.. Du-positon, Annihilation, p.58

.. Techniques-d-'implantation-et-d-'irradiation, 83 4.1. Implantation à basse énergie par procédé plasma (~0,1 keV), p.83

J. Le-dispositif, Implantation par faisceaux multiples, p.85

.. Implanté-À-moyenne-Énergie, 162 2.1. Conditions expérimentales, Migration, p.162

C. Hugenschmidt, K. Schreckenbach, M. Stadlbauer, and B. Straßer, First positron experiments at NEPOMUC, Applied Surface Science, vol.252, issue.9, pp.3098-3105, 2006.
DOI : 10.1016/j.apsusc.2005.08.108

URL : http://mediatum.ub.tum.de/doc/1213430/document.pdf

R. Krause-rehberg, S. Sachert, G. Brauer, A. Rogov, and K. Noack, EPOS???An intense positron beam project at the ELBE radiation source in Rossendorf, Applied Surface Science, vol.252, issue.9, pp.252-3106, 2006.
DOI : 10.1016/j.apsusc.2005.08.109

M. Haines, Fifty years of controlled fusion research, Plasma Physics and Controlled Fusion, 1996.

J. D. Lawson, Some Criteria for a Power Producing Thermonuclear Reactor, Proceedings of the Physical Society. Section B, vol.70, issue.1, pp.6-10, 1957.
DOI : 10.1088/0370-1301/70/1/303

D. Fasel and M. Q. Tran, Availability of lithium in the context of future D???T fusion reactors, Fusion Engineering and Design, vol.75, issue.79, pp.75-79, 2005.
DOI : 10.1016/j.fusengdes.2005.06.345

L. Giancarli, G. Benamati, S. Malang, A. Perujo, E. Proust et al., Overview of EU activities on DEMO liquid metal breeder blankets, Fusion Engineering and Design, pp.27-337, 1995.

A. D. Pier, Lithium, in: Handbook of Stable Isotope Analytical Techniques, pp.225-225, 2009.

A. Kleyn, W. Koppers, and N. L. Cardozo, Plasma???surface interaction in ITER, Vacuum, vol.80, issue.10, pp.80-1098, 2006.
DOI : 10.1016/j.vacuum.2006.02.019

D. Murdoch, I. Cristescu, and R. Lässer, Strategy for determination of ITER in-vessel tritium inventory, Fusion Engineering and Design, vol.75, issue.79, pp.75-79, 2005.
DOI : 10.1016/j.fusengdes.2005.06.246

M. Missirlian, F. Escourbiac, M. Merola, A. Durocher, I. Bobin-vastra et al., Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor, Journal of Nuclear Materials, vol.367, issue.370, pp.367-370, 2007.
DOI : 10.1016/j.jnucmat.2007.03.245

I. Schlosser, P. Smid, C. H. Tramier, and . Wu, European development of the ITER divertor target, Fusion Engineering and Design, vol.46, pp.221-228, 1999.

R. Toschi, P. Barabaschi, D. Campbell, F. Elio, D. Maisonnier et al., How far is a fusion power reactor from an experimental reactor, Fusion Engineering and Design, vol.56, issue.57, pp.56-163, 2001.
DOI : 10.1016/S0920-3796(01)00577-4

H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu et al., ASDEX Upgrade Team, Materials for the plasma-facing components of fusion reactors, Journal of Nuclear Materials, pp.329-333, 2004.

A. S. Kukushkin, H. D. Pacher, G. Federici, G. Janeschitz, A. Loarte et al., Divertor issues on ITER and extrapolation to reactors, Fusion Engineering and Design, vol.65, issue.3, pp.65-355, 2003.
DOI : 10.1016/S0920-3796(02)00380-0

L. Podkovyrov, A. Singheiser, and . Zhitlukhin, Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads, Fusion Engineering and Design, vol.84, pp.1982-1986, 2009.

