which requires the maximal frequency to fit with its deadline). The second approach
suggests to ii) not repeat all the monocore strategy in order to decrease the computational cost
of the controller. Eventually, some ratios allow a certain dimension of freedom in both cases,
in triggering the devices with different frequencies. The simulation results for both control
strategies (with ideal continuous frequency ratios) are shown in figure 4.6. The four top plots
- one for each controlled device - show the average speed setpoint (for guideline), the speed
setpoint, the measured speed and the critical speed (for guideline too). Note that the critical
speed is the maximal speed between all devices, and one could check for instance that this
maximal speed is the one of the critical device (highlighted by a gray area on plots). The
bottom plot shows the supply voltage which is the same for the whole set of devices since they
all work together. One can remark that the system speed perfectly tracks the speed setpoint,
thanks to some continuously varying frequency ratios which allow a large possible frequency
range. Finally, the system runs during about 80 % of the simulation time at low voltage. A
reduction of the energy consumption of about 35 % is achieved compared to a system without
DVS mechanism and 75 % compared to a system without DVFS mechanism. The differences
between the two control strategies are during the voltage transitions and come notably from the
choice of the critical device:

• In the multicore control strategy based on full duplication (subsection 3.2.1), one could see
in figure 4.6(a) that the measured speed is continuously varying for all the devices. This is
because the frequency ratios are obtained from the frequencies (independently calculated
for each device).

• In the strategy based on partial duplication (subsection 3.2.2), one could see in figure 4.6(b)
a discontinuity in the measured speeds as soon as the critical device changes. Indeed, the
frequency ratios are obtained from the speed setpoints which are in fact some switching
variables due to their construction (see section 2.3 for further details). The speed setpoint
value of a device could suddenly change and so are the ratios. Nevertheless, the critical
frequency - and so the critical speed - remains continuously varying.

At the end, the computational needs are considerably reduced for the second scheme whereas
the energy consumption is very similar in both cases. A drop of the number of operations of
about 35 % is achieved. For this reason, it would be the strategy to use in practice.

4.3.4 Discrete values of the frequency ratios

The frequency ratios of the control strategy with partial duplication are then discretized
(see subsection 3.2.3). The results are drawn in figure 4.7. One could immediately remark
that the results are quite similar to the previous ones (where the ratios were continuously
varying). The main difference is that the measured speed does not track the speed setpoint in
the discrete case as well as in the continuous case (due to the small number of possible discrete
values). Nevertheless, the amount of computations to do is correctly computed at the end of
the task because the speed is at least higher than the speed setpoint - by construction - and
so is the computational load. Furthermore, this discrete scheme is interesting since it leads to
reduce the control computational cost (about 10 % less) without impacting too much the energy
consumption. One could also note that decreasing the number of possible discrete values leads to

121 Chapter 4 - Simulation results
C

om
pu

ta
tio

na
l

sp
ee

ds
[x

10
7 IP

S
]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Full duplication of the monocore strategy
Continuously varying frequency ratios

E = 5.64434 eJ

C = 211582 OPs

(a) Full duplication of the monocore strategy

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Partial duplication of the monocore strategy
Continuously varying frequency ratios

E = 3.41983 eJ

C = 146131 OPs

(b) Partial duplication of the monocore strategy

Figure 4.6: Simulation results of the multicore controller based on a duplication of the monocore
strategy: continuously varying frequency ratios.

Part I - Energy-performance tradeoff in electronic systems 122
C

om
pu

ta
tio

na
l

sp
ee

ds
[x

10
7 IP

S
]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Partial duplication of the monocore strategy
Discretely varying frequency ratios (6 possible values)

E = 3.46104 eJ

C = 139273 OPs

(a) 6 possible discrete frequency ratio values (1, 4/5, 3/5, 2/5, 1/5 and 0)

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Partial duplication of the monocore strategy
Discretely varying frequency ratios (4 possible values)

E = 3.45286 eJ

C = 134729 OPs

(b) 4 possible discrete frequency ratio values (1, 2/3, 1/3 and 0)

Figure 4.7: Simulation results of the multicore controller based on partial duplication of the
monocore strategy: discretely varying frequency ratios.

123 Chapter 4 - Simulation results

reduce the computational cost (because the extra code to calculate the discrete frequency ratios
is reduced) but increases the energy consumption in return (because the difference between the
speed setpoint and the possible system speed of the systems increases). This is highlighted
comparing the results in figures 4.7(a) and (b), where six and four possible discrete frequency
ratio values are possible respectively. This discrete scheme would be the strategy to use (the
continuous one could not be implemented in practice anyway).

Eventually, a last simulation is performed. In this scheme, the frequency ratio behavior runs
as an on-off mechanism: the ratio value can only be equal to 1 or 0, that is either the device runs
with the clock frequency or the device is stopped (using the clock-gating technique depicted in
subsection 1.3.1). Results are shown in figure 4.8 where one can see a very chaotic behavior due
to the drastically reduced possibilities. Nevertheless, the system is still working anyway.

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Partial duplication of the monocore strategy
Frequency ratios with an on−off behavior

E = 3.68158 eJ

C = 113545 OPs

Figure 4.8: Simulation results of the multicore controller based on partial duplication of the
monocore strategy: on-off frequency ratios.

4.4 Fully discrete control scheme

The fully discrete scheme control strategy - introduced in section 2.4 and brought back in
subsection 4.1.1 - was developed for a system running with M voltage levels and N frequency
levels. Actually, this strategy is an extension of the computational speed control one (illustrated
in the previous section). The principle hence consists in minimizing the penalizing high voltage
running time while guaranteeing some good computational performance. In this section, we
propose to show that the energy consumption can be strongly reduced even if the
number of voltage/frequency levels is very small. This will be applied to both monocore
and multicore controlled systems.

Part I - Energy-performance tradeoff in electronic systems 124

4.4.1 Results with small numbers of voltage and frequency levels

As in the previous case, a fast predictive control law allows to minimize the penalizing high
voltage running time. In this fully discrete scheme the control variables are immediately deduced
from the predicted speed and this is not required anymore to explicitly calculate a speed setpoint.
Eventually, different values of voltage and frequency levels are tested in this subsection:

Scheme 1 : 2 voltage levels and 2 frequency levels,

Scheme 2 : 2 voltage levels and 2 frequency levels using the clock-gating principle,

Scheme 3 : 2 voltage levels and 3 frequency levels,

Scheme 4 : 2 voltage levels and 3 frequency levels using the clock-gating principle,

Scheme 5 : 3 voltage levels and 3 frequency levels,

Scheme 6 : 3 voltage levels and 3 frequency levels using the clock-gating principle.

The different schemes are then tested and lead to the simulation results plotted in figures 4.9
and 4.10. The top plots show the average speed setpoint (for guideline), the predicted speed
(for guideline) and the measured computational speed while the bottom plots show the supply
voltage. Note that the predicted speed is plotted instead of the speed setpoint (as it was the case
in section 4.3). This variable is dynamically calculated and represents the remaining number of
instructions to treat the current task. Moreover, one can see that this variable decreases (almost)
all the time because the levels are always higher (or equal) than required - by construction - due
to the limited number of frequency values.

Looking at the first simulation results, one could immediately note that with two possible
voltage levels, the system runs during almost 80 % of the simulation time at low voltage. This is
shown in figure 4.9. A reduction of the energy consumption of about 30 % is achieved compared
to a system without DVS mechanism and 65 % compared to a system without DVFS mechanism.
Furthermore, the discrete schemes require a lower computational cost than in the continuously
varying frequency case - previously represented in figure 4.4(b) - because, for almost the same
energy consumption reduction, the control computational cost is divided by more than two. In
fact, only the first discrete scheme - with 2 voltage and 2 frequency levels - is a little bit more
consuming since the frequency cannot be lower than the maximal possible one at low voltage.
However, the other schemes allow to achieve a consumption as close as using a continuous
frequency, which is quite amazing. On the other hand, with three voltage levels the system
does not need to go to the highest level to treat the three tasks of the proposed test bench, as
shown in figure 4.10, but it runs a larger time (during about 60 % of the simulation time) at
the second voltage level to compensate. This leads to a reduction of the energy consumption
of about 10 % anyway whereas the paying tradeoff is an increase of the control computational
cost (about 10 % more) due to the extra voltage level to control. Eventually, applying or not a
clock-gating mechanism and the impact of the number of levels is analyzed as follows:

Clock-gating principle: Comparing figures 4.9(a) and (b) (or figures 4.9(c) and (d) for in-
stance) shows that the energy consumption can be reduced again when using a clock-gating
mechanism (detailed in subsection 2.4.3). The principle consists in pausing the clock of
the device when a task is performed before its deadline, such as for the task 1 and 3 on the
simulation results. This is not applied when the task almost fits with its deadline since it
is preferable to wait with the current frequency level until the beginning of the next task
instead of pausing the frequency.

125 Chapter 4 - Simulation results

Number of voltage/frequency levels: Comparing figures 4.9(b) and (d) for the number of
frequency levels, or figure 4.9(d) and figure 4.10 for the voltage levels, shows that in both
cases, the control computational cost increases with respect to the number of levels - due
to the extra levels to manage - without reaching a better energy consumption saving.

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Fully discrete control scheme
2 voltage levels and 2 frequency levels

E = 1.31529 eJ

C = 18249 OPs

(a) 2 voltage levels and 2 frequency levels

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Fully discrete control scheme
2 voltage levels and 2 frequency levels −− using of the clock gating

E = 1.1426 eJ

C = 18241 OPs

(b) 2 voltage levels and 2 frequency levels using the clock-gating principle

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Fully discrete control scheme
2 voltage levels and 3 frequency levels

E = 1.15267 eJ

C = 19050 OPs

(c) 2 voltage levels and 3 frequency levels

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Fully discrete control scheme
2 voltage levels and 3 frequency levels −− using of the clock gating

E = 1.14326 eJ

C = 19302 OPs

(d) 2 voltage levels and 3 frequency levels using the clock-gating principle

Figure 4.9: Simulation results of the multicore controller based on discrete scheme: 2 voltage
levels and a very small number of frequency levels.

Part I - Energy-performance tradeoff in electronic systems 126

The number of levels is important anyway, but it is important to notice that in practice,
designing a circuit with several voltage levels is more complex and less area-efficient than
adding some possible frequency levels in the oscillator. For this reason, one would prefer
to have a small number of voltage levels - two seem to be enough - and choose the number
of frequency levels regarding the expected performance.

To summarize, the energy consumption is quite similar between the continuously varying fre-
quency architecture and the fully discrete scheme where only some small numbers of voltage and
frequency levels are possible. However, the control computational cost is highly decreased in
the second case since the frequency and voltage levels are directly deduced from the predictive
control law (without requiring to calculate a speed setpoint and applying a setpoint tracking).
Eventually, the gain on the control computational cost is reduced when the number of voltage
levels increases. For these reasons, the fully discrete scheme is preferable with only two voltage
levels and few frequency levels (three or four seem to be enough).

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Monocore system −− Fully discrete control scheme
3 voltage levels and 3 frequency levels −− using of the clock gating

E = 1.06744 eJ

C = 20815 OPs

Figure 4.10: Simulation results of the multicore controller based on discrete scheme: 3 voltage
levels, 3 frequency levels and the clock-gating principle.

4.4.2 Robustness to process variability

The full discrete control scheme proposed in section 2.4 is highly robust to process variability
(see section 1.2 for further details). Just to recall the idea, this issue introduces an uncertainty
about how a manufactured system will perform: although a circuit or chip is designed to run
at a nominal clock frequency, the implementation may vary far from this expected performance.
Actually, the process variability phenomenon can be modeled as an unknown gain in the equation
of the chip, that is ω =

(
1− κ

)
·
(
α · fclk + β

)
(see section 2.1.1 for further details). Note that

0 ≤ κ ≤ 1 by construction: κ = 0 refers to a chip without any process variability while the chip
does not work at all when κ = 1. Finally, κ refers to the percentage of process variability . For
this reason, when κ > 0 the measured system speed is reduced and so are the maximum possible
speeds at the different voltage levels (required in the control law). At the end, this is implemented
in simulation in order to highlight the process variability robustness of our proposal. Indeed, the
simulation results in figure 4.11 show how the system is robust to process variability - for different
values of κ - since it is still working regardless the chip performance. This is possible because
the proposed control strategy does not need any information on the system. The estimation of
the maximum speeds also allows this robustness (note that a constant weighted value is applied
here). Of course, in order to compensate a reduced computational capacity induced by the
process variability, the system will run a larger amount of time at the penalizing supply voltage.
Moreover, the robustness is limited by the maximum possible activity of the device. Thus, if the
chip is too bad to compute the task while running at the maximum possible speed (the chip runs
with the highest voltage and highest frequency) the controller would not be able to do anything

127 Chapter 4 - Simulation results

to solve this failure. In this case, the deadlines cannot be ensured anymore and the amount of
remaining instructions hence encroaches on the next task. This is the case in figure 4.11(d) for
instance. A solution to still use this chip - with high process variability - is to reduce its activity,
and this has to be detected by the operating system.

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed (0% of variabiity)
measured speed (10% of variabiity)

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Robustness to process variabilty (10%)
2 voltage levels and 3 frequency levels −− using of the clock gating

(a) 10% of process variability

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed (0% of variabiity)
measured speed (20% of variabiity)

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Robustness to process variabilty (20%)
2 voltage levels and 3 frequency levels −− using of the clock gating

(b) 20% of process variability

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed (0% of variabiity)
measured speed (30% of variabiity)

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Robustness to process variabilty (30%)
2 voltage levels and 3 frequency levels −− using of the clock gating

(c) 30% of process variability

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed (0% of variabiity)
measured speed (40% of variabiity)

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Robustness to process variabilty (40%)
2 voltage levels and 3 frequency levels −− using of the clock gating

(d) 40% of process variability

Figure 4.11: Simulation results of the multicore controller based on discrete scheme: robustness
to process variability.

Part I - Energy-performance tradeoff in electronic systems 128

4.4.3 Extension to four computational nodes to control together

The monocore discrete control scheme is then extended to the multicore architecture (as
presented in subsection 3.2.4). This consists in duplicating the monocore strategy and control
the frequency ratios either i) f rom the calculated frequency levels or ii) f rom the predicted
speeds. The discrete scheme used for simulations - initially defined in subsection 4.4.1 - is the
forth one, where 2 voltage levels and 3 frequency levels are possible while using the clock-gating
principle.

First results are shown in figure 4.12 for the case where the ratios are obtained from the calcu-
lated frequency levels. In this approach, the frequency ratios can only be 0 or 1 by construction.
One can see that the computational load is correctly executed. Two cases are depicted: in fig-
ure 4.12(a), the weighted value ν used to estimate the maximum speeds - needed in the control
law - is constant (ν = 0.1) but some oscillations occur sometimes. This is because the control
decision directly varies with respect to this estimation and we hence proposed a restriction on
ν to avoid this problem (see subsection 2.4.4 for further details). However, in figure 4.12(b)
the proposed restriction is applied and the weighted value is thus dynamically calculated. Of
course, this removes the oscillations and, moreover, decreases the control computational cost
(about 10 % of operations less). A stable simulation results with constant weighted value is pos-
sible but this requires to decrease the value until ν = 0.0001, which means that the estimation
of the maximum speeds varies very slowly. The varying technique is preferred.

The second approach leads to the simulation results in figure 4.13. In this case, the fre-
quency ratios are obtained from the predicted speeds (which was not really calculated before,
as explained in subsection 3.2.4). This inevitably increases the cost of the control law. Two
schemes are illustrated, the first one where some continuous frequency ratios are calculated, and
a second which applies the on-off principle (previously depicted in subsection 4.3.4). This is
represented in figures 4.13(a) and (b) respectively. Finally, comparing both discrete strategies
with this on-off mechanism shows that 30 % of operations more are necessary.

Eventually, the discrete scheme based on the frequency levels, where only some small values
are available for the frequency level, allows a reduction of about 20 % of the control computational
cost (compared to the continuous case based on partial duplication, depicted in subsection 4.3.4)
while the energy consumption of the system is almost the same.

4.5 Performance analysis

In order to evaluate the different algorithms, we summarize the system energy consumption
(in equivalent joules eJ) and the control computational cost (in number of operations OPs)
obtained in all cases. The monocore scheme is listed in table 4.1 where the minimum values are
finally highlighted. By analyzing the results, one could see that a DVFS mechanism allows to
reduce the energy consumption but different strategies can be adopted. Thus, controlling the
processing power task by task - as this is the case with the first intuitive voltage and frequency
control - is not enough and the penalizing voltage has hence to be reduced inside a task. This is
done using a predictive control law (into the computational speed strategy) and allows to save
30 % of energy (whatever the feedback loop) compared to a system without DVS mechanism,
without increasing the computational cost too much. Then, discretizing the possible frequency
levels eventually allows to decrease again the system energy and especially the control cost (more
than 50 % of operations less). Note that these results are given for the best discrete strategy
implementation whereas different ones exist, as explained just after.

Actually, comparing the control computational cost of some different implementations of the

129 Chapter 4 - Simulation results
C

om
pu

ta
tio

na
l

sp
ee

ds
[x

10
7 IP

S
]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Discrete scheme with ratios calculated from the frequency levels
Constant weighted value in the estimation of the maximum speeds (nu = 0.1)

E = 3.62825 eJ

C = 106251 OPs

(a) Constant weighted value in the estimation of the maximum speeds (ν = 0.01)

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Discrete scheme with ratios calculated from the frequency levels
Varying weighted value in the estimation of the maximum speeds

E = 3.63159 eJ

C = 110243 OPs

(b) Varying weighted value in the estimation of the maximum speeds

Figure 4.12: Simulation results of the multicore controller based on discrete scheme: frequency
ratios calculated from the calculated frequency levels.

Part I - Energy-performance tradeoff in electronic systems 130
C

om
pu

ta
tio

na
l

sp
ee

ds
[x

10
7 IP

S
]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Discrete scheme with ratios calculated from the predicted speeds
Continuously varying frequency ratios

E = 3.43916 eJ

C = 159723 OPs

(a) Continuously varying frequency ratios

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed
critical speed

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Multicore system −− Discrete scheme with ratios calculated from the predicted speeds
Frequency ratios with an on−off behavior

E = 3.63072 eJ

C = 129153 OPs

(b) On-off mechanism of the frequency ratios

Figure 4.13: Simulation results of the multicore controller based on discrete scheme: frequency
ratios calculated from the predicted speeds.

131 Chapter 4 - Simulation results

Table 4.1: Performance analysis: comparison of the different strategies to control the energy-
performance tradeoff in a monocore system.

System energy Control cost
value ratios value

DVFS DVS
Without DVFS 3.20 eJ 100 % – 0 OPs
Without DVS 1.59 eJ 49.7% 100 % 37962 OPs

Fix1 1.46 eJ 45.7% 91.9% 43969 OPs
Fix2 1.46 eJ 45.7% 91.9% 43983 OPs
Varying 1.46 eJ 45.7% 91.9% 46962 OPsF.&V. control

No restriction 1.46 eJ 45.7% 91.9% 40351 OPs
Setpoint 1.14 eJ 35.7% 71.8% 57497 OPsC.S. control Measurement 1.14 eJ 35.7% 71.8% 44462 OPs
2V, 2F 1.32 eJ 41.1% 82.6% 15912 OPs
2V, 2F & cg 1.14 eJ 35.7% 71.8% 16510 OPs
2V, 3F 1.15 eJ 36.0% 72.4% 16713 OPs
2V, 3F & cg 1.14 eJ 35.7% 71.8% 17049 OPs
3V, 3F 1.08 eJ 33.7% 67.7% 17622 OPs

Disc. control

3V, 3F & cg 1.07 eJ 33.4% 67.1% 17959 OPs
Notes:
• Without DVFS: system without dynamic voltage and frequency scaling mechanism.
• Without DVS: system without dynamic voltage scaling mechanism.

• F.&V. control: Frequency and voltage level control strategy (see section 2.2). Different restric-
tions to ensure the maximum delay over the critical path are presented (see subsection 2.2.3), that
are either fixing the frequency during the voltage transitions (based on voltage and voltage state
measurement), or linearly varying the frequency, or not applying any restriction at all.

• C.S. control: Computational speed control strategy (see section 2.3) using either the computational
speed setpoint or the speed measurement as a feedback.

• Disc. control: Fully discrete control scheme (see section 2.4) with different number of voltage and
frequency levels. The strategies can use the clock-gating principle or not.

fully discrete control scheme is depicted in table 4.2. Thus, the initial proposal - introduced
in section 2.4 - consists in calculating an energy-efficient speed setpoint and then deducing the
frequency and voltage levels to apply to the actuators. This refers to the constant weighted value
before simplification. A first improvement is to not calculate the speed setpoint anymore - which
results in not doing a computationally penalizing division - since this is not really required (as
explained in section 2.5), and leads to a reduction of about 30 % of the control cost. On the other
hand, the dynamical estimation of the maximum speeds - required in the control law - requires
some extra operations which considerably increase the cost (10 % more comparing the constant
and varying weighted value, both before simplification). Fortunately, another simplification -
also introduced in section 2.5 - allows to finally decrease the control cost of 45 % compared with
the original proposal.

As regards the multicore case, the results are listed in table 4.3. Firstly, the computational
speed control strategy is duplicated in order to drive four electronic devices together. Both
proposals consist in i) repeating the whole monocore strategy as many times as devices to
calculate the frequency ratios and deduce the critical task (which is the task to control in

Part I - Energy-performance tradeoff in electronic systems 132

Table 4.2: Performance analysis: comparison of the different control computational cost of the
monocore fully discrete strategies regarding the implemented weighted value ν in the
estimation of the maximum speeds.

Constant ν Constant ν Varying ν Varying ν
ν = 0.1 ν = 0.1 (before) (after)

(before) (after)
2V, 2F 28852 OPs 19879 OPs 31289 OPs 15912 OPs
2V, 2F & c.g. 28440 OPs 19467 OPs 28049 OPs 16510 OPs
2V, 3F 29653 OPs 20680 OPs 32090 OPs 16713 OPs
2V, 3F & c.g. 29849 OPs 20876 OPs 31894 OPs 17049 OPs
3V, 3F 31530 OPs 22557 OPs 36543 OPs 17622 OPs
3V, 3F & c.g. 31732 OPs 22759 OPs 36367 OPs 17959 OPs

Notes:
• Constant ν (before): Constant weighted value before simplification (see subsection 2.4.4).
• Constant ν (after): Constant weighted value after simplification (see subsection 2.4.4).
• Varying ν (before): Varying weighted value before simplification (see subsection 2.4.4).
• Varying ν (after): Varying weighted value after simplification (see subsection 2.4.4).

priority) and then, i) duplicating only a small part of the monocore scheme and calculate the
control variables only for the critical task. In both cases, a reduction of about 35 % of the
energy consumption is achieved (with a continuously varying frequency ratio behavior). One
could verify that the multicore control cost is four times the monocore one plus an extra cost
because of the frequency ratios in the full duplication case, while the partial duplication scheme
allows to achieve a reduced cost (less than four time the monocore cost). However, the cost is still
important since the part which is still duplicated requires a lot of operations. Nevertheless, the
multicore discrete schemes yield a high reduction of the control computational cost, especially
for the strategy which calculates the ratios from the calculated frequency levels. Note that
the energy consumption is increased a little bit in this case because of the only possible on-off
mechanism.

4.6 Synthesis

In this chapter, the different schemes previously proposed to control the energy-performance
tradeoff in an electronic chip were tested in simulation. Firstly, the different monocore and
multicore control strategies developed in chapter 2 and 3 respectively are recalled. Then, the
system parameters and the testbeds are introduced. The results are eventually detailed while a
performance analysis is also proposed.

• The intuitive frequency and voltage level control strategy is applied to a single process-
ing node. In order to ensure the maximum delay over the critical path, different volt-
age/frequency restrictions are simulated and the computational speed measurement even-
tually tracks the average speed setpoint in all cases.

• The computational speed control strategy is then simulated for a monocore and multicore
systems. In both schemes the energy consumption is highly reduced (thanks to the pre-
dictive control law which allows to minimize the penalizing high voltage running time).
Furthermore, the proposal adapts itself to some variations of the task information. Actu-
ally, they are provided by the operating system for each task to treat but can be adjusted
on line when the OS realizes that the given values were not exact.

133 Chapter 4 - Simulation results

Table 4.3: Performance analysis: comparison of the different strategies to control the energy-
performance tradeoff in a multicore system.

System energy Control cost
value ratios value

DVFS DVS
Without DVFS 12.80 eJ 100 % – 0 OPs
Without DVS 5.14 eJ 40.1% 100 % 185420 OPs

Cont. 3.41 eJ 26.7% 66.4% 223000 OPs
Disc. (6 values) 3.76 eJ 29.4% 73.2% 213001 OPs
Disc. (4 values) 4.03 eJ 31.5% 78.4% 208333 OPsFull duplication

On-off 4.73 eJ 37.0% 92.1% 190852 OPs
Cont. 3.42 eJ 26.7% 66.4% 146131 OPs
Disc. (6 values) 3.46 eJ 27.0% 67.2% 139273 OPs
Disc. (4 values) 3.45 eJ 27.0% 67.1% 134729 OPsPartial duplication

On-off 3.68 eJ 28.8% 71.5% 113545 OPs
ν = 0.0001 3.63 eJ 28.4% 70.7% 105422 OPsDisc. control (flevel) varying ν 3.63 eJ 28.4% 70.7% 92735 OPs

Disc. control (δ) Cont. 3.44 eJ 26.9% 66.9% 159723 OPs
(varying ν) On-off 3.63 eJ 28.4% 70.6% 129153 OPs
Notes:
• Full duplication: Multicore control strategy based on full duplication of the monocore one (see section 3.2).

• Partial duplication: Multicore control strategy based on partial duplication of the monocore one (see sec-
tion 3.2).

• Both full and partial duplication strategies either calculate some continuously varying frequency ratios, or
discretely varying ones (with 6 or 4 possible values), or apply an on-off mechanism to calculate these ratios.

• Disc. control (flevel): Fully discrete multicore control scheme with ratios deduced from the frequency
levels (see section 3.2), after simplification (see subsection 2.4.4). This strategy can only apply an on-off
mechanism to calculate the frequency ratios. Moreover, either a constant or varying weighted value is applied.

• Disc. control (δ): Fully discrete multicore control scheme with ratios deduced from the predicted speeds
(see section 3.2), after simplification (see subsection 2.4.4). This strategy either calculates some continuously
varying or discretely varying (on-off principle) frequency ratios.

• Both discrete control strategies use 2 voltage and 3 frequency levels and the clock-gating principle is possible.

• Finally, the fully discrete control scheme is tested (also in the monocore and multicore
cases) with different possible numbers of voltage/frequency levels. This proposal allows
to reduce the control computational cost. Moreover, the strategy is strongly robust to
process variability because no information is needed in the control law.

To sum up, the simulation results demonstrate that a fast predictive control technique allows
to minimize the energy consumption while guaranteeing some computational performance. The
different control strategies give an important reduction of the energy consumption in comparison
with a system without DVFS or DVS mechanism. Furthermore, the proposals lead to a low
control computational cost, more especially for the fully discrete proposals. At the end, the
control strategies are highly robust in the case of high dispersion phenomena like the one arising
in 45nm and smaller technologies. This is notably the case within the ARAVIS project (see
subsection 1.4.2 for further details).

Part II

Asynchronous control scheme for
closed-loop systems

Chapter

5

Context and motivations

The event-based (or asynchronous) controller, contrary to a classical time-triggered scheme
where the control signal is computed at each sampling time, calculates the new control signal only
when the measured signal “sufficiently” changes. This behavior seems to be a good solution for
control computational cost savings and, for this reason, it is an opportunity for embedded low-
power systems with low resources (for instance) where a significant power consumption reduction
- by decreasing the samplings and consequently the CPU utilization - would be very appreciated.
Many other reasons are motivating the event-triggered systems, in particular because more
and more asynchronous systems are encountered. However, this original approach requires to
develop new theoretical tools - because nothing really exists in the literature in this sense - and
this second part of the thesis contributes on this field. Thus, this chapter starts introducing
the classical time-triggered and the event-based sampling approaches in section 5.1. Then, the
asynchronous needs existing in the different scientific communities are summarized in section 5.2.
Some known problems to provide new theoretical methods are also depicted. One could note
that this work was done within the TATIE project context - see subsection 5.2.3 - which aims at
giving some architectural solutions for implementing new event-driven algorithms in numerical
systems designed in an asynchronous technology. The goal is to demonstrate the superiority
of such a framework too. However, the proposals are formulated in such a way that they can
be easily transposed to general systems. Incidentally, a highly nonlinear system will be used at
the end - in chapter 8 - for some experimental results, in order to show how is adaptable and
advantageous the asynchronous scheme.

Part II - Asynchronous control scheme for closed-loop systems 138

5.1 Time-based vs. event-based sampling

The classical so-called discrete-time framework of controlled systems consists in sampling the
system uniformly in time, with a constant sampling period hnom, and computing and updating
the control law every time instants tk = k · hnom, where k ∈ N. This principle, denoted
the time-triggered case (or the synchronous case in sense that all the signal measurements are
synchronous), is depicted in figure 5.1(a). This field has been widely investigated [16] even in the
case of sampling jitter - a temporal perturbation on the sampling instant - or measure loss that
can be seen like some asynchronicities (see [45, 19] for such examples). However, some works
addressed more recently event-based sampling where the sampling intervals are event-driven.
This is, for instance, when the output changes and crosses a given level qj = j · qnom, where
j ∈ Z. This principle, denoted the event-triggered case (or the asynchronous case in comparison
with the first approach), is shown in figure 5.1(b).

hnomhnom

setpoint

measured signal

time

sampling instants

(a) Time-triggered behavior

qnom

setpoint

measured signal

time

sampling instants

(b) Event-triggered behavior

Figure 5.1: Time-based vs. event-based sampling: the system is uniformly sampled i) in time
with a constant sampling period hnom in the time-triggered case and ii) in amplitude
with a constant detection level qnom in the event-driven case.

