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Résumé

Le secteur des télécommunications mobiles a connu une croissance très
rapide dans un passé récent avec pour résultat d’importantes évolutions tech-
nologiques et architecturales des réseaux sans fil. L’expansion et l’hétérogénéité
de ces réseaux ont engendré des coûts de fonctionnement de plus en plus im-
portants.

Les dysfonctionnements typiques de ces réseaux ont souvent pour origines
des pannes d’équipements ainsi que de mauvaises planifications et/ou config-
urations. Dans ce contexte, le dépannage automatisé des réseaux sans fil peut
s’avérer d’une importance particulière visant à réduire les coûts opérationnels
et à fournir une bonne qualité de service aux utilisateurs. Le dépannage au-
tomatisé des pannes survenant sur les réseaux sans fil peuvent ainsi conduire à
une réduction du temps d’interruption de service pour les clients, permettant
ainsi d’éviter l’orientation de ces derniers vers les opérateurs concurrents.

Le RAN (Radio Access Network) d’un réseau sans fil constitue sa plus
grande partie. Par conséquent, le dépannage automatisé des réseaux d’accès
radio des réseaux sans fil est très important. Ce dépannage comprend la
détection détection des dysfonctionnements, l’identification des causes des
pannes (diagnostic) et la proposition d’actions correctives (déploiement de la
solution).

Tout d’abord, dans cette thèse, les travaux antérieurs liés au dépannage
automatisé des réseaux sans-fil ont été explorés. Il s’avère que la détection
et le diagnostic des incidents impactant les réseaux sans-fil ont déjà bien
été étudiés dans les productions scientifiques traitant de ces sujets. Mais
étonnamment, aucune référence significative sur des travaux de recherche liés
aux résolutions automatisées des pannes des réseaux sans fil n’a été rapportée.
Ainsi, l’objectif de cette thèse est de présenter mes travaux de recherche sur
la ” résolution automatisée des dysfonctionnements des réseaux sans fil LTE
(Long Term Evolution) à partir d’une approche statistique ”. Les dysfonc-
tionnements liés aux paramètres RRM (Radio Resource Management) seront
particulièrement étudiés.

Cette thèse décrit l’utilisation des données statistiques pour l’automatisation
du processus de résolution des problèmes survenant sur les réseaux sans fil.
Dans ce but, l’efficacité de l’approche statistique destinée à l’automatisation
de la résolution des incidents liés aux paramètres RRM a été étudiée. Ce
résultat est obtenu par la modélisation des relations fonctionnelles existantes
entre les paramètres RRM et les indicateurs de performance ou KPI (Key
Performance Indicator). Une architecture générique automatisée pour RRM
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a été proposée. Cette dernière a été utilisée afin d’étudier l’utilisation de
l’approche statistique dans le paramétrage automatique et le suivi des per-
formances des réseaux sans fil.

L’utilisation de l’approche statistique dans la résolution automatique des
dysfonctionnements des réseaux sans fil présente deux contraintes majeures.
Premièrement, les mesures de KPI obtenues à partir du réseau peuvent con-
tenir des erreurs qui peuvent partiellement masquer le comportement réel
des indicateurs de performance. Deuxièmement, ces algorithmes automa-
tisés sont itératifs. Ainsi, après chaque itération, la performance du réseau est
généralement évaluée sur la durée d’une journée avec les nouveaux paramètres
réseau implémentés. Les algorithmes itératifs devraient donc atteindre leurs
objectifs de qualité de service dans un nombre minimum d’itérations. La
méthodologie automatisée de diagnostic et de résolution développée dans
cette thèse, basée sur la modélisation statistique, prend en compte ces deux
difficultés. Ces algorithmes de la résolution automatisé nécessitent peu de
calculs et convergent vers un petit nombre d’itérations ce qui permet leur
implémentation à l’OMC (Operation and Maintenace Center).

La méthodologie a été appliquée à des cas pratiques sur réseau LTE dans
le but de résoudre des problématiques liées à la mobilité et aux interférences.
Il est ainsi apparu que l’objectif de correction de ces dysfonctionnements a été
atteint au bout d’un petit nombre d’itérations. Un processus de résolution
automatisé utilisant l’optimisation séquentielle des paramètres d’atténuation
des interférences et de packet scheduling a également été étudié.

L’incorporation de la ”connaissance a priori” dans le processus de résolution
automatisé réduit d’avantage le nombre d’itérations nécessaires à l’automatisation
du processus. En outre, le processus automatisé de résolution devient plus
robuste, et donc, plus simple et plus pratique à mettre en oeuvre dans les
réseaux sans fil.
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Abstract

The mobile telecommunication industry has experienced a very rapid
growth in the recent past. This has resulted in significant technological and
architectural evolution in the wireless networks. The expansion and the het-
erogenity of these networks have made their operational cost more and more
important. Typical faults in these networks may be related to equipment
breakdown and inappropriate planning and configuration. In this context,
automated troubleshooting in wireless networks receives a growing impor-
tance, aiming at reducing the operational cost and providing high-quality
services for the end-users. Automated troubleshooting can reduce service
breakdown time for the clients, resulting in the decrease in client switchover
to competing network operators. The Radio Access Network (RAN) of a
wireless network constitutes its biggest part. Hence, the automated trou-
bleshooting of RAN of the wireless networks is very important.

The troubleshooting comprises the isolation of the faulty cells (fault de-
tection), identifying the causes of the fault (fault diagnosis) and the proposal
and deployement of the healing action (solution deployement). First of all, in
this thesis, the previous work related to the troubleshooting of the wireless
networks has been explored. It turns out that the fault detection and the
diagnosis of wireless networks have been well studied in the scientific litera-
ture. Surprisingly, no significant references for the research work related to
the automated healing of wireless networks have been reported. Thus, the
aim of this thesis is to describe my research advances on ”Automated healing
of LTE wireless networks using statistical learning”. We focus on the faults
related to Radio Resource Management (RRM) parameters.

This thesis explores the use of statistical learning for the automated heal-
ing process. In this context, the effectiveness of statistical learning for auto-
mated RRM has been investigated. This is achieved by modeling the func-
tional relationships between the RRM parameters and Key Performance In-
dicators (KPIs). A generic automated RRM architecture has been proposed.
This generic architecture has been used to study the application of statistical
learning approach to auto-tuning and performance monitoring of the wireless
networks.

The use of statistical learning in the automated healing of wireless net-
works introduces two important difficulties: Firstly, the KPI measurements
obtained from the network are noisy, hence this noise can partially mask the
actual behaviour of KPIs. Secondly, these automated healing algorithms are
iterative. After each iteration the network performance is typically evaluated
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over the duration of a day with new network parameter settings. Hence, the
iterative algorithms should achieve their QoS objective in a minimum num-
ber of iterations. Automated healing methodology developped in this thesis,
based on statistical modeling, addresses these two issues. The automated
healing algorithms developped are computationaly light and converge in a
few number of iterations. This enables the implemenation of these algorithms
in the Operation and Maintenance Center (OMC) in the off-line mode.

The automated healing methodolgy has been applied to 3G Long Term
Evolution (LTE) use cases for healing the mobility and intereference mitiga-
tion parameter settings. It has been observed that our healing objective is
achieved in a few number of iterations. An automated healing process using
the sequential optimization of interference mitigation and packet scheduling
parameters has also been investigated.

The incorporation of the a priori knowledge into the automated healing
process, further reduces the number of iterations required for automated
healing. Furthermore, the automated healing process becomes more robust,
hence, more feasible and practical for the implementation in the wireless
networks.
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Chapter 1

Introduction

1.1 Background and problem definition

With the growth in the size and the complexity of the Radio Access Networks
(RANs), the issue of the operational cost of the network is becoming more
and more important. As networks increase quickly in size and complexity, it
becomes impractical to manually examine all possible sources of fault in each
network component. Automated troubleshooting is one of the solutions which
can reduce the operational cost. Manual troubleshooting is time consuming,
requires much expertise and involves high operational costs. Automated
troubleshooting can be carried out by the software tools incorporated within
the Operation and Maintenance Center (OMC).

Rapid troubleshooting of failures is a key challenge for telecom operators.
The satisfaction of customers indeed requires to minimize the impact of fail-
ure events. Efficient troubleshooting processes with rapid fault detection,
diagnosis and healing allow fast reaction to problems and the reduction of
infrastructure equipment down-time and period of poor Quality of Service
(QoS). Hence troubleshooting is clearly a strategic activity for an operator,
and has a direct impact on QoS experienced by customers, on network churn
reduction and on operator’s revenues.

The network operational teams have to solve the performance degrada-
tions as quickly as possible. However, efficiently and effectively solving these
problems imposes to cope with two challenges. The first one is to develop an
automated, rapid and efficient fault management approach to problem solv-
ing in real-time even in high-speed networks with possibly a large number of
impacted nodes. Moreover today’s networks suffer from a wide and volatile
set of failure types where the underlying fault proves difficult to detect, an-
alyze and heal. The main reasons are the heterogenity of the underlying
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technologies, protocols and terminal implementations, and the ever growing
variety of applications. A second challenge is to define accurate but generic
diagnosis and healing methods. They should avoid the use of too specific
information related to the underlying protocols or wireless technologies that
may be different among the different wireless networks.

Troubleshooting comprises the following three tasks: fault detection;
cause diagnosis (i.e. identification of the problems’ cause from Key Perfor-
mance Indicators (KPIs) and alarms); and the solution deployment, namely
fixing the problem or automated healing. A cause could be a hardware fail-
ure, like a broken base-band card in a node B, or a bad parameter value, i.e.
transmission power, antenna tilt or a control parameter such as Radio Re-
source Management (RRM) parameter. The term symptom refers to quality
indicators, i.e. quality of service (QoS) perceived by the user or performance
indicator characterizing the network functioning and alarms. Alarms can be
triggered when there is a material failure or when certain indicators exceed
some thresholds. There are numerous parameters and possible hardware
failures that could deteriorate the network performance and cause alarms.
Furthermore, one fault could often trigger a series of alarms. To achieve the
conclusive diagnosis and healing, not only alarms should be taken into ac-
count, but also performance indicators. The large number of possible faults,
network KPIs and alarms make troubleshooting a complex task. In het-
erogeneous RANs which are more and more common in the wireless/mobile
landscape, troubleshooting becomes even more complex. The automation of
troubleshooting in general, will allow mobile operators to alleviate the bur-
den of troubleshooting teams and to shorten the time necessary to identify
and heal faults and thus reduce the time in which the network suffers from
poor performance.

1.2 Scope and objective of the thesis

Fault management or troubleshooting is an important building block of net-
work operation. Efficient troubleshooting processes allow us to rapidly react
to problems, to lower infrastructure equipment down-time and to shorten
period with poor QoS provisioning. Hence troubleshooting has direct im-
pact on the operator revenues and on the rate of churn (users switching to
competing network operators). Automated troubleshooting is an important
functionality of Self Organizing Networks (SON) [1]. This thesis is related
to the third step of the troubleshooting process i.e., auotmated healing. It
has been assumed that fault has been correctly detected and diagnosed to
be caused by a bad RRM parameter setting. First of all, the role of the sta-
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tistical learning in the automated RRM is investigated in general. A generic
architecture for automated RRM using statistical learning is proposed. The
regression techniques are used to derive closed form relationships between
the RRM and KPI parameters. These closed form relationships give us an
estimate of the required change in an RRM parameter in order to achieve
the required QoS objective. The design of auto-tuning heuristics using these
relationships has also been investigated.

The automated healing algorithms developped in this thesis use these
closed form relationships. They achieve the required QoS objective by se-
lecting the most appropriate values for the network RRM parameters. These
algorithms are iterative and for the practical operating wireless networks, the
duration of one iteration is one day. Hence, the RRM optimization in this
case is different from the standard optimization techniques as here the badly
parameterised RRM parameters need to be optimized in a minimum number
of iterations to achieve our QoS objective. The use cases of Long Term Evo-
lution (LTE) network studied in this context investigate automated healing
for interference mitigation, mobility and packet scheduling parameters.

1.3 Original contribution

This thesis has the following major contributions:

• the proposition of an automated RRM architecture based on statistical
learning

• the design of an auto-tuning algorithm using inferences derived from
statistical learning and its application to LTE mobility use case

• the development of statistical learning based automated healing scheme
and its adaptation to the use cases of LTE mobility, interference miti-
gation and packet scheduling parameters

In the first contribution, a new statistical learning based automated RRM
architecture has been proposed. This architecture and its utility for Self Or-
ganizing Network (SON) functionalities like network monitoring and network
auto-tuning have been demonstrated in our work that appears in reference [2].

The results of the application of statistical learning to the LTE simualtion
data have shown that the relationship between the KPIs and RRM parame-
ters can be modeled as closed form expressions, denoted as the model. Using
these results, an auto-tuning heuristic has been designed. This heuristic
is then applied to mobility parameter of LTE networks to achieve network
performance improvements.
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A new iterative automated healing methodology based upon statistical
learning has been proposed for LTE networks. The algorithm uses statistical
model, obtained using statistical learning, whose accuracy improves during
each optimization iteration. The algorithm has the advantage of converging
within few iterations as shown in our work in reference [3].

The automated healing methodolgy presented has then been refined by
making it more scalable as the automated healing of two eNBs that are not
immediate neighbours can be done simultaneously. The methodology has
been named as Statistical Learning Automated Healing (SLAH). The appli-
cation of the SLAH methodology to the intereference mitigation parameters
has been shown in our work in [4] and to the mobility parameters that ap-
pears in our work in [6]. The use of SLAH for the sequential automated
healing of interference mitigation and packet scheduling parameters has also
been addressed.

The SLAH methodogy has been improved for the operating networks by
the incorporation of a priori knowledge into it. The initial model in SLAH
methodology is very sensitive to noise in KPIs. The use of noise free a
priori data ensures that this model is derived without noise. Furthermore,
the number of the iterations required for the optimization has been further
reduced as shown in reference [5].

1.4 Thesis structure

First, in Chapter 2, an extensive state of the art of the troubleshooting in
mobile communications is presented. The survey of the troubleshooting is
preceded by a brief presentation of the statistical learning techniques that is
used in our work. A brief overview of the LTE technology that is used in the
automated healing simulation scenarios, is also described.

Chapter 3, explains the statistical learning approach for automated RRM.
A first case study of the statistical learning applied to two eNodeBs (eNBs)
for a LTE simulation scenario is presented. A generic architecture for au-
tomated RRM is presented. The benefit of this automated RRM to the
auto-tuning and monitoring of LTE network is demonstrated.

The statistical learning based automated healing is described in Chapter
4. A generic block diagram of this automated healing methodolgy is pre-
sented. The effectiveness of the automated methodology is demonstrated
by its application to interference mitigation, mobility and packet schedul-
ing parameters. The refinement and enhancement in this automated healing
methodology for the use of a priori knowledge and packet scheduling is also
addressed.
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The last chapter summarizes and concludes the work presented. The
highlights for the potential directions of the future work are discussed.



Chapter 2

Background

2.1 Introduction

Troubleshooting has been studied recently in the context of 2G and 3G net-
works. The main focus has been in the fault detection and fault diagnosis
of these networks. As the complexity of wireless communication networks
increases from day to day, the need for having troubleshooting as a part
of automated network management has become critical. Research activity
on this topic has been conducted both in industry and academia and has
been reported in the literature. The objective of this chapter is to give a
comprehensive survey on the research done in the area of troubleshooting
of Radio Access Network (RAN), in wireless communications. This chapter
covers the troubleshooting work on the technologies prior to LTE, namely
2G and 3G. The details of the statistical learning used in the current thesis
are also given. Two types of statistical learning techniques based on: Linear
Regression and Logistic Regression are described. This thesis work focuses
on the automated healing aspect of the troubleshooting of wireless networks
with application to LTE networks as an example. Hence, an introduction to
key LTE technical details is also presented.

The structure of this chapter as follows: Section 2.2 explains the state of
the art for the previous work on troubleshooting. The details of the statistical
learning techniques used in our work are given in Section 2.3. The Section
2.3.1 and Section 2.3.2 describe the linear and logistic regression techniques,
respectively. Section 2.4 gives an introduction to the system details of LTE
system. Section 2.8 eventually concludes the chapter.
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2.2 State of the art in troubleshooting in RANs

In the current wireless networks the troubleshooting tasks are achieved man-
ually. The network experts observe the performance of the network and
Network Elements (NE). Whenever there is a fault, the fault diagnosis strat-
egy is based upon checking all possible causes and eliminating the possible
causes one by one, untill we single out the actual cause. This procedure
involves, not only querying the alarm, performance databases and network
configuration, but also requires good knowledge of tools used for displaying
information. The efficency of the troubleshooting process depends upon the
expertise of the troubleshooting network experts.

First steps in automation of the troubleshooting process have been fo-
cused on performance visualization and Fault Detection (FD). Thanks to
the methods that achieve efficient visualisation of the network performance,
anomaly detection is more easily carried out.

Reference [7] proposes a method to measure the performance of the net-
work in terms of the number of failed operations. This method uses the
knowledge of KPI indicators, network architecture and quadratic program-
ming for network analysis. The KPIs are divided into sets to describe the
performance of different GSM network subsystems. Simple mathematical
models are made for each subsystem based upon KPIs. The training data is
used to estimate these models using quadratic programming. The interde-
pendencies between different systems and KPIs are explored by constructing
a graph.