R. Behrisch, V. Khripunov, R. T. Santoro, and J. M. , Transmutation of plasma facing materials by the neutron flux in a DT fusion reactor, Journal of Nuclear Materials, vol.258, issue.263, pp.258-263, 1998.
DOI : 10.1016/S0022-3115(98)00249-9

V. Barabash, G. Federici, J. Linke, and C. H. Wu, Material/plasma surface interaction issues following neutron damage, Journal of Nuclear Materials, vol.313, issue.316, pp.313-316, 2003.
DOI : 10.1016/S0022-3115(02)01330-2

M. Gilbert, Transmutation and He Production in W and W-alloys, in, Culham Center for Fusion Energy

N. Yoshida, Review of recent works in development and evaluation of high-Z plasma facing materials, Journal of Nuclear Materials, vol.266, issue.269, pp.197-206, 1999.
DOI : 10.1016/S0022-3115(98)00817-4

H. Bolt, V. Barabash, G. Federici, J. Linke, A. Loarte et al., Plasma facing and high heat flux materials ??? needs for ITER and beyond, Journal of Nuclear Materials, vol.307, issue.311, pp.307-350, 2002.
DOI : 10.1016/S0022-3115(02)01175-3

J. Amano and D. N. Seidman, He atoms in perfect tungsten crystals, Journal of Applied Physics, vol.56, issue.4, pp.56-983, 1984.
DOI : 10.1063/1.334039

W. Wang, J. Roth, S. Lindig, and C. H. Wu, Blister formation of tungsten due to ion bombardment, Journal of Nuclear Materials, vol.299, issue.2, pp.299-124, 2001.
DOI : 10.1016/S0022-3115(01)00679-1

N. Enomoto, S. Muto, T. Tanabe, J. W. Davis, and A. A. Haasz, Grazing-incidence electron microscopy of surface blisters in single- and polycrystalline tungsten formed by H+, D+ and He+ irradiation, Journal of Nuclear Materials, vol.385, issue.3, pp.385-606, 2009.
DOI : 10.1016/j.jnucmat.2009.01.298

T. Hirai, K. Ezato, and P. Majerus, ITER Relevant High Heat Flux Testing on Plasma Facing Surfaces, MATERIALS TRANSACTIONS, vol.46, issue.3, pp.46-412, 2005.
DOI : 10.2320/matertrans.46.412

A. Moslang, IFMIF: the intense neutron source to qualify materials for fusion reactors, Comptes Rendus Physique, vol.9, issue.3-4, pp.457-468, 2008.
DOI : 10.1016/j.crhy.2007.10.018

C. Cagran, G. Pottlacher, M. Rink, and W. Bauer, Spectral Emissivities and Emissivity X-Points of Pure Molybdenum and Tungsten, International Journal of Thermophysics, vol.15, issue.4, pp.1001-1015, 2005.
DOI : 10.1007/s10765-005-6680-1

T. Zhang, Y. Wang, Y. Zhou, T. Lei, and G. Song, Model to determine recrystallization temperature of tungsten based dilute solid solution alloys, Journal of Materials Science, vol.123, issue.263, pp.41-7506, 2006.
DOI : 10.1007/s10853-006-0834-9

S. N. Mathaudhu, A. J. Derosset, K. T. Hartwig, and L. J. Kecskes, Microstructures and recrystallization behavior of severely hot-deformed tungsten, Materials Science and Engineering: A, vol.503, issue.1-2, pp.503-531, 2009.
DOI : 10.1016/j.msea.2008.03.051

L. Ekbom and T. Antonsson, Tungsten heavy alloy: deformation texture and recrystallization of tungsten particles, International Journal of Refractory Metals and Hard Materials, vol.20, issue.5-6, pp.375-379, 2002.
DOI : 10.1016/S0263-4368(02)00035-5

Q. Xu, T. Yoshiie, and H. Huang, Molecular dynamics simulation of vacancy diffusion in tungsten induced by irradiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.206, pp.206-123, 2003.
DOI : 10.1016/S0168-583X(03)00697-9

W. Eckstein, Computer simulation of ion-solid interactions, 1991.
DOI : 10.1007/978-3-642-73513-4

F. Maury, M. Biget, P. Vajda, A. Lucasson, and P. Lucasson, Frenkel pair creation and stage I recovery in W crystals irradiated near threshold, Radiation Effects, vol.8, issue.1-2, pp.38-53, 1978.
DOI : 10.1080/00337577708233111

R. Sakamoto, T. Muroga, and N. Yoshida, Microstructural evolution induced by low energy hydrogen ion irradiation in tungsten, Journal of Nuclear Materials, vol.220, issue.222, pp.220-222, 1995.
DOI : 10.1016/0022-3115(94)00622-9

R. Herschitz and D. N. Seidman, Radiation-induced precipitation in fast-neutron irradiated tungstenrhenium alloys: An atom-probe field-ion microscope study, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.7-8, 1985.