Extending the analogy to the calculation of Riemann and Lebesgues integral (the first one
summing the heights at each instant whereas the second sums the instants at all heights), the
notion of Lebesgues sampling was introduced to denote this sampling scheme: the measurements
are taken only when variables cross some specific levels by opposition to the Riemann sampling
where the measurements are taken at specific instants. Thus, one could remark the different
sampling instants in both cases (highlighted with some bullets in figure 5.1). The idea is to soften
the computational load of the controller by reducing the number of samples with the event-based
behavior. Indeed, in fact this is not required to calculate (again) the control signal during the
steady-state intervals since the system achieved a stable state (else that is not a steady-state
interval). On the other hand, it could be interesting to calculate more often the control signal
during transients, when the system is moving far from an equilibrium state. Actually, the
potential interest of such a control scheme was introduced for the automotive domain in [35, 33].

In the event-triggered sampling scheme, the term sampling interval denotes a time interval
between two consecutive level crossings of the measure, that is two successive sampling instants.
The sampling intervals are hence not equidistant in time anymore, as one can see by analyzing
the time intervals between two successive instants in figure 5.1(b). Actually, it varies with respect
to time and, for this reason, will be denoted h(t) afterwards.

139 Chapter 5 - Context and motivations

5.2 Event-driven sampling as an opportunity for embedded
systems

Although periodicity simplifies the design and analysis, it results in a conservative usage of
resources since the control law is computed and updated at the same rate regardless it is really
required or not. As a result, a resource-aware implementation of the control law, using event-
based sampling, could be a promising solution for embedded chips. For this reason, the different
scientific communities are implicated to develop new event-driven strategies. This is presented
in subsection 5.2.1. However, directly extending some results of Riemann sampled systems to
Lebesgues sampled systems seems not to be a good strategy since the time will inevitably appear
in the new relations. The conversion has hence to be done carefully. The main issues are briefly
introduced in subsection 5.2.2. Then, a study case is proposed in subsection 5.2.3 where a
French project is depicted. It aims at providing some new architectural solutions for designing
numerical systems in an asynchronous technology.

5.2.1 Asynchronous needs in the different communities

Many reasons are motivating the event-triggered systems and in particular because more and
more asynchronous systems or systems with asynchronous needs are encountered. Actually, the
demand of low-power electronic components in all embedded and miniaturized applications en-
courages companies to develop asynchronous versions of the existing time-triggered components,
where a significant power consumption reduction can be achieved by decreasing the samplings
and consequently the CPU utilization: about four times less power than its synchronous coun-
terpart for the 80C51 microcontroller of Philips Semiconductors in [66] for example. Moreover,
the absence of synchronization in the asynchronous circuits considerably reduces the noises and
the electromagnetic emissions by improving the time repartition of the events [65, 64]. As a
result, various publications occur on this subject in the signal processing community (see for
example [1] and the references therein).

Note that the sensors and the actuators based on level crossing events also exist, rendering a
complete asynchronous control loop now possible. As a result, event-based notion is taking more
and more importance in the control community. Indeed, typical event-detection mechanisms are
functions on the variation of the state (or at least the output) of the system [10, 58, 57, 56].
Although the event-triggered control is well-motivated and allows to relax the periodicity for
computations of the control law, only few works report theoretical results about the stabil-
ity, convergence and performance of event-triggered control systems. In [11, 12] for instance,
it is proved that such an approach reduces the number of sampling instants for the same fi-
nal performance. It is also shown in [43] that controlling a Lebesgues sampled system or a
continuous-time system with quantized measurements and a constant control law over sampling
periods are equivalent problems. Recent works deal with the problem of scheduling the control
task for continuous-time linear systems [34, 42, 25] and discrete-time linear system [26] where
stability and some robustness proprieties are exploited. Furthermore, in [26] an Model Predictive
Control schema is used where the event-triggered policies are used for relaxing the computation-
ally demanding algorithms. In [34], a formal analysis makes the tradeoff between a reduction
in resource utilization and the control performance for a particular event-driven scheme. In the
same idea, an alternative approach consists in enforcing events when required from a stability
point of view, that is related to the variation of a Lyapunov function for instance, like in [68].
Convergence and stability in the nonlinear case is studied in [63, 9]. Some important contribu-
tions also come from the real-time control community. Indeed, the real-time synchronous control
tasks are often considered as hard tasks in term of time synchronization, requiring some strong

Part II - Asynchronous control scheme for closed-loop systems 140

real time constraints. The main consequence is oversized computers entailing additional costs
not very compatible with a large production as for embedded systems. Therefore, efforts are
carried on the co-design between the controller and the task scheduler in order to soften the time
constraint due to the synchronous framework. The adopted approach in this field is often either
to change dynamically the sampling period related to the load [59, 60] or to use an event-driven
control where the events are generated with a mix of level crossings and a maximal sampling
period [10, 58]. Eventually, an event-triggered paradigm calls for resources whenever they are
indeed necessary. At the end, an alternative asynchronous scheme is the so-called self-triggered
control, initially introduced in [69] and then developed in [71, 8, 72, 47]. This latter principle
consists in augmenting the system model using the sampling interval as a new state variable of
the system. As a result, the controller triggers itself.

5.2.2 Difficulties to untie some well-established paradigms

Most of the asynchronous approaches (introduced in subsection 5.2.1) are implicitly syn-
chronous in the sense that the time is used to determine if the control must be updated. In fact,
the synchronous paradigm is so well established that it is difficult to untie that. For instance,
the maximal sampling period in [10] was added for stability reasons, in order to fulfill the condi-
tion of Nyquist-Shannon sampling theorem. Thus, a new control signal is performed when the
amount of time elapsed since the last sample exceeds a certain limit. However, this safety limit
condition is no more consistent thanks to the level detection and, intuitively, it can be removed
to reduce again the CPU cost. Anyway, this safety limit is uselessly applied in several papers,
such as in [57, 47]. Nevertheless, a first approach could be to analyze some event-based control
strategies without any safety limit. Then, it could also be interesting to find some theoretical
tools to prove that event-driven controllers allow to ensure some good performance, even if the
system is not sampled during a long time. Eventually, a fully asynchronous control framework
is expected since that would be adequate for many systems. For instance, biological systems are
most of the time reacting to events, even if biological clocks are existing. A new framework is
required for such systems. Several researches are thus developed in this way. This is for instance
the case of the TATIE project which is next presented.

5.2.3 Study case: The TATIE project

The TATIE project (French acronym used for “asynchronous technology and non-uniform
signal processing) proposes to overcome the asynchronous needs (depicted in subsection 5.2.1).
Above all, it comes from the mix between different partners of different knowledge domains:

The CIS1group , expert in integrated system design. The main research topics are to study
and develop some new methods for analog and digital complex systems. The asynchronous
technology is hence an essential point of research to design some robust and flexible in-
tegrated systems with a low energy consumption and low electromagnetic emissions. A
solution to build “intelligent sensors” and “smart objects” is to control the whole concep-
tion of analog/digital systems using a non-uniform sampling scheme. In this context, the
CIS research group develops from few years some analog-to-digital converters [6, 5, 2]
which are not based on the classical toolchains used in signal processing and/or control
theory. The adopted strategy consists in using an event-based sampling, driven by the
measured signal itself, instead of the conventional time-triggered case which does not take
into account what kind of information is present into the signal. Thus, with the proposals,
the signal is not only represented as some samples taken at a given predefined time any-
more, but the signal dynamics now allows to detect when an event occurs and so is taken

141 Chapter 5 - Context and motivations

the corresponding temporal information. Therefore, all the signal processing chain (signal
conditioning, periodical sampling and synchronous numerical processing) is contradicted.
This non-uniform sampling is completely adapted to the asynchronous systems because
they are both controlled by events whose time instants are a priori unknown.

The LJK2laboratory , expert in numerical analysis. A non-uniformly sampling study refers
to some mathematical problems which are not treated in the classical numerical signal
processing (because the synchronicity leads to a lot of simplifications). A partner with no
bearing on the historic of such synchronous analysis was hence important in order to not
make these reductions. Moreover, a non-uniform sampling is quite usual in applicative
mathematics, when discretizing some differential equations or doing some interpolations
and numerical resolution for instance [18]. A collaboration between the CIS group and
the LJK laboratory already conducts to some asynchronous filters algorithms and besides,
they are implemented into the SPASS (signal processing for asynchronous systems) Matlab
toolbox [17].

The NeCS3project-team , expert in control theory. This team has a large experience in
developing dynamical control loops for complex systems with high constraints. One of
the main objectives is to develop some control theories for embedded and wireless sys-
tems, more especially low-power and distributed (sensor network) systems. The concep-
tion of such controlled systems is done integrating some constraints on communication,
computational and energy limited resources. NeCS team is researching for innovating
solutions for these systems, using non-uniform sampling [22, 43, 23] or differential modu-
lations [37, 40, 31].

Eventually, the TATIE project aims at i) developing some new filtering methods for nu-
merical systems designed in an asynchronous technology, ii) developing some new algorithms
and determining some architectural solutions to implement them and iii) studying the optimal
observability problem for non-uniformly sampled signals, that is an optimal Kalman filter. The
results will be used to demonstrate the superiority of the asynchronous scheme - both in term of
energy consumption and electromagnetic emissions - where a gain of once or twice is expected.
The proposed strategies could be integrated in several embedded applications, such as personal
digital assistant devices, mobile phones, autonomous sensors, etc... Nevertheless, the develop-
ment of new techniques for analog-to-digital conversion based on a non-uniform sampling leads
to completely redesign the numerical analysis toolchains. This asynchronous paradigm also leads
to redefine the methods usually adopted in signal processing and discrete control techniques. In
this way, the TATIE project proposes to develop a theoretical framework for numerical signal
processing in order to be able to build some asynchronous embedded systems. Regarding partic-
ularly the control theory aspect, some results on level-crossing detection techniques are expected
with some new theoretical tools. These aspects will be analyzed in chapter 6 and 7 respectively.
Furthermore, the advantages on using an asynchronous scheme have to be highlighted in order
to convince the industrials, more especially in term of energy consumption and computational
needs. This is why some experimental results will be eventually depicted in chapter 8.

1The CIS (concurrent integrated systems) group comes from TIMA (laboratory in techniques of informatics
and microelectronics for integrated systems architecture: http://tima.imag.fr/

2Laboratoire Jean Kuntzmann: http://ljk.imag.fr/
3The NeCS (networked controlled systems) project-team is bi-located at INRIA (the French national institute

for research in computer science and control: http://www.inria.fr/) and GIPSA-lab (laboratory of Grenoble
in Image, Parole, Signal processing and Control: http://www.gipsa-lab.inpg.fr/)

Chapter

6

Event-based PID controllers using
level-crossing detection

The proportional integral derivative (PID) controller is a generic architecture widely used
in industrial control systems since it is easily tunable. Thus, a large number of applications is
available and we hence initially choose this controller to show the advantages on using an event-
triggered strategy. We base our approach on the theory widely existing for the classical time-
triggered case, and also on the simple event-based PID controller introduced by Karl-Erik Årzén
in [10]. Different event-driven strategies are developed in order to reduce the computational cost
of the controller - by reducing the number of samples - while still guaranteeing some good
performance of the controlled systems.

This chapter starts bringing back the conventional time-based control principle in section 6.1.
Then, the event-triggered architectures are detailed in section 6.2. In a first time, we focus our
study more particularly on the integral part of the controller and, for this reason, only some
event-based proportional integral controllers are detailed. The original Årzén’s event-based PI
controller is introduced and, based on this work, we then present new strategies. We eventually
propose an extension to event-triggered PID controllers. Then, a recap of the different proposals
is done in section 6.3 and stability and robustness analysis is performed in section 6.4. Some
criteria are given in section 6.5 in order to compare the performance of the different control
strategies and some simulation results are finally presented in section 6.6, with a very simple first-
order system and a more complex cruise control mechanism. At the end, section 6.7 synthesizes
the whole chapter.

Part II - Asynchronous control scheme for closed-loop systems 144

6.1 The conventional time-based approach

The classical time-triggered control architecture - running in discrete-time - is represented
in figure 6.1. An input signal e(t) is firstly discretized in time by an analog-to-digital (AD)
converter. It becomes e(tk). Then, the control logic calculates the control signal u(tk) and a
digital-to-analog (DA) converter finally provides the output signal u(t) to the system to control.

hnom

Time-triggered controller

control logice(t) u(t)

time-triggered controller

AD
e(tk)

DA
u(tk)

clock

Figure 6.1: Architecture of the time-based controller.

Several strategies exist and could be used to control a system. Here, we propose to use a
proportional integral derivative control.

6.1.1 Time-based PID control

The textbook PID controller equation (in frequency domain) is given as follows

U(s) = Kp ·
(
E(s) +

1
Ti · s

· E(s) + Td · s · E(s)

)

where s is the Laplace’s variable, U(s) is the control signal, E(s) is the error between an expected
setpoint Ysp(s) and a measured signal Y (s) and Kp, Ti and Td are some tunable control param-
eters. Actually, this equation can be divided into a proportional, an integral and a derivative
part, denoted Up(s), Ui(s) and Ud(s) respectively. The proportional part allows to determine
the reaction to the current error, the integral one is used to determine the reaction based on the
sum of recent errors and the derivative one determines the reaction based on the rate at which
the error has been changing. Finally, the weighted sum of these three actions is used to dynam-
ically adjust the system output in term of responsiveness, overshoots (of a given reference) and
oscillations. This textbook equation can then be modified in order to improve the performance
of the controller, as proposed in [14]. The most classical approach is to add a low-pass filter in
the derivative term in order to avoid problems with high frequency measurement noise:

Up(s) = Kp · E(s)

Ui(s) =
Kp

Ti · s
· E(s)

Ud(s) =
Kp · Td · s

1 + Td · s/N
· E(s)

where N is the low-pass filter gain.

A discrete-time PID controller is finally obtained discretizing the previous equations. A
common way - and more especially the one used in the Årzén’s algorithm (detailed in subsec-
tion 6.2.1) on which are based our proposals - is to straightforward the proportional part while
using the forward and backward difference approximation for the integral part and the derivative

145 Chapter 6 - Event-based PID controllers using level-crossing detection

part respectively. The discrete-time proportional part up(tk) is easily obtained replacing the con-
tinuous variables with their sampled versions. On the other hand, the backward approximation
to calculate ud(tk) requires the previous values of the derivative part and the measured signal,
i.e. ud(tk−1) and y(tk−1) respectively. As regards the integral part, ui(tk+1) is pre-calculated at
time tk. Finally, the resulting discrete time-triggered PID equations are:

e(tk) = ysp(tk)− y(tk)
up(tk) = Kp · e(tk)

ud(tk) =
Td

Td +N · hnom
· ud(tk−1) +

Kp · Td ·N
Td +N · hnom

·
(
e(tk)− e(tk−1)

)

u(tk) = up(tk) + ui(tk) + ud(tk)
ui(tk+1) = ui(tk) +Ki · hnom · e(tk)

(6.1)

where tk is the instant time of the current sample, tk−1 is that of the previous sample and
tk+1 is that of the next one. One could note that in this time-triggered case tk = tk−1 + hnom,
tk+1 = tk + hnom and so on, with a constant sampling period hnom. This is because the system
is uniformly sampled in time in the classical time-triggered scheme. We also define Ki = Kp/Ti

to simplify further utilizations.

6.1.2 Time-based PI control

As already explained in introduction of this chapter, in the next section we will only deal -
in a first time - with some event-based PI controllers. Therefore, the derivative part will not be
taken into account anymore to control the system. In this case, the control signal of the PID
algorithm - given in equation (6.1) - becomes u(tk) = up(tk) + ui(tk) and the controller is called
a PI controller. Eventually, the resulting time-based PI algorithm is described in figure 6.2.

calculate the error

calculate the control signal

ui(tk+1) = ui(tk) +Ki · hnom · e(tk)

e(tk) = ysp(tk)− y(tk)

up(tk) = Kp · e(tk)
u(tk) = up(tk) + ui(tk)

update variables for the next sample

read the inputs
ysp(tk), y(tk)

hnom

send the control signal
u(tk)

Figure 6.2: Algorithm: the time-triggered PI controller.

6.2 New event-based strategies

Karl-Erik Årzén was the first to propose an event-based PID controller in [10] and we
base our analysis on that. The basic setup - the control strategy will be more detailed in
subsection 6.2.1 - consists in two parts: i) a time-triggered event detector used for the level-
crossing detection of the input signal e(t) and ii) an event-triggered controller which calculates

Part II - Asynchronous control scheme for closed-loop systems 146

the control signal u(t). This architecture is drawn in figure 6.3. The first part runs with the
constant sampling period hnom - that is the same than for the corresponding conventional time-
triggered controller - whereas the second part is driven by some requests sent by the event
detector. These requests are provided when a new control signal has to be calculated and the
length of the varying sampling intervals h(·) for the control part is the amount of time between
two successive requests.

hnom

Time-triggered event detector Event-triggered controller

event logic

control logic

h(ta)

request

e(ta)

e(t)

u(t)

Årzén’s event-based controller

AD
e(tk)

DA
u(ta)

clock

Figure 6.3: Architecture of the event-based controller proposed by Årzén.

Let ta denote the beginning time of the current control sample, that is the last time a
request was sent by the event detector because the input signal crossed a level qj = j · qnom.
Respectively, let ta+1 denote the next sampling time and so on. The sampling intervals h(·)
are then function of these instants. Let h(ta) denote the sampling interval used to calculate
the current control signal, that is the amount of time between the current sample and the last
one, i.e. h(ta) = ta − ta−1. Respectively, let h(ta+1) denote the next sampling interval, i.e.
h(ta+1) = ta+1 − ta, and so on. The different notations are represented in figure 6.4.

time

qnom signal

ta ta+1ta−1

h(ta)
h(ta+1)

sampling instants

Figure 6.4: Event-driven control scheme: representation of the time instants and the sampling
intervals.

In fact, before each sampling instants the value of the current instant time ta increases while a
event does not occur. In other words, ta = tk is dynamically updated until a new control signal
is computed and so is achieved the final value of ta. As a result, h(ta) is a multiple of hnom, by
construction, since tk = k · hnom and h(ta) = ta − ta−1.

The input signal involved in the event detection mechanism can be of different types. Dif-
ferent strategies are depicted in [57] for instance. The solution used in the original Årzén’s
event-based controller is introduced in subsection 6.2.1 and several proposals are then developed
in the next subsections. Finally, an extension for PID controllers is presented in subsection 6.2.6.

6.2.1 Årzén’s event-based PI control

The Årzén’s event-based controller aims at tracking a given setpoint ysp(·). For this reason,
the level-crossing detection is based on the error between the reference and the measurement,

147 Chapter 6 - Event-based PID controllers using level-crossing detection

i.e. e(tk) = ysp(tk) − y(tk). Eventually, the Årzén’s setup updates the control signal either
i) when the relative measurement crosses a given level, that is when the absolute value of the
difference between the measured error of the last sampling and that of the current instant time
crosses the limit qnom, i.e. abs

(
e(ta) − e(ta−1)

)
> qnom, or ii) if the maximal sampling period

is achieved, i.e. h(ta) ≥ hmax. This second condition is added in order to ensure the stability
by fulfilling the Nyquist-Shannon sampling condition. Finally, the algorithm of the resulting
Årzén’s event-based PI controller is shown in figure 6.5.

abs
(
e(tk)− e(ta−1)

)
> qnom

level crossing

h(tk) ≥ hmax

h(·)

or

calculate the current variables

calculate the control signal

ui(ta+1) = ui(ta) +Ki · h(ta) · e(ta)

e(tk) = ysp(tk)− y(tk)

up(ta) = Kp · e(ta)
u(ta) = up(ta) + ui(ta)

update variables for the next sample

read the inputs
ysp(tk), y(tk)

hnom

h(tk) = tk − ta−1

update the current variables

e(ta) = e(tk)
h(ta) = h(tk)

ta = tk

send the control signal
u(ta)

Figure 6.5: Algorithm: the Årzén’s event-based PI controller.

6.2.2 Discretization improvement for the Arzen’s PI control

Before really developing some new event-based strategies, we propose to improve the
initial Årzén’s proposal (just detailed above), more particularly regarding the dis-
cretization of the integral part. Indeed, the forward difference approximation was originally
applied. This means that the integral part is pre-calculated at the current time for the next
sample, i.e. ui(ta+1) = ui(ta) + Ki · h(ta) · e(ta). However, one could note a misunderstanding
in this equation, looking more precisely the building of the discretization. In fact the forward
difference approximation needs the current value of the signal e(ta) and the next sampling inter-
val h(ta+1) - and not the current one h(ta) as in the Årzén’s mix up - in order to calculate the
next integral part. One can see that on the example of figure 6.6(a). As a result, the forward
equation is

ui(ta+1) = ui(ta) +Ki · h(ta+1) · e(ta) (6.2)

On the first hand, the forward method is a good choice for time-triggered controllers be-
cause the sampling intervals hnom are constant. On the other one, the sampling intervals
vary for event-triggered controllers and, consequently, the next value h(ta+1) is not a priori
known. Nevertheless, if one still wants to use the forward approximation, a solution could be

Part II - Asynchronous control scheme for closed-loop systems 148

to post-calculate the current integral part by shifting the instant times in the equation, i.e.
ui(ta) = ui(ta−1) +Ki · h(ta) · e(ta−1). Calculating the integral part with a more recent value of
the error seems to be a better solution anyway. As a result, we propose to apply the back-
ward difference approximation. This leads to calculate the current integral part during the
current time ta with the current sampling period h(ta) and the current error e(ta), as shown in
figure 6.6(b). Finally the backward equation for the integral part becomes

ui(ta) = ui(ta−1) +Ki · h(ta) · e(ta) (6.3)

time

qnom

ta ta+1ta−1

h(ta)
h(ta+1)

signal
forward approximation

(a) Forward difference approximation

time

qnom

ta ta+1ta−1

h(ta)
h(ta+1)

signal
backward approximation

(b) Backward difference approximation

Figure 6.6: Discretization: comparison between the forward and the backward difference ap-
proximations.

The resulting event-based PI controller algorithm is represented in figure 6.7.

In the following subsections, we propose to base our work on the improved algo-
rithm. This event-based PI controller is then improved by changing either the event conditions
(modifying the way to send a request in order to calculate a new control signal) or the control
equations (adapting the conventional control strategy to the event-driven framework).

6.2.3 Event-based PI control without safety limit condition

In this subsection, we propose to remove the safety limit condition h(ta) ≥ hmax

introduced by Årzén for stability reason (as explained in subsection 6.2.1) in order to
improve and simplify the event-based setup. In this case, a new control signal is computed only
when the relative measurement crosses the detection level. This intuitive simplification yields
the length of the sampling intervals to become very large if the measured signal does not change
for a large amount of time, i.e. as large as the steady-state interval is. In other words, each
time the setpoint changes after a long steady-state interval the controller will correct the system
output too much - because of the huge sampling interval used to calculate the integral part -
with the effect that important overshoots will occur.

149 Chapter 6 - Event-based PID controllers using level-crossing detection

abs
(
e(tk)− e(ta−1)

)
> qnom

level crossing

h(tk) ≥ hmax

h(·)

or

calculate the current variables

calculate the control signal

ui(ta) = ui(ta−1) +Ki · h(ta) · e(ta)

e(tk) = ysp(tk)− y(tk)

up(ta) = Kp · e(ta)

u(ta) = up(ta) + ui(ta)

read the inputs
ysp(tk), y(tk)

hnom

h(tk) = tk − ta−1

update the current variables

e(ta) = e(tk)
h(ta) = h(tk)

ta = tk

send the control signal
u(ta)

Figure 6.7: Algorithm: the Årzén’s event-based PI controller with improved discretization.

Actually, the integral part of the event-triggered PI controller, i.e. ui(ta) = ui(ta−1) + Ki ·
h(ta) · e(ta) from equation (6.3), is responsible of this problem. This is because the value of
the sampling interval h(·) becomes huge due to the absence of event. Moreover, the steady-
state interval often terminates when the setpoint changes, that is when the error e(·) drastically
becomes high. As a result, the calculation of the integral part needs the product h(·)e(·),
afterwards called the integral gain he(·), and yet, this product explodes at the end of the steady-
state interval. This results in over-controlling the next transient. In order to avoid this issue,
the steady-state intervals are now analyzed in more detail. In fact, they can be divided into two
parts, as drawn in figure 6.8, that are i) the time interval where the signal is really in a steady
state and ii) the time interval required to detect a new level crossing. The first part starts the
last time a control signal was computed, that is at the sampling instant ta−1, and finishes just
before the setpoint changing. Then, while the error becomes higher than the level detection
qnom, the second part starts. A request is sent and a new control signal is finally calculated at
time ta. However, the exact time of the level crossing could be between two successive time-
triggered sampling instants tk−1 and tk (because the event detector is time driven). The worst
case occurs when the setpoint changes at time tk−1 + ε, where ε is very small. In this case, the
request is only sent at the second sampling instant tk and, eventually, the measured error e(ta)
was large during almost all the sampling period hnom. The exact time could not be known but
the integral gain he(·) can be upper-bounded anyway during the detection time of a transient,
by the product hnom · e(ta). Consequently, the first part runs only from the instant time ta−1

to ta − hnom, which is equal to the time interval h(ta) − hnom. During this period, the error
remains very small - the error is lower than the detection level qnom else the steady state is not
achieved - and so is the product he(·). Thus, the integral gain is also upper-bounded here by
the product

(
h(ta) − hnom

)
· qnom. To summarize, a steady-state interval can be divided into

i) a first part where the sampling interval increases a lot but the error remains small and ii) a
second part where the error becomes very large but only during a few instant. Therefore, the
product he(·) does not explode since h(·) and e(·) compensate themselves each other. In fact, it

Part II - Asynchronous control scheme for closed-loop systems 150

was over-estimated in previous works and we propose to include a more precise value of
the integral gain in our proposals. The integral part now becomes

ui(ta) = ui(ta−1) +Ki · he(ta)
where he(ta) ≤

(
h(ta)− hnom

)
· qnom + hnom · e(ta)

(6.4)

One could note that this inequality, which was initially built for the steady-state intervals, is
finally correct for the whole running. Indeed, equation (6.4) becomes equation (6.3) during a
transient, since h(ta) = hnom in this case. Based on this assumption, we propose several
algorithms without safety limit condition. They are then detailed.

e = ysp − y

y
ysp

time

time

hnom

h(ta)− hnom

qnom

steady state

ta−1 ta

Figure 6.8: Event-driven control scheme: decomposition of a steady-state interval.

Regarding the level-crossing mechanism, Årzén suggests to update the control signal when
the error changes enough from its last value (see subsection 6.2.1 for further details). However,
this has to be modified for the new proposals and, therefore, we propose to change the event
detection mechanism, replacing the relative measurement by the absolute one. A
new control signal is calculated as soon as the current measured error crosses the detection level,
i.e. abs

(
e(ta)

)
> qnom. With this method, the number of samples inevitably increases during the

transients but, at least, the error between the system and the setpoint is sure to be lower than
qnom during the steady-state intervals. This was not the case before. In fact, this is required for
event-based controllers without safety limit condition in order to ensure that a steady state is
really achieved before deciding to not update the control signal anymore while the setpoint does
not change, or a perturbation does not occur. As a result, the measured signal has to track the
expected setpoint during the steady-state intervals, which means a small error (and not a small
relative error because the relative error could be small, i.e. abs

(
e(ta) − e(ta−1)

)
> qnom, while

the system is far from the setpoint).

Six different strategies are finally proposed: the first one where nothing else is done than
removing the safety limit condition, and the other one where the integral part is modified in
order to reduce its impact after a long steady-state interval. The proposed approaches are
somehow similar to the anti-windup mechanism used in control theory, where the error induced
by the saturation has to be compensated. Finally, the procedure to implement such a controller

151 Chapter 6 - Event-based PID controllers using level-crossing detection

is (almost) the same for all the different proposals. The resulting algorithm is represented in
figure 6.9, where the integral gain he(·) depends on the chosen strategy (depicted just below).

abs
(
e(tk)

)
> qnom

level crossing
h(·)

calculate the current variables
e(tk) = ysp(tk)− y(tk)

read the inputs
ysp(tk), y(tk)

hnom

h(tk) = tk − ta−1

calculate the control signal

ui(ta) = ui(ta−1) +Ki · he(ta)
up(ta) = Kp · e(ta)

u(ta) = up(ta) + ui(ta)

update the current variables

e(ta) = e(tk)
h(ta) = h(tk)

ta = tk

send the control signal
u(ta)

Figure 6.9: Algorithm: the event-based PI controllers without safety limit condition.

6.2.3.1 Algorithm 1: only without safety limit condition

This algorithm corresponds to the Årzén’s one where the safety limit condition h(ta) ≥ hmax

is removed without doing anything else. For this first algorithm without safety limit condition,
the integral part remains the one expressed by equation (6.3), that is

ui(ta) = ui(ta−1) +Ki · he(ta)
where he(ta) = h(ta) · e(ta)

(6.5)

As previously explained, important overshoots are expected after a large steady-state interval.