Fault Detection (FD) is the first step of troubleshooting. Many studies
have been done in this field. These methods are based upon building a be-
havioural model of an operating network under normal conditions. With the
availability of such a model, any deviation from the normal network operat-
ing behaviour can be detected as an anomaly. In [8]- [11] a FD method is
proposed which uses the Self-Organizing Map (SOM) as its basic principle. A
self-organizing map (SOM) or self-organizing feature map (SOFM) is a type
of artificial neural network that is trained using machine learning to produce
a low-dimensional (typically two-dimensional), discretized representation of
the input space of the training samples, called a map. In wireless networks,
a behavioural pattern of a cell is a set of KPIs. Hence in network perfor-
mance analysis, SOM of different cells can be used to find the behavioural
similarities between them. The cells having similar behaviour will be located
close to one another. In statistics and machine learning, k-means clustering
is a method of cluster analysis which aims to partition n observations into
k clusters in which each observation belongs to the cluster with the nearest
mean. A combination of SOM and K-means clustering algorithm can be
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used to isolate the the cell clusters with similar behaviours. The behavioural
degradation/fault in a cell can be found by calculating its distance with cell
cluster having a normal profile.

A neural network algorithm, namely Winner-Take-All, has been used for
FD in [12] [13]. In this algorithm, the weight of a single neuron is only
changed with each new input vector. The network is trained using KPI
vectors collected during the normal network operations. The percentiles of
the normality profile that represents a numerical interval to represent the
normal behaviour of the system is defined. FD is carried out in the following
way: the defined interval for normal behaviour is used to classify a new vector
into normal/abnormal by means of hypothesis testing. The value of each new
KPI is evaluated and if it does not lie within the defined range of normal
behaviour interval then it is termed as abnormal. Once a new KPI has been
identified as normal/abnormal, this decision can serve as input to a more
complex diagnosis system.

The diagnosis of the problem cause is the second step of the troubleshoot-
ing process. There are few references about diagnosis in the RAN of cellular
networks. The automated diagnosis has been studied extensively in other
fields such as diagnosis of diseases in medicine [14]- [21], troubleshooting of
printer failures [22]- [31], diagnosis of faults in satellite communication sys-
tems [32]- [35], etc. The identification of the faults in the communication
networks has been studied in [36]- [40]. In these cases, the interdependence
among various communication network modules plays an important role in
fault identification, as failure in one network module may result in supple-
mentary alarms in other network modules. Alarms are the only symptoms
of the fault in these scenarios. However, in the case in RANs, the above
formulation is not valid. As most often in the case of RANs, the fault is
not related to the equipment or module failure but rather to poor network
configuration and planning. Furthermore, the alarm information in this case
is important but not conclusive, for example, for problems like excessive in-
terference or bad coverage. Hence, the information of KPIs is also required
and unlike alarm information, the KPI values are continous. Thus the math-
ematical modeling for cause diagnosis in RANs is different from the modeling
of other communication networks as in the case of RAN each subsytstem has
its unique functionalities.

The alarm correlation has been used in [41]- [46] for the diagnosis in the
RANs. Alarm correlation [45] [46] consists of intrepreting the conceptual
significance of multiple alarm occurences that are generated from one fault.
The underlining mechanism for the fault diagnosis involves the reduction of
multiple alarm into a single alarm and inhibition of the low priority alarms.
When there is a fault in the RAN, it may result in generation of multiple
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alarms. Alarm correlation systems reduce multiple alarms into a single and
meaningful alarm. Hence, the fault identification process becomes simpler
for the operator. For example, when a link fails, up to 100 or more alarms
are generated and passed to the Network Management System (NMS). Those
alarms should be converted into a minimum number of alarms which clearly
pinpoint to the breakdown of a link. In [42]- [44], model-based alarm correla-
tion has been presented. Here, the behaviour of a network device is modelled
as a set of formulas. For example, if a certain set of alarms related to a
network device are present, it is considered to be faulty. Neural networks
are used in [41] [43] as the basis of alarm correlation methodology. Here, the
network generated alarms are used as the neural network input layer, while
alarms filtered by alarm correlation are represented as the output layer. The
weights of the neural network are adapted using the training data.

Despite the fact that the alarm correlation can be used in fault diagnosis,
the alarm correlation cannot provide the conclusive diagnosis for the alarms
caused by intereference or lack of coverage. In order to diagnose causes of
such alarms, additional information about the KPIs needs to be taken into
account.

An automatic diagnosis method for RANs which utilizes KPI information
has been proposed in [47]. This method uses the Naive Bayesian classifier,
using the same reasoning as in [48], for the diagnosis in GSM/GPRS, 3G
or multi-systems networks where a diagnosis in GSM/GPRS networks has
been proposed. The beta density function models the relations among the
symptoms and the causes. This model is tested on data from a live GSM
network.

In [49]- [52], Bayesian Networks (BN) using the same reasoning as in
[53] [55] [54], are used for automatic diagnosis in cellular networks. Here,
the performance indicators are modeled as discrete variables. The trials are
done on the data from live GSM/GPRS network. The question of choosing a
suitable BN network has been investigated in [56]. The paper in [57] proposes
two methods for improving the accuracy of the troubleshooting model. The
diagnosis methodology based upon the BN is extended to the diagnosis of
UMTS networks in [58] and [59].

Reference [60] a Bayesian Network based diagnosis is proposed that takes
into account both alarm correlation and performance data. The proposed
method divides the ’hardware’ and ’transmission’ related causes into sev-
eral sub causes in order to provide details about problem’s location (BTS’s
subsystem: power unit, transmission unit, signalling or BTS itself).

Reference [61] compares the performance of Causation Bayesian Network
and Naive Bayesian Network for wireless network fault diagnosis. It is ob-
served that both types of BNs learns from the same training data, but the
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latter has better performance. After the review of the scientific literature it
turns out that the above mentioned techniques of fault detection and diag-
nosis are yet to be applied to the LTE network as it is in the early phases of
its deployment.

There does not seem to be a significant work or publications related to the
third step of the troubleshooting process i.e., problem solution or automated
healing. Hence, in this thesis, the automated healing of wireless networks,
particularly LTE networks, has been explored.

2.3 Statistical learning

The main goal of statistical learning theory is to provide a framework for
studying the problem of inference, that is of gaining knowledge, making pre-
dictions, making decisions or constructing models from a set of data. This
is studied in a statistical framework, that is there are assumptions about
the statistical nature of the underlying phenomena (in the way the data is
generated). Statistical learning offers efficient algorithms that learn from
observations. Such algorithms are usually referred to as machine learning
algorithms. The aim is to perform a prediction or an estimation regarding
a (usually complex) system. To achieve this goal, we dispose two kinds of
information: a priori and/or a posteriori. A priori information is usually in
the form of some hypotheses or models that synthesizes our past knowledge
on the problem at hand. A posteriori information consists of the data that
we obtain while observing the system of interest. A machine learning algo-
rithm takes the models/hypotheses and the observations to learn about the
nature of the problem and the dynamics of the system. As a result of this
learning, it comes up with a set of rules that lead to predictions/estimations.
Since the observations are limited, these predictions/estimations are not de-
terministic but rather probabilistic, i.e. they contain probabilistic bounds or
reliability intervals. The problem at hand, i.e. finding RRM parameters that
yield a desired/optimum KPI performance, fits perfectly into this framework.
The a priori knowledge is provided by the models (propagation model, traffic
model, mobility model, network model etc.) used by analytic and/or numeric
evaluation methods; and the a posteriori knowledge is provided by network
measurements. Thus, it is absolutely plausible to use the statistical learning
framework for the auto-correction of RRM parameters.
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2.3.1 Linear regression

The statistical learning technique that is chosen to be applied on our problem
is the regression. In regression, the relation between a response variable
(dependent variable) and one or more explanatory variables (independent
variables) is sought. The response variable is formulated as a function of the
explanatory variable(s), corresponding coefficients (constants) and an error
term. In the present case, the regression will relate an RRM parameter to
a set of KPIs. The aim is to estimate the coefficients that yield a best fit,
generally in the least square sense. The error term explains the unpredictable
part in the estimation. Regression is widely used in statistical learning. In
our problem, it is preferable to work with more than one KPI for a satisfying
RRM parameter optimisation. Furthermore, depending upon the nature of
relationship between RRM parameters and the KPIs, linear regression model
is one of the models used in the regression analysis. This brings us to a
linear regression model that can be formulated as follows: Let yi denote the
ith sample of the response variable ỹ, xi the ith sample of the explanatory
variable x̃, βk the kth coefficient and εi the error in the ith sample. Then, we
can write the linear regression expression for the ith sample as follows:

yi = β0 + β1xi + εi i = 1, 2...I k = 0, 1 (2.1)

Considering all of the samples i = 1, 2....I, where I is the total number of
training samples, the linear regression equation takes the below form:

y1

y2

· · ·
yI

 =


1 x1

1 x2

· · · · · ·
1 xI

[β0

β1

]
+

[
ε0
ε1

]
(2.2)

which can also be written using the vector-matrix notation:

Y = Xβ + ε (2.3)

The criterion used to find the best fit (i.e. the coefficients) is generally
the least squares criterion where the sum of the squares of the Euclidean
distance between each sample and its estimate ŷi = β0 + β1xi is minimized:

β∗ = argminβ

I∑
i=1

(yi − ŷi)2 (2.4)

ε = yi− ŷi is the ith error term and empirical variance of the error (also know
as the mean squared error) can be calculated as:

σ2 =

∑I
i=1 ε

2
i

I − 1
(2.5)
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σ2 is one of the metrics to judge the quality of the regression estimation.
Therefore, the least squares estimates are given as

β∗ = (X ′X)−1X ′y (2.6)

2.3.1.1 Coefficient of Determination (R2)

Coefficient of determination is often used to judge the adequacy of a
regression model. It is the proportion of variability in a data set that is ac-
counted for by the statistical model.
The ”variability” of the data set is measured through different sums of
squares. The total sum of squares (proportional to the sample variance)
is given as;

SStot =
I∑
i=1

(yi − y)2

where y is mean of observed values yi i.e., y =
∑I

i=1 yi

I
. The regression sum

of squares, also called the explained sum of squares is given as:

SSreg =
I∑
i=1

(ŷi − ŷ)
2

where ŷ is mean of predicted values ŷi i.e., ŷ =
∑I

i=1 ŷi

I
. The sum of squares

of residuals, also called the residual sum of squares is given as:

SSerr =
I∑
i=1

(yi − ŷi)2

The most general definition of the coefficient of determination is:

R2 = 1− SSerr
SStot

(2.7)

The statistic R2 should be used with caution, because it is always possible to
make R2 unity by simply adding enough terms to the model. For example,
we can obtain a perfect fit to I data points with a polynomial of degree I−1.
In addition, R2 will always increase if we add a variable to the model, but
this does not necessarily imply that the new model is superior to the old one.
R2 does not measure the appropriateness of the model, since it can be arti-
ficially inflated by adding higher order polynomial terms in x to the model.
Finally, even though R2 is large, this does not necessarily imply that the
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regression model will provide accurate predictions of future observations.
Many regression users prefer to use adjusted R2 statistics:

R2
adj = 1− SSerr/ (I − 2)

SStot (I − 1)
(2.8)

As SSE/ (I − 2) is the error or residual mean square and SStot/ (I − 1) is
a constant, the R2

adj will only increase when a variable is added to the model
if the new variable reduces the error mean square.

2.3.2 Logistic regression

The second statistical learning technique used in our automated-healing work
is the Logistic Regression (LoR) [91] [87]. The LoR establishes the statis-
tical model by extracting the functional relations between the KPIs and
the RRM parameters. It fits the data into a functional form denoted as
logistic function

f(z) =
1

1 + exp−z
(2.9)

where z can vary from −∞ to ∞ and f(z) from 0 to 1 (see Figure 2.1).
One can see from Figure 2.1 that f(z) has the advantage of describing the
saturation effects in its extremities as often encountered in KPIs in a com-
munication network.

Figure 2.1: Logistic function
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The LoR model is defined as follows. Denote by Y1,Y2,...,Yn independent
variables following a Binomial distribution. Let pi be the mean value of
Yi, namely pi = E[Yi] = P (Yi = 1). pi can be expressed in terms of the
explanatory variable xi via the logistic function as

pi = f(zi) (2.10)

where zi being a variable representing the contribution of all explanatory
variables, zi = β0 + β1xi; β0 is the intercept and β1 is the regression coeffi-
cient of the explanatory variable xi. The output of the logistic function is
limited from 0 to 1. So, in our work, each time we apply the LoR on a partic-
ular type of KPI, the KPI values are normalised with their maximum value
as normalising factor. After the system model estimation, the estimated KPI
values obtained from the model are denormalised. Here pi = E[Yi] represents
the mean normalized KPI value in the eNB.
The application of the logit transformation to (2.10) provides a linear rela-
tionship between logit(pi) and the explanatory variables

logit(pi) = log

(
pi

1− pi

)
= β0 + β1xi (2.11)

The βj coefficients in (2.11) can be estimated using the maximum likelihood
method [88].

2.4 Introduction to LTE

3GPP (3rd Generation Partnership Project) organization has defined the
requirements for an evolved UMTS Terrestrial Radio Access Network (e-
UTRAN) [62]. The evolution of 3G UTRAN is referred to as the 3GPP
Long Term Evolution (LTE). In 2006 3GPP started to standardise LTE in
Release 8, with the following disruptive changes compared to the previous
releases: Orthogonal Frequency Division Multiplex Access (OFDMA) instead
of Wide Band Code Division Multiplex (CDMA) flat architecture instead of
a hierarchical architecture is proposed. Release 8 standardisation has been
completed in march 2008. However, since march 2008 the specifications is
being corrected continuously.

Different working groups are involved in defining the architecture and the
technology of the radio access and the core network [64]. In the framework
of the working group 3GPP TSG-RAN WG3, there have been discussions
and studies on the use of self-configuration, self-tuning and self-optimization
in the e-UTRAN system [65]. In the first phase of the network optimiza-
tion/adaptation, neighbour cell list optimization and coverage and capacity
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control have been proposed [65].
The purpose of this section is to present an essential overview of LTE tech-
nology.

2.5 Overview of LTE system

The objective of the LTE is to introduce a new mobile-communication system
that will meet the needs and challenges of the mobile communication indus-
try in the coming decade [68] [67]. It is characterized by a flat architecture; a
new radio access technology with an OFDM (Orthogonal Frequency Division
Multiplexing) based physical layer; and considerably enhanced performance
with respect to current 3G networks, including delays, high data rates and
spectrum flexibility. The LTE technology is specified by 3GPP and is devel-
oped in parallel with the evolved HSPA. Unlike the evolved HSPA comprises
of a smooth evolution of 3G networks, LTE is fully based on packet switched
transmissions with IP based protocols and will not support circuit switched
transmissions. The LTE radio access can be deployed in both paired and un-
paired spectrum, namely it will support both frequency- and time-division
based duplex arrangements. In Frequency Division Duplex (FDD) downlink
and uplink transmission are carried out on well separated frequency bands
whereas in Time Division Duplex (TDD) downlink and uplink transmissions
take place in different non-overlapping time slots. A special attention is
given in LTE to efficient multicast and broadcast transmission capabilities.
This transmission is denoted as the Multicast-Broadcast Single-Frequency
Network (MBSFN).

2.5.1 System requirements

3GPP has defined ambitious performance targets for the LTE system, and
the important ones are summarized below [62] [67]. At the base station, one
transmit and two receive antennas are assumed and at the mobile terminal
side, one transmit and maximum two receive antennas are assumed.

• Peak data rate of 100 Mbit/s and 50 Mbit/s in downlink and uplink
transmissions respectively in a 20 MHz bandwidth.

• Improvement of mean user throughput with respect to HSPA Release
6: 3-4 times in downlink; 2-3 times in uplink; and 2-3 times in cell-edge
throughput measured at the 5th percentile.
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• Significantly improved spectrum efficiency: 2-4 times that of Release
6, achieved for low mobility, between 0 to 15 km/h, but should remain
high for 120 km/h, and should still work at 350 km/h.

• Significant reduction of user and control plane latency with a target of
less than 10 ms user plane round-trip time and less than 100 ms for
channel setup delay.

• Spectrum flexibility and scalability, allowing to deploy LTE in different
spectrum allocations: 1.25, 1.6, 2.5, 5, 10, 15 and 20 MHz.

• Enhanced Multimedia Broadcast/Multicast Service (MBMS) opera-
tion.

2.5.2 System architecture

The requirements of reducing latency and cost have led to the design of sim-
plified network architecture, with a reduced number of nodes. The RAN
has been considerably simplified. Most functions of the RNC in UMTS have
been transferred in the LTE to the eNodeBs (eNB) that constitute now the
RAN part, and denoted as the e-UTRAN. The e-UTRAN consists of eNBs
interconnected with each other by means of the X2 interface (see Figure 2.2).
The eNBs are also connected by means of the S1 interface to the Evolved

Figure 2.2: LTE architecture

Packet Core (EPC), and more specifically, to the Mobility Management En-
tity (MME) via the S1-MME interface, and to the Serving Gateway (S-GW)
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via the S1-U interface. The S1 interface supports a many-to-many relation
between MMEs / Serving Gateways and eNBs. Among the functions of the
eNBs are RRM functions, such as radio admission control, radio bearer con-
trol, connection mobility control, dynamic resource allocation (scheduling)
to the User Equipment (UE) in both uplink and downlink; IP header com-
pression and encryption of user data stream; routing of user data towards the
Serving Gateway (S-GW); scheduling and transmission of paging messages;
and scheduling and transmission of broadcast information [63]. The MME is
responsible for the following functions: distribution of paging messages to the
eNBs; security control; idle state mobility control; SAE bearer control; and
ciphering and integrity protection of Non-Access Stratum (NAS) signalling.
The term SAE, or System Architecture Evolution has been given by 3GPP
to the evolution of the core network, and was finally denoted as the EPC.
The Serving Gateway is the mobility anchor point. The different functions
of the eNB, MME and the S-GW are depicted in Figure 2.3.

