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Abstract

Compressed sensing (CS) is a new sampling theory that was recently introduced
for efficient acquisition of compressible signals. In this thesis, we have studied prac-
tical applications of the Fourier-based CS sampling theory for biological microscopy
imaging, with two main contributions: (i) Image denoising: microscopic images
suffer from complex artifacts associated with noise and non-perfect illumination con-
ditions. In fluorescence microscopy, noise and photobleaching degrade the quality of
the image. In this work, we have exploited the CS theory as an image denoising tool,
using multiple random undersampling in the Fourier domain and the Total Variation
as a spatial sparsity prior. Compounding of images reconstructed from multiple sets
of random measurements enforce spatial coherence of meaningful signal components
and decorrelate noisy components. We have studied the relation between signal
sparsity and noise reduction performance under different noise conditions. We have
demonstrated on simulated and practical experiments on fluorescence microscopy
that the proposed denoising framework provide images with similar or increased
signal-to-noise ratio (SNR) compared to state of the art denoising methods while
relying on a limited number of samples. If Fourier-domain image point acquisitions
were feasible, the proposed denoising could be used as a fast acquisition scheme
which would enable to reduce exposition times, and reduce the photobleaching ef-
fects. (ii) Compressed digital holographic microscopy: high data throughput
is becoming increasingly important in microscopy, with high-resolution cameras (i.e.
large numbers of samples per acquisition) and long observation times. The com-
pressed sensing theory provides a framework to reconstruct images from fewer sam-
ples than traditional acquisition approaches. However, the very few measurements
must be spread over a large field of view, which is difficult to achieve in conven-
tional microscopy. In a first experiment, we have proposed a computational scheme
to perform fast temporal acquisitions of sequences of Fourier amplitude measures
in optical Fourier imaging and estimate the missing phase information from spectra
interpolation between few in-between complete keyframes. This approach was eval-
uated for high-frame rate imaging of moving cells. In a second experiment, we have
implemented a real CS acquisition scheme for digital holographic microscopy, ac-
quiring a diffraction map of the optical field and recovering high quality images from
as little as 7% of random measurements. The CS acquisition setup was successfully
extended to high speed low-light single-shot off-axis holography.

Keywords: Compressed sensing, inverse problems, total variation, Fourier sam-
pling, sparsity, denoising, biological imaging, microscopy, digital holography.





Résumé

La technique d’acquisition compressée (compressed sensing, CS ) est une nouvelle
théorie pour l’échantillonnage qui fût introduite afin de permettre l’acquisition ef-
ficace de signaux compressibles. Dans cette thèse, nous avons étudié des applica-
tions pratiques de cette technique d’échantillonnage, où les acquisitions sont réal-
isées dans le domaine de Fourier, menant aux deux principales contributions suiv-
antes : (i) Débruitage d’image : Les images microscopiques présentent souvent
des dégradations dûs à des artefacts complexes, associés à du bruit ou encore des
mauvaises conditions d’éclairage. En microscopie à fluorescence, le bruit et le pho-
toblanchiment altèrent la qualité de l’image. Notre travail a consisté à exploiter la
théorie d’acquisition compressée comme un outil de débruitage d’image. Nous avons
utilisé plusieurs acquisitions aléatoires dans le domaine de Fourier, et la variation
totale comme un a priori sur la parcimonie spatiale. La composition des différentes
images de reconstruction correspondant aux différents ensembles de mesures aléa-
toires renforce la cohérence spatiale de composants du signal significatifs et per-
met de décorréler les composants bruités. Nous avons étudié les relations entre la
parcimonie d’un signal et les statistiques et la performance pour la réduction du
bruit sous différentes conditions initiales de bruitage. Nous avons montré que la
technique proposée, basée sur un a priori sur la parcimonie du signal et sur des
échantillonnages aléatoires dans le domaine de Fourier, permet d’obtenir des im-
ages avec un rapport signal/bruit (SNR) au pire égal à celui obtenu avec les méth-
odes de débruitage classiques, tout en utilisant un nombre limité d’échantillons.
Sous réserve de pouvoir acquérir l’image dans le domaine de Fourier, le schéma
de débruitage proposé fournirait une méthode d’acquisition rapide nécessitant un
temps d’exposition moindre, réduisant les effets de photoblanchiment. (ii) Acquisi-

tion compressée en microscopie holographique : En microscopie, les données
en sortie deviennent considérables, impliquant notamment l’utilisation de capteurs
haute-définition (i.e. beaucoup d’échantillons par acquisition) et l’augmentation des
temps d’acquisition. La théorie de l’acquisition compressée fournit des outils pour
la reconstruction d’images, nécessitant moins d’échantillons que les approches clas-
siques. Cependant, les quelques mesures nécessaires doivent être prises dans un
domaine incohérent au domaine spatiale, ce qui est difficile à réaliser en microscopie
conventionnelle. Nous avons tout d’abord proposé un schéma de calcul permettant
l’acquisition de séquences temporelles de mesures d’amplitude dans le domaine de
Fourier, et l’estimation de l’information manquante sur la phase par interpolation
de spectre de quelques acquisitions complètes d’images. Cette approche a été mise
en pratique dans le contexte de l’imagerie rapide, utilisée pour des cellules en mou-
vement. Dans un deuxième temps nous avons implanté un schéma d’acquisition
compressée pratique, conçu pour l’holographie numérique. Ce schéma permet de
mesurer une figure de diffraction du champ optique et reconstruire images de haute
qualité à partir de seulement 7% de mesures aléatoires. L’expérience d’acquisition
compressée a été étendue avec succès à l’holographie compressée rapide à acquisition
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unique et dans des conditions d’éclairage faible.

Keywords: Acquisition compressée, problèmes inverses, variation totale, parci-
monie, échantillonnage dans le domaine de Fourier, débruitage, imagerie biologique,
microscopie, holographie numérique.
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General Introduction

Microscopy is an essential tool for biological research, as it enables to study cellular

and sub-cellular processes with the proper resolution. The search for methods aiming

at optimizing the image acquisition in microscopy constitutes nowadays a very active

research field. These methods try to fulfill different expectations. They can for

instance try to increase the image resolution or the frame-rate, focus on using fewer

pixels during measurement, be non-invasive, label-free, or aim at measuring only the

most relevant part of a scene. Such improvements usually result from new physical

systems, but may also happen from a new mathematics-based methods.

In this thesis we propose a framework which combines new acquisition pro-

tocols and mathematical imagery. The acquisition is tuned for the image recon-

struction to take into account the acquisition model and a new sampling theory

(compressed sensing). The goals are to improve the frame rates, to better pre-

serve samples and photons while providing an image reconstruction scheme able to

discriminate noise and signal. The theoretical basis of compressed sensing was in-

troduced by David Donoho, Emmanuel Candès, Justin Romberg and Terence Tao

[Candès 2004b, Candès 2004a, Donoho 2006b]. Its applications are nowadays among

the most competitive research topics on image processing (including medical and

biological imaging). Its principles are the following: after performing a transform

(typically, the Fourier transform) on a compressible signal and then making a very

limited number of acquisitions of transformed coefficients, each containing a small

piece of information about the whole signal, it is then possible to reconstruct almost

exactly the original signal. It is a much more efficient scheme than traditional sam-

pling techniques, which are based on the Shannon-Nyquist criterion and require a

large number of samples [Shannon 1948, Shannon 1949].

This thesis contributes mainly to two aspects of image processing and optical

microscopic imaging. The two main contributions have been organized into two

parts of the thesis document as follows.
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The first part presents a denoising framework based on random and incoher-

ent undersampling of Fourier coefficients and spatial sparsity for image reconstruc-

tion. Random and incoherent undersampling allow to capture the image informa-

tion in a way that helps to separate the true signal from the noise. In addition,

the sparsity introduces a regularization which enforces noise removal while pre-

serving the signal structure. This framework was mainly inspired by the sparse

coding theory [Olshausen 1997] and the unstructured sampling of compressed sens-

ing [Donoho 2006b, Candès 2004b]. First, we review important concepts on signal

and noise modeling, sampling theory, image denoising methods and compressed

sensing theory. We then detail our contribution for fluorescence image denoising

and present experimental results on biological microscopic data. The denoising ap-

proach combines random undersampling in the Fourier domain and total variation

minimization and provides high denoising performances for biological microscopic

images. We end the first part with a presentation of an improved version with better

denoising performances that uses a non-local merging approach to combine multiple

reconstructions.

The second part is dedicated to intelligent image acquisition and reconstruction.

We focus on improving the acquisition to obtain an optimal ratio between number

of measurements and data throughput. In this second part, we start by introduc-

ing the existing work about intelligent microscopy acquisition systems and also the

existing devices employing compressed sensing. Our initial implementation of com-

pressed acquisitions is then described. This work proposes to acquire complex-valued

Fourier coefficients by measuring optically the Fourier magnitude and then estimat-

ing the Fourier phase with interpolation between keyframes. We extend this work

by designing an microscopy acquisition scheme successfully combining compressed

sensing and digital holographic microscopy (DHM). The main idea is to gather off-

axis, frequency-shifting (for accurate phase-shifting) digital holography to obtain

quadrature-resolved random measurements of an optical field in a diffraction plane

with a total variation minimization algorithm to reconstruct the image.

Finally, we propose an improved DHM acquisition scheme. It employs high speed

low-light single-shot off-axis holography and a total variation minimization with

spatial support constraint to reconstruct the image. We present results consisting in

an experimental demonstration of accurate image reconstruction from very few low-

light (i.e. high noise level) holographic measurements. The reconstruction algorithm
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is improved by using a total variation minimization restricted to the spatial support

of the output image. The spatial support constraint enhances the image quality and

reduces the number of measurements.





Part I

A Denoising Framework for

Biological Microscopy





Chapter 1

Introduction

Microscopy imaging have seen recently the introduction of several new acquisition

techniques, allowing to observe smaller biological samples with increasing image

quality and screening speed [Vermot 2008, Liebling 2006]. In general, microscopic

images are acquired with a digital sensor such as CCD camera, enabling digital

storage, post-processing, quantitative display and interpretation. Microscopic im-

age processing is typically required to enhance the extraction of information about

the screened biological specimen. In biology, digital image processing has become

an integral part of microscopy screening protocols, and has been used to extract

quantitative information about cellular processes.

Recent developments in microscopic imaging techniques, allowing to observe

specimens with a nano-metric precision, have led to rapid discoveries in biology,

medicine and related fields. In this context, digital image processing is not only a

natural extension to microscopic imaging but is proving to be essential to the success

of the exploitation of new generations of microscopes.

Despite great progresses in microscopic image processing, image acquisitions in

optical microscopy remain corrupted by high-level noise components and rely on

weak signals acquired from the specimens (e.g. fluorescence). Noise, arising from

a variety of sources, is inherent to all electronic image sensors, but is particularly

critical in microscopic imaging. Ensuring that the signal level is adequate relative to

the noise level to allow the capture of accurate image information, remains a chal-

lenging problem. This chapter proposes a review of the noise sources contributing to

microscopic image degradation and present recent important denoising techniques,

based on sparsity constraints of the image content. We therefore also introduce the

theoretical basis of sparse representations, and signal compressibility. This thesis

has focused on the exploitation of compressed-sensing (CS) image reconstruction

for image denoising and acquisition. We introduce in this Chapter Fourier-based

signal decomposition and properties of Fourier-based measures with respect to the
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CS theory.
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1.1 Microscopic Imaging: Signal and Noise Models

For algorithm design, image models must distinguish the “noise” from the “true

signal” components. The noise component includes the artifacts disturbing the

observation of the pure signal of interest. Images acquired in microscopy are affected

by a large number of sources of distortions due to the spatial spread of the transfer

function of the optical system, the thermal motion of electrons in the electronic

circuits of the acquisition systems and the quantum nature of photons and electrons.

In a typical digital image sensor, for each incident photon hitting the photodetec-

tor element, one electron is liberated. The resultant charge in each pixel is linearly

proportional to the number of incident photons. The charge in each pixel will also
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increase due to the accumulation of electrons during the exposure time. The charge

is converted to a proportional voltage with or without amplification and finally

quantified by an analog-to-digital converter. In the detection process several noise

sources are involved and will corrupt the measured signal and its precision.

In digital microscopy, images are mainly contaminated by dark noise, photon

noise (or shot noise) and readout noise components. The dark noise is also called

Johnson-Nyquist noise. It corresponds to the electronic noise generated by the ther-

mal agitation of the electrons. More precisely, the kinetic vibration of silicon atoms

in the sensor substrate liberates electrons even when no incident photon is present.

The resulting charge contributes to the final signal intensity. Secondary sources of

the dark noise involve external radiation from nearby sources such as an indoor illu-

mination. The dark noise Nd follows a Poisson distribution, i.e., Nd ∼ P(λd), where

λd represents the average dark flux. In practice, high-quality sensors typically have

a cooler to reduce the dark noise.

The photon noise is also called shot noise, which is typically generated from

statistical quantum fluctuations of the number of photons sensed at a given exposure

level. Due to the stochastic nature of the photon emission, the photon noise is

inherent in all optical signals. Supposing the average photon flux to be λ, the

measured photon number Np follows a Poisson distribution with intensity parameter

λ, i.e., Np ∼ P(λ). If the photon flux is high enough, Np will be asymptotically

normally distributed with both the mean and the variance equal to λ.

The readout noise is mainly generated by the imperfectness of the output

amplifier during the process of converting the charge into a voltage signal. This

noise is usually described by a normal distribution, i.e., Nr ∼ N (µ, σ2). In some

cases, the readout noise may depends on the frequency of the sensor. We note that

the temperature can also have an effect on the amount of noise produced by an image

sensor due to leakage effects. There are other sources of noise such as quantization

noise and speckle. Here, we will mainly consider and model the dark, photon and

readout noise components since the other sources are negligible.

For electronic sensors, the signal-to-noise ratio (SNR) characterizes the quality

of a measurement and determines the ultimate performance of the screening system.

With a CCD or CMOS image sensor, the SNR value specifically represents the ratio

of the measured light signal and the combined noise components, which consist

of undesirable signals arising in the electronic system, and the inherent natural
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variation of the incident photon flux. Since the sensor collects charge over an array

of discrete physical locations, the signal-to-noise ratio may be thought of as the

relative signal magnitude, compared to the measurement uncertainty, on a per-pixel

basis.

In this section we discuss common models of microscopic signal involving the

main sources of noise present in microscopy imaging. We note that all sources

of noise can be modeled as Gaussian noise, Poisson noise or a mixture of both

distributions. In the following subsections the Gaussian and Poisson distributions

are detailed.

1.1.1 White Gaussian Noise

A white Gaussian noise is a statistical signal, with independent temporal values

drawn from zero-mean and constant variance Gaussian pdfs. The power spectral

density of a white Gaussian noise is equal throughout the frequency spectrum. The

term “white”, originated from the fact that white light contains equal energy over

the visible frequency band.

The Gaussian distribution or normal distribution in probability theory and

statistics is usually denoted by N (µ, σ2) where the parameters µ and σ2 are the

mean intensity and the variance of the distribution. The Gaussian distribution is

described by the probability density function

P(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 . (1.1)

A white Gaussian noise has µ = 0. An illustration of a Gaussian noise is provided

in Fig. 1.2c.

1.1.2 Poisson Noise

The quantum nature of photon emission leads to fluctuations in the counting process

of photons measured by the image detector. The emission of a photon during a small

time interval is modeled as a random event occurring with a fixed probability and

which is independent of the number of photons already emitted. The number of

photons received Np can then be modeled by a Poisson law Pλ(Np) of parameter λ:

Pλ(Np) =
λNpe−λ

Np!
(1.2)
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A process described by a Poisson distribution has a variance Var[Np] = λ equal

to its mean E[Np] = λ where the symbols E[R] and Var[R] correspond to the

expectation and the variance of a random variable R. Thus, the greater the intensity,

the higher the noise level. When the average count λ increases, the distribution of

the number of photons Np can be approximated by a normal distribution with

mean and variance λ : Np N (λ, λ). Finally, each photon received is converted into a

photo-electron with a probability ηq called the “quantum” efficiency of the detector.

The presence of a Poisson noise in microscopy images means that each pixel

value fluctuates about its mean λ with a standard deviation σ =
√
λ. In Fig. 1.1

we illustrate two histograms of poisson noise distributions (simulated on the image

in Fig. 1.2a). The first histogram is for a low average count λ = 5 and the second

histogram is for λ = 128. The second histogram illustrates very well the Gaussian-

like distribution when the average count increases.
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(b) λ = 128

Figure 1.1: Histogram of a Poisson noise for different parameter values.

1.1.3 Microscopic Image Formation Model

Microscopic images are normally contaminated by photon, dark and readout noises.

AsNp and Nd are independent Poisson variables, Np+Nd is also Poisson distributed.

The readout noise Nr is usually described by a Gaussian distribution, hence, the

global noise model can be described by Mixed-Poisson-Gaussian (MPG) process.

The observation model commonly adopted for the final detected signal x can be
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written as:

x(a, b) = ζU(A(a, b) + λB) + V, (1.3)

where U ∼ Pλ(Np), V ∼ N (µ, σ2)

where U = Np+Nd, V = Nr and ζ is the overall gain of the detector, A(a, b) is the

object intensity, λB is the mean intensity of the background, U is a Poisson variable

with parameter λ modeling the photon counting and dark noise, and V is a normal

distribution with mean intensity µ and standard deviation σ modeling the readout

noise, U and V are two random process assumed mutually independent.

In Fig. 1.2, we illustrate the image formation model where the final image

corresponds to a noise-free image corrupted with a mixture of Gaussian and Poisson

noise. We note that the Poisson noise in Fig. 1.2d, contrarily to the Gaussian noise

in Fig. 1.2c, is image-dependent as it originates from fluctuations in the counting

process of photons.

1.1.4 Image Estimation: Error and Similarity Measures

When working with signal estimation, restoration, reconstruction or denoising, it

is essential to be able to quantify the effect of the processing tasks in estimating

the true signal component. This is generally described as quantifying the difference

between the originally observed signal and the estimated signal. This difference is

commonly called a data fidelity measure or a measure of error. The goal of a signal

fidelity measure is to compare two images by providing a quantitative score that

describes the degree of similarity/fidelity or, conversely, the level of error/distortion

between them. As an alternative, the estimated image can be evaluated independent

of the content of the observed samples, by quantifying its visual quality.

We have used in this work different measures to quantify and compare our

method to other denoising approaches, including the mean-squared error (MSE),

the structural similarity index measure (SSIM) [Wang 2009], the signal-to-noise ra-

tio (SNR) and the contrast-to-noise ratio (CNR).

MSE and SSIM measures fall in the category of error measures while the SNR

and the CNR fall in the category of image quality measures.
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(a) Noise-free image (b) Noisy image

(c) Gaussian noise, µ = 20, σ = 10 (d) Poisson noise, λ = 10

Figure 1.2: Image formation model: Gaussian and Poisson noise simulations.

Mean-Squared Error. The mean-squared error (MSE) remains the standard

criterion for the assessment of signal fidelity given an original observation. This is a

global measure for comparing signals and is a powerful tool for variational estimation

methods, being derivable. Suppose a finite-length signal x = xi|i = 1, 2, ..., N and

x̂ being an estimator of x, the MSE measures the average of the quadratic distance

between the original and estimated signals and can be defined as:

MSE(x̂|x) = E[(x̂− x)2] (1.4)
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or,

MSE(x̂|x) = 1

N

N∑

i=1

(x̂i − xi)
2 (1.5)

It can also be viewed as a measure of the energy of the removed noise component

when used to estimate denoising efficiency. We note two important properties (i) it

is robust to outliers and (ii) when removing a zero-mean white Gaussian noise, it is

expected that E[R2] = σ2 for N (0, σ).

Structural Similarity Index Measure For many applications the MSE exhibits

low performance when dealing with perceptual signals such as images. The struc-

tural similarity index measure (SSIM) is a fidelity measure which takes into account

the structural information in the image [Wang 2004, Wang 2009]. The index de-

pends on local patch brightness measures, the similarity of local patch contrasts,

and the similarity of local patch structures. These local similarities can be simply

computed using basic statistics, as:

SSIM(x̂,x) = L(x̂,x) · C(x̂,x) · S(x̂,x) (1.6)

=

(
2µx̂µx +K1

µ2
x̂
+ µ2

x
+K1

)

·
(

2σx̂σx +K2

σ2
x̂
+ σ2

x
+K2

)

·
(
σx̂x +K3

σx̂σx +K3

)

,

where µx̂ and µx are the local means of x̂, x, σx̂ and σx are the local standard

deviations and σx̂x the cross correlations. The SSIM index is computed locally

within a sliding window that moves pixel-by-pixel across the image, resulting in

a SSIM map. The SSIM is symmetric (SSIM(x̂,x) = SSIM(x, x̂)) and bounded

−1 ≤ SSIM(x̂,x) ≤ 1 with SSIM(x̂,x) = 1 if x̂ = x.

Peak Signal-to-Noise Ratio The peak signal-to-noise ratio (PSNR) gives the

ratio between the power peak of the signal (i.e. the maximum possible pixel value)

and the power of the corrupting noise:

PSNR(x̂|x) = 10 · log10
R2

MSE(x̂|x) (1.7)

where R represents the dynamic range of pixel intensities. However, this measure

requires the knowledge of the uncorrupted signal which in practice is not always the

case.
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Signal-to-Noise Ratio Since the true uncorrupted signal is often not known, the

denoising performances are commonly evaluated via the signal-to-noise ratio (SNR)

measurement exploiting an underlying noise model. The SNR of the images can be

estimated from the noise model of (1.4) as:

SNR(x̂) =
ζA

√

ζ2(A+ λB) + σ2
(1.8)

In our context, the mixed Poisson-Gaussian noise parameters (ζ, λB, µ, σ) are

estimated using cumulant method, matching the first four cumulants of x̂ with the

k -statistics of the samples in a uniform image region [Rose 2002]. This exploits the

property that the k -statistics are the minimum variance unbiased estimators for

cumulants.

Contrast-to-Noise Ratio. The contrast-to-noise ratio (CNR) is also an inter-

esting measure of image quality. Indeed, when using a regularization term for the

optimization of the image reconstruction process, the CNR determines if the sharp-

ness of the object contours is compromised by the noise reduction. In other words, a

denoised image having high CNR guarantees that noise and high-frequency details

(such as sharp edges) were well discriminated by the regularization term. The CNR

measure can be computed as:

CNR =
|x̂ℜ1 − x̂ℜ2 |

σ

where x̂ℜ1 and x̂ℜ2 are signal intensities on the region ℜ1 and ℜ2, which correspond

to an object of interest and the surrounding background, and σ is the standard

deviation of the noise distribution model.

1.2 Image Representation, Norms and Sampling

In this section, we describe mathematical models for image representations and

measurements of information content via signal norms. We first introduce the basic

tools to the representation of images in a frequency domain such as the Fourier

domain. The Fourier domain is of central importance in our work since we have used

random sampling in this domain. The following subsections will describe sparse and

compact image representations commonly used for image denoising, compressed
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sensing, dictionary learning and image compression. We mainly focus on sparse

representations for image denoising and compressed sensing.

1.2.1 The Fourier Transform

The Fourier transform is a powerful tool in linear system analysis and is everywhere

in physics and mathematics. It decomposes a signal over oscillatory waveforms

that reveal its spectral content. In the work presented in this thesis, the Fourier

transform and its link with optics will be recalled and discussed several times in the

next chapters. One of the most remarkable and useful properties of a converging

lens is its inherent ability to perform two-dimensional Fourier transforms of the

image of the observed illuminated object. This complicated analog operation can

be performed using a coherent optical setup which takes advantage of the basic laws

of propagation and diffraction of light.

Mathematically, the Fourier analysis allows to represent any finite energy func-

tion x(t) as a sum of sinusoidal waves eiωt, also called the inverse Fourier transform:

x(t) =
1

2π

∫ +∞

−∞
X(ω)eiωtdω. (1.9)

In this decomposition, the Fourier transform X(ω) describes which frequencies are

present in the original function x(t), being defined as:

X(ω) =
1

2π

∫ +∞

−∞
x(t)e−iωtdt. (1.10)

In the discrete case and for 2-dimensional signals, such as for digital images, the

discrete Fourier transform (DFT) is expressed as:

X(ω, ν) = F{x(a, b)} : CN → C
N

X(ω, ν) =
1√
N

n−1∑

a=0

n−1∑

b=0

x(a, b)e−2πi(ω a
n
+ν b

n) (1.11)

where N = n× n is the total number of pixels.

The embedded structure of the DFT leads to fast Fourier transform (FFT)

algorithms, which compute discrete Fourier coefficients with complexity O(NlogN)

instead of N2 for an image of size N2. This is very important in the image processing

domain where N is often very large.
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1.2.1.1 The 1D Fourier Transform as a Decomposition

When dealing with linear systems it is useful to decompose a complex signal (e.g.

an image with complex features) into simpler inputs, calculate the response of the

system to each of these inputs, and superpose the individual responses to build up

the total response. Fourier analysis provides the basic tools for such decomposition.

Over discrete signals, the Fourier transform can be seen as a decomposition in a

discrete orthogonal exponential basis {e2πikn/N}, for 0 ≤ k ≤ N of C
N . This

decomposition has properties similar to the Fourier transform on functions, such as

hermitian symmetry and evenness/oddness of real and imaginary components.

Notice that the DFT can be computed using a Vandermonde matrix in the form:

V =










ω0·0
N ω0·1

N · · · ω
0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N










where

ωN =
1√
N
e−2πi/N (1.12)

Then, the DFT can be written as:







X0

...

XN−1






=







ω0·0
N · · · ω

0·(N−1)
N

...
. . .

...

ω
(N−1)·0
N · · · ω

(N−1)·(N−1)
N













x0
...

xN−1







or

F = Vf

and the inverse Fourier transform is given by the inverse of the matrix W
[Turner 1966]. We observe here that each Fourier coefficients Fi are therefore gen-

erated from a linear combination of all the points from the input signal fi. This will

become a crucial property of the Fourier transform for the exploitation of Fourier-

based measurements of sparse spatial signals.
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1.2.2 Image Transform and Sparsity

Signals can be decomposed on sets of basis functions, for multiple purposes, such

as spectral analysis, compression and denoising. For a finite-length signal x ∈ R
N

the projection on the basis Ψ ∈ R
N×N generates a vector of projection coefficients

c ∈ R
N such that x = Ψc. This means that we can write x as a linear combination

of N atoms from a dictionary Ψ.

x =
N∑

i=1

ψici (1.13)

If the projection basis functions Ψ form an orthogonal basis, the inverse trans-

form ΨT ∈ R
N×N can be used to compute the projection coefficients.

Well-known image transforms include the Fourier transform, wavelet transforms

or the discrete cosine transform. Besides spectral analysis performed with Fourier

basis functions, image transform usually targets a compact representation of the

original signal with few non-zero coefficients. The transform is then called sparsify-

ing. Choosing the appropriate sparsifying basis functions is a key step towards an

efficient sparse representation and applies to compressed sensing. The assumption

that natural signals, such as images, admit a sparse decomposition over a particular

dictionary leads to efficient algorithms for handling such data. In recent years, dic-

tionaries composed by a union of transforms were proposed to optimize the sparsity

of the decomposition of a given signal or image [Fadili 2006, Aharon 2005]. For com-

pression, the use of orthonormal basis is important to define a representation where

the signal is well approximated with few non-zero coefficients. This is less important

for signal estimation from noisy measures. All these applications are closely related

to approximation theory. Enforcing sparsity representations of images has been

used in denoising and compression since Donoho and Johnstone’s initial works in the

early 1990s [Donoho 1994, Donoho 1995b, Donoho 1998], where sparse signals in the

wavelet domain were denoised by assuming that the noiseless version of the signal is

sparse. In the past few years, many applications have employed sparse signal decom-

positions for signal denoising [Elad 2006], compression [Mallat 2009], enhancement

[Yu 2010], super-resolution [Yang 2010a, Yu 2009], inpainting [Fadili 2009] and de-

convolution [Fadili 2006]. These processing tasks all rely on the assumption that

the noise components are decomposed in separate components from the true signal,
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and with lower-intensity coefficients. Image decomposition on wavelet basis, along

with optimization of the dictionary of wavelet functions, remains computationally

costly. As an alternative, direct spatial norms have been proposed to measure the

sparsity of the image content in terms of homogeneous objects and background.

1.2.3 Sparsifying Transforms

Identification of suitable sparsifying transforms typically requires the optimization

of a non-linear approximation of the original signal from selected projection coeffi-

cients, associated with a subset of projection functions selected from a dictionary.