6.2.3.2 Algorithm 2: saturation of the integral gain

This second algorithm consists in reducing the product he(·) after a long steady-state interval,
in order to reduce the overshoots. Thus, the integral gain is bounded according the principle
depicted in introduction. Note that the integral part of this algorithm comes from equation (6.4).
This yields

ui(ta) = ui(ta−1) +Ki · hesat(ta)
where hesat(ta) =

(
h(ta)− hnom

)
· qnom + hnom · e(ta)

(6.6)

6.2.3.3 Algorithm 3: exponential forgetting factor of the sampling interval

Another method consists in reducing the impact of the sampling interval which largely in-
creases over the steady-state time. Thus, a forgetting factor of the sampling interval is added. An

Part II - Asynchronous control scheme for closed-loop systems 152

exponential function is chosen to decrease its impact as the elapsed steady-state time increases,
that is

hexp(ta) = h(ta) · exp
(
α ·
(
hnom − h(ta)

))
(6.7)

where the parameter α allows a degree of freedom to increase or decrease the exponential sam-
pling interval. This yields an exponential sampling interval hexp(·) in the integral part of the
controller, as follows

ui(ta) = ui(ta−1) +Ki · heexp(ta)
where heexp(ta) = hexp(ta) · e(ta)

(6.8)

This function leads to have i) a nominal sampling interval during the transients - when h(ta) =
hnom the exponential sampling interval is hexp(ta) = hnom - and ii) an exponential decreasing
sampling interval during the steady-state intervals.

6.2.3.4 Algorithm 4: hybrid strategy

This algorithm is finally a mix between the saturation of the integral gain and the exponential
forgetting factor of the sampling interval. In fact, in the first algorithm the product he(·)
increases with respect to the sampling interval h(·) and the measured error e(·), as drawn in
figure 6.10(a). The second algorithm minimizes the impact of the product he(·) on the integral
term - bounding the integral gain - but it still increases with respect to both h(·) and e(·), as
shown in figure 6.10(b). Finally, the third algorithm adds an exponential forgetting factor of
the sampling interval in such a way that the integral gain decreases. However, the product he(·)
is higher when the sampling interval is small, as represented in figure 6.10(c). The idea here is
to have a small impact of the sampling interval all the time. For this reason, the exponential
forgetting factor - given in equation (6.7) - is used within the algorithm with saturation. Thus,
the product he(·) is now upper-bounded by

(
hexp(ta)−hnom

)
·qnom +hnom ·e(ta) and the integral

part becomes

ui(ta) = ui(ta−1) +Ki · hehybrid(ta)
where hehybrid(ta) =

(
hexp(ta)− hnom

)
· qnom + hnom · e(ta)

(6.9)

The evolution of the integral gain of this hybrid algorithm is plotted in figure 6.10(d).

The previous algorithms reduce the impact of the integral gain in the integral part of the
controller. Nevertheless, the exponential function hexp(ta) used in algorithms 3 and 4 could
be a problem when implementing it on a low resource system. A look-up table with pre-
calculated values of the function can easily replace the online calculation and, therefore, highly
reduce the computational cost. Otherwise, we propose some algorithms with low-cost
implementation, that are algorithms 5 and 6. They are really close to the original ones in
term of responsiveness, but yield in a less costly solution (replacing the exponential function by
a simple linear piecewise defined function).

6.2.3.5 Algorithm 5: exponential forgetting factor of the sampling interval with
low-cost implementation

The exponential forgetting factor hexp(ta) of the sampling interval represented in figure 6.10(c)
firstly increases before decreasing, and finally is quasi-null. Based on that, we define the low-cost

153 Chapter 6 - Event-based PID controllers using level-crossing detection

(a) Algorithm 1: he (b) Algorithm 2: hesat

(c) Algorithm 3: heexp (d) Algorithm 4: hehybrid

(e) Algorithm 5: hei
exp (f) Algorithm 6: hei

hybrid

Figure 6.10: Event-driven control without safety limit condition: dynamics of the integral gain
(hnom = 0.05s, qnom = 0.01, α = 1 and hi

max = 40 · hnom).

Part II - Asynchronous control scheme for closed-loop systems 154

exponential sampling interval hi
exp(·). It is depicted such as

hi
exp(ta) =





h(ta)
5 · α if h(ta) ≤ hi

max

2 · hi
max − h(ta)

5 · α if hi
max < h(ta) ≤ 2 · hi

max

0 otherwise

(6.10)

where hi
max is chosen to be as close as possible of the original exponential function. Then the

low-cost function replaces the original exponential function in the integral part, which yields

ui(ta) = ui(ta−1) +Ki · heiexp(ta)

where heiexp(ta) = hi
exp(ta) · e(ta)

(6.11)

At the end, the evolution of the integral gain in figure 6.10(e) is as close as possible to the
original one in figure 6.10(c).

6.2.3.6 Algorithm 6: hybrid strategy with low-cost implementation

This last strategy is based on the original hybrid algorithm using the low-cost exponential
forgetting factor given in equation (6.10), which leads

ui(ta) = ui(ta−1) +Ki · heihybrid(ta)

where heihybrid(ta) =
(
hi

exp(ta)− hnom

)
· qnom + hnom · e(ta)

(6.12)

The integral gain of this low-cost hybrid algorithm is depicted in figure 6.10(f).

6.2.4 Event-based PI control with minimum sampling condition

An improvement could be done on the time-triggered event detector introduced by Årzén
- presented in subsection 6.2.1 and depicted in figure 6.3 - which is currently a discrete-time
system. Indeed, an event could only be detected at the time instants t = k · hnom and, as a
result, several levels could miss if they appear between two sampling instants. For this reason,
we propose to use a continuous-time event detector instead. In fact, this is closer than
the real case since a sensor based on level crossing will send a request as soon as a level is
achieved. This new architecture - afterwards denoting the asynchronous event-based controller
- is represented in figure 6.11.

Time-triggered event detector Event-triggered controller

control logic

request

u(t)

Asynchronous event-based controller

AD DA
u(ta)

event logice(t)

e(t) e(ta)

h(ta)

Figure 6.11: Architecture of the asynchronous event-based controller.

The event-based algorithms without safety limit condition - previously detailed in subsec-
tion 6.2.3 - remain available with this architecture. However, whereas the number of samples
was important during transients (because a new control signal is computed when the measured

155 Chapter 6 - Event-based PID controllers using level-crossing detection

error is higher than the detection limit), this problem is amplified with the asynchronous frame-
work since requests are now (quasi)-continuously sent during the whole transient, that is when
abs
(
e(ta)

)
> qnom. To avoid that, we propose to add a minimum sampling interval

condition to lighten the transients: a new control signal is performed only if a given amount of
time was elapsed since the last sample, i.e. h(ta) ≥ hmin. This condition is shown in figure 6.12.

abs
(
e(t)

)
> qnom

level crossing

h(t) ≥ hmin

h(·)

and

calculate the current variables

calculate the control signal

e(t) = ysp(t)− y(t)

up(ta) = Kp · e(ta)

u(ta) = up(ta) + ui(ta)

read the inputs
ysp(t), y(t)

hnom

h(t) = t− ta−1

update the current variables

e(ta) = e(t)
h(ta) = h(t)

ta = t

send the control signal
u(ta)

ui(ta) = ui(ta−1) +Ki · he(ta)

Figure 6.12: Algorithm: the event-based PI controllers with minimum sampling condition.

The minimum sampling interval could be chosen as the discrete sampling period hnom (corre-
sponding to the conventional time-triggered controller) or not, but it does have to satisfy the
Nyquist-Shannon sampling condition. Finally, the choice hmin = hnom leads to i) a discrete-
time event detector when the dynamics is important and to ii) a continuous-time event detector
when the dynamics is slow (quasi-steady state). Thus, when an event occurs after a steady-state
configuration, a new control signal is instantaneously computed. Whatever that may be the
hmin value, an important reduction of the computational cost would be achieved.

6.2.5 Event-based PI control with extra samples

The event-based scheme can be improved again, adding a few number of samples after a
transient. The idea here is to decrease even more the error during the steady-state intervals.
Currently, one could ensure that the error is lower than the limit qnom but cannot know how much
lower. Moreover, one could not know if the measured signal is going closer or moving away from
the setpoint. Therefore, we propose to add some extra samples after a transient (while
an event-based controller would do not do anything because the condition abs

(
e(ta)

)
> qnom is

wrong). Thus, an extra event is sent to the controller if nothing appends after the last time a
control signal was calculated plus a given sampling interval hextra. Then, this is repeated while
the error is higher than a minimum level qmin. At the end, one only needs to define the expected
margin of error and some extra samples will be added to achieve that. Note that the lower
qmin is chosen the higher the number of extra samples will be. The principle is represented in
figure 6.13.

Part II - Asynchronous control scheme for closed-loop systems 156

abs
(
e(t)

)
> qnom

level crossing

h(t) ≥ hminand

calculate the current variables

calculate the control signal

e(t) = ysp(t)− y(t)

up(ta) = Kp · e(ta)

u(ta) = up(ta) + ui(ta)

read the inputs
ysp(t), y(t)

hnom

h(t) = t− ta−1

update the current variables

e(ta) = e(t)
h(ta) = h(t)

ta = t

abs
(
e(t)

)
> qmin

extra samples

h(t) ≥ hextraand

h(·)

send the control signal
u(ta)

ui(ta) = ui(ta−1) +Ki · he(ta)

Figure 6.13: Algorithm: the event-based PI controllers with extra samples.

6.2.6 Extension to event-based PID controllers

In the current section, we previously detailed several event-based PI controllers. More es-
pecially, we modified the conventional integral part of the Årzén’s controller. Nevertheless, we
propose to apply the proposals to a more general proportional integral derivative
control strategy. Indeed, only the integral part is impacted by the modifications and the
derivative part remains the same than for the time-triggered case (presented in section 6.1).
The discrete derivative part comes from the equation (6.1), that is:

ud(ta) =
Td

Td +N · h(ta)
· ud(ta−1) +

Kp · Td ·N
Td +N · h(ta)

·
(
e(ta)− e(ta−1)

)

and the control signal eventually becomes the one depicted in figure 6.14.

up(ta) = Kp · e(ta)

u(ta) = up(ta) + ui(ta) + ud(ta)

calculate the control signal

ui(ta) = ui(ta−1) +Ki · he(ta)

ud(ta) =
Td

Td +N · h(ta)
· ud(ta−1) +

Kp · Td ·N
Td +N · h(ta)

·
(
e(ta)− e(ta−1)

)

Figure 6.14: Algorithm: extension to event-based PID controllers.

157 Chapter 6 - Event-based PID controllers using level-crossing detection

6.3 Recap of the different level-crossing strategies

This section aims at summarizing the different asynchronous control strategies proposed
above. The basic setup - depicted in introduction of section 6.2 - remains the same. Only
the integral part expression and the level-crossing detection condition are different. In the
following, we propose to recap the different strategies based on level crossing. One
could then refer to this list to test the different strategies. This will be notably useful for the
simulation/experimental results (in section 6.6 and chapter 8 respectively).

Time-based PI control strategy

The time-triggered controller is sampled at every periodic discrete-time instants tk = k · hnom

and its integral part is

ui(tk+1) = ui(tk) +Ki · hnom · e(tk) (Forward approximation)
ui(tk) = ui(tk−1) +Ki · hnom · e(tk) (Backward approximation)

Årzén’s event-based PI control strategy

The integral part of the Årzén’s controller is an extension of the time-based case, which becomes

ui(ta+1) = ui(ta) +Ki · h(ta+1) · e(ta) (Initial)
ui(ta) = ui(ta−1) +Ki · h(ta) · e(ta) (Improved, Absolute)

This controller is event-triggered with some not-equidistant sampling periods, such that h(ta) =
ta− ta−1 or h(ta+1) = ta+1− ta, where ta−1, ta and ta+1 are three consecutive sampling instants.
The proposed sampling mechanism enforces some events when

abs
(
e(ta)− e(ta−1)

)
> qnom or h(ta) ≥ hmax (Initial, Improved)

abs
(
e(ta)

)
> qnom or h(ta) ≥ hmax (Absolute)

Note that the initial strategy is the one presented in [10], the improved strategy consists in
using the backward approximation instead of the forward one, and the absolute strategy uses
the absolute error in the event detection condition instead of the initial relative error.

Event-based PI control strategy without safety limit condition

Several controllers without safety limit condition were proposed (six algorithms):

• Algo 1: algorithm only without safety limit condition,

• Algo 2: saturation of the integral gain,

• Algo 3: exponential forgetting factor of the sampling interval,

• Algo 4: hybrid strategy,

• Algo 5: exponential forgetting factor of the sampling interval with low-cost implementa-
tion,

• Algo 6: hybrid strategy with low-cost implementation,

Part II - Asynchronous control scheme for closed-loop systems 158

The integral part he(·) is different for each algorithm, that is

ui(ta) = ui(ta−1) +Ki · he(ta) (Algo 1)
where he(ta) = h(ta) · e(ta)

ui(ta) = ui(ta−1) +Ki · hesat(ta) (Algo 2)
where hesat(ta) =

(
h(ta)− hnom

)
· qnom + hnom · e(ta)

ui(ta) = ui(ta−1) +Ki · heexp(ta) (Algo 3)
where heexp(ta) = hexp(ta) · e(ta)

ui(ta) = ui(ta−1) +Ki · hehybrid(ta) (Algo 4)
where hehybrid(ta) =

(
hexp(ta)− hnom

)
· qnom + hnom · e(ta)

ui(ta) = ui(ta−1) +Ki · heiexp(ta) (Algo 5)

where heiexp(ta) = hi
exp(ta) · e(ta)

ui(ta) = ui(ta−1) +Ki · heihybrid(ta) (Algo 6)

where heihybrid(ta) =
(
hi

exp(ta)− hnom

)
· qnom + hnom · e(ta)

Note that the exponential function hexp(ta) used in algorithm 3 and 4 is defined such as

hexp(ta) = h(ta) · exp
(
α ·
(
hnom − h(ta)

))

whereas its low-cost implementation equivalent is

hi
exp(ta) =





h(ta)
5 · α if h(ta) ≤ hi

max

2 · hi
max − h(ta)

5 · α if hi
max < h(ta) ≤ 2 · hi

max

0 otherwise

Finally, the event detection condition is the same for all the algorithms. This is

abs
(
e(ta)

)
> qnom

which is in fact the same than the absolute Årzén’s controller condition (but without the safety
limit condition h(ta) ≥ hmax).

Event-based PI control strategy with minimum sampling condition

The integral part of the controllers with minimum sampling condition is the same than the
controllers without safety limit condition (six algorithms). Only the event detection condition
changes. Thus, a minimum sampling condition h(ta) ≥ hmin is added, which eventually yields

abs
(
e(ta)

)
> qnom and h(ta) ≥ hmin

Event-based PI control strategy with extra samples

The integral part of the controllers with extra samples is also the same than the controllers
without safety limit condition (six algorithms). The event detection condition is the last one
plus an extra decision, which consists in enforcing a new event - after a given amount of time
hextra - as long as abs

(
e(ta)

)
> qmin. In this case some extra events are hence generated. The

final condition is(
abs
(
e(ta)

)
> qnom and h(ta) ≥ hmin

)
or

(
abs
(
e(ta)

)
> qmin and h(ta) ≥ hextra

)

159 Chapter 6 - Event-based PID controllers using level-crossing detection

6.4 Intuitive stability and robustness analysis

The notions of stability is important in control theory but, as explained in subsection 5.2.2, it
is difficult to prove for asynchronous controlled systems using a level-crossing mechanism (since
non zero states cannot be distinguished from zero). Removing the safety limit condition was
intuitively done. We simply assume that the condition of Nyquist-Shannon sampling theorem
is no more consistent thanks to the level detection. Note that we then develop some theoretical
tools to prove that event-driven controllers allow to decrease the computational cost even if the
system is not sampled during a long amount of time. This is done in chapter 7.

As regards the robustness, we assume that the system will track a given reference, even in case
of perturbation, because as soon as the error increases (or decreases) an event will be enforced
and so is updated the control signal. The same thing is verified for an error in modeling the
system to control: an event occurs when the error between the measured signal and the setpoint
to track is higher than the detection level qnom.

6.5 Indexes of performance

Several criteria could be used to compare the performance of each controller. An intuitive
one is the number of samples required to control the system during the whole simulation time.
This index - afterwards denoted calls - is interesting to show the gain on control computational
needs using an event-based technique. However, some other indexes can be useful, like those
providing information on the quality of the system response (see for instance [57]). Eventually,
we propose to use three performance indexes to analyze the performance of our
proposals, that are

• The integral absolute error:

IAE =
∫ ∞

0

∣∣e(t)
∣∣dt

This index shows how far is the system response compared with a given setpoint. The
smallest value will highlight the strategy which best fits the system with the reference.

• The integrated absolute difference between the system response of the time-based strategy
and that of the event-based ones:

IAEP =
∫ ∞

0

∣∣ytime−based(t)− yevent−based(t)
∣∣dt

This index allows to compare the system response of the event-based controllers with the
time-triggered one.

• The integral absolute difference between the IAE of the time-based strategy and the IAE
of the event-based ones:

IAD =
∫ ∞

0

∣∣IAEtime−based(t)− IAEevent−based(t)
∣∣dt

This index calculates the error between the system response and the setpoint for each
strategy, in order to finally compare them for both the time-triggered and the event-based
ones.

Part II - Asynchronous control scheme for closed-loop systems 160

6.6 Simulation results

In this section, we propose to present some simulation results - done with Mat-
lab/Simulink - in order to highlight the advantages of an event-based approach (detailed in
section 6.2) compared to the classical time-based strategy (called back in section 6.1). In sub-
section 6.6.1, a simple first-order system is controlled with some event-based PI devices, while
a more complex cruise control system is used in subsection 6.6.2 for the PID case. A perfor-
mance analysis is eventually performed in both cases (using the criteria previously enumerated
in section 6.5).

6.6.1 Application to a first-order system

A first-order system can be described as follows

H(s) =
G

1 + τ · s
where G = 1 and τ = 1 in this very simple case. This system will be controlled with different
controllers: firstly with the conventional time-triggered PI controller, then with the Årzén’s
event-based PI controller and finally with our proposals, that are the event-based PI controllers
without safety limit condition, the event-based PI controllers with minimum sampling condition
and the event-based PI controller with extra samples.

The parameter’s values of these controllers are obtained by pole placement of the closed-loop
system in the time-triggered case. The event-based controllers are then designed with the same
values, with a view to be as close as possible of the time-triggered closed-loop shaping. At the
end, Kp = 1.83, Ti = 0.457 and the nominal sampling interval is hnom = 0.05 s. The system is
simulated for 20 s and the test bench consists in two steps: the setpoint is changed from 0 to 1
at time 1 s and changed again at time 10 s to achieve an amplitude of 2.

Conventional strategy

The simulation results for the conventional time-triggered PI controller - introduced in sub-
section 6.1.2 - are represented in figure 6.15. The top plot shows the setpoint and the measured
signal whereas the bottom plot shows the sampling intervals. As one can see, the value is
constant in the classical case, that is corresponding to hnom. Eventually, the total number of
samples is also indicated in the figure.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

time [s]

h(
t)

 [s
]

Sampling intervals (time-based control)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control

First order system −− Time−triggered PI control 400 samples

Figure 6.15: Simulation results: the conventional time-triggered PI controller.

Then, several simulation results follow in order to compare the event-based PI control approaches
to this classical time-based strategy.

161 Chapter 6 - Event-based PID controllers using level-crossing detection

Original Årzén’s strategy

The event-based controller proposed by Årzén - and depicted in subsection 6.2.1 - consists in
calculating a new control signal either when the relative measured error crosses a given level, i.e.
abs
(
e(ta) − e(ta−1)

)
> qnom, or when the sampling interval becomes larger than the maximal

safety limit, i.e. h(ta) ≥ hmax. This principle is simulated with hmax = 10 · hnom = 0.5 s, for
different values of the event detection level. Thus, figure 6.16(a) shows that the Årzén’s controller
allows to obtain a system response as quick as the time-triggered one by calculating a control
signal twice less when qnom = 0.001. Note that the bottom plot now refers to the sampling
instants: an event is drawn each time the control signal is updated. This representation will be
preferred in the following results. Furthermore, whereas the event detection level is increased,
the results become deteriorated and the system oscillates, as represented in figure 6.16(b) when
qnom = 0.01. This issue is due to the discretization choice.

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (original Arzen’s control)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
original Arzen’s control

First order system −− Original Arzen’s event−based PI control 196 samples

(a) Event detection with qnom = 0.001

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (original Arzen’s control)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
original Arzen’s control

First order system −− Original Arzen’s event−based PI control 127 samples

(b) Event detection with qnom = 0.01

Figure 6.16: Simulation results: the time-triggered PI controller vs. the Årzén’s one.

Discretization improvement

The previous oscillations come from the discretization of the integral part. Actually, a
misunderstanding was done in the Årzén’s algorithm (see subsection 6.2.2 for further details).
However, a solution consists in using the backward difference approximation instead of the
forward one. Thus, figure 6.17 compares this improvement with the original Årzén’s event-based
PI controller. The gain is immediate since the results obtained with qnom = 0.01 are better than
the original Årzén’s controller when qnom = 0.001. Moreover, whereas some perturbations could
appear before, the steady-state intervals are now only triggered by a periodic sampling period
due to the safety limit condition h(ta) ≥ hmax, that is the expected behavior.

Part II - Asynchronous control scheme for closed-loop systems 162

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (original Arzen’s control)

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (improved discretization)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signals

setpoint
original Arzen’s control
improved discretization

First order system −− Arzen’s PI control with improved discretization 102 samples

Figure 6.17: Simulation results: the original Årzén’s PI controller vs. the Årzén’s controller
with improved discretization (with qnom = 0.01).

Afterwards, the event-based PI architectures are based on the backward difference approximation
- denoted the improved Årzén’s PI controller - and the simulations are performed with a level
detection equal to qnom = 0.01.

Changing the level-crossing detection mechanism

Before removing the safety limit condition (in order to avoid periodic sampling during the
steady-state intervals, such as one can see in figure 6.17 during the simulation time 4 and 10 s),
we change the level-crossing detection mechanism, replacing the relative measured error by the
absolute one. A new control signal is now calculated as soon as the absolute error crosses the
detection level, i.e. abs

(
e(ta)

)
> qnom, or when the maximal sampling interval is achieved,

i.e. h(ta) ≥ hmax. This inevitably increases the number of samples during the transients.
Nevertheless, the measured error is now sure to be very small - lower than qnom - during the
steady-state intervals. The simulation results in figure 6.18 show that the system responses are
quite similar with both level-crossing detection techniques. The only difference is for the final
number of samples which increases as expected (about 40 % of samples more).

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (improved discretization)

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (new Arzen’s control)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signals

setpoint
improved discretization
new Arzen’s control

First order system −− Arzen’s PI control with improved discretization and absolute error detection 140 samples

Figure 6.18: Simulation results: the improved Årzén’s PI controller with relative error detection
vs. the improved Årzén’s one with absolute error detection.

163 Chapter 6 - Event-based PID controllers using level-crossing detection

Afterwards, the absolute error is used for level-crossing detection. Thus, the Årzén’s controller
with improved discretization and absolute error detection is denoted the new Årzén’s controller.

Removing the safety limit condition

Thanks to the level detection, the maximal sampling period hmax - initially introduced by
Årzén for stability reasons in order to fulfill the condition of Nyquist-Shannon sampling theorem
- is no more consistent and, consequently, it can be removed. Several algorithms running without
this safety limit condition were proposed (see subsection 6.2.3 for further details):

1. Algorithm only without safety limit condition:
By removing only the safety limit condition without doing anything else, important over-
shoots should appear after a long steady-state interval because of the integral gain he(ta)
which explodes. This issue clearly occurs in simulations, as one can see in figure 6.19(a).

2. Algorithm with saturation of the integral gain:
In order to reduce the impact of the integral gain we proposed to bound its value. Indeed,
in fact during the steady-state intervals only h(ta) or e(ta) increases a lot in the product
he(ta) and the integral gain can hence be divided into two parts, where only one or the
other becomes large. Using this principle, the integral gain becomes hesat(ta) =

(
h(ta)−

hnom

)
· qnom + hnom · e(ta) and the overshoots disappear, as one can see in figure 6.19(b).

3. Algorithm with an exponential forgetting factor of the sampling interval:
An exponential forgetting factor is then used to reduce the impact of the sampling interval
h(ta) after a long steady-state interval. The integral gain becomes heexp(ta) = hexp(ta) ·
e(ta), where hexp(ta) = h(ta) · exp

(
α ·
(
hnom − h(ta)

))
. The simulation results are drawn

in figure 6.19(c) for α = 10.

4. Algorithm using a hybrid strategy:
Finally, a mix between the saturation of the integral gain and the exponential forgetting
factor of the sampling interval leads to use an exponentially decreasing sampling interval
into a bounded integral gain, that is hehybrid(ta) =

(
hexp(ta)− hnom

)
· qnom + hnom · e(ta).

Results are represented in figure 6.19(d).

The simulation results of the proposals are quite interesting. Indeed, the responses are really
similar to the conventional time-triggered one, both in term of transients and overshoots (except
for the first algorithm). Two algorithms can be highlighted:

a) The hybrid algorithm is the best one. It leads to a control without performance degra-
dation, by calculating a control signal about 75 % less often than with the time-triggered
controller. Moreover, if we compare the results with the improved Årzén’s controller (with
absolute error for the level-crossing detection in order to be coherent), depicted in fig-
ure 6.18, the gain is about 20 % and the performance improvements are very important.
However, the main problem of the hybrid strategy is the computational complexity of the
algorithm in practice because of the exponential function.

b) On the other hand, the algorithm with saturation of the integral gain he(·) is quite simple
and gives similar results. This could be a good alternative for an implementation with
high resource constraints.

Otherwise, algorithms using a low-cost exponential function can be used, as algorithms 5
and 6 also proposed in subsection 6.2.3.

Part II - Asynchronous control scheme for closed-loop systems 164

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (without safety limit)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
without safety limit

First order system −− Control without safety limit (only without safety limit condition) 197 samples

(a) Algorithm 1: only without safety limit condition

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (saturation)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
saturation

First order system −− Control without safety limit (saturation of the integral gain) 128 samples

(b) Algorithm 2: with saturation of the product he

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (exponential)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
exponential

First order system −− Control without safety limit (exponential forgetting factor of the sampling interval) 124 samples

(c) Algorithm 3: with an exponential forgetting factor of h

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (hybrid)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
hybrid

First order system −− Control without safety limit (hybrid algorithm) 108 samples

(d) Algorithm 4: hybrid strategy

Figure 6.19: Simulation results: the time-triggered PI controller vs. the event-based PI con-
trollers without safety limit condition.

165 Chapter 6 - Event-based PID controllers using level-crossing detection

5. Algorithm with an exponential forgetting factor of the sampling interval with low-cost im-
plementation:
A low-cost exponential forgetting factor heiexp(ta) is finally used to simplify the original
one. The integral gain becomes heiexp(ta) = hi

exp(ta) · e(ta). The simulation results are
plotted in figure 6.20(a) for hi

max = 12 · hnom.

6. Algorithm using a hybrid strategy with low-cost implementation:
The hybrid strategy is also simplified, using the low-cost exponential function. This yields
heihybrid(ta) =

(
hi

exp(ta)−hnom

)
·qnom +hnom ·e(ta) and results are shown in figure 6.20(b).

As one can see, the simulation results for both low-cost proposals are quite similar to the original
ones and hence could be a good alternative for systems with low computational resources.

Afterwards, the hybrid strategy is applied.

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (low-cost exponential)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
low−cost exponential

First order system −− Control without safety limit (low−cost exponential forgetting factor) 111 samples

(a) Algorithm 5: with a low-cost exponential forgetting factor of h

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (low-cost hybrid)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
low−cost hybrid

First order system −− Control without safety limit (low−cost hybrid algorithm) 108 samples

(b) Algorithm 6: with a low-cost exponential forgetting factor of h

Figure 6.20: Simulation results: the time-triggered PI controller vs. the event-based PI con-
trollers without safety limit condition and with low-cost implementation.

Adding a minimum sampling interval

We also change the event detector architecture in subsection 6.2.4: the event detector is
now time triggered with a continuous-time framework in order to immediately detect a level
crossing (while the system had to wait for the next sampling step tk = k · hnom in the discrete-
time case). Furthermore, although the algorithms without safety limit condition give acceptable
results, the number of samples can be reduced again and more especially during the transients.
A minimum sampling interval condition is proposed in such a way that a new control signal is
calculated when the absolute error crosses the detection level qnom - as previously - but only if

Part II - Asynchronous control scheme for closed-loop systems 166

a given amount of time was elapsed since the last sample, that is when h(ta) ≥ hmin. Choosing
this minimum sampling interval equal to the discrete sampling period hnom = 0.05 s leads to
a (quasi)-similar behavior than before, but with a more reactive event detection. This scheme
is shown in figure 6.21(a). However, increasing the minimum sampling interval decreases the
number of samples. This is represented in figure 6.21(b) for hmin = 0.1 s, where doubling the
minimum sampling interval almost reduces by two the final number of samples. Comparing these
results with some existing methods, the controller with minimum sampling condition updates
the control signal almost 90 % less than the classical time-triggered PI controller for the same
achieved performance and about 40 % less than the improved Årzén’s one.

Afterwards, the value of hmin = 0.1 s is used in simulations.

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (hybrid)

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (minimum sampling)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signals

setpoint
hybrid
minimum sampling

First order system −− Control with minimum sampling interval (hybrid algorithm) 109 samples

(a) Minimum sampling with hmin = hnom = 0.05 s

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (hybrid)

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (minimum sampling)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signals

setpoint
hybrid
minimum sampling

First order system −− Control with minimum sampling interval (hybrid algorithm) 61 samples

(b) Minimum sampling with hmin = hnom = 0.1 s

Figure 6.21: Simulation results: the hybrid event-based PI controller vs. the event-based PI
controller with minimum sampling interval.