M. W. Guinan and J. H. Kinney, Resistivity damage rates in fusion-neutron irradiated metals at 4.2 K, Journal of Nuclear Materials, vol.108, issue.109, pp.108-109
DOI : 10.1016/0022-3115(82)90476-7

M. W. Guinan and J. H. Kinney, Molecular dynamic calculations of energetic displacement cascades, Journal of Nuclear Materials, vol.104, pp.1319-1323, 1981.
DOI : 10.1016/0022-3115(82)90782-6

C. Björkas, K. Nordlund, and S. Dudarev, Modelling radiation effects using the ab-initio based tungsten and vanadium potentials, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.267-3204, 2009.

C. H. Broeders and A. Y. Konobeyev, Defect production efficiency in metals under neutron irradiation, Journal of Nuclear Materials, vol.328, issue.2-3, pp.197-214, 2004.
DOI : 10.1016/j.jnucmat.2004.05.002

C. E. Klabunde, J. Coltman, and R. R. , Fission neutron damage rates and efficiencies in several metals, Journal of Nuclear Materials, vol.108, issue.109, pp.108-109, 1982.
DOI : 10.1016/0022-3115(82)90486-X

J. Ziegler, J. Biersack, and U. Littmark, The stopping and range of ions in solids, 1985.

M. Hou, C. J. Ortiz, C. S. Becquart, C. Domain, U. Sarkar et al., Microstructure evolution of irradiated tungsten: Crystal effects in He and H implantation as modelled in the Binary Collision Approximation, Journal of Nuclear Materials, vol.403, issue.1-3, pp.89-100
DOI : 10.1016/j.jnucmat.2010.06.004

M. T. Robinson and I. M. Torrens, Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation, Physical Review B, vol.9, issue.12, 1974.
DOI : 10.1103/PhysRevB.9.5008

M. J. Attardo, J. M. Galligan, and J. G. Chow, Interstitial Removal in Stage-III Recovery of Neutron-Irradiated W, Physical Review Letters, vol.19, issue.2, pp.19-73, 1967.
DOI : 10.1103/PhysRevLett.19.73

J. Dicarlo, C. Snead, and A. Goland, Stage-I Interstitials in Electron-Irradiated Tungsten, Physical Review, vol.178, issue.3, pp.1059-1072, 1969.
DOI : 10.1103/PhysRev.178.1059

S. Okuda and H. Mizubayashi, Free Migration of Interstitials in Tungsten, Physical Review Letters, vol.34, issue.13, pp.815-817, 1975.
DOI : 10.1103/PhysRevLett.34.815

C. S. Becquart and C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.255-278, 2007.

W. Schilling, Properties of Frenkel defects, Journal of Nuclear Materials, vol.216, pp.45-48, 1994.
DOI : 10.1016/0022-3115(94)90005-1

C. S. Becquart, C. Domain, U. Sarkar, A. Debacker, and M. Hou, Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model, Journal of Nuclear Materials, vol.403, issue.1-3, pp.403-75, 2010.
DOI : 10.1016/j.jnucmat.2010.06.003

H. Tanimoto, H. Mizubayashi, H. Nishimura, and S. Okuda, A Study of Self-Interstitial Atom in W by Means of Low-Temperature Irradiations, Le Journal de Physique IV, vol.06, issue.C8, pp.8-285, 1996.
DOI : 10.1051/jp4:1996861

URL : https://hal.archives-ouvertes.fr/jpa-00254669

S. L. Dudarev, The non-Arrhenius migration of interstitial defects in bcc transition metals, Comptes Rendus Physique, vol.9, issue.3-4, pp.409-417, 2008.
DOI : 10.1016/j.crhy.2007.09.019

K. Maier, M. Peo, B. Saile, H. Schaefer, and A. Seeger, High???temperature positron annihilation and vacancy formation in refractory metals, Philosophical Magazine A, vol.12, issue.5, pp.40-701, 1979.
DOI : 10.1002/pssa.2210370124

W. Xu and J. B. Adams, Fourth moment approximation to tight binding: application to bcc transition metals, Surface Science, vol.301, issue.1-3, pp.371-385, 1994.
DOI : 10.1016/0039-6028(94)91317-X