A dictionary is a collection of parameterized waveforms D = (ψγ)γ∈Γ. The wave-

forms ψγ are discrete-time signals called atoms. Depending on the dictionary, the

parameter γ can have the interpretation of indexing the frequency, in which case the

dictionary is a frequency or Fourier dictionary, of indexing the time-scale jointly, in

which case the dictionary is a time-scale dictionary, or of indexing the time-frequency

jointly, in which case the dictionary is a time-frequency dictionary. Usually dictio-

naries are complete or overcomplete, containing exactly N atoms, or more than

N atoms. One could also have continuum dictionaries containing an infinity of

atoms and undercomplete dictionaries for special purposes, containing fewer than

N atoms. The past decade has seen great successes in studying the optimization

of signal representation. Beyond the Fourier domain, where signals are represented

by a superposition of sinusoids of different frequencies, a large range of dictionaries

suited for the sparsification of natural signals and images have been proposed, such

as wavelets, curvelets, Gabor dictionaries, wavelet packets, steerable pyramids, and

much more. For a given signal x, a transform provides a decomposition of the sig-

nal and a reconstruction from the linear combination of a set of atoms (projection

functions) selected in a subset Γ of a dictionary D as:

x =
∑

γ∈Γ

αγψγ (1.14)

Sparsity of the signal decomposition is measured by the ℓp norm of the projection

coefficients:

‖ αγ ‖ℓp =
{∑

|αγ |p
}1/p

(1.15)

The transform is characterized as sparsifying if the ℓp-norm of the projection
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coefficients (for p = 0, 1) is small compared to the signal ℓp-norm so that only a

small subset of m coefficients is required to provide an accurate reconstruction of

the original signal, as:

x =

m∑

i=1

αγψγ + rm (1.16)

where rm is the residual, corresponding to the error made by preserving only m

coefficients, and is small for efficient sparsifying transforms.

The problem of selecting the subset of m coefficients bears two levels of nonlin-

earity. The first level of nonlinearity is the selection of a subset of m coefficients

from a larger set of N projections, usually based on the magnitude of the coeffi-

cients, given a family of basis functions. The second level of nonlinearity replaces a

single family of basis functions with a more general system which is not necessarily

minimal (for example, a redundant system or a dictionary of functions). Selection

of an optimal set of m coefficients in this setting is much more complicated than

with a single basis. However, the importance of redundant systems arises in both

theoretical questions and in practical applications.

Sparsifying transforms have played an important role in the past decade, notably

for denoising, compression and compressed sensing. The assumption that natural

signals, such as images, admit a sparse decomposition over a redundant dictionary

have lead to efficient algorithms for handling such sources of data. Sparsifying

transforms allow to project a signal in a low-dimensional or compact domain and

provide very strong prior information for image restoration.

Most of the new image dictionaries are overcomplete, and are made from a col-

lection of transforms such as Fourier and wavelets dictionaries, to handle piecewise

smooth and textured objects. In these cases, the decomposition (1.14) is non-unique.

Several methods have been proposed to identify signal-specific optimal decomposi-

tions, including matching pursuit (MP) and orthogonal matching pursuit (OMP).

Instead of exploiting pre-defined dictionaries as described above, Aharon et al. have

introduced the K-SVD algorithm [Aharon 2005], to learn a dictionary that leads to

sparse representations on some training signals.
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Searching Sparse Representations

It is useful to determine whether a signal has a sparse representation in a given dic-

tionary or union of basis [Gribonval 2003]. However, it is generally difficult to know

if the sparse representation of a signal is optimal [Gribonval 2005, Gribonval 2007].

If an orthonormal basis Ψ is used, then a signal x has a unique representation

c = Ψ−1x and we can learn whether x is S-sparse in c simply by inspecting this

vector. When Ψ is a frame (i.e. a basis with redundant projection functions), there

are infinitely many representations c for x. Several algorithms have been proposed

to obtain sparse representations for a signal x in a frame Ψ. We review in this

section the main ones.

ℓ0-norm Minimization

The most intuitive algorithm proceeds by finding the sparsest representation of a

signal x in a pre-defined basis Ψ. It can be estimated by computing the ℓ0 pseudo-

norm of the coefficients, defined as the total number of non-zero coefficients of the

resultant vector such as ‖ αγ ‖ℓ0 =
∑
α0
γ . The problem can be expressed as:

α̂γ = arg min
αγ∈RN

‖ αγ ‖ℓ0 subject to Ψαγ = x (1.17)

This algorithm will find the sparsest representation of x. However, the computa-

tional complexity is combinatorial and requires an exhaustive search of all possible

vectors x. For large scale signals this problem becomes intractable.

ℓ1-norm Minimization

As proposed by Chen, Donoho and Saunders [Chen 1998], a convex relaxation of

the problem (1.17) can be used by replacing the ℓ0 pseudo-norm by the ℓ1-norm,

defined as ‖ αγ ‖ℓ1 =
∑ |αγ |. The problem can be expressed as:

α̂γ = arg min
αγ∈RN

‖ αγ ‖ℓ1 subject to Ψαγ = x (1.18)

This algorithm is known as the Basis Pursuit (BP) and is detailed in the subsection

1.2.3.1. Thanks to the convex relaxation, this algorithm can be implemented as

a linear program, making its computational complexity polynomial in the signal

length.
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1.2.3.1 Basis Pursuit and Linear Programming

The principle of basis pursuit (BP) is to find a representation of the signal whose co-

efficients have minimal ℓ1 norm and is very close to the compressed sensing principle.

Formally, one solves the problem

α̂γ = arg min
αγ∈RN

‖ αγ ‖ℓ1 subject to Ψαγ = x

Instead of using of a standard quadratic norm which would provide a convex

problem, this algorithm replaces the ℓ2 norm with the ℓ1 norm. This apparently

slight change has major consequences. Solving the quadratic optimization problem

with linear equality constraints involves essentially just the solution of a system of

linear equations. In contrast, BP requires the solution of a convex, non-quadratic

optimization problem, which involves considerably more effort and sophistication.

This problem becomes feasible by using linear programming (LP) techniques and

a solution can be obtained by solving an equivalent linear program [Bloomfield 1983].

Greedy Algorithms

The greedy algorithms came as an alternative to optimization-based algorithms to

find sparse representations. The main idea behind these algorithms is to perform

iterations to select columns of Ψ with the greater correlation with the relevant

signal f.

The matching pursuit algorithm (MP) [Mallat 1993] proceeds iteratively by find-

ing the function Ψ within the dictionary most correlated to the signal residual, which

is obtained by subtracting the contribution of previously selected Ψ from the original

signal. The algorithm is defined as Algorithm 1.

While the MP algorithm is computationally efficient and often features good

performance, there are specific cases in which a dictionary of basis functions Ψ can

be constructed that defeat the algorithm by preventing convergence. Such a flaw is

manifested, for example, when the algorithm selects a cycle of functions Ψ that are

highly coherent to correct for an overcompensation made by a certain Ψ.

Matching pursuit approximations are improved by orthogonalizing the directions

of the projections [Davis 1994, Pati 1993]. The resulting orthogonal matching pur-

suit (OMP) converges with a finite number of iterations. This orthogonalization was

introduced by Mallat and Zhang together with the nonorthogonal pursuit algorithm.
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Algorithm 1 Matching pursuit

Input: Sparsifying basis Ψ and signal x
Output: List of coefficients c and ψ
1: Initialize: i = 1, r← x, ĉ0 = 0
2: while criterion on x 6= Ψc do
3: b← ΨT

ri; ⊲ form residual signal estimate
4: ĉi ← ĉi−1 + T (b, 1); ⊲ update largest magnitude coefficient
5: ri+1 ← ri −ΨT (b, 1); ⊲ update measurement residual
6: i← i+ 1;
7: end while
8: return x̂← Ψci

The algorithm is modified as shown in Algorithm 2, where we let ΨΩ denote

the restriction of the dictionary Ψ to the functions corresponding to the index set

Ω ⊆ 1, ..., N . The residual is obtained by subtracting the projection of the signal

x into the span of the previously selected functions. While OMP does not suffer

the aforementioned flaw, it is penalized in its computational complexity by the

calculation of the pseudoinverse of the matrix composed of the selected ΨΩ functions.

Algorithm 2 Orthogonal Matching pursuit

Input: Sparsifying basis Ψ and signal x
Output: List of coefficients c and ψ
1: Initialize: i = 1, r← x, ĉ0 = 0,Ω = ∅
2: while criterion on x 6= Ψc do
3: b← ΨT

ri; ⊲ form residual signal estimate
4: Ω ← Ω ∪ supp(T (b, 1)); ⊲ add index of residual’s largest magnitude

entry to signal support
5: ĉi|Ω ← Ψ†

Ωx, ĉi|Ω ← 0; ⊲ form signal estimate
6: ri+1 ← ri −ΨT (b, 1); ⊲ update measurement residual
7: i← i+ 1;
8: end while
9: return x̂← Ψci

1.2.4 Total Variation Measures on Images

The total variation (TV) measure was introduced as a spatial sparsity measure of

images in [Rudin 1994, Rudin 1992, Chambolle 1997]. For digital images, it mea-

sures the total amplitude of pixels variations, and is calculated by approximating
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the signal derivative by finite differences over the sampling distance, such as:

TV(x) =
∑

a,b

√

{x(a+1,b) − x(a,b)}2 + {x(a,b+1) − x(a,b)}2 (1.19)

The total variation thus measures the total amplitude of the oscillations of x.

We say that the discrete signal has a bounded variation if ‖ x ‖TV is bounded by

a constant independent of the spatial resolution N . Looking in more details at

the transform which produces the TV coefficients, it corresponds to the ℓ2-norm of

a particular operation on the image [Candès 2005d], based on the computation of

horizontal ∇a and vertical ∇b gradients and combination of these operators into a

complex-valued image: ∇a+ i∇b. The TV coefficients are the ℓ2-norm of this trans-

formed image (computed locally for each pixel) and the CS framework minimizes

the global ℓ1-norm of these TV coefficients over the whole image. Such a transform

corresponds to the decomposition of the image onto Heavisides basis functions, the

support of which is adaptive (similarly to the Basis Pursuit framework for decom-

positions on dictionaries of projection functions [Chen 1998]) and defined by the

localization of high-gradient values in the image (i.e. edge maps).

The TV value depends on the length of the image level sets, and is therefore

very sensitive to the presence of image noise, while being very simple to compute. It

therefore plays a very important role in image processing for denoising (TV filtering)

and variational segmentation. The total variation can be used a sparsity constraint

suited for piecewise regular images as it provides an intuitive and precise mathe-

matical framework to characterize the piecewise regularity of objects in an image.

More broadly, it can be used to compute approximation errors, to evaluate the risk

when removing noise components from an image, and to analyze the distortion rate

of image transform codes.

As we will see, the compressed-sensing framework relies on sparsity constraints

enforced on a reconstructed image. To provide additional computational efficiency,

it relies on a specific sampling of the image information in a domain incoherent with

the sparsity domain.
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1.2.5 Two-Dimensional Sampling Theory

The sampling theorem by C.E. Shannon in 1949 places restrictions on the frequency

content of the time/space function signal x. It states that in order to recover the

signal x exactly it is recommended to sample at a rate greater than twice its highest

frequency component. For example to sample an analog signal having a maximum

frequency of 2KHz requires sampling at greater than 4KHz to preserve and recover

the waveform exactly. The consequences of sampling a signal at a rate below its

highest frequency component results in a phenomenon known as aliasing due to

spectrum overlap. This phenomenon is roughly illustrated in Fig. 1.3, showing

that sampling the function represented by the red curve with low frequency can

result in the representation of the blue curve, which gives a completely erroneous

representation.
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Figure 1.3: Aliasing.

Imaging a scene with a photography digital camera for example involves the

measurement of thousands or millions of pixels, otherwise, to correctly display the

finest details of the scene. Respecting such sampling density may become rapidly

expensive in terms of acquisition time, design of large captors, storage size and

transmission bandwidth.

In reality, with rapid advancement in data acquisition technologies (i.e. analog-

to-digital and digital-to-analog converters) and in high-resolution sensor devices

such as CCD and CMOS captors, hundred of images are produced per second with

a resolution up to 106 pixels per image. The frame rate of a camera is normally

limited by its resolution. Moreover, the huge amount of data produced becomes

difficult to process and to analyze.
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From a mathematical point of view, we define a two-dimensional signal as an

array x[n,m], with values sampled on a signal of finite energy x(a, b) at discrete

spatial positions [n,m] in the plane. We further assume that the signal is band-

limited (i.e. with a zero power spectrum for frequencies ν > B) If samples are

taken sufficiently close to each other, the sampled image x[n,m] is an accurate

representation of the original image x(a, b), which can be reconstructed accurately

by interpolation of x[n,m]. More precisely, the sampling theorem states that the

original image can be fully recovered if it is sampled at a rate ν ≥ 2B. The value

ν = 2B is called the Nyquist frequency. The sampling theorem therefore sets the

equivalence, under specific conditions, between the knowledge of a continuous signal

x(a, b), known for all (a, b) and a set of samples x[n,m]. The conditions are: samples

[n,m] must be regularly spaced and with intervals smaller than 1
2B . A bandlimited

signal has an infinite support. Sampling on a finite number of samples implicitly

assumes that the signal is periodic (so that full knowledge of it can be acquired

with a finite set of measures), and therefore replicates the spectrum in the Fourier

domain, at intervals of ν. Reconstruction of the original image x(a, b) from the

samples x[n,m] can be done by masking the Fourier transform with the rectangle

function defined on the frequency support [−B,B]. The Fourier transform of the

rectangle function is the sinc function, and therefore corresponds to the interpolating

function to be used to reconstruct the original image, as:

x(a, b) =
∑

n,m

sinc(a− n, b−m)x[n,m] (1.20)

The compressed sensing introduced a novel framework to the sampling theory,

enabling to reconstruct some images from the acquisition of much less samples than

required by the Nyquist sampling frequency, under some specific constraints regard-

ing the content of the image, that will be discussed in the paragraph introducing

the CS.

1.3 Compressed Sensing Theory

Compressed sensing provides a mathematical framework for the reconstruction of

sparse signals (i.e. compressible signals) from few measures acquired in a domain in-

coherent with the sparsity domain. The main theoretical findings in this recent field
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have mostly focused on defining the minimum number of incoherent measurements

necessary to reconstruct an accurate representation of the original signal with a

high probability and the nonlinear optimization methods suited for the reconstruc-

tion process. Another equally important field of research focuses on the design

of novel sensing devices based on the CS sampling scheme, which is not a trivial

problem to solve. While current researches spend many efforts on performing faster

reconstruction of original signals from compressed measurements, we were interested

in this work in the acquisition process to achieve compressed sensing acquisitions of

microscopic images.

1.3.1 Signal Sparsity

A discrete signal is considered sparse when it has a large number of zero coefficients

in some basis. We define a S-sparse signal x ∈ R
N in the basis Ψ if there exists a

vector c ∈ R
N with only S ≪ N nonzero entries such that x = Ψc. We call the set

of indices corresponding to the nonzero entries the support of c and denote it by

supp(c).

An example of a S-sparse signal is illustrated in Figure 1.4 (left). Natural signals

measuring discrete events or natural images with smooth and homogeneous objects

can be considered approximately sparse in some spatial basis and can be accurately

approximated with a small set of coefficients as illustrated in Figure 1.4 (right).
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Figure 1.4: Signal sparsity. Left: S-sparse signal with S = 8, or 8 time-values being
non-zero. Right: Nearly S-sparse signal, with 8 strong coefficients and several small
coefficients.

Sparsity of a signal might not be trivially observed on the direct spatial obser-

vation, but rather identified with the use of appropriate projection basis functions.

Consider the simple signal in Figure 1.5 (top), represented in blue. This signal can
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be represented as a linear combination of Gaussian functions, represented in green

scattered line. A single Gaussian basis function is illustrated in Figure 1.5 (middle).

We can observe the sparse representation of the original signal on Gaussian basis

functions, composed by six elements (bottom). This example illustrates the upmost

importance of the choice of the sparsity basis.

Figure 1.5: Example of sparse representation of a signal (top) using a simple dictio-
nary (middle), and its respective coefficients (bottom).

In the general case [Chen 1998, Donoho 2001], we assume that we work with a

signal that has a S-sparse representation in a set of basis functions Ψ = {Ψi}Ni=1 if:

x =
∑

i

ciΨi with‖ c ‖ℓ0 = S (1.21)

Here Ψi represents a basis function and the ℓ0-norm is defined as the number of

nonzero coefficients of c.

Natural images typically have a compact representation when expressed in a

wavelet-types of basis functions. For example, we show a drosophyla cell in figure

1.6a and its wavelet coefficients in figure 1.6b (magnification in figure 1.6c). The



1.3. Compressed Sensing Theory 29

wavelet coefficients offer a compact representation with most coefficients close to

zero, and only few large coefficients that capture most of the information. This

property is used for the JPEG-2000 compression [Taubman 2002].

(a) Drosophyla cell.
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(b) Wavelet coefficients.
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(c) Magnification in the wavelet coefficients.

Figure 1.6: Original megapixel image with pixel values in the range [0,255] and its
wavelet transform coefficients.

In our framework we chosen the Total Variation (TV) as the sparsifying measure

used in the CS reconstruction, corresponding to projections on image-specific Heav-

isides basis functions [Candès 2006b, Cohen 1999]. This measure is well-known in

image processing and very popular in variational segmentation problems for its abil

ity to limit high frequency components and to provide regularized piecewise smooth

regions. This measure is also well suited for denoising where the goal is to restore an

image with smooth objects and background. Minimization of the TV norm, intro-
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Figure 1.7: Image sparsity illustrated in a two-dimensional spatial domain. Top left:
original image. Top right: sparse representation domain (using the gradient of the
signal). Bottom: intensity profiles from corresponding blue lines in the spatial and
gradient domains.

duced in [Chan 2001, Rudin 1992] for signal denoising, corresponds to a constraint

on the number of discontinuities in an image, and the homogeneity of the regions.

TV sparsity constraint for CS was introduced by Candès [Candès 2005d]. The TV

constraint is well suited for biological images, where structures and background pro-

vide small gradient values while a finite set of edges provides high gradient values

as illustrated in Figure 1.7 for drosophila ovocytes.

1.3.2 Sensing Matrix and Incoherence

In compressed sensing, we are constrained to perform image measures in a domain

incoherent with the sparsifying domain. Intuitively, sampled measures must contain
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dense information from the original image. If the signal is sparse in the basis defined

by Ψ, its content must be spread in the measurement domain defined by Φ, so

that the probability to sample zero values should be very small. The incoherence

constraint has been formulated through several criteria for Φ and Ψ, based on mutual

coherence measures [Candès 2006b, Donoho 2006a], or matrix properties such as

the Restricted Isometry Property (RIP) condition introduced by Candès and Tao

[Candès 2005e, Candès 2008]. The RIP condition is defined for Φ, an order k and

constant δk ∈ (0, 1) as:

(1− δk)‖ x ‖2 ≤ ‖ Φx ‖2 ≤ (1 + δk)‖ x ‖2 (1.22)

with x ∈ R
N , Φx ∈ R

M and M ≪ N . The RIP condition enforces the sensing

matrix satisfying the k-Restricted Isometry Property to act as a near isometry on

all k-sparse vectors. More precisely, to ensure unique and stable reconstruction of

k-sparse vectors, it is sufficient that Φ satisfies a 2k-RIP condition. Candès and Tao

[Candès 2005e, Candès 2008] have shown that whenever a matrix Φ satisfies this

property, we can obtain accurate reconstructions of sparsely sampled sparse signals

with high probabilities.

The two fundamental principles in compressed sensing are therefore to construct

suitable sparse sensing matrices Φ, and recover the signal from few measurements

efficiently, under some sparsity constraints in a domain incoherent with the sensing

domain. Now the question arises on how to design a suitable sensing matrix Φ. To

tackle this task, it is important to first take into account the fact that the incoherence

between Φ and Ψ affects the number M of required measurements as:

M = C · µ2(Φ,Ψ) · S · logN (1.23)

where µ(Φ,Ψ) is an incoherence measure, giving a rough characterization of the

degree of similarity between the sparsity and measurement systems, and can be

computed as:

µ(Φ,Ψ) = max
i,j
|〈Φi,Ψj〉| for ‖ Φi ‖2 ≃ 1

‖ Ψj ‖2 ≃ 1 (1.24)
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The definition of the number of required measurements M in (1.23) provides

some insights on how the choice of the sensing modality (Φ) and the signal model

(Ψ) affect the efficiency of the CS sampling scheme.

In the work presented in this thesis, we chose to perform Fourier-based acquisi-

tions based to the intrinsic frequency-content of the image information in optics and

the fact that random acquisitions in the Fourier domain, encoded by a matrix with

1s and 0s at random frequency locations, verifies the incoherence property when

combined with TV spatial constraints [Candès 2008]. The Fourier transform being

an orthogonal linear transform, sub-sampling of its coefficients does not provide

enough information to accurately reconstruct the original signal. The key compo-

nent of the CS sampling framework is to propose the formulation of an optimal

reconstruction of the original signal, given some a-priori constraints on its spatial

sparsity. This prior information reduces the number of degrees of freedom of x

making signal reconstruction possible and accurate with high probability. We note

that greater spatial sparsity of the observed image provides a larger support of its

frequency content leading to less measurements required and a better fit of the a

priori constraint during image reconstruction.

1.3.3 CS Image Recovery Algorithms

Before reviewing specific CS reconstruction algorithms, we provide a short review

some quadratically constrained ℓ1-minimization problems. We can start with the

basis pursuit problem formulated as:

(BPε) min
αγ∈R2

‖ αγ ‖ℓ1 subject to ‖ x−Ψαγ ‖ℓ2 ≤ ε (1.25)

where ε quantifies the uncertainty about the reconstruction of x when considering

that the projection coefficients are noisy. Generally, ε can be estimated, which

makes this formulation often preferred. A second commonly used approach considers

solving the problem in the Lagrangian form, such as:

(QPλ) min
αγ∈R2

‖ αγ ‖ℓ1 +
1

2
‖ x−Ψαγ ‖2ℓ2 (1.26)

which is also known as the basis pursuit denoising problem (BPDN) [Chen 1998].

This problem is popular in signal and image processing because of its loose interpre-
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tation as a maximum a posteriori estimate of x in a Bayesian setting. In statistics,

the same problem is known as the lasso [Tibshirani 1996]:

(LSτ ) min
αγ∈R2

‖ x−Ψαγ ‖ℓ2 subject to ‖ αγ ‖ℓ1 ≤ τ (1.27)

These three problems are equivalent provided that ε, λ, τ obey some special

relationships. With the exception of the case where the matrix Ψ is orthogonal, this

functional dependence is hard to compute [Berg 2008]. Usually, it is more natural

to determine an appropriate ε rather than an appropriate λ or τ , so that the BP

algorithm provides significant advantage over the BPDN and the lasso ones.

As detailed in the next chapter, the CS image reconstruction problem shares

some great similarities with the previous optimization problems. The quadratic

data fidelity term x = Ψαγ or its relaxed version is replaced by Φx = Φx̂ and the

sparsity constraint ‖ αγ ‖ℓ1 is replaced by ‖ Ψx̂ ‖ℓ1 or in our case ‖ x̂ ‖TV .

In this work we have used two algorithms to solve the ℓ1-minimization problem

for image reconstructions. The ℓ1-magic [Candès 2006c, Candès 2006e] was used in

the denoising framework to perform image reconstructions. In the second part, for

compressed holographic microscopy, the algorithm NESTA [Becker 2009] was used

for image reconstruction. The choice of the algorithms was performed based on

optimal computational times, given similar image quality performance. We would

like to emphasize though that the improvement or analysis of the existent algorithms

available to solve the CS reconstruction problem, with Fourier-based measures and

TV constraints is out of the scope of this thesis.

1.3.3.1 ℓ1-magic

ℓ1-magic was proposed in [Candès 2005a, Candès 2004b] by Candès et al. to recover

sparse signals via convex programming. More specifically, we used this algorithm to

solve quadratic data fidelity minimization with relaxed and unrelaxed constraints.

The algorithm consists in recasting the problem (1.18) as a second-order cone

program (SOCP) [Alizadeh 2003] or a linear program (LP) if f is real, and uses a

modern interior point solver [Nesterov 1994]. Although primal-dual techniques ex-

ist for solving second-order cone programs (see [Chan 1999, Alizadeh 2003]), their

implementation is not quite as straightforward as in the LP case. The ℓ1-magic algo-

rithm implements each of the SOCP recovery problems using a log-barrier method.
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The log-barrier method [Boyd 2004] is conceptually more straightforward than the

primal-dual method, but consists again in solving a series of Newton steps. Note

that solving the problem (1.18), if Φ is the identity matrix, reduces to the standard

Rudin-Osher-Fatemi image restoration problem [Rudin 1992].

1.3.3.2 NESTA

NESTA was proposed in [Becker 2009] by Becker et al. and is able to efficiently solve

the problem (1.18). This algorithm is based on Nesterov’s work [Nesterov 2007]

minimizing non-smooth functions, with an improved gradient descent method to

derive first-order approximations which achieve a convergence rate proved to be

optimal. As suggested by Nesterov’s work, the main idea of NESTA is a subtle

averaging of sequences of iterates, which has been shown to improve the convergence

properties of standard gradient-descent algorithms.

In our case, NESTA provides an iterative algorithm which solves both the ℓ1

and the TV minimization problem. It works by producing a decreasing sequence of

iterates converging to the solution. At each step, the new guessed iterate solution

is expressed as a linear combination of two terms. At the current point, the first

term makes the iterate evolve in the exact opposite direction than the objective

function gradient. Whereas the aim of the second term is to somehow keep track

of the previous gradient directions. Moreover, it has been proved in [Nesterov 2007]

that this second additional term helps to improve the convergence properties of the

algorithm. Both terms constitute a solution to a quadratic optimization subproblem,

which can be described analytically. In addition, if the property ΦΦ∗ = Id holds

(which means that the rows of Φ form an orthonormal family), then all matrix

inverts in the analytical solutions of the quadratic subproblems can be simplified.

This property results in a very fast computation of the optimal solution. The overall

algorithmic complexity of each NESTA iteration is O (N + CΦ), where CΦ stands for

the complexity of a Φ or Φ∗ application. When Φ is a subset of the rows of the

Fourier transform matrix, the property ΦΦ∗ = Id holds, CΦ = O (N log(N)) and the

computational cost of each NESTA step becomes then affordable.

NESTA is a first-order method for sparse recovery using an averaging of se-

quences of iterates to improve the convergence properties of standard gradient-

descent algorithms. NESTA is based in the Nesterov work [Nesterov 1983,

Nesterov 2004, Nesterov 2005] which proposed smoothing techniques with improved
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gradient method to derive first-order methods.

Nesterov proposed an algorithm to minimize any smooth function f on the

convex set Qp

min
x∈Qp

f(x)

where Qp is the primal feasible set. Assuming that f is differentiable and ∇f(x) is

Lipschitz, obeying:

‖ ∇f(x)−∇f(y) ‖ℓ2 ≤ L‖ x− y ‖ℓ2

where L is an upper bound on the Lipschitz constant. Based on theses assumptions,

the algorithm minimizes f over Qp by iteratively estimating three sequences xk, yk

and zk while smoothing the feasible set Qp.

Initialize x0. For k ≥ 0,

1. Compute ∇f(xk)

2. Compute yk:

yk = argminx∈Qp

L
2 ‖ x− xk ‖

2
ℓ2
+ 〈∇f(xk), x− xk〉

3. Compute zk:

zk = argminx∈Qp

L
σp
pp(x) +

∑k
i=0 αi〈∇f(xk), x− xk〉

4. Update xk:

xk = τkzk + (1 + τk)yk

Stop when a given criterion is valid.

for αk = 1/2(k+1) and τk = 2/(k+3) (see [Nesterov 2005]). A standard first-order

would stop in step two and replacing xk by yk−1. We note that yk is the current

guess of the optimal solution at the iteration k. The Nesterov’s approach propose to

compute zk which keeps a memory of all previous iterations by computing a weighted

sum of the previous gradients such as
∑k

i=0 αi〈∇f(xk), x−xk〉. It also makes use of

a prox-function pp(x) for the primal feasible set Qp, which is strongly convex with

parameter σp [Ben-Tal 2001]. Nesterov has also enlarged this framework to deal

with non-smooth convex functions [Nesterov 2005]. Becker et al. have extended the

Nesterov method with NESTA, which can solve recovery problems from incomplete

measurements, such as compressed sensing.