Figure 2.3: E-UTRAN (eNB) and EPC (MME and S-GW)

2.5.3 Physical layer

LTE uses OFDMA (Orthogonal Frequency Division Multiple Access) as the
downlink transmission scheme [64] [69]. OFDMA uses a relatively large num-
ber of narrowband subcarriers, tightly packed in the frequency domain. The
subcarriers are orthogonal, hence without mutual interference. The OFDMA
scheme can be rendered robust to time-dispersive channel by the cyclic-prefix
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insertion, namely the last part of the OFDM symbol is copied and inserted at
the beginning of the OFDM symbol. Subcarrier orthogonality is preserved as
long as the time dispersion is shorter than the cyclic-prefix length. To achieve
frequency diversity, channel coding is used, namely each bit of information
is spread over several code bits. The coded bits are then mapped via modu-
lation symbols to a set of OFDM subcarriers that are well distributed over
the overall transmission bandwidth of the OFDM signal [70]. In the uplink,
LTE uses the Single-Carrier FDMA (SC-FDMA: Frequency Division Multi-
ple Access) transmission scheme. This scheme can be implemented using a
DFTS-OFDM, namely an OFDM modulation preceded by a DFT (Discrete
Fourier Transform) operation. It allows flexible bandwidth assignment and
orthogonal multiple-access in the time and frequency domains.
The OFDM transmission scheme allows dynamically sharing time-frequency
resources between users. The scheduler controls at each instant to which user
to allocate the shared resources. It can take into account channel conditions
in time and frequency to best allocate resources. According to channel vari-
ations, in addition to choosing the mobiles to be served, the scheduler deter-
mines the data rate to be attributed to each link by choosing the appropriate
modulation. Hence rate adaptation can be seen as part of the scheduler. In
the downlink, the smallest assignment resolution of the scheduler is 180 kHz
during 1 ms which is called a resource block. Any combination of resource
blocks in a 1 ms interval can be assigned to a user. In uplink, for every 1
ms, a scheduling decision is taken in which mobile terminals are allowed to
transmit during a given time interval, on a contiguous frequency region, with
a given attributed data rate. Scheduling in LTE is a key element to enhance
network capacity.
To enhance the RAN performance, fast hybrid ARQ (Automatic Repeat-
reQuest) with soft combining is used to allow the terminal to rapidly request
retransmissions of erroneous transport blocks [64]. From the first release,
LTE supports multiple antennas in both eNB and the mobile terminal. Mul-
tiple antennas are among the features that allow the LTE to achieve its
ambitious targeted performances, including multiple receive antennas, mul-
tiple transmit antennas, and MIMO (Multiple-Input Multiple-Output) for
spatial multiplexing.

2.5.4 Self organizing network functionalities

Within 3GPP Release 8, LTE considers Self Organizing Network (SON) func-
tions. Some of the SON functions have already been standardized and others
are in still being studied. SON concerns both self-configuration and self opti-
mization processes. Self configuration process is defined as the process where
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newly deployed nodes are configured by automatic installation procedures to
get the necessary basic configuration for system operation [63]. The deter-
mination of automatic neighbour cell relation list [71] [72]is an example of
self-configuration process that is being standardized in LTE Release 8. Self-
optimization process is defined as the process where user equipment and eNB
measurements are used to autotune the network.

2.6 Interference in e-UTRAN system

In this thesis, one of the applications of proposed automated healing method-
ology is to heal the interference mitigation parameters. This motivates us to
present in this chapter an interference model for the e-UTRAN. The interfer-
ence is given based on a system model which includes the eNBs distribution
and the propagation model [73]. The interference model is used in a second
step by the network level simulation.

2.6.1 System model and assumption

In this section, we analyze only the interference in the downlink. For the
uplink, the same concept should be followed. In downlink, each terminal
reports an estimate of the instantaneous channel quality to the cell. These
estimates are obtained by measuring on a reference signal, transmitted by the
cell and used also for demodulation purposes. Based on the channel-quality
estimate, the downlink scheduler grants an arbitrary combination of 180 kHz
wide resource blocks in each 1 ms scheduling interval. Since the time scale of
scheduling is very small, we will not take into account the scheduling process
in the interference model and in the system level simulations. Only prop-
agation loss and shadow fading, namely channel variations over large time
scales are considered. However, small-scale variations (multi-path fading)
are considered in the link level simulations which serve as an input to the
present study. The link level simulations return a link curve which repre-
sents the throughput as a function of the received Signal to Interference plus
Noise Ratio (SINR). The Okumara-Hata propagation model is used in the 2
GHz band. The attenuation L is given by L = l0d

γζ , where lo is a constant
depending on the used frequency band, d is the distance between the eNB
and the mobile, γ is the path loss exponent and ζ is a log-normal random
variable with zero mean and standard deviation σ representing shadowing
losses.
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2.6.2 Interference model

In e-UTRAN system, user signals are orthogonal in the same cell thanks
to the OFDMA access technology. As a consequence there is no intra-cell
interference. On the other hand, the same frequency band can be used by
a given (central) cell and by some other neighbouring cells. This generates
inter-cell interference which limits the performance of the e-UTRAN sys-
tem. In the downlink for instance, inter-cell interference occurs at a mobile
station when a nearby eNB transmits data over a subcarrier used by its
serving eNB. The interference intensity depends on user locations, frequency
reuse factor and loads of interfering cells. For instance, with a reuse factor
equals 1, low cell-edge performances may be achieved whereas for reuse factor
higher than 1, the cell-edge problem is resolved at the expense of resource
limitation. To make an optimal trade-off between inter-cell interference and
resource utilization, different interference mitigation schemes are proposed
in the standard [64].
One of the techniques for interference mitigation is the Inter-Cell Interfer-
ence Coordination (ICIC). It is a scheduling strategy in the frequency domain
that allows increasing the cell edge data rates. Basically, ICIC implies cer-
tain (frequency domain) restrictions to the uplink and downlink schedulers
in a cell to control the inter-cell interference. By restricting the transmis-
sion power of parts of the spectrum in one cell, the interference seen in the
neighbouring cells in this part of the spectrum is reduced. This same part
of the spectrum can then be used to provide higher data rates for users in
the neighbouring cells. This mechanism is called also partial (or fractional)
frequency reuse because the total available bandwidth is reused in all cells
with power restrictions on certain subbands (Figure 2.4).

Figure 2.4: Inter-cell interference coordination scheme

In the fractional frequency reuse scheme used in this thesis, an admitted
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user gets resource blocks from the portion of the bands as a function of its
received signal quality in the cell. One band that is allocated to mobiles with
the worst signal quality and is denoted as a protected band or, metaphori-
cally, as an cell edge band. A user with poor radio condition is often situated
at the cell edge, but could also be closer to the base station and experience
for example a deep in the shadow fading. Hence, the graphical representation
is only a logical one. When the cell edge band is full the remaing unassigned
users are assigned to cell center band.

Assuming that the spectral band is composed of C resource blocks, one
third of the band is reserved for the cell edge users and the rest is for cell
centre users.
The eNB transmit power in each cell-edge resource block equals the maximum
transmit power P . To reduce intercell interference, the eNB transmit power
in the cell-center band must be lower than P . Let εP (where ε ≤ 1) be the
transmit power in the cell-center band.
The interference should be determined for two different users according to
their positions: the cell-center user and the cell-edge user. Let mc and me

be two users connected to a cell k. The mobile mc uses the central band
whereas me uses the cell-edge band. Let Λ denote the interference matrix
between cells, where the coefficient Λ(i, j) equals 1 if cells i and j use the
same cell-edge band and zero otherwise.
For cell-edge user me, the interference comes from signal to users in the cell
center of the closest adjacent cells and from the cell-edge user in other cells.
The mobile me connected to the cell k and using one resource block in the
cell-edge band, receives an interfering signal from a cell i equals

Ii,me =

(
(1− Λ(k, i)βci εPi + Λ(k, i)βeiPi)

Gi,me

Li,me

(2.12)

where Pi is the downlink transmit power per resource block of the cell i. Gi,me

and Li,me are respectively the antenna gain and the path loss between cell i
and the model station me. The factor βci (respectively βei ) is the probability
that the same resource block in the center-cell band (respectively the cell-
edge band) is used at the same time by another mobile connected to the cell
i.
Using analysis given in Annexe A, the total interference perceived by user
me is the sum of all interfering signals

Ime =
∑
i 6=k

Λ̃e(k, i)χi
PiGi,me

Li,me

(2.13)

the term Λ̃e(k, i) = 3
(
(1− Λ(k, i)) 1−αi

2
ε+ Λ(k, i)αi

)
is interpreted as a new
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interference matrix, denoted here as the fictive intereference matrix for cell-
edge users. The factor αi is defined as the proportion of traffic served in the
cell-edge band off cell i.
For the cell-center user mc, the interference comes from users in the cell-
edge and cell-center of closest adjacent cells and also from the cell-center and
cell-edge users in other cells. Similarly, to the cell-edge users, the mobile mc

connected to the cell k and using one resource block in the cell center band,
receives an interfering signal equal to

Imc =
∑
i 6=k

Λ̃c(k, i)χi
PiGi,mc

Li,mc

(2.14)

Here, the fictive interference matrix in the cell-center band is given by

Λ̃c(k, i) = 3

(
1

2
(1− Λ(k, i))

(
1− αi

2
ε+ αi

)
+ Λ(k, i)

1− αi
2

ε

)
(2.15)

The download SINR is then given by

SINRm =
PkGk,m

Lk,m (Im +Nth)
(2.16)

In equation (2.16), the subscript m stands for me if the mobile considered is
a cell-edge user and mc for the cell-center user. Nth is the thermal noise per
resource block. For more details about the LTE interference model, reader
is invited to see the Annexe A.
In e-UTRAN system, an adaptive modulation and coding scheme is used
[69] [70]. So, the choice of the modulation depends on the value of the
SINR through the perceived Block Error Rate (BLER). The decrease of the
SINR will increase the BLER, forcing the eNB to use a more robust (less
frequency efficient) modulation. The latter may have negative impact on the
communication quality. For instance, a lower modulation efficiency results
in a lower throughput and a larger transfer time for elastic data connections.
The throughput per resource block for each user is determined by link level
curves. The user physical throughput is Nm times the throughput per re-
source block, where Nm represents the number of resource blocks allocated
to the user m.

2.7 e-UTRAN handover algorithm

Mobility in e-UTRAN is based on hard handover rather than on soft han-
dover as in UMTS. The mechanism of hard handover has been used in 2nd
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generation GSM networks and has shown to be efficient for mobility man-
agement. In a hard handover, the user keeps the connection to only one cell
at a time, breaking the connection with the former cell immediately before
making the new connection to the target cell. The basic concept of handover
as in GSM is likely to be implemented in e-UTRAN except for the handover
preparation phase, which requires new mechanisms.
The reason for abandoning soft handover is related to the extra-complexity
involved in its implementation, and the fact that it is not suitable for inter-
frequency handover. Furthermore, soft handover handicaps system capacity
in highly loaded network condition and with high number of users in soft
handover situation. To guarantee seamless and lossless hard handover in
e-UTRAN, the handover triggering time should be as low as possible [64].
In order to study e-UTRAN hard handover, some assumptions for the Call
Admission Control (CAC) and resource allocation are made. In the CAC
algorithm, a user can be admitted to the network only when the following
conditions are fulfilled:

• Good signal strength: the mobile selects the cell that offers the maxi-
mum signal. If this signal is lower than a specified threshold then the
mobile is blocked because of coverage shortage. This condition is in fact
a selection criterion. It is noted that in 3GPP, there is no specification
for LTE cell selection and reselection.

• Resource availability in the selected cell: the mobile can be granted
physical resources in terms of resource blocks between a minimum and
maximum threshold. When the signal strength condition is satisfied,
the eNB checks for resource availability. If the available resource is
lower than a minimum threshold, the call is blocked.

Hard handover is performed in this study using a similar algorithm to the
one used in GSM: while in communication, the mobile periodically measures
the received power from its serving eNB and from the neighbouring eNBs.
The mobile, initially connected to a cell k, triggers a handover to a new cell
i if the following conditions are satisfied:

• The Power Budget Quantity (PBQ) is higher than the handover mar-
gin:

PBQ = P ∗i − P ∗k ≥ HM(k, i) +Hysteresis (2.17)

where P ∗k is the received power from the eNB k expressed in dB;
HM(k, i) is the handover margin between eNB k and i. TheHysteresis
is a constant independent of the eNBs and mobile stations and is fixed
in this study to 0. Here, we define HM(k, i) as the outgoing HM of
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eNB k to eNB i. Conversely, HM(i, k) can be termed as incoming HM
of eNB k from eNB i.

• The received power from the target eNB must be higher than a thresh-
old. This is the same condition as in the CAC process.

• Enough resource blocks are available in the target eNB.

The last condition requires information exchange between eNBs because the
original cell has to know a priori the load of the target cell; otherwise the han-
dover is blind and the communication risks to be dropped. In an inter-eNB
handover procedure, the source eNB is responsible for performing handover
preparation to the target eNB based on measurement report transmitted by
the mobile.

2.8 Conclusion

This chapter not only provides an overview of the previous work on the
troubleshooting to wireless networks but also the background material used
in the thesis for the automated healing in LTE networks . At the beginning of
the chapter, a survey of the previous work and the literature in this domaine
for the GSM and UMTS networks has been made. The fault detection using
self Organizing Map (SOM) and Neural Networks (NN) is reviewed. The
work on the fault diagnosis using Bayesian Networks and alarm correlation
method has also been described. The problem solution or the automated
healing aspect of the troubleshooting remains unexplored and has motivated
the present thesis.

An overview of the statistical learning techniques used in our work is
also presented. In the begining, the linear regression has been used in our
work because of its simplicity. Later, logistic regression is used because of
its ability to model the saturation in the KPI values.
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Statistical Learning for
Automated RRM

3.1 Introduction

The purpose of this chapter is to introduce statistical learning approach for
the automated Radio Resource Management (RRM). Assume we have access
to a database of Key Performance Indicators (KPIs) and the corresponding
RRM parameters. By using simple statistical learning techniques such as
regression, one can extract from the data closed form expressions, denoted
here as the model, that approximate the functional relations between KPIs
and the RRM parameters. Once the model is available, it can be used to de-
vise efficient automated RRM algorithms. Two examples of such algorithms
in the context of LTE mobility are considered. The first one is a monitoring
process. The model extracted from the data is used to improve the mon-
itoring process and, when necessary, to guide the expert in modifying the
mobility parameter. The second case study uses the model to devise an effi-
cient auto-tuning algorithm for the mobility parameter.
The chapter is organized as follows: Section 3.2 introduces the statistical
learning approach for the model extraction. Section 3.3 details the results of
the statistical learning approach applied to 2 neighbouring eNBs for a LTE
simulation scenario. Section 3.4 describes the general block diagram of the
proposed automated RRM scheme. Sections 3.5 explains how the extracted
model can be used in monitoring. Section 3.6 and 3.7 explain the application
of this model to auto-tuning processes, followed by concluding remarks in
Section 3.8.
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3.2 Statistical learning approach

The section introduces the important phases of the statistical learning ap-
proach. The first step in this approach is the construction of a training
database that contains KPI data with the corresponding RRM parameters.
After the construction of the database, the closed form expressions that re-
late the RRM parameter to the KPIs, known as the model, are calculated
using regression.

3.2.1 Learning phase

The first step in the statistical learning approach is to construct a training set
on which the learning is done. Generally, this training set is constructed from
the observations. However, the quality of the training set is a major issue in
learning, because a bad-quality training set causes insufficient learning that
leads to bad-quality prediction/estimation. To begin with, a good training
set must contain sufficient amount of data points. Secondly, these data points
must more or less cover the whole region of interest. In other words, there
must be sufficient amount of information diversity in the training set. The
greatest challenge regarding our problem is that these requirements are very
rarely fulfilled by network measurements for an operational network since we
have to test a large variety of parameter configurations (including relatively
bad ones) on a network that is supposed to give satisfactory QoS to the
customers. In most of the cases, we have data with limited parameter settings
(if not with a unique parameter setting) that limits the generalization (or
extrapolation) capacity of the predictor. One of the solutions is to construct
a training database by simulation samples over the whole region of interest
and extract tendencies or relative behaviours instead of absolute ones. Once
tendencies or relative behaviours are found, a corrective mapping between
simulations and measurements to find absolute values that can be directly
applied to the real network. In any case, the reliability of the predictions
depends as well on the accuracy of the simulations as the quality of the
measurements.

3.2.2 Forward regression

In forward regression, the KPIs are tried to be estimated as a function of the
RRM parameter p:

KPIj = fj(p) (3.1)

where J is the number of KPIs of interest (the number of response variables).
Note that here, there are J regressions and each regression has just one
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explanatory variable. Since we consider linear functions (fj ’s are linear),
the above equation can be re-written as:

KPI1

KPI2

· · ·
KPIJ

 =


β10 β11

β20 β21

· · · · · ·
βJ0 βJ1

[1p
]

+


ε0
ε1
· · ·
εJ

 (3.2)

Note that βj0 represents the bias for KPIj which may be different for
each KPI and which depends upon the unknown factors like propagation,
interference factor etc.

Forward regression helps us to see how a change in a certain RRM pa-
rameter influences several different KPIs. In this way, we can determine the
effect of modifying the RRM parameter on different KPIs. Figure 3.1 de-
picts the block diagram of the forward regression test that determines the
regression quality. The KPIs yielded by simulations and those yielded by the
regression equation for a pre-determined value of the RRM parameter are
compared.

Figure 3.1: Forward regression test for Handover Margin (HM).

3.2.3 Backward regression

Backward regression tries to estimate the RRM parameter p as a function of
the KPIs:

p = g(KPI1, KPI2, ..., KPIJ) (3.3)

or in multiple linear regression formulation:

p = β0 + β1KPI1 + β2KPI2 + ...+ βJKPIJ + ε (3.4)
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Backward regression helps us to determine which RRM parameter yields a
given KPI vector. In this way, we can determine the exact value of the RRM
parameter for a desired KPI performance. Figure 3.2 depicts the block dia-
gram of the backward regression test that determines the regression quality.
The RRM parameter that produces the set of KPIs through the simulator
and the RRM parameter obtained through the backward regression that uses
these KPIs are compared.