D. Nishijima, M. Ye, N. Ohno, and S. Takamura, Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II, Journal of Nuclear Materials, vol.329, issue.333, pp.329-1029, 2004.
DOI : 10.1016/j.jnucmat.2004.04.129

R. W. Balluffi, Vacancy defect mobilities and binding energies obtained from annealing studies, Journal of Nuclear Materials, vol.69, issue.70, pp.69-70, 1978.
DOI : 10.1016/0022-3115(78)90247-7

J. Mundy, S. Ockers, and L. Smedskjaer, Vacancy migration enthalpy in tungsten at high temperatures, 1986.

C. S. Becquart and C. Domain, An object Kinetic Monte Carlo Simulation of the dynamics of helium and point defects in tungsten, Journal of Nuclear Materials, vol.385, issue.2, pp.385-223, 2009.
DOI : 10.1016/j.jnucmat.2008.11.027

G. Amarendra, R. Rajaraman, S. Rajagopalan, R. Suzuki, and T. Ohdaira, Influence of defect-impurity complexes on slow positron yield of a tungsten moderator: Positron annihilation, Auger, and SIMS study, Physical Review B, vol.69, issue.9, p.69, 2004.
DOI : 10.1103/PhysRevB.69.094105

A. Balogh and I. Dezsi, Further Positron Lifetimes of Some Elements, Physica Status Solidi (b), vol.77, issue.2, pp.81-81, 1977.
DOI : 10.1002/pssb.2220810241

P. Nambissan and P. Sen, Positron annihilation study of the annealing behaviour of alpha induced defects in tungsten, Radiation Effects and Defects in Solids, vol.52, issue.2, pp.215-221, 1992.
DOI : 10.1143/JPSJ.45.1858

V. Subrahmanyam, P. Nambissan, and P. Sen, Helium bubbles in tungsten studied by positron annihilation, Solid state communications, pp.523-527, 1994.
DOI : 10.1016/0038-1098(94)90749-8

R. Ziegler and H. Schaefer, Vacancy Formation in Molybdenum and Tungsten Investigated by Positron Lifetime Measurements, Materials Science Forum, vol.15, issue.18, pp.145-148, 1986.
DOI : 10.4028/www.scientific.net/MSF.15-18.145

T. Troev, E. Popov, P. Staikov, N. Nankov, and T. Yoshiie, Positron simulations of defects in tungsten containing hydrogen and helium, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.267-535, 2009.

P. Nambissan and P. Sen, Positron annihilation studies on alpha irradiated tungsten, Solid state communications, pp.71-1165, 1989.

G. Rozing, A. Weeber, P. Mijnarends, A. Van-veen, J. De-vries et al., Schut, 2 D-ACAR measurements in tungsten with voids decorated with deuterium, th International Conference on Positron Annihilation(IPCA-9), pp.1205-1208, 1991.

R. Gupta and R. Siegel, Positron trapping and annihilation at vacancies in BCC refractory metals, Journal of Physics F: Metal Physics, vol.10, issue.1, pp.10-17, 1980.
DOI : 10.1088/0305-4608/10/1/002

Y. J. Xu, Z. Q. Wang, J. Z. Zhu, T. Minamisono, K. Matsuta et al., RADIATION EFFECTS IN STAINLESS STEEL AND TUNGSTEN FOR USE IN THE ADS SPALLATION NEUTRON SOURCE SYSTEM, Modern Physics Letters B, vol.17, issue.04, pp.17-147, 2003.
DOI : 10.1142/S0217984903004981

W. Brandt and R. Paulin, Positron implantation-profile effects in solids, Physical Review B, vol.15, issue.5, pp.2511-2518, 1977.
DOI : 10.1103/PhysRevB.15.2511

D. O. Welch and K. G. Lynn, Systematic variation of the mean positron lifetime and Gaussian fraction in annealed metals and semiconductors, physica status solidi (b), vol.35, issue.1, pp.77-277, 1976.
DOI : 10.1002/pssb.2220770127

J. De-vries, Positron Lifetime Technique with Application in Material Science, 1987.

S. Zhu, Y. Xu, Z. Wang, Y. Zheng, D. Zhou et al., Positron annihilation lifetime spectroscopy on heavy ion irradiated stainless steels and tungsten, Journal of Nuclear Materials, vol.343, issue.1-3, pp.343-330, 2005.
DOI : 10.1016/j.jnucmat.2004.11.024