36 Chapter 1. Introduction

When using the relaxed data fidelity constraint, the CS is able to handle noisy

measurements in x and therefore operate as a denoising operator in the estimation

of x̂ thanks to the TV constraint. We have studied this property of the CS in this

thesis, and therefore provide a short review of sparsity-based denoising approaches

in the following paragraphs.

1.4 Image Denoising with Sparsity Constraints

In microscopy, image acquisition is often performed in low-light conditions, where

each photon detected by the captor is expensive and precious. However the impor-

tant signal is generally noisy making it difficult for biologists to analyze and extract

information about the specimen.

An example of noisy image in fluorescence microscopy is displayed in figure 1.8.

In this noisy image we can see that the light intensities from the membranes around

the cell nucleus are confused with the noise intensity and are difficult to observe.

Figure 1.8: Example of noisy fluorescence microscopy image.

A host of image denoising methods, well suited for piecewise smooth images,

have been developed such as Non-Local Means (NL-means) [Buades 2005], Total

Variation Filtering (TV) [Rudin 1992], non-linear isotropic and anisotropic diffusion

[Weickert 1998]. There are also methods which exploit the decomposition of the data
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onto wavelets, ridglets or curvelets basis functions and shrink the coefficients (i.e.

thresholding) to eliminate noise components [DeVore 1992, Donoho 1995d]. These

approaches work by adaptively thresholding the wavelet coefficients that correspond

to undesired frequency components. Recently, efficient denoising methods were also

developed based on sparsity and redundant representations over learned dictionaries

[Elad 2006], denoising image while simultaneously training a dictionary using the

K-SVD algorithm [Aharon 2005], or based on sparse code shrinkage and maximum

likelihood estimation of non-gaussian variables [Hyvärinen 1999].

In this section we present some state of the art denoising methods, relying on

various formulations of image sparsity content in terms of object contours. In this

context, a regularization parameter h, which measures the spatial extent of the low-

pass filtering applied to the image is used and tuned to depend on a noise level

estimator such as the noise variance σ2. A simple image denoising framework can

be defined as the decomposition of the observation into a noise-free signal (signal of

interest) component and a noise component,as:

x(a, b) = Dh(x(a, b)) + n(a, b) (1.28)

where x(a, b) is the noisy observed signal, Dh is the denoising operator and n(a, b)

corresponds to an additive noise component. After denoising, the noise component

can be estimated as the residue:

n(a, b) = x(a, b) −Dh(x(a, b)) (1.29)

which energy is typically constrained to be minimal, to avoid the inclusion of struc-

tured signal components.

1.4.1 Denoising via Wavelet Thresholding

Denoising by thresholding in the wavelet domain has been developed principally

by Donoho et al. [Donoho 1994, Donoho 1995c, Donoho 1995b, Donoho 1995a,

Donoho 1998].

The basic idea behind wavelet thresholding for denoising is to apply a well-

adapted wavelet threshold W to the noisy image x and suppose that W encodes

efficiently the noise-free signal by keeping only the most important coefficients of

W(x) to perform efficient denoising. Assume that the observed noisy data corre-
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sponds to:

x(a, b) = o(a, b) + n(a, b) (1.30)

where o(a, b) is the noise-free signal and n(a, b) is the noise. Let W(·) and W−1(·)
denote the forward and inverse wavelet transform operators. We intend to apply

the wavelet shrinkage denoise in x(a, b) in order to recover ô(a, b) as an estimate of

o(a, b). The wavelet estimation procedure has three main steps:

• Transform the observations x(a, b) by applying a discrete wavelet transforma-

tion. The result is a sequence of wavelet coefficients w[i], i = 1, ...n.

• Estimate the threshold λ and use this estimator to shrink the wavelet coeffi-

cients.

• Invert the wavelet transform with the thresholded coefficients, recovering the

estimator ô of the true signal o.

The three steps can be expressed as:

w = W(x)

wT = D(w)

ô = W−1(wT )

Selection of the threshold value and the shrinkage operator defining D are key com-

ponents of the efficiency of the denoising.In this context, several thresholding ap-

proaches of wavelet coefficients were proposed. In [Donoho 1994, Donoho 1998], the

authors introduced the RiskShrink with the minimax threshold and the VisuShrink

with the universal threshold. These papers discussed both hard- and soft-thresholds

in a general context that included ideal denoising in both the wavelet and Fourier

domains. In [Donoho 1995c], the SureShrink denoising was introduced with the

SURE threshold, the WaveJS James-Stein threshold, and the LPJS James-Stein

threshold but in the Fourier domain instead of the wavelet domain. We now provide

a short overview of hard- and soft-thresholding operators, and universal, minimax

and SURE thresholds selection.

Hard Thresholding. Let B = {a} be an orthonormal wavelet basis [Mallat 1998]

and wB[i] the i-coefficient of the wavelet transformation. One approach of wavelet
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denoising is to use a projection operator approximating the best projection, which

is called hard thresholding, and keep only coefficient greater than a certain threshold

λ,

wB[i] =







wB[i] if |wB[i]| > λ

0 if |wB[i]| ≤ λ

This approach is based on the fact that if B is well chosen, the noise-free data is

represented by large wavelet coefficients, whereas the noise is distributed across small

coefficients, which are cancelled by thresholding. The performance of this approach

depends on the ability of approximating x by a small set of large coefficients. This is

the case for wavelets that are well adapted to encode localized discontinuities such

as edges.

Soft Thresholding. In practice, a great amount of details and edges lead to

coefficients lower than the chosen threshold, while inversely, the noise can pro-

duce coefficients greater than λ. Thresholding these coefficients generates Gibbs-

like phenomenons and oscillations near the edges during the reconstruction. In

[Donoho 1995b], Donoho proposed a soft thresholding shrinkage operator to improve

the visual quality of the reconstruction,

wB[i] =







wB[i]−sgn(wB[i])λ
wB[i])

if |wB[i]| ≥ λ
0 if |wB[i]| < λ

Soft thresholding takes advantage of the continuity of the shrinkage function to

better preserve the local structure of the wavelet coefficients, and reduce the Gibbs

oscillations. In addition, soft thresholding still attenuates all small coefficients, as

an ideal denoising operator.

The threshold λ must be chosen larger than the maximum noise coefficients

to ensure good noise suppression and lower than the minimum signal coefficients

to preserve the original image. In practice λ will depend on the noise type and

noise statistics. For example, it can be shown that the maximum wavelet coefficient

intensity of a n-points white noise sequence with standard deviation σ has a high

probability of being smaller than σ
√
2 log n [Donoho 1994, Mallat 1998]. In practice,

this λ value is too high and cancels too many coefficients not produced by the noise.
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In figure 1.9 we illustrate the visual results of soft and hard thresholding applied on

the same image.
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Figure 1.9: Hard- and soft-thresholding functions applied to each wavelet coefficient.

Generic thresholds, such as the minimax threshold or the universal threshold

[Donoho 1994], that depend only on n, can be used in a three-step denoising pro-

cedure already described. However, if we prefer to use a data-adaptive threshold,

λ = d(U), such as the threshold selected by Stein’s unbiased risk estimator (SURE)

[Donoho 1995c], we must use a four-step procedure for wavelet shrinkage denoising:

w = W(f)

λ = d(w)

wT = D(w, λ)

ô = W−1(wT )

The estimation ô from D(w, λ) has a risk r(D, o) = E‖ ô− o ‖2 which corre-

sponds to the expectation of the error measure. The oracle risk corresponds to an

hypothetical optimal selection of the coefficients minimizing the following risk:

r(D, o) =
∑

i

min(|oi|2, σ2) (1.31)

This risk assumes that we know the value of the true signal values oi. Based on this
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modeling of the estimation risk via wavelet coefficients shrinkage, and especially the

minimization of the maximal (minimax) risk, other optimal thresholds were defined.

Considering the hard- and soft-thresholding discussed above, by using the uni-

versal threshold λ = σ
√
2 log n we can asymptotically approach the “oracle” risk

[Donoho 1994]. The universal threshold has a good asymptotic minimax properties

and also removes noise with high probability, ensuring good visual quality of re-

constructed signals. Such denoising performance is based on probabilistic modeling

of the maximum estimation risk for identically distributed Gaussian random vari-

ables [Donoho 1994, Vidakovic 1999]. Donoho and Johnstone [Donoho 1995c] also

proposed to select the threshold by minimizing the Stein’s unbiased risk estimator

(SURE) [Stein 1981]. The threshold λsure and the soft-thresholding rule are the core

of a level-dependent procedure that Donoho and Johnstone called the SureShrink.

If the wavelet representation at a particular level is not too sparse, a SURE thresh-

old is used, based on the magnitude of the preserved coefficients. Otherwise, the

universal threshold is selected.

Image denoising via wavelet thresholding remains widely used in numerous ap-

plications such medical images [Kalifa 2003] and astronomical images [Starck 1998].

This framework is currently enriched by research works dedicated to novel algo-

rithms for the identification of optimal sparsifying transforms using decomposition

functions and image norms suited for textural components [Peyre 2010].

1.4.2 Denoising by Total Variation Minimization

Image filtering and denoising using total variation (TV) minimization was intro-

duced by Rudin, Osher and Fatemi in [Rudin 1992, Rudin 1994]. The proposed

method assumes that an image is composed by a finite number of level sets and that

the image is smooth or regular in each level with a finite number of discontinuities

defining edges.

Given a noisy image x(a, b) : Ω → R, where Ω is a bounded open subset of R2,

the method aims to achieve the following decomposition,

x(a, b) = o(a, b) + n(a, b) (1.32)

where o(a, b) is the object signal and n(a, b) is the noise. Then, the total variation
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approach is defined as follows:

ô(a, b) = arg min
o∈BV (Ω)

{

|o(a, b)|BV + λ‖ x(a, b)− o(a, b) ‖2ℓ2
}

(1.33)

for a Lagrange multiplier (regularization parameter) λ > 0, where BV (Ω) denotes

the space of functions with bounded variation on Ω and,

|o(a, b)|BV =

∫

Ω
|∇o(a, b)|dΩ, (1.34)

denotes the BV semi-norm. We note that in this thesis we will refer to the TV-norm

to as the ℓ1-norm of the gradient of x. It is equivalent to equation (1.34) and is

defined in the discrete case as:

|x(a, b)|TV =
∑

x∈Ω

|∇x(a, b)|. (1.35)

We call this variational problem the Rudin–Osher–Fatemi (ROF) model.

If the first term |o(a, b)|BV were replaced by Jp(f) =
∫

Ω |∇o(a, b)|p for any

p > 1, it would lead to differentiability and strict convexity of the regularization

constraint. The main reason for this effect is that for p > 1 the derivative of Jp

corresponds to a non-degenerate elliptic differential operator of second order and

thus has a smoothing effect in the optimality condition, whereas for total variation

the operator is degenerated and affects only the level lines of the image. Hence, the

TV minimization is well adapted to denoise piecewise smooth images.

The unconstrained problem (1.33) is naturally linked to the constrained problem:

ô(a, b) = arg min
o∈BV (Ω)

|o(a, b)|TV (1.36)

subject to the noise constraints:

∑

Ω

|x(a, b) − o(a, b)|2 = σ2 and
∑

Ω

|x(a, b) − o(a, b)| < ε (1.37)

The best estimation ô(a, b) must have the minimum total variation with the min-

imum error
∑

Ω |x(a, b) − o(a, b)| < ε, and where σ is chosen to correspond to the

noise energy.

The unconstrained problem is often preferable, because the functional is strictly
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convex, the minimum exists, is unique and computable [Chambolle 1997]. In the

problem (1.33), the parameter λ controls the trade off between the regularity and fi-

delity terms. As λ gets smaller the weight of the regularity term increases. Therefore

λ is related to the degree of filtering of the solution of the minimization problem.

Consider the solution for the problem (1.33) given the Lagrange multiplier

value λ. The Euler Lagrange equation associated with the minimization problem

[Rudin 1994], corresponds to:

(o(x)− x(x))− 1

2λ
curv{o(x)} = 0 (1.38)

Thus, the distance between the estimation and the original image is:

ô(x)− x(x) = 1

2λ
curv{ô(x)} (1.39)

Since straight edges have small curvature, they are well preserved using TV min-

imization. However, if the Lagrange multiplier λ is too small, details and texture

may be over smoothed.

1.4.3 Non-Local Means

Neighborhood filters have been originally proposed by Yaroslavsky et al.

[Yaroslavsky 1985, Yaroslavsky 1996]. The main idea is to compute a filtered image

x̂ by taking an average of the noisy image x. The average is taken over pixels which

have similar intensities, and not over pixels which are close in the image, as it is

usual for a convolution. The value of the cleared image x̂ at position a is defined

by:

x̂(a) =
1

C(a)

∫

Ω
K(a, b, x)x(b)db, where C(a) =

∫

Ω
K(a, b, x)db, (1.40)

The choice of the kernel K(a, b, x) determines the actual filter and C(a) acts as a

normalization to ensure that a constant function x is mapped to itself.

The continuous non-local patch-based functional for denoising and deblurring

images was introduced by Kindermann et al. [Kindermann 2005]. This functional

is built upon a new norm which measures the degree of similarities between patches



44 Chapter 1. Introduction

and takes the general form:

J(x) =

∫

Ω×Ω
g

( |x(a) − x(b)|2
h2

)

w(|a− b|)dadb (1.41)

with an appropriate positive weight function w, a differentiable filter function

g : R+ → R, and a parameter h. The non-local patch-based functional was extended

by Boulanger et al. [Boulanger 2010].

The non-local means (NL-means) algorithm was introduced by Buades et al.

[Buades 2005] for 2D image denoising and is a generalization of (1.41). The method

takes advantage of the high degree of redundancy of natural images. It is based

on the idea that any natural image has similar patches non-locally, and that any

pixel of the image has similar pixels that are not necessarily located in a spatial

neighborhood.

Similarly to patch-based approaches [Kindermann 2005, Lee 1998,

Boulanger 2010], the weight involving pixels in the average does not depend

on their spatial proximity but on the intensity similarity of their neighborhoods

with the neighborhood of the pixel being filtered. The NL-means filtering can be

viewed as a case of neighborhood filtering with infinite spatial kernel and where the

similarity of the neighborhood intensities is replaced by a point-wise similarity.

Let x(a)|a ∈ Ω be the noisy image observation. The NL-means algorithm is

defined by the following formula:

NL{x(a)} = 1

C(a)

∫

e−
Gβ⋆|x(a+)−x(b+)|2

h2 x(a)da, (1.42)

where Gβ is a Gaussian kernel with standard deviation β, h is a filtering param-

eter and C(a) =
∫
e−

Gβ⋆|x(a+)−x(b+)|2

h2 da.

In the discrete case, the denoised estimation of x[a]|a ∈ R
2 is computed as a

weighted average of all pixels in the image,

NL{x[a]} =
∑

b∈R2

w[a, b]x[b] (1.43)

where the family of weights {w[a, b]}b take into account the similarity between the

pixels a and b, satisfying the conditions 0 ≤ w[a, b] ≤ 1 and
∑

b w[a, b] = 1.



1.4. Image Denoising with Sparsity Constraints 45

The similarity between two pixels a and b depends on the similarity between the

vectors x[Na] and x[Nb], where Nk denotes a neighborhood of fixed size and centered

at the pixel k. The similarity is computed as a gaussian weighted Euclidean distance

‖ x[Na]− x[Nb] ‖22,β. The use of the Euclidean distance is well adapted to an additive

white noise which alters the distance between windows in uniform way. Supposing

an additive noise where σ2 is the noise variance and o the original noise-free image,

we have the following equality:

E‖ x[Na]− x[Nb] ‖22,β = ‖ o[Na]− o[Nb] ‖22,β + 2σ2 (1.44)

This expectation shows that the Euclidean distance preserves the order of similarity

between pixels, which means that the most similar pixels to a in x also are expected

to be the most similar pixels of a in o. Finally, the weights are defined by

w[a, b] =
1

Z[a]
e−

‖x[Na]−x[Nb]‖
2
2,β

h2 (1.45)

and where Z[a] is the equivalent normalizing term Z[a] =
∑

a e
−

‖x[Na]−x[Nb]‖
2
2,a

h2 and

h controls the decay of the weights as a function of the Euclidean distance.

TV filtering and non-local means filtering have been used successfully in a va-

riety of denoising applications. In recent works it was applied to fluorescence mi-

croscopy in [Boulanger 2010, Yang 2010b], involving several improvements such as

the adaptation of the neighborhood size and the measure of similarity to handle

more sophisticated noise models.





Chapter 2

A Denoising Framework Based on

Image Sparsity and Random

Fourier-based Sampling

Noise level and photobleaching are cross-dependent problems in biological fluores-

cence microscopy. Indeed, observation of fluorescent molecules is challenged by

photobleaching, a phenomenon whereby the fluorophores are degraded by the exci-

tation light. One way to control this process is by reducing the intensity of the light

or the time exposure, but it comes at the price of decreasing the signal-to-noise ratio

(SNR). Although a host of denoising methods have been developed to increase the

SNR, most are post-processing techniques and require full data acquisition.

In this chapter we detail a novel technique, based on compressed sensing (CS)

that simultaneously enables reduction of exposure time or excitation light level and

improvement of image SNR. Our CS-based method can simultaneously acquire and

denoise data, based on statistical properties of the CS optimality, noise reconstruc-

tion characteristics and signal modeling applied to microscopy images with low SNR.

The proposed approach is based on an experimental optimization combining se-

quential CS reconstructions in a multiscale framework to perform image denoising.

Simulated and practical experiments on fluorescence image data demonstrate that

thanks to CS denoising we obtain images with similar or increased SNR while still

being able to reduce exposure times. Such results open the gate to new mathemat-

ical imaging protocols, offering the opportunity to reduce photobleaching and help

biological applications based on fluorescence microscopy.
0Based upon: M. Marim, E. Angelini and J.-C. Olivo-Marin. “A Compressed Sensing Approach

for Biological Microscopy Image Denoising”, SPARS’09, 2009. M. Marim, E. Angelini and J.-C.
Olivo-Marin. “Compressed Sensing in Biological Microscopy”, Proc. SPIE Wavelets XIII, vol.
7446, pp. 744605, 2009. M. Marim, E. Angelini and J.-C. Olivo-Marin. “Denoising in Fluorescence

Microscopy Using Compressed Sensing with Multiple Reconstructions and Non-Local Merging”, Int.
Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2010.
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This chapter is divided in the following manner: in Section 2.1 we discuss previ-

ously derived denoising approaches for fluorescence microscopy, in Section 2.2 and

2.3 we introduce our CS denoising approach and its respective algorithm, in Section

2.4.2 and 2.5 we present experimental results and validation.
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2.1 Denoising Approaches and Fluorescence Microscopy

In biological fluorescence microscopy, cellular components of interest in the spec-

imen, such as proteins, are typically labeled with a fluorescent molecule called a

fluorophore (green fluorescent protein (GFP), dyes, inorganic molecules) and can

therefore be imaged with high specificity. Fluorophores lose their ability to fluoresce

as they are illuminated through a process called photobleaching. In microscopy, ob-

servation of fluorescent molecules is challenged by photobleaching, as these molecules

are slowly destroyed by the light exposure necessary to stimulate them into fluores-

cence. Loss of emission activity caused by photobleaching can be controlled by

reducing the intensity or time-span of light exposure. Unfortunately, reducing the

exposure time or intensity of the excitation also reduces the emission intensity but

not the noise acquisition components, leading to a decrease of the SNR. Regarding
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the noise, images acquired by a fluorescence microscope are contaminated by dark

noise, photon noise (shot noise) and readout noise, which were described in section

1.1.

To improve the SNR, many denoising methods are available, well suited for piece-

wise smooth images, such as Non-Local Means (NL-means) [Buades 2005], Total

Variation Filtering (TV) [Rudin 1992], non-linear isotropic and anisotropic diffu-

sion [Weickert 1998]. Applying these methods to fluorescence microscopy corrupted

with Gaussian noise typically require a pre-processing with a variance-stabilizing

transform, as done for example in [Boulanger 2008]. A novel anisotropic-type for

filtering was recently proposed in [Wang 2010] for two-photon fluorescence images.

There are also methods which exploit the decomposition of the data onto wavelet-

types of functions (including recent ridglets or curvelets basis functions) and shrink

the coefficients to eliminate noise components [DeVore 1992, Donoho 1995d]. Re-

cently, efficient denoising methods were also developed based on sparsity and redun-

dant representations over learned dictionaries [Elad 2006], denoising image while

simultaneously training a dictionary using the K-SVD algorithm [Aharon 2005],

or based on sparse code shrinkage and maximum likelihood estimation of non-

Gaussian variables [Hyvärinen 1999]. Wavelet shrinkage was used for exam-

ple by [Olivo-Marin 2002] to denoise fluorescence images and count spot, or in

[Zhang 2007, Delpretti 2008, Luisier 2010] using variance stabilizing transforms

prior to image decomposition and wavelet shrinkage.

In this chapter we propose an application of compressed sensing to fluorescence

microscopy images, enabling the reconstruction of high SNR images. Our framework

is based on the CS ability to efficiently reconstruct sparse signals with under-sampled

acquisition rates, significantly below the Shannon/Nyquist theoretical bound. Sim-

ilarly to some recent experiments for CS-based MRI reconstruction [Lustig 2007],

the acquisition protocol consists in measuring the image signal on a random set of

Fourier vectors [Candès 2006a] and constraining the Total Variation (TV) measure

of the reconstructed image in the spatial domain. Sampling in the Fourier domain,

provides incoherent measurements with the spatial domain for images with bounded

variations (BV) (and small TV measures). Indeed, the CS framework introduced

by Candès [Candès 2005d] provides theoretical results which show that if a signal is

sparse (i.e. has a small number of non-zero coefficients) in some basis, then with high

probability, uniform random projections of this signal onto an incoherent domain,
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where the signal is not sparse, contains enough information to optimally reconstruct

this signal. The incoherence property between some sparsity basis Ψ and some sam-

pling basis Φ ensures that signals having sparse representations in Ψ must have a

large support in the measurement domain described by Φ. Random selections of

basis functions in Φ are typically suitable since random vectors are, with very high

probability, incoherent with any sparsity-encoding basis functions from Ψ, defining

orthogonal domains [Donoho 2006b].

Considering that a noisy signal x+ n has a sparse representation in some basis

Ψ, we want to recover the signal x ∈ R
N from noisy measurements y = Φ(x + n)

| y ∈ R
M , the sampling matrix being Φ, with M ≪ N. The presence of noise in

the acquired signal might alter its sparsity in the domain Ψ. By enforcing the

reconstruction of sparse signals, CS offers a theoretical framework to remove non-

sparse random noise components from corrupted observations. Indeed, removing

noise from x+ n will rely on the efficacy of Ψ on representing the signal x sparsely

and the inefficacy on representing the noise n [Donoho 2006a]. The choice of the

basis function Ψ is very important and depends directly on the type of signal (or

image) we want to recover and denoise using CS.

2.2 Denoising Methods

2.2.1 Reconstruction from Noisy Measurements

In the context of noisy measurements y = Φ(x+n), which is the case for microscopy

images corrupted with acquisition noise, we wish to recover only the signal compo-

nent x ∈ R
N . If we make the assumptions that: (I) the noise energy is bounded by

a known constant ‖ n ‖ℓ2 ≤ ε, (II) the transformed signal Ψx is sparse, and (III)

Φ ∈ R
M×N is a random matrix sampling x in the Fourier domain, the true signal

component x can be recovered nearly exactly using the following convex optimiza-

tion:

x̂ = arg min
x∈RN

‖ Ψx ‖ℓ1 s.t. ‖ y − Φx ‖ℓ2 ≤ δ (2.1)

for a small δ ≥ ε. In [Candès 2006c] it was shown that the solution x̂ is guaranteed

to be within Cδ of the original signal.

‖ x̂− x ‖ℓ2 ≤ Cδ with C > 0 (2.2)
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We note here that this CS-based estimation framework, with noisy observations

and sparsity constraints, guarantees that no false component of x + n with signif-

icant energy is created, if ‖ Ψx ‖ℓ1 is particularly high for additive random noise

components. If Ψx corresponds to the TV-based spatial sparsity constraint,

x̂ = arg min
x∈RN

‖ x ‖TV s.t. ‖ y − Φx ‖ℓ2 ≤ δ (2.3)

the image reconstruction leads to smooth edges, textures and removal of noise com-

ponents, resulting in an error:

‖ x̂− x ‖ℓ2 ≤ α+ β (2.4)

where α reflects the desired error (corresponding to noise removal) from the relax-

ation of the constrain δ in (2.1) and β reflects the undesired error from the edge

smoothing effect. If TV represents x efficiently (i.e. Ψx is sparse) and n ineffi-

ciently (i.e. Ψn is non-sparse), i.e. ‖ Ψx ‖TV ≪ ‖ Ψn ‖TV , the term β vanishes and

α→ Cδ.

2.2.2 The Noise Model and Image Sparsity Measures

In the context of microscopic images, noise models usually combine a mixture of

Poisson and Gaussian components, and the observation model commonly adopted

is the following:

x(a, b) = ζUi(A(a, b) + λB) + Vi, (2.5)

where Ui ∼ P(λi), Vi ∼ N (µ, σ2)

and ζ is the overall gain of the detector, A(a, b) is the object intensity at pixels a, b,

λB is the mean intensity of the background, Ui is a Poisson variable with parameter

λi modeling the photon counting, and Vi is an additive noise component with a

normal distribution with mean intensity µ and standard deviation σ. Ui and Vi are

assumed mutually independent. An image with a noise simulated as described in

(2.6) is illustrated in figure 2.1.

Indeed, both denoising approaches propose to perform a series of sparsity-based

reconstructions from a set of randomly selected measures, and combine them into a
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single denoising result. The only underlying assumption is that noise components

on the restored images will be mutually uncorrelated (i.e. not similar for each recon-

struction) while fluorescence signal components will be mutually correlated. This

assumption holds in the general case only when assuming that the noise components

are non-sparse (i.e. spread out over all pixels) and random, but not necessarily de-

rived from a Gaussian distribution.

The Fourier transform of the noise component will add up to the Fourier trans-

form of the signal component (the Fourier transform being linear). As a consequence,

the noise component will promote changes in Fourier coefficients with most energy

concentrated in the high frequencies, since the noise corresponds to fast spatial varia-

tions. On the other hand, the TV spatial constraint, which is non linear, will easily

recognize and enhance low-frequency structural components while discriminating

random high components. In other words, there is a high chance of sampling noisy

Fourier coefficients but they have little chance to contribute to the reconstructed

image because of the TV constraint, into which they do not add up but compete.

The less sparse the noise component is compared to the true signal component, the

more the TV constraint will discriminate them.

Robustness of the CS reconstruction to the presence of noise relies on the effi-

ciency of the sparsity transform on representing well the signal of interest and on

representing inefficiently the noise distribution. In the context of microscopic im-

ages, noise models usually combine Poisson and Gaussian components. We perform

here an analysis of the sparsity of each noise component by adding a simulated

mixture of Poisson and Gaussian (MPG) noise to a fluorescence microscopy image

of drosophyla cell and applying the sparsifying transform to noise components in-

dependently, results to this experience are illustrated in Fig. 2.1. Fig. 2.1a is the

noisy microscopy image, which is composed by a noise-free image 2.1b and a mixture

of Gaussian 2.1d and Poisson noise 2.1f (simulated as described in equation (2.6)).

2.1c shows the magnitude of the gradient of the noise-free image (compressible signal

of interest) while 2.1e shows the magnitude of the gradient of the Gaussian noise

component and 2.1g for the Poisson noise component. The TV measure ‖ x ‖TV
correspond to the measure of sparsity which is approximatively the ℓ1-norm of the

gradient.

In both cases, the coefficients provided by the transformation are not sparse or

strongly less sparse than in Fig. 2.1c (for the signal of interest). These results show
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clearly that the sparsifying transform used does not encode efficiently the MPG

noise, which is strongly suited for a denoising framework. Moreover we can observe

that the signal of interest is very efficiently encoded by the transformation presenting

the smaller TV measure 2.1c.

2.2.3 The Sampling Pattern for Denoising

In this subsection we deal with the Fourier sampling pattern adopted for the CS

reconstruction. Since the goal is to perform an optimal denoising, the sampling

pattern is of central importance. The design of the sampling matrix Φ can be based

on different distributions, such as a independent and identically-distributed random

uniform distribution, or a line-based radial distribution, which are illustrated in

Figure 2.2.