Figure 3.2: Backward regression test for HM.

3.3 Regression Results: Two eNB scenario

3.3.1 LTE network simulation scenario

We are interested in the downlink access of a LTE system. The simulations
are carried out using a MATLAB simulator described in [89]. The traffic
simulated is a FTP traffic with a file size of 5700 Kbits for download. Call
arrivals are generated using the Poisson process and the communication du-
ration of each user depends on its bit rate. The propogation model used is
Okumara-Hata model. The bandwidth used is 5 MHz. The maximum num-
ber of Physical Resource Blocks (PRBs) in an eNB, i.e. the capacity, is fixed
to 20 PRBs (eNB capacity can be fixed by the operator). The minimum and
maximum number of chunks that can be allocated to each user are 1 and 3
respectively. The resources are allocated on the first-come first-served basis.
The simulator performs correlated Monte Carlo snapshots with time steps of
one second to account for the time evolution. At the end of each time step of
one second, new mobile positions are updated, HO events are processed, new
users are admitted according to the access conditions and some other users
leave the network (end their communications or are dropped). 90% of the
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mobiles are in motion with a speed of 15 meters per second and rest are still.
The simulations are run for 3500 time steps and the KPIs are averaged on
the interval between 1000 and 3500 seconds to account for transient effects.
The RRM parameter setting is fixed during the simulation duration of 3500
time steps.

3.3.2 Results

The regression analysis is done on a two eNB scenario using Linear Regres-
sion. The learning database is generated by setting the arrival rate of the
mobiles in the network to 1 arrival per second. The RRM parameter consid-
ered in this analysis is the LTE mobility parameter Handover Margin (HM),
explained in Section 2.7. The HM from eNB1 to eNB2 (HM12) is varied
from 2dB to 11.95dB in steps of 0.05dB, while the HM value from eNB2 to
eNB1 (HM21) is simultaneously decreased from 10dB to 0.05dB in steps of
0.05dB in order to enhance the effect of the HM on the KPIs. Scatter plots
of Block Call Rate (BCR) of eNB1 (BCR1) and of eNB2 (BCR2) are shown
in Figures 3.3 and 3.7 respectively, as functions of HM12. It can be seen that
the relationship of both BCRs with HM12 is linear. The strength of this lin-
ear relationship is also indicated by the Pearson’s correlation coefficient [92].
Scatter plots for Drop Call Rate (DCR), Load (L) and Average Bit Rate
(ABR) of both eNBs exhibit similar behaviours as shown in Figures 3.4 to
3.10.

Figure 3.3: Scatter plot between HM and mean BCR of eNB1, correlation
coefficient=0.9.
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Figure 3.4: Scatter plot between HM and Mean DCR of eNB1, Correlation
coefficient=0.94713.

Figure 3.5: Scatter plot between HM and Mean Load of eNB1, Correlation
coefficient=0.91135.

Once the learning database is constructed, the regression equations re-
lating the RRM parameter to the KPIs are calculated followed by a 5-fold
cross-validation that judges the quality of the regression. In 5-fold cross-
validation, the data is divided into five subsets with four data subsets se-
lected for training and one subset used for calculating the validation error of
the regression. In this way, all possible combinations of four data subsets are
chosen for training with one leftover for validation. The regression equations
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Figure 3.6: Scatter plot between HM and Mean Average Bit Rate of eNB1,
Correlation coefficient=0.86923.

corresponding to the combination with the least validation error are selected.
The regression equations calculated for the KPIs of eNB1 and eNB2 are

as follows:
BCR1 = 0.0191 + 0.00873 ∗HM12 (3.5)

DCR1 = 0.00787 + 0.00773 ∗HM12 (3.6)

L1 = 0.493 + 0.0143 ∗HM12 (3.7)

ABR1 = 784− 11.6 ∗HM12 (3.8)

BCR2 = 0.109− 0.00701 ∗HM12 (3.9)

DCR2 = 0.0935− 0.00591 ∗HM12 (3.10)

L2 = 0.665− 0.0154 ∗HM12 (3.11)

ABR2 = 675 + 11.01 ∗HM12 (3.12)

The average 5-fold cross-validation error of this regression analysis is
13.35% for BCR1, 11.29% for DCR1, 2.42% for L1, 2.11% for ABR1, 17.62%
for BCR2, 11.48% for DCR2, 2.55% for L2 and 2.24% for ABR2. The bar
graph showing 5-fold cross-validation error for all the KPIs is given in Figure
3.11

As for the second test, the block diagram of 3.1 is used. A value of
HM1,2 that is not in the training database is taken. On the one hand, KPIs
are determined by simulations and on the other hand, by the regression
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Figure 3.7: Scatter plot between HM and mean BCR of eNB2, correlation
coefficient=0.88.

Figure 3.8: Scatter plot between HM and Mean DCR of eNB2, Correlation
coefficient=0.92941.

equations. Finally, the percentage error between the two set of KPIs are
calculated. Table 3.1 depicts the percentage errors of the KPIs for a value
of HM1,2 = 7.33dB (note that due to the symmetric variation of the HMs
HM2,1 is 12dB-7.33dB=4.67dB).

As can be observed from Table 3.1, the forward generalization error re-
mains below 6% for all the KPIs. It means that it is possible to use the
regression equations instead of the simulations up to an error level of 6% for
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Figure 3.9: Scatter plot between HM and Mean Load of eNB2, Correlation
coefficient=-0.9148.

Figure 3.10: Scatter plot between HM and Mean Average Bit Rate of eNB2,
Correlation coefficient=0.84188.

the two eNB scenario.
The backward regression is also tested on the LTE system, yielding the

following regression equation:

HM12 = 7.71 + 9.11 ∗BCR1 + 34.3 ∗DCR1

+46.7 ∗ L1 − 0.00591 ∗ ABR1 − 13.01 ∗BCR2 (3.13)

−16.7 ∗DCR2 − 39.7 ∗ L2 + 00.00281 ∗ ABR2
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Figure 3.11: 5-fold cross validation error for forward regression.

KPI Simulation Value Regression Value % error
BCR1 0.0869 0.0834 4.0
DCR1 0.0695 0.0708 1.91
L1 0.6079 0.5965 1.88

ABR1 740.0427 703.6917 4.91
BCR2 0.0567 0.0594 4.70
DCR2 0.0558 0.0527 5.60
L2 0.5402 0.5595 3.58

ABR2 750.5576 753.5668 0.40

Table 3.1: The Percentage error of KPIs for the forwarde regression test

Note that the backward regression equation is also linear in all the KPIs. The
5-fold cross-validation error of this equation is 6.52%. Figure 3.12 shows the
percentage error of the backward regression test (depicted in Figure 3.2):

We see that the percentage error in the backward regression test remains
below 8% for all significant values of HM12.

To see the effect of traffic, 3D scatter plots of BCR are plotted in Figure
3.13, with BCR1 on the x-axis, BCR2 on the y-axis and HM12 on the z-axis,
for traffic values of 0.5, 0.75, 1 and 1.5 arrivals/s. One can see the change of
slope with traffic increase. Scatter plots of other KPIs show similar trend.

In the case of load, it is evident from Figure 3.14 that with increasing
traffic values; the corresponding curves are shifted in the higher load regions
but on the other hand the change in the slope of the curves is not very
obvious.
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Figure 3.12: Backward regression generalization errors.

Figure 3.13: 3D Scatter plot between HM12 and mean BCRs of eNB1 and
eNB2.

For the case of average throughput it is apparent from Figure 3.15 that
increasing traffic values results in the corresponding traffic curves moving to
the low average throughput region and we also observe the change in the
slope of the curves. This decrease in the average throughput is due to the
fact that the total number of available PRBs is divided between the users
with increasing traffic. As a result, the average throughput decreases.

In the case of Drop Call Rate (DCR), we can see that increasing traffic
values, as in Figure 3.16, results in the corresponding curves moving to the
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Figure 3.14: 3D Scatter plot between HM12 and Mean Load of eNB1 and
eNB2.

Figure 3.15: 3D Scatter plot between HM12 and Mean ABR of eNB1 and
eNB2.

higher DCR region. However, the change in the slope is not very obvious.
We can also observe for the individual curves that increasing the HM value
between eNB1 and eNB2, results in an increase in mean DCR1 and decrease
in mean DCR2.
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Figure 3.16: 3D Scatter plot between HM12 and Mean DCR of eNB1 and
eNB2.

3.4 Automated RRM system description

The block diagram of the proposed automated RRM scheme is shown in Fig-
ure 3.17. The database of the KPIs and the corresponding RRM parameters
is generated by the network or a simulator. This Database is then used by
the Model Extraction block which uses statistical learning to estimate the
system model. This model, alongwith the network KPIs, are then used by
the RRM Auto-Tuning block to find a new RRM parameter value. The new
RRM parameter value is injected into the Network. The model is also used
by the monitoring block which, depending upon the current RRM parameter
in the network, and the KPIs, locates the current QoS working point. The
quantitative measures for the change in the RRM parameter for improvement
in KPI performance can then be proposed.

3.5 Monitoring

The proposed statistical approach can be applied to network monitoring.
The scatter plots of Figures 3.18 to 3.21 depict the statistical relationship
between various KPIs of neighbouring eNBs, having the KPI of eNB1 on the
x-axis, the KPI of eNB2 on the y-axis and the RRM parameter (HM12) on
the z-axis which is projected on the xy-plane. These scatter plots permit us
to:

1. determine the QoS operating point and observe its position with respect
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Figure 3.17: Block diagram for automated RRM.

to alarm thresholds,

2. solve a QoS problem by using the knowledge of how the operating point
will move in different KPI plots.

Hence, the monitoring will provide a visible information on the network per-
formance of the working point. Also, using equation (3.1), we can get the
quantitive measure about the change in the RRM parameter required to
achieve a desired QoS objective.

Figure 3.18: 3D scatter plot between HM12 and mean BCRs of eNB1 and
eNB2, projected on the KPI plane.



Chapter 3. Statistical Learning for Automated RRM 61

Figure 3.19: 3D scatter plot between HM12 and mean DCRs of eNB1 and
eNB2, projected on the KPI plane.

Figure 3.20: 3D scatter plot between HM12 and mean ABRs of eNB1 and
eNB2, projected on the KPI plane.

3.6 Optimization model

The information gained through the statistical analysis approach detailed
above can be used to derive heuristics for an iterative optimization algo-
rithm that improves the KPI performance of a radio network by using the
statistical relationships between the RRM parameters and the KPIs. In the
case the training database is constructed from simulations, we can not use
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Figure 3.21: 3D scatter plot between HM12 and mean Loads of eNB1 and
eNB2, projected on the KPI plane.

the statistical relationships exactly as they are, due to the inevitable dis-
crepancy between the measurements and the simulations. As stated in the
beginning of Section 3.2.1, it is possible to ’correct’ the simulations before
going into the learning phase (this correction can be done by supervised
learning schemes or data assimilation techniques). Another alternative is to
perform the statistical analysis with the simulation data, and to use the main
trends of the results instead of using the exact regression expressions. For the
mobility problem at hand, the trend that we can use is the linearity of the
relationship between the chosen KPIs and the HM. The parameters of the
linear relationship, namely the slope and the intercept, are not known exactly
since they are determined by real measurements. With this consideration,
we have conceived a dynamic-iterative algorithm that varies the HM between
each couple of eNBs according to the observed KPIs. At each iteration, the
algorithm updates the HM of eNB couples by considering two phenomena:

• performance improvement of the eNB with controlled degradation of
the neighbouring eNB,

• performance improvement of the neighbouring eNB with controlled
degradation of the eNB.

For determining the variations of the HM in these two phenomena, the lin-
earity between the HM and the KPIs is assumed.
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3.7 Automated RRM: Description and results

on LTE

Using the statistical analysis explained in previous sections, we propose a
dynamic auto-tuning algorithm that enhances the KPI performance of the
eNBs by varying their outgoing HMs. The heuristic used in the algorithm
modifies the outgoing HMs of bad-performing (resp. good-performing) eNBs
with those neighbours whose KPI performance is good (resp. bad). In other
words, it trades the KPI performance between neighbouring eNBs by adjust-
ing the HMs according to the statistical analysis results. However, we can
not always construct the model with real network data and resort to working
with simulation data. Despite this obstacle, we can still benefit from the
statistical analysis by using the functional form of the regression (linear in
this case).
Consider an eNB eNBi with a KPI value KPIi, and its neighbouring eNB
eNBj with KPIj. Let νKPI and HMij denote the the target KPI value and
the outgoing HM of eNBi towards eNBj, respectively. Without loss of gen-
erality, consider a KPI of type BCR or DCR the allowable region of which
lies below νKPI .
If KPIi (resp. KPIj) is above νKPI and KPIj(resp. KPIi) is below νKPI ,
we can decrease (resp. increase) HMij so that KPIi (resp. KPIj) decreases
toward νKPI and KPIj (resp. KPIi) increases towards νKPI . The aim is
to find the amount of increase/decrease in HMij, ∆HMij, that brings KPIi
(resp. KPIj) to a maximum value equal to νKPI without causing KPIj
(resp. KPIi) to rise above νKPI . Applying the calculated ∆HMij values to
all eNB couples in an iterative manner, we expect to converge to an overall
KPI performance where KPIs that are above νKPI are brought down to νKPI
at the expense of the other KPIs that are brought up to νKPI . From the re-
gression results presented in Section 3.3, we know that the increase/decrease
in the KPIs will be linearly proportional to the increase/decrease in HMij.
Furthermore, we can also say that the slope of this linear proportionality is
determined to a great extent by the HandOver (HO) flux i.e., the number of
mobiles making HO from eNBi to eNBj (φij). Then we can write for eNBj:

|νKPI −KPIj| ∝ |φij| |∆HMij| (3.14)

where ∆HMij is the increase/decrease in HMij to bring KPIj to νKPI .
A similar equation can be written for eNBi. The linear proportionality
can easily be extended to other neighbours. Considering another neighbour,
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eNBk, we can express the proportinality between eNBj and eNBk as:

|∆HMij|
|∆HMik|

=
|νKPI −KPIj|
|νKPI −KPIk|

|φik|
|φij|

∆
= ηjk (3.15)

Equation (3.15) yields the ratio of HM modifications between 2 eNBs, for a
given ratio of KPI changes. Having a proportionality equation for all neigh-
bouring eNB couples is not sufficient to find the exact values of |∆HMij|s.
The additional equation comes from the boundary conditions: the overall
effect of modifying HMij for all the neighbouring eNBs of eNBi must be lim-
ited in order not to cause too much increase/decrease in KPIi: because every
neighbouring eNB having a KPI performance that can be traded with that
of eNBi, contributes to the overall change in KPIi. Therefore, the proposed
algorithm puts an upper-bound on the sum of |∆HMij| over all neighbours
eNBi. The upper bound is not fixed but is calculated as a function s of the
current operating point (HMip, KPIi). HMip is the outgoing HM of eNBi

towards a pivotal eNB (eNBp) which is chosen as the neighbour having the
most extreme KPI performance (with respect to the threshold νKPI). The
function s that limits the maximum HM modification is chosen as a product
of 2 sigmoid functions one of which is a function of HMip and the other being
a function of KPIi. The former allows large and upper-bounded step sizes
in |∆HMij| when KPIi is far away from νKPI and vice versa. In a simi-
lar manner, the latter allows large and upper-bounded step sizes in ∆HMij

when HMip is far away from its extreme values and vice versa. In the case
where KPIi < νKPI , the function s limits the overall increase in KPIi via
the limitation in HM values:

s (HMip, KPIi) =
aHM,1

1 + exp(
HMip−bHM,1

cHM,1
)

aKPI,1

1 + exp(
KPIi−bKPI,1

cKPI,1
)

(3.16)

In the case where KPIi > νKPI , the function s limits the overall decrease in
KPIi via the limitation in HM values:

s (HMip, KPIi) =
aHM,2

1 + exp(−HMip−bHM,2

cHM,2
)

aKPI,2

1 + exp(−KPIi−bKPI,2

cKPI,2
)

(3.17)

The coefficients a, b and c are adjusted so that the step-size of the cumu-
lative increase/decrease in HMij stays between pre-defined limits [0.1,1.0].
Combining equations (3.15), (3.16) and (3.17), we can solve for ∆HMip

as:

∆HMip = s (HMip, KPIi)
1

1 +
∑

k 6=p
1
ηpk

(3.18)
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and then for all other eNBj (j 6= p) as:

∆HMij =
∆HMip

ηpj
. (3.19)

In the auto-tuning algorithm, (3.18) et (3.19) are applied simultaneously to
each couple of neighbouring eNBs whose KPIs can be traded. The network
runs with that fixed HM setting for a duration of ∆T at the end of which
the average KPIs are collected to calculate the new set of HMs to be used
in the next iteration. The initial starting point is chosen as HMij = 6dB
for all geographical neighbours and HMij = 11dB for all non-geographical
neighbours. The complete pseudo-code for the auto-tuning algorithm is given
in Annexe B.

The LTE network scenario

The auto-tuning heuristic described above has been simulated for a 45 eNB
network. In contrast to the semi-dynamic simulation mode for the 2 eNB
network scenario where HM setting is fixed for a simulation, here we have
made simulations in the dynamic mode i.e., after every 50 seconds HM values
are updated based on the mean BCR of the previous 50 seconds. The update
frequency of the auto-tuning heuristic is ∆T = 50s. The FTP download file
size for the simulations is kept as 8Mbits. The rest of the network configu-
ration details are kept the same as in Section 3.3.
Figure 3.22 shows the gain brought about in access probability (i.e., 1-BCR)
by the optimization heuristic using auto-tuning mode as compared to the
mode without auto-tuning i.e., fixed HM values (=6 dB for all eNBs).

Similarly, Figure 3.23 shows the gain brought about in the ABR of the
mobiles in the network.