Adding some extra samples

Having reach a high reduction of the number of samples in the previous simulation results
(adding a minimum sampling interval), we finally proposed - in subsection 6.2.5 - to improve
the error margin during the steady-state intervals. The idea is to enforce events some few

167 Chapter 6 - Event-based PID controllers using level-crossing detection

times more after a transient in order to reduce the error again. Thus, figure 6.22 depicts this
principle by adding two extra samples in a first time: some requests are sent to the controller
- with the constant sampling period hextra = 0.5 s - just after a transient. One can remark
that some unexpected samples (which could appear during the steady-state intervals in the
control strategies without extra samples, such as during the simulation time 4 and 10 s) are
not persistent anymore when some samples are added. Indeed, in fact the extra samples allow
to reduce the error, more than the detection level qnom, and an event will hence occur later.
Nevertheless, by adding to much samples can overloaded the system, as when adding ten extra
samples (also plotted in figure 6.22), and one has to take care of that.

Based on this intuitive idea, an extension can be done adding some extra samples while a
minimum error qmin is not achieved. This is denoted n extra samples in figure 6.22, where the
mechanism is applied for qmin = qnom/10 = 0.001. One could note that, in fact, only one extra
sample is enough to achieve the expected error and to have a real steady-state interval.

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (minimum sampling)

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (2 extra samples)

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (10 extra samples)

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (n extra samples)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signals

setpoint
minimum sampling
2 extra samples
10 extra samples
n extra samples

First order system −− Control with n extra samples 53 samples

Figure 6.22: Simulation results: the hybrid event-based PI controller with minimum sampling
interval vs. the one with 2, 10 ad n extra samples.

Performance analysis

The number of samples required to control the system during the whole simulation time -
the number of calls - is an interesting criteria to compare the different strategies. This index
was previously given in each figure. However, some other indexes of performance could be useful
like those providing information on the quality of the system response. Such ones are depicted
in section 6.5. Finally, running the different control strategies with the previous simulation
test bench gives the values in table 6.1. Note that the minimum values are highlighted. The
results show that the controllers without safety limit condition are better than the Årzén’s ones,
whatever the initial, improved or absolute strategy. The number of calls is quite similar while
the IAE, IAEP and IAD indexes are better (except for the first algorithm: only without safety
limit condition).

Part II - Asynchronous control scheme for closed-loop systems 168

Table 6.1: Performance analysis: comparison of the different event-based PI strategies to control
a first-order system.

Calls
value ratio IAE IAEP IAD

Time-based 400 100 % 0.99 0 0
Initial 127 31.5 % 1.96 1.21 13.31
Improved 102 25.25 % 1.19 0.60 3.40Årzén
Absolute 140 34.75 % 1.18 0.60 3.27
Algo 1 198 49.25 % 4.34 4.28 35.88
Algo 2 128 31.75 % 1.03 0.11 0.29
Algo 3 124 30.75 % 1.08 0.18 0.75
Algo 4 108 26.75 % 1.07 0.09 0.57
Algo 5 111 27.5 % 1.06 0.54 0.66

Without safety limit

Algo 6 108 26.75 % 1.04 0.09 0.21
Algo 1 191 47.5 % 2.54 2.62 18.99
Algo 2 126 31.25 % 0.93 0.15 0.56
Algo 3 116 28.75 % 0.98 0.22 0.20
Algo 4 109 27 % 0.98 0.19 0.33
Algo 5 116 18.75 % 0.99 0.56 0.61

With minimum interval

Algo 6 112 27.75 % 0.95 0.17 0.49
Algo 1 163 40.5 % 5.92 6.08 49.57
Algo 2 112 27.75 % 0.92 0.16 0.67
Algo 3 113 28 % 0.96 0.22 0.18
Algo 4 111 27.5 % 0.98 0.18 0.31
Algo 5 114 28.25 % 0.97 0.54 0.54

With 2 extra samples

Algo 6 107 26.5 % 0.94 0.15 0.59
Algo 1 177 44 % 3.78 3.91 30.17
Algo 2 230 57.25 % 0.99 0.21 0.34
Algo 3 129 32 % 0.93 0.18 0.36
Algo 4 127 31.5 % 0.93 0.13 0.55
Algo 5 131 32.5 % 0.96 0.52 0.53

With 10 extra samples

Algo 6 123 30.5 % 0.93 0.16 0.70
Algo 1 171 42.5 % 5.63 5.80 47.10
Algo 2 111 27.5 % 0.95 0.18 0.59
Algo 3 113 28 % 0.96 0.22 0.18
Algo 4 161 40 % 0.93 0.13 0.56
Algo 5 126 31.25 % 0.96 0.52 0.53

With extra samples

Algo 6 115 28.5 % 0.92 0.14 0.72
Notes:
• The sampling period used by the time-triggered controller and the event detector is hnom = 0.05 s.
• The detection level is qnom = 0.01.

• The maximal sampling period used by the original Årzén’s controller is hmax = 0.5 s. The improved
strategy uses the backward difference approximation for the integral part instead of the original forward
one. The absolute strategy uses the absolute error for the detection level instead of the original relative
one.

• The parameters used in the controllers without safety limit are α = 10 and hi
max = 12 · hnom.

• The minimum sampling interval is hmin = 0.05 s.
• The extra sampling interval is hextra = 5 · hmin while the minimum detection level is qmin = 0.001.

169 Chapter 6 - Event-based PID controllers using level-crossing detection

Table 6.2: Performance analysis: comparison of the different event-based PI strategies to control
a first-order system when the minimal sampling interval is doubled, that is hmin =
2 · hnom.

Calls
value ratio IAE IAEP IAD

Time-based 401 100 % 0.99 0 0
Initial 127 31.5 % 1.96 1.21 13.31
Improved 102 25.25 % 1.19 0.60 3.40Årzén
Absolute 140 34.75 % 1.18 0.60 3.27
Algo 1 198 49.25 % 4.34 4.28 35.88
Algo 2 128 31.75 % 1.03 0.11 0.29
Algo 3 124 30.75 % 1.08 0.18 0.75
Algo 4 108 26.75 % 1.07 0.09 0.57
Algo 5 111 27.5 % 1.06 0.54 0.66

Without safety limit

Algo 6 108 26.75 % 1.04 0.09 0.21
Algo 1 78 19.25 % 6.46 6.64 54.43
Algo 2 70 17.25 % 0.88 0.19 1.21
Algo 3 58 14.25 % 0.97 0.34 0.26
Algo 4 61 15 % 0.90 0.20 1.12
Algo 5 73 18 % 1.36 1.03 6.13

With minimum interval

Algo 6 53 13 % 0.84 0.17 1.61
Algo 1 76 18.75 % 5.41 5.58 44.83
Algo 2 114 28.25 % 0.99 0.25 0.52
Algo 3 55 13.5 % 0.93 0.32 0.50
Algo 4 55 13.5 % 0.87 0.18 1.42
Algo 5 77 19 % 1.36 1.03 6.19

With 2 extra samples

Algo 6 53 13 % 0.87 0.21 1.50
Algo 1 78 19.25 % 1.46 1.33 8.89
Algo 2 114 28.25 % 0.99 0.25 0.52
Algo 3 71 17.5 % 0.93 0.32 0.51
Algo 4 71 17.5 % 0.89 0.20 1.26
Algo 5 82 20.25 % 1.31 0.97 5.85

With 10 extra samples

Algo 6 80 19.75 % 0.92 0.23 1.13
Algo 1 77 19 % 4.88 5.04 40.03
Algo 2 112 27.75 % 1.04 0.30 0.81
Algo 3 64 15.75 % 0.92 0.30 0.64
Algo 4 53 13 % 0.83 0.15 1.67
Algo 5 105 26 % 1.63 1.40 8.06

With extra samples

Algo 6 53 13 % 0.87 0.21 1.50
Notes:
• See notes in table 6.1.
• The minimum sampling interval is hmin = 0.1 s.

Part II - Asynchronous control scheme for closed-loop systems 170

Similar results are also obtained using the minimum sampling interval when the value of hmin

is equal to hnom. In this case, the behavior is almost the same but we hope a decrease of the
number of calls when hmin increases, without degrading the system performance. The resulting
values are presented in table 6.2. As expected, the number of calls drastically decreases while the
performance indexes remains quite good. As regards the controllers with extra samples, the idea
is to enforce some events just after the transients in order to improve the system response. In both
cases, in tables 6.1 and 6.2, the expected scheme is not always achieved since the performance
indexes increase sometimes. Nevertheless, one could note that this technique allows to improve
the steady-state intervals by reducing the number of samples. This was depicted in the last
simulation results (adding some extra samples).

Robustness to a disturbance

Finally, the event-based approach still works when a disturbance occurs. Thus, one could
see the resulting behavior in figure 6.23 where the hybrid strategy is tested. A load disturbance
is introduced at time 12 s with an amplitude of 0.1 and the controller reacts in consequence, as
well as the conventional PI controller. This is also true for the other proposals (not represented
here).

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants (hybrid)

0 2 4 6 8 10 12 14 16 18 20

0

1

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
time−based control
hybrid

First order system −− Control without safety limit (hybrid algorithm) 83 samples

Figure 6.23: Simulation results: robustness of the hybrid event-based PI controllers to a distur-
bance.

6.6.2 Application to a cruise control mechanism

As explained in section 6.2, an event-based technique is a good solution to reduce the control
computational needs. We studied a very simple first-order system in subsection 6.6.1 to illustrate
the interest of the event-based framework. However, more complex systems could be controlled
too. Such a system is the cruise control mechanism for instance, a control system that regulates
the speed of a vehicle. The expected speed of the car is constant most of time and a new control
signal is only required when the setpoint changes or when the load (i.e. the slope of the road)
varies. The basic operation of a cruise controller - depicted in [15] - is to sense the speed of
the car, compare this speed to a given reference, and then accelerate or decelerate the car as a
result. The equation of motion of the vehicle is

m · ν̇ = F − Fd

where ν is the velocity and m = 1000 kg is the mass of the vehicle (this mass could vary with
the number of passengers or while towing a tailer). The driving force F is generated by the
engine, whose torque is proportional to a signal 0 ≤ u ≤ 1 that controls the throttle position

171 Chapter 6 - Event-based PID controllers using level-crossing detection

and depends on the engine velocity too

F = αn · u · Tm ·
(

1− β ·
(
αn · ν
ωm

− 1
)2
)

where the maximal torque Tm = 190Nm is obtained at engine speed ωm = 420 rad.s−1 and
β = 0.4. A physical interpretation of αn, which depends on the gear ratio n, is the inverse of the
effective wheel radius. On the other hand, the disturbance force has three major components,
respectively due to the gravity Fg, the rolling friction Fr and the aerodynamic drag Fa

Fd = Fg + Fr + Fa

Fg = m · g · sin(θ)
Fr = m · g · Cr · sgn(ν)
Fa = 1/2 · ρ · Cd ·A · ν2

where g = 9.8m.s−2 is the gravitational constant, sgn(ν) is the sign of ν or zero if ν = 0,
Cr = 0.01 and Cd = 0.32 are the rolling friction and the shape-dependent aerodynamic drag
coefficients respectively, ρ = 1.3 kg.s−3 is the density of air and A = 2.4m2 is the frontal area
of the vehicle. At the end, θ is the slope of the road, that is the disturbance.

This cruise control mechanism is controlled with a PID control strategy. An anti-windup
mechanism is also added in order to consider the saturation of the control signal u. The integral
part hence consists in the classical integral term plus a reset based on the saturation of the
actuator (in order to prevent windup when the actuator is saturated):

ui(ta) = ui(ta−1) +
Kp

Ti
· he(ta)

︸ ︷︷ ︸
− 1
Ta
· h(ta) ·

(
u(ta−1)− usat(ta−1)

)

︸ ︷︷ ︸
integral term anti-windup term

where he(ta) depends on the event-based algorithm (see subsection 6.2.3), Ta is a tunable pa-
rameter for the anti-windup mechanism and usat(·) is the saturated value of the control signal.
The values used for simulations are Kp = 0.33, Ti = 20, Ta = 5, Td = 1.4 and N = 10. As
regards the test bench, a 200s simulation runtime is expected: at time 0, the setpoint is 25m/s
(90 km/h), then at time 10 s it is changed to 30.6m/s (110 km/h) and changed again to 36.1m/s
(130 km/h) at time 100 s. Furthermore, the gear ratio is chosen with respect to the speed range,
that is n = 5 and so is αn = 10. Eventually, no disturbance is applied, i.e. θ = 0.

Time-based strategy

The results of the conventional time-triggered case are shown in figure 6.24, where the nom-
inal sampling period is hnom = 0.2 s. The top plot shows the speed setpoint and the measured
signal, the bottom plot shows the sampling intervals. The resulting value is constant in this
time-driven case, that is corresponding to hnom.

Årzén’s strategy

The same system is then controlled with the Årzén’s event-based controller, with improved
discretization and absolute error detection (see subsections 6.2.2 and 6.2.3 for further details).
The simulation results are represented in figure 6.25. The detection level is qnom = 0.2, which
means that a new control signal is calculated only when the system output crosses this level.

Part II - Asynchronous control scheme for closed-loop systems 172

Finally, the system response is as quick as the time-triggered one but a control signal is com-
puted about twice less (with this proposed benchmark). Nevertheless, the control signal is still
calculated during the steady-state intervals because of the maximal sampling interval condition.
One can thus see the periodic sampling due to hmax = 1 s.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

time [s]

h(
t)

 [s
]

Sampling intervals (time-based control)

0 20 40 60 80 100 120 140 160 180 200

90

110

130

time [s]

C
ar

’s
 v

el
oc

ity
[k

m
/h

]

Setpoint and measured signal

setpoint
time−based control

Cruise control Mechanism −− Time−triggered PI control 1000 samples

Figure 6.24: Simulation results: the conventional time-triggered PID controller.

0 20 40 60 80 100 120 140 160 180 200
time [s]

In
st

an
ts

Sampling instants (new Arzen’s control)

0 20 40 60 80 100 120 140 160 180 200
0

0.5
1

1.5

time [s]

h(
t)

 [s
]

Sampling intervals (new Arzen’s control)

0 20 40 60 80 100 120 140 160 180 200

90

110

130

time [s]

C
ar

’s
 v

el
oc

ity
[k

m
/h

]

Setpoint and measured signal

setpoint
time−based control
new Arzen’s control

Cruise control Mechanism −− Arzen’s PI control with improved discretization and absolute error detection 479 samples

Figure 6.25: Simulation results: the new Årzén’s event-based controller.

Removing the safety limit condition

Several algorithms without this safety limit condition were developed (see subsection 6.2.3
for further details). The simulation results for the saturation and the hybrid algorithms, for
instance, are represented in figure 6.26. In the first case, a saturation of the integral gain he(ta)
is performed in the integral part of the controller. In the second case, this saturation is used and
an exponential forgetting factor of the sampling interval h(ta) is also added in order to reduce
its impact after a long steady-state interval. The gain is important since only 12 % of samples
are required with the hybrid algorithm to obtain a better response. The performance indexes
are given in table 6.3. A smaller IAE index indicates that the system response of our proposal
is closer to the setpoint than the one of the time-triggered case. As a result, the IAEP and
IAD indexes are more important. These indexes compare the performance of the time-based
and event-based strategies.

173 Chapter 6 - Event-based PID controllers using level-crossing detection

0 20 40 60 80 100 120 140 160 180 200
time [s]

In
st

an
ts

Sampling instants (saturation)

0 20 40 60 80 100 120 140 160 180 200

90

110

130

time [s]

C
ar

’s
 v

el
oc

ity
[k

m
/h

]

Setpoint and measured signal

setpoint
time−based control
saturation

Cruise control Mechanism −− Control without safety limit (saturation of the integral gain) 255 samples

(a) Algorithm with saturation of the product he

0 20 40 60 80 100 120 140 160 180 200
time [s]

In
st

an
ts

Sampling instants (hybrid)

0 20 40 60 80 100 120 140 160 180 200

90

110

130

time [s]

C
ar

’s
 v

el
oc

ity
[k

m
/h

]

Setpoint and measured signal

setpoint
time−based control
hybrid

Cruise control Mechanism −− Control without safety limit (hybrid algorithm) 122 samples

(b) Hybrid algorithm

Figure 6.26: Simulation results: the event-based PID controllers without safety limit condition.

Table 6.3: Performance analysis: comparison of the different event-based PID strategies to con-
trol a cruise control mechanism (when m = 1000 kg).

Calls
value ratio IAE IAEP IAD

Time-based 1000 100 % 80.25 0 0
Årzén Absolute 479 47.8 % 80.39 0.14 11.53

Saturation 255 25.4 % 54.83 65.20 3716.88Without safety limit Hybrid 122 12.1 % 47.80 55.70 4239.09
Notes:
• The nominal sampling period is hnom = 0.2 s.
• The detection level is qnom = 0.1.
• The maximal sampling period used by the Årzén’s controller is hmax = 1 s.
• The parameter used in the controllers without safety limit is α = 10.

Robustness: variation of the mass of the vehicle

As explained before, the mass of the vehicle can vary. Nevertheless, the system is still working
when changing the mass to m = 2000 kg (when the car is towing a tailer for example), that is
increasing the mass with a factor of 2, as one can see in figure 6.27.
Moreover, the performance analysis for the loaded vehicle is the same than the vehicle only, as
depicted in table 6.4.

Part II - Asynchronous control scheme for closed-loop systems 174

0 20 40 60 80 100 120 140 160 180 200
time [s]

In
st

an
ts

Sampling instants (saturation)

0 20 40 60 80 100 120 140 160 180 200

90

110

130

time [s]

C
ar

’s
 v

el
oc

ity
[k

m
/h

]

Setpoint and measured signal

setpoint
time−based control
saturation

Cruise control Mechanism −− Control without safety limit (saturation of the integral gain) 245 samples

(a) Algorithm with saturation of the product he

0 20 40 60 80 100 120 140 160 180 200
time [s]

In
st

an
ts

Sampling instants (hybrid)

0 20 40 60 80 100 120 140 160 180 200

90

110

130

time [s]

C
ar

’s
 v

el
oc

ity
[k

m
/h

]

Setpoint and measured signal

setpoint
time−based control
hybrid

Cruise control Mechanism −− Control without safety limit (hybrid algorithm) 164 samples

(b) Hybrid algorithm

Figure 6.27: Simulation results: event-based PID control and robustness to system error (when
m = 2000 kg).

Table 6.4: Performance analysis: comparison of the different event-based PID strategies to con-
trol a cruise control mechanism (when m = 2000 kg).

Calls
value ratio IAE IAEP IAD

Time-based 1000 100 % 93.62 0 0
Årzén Absolute 429 42.8 % 93.74 0.24 9.87

Saturation 245 24.4 % 81.48 45.00 2146.48Without safety limit Hybrid 164 16.3 % 80.58 42.38 1819.80
Notes:
• See notes in table 6.3.

6.7 Synthesis

This chapter presents some new event-based PID control algorithms. Such a scheme, con-
trary to the classical time-triggered one which calculates the control signal at each sampling
time, updates the control signal only when the measurement sufficiently changes. Our proposals
are based on the simple setup proposed by K.E. Årzén in [10]. In the original work, a safety
maximum period is added forcing the control to be recomputed even if the measured signal
remains unchanged. The main contribution is to avoid this re-computation. To compensate,
a forgetting factor is imagined in order to reduce the sampling period impact in the integral
part of the PID algorithm. This approach is somehow similar to the anti-windup mechanism,

175 Chapter 6 - Event-based PID controllers using level-crossing detection

where the error induced by the saturation has to be compensated. Then, based on this idea, six
controllers without safety limit condition are proposed:

• Algorithm only without safety limit condition

• Algorithm with saturation of the integral gain, where the product h(·)e(·) is bounded
in order to reduce its impact in the integral part.

• Algorithm with an exponential forgetting factor of the sampling interval, in
order to reduce the impact of the sampling interval h(ta) after a long steady-state interval.

• Algorithm using a hybrid strategy, which consists in a mix between the saturation of
the integral gain and the exponential forgetting factor of the sampling interval.

• Algorithm with an exponential forgetting factor of the sampling interval with
low-cost implementation, which uses a low-cost exponential forgetting factor to simplify
the original proposal.

• Algorithm using a hybrid strategy with low-cost implementation, where the low-
cost exponential function is also used.

These proposals are finally compared, both with the conventional time-triggered controller and
the Årzén’s event-based controller. Besides a noticeable reduction of the mean control compu-
tation cost, the performance of the closed-loop system is also improved in simulation.

A second contribution is a low computational cost scheme thanks to a minimum sampling
interval condition. This was added to lighten the transients: a new control signal is performed
only if a given amount of time was elapsed since the last sample. Eventually, we also suggested
to reduce even more the error margin during the steady-state intervals by adding some extra
samples just after the transients. At the end, all our proposals are simulated with a simple first-
order system and then, with a more complex cruise control mechanism. The control computation
cost is thus decreased again, while good closed-loop performance is obtained.

Chapter

7

State-feedback controllers based
on Lyapunov sampling

The state-feedback control is another architecture widely used to control systems, since it
simply consists in multiplying the system output with a certain gain and setting the resulting
product as the new system input. Consequently, a large number of applications is available.
We hence choose such a control architecture to show the advantages on using an event-driven
strategy. Moreover, some theoretical tools can be (more or less) easily used to prove the stability
of the system, using Lyapunov theory, which was the penalizing point in the previous chapter.
An interesting strategy is to base the event detection on a Lyapunov sampling mechanism, as
introduced byManel Velasco et al. in [68]. Thus, the control signal is updated when a Lyapunov-
candidate function “sufficiently” changes. Different event-based strategies are developed in this
chapter, still with the aim at reducing the computational cost of the controller - by reducing
the number of samples - while guaranteeing some good system performance. The theoretical
background on state-feedback control and Lyapunov stability is brought back in sections 7.1
and 7.2 respectively. The latter one also recalls the existing Lyapunov sampling mechanism
imagined by Velasco et al., and finally details a less-conservative sampling scheme proposal.
Then, a recap of the different strategies is done in section 7.3. Some performance indexes are
given in section 7.4 in order to compare the performance of asynchronous control strategies and
some simulation results are eventually presented in section 7.5 with a double integrator system.
At the end, a synthesis is performed in section 7.6.

Part II - Asynchronous control scheme for closed-loop systems 178

7.1 Theoretical background on state-feedback control

The state-space representation is a mathematical model of a physical system as a set of input,
output and state variables related by first-order differential equations. Moreover, to abstract
from the number of these variables, the vector/matrix form is usually preferred (for the linear
case). The state-space representation provides a convenient and compact way to model and
analyze systems with multiple inputs and outputs. The internal state variables represent the
entire state of the system at any given time. The most general state-space representation of a
continuous-time and linear system (with p inputs, q outputs and n state variables) is written as
follows

ẋ(t) = A(t) · x(t) +B(t) · u(t)
y(t) = C(t) · x(t) +D(t) · u(t)

where x(t) ∈ Rn is called the state vector, y(t) ∈ Rq is called the output vector and u(t) ∈ Rp

is called the input (or control) vector. Let ẋ(t) be the derivative of the state vector. On
the other hand, A(·), B(·), C(·) and D(·) are the state, input, output and feedthrough (or
feedforward) matrix respectively. They are defined such that dim[A(·)] = n×n, dim[B(·)] = n×p,
dim[C(·)] = q × n and dim[D(·)] = q × p. In this general formulation, all the matrices and
their elements depend on time. However, in the common linear time-invariant systems, the
matrices are time invariant. Furthermore, in cases where the system model does not have a
direct feedthrough, D is the zero matrix. That will be the case afterwards for a simplification
reason and the previous representation hence becomes

ẋ(t) = A · x(t) +B · u(t)
y(t) = C · x(t)

(7.1)

Controllability and observability are main issues in a system analysis before deciding the
best control strategy to apply, or whether it is even possible to control or stabilize the system.

Controllability is related to the possibility in forcing the system into a particular state, by
using an appropriate control signal. If a state is not controllable, then no signal will ever
be able to control the state. Note that if a state is not controllable but its dynamics are
stable, then the state is stabilizable .

Observability is related to the possibility of observing, through output measurements, the state
of a system. If a state is not observable, the controller will never be able to determine
the behavior of an unobservable state and hence cannot use it to stabilize the system.
However, similar to the stabilizability condition above, if a state cannot be observed it
might still be detectable .

From a geometrical point of view, every states of the system must be controllable and observable
to ensure a good behavior in the closed-loop system, else the bad states and their corresponding
dynamics will remain untouched. If such a state is not stable, its dynamics will be present in
the closed-loop system which therefore will be unstable.

Actually, the transfer function of a continuous time-invariant linear state-space model can
be derived in the following way. First, taking the Laplace transform of equation (7.1) yields

X(s) =
(
s · I −A

)−1 ·B · U(s)
Y (s) = C ·X(s)

Note that the general principles presented in this section was established with the help of [61] and some
articles from the free encyclopedia Wikipedia (http://fr.wikipedia.org/)

179 Chapter 7 - State-feedback controllers based on Lyapunov sampling

and then, because the transfer function G(s) of a system is defined as the ratio between its
output and its input, substituting X(s) in the previous output equation leads to

G(s) =
Y (s)
U(s)

= C ·
(
s · I −A

)−1 ·B

Clearly G(s) must have q × p dimensionality. This is why the state-space representation can
easily be the preferred choice for systems with multiple inputs and/or outputs. Moreover, it is
important to understand that converting a state-space realization to a transfer-function form
may lose some internal information about the system, and may provide a description of a system
which is stable, when the state-space realization is unstable at some points.

7.1.1 Feedback control for linear systems

A feedback control consists in multiplying the output (or state) signal of the system by a
certain gain, and setting this product as the new system input. This results in a closed-loop
system where the derivative of the state - in equation (7.1) - directly varies with respect to the
state itself. The system hence becomes autonomous and does not depend on exogenous variables
anymore. Two feedbacks are usually applied in control theory: state and output feedback which
are now detailed.

7.1.1.1 State feedback

This method consists in closing the loop using the state variables of the system, which results
in u

(
t, x(t)

)
= −K · x(t). Note that the presence of a negative sign is the common notation but

its absence has no impact on the end results. We assume here that all the state variables are
accessible and so is fully observable the system. By substituting that in equation (7.1) yields

ẋ(t) =
(
A−B ·K

)
· x(t)

y(t) = C · x(t)
(7.2)

The advantage of such a feedback is that the eigenvalues of the closed-loop state matrix A =
A−B ·K can be controlled by setting K appropriately through eigen-decomposition of A−B ·K.
This assumes that the open-loop system is controllable or that the unstable eigenvalues of A
can be made stable through appropriate choice of K.

In addition to feedback, a setpoint input - afterwards denoted r(t) - can be added when
the system has to track a given reference. In this case, the input signal is u

(
t, x(t), r(t)

)
=

−K · x(t) +Kr · r(t) and the previous state-space representation becomes

ẋ(t) =
(
A−B ·K

)
· x(t) +B ·Kr · r(t)

y(t) = C · x(t)
(7.3)

7.1.1.2 Output feedback

Contrary to the previous case where we assumed that all the state variables are accessible, in
the output-feedback method the system can be not fully observable (see above for a definition).
Indeed, such a method consists in closing the loop with the output of the system, that is
u
(
t, y(t)

)
= −K · y(t). By doing that, the system equation (7.1) yields

ẋ(t) =
(
A−B ·K · C

)
· x(t)

y(t) = C · x(t)
(7.4)

and the eigenvalues of the new closed-loop state matrix A = A−B ·K ·C can be controlled by
setting K appropriately.

Part II - Asynchronous control scheme for closed-loop systems 180

7.1.2 Generalization for nonlinear systems

The more general form of a continuous state-space model can be written as two functions to
include the nonlinear behaviors in some systems, that are

ẋ(t) = φ
(
t, x(t), u(t)

)

y(t) = ϕ
(
t, x(t), u(t)

) (7.5)

The first is the state equation and the latter is the output equation. If the functions φ(·, ·, ·)
and ϕ(·, ·, ·) are a linear combination of states and inputs then the equations can be written in
matrix notation (as depicted above).

Regarding a state/output feedback control, the same scheme than previously remains un-
changed. Thus, the general expression of a continuous state-feedback control is

u
(
t
)

= ψ
(
x(t)

)
(7.6)

where ψ(·) is the input (or control) function.

7.1.3 From discrete-time to event-driven controllers

In this subsection, the general nonlinear continuous-time system - given in equation (7.5) -
is driven by a discrete-time controller (which is the only possible way to implement a control
law in practice). The state-feedback control - defined in equation (7.6) in the continuous case -
hence yields

∀t ∈
[
tk, tk+1

)
u(t) = ψ

(
x(tk)

)
= ψ(xk)

where the control signal is updated using only some samples of the state at some periodic discrete
instants t0, t1, . . . , tk, tk+1, Let tk denote the current sampling instant and tk+1 the next one.
Finally, the closed-loop system becomes

ẋ(t) = φ
(
t, x(t), h(xk)

)

This depicts the discrete-time state-feedback control principle.

This principle can be easily extended to an event-driven scheme, where an event could only
occur at some discret instants

t0, t1, . . . , ta, . . . , tk, tk+1, . . . , ta+1, . . . (7.7)

Let

∀t ∈
[
ta, ta+1

)
u(t) = ψ

(
x(ta)

)
= ψ(xa) (7.8)

be the control updates. Let ta denote the beginning time of the current control sample, that
is the last time an event occurs, and ta+1 denotes the next time where a control signal will be
calculated. The sampling intervals h(·) are then function of these time instants and for instance
h(ta) = ta − ta−1 is the sampling period of the current sample. Eventually, the closed-loop
system is

ẋ(t) = φ
(
t, x(t), k(xa)

)
(7.9)

This depicts the event-triggered state-feedback control principle.