Theoretically, the optimal sampling scheme would be the one which maximizes

the incoherence between the sampling basis Φ and the sparsity basis Ψ. A fully ran-

dom sampling often results in a high degree of incoherence and near-optimal solution.

Indeed random distributions present some advantages such as simple mathematical

proofs and satisfaction of the RIP conditions [Candès 2006a]. In practice, favoring

low frequency measures lead to better denoising results since the noise corresponds

essentially to high frequencies.

The Figure 2.2(b)-(d) displays the histograms of the spatial density of frequency

measurements, characterized by the number of sampling points at a given distance

from the (0, 0) center frequency in Figure 2.2(a)-(c). The histogram 2.2b shows

that for uniform random spatial distributions on a square, there are a majority of

intermediate frequencies. On the other hand, the histogram 2.2d shows that for

the radial distributions on a square, there are equal levels of low and intermediate

frequencies while high frequencies have a minor density.

One interesting fact from Figure 2.2 is that when the sampling process is random,

extreme high and low frequencies have the same low probabilities. These histograms

can be modeled with the number of sample points contained on a circle of radius r

(0 ≤ r ≤
√
2N/2) and centered at (0, 0). We then distinguish two different behaviors

for r below and above N/2, as observed in Figure 2.2(b)-(d). For a uniform random

distribution, we can define the following probability law of occurrences:

P (r) =
(2π − 4θ)r

N2
(2.6)
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(a) Noisy image,
‖ x ‖TV = 5.71e+06

(b) Noise-free image,
‖ x ‖TV = 4.61e+06

(c) ‖ x ‖TV = 2.02e+04

(d) Gaussian noise,
‖ x ‖TV = 5.39e+05

(e) ‖ x ‖TV = 3.55e+05

(f) Poisson noise,
‖ x ‖TV =5.63e+05

(g) ‖ x ‖TV = 3.72e+05

Figure 2.1: (a) Microscopic image with simulated noise such as (2.6). The sparsifying
transformation ∇x applied to (b) noise-free image (compressible signal of interest),
(d) simulated Gaussian noise component and (f) simulated Poisson noise component
are illustrated in (c), (e) and (g) respectively.

where θ corresponds to the angle of the cone intersecting one of the four external

parts of the circle (illustrated in Figure 2.3). When the radius of the circle is smaller

than N/2, the circle is completely inside the image, then θ = 0 and P (r) = 2πr
N2 ,
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Figure 2.2: Spatial distributions in the Fourier domain with M = 0.1N (a) Random,
(c) Radial and (b,d) are the correspondent frequency histograms.

otherwise θ > 0 and can be computed as:

θ = 2arctan

(√
r2 − n2
n

)

(2.7)

and r is the distance to the center of the image, N2 is the total number of pixels and

n = N/2. For r ≤ N/2 the probability of all possible pixels increases linearly with r.

For r > N/2 the probability starts decreasing since the perimeter is not completely

inside the image, as illustrated in Figure 2.2 and 2.3. For the radial distribution,

the number of occurrences in a circle is constant for r ≤ N/2 and depends on the

number of lines nl,
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Figure 2.3: Circle of probability for the uniform distribution.

P (r) =
(2π − 4θ)

2π

nl
N2

(2.8)

To perform our denoising we have the option to work with a set of random

distributions or a set of rotated radial distributions. From (2.8) we can conclude

that for a set of rotated radial distributions, low frequency samples are the same

and the measurements are therefore redundant. Moreover, the small number of high

frequency samples in the radial case constrains very loosely the CS reconstruction of

high frequency details and noise. To combine multiple CS reconstructions, we want

to achieve a good denoising performance. Indeed, sampling too few high-frequency

components, leads to the risk with CS of creating patterns on the reconstructed

image. Conversely, fully random sampling guarantees a better coverage of the high

frequencies as illustrated in Figure 2.2b.

2.2.4 Denoising and Scalability

The degrees of freedom in the series of denoising experiments control the design

of the sampling matrix Φ via the number of random measurements M and their

location in the Fourier domain. The CS theoretical framework states that the more

measurements are used in the Φ domain, the closer is the reconstructed signal to

the original measured signal. In the context of denoising (rather than estimation)

we have a dual constraint on the estimation of the true signal component and the

risk of reconstructing noise components. Indeed, for a single CS experiment, the flu-
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orescence signal will generate, from a set of random measures of structured Fourier

values, a restored image with high values depicting a good estimation of the true

signal. At the same time, purely random noise component will be interpreted, from

a set of undifferentiated Fourier values, as a structured combination of oscillating

components, extrapolated over the spatial domain into patches, under the regulariz-

ing TV effect (figure 2.7). Noise patches and fluorescence spatial localization will be

directly related to M, the number of CS measurements acquired by Φ. We illustrate

in Figure 2.4 how this number of measurements can be naturally viewed as a scale

parameter where small scales enable more noise reconstruction. In the experiment

on Figure 2.4, we observe that the noise component is more uncorrelated than the

signal across scales while the signal component spatial resolution decreases.

Figure 2.4: Average microscopic image recovered with six different numbers of mea-
surements (i.e. 6 scales). Scales varies from a compression ratio exponentially
increasing from M= 30% to M= 0.3%.

We can make a connection here with the family of multiscale transforms

[Lindeberg 1994]. These transforms were theoretically defined as linear transforms

with a scale parameter controlling the ability of the transform to simplify the signal.

We know from the sparsity TV constraint that strong signals recovered by the CS
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framework will correspond to strong underlying true signal components. Therefore,

CS does not introduce false signal components and fits well in the framework of

multiscale transforms, as illustrated in Figure 2.4. Moreover it appears that such

multiscale CS approaches verify scale space properties such as simplification, homo-

geneity, isotropy as well as rotational and shift invariance.

2.3 Algorithms for Multiple Reconstructions

In this section we introduce our denoising framework based on random undersam-

pling and sparsity maximization. The main idea is that using different random

sampling matrices Φ (which select different sets of pixels to acquire), results in

different reconstructed images. If the sparsifying transform is well adapted to rep-

resent the signal and not adapted to represent the noise, i.e. ‖ Ψx ‖ℓ1 ≪ ‖ Ψn ‖ℓ1 ,
the signal reconstructed with different sampling matrices is much more correlated

than the noise component. Roughly speaking, we can achieve good denoising per-

formances when averaging reconstructions which have more variations in the noise

representation than in the signal representation.

2.3.1 Algorithm Workflow

We propose a new paradigm for image acquisition in fluorescence microscopy based

on multiple random undersampling and total variation minimization. We focus

on utilizing dual sparse and redundant representations for fluorescence microscopic

image denoising via two separate schemes. Assume that we observe an image over

T ms and we will either make several observations with a single Φ measurement

matrix or a single observation through a set of different Φ matrices.

A first strategy consists in acquiring K images xi+ni exposed T/K ms, restoring

each one independently (2.9) and combining the K restoration results into a single

denoised image. This scheme exploits the fact that fluorescence signal Φxi should

be strongly correlated in all acquisitions, while noisy components Φni should not

be.

x̂i = arg min
x∈RN

‖ xi ‖TV s.t. ‖ yi − Φxi ‖ℓ2 ≤ δ (2.9)

where yi = Φ(xi + ni) for i = 1...K.

This first denoising scheme is illustrated in Figure 2.5, and includes the following

steps:
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CS reconstruction of 
each image

k acquisitions denoised image

average results

k reconstructions

Figure 2.5: Denoising scheme with K acquisitions over T/K ms and K independent
reconstructions.

• Acquisition of K images xi + ni exposed T/K ms.

• Sparsity-based reconstruction of x̂i images from noisy measurements

yi = Φ(xi + ni).

• Combination of reconstructed images x̂i to generate a single denoised image

x̂ such as described in section 2.4.

A second denoising scheme is also proposed, which consists in determining the

exposure time X necessary to obtain, with a set of combined restorations, a target

SNR level, corresponding to the SNR measured on the image exposed T ms. This

scheme provides the potential advantage of requiring a single shorter acquisition

time, limiting degradation of the biological material due to phototoxicity and pho-

tobleaching. This second denoising scheme is illustrated in Figure 2.6 and includes

the following steps:

• Acquisition of a single image exposed X ms (X < T).

• Sparsity-based reconstructions of the noisy image x + n using N differ-

ent random sampling matrices Φi, producing different sets of measurements

yi = Φi(x+ n).

• Combination of the reconstructed images x̂i to generate a single denoised

image x̂ such as described in section 2.4.

Combining CS reconstructions implies a sequence of CS reconstructions of a sin-

gle noisy image acquisition x+n, using different sampling matrices Φi, as described

below:

x̂i = arg min
x∈RN

‖ x ‖TV s.t. ‖ yi − Φix ‖ℓ2 ≤ δ (2.10)
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Figure 2.6: Denoising scheme with a single shorter acquisition andK reconstructions
using different sampling matrices Φi.

for i = 1...K. We note that the value of K is an empirical estimation of the number

of reconstructions for which the image SNR becomes constant.

The first approach (2.9) is more cell-friendly than the second (2.10) since smaller

expositions leads to photo-damage reduction. The denoising performance is higher

than the second approach (2.10). However, the first approach is acquisition-

dependent requiring multiple under-exposed images and should be used in cases

where the specimen must be preserved. The second approach offers a lower de-

noising performance (see results in tables 2.1 and 2.2) but much more flexibility by

performing multiple reconstruction from only one acquisition. It is a post-processing

method and is not specific to any acquisition.

Fusion Rule The last step of both algorithms involves the combination of the set

of reconstructed images X such as:

x̂ = fusionK(x̂i) for i = 1, ..,K (2.11)

where fusionK is a fusion method and x̂i is the set of K image reconstructions.

To design the fusion rule we need to study the noise model 2.2.2 and the sampling

pattern influences (2.2.3). We have proposed two different methods to combine

multiple reconstructions which are detailed in 2.4 and 2.5.
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2.4 Images Fusion by Averaging

In a first place, we proposed to average the set of xi images to generate a single

denoised image x̂,

x̂ =
1

K

K∑

i=1

x̂i (2.12)

Each single reconstruction x̂i is slightly different due to the differences in the sam-

pling matrices Φi. Because of the random distribution of frequencies in Φi, the global

frequency content of the x̂i is similar and the images only differ in terms of details.

Indeed, since ‖ x ‖TV is sparse and ‖ n ‖TV is non-sparse, noisy reconstructed pat-

terns are uncorrelated for reconstructions using different sets of measures.

2.4.1 Simulations on Pure Noise Signal

Using a TV sparsity constraint, if the individual images reconstructed (figure 2.7b)

from a simulated Gaussian noise 2.7a are averaged, the mean intensity results in

a nearly homogeneous signal, as illustrated in Figure 2.7c. This result clearly jus-

tifies the averaging operator to combine images from multiple reconstructions and

strengthen noise discrimination from images.

(a) Gaussian noise, µ = 3.99
and σ1 = 3.01

(b) Single reconstruction (c) Average reconstructions,
µ = 3.99 and σ2 = 0.75

Figure 2.7: Left: Gaussian noise image (with mean µ = 3.99 and standard deviation
σ1 = 3.01). Center: an individual noise reconstruction. Right: Reconstructed image
obtained by averaging 20 images recovered with different sets of measurements Φi
for (i = 1...20) with µ = 3.99 and σ2 = 0.75 (10% of measurements).

Theoretically the expected value of the standard deviation of K recon-

structed images which are averaged is σ2 = σ1/
√
K, which is verified since

σ1/
√
K = 3.01/

√
20 = 0.67 ≈ 0.75.
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The same experiment for a Poisson noise is illustrated in figure 2.8 and the same

effect is observed. The resultant image is a nearly homogeneous image with smooth

variations. In the Poisson noise case, the reduction of the standard deviation σ2

(a) Poisson noise, µ = 4.17 and
σ1 = 4.1

(b) Single reconstruction (c) Average reconstructions,
µ = 4.17 and σ2 = 2.09

Figure 2.8: Left: Poisson noise image (with mean µ = 4.17 and standard deviation
σ1 = 4.1). Center: an individual noise reconstruction. Right: Reconstructed image
obtained by averaging 20 images recovered with different sets of measurements Φi
for (i = 1...20) with µ = 4.17 and σ2 = 2.09 (10% of measurements).

was not as strong compared to the Gaussian noise case. The reason is that the

simulated Poisson noise depends on the object structures and light intensities. In

the original image used to simulate the Poisson noise 2.1b, there is an important

gap of intensities between the background and the drosophyla cell, increasing the

standard deviation.

2.4.2 Results with Averaging

Here we present the results on drosophila cells imaged by fluorescence microscopy

in two manners. The first one exploits a multiple acquisition of 10 images of the

same sample where each image is exposed 10 milliseconds. The second acquisition

is a single image exposed 100 milliseconds. The denoising approaches presented in

(2.9) and (2.10) are evaluated and the results are in figure 2.9.

2.4.2.1 Denoising Evaluation

Denoising performances were evaluated via SNR measurements and image noise

analysis. The SNR of the images can be estimated from the noise model as:
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SNR =
ζA

√

ζ2(A+ λB) + σ2

The mixed Poisson-Gaussian noise parameters (ζ, λB , µ, σ) are estimated using

cumulant method, matching the first four cumulants of I with the k -statistics of the

samples in a uniform image region [Rose 2002]. This follows from the property that

the k -statistics are the minimum variance unbiased estimators for cumulants.

The contrast-to-noise ratio (CNR) is estimated as:

CNR =
|xℜ1 − xℜ2 |

σ

where xℜ1 and xℜ2 are signal intensities in adjacent homogeneous regions ℜ1 and

ℜ2, and σ is the standard deviation of the background additive noise.

2.4.2.2 Noise removal and recovered images

Results from the first scheme of denoising are illustrated in Figure 2.9b and detailed

in Table 2.1 while results from the second scheme of denoising are illustrated in Fig-

ure 2.9e and are detailed in Table 2.2. In all experiments, important improvements

of the SNR or the exposure time were achieved. For experiments on drosophila

cells image (Figure 2.9) and lymphocytes image (Figure 2.10), the SNR was highly

improved and details were very well preserved. The algorithm shows its efficacy and

importance on microscopy applications, where photons detected are limited and im-

age quality is usually degraded. The improvement can be provided in two different

ways, either by fixing the desired SNR and reducing the exposure time, or by fixing

the exposure time and improving the SNR, as illustrated by images in Figure 2.9

(b-e).

Note that by averaging four reconstructed images with the first scheme, the SNR

is equivalent to the reference acquisition with exposure time of 100 milliseconds (see

Table 2.1). If the goal is to obtain a SNR equivalent to the reference image, by using

the first denoising scheme the time exposure is reduced from 100 to 40 milliseconds.

Complementary results about improvements in photobleaching and denoising are

presented in appendix B.

We have compared the denoising quality of the proposed method with regular

Total Variation filtering. The algorithm used for this comparison was presented by

Gilboa et al. in [Gilboa 2006]. This algorithm minimizes TV with two schemes:
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Table 2.1: Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) results for
the first denoising scheme and for the image on Figure 2.9a.

Exposure Time CNR SNR
Ref: 100 ms 30.00 6.42
Acq: 10 ms 5.17 3.61

(4×) CS: 4 × 10 ms 34.20 6.89
(10×) CS: 10 × 10 ms 96.60 13.31

Table 2.2: Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) results for
the second denoising scheme proposed and for image on Figure 2.9d.

Exposure Time CNR SNR
Ref: 100 ms 30.00 6.42

(1×) CS: 100 ms 36.50 7.24
(10×) CS: 100 ms 90.23 11.02

(I) with global variance constraints (scalar fidelity term) and (II) with an adaptive

variational scheme that controls the level of denoising by local variance constraints

(adaptive fidelity term in order to preserve texture and small scale details). Noise

residual images and SNR results are illustrated in Figure 2.10 and show that our

proposed method is able to better discriminate the noise from the true signal com-

ponent than direct TV minimization methods. This can be explained by the fact

that our method provides TV minimization constraints combined with uncorre-

lated noise recovery constraints. Differences on each set of under-sampled random

projections lead to better enhancement of true signal-measures and attenuation of

noise-measures.

2.5 Images Fusion by Non-Local Averaging

In this section we describe a fusion method based on the nonlocal filtering to combine

the set of images x̂i obtained by Equation (2.10). The main difference between

this method and the original denoising approaches is that the noisy image is not a

single image but a vector of similar images. Here we exploit the idea that images

present a high degree of spatial redundancy in terms of objects appearance and

shapes, and consequently, the set of images x̂i should present even more redundancy.
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(a) SNR= 3.61 (b) SNR= 13.31 (c) ‖ (b)− (d) ‖
ℓ2

(d) SNR= 6.42 (e) SNR= 11.02 (f) ‖ (e)− (d) ‖
ℓ2

(g) SNR= 6.89

Figure 2.9: (a) Drosophila cells imaged by fluorescence microscopy with exposure
time t = 10ms. (b) Denoised image with the first CS scheme (10 reconstructions
of 10 short-exposure time images as in (a) with M=10%N). (c) Noise residual com-
paring (b) to (d). (d) Image acquired with exposure time equal to t = 100ms.
(e) Denoised image with the second CS scheme (10 reconstructions from (d) with
M=10%N). (f) Noise residual comparing (e) to (d). (g) Denoised image with the
first CS scheme (4 reconstructions of 4 short-exposure time images, with M=10%N)

As discussed before, the reconstructed images x̂i are slightly different, and most

differences are high-frequency components.

The non-local fusion method does not make regularity assumptions on the orig-
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(a) Original

(b) Scalar TV (c) Adaptive TV (d) CS

(e) Residual (f) Residual (g) Residual

Figure 2.10: (a) Lymphocytes imaged by fluorescent microscopy, SNR= 8.14. De-
noised images by (b) scalar TV filtering (SNR= 11.2), (c) adaptive TV filtering
(SNR= 12.5) and (d) by CS 2nd scheme, using 10 reconstructions (SNR= 14.28)
with M=10%N. (e)(f)(g) Noise residuals for each method comparing (a) to (b-
d)‖ x̂− x ‖ℓ2 .

inal image, allowing noise reduction and preserving fine structures, details, and

texture. The basic assumption is that small patches on objects from an image have

many similar patches in the same image and averaging similar patches should correct

the noisy component. For NL-means, noise is assumed Gaussian. The algorithm
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estimates the value of a pixel x as an average of the values of all the pixels belonging

to patches with similar appearance to the neighborhood of x.

Consider a noisy image v = {v(i)|i ∈ Ω} defined on a discrete bounded domain

Ω ⊂ R
2. Consider also a patch domain of fixed size Pi ⊂ Ω where v(Pi) denotes a

square patch centered at a pixel i. The estimated denoised image vNL corresponds

to a weighted average of all the pixels in the image:

vNL(i) =
∑

j∈Ω

w(i, j) · v(j) (2.13)

where the weights w(i, j) depend on the similarity between pixels i and j and are

defined as:

w(i, j) =
1

C(i)
e−

‖v(Pi)−v(Pj )‖
2
2

h2 , (2.14)

where ‖ v(Pi)− v(Pj) ‖22 is the Euclidean distance between pixels from the patches

v(Pi) and v(Pj) and C(i) is a normalizing constant

C(i) =
∑

j

e−
‖v(Pi)−v(Pj )‖

2
2

h2 ,

enforcing two conditions (i) 0 ≤ w(i, j) ≤ 1, (ii)
∑

j w(i, j) = 1.

To fuse multiple CS-reconstructed images, the search of similar patches in Equa-

tion (2.14) is performed only for the first image x̂1 and used for the entire set of

images. Then, if the noisy image v is not a single image but a vector of similar

images the final image is computed as a weighted average of all the pixels in the

vector of images

x̂NL(i) =
1

K

K∑

k=1

∑

j∈Ω

w(i, j) · x̂k(j), (2.15)

with the condition 1
K

∑

jk w(i, j) = 1. This method provides a much more dis-

criminative combination of the set of images xi than simple averaging, as initially

proposed.

The simple averaging of x̂i in (2.12) exploits only the local redundancy from

the set of images but not from the different patches of one single image. Solving

our proposed method in (2.15) allows to exploit the redundancy locally beyond all

images x̂i and also non-locally using similar patches from the same image.
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2.5.1 Results with Non-Local Averaging

2.5.1.1 CS Recovery: Image of Hair Follicle

We applied our approach to a fluorescence microscopy image of hair follicle. The

specimen is labeled with a green and a red marker. The total acquisition time is

15 seconds per image and the 3-dimensional stack has 65 frames (each channel).

The results illustrated here concern the frame 31 of each channel taken from the

3D volume. Then each channel (red and green) is reconstructed independently as

grayscale image.

In Figure 2.10 we show some reconstruction results of the noisy images from the

green and red channels in Figures 2.10(a) and 2.10(f), with size 400×400 pixels. The

Figures 2.10(b) and 2.10(g) correspond to one single CS reconstruction with 10%

of measurements in the Fourier domain, such as described in chapter 2. In Figures

2.10(c) and 2.10(h) we display the denoised images by our previous work, solving

the problem described in (2.12) and in 2.10(e) and 2.10(j) the denoised images with

the improved method described in (2.15). For both methods, described in (2.12) and

(2.15) with K = 10, we used the same sampling matrices with 10% of measurements

in the Fourier domain. For comparison, Figures 2.10(d) and 2.10(i) display the noisy

images denoised by the NL-means algorithm [Buades 2005], with variance σ2 = 20.4

(28 gray levels). We note that the results for NL-means present many artifacts due

to the noise characteristics.

Since there is no ground-truth such as a perfect noise-free image, the denoising

performances were evaluated via signal-to-noise ratio (SNR) and contrast-to-noise

ratio (CNR) measurements. The SNR and CNR measures are given for all methods

in Table 2.3.

Image
SNR (dB) CNR

green red green red

Original 3.62 4.53 13.97 9.51
CS 1 10.45 5.14 89.42 10.89
CS-mean 18.32 7.74 106.71 20.72
NL-means 18.80 19.96 103.72 71.81
CS NL-means 20.29 22.37 121.78 71.09

Table 2.3: SNR, CNR measures for the green and red channel.
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(a)

(b)

(c)

(f)

(g)

(h)
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(d)

(e)

(i)

(j)

Figure 2.10: Green and red channels; fluorescence microscopy image of hair follicle.
(a)(f) Original noisy image. (b)(g) One single CS reconstruction. (c)(h) Multiple CS
with averaging (2.12). (d)(i) NL-means filtering of the noisy image. (e)(j) Multiple
CS with NL-means 2.15.

2.5.1.2 CS Recovery: Image of Cells

In Figure 2.11 we show some results of our CS-based method from the noisy image of

fluorescence microscopy image of cells with exposure time equals to 10 milliseconds

(Figure 2.11(a)) with size 256×256 pixels. We compared the denoising results with

a reference image of the same specimen acquired with a longer exposure time t =

200 ms, in Figure 2.11(f). In Figure 2.11(b) we display the denoised image solving

the problem described in (2.12) and in Figure 2.11(e) the denoised image with the

improved method described in (2.15). For both methods, described in (2.12) and
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(2.15) with K = 10, we used the same CS sampling matrices, (2.9), with 10% of

measurements in the Fourier domain.

For comparison, Figure 2.11(c) displays the denoised image from one single

CS reconstruction x̂1 using the NL-means algorithm [Buades 2005], with variance

σ2 = 11 (28 gray levels), and Figure 2.11(d) displays the result from the NL-means

applied to the noisy image in Figure 2.11(a). Images in Figure 2.11(g)-(j) display

structural similarity (SSIM) index maps [Wang 2004], which is a fidelity measure

better suited for extracting structural information from an image than the mean

squared error (MSE). Measures of error such as the MSE, SSIM and PSNR are

illustrated in Table 2.4. A SSIM = 1 corresponds to a maximum of similarity

(minimum error). The values of MSE, PSNR and SSIM were computed using the

reference image (Figure 2.11(f)).

Image (b) (c) (d) (e)
CS-mean NL-means CS 1 NL-means CS NL-means

MSE 94.98 92.28 42.78 42.18
PSNR 28.35 dB 28.47 dB 31.81 dB 31.87 dB
SSIM 0.883 0.885 0.930 0.938

Table 2.4: MSE, PSNR and SSIM measures.

2.6 Conclusion

We have introduced a denoising method exploiting multiple reconstructions with

random undersampled Fourier projections and TV minimization. Our approach

presents several advantages over traditional denoising methods by combining fast

image acquisition, spatial smoothing constraints and denoising capabilities in a sin-

gle framework. We also propose an improved approach of the CS-based denoising

method exploiting a non-local merging scheme to combine multiple reconstructions

instead of averaging. Experiments on fluorescence microscopy images of hair fol-

licle demonstrate improvements of SNR and CNR values even with a very limited

number of measurements, and experiments on fluorescence microscopy images of

cells demonstrated improvements of PSNR, MSE and SSIM values. Our proposed

method leads to a denoising performance equivalent or better than the NL-means

method with the advantage of taking only 10% of measurements.



72
Chapter 2. A Denoising Framework Based on Image Sparsity and

Random Fourier-based Sampling

(a)

(b)

(f)

(g)

(c) (h)



2.6. Conclusion 73

(d)

(e)

(i)

(j)

Figure 2.11: Fluorescence microscopy image of cells. (a) Image exposed 10 ms. (b)
Multiple CS with averaging (2.12). (c) NL-means from one single CS reconstruction
(d) NL-means from the image exposed 10 ms. (e) Multiple CS with NL-means
(2.15). (f) Reference image exposed 200 ms. (g-j) SSIM index maps for images
(b-e) in comparison to the reference image.
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Chapter 3

Introduction

Basically, optical or light microscopy involves passing visible light transmitted

through or reflected from the sample through a single or multiple lenses to allow a

magnified view of the sample. For most biologists, optical microscopy has become

an essential tool [Herman 1993]. The simple reason is that cells are the basic units

of life and their size are almost always bellow the upper limit of the resolution of

the human eye. Microscopes make it possible to see inside the cells that make up all

living organisms. Recent advances in microscopy, particularly the use of fluorescent

probes to study cell function in living cells, are bringing microscopy back into the

forefront of research in cell biology.

The latest microscopy imaging techniques offer sub-diffraction spatial resolu-

tion and real-time views of cellular phenomena. Confocal microscopy uses point

illumination and a spatial pinhole to eliminate out-of-focus light in specimens that

are thicker than the focal plane [Minsky 1988, Wilson 1988]. Photoactivated light

microscopy (PALM) [Betzig 2006] and stochastic optical reconstruction microscopy

(STORM) [Rust 2006] rely on the stochastic activation of single photoswitchable

molecules to localize them with nanometric accuracy and reconstruct high-resolution

images. Stimulated emission depletion microscopy (STED) is a fluorescence mi-

croscopy technique that uses non-linear de-excitation of fluorescent dyes to over-

come the resolution limit imposed by diffraction [Hell 1994, Hell 1995]. Structured

illumination uses patterned light to increase the resolution by measuring the fringes

in the pattern created by the interference of the illumination pattern and the sample

[Bailey 1993, Gustafsson 2000, Heintzmann 2006]. Otherwise-unobservable sample

information can be deduced from the fringes and computationally restored with this

latter technique.

Recent high-resolution microscopy techniques makes possible a wide range of

applications in biology, however, there are still many limitations. We have been

mostly interested in reducing the noise level which is present in all light microscopy
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modalities and facilitate the high data throughput which can be time-expensive and

invasive toward cells. In the first part of this thesis we proposed a denoising frame-

work for biological microscopy. Here, we focus on the excessive high-throughput of

high-resolution microscopy.
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3.1 High-Resolution and High-Throughput Data Acqui-

sition

High-throughput data acquisition is a particularly relevant topic in biological mi-

croscopy, which tends more and more towards observations of a large number of

biological samples over long periods of times. High-throughput applications lead

to huge amount of data which makes visual inspection impractical. They also

involve long exposure times causing photodamage or photobleaching. Therefore,

the design of innovative and intelligent acquisition systems remains an essential

field of research for high-throughput applications. Regarding the large amount

of image data to acquire and store, solutions are to be seek within the field

of intelligent signal sampling and compression. It has been recently suggested

[Candès 2004b, Candès 2006a, Donoho 2006b] that efficient signal transform could

be incorporated in new intelligent acquisition systems to encode the information

contained in the images in a compact form. Indeed, exploiting a sampling or de-

composition of the image signal on some basis functions that lead to a sparse rep-
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resentation with a small number of non-zero coefficients enables to compress signal

encoding by only keeping the most S energetic coefficients. In such case, sparsifying

transforms enable low-loss or even lossless data compression. Compressed sensing

theory falls in this category of approach, exploiting some sparsifying transform (e.g.

wavelets, total variation, discrete cosine transform) during the acquisition process

rather than as a post-processing step, prior to final storage of the signal, as described

in a next chapter.