C. Fu, J. Dalla-torre, F. Willaime, J. Bocquet, and A. Barbu, Multiscale modelling of defect kinetics in irradiated iron, Nature Materials, vol.14, issue.1, pp.68-74, 2004.
DOI : 10.1038/nmat1286

F. Dausinger, Die Tieftemperaturerholung in elektronenbestrahltem Wolfram, Philosophical Magazine A, vol.27, issue.6, pp.819-836, 1978.
DOI : 10.1080/01418617808239211

W. Hu, X. Shu, and B. Zhang, Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials, Computational Materials Science, vol.23, issue.1-4, pp.175-189, 2002.
DOI : 10.1016/S0927-0256(01)00238-5

C. S. Becquart and C. Domain, Migration energy of He in W revisited by Ab initio calculations, Physical Review Letters, vol.97, 2006.

A. S. Soltan, R. Vassen, and P. Jung, Migration and immobilization of hydrogen and helium in gold and tungsten at low temperatures, Journal of Applied Physics, vol.70, issue.2, pp.70-793, 1991.
DOI : 10.1063/1.349636

C. Fu and F. Willaime, First principles calculations in iron: structure and mobility of defect clusters and defect complexes for kinetic modelling, Comptes Rendus Physique, vol.9, issue.3-4, pp.335-342, 2008.
DOI : 10.1016/j.crhy.2007.09.018

C. Fu and F. Willaime, Ab initio study of helium in -Fe: Dissolution, migration, and clustering with vacancies, Physical Review B, vol.64117, p.72, 2005.

D. Nishijima, M. Y. Ye, N. Ohno, and S. Takamura, Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation, Journal of Nuclear Materials Plasma-Surface Interactions in Controlled Fusion Devices, pp.313-316, 2003.
DOI : 10.1016/S0022-3115(02)01368-5

S. T. Picraux and F. L. Vook, Ion beam studies of H and He in metals, Journal of Nuclear Materials, vol.53, pp.53-246, 1974.
DOI : 10.1016/0022-3115(74)90251-7

E. V. Kornelsen and A. A. Van-gorkum, A study of bubble nucleation in tungsten using thermal desorption spectrometry: Clusters of 2 to 100 helium atoms, Journal of Nuclear Materials, vol.92, issue.1, pp.92-79, 1980.
DOI : 10.1016/0022-3115(80)90144-0

A. Van-veen, Thermal Helium Desorption Spectrometry (THDS) as a Tool for the Study of Vacancies and Self-Interstitials, Materials Science Forum, vol.15, issue.18, pp.3-24, 1986.
DOI : 10.4028/www.scientific.net/MSF.15-18.3

M. S. Keriem, D. P. Van-der-werf, and F. Pleiter, Helium-vacancy interaction in tungsten, Physical Review B, p.14771, 1993.

H. Iwakiri, K. Yasunaga, K. Morishita, and N. Yoshida, Microstructure evolution in tungsten during low-energy helium ion irradiation, Journal of Nuclear Materials, vol.283, issue.287, pp.283-287, 2000.
DOI : 10.1016/S0022-3115(00)00289-0

W. D. Wilson, C. L. Bisson, and M. I. Baskes, Self-trapping of helium in metals, Physical Review B, vol.24, issue.10, p.24, 1981.
DOI : 10.1103/PhysRevB.24.5616

G. J. Thomas and R. Bastasz, Direct evidence for spontaneous precipitation of helium in metals, Journal of Applied Physics, vol.52, issue.10, pp.52-6426, 1981.
DOI : 10.1063/1.328590

K. O. Henriksson, K. Nordlund, and J. Keinonen, Molecular dynamics simulations of helium cluster formation in tungsten, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.244-377, 2006.