181 Chapter 7 - State-feedback controllers based on Lyapunov sampling

7.2 Lyapunov sampling for event-driven controllers

The notion of stability is important in control theory where the behavior of dynamical
systems is studied. Lyapunov theory occurs in this field of knowledge. Consequently, developing
some event-triggered controllers based on that is a natural way when stability proofs are expected
(as explained in section 6.4). A short recall on this theory is presented in subsection 7.2.1. Such
an event-based solution - initially introduced in [68] - is then presented in subsection 7.2.2 and,
based on this work, we develop some new proposals in subsection 7.2.3. A trick to reduce the
computational cost of the event-detection mechanism is finally explained in subsection 7.2.4.

7.2.1 Stability and Lyapunov theory

The basic Lyapunov theorems for autonomous systems are directly related to some particular
functions, called Lyapunov-candidate functions. These theorems are a powerful tool to prove
the stability of a given equilibrium point. Conceptually and in simple terms, if all solutions
of the dynamical system that start close enough to an equilibrium point xe remain near xe

forever, then this equilibrium point is Lyapunov stable. More strongly, if xe is Lyapunov stable
and all solutions that start close enough to xe converge to xe, then the equilibrium point is
asymptotically stable. Moreover, the notion of exponential stability ensures that solutions not
only converge, but converge faster than, or at least as fast as a particular known rate. Note
that, without loss of generality, one may assume that the equilibrium is at the origin. Finally,
the formal Lyapunov theory is also called back.

Lyapunov-candidate function

Let V : Rn → R be a continuous scalar function. V is a local Lyapunov-candidate function
if this is a locally positive-definite function, that is

V (0) = 0
V (x) > 0 ∀x ∈ B − {0}

with B being a neighborhood region around x = 0.

Respectively, V is a global Lyapunov-candidate function if

V (0) = 0
V (x) > 0 ∀x ∈ Rn − {0}

Equilibrium point of a system

Let g : Rn → Rn be an arbitrary autonomous dynamical system with the equilibrium point
y∗, that is

ẏ = g(y), g(y∗) = 0

If there always exists a coordinate transformation x = y − y∗, such as

ẋ = g(x+ y∗) = f(x)
f(0) = 0

then the new system f(x) has an equilibrium point at the origin.

Note that the general principles presented in subsection 7.2.1 was established with the help of [61] and some
articles from the free encyclopedia Wikipedia (http://fr.wikipedia.org/)

Part II - Asynchronous control scheme for closed-loop systems 182

Basic Lyapunov theorems for autonomous systems

Let the origin be an equilibrium of the autonomous system defined as

ẋ = f(x) (7.10)

and let

V̇ (x) =
∂V

∂x
· dx
dt

= ∇V · ẋ = ∇V · f(x)

be the time derivative of the Lyapunov-candidate function V .

Stable equilibrium: If the Lyapunov-candidate function V is locally positive definite and the
time derivative of the Lyapunov-candidate function is locally negative semi-definite, that
is

V (0) = 0
V (x) > 0 ∀x ∈ B − {0}
V̇ (x) ≤ 0 ∀x ∈ B − {0}

for some neighborhood B of the origin, then the equilibrium is stable.

Locally asymptotically stable equilibrium: If the Lyapunov-candidate function V is locally
positive definite and the time derivative of the Lyapunov-candidate function is locally
negative definite, that is

V (0) = 0
V (x) > 0 ∀x ∈ B − {0}
V̇ (x) < 0 ∀x ∈ B \ {0}

for some neighborhood B of the origin, then the equilibrium is locally asymptotically stable.

Globally asymptotically stable equilibrium: If the Lyapunov-candidate function V is glob-
ally positive definite, radially unbounded and the time derivative of the Lyapunov-candidate
function is globally negative definite, that is

V (0) = 0
V (x) > 0 ∀x ∈ Rn − {0}
‖ x ‖ → ∞⇒ V (x)→∞
V̇ (x) < 0 ∀x ∈ Rn − {0}

then the equilibrium is globally asymptotically stable.

One must be aware that the basic Lyapunov theorems can only be applied to autonomous
systems, that are some systems without exogenous input, as defined in equation (7.10). This
is why a state-feedback control is usually common to lead a more general system back to this
restrictive case. Note that feedback controls were introduced in section 7.1. Furthermore, these
theorems are a sufficient but not necessary tool to prove the stability of an equilibrium. There
is no general method to construct or find a Lyapunov-candidate function which satisfies a given
stability criterium. The inability to find a Lyapunov function is inconclusive with respect to
stability, which means that not finding a Lyapunov function does not mean that the system

183 Chapter 7 - State-feedback controllers based on Lyapunov sampling

is unstable. Nevertheless, the Lyapunov stability is based on a mathematical translation of
an elementary physical constatation: if the total energy of the system tends to continuously
decline, then this system is stable since it is going to an equilibrium state. For this reason,
the Lyapunov-candidate functions are often based on some energetic functions, that are most of
time quadratic functions of the state variables, such as

V (x) = xT · P · x (7.11)

where P = P T > 0 is a symmetric and positive-definite matrix. In this case, a linear autonomous
continuous-time system ẋ = A · x is globally asymptotically stable when satisfying

AT · P + P ·A < 0 (7.12)

This relation is equivalent to say that all real parts of the eigenvalues of the matrix A are
negative. The stability of the system can finally easily be proved finding the relevant Lyapunov
function defined in equation (7.11).

7.2.2 Event detection based on Lyapunov functions

Manel Velasco et al. investigated in [68] an event condition for asynchronous controllers based
on Lyapunov functions. Considering that constant values of a Lyapunov function define some
contour curves that form closed regions around the equilibrium point, the proposed sampling
mechanism enforces job executions each time the system trajectory reaches a given contour
curve. For instance, figure 7.1 illustrates such a sampling mechanism for a two-state system.
The discretization of a given Lyapunov function in the energy space domain - that is the (x1, x2)
plane in this case - defines a set of ellipses of constant energy. Control jobs are only activated
each time the trajectory intersects a contour curve from outside to inside. The system trajectory
can then move between them without requiring control actions. Therefore, by construction, the
generated samples are stable in the Lyapunov sense - see subsection 7.2.1 for further details -
since the system energy decreases event after event. This triggering mechanism - called Lyapunov
sampling - is more detailed in subsection 7.2.2.1.

x1

x2 control job execution

trajectory

Figure 7.1: Lyapunov sampling mechanism: principle for a two-state system.

However, in order to ensure that the system trajectory will tend to the equilibrium point as
time tends to infinity, it must be ensured that the sequence of samples is infinite. Although the
generated sequence of samples is stable in the Lyapunov sense - decreasing the energy at each
sample - the stability of the continuous dynamics is not guaranteed. That is, from the sequence
of samples, it cannot be ensured that the system trajectory will tend to zero as time progresses,
because the sequence of samples can be finite. Ensuring an infinite sequence of samples hence
implies that all sampling intervals are bounded. This is explained in subsection 7.2.2.2. In

Part II - Asynchronous control scheme for closed-loop systems 184

addition, more efficient techniques for the design of the controller are also proposed in [68] when
the sampling intervals can be predicted, but this aspect will not be treated here. Eventually, a
small improvement is proposed in subsection 7.2.2.3.

7.2.2.1 Lyapunov sampling

Let V be a Lyapunov function (see subsection 7.2.1 for further details). Evaluating the
closed-loop system - equation (7.9) - in the discrete sampling instants - defined in equation (7.7)
- the Lyapunov sampling triggering mechanism is enforced when

V
(
x(ta)

)
= η · V

(
x(ta−1)

)
(7.13)

where ta−1 and ta are two consecutive Lyapunov sampling instants and h(ta) = ta − ta−1 is
the sampling interval during which the control signal is constant, i.e. equal to u(t) = ψ

(
x(ta)

)
,

as explained in subsection 7.1.3. On the other hand, the energy gain factor η is a tunable
parameter used for event detection: for some small values of η, large sampling periods are
expected, whereas large values will reduce the amount of time between two events. In fact,
small values of η mean that the next sampling instant is set when the Lyapunov function has
decreased more significantly with respect to the current value. Moreover, by construction, the
sampling scheme is stable in the discrete Lyapunov sense if η is restricted to 0 < η < 1. Note
that no restriction is set on the controller law ψ(·) - previously defined in subsection 7.1.3 - to
establish this Lyapunov sampling mechanism.

Actually, the depicted principle is not so far from the one detailed in the previous chapter for
event-based PID control strategies using a level-crossing detection as sampling mechanism (one
could refer to section 6.2 for more information). Indeed, as previously the basic setup consists
in two parts: i) a time-triggered event detector which runs with the constant sampling period
hnom and sends some requests when a new control signal is required and ii) an event-triggered
controller which calculates the control signal with varying sampling intervals h(·) defined by
two successive requests. This architecture is represented in figure 7.2 (note that AD and DA
are respectively analog-to-digital and digital-to-analog converters). The difference is that the
event logic - in the time-triggered event detector - now leads to calculate a given Lyapunov
function, in order to decide when to send a request to the control part. The input signal is hence
the states x(t) instead of the error e(t) which was previously needed for the level detection.
Moreover, the control logic - in the event-triggered controller - is now a state-feedback control
law.

hnom

Time-triggered event detector Event-triggered controller

event logic

control logic

h(ta)

request

x(ta)

x(t)

u(t)

Velasco’s event-based controller

AD
x(tk)

DA
u(ta)

clock

Figure 7.2: Architecture of the event-based controller proposed by Velasco et al.

One has to remember that the idea in this chapter is to analyze the stability of event-based
architectures in order to validate our previous work where intuitive event-based techniques were
developed. Thus, the controller applies here a state-feedback law which can easily be transposed
to the PID control case done in chapter 6.

Eventually, the resulting algorithm is represented in figure 7.3.

185 Chapter 7 - State-feedback controllers based on Lyapunov sampling

V
(
x(tk)

)
= η · V

(
x(ta−1)

)Lyapunov sampling
h(·)

calculate the control signal
u(ta) = ψ

(
x(ta)

)

read the states
x(tk)

hnom

update the current variables

V
(
x(ta)

)
= V

(
x(tk)

)ta = tk

send the control signal
u(ta)

calculate the Lyapunov function
V
(
x(tk)

)
= xT (tk) · P · x(tk)

∆V (tk) = V
(
x(tk)

)
− V

(
x(ta−1)

)

∆V (ta) = ∆V (tk)

Figure 7.3: Algorithm: the event-based state-feedback controller using the Lyapunov sampling
mechanism.

7.2.2.2 Stable Lyapunov sampling

Although the Lyapunov sampling ensures stable sampling sequences in the Lyapunov sense
- detailed in the previous subsection - nothing is ensured about the stability of the continuous-
time dynamics. Indeed, if the system energy increases before the next sampling instant, the
condition from equation (7.13) will not be validated and, therefore, an event will not occur. Two
Lyapunov sampling triggering cases are possible. If η is correctly chosen, the system trajectory
will cross contour curves again and again until achieving the equilibrium point, as shown in
figure 7.4(a). On the other hand, with a bad η value, the system energy could increase before
achieving the next ellipse. In this case, a new event will never occur and the system becomes
unstable, as drawn in figure 7.4(b). As a result, the sampling mechanism has to generate an
infinite sequence of samples in order to ensure the stability of the continuous-time dynamics.

x1

x2

(a) Stable Lyapunov sampling

x1

x2

(b) Unstable Lyapunov sampling

Figure 7.4: Lyapunov sampling mechanism: representation of a stable and an unstable behavior.

As a result, one has to determine when the energy decrease, produced by the system trajectory
up to the point it starts, is gaining energy again. Placing a contour curve passing for that

Part II - Asynchronous control scheme for closed-loop systems 186

point would ensure a new sample. Therefore, for any current state, one has to determine a limit
on the energy decrease produced by the system trajectory, that still ensures the occurrence of
the next sample. Intuitively, this strongly relates to the energy gain factor η. As a result, the
authors propose to derive further restrictions for this parameter in such a way that the generated
sequence of samples is infinite. The idea is summarized in the following.

Let x(t, x0) be the solution of the closed-loop system - equation (7.9) - when u(t) = ψ(x0),
where x0 is a given initial condition. The minimum achieved energy without changing the control
signal for any initial condition is

V ∗(x0) = min
t
V
(
x(t, x0)

)
∀t ≥ 0

That is assumed that this minimum exists. Taking into account the initial energy V (x0) and
the minimum achieved energy V ∗(x0) for any initial condition, the minimum distance between
them is

min
x0

(
V (x0)− V ∗(x0)

)
= min

x0

(
1− V ∗(x0)

V (x0)

)

which is always a positive quantity by construction. This minimum will occur when

η̂(x0) =
V ∗(x0)
V (x0)

(7.14)

is maximum. Let

η∗ = max
x0

η̂(x0)

be the value that minimizes the minimum distance. Note that by construction 0 ≤ η̂ ≤ 1 and so is
theminimum energy gain factor η∗. Finally, for any x0, if η∗ < η < 1 then the generated sequence
is an infinite sequence. This condition presents the stable Lyapunov sampling mechanism, which
is based on restricting η in the Lyapunov sampling condition in equation (7.13), in such a way
that the space discretization given by the set of contour curves ensures some infinite samples.

Computing η∗ is not trivial because this is a non-convex problem. Therefore, the corre-
sponding algorithm needs to be executed off-line for each system to control. Indeed, η̂(x0) has
to be computed for any initial condition x0 in order to be able to find the maximal one and
hence deduce η∗. The resulting algorithm is computationally heavy and will probably take a
long time, even if some simplifications can be found for linear systems, as done in [68]. It is
represented in figure 7.5 as a dark block to highlight its off-line running. Anyway, an easier and
more dynamical solution is proposed in subsection 7.2.3 to avoid this huge computation.

off-line algorithm to calculate η∗

η∗ < η < 1

algorithm of
the event-based
state-feedback

controller

Figure 7.5: Algorithm: the computationally heavy off-line block required in the stable Lyapunov
sampling mechanism.

187 Chapter 7 - State-feedback controllers based on Lyapunov sampling

7.2.2.3 Event-detection improvement

As explained in subsection 7.2.2.1, the Lyapunov sampling mechanism - initially depicted by
Velasco et al. in [68] - allows to activate some control jobs only when the trajectory intersects
a contour curve from outside to inside. Then, a restriction is added in subsection 7.2.2.2 to
ensure that contour curves are crossed again and again and so is decreased the system energy.
However, if the next curve could not be achieved for some reasons (if a perturbation occurs
for instance) the system trajectory will diverge anyway - going from inside to outside - without
(almost) any chance to cross again that contour curve. For this reason, we propose to enforce
a job execution when the system energy increases, that is when

∆V (ta) > 0
with ∆V (ta) = V

(
x(ta)

)
− V

(
x(ta−1)

) (7.15)

This leads to add a safety condition in the event-detection scheme. The resulting algorithm
improvement is given in figure 7.6. This can be applied on both the Lyapunov and the stable
Lyapunov sampling mechanisms.

V
(
x(tk)

)
= η · V

(
x(ta−1)

)Lyapunov sampling

∆V (tk) > 0or

Figure 7.6: Algorithm: the extra condition when using the event-detection improvement (re-
quired in Lyapunov and the stable Lyapunov sampling mechanism).

7.2.3 A less-conservative stable Lyapunov sampling

The idea here is to soften the sampling scheme introduced by Velasco et al. Actually, the
stable Lyapunov sampling mechanism is based on restricting η in the Lyapunov sampling con-
dition V

(
x(ta)

)
= η · V

(
x(ta−1)

)
- as explained in subsection 7.2.2.2 - in such a way that the

energy decreases again and again at each sample. A given algorithm thus allows to find the
minimum energy gain factor η∗ in order to ensure an infinite sequence, that is when

η∗ < η < 1 (7.16)

This minimum energy gain factor completely depends on the system to control and the chosen
Lyapunov-candidate function. Moreover, its value is applied to the whole running time. This
is highly conservative. Indeed, a system with a small value will lead to large sampling intervals
whereas another system with an important η∗ will reduce the amount of time between two
events. This value can be large insomuch - very close to 1 - as some events will occur (quasi)-
continuously. For this reason, we propose to relax the constraint on the energy gain
factor η given in equation (7.16). Furthermore, the value which lower-bounds η is the maximal
value calculated among all initial conditions (see subsection 7.2.2.2 for further details). This
is why it can be assumed that the system is stable in the Lyapunov sense for a large number
of values of η smaller than η∗. One has just to keep in mind that the system could become
unstable. As a result, we also propose to make the energy gain factor dynamically
varying, in order to reduce again the number of samples when the system is stable and quickly
react when it becomes unstable. This parameter - afterwards denoted the varying energy gain

Part II - Asynchronous control scheme for closed-loop systems 188

factor η(t) - is updated in the event-driven control logic. Then,it is substituted in the Lyapunov
event-detection mechanism, which becomes

V
(
x(ta)

)
= η(ta−1) · V

(
x(ta−1)

)

where η(·) is still restricted to 0 < η(·) < 1, by construction, to ensure Lyapunov stability.
Several algorithms - which are more and more relaxing - are eventually proposed in the following
subsections.

7.2.3.1 Relaxation 1: slowly decrease/drastically increase

The first guess is to slowly decrease η when the energy decreases - as the system is stable
the constraint on the energy gain factor can be relaxed in order to update less often the control
signal - and changing it back to η∗ as soon as the energy begins to increase in order to stabilize
the system again. The resulting algorithm is

η(ta) =

{
η∗ + ε if ∆V (ta) > 0(
1− ν

)
· η(ta−1) otherwise

where ε ∈ R+ guarantees the left inequality in equation (7.16), while 0 < ν < 1 leads to decrease
the value of the energy gain factor. Note that ∆V (ta) was defined in equation (7.15). Of course,
one has to take care about decreasing too much η(·) since 0 < η(t) < 1 is still required by
construction. A saturation function is needed.

Nevertheless, this first relaxation still runs with respect to η∗, that can only be calculated
with the off-line algorithm introduced in subsection 7.2.2.2. Indeed, as already explained in
introduction, the stable Lyapunov sampling mechanism requires to find the minimum energy gain
factor η∗, which is obtained calculating η̂(x0) for any initial condition x0. This last parameter is
defined in equation (7.14) as the ratio between the minimum achieved energy without changing
the control signal and the initial energy and yet, the minimum achieved energy requires to
compute the Lyapunov function from the initial condition until it is gaining energy again. This
is a non-convex problem which requires to i) know the model of the system to control in order to
be able to calculate x(t, x0) and V

(
x(t, x0)

)
, ii) calculate the control signal u(t) = ψ(x0) given

by equation (7.8), iii) close the system and run it until the Lyapunov function increases. Finally,
this has to be done for all possible initial conditions x0. The resulting algorithm hence requires
an important off-line computation while a softer solution would be preferred. For this reason, we
propose a fully on-line Lyapunov sampling mechanism with low computational cost
in order to have a behavior similar than before but with a lightened algorithm. Consequently,
the next relaxations can be applied to control a system without requiring to execute the off-line
algorithm before.

7.2.3.2 Relaxation 2: improvement for an on-line running

A simple modification of the previous relaxation is imagined to not use the off-line algo-
rithm anymore. Thus, η∗ is replaced by the upper-bound of the energy gain factor defined in
equation (7.16). This yields

η(ta) =

{
1− ε if ∆V (ta) > 0(
1− ν

)
· η(ta−1) otherwise

where 0 < ν < 1 and ε ∈ R+ were already defined. In fact, when η(t) = 1− ε the system almost
runs with the time-triggered behavior, which means sampling at each periodic discrete instant.

189 Chapter 7 - State-feedback controllers based on Lyapunov sampling

However, by doing that the system trajectory tends to the equilibrium point - if the control law
is well-established - and the energy decreases. Consequently, the energy gain factor will decrease
and so begins the asynchronous mechanism.

7.2.3.3 Relaxation 3: slowly decrease/slowly increase

Based on the two previous relaxations, another idea is to slowly increase the energy gain
factor when the energy increases - as we slowly decrease it when the energy decreases - hoping
that the system could be stabilized before achieving the value of η∗. Indeed, as explained in
introduction, we assume that the system is stable in the Lyapunov sense for several values of η
smaller than η∗. This leads to

η(ta) =

{(
1 + ν

)
· η(ta−1) if ∆V (ta) > 0(

1− ν
)
· η(ta−1) otherwise

where 0 < ν < 1 and 0 < ν < 1 could eventually be equal. Note that, as previously, a saturation
function is still required to ensure 0 < η(t) < 1.

7.2.3.4 Relaxation 4: a more formal variation

The three first relaxations were intuitively built and a more formal expression would be
preferred. Actually, the energy gain factor η(t) varies and, as a result, can be written as a state
of the controller, i.e. η̇(t). Moreover, the variable is function of the variation of the Lyapunov
function: when the energy decreases the energy gain factor can be reduced whereas it has to be
increased when the energy grows. Therefore, the derivative of the energy, i.e. V̇

(
x(t)

)
, can be

used in the algorithm. This results in

η̇(t) = υ · V̇
(
x(t)

)
· η(t)

where υ ∈ R+ is a tunable parameter. Note that it could be computationally complex to
calculate the analytical expression of V̇ (·) if the number of system state variables is important.
For this reason, an alternative is proposed. One can see in the previous proposals that, in fact,
the sign of η(t) - and therefore its variation - is function of ∆V (·) and yet, this variable is already
calculated in the Lyapunov sampling mechanism improvement (introduced in subsection 7.2.2.3).
Consequently, that can be easily used in the algorithm, which eventually yields

η̇(t) = υ ·∆V (t) · η(t)

and discretizing this equation (using the backward difference approximation for the same reasons
than explained in subsection 6.2.2) finally leads to

η(ta) =
(

1 + υ · h(ta) ·∆V (ta)
)
· η(ta−1)

The interest of this expression is that the energy gain factor varies with respect to ∆V (·) but
also with the sampling interval h(·). That is, if the system becomes unstable after a large steady-
state interval, the energy gain factor will largely react in consequence. Thus, starting with a
given initial condition will lead to achieve the expected behavior in dynamically adjusting the
energy gain factor.

Eventually, the resulting on-line algorithm is depicted in figure 7.7. The energy gain factor
updating, i.e. η(ta) = χ

(
η(ta−1)

)
, depends on the relaxation among the above proposals. Note

that the off-line algorithm - presented in subsection 7.2.2.2 and shown in figure 7.5 - still has to
be executed in the case of the first relaxation. However, relaxation 2 is an alternative to avoid
that and, as a result, one can say that our proposals are on-line executed.

Part II - Asynchronous control scheme for closed-loop systems 190

V
(
x(tk)

)
= η(ta−1) · V

(
x(ta−1)

)Lyapunov sampling

∆V (tk) > 0

h(·)

or

calculate the current variables

calculate the control signal
u(ta) = ψ

(
x(ta)

)

read the states
x(tk)

hnom

h(tk) = tk − ta−1

update the current variables

h(ta) = h(tk)
V
(
x(ta)

)
= V

(
x(tk)

)
ta = tk

send the control signal
u(ta)

calculate the Lyapunov function
V
(
x(tk)

)
= xT (tk) · P · x(tk)

∆V (tk) = V
(
x(tk)

)
− V

(
x(ta−1)

)

∆V (ta) = ∆V (tk)

update the energy gain factor
η(ta) = χ

(
η(ta−1)

)

Figure 7.7: Algorithm: the event-based state-feedback controller using a less-conservative stable
Lyapunov sampling mechanism.

7.2.4 Minimum sampling interval condition

The less-conservative Lyapunov sampling mechanisms depicted in the previous subsection are
interesting but we would like to reduce even more the number of control updates. Consequently,
we propose to extend the minimum sampling interval condition to the Lyapunov
sampling scheme. The principle is detailed in subsection 6.2.4. It was initially developed for
some PID control strategies using an event detection based on level crossing. The idea is to
calculate the control signal only if a given amount of time was elapsed since the last sampling
instant, that is when

h(ta) ≥ hmin

This setup can be directly applied in the present case. Moreover, instead to verify both event
conditions in the same time, i.e. the Lyapunov sampling condition plus the minimum sampling
one, we propose to decompose the event detection in two steps in order to perform
the Lyapunov function only if the previous condition was verified. The gain in using such an
approach is double. Indeed, the final number of samples will be reduced and, moreover, the
computation of V (t) will only be done when the condition is satisfied. Finally, this can highly
decrease the computational cost of the event detection, more especially if the Lyapunov function
is complex or the number of internal states is important. The resulting algorithm is represented
in figure 7.8.

191 Chapter 7 - State-feedback controllers based on Lyapunov sampling

V
(
x(tk)

)
= η(ta−1) · V

(
x(ta−1)

)Lyapunov sampling

∆V (tk) > 0

h(·)

or

calculate the current variables

calculate the control signal
u(ta) = ψ

(
x(ta)

)

read the states
x(tk)

hnom

h(tk) = tk − ta−1

update the current variables

h(ta) = h(tk)
V
(
x(ta)

)
= V

(
x(tk)

)
ta = tk

send the control signal
u(ta)

calculate the Lyapunov function
V
(
x(tk)

)
= xT (tk) · P · x(tk)

∆V (tk) = V
(
x(tk)

)
− V

(
x(ta−1)

)

∆V (ta) = ∆V (tk)

update the energy gain factor
η(ta) = χ

(
η(ta−1)

)

minimum sampling
h(t) ≥ hmin

Figure 7.8: Algorithm: the event-based state-feedback controller using a less-conservative stable
Lyapunov sampling mechanism with minimum sampling condition.

7.3 Recap of the different Lyapunov sampling mechanisms

This section aims at summarizing the different asynchronous control strategies based on a
Lyapunov sampling mechanism. The basic setup - depicted in introduction of subsection 7.2.2 -
remains the same, only the event-detection condition varies. Therefore, we propose to recap
all the strategies based on Lyapunov sampling. This list will then be useful for the
simulation/experimental results (in section 7.5 and chapter 8 respectively).

Classical time-triggered control strategy

The time-triggered state-feedback controller is sampled at every periodic discrete-time instants
tk = k · hnom. The control updates are given by

u
(
tk, x(tk)

)
= −K · x(tk)

This will not be impacted in the asynchronous strategies, only the instant times change in the
previous relation, from tk to ta.

Lyapunov sampling mechanism

The asynchronous controllers using such an event-driven mechanism are sampled with some not-
equidistant sampling periods h(ta) = ta − ta−1, where ta−1 and ta are two consecutive sampling

Part II - Asynchronous control scheme for closed-loop systems 192

instants. Some events are enforced when

V
(
x(ta)

)
= η · V

(
x(ta−1)

)
(Initial)

V
(
x(ta)

)
= η · V

(
x(ta−1)

)
or ∆V (ta) > 0 (Improved)

where ∆V (ta) = V
(
x(ta)

)
− V

(
x(ta−1)

)
and η defines the detection level. Note that the initial

strategy is the one presented by Velasco et al. in [68], while the improved strategy consists
in enforcing a job execution also when the system energy increases in order to avoid unstable
behavior.

The stable Lyapunov sampling mechanism consists in calculating η∗ in order to restrict
the energy gain factor η∗ < η < 1. This is done in a computationally heavy off-line algorithm.

Less-conservative stable Lyapunov sampling

Several relaxations of the original stable Lyapunov sampling were proposed, making η dynami-
cally varying (four relaxations):

• Relax 1: slowly decrease/drastically increase η(t),

• Relax 2: improvement for an on-line running,

• Relax 3: slowly decrease/slowly increase η(t),

• Relax 4: a more formal variation of η(t).

and the way to make η(t) varying is different for each relaxation, that is

η(ta) =

{
η∗ + ε if ∆V (ta) > 0(
1− ν

)
· η(ta−1) otherwise

(Relax 1)

η(ta) =

{
1− ε if ∆V (ta) > 0(
1− ν

)
· η(ta−1) otherwise

(Relax 2)

η(ta) =

{(
1 + ν

)
· η(ta−1) if ∆V (ta) > 0(

1− ν
)
· η(ta−1) otherwise

(Relax 3)

η(ta) =
(

1 + υ · h(ta) ·∆V (ta)
)
· η(ta−1) (Relax 4)

The event-detection condition is the same for all these algorithms. This is

V
(
x(ta)

)
= η(ta−1) · V

(
x(ta−1)

)
or ∆V (ta) > 0

Minimum sampling interval condition

The minimum sampling interval condition consists in adding an extra condition to reduce the
number of samples again. The resulting event-detection condition is

(
V
(
x(ta)

)
= η(ta−1) · V

(
x(ta−1)

)
or ∆V (ta) > 0

)
and h(ta) ≥ hmin

where the first part is only verified when h(ta) ≥ hmin is satisfied, in order to reduce the com-
putational cost in calculating the Lyapunov function (see subsection 7.2.4 for further details).

193 Chapter 7 - State-feedback controllers based on Lyapunov sampling

7.4 Performance analysis

In this section, the performance indexes introduced in section 6.5 are recalled since they will
be applied again to compare the different proposals.

• The number of calls. This index refers to the number of samples required to control the
system during the whole simulation time.

• The integral absolute error:

IAE =
∫ ∞

0

∣∣e(t)
∣∣dt

This index shows how far is the system response compared with a given setpoint. The
smallest value will highlight the strategy which best fits the system with the reference.

• The integrated absolute difference between the system response of the time-based strategy
and that of the event-based ones:

IAEP =
∫ ∞

0

∣∣ytime−based(t)− yevent−based(t)
∣∣dt

This index allows to compare the system response of the event-based controllers with the
time-triggered one.