3.2 Intelligent Acquisition Systems in Microscopy

The ultimate goal in microscopy is to observe live cellular processes with a high

spatial and temporal resolution, with low noise level, and for a period of time as

long as possible while avoiding photodamage. Cellular processes can take place very

fast and the movement of cellular components are generally complex and unintuitive.

The main barrier to observe and understand such movements and behaviors is the

inability to acquire image with high spatial and temporal resolution. In addition,

the presence of noise and photodamage in such images add more difficulties to

analyze and understand these processes. For example, the presence of noise degrades

the image quality and the resolution, making it difficult to locate and track cell

components.

Photobleaching and phototoxicity (photodamage) are also a great limitations of

fluorescence live-cell microscopy since they degrade the image quality or can even

change the cell behaviors through phototoxicity. A straightforward way to limit

photodamage is to reduce the light dose for the excitation of fluorophores. When

the amount of excited fluorophores is restricted the image quality is reduced due to

the increment of noise level. Finally, the movement of cellular components can be

complex and difficult to model which makes it a challenge difficult to face, but its

accomplishment should promote great advances in cell biology.

In this sense, in the last few years, the field of intelligent acquisition systems has

emerged in microscopy. We should define as intelligent acquisition any acquisition

which takes into account prior information about the object of interest. Adding

some prior information in the acquisition process can improve crucial problems such

as resolution, noise and photobleaching.
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3.2.1 Intelligent Acquisition and Learning of Fluorescence Micro-

scope Data Models

In [Jackson 2009], a mathematical framework and algorithms were proposed to build

accurate models of fluorescence microscope time series, as well as design intelligent

acquisition systems based on these models. The authors propose to use an active

learning approach to choose the acquisition regions having the most relevant infor-

mation, resulting in a shorter acquisition time, as well as a reduction of the amount

of photobleaching and phototoxicity incurred during acquisition. In other words,

the acquisition is restricted to only those areas where the signal (not background)

is present.

The motivations of this framework is that microscopy can be time-consuming

and inconsistent. This works suggest to perform the analysis directly on the raw

microscope data without the intermediary stage of a viewable image, which should

improve the acquisition in terms of rapidity and photodamage. Intelligent acquisi-

tion suggests to automatically determine when to stop acquiring, avoiding the prob-

lem of acquiring more frames than necessary (which both wastes time and causes

unnecessary photobleaching). It could also remove the risk of acquiring too few

frames and thus not obtaining the desired information. With intelligent acquisition,

the acquisition should be able to compute the optimal trade-off between temporal

and spatial resolution, along with the best region to acquire, to build an accurate

model as quickly as possible. A diagram of the method is illustrated in figure 3.1.

Figure 3.1: A diagram of the method proposed by Jackson et al.. The “model
building” module constructs a model from the microscope data, and the “intelligent
acquisition” module determines what acquisitions to make to efficiently improve on
this model. Figure extracted from [Jackson 2009]

More generally, the problem of designing intelligent acquisition systems relates

to the framework of active learning, which refers to any form of learning in which

the learning program has some control over the inputs on which it trains. Assuming
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that data acquisitions are expensive, the goal is to request the data that is most

informative. The method proposes to model the motion of objects in a time series.

They suggest to learn the dynamics of the objects, which can be described using

the motion models. The cost of learning a model is a function of the time taken

to learn it, and the phototoxicity and photobleaching incurred during acquisition.

The idea of searching for the optimal acquisition strategy corresponds to choosing

where to acquire, when to acquire, and when to stop acquiring. In addition to min-

imizing cost, the approach also needs to satisfy some physical constraints. Because

it takes finite time to acquire each pixel, there is a trade-off between spatial reso-

lution and temporal resolution. These global constraints make this approach not

straightforward and difficult to use in practice.

3.2.2 Controlled Light Exposure Microscopy

The approach proposed in [Hoebe 2007] suggests to create a non-uniform illumi-

nation of the field of view allowing the adjustment of the light dose for excitation

of fluorophores for every individual pixel leading to reduced photodamage without

loss of image quality. Contrarily to the Jackson et al. approach, in the controlled

light exposure microscopy (CLEM), the excitation is restricted to those areas where

the signal is present and is based on two strategies. The first strategy of CLEM

is to use significantly less excitation light in the background by limiting the time

of illumination of all background pixels via a feed-back system. This strategy not

only reduces excitation of the background that is in focus but also, and most im-

portantly, fluorophores that are out-of-focus. The second strategy of CLEM is to

stop the illumination when local fluorophore level is high (bright foreground). The

resulting image has a lower SNR in the background (without signal) and a SNR in

the bright foreground that is equal to the SNR of the weak foreground.

The approach is illustrated in figure 3.2; the top panel shows a conventional

illumination and acquisition and the bottom shows the CLEM approach with the

non-uniform illumination. The CLEM technique regulates laser illumination so that

photobleaching is reduced and cell survival increased.

These approaches presented in the two subsections above allow photodamage re-

duction while keeping image quality, however, the acquisition processes are image-

dependent and need a learning step during acquisition. To model restricted ac-

quisition or control exposure they include a feedback loop during the acquisition.
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Figure 3.2: Confocal image of auto-fluorescence of pollen grain in the absence and
presence of CLEM. Top panel shows the illumination image (left) and confocal
image (right) in the absence of CLEM. Bottom panel shows the illumination image
(left), detected image (middle) and CLEM image (right). Figure extracted from
[Hoebe 2007]

Accordingly, the generalization of these approaches become difficult. In addition,

noise level and temporal resolution limitations remains an open problem.

The compressed sensing approaches which we propose in the following chap-

ters of this thesis compose a powerful framework for intelligent acquisition in mi-

croscopy. The remarkable advantage of our CS-based approach is that we perform a

reduced number of linear measurements allowing to reduce photodamage, speed-up

the acquisition while being robust to high noise levels. Indeed, the proposed CS

reconstruction scheme achieve denoising performances comparable to state-of-art

denoising techniques.

3.3 Existing Compressed Sensing Acquisitions Systems

The compressed sensing theory has revolutionized the field of signal processing in

the last few years. However, the CS theory is difficult to apply since it depends on

the acquisition setup which should acquire the data in a particular domain. Despite
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significant progress in the theory and methods of CS, little headway has been made

on real acquisition devices. Applying compressed sensing theory to practical imaging

systems poses a key challenge where physical constraints typically make it infeasible

to actually measure many of the random projections described in the literature, and

therefore, innovative and sophisticated imaging systems must be carefully designed

to effectively exploit CS theory.

Developing practical optical systems to exploit CS theory is a significant chal-

lenge being explored by investigators in the signal processing, optics, astronomy,

and coding theory communities. In addition to implicitly placing hard constraints

on the nature of the measurements which can be collected, such as nonnegativity

of both the projection vectors and the measurements, practical CS imaging systems

must also be robust and reasonably sized.

Globally, the large field of applications are compressive imaging, medical imag-

ing, analog-to-information conversion, computational biology, geophysical data anal-

ysis, hyperspectral imaging, compressive radar, astronomy, communications, surface

metrology, acoustic and time-frequency analysis, remote sensing, computer engineer-

ing, computer graphics, robotics and control, content based retrieval, optics and

holography, physics and fault identification. And many other research fields should

take advantage of this theory in the coming years. However, for instance there are a

very small number of real devices using compressed sensing compared to the volume

of research results about the theory.

Here, we will quickly describe some of these CS implementations. In the last part

of this thesis, we will present some results on practical application of compressed

sensing. The first one using digital holography in microscopy, and the second one

using a simple holographic setup and a programable CMOS camera able to acquire

only requested pixels (pixel random access and radial sampling were tested).

3.3.1 MRI

There are some real CS implementations such as the one proposed for Magnetic

Resonance Imaging (MRI) [Lustig 2005, Lustig 2007], where the authors propose to

acquire random radial lines in the frequency domain and to use a wavelet transform

as sparsifying transform. In fact, the MRI scanners naturally acquire samples of the

encoded image in spatial frequency, rather than direct pixel samples which made

this application quite obvious and straightforward.
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The authors exploit the sparsity which is implicit in MR images. Angiograms

are already sparse in the pixel representation and more complicated images have

a sparse representation in some transform domain (e.g. in terms of spatial finite-

differences or their wavelet coefficients). The blood vessels are bright with a very

low background signal. Angiograms are sparsified very well by both the wavelet

transform and by finite-differences. The benefits underlined in this work is that CS

allow to improve the field of view (FOV) with relative high resolution and the scan

time should be small in the case of a real undersampling.

They present experimental verification of several implementations for 2D and

3D Cartesian imaging, showing that the sparsity of MR images can be exploited

to significantly reduce scan time, or alternatively, improve the resolution of MR

imagery. They demonstrated high acceleration in in-vivo experiments, in particular

a 5-fold acceleration of first pass contrast enhanced MRA.

The figure 3.3 was extracted from [Lustig 2007] and illustrate a CS reconstruc-

tion and comparison to a reconstruction using a complete data set, a low-resolution

image and a zero-fill wavelet reconstruction (zero-filling the missing k-space data

and k-space density compensation).

3.3.2 Single Pixel Camera

In [Duarte 2008, Wakin 2006a, Baraniuk 2007] a single pixel camera is proposed to

perform linear measurements, where a digital micromirror device (DMD) allow to

acquire random combinations of pixels for each measurement. This work propose a

prototype of sensor and some experiments show the ability to imaging at wavelengths

where silicon is blind and should be considerably more complicated and expensive.

Rather than measuring pixel samples of the scene under view, the single pixel camera

measure inner products between the scene and a set of test functions. In practice,

each measurement corresponds to a random sum of pixel values taken across the

entire image.

The light-field is focused by biconvex lens not onto a CCD or CMOS sampling

array but rather onto a DMD consisting of an array of N tiny mirrors. Each mirror

corresponds to a pixel which can be independently oriented towards a biconvex lens

collecting the light and focusing onto a single photon detector. For each measure,

the DMD mirrors oriented to the second lens corresponds to a one at the pixel

φ[x, y], and zero if oriented elsewhere.
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Figure 3.3: Figure extracted from [Lustig 2007]. Reconstruction from 5-fold accel-
erated acquisition of first-pass contrast enhanced abdominal angiography.

The most important advantages discussed by the authors of a such device is that

it is simple, small and a cheap digital sensor which can operate in a broader spectral

range than silicon-based cameras. The figure 3.4 is extracted from [Baraniuk 2007]

to illustrate the device setup and a CS reconstruction.

3.3.3 Astronomy

There are many other works which investigate how compressed sensing should handle

the acquisition for different applications. In astronomy, Bobin et al. [Bobin 2008]

investigate how CS can provide new insights into astronomical data compression and

how it paves the way for new conceptions in astronomical remote sensing. In this

work, the CS is evoked as a method to reduce the amount of data to be transmitted

from a spatial mission to the earth in the context of high-spatial resolution all-sky

survey in the visible based on a scanning satellite.
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Figure 3.4: Figure extracted from [Baraniuk 2007]

In [Wiaux 2009], Wiaux et al. proposed a compressed sensing imaging technique

for radio interferometry. Indeed, radio interferometry probes astrophysical signals

through incomplete and noisy Fourier measurements, which is proved to be well

adapted to capture enough information of compressible signals.

Both works proposed for astronomy remain a simulation and illustrate the po-

tential of the approaches by studying reconstruction performances on simulations.

3.3.4 Coded Aperture

Some work was also dedicated to use coded aperture imaging for compressed sensing.

The basic idea of coded aperture is to use a mask, i.e., an opaque rectangular plate

with a specified pattern of openings, that allows significantly brighter observations

with higher signal-to-noise ratio than those from conventional pinhole cameras. The

mask used for compressed coded aperture is a downsampling operator which consists

in partitioning the scene in blocks and measuring the total intensity in each block.

This is sometimes referred to as integration downsampling. In [Marcia 2009] the

authors propose a method which superimposes coded observations and uses wavelet-
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based sparsity recovery algorithms to reconstruct the original subframes.

3.3.5 Optics and Holography

In [Denis 2009] an inline hologram reconstruction with sparsity constraints is pro-

posed. The inline digital holograms are classically reconstructed using linear opera-

tors to model diffraction. In this work, the authors consider inverting the hologram

formation model in Bayesian framework using a sparsity prior and a simple iterative

algorithm for 3D image reconstruction.

An other work using holographic measurements is proposed in [Brady 2009]. In

this paper, the authors underline the relationship between compressed sensing and

the Gabor’s invention of holography [Gabor 1948]. Indeed, the Gabor holography

is a simple and near-incoherent encoder for compressed sensing, which means that

performing holographic measurements corresponds to taking linear projections of a

signal. In addition, the acquisition domain is a frequency domain and is incoherent

to the direct spatial domain.

In this thesis, we have investigated the use of off-axis holographic measurements

in a microscopy setup for CS acquisitions. We show that indeed, off-axis holographic

measurements are well-adapted to compressed sensing acquisition and reconstruc-

tion, even in low-light conditions.





Chapter 4

Temporal Compressed Sensing

With Random Fourier

Measurements

In this chapter we describe a simulation study to demonstrate the feasibility of

microscopy CS imaging. In conventional microscopy, only Fourier coefficients mag-

nitudes are measurable. The main idea is to combine temporal sequences of optical

Fourier transform (OFT) magnitude measurements with Fourier phase estimation

by interpolation between complete keyframe acquisitions. For images with homo-

geneous objects and background, CS provides indeed a reconstruction framework

from a set of random projections in the Fourier domain, while constraining bounded

variations in the spatial domain. As with many other optical systems, in microscopy

we can observe the magnitude of the Fourier coefficients. However, observing the

phase of these coefficients can be a very expensive task. We propose a framework to

exploit keyframes and phase interpolation along with a CS acquisition of OFT. Our

experiments simulating the proposed microscopy image acquisition protocol confirm

the feasibility of the CS computational framework to recover image sequences in

microscopy with a very high frame rate while preserving high SNR levels. The re-

sults obtained with the technique presented in this chapter convinced us that we

could get even better performance by associating compressed sensing with digital

holography, which will be investigated in chapters 5 and 6.
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4.1 CS in Microscopy with Random Fourier Measure-

ments

A major difficulty to exploit the CS framework in practical setups is the choice of

the sampling basis functions and the architecture of the imaging system perform-

ing the measurements [Wakin 2006b]. The principal contribution presented in this

chapter is a simulation of a CS-based image acquisition framework, for microscopy

imaging. Similarly to recent experiments evaluating CS-based magnetic resonance

image (MRI) acquisition protocols [Lustig 2007], we propose to sample image data

in the Fourier domain and reconstruct the corresponding spatial image with suited

sparsity constraints. We would like to use the undersampling capability of CS to

improve acquisition speed and reduce the number of measures being performed.

In microscopy we have access to the object’s diffraction pattern, which well

approximates the amplitude of the Fourier transform of the object. The theory

of light diffraction predicts that the diffraction pattern produced by a plane wave

incident on an optical mask with a small aperture is described at an infinite distance

by the Fourier transform of the mask, such as illustrated in figure 4.1. We note that

the intensities observed in 4.1(b) are the magnitudes of the Fourier transform of the

object without the phase information.

The diffraction pattern of an object can be observed optically using dedicated

lenses [Goodman 1996]. However, the measured light intensity at the focal distance

f of these lenses, contains only the magnitude (square of the amplitude) of the

Fourier transform of the object being imaged. To recover the signal we would need

to also know the phase of the Fourier coefficients. Knowing only the magnitude of

the Fourier coefficients corresponds to knowing the autocorrelation of the object,

which is not invertible and not unique.

In optics, phase information can be measured using interferometry or holography

techniques [Atlan 2008, Liebling 2004], by acquiring at least three images, with dif-
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Figure 4.1: Example of diffraction phenomenon at a circular aperture.

ferent phase-shifts and combining them to finally extract the phase [Goodman 1996].

Some numerical methods to achieve phase retrieval (PR) given just the magnitude of

a Fourier transform of an object [Fienup 1982, Liebling 2003] were also investigated.

A CS phase retrieval (CSPR) method based on incomplete magnitude measurements

and ℓ1-norm constraint has been proposed in [Moravec 2007]. However, this CSPR

method requires a ℓ1-norm constraint, which is not constant for microscopy image

sequences.

Measuring a complex-valued signal such as X = A(ω, ν)ejφ(ω,ν) with real-valued
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sensors which are only able to measure the magnitude A(ω, ν)2 is a challenge for

many imaging systems such as wavefront sensing and interferometry. Indeed, the

phase of the signal is as important as the amplitude. Recovering a spatial signal from

its Fourier magnitude-only measurements is an ill-posed problem which is impossible

to solve without some additional constraints on the spatial signal. As discussed in

[Moravec 2007], phase retrieval constraints can involve positivity, explicit support,

histogram shape, or sparsity.

In this chapter we present a method to interpolate the missing Fourier phase

information between a subset of keyframes. For microscopy image sequences with

high frame rates, we show that optical Fourier magnitude measurements combined

with interpolated phase data are appropriate for CS recovery. Phase interpolation

is adequate for high frame-rate images, since successive images present only small

differences due to local motions of cells and show overall large redundancy.

We will first illustrate some results that demonstrate the potential of CS acqui-

sition in microscopy. We then discuss the specific issues related to missing phase

information in optical Fourier acquisitions. Finally, we detail our proposed com-

putational framework to replace the missing phase information in the context of

dynamic microscopy imaging.

4.2 Displacements and Phase

Suppose we have an initial image x(a, b) with a single object as illustrated in Fig.

4.2. If the object is translated within the field of view, the phase of the Fourier

transform X(ω, ν) of the image is linearly shifted proportionally to the amplitude

of the translation. The shift theorem from the Fourier transform properties, applied

to a two-dimensional signal stats that a spatial displacement
√

∆2
a +∆2

b produces

a phase variation of [Goodman 1996]:

x(a, b) → X(ω, ν)

x(a−∆a, b−∆b) → e−2πi(∆aω+∆bν)X(ω, ν) (4.1)

If we are able to estimate ∆a and ∆b (i.e. the amplitude of the displacement in

each direction a and b), we can also estimate the Fourier phase variation. Unfortu-

nately, in microscopy images, several objects move simultaneously and in different
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Figure 4.2: Object movement on an image sequence.

directions, so that simple phase correction can become difficult.

The phase variation between two consecutive frames depends on the moving

objects and the amplitude of their displacement. A cell image can be considered

as a linear combination of independent images. Suppose an image composed by a

background and one simple object xt(a, b) = p(a, b) + o(a, b) the Fourier transform

at the instant t is:

X(ω, ν) = F{p(a, b)} + F{o(a, b)}

= P (ω, ν) +O(ω, ν) (4.2)

Suppose that at the time t+1 the object o(a, b) ∈ R
2 presents the same structures

but shifted and that p(a, b) ∈ R
2 is invariant. If we are able to estimate ∆a and ∆b,

which corresponds to the shift of o(a, b) in each direction a and b, then through the

linearity of the Fourier transform we have:

Xt+1(ω, ν) = F{p(a, b)} + F{o(a−∆a, b−∆b)}

= P (ω, ν) +O(ω, ν)e−j2π(∆aω+∆bν) (4.3)
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(a) (b) (c)

Figure 4.3: Image sequence, t = 0 (a) and t = 1 (b) and global movement (c)
computed as the difference of pixels intensities between the two consecutive frames.

Then we can estimate the Fourier transform variation Gϕ from (4.2) and (4.3):

Gϕ =
Xt+1(ω, ν)−Xt(ω, ν)

Xt(ω, ν)

Gϕ =
P (ω, ν) +O(ω, ν)e−j2π(∆aω+∆bν) − (P (ω, ν) +O(ω, ν))

P (ω, ν) +O(ω, ν)

Gϕ =
P (ω, ν) +O(ω, ν)e−j2π(∆aω+∆bν)

P (ω, ν) +O(ω, ν)
− 1 (4.4)

For high frame rate acquisition object displacements ∆a and ∆b are probably small

compared to the image size. Accordingly, from Equation (4.4), if ∆a → 0 and

∆b → 0 the phase shift term e−j2π(∆aω+∆bν) → 1 and then Gϕ → 0, which means

that if displacements are small enough between consecutive frames the global phase

variation Gϕ ≈ 0.

To assess the validity of this assumption in dynamic microscopy imaging, we can

look at two consecutive frames of an image sequence (Fig. 4.3a 4.3b). The global

spatial movement can be computed as the difference of intensities between the image

at t = 0 and the image at t = 1 (Fig. 4.3b). In Fig. 4.3c, which shows the phase

difference between two consecutive frames, we can see that the global amplitude

of the movements are very small between two consecutive frames. In Fig. 4.4c we

show variations of the Fourier phases between these two frames. We can also see

in Fig. 4.4 that most important changes in the Fourier phase data corresponds to

the middle and high frequencies, which correspond essentially to noise information.

It can also be observed in figure 4.4(d) which corresponds to the profile of a line
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Figure 4.4: Fourier phases from frames (a) t = 0 (b) t = 1 and (c) the difference
between the phases of the two consecutive frames (d) and a profile for a line passing
through the center of the image in (c).
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passing through the middle of the image 4.4(c).

4.3 Fourier Phase Estimation

As discussed in the introduction, to recover the original signal using CS we need

both Fourier amplitude and phase information. Now, we consider that we are able to

make M random measures of the Fourier amplitude at ∆t intervals. We also assume

that we acquire full keyframes each ∆k frames of the sequence, with K∆t < ∆k.

Keyframes are used to limit the error propagation in the image sequence recovery,

as illustrated in Section 4.5. Keyframes will also allow a linear Fourier phase inter-

polation between acquired keyframes. Each reconstruction exploits M amplitude

measurements of Fourier coefficients and M corresponding phase values, estimated

by interpolation of the phase between keyframes. This means that we propose an

offline reconstruction of multiple frames between the keyframes which are fully ac-

quired.

Given two keyframes x∆k(a, b) and x2∆k(a, b), with corresponding Fourier trans-

forms F{x∆k(a, b)} = X∆k(ω, ν) and F{x2∆k(a, b)} = X2∆k(ω, ν), we make two

hypothesis:

Hypothesis 1

The motion of objects from images x∆k(a, b) and x2∆k(a, b) induce a global

linear shift of (∆a,∆b). This implicitly assures a global motion of all objects

in one direction with constant speed from ∆k to 2∆k. Then, from the theorem

(4.1):

X2∆k(ω, ν) = X∆k(ω, ν)e
−2πi(∆aω+∆bν)

Hypothesis 2

The shift (∆a,∆b) is derived from regular incremental displacements

between frames x∆k+j∆t(a, b) and x∆k+(j+1)∆t(a, b) of amplitude

(∆a/K + 1,∆b/K + 1), for j = 0, 1, ...,K − 1, ∆k + (K + 1)∆t = 2∆k

and ∆t = ∆k
K+1 .

Then, the Fourier transform of a generic frame x∆k+t(a, b) for 0 < t < ∆k can be
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Figure 4.5: Recovery algorithm and acquisition system.

estimated with the following linear interpolation:

F{x∆k+j∆t(a, b)} = F{x∆k(a, b)}e
j

K+1
ln{

F{x∆k(a,b)}
F{x2∆k(a,b)}

}

X∆k+j∆t(ω, ν) = X∆k(ω, ν)e
j

K+1
ln{

X∆k(ω,ν)

X2∆k(ω,ν)
}

(4.5)

and an estimation of the Fourier phase at a general ∆k + j∆t can be computed as:

θ̂∆k+j∆t(ω, ν) = ∠A∆k(ω, ν)e
iθ∆k(ω,ν)e

∆k+j∆t
2∆k

ln{
F{x∆k(a,b)}

F{x2∆k(a,b)}
}

θ̂∆k+j∆t(ω, ν) = θ∆k(ω, ν) +
∆k + j∆t

2∆k
ln

{

A∆k(ω, ν)e
iθ∆k(ω,ν)

A2∆k(ω, ν)eiθ2∆k(ω,ν)

}

(4.6)
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4.4 Image Reconstruction and Algorithm

The general image reconstruction formulation for uncompleted Fourier measure-

ments and TV sparsity constraints is given by:

x̂ = min
x∈RN

‖ x ‖TV s.t. ‖ y − Φx ‖ℓ2≤ δ (4.7)

where y ∈ C
M are the Fourier measurements and each coefficient can be expressed

in the form A(ω, ν)eiθ(ω,ν).

We define Φ as a linear operator which selects uniformly a random subset of

Fourier coefficients. In other words, Φx(a, b) corresponds to sample a subset Γ of

all Fourier coefficients X(ω, ν), such as Φx(a, b) = X(ω, ν)|Γ
Consider the case where A(ω, ν) and θ(ω, ν) can be computed when a keyframe

x∆k(a, b) is acquired and that only an incomplete set of magnitudes A(ω, ν)2|Γ
are acquired between two keyframes. The goal is to reconstruct x(a, b) from

y(ω, ν) = Φ x(a, b) where y(ω, ν) is described in the next subsection.

Performing Amplitude Measurements

The first image and keyframes are fully acquired (each ∆k frames) in the direct

spatial domain such that we know exactly the image xu∆k(a, b) for u = {0, 1, 2...}.
From the keyframes we extract:

• Fully acquisition of xu∆k(a, b).

• Compute the Fourier transform Xu∆k(ω, ν).

• Extract from each complex Fourier coefficient A(ω, ν)eiθ(ω,ν) the amplitude

Au∆k and the phase θu∆k,

Au∆k =
√

Re{Xu∆k}2 + Im{Xu∆k}2 (4.8)

θu∆k = arctan

{
Im{Xu∆k}
Re{Xu∆k}

}

(4.9)

Combining With Phase Estimation

The images between keyframes are acquired with a different scheme. In a simulated

framework, the camera would be placed in the optical Fourier domain acquiring ran-
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dom and incomplete measurements, corresponding to the magnitude of the Fourier

coefficients A2. Note that measuring A2 the sign of A is lost. We suppose that

the sign difference frame-to-frame is small, so that the signs of A∆k+j∆t are taken

from A∆k. For example, supposing that the image x∆k is well acquired, we estimate

x∆k+j∆t by following the steps above:

• Acquisition of random sets of magnitude of Fourier coefficients, A2
∆k+j∆t.

• Include the sign information from the last frame

A∆k+j∆t = A∆k+j∆t · sign(A∆k+(j−1)∆t). We suppose that for high

frame-rate images the sign of A∆k is a good estimation for the sign of

A∆k+j∆t.

• Include the interpolated phase information θ̂∆k+j∆t from (4.6).

• Define the measure:

y∆k+j∆t(ω, ν) = {|A∆k+j∆t(ω, ν)| · sign(A∆k+(j−1)∆t(ω, ν))e
iθ̂∆k+j∆t(ω,ν)}|Γ

(4.10)

• And finally, solve the problem:

x̂∆k+j∆t = min
x∈RN

‖ x ‖TV s.t. ‖ y∆k+j∆t − Φx ‖ℓ2≤ δ (4.11)

In our implementation, the problem (4.11) was solved by modifying the ℓ1-

magic toolbox (see modifications in table 4.1) proposed by Candès and Romberg and

which can be found in http://www.acm.caltech.edu/l1magic/. The ℓ1-magic tool-

box was proposed in [Candès 2006c, Candès 2006e, Candès 2005c, Candès 2005d,

Candès 2005e, Candès 2004a]. It solves the problem (4.11) by recasting it as second-

order cone program (SOCP) in the form:

min
∑

t s.t. ‖ Ψijx ‖2 ≤ t, i, j = 1, 2, ..., n

‖ Φx− yt ‖2 ≤ δ (4.12)

Then, the SOCP is solved with a generic log-barrier algorithm following the

implementation in [Boyd 2004]. The bottleneck of this solver is the calculation of

http://www.acm.caltech.edu/l1magic/
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ℓ1-magic ℓ1-modified

Perform random Fourier measurements:

y = Φx(a, b) y∆k+j∆t = {|A∆k+j∆t|·sign(A∆k+(j−1)∆t)e
iθ̂∆k+j∆t}|Γ

Recast as a SOCP (4.12)
Iterations of a log-barrier algorithm [Boyd 2004]

Iterations of a Newton algorithm for log-barrier subproblems
Solve a symmetric positive definite system Φx = y via conjugate gradients (CG)
Compute residual in CG: Compute residual in CG:
r = y − Φx; rA = yA −

√

{Φx}2;
rθ = yθ −∠Φx|mod(π);
r = αrA + βrθ; % for α > β

Update criteria in CG:

if (r < best_residual) then
best_x← x̂
best_residual← r

end if

Table 4.1: Modifications of the ℓ1-magic reconstruction.

the Newton step where conjugate gradient (CG) iterates are used to approximately

solve the system.