It is worth looking at the distribution of the HM parameters at the end of
the dynamic simulations. Figures 3.24(a) to 3.26(b) depicts the histograms
of the HM parameters at the end of the 16 minutes simulations for different
values of the network call arrival rate λ. We can observe that for low and
high values of λ, the distribution of HM parameters still have a peak at 6dB
(the initial distribution). This is due to the fact that the iterative algorithm
modifies the HM only when the KPI of one of the eNBs is good (bad) and
the other is bad (good), but does not modify the HM when both are good
(bad). Since for low (high) values of λ, most of the KPI pairs are good (bad),
the HM parameters are rarely modified and the final distribution conserves
its peak at 6dB.
Table 3.2 summarizes the percentage improvements in global KPIs like Access
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Figure 3.22: Admission probability as a function of the traffic intensity with
(square) and without (triangle) autotuning.

Figure 3.23: Average Bit Rate as a function of the traffic intensity with
(square) and without (triangle) autotuning.

Probability (1-BCR), Maintain Probability (1-DCR) and Average Bit Rate.
Note that the maximum gain that can be obtained from varying the HM
parameter is in the order of 2 to 3%.

Keeping this fact in mind, we can state that the proposed iterative algo-
rithm provides the available KPI improvement.

One should note that this simple example is based on uniform traffic.
Hence only small differences are expected from one eNB to another and there
is not much to improve when optimising RRM parameters. However, real
networks are more heterogeneous and optimizing HM should bring higher
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(a)

(b)

Figure 3.24: HM histograms for different arrival rates (a) λ=3 (b) λ=4.
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(a)

(b)

Figure 3.25: HM histograms for different arrival rates (a) λ=5 (b) λ=6.
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(a)

(b)

Figure 3.26: HM histograms for different arrival rates (a) λ=7 (b) λ=8.
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% ∆ Access Prob. ∆ Maintain Prob. ∆ Ave Bit Rate
λ = 3 0.51 1.58 0.99
λ = 4 0.75 0.39 2.24
λ = 5 1.53 1.29 0.62
λ = 6 2.38 0.22 2.88
λ = 7 2.53 0.90 0.22
λ = 8 2.11 1.27 1.00
λ = 9 2.04 0.38 2.22
λ = 10 1.16 1.94 0.90
λ = 11 0.35 1.36 0.31
λ = 12 1.23 0.05 1.60
λ = 13 2.84 1.30 1.07

Table 3.2: Percentage improvement provided by the dynamic scheme.

improvements in reality.

3.8 Conclusion

This chapter has presented a statistical learning approach for extracting a
model from data with applications to monitoring, optimization and auto-
tuning network functionalities. The model provides closed form expressions
that approximate the functional relations between KPIs and RRM parame-
ter. The model can help anticipating the behaviour of a network sub-system
to new values of RRM parameters. A case study of eUTRAN HO algorithm
has been considered. The functional relations between the HM parameter
and KPIs have first been established via a regression analysis. It has been
shown how the obtained model can be used for monitoring and auto-tuning
of the network. The proposed approach can be easily extended to other
problems of auto-tuning and self-healing.



Chapter 4

Automated Healing by
Statistical Learning

4.1 Introduction

This chapter presents the automated healing based on statistical learning
for Long Term Evolution (LTE) networks. The automated healing uses
the closed-form expressions between Radio Resource Management (RRM)
and Key Performance Indicator (KPI) parameters, obtained using statistical
learning. The statistical learning technique used is the regression. Initially,
Linear Regression (LiR) is used due to its simplicity. However, for certain
cases it is not adapted and the Logistic Regression (LoR) is used because of
its capability to model the saturation effects in the behaviour of KPIs cor-
responding to extreme RRM parameter values. The closed-form expressions
obtained using regressions are termed as the model.

As explained earlier in the introduction, this thesis investigates the 3rd
step of troubleshooting i.e., the problem solution or healing. It has been as-
sumed that the cause of the degraded performance of a problematic eNB has
been diagnosed to be due to a bad RRM value settings. This methodology
aims at locally optimising the RRM parameters of the cells with poor per-
formance in an iterative manner. The optimization process uses the model
information from the problematic eNB and its first tier neighbours to calcu-
late the optimized RRM parameter value. The model improves iteratively as
new KPIs corresponding to the optimized RRM parameter value, known as
the RRM-KPI pairs, are calculated during each iteration. The main advan-
tage of this methodolgy is the small number of iterations required to achieve
convergence and the QoS objective.

In the beginning of the chapter, a relatively simple automated healing
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scheme based on the iterative statistical model refinement is presented. Later
this idea is refined into an automated healing methodology known as Sta-
tistical Learning Automated Healing (SLAH) which is more scalable and
efficient. SLAH is used in the healing of LTE interference mitigation, mo-
bility and packet scheduling parameters. It is further enhanced using the
a priori knowledge to make it more robust and practical for the operating
networks.

The remainder of this chapter is organized as follows. Section 4.2 de-
scribes the generic block diagram for automated healing based on statistical
learning. Section 4.3 details the automated healing algorithm based on the
idea of iterative statistical model refinement with application to automated
healing of LTE mobility parameters. Section 4.4 introduces SLAH method-
ology with its application to intereference mitigation in LTE using Intercell
Interference Coordination (ICIC). The SLAH methodology is enhanced using
the a priori knowledge in Section 4.5. Section 4.6 presents the application of
SLAH to LTE healing using sequential modification of interference mitigation
and packet scheduling parameters. The application of SLAH in order to trou-
bleshoot LTE mobility parameters is explained in Section 4.7. Eventually,
Section 4.8 concludes this chapter.

4.2 Generic automated healing block diagram

As indicated above, we assume that the fault cause has been diagnosed to
be due to bad RRM parameter setting; our focus is only on the problem
solution phase. The generic block diagram based upon statistical learning is
presented in Figure 4.1.

As it can be seen, the system model is composed of four blocks:

• Initialization block:
The initialization block can have either of two functions

– switch position 1: In the absence of the a priori RRM-KPI pairs, it
provides the initial RRM parameter values to the faulty eNB and
its first tier neighbours in the Network/Simulator block in order
to generate the corresponding KPIs. These generated RRM-KPI
couples are used by the Statistical Learning block.

– switch position 2: To provide noise-free a priori RRM-KPI pairs
to Statistical Learning block for the initial model estimation.

The default switch position is 1, the switch position 2 is only used in
Section 4.5.
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Figure 4.1: SLAH block diagram.

• Network / Simulator block:
The Network/Simulator block represents the real network or the net-
work simulator. It captures (case of real network) or calculates (case
of network simulator) a set of KPIs of an eNB and of its neighbors for
each new RRM parameter value introduced by the Initialization or the
Optimization block. These KPIs allow to assess the performance of
the eNB and of its neighbours. They are forwarded to the Statistical
Learning block.

• Statistical Learning block:
The Statistical Learning block processes the data comprising RRM-
KPIs couples, using the statistical learning, to extract closed-form func-
tional relationships relating the KPIs to the RRM parameters, denoted
as the model.

• Optimization block:
The Optimization block calculates the optimal RRM value using the
current model in order to achieve the required QoS objective. The
optmization objective can be achieved by maximizing a utility function
or reducing a cost function.

The automated healing model assumes that the KPIs are well behaved func-
tions, namely they are not multi-modal functions of the RRM parameter.
This assumption allows to capture the functional form of the KPIs using
regression techniques. The automated healing process is iterative. At each
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iteration, a new RRM parameter value is proposed by the Initialization block
during the initialization iterations and by the Optimization block during the
optimization iterations to update the RRM setting of the eNBs of interest in
the Network/Simulator block. The performance of the faulty eNB and of its
neighbours with this new RRM setting is assessed by the Network/Simulator
block through a set of KPI values obtained at the end of the measurement
period, typically one day. And hence, a data point comprising an RRM
parameter value and the corresponding KPIs is obtained. This data point
together with the previously obtained data points are used by the Statistical
Learning block to refine the model which is then used by the Optimization
block to generate the RRM parameter value of the next iteration. It is noted
that the data is noisy due to the random nature of the traffic and of the ra-
dio channel, but also due to imprecisions in measurements. And thus, as the
iterations progress, on the average, the model precision improves and is used
by the Optimization block to find a better value for the RRM parameter.
This approach allows optimization to converge in few number of iterations
and allows fast reaction to problems in the network.

4.3 Automated healing of LTE Mobility Pa-

rameters using Iterative Statistical Model

Refinement

It has been assumed the fault cause of a problematic eNB or its problematic
neighbours has been diagnosed as bad RRM value settings. This methodol-
ogy aims at locally optimising the RRM parameters of the cells with poor
performance in an iterative manner. Linear Regression (LiR) is the sta-
tistical learning used to obtain closed-form relations known as the model.
As mentioned in the Chapter 3, the LiR is used due to its simplicity and
due to the linear relationship of KPIs with LTE RRM mobility parameters.
This model is then used by the optimization engine to calculate the opti-
mized RRM parameters for these cells. The model is refined iteratively as
new KPIs corresponding to the optimized RRM parameter value, known as
RRM-KPI pair, is calculated during each iteration. The required QoS ob-
jective and the convergence are achieved in small number of iterations. An
automated healing application scenario involving mobility in LTE networks
is considered. Numerical simulations illustrate the benefits of our proposed
scheme.
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4.3.1 Relation to generic automated healing block di-
agram

Referring to the generic block diagram in Figure 4.1, all the other details are
the same except the Optimization and the Statistical Learning block which
need further explanation. These two blocks are explained as follows:

• Statistical Learning block:
The Statistical Learning block processes the data comprising RRM-
KPIs couples using the LiR method to extract the model. LiR is a gen-
eral method for estimating/describing the association between a con-
tinuous response (dependent) variable and one predictor (explanatory
variable) [91]. It has been used to write the KPI (response variable) as
a function of RRM parameter x (explanatory variable) as follows:

KPIj = fj(x) j = 1, 2, ....J (4.1)

where J is the number of different KPIs of interest and fj(x) is linear.
LiR is chosen due to its simplicity and its validity in most engineering
problems [90].

• Optimization block:
The Optimization block calculates the optimal RRM value using the
current statistical model by taking the weighted average of RRM pa-
rameter values corresponding to the maximum allowable thresholds of
the KPIs under consideration. This is possible because the KPIs of an
eNB and its first tier neighbouring eNBs have a conflicting tendency
with respect to change in RRM parameter and also because the func-
tional form of the relationship between the RRM parameters and KPIs,
captured using LiR, is linear. Hence, the weighted average gives the
RRM parameter value which satisfies the required QoS constraint. The
weights are chosen with respect to the relative importance of the KPIs
under consideration for automated healing. It is noted that the data is
noisy due to the random nature of the traffic and of the radio channel,
but also due to imprecisions in measurements.

4.3.2 Automated healing algorithm description

We now consider the adaptation of the automated healing algorithm to the
mobility parameter of the LTE network by optimizing the Handover Margin
(HM) parameter of the degraded eNBs. The mobility model for LTE is
explained in 2.7
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Let eNBc (c standing for central) or its first tier neighbouring eNBs T1

experience a degraded performance. We, again, assume that the cause of
the degraded performance has been diagnosed and that it is related to a bad
mobility parameter HMi. We have: HMcj = HMkj = HMi, j ∈ T1 and
k ∈ T2, where T2 are the second tier neighbours of eNBc. Also, HMjc =
HMjk = HMmax −HMi, where HMmax is the maximum HM value.

Two KPIs are next used in the automated healing process: Block Call
Rate (BCR) and Drop Call Rate (DCR). Our optimization objective is to
determine the optimized HMi as

HMi =

∑
κ∈{BCRc,DCRc,BCR,DCR} ωκHMκ∑

ωκ
(4.2)

where BCR and DCR are the mean BCR and mean DCR of T1 eNBs, ωκ
is the weight given to KPI κ, denoted as KPIκ and HMκ is the HM value
corresponding to the maximum allowable threshold for KPIκ, determined
using the relationship:

KPIκ = fκ(HMi) (4.3)

where fκ is obtained using LiR on vector Pk consisting of k data points. The
kth data point pk is given as:

pk = (HMi, BCRc, DCRc, BCR,DCR)k (4.4)

Now according to the requirements in [91], the initial number of data
points necessary to obtain regression coefficients must be two or greater.
The initial number of data points, before applying LiR and consequently
optimization, is chosen as three. One extra data point (more than the mini-
mum required data points) is chosen to compensate the effect of noise in the
KPIs. The smaller the number of points, the more sensitive the regression
is to noise. Furthermore, a badly estimated initial model of fκ can cause
the optimization problem to be erroneous and the new points found by the
optimization module to get stuck in a non-optimal region.

The complete automated healing algorithm is as below:
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Initialization:
1. Compute an initial set Pk of k data points by applying initially
chosen HMi values one by one to network/simulator and obtaining
the corresponding KPIκ values
Repeat until convergence:
2. Compute the statistical model fκ using Pk
3. Compute the new HMi value using (4.2)
4. Apply HMi in the network/simulator and observe corresponding
KPIκ values. Compute new data points using (4.4)
5. Update Pk+1 : Pk+1 = Pk ∪ pk+1

6. k=k+1
End Repeat

4.3.3 Case study

4.3.3.1 Simulation scenario

A LTE network comprising 19 eNBs in a dense urban environment is depicted
in Figure 4.2.

Figure 4.2: The network diagram of the simulated system.

We consider downlink transmissions. The simulation parameters are
listed in Table 4.1. A MATLAB LTE simulator described in [89] has been
used.
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Parameters Settings
System bandwidth 5MHz
Cell layout 19 eNBs, single sector
Maximum eNB transmit power 32 dBm
Inter-site distance 1.5 to 2 KM
Subcarrier spacing 15 kHz
PRBs per eNB 15
Path loss L=128.1 + 37.6

log10(R), R in kilome-
ters

Thermal noise density -173 dBm/Hz
Shadowing standard deviation 6 dB
Traffic model FTP
File size 5700 Kbits
PRBs assigned per mobile 1 to 4 (First-come,

first-serve basis)
Mobility of mobiles 90%
Mobile speed 15 m/s
HMmax 12dB

Table 4.1: The system level simulation parameters.

The simulator performs correlated Monte Carlo snapshots with time steps
of one second to account for the time evolution of the traffic. At the end of
each time step of one second, new mobile positions are updated, Handover
(HO) events are processed, new users are admitted according to the condi-
tions of access and some other users leave the network (end their communi-
cations or are dropped). The simulations are run for 3300 time steps, with
a fixed HM value, and the KPIs are averaged using the interval between 500
and 3300 seconds to account for transient effects.

Reference Solution

An optimal default value for HM is chosen as 6dB for all eNBs in the network
and will serve as the reference (default) solution. This reference solution will
be used as a starting point for the automated healing process. The default
HM value is determined by varying it uniformly from 0.05 to 12 in steps
of 0.15 for all the eNBs. For each HM value, the network performance is
assessed in terms of the mean Ping Pong Rate (PPR), mean BCR and mean
DCR. If these three KPIs are aggregated as shown in Figure 4.3, we observe
that the global optimum HM value occurs around HM =6dB. Hence, the
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value of HM = 6dB is selected as the reference (default) HM value for eNBs
in the network.

Figure 4.3: The aggregated network KPIs (mean PPR, mean BCR and mean
DCR) as a function of uniform (default) HM.

4.3.3.2 Automated healing Scenario I : Equal weights to KPIs

With reference to the network with 19 eNBs shown in Figure 4.2, eNB1 is
the central eNB which we denoted by eNBc. Its 6 first tier eNBs T1 are
given as eNB2, eNB3, eNB4, eNB5, eNB6 and eNB7. While the 12 second
tier neighbours T2 are eNB8, eNB9, eNB10, eNB11, eNB12, eNB13, eNB14,
eNB15, eNB16, eNB17, eNB18 and eNB19.

We consider the case where equal importance is given to all the KPIs,
i.e., ωt=1, t ∈

{
BCRc, DCRc, BCR,DCR

}
. Initially, the system is working

with default HMi = 6dB. Table 4.2 shows the convergence of these pa-
rameters starting from the three initial points (Phase I), corresponding to
HMi = 6, 4, 8dB, and seven iterations of the optimization algorithm (Phase
II). Figures 4.4, 4.5 and 4.6 show the KPIs as a function of HMi after the
first, second and third iterations, respectively. As explained earlier, the KPI
curves are estimated from corresponding KPI data points using LiR.

We set the thresholds for BCR and DCR to 8% and 4%, respectively. We
observe from Table 4.2 that obtained BCR and DCR values corresponding
to the initial working point exceed these thresholds.

Now, we apply the automated healing algorithm and collect the initial
data points corresponding to HMi=6,4 and 8dB (Phase-I). We can see that
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HMi(dB) BCRc DCRc BCR DCR

P
h
as

e
I 6 0.040 0.016 0.82 0.041

4 0.012 0.010 0.095 0.056
8 0.063 0.028 0.069 0.038

P
h
as

e
II

8.49 0.055 0.032 0.067 0.031
8,60 0.062 0.023 0.065 0.031
8.64 0.063 0.025 0.064 0.030
8.56 0.063 0.033 0.059 0.028
8.41 0.044 0.021 0.064 0.029
8.47 0.068 0.024 0.064 0.035
8.47 0.068 0.024 0.066 0.037

Table 4.2: Convergence of HMi during optimization process and the corre-
sponding KPIs of automated healing algorithm

Figure 4.4: The KPIs in troublshooting as a function of HMi after first
optimization iteration.

after the first iteration of the optimization process (when phase-II starts) we
get the next HMi=8.49dB. This iteration corresponds to Figure 4.4.

After the second and third optimization iterations (shown in Figures 4.5
and 4.6, respectively), the HMi values converges to 8.64. The corresponding
BCR improves from 8.2% to 6.4% and DCR improves from 4.15% to 3%,
which are within the maximum allowable thresholds of 8% and 4%, respec-
tively. BCRc and DCRc of the central eNB are also within the thresholds.
Eventually, we can see from Table 4.2 that even over the next 7 optimization



Chapter 4. Automated Healing by Statistical Learning 81

Figure 4.5: The KPIs in troublshooting as a function of HMi after second
optimization iteration.