• The integral absolute difference between the IAE of the time-based strategy and the IAE
of the event-based ones:

IAD =
∫ ∞

0

∣∣IAEtime−based(t)− IAEevent−based(t)
∣∣dt

This index calculates the error between the system response and the setpoint for each
strategy, in order to finally compare them for both the time-triggered and the event-based
ones.

7.5 Simulation results: application to a double integrator
system

In this section, we propose to use the same system for simulation results than the
one depicted in the original work of Velasco et al. This is the double integrator system
whose state-space representation is ẋ = A · x+B · u, where

A =
[
0 1
0 0

]
and B =

[
0
1

]
.

The initial condition is

x0 =
[

0
−3

]
.

The quadratic Lyapunov function is V (x) = xT · P · x, where

P =
[
1.1455 0.1

0.1 0.0545

]
,

Part II - Asynchronous control scheme for closed-loop systems 194

and the control updates are given by the linear state feedback u(x) = −K · x, where

K =
[
10 11

]
.

One could easily verify that the closed-loop system ẋ =
(
A − B · K

)
· x = A · x satisfy the

condition AT ·P +P ·A < 0 defined in subsection 7.2.1. This means that the system is globally
asymptotically stable.

The bench used to test the different asynchronous control strategies is a 10 s simulation done
with Matlab/Simulink. The results follow.

Lyapunov sampling

The first event-based state-feedback control strategy presented in the previous section is
the one introduced by Velasco et al. The principle was summarized in subsection 7.2.2.1. The
sampling mechanism is based on a Lyapunov function and consists in enforcing a control job
when the system trajectory crosses a given level, i.e. V

(
x(ta)

)
= η ·V

(
x(ta−1)

)
. This Lyapunov

sampling mechanism is simulated for two different values of the energy gain factor η. The results
are shown in figure 7.9. The left plot shows the system trajectory in the energy space domain
- that is the (x1, x2) plane - while the right side represents the system energy - the Lyapunov
function V (t) - in the top plot and the evolution of the sampling intervals with respect to time
in the bottom one. The total number of samples is also indicated.

−0.5 0 0.5
−3

−2

−1

0

1

2

3

x
1
(t)

x 2(t
)

System trajectory

0 1 2 3 4 5 6 7 8 9 10
0

0.2

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

time [s]

In
te

rv
al

s
[s

]

Sampling intervals

State−feedback control using Lyapunov sampling (eta = 0.8) 89 samples

(a) Stable Lyapunov sampling with η = 0.8

−0.5 0 0.5
−3

−2

−1

0

1

2

3

x
1
(t)

x 2(t
)

System trajectory

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.1

time [s]

In
te

rv
al

s
[s

]

Sampling intervals

State−feedback control using Lyapunov sampling (eta = 0.65) 5 samples

(b) Unstable Lyapunov sampling with η = 0.65

Figure 7.9: Simulation results of the original asynchronous state-feedback controller based on
Lyapunov sampling for two different values of the energy gain factor.

195 Chapter 7 - State-feedback controllers based on Lyapunov sampling

• In the first case η = 0.8. The system is stable in the Lyapunov sense - the energy function
decreases - and the dynamics of the continuous system is stable too - the system trajectory
tends to the origin - as depicted in figure 7.9(a). Moreover, the performance is quite similar
to the classical approach, with a real reduction of the number of samples. Actually, less
than 10 % of sampling instants are relevant compared with the classical scheme (with the
periodic sampling period hnom = 0.01 s). Only 89 samples allow to control the double
integrator system with the Lyapunov sampling (in the present simulation text bench).
However, one can remark that this event-triggered mechanism seems to tend to a periodic
sampling when the trajectory is very close to the equilibrium. This effect will disappear
with our less-conservative proposal.

• When decreasing too much the energy gain factor, as for instance when η = 0.65, the
system becomes unstable, as one can see in figure 7.9(b). Indeed, the system diverges after
a certain amount of time because the next level is never achieved (due to a bad value of
the energy gain factor). Thus, the triggering condition V

(
x(ta)

)
= η · V

(
x(ta−1)

)
is never

satisfied and, as a result, the control signal is not updated anymore.

A zoom on the sampling instants of the Lyapunov function is performed in figure 7.10 for the
two previous value of η, in order to highlight the problem when this parameter is badly chosen.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

time [s]

E
ne

rg
y

V
(t

)

System energy (eta = 0.8)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

time [s]

E
ne

rg
y

V
(t

)

System energy (eta = 0.65)

State−feedback control using Lyapunov sampling −− Zoom on the sampling instants

Figure 7.10: Simulation results: zoom on the control instants of a stable and an unstable Lya-
punov sampling mechanism.

Fortunately, the stable Lyapunov sampling mechanism allows to avoid such a problem in
restricting the energy gain factor. Nevertheless, a simple solution consists in calculating the
control signal as soon as the system energy increases, i.e. when ∆V (ta) > 0 as defined in sub-
section 7.2.2.3. This leads to be reactive when an unstable behavior occurs. The corresponding
simulation results, applying this improvement, are shown in figure 7.11. The sampling intervals
vary more chaotically, but the system trajectory finally goes to the origin. Furthermore, the
number of samples is reduced compared to the stable case, since the value of η is smaller (and
so are larger the sampling intervals). This solution is interesting for some systems which have
to track a given setpoint anyway, since the Lyapunov function will inevitably increase at each
setpoint variation. For this reason, the event detection improvement will be applied in the next
strategies.

Computation of the minimum energy gain factor for a stable Lyapunov sampling

As previously explained, a stable Lyapunov sampling mechanism is required to ensure that
the system energy always decreases, in order to achieve the next level. This issue is related to η
which has to be conditioned in such a way that the generated sequence of samples is infinite and,
consequently, a complex algorithm is required to calculate the minimum energy gain factor. As

Part II - Asynchronous control scheme for closed-loop systems 196

−0.5 0 0.5
−3

−2

−1

0

1

2

3

x
1
(t)

x 2(t
)

System trajectory

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

time [s]

In
te

rv
al

s
[s

]

Sampling intervals

State−feedback control using Lyapunov sampling with event detection improvement (eta = 0.65) 53 samples

Figure 7.11: Simulation results of the asynchronous state-feedback controller based on Lyapunov
sampling with event-detection improvement (with η = 0.65).

detailed in subsection 7.2.2.2, it consists in calculating the minimum achieved energy without
changing the control signal for any initial condition x0, and so obtain a certain value η̂(x0)
for each x0. Some simplifications are possible for linear systems and, as a result, the energy
gain factors η̂(·) have only to be computed on the interval θ ∈

[
0, π
)
. This is demonstrated

in [68]. Eventually, η∗ results in the maximum energy gain factor. Applying this principle to
our study case yields η∗ = 0.7818 - as highlighted in figure 7.12 - and finally, restricting η
such that η∗ < η < 1 ensures that the generated sequence is infinite. One could verify, and
besides, that both stable and unstable behaviors illustrated in figure 7.9 verify this condition
since 0.65 < η∗ < 0.8 (the system is unstable using the first value and stable in the second case).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

η* = 0.7818

 Initial condition θ [rad]

 E
ne

rg
y

ga
in

 fa
ct

or

Double integrator −− Values of the energy gain factor

Figure 7.12: Simulation results: possible values of η̂(·) calculated with the off-line algorithm
(needed in the stable Lyapunov sampling mechanism) for the double integrator’s
control case in order to obtain η∗.

The so-proposed algorithm allows to calculate η∗ but has to be executed off line since it takes
a long amount of time to have a result (from few seconds to dozens of seconds). Actually,
this solution is computationally heavy and, moreover, it could be more difficult to obtain the
minimum energy gain factor in the case of a nonlinear system. For this reason, we developed some
new strategies which are less conservative but still yield the system to tend to its equilibrium.

Less-conservative stable Lyapunov sampling

These strategies are based on the idea that the constraint on the energy gain factor η can
be relaxed, making it dynamically varying, because the system is in fact stable in the Lyapunov
sense for a large number of values of η smaller than η∗. Indeed, one just needs to look at

197 Chapter 7 - State-feedback controllers based on Lyapunov sampling

figure 7.12 to see that the next level would be crossed in a large number of cases where η < η∗.
For this reason, several relaxations of the original constraint on the energy gain factor were
proposed in subsection 7.2.3. The corresponding simulation results can be seen in figure 7.13,
where the evolution of η(t) is represented on the bottom right plot.

1. Slowly decrease/drastically increase η(t):
The first proposal simply consists in decreasing η more than suggested in η∗ < η < 1.
However, as soon as the system energy increases, the energy gain factor goes back to
η∗. This intuitive guess leads to run with a value less than η∗ during about 90 % of the
simulation time, as one can see in figure 7.13(a). Furthermore, this reduces again the
number of samples (almost 50 % less than with the original stable Lyapunov sampling)
with still good performance.

2. Improvement for an on-line running:
The previous relaxation is then modified to not use η∗ anymore in the algorithm, in order
to have a fully on-line algorithm. This parameter is replaced by 1− ε, which is the upper-
bound of the energy gain factor by construction. The results are plotted in figure 7.13(b).
These are quite close to the previous ones. The sampling intervals increase until the system
becomes unstable in both cases. The main difference is that, in the on-line running, the
number of samples is more important after the energy increases due to the fact that η(t)
starts from a larger value (because η∗ < 1− ε).

3. Slowly decrease/slowly increase η(t):
In the two previous proposals, the energy gain factor is slowly decreased when the system
is stable, and drastically changed back to a value which ensures an infinite sequence when
the system becomes unstable. Another solution is to slowly increase η when the system
diverges. This is represented in figure 7.13(c), where one could see a lighter variation of
the sampling intervals.

4. A more formal variation of η(t):
Eventually, we present a more formal expression using a state variable in the control
algorithm. The energy gain factor thus now evolves with respect to the variation of the
system energy - the Lyapunov function - and the current sampling interval. The simulation
results of this last relaxation are drawn in figure 7.13(d), where the variation of the energy
gain factor is toned down.

The value of the different parameters needed in the above algorithms are ν = ν = ν = 0.05,
ε = 0.02 and υ = 6.2.

Performance analysis

One has to keep in mind that, even if the system trajectory is not as “direct” as the classical
time-triggered or the original stable Lyapunov sampling ones, our proposals take advantages on
both techniques: i) the number of samples is highly reduced - 94 % of samples less than with
the classical way and 50 % less than the Lyapunov sampling results - and ii) our strategies are
executed in real-time and do not require a computationally heavy off-line algorithm. Further-
more, the last formal relaxation eventually allows a system response very close to the existing
techniques, as depicted in figure 7.14, where it is compared with the classical time-based strat-
egy and the original Lyapunov sampling mechanism. Eventually, the indexes of performance -
called back in section 7.3 - are summarized in table 7.1 for all the strategies. One could remark
that the high number of samples achieved with the original Lyapunov sampling mechanism pay
with good performance indexes. However, the less-conservative proposals are also good and all

Part II - Asynchronous control scheme for closed-loop systems 198

−0.5 0 0.5
−3

−2

−1

0

1

2

3

x
1
(t)

x 2(t
)

System trajectory

0 1 2 3 4 5 6 7 8 9 10
0

0.2

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

time [s]

η(
t)

Dynamical variation of the energy gain factor

Less conservative Lyapunov sampling: relaxation 1 46 samples

(a) Relaxation 1: slowly decrease/drastically increase η(t)

−0.5 0 0.5
−3

−2

−1

0

1

2

3

x
1
(t)

x 2(t
)

System trajectory

0 1 2 3 4 5 6 7 8 9 10
0

0.2

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

time [s]

η(
t)

Dynamical variation of the energy gain factor

Less conservative Lyapunov sampling: relaxation 2 62 samples

(b) Relaxation 2: improvement for an on-line running

−0.5 0 0.5
−3

−2

−1

0

1

2

3

x
1
(t)

x 2(t
)

System trajectory

0 1 2 3 4 5 6 7 8 9 10
0

0.2

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

time [s]

η(
t)

Dynamical variation of the energy gain factor

Less conservative Lyapunov sampling: relaxation 3 60 samples

(c) Relaxation 3: slowly decrease/slowly increase η(t)

−0.5 0 0.5
−3

−2

−1

0

1

2

3

x
1
(t)

x 2(t
)

System trajectory

0 1 2 3 4 5 6 7 8 9 10
0

0.2

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

time [s]

η(
t)

Dynamical variation of the energy gain factor

Less conservative Lyapunov sampling: relaxation 4 44 samples

(d) Relaxation 4: a more formal variation of η(t)

Figure 7.13: Simulation results of the asynchronous state-feedback controller using a less-
conservative Lyapunov sampling mechanism: interest of the relaxations on the
initial constraint η∗ < η < 1.

199 Chapter 7 - State-feedback controllers based on Lyapunov sampling

the resulting values are low too (except for relaxation 1) while the number of control updates is
quite small.

0 1 2 3 4 5 6 7 8 9 10

−0.2

−0.1

0

0.1

time [s]

x 1(t
)

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

time [s]

x 2(t
)

Double integrator system and classical state−feedback control
State−feedback control using Lyapunov sampling with event detection improvement
Less conservative Lyapunov sampling: relaxation 4

System responses

Figure 7.14: Simulation results: comparison of the system response of the classical sampling,
the stable Lyapunov sampling and the less-conservative one (with relaxation 4).

Table 7.1: Performance analysis: comparison of the different asynchronous state-feedback strate-
gies to control a double integrator system (looking at y = x1 + x2).

Calls IAE IAEP IAD
Time-based 1000 0.28 0 0

η = 0.8 89 0.25 0.035 0.31Lyapunov sampling
η = 0.65 (improved) 53 0.46 0.28 1.3
Relax 1 46 0.42 0.22 0.98
Relax 2 62 0.31 0.12 0.25
Relax 3 60 0.48 0.28 1.6Less-conservative sampling

Relax 4 44 0.37 0.16 0.5
Notes:
• The nominal sampling period is hnom = 0.01 s.

• The value to guarantee that η < 1 is ε = 0.02. The tunable parameters in relaxation 1, 2 and 3 are
ν = ν = ν = 0.05 and the one in relaxation 4 is υ = 6.2.

7.6 Synthesis

This chapter firstly recalls the Lyapunov sampling mechanism initially developed in [68].
The depicted setup consists in calculating a new control signal only when the system trajectory
reaches a given contour curve. Using some Lyapunov functions to decide the event detection is
quite interesting since it allows to easily prove the stability of the system. However, a stable
running is based on restricting the so-called energy gain factor η in the Lyapunov sampling
condition, which defines the length of the level detection. The restriction is η∗ < η < 1, where
η∗ is the minimum possible value to ensure a stable behavior, and yet, calculating this parameter
requires to execute a computationally heavy off-line algorithm. As a result, the initial principle
can only be applied to simple (linear) systems where some simplifications exist. We hence
decided to develop some less-conservative methods. The main contributions are to relax the
constraints on the energy gain factor and make this parameter varying. Four algorithms were
thus suggested:

Part II - Asynchronous control scheme for closed-loop systems 200

• Slowly decrease/drastically increase η(t), where the energy gain factor is decreased
more than suggested in the initial proposal and, as soon as the system energy increases,
the energy gain factor goes back to η∗.

• Improvement for an on-line running, where the previous relaxation is modified in
order to not use η∗ anymore. This parameter is replaced by 1 − ε which is the upper-
bound of the energy gain factor by construction.

• Slowly decrease/slowly increase η(t) where the energy gain factor decreases when the
system is stable, and increases when the system becomes unstable.

• A more formal variation of η(t) where the energy gain factor becomes a state variable
in the control algorithm.

The three latter proposals allow a fully on-line running, while the performance remains un-
changed for a minimum of samples (when controlling a double integrator in simulation). An-
other contribution consists in extending the minimum sampling interval condition originally
introduced for PID controllers to lighten the transients. At the end, the Lyapunov theory al-
lows to prove that an asynchronous scheme can decrease the computational cost while ensuring
the stability of the system, even if the system is not sampled during a long amount of time.
Consequently, this also brings a stability proof for event-based PID controllers without safety
limit conditions - detailed in chapter 6 - where no stability analysis was given.

Chapter

8

Experimental results

Two asynchronous control schemes were previously introduced in chapter 6 and 7, respec-
tively based on a PID and a state-feedback strategy. Both principles are interesting for com-
putational cost savings, since a significant power consumption reduction can be achieved by
decreasing the number of samples and, consequently, the CPU utilization of the system. Fur-
thermore, both setups showed in simulation that the system can be controlled as well (even
better) as with a conventional time-triggered controller, with a control signal which is updated
more than 80 % less often. The advantages of such an event-based control was demonstrated
in simulation and some experimental results are now expected. Thus, a linear system is firstly
tested in this chapter, controlling the velocity and the position of an electric motor. Then, an
event-driven control is also applied on a hardly nonlinear system, with the inverted pendulum
study case. The different systems are detailed in section 8.1. Some results are presented in
sections 8.2 and 8.3 respectively. Eventually, all the experiments are synthesized in section 8.4.

Part II - Asynchronous control scheme for closed-loop systems 202

8.1 Presentation of the system

A pendulum is, by definition, a weight suspended from a pivot which can freely swing. Re-
spectively, an inverted pendulum is a pendulum whose mass is above its pivot point. As a result,
whereas a normal pendulum is naturally stable, an inverted pendulum is inherently unstable
and has to be actively balanced in order to remain upright and resistant to a disturbance. Two
strategies exist to achieve the expected behavior: either applying a torque to the pivot point or
moving the pivot point as part of a closed-loop feedback system. The second case is the aim
of the present study. This problem - illustrated in figure 8.1 - involves i) a cart which is able
to horizontally move and ii) a pendulum placed on the cart such that its two arms can freely
move (in the same plane that the cart). The only way to balance the inverted pendulum then
consists in applying an external control force to the system. This is done thanks to a DC (direct
current) servo-motor which provides the control force to the cart through a belt drive system.
A digital controller eventually allows to stabilize the pendulum in its inverted position, simply
acting on the motor.

Figure 8.1: Representation of the inverted pendulum used for experimental results.

The present problem is actually difficult to control. Indeed, if the pendulum starts far from
its upright position, it will begin to fall and the cart will start to move in the opposite direction.
On the other hand, when the cart moves, it makes the arms becoming off center. Consequently,
the cart and the pendulum’s arms are coupled while only the cart is actuable. Nevertheless,
it is possible to control this sub-actuated system. As explained before, it is pulled by a belt
connected to an electric motor. A potentiometer measures the cart position, from its rotation,
while another one measures the angle of the pendulum. Finally, the measurements are the
position of the cart p(t) and the angle of the pendulum θ(t). The velocity ṗ(t) and the angular
velocity θ̇(t) can also be deduced, deriving the two first variables.

The goal of the control law is to move the cart to a given position without causing the
pendulum to tip over. This was already done using a classical time-triggered method. See
for instance [50, 62, 13] and the references therein. However, we propose to control the
inverted pendulum with an event-based strategy. This is a challenge since this system
is completely unstable and requires to update the control law very often (the pendulum will
fall down as soon as the control is released). Some experiments are done with different event-
based strategies, that are some proportional integral derivative and state-feedback controllers

Note that the general presentation of the inverted pendulum was established with helping from [62] and some
articles from the free encyclopedia Wikipedia (http://fr.wikipedia.org/)

203 Chapter 8 - Experimental results

(developed in chapter 6 and 7 respectively). The different experimental results are eventually
compared to the conventional time-triggered scheme in order to highlight the advantages of the
asynchronous scheme. We firstly focus on some linear systems. The velocity and the position
of the cart are thus controlled alone (without the pendulum’s arms), in order they track a
given reference. These systems are detailed in subsection 8.1.1 and the experimental results are
presented in section 8.2. The whole nonlinear inverted pendulum system is then introduced in
subsection 8.1.2. The corresponding results are depicted in section 8.3. Eventually, both cases
are driven thanks to a Matlab/Simulink interface, as explained in subsection 8.1.3.

This work was done in collaboration with the Dynamic and Control Systems research group,
which is part of the University of Puebla in Mexico (Facultad de Ciencias de la Electrónica y
Facultad de Ciencias Físico-Matemáticas - Benemérita Universidad Autónoma de Puebla).

8.1.1 The electric motor

As explained in introduction, the electric motor is directly actuated by the controller. Some
preliminary tests are performed on it. Two different controls are possible: the position and the
velocity of the cart respectively.

Position of the cart

The position of the cart is directly measured and the resulting model is a well-known second-
order system, such as

Hp(s) =
P (s)
U(s)

=
1
s
· Gp

1 + τp · s

where Hp(s) is the transfer function between the position P (s) and the input signal U(s) (the
voltage which power supplies the electric motor), τp is the time constant (which depends upon
the load drive) and Gp is the steady-state gain. An identification rapidly gives some values for
the different parameters, which are Gp = 4.3218 and τp = 0.06 s.

On the other hand, it could be interesting to find a state-space representation of the system
in order to be able to apply a state-feedback control next. The classical representation is

ẋ(t) = A · x(t) +B · u(t)
y(t) = C · x(t)

where x(t) =
[
p(t) ṗ(t)

]T , y(t) and u(t) are the state, output and input (or control) vectors
respectively. In the present case, the output is the position and the control signal is the voltage
which power supplies the electric motor. A simple identification leads

A =
[
−16.67 0

1 0

]
, B =

[
72.03

0

]
and C =

[
1 1

]
.

The state-feedback strategy then consists in multiplying the states x of the system by a certain
gain and setting this product as the new system input. This will be done in subsection 8.2.2.

Velocity of the electric motor

The transfer function Hv(s) between the velocity of the motor V (s) and the input signal
U(s) is deduced from the position measurement, since this is the derivative. Indeed, v(t) = ṗ(t)

Part II - Asynchronous control scheme for closed-loop systems 204

or V (s) = s · P (s). This results in a first-order equation as follows

Hv(s) =
V (s)
U(s)

=
Gv

1 + τv · s

where τv is the time constant and Gv is the steady-state gain. Unfortunately, the derivative can-
not be applied directly because of the encoding mechanism. Actually, the position is measured
thanks to a potentiometer, and more particularly a shaft encoder. The value of this encoder
increases (respectively decreases) with respect to the shaft angular position of the motor. How-
ever the encoder cannot infinitely increase and, after achieving a given value, it goes back to
0. This principle finally results in a sawtooth-waveform signal which causes problem to obtain
the derivative. For this reason, we modified this signal (using a Matlab function) in order to
remove the overflows from the encoder. Now, having a continuous function, one can calculate
the derivative and an identification eventually gives Gv = 12.25 and τv = 0.06. This system will
then be controlled with a PID controller in subsection 8.2.1.

Afterwards, one will note some inherent perturbations which periodically occur in the differ-
ent experimental results in section 8.2. They are caused by this principle each time an overflow
is enforced. Nevertheless, this will not be the case in the global system running, thanks to the
belt, since the possible position from one part to the other of the track cannot overflow the
maximal value of the encoder.

8.1.2 The inverted pendulum

The inverted pendulum system is more complex and testing some asynchronous approaches
on it will clearly demonstrate the interest of such a scheme. Indeed, as already explained
in introduction, the inverted pendulum is naturally unstable. This means that it requires to
continuously update the control law else its arms fall down. The idea here is to adapt the
classical state-feedback control law to the asynchronous scheme. For this reason, the complete
modeling of the system is not treated. We simply base our analysis on a previous work which was
done on the present inverted pendulum study case. One could refer to [50] for further details.
Eventually, a linearization of the system close to its equilibrium point - used to calculate the
control parameters - leads to the given state-space representation

ẋ(t) = A · x(t) +B · u(t)
y(t) = C · x(t)

where x(t) =
[
p(t) θ(t) ṗ(t) θ̇(t)

]T .
A simple identification yields

A =




0 0 1 0
0 0 0 1
0 0.28 0 −1.32 · 10−4

0 16.49 0 −0.0079


 , B =




0
0

0.76
1.24


 and C =

[
1 1 1 1

]
.

Actually, controlling the inverted pendulum results in two parts: a first part is the balancing
of the pendulum, from its idle position until it is upright. This balancing can be done manually
or in using a special strategy, as done in [13]. Once the equilibrium point is achieved, the
controller switches the strategy, in order the inverted pendulum now stabilizes its arms, thanks
to a state-feedback control law. Note that, afterwards, only the second part will be treated using
an event-driven scheme.

205 Chapter 8 - Experimental results

8.1.3 The Matlab/Simulink interface

The inverted pendulum used in the next experiments is the one proposed by FeedBack
Incorporated1. The interest of this system is that the control part is done in the Mat-
lab/Simulink environment. The resulting model is depicted in figure 8.2.

Figure 8.2: Simulink model used in experiments to control the inverted pendulum.

The measured signals of the position of the cart and the angle of the pendulum come from some
analog-to-digital encoders (in the bottom right in the figure). Some derivative blocks give the
velocity and the angle velocity respectively. All these measurements are finally monitored by a
“controller” (in the top left), which calculates the control signal to send to the electric motor
through a digital-to-analog converter (top right). Note that a “scaling and safety function” is
placed between the controller and the actuator in order to warm about an over-supply of the
motor. Indeed, the control signal can only varies from −2.5 to 2.5 (−10V to 10V respectively,
after amplification) and a saturation block is hence required. Furthermore, the “position block” is
added in order to obtain the derivative of the position of the cart, as explained in subsection 8.1.1.
Some filters are also applied to the derivative signals. Eventually, a s-function is developed into
the controller block, which contains the algorithm to implement.

8.2 First results in controlling the velocity and the position of
an electric motor

As explained before, we propose to make some first tests only on the electric motor
in a first time, controlling the velocity and the position of the cart. Different experiments
are done, using some event-based PID control techniques in subsection 8.2.1, and some state-
feedback control methods in subsection 8.2.2. In both cases, the robustness of the asynchronous
scheme is studied, applying some perturbations to the system.

8.2.1 PID control strategy using level-crossing detection

The PI/PID strategies (see chapter 6 for further details) consist in controlling the system
in function of the error e(·) between a given setpoint and a measured signal. The control signal

1FeedBack Incorporated: http://www.feedbackinc.com/

Part II - Asynchronous control scheme for closed-loop systems 206

is then the sum of a proportional up(·), an integral ui(·) and a derivative ud(·) parts, that are

up(ta) = Kp · e(ta)
ui(ta) = ui(ta−1) +Ki · he(ta)

ud(ta) =
Td

Td +N · h(ta)
· ud(ta−1) +

Kp · Td ·N
Td +N · h(ta)

·
(
e(ta)− e(ta−1)

)

where ta is the beginning of the current sampling time and ta−1 the one of the last sample,
which lead to a sampling period h(ta) = ta − ta−1. The control signal u(ta) = up(ta) + ui(ta) +
ud(ta) is enforced regarding some event detection conditions, where the integral part - and more
particularly the integral gain he(ta) - depends on the event-based control strategy. The different
event-based algorithms are recaped in section 6.3. Furthermore, Kp, Ki, Td and N are some
tunable parameters which are calculated with respect to the system to control.

On the other hand, an anti-windup mechanism is added in the integral part in order to
prevent windup when the actuator is saturated (since the control signal can only varies from
−2.5 to 2.5, as explained in subsection 8.1.3). This extra term is

ui(ta) = . . .−Ka · h(ta) ·
(
u(ta−1)− usat(ta−1)

)

where usat(·) is the saturated value of the control signal and Ka is another tunable parameter.

Eventually, the system has to track a given reference in the following experiments. In both
cases (the velocity and the position), the setpoint starts with an amplitude of 10 during 5 s,
before going back to 0 for 5 s more.

8.2.1.1 Velocity of the electric motor

The control parameters required in the different PI strategies to control the velocity of the
electric motor are Kp = 0.01, Ki = 0.5 and Ka = 20. The sampling intervals are hnom = 0.01 s
and hmax = 0.1 s, while the level detection is qnom = 0.2.

The experimental results for the conventional approach - detailed in subsection 6.1.2 - are
represented in figure 8.3. The top plot shows the setpoint and the measured signal, whereas
the bottom plot shows the sampling intervals which are, of course, all equal to hnom in this
time-triggered case. Note that the number of samples required to perform the test bench and
some performance indexes (see section 6.5 for further details) are also indicated:

• the IAE index gives information on the setpoint tracking,

• the IAEP index compares the time-based and event-based system responses,

• the IAD index compares the time-based and event-based IAEs.

Eventually, one could remark a small perturbation at 2 s, which is due to the encoding mecha-
nism (depicted in subsection 8.1.1). That will appear in all the experimental results. A certain
robustness to this “error” (inherent to the system itself) is expected, before deliberately intro-
ducing some perturbations at the end of this subsection.

Respectively, the results for the Årzén’s controller (with discretization improvement and
absolute error, depicted in subsections 6.2.1 and 6.2.2) are represented in figure 8.4. In this
case, the control updates are event-driven when the measured signal crosses a given level qnom,
that is why a lot of samples occur during the transients. Moreover, A safety limit condition is
also introduced in order an event is enforced when the sampling interval achieves the maximal

207 Chapter 8 - Experimental results

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

time [s]

h(
t)

 [s
]

Sampling intervals

0 1 2 3 4 5 6 7 8 9 10

0

5

10

time [s]

V
el

oc
ity

 [m
/s

]

Setpoint and measured signal

setpoint
measurement

Motor’s velocity −− Time−based PI control 1000 samples
IAE = 6.75

IAEP = 0

IAD = 0

Figure 8.3: Experimental results: control of the velocity of the motor with the conventional
time-triggered PI controller.

value hmax. This behavior occurs during the steady-state intervals, this is why some samples
hit every 0.1 s. This principle allows to considerably reduce the number of samples (about 85 %
less than in the conventional case) with similar final performance (the IAE index is even better
than in the time-based case while the IAEP is very close). Note that an extra plot referring to
the sampling instants is also shown in figure 8.4, where an event is drawn each time the control
signal is updated. This representation will be preferred in the following experimental results.