4.4.1 Algorithm Adaptation

In order to account for the fact that the phase values θ(ω, ν) are interpolated be-

tween keyframes while the amplitude values A(ω, ν) are measured with a camera,

we propose to weight differently their respective contribution in the data fidelity

term of the reconstruction algorithm: For this purpose we have proposed a slightly

modified algorithm to solve the problem (4.11). The modifications are detailed in

Table 4.1.

4.5 Results and Error Propagation

Figure 4.7 illustrate the CS reconstruction results for a phase contrast microscopy

sequence of 140 frames (228 × 228 pixels per frame, 14 keyframes and ∆k = 10

frames). The recovery algorithm used only 5% of Fourier magnitude measurements

and the full acquisition of one keyframe every 10 frames to interpolate the Fourier

phase. As expected, phase estimation between keyframes introduces some recovery

error. We use the Mean Squared Error (MSE) to estimate the recovery error, which
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Figure 4.6: MSE propagation for the CS reconstructed image in Fig. 4.7.

is computed for each time ∆k + j∆t as:

MSE∆k+j∆t =
1

AB

A∑

a=1

B∑

b=1

{x̂∆k+j∆t(a, b)− x∆k+j∆t(a, b)}2 (4.13)

where A and B are the width and the height of the image, x̂∆k+j∆t(a, b) is the CS

reconstructed image at ∆k + j∆t and x∆k+j∆t(a, b) the original image at ∆k + j∆t.

In the Fig. 4.6 we can clearly identify two error bounds, level 1 and level 2. Level

1 corresponds to the maximum error introduced by the phase estimation, before it is

reset when a keyframe is acquired. Level 2 corresponds to the residual error due to

the CS regularization effect induced by the TV minimization, resulting in denoising.

Both phase estimation errors and denoising effects can also be observed in Fig. 4.7

(bottom), which illustrates the residuals from each reconstruction.

4.6 Conclusion

In this chapter a CS-based dynamic image acquisition and recovery method was in-

troduced combining Fourier magnitude measurements and Fourier phase estimation.

We presented simulation results for a microscopy image sequence reconstruction

demonstrating that our approach has several advantages over traditional acquisi-
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Figure 4.7: Top: Phase contrast microscopy image sequence of amebas, x∆k+j∆t at
∆k + j∆t = {5, 75, 135}, ∆k = 10. Middle: CS reconstructions x̂∆k+j∆t with 5%
of measurements (M = 5%N). Bottom: Residual ‖ x̂∆k+j∆t − x∆k+j∆t‖ℓ2 .
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tion methods, since it can under-sample, recover and denoise images simultaneously.

Our approach is limited to reconstruct microscopy image sequences with high frame

rates, skipping Fourier phase measurements and opening the door to new microscopy

acquisition schemes.

The approach is very difficult to implement in practice, the setup should be able

to switch from the acquisition of a keyframe in the spatial domain and the acquisition

in the Fourier domain. This could be obtained by creating two different optical

pathways which is possible by using a beam splitter, one path for the acquisition in

the spatial domain and the second path for the acquisition in the Fourier domain.

The work presented here incited us to find a practical acquisition scheme to test

compressed sensing imaging using real Fourier-based measures. Therefore, we have

worked on compressed holographic microscopy where the measurement process is

based on off-axis digital holography. Digital holographic microscopy (DHM) en-

ables to achieve measurements in the Fresnel domain and most important, it allows

to measure not only the amplitude but also the phase of a complex signal (e.g. fre-

quency coefficients). The main results on compressed sensing for DHM are presented

in chapters 5 and 6.





Chapter 5

Compressed Digital Holographic

Microscopy

This chapter reports an experimental microscopy acquisition scheme successfully

combining compressed sensing imaging (CSI) and digital holography acquisition in

off-axis and frequency-shifting conditions. Our approach combines a total variation

minimization algorithm to reconstruct the image and digital holography to perform

quadrature-resolved random measurements of an optical field in a diffraction plane.

We show that digital microscopic holography is suited for compressed sensing since

measurements are naturally taken as linear frequency-based projections of the orig-

inal scene. We detail a CS-based imaging scheme for sparse images, acquiring a

diffraction map of the optical field with holographic microscopy and measuring the

signal from as little as 7% of measurements. We also demonstrate with practical

experiments on holographic microscopy images of the USAF target (U.S. air force

target) and of cerebral blood flow that our CS approach enables reconstruction from

a very limited number of measurements while being robust to high noise levels. The

results demonstrate how CS can lead to an elegant and effective way to reconstruct

images, opening the door for new microscopy applications. The work presented here

and in chapter 6 are joint works with the research team from the ESPCI ParisTech,

headed by Michael Atlan.
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5.1 Introduction

Digital holographic microscopy (DHM) provides quantitative phase contrast imag-

ing, high resolution via non-destructivity and multi-focus representation of micro-

scopic specimens [Gross 2007]. In biology, this technique is suitable for marker-free

analysis of living cells.

Holography presents several advantages over traditional imaging techniques pro-

viding high resolution three-dimensional recording of an object from a limited per-

spective, an image display that may be viewed from a variety of angles, a precise

quantitative reproduction of the object being imaged and a translucent image that

allows the viewer to both visualize deep and superficial structures simultaneously

[Gross 2007]. In addition, it is a non-invasive technique, avoiding photo-toxicity

contrary to fluorescence imaging techniques. This is an active field of research for

biological imaging applications [Aizu 1999, Atlan 2006, Rappaz 2005].

This chapter addresses the sensing problem in DHM by increasing the detection

throughput via the concept of an actual compressed sensing implementation. This

method is image-content independent and does not need any feedback loop during

the acquisition. The main idea presented here is to combine off-axis, frequency-

shifting (for accurate phase-shifting) digital holographic microscopy [Atlan 2007] to

perform quadrature-resolved random measurements of an optical field in a diffraction
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plane and the use of a total variation minimization algorithm to reconstruct the

image.

5.2 An Overview of Digital Holographic Microscopy

In this section we briefly discuss the main principles of holography and underline

two different types of holography acquisition. Holography is an imaging technique

initially proposed by Dennis Gabor in 1948 [Gabor 1948]. It can be defined as a

two-step lensless imaging process which requires a wavefront reconstruction. Gabor

discovered that by combining a reference light-coherent wave with the diffracted or

scattered wave from an object, it was possible to record both the amplitude and

the phase of the diffracted wavefront. In spite of the fact that the recording media

(holographic film or digital sensors) can only measure light intensities, the amplitude

and phase information can be measured with holography. In figure 5.1 we illustrated

the classic Gabor inline setup for holographic imaging. The term digital holography

(DH) specifies that the hologram is acquired with a digital sensor like a CCD or

CMOS camera.

array

detector

object

beam

expander
source

hologram

scattered wave

focal

distance

Figure 5.1: A general setup of inline holography imaging.

There are two basic types of diffraction situations, the near-field and far-field

diffraction depending on the distance between the object and the observation planes.

These two types of diffraction are called Fresnel and Fraunhofer diffraction respec-

tively. The Fraunhofer diffraction pattern is mathematically identical to the Fourier

transform, within certain approximations, thus we will refer to Fraunhofer hologra-

phy as Fourier holography. For a Fourier hologram the light from each point on the

object interferes with the reference beam, which is assumed to be planar, to create

a sinusoidal fringe with a vectorial spatial frequency that is unique to that object

point.
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The Fresnel or “near-field” diffraction occurs when a wave passes through an

aperture and diffracts in the near field, in this case waves are spherical. The diffrac-

tion pattern depends on the distance between the object and the detection planes.

When the distance between the two planes increases, outgoing diffracted waves be-

come planar and Fourier or “far-field” diffraction occurs.

The physical difference between a Fresnel and Fourier holographic setup relies in

the average curvature difference between the reference and the object waves, hence,

the distance between the object plane and the acquisition plane. For both cases,

the acquisition plane contains frequency-based multiplexed information about the

original object [Goodman 1996, Hildebrand 1970]. In the Fresnel case, the distance

between the illuminated object plane and the acquisition plane is smaller than in

the Fourier case. As a consequence the information is more spatially incoherent in

the Fourier case than the Fresnel configuration. We will discuss later on how this

will affect our CS-based image reconstruction, and why the Fourier case enables

compressed sensing. In subsections 5.2.3.2 and 5.2.3.1 we detail more precisely the

difference between Fresnel and Fourier diffraction with regards to holography.

5.2.1 Digital Holography Principles

In electromagnetic theory, the electromagnetic wave propagates such that both the

magnetic field oscillations, and the electric field oscillations are perpendicular to the

direction of the propagating waves. The electromagnetic wave transports energy

like any wave and the total energy is shared between the electric and the magnetic

field. In digital holography, we identify the electric field wave as the optical field.

The optical field which is measured in holography is the result of the interferences

between the object field (signal of interest) and a reference optical field. The image

of interest can then be computed in a post-processing step since the relation between

the detected diffraction pattern and the object is known (via a Fourier or Fresnel

transformation).

Consider that Er and Eo are the reference and object optical fields respectively,

a, b are the spatial coordinates and z is the traveled distance between the object

and the camera (array detector in figure 5.2). The intensity distribution of the

diffraction pattern (interferences between the reference wave and the object wave)
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in the detection plane (measured by the CCD camera) corresponds to:

I(a, b, z) = |Eo(a, b, z) + Er(a, b, z)|2 (5.1)

= |Eo(a, b, z)|2 + |Er(a, b, z)|2

+Eo(a, b, z)E
∗
r (a, b, z) + Er(a, b, z)E

∗
o (a, b, z)

where ∗ represents the complex conjugate term.

The third and fourth conjugate terms are proportional to the object field and

will generate virtual images of the object field, which are called twin-images. The

superposing twin-images disturb the observation of the real object. The second

term in equation (5.2) is called the zero-order intensity, which comes from the refer-

ence optical field. Similarly to the twin-images, the superposition of the zero-order

intensity to the object intensity perturbs the observation of the real object.

5.2.2 Inline or Off-Axis Holography

Since the invention of holography by Gabor in 1948, removal of the unwanted twin-

images has remained a persistent area of research [Goodman 1996]. The results of

Gabor’s original in-line experiment (see figure 5.1) were marred by the presence of

the twin-image and the so called zero-order intensity terms [Gabor 1948].

Leith and Upatnieks suggested in 1962 an off-axis hologram setup, also called

Leith-Upatnieks hologram. It is a modification of Gabor’s original recording geom-

etry that solved the twin-images problem [Leith 1972].

The major difference between inline and off-axis holography is that, rather than

depending on the light directly transmitted by the object to serve as a reference wave,

a separate reference wave is introduced (see figure 5.2). In addition, the reference is

introduced with an offset angle, rather than being aligned with the propagation axis.

The optical field measured by the array detector is used to compute the hologram

which is linked to the object field by a Fourier or Fresnel transform depending on

the setup.

To solve the zero-order intensity and the twin-images problem, a quadrature

phase-shifting holography will be used in order to reconstruct the original complex

object wave. This approach was first proposed by Gabor and Goss in the 1960s

[Gabor 1966].

The initial optical field E is split and spread in two different paths, one passing
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Figure 5.2: Off-axis holographic setup.

through the object creating the optical field Eo and the second which is the reference

optical field Er. The reference beam Er is dynamically phase shifted with respect

to the object field Eo. Four image acquisitions are performed while shifting the

reference beam phase by lπ/2 with l = 0, 1, 2, 3. This shift produces time-varying

interferograms and the intensity I(a, b, z) in the detector plane results from the

interference of the object field with the ∆θ-shifted reference field:

I(a, b, z)l = |Eo(a, b, z) + Er(a, b, z)e
2πi∆θl |2 (5.2)

where ∆θl = lπ/2 and l = 0, 1, .., L, with L = 4.

Then, the object optical field Eo can be retrieved by demodulating I such as:

Eo(a, b, z) =
1

LE∗
r (a, b, z)

L∑

l=0

I(a, b, z)le
2πil
L (5.3)

where E∗
r is the conjugate of Er.

However, the equation (5.3) cannot be used directly since E∗
r (a, b, z) is unknown.

To reconstruct the original signal a complex hologram needs to be computed. For
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L = 4 (i.e. 4 phases) the hologram is defined as:

H(a, b, z) =

L−1∑

l=0

(i)lIl(a, b, z) (5.4)

= I0(a, b, z) + iI1(a, b, z) − I2(a, b, z) − iI3(a, b, z)

= (I0(a, b, z) − I2(a, b, z)) + (I1(a, b, z) − I3(a, b, z))i

where l is the image index and i2 = −1. The hologram H(a, b, z) is proportional to

Eo (from Eq. (5.3)) and corresponds to the Fresnel transform of the image placed at

z = d from the camera (the object in figure 5.2). A simple image reconstruction when

all coefficients of H are known consists in computing the inverse Fresnel transform.

Summarizing, for quadrature phase-shifting holography, two quadrature-phase

holograms and two intensity values (namely the object field intensity and the refer-

ence field intensity) are needed.

5.2.3 Image Reconstruction from the Hologram

As discussed in the previous subsection, the image reconstruction from the total

intensity field is performed in three steps: (1) compute the complex optical field from

the real intensity measurements (equation (5.5)), (2) back-propagate the optical field

H to the object plane and (3) the image reconstruction by multiplying the hologram

H by a quadratic phase term exp{ iπλza2 + b2} which depends on the distance z

between the object and the camera.

In Fourier holography the distance z between the object and the detection plane

(without lens) is “assumed” infinite and the quadratic phase goes to zero; however

in the Fresnel case, the distance z is finite and the quadratic phase is not insignif-

icant. In the next two subsections we detail both cases and the respective image

reconstructions process from the hologram H(a, b, z).

5.2.3.1 Fresnel Hologram Case

For simplicity consider that H(ω, ν, z) the hologram in the detector plane, and

Eo(a, b, 0) the optical field in the object plane. In the Fresnel case the hologram and

the object field are related by the Fresnel diffraction transformation which is quite
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similar to the Fourier integral,

H(ω, ν, z) =

∫∫ ∞

−∞
Eo(a, b, 0) e

iπ
λz

(a2+b2)
︸ ︷︷ ︸

quadratic phase

e−2πi(ωa+νb)da db (5.5)

where λ is the coherent light wavelength.

The difference between the Fresnel integral and the Fourier integral is the

quadratic phase factor e
πi
λz

(a2+b2). The Fresnel transformation becomes a Fourier

transformation if the distance z goes to infinity since the quadratic term tends to 1.

In the Fresnel case the object is viewed as being the function Eo(a, b, z)e
πi
λz

(a2+b2).

The existence of a phase distribution across the object does not affect the intensity

distribution, which allows us to have a good approximation of the bandwidth of the

hologram.

In the next two chapters we will be interested in digital holographic microscopy,

manipulating the discrete version of the hologram formation. Consider also square

only images such that na = nb = n. In the Fresnel digital holography, the holo-

gram is linked to the optical field in the object plane via the following discrete

transformation:

H[ω, ν, z] =
1

n
e−

2πiz
λ

n−1∑

a=0

n−1∑

b=0

Eo[a, b, 0]e
− πi

λz
(a2+b2)e−2πi( aω+bν

n ) (5.6)

where λ is the coherent light wavelength and z is the distance between the detection

and the object planes. In fact, (5.5) can be viewed as expressing the hologram field as

the product of the quadratic-phase term and the Fourier transform of the modified

object field. The difference between the Fresnel and the Fourier transforms lies

entirely on the quadratic-phase factor, the Fresnel transform can also be computed

with the fast Fourier transform (FFT) algorithm.

Finally, the object field amplitude can be estimated as:

Eo[a, b, 0]
︸ ︷︷ ︸

image of interest

=
1

n
e

2πiz
λ

n−1∑

ω=0

n−1∑

ν=0

H[ω, ν, z]e
πi
λz

(ω2+ν2)e2πi(
aω+bν

n ) (5.7)

which is the general approach for DH image reconstruction when the complete holo-

gram is known.
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5.2.3.2 Fourier Hologram Case

The Fourier hologram can be obtained by using a fictitious lens of infinite size or

without lens and placing the object and the detection plane at an infinite distance.

The hologram field H[ω, ν, z] and the object field are then related by a Fourier

transform:

H[ω, ν] =
1

n

n−1∑

a=0

n−1∑

b=0

Eo[a, b]e
−2πi( aω+bν

n ) (5.8)

and, in this case, the image of the object can be estimated as:

Eo[a, b]
︸ ︷︷ ︸

image of interest

=
1

n

n−1∑

ω=0

n−1∑

ν=0

H[ω, ν]e2πi(
aω+bν

n ) (5.9)

Note that, as described by the Whittaker-Shannon sampling theorem, the num-

ber of samples to be acquired in the detection plane depends on the bandwidth of

the object field (object with fine details will require more samples, see 1.2.5).

5.2.4 From Fresnel to Fourier Domains

The radiation field propagates from the object to the detector plane in Fresnel

diffraction conditions. Thus, the optical field in the object plane is linked to the

field in the detector plane by a Fresnel transform, described in (5.6). The term

e
i π
λz

(a2+b2) is the quadratic phase factor describing the curvature in the detector

plane of a wave emitted by a point source in the object plane.

In Figure 5.3 we illustrate how the curvature c = e
iπ
λz

(a2+b2) decreases as

the object-detector distance z increases. The Fresnel diffraction occurs when

π(a2 + b2)/λz ≥ 1 and the Fourier diffraction occurs when π(a2 + b2)/λz ≪ 1.

In other words, when z → ∞, then e
iπ
λz

(a2+b2) → 1, and hence the diffraction pat-

tern described in (5.6) converges toward the Fourier transform. The Figure 5.3

illustrates the optical interpretation of spatial incoherence. Starting in the object

plane the incoherence between Ez=0 and the field at inferior limit Ez=+0 is negligi-

ble. As the distance from the object increases, the diffraction pattern evolves toward

the Fourier domain, and at the superior limit z →∞, the incoherence between the

optical field Ez=0 and Ez=∞ is maximal.

The object plane is the most coherent plane with the object image itself, and
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Figure 5.3: Radiation field propagation, from full coherence for a detector plane at
z = 0 to complete incoherence at plane at z → ∞. Fresnel and Fourier diffraction
domains are defined according to the distance between the object and the detector
plane.

the Fourier domain is the most incoherent plane. As illustrated in figure 5.3 the

Fresnel domain is intermediate between a full coherence and a full incoherence to

the object.

5.3 Coupling DHM With Compressed Sensing

In microscopy, several acquisition techniques allow to acquire high-resolution images

with high frame-rates. However the acquisition of high-resolution images are time

consuming and short acquisition time is required for dynamic screening. Digital

holographic microscopy is a technique able to perform high-resolution imaging, yet

limited by time consuming acquisitions setups. In this chapter we propose a method

to address the sensing problem of DHM by using a compressed sensing approach.

In the previous sections we have introduced the basic principles of DHM and the

conventional reconstruction scheme. In this section we describe our contribution

which is to couple the compressed sensing framework to acquire and reconstruct

DHM images. The main idea is to under-sample the Fresnel hologram and to use

an algorithm based on the total variation minimization to reconstruct the image.

The classic image reconstruction in DHM with Fresnel measurements consists of

back-propagating the optical field acquired by the camera to the object plane. It

can be done by applying the inverse Fresnel transform described in (5.7). However

if only a small number of Fresnel coefficients are acquired the image reconstruction

is not possible using the classic scheme. We propose an image reconstruction algo-
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rithm which follows a compressed sensing scheme with sparsity maximization and

incomplete measurements as the data fidelity.

In other words, the incomplete linear measurements y correspond to incomplete

coefficients of the hologram H, described in (5.6). Where the notation y = ΦEo

is equivalent to the selection of random coefficients of H. Thus, the optical field

in the object plane Eo is linked to the field H in the detection plane by a Fresnel

transform, expressed in the discrete case in (5.6). The signal reconstruction consists

in solving an optimization problem that finds the candidate Êo (where ·̂ denotes an

estimator) of minimal complexity satisfying y = ΦEo or ‖ y − ΦEo ‖ℓ2 ≤ δ.

5.3.1 CS Reconstruction from Fresnel Measurements

We want to recover the intensity image of the object Eo ∈ R
N from a small number

of measurements y ∈ C
M where M ≪ N . Partial measurements in the detection

plane, illustrated by the first step in Fig. 5.4, can be written as y = ΦEo = H|Γ,

where the sampling process ΦEo represents a random undersampling with a uniform

spatial distribution of H (the Fresnel transform of Eo). In other words, y = H|Γ
corresponds to sample a subset Γ of all Fresnel coefficients H, such as ΦEo = H|Γ.

To find the best estimator Êo of the object of interest, we solve the following convex

optimization problem [Candès 2006a]:

Êo = arg min
Eo∈RN

‖ Eo ‖TV subject to y = ΦEo (5.10)

This optimization leads to an iterative image reconstruction process, illustrated by

the loop inside the dotted frame in Fig. 5.4. Explicitly, given a partial knowledge of

the Fresnel coefficients H|Γ, we seek a solution Êo with maximum sparsity (i.e. with

minimal norm ‖ Eo ‖TV ), and whose Fresnel coefficients Ĥ|Γ match the observed

subset y = H|Γ (as illustrated in Fig. 5.4). Since our test image is piecewise

constant with relatively sharp edges (such as most microscopy images), it can be

sparsely represented computing its gradient. In image processing, a suitable norm

to constrain the gradient of an image was introduced as the Total Variation (TV)

which approximates the ℓ1 norm of the gradient magnitudes over the whole image:

‖ Eo ‖TV =
∑

a,b

√

{Eo(a+ 1, b)− Eo(a, b)}2 + {Eo(a, b+ 1)− Eo(a, b)}2 (5.11)
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Figure 5.4: CS reconstruction scheme.

The incoherence property holds for the two basis adopted here, which are the

Fresnel spectrum and the TV [Candès 2006b]. Moreover, uniform random mea-

surements in the spectral domain satisfy the RIP condition [Candès 2008]. Hence

for overwhelming percentage of Fresnel coefficients sets Γ with cardinality obeying

|Γ| =M ≥ K ·S logN , for some constant K, for the sparsity S, for M measurements

and a signal length N , the true object field Êo corresponds to:

Êo = arg min
Eo∈RN

‖ Eo ‖TV subject to y = ΦEo (5.12)
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However, holographic measurements are corrupted with noise and the observed sig-

nal is not exactly sparse. In our experiments, the observations were described as

noisy measurements y = ΦEo+n, where n ∈ C
M is a noise component with bounded

energy ‖ n ‖ℓ2 ≤ ε. In this particular case, a better reconstruction can be achieved

by relaxing the constraint y = ΦEo and allowing an error δ at most proportional to

the noise energy ε [Donoho 2006a]. Finally, solving the following problem performs

the reconstruction of Eo with a controlled robustness to noise:

Êo = arg min
Eo∈RN

‖ Eo ‖TV s.t. ‖ y − ΦEo ‖ℓ2 ≤ δ (5.13)

for some δ ≤ Cε, which depends on the noise energy.

5.3.2 Incoherent Sampling of Hologram Coefficients

The CS theory states that the design of the sampling process must enforce inco-

herence between the acquisition and the sparsity domains. This constraint has

been formulated through several criteria, based on mutual coherence measures

[Candès 2006b, Donoho 2006a], or matrix properties such as the Restricted Isometry

Property (RIP, see section 1.3.2) conditions [Candès 2008].

Here the sampling process corresponds to linear projections of the signal in the

Fresnel domain and the signal is sparse with respect to its total variation. For the

Fresnel transform and for the Fourier transform, each projection contains global

information about the whole signal. In our work we rely on the sufficient condition

for the CS problem to be well conditioned, provided that ΦEo must satisfies the

RIP condition:

(1− δ1)‖ Eo ‖2ℓ2 ≤ ‖ ΦEo ‖
2
ℓ2
≤ (1 + δ2)‖ Eo ‖2ℓ2//(δ1, δ2) ∈ R

+ and (δ1, δ2)≪ 1

This means that the sampling process ΦEo must preserve the lengths of the signal

of interest Eo. In [Candès 2008] it was shown that random acquisition in the Fourier

domain, encoded by a matrix with 1s and 0s at random frequency locations verifies

this incoherence property when combined with TV spatial constraints.
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5.3.2.1 Reconstruction Algorithm

To solve the problem (5.13) we used NESTA, an algorithm proposed by Becker

et al. in [Becker 2009] and discussed in subsection 1.3.3.2. NESTA is a first-order

method for sparse recovery using an averaging of sequences of iterates to improve the

convergence properties of standard gradient-descent algorithms. NESTA is based on

the work of Nesterov [Nesterov 1983, Nesterov 2004, Nesterov 2005] which proposed

smoothing techniques with improved gradient descent methods to derive first-order

methods.

Becker et al. have extended nesterov’s work to solve the compressed sensing

problem. In [Becker 2009] the authors showed that NESTA algorithm can solve the

total variation minimization with quadratic constraints such as:

x̂ = arg min
x∈RN

‖ x ‖TV s.t. ‖ y − Φx ‖ℓ2 ≤ δ (5.14)

with Φ modeling a uniform random undersampling in the Fourier domain. This is

almost the same problem as (5.13) where the difference is the sampling domain.

The algorithm used to reconstruct the optical field in the object plane from

holographic measurements (i.e. problem (5.13)) is an adaptation of NESTA. The

main difference is that in our case the sampling domain is the Fresnel domain instead

of Fourier. We note that similar to the Fourier sampling, the Fresnel sampling

corresponds to a linear transformation. Other contributions to the algorithm such

as a support constraint on the signal are explained in chapter 6.

5.3.2.2 Hermitian Symmetry

Based on the prior information that the signal to reconstruct is real, we can force

the result from the Fourier transform to have the Hermitian symmetry. This can

be obtained by restricting the sampling to the upper half-plane of the 2D Fourier

transform. It can also be used to compress the signal since the even and odd parts

are symmetric and then only one part needs to be measured. This method only

concerns Fourier holography.

Definition A Hermitian matrix is a self-adjoint square matrix. For complex-

valued matrices this means that the matrix is identical to its conjugate transpose.

Two-dimensional discrete Fourier transforms of real-valued images provide Hermi-
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NESTA Our approach

Perform M random measurements y:
y = Φx y = ΦEo

Φx→ models random undersampling
in the Fourier domain

ΦEo → models random undersam-
pling in the Fresnel domain

Φx→ linear transformation ΦEo → linear transformation
δ → proportional to the noise on the
Fourier coefficients

δ → proportional to the noise on the
Fresnel coefficients

M → depends on the mutual coher-
ence of Fourier and TV

M → depends on the mutual coher-
ence of Fresnel and TV.

solve the problem (5.14) solve the problem (5.13)

Table 5.1: Main differences between NESTA and our approach.

tian matrices and are therefore entirely known with only half of the terms associated

with the discrete frequencies used for the decomposition. This is a well known prop-

erty largely exploited in several image processing algorithms. Such property can also

be used to enforce the reconstruction of a real-valued image from a set of complex

samples in the Fourier domain.

To force a Hermitian symmetry of the Fourier transform we can simply impose

the even part to be the symmetric-conjugate of the odd part. This is exactly what

is enforced on the data acquired with digital holographic microscopy. For all im-

age reconstructions in this chapter we have forced the Fourier transform to have

Hermitian symmetry, avoiding the acquisition of duplicate coefficients.

5.4 Experiments and Results

In this section we present two DHM setups used to acquire undersampled holograms.

The optical setups were developed by the team of Michael Atlan from ESPCI Paris-

Tech. We have tested the image reconstruction with a USAF target image placed

in the object plane as described in figure 5.5. Then we have also modified the ac-

quisition setup to place a mouse in the object plane and to observe the cerebral

blood flow in-vivo. The setups were similar with some differences described in the

following subsections.
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5.4.1 Compressed DHM Setup for USAF Imaging

Taking into account the digital holographic principles we now present the DHM

setup used to acquire the intensity images described in (5.2). The experimental
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Figure 5.5: Sketch of the digital holographic microscopy experimental image acqui-
sition setup.