K. Arakawa, H. Mori, and K. Ono, Formation process of dislocation loops in iron under irradiations with low-energy helium, hydrogen ions or high-energy electrons, Journal of Nuclear Materials, vol.307, issue.311, pp.307-311, 2002.
DOI : 10.1016/S0022-3115(02)01251-5

H. Trinkaus and B. N. Singh, Helium accumulation in metals during irradiation ??? where do we stand?, Journal of Nuclear Materials Proceedings of the Second IEA Fusion Materials Agreement Workshop on Modeling and Experimental Validation, pp.323-229, 2003.
DOI : 10.1016/j.jnucmat.2003.09.001

N. Yoshida, Mechanism of initial processes of blistering in BCC metals, Journal of Nuclear Materials, vol.103, pp.373-377, 1981.
DOI : 10.1016/0022-3115(82)90626-2

S. Sharafat, A. Takahashi, Q. Hu, and N. M. Ghoniem, A description of bubble growth and gas release of helium implanted tungsten, Journal of Nuclear Materials, vol.386, issue.388, pp.386-388, 2009.
DOI : 10.1016/j.jnucmat.2008.12.318

T. Hino, Y. Yamauchi, and Y. Hirohata, Helium retention of plasma facing materials, Journal of Nuclear Materials, vol.266, issue.269, pp.266-269, 1999.
DOI : 10.1016/S0022-3115(98)00587-X

N. Hashimoto, J. D. Hunn, N. Parikh, S. Gilliam, S. Gidcumb et al., Microstructural analysis on helium retention of ion-irradiated and annealed tungsten foils, Journal of Nuclear Materials, vol.347, issue.3, pp.347-307, 2005.
DOI : 10.1016/j.jnucmat.2005.08.010

P. A. Dirac, The Quantum Theory of the Electron, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.117, issue.778, pp.610-624, 1928.
DOI : 10.1098/rspa.1928.0023

C. Anderson, The Positive Electron, Physical Review, vol.43, issue.6, pp.491-494, 1933.
DOI : 10.1103/PhysRev.43.491

J. C. Bobineau, Optimisation d'une chaine de mesure de temps de vie de positons et d'élargissement Doppler de la raie d'annihilation entre 15 K et 300 K, Laboratoire Positons, Insitut National des Sciences et Techniques Nucléaires

R. Paulin, Implantation of Fast Positrons in Solids, 1983.

P. Huttunen, Positron interactions on solid surfaces and at bilayered structures, 1990.

R. Krause-rehberg and H. Leipner, Positron annihilation in semiconductors: defect studies, 1999.
DOI : 10.1007/978-3-662-03893-2

E. Soininen, J. Mäkinen, D. Beyer, and P. Hautojärvi, High-temperature positron diffusion in Si, GaAs, and Ge, High-temperature positron diffusion in Si, GaAs, and Ge, pp.13104-13118, 1992.
DOI : 10.1103/PhysRevB.46.13104

C. Corbel, G. Blondiaux, and M. F. Barthe, Caractérisation de défauts lacunaires par annihilation de positons, Techniques de l'ingénieur. Analyse et caractérisation, pp.2610-2610, 2003.

P. Sperr, W. Egger, G. Kögel, G. Dollinger, C. Hugenschmidt et al., Status of the pulsed low energy positron beam system (PLEPS) at the Munich Research Reactor FRM-II, Applied Surface Science, vol.255, issue.1, 2008.
DOI : 10.1016/j.apsusc.2008.05.307

A. Gentils, M. Barthe, L. Thomé, and M. Behar, Determination of defects in 6H-SiC single crystals irradiated with 20 MeV Au ions, Applied Surface Science, pp.255-78, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00825464

M. Hakala, M. Puska, and R. Nieminen, Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si, Physical Review B, vol.57, issue.13, pp.7621-7627, 1998.
DOI : 10.1103/PhysRevB.57.7621

P. Prochazka and . Coleman, Characterization of a SiC/SiC composite by X-ray diffraction, atomic force microscopy and positron spectroscopies, Applied Surface Science, vol.252, pp.3342-3351, 2006.

A. Van-veen, H. Schut, M. Clement, J. M. De-nijs, A. Kruseman et al., VEPFIT applied to depth profiling problems, Applied Surface Science, vol.85, pp.85-216, 1995.
DOI : 10.1016/0169-4332(94)00334-3

R. Nieminen and J. Laakkonen, Positron trapping rate into vacancy clusters, Applied Physics, vol.18, issue.2, pp.181-184, 1979.
DOI : 10.1007/BF00885942

F. Pászti, Microanalysis of He using charged particle accelerators, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.66, pp.83-106, 1992.

J. P. Corbel, F. Piron, A. Labohm, and . Van-veen, Profile measurements of helium implanted in UO2 sintered pellets by using the 3He(d, [alpha])1H nuclear reaction analysis technique, Journal of Nuclear Materials, pp.327-159, 2004.