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10
0

0.05
0.1

time [s]

h(
t)

 [s
]

Sampling intervals

0 1 2 3 4 5 6 7 8 9 10

0

5

10

time [s]

V
el

oc
ity

 [m
/s

]

Setpoint and measured signal

setpoint
measurement

Motor’s velocity −− Arzen’s event−based PI control 155 samples
IAE = 5.9

IAEP = 1.43

IAD = 6.91

Figure 8.4: Experimental results: control of the velocity with the Årzén’s event-based PI con-
troller.

Our first proposal consists in removing the safety limit condition to decrease again the
number of samples. Several algorithms were developed - in subsection 6.2.3 - and the results are
shown in figure 8.5.

• The first algorithm only consists in removing the condition and leads to important over-
shoots, as one can see in figure 8.5(a) when the setpoint changes at 5 s or during the
perturbation occurring near 1.8 s.

• The second algorithm applies a saturation of the product h(·)e(·) in order to minimize its
impact on the integral part of the controller after a large steady-state interval. This is
done in figure 8.5(b) and one can see that the previous overshoots are reduced.

Part II - Asynchronous control scheme for closed-loop systems 208

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10

0

5

10

time [s]

V
el

oc
ity

 [m
/s

]

Setpoint and measured signal

setpoint
measurement

Motor’s velocity −− PI event−based control without safety limit condition 150 samples
IAE = 23.9

IAEP = 24.8

IAD = 174

(a) Algorithm only without safety limit condition

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10

0

5

10

time [s]

V
el

oc
ity

 [m
/s

]

Setpoint and measured signal

setpoint
measurement

Motor’s velocity −− PI event−based control without safety limit condition (algorithm with saturation) 123 samples
IAE = 8.05

IAEP = 3.25

IAD = 15.3

(b) Algorithm with saturation of the integral gain

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10

0

5

10

time [s]

V
el

oc
ity

 [m
/s

]

Setpoint and measured signal

setpoint
measurement

Motor’s velocity −− PI event−based control without safety limit condition (low−cost exponential algorithm) 207 samples
IAE = 13.5

IAEP = 7.09

IAD = 82.7

(c) Algorithm with an exponential forgetting factor of the sampling interval (with low-cost implementation)

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10

0

5

10

time [s]

V
el

oc
ity

 [m
/s

]

Setpoint and measured signal

setpoint
measurement

Motor’s velocity −− PI event−based control without safety limit condition (low−cost hybrid algorithm) 80 samples
IAE = 7.46

IAEP = 1.17

IAD = 8.74

(d) Hybrid algorithm (with low-cost implementation)

Figure 8.5: Experimental results: control of the velocity with some event-based PI controllers
without safety limit condition.

209 Chapter 8 - Experimental results

• An exponential forgetting factor of the sampling interval is then introduced in a third
algorithm, in order to reduce the impact of this parameter in the integral part (because
the sampling interval increases a lot during a steady state). However, as an exponential
function is complex to implement, we also developed a low-cost alternative. The results are
represented in figure 8.5(c). The overshoots completely disappear but the system response
time highly increases (and so the IAE index).

• Finally we proposed an hybrid algorithm - a mix between the saturation of the integral gain
and the low-cost exponential forgetting factor - whose results are depicted in figure 8.5(d).
This solution is the best one since the system response is quite good (the IAE index is
close to the time-triggered case). Furthermore, a reduction of the number of samples of
92 % is achieved compared with the classical method, and about 50 % compared with the
Årzén’s proposal (with a better IAEP value).

These first results for a simple first-order system are very encouraging and the advantages of an
asynchronous scheme is highly demonstrated.

8.2.1.2 Position of the cart

The control parameters used to control the position of the cart are Kp = 0.2, Ki = 0.8,
Ka = 100, Td = 0.001 and N = 1. The different sampling intervals are hnom = 0.01 s, hmax =
0.1 s, hmin = 0.02 s and hextra = 0.1 s. The level detection is qnom = 0.2.

As previously observed in the velocity case, the experimental results obtained with the
Årzén’s controller (still with discretization improvement and absolute error) show that the num-
ber of samples is reduced - 75 % less thanks to the level-crossing detection - with similar final
performance. This is depicted in figure 8.6. One could refer to the IAE index - it is equal to 8.73
in the time-triggered case (not represented) - which is very close with the event-based approach
using the same control parameters. Moreover, a perturbation still occurs at 1.8 s, because of the
encoding mechanism, and the system correctly react to compensate.

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10
0

0.05
0.1

time [s]

h(
t)

 [s
]

Sampling intervals

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Arzen’s event−based PID control 260 samples
IAE = 9.32

IAEP = 1.5

IAD = 5.79

Figure 8.6: Experimental results: control of the position of the cart with the Årzén’s event-based
PID controller.

As already noticed too, the Årzén’s technique enforces some events after a safety amount of
time even if the measurement does not cross a detection level (initially for a stability reason) and
yet, we demonstrated in subsection 6.2.3 that this condition is not necessary actually. Different

Part II - Asynchronous control scheme for closed-loop systems 210

algorithms without this safety limit condition were developed and, for instance, the simulation
results obtained with the hybrid one (with low-cost implementation) are depicted in figure 8.7.
This yields an IAE index a bit more important but the number of samples if strongly reduced,
that is more than 40 % of samples less than Årzén.

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− PID event−based control without safety limit condition (low−cost hybrid algorithm) 144 samples
IAE = 9.36

IAEP = 2.67

IAD = 4.58

Figure 8.7: Experimental results: control of the position with the event-based PID controller
without safety limit condition (hybrid algorithm).

We also proposed to improve the algorithms without safety limit condition, adding i) a min-
imum sampling condition and/or ii) some extra samples (depicted in subsections 6.2.4 and 6.2.5
respectively). In the first scheme, the controller updates the control signal only if a given amount
of time is elapsed from the last sample, that is when h(ta) ≥ hmin. The results are shown in
figure 8.8 (still with the hybrid algorithm). Eventually, the minimum sampling condition clearly
allows to reduce again the number of samples (15 % of samples less than in our initial proposal).
In the second case, some extra samples are enforced (hextra periodically) after a transient in or-
der to decrease the steady-state error. The results are shown in figure 8.9. However, the number
of samples increases since some samples are added after each transient (two in the present case).

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− PID event−based control with minimum sampling interval condition 121 samples
IAE = 9.65

IAEP = 3.68

IAD = 10.3

Figure 8.8: Experimental results: control of the position with a minimum sampling interval
(hybrid algorithm).

8.2.1.3 Perturbations and robustness

Finally, the system is submitted to some perturbations - slowing down the drive-shaft of the
motor - in order to see if an event-based scheme correctly reacts when the system does not work
as well as in theory. The test bench is extended to a 20 s-experiment with two steps and the
chosen algorithm is still the hybrid one. For both results in figure 8.10, when controlling the

211 Chapter 8 - Experimental results

0 1 2 3 4 5 6 7 8 9 10
time [s]

In
st

an
ts

Sampling instants

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− PID event−based control with extra samples 138 samples
IAE = 9.85

IAEP = 3.77

IAD = 12

Figure 8.9: Experimental results: control of the position adding 2 extra samples (hybrid algo-
rithm).

velocity and the position, the event-based control is robust since the measurement still tracks
the setpoint. Of course the number of samples increases to dynamically take into account the
perturbations. On the first plot, a perturbation is applied at about 3 s and two successive ones
then occur at 11 and 12 s, but the asynchronous PI control allows the velocity to track back the
reference as soon as the perturbation disappears. Respectively, the PID strategy also correctly
controls the position in spite of two perturbations at 3 and 12 s. At the end, the robustness of
an event-based scheme is hence demonstrated in practice.

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants

0 2 4 6 8 10 12 14 16 18 20

0

5

10

time [s]

V
el

oc
ity

 [m
/s

]

Setpoint and measured signal

setpoint
measurement

Perturbation on the motor’s velocity −− PI hybrid algorithm

(a) Test on the velocity

0 2 4 6 8 10 12 14 16 18 20
time [s]

In
st

an
ts

Sampling instants

0 2 4 6 8 10 12 14 16 18 20

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Perturbation on the motor’s position −− PID hybrid algorithm

(b) Test on the position

Figure 8.10: Experimental results: robustness to some perturbations on the system (slowing
down the drive-shaft of the motor).

Part II - Asynchronous control scheme for closed-loop systems 212

8.2.2 State-feedback control strategy using Lyapunov sampling mechanism

Let

ẋ = A · x+B · u
y = C · x

be the system to control. As explained in subsection 7.1.1, a state-feedback strategy consists in
applying the control law u = −K ·x to the system input, whereK is the state-feedback gain. The
resulting closed-loop system becomes the autonomous system ẋ = A · x, where A = A−B ·K.
Moreover, in the Lyapunov sampling scheme, the control law is constant over sampling intervals,
and an event is enforced with respect to a Lyapunov function (see chapter 7 for further details).
Here, the classical energetic quadratic function is used, that is

V = xT · P · x

where P = P T > 0 is a symmetric positive-definite matrix which has to satisfy AT ·P+P ·A < 0
- or alternatively AT · P + P ·A = Q, where Q is positive definite also - in order to ensure that
the system is stable. Fortunately, the Matlab function lyap(A, Q) allows to resolve such an
equation, providing both parameters P and K for a given system.

On the other hand, the system will have to track a given reference r in the next experimental
tests. For this reason, an extra term is added in the control law. This yields u = −K ·x+Kr · r,
where Kr is a tunable gain which is calculated such as

Kr = −
(
C ·
(
A−B ·K

)−1 ·B
)−1

in order the system correctly tracks the reference. Furthermore, an integral state is also applied,
defined such that ż = r − y, in order to guarantee a null steady-state error. Eventually, the
control law becomes

u = −K · x+Kr · r +Kz · z

where Kz is a new tunable parameter. Finally, the closed-loop system thus yields
[
ẋ
ż

]
=
[
A−B ·K B ·Kz

−C 0

]
·
[
x
z

]
+
[
B ·Kr

1

]
· r

This augmented state will be used to ensure a null static error but we do not want to apply it
to the Lyapunov function. Indeed, only the internal state will be used to decide when updating
the control signal and, for this reason, the state z does not complexify the event detection.

As regards the experimental bench, the setpoint to track is the same than in subsection 8.2.1:
the reference starts with an amplitude of 10 during 5 s before going back to 0 for 5 s more.

8.2.2.1 Control of the position

The principle explained in introduction allows to calculate the control parameters which will
be used in the state-feedback strategies. They result in

P =
[
2.9406 0

0 0.2747

]
, K =

[
0 0.25

]
, Kr = 0.25 and Kz = 1

213 Chapter 8 - Experimental results

The different sampling intervals are hnom = 0.01 s and hmin = 0.02 s. Eventually, some other
parameters required in the different asynchronous strategies are ν = ν = ν = 0.1, ε = 0.02 and
υ = 1 (see the recap in section 7.3 for further details).

The experimental results for the classical approach - detailed in subsection 7.1.1 - are rep-
resented in figure 8.11. The top plot shows the setpoint and the measured signal, whereas the
bottom plot shows the system energy, that is the Lyapunov function. Note that, as for the PID
controllers, the number of samples required to perform the test bench and some performance
indexes are also indicated.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Time−based state−feedback control 1000 samples
IAE = 7.2

IAEP = 0

IAD = 0

Figure 8.11: Experimental results: control of the position of the cart with a conventional (time-
triggered) state-feedback controller.

The Lyapunov sampling mechanism - introduced by Velasco et al. and detailed in subsec-
tion 7.2.2 - enforces a control update when the current value of the Lyapunov function becomes
equal to a ratio of its value at the previous sample. The energy gain factor η defines this ratio.
This simple scheme ensures that the system is stable in the Lyapunov sense (since the energy
decreases event after event) but the system dynamics could become unstable if the next level
is never crossed. The stable Lyapunov sampling promises an infinite sequence of samples in
restricting the value of the energy gain factor in such a way that η∗ < η < 1. This results in
an off-line algorithm used to calculate η∗, which is η∗ = 1 in the present study, as highlighted
in figure 8.12. The previous restricting condition cannot be satisfied and so is the stability.
Consequently, the original Lyapunov sampling mechanism cannot be directly applied to control
the position of the cart and an improvement is hence required.

1. In a first time, a simple modification was proposed in subsection 7.2.2.3, in order to enforce
a new event as soon as the system becomes unstable (that is when the Lyapunov function
increases). Applying this small improvement now allows to run the system. The simulation
results are presented in figure 8.13 with η = 0.1. In fact, using this small value allows to
considerably reduce the number of samples, but the system becomes unstable sometimes.
Anyway, the modification leads to stabilize it back.

2. Another modification is also proposed in subsection 7.2.3 in order to not have to calculate
the minimum possible value η∗ (and so run the computationally heavy off-line algorithm).
Some relaxations of the condition η∗ < η < 1 were proposed and the energy gain factor is
now varying. It dynamically changes to increase the sampling intervals when the system is
stable, and decrease them when the system diverges. The results of these less-conservative
strategies are drawn in figure 8.14. An extra plot represents the dynamics of the variable
η(t). Before detailing the different proposals, one could already note that an important

Part II - Asynchronous control scheme for closed-loop systems 214

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
η* = 1

 Initial condition θ [rad]

 E
ne

rg
y

ga
in

 fa
ct

or

Position −− Values of the energy gain factor

Figure 8.12: Simulation results: possible values of η̂(·) calculated with the off-line algorithm
(needed in the stable Lyapunov sampling mechanism) for the position’s control
case in order to obtain η∗.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Lyapunov sampling mechanism 78 samples
IAE = 8.49

IAEP = 5.44

IAD = 17.7

Figure 8.13: Experimental results: control of the position with an asynchronous state-feedback
controller using the Lyapunov sampling mechanism with improvement.

reduction of computation is achieved since only (less than) 10 % of samples allow to obtain
almost the same performance than the classical scheme. The IAEP index for instance -
which compares the event-based system response with the time-triggered one - is always
lower.

• The first relaxation consists in slowly decreasing the energy gain factor when the
Lyapunov function decreases, and drastically going back to η∗ as soon as the system
becomes unstable. However, this solution still needs to know η∗ and, consequently,
to run the off-line algorithm.
• The second relaxation is an immediate improvement to have an on-line running. The

previous relaxation is modified, replacing η∗ by the maximum possible value of η, that
is 1−ε by construction. The results are drawn in figure 8.14(a). The system response
is quite good, as one can notice looking at the different indexes of performance which
are all very low.
• A third relaxation then slowly decreases and slowly increases η(t). The results are

represented in figure 8.14(b) and lead to reduce the number of samples again.
• Finally, a more formal variation of the energy gain factor is proposed, considering

this parameter as a state variable in the control algorithm, which now evolves with
respect to the variation of the Lyapunov function and the sampling interval. The
results, depicted in figure 8.14(c), are still close to the time-triggered response.

215 Chapter 8 - Experimental results

0 1 2 3 4 5 6 7 8 9 10
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5
1

time [s]

η(
t)

Energy gain factor η

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Less−conservative Lyapunov sampling mechanism (relaxation 2) 82 samples
IAE = 6.43

IAEP = 1.1

IAD = 6.6

(a) Relaxation 2: slowly decrease/drastically increase η(t) in an on-line running

0 1 2 3 4 5 6 7 8 9 10
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5
1

time [s]

η(
t)

Energy gain factor η

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Less−conservative Lyapunov sampling mechanism (relaxation 3) 68 samples
IAE = 6.41

IAEP = 2.98

IAD = 8.56

(b) Relaxation 3: slowly decrease/slowly increase η(t)

0 1 2 3 4 5 6 7 8 9 10
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5
1

time [s]

η(
t)

Energy gain factor η

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Less−conservative Lyapunov sampling mechanism (relaxation 4) 77 samples
IAE = 6.34

IAEP = 1.62

IAD = 6.06

(c) Relaxation 4: a more formal variation of η(t)

Figure 8.14: Experimental results: control of the position with an asynchronous state-feedback
controller using a less-conservative Lyapunov sampling mechanism.

Part II - Asynchronous control scheme for closed-loop systems 216

0 1 2 3 4 5 6 7 8 9 10
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5
1

time [s]

η(
t)

Energy gain factor η

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Minimum sampling interval condition (relaxation 2) 57 samples
IAE = 7.91

IAEP = 3.31

IAD = 7.74

(a) Relaxation 2: slowly decrease/drastically increase η(t) in an on-line running

0 1 2 3 4 5 6 7 8 9 10
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5
1

time [s]

η(
t)

Energy gain factor η

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Minimum sampling interval condition (relaxation 3) 52 samples
IAE = 8.43

IAEP = 4.33

IAD = 13.2

(b) Relaxation 3: slowly decrease/slowly increase η(t)

0 1 2 3 4 5 6 7 8 9 10
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 1 2 3 4 5 6 7 8 9 10
0

0.5
1

time [s]

η(
t)

Energy gain factor η

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Motor’s position −− Minimum sampling interval condition (relaxation 4) 51 samples
IAE = 7.84

IAEP = 3.68

IAD = 7.87

(c) Relaxation 4: a more formal variation of η(t)

Figure 8.15: Experimental results: control of the position with an asynchronous state-feedback
controller using a less-conservative Lyapunov sampling mechanism with a minimum
sampling condition.

217 Chapter 8 - Experimental results

These encouraging results are completed with the ones obtained in figure 8.15, where a minimum
sampling condition is added. The principle was explained in subsection 7.2.4. The idea is to
update the control signal only if the elapsed amount of time since the last sample is larger than
a given value hmin. This allows to reduce again the number of samples (about 30 % less than
with out initial proposals), still with some acceptable performance.

8.2.2.2 Perturbations and robustness

Eventually, some perturbations are introduced during some experiments, as one can see in
figure 8.16 at 3 and 12 s. Two strategies are tested: the less-conservative Lyapunov sampling
scheme and when adding a minimum sampling interval condition. In both cases, the system is
robust and the position continues to track the setpoint. Actually, some events occur during the
perturbation because the Lyapunov function changes.

0 2 4 6 8 10 12 14 16 18 20
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 2 4 6 8 10 12 14 16 18 20

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Perturbation on the motor’s position −− Less−conservative Lyapunov sampling

(a) Less conservative Lyapunov sampling mechanism

0 2 4 6 8 10 12 14 16 18 20
0

100

200

time [s]

E
ne

rg
y

V
(t

)

System energy

0 2 4 6 8 10 12 14 16 18 20

−5

0

5

10

15

time [s]

P
os

iti
on

 [m
]

Setpoint and measured signal

setpoint
measurement

Perturbation on the motor’s position −− Minimum sampling interval condition

(b) Less conservative Lyapunov sampling mechanism (with a minimum sampling condition)

Figure 8.16: Experimental results: robustness to some perturbations on the system (slowing
down the drive-shaft of the motor).

8.3 Further results in stabilizing the inverted pendulum

In the previous section, we tested the event-based proposals on some linear systems. The
experimental results were very encouraging and we propose to apply the asynchronous
control schemes to an unstable nonlinear system, the inverted pendulum. Such a
system requires to update the control law very often else its arms fall down. Only the state-
feedback control strategies will be tested on this four-order system.

Part II - Asynchronous control scheme for closed-loop systems 218

As explained in subsection 8.1.2, controlling the inverted pendulum is divided into two parts:
i) the balancing to achieve an upright position and ii) the stabilization of the pendulum when
it is close to its equilibrium point. Only the second part is studied here. The control principle
is detailed in subsection 8.2.2. The classical state-feedback strategy u = −K · x is used and an
extra term is added for friction compensation, that yields u = −K · x+Kf . Then, the control
parameters which will be used by the different state-feedback strategies are obtained. They are

P =




2.43 −9.29 2.45 −2.30
−9.29 173.50 −20.24 42.54
2.45 −20.24 5.00 −5.02
−2.30 42.54 −5.02 10.56


 and K =

[
−1 37.32 −2.43 9.27

]
.

Moreover, the friction parameter is ±0.1 when the velocity is positive or negative, 0 otherwise.
The time-triggered sampling period is hnom = 0.01 s. Only the third relaxation will be tested
here. The parameters required in this strategy are ν = ν = 0.1 (see the recap in section 7.3 for
further details).

The experimental results for the classical approach are represented in figure 8.17 where the
four top plots show the states of the system: the position and the velocity of the cart ; the angle
and the angular velocity of the pendulum. The bottom plot shows the control signal. Note
that the number of samples required to perform the bench is also indicated. One could see two
distinctive parts in the experimental results. The first part is the balancing of the pendulum
until it achieves its equilibrium state. Thus, from 0 to about 20 s, the angle of the pendulum
oscillates until achieving the origin. This balancing can be done manually or in using a special
strategy, as explained in subsection 8.1.2. Once the equilibrium point is achieved, the inverted
pendulum is stabilized thanks to the state-feedback controller and remains stabilized during the
whole test bench. On the other hand, the cart evolves in order to keep this stability and one can
hence see the position slowly tending to the origin too. Only the second part will be analyzed
and, therefore, a zoom is performed in figure 8.18. The number of samples is finally indicated
only for the stabilizing part.

Then, the system is tested with an event-driven controller using a Lyapunov sampling mecha-
nism. We directly implement the less-conservative Lyapunov sampling mechanism, and only the
third relaxation is tested (due to a lack of time). Thus, the control signal is updated when the
system trajectory achieves some given levels. The experimental results are shown in figure 8.19.
Two extra plots are represented: the system energy (that is the Lyapunov function) and the
dynamics of the energy gain factor η(t) used for event detection. One could already notice that a
real reduction of the number of samples is achieved (about 55 % less) while similar performance.
One could also note that the energy gain factor evolves with respect to the Lyapunov function.
Eventually, the results confirm the interest of an event-based setup, since an important gain is
performed, even in the case of an unstable system which requires to update the control law very
often. Furthermore, the control signal is correct since it is not always saturated.

At the end, the same asynchronous state-feedback controller is tested with some other pa-
rameters. It is now implemented with

P =




0.12 0 0 0
0 0.87 0 0
0 0 3.63 0
0 0 0 186.86




where a lot of zero compose the P matrix in order to reduce even more the control computational
cost. The results are drawn in figure 8.20. Finally, this second scheme also gives good results.

219 Chapter 8 - Experimental results

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

time [s]

P
os

iti
on

 [m
]

Position of the cart

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

time [s]

V
el

oc
ity

 [m
/s

]

Velocity of the cart

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

time [s]

A
ng

le
 [r

ad
]

Angle of the pendulum

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

time [s]

A
ng

le
 v

ar
ia

tio
n

[r
ad

/s
] Variation of the angle of the pendulum

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

time [s]

S
ig

na
l u

(t
)

Control signal

Pendulum −− Time−based state−feedback control 10000 samples

Swinging Stabilizing

Figure 8.17: Experimental results: the two parts - balancing and stabilizing - in controlling the
inverted pendulum (using time-triggered control laws).

Part II - Asynchronous control scheme for closed-loop systems 220

20 30 40 50 60 70 80 90 100
−0.5

0

0.5

time [s]

P
os

iti
on

 [m
]

Position of the cart

20 30 40 50 60 70 80 90 100
−0.1

0

0.1

time [s]

V
el

oc
ity

 [m
/s

]

Velocity of the cart

20 30 40 50 60 70 80 90 100
−0.2

0

0.2

time [s]

A
ng

le
 [r

ad
]

Angle of the pendulum

20 30 40 50 60 70 80 90 100

−0.2

0

0.2

time [s]

A
ng

le
 v

ar
ia

tio
n

[r
ad

/s
] Variation of the angle of the pendulum

20 30 40 50 60 70 80 90 100
−2

0

2

time [s]

S
ig

na
l u

(t
)

Control signal

Pendulum −− Time−based state−feedback control 8090 samples

Figure 8.18: Experimental results: stabilizing of the inverted pendulum with a conventional
(time-triggered) state-feedback controller.

221 Chapter 8 - Experimental results

20 30 40 50 60 70 80 90 100
−0.5

0

0.5

time [s]

P
os

iti
on

 [m
]

Position of the cart

20 30 40 50 60 70 80 90 100
−0.1

0

0.1

time [s]

V
el

oc
ity

 [m
/s

]

Velocity of the cart

20 30 40 50 60 70 80 90 100
−0.2

0

0.2

time [s]

A
ng

le
 [r

ad
]

Angle of the pendulum

20 30 40 50 60 70 80 90 100

−0.2

0

0.2

time [s]

A
ng

le
 v

ar
ia

tio
n

[r
ad

/s
] Variation of the angle of the pendulum

20 30 40 50 60 70 80 90 100
−2

0

2

time [s]

S
ig

na
l u

(t
)

Control signal

Pendulum −− Less−conservative Lyapunov sampling mechanism (1) 3644 samples

20 30 40 50 60 70 80 90 100
0

5

time [s]

E
ne

rg
y

V
(t

)

System energy

20 30 40 50 60 70 80 90 100
0

0.5
1

time [s]

η(
t)

Energy gain factor η

Figure 8.19: Experimental results: stabilizing of the inverted pendulum with an asynchronous
state-feedback controller using the less-conservative Lyapunov sampling mechanism
(relaxation 3).

Part II - Asynchronous control scheme for closed-loop systems 222

20 30 40 50 60 70 80 90 100
−0.5

0

0.5

time [s]

P
os

iti
on

 [m
]

Position of the cart

20 30 40 50 60 70 80 90 100
−0.1

0

0.1

time [s]

V
el

oc
ity

 [m
/s

]

Velocity of the cart

20 30 40 50 60 70 80 90 100
6.1

6.2

6.3

6.4

time [s]

A
ng

le
 [r

ad
]

Angle of the pendulum

20 30 40 50 60 70 80 90 100

−0.2

0

0.2

time [s]

A
ng

le
 v

ar
ia

tio
n

[r
ad

/s
] Variation of the angle of the pendulum

20 30 40 50 60 70 80 90 100
−2

0

2

time [s]

S
ig

na
l u

(t
)

Control signal

Pendulum −− Less−conservative Lyapunov sampling mechanism (2) 3888 samples

20 30 40 50 60 70 80 90 100
0

5

time [s]

E
ne

rg
y

V
(t

)

System energy

20 30 40 50 60 70 80 90 100
0

0.5
1

time [s]

η(
t)

Energy gain factor η

Figure 8.20: Experimental results: stabilizing of the inverted pendulum with another asyn-
chronous state-feedback controller using the less-conservative Lyapunov sampling
mechanism (relaxation 3).

223 Chapter 8 - Experimental results

Moreover, the energy gain factor is clearly decreased. One could note that the angle of the
pendulum is stabilized at 2π here (instead of 0) which is another equilibrium point.

8.4 Synthesis

In this chapter, we proposed to implement for the first time some event-based control strate-
gies in a real-time system, in order to highlight the advantage of such an asynchronous control
scheme. Different algorithms were tested in practice. They can be divided into two parts, which
refer to chapter 6 and 7 respectively:

1. Six event-based PID controllers using a level-crossing detection mechanism allow to reduce
the number of samples with similar performance of the closed-loop system. These algo-
rithms are based on the work of Årzén in [10], where a safety maximum period is added
forcing the control to be recomputed even if the measured signal remains unchanged (for
stability reason). We shown that this re-computation is not needed thanks to the level
detection.

• The different approaches were implemented on a real testbed in this chapter, where
the velocity and the position of an electric motor are controlled. The experimental
results confirmed the ones obtained in simulation, and highlighted the robustness of
an event-based control law to system errors.

• Event-triggered controllers with a minimum sampling condition were also tested. This
scheme consists in performing a new control signal only if a given amount of time
was elapsed since the last sample. This principle leads to reduce again the number
of samples.

• Finally, some extra samples are added after the transients. This results in decreasing
the system error even more in order to have a better steady-state interval.

2. On the other hand, four asynchronous state-feedback controllers driven by a Lyapunov
sampling mechanism were also implemented in real-time. Lyapunov sampling consists in
defining the events related to the value of a Lyapunov function. Existing work in [68] relies
on the heavy off-line computation of a parameter, that was removed while still ensuring
stability.

• This approach was tested to control the position of an electric motor and to stabilize
an inverted pendulum. Besides a noticeable reduction of the mean control computa-
tion cost, robustness to some perturbations was also demonstrated.

• Eventually, the minimum sampling condition was applied to the Lyapunov-based
scheme. It allows to reduce both the number of samples and the control computational
cost.

As a result, the advantage of an asynchronous scheme is clearly highlighted for linear and non-
linear systems. Therefore, the encouraging results strongly motivate to continue developing some
event-based control strategies (for networked controlled systems for instance).

Conclusion and future works

Summary of the thesis and main
contributions

This thesis mainly contributes to reduce both the system energy consumption and the control
computational cost in embedded electronic devices. This thesis deals more especially with the
problems occurring in sub-micrometric technologies and the benefit in using some asynchronous
control approaches.

• The first part of the thesis is devoted to some parasitic physical phenomena, which do
not influence the circuit at a higher scale, but become very annoying at a nanometric one.
New architectural designs are required and some control loops become essential in such
architectures. The chips have to be i) low-power and ii) highly robust to process variability
(one of the leading causes for chip failures and delayed schedules). On the first hand,
a dynamic power management technique is possible using a voltage scalable processor.
Indeed, decreasing the supply voltage and/or the clock frequency allows to reduce the
computational activity of the device and, consequently, its power consumption. However,
the maximum delay over the critical path of the circuit has to be ensured. This involves
restricting both control variables together. Therefore, the key point is to control the
energy-performance tradeoff. On the other hand, the process variability affects the entire
physical design environment, from power management through timing and signal integrity.
It introduces an uncertainty about how a fabricated system will perform. Thus, although
a circuit is designed to run at a nominal clock frequency, the fabricated implementation
may vary far from this expected performance. As a result, the control law has to adapt
itself to this inherent dispersion.