DHM setup is sketched in Fig. 5.5. It consists of an off-axis, frequency-shifting dig-

ital holographic microscopy scheme [Atlan 2007, Gross 2007] such as described in

subsection 5.2.1. The monochromatic optical field from a diode laser (dynamically

backscattered by an intralipid emulsion) takes two paths i) one path illuminates an

US Air Force (USAF) resolution target ii) one path beats against a separate local

oscillator (LO) field detuned by ∆θ/(2π) = 200Hz and the two paths create a time-

fluctuating interference pattern measured with a N = 1024 × 1024 array detector.

The diffracted object field map in the detector plane, resolved in quadrature (in

amplitude and phase, see (5.2)) H ∈ C
N is calculated from a four-phase measure-

ment [Atlan 2007] described in (5.5). The frequency detuning ∆θ enables rejection

of non fluctuating light components reflected by the target as well as noise reduction

through signal accumulation.

The hologram H can be back-propagated numerically to the target plane with a

inverse Fresnel transform when all measurements H ∈ C
N are available, as described

in (5.6). By using the compressed sensing approach, the image can be reconstructed
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by the method described in (5.13).

5.4.2 USAF Image Reconstruction

In Fig. 5.6 we illustrate some CS reconstruction results. A reconstruction of an

off-axis image with the standard convolution method (eq. 5.7) is illustrated in Fig.

5.6a. The image reconstructed with holography uses all available measurements (4

phases × 10 accumulations ×10242 = 4.2× 107 pixels). For the CS approach, Fres-

nel coefficients were undersampled randomly (after full acquisition by the CCD).

Fig. 5.6b shows the CS reconstruction result from only 7% of the pixels used in the

standard approach (4 phases × 10 accumulations × 0.07 ×10242 = 2.9×106 pixels).

Fig. 5.6c illustrates the gradient of the image ∇Eo (sparsifying domain) and Fig.

5.6d illustrates the residual (Euclidean distance |Êo − Eo|) from (a) the standard

holographic reconstruction and (b) the CS reconstruction. The global normalized

error is ‖ Êo − Eo ‖ℓ2 = 0.05 (Êo and Eo have unit norms). The content of the resid-

ual images is essentially due to the relaxation of the constraint for a perfect match

between measures and estimations in the CS scheme, leading to some denoising ef-

fect, confirmed by the visual aspect on Fig. 5.6d showing essentially unstructured

noise. Finally, Figs. 5.6e and 5.6f display magnified views from a central region of

the images (a) and (b), illustrating the visual quality of the reconstruction.

5.4.3 Compressed DHM Setup for Biological Imaging

Now we present a similar experiment for biological imaging with compressed DHM.

The experimental setup differs, however, the reconstruction algorithm used for the

biological data is the same as the one used to reconstruct the USAF target.

The experimental setup is sketched in Fig. 5.7. It consists of an off-axis,

frequency-shifting digital holographic microscopy scheme [Atlan 2007, Gross 2007].

The monochromatic optical field from a near infrared diode laser illuminates the

skull of an adult mouse, anesthetized with a mixture of xylazine and ketamine (1

mg/kg IP, 10 mg/kg IP), positioned on a stereotaxic frame. Cranial skin and sub-

cutaneous tissue were excised linearly over the sagittal suture and cortical bones

were preserved. The backscattered field beats against a separate local oscillator

(LO) field detuned by ∆θ/(2π) = 30Hz and creates a time-fluctuating interference

pattern measured with a N = 1024 × 1024 array detector. The diffracted object

field map in the detector plane, resolved in quadrature (in amplitude and phase)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: (a) Standard holography experiment, as described in Eq. (5.6). (b)
CS reconstruction, using 7% of the Fresnel coefficients. (c) Gradient of (a). (d)
Residual from (a) and (b). (e), (f) Magnified views from (a) and (b).
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H ∈ C
N is calculated from a four-phase measurement [Atlan 2007]. The frequency

detuning ∆θ enables rejection of non fluctuating light components reflected by the

preparation as well as speckle reduction through signal accumulation.
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Figure 5.7: Sketch of the holographic microscopy experimental image acquisition
setup.

5.4.4 Biological Image Reconstruction

In Fig. 5.8 we illustrate some CS reconstruction results. A reconstruction of an off-

axis image with the standard convolution method described in (5.7) is illustrated

in Fig. 5.8(a). The image reconstructed with holography used all available mea-

surements (4 phases × 20 accumulations ×10242 = 8.4 × 107 pixels). For the CS

approach, Fresnel coefficients were undersampled randomly. Fig. 5.8(b) shows the

CS exact recovery such as described in (5.12) and Fig. 5.8(c) shows the CS recovery

with the constraint relaxation such as described in (5.13). For both CS reconstruc-

tion we used only 7% of the pixels used in the standard approach (4 phases × 20

accumulations × 0.07 ×10242 = 5.8 × 106 pixels). Figs. 5.8(d)-(f) display mag-

nified views from the central region of images (a-c), illustrating the quality of the

reconstruction. Fig. 5.8(g) illustrates the gradient of the image ∇Eo, correspond-

ing to the sparse domain. Finally, Figs. 5.8(h) and 5.8(i) illustrates the residual

comparing standard holographic reconstruction (a) and CS reconstructions (b) and
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(c). The global normalized error is ‖ Êo − Eo ‖ℓ2= 0.15, Êo, Eo being normalized.

This error in Fig. 5.8(i) is essentially due to the relaxation of the constraint for a

perfect match between measures and estimations in the CS scheme, leading to some

denoising effect, confirmed by the visual aspect of the residual image image Fig.

5.8(i) showing essentially unstructured noise.

(a)

(d)

(b)

(e)

(c)

(f)

(h) (i)(g)

 0 0.3  0 0.3

 0 1  0 1  0 1

 0 1

 0 1  0 1  0 1

Figure 5.8: Mouse cerebral blood flow (CBF) imaged by digital holographic mi-
croscopy (a) Standard holographic reconstruction, as described in (5.7). (b) CS
exact recovery, using 7% of the Fresnel coefficients acquired with holography, as
described in (5.12). (c) CS recovery with denoising, as described in (5.13). (d-f)
Magnified views from (a-c). (g) Gradient of (a). (h) Residual from |(a)-(b)|. (i)
Residual from |(a)-(c)|.
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5.4.5 Effect of Undersampling on CS Reconstructions

The minimum number of measurements required for CS imaging depends on the

signal sparsity and the mutual coherence between the sparsity domain and the sam-

pling domain such as described in subsection 1.3.2 by the equation (1.23). How-

ever, in practice the sparsity cannot be computed before the acquisition since the

image is unknown. Thus, the number of measurements in our experiments was

fixed empirically by pushing the undersampling to the limit, decreasing the number

of measurements until the CS reconstruction fails. In experiments in subsections

5.4.2 and 5.4.4 the number of measurements was fixed above the empirical limit to

guarantee that the image reconstruction works. Conversely, Fig. 5.9 displays an

experience, on both USAF target and biological data, where the undersampling is

too strong. The image reconstruction quality is then not satisfactory and we can see

that the image reconstruction fails. The images in 5.9(a) result from the standard

holographic reconstruction, the images 5.9(b) are CS reconstructions from 4% of

the Fresnel coefficients acquired with holography, as described in (5.12), the images

5.9(c) are the residuals from |(a)-(b)| and finally the images 5.9(d) are SSIM maps

between (a) and (b). These experiments showed that there is a critical threshold

for the sampling rate, confirming the theory.

5.5 Conclusion

In this chapter, we have demonstrated the feasibility of a novel framework success-

fully employing compressed sensing principles for digital holographic microscopy.

It combines iterative image reconstruction with quadrature-resolved random digital

holography measurements of an optical field in a diffraction plane. Practical exper-

iments on holographic microscopy images of the USAF target and of cerebral blood

flow demonstrates that our CS approach enables image reconstruction from a very

limited number of measurements. The proposed technique is expected to greatly

improve microscopy applications, allowing the acquisition of high dimensional data

with reduced acquisition time increasing imaging throughput and opening the door

to fast and sample-friendly acquisition protocols.
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(a) (b) (c)

 0 1  0 1  0 0.6

(d)

 0 0.6

 0 1  0 1  0 0.6  0 0.6

Figure 5.9: (a) Standard holographic reconstruction, as described in (5.7). (b) CS
exact recovery, using 4% of the Fresnel coefficients acquired with holography, as
described in (5.12). (c) Residual from |(a)-(b)|. (d) Structural Similarity between
images (a) and (b) SSIM=0.1355 (top) and SSIM=0.1653 (bottom). Here, the CS
reconstruction is not satisfactory due to the number of samples being too low.



Chapter 6

One-Shot Off-Axis Compressed

DHM in Low Light Conditions

This chapter reports a demonstration of off-axis compressed holography in low-light

level imaging conditions. Different from the previous chapter 5, here the acquisi-

tion is performed in extremely low-light conditions and therefore with very noisy

measurements. The acquisition protocol relies on a single exposure of a randomly

undersampled diffraction map of the optical field, recorded in high heterodyne gain

regime. CS-image reconstruction is further enhanced by introducing an off-axis

spatial support constraint to the image estimation algorithm. We report accurate

experimental recovering of holographic images of a resolution target in low-light con-

ditions with a frame exposure of 5 µs, scaling down measurements to 9% of random

pixels within the array detector.

Off-axis holography is well-suited to dim light imaging. Shot-noise sensitiv-

ity in high optical gain regime can be achieved with few simple setup condi-

tions [Gross 2007]. Holographic measurements are made in dual domains, where

each reordered pixel exhibits spatially dispersed (i.e. multiplexed) information

from the object. The measurement domain and the image domain are “incoher-

ent”, which is a requirement for using compressed sensing (CS) sampling protocols

[Candès 2004b]. In particular, CS approaches using frequency-based measurements

can be applied to holography sampling the diffraction field in amplitude and phase.

CS was used recently to improve image reconstruction in holography by increasing

the number of voxels one can infer from a single hologram and canceling artifacts

[Brady 2009, Denis 2009, Choi 2010]. CS was also used for image retrieval from

undersampled measurements in millimeter-wave holography [Cull 2010] and off-axis

frequency-shifting holography (see chapter 5).

0Based upon: M. Marim, M. Atlan, E. Angelini and J.-C. Olivo-Marin. “Off-axis compressed

holographic microscopy in low-light conditions”, (Accepted in Optics Letters).
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Conditions

In this work, we describe an original acquisition and reconstruction protocol

to achieve off-axis compressed holography in low-light conditions, from undersam-

pled measurements. The main result presented in this chapter is an experimental

demonstration of accurate image reconstruction from very few low-light holographic

measurements. The acquisition setup consists of a frame exposed with the reference

beam alone and subtracted to a frame exposed with light in the object channel,

beating against the reference, to yield the holographic signal. This setup prevents

any object motion artifact that would potentially occur with phase-shifting methods

(see chapter 5). The CS image reconstruction algorithm relies on a total variation

minimization constraint restricted to the actual support of the output image, to

enhance image quality.
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6.1 Introduction

Digital holography (DH), as opposed to interferometry, requires information to be

sampled in a reciprocal space. Hence sensing an object by holography consists

in measuring hologram coefficients related to the frequency content. Digital holo-

graphic recordings are made in a diffraction plane of the image to assess. An in-

tegral transform is needed to turn measures of spatially dispersed information into

the original imaging space. Hence, the image assessment in DH relies on sensing in

a reciprocal space and a linear canonical transformation to compensate for spatial

dispersion of the information.

The main result presented in this chapter is to provide accurate image recon-

struction from very few low-light single shot holographic measurements. Moreover,

we introduce a spatial support constraint during the sparsity maximization for a

more accurate image reconstruction.

CS imaging has been tested experimentally with the linear measurements

performed through innovative devices such as the single pixel architecture
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[Takhar 2006], the off-axis frequency-shifting holography presented in chapter 5, or

simply by native incoherent sampling such as Magnetic Resonance Imaging (MRI)

[Lustig 2007], where measurements are naturally acquired in a dual Fourier domain.

Here, we propose a new microscopy acquisition scheme successfully combining high

speed low-light single-shot off-axis holography with a spectral support constraint,

and a total variation minimization algorithm to reconstruct the image. Differently

from the acquisition scheme presented in chapter 5, here the acquisition conditions

are very noisy due to low-light single shot holography.

6.2 One-Shot Holography Setup

We consider the holographic detection of an object field Eo of small amplitude

with a reference or local oscillator (LO) field Er of much larger amplitude, to seek

low-light detection conditions, using the Mach-Zehnder interferometer sketched in

fig. 6.1. The main optical radiation comes from a single mode continuous laser at
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Figure 6.1: Sketch of the experimental one-shot holographic acquisition setup.

wavelength λ = 532 nm. Lenses with short focal lengths are used in both channels

to create point sources. In the object channel, a negative U.S. Air Force (USAF)

resolution target is illuminated in transmission. The amount of optical power in the

object channel is tuned with a set of neutral densities. The interference pattern of
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Eo beating against Er corresponds to I = |Eo + Er|2. It is measured within the

central region of a Sony ICX 285AL CCD array detector (gain GCCD = 3.8 photo-

electrons per digital count, N = Na × Nb elements, where Na = Nb = 1024, pixel

size da = db = 6.7µm, quantum efficiency ∼ 0.6). The acquisition frame rate is set

to 12 Hz and the exposure time to 5 µs. A mechanical chopper is used to switch

the object illumination on-and-off from frame to frame. The recorded interference

pattern takes the form:

I = |Er|2 + |Eo|2 + EoE
∗
r +E∗

oEr (6.1)

where ∗ denotes the complex conjugate. In our setup we have |Eo|2 ≪ |Er|2. Let’s

define n and nr, the number of photo-electrons released at each pixel, from light in

the object and LO channel respectively, impinging on the detector. The reference

beam intensity is adjusted so that the LO shines the detector to half saturation of

the pixels’ dynamic range, on average. This amounts to 〈nr〉/GCCD ∼ 2000 digital

counts. The brackets 〈·〉 denote the average over N pixels. Hence 〈nr〉 = 7.6 × 104

e (photo-electrons) per pixel. In the object channel, three optical densities D = 0,

D = 0.5, and D = 1, are set sequentially to reach very low 〈n〉 values. The average

number of digital counts in 50 consecutive frames recorded in these conditions, while

the LO beam is blocked, are reported in figs. 6.3(a)-(c). The detection benefits from

a holographic (or heterodyne) gain GH = 〈|EoE∗
r |〉/〈|Eo|2〉 = (〈nr〉/〈n〉)1/2, which

ranges from GH = 177 (D = 0) to GH = 563 (D = 1). The spatial support of the

signal term EoE
∗
r is a compact region R of P = 400× 400 pixels. In such high gain

regimes, the object field self-beating contribution |Eo|2, spreads over a region twice

as large as R along each spatial dimension, and can be neglected in comparison to

the magnitude of EoE∗
r and E∗

oEr in eq. 6.1. In off-axis configuration, the term

of interest EoE∗
r is also shifted away from |Eo|2 and E∗

oEr, which improves the

detection sensitivity at the expense of spatial bandwidth. For the current setup,

the ratio of available bandwidth between off-axis and on-axis holography is equal

to P/N ∼ 16%. To cancel-out the LO flat-field fluctuations within the exposure

time, a frame acquired without the object I0 = |Er|2 is recorded. The difference of

two consecutive frames I − I0 ≃ EoE
∗
r + E∗

oEr yields a measure of the holographic

signal H = EoE
∗
r . H which is proportional to the diffracted complex field Eo, will

now be referred to as the optical field itself. Each measurement point on the array
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detector H(ω, ν), where ω = 1, ..., N and ν = 1, ..., N , corresponds to a point in the

Fresnel plane of the object. More precisely, the hologram H, computed from the

intensity measurements I in the detection plane yields the field distribution in the

object plane Eo via an inverse discrete Fresnel transform [Schnars 1994]:

Eo[a, b] =
1

n
e

2πiz
λ

n−1∑

ω=0

n−1∑

ν=0

H[ω, ν]e
πi
λz

(ω2+ν2)e2πi(
aω+bν

n ) (6.2)

where i2 = −1, and (a, b), (ω, ν) denote pixel indexes in space and frequency. The

quadratic phase factor depends on a distance z between the detection plane and the

object plane. Standard holographic reconstruction, as illustrated in Figs. 6.3(d-f),

consists in forming the intensity image of the object Eo from the measurements of

H over the whole detection array, with eq. 6.2.

6.3 Image Reconstruction With Bounded Support

We want to recover Eo from a small number of measurements H|Γ = ΦEo in the

detector plane, where H|Γ ⊂ H. Φ is a M ×N sensing matrix encoding the Fresnel

transform (eq. 6.2) and the sampling of a subset Γ of M pixels, randomly distributed

among the N pixels of the detection array. We want M to be as small as possible,

to benefit from the best compression ratio M/N with respect to non-CS holography,

and enhance the throughput savings parameter 1−M/N .

Since the target is piecewise constant with relatively sharp edges, its total vari-

ation provides a sparsity measure ‖ Eo ‖TV < M ≪ N . The existence of a sparse

representation means that Eo has at most ‖ Eo ‖TV degrees of freedom. For a suc-

cessful reconstruction we must perform at least M > ‖ Eo ‖TV measurements, but

much less than N .

However, when using an off-axis holography configuration, the image recon-

structed from the hologram is shifted away from the center as illustrated in figure

6.2. There is no need to reconstruct the entire field of view since the image of in-

terest is restrict to a small area. The CS-based image reconstruction can also be

optimized since the number of measurements depends on the image size. In addition

restricting the image reconstruction to this area (the square containing the object)

leads to a total variation minimization restricted to a small area of 4002 pixels and

the reconstruction time approximately reduces by a factor two for a hologram with
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10242 pixels.

(a)

(c)

(b)

(d)

Figure 6.2: Compressed holographic reconstruction of Eo without support constraint
(a). Reconstruction with TV minimization over the region R (b). In both cases,
〈n〉 = 2.4 e (D = 0) and M/N = 9%. Magnified views over 330× 330 pixels (c,d) of
(a,b).

Therefore, given partial measurements H|Γ, we seek an estimate Êo with max-

imum sparsity in a restricted support (i.e. inside the region R) and whose Fresnel

coefficients Ĥ|Γ match the observations H|Γ within some error bound δ.
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Then a constrained problem is expressed as:

Êo = arg min
Eo∈R

‖ Eo ‖TV s.t. ‖ H|Γ − ΦEo ‖ℓ2 ≤ δ (6.3)

where δ is a constraint relaxation parameter introduced to better handle noisy mea-

surements.

We note that Eo ∈ R corresponds to the image inside the spatial support and

the bounds of R are illustrated in Fig. 6.2d by the white square. The sparsity

measure ‖ Eo ‖TV is then computed only on R giving a more accurate estimation

of Eo since the signal outside R is not necessarily sparse (noisy/degraded replicate

of the image in R).

This restriction on the spatial support being constrained leads to a more accurate

estimate of Êo, actually reducing the number of relevant degrees of freedom to esti-

mate, and hence the number of samples M required. For comparison purposes, CS

reconstructions without and with support constraint from the same original frame

are reported in fig.6.2. TV minimization over N pixels leads to the hologram magni-

tude map Êo reported in fig.6.2(a), while the same regularization constraint applied

on R leads to the magnitude hologram reported in fig.6.2(b). Magnified views in

figs. 6.2(c) and 6.2(d) show a clear increase in image sharpness with bounded spatial

regularization.

6.4 Noise Robustness and Results

The image resolution is 1024 × 1024 pixels and the spatial constraint size is 400

× 400 pixels. Fig. 6.2 displays the CS reconstruction results with and without

spatial constraints. Fig. 6.2(d) shows that the spatial support constraint allows a

much better reconstruction, providing more details and sharpness than without the

spatial support constraint in Fig 6.2(c). Moreover, the number of measurements

can be significantly reduced from 14% of all pixels to 9% since it depends on the

sparsity and Eo is more sparse with the spatial constraint. For more details on the

CS reconstructions see magnified views (330 × 330 pixels) in Fig 6.2(e) and (f).

Fig. 6.3 illustrate the noise robustness and the denoising capability of the pro-

posed CS reconstruction approach. For three different low-light conditions the CS

reconstructions are capable of recovering the signal even for very low-light con-

ditions (cs 3), while standard holography (holography 3) provides an unreadable
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image, illustrated in 6.3 (d)-(f).

Standard Fresnel reconstruction from N pixels leads to the images reported in

figs. 6.3 (d)-(f), recorded at 〈n〉 = (2.4, 0.75, 0.24) for figs.6.3 (d,e,f). CS image

reconstructions of Êo with bounded TV regularization from the same data are re-

ported in figs. 6.3 (g)-(i). Highly accurate image reconstruction is achieved, at

compression rates of 9% in fig. 6.3(g), 13% in fig. 6.3(h), and 19% in fig. 6.3(i), i.e.

from much less measurements than needed for Fresnel reconstruction.

6.5 Conclusion

In conclusion, we have presented a detection scheme for coherent light imaging in

low-light conditions successfully employing compressed sensing principles. It com-

bines a single-shot off-axis holographic scheme, to perform random measurements

of an optical field in a diffraction plane, and an iterative image reconstruction en-

forcing sparsity on a bounded image support. Compressed off-axis holography is a

powerful method to retrieve information from degraded measurements at high noise

levels. We demonstrated single-shot imaging in high heterodyne gain regime at 5 µs

frame exposure around one photo-electron per pixel in the object channel. In these

conditions, throughput savings from 81% to 91% could be reached.
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Figure 6.3: (a-c) Amount of digital counts in the object channel averaged over N
pixels, for three different attenuations levels : D = 0 (a), D = 0.5 (b), D = 1 (c).
The LO beam (reference beam) is turned off. The optical field E impinges onto the
detector (i) and is blocked (ii) sequentially by the optical chopper, from one frame to
the next. The horizontal axis represents the frame number, the vertical axis is the
average number of counts per pixels. (d-f) Standard holographic reconstructions
at D = 0 (d), D = 0.5 (e), D = 1 (f). (g-i) CS reconstructions at D = 0 with
M/N = 9% (g), at D = 0.5 with M/N = 13% (h), and at D = 1 with M/N = 19%
(i).
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Optical microscopy remains limited by numerous problems, including the handling

of noisy components during the image formation and acquisition and limited image

acquisition frame rates. With regard to this specific limitation, it is necessary to

ensure that the signal level relative to the noise is adequate when capturing accurate

image information. A host of denoising methods have been developed to increase

the signal-to-noise ratio, namely by modeling and removing the noise. However,

most of them are post-processing techniques and require full data acquisition.

In a first place, the aim of this thesis was to investigate new sparsity-based

image processing methods to address the denoising problem. Manipulating CS

imaging approaches, we naturally transitioned from standard digital holographic

microscopy to test acquisition protocols that use very few Fourier-based initial mea-

surements. Indeed, holographic microscopy presents several advantages over tra-

ditional microscopy imaging techniques such as high-resolution three-dimensional

recording of an object, precise quantitative reproduction of the object being imaged

and a translucent image that allows the viewer to visualize both deep and superficial

structures simultaneously. In addition, it is a label-free and non-invasive technique,

avoiding photo-toxicity, unlike fluorescence imaging techniques.

The first part of this thesis consists in a CS-based denoising framework for bio-

logical microscopy imaging. Our approach is based on the total variation minimiza-

tion for multiple CS reconstructions from incomplete and random measurements in

the Fourier domain. We used different sampling matrices for multiple reconstruc-

tions to select different sets of Fourier coefficients. Using the total variation as a

sparsity measure provides correlated reconstructions of the structures and objects

and uncorrelated noise patterns. Thus, combining multiple reconstruction provides

efficient noise reduction and structure enhancement. It turned out that the pro-

posed approach compares well with traditional denoising methods while requiring

less measures during acquisition.
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We compared simple averaging and non-local averaging fusion methods for the

multiple reconstructions. The non-local averaging takes advantage of image redun-

dancy by averaging non-local similar patches, and provides better denoising quality.

In addition, this work showed that if the proposed CS Fourier-based random acqui-

sition setups were feasible in fluorescence microscopy, photobleaching effect could

be significantly reduced.

This work can be extended in different directions. First, in order to improve

the preservation of structural details in the objects, different sparsifying transforms

can be applied. We have used the total variation, which enforces piecewise-constant

object appearance. Also, sparsity transforms based on wavelet or texture dictionar-

ies could be used. By using a quadratic norm in the fidelity term we optimize a

Gaussian likelihood model for the signal which may be improved by using a measure

taking into account the mixture of Gaussian and Poisson noise. Regarding the fusion

of the multiple reconstructions, spatially-adaptive merging schemes could be tested

to adapt to the local contents of the images. Finally, non-spatially uniform sampling

patterns may be investigated to select the frequencies corresponding preferentially

to signal than to noise.

In a second part, we focused on the optimization of DH microscopic acquisition.

We built, together with Michael Atlan from the ESPCI, a DH detection setup for

coherent light imaging in low-light conditions, that successfully employs compressed

sensing principles. The image acquisition consists in a single-shot off-axis holo-

graphic scheme, which allows to perform random Fourier-type measurements of an

optical field in a diffraction plane. This work demonstrates that compressed off-axis

holography is a powerful method when it comes to retrieving structured information

from degraded measurements at high noise levels. Indeed, we proposed a single-shot

imaging in high heterodyne gain regime with a frame exposure of 5 µs. In these

conditions, around one photo-electron per pixel was detected, and even with a high

noise level, throughput savings from 81% to 91% could be reached with compressed

sensing. We obtained significant improvements in image reconstruction by restrict-

ing the total variation minimization on a bounded image support. This gave a better

reconstructed image quality from a reduced number on measurements. Finally, we

used a programmable CMOS camera to perform a real random and undersampled

acquisition in off-axis holography.

In addition to pursuing the development of CS-based holography setups, it is also
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natural to envisage an extension to fluorescence microscopy. With reduced number

of measurements provided by compressed sensing, fluorescence observations should

benefit from higher frame-rates, longer observations and less photo-damage.
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Appendix A

Random and Radial

Undersampling in Holography

With an Programable Camera

Here we present our most recent results for compressed sensing with random sam-

pling. We designed an experimental optical setup testing and validating the con-

cept of Compressed Sensing Imaging and most important, from a real undersampled

data. As we have discussed before, the main limitation for a compressed sensing is

to design the acquisition setup able to acquire randomly the incomplete transformed

coefficients of the signal of interest. This appendix describes a simple setup which

is able to do it and was specially designed to measure randomly, a subset of the

frequency coefficients of an object using holography.

To realize the undersampling we used a CMOS programable camera, which has

the random-pixel access ability. Indeed, the CMOS camera from Vision Components

can read a restricted number of pixels beforehand defined. This functionality is

not common on such devices there are not many cameras able to realize it. The

proposed optical setup is quite simple but corresponds to an important concept

proof of compressed sensing and successful reconstruction. We note that this work

was conducted as part of an internship of Mathieu Baudin from École Central de

Marseille.

The 8-bit camera measure the optical field in an off-axis setup and Fresnel do-

main. The Fresnel domain as discussed in the previous chapters is a frequency

domain, less incoherent then the Fourier domain but sufficient incoherent to the

spatial domain. The image reconstruction algorithm used consists to minimize the

sparsity (measured by the total variation) with incomplete measurements in the

Fresnel domain.

The optical setup is much less sophisticate than the setups described in chapter
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5 and 6, however, it uses the same concept of fresnel holography imaging. The main

idea of this experience is to prove that compressed sensing can be easily exploited

using a programable CMOS with independent pixel access, without changes in the

imaging setup but only in the way to acquire samples. Finally, the most important

advantages of this kind of imaging system is the reduced data throughput which can

be traduced by faster acquisitions, reduced data transfer, economy in storage, etc.

This appendix is organized in the following manner: we first introduce the experi-

ence and discuss the main difficulties in sections A.1 and A.2, then the reconstruction

process and some results are presented in section A.3.

A.1 Introduction

The goal of this part of my thesis is to prove the feasibility of compressed sensing

using a simple optical setup. The experiences we did here are quite simpler than

those in the last chapters. However, here we have used a programable CMOS camera

which is able to read independently a list of pixels. This ability is very useful for

compressed sensing which is based on random and unstructured measurements.

The experience consists to record an hologram using a off-axis digital holographic

setup, and later reconstructing the optical field from the object. The difference from

traditional digital holography is that we want to acquire a very small part of the

hologram which means measure only a small set of its all coefficients. Then, from

the amplitude and phase of the optical wave arriving in the captor, we use a convex

optimization algorithm to recover the original object field.