G. Martin, T. Sauvage, P. Desgardin, P. Garcia, G. Carlot et al., Accurate automated nonresonant NRA depth profiling: Application to the low 3He concentration detection in UO2 and SiC, Nuclear Inst. and Methods in Physics Research, pp.258-471, 2007.

F. Chamssedine, T. Sauvage, and S. Peuget, DIADDHEM set-up: New IBA facility for studying the helium behavior in nuclear glasses, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

S. Bonnaillie, S. Pellegrino, D. Vaubaillon, and . Uriot, JANNUS: A multi-irradiation platform for experimental validation at the scale of the atomistic modelling, Journal of Nuclear Materials, pp.386-388, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00683364

P. Leseigneur, S. Trouslard, S. Pellegrino, and . Vaubaillon, JANNUS: experimental validation at the scale of atomic modelling, Comptes Rendus Physique, vol.9, pp.437-444, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00833347

Y. Serruys, M. O. Ruault, P. Trocellier, S. Henry, O. Kaïtasov et al., Multiple ion beam irradiation and implantation: JANNUS project, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.240-124, 2005.

R. Paulin, R. Ripon, and W. Brandt, Diffusion constant and surface states of positrons in metals, Applied Physics, vol.12, issue.4, pp.343-347, 1974.
DOI : 10.1007/BF00928390

M. J. Puska, P. Lanki, and R. M. Nieminen, Positron affinities for elemental metals, Journal of Physics: Condensed Matter, vol.1, issue.35, pp.6081-6093, 1989.
DOI : 10.1088/0953-8984/1/35/008

S. V. Nagendernaidu, A. Sriramamurthy, and P. R. Rao, The Mo W molybdenum tungsten system, Transaction of the indian institutte of metals, pp.107-110, 1984.

A. Debelle, M. Barthe, T. Sauvage, R. Belamhawal, A. Chelgoum et al., Helium behaviour and vacancy defect distribution in helium implanted tungsten, Journal of Nuclear Materials, vol.362, issue.2-3, pp.362-181, 2007.
DOI : 10.1016/j.jnucmat.2007.01.021

M. T. Robinson, The reflection of low energy helium atoms from tungsten surfaces, Journal of Nuclear Materials, vol.103, pp.525-529, 1981.
DOI : 10.1016/0022-3115(82)90652-3

H. T. Lee, A. A. Haasz, J. W. Davis, R. G. Macaulay-newcombe, D. G. Whyte et al., Hydrogen and helium trapping in tungsten under simultaneous irradiations, Journal of Nuclear Materials Plasma-Surface Interactions-17, pp.363-365, 2007.
DOI : 10.1016/j.jnucmat.2007.01.111

H. Lee, A. Haasz, J. Davis, and R. Macaulay-newcombe, Hydrogen and helium trapping in tungsten under single and sequential irradiations, Journal of Nuclear Materials, vol.360, issue.2, pp.360-196, 2007.
DOI : 10.1016/j.jnucmat.2006.09.013

C. S. Becquart and C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Computer Simulation of Radiation Effects in Solids, Proceedings of the Eighth International Conference on Computer Simulation of Radiation Effects in Solids, pp.255-278, 2006.

J. Tesmer, M. Nastasi, J. Barbour, C. Maggiore, and J. Mayer, Handbook of modern ion beam materials analysis, 1995.

W. Möller and F. Besenbacher, A note on the 3He + D nuclear-reaction cross section, Nuclear Instruments and Methods, pp.168-111, 1980.

J. Yarnell, R. Lovberg, and W. Stratton, Angular Distribution of the Reaction He^{3}(d, p) He^{4} between 240 kev and 3. 56 Mev, Physical Review, pp.90-292, 1953.

T. W. Bonner, J. P. Conner, and A. B. Lillie, Cross Section and Angular Distribution of the He3(d,p)He4 Nuclear Reaction, Physical Review, pp.88-473, 1952.

C. Björkas, K. Nordlund, and S. Dudarev, Modelling radiation effects using the ab-initio based tungsten and vanadium potentials, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

K. B. Winterbon, Calculating moments of range distributions, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.17, pp.193-202, 1986.

L. Valeurs-de-la-moyenne-et-de-l, écart-type qui reproduise « au mieux » le profil après implantation ont été déterminées : (m = ~760 nm et s = ~150 nm)