Figure 4.6: The KPIs in troublshooting as a function of HMi after third
optimization iteration.

iterations during Phase-II, there is not much variation in the HMi value.

4.3.3.3 Automated healing Scenario II : Different weights to KPIs

The automated healing methodology is now verified using different ωt values,
t ∈
{
BCRc, DCRc, BCR,DCR

}
as given below:
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1. ωBCRc=1, ωDCRc=1, ωBCR=1, ωDCR=1

2. ωBCRc=2, ωDCRc=1, ωBCR=1, ωDCR=1

3. ωBCRc=3, ωDCRc=1, ωBCR=1, ωDCR=1

4. ωBCRc=1, ωDCRc=1, ωBCR=1, ωDCR=2

5. ωBCRc=1, ωDCRc=1, ωBCR=1, ωDCR=3

For each set of wt weights, we apply our automated healing algorithm to
the network shown in Figure 4.2. We repeat the scenario eight times and
store each time the seven optimization iterations as above.

We now take the variance between the eight HMi value calculated during
each iteration as the measure of the convergence. Figure 4.7 shows that after
the third iteration, HMi converges to an optimum fixed value.

Figure 4.7: Convergence of HMi in automated healing algorithm for different
KPI weights, ωt.

4.4 Statistical Learning in Automated Heal-

ing(SLAH): Application to LTE interfer-

ence mitigation

In this section a new automated healing methodology has been introduced
which we named Statistical Learning Automated Healing (SLAH). Similar to
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previous section, it uses statistical learning to derive the model. However, the
statistical learning technique used in this case is Logistic Regression (LoR).
The merit of LoR is that it can account for saturation effects that often ap-
pear in KPIs such as blocking rate, dropping rate etc. This model is then
processed by an optimization engine so as to calculate the optimized RRM
parameters which improve the KPIs of a degraded cell. The process is itera-
tive and converges to the optimum RRM parameter value in few iterations,
which makes it suitable for operational wireless networks.

In fact, once the problem has been identified, there can be various ways
which can be used to improve the performance of the cells that exhibit a
degraded performance. The so-called steered optimization technique is one
such method introduced in [85]. It uses an interference matrix approach to
identify the most coupled base stations with the problematic cell in a cellular
(UMTS) environment. Indeed, the knowledge of the interaction between any
couple of stations in terms of interference, macrodiversity and load differ-
ence allows to, first, accurately identify sectors with poor performance and,
second, to suggest corrective measures [86]. The method makes use of local
information from an eNB and its neighbors; the resulting automated healing
is thus a local optimization process.

Based on this interference matrix approach and local optimization tech-
nique, we have introduced in [4] a new automated healing methodology, which
we termed Statistical Learning Automated Healing (SLAH), and which uses,
as its name indicates, statistical learning to derive the functional relation-
ships between the Radio Resource Management (RRM) parameters, for in-
stance interference mitigation parameter, and the Key Performance Indica-
tors (KPIs), such as Block Call Rate (BCR), file transfer time, etc.

In a typical conventional problem resolution process, the optimization
expert analyzes KPIs and then proposes a new RRM parameter which is
applied to the problematic eNB. The eNB operates with the new parameter
during a period long enough, typically a day, to have statistically significant
results that allow to assess the eNB performance. This optimization process
is reiterated during several days, typically between one to two weeks. Hence
a (near) optimal solution should be reached in a small number of iterations.
The difficulty for devising automated healing algorithms are twofold. First,
optimization heuristics often require hundreds of iterations and more time to
converge. Second, measured counters and KPIs are inherently noisy. Noise
can originate from limited measurement accuracy, but also from traffic fluc-
tuations, varying propagation conditions etc. The effect of RRM parameter
modification on KPIs can be masked partially by unobserved effects thus
introducing uncertainty in the relation between KPIs and RRM parameters.

To overcome the above two difficulties, this novel approach for automated
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healing based on statistical learning has been introduced. The automated
healing algorithm is iterative. In each iteration, a new data point comprising
of a RRM parameter and a corresponding KPI vector is introduced. The data
point is used to update the statistical model and improve its precision. Then
the updated statistical model is introduced into the optimization engine to
calculate the next RRM parameter. Hence the optimization algorithm does
not directly process data points but rather closed form functions in the form
of regressions, allowing the model to converge rapidly with a small number
of iterations.

In this section we assume that the degraded performance of an eNB is
due to excessive intereference. The SLAH uses Inter-cell Interference Coordi-
nation (ICIC) for interference mitigation to improve the performance of the
problematic eNB.

4.4.1 Relation to generic automated healing block di-
agram

Referring to the generic automated healing block diagram in Figure 4.1, the
details of the statistical learning and optimization block are given as below:

• Statistical Learning block: The statistical learning approach used in
the automated-healing is based on Logistic Regression (LoR) [91] [87].
The LoR Model belongs to a category of models known as the Gener-
alized Linear Models (GLM) [97]. The LoR establishes the statistical
model by extracting the functional relations between the KPIs and
the RRM parameter. LoR fits the data into the functional form of
logistic function denoted as flog

flog(z) =
1

1 + exp−z
(4.5)

where z can vary from −∞ to ∞ and flog(z) from 0 to 1 (see Figure
4.8). One can see from Figure 4.8 that flog(z) can describe saturation
effects at its extremities as often encountered in KPIs in communication
networks.
In our work, the KPI is a dependent variable denoted as y and the
RRM parameter is an explanatory variable denoted as x.
Let ym,i denote the ith sample value of the mth dependent variable ym
(i.e. the mth KPI) corresponding to the ith sample value xi of the
explanatory variable x (i.e. the RRM parameter). LoR models ym,i as
follows:

ym,i = flog(ηm,i) + εi (4.6)



Chapter 4. Automated Healing by Statistical Learning 85

Figure 4.8: The logistic function.

where ηm,i = x′iβm, given that x′i = [1 xi] and βm = [βm,0 βm,1]T . ηm,i
is the linear predictor representing the contribution of the explanatory
variable sample xi, εi is the residual error and βs are the regression
coefficients whose values are estimated using maximum likelihood esti-
mation as described in Section 4.5.2. Let there be n sample values for
ym corresponding to n values of x. In order to write (4.6) in the matrix
notation, let Ym = [ym,1 ym,2 ..ym,i.. ym,n]T and X = [x′1 x

′
2 ..x

′
i.. x

′
n]T .

Hence, we may write

Ym = flog(Xβm) + ε

Ym = flog(ηm) + ε

Ym = Ŷm + ε

where
Ŷm = flog(Xβm) (4.7)

Here, Ŷm represents the estimated Ym using LoR. It is noted that the
dependent variables in the LoR are between 0 and 1. Hence, Ym is nor-
malized between 0 and 1 before the application of LoR. The calculated
Ŷm values can be subsequently denormalized.
It follows from (4.7) that functional relation between ŷm i.e., ym esti-
mated by LoR, and x can be written as

ŷm = flog(x
′βm) (4.8)
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where x′ = [1 x].

• Optimization: The aim of the optimization problem is to determine x̂
i.e., the value for a RRM parameter x that minimizes a cost function of
a set of KPIs denoted as the optimization set Ao, subject to constraints
on a second set of KPIs denoted as the constraint set Ac. The cost
function U is given as

U =
∑
m∈Ao

wmŷm (4.9)

where

– ŷm has the functional relation form as in (4.8).

– wm is the weight given to ŷm.

The optimization problem is formulated as follows:

x̂ = argminxU(x) (4.10)

subject to
ŷh(x̂) < thh ∀ h ∈ Ac

where thh is the threshold for ŷh.

4.4.2 Application of SLAH for LTE intereference mit-
igation

This section presents the interference mitigation scheme that will be con-
sidered in the framework of automated healing. LTE wireless networks use
OFDMA access technology in the downlink. This access technology allows to
suppress intra-cell interference while it may be vulnerable to inter-cell inter-
ference, particularly for users in the cell edge. Different techniques have been
developed to combat inter-cell interference. We considered in this section a
soft-frequency reuse scheme for interference mitigation, which is an inter-cell
interference coordination (ICIC) scheme. In OFDMA, users are multiplexed
in both time and frequency. The smallest time-frequency resource unit allo-
cated to a user is the physical resource block (PRB) with 1 ms time duration
and 180 kHz bandwidth. Intelligent allocation strategies can be combined
with ICIC scheme to further improve its performance [82].
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4.4.2.1 ICIC model

LTE system uses the Orthogonal Frequency Division Multiple Access (OFDMA)
[81] for the downlink. This access scheme has the merit of reducing the in-
tracell interference. Intercell interference may occur when the same time-
frequency resources are allocated to users in neighboring cells. Edge cell
users are often the most vulnerable to such interference that can consider-
able degrade their quality of service (QoS). To combat intercell intereference,
the intercell intereference coordination scheme (ICIC) has been proposed as
an intereference mitigation technique [82].

Consider an OFDMA network with eNBs implementing ICIC in the down-
link. The ICIC is performed by combining two resource allocation mecha-
nisms: PRB allocation to frequency subbands and coordinated power allo-
cation. In the soft-reuse one scheme, the total available bandwidth is reused
in all the cells while the transmitted power for a portion of the bandwidth of
a cell can be adapted to resolve interference related QoS problems. Figure
4.9 presents the power-frequency allocation model in a seven adjacent cell
layout.

Figure 4.9: System Model.

The frequency band is divided into three disjoint sub-bands. One sub-
band is allocated to mobiles with the worst signal quality and is denoted
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interchangeably as a protected band or as an edge band with transmit power
P . A user with poor radio conditions is often situated at the cell edge, but
could also be closer to the base station and experience deep shadow fad-
ing. The remaining two frequency subbands are denoted as centre bands
with transmit power reduced by a factor α, namely αP . The interference
produced by an eNB to its neighboring eNBs can be controlled by the pa-
rameter α of this eNB. The main interference in the system originates from
eNB transmissions on the centre band (of centre cell users) which interfere
with neighboring cell edge users utilizing their edge (protected) band. When
an eNB strongly interferes with its neighbours, the ICIC mechanism allows
to reduce the transmission power for the centre band.

Resource block allocation is performed based on a priority scheme for
accessing the protected subbands. A quality metric qu is calculated using
pilot channel signal strengths

qu =
Prsu∑

j 6=s
Prju + σ2

z

, (4.11)

where Prju denotes the mean pilot power received by the user u of a signal
transmitted by the eNB j, and σ2

z is the noise power spectral density. qu is
similar to the SINR with the difference that in the present ICIC scheme, the
data channels used to calculate the SINR are subject to power control. The
qu metric is calculated for all users which are then sorted according to this
metric. Users with the worst qu are allocated resources from the protected
band and benefit from maximal transmission power of the eNB. When the
protected subband is full, the resource block allocation continues from the
centre band.

4.4.2.2 Automated healing model

This section describes the adaptation of the SLAH to interference mitigation
in a LTE network by locally optimizing the parameter α of the interfer-
ing eNBs. Denote by eNBc (c standing for central) an eNB with degraded
performance. It is assumed that the cause of the degraded performance
has been diagnosed and is related to excess interference from neighbouring
eNBs. The direct neighbours from the first tier of eNBc are denoted by
eNBj, j ∈ NS1(c) where NS1(c) is the set of neighbouring eNBs in first
tier of eNBc. The subscript c of the set NS1(c) will be omitted hereafter for
sake of brevity. The specificity of the interference mitigation use case is the
following: to troubleshoot eNBc the parameters αj of eNBj, j ∈ NS1 , are
updated and optimised, while αc of eNBc remains unchanged.
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We use the notion of coupling between eNB j and c which is expressed
in terms of the interference that eNBj produces on the mobiles connected
to eNBc and can be written in terms of the interference matrix element
Icj [85] [96]. Hence the bigger Icj, the stronger the coupling between the two
eNBs. In this work, the matrix element Icj is equal to the sum of interfer-
ences perceived by the mobiles attached to eNBc and generated by downlink
transmissions to the mobiles of eNBj.

The use of the SLAH to jointly optimize all the elements of the vector
(αj), j ∈ NS1, is not a simple task. Denote by s, s ∈ NS1, the index of
the eNB which is the most coupled with eNBc, namely s = argmaxj(Icj),
s ∈ NS1. To reduce the complexity of the SLAH process and to enhance its
scalability, we propose to adjust the αj parameter according to the degree
of coupling between eNBj and eNBc. To this end, we define a functional
relation between αs and αj, αj = gj(αs), that accounts for the coupling
mentioned above:

αj = gj(αs) = αi + (1− αs)(1−
Icj
Ics

) (4.12)

Hence the smaller the coupling between eNBj and eNBc, the lesser power
reduction is applied to eNBj. By using (4.12), just one parameter i.e.,
αs needs to be optimized. The process is scalable in the sense that the
automated healing can be performed simultaneously on any number of eNBs
provided they are not direct neighbours.
Two KPIs are utilized in the SLAH process: the File Transfer Time (FTT) for
FTP traffic and the Block Call Rate (BCR). The SLAH aims at minimizing
the FTT for eNBc and of its direct neighbours while verifying constraints on
BCRj, j ∈ c ∪NS. We define the cost function for the optimization:

U = FTTc +
∑
j∈NS1

ωjFTTj (4.13)

It is noted that FTTj is a function of αj and hence, via equation (4.12),
of αs. FTTj also depends on the interference from its neighbouring eNBj.
The weighting coefficients ωj depend on the relative contribution of Icj with
respect to the sum on all eNBs in NS1 and are given by

ωj =
Icj∑

k∈NS1 Ick
(4.14)

satisfying the condition
∑

j∈NS1 ωj = 1. The optimization problem can now
be formulated as follows

α∗s = argminαsU(αs) (4.15)
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subject to
BCRj < BCRth ; j ∈ c ∪NS1

BCRth is the threshold for BCRj. The FTT and BCR indicators in equa-
tions (4.13) and (4.15) are given in the form of the LoR function (4.8)
obtained using the LoR. In the case, BCRj > BCRth for all values of αs, it
is impossible to determine αs value that minimizes the cost function (4.15).
In this case, instead of (4.15) our optimization objective is given as

αs = argmaxα′s(BCRc|(BCRc = BCRj)) ; j ∈ NS1 (4.16)

Here, αs signifies the value for which BCR of eNBc and the BCR of eNBj

having worst BCR value, become equal.
The SLAH can be further improved by introducing a generalized interference
matrix element I ′cj in equation (4.12) by introducing additional KPI, namely
the BCR:

I ′cj = Icje
−γBj ; Bj = BCRj/maxk∈NS1(BCRk) (4.17)

One can see that higher BCRj is, the smaller is I ′cj and consequently, the
smaller is the modification of αj. This signifies that change in αj due to Icj,
in order to improve performance of eNBc, is limited by degradation in Bj,
where the magnitude of effect of Bj is tuned by γ. Denote a data point pjk
as the vector pjk = (αj, FTTj, BCRj)k, where j ∈ c ∪NS1.
In the SLAH algorithm, αc remains fixed and is not subject to optimization;
αj, j ∈ NS1, satisfies the equation (4.12); and the set of k data points for
an eNBj, j ∈ c∪NS1, is denoted by P j

k . During each optimization iteration
one data point is added, hence, k also denotes optimization iteration index.
The SLAH algorithm is given in Table 4.3.

4.4.3 Case study

4.4.3.1 Simulation scenario

A LTE network comprising 45 eNBs in a dense urban area is shown in Figure
4.10. Downlink transmissions are considered here. A MATLAB LTE sim-
ulator described in [89] has been used. The simulator performs correlated
Monte Carlo snapshots with time resolution of a second to account for the
time evolution of the network. The principles of a semi-dynamic simulator
are described in [100]. FTP traffic with a file size of 6300 Kbits for download
is considered. Call arrivals are generated using the Poisson process and the
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Initialization:
1. Identify the most coupled eNB eNBs with eNBc among the
neighbours in NS1

2. Generate the initial set of k data points P j
k , j ∈ c ∪NS1, by applying

k different αs values (together with the associated αj values) to the
network/simulator one by one and obtaining the corresponding KPIs.
Repeat until convergence:
3. For each eNBj, compute the statistical model using LoR for FTT and

BCR using the corresponding data points in P j
k

4. Compute a new α vector containing the new values of αj, j ∈ NS1
(using equations (4.12) and (4.15))
5. Apply the new αj values to the network/simulator and observe (FTTj)

and (BCRj), j ∈ c ∪NS1. Compute the new data point pjk+1

6. Update P j
k+1: P j

k+1 = P j
k ∪ p

j
k+1

7. k=k+1
End Repeat

Table 4.3: The complete SLAH Algorithm

communication duration of each user depends on its bit rate. The Okumura-
Hata propagation model is used with path loss at a reference distance of
1 km and the path loss exponent are chosen as −128 dB and 3.76 respec-
tively. The standard deviation of the shadowing process is taken as 6 dB. The
bandwidth used is 5 MHz per eNB. The maximum number of the PRBs in
an eNB, i.e. the capacity, is fixed to 24 PRBs with 8 PRBs in each sub-band.
The number of PRBs that can be allocated to a user can vary from 1 to 4.
The resources are allocated on the first-come first-served basis. Mobiles are
considered in the simulation as non-mobile. The BCR and FTT KPIs used
by the SLAH algorithm are averaged on an interval varying from 500 to 2500
seconds while discarding the samples of first 500 seconds during which the
network reaches a steady state. It is noted that for a given traffic demand,
the BCR provides a capacity indicator while the FTT is more related to the
user perceived QoS.

The simulated LTE system includes a simple admission control process
based on signal strength: A simple admission control has been implemented
based on signal strength. A mobile selects the eNB with the highest Reference
Signal Received Power (RSRP) and is admitted if it is above -104 dBm and
if at least one PRB is available. The mobile throughput is calculated from
SINR using quality tables obtained from link level simulations.