• The asynchronous scheme provides a promising solution for a chip design. For instance, the
globally asynchronous locally synchronous systems are chips split into multiple frequency
domains, where each domain is synchronous with respect to its clock. Such an architecture
can mitigate the impact of process and temperature variations, because a globally asyn-
chronous system does not require that the global frequency was dictated by the longest
path delay of the whole chip. Nevertheless, the asynchronous approaches depicted in this
thesis are from a control theory point of view. Actually, contrary to the classical scheme
which samples the controlled system uniformly in time, an asynchronous (or event-based)
framework updates the control signal only when the measurement sufficiently changes.
This theoretically enables to reduce the number of samples and, consequently, to save
computations in the control task. This point is important in all embedded systems with
low allocated resources. However, only some primary works exist on event-driven con-
trollers. Moreover, it is difficult to untie the well-established paradigms of the classical

Conclusion and future works 228

approach. Nevertheless, some encouraging results lead to develop new asynchronous con-
trol strategies.

Various strategies have been studied in this thesis, to address the depicted control problems.
The most important contributions are highlighted just below.

Contribution on the system energy consumption reduction

The main contributions on controlling the energy-performance tradeoff in electronic chips are
presented in part I. They can be summarized as follows:

1. A monocore architecture was proposed to control the voltage and the frequency of a single
voltage scalable processor. The main component in this proposal is a controller which
monitors the computational activity of the device (its speed) and then calculates the con-
trol variables to send to the actuators. They are a Vdd-hopping and a ring oscillator
which respectively provide the voltage and the frequency. Finally, this closed-loop archi-
tecture makes possible to decrease the power consumption in reducing the supply voltage
and/or the clock frequency. Furthermore, the control strategy will have to take care of the
computational performance of the device.

2. An intuitive frequency and voltage control strategy was immediately suggested. It allows
the measured computational speed to track an average speed setpoint (the speed required
to fit the task with its deadline) in order to ensure some good system performance. In fact,
a simple PI control law is applied on the integral of the error and gives the (continuously
varying) frequency dynamics. The voltage level is then deduced between two possible
values from a hysteresis function. At the end, the maximum delay over the critical path
is ensured restricting both control variables together (four approaches were proposed for
this restriction).

3. A computational speed control strategy was also proposed. Since a task can be executed
with two voltage levels, the control law aims at building a more energy-efficient speed
setpoint to minimize the penalizing high voltage running time. A robust fast predictive
control law (with a low computational cost) is applied to build this new reference. Even-
tually, the frequency and voltage control is adapted in order to still guarantee some good
computational performance.

4. The fast predictive control strategy was then extended to a fully discrete architecture,
where the frequency becomes discretely varying. Thus, M voltage and N frequency levels
are now possible. This scheme reduces the control computational cost. Moreover, an
estimation of the possible computational speeds (when the system runs with a given voltage
and frequency levels) allows to calculate the control variables without any information on
the system parameters. As a result, this proposal is strongly robust to process variability
which occurs in sub-micrometric electronic chips.

5. Some tricks were finally proposed to reduce the control computational cost of the different
strategies.

6. An approximated stability analysis was performed to intuitively show that the different
control strategies make the system stable.

7. Based on these seminal results, a multicore architecture was suggested too. Several process-
ing nodes, working together on a single chip, are all power supplied with the same supply

229 Summary of the thesis and main contributions

voltage and clock frequency. However, a certain degree of freedom is possible thanks to
some frequency ratios which allow the different devices to work with a ratio of the clock.

8. An intuitive multicore control strategy was suggested. It is based on the full duplication of
the monocore scheme and allows to easily obtain a control algorithm. However, this first
strategy multiplies the control computational cost as many times as devices, but it has the
advantage to keep the robustness and stability properties of the monocore proposals.

9. A second multicore strategy, based on partial duplication, then consists in not repeating
the monocore scheme as many times as devices in order to reduce the control cost. The
proposal calculates the frequency ratios focusing on the critical task to treat (the task
which requires the maximal frequency/speed to fit with its deadline). At the end, the
penalizing high voltage running time of the corresponding device is minimized - to reduce
the energy consumption - while guaranteeing the computational performance of the whole
system. Furthermore, this control law is still robust to process variability and stable
anyway.

10. A fully discrete multicore control scheme was also proposed for an architecture working
with M voltage and N frequency levels.

11. Another multicore architecture was suggested. It consists in controlling several chips work-
ing with the same supply voltage but with their own clock frequency. The resulting control
strategies were not developed for this second architecture but an extension from the pre-
vious proposals seems easy.

12. At the end, some simulation results of the different monocore and multicore control strate-
gies were presented. They demonstrate that a fast predictive control technique allows to
minimize the energy consumption while guaranteeing some computational performance.
The different control strategies give an important reduction of the energy consumption in
comparison with a system without DVFS or DVS mechanism. Furthermore, the proposals
lead to low control computational needs, more especially for the fully discrete proposals.
The control strategies are also highly robust in the case of high dispersion phenomena.

Contribution on the control computational cost reduction

The main contributions on an asynchronous control scheme are detailed in part II. They can be
summarized as follows:

1. Different event-based PID control algorithms were proposed. The proposals avoid to
recompute the control law after a large amount of time was elapsed while the measurement
remains unchanged, as done in the original work of Årzén in [10]. To compensate this safety
maximum period, a forgetting factor was imagined. It allows to reduce the impact of the
integral gain in the integral part of the control strategy. This approach is somehow similar
to the anti-windup one, where the error induced by the saturation has to be compensated.
Based on this idea, six controllers without safety limit condition were proposed:

- algorithm only without safety limit condition,

- algorithm with saturation of the integral gain,

- algorithm with an exponential forgetting factor of the sampling interval,

- algorithm using a hybrid strategy,

- exponential algorithm with low-cost implementation,

Conclusion and future works 230

- hybrid algorithm with low-cost implementation.

2. A low computational cost scheme was proposed, adding a minimum sampling interval
condition. This was done in order to lighten the transients. Thus, a new control signal is
enforced only if a given (minimum) amount of time was elapsed since the last sample.

3. In order to reduce even more the error margin during the steady-state intervals, we also
suggested to add some extra samples just after the transients.

4. All the event-based PID algorithms (without safety limit condition, with minimum sam-
pling condition and with extra samples) were compared in simulation, both with the con-
ventional time-triggered controller and the original Årzén’s event-based controller. Be-
sides a noticeable reduction of the mean control computation cost, the performance of the
closed-loop system was also improved.

5. Different asynchronous state-feedback control law based on Lyapunov sampling were then
suggested. Actually, such a stable mechanism, initially proposed in [68], is based on
restricting the energy gain factor in the Lyapunov sampling condition (which defines the
length of the level detection), and yet, calculating this parameter requires to execute a
computationally heavy off-line algorithm. As a result, four less-conservative methods were
developed relaxing the constraints on the energy gain factor and making varying this
parameter:

- slowly decrease/drastically increase the energy gain factor,

- improvement for an on-line running,

- slowly decrease/slowly increase the energy gain factor,

- a more formal variation of the energy gain factor.

Three of the last proposals allow a fully on-line running, which results in a very low control
computational cost.

6. The minimum sampling interval condition originally introduced for some PID controllers
(to lighten the transients) was also extended to the asynchronous state-feedback controllers.

7. Eventually, the Lyapunov theory allows to prove that an asynchronous scheme can decrease
the computational cost while ensuring the stability of the system, even if the system is not
sampled during a long amount of time.

8. At the end, the different event-driven (PID and state-feedback) control strategies were
implemented for the first time in some real-time systems. The experimental results strongly
highlight the advantage of the asynchronous control scheme.

List of publications

International conference papers with proceedings

1. S. Durand, N. Marchand. “Further results on event-based PID controller”. In
proceedings of the 10th European Control Conference (ECC’09), Budapest, Hun-
gary (2009).

2. S. Durand, N. Marchand. “An event-based PID controller with low computa-
tional cost”. In proceedings of the 8th International Conference on Sampling
Theory and Applications (SampTA’09), special session on Sampling and Industrial
Applications, Marseille, France (2009).

3. S. Durand, N. Marchand. “Fast Predictive Control of Micro Controller’s
Energy-Performance Tradeoff”. In proceedings of the 3rd IEEE Multi-conference
on Systems and Control, 18th IEEE International Conference on Control Ap-
plications (CCA’09), tutorial session on Low Power Electronic, Saint Petersburg, Rus-
sian Federation (2009).

4. S. Durand, N. Marchand. “Energy Consumption Reduction with Low Computa-
tional Needs in Multicore Systems with Energy-Performance Tradeoff”.
In proceedings of the 48th IEEE Conference on Decision and Control (CDC’09),
Shanghai, China (2009).

5. H. Zakaria, S. Durand, L. Fesquet, N. Marchand. “Integrated Asynchronous Regu-
lation for Nanometric Technologies”. In proceedings of the 1st European work-
shops on CMOS Variability (VARY’10), Montpellier, France (2010).

6. S. Durand, N. Marchand. “Fully Discrete Control Scheme of the Energy-
Performance Tradeoff in Embedded Electronic Devices”. In proceedings of
the 18th World Congress of IFAC, Milano, Italia (2011).

7. S. Durand, N. Marchand, J.F. Guerrero Castellanos. “Simple Lyapunov Sampling for
Event-Driven Control”. In proceedings of the 18th World Congress of IFAC,
Milano, Italia (2011).

Conclusion and future works 232

Patents

1. S. Durand, N. Marchand. “Dispositif de commande d’alimentation d’un calcu-
lateur”. Patent nř 09/004686 (March 2009).

2. S. Durand, N. Marchand. “Dispositif de commande d’alimentation d’un calcu-
lateur”. Patent nř 09/01576 (October 2009).

Journals (under preparation)

1. S. Durand, N. Marchand. “Control of the Energy-Performance Tradeoff in
Embedded Electronic Devices: a Robust Approach to Process Variability”.

2. S. Durand, N. Marchand, J.F. Guerrero Castellanos. “Event-Based PID Control
Strategies without Safety Limit Condition”.

3. S. Durand, N. Marchand, J.F. Guerrero Castellanos. “Simple Lyapunov Sampling”.

Miscellaneous

1. H. Zakaria, L. Fesquet, S. Durand, C. Albea-Sanchez, Y. Thonnart, C. Canudas-de-Wit,
N. Marchand. “Integrated Asynchronous Regulation for Nanometric Tech-
nologies: Application to an Embedded Parallel System”. In MINATEC
CROSSROADS, Grenoble, France (2008).

Perspectives

Following the investigations described in this thesis, many perspectives can be considered to
complete and improve this work. Here some possible issues are given:

1. A physical implementation of the energy-performance tradeoff control (in part I) is impor-
tant in order to test the real performance of the proposed control strategies and, therefore,
validate our work. This will be performed on a nanometric chip, in collaboration with the
CEA-leti laboratory in a post-doctoral work. In addition, the results will demonstrate
the high robustness to process variability before implementing it in some manufactured
SoCs.

2. The encouraging results on the asynchronous control scheme (in part II) strongly motivate
to develop some new event-driven control strategies for some more general systems:

• Actually, the value of the control parameters in the different PID controllers were
obtained by pole placement of the closed-loop system in the time-triggered case. The
event-based controllers are designed with the same values and the aim is then to be as
close as possible of the time-triggered closed-loop shaping. However, a better solution
would be to directly calculate these parameters for the asynchronous controllers. New
tools have to be developed in this sense.

• An extension of the proposed asynchronous state-feedback control laws can be per-
formed considering that all the states of the system are not measured. This will lead
to use an output-feedback strategy.

• In order to reduce even more the control computational cost of asynchronous con-
trollers based on Lyapunov functions, it would be interesting to choose a simple
matrix P (as quickly presented in section 8.3 when stabilizing the inverted pendu-
lum). Indeed, a matrix with a lot of null values reduces the number of operations
required to detect the events. A diagonilization of this matrix seems to be a suitable
solution and has to be more analyzed.

• The Lyapunov sampling mechanism would have to be adapted to some Control-
Lyapunov functions or Input-to-State Stability (ISS) analysis.

• The asynchronous strategies could also be adapted for networked controlled systems
for instance, where allocated resources are very low. The event-based scheme would
also be extended in the communication decisions.

Conclusion and future works 234

• It would be attractive to develop a physical demonstrator. This could be used to
highlight the advantage of an event-based technique in order to convince industrial
firms. Such a system could be a cruise control mechanism implemented on a remote
control car for example.

3. Eventually, it could be interesting to develop an asynchronous control of the energy-
performance tradeoff, mixing both parts of the thesis. A first solution could be to simply
make the clock of the controller varying - and consequently its sampling period - with re-
spect to the clock frequency of the system. A second solution would be to specifically build
an event-based approach to control the energy consumption on a globally asynchronous
locally synchronous chip.

References

237 References

[1] F. Aeschlimann, E. Allier, L. Fesquet, and M. Renaudin. Asynchronous FIR filters: towards
a new digital processing chain. In Proceedings of the 10th International Symposium on
Asynchronous Circuits and Systems, pages 198–206, 2004.

[2] F. Akopyan, R. Manohar, and A. Apsel. A level-crossing flash asynchronous analog-to-
digital converter. In International Symposium on Asynchronous Circuits and Systems,
2006.

[3] M. Alamir. Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes:
A Parametrized Approach for Fast Systems. Lecture Notes in Control and Information
Sciences. Springer-Verlag, London, 2006.

[4] C. Albea Sánchez. Nonlinear Control Design for Inverter And Converter. PhD thesis,
University of Grenoble (France) and University of Seville (Spain), 2010.

[5] E. Allier, G. Sicard, L. Fesquet, and M. Renaudin. A new class of asynchronous a/d
converters based on time quantization. In Ninth International Symposium on Asynchronous
Circuits and Systems, pages 196–205, 2003.

[6] E. Allier, G. Sicard, L. Fesquet, and M. Renaudin. Asynchronous level crossing analog
to digital converters. In Measurement (Special Issue on ADC Modelling and Testing),
volume 37, pages 286–309, 2004.

[7] A.-M. Alt and D. Simon. Control strategies for H.264 video decoding under resources
constraints. In Fifth International Workshop on Feedback Control Implementation and
Design in Computing Systems and Networks (FeBID 2010), 2010.

[8] A. Anta and P. Tabuada. Self-triggered stabilization of homogeneous control systems. In
Proc. of the IEEE American Control Conference, 2008.

[9] A. Anta and P. Tabuada. To sample or not to sample: Self-triggered control for nonlinear
systems. IEEE Transactions on Automatic Control, 55:2030 – 2042, 2010.

[10] K.-E. Årzén. A simple event-based PID controller. In Preprints of the 14th World Congress
of IFAC, Beijing, P.R. China, 1999.

[11] K. Åström and B. Bernhardsson. Comparison of periodic and event based sampling for
first-order stochastic systems. In Preprints 14th World Congress of IFAC, page 301Ű306,
1999.

[12] K. Åström and B. Bernhardsson. Comparison of Riemann and Lebesque sampling for first
order stochastic systems. In Proceedings of the 41st IEEE Conference on Decision and
Control, 2002.

[13] K. Åström and K. Furuta. Swinging up a pendulum by energy control. Automatica,
36:287–295, 2000.

[14] K. Åström and T. Hägglund. PID controllers: theory, design, and tuning, 2nd Edition.
The Instrumentation, Systems, and Automation Society, 1995.

[15] K. Åström and R. Murray. Feedback Systems: An Introduction for Scientists and Engineers.
Princeton University Press, 2008.

[16] K. Åström and B. Wittenmark. Computer Controlled Systems, 3rd Edition. Prentice Hall,
1997.

References 238

[17] B. Bidégaray-Fesquet and L. Fesquet. Signal processing for asynchronous systems (spass)
toolbox v1.0.0, 2006. http:// ljk.imag.fr/ membres/ Brigitte.Bidegaray/ SPASS/.

[18] B. Bidégaray-Fesquet and L. Fesquet. A fully nonuniform approach to fir filtering. Inter-
national Conference on Sampling Theory and Applications, 2009.

[19] D. Bland and A. Tarczynski. Optimum nonuniform sampling sequence for alias frequency
suppression. In International Symposium on Circuits and Systems, ISCAS, volume 4, pages
2693–2696, 1997.

[20] T. Burd and R. Brodersen. Processor design for portable systems. In The Journal of VLSI
Signal Processing, volume 13, pages 203–221, 1996.

[21] T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A dynamic voltage scaled micropro-
cessor system. In IEEE International Solid-State Circuits Conference Digest of Technical
Papers, volume 35, pages 1571–1580, 2000.

[22] C. Canudas De Wit, K. Crisanto Vega, and J. Jaglin. Non uniform sampling and entrohopy
coding in networked controlled linear systems. In Proceedings of the European Control
Conference, 2007.

[23] C. Canudas De Wit, J. Jaglin, and C. Siclet. Energy-aware 3-level coding and control
co-design for sensor network systems. In 16th IEEE International Conference on Control
Applications, 2007.

[24] A. Chandrakasan and R. Brodersen. Minimizing power consumption in digital cmos circuits.
In Proceedings of the IEEE, volume 83, pages 498–523, 1995.

[25] M. Donkers and W. Heemels. Output-based event-triggered control with guaranteed linf -
gain and improved event-triggering. In Proc. of the IEEE Conference on Decision and
Control, 2010.

[26] A. Eqtami, D. Dimarogonas, and K. Kyriakopoulos. Event-triggered control for discrete-
time systems. In Proc. of the IEEE American Control Conference, 2010.

[27] S. Fairbanks and S. Moore. Analog micropipeline rings for high precision timing. In
Proceeding of the International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 41–50, 2004.

[28] L. Fesquet and H. Zakaria. Controlling energy and process variability in system-on-chips:
needs for control theory. In Proceedings of the 3rd IEEE Multi-conference on Systems and
Control - 18th IEEE International Conference on Control Applications, 2009.

[29] K. Flautner, D. Flynn, D. Roberts, and D. Patel. An energy efficient soc with dynamic
voltage scaling. In proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, pages 324 – 327, 2004.

[30] K. Flautner, S. K. Reinhardt, and T. N. Mudge. Automatic performance setting for
dynamic voltage scaling. In Mobile Computing and Networking, pages 260–271, 2001.

[31] F. Gomez Estern, C. Canudas De Wit, F. Rubio, and J. Fornes. Adaptative delta-
modulation coding for networked controlled systems. In IEEE American Control Con-
ference, 2007.

239 References

[32] J. Hamon, L. Fesquet, B. Miscopein, and M. Renaudin. High-level time-accurate model
for the design of self-timed ring oscillators. In 14th IEEE International Symposium on
Asynchronous Circuits and Systems, pages 29–38, 2008.

[33] W. Heemels, R. J. A. Gorterb, A. van Zijla, P. P. J. van den Boscha, S. Weilanda, W. H. A.
Hendrixa, and M. R. Vonder. Asynchronous measurement and control: a case study on
motor synchronization. Control Engineering Practice, 7:1467–1482, 1999.

[34] W. Heemels, J. Sandee, and P. van den Bosch. Analysis of event-driven controllers for
linear systems. International journal of control, 81:571–590, 2009.

[35] E. Hendricks, M. Jensen, A. Chevalier, and T. Vesterholm. Problems in event based engine
control. In Proc. of the IEEE American control conference, 1994.

[36] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage
processors. In Proceedings of the International Sympsonium on Low Power Electronics and
Design, pages 197–202, 1998.

[37] J. Jaglin, C. Canudas De Wit, and C. Siclet. Delta modulation for multivariable centralized
linear networked controlled systems. In Conference on Decision and Control, 2008.

[38] M. Krstic, E. Grass, F. Gurkaynak, and P. Vivet. Globally asynchronous, locally syn-
chronous circuits: Overview and outlook. IEEE Design and Test of Computers, 24:430–441,
2007.

[39] W. Kuzmicz, E. Piwowarska, A. Pfitzner, and D. Kasprowicz. Static power consumption
in nano-cmos circuits: Physics and modelling. In Proceeding of the 14th International
Conference Mixed Design of Integrated Circuits and Systems, 2007.

[40] I. Lopez, C. Abdalla, and C. Canudas De Wit. Gain-scheduling multi-bit delta-modulator
for networked controlled system. In Proceedings of European Control Conference, 2007.

[41] Y. Lu and G. De Micheli. Comparing system-level power management policies. IEEE
Design and test of Computers, 18:10–19, 2001.

[42] J. Lunze and D. Lehmann. A state-feedback approach to event-based control. Automatica,
46:211–215, 2010.

[43] N. Marchand. Stabilization of Lebesgue sampled systems with bounded controls: the chain
of integrators case. In Proceedings of the 17th IFAC World Congress, 2008.

[44] D. Marculescu and E. Talpes. Energy awareness and uncertainty in microarchitecture-level
design. IEEE Micro, 25:64–76, 2005.

[45] F. Marvasti. Nonuniform Sampling: Theory and Practice. Kluwer Academic/Plenum
Publishers, 2001.

[46] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems. IEEE
Trans. on Automatic Control, 35(7):814–824, 1990.

[47] M. J. Mazo, A. Anta, and P. Tabuada. On self-triggered control for linear systems: Guar-
antees and complexity. In Proceedings of the 10th European Control Conference, 2009.

[48] S. Miermont, P. Vivet, and M. Renaudin. A power supply selector for energy- and area
-efficient local dynamic voltage scaling. In PATMOS’07: 17th International Workshop on
Power and Timing Modeling, Optimization and Simulation, pages 556–565, 2007.

References 240

[49] T. Minka. The lightspeed matlab toolbox v2.2, 2009. http://research.microsoft.com/en-
us/um/people/minka/software/lightspeed/.

[50] R. Murueta Fortiz. Estabilización de un péndulo invertido sobre base móvil a partir
del equilibrio estable mediante control híbrido (in Spanish). Master’s thesis, Benemérita
Universidad Autónoma de Puebla y Facultad de Ciencias Físico-Matemáticas, 2009.

[51] A. Nicoli. Achieving yield in the nanometer age. In Mentor Graphics Corp., 2007.

[52] B. Pangrle and K. Shekhar. Leakage power at 90nm and below. In Synopsis Inc., 2005.

[53] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the lparm microprocessor
system. In Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), pages 96–101, 2000.

[54] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-power micro-
processor. In Proceedings of the 7th Annual International Conference on Mobile Computing
and Networking, pages 251–259, 2001.

[55] B. Romanescu, M. Bauer, D. Sorin, and S. Ozev. Reducing the impact of process variabil-
ity with prefetching and criticality-based resource allocation. In Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques, 2007.

[56] J. Sánchez, M. Guarnes, and S. Dormido. On the application of different event-based
sampling strategies to the control of a simple industrial process. Sensors, 9:6795–6818,
2009.

[57] J. Sánchez, M. Guarnes, S. Dormido, and A. Visioli. Comparative study of event-based
control strategies: An experimental approach on a simple tank. In Proceedings of the 10th
European Control Conference, 2009.

[58] J. Sandee, W. Heemels, and P. van den Bosch. Event-driven control as an opportunity
in the multidisciplinary development of embedded controllers. In Proceedings of American
Control Conference, pages 1776–1781, 2005.

[59] O. Sename, D. Simon, and D. Robert. Feedback scheduling for real-time control of sys-
tems with communication delays. In Proceedings of the IEEE Conference on Emerging
Technologies and Factory Automation, volume 2, 2003.

[60] D. Simon, D. Robert, and O. Sename. Robust control/scheduling co-design: application
to robot control. In Proceedings of the IEEE Symposium on Real-Time and Embedded
Technology and Applications, pages 118–127, 2005.

[61] E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems.
Second Edition. Springer-Verlag, 1998.

[62] K. Sultan. Inverted pendulum: Analysis, design and implementation, 2003.

[63] P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Transactions on Automatic Control, 52:1680 – 1685, 2007.

[64] C. Van Berkel, M. Josephs, and S. Nowick. Scanning the technology: Applications of
asynchronous circuits. Proceedings of the IEEE, 87(2):223–233, 1999.

241 References

[65] K. Van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij, and A. Peeters. Asyn-
chronous circuits for low power: a DCC error corrector. IEEE Design and Test of Com-
puters, 11(2):22–32, 1994.

[66] H. Van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and G. Stegmann.
An asynchronous low-power 80C51 microcontroller. In Proceedings of the 4th International
Sympsonium on Advanced Research in Asynchronous Circuits and Systems, pages 96–107,
1998.

[67] A. Varma, B. Ganesh, M. Sen, S. Choudhury, L. Srinivasan, and J. Bruce. A control-
theoretic approach to dynamic voltage scheduling. In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embedded Systems, pages 255–
266, 2003.

[68] M. Velasco, P. Martí, and E. Bini. On lyapunov sampling for event-driven controllers. In
Proceedings of the 48th IEEE Conference on Decision and Control, 2009.

[69] M. Velasco, P. Martí, and J. M. Fuertes. The self-triggered task model for real-time control
systems. In Proc. of the 24th IEEE Real-Time Systems Symposium, 2003.

[70] K. von Arnim, E. Borinski, P. Seegebrecht, H. Fiedler, R. Brederlow, R. Thewes, J. Berthold,
and C. Pacha. Efficiency of body biasing in 90-nm cmos for low-power digital circuits. IEEE
Journal of Solid-state Circuits, 40:1549Ű1556, 2005.

[71] X. Wang and M. Lemmon. State based self-triggered feedback control systems with l2
stability. In Proc. of the IFAC World Congress, 2008.

[72] X. Wang and M. Lemmon. Self-triggered feedback control systems with finite-gain l2
stability. IEEE Transactions on Automatic Control, 54:452, 2009.

[73] E. Yahya, O. Elissati, H. Zakaria, L. Fesquet, and M. Renaudin. Programmable/stoppable
oscillator based on self-timed rings. In 15th IEEE International Symposium on Asyn-
chronous Circuits and Systems, 2009.

[74] H. Zakaria. Integrated asynchronous regulation for decananometric technologies: Appli-
cation to an embedded reconfigurable parallel system. PhD thesis, University of Grenoble
(France), 2010.

[75] V. Zebilis and C. P. Sotiriou. Controlling event spacing in self-timed rings. In 11th IEEE
International Symposium on Asynchronous Circuits and Systems, pages 109 – 115, 2005.

[76] Y. Zhu and F. Mueller. Feedback dynamic voltage scaling dvs-edf scheduling: Correctness
and pid-feedback. In Workshop on Compilers and Operating Systems for Low Power, 2003.

Reduction of the energy consumption in embedded electronic de-
vices with low control computational cost

Abstract: The demand of electronic components in all embedded and miniaturized applications encourages to develop
low-cost components, in term of energy consumption and computational resources. Actually, the power consumption can
be reduced when decreasing the supply voltage and/or the clock frequency, but with the effect that the device runs more
slowly in return. Nevertheless, a fast predictive control strategy allows to dynamically manage this tradeoff in order to
minimize the energy consumption while ensuring good performance of the device. Furthermore, the proposals are highly
robust to tackle variability which is a real problem in nanometric systems on chip. Some issues are also suggested in
this thesis to reduce the control computational cost. Contrary to a time-triggered system where the controller calculates
the control law at each (constant and periodic) sampling time, an event-based controller updates the control signal
only when the measurement sufficiently changes. Such a paradigm hence calls for resources whenever they are indeed
necessary, that is when required from a performance or stability point of view for instance. The idea is to soften the
computational load by reducing the number of samples and consequently the CPU utilization. Some simulation and
experimental results eventually validate the interest of such an approach.

Keywords: Energy/performance tradeoff, nanometric electronic circuits, process variability, event-based control

Commande faible coût et réduction de la consommation d’énergie
dans les systèmes électroniques embarqués

Résumé: La course à la miniaturisation des circuits électroniques pousse à développer des systèmes faible coût, que
ce soit en terme de consommation d’énergie ou de ressources de calcul. Il est ainsi possible de réduire la consommation
en diminuant la tension d’alimentation et/ou la fréquence d’horloge, mais ceci a pour conséquence de diminuer aussi
la vitesse de fonctionnement du circuit. Une commande prédictive rapide permet alors de gérer dynamiquement un tel
compromis, de manière à ce que la consommation d’énergie soit minimisée tout en garantissant de bonnes performances.
Les stratégies de commande proposées ont notamment l’avantage d’être très robustes aux dispersions technologiques
qui sont un problème récurrent dans les nanopuces. Des solutions sont également proposées afin de réduire le coût de
calcul du contrôleur. Les systèmes à échantillonnage non-uniforme, dont la loi de commande est calculée et mise à jour
lorsqu’un événement est déclenché, sont ainsi étudiés. Ce principe permet de réduire le nombre d’échantillons et, par
conséquent, d’économiser des ressources de calcul, tout en garantissant de bonnes performances du système commandé.
Des résultats de simulation, et surtout expérimentaux, valident finalement l’intérêt d’utiliser une telle approche.

Mots-clé: Compromis énergie/performance, circuits électroniques nanométriques, variabilité du procédé de fabrica-
tion, commande déclenchée par événements

INRIA Grenoble - Rhône-Alpes
Inovallée
655 avenue de l’Europe,
Montbonnot
38 334 Saint Ismier Cedex, France

GIPSA-Lab, département
Automatique
Bâtiment ENSE3
961 rue de la Houille Blanche
BP 46
38 402 Grenoble Cedex, France