As indicated above, the wavefront reconstruction problem consist of two distinct

parts, a detection step and an image reconstruction step. First, we focus on the

first of theses steps. Since we use a laser, so coherent light, its is necessary to

detect information about both amplitude and phase of the waves. However, using

a real captor such as the CMOS used here, the only accessible information is the

light intensity. The CMOS camera measure indeed the light intensity, therefore,

the phase information is required and this is why we use interferometry, that is, a

second wavefront which is mutually coherent with the one used to illuminate the

object and with known phase and amplitude, is added to the unknown wavefront.

The intensity of the sum of two complex fields then depends on both the amplitude
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and the phase of the unknown field, thus if

E(x, y) = |E(x, y)|e−jφ(x,y) (A.1)

represents the wavefront to be reconstructed and if

ELO(x, y) = |ELO(x, y)|e−jψ(x,y) (A.2)

represents the reference wave with which E(x, y) interferes, the intensity of the sum

is given by

I(x, y) = |ELO(x, y)|2+ |E(x, y)|2+2|ELO(x, y)||E(x, y)|cos[ψ(x, y)−φ(x, y)] (A.3)

Accordingly with (A.3) the first two terms depend only on the intensities of the

object field and the reference field and the third depends on their relative phase.

Thus information about the amplitude and the phase of E(x, y) is acquired with the

hologram I(x, y).

A.2 The Acquisition System

A.2.1 The Holographic Setup

The setup is composed by a Helium Neon (HeNe) laser with wavelength λ = 632.8

nanometers, 2 beam splitters (BS1 and BS2), 3 bi-concave lens (L1, L2, L3) and a

bi-convex lens (L4) with focal distance (f1 = −50cm, f2 = −100cm, f3 = −25cm
and f4 = 50cm), a mirror, an USAF target, some absorptive neutral density filters

and a programable CMOS camera.

The components are fixed in an optical table such as illustrated in figure A.2 and

photo A.2. The light beam emitted by the HeNe laser is divided in two beams by the

first beam splitter BP1, and then expanded by the combination of two lens (L1 and

L2). The beam is expanded by a factor 5 and then projected in the USAF target,

reflecting and projected to the CMOS camera. In parallel, the reference beam is also

expanded by L3 and L4 lens and recombined with the optical field coming from the

object in the second beam splitter. The resultant beam is filtered by two absorptive

neutral filters and before the final projection to the CMOS array detector. We use a

slight rotation in the second beam splitter BP2 which forces the object optical field
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and the reference optical field to be off-axis. The angle is controlled by the limit

angle which can be previously computed.

laser HeNe

beam splitter

beam splitter

mirror

-25 mm lens

50 mm lens

-50mm lens

-100mm lens

USAF target

beam expander beam expander

filters

CMOS

Fresnel
detection plane

object plane

Figure A.1: Holographic setup with intelligent CMOS.

Figure A.2: Photo of the holographic setup with intelligent CMOS.
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The optical intensity field accessed by the CMOS camera corresponds to Fresnel

coefficients and the total incident field on the detection plane can be expressed as:

E(x, y) = Er exp{−i
π

λzr
[(x− xr)2 + (y − yr)2]} (A.4)

+Eo exp{−i
π

λzo
[(x− xo)2 + (y − yo)2]}

where λ is the coherent light wavelength. The corresponding intensity distribution

of the diffraction pattern (interference between reference wave and object wave) in

the detection plane corresponds to:

I(x, y) = |Er|2 + |Eo|2 (A.5)

ErE∗o exp{−i
π

λzr
[(x− xr)2 + (y − yr)2] + i

π

λzo
[(x− xo)2 + (y − yo)2]}

E∗r Eo exp{i
π

λzr
[(x− xr)2 + (y − yr)2]− i

π

λzo
[(x− xo)2 + (y − yo)2]}

The image reconstruction from the total intensity field measured has mainly two

steps, the first one consists to compute the complex field from the real measurements,

and the second one consists to back-propagate the field to the object plane. To

compute the complex field the quadratic phase exp{ iπλd (x − xr)
2 + (y − yr)

2} is

combined with I(x, y).

A.2.2 The Programmable CMOS Camera

The CMOS camera we had used to measure the optical intensity is fabricated by

Vision Components. It is a smart camera model VC4012nano (figure A.3), which is

a programmable camera. The basic configurations of the camera is:

• 1/2.5" CMOS sensor

• resolution: 2592 x 1944 Pixel

• frame rate 11,6 fps

• high-speed shutter: 28,4 µs in steps of 43,7 µs

• low-speed shutter: up to 30 s adjustable integration time

It is absolutely not a plug-and-play camera, and the programming interface

(API) is in practice not easy to use. The internal operating system “VCRT” of the
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Figure A.3: Programmable CMOS camera.

VC4012nano is multitasking. This means that user interface commands can execute

in parallel without stopping the inspection process. It has a video output onto a

PC via 100 mega-bit Ethernet interface.

A.2.3 Preliminary Experiences

The first experience was the acquisition of the USAF target to test the camera, and

to become familiar with the camera manipulation. In figure A.4 we show the USAF

target imaged in a 5 megapixels resolution. The goal is to reconstruct the same

image performing measures in the Fresnel domain with holography. In the next

section we show examples of acquired holograms and the respective reconstructions.

A.3 The Image Reconstruction

The image reconstruction follow the same method used for compressed holography

and we quickly recall how it works. Accordingly with the compressed sensing the-

ory, if the signal is compressible (i.e. has a sparse representation), then if linear

measurements are taken randomly (non-structured measurements) the original sig-

nal can be reconstructed with high probability. The setup proposed here perform

indeed linear measurements and the CMOS camera can be programed to acquired a

small set of pixels randomly chosen. As presented in [Candès 2005b] by E. Candès

and J. Romberg, the reconstruction can also be achieved using a radial sampling

(i.e. radial lines passing through the center of the image). We present also an image
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Figure A.4: US Air Force (USAF) target.

reconstruction using the radial sampling pattern.

As discussed before, the optical field in the object plane f is linked to the field

F in the detection plane by a Fresnel transform, expressed in the discrete case as:

F = F(f) : CN → C
N

Fp =
1

N

N∑

n=1

fn e
i(αn2−2πnp/N) (A.6)

where n, p ∈ {1, . . . , N} denote pixel indexes, α ∈ R
+ is the parameter of the

quadratic phase factor eiαn
2

describing the curvature in the detection plane of a

wave emitted by a point source in the object plane. We illustrate in figure A.5 the

complete hologram recorded with the CMOS camera.

F can be back-propagated numerically to the target plane with the standard

convolution method when all measurements F ∈ C
N are available. In this case,

the complex field in the object plane f is retrieved from a discrete inverse Fresnel

transform of F ; f = F−1(F ) :

fp =
1

N

N∑

n=1

Fn e
−i(αn2−2πnp/N) (A.7)
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Figure A.5: Fresnel hologram measured with CMOS.

However, we want to recover the intensity image of the object

g = {|f |2 : f ∈ C
N} from a small number of measurements F |Γ ∈ C

M

where M ≪ N . Partial measurements in the detection plane can be written as

F |Γ = Φf , where the sampling matrix Φ models a discrete Fresnel transform (A.6)

and random sampling with a uniform spatial distribution of the measurements

locations.

In CS, the signal reconstruction consists in solving a convex optimization prob-

lem that finds the candidate ĝ (̂· denotes an estimator) of minimal complexity sat-

isfying F̂ |Γ = F |Γ, where F |Γ ⊆ F is a partial subset of measurements in the set

Γ.

To find the best estimator ĝ with a controlled robustness to noise, we solve the

following convex optimization problem [Candès 2006a]:

ĝ = arg min
g∈RN

‖ ∇g ‖ℓ1 s.t. ‖ F̂ |Γ − F |Γ ‖ℓ2 ≤ δ (A.8)

for some δ ≤ Cε, which depends on the noise energy.
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A.4 Results

The undersampled patterns are illustrated in figures A.7 and A.6. The random

undersampling corresponds to the figure A.6 and the radial sampling in figure A.6.

Both sets of measurements corresponds to 15% of all Fresnel coefficients. The re-

constructions for these sets of measurements are in figures A.8b and A.8c, for the

random and radial sampling respectively. We also show the reconstruction using all

measurements (figure A.8a) such as conventional holography does.

Figure A.6: Random pattern from undersampling.

A.5 Conclusion

In conclusion, we have demonstrated the feasibility of compressed sensing using

digital holography and most important, from a real undersampling. We used a

programmable CMOS camera to perform random and radial undersampling in the

Fresnel domain. Using 15% of measurements with both radial and random pattern,

we demonstrate that the image can be reconstructed without much loss of infor-

mation compared to the reconstruction using all measurements. For future work,

it should be useful if compressed sensing could be used in fluorescence microcopy

or for general microscopy methods. However this problem should be solved differ-
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Figure A.7: Radial pattern from undersampling.

ently since the acquisition principle of holography can’t be applied to conventional

microscopy due to incoherent light.
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(a) Conventional Holography

(b) CS with random sampling (c) CS with radial sampling

Figure A.8: Conventional digital holography and CS reconstruction with radial and
random sampling from only 15% of measurements.





Appendix B

Reducing Photobleaching on

Fluorescence Microscopy

We propose an application of compressed sensing on fluorescence microscopic im-

ages, as a powerful denoising method, enabling the reduction of photobleaching on

images under reduced exposition times. Our denoising framework is based on the

property of CS to efficiently reconstruct sparse signals with under-sampled acquisi-

tion rates, significantly below the Shannon/Nyquist theoretical bound. Similarly to

recent experiments for MRI CS-based reconstruction [Lustig 2007], the acquisition

protocol consists in measuring the image signal onto a random set of Fourier vectors

[Candès 2006a], which is incoherent to the domain where the image is sparse. In-

deed, the CS framework introduced by Candès [Candès 2006d] provides theoretical

results and shows that if a signal is sparse (i.e. has a small number of non-zero coeffi-

cients) in some basis, then with high probability, uniform random projections of this

signal onto an unstructured domain, where the signal is not sparse, contains enough

information to optimally reconstruct this signal [Candès 2006d]. The incoherence

property between the sparsity basis Ψ and the sampling basis Φ ensures that signals

having sparse representations in Ψ must have a large support in the measurement

domain described by Φ [Candès 2006b]. Random selections of basis functions in Φ

are typically suitable since random vectors are, with very high probability, incoher-

ent with any sparsity-encoding basis functions from Ψ, defining orthogonal domains

[Donoho 2006b].
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B.1 Introduction

Here we propose an application of Compressed Sensing on fluorescence microscopic

images, as a powerful denoising method, enabling the reduction of photobleaching

on images under reduced exposure times. Our denoising framework is based on the

property of CS to efficiently reconstruct sparse signals with under-sampled acquisi-

tion rates, significantly below the Shannon/Nyquist theoretical bound. Similarly to

recent experiments for MRI CS-based reconstruction [Lustig 2007], the acquisition

protocol consists in measuring the image signal onto a random set of Fourier vectors

[Candès 2006a], which is incoherent to the domain where the image is sparse. In-

deed, the CS framework introduced by Candès [Candès 2006d] provides theoretical

results and shows that if a signal is sparse (i.e. has a small number of non-zero coeffi-

cients) in some basis, then with high probability, uniform random projections of this

signal onto an unstructured domain, where the signal is not sparse, contains enough

information to optimally reconstruct this signal [Candès 2006d]. The incoherence

property between the sparsity basis Ψ and the sampling basis Φ ensures that signals

having sparse representations in Ψ must have a large support in the measurement

domain described by Φ [Candès 2006b]. Random selections of basis functions in Φ

are typically suitable since random vectors are, with very high probability, incoher-

ent with any sparsity-encoding basis functions from Ψ, defining orthogonal domains

[Donoho 2006b].

In fluorescence microscopy, cellular components of interest in specimens such as

proteins are typically labeled with a fluorescent molecule called a fluorophore such

as green fluorescent protein (GFP) and can therefore be imaged with high speci-

ficity. Fluorophores lose their ability to fluoresce as they are illuminated through a

process called photobleaching [Song 1995, Benson 1985]. In microscopy, observation

of fluorescent molecules is challenged by the photobleaching, as these molecules are
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slowly destroyed by the light exposure necessary to stimulate them into fluorescence.

Loss of emission activity caused by photobleaching can be controlled by reducing the

intensity or time-span of light exposure. At the same time, reducing the exposure

time or intensity of the excitation also reduces the emission intensity but not the

noisy acquisition components, leading to a decrease of the SNR. We propose to use

the CS sampling and reconstruction framework to denoise and improve the SNR

of microscopic fluorescence images acquired with shorter exposure times to reduce

photobleaching.

B.1.1 Fluorescence Microscopy

Fluorescence emission occurs when an orbital electron of a molecule, atom or nanos-

tructure relaxes to its ground state by emitting a photon after being excited to a

higher quantum state by some type of energy. The figure B.1 illustrate the exci-

tation and emission phenomenon. Let hν represents the photon energy with h the

Absorption Fluorescence

E
n

e
rg

y

vibrational relaxation

Figure B.1: Fluorescence photochemistry diagram.

Planck’s constant and νex the excitation light frequency. The S0 level is the ground

state and S1 is the excited state after the photon absorption. After excitation and

absorption the excited state S1 can suffer from a vibrational relaxation and go to S2

state still excited and finally, the S2 state can relax by various competing pathways.

It can release a non-radiative energy which may be dissipated as heat or vibrations.

Fluorescence may occurs if relaxation from excited state S2 to the ground state S0

generating a less energetic photon hνem. Excited organic molecules can also relax
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via conversion to a triplet state which may subsequently relax via phosphorescence

or by a secondary non-radiative relaxation step. This is discussed in the next sub-

section which is related to photo-damage. Fluorescence microscopy techniques have

enabled numerous studies in biology by combining fluorescence and microscopy.

Fluorescence microscopy is a powerful technique for live-cell imaging, commonly

used in biology. The specimen is illuminated with light at a specific wavelength

which is absorbed by the fluorophores, causing them to emit light of longer wave-

lengths (with less energy, i.e. of a different color than the absorbed light). Before

detection, the illumination light is separated from the emitted fluorescence through

the use of a spectral emission filter.

The major part of fluorescence microscopes in use are epifluorescence micro-

scopes which means that excitations and observations of the fluorescence are from

above the specimen. Epifluorescence microscopes have become an important part in

the field of biology, opening the doors for more advanced microscope designs, such as

the confocal microscope [Pawley 1995] and the total internal reflection fluorescence

microscope (TIRF) [Axelrod 2001, Axelrod 2008].

Fluorescence can be either endogenous (i.e. inherent to the cellular molecules)

or, more commonly heterogeneous, introducing exogenous fluorescent molecules.

Green fluorescent protein (GFP) [Chalfie 2000] technology has revolutionized live

cell imaging as an auto-fluorescent molecule can be genetically encoded as a fusion

with the cDNA of interest. Moreover, manipulating spectral variants of GFP and

others fluorescent proteins enable multicolor imaging of living cells.

There are many other potential probes that can be introduced into cells like

specific fluorescent lipid molecules and organelle-specific dyes. These probes are

often cell-permeable and can simply be added to the culture medium.

When selecting an acquisition system for imaging living cells, one should con-

sider the sensitivity of detection, the speed of acquisition, and the viability of the

specimen. Light microscopy of living versus fixed samples is essentially a trade-off

between acquiring images with a high signal-to-noise ratio and damaging the sample

under observation, which is particularly critical in live-cell imaging.

In chapter 2 we discuss the signal-to-noise ratio limitations in microscopy and

the cross-correlation with the photo-damage effect, which is discussed in Appendix

B. We present results based on a compressed sensing framework to simultaneously

improve on these limitations.
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B.1.2 Photobleaching and Photodamage

Photobleaching occurs when a fluorophore permanently loses the ability to fluoresce

due to photon-induced chemical damages [Axelrod 1976]. Upon transition from an

excited singlet state to the excited triplet state, fluorophores may interact with

another molecule to produce irreversible covalent modifications.

The most common photobleaching effect involves the interaction of the fluo-

rophore with a combination of light and oxygen. Fluorophores and oxygen molecules

react permanently destroying the fluorescence and yielding a free radical singlet oxy-

gen species that can chemically modify other molecules in living cells. Photobleach-

ing effects can be reduced by reducing the amount of illumination of fluorophores,

which can be achieved by reducing the exposure time or by lowering the excitation

energy level.

However, these techniques also reduce the measurable fluorescence signal, de-

creasing the signal-to-noise ratio and compromising the image quality. This central

problem in fluorescence microscopy is also discussed in section 3.2 and an efficient

solution is introduced in chapter B.

The figure B.2 displays an image sequence of fluoresceine with 200 frames, each

one exposed 20 milliseconds. We can observe in this figure that image quality is

degraded by photobleaching with decreasing fluorescence intensity.

(a) frame 1 (b) frame 50 (c) frame 100 (d) frame 150 (e) frame 200

Figure B.2: Image sequence of fluoresceine. Images are exposed 20 milliseconds each
(200 frames).

Photobleaching and SNR are cross-dependent, as illustrated in the graph B.3

where the blue curve shows the fluorescence intensity from the frame 1 to the 200,

and the red curve shows the increase in the photobleaching effect along with, the

SNR decreases along time. Intuitively, in the graph B.4 the red curve shows that

the SNR should significantly increase if all images were accumulated. Indeed, by

increasing the exposure time from 20 ms to 4000 ms, the SNR goes from 2dB to
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17dB, but the fluorescence intensity goes from 0.64 to 0.10.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

frames

F
lu

o
re

s
c
e

n
c
e

 (
s
u

m
 o

f 
a

ll 
p

ix
e

ls
 i
n

te
n

s
it
ie

s
)

Photobleaching

0 50 100 150 200
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

frames

S
ig

n
a

l−
to

−
N

o
is

e
 R

a
ti
o

SNR for each frame

Figure B.3: Photobleaching and SNR profiles of the image sequence of fluoresceine.
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Figure B.4: Photobleaching curve of the image sequence of fluoresceine and SNR of
accumulated frames (SNR vs. exposure time).

B.2 Methods

B.2.1 Reconstruction from Noisy Measurements

Considering that a signal x has a sparse representation in some basis Ψ, we want

to recover the signal x ∈ R
N from noisy measurements y = Φ(x+ n) | y ∈ R

M , the

sampling matrix being defined by M vectors in Φ, with M ≪ N . The presence of

noise in the acquired signal might alter its sparsity in the domain Ψ. By optimally

reconstructing a signal with explicit sparsity constraints, CS offers a theoretical
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framework to remove non-sparse random noise components from a corrupted signal.

Indeed, removing noise from x + n will rely on the efficacy of Ψ on representing

the signal x sparsely and the inefficacy on representing the noise n [Donoho 2006a].

The choice of the basis function Ψ is very important and depends directly on the

kind of signal (or image) we want to recover and denoise using CS. If we make the

assumption that the noise energy is bounded by a known constant ‖ n ‖ℓ2 ≤ ε, the

transformed signal Ψx is sparse, and Φ ∈ R
MN is a random matrix sampling x in

the Fourier domain, the spatial signal x can be recovered nearly exactly using the

following convex optimization:

x̂ = arg min
x∈RN

‖ Ψx ‖ℓ1 s.t. ‖ y − Φx ‖ℓ2 ≤ δ (B.1)

for some small δ > ε, where the operator Ψ is equivalent to compute the gradi-

ent, and hence the ℓ1 norm of Ψx corresponds to the Total Variation (TV) of x,

‖ Ψx ‖ℓ1 ⇔ ‖ ∇x ‖ℓ1 = ‖ x ‖TV . In [Candès 2006c] it was shown that the solution

x̂ is guaranteed to be within Cδ (C ∈ R
+) of the original signal x.

‖ x̂− x ‖ℓ2 ≤ Cδ (B.2)

We note here that this CS-based estimation framework, with noisy observations

and TV spatial constraints [Candès 2005d], guarantees that no false component of

x + n with significant energy is created as it minimizes the ℓ1 norm of x̂, which is

particularly high for the additive random noise components. More specifically, the

TV-based spatial sparsity constraint, will lead to sharp edges and removal of noise

components, resulting in an error:

‖ x̂− x ‖ℓ2 ≤ α+ β (B.3)

where α reflects the desired error (responsible for noise removal) from the relaxation

of the constrain δ in (B.1) and β reflects the undesired error from Fourier under-

sampling of the signal. If TV represents x efficiently and n inefficiently, the term β

vanishes and α→ Cδ.

In the context of microscopic images, noise models usually combine Poisson

and Gaussian components, and the observation model commonly adopted is the
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following:

I(x, y) = ζUi(A(x, y) + λB) + Vi,

Ui ∼ P(λi), Vi ∼ N (µ, σ2) (B.4)

where ζ is the overall gain of the detector, A(x, y) is the object intensity, λB is

the mean intensity of the background, Ui is a Poisson variable modeling the pho-

ton counting and Vi is a normal distribution with mean intensity µ and standard

deviation σ, Ui and Vi are assumed mutually independent.

B.2.2 The Recovery Algorithm

As an alternative to image sampling and acquisition problems we focus on utilizing

dual sparse and redundant representations in the CS framework for fluorescence

microscopic image denoising.

The proposed CS-based denoising scheme consists in determining the shorter

exposition time X necessary to obtain, with a set of combined CS restorations

associated to a set of sampling matrices Φi, a target SNR level, corresponding to

the SNR measured on the image exposed T ms. This scheme provides the potential

advantage of requiring a single shorter acquisition time, limiting degradation of the

biological material through photo-damage and photo-bleaching. We also exploit

the fact that fluorescence signal Φix should be strongly correlated for all sampling

matrix Φi, while noisy sampling Φin should not be.

Combining CS reconstructions of a single noisy image acquisition x + n, using

different sampling matrices Φi, is performed as described below:

x̂i = arg min
x∈RN

‖ Ψx ‖ℓ1 s.t. ‖ yi −Φix ‖ℓ2 ≤ δ (B.5)

for i = 1...K.

The last step of the algorithm involves the combination of x̂i by averaging to

generate a final denoised image x̂. The number of images combined will introduce a

regularization on the final image. We show that averaging grater number of images

recovered with CS reduces exponentially the TV, as illustrated in Figure B.5.
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Figure B.5: TV versus number of images (Lymphocytes) recovered and combined
for the 10 scales represented in Figure B.6.
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Figure B.6: TV versus scales for recovered images of Lymphocytes. Scales vary from
a compression ratio exponentially increasing from M = 30% to M = 0.3%.
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B.3 CS and Scalability

With our working assumptions on the additive noise components, we propose to

derive a series of CS reconstructions that will enable to separate noisy components

from fluorescence signal reconstructions. The degree of freedom in this series of CS

experiments in the choice of the sampling matrix Φ. Since the sparsity operator, TV,

operates on the spatial domain, we chose to work with the orthogonal basis functions

of random sampling in the Fourier domain. The degree of freedom for the choice of

the Φ matrix, then becomes the number of random measurements M that is used.

The CS theoretical framework states that the more measurements are used in the Φ

domain, the closer is the reconstructed signal to the original measured signal. In the

context of denoising (rather than estimation) we have a dual constraint on the noisy

nature of the measurement and the risk to reconstruct these noisy components.

Indeed, for a single CS experiment, the fluorescence signal will generate, from a

set of random measures of structured Fourier values, a restored image with high

values depicting a good estimation of the true signal. At the same time, purely

random noisy component will be interpreted, from a set of undifferentiated Fourier

values, as a structured combination of oscillating components, extrapolated over the

spatial domain into patches, under the regularizing TV effect. Noise patches and

fluorescence spatial localization will be directly related to M , the number of CS

measurements acquired by Φ. We illustrate in Figure B.7 and B.8 how this number

of measurements can be naturally viewed as a scale parameter, and in Figure B.6

how the TV decrease beyond scales. For Figure B.8, we cropped a background area

from a fluorescence microscopic image, with pure noise signal, and performed CS

reconstructions across scales (i.e. different numbers of measurements).

In the experiment on Figures B.7 and B.8, we observe that noise component is

more uncorrelated than signal across scales while the spatial resolution of the signal

component decreases. Increasing scale leads to a more difficult discrimination of

signal and noise components.

We can make a connection here to the notion of multi-scale transforms which

is discussed in [Lindeberg 1994]. These transforms were theoretically defined as

linear transforms with a scale parameter controlling the ability of the transform to

simplify the signal. We know from the sparsity constraint that strong true signals

recovered by the CS framework will correspond to strong underlying components
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Figure B.7: Fluorescence microscopic image of Lymphocytes. Results from the
same image recovered with six different numbers of measurements (i.e. 6 scales).
Scales vary from a compression ratio exponentially increasing from M = 30% to
M = 0.3%.

in the context of noise estimation from a small set of measurements. Therefore,

CS does not introduce false signal components and fits well in the framework of

multi-scale transforms, as illustrated in Figure B.7.

Relaxing the constrain δ, which corresponds to the error allowed in (B.1), en-

ables noise removal, or the appearance of patches which can present smooth edges.

The difference between Figure B.8 top and bottom comes from the relaxation of the

constraint δbottom > δtop, increasing smoothness of the reconstructed images. The

good news is that in both cases, if results from CS reconstructions of a pure noise

signal are combined at different scales, the mean intensity returns a nearly homoge-

neous signal, as seen in Figure B.9. This observation clearly justifies the averaging

operator introduced in section B.2.2 to remove noise from images.
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Figure B.8: Top: Pure noise signal extracted from a background patch of a micro-
scopic image, recovered with six scales, (i.e. six different sizes of sample measure-
ments). Scales vary exponentially from M = 30% to M = 0.3%. Bottom: relaxing
the constrain δbottom > δtop.

Figure B.9: Left: Pure noise image extracted from a microscopic image background.
Right: Result obtained averaging 20 images recovered with different sets of mea-
surements Φi for (i = 1...20).

B.4 Photobleaching

Photobleaching is a process in which fluorochrome molecules undergo photo-induced

chemical destruction upon exposure to light excitation and loose their fluorescence

ability. Benson et al. in [Benson 1985] carried out an extensive study on the het-

erogeneous photobleaching rates, describing their experimental bleaching curve by

a three-parameter exponential:

I(x,y,t) = A(x,y) +B(x,y)e
−kt (B.6)
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for each pixel in an image. Where I(x,y,t) is the fluorescence intensity at pixel (x, y)

at time t, the offset A(x,y) is attributed to the background fluorescence, B(x,y) is

the fluorescence intensity which decays exponentially and k is the rate of photon

absorption (s−1).

To verify the real photobleaching effect we have acquired 200 fluorescein images

exposed 20 ms, with a negligible time transition between two consecutive image

acquisitions, resulting in a total exposition time of 2000 ms. In this experiment we

can clearly observe the fluorescence intensity decreasing exponentially as described

by (B.6) and confirmed in the experience illustrated in Figure B.10 and B.12. As

a consequence of the fluorescence intensity decreases, the SNR also decreases as

show in Figure B.11. Applying our CS-based method for denoising, we show that

SNR can be highly improved while reducing photobleaching. Results on Figure B.11

show that the rate between original SNR and CS-recovered images SNR is ∼160%.

Which means that still reaching an equivalent SNR, microscopic images could be

acquired with a shorter exposition time, reducing photobleaching. The estimated

final photobleaching improvement is illustrated in Figure B.12 by the green curve,

computed from the model described in Equation B.6, fitting B and k values on

the original images. Estimating the reduction of the exposition time necessary to

achieve the same SNR as in the original data using the CS-based denoising scheme,

we illustrate in Figure B.12 with the green curve that photobleaching can be highly

reduced. The same result can also be visualized in Figure B.10.
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Figure B.10: Fluorescein images. Top: Six samples from the sequence of 200 images
tagged with fluorescein. These images were acquired at t = {0, 500, 1000, 1500, 2000}
ms. Bottom: Supposed photobleaching resulted from 200 image acquisitions using
CS denoising.
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vs. time for original images of fluorescein (blue) and for images denoised with our
proposed scheme (green). The red line corresponds to the exponential model fitted
to the original data, setting specific values of B and k in Equation (B.6).
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B.5 Conclusion

We introduced a CS-based image acquisition and denoising method exploiting multi-

ple reconstructions with random Fourier projections. Our approach presents several

advantages over traditional denoising methods, joining image acquisition, CS ad-

vantages and denoising in one framework. Through some practical experiments,

we have shown that our method can significantly improve the SNR on fluorescent

microscopic images and that photobleaching can be highly reduced with shorter ex-

position times. Such results open the gate to new mathematical imaging protocols,

offering the opportunity to reduce exposition time along with photo-damage and

photo-bleaching and help biological applications based on fluorescence microscopy.
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