The SINR and consequently the bit rate of a mobile are updated after
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Figure 4.10: The network diagram of the simulated system.

each simulation time step. The interference matrix elements are calculated
only once for the reference solution (see paragraph below) during a longer
time interval varying from 500 to 7000 seconds to achieve accurate average
results.
An optimal default value for α, known as reference solution, is calculated as
0.5 for all eNBs in the network. The default α value is determined by varying
it simultaneously for all eNBs from 0.0125 to 1 in steps of 0.0125. For each
α, the network performance is assessed in terms of the mean BCR and mean
FTT as shown in Figures 4.11 and 4.12 respectively. The minimum values
for both BCR and FTT are obtained in the α interval [0.5, 0.7]. The value
of α = 0.5 is selected as the default value due to the smaller inter-cellular
interference and the minimum energy consumption in the network.

4.4.3.2 Automated healing scenario

A problematic eNB with the worst performance in the simulated network (in
terms of BCR and FTT), namely eNBc=13, is selected for automated healing
using the SLAH algorithm. The eNBj, where j ∈ NS1 = {14, 15, 22, 23, 43, 45},
is one of the six first tier neighbours of eNBc=13. It is recalled that the SLAH
modifies the α parameters of eNBj while leaving unchanged αc, that is fixed
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Figure 4.11: The variation of the global mean BCR of the network with
uniform change in α of all eNBs.

Figure 4.12: The variation of the global mean FTT of the network with
uniform change in α of all the eNBs.
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αc=13 αj=14 αj=15 αj=22 αj=23 αj=43 αs=45

P
h

a
se

I

0.50 0.97 0.95 0.98 0.99 0.96 0.95
0.50 0.85 0.74 0.87 0.97 0.79 0.73
0.50 0.74 0.53 0.77 0.94 0.61 0.50
0.50 0.62 0.31 0.67 0.92 0.43 0.28
0.50 0.50 0.10 0.57 0.89 0.26 0.05

P
h

a
se

II

0.50 0.61 0.31 0.67 0.92 0.43 0.27
0.50 0.66 0.38 0.70 0.93 0.49 0.35
0.50 0.68 0.43 0.73 0.93 0.53 0.40
0.50 0.70 0.47 0.74 0.94 0.53 0.44
0.50 0.70 0.47 0.74 0.94 0.56 0.44
0.50 0.72 0.50 0.76 0.94 0.59 0.47
0.50 0.72 0.49 0.75 0.94 0.58 0.46

Table 4.4: Phase-I shows the initially chosen α values. Phase-II shows the α
values calculated during optimization (γ=-0.3).

to the reference default value of 0.5. The index set NS2 of the second tier
neighbours of the problematic eNB consists ofNS2 = {1, 10, 11, 16, 18, 24, 37, 44}.
Denote by optimization zone the subnetwork comprising eNBc=13 and its
first tier neighbours NS1, and by evaluation zone the subnetwork compris-
ing eNBc=13 and its first two tier neighbours NS1 and NS2. The eNBs=45

is the eNB most coupled with eNBc=13.

4.4.3.3 Results

The SLAH algorithm is applied using the generalized interference matrix
(4.17) in (4.12), with γ=-0.3. The first five values of αs=45 in Table 4.4 are
chosen for the initialization phase (Phase-I in the Table) of the SLAH. The
next seven values are calculated iteratively by the SLAH algorithm during
the optimization phase (Phase-II in the Table). The values of αj=14, αj=15,
αj=22, αj=23 and αj=43 are calculated using equation (4.12). In spite of the
inherent noise present in the generated data, one can see from the values
depicted in Phase-II that αs=45 converges in a few iterations. αs=45 = 0.46 is
chosen as the optimized solution.

Figures 4.13 and 4.14(a) show the mean BCR and FTT data points re-
spectively as a function of αs=45 together with the LoR curves for eNBc=13,
eNBj=22 and eNBj=43 ofNS1. The mean BCR curves for eNBj=14, eNBj=15,
eNBj=23 and eNBs=45 of NS1 are well below the BCR threshold of 0.05
and are therefore omitted. The concentration of KPI data points around
αs=45 = 0.45 indicates the convergence of the SLAH algorithm. Figure
4.15(a) shows the gain brought about by the SLAH algorithm for the op-
timization zone (set NS1 of eNBs). The mean BCR of the problematic
eNBc=13 is reduced by 45% with respect to the reference solution. It de-
creases from a value of 5.28% to 2.9%, which is well below the threshold of
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5%. The average improvement of the mean BCR of the tier NS1 is of 44%
with respect to the reference solution.

Figure 4.13: Mean BCR values and LoR regression curves as a function of
αs=45 for eNBj=13, eNBj=22 and eNBj=43 (γ=-0.3).

The data points for the mean FTT and the corresponding LR curves are
shown in 4.14. The improvement brought about by the SLAH algorithm in
the optimized zone with respect to the reference solution is shown in Figure
4.15(b). The mean FTT of eNBc=13 is reduced by 6.31% whereas the average
mean FTT of NS1 is reduced by 26.6%. This improvement is related to the
optimized interference management in the first tier of the problematic eNB.
The decrease in interferences improves the SINR values and consequently
the throughput and FTT. Furthermore, the improvement in power resource
allocation decreases the sojourn time of users that monopolize scarce radio
resources and results in the improvement in BCR.

Figures 4.16(a) and 4.16(b) show, in descending order, the mean BCR
and the mean FTT respectively for the reference (square) and the optimized
(circle) eNBs in the evaluation zone (eNBc=13 ∪ NS1 ∪ NS2). It is noted
that the order of the stations in the two curves of each figure may not be
preserved. One can see that on the average, the mean BCR and mean FTT
in the evaluation zone are improved. The average improvement of FTT in
the evaluation zone is of 13%.
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(a)

(b)

Figure 4.14: Mean FTT values and LoR regression curves as a function of
αs=45 for eNBj=13, eNBj=22 and eNBj=43 (a) and for eNBj=14, eNBj=15,
eNBj=23 and eNBj=45 (b) (γ=-0.3).
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(a)

(b)

Figure 4.15: KPI of the eNBs in the optimization zone for the reference
solution (white) and optimized (black) network conditions; mean BCR (a)
and mean FTT (b) (γ=-0.3).
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(a)

(b)

Figure 4.16: KPIs in descending order for the eNBs in the evaluation zone;
mean BCR (a) and mean FTT (b) (γ=-0.3).
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αc=13 αj=14 αj=15 αj=22 αj=23 αj=43 αs=45

P
h
as

e
I

0,50 0,98 0,96 0,98 0,99 0,97 0,95
0,50 0,87 0,76 0,91 0,97 0,82 0,73
0,50 0,77 0,56 0,83 0,94 0,68 0,50
0,50 0,66 0,37 0,75 0,92 0,54 0,28
0,50 0,56 0,17 0,67 0,89 0,39 0,05

P
h
as

e
II

0,50 0,80 0,63 0,85 0,95 0,73 0,57
0,50 0,80 0,63 0,85 0,95 0,73 0,57
0,50 0,87 0,75 0,90 0,97 0,81 0,71
0,50 0,83 0,68 0,87 0,96 0,76 0,63
0,50 0,81 0,64 0,86 0,95 0,74 0,59
0,50 0,80 0,62 0,85 0,95 0,72 0,56

Table 4.5: Phase-I shows the initially chosen α values. Phase-II shows the α
values calculated during optimization (γ=0).

The convergence of αs=45 in the automated healing scenario with γ = 0
is shown in table 4.5. During the phase-II, the value of αs=45 converges in
about 6 optimization iterations to the value of 0.57. During the process of
convergence, there is one outlier value of αs=45=0.71, generated due to the
noise in the KPIs. However, this method is very robust and αs=45 converges
back very quickly to the value of 0.56.

Figures 4.17 shows , after convergence, the mean BCR data points as a
function of αs=45 together with the LoR curves for eNBc=13, eNBj=15 and
eNBj=43 of NS1, in the case of γ = 0. The mean BCR curves for eNBj=14,
eNBj=22, eNBj=23 and eNBs=45 of NS1 are well below the maximum allow-
able BCR threshold of 0.05 and are therefore omitted. Figure 4.18(a) and
4.18(b) show mean FTT data points as a function of αs=45 together with the
LoR curves for NS1.

Table 4.5 shows that as compared to the case when γ=-0.3 (for example
during phase-I in table 4.4), here the decrease of αjs corresponding to the
decrease in αs=45 is less. This results in less effect on the values of a KPI
of eNBc=13 during the optimization case. Consequently, there is smaller
correlation among these values that results in an increase in their variance
and the possibility of having outliers.

Figure 4.19(a) shows that there is a 26.89% improvement in the mean
BCR of eNBc=13. There is an overall improvement of 75.82% in the mean
BCR of NS1. This higher improvement in the mean BCR of NS1 as com-
pared to the case when γ=-0.3, can be attributed to the fact that here the
proposed αj values are higher as compared to the case when γ = −0.3.
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Figure 4.17: Mean BCR values and LoR regression curves as a function of
αs=45 for eNBj=13, eNBj=15 and eNBj=43 (γ=0).
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(a)

(b)

Figure 4.18: Mean FTT values and LoR regression curves as a function of
αs=45 for eNBj=13, eNBj=15 and eNBj=43 (a) and for eNBj=14, eNBj=22,
eNBj=23 and eNBj=45 (b) (γ=0).



Chapter 4. Automated Healing by Statistical Learning 102

(a)

(b)

Figure 4.19: KPI of the eNBs in the optimization zone for the reference
solution (white) and optimized (black) network conditions; mean BCR (a)
and mean FTT (b) (γ=0).
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(a)

(b)

Figure 4.20: KPIs in descending order for the eNBs in the evaluation zone;
mean BCR (a) and mean FTT (b) (γ=0).
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Similarly, Figure 4.19(b) shows an improvement of 6.34% improvement
in mean FTT of eNB13. There is an overall improvement of 33.70% in mean
FTT of NS1, in the case of (γ=0). This improvement is higher than the case
when γ=-0.3, according to same reason as for mean BCR of NS1.

Figures 4.20(a) and 4.20(b) show, in descending order, the mean BCR
and the mean FTT respectively for the reference (square) and the optimized
(circle) eNBs in the evaluation zone (eNBc=13 ∪ NS1 ∪ NS2) in the case
γ = 0. It is noted that the order of the stations in the two curves of each
Figure may not be preserved.

One can see that on the average, the mean BCR and mean FTT in the
evaluation zone are improved. The average improvement of FTT in the
evaluation zone is of 17%

4.5 Enhancing RRM optimization using a pri-

ori knowledge for automated troubleshoot-

ing

This section deals with the incorporation of a priori knowledge into SLAH,
introduced in the previous chapter. The purpose of this section is the fol-
lowing. The initial estimated model is very sensitive to noise because it
is derived using very few data points. The first data points used by the
SLAH may mislead the algorithm due to the noisy data and produce a bad
initial statistical model (e.g. KPIs with wrong tendencies / slopes). As a
result, some additional iterations are required for the SLAH algorithm to
converge. It is recalled that due to operational constraints, the automated
healing needs to converge in a few days, namely with a few number of it-
erations. Furthermore, we need to obtain the initial model behaviour over
a wide range of RRM parameter values. So, we need to calculate the KPIs
corresponding to RRM parameter values that may not be very practical for
an operating network. Hence, the purpose of this study is to show how can
wrong statistical model be avoided due to noisy data in the first iterations of
the SLAH algorithm. To this end, a priori knowledge is introduced. A priori
knowledge is presented in the form of a small set of data points, typically
between three to five, that produces an acceptable statistical model (regres-
sion functions), with the expected tendencies according to expert knowledge.
Such data points can be obtained in different manners: from a database
produced by other eNBs using previous troubleshooting experience; from a
network simulator; or simply from data points produced artificially by the
network expert. After the initial model estimation and with the progression
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of optimization iterations, the a priori data points are assigned lesser and
lesser weight in the model estimation as compared to generated data points
i.e., data points generated by the network/simulator. The incorporation of
the a priori knowledge to the logistic regression and to the full SLAH algo-
rithm, in order to achieve fast convergence and robustness, is presented. The
method is applied to the problem of troubleshooting of Inter-Cell Interference
Coordination (ICIC) of a LTE network.

4.5.1 Relation to generic automatd healing block dia-
gram

The details of SLAH are the same as explained in 4.2 and 4.4.1. Here, the
switch position in the generic automated healing block is 2 for the incorpo-
ration of the a priori knowledge in the form of data points into SLAH.

4.5.2 A priori knowledge incorporation

If we have the a priori knowledge about the expected behaviour of the model
in the form of a priori data points (RRM-KPI pairs), this knowledge can be
incorporated into the troubleshooting algorithm to derive the initial model.
However, the a priori information may not be exact and can be erroneous
because of scaling and translation errors w.r.t functional relations in the
exact model. Therefore, as the iterations of the troubleshooting process start
and progress, the newly generated data points are assigned more weight
during the βm (m denotes the corresponding KPI) parameters estimation
of the refined model calculation, as compared to the a priori data points.
The process continues until the assigned weight to the initial a priori points
becomes very small, hence, canceling out the effect of the initial a priori
data points. A priori knowledge incorporation into LoR model is defined
as follows: We follow the same notation for Ym and X as in Section 4.4.1.
The βm vector is estimated using Maximum likelihood Estimation (MLE) for
Generalized Linear Models (GLMs). MLE endeavors to find the most ”likely”
values of the unknown distribution parameters that maximize the ”likelihood
function” for a given set of data sequence. The likelihood function is the
probability for the occurrence of a sample sequence given that the probability
density function of given data sequence for the the unknown parameters is
known.

The output variable ym,i is given as ym,i = E(N ′). Where for KPIs like
mean File Transfer Time (FTT) of an eNB, the N ′ is the realisation of FTT
values of the mobiles attached to this eNB. While for KPIs like mean Block
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Call Rate (BCR) of an eNB, N ′ is the realisation consisting of the successes (a
success represented as 0) or failures (a failure represented as 1) of the mobiles
accessing this eNB. In the case of GLMs [97], the distribution of realisation
N ′ is not necessarily Normal but has to be a member of the ”Exponential
Dispersion Family” [98]. The probability density function of N ′ in this case
is given as:

f(N ′) = c(ym,i, φ)exp

[
ym,iθm,i − b(θm,i)

am,i(φ)

]
(4.18)

where φ is the dispersion parameter. The choice of θm,i, a(.), b(.) and c(.)
is determined by the actual probability function, i.e., binomial in the case
of LoR. The KPIs are assumed to follow the binomial distribution as e.g.,
in the case of mean BCR, the number of mobiles accessing an eNB can be
considered as Bernoulli trials. KPIs like mean FTT of mobiles attached to
an eNB follow a Normal ditribution according to the central limit theorem,
owing to the large number of FTT values. However, we know that normal
distribution can approximate a binomial distribution having large number of
Bernoulli trials. Hence, the assumption of binomial distribution is considered
equally valid for FTT. Hence, for binomial distribution,

θm,i =
ŷm,i

1− ŷm,i
(4.19)

where ŷm,i = flog(ηm,i) and ηm,i = x′iβm. Assuming constant dispersion,

am,i (φ) = 1 (4.20)

Similarly,
b (θm,i) = ln(1 + exp(θm,i)) (4.21)

If ntm,i is the number of Bernoulli trials for the ith data point, c(ym,i, φ) is
given as:

c(ym,i, φ) =

(
ntm,i

ntm,iym,i

)
(4.22)

In such case, the log-likelihood lm for the output variables is given as [98]:

lm(β1, ...., βp) =
n∑
i=1

ym,iθm,i − b(θm,i)
am,i(φ)

+
n∑
i=1

ln c(ym,i, φ) (4.23)

In order to find the maximum likelihood estimation of βm,p where p =
{1, 2}, the derivative of the likelihood function lm with respect to βm,p is
taken [98] and equated to 0:

∂lm
∂βm,p

= 0 (4.24)
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∂lm
∂βm,p

=
n∑
i=1

∂lm
∂θm,i

∂θm,i
∂ŷm,i

∂ŷm,i
∂ηm,i

∂ηm,i
∂βm,p

(4.25)

As in [98],

∂lm
∂θm,i

=
1

am,i(φ)

(
ym,i −

∂b(θm,i)

∂θm,i

)
= ym,i − ŷm,i (4.26)

∂θm,i
∂ŷm,i

=
1

var ŷm,i
(4.27)

∂ηm,i
∂βm,p

= Xij (4.28)

This leads to the the equation:

∂l

∂βm,p
=

n∑
i=1

(ym,i − ŷm,i)Xij

var ŷm,i

∂ŷm,i
∂ηm,i

= 0 for p = 1, 2 (4.29)

Equation (4.29) can be expressed in the matrix notation as:

XTVm(Ym − Ŷm) = 0 (4.30)

Vm is a diagonal matrix with 1
var ŷm,i

∂ŷm,i

∂ηm,i
as its ith diagonal element.

The matrix equation (4.30), contains equations which are non-linear func-
tions of the βm vector, denoted as f(βm) = 0. Generally, it is not possible
to solve f(βm) explicitly in terms of βm. Hence, we solve the set of non-
linear equations f(βm) = 0 iteratively using the numerical Newton-Raphson
method [99]. In this method, we take the linear approximation of f(βm) in
the neighbourhood of a point βtm using Taylor series as below:

f(βtm) +
∂f(βtm)

∂βTm
(βm − βtm) (4.31)

where t is the iteration index and βTm denotes the matrix transpose of βm.
Equating (4.31) to zero, we can approximate βt+1

m as follows:

βt+1
m = βtm −

f(βtm)

(∂f(βt
m)

∂βT
m

)
(4.32)

Starting from an initial β0
m and iteratively solving equation (4.32), βm con-

verges to a solution. In our case, f (βtm) =
∂l(βt

m)
∂βm

= XTV t
m(Ym − Ŷ t

m) is
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termed as the score function. The term −∂f(βm)
∂βT

m
= − ∂2l(βm)

∂βm∂βT
m

is known as the

Fisher information [98] and is usually replaced by its expectation

I(β) = E
∂l(βm)

∂βm

∂l(βm)

∂βTm

= E[XTVm(Ym − Ŷm)
{
XTVm(Ym − Ŷm)

}T
]

= E[XTVm(Ym − Ŷm)(Ym − Ŷm)TVmX]

= XTWmX (4.33)

where Wm = Vm(covYm)Vm is a diagonal matrix with diagonal elements

[Wm]ii = 1
var ŷm,i

(
∂ŷm,i

∂ηi
)2 = nti ∗ ŷm,i ∗ (1− ŷm,i). Hence, (4.32) becomes

βt+1
m = βtm + (XTW t

mX)−1XTV t
m(Ym − Ŷm

t
)

= St[XTW t
mXβ

t
m +XTV t

m(Ym − Ŷm
t
)] (4.34)

= StXTW t
m[Xβtm +

(
W t
m

)−1
V t
m(Ym − Ŷm

t
)] (4.35)

which takes the final form as

βt+1
m = StmX

TW t
mz

t
m (4.36)

where
Stm = (XTW t

mX)−1

ztm = Xβtm + U t
m(Ym − Ŷm

t
)

and U t
m = (W t

m)−1V t
m is a diagonal matrix with elements [Um]tii =

∂ηt
m,i

∂ŷt
m,i

=
1

ŷt
m,i(1−ŷt

m,i)
.

As mentioned earlier, during the a priori knowledge incorporation process,
different weights are assigned to the a priori and generated data points. This
can be achieved by using H t

m = W t
m ∗A instead of W t

m in (4.36) where A is
a diagonal weight matrix with Aii being the weight assigned to the ith data
point. However, we don’t alter U t

m by replacing its W t
m matrix because U t

m

only scales the residual error.

A priori diagonal weight matrix A calculation

Let N1 be the number of the a priori data points in matrix Y . Initially,
Aii = x% if yi is a generated data point and Aii = 100−(n−N1)x

N1
% if yi is an a

priori data point. However, in the case (n−N1)x exceeds a certain threshold
Wth, meaning that the generated data points have become more important
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than the a priori data points, we assign greater overall weight of Wnew% to
newly generated data points. Hence, Aii = Wnew

(n−N1)
% if yi is the generated

data point and Aii = 100−Wnew

N1
% if yi is an a priori data point.

The complete, a priori knowledge incorporated, system model or βm es-
timation algorithm is given as

Initialization:
1. X ← values Xij

2. Ym ← values ym,i
3. zm ← f−1

log (ym,i)

4. bm ← (XTX)−1XT zm
Repeat until bm converges:
5. ηm ← Xbm
6. ŷm,i ← flog(ηm)
7. [Um]ii = 1

ŷm,i(1−ŷm,i)

8. [Wm]ii = ntm,i ∗ ŷm,i ∗ (1− ŷm,i)
9. zm ← Xbm + Um(Ym − Ŷm)
10. Sm ← (XTHmX)−1

11. bm ← SmX
THmzm

End Repeat

bm is the matrix containing the estimated values of βm

4.5.3 Automated healing model

The details of the adaptation of SLAH to interference mitigation in a LTE
network is the same as in Section 4.4.2.2. While the details of interference
mitigation model are given in Section 4.4.2.1.

The complete SLAH algorithm, with the a priori enhancement modifica-
tions, is written as in Table 4.6:

4.5.4 ICIC automated healing use case

4.5.4.1 Simulation scenario

A LTE network comprising 45 eNBs in a dense urban environment is depicted
in Figure 4.10. Downlink transmissions are considered here. The simulation
parameters are listed in Table 4.7. A MATLAB LTE simulator described in
Section 4.4.3.1 has been used [89] [100].
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Initialization:
1. Identify the most coupled eNB s with eNB c among
the neighbours in NS1
2. For each eNBj, j ∈ c ∪NS1, choose an initial set of n data points P j

n

according to a priori information
3. Assign equal weight to all the diagonal elements of A.
Repeat until convergence:
4. For each eNBj, compute statistical model using LoR for FTT and BCR
using the corresponding data points in P j

n

6. Compute a new vector (αj), j ∈ NS1 (using equations (4.12)
and (4.15) or (4.16))
7. Apply (αj) in the network/simulator and observe (FTTj) and (BCRj)

, j ∈ c ∪NS1. Compute new data point pjn+1

8. Update P j
n+1: P j

n+1 = P j
n ∪ p

j
n+1

9. n=n+1
10. calculate A

Table 4.6: The complete SLAH Algorithm

Parameters Settings
System bandwidth 5MHz
Cell layout 45 eNBs, single sector
Maximum eNB transmit power 32 dBm
Inter-site distance 1.5 to 2 KM
Subcarrier spacing 15 kHz
PRBs per eNB 24 (8 in each sub-band)
Path loss L=128.1 + 37.6 log10(R), R in kilometers
Thermal Noise Density -173 dBm/Hz
Shadowing standard deviation 6 dB
Traffic model FTP
File size 6300 Kbits
PRBs assigned per mobile 1 to 4 (First-come, first-serve basis)
Mobilty of mobiles No

Table 4.7: The system level simulation parameters.
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For each new value of α the simulator runs for 2500 time steps (seconds) to
allow the convergence of the processed KPIs. The BCR and FTT KPIs used
by the SLAH algorithm are averaged at an interval varying from 500 to 2500
seconds while discarding the first heating time samples. It is noted that for a
given traffic demand, the BCR provides a capacity indicator while the FTT
is more related to the user perceived QoS. The interference matrix elements
used in equations (4.12) and (4.14) are calculated once for the reference
solution (see paragraph below) during a longer time interval varying from
500 to 7000 seconds to achieve higher accuracy.

Reference Solution

An optimal default value for α is chosen as 0.5 for all eNBs in the network
and will serve as the reference (default) solution. The calculation of reference
solution is given in Section 4.4.3.1. The value of α = 0.5 is selected due to
the smaller inter-cellular interference and the minimum energy consumption
in the network.

4.5.4.2 Automated healing scenario

A problematic eNB with the worst performance in the reference network of
Figure 4.10, namely eNBc=13, is selected for troubleshooting using the SLAH
algorithm. The eNBj, where j ∈ NS1 = {14, 15, 22, 23, 43, 45}, is one of the
six first tier geographical neighbours of eNBc=13. It is recalled that the
SLAH modifies the α parameters of eNBj while leaving unchanged αc which
is fixed to the reference default value of 0.5. The set NS2 of the second
tier neighbours of the problematic eNB consists of eNB1, eNB10, eNB11,
eNB16, eNB18, eNB24, eNB37 and eNB44. Denote by optimization zone the
subnetwork comprising eNBc=13 and its first tier NS1, and by evaluation
zone the subnetwork comprising the eNBc=13 and its first two tiers NS1 and
NS2. The eNBs=45 is the eNB most coupled with eNBc=13.

4.5.4.3 A priori knowledge assumption

As mentioned earlier, the a priori data points can be obtained from a data
base of eNBs, from the network or produced artificially by the network ex-
pert. The a priori knowledge for an eNB is given as a set of KPI curves used
by the SLAH algorithm. Extensive numerical experimentations have shown
that the important features of the a priori curves are given by their ten-
dency, namely the monotonous increasing or decreasing behaviour, following
a typical behaviour of the KPI. It is noted that the effectiveness of the SLAH
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method empowered by the a priori knowledge is little affected by the ampli-
tude of the a priori KPI curves, rendering more efficient the troubleshooting
process. The same holds for small variations in the curves’ shapes, as long
as the correct monotonous property is used. In the troubleshooting scenario
analyzed in this section, the a priori KPI curves have been taken from a
different scenario with different eNBs studied in Section 4.4.3, as shown in
Figures 4.21 and 4.22 for BCR and FTT respectively.

Figure 4.21: A priori curves and data points for BCR as a function of αs=45.

Figure 4.22: A priori curves and data points for FTT as a function of αs=45.

The four a priori data points from which these a priori curves can be
reconstructed are given as in Table 4.8. Here BCRneigh and FTTneigh denote
the a priori curves used for each neighbour in NS1.
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αs BCRc BCRneigh FTTc FTTneigh

0.1 0.03 0.08 14 23.5
0.275 0.035 0.075 16 23
0.725 0.7 0.045 21 13
0.9 0.71 0.028 22 10

Table 4.8: Table showing a priori data points

αc=13 αj=14 αj=15 αj=22 αj=23 αj=43 αs=45

0.50 0.79 0.61 0.84 0.95 0.71 0.55
0.50 0.79 0.60 0.84 0.95 0.70 0.54
0.50 0.87 0.76 0.90 0.97 0.83 0.73
0.50 0.81 0.65 0.86 0.95 0.74 0.60
0.50 0.81 0.64 0.85 0.95 0.74 0.59
0.50 0.81 0.64 0.85 0.95 0.74 0.59
0.50 0.81 0.64 0.85 0.95 0.74 0.59
0.50 0.81 0.64 0.85 0.95 0.74 0.59

Table 4.9: Shows the α values calculated during optimization.

The matrix A is recalculated before each optimization iteration. Let n be the
number of data points at each optimization iteration. Initially, Aii = x% =
20% is the weight assigned to each generated data point and the weight
assigned to each a priori data point is Aii = 100−(n−4)20

4
%. However, when

total weight (n−4)x assigned to the generated data points exceeds Wth = 75,
this means that generated data points have become more important than a
priori data points. Hence, the total overall weight of Wnew = 90% is assigned
to the generated data points. Hence, the weight of Aii = 90

n−4
% is assigned

to each generated data point. While weight of Aii = 100−90
4

% is assigned to
each a priori data point.

4.5.4.4 Results

Table 4.9 shows the convergence of αs=45 after the application of the a priori
incorporated SLAH. The initial value of αs = 0.55 is generated using the
a priori knowledge. After 4 iterations of the troubleshooting algorithm, αs
converges to value of αs = 0.59. Figure 4.23 compares the convergence of
αs in the case of a priori incorporated (continuous line) SLAH with the one
not using the a priori information (dashed line). It is apparent that less
number of iterations are required in the former case as we don’t need to do
iterations in order to generate the data points for initial model estimation.
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Furthermore, this initial model is very sensitive to noise as it is derived from
few points. Hence, using the noise free a priori data points for initial model
estimation has resulted in a smoother and quicker convergence, as is evident
from the blue curve.
It is also apparent from Figure 4.23 that in the abscence of the a priori
knowledge, the values of αs=0.05 and 0.95 may be very low or high for an
operating network. The data points corresponding to these αs values are
generated in order to get the exact behaviour of the initial model over whole
αs range.

Figure 4.23: Figure showing the convergence of αs=45 with and without a
priori knowledge incorporated algorithm.

Figure 4.24 and Figure 4.25 show, the final BCR and FTT curves, re-
spectively, after αs=45 convergence. The KPI curves for eNBc=13, eNBj=15,
eNBj=22 and eNBj=43 are shown while the KPI curves for eNBj=14 and
eNBs=45 are not shown as they show a similar trend. The points encircled in
green show the a priori data points for the neighbouring eNBs. The points
encircled in red show the a priori data points for the central eNB. It is ev-
ident from the KPI curves that in the end of the optimization process, the
effect of initially assumed a priori data points has almost disappeared, as
the KPI curves follow the newly generated KPI data points and have shifted
away from the initial a priori points. The convergence of αs=45 can be seen
from the concentration of KPI points around αs=45 = 0.59 in the two figures.

The BCR of eNBc=13 improves from value of 5.28% to 3.96% and its
FTT decreases from 16.9362 to 15.1480. Figures 4.26(a) and 4.26(b) show,
in descending order, the BCR and the FTT respectively for the reference
(square) and the optimized (circle) eNBs in the evaluation zone. It is noted
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Figure 4.24: Mean BCR values of eNBc=13, eNBj=15, eNBj=22 and eNBj=43

along with the corresponding regression curves as a function of αs=45.

Figure 4.25: Mean BCR values of eNBc=13, eNBj=15, eNBj=22 and eNBj=43

along with the corresponding regression curves as a function of αs=45.
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that the order of the stations in the two curves of each figure may not be
preserved. The performance of the problematic eNB has been improved while
the performance of the neighbouring eNBs in the evaluation zone has, on the
average, improved. The average improvement of BCR is 25%, while that of
FTT is 11.88%. The troubleshooting scenario has been repeated six times
with and without the a priori knowledge incorporation. It has been observed
that in the absence of the a priori knowledge the mean number of iterations
required for SLAH convergence is 19.6. With the use of a priori knowledge
the number of iterations is reduced to 10.

4.6 Enhancement of the Statistical Learning

Automated Healing (SLAH) technique us-

ing packet scheduling

This section investigates the use of packet scheduling in conjunction with
the SLAH methodology in order to obtain the optimal performance for the
problematic eNB and its first-tier neighbours. It is assumed that the cause
of the bad performance of an eNB is diagnosed as excessive interference from
neighbouring eNBs. In the first step, SLAH is used for this interference
mitigation using Inter-cell Interference Coordination (ICIC), by adjusting
interference from first tier nieghbouring eNBs.

During the second step, packet scheduling i.e., α-fair scheduling in our
case [94], is used to further enhance the performance of the problematic
eNB and its first tier neighbours. The α-fair scheduler includes well known
schedulers such as Proportional Fair (PF), Max Throughput (MTP) and
Max-Min Fair (MMF) schedulers.

Small adjustment of α-fair scheduler of an eNB has very little effect on
the KPIs of the neighbouring eNBs. Hence, after solving the problem of the
problematic eNB by application of the SLAH methodology, the α parameter
optimization can be used to obtain an additional improvement using capac-
ity/coverage compromise for each eNB individually. This coverage/capacity
compromise enables us to achieve the required minimum coverage constraint
on an eNodeB (eNB). On the other hand, if minimum coverage requirement
of an eNB is already satisfied, additional capacity gain for an eNodeB (eNB)
can be achieved. α parameter optimization is also carried out using the same
principles as the SLAH, i.e., statistical learning combined with an optimiza-
tion engine. This work investigates the optimization of α parameter in offline
mode, so that it is computationaly light and implemented in Operation and
Maintenance Center (OMC) alongwith the SLAH algorithm. This combined
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(a)

(b)

Figure 4.26: KPIs for the eNB in the evaluation zone in descending order for
mean BCR (a) and mean FTT (b).
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methodology, its implementation and a detailed LTE use case are described
where automated healing of a faulty Inter-cell Intereference Coordination
(ICIC) parameter is done. This new methodology is suitable for operating
RANs as it converges in few iterations and is computationaly less intensive.

4.6.1 Relation to generic automatd healing block dia-
gram

As indicated above, we assume that the fault cause has been diagnosed; our
focus is only on the problem resolution phase. The generalized block dia-
gram and its details that describes the basic principles behind the Statistical
Learning Automated Healing Methodology (SLAH) are presented in Section
4.2 and Section 4.4.1. This block diagram is used to tune the ICIC and the
packet scheduling parameters. However, the Optimization block is modified
as follows:

• Optimization: The aim of the optimization problem is to determine x̂
i.e., the value for a RRM parameter x that minimizes a cost function of
a set of KPIs denoted as the optimization set Ao, subject to constraints
on a second set of KPIs denoted as the constraint set Ac. The utility
function U is given as

U =
∑
m∈Ao

wmŷm (4.37)

where

– ŷm has the functional relation form as in (4.8).

– wm is the weight given to ŷm.

The optimization problem is formulated as follows:

x̂ = argmaxxU(x) (4.38)

subject to
ŷh(x̂) < thh ∀ h ∈ Ac

where thh is the threshold for ŷh.

4.6.2 α-fair scheduler

Consider a LTE eNB with N users, using OFDMA as access technology.
In OFDMA, the total frequency bandwidth of the cell is subdivided in K
Physical Resource Blocks (PRBs). The scheduling policy P chooses a user
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for transmission on each PRB for scheduling instant (tu)u∈N. The notation,

P
(k)
tu = i signifies that PRB k is assigned to user i for transmission at schedul-

ing instant tu. The instantaneous throughput of user i on PRB k at instant
tu is denoted as r

(k)
i,tu

. Whereas, r
(k)
i,tu

defines the mean throughput of user i
on PRB k during the time interval [t0, tu]. If ε > 0 denotes a small averaging

parameter, r
(k)
i,tu

is defined as [95]:

r
(k)
i,tu+1

= (1− ε)r(k)
i,tu

+ εδ
P

(k)
tu+1,i

r
(k)
i,tu+1

(4.39)

here δ denotes Kronecker’s delta.
The user to schedule for transmission at time tu+1 on PRB k is chosen

as:

i∗(k) = argmax0≤i≤N
r

(k)
i,tu+1(

r
(k)
i,tu

+ d
)α (4.40)

here ri,t0 = 0 ∀ i. d > 0 avoids singularity at zero and should be as small as
possible.

Consequently, the mean throughput of user i in the time interval [t0, tu]
is denoted as

ri,tu =
K∑
k=1

r
(k)
i,tu

(4.41)

We suppose that all the scheduling resources of an eNB are utilised even
if there is at least a single user connected to it. Hence, in this case, changing
the α parameter of the eNB has little effect on the KPIs of neighbouring
eNBs.

It is evident from (4.40) and (4.41) that when α = 0, the α-fair scheduler
can be characterized as Maximim Throughput (MTP) scheduler. Hence for
α = 0→ 1, the α fair scheduler evolves from MTP to Proportional Fair (PF)
scheduler. Similarly, for α = 1 → ∞, the PF scheduler evolves into Max-
Min Fair (MMF) scheduler. This signifies that for α = 0→∞, ri (capacity)
changes from a maximum value to a minimum value, while number of users
served (coverage) changes from a minimum to maximum value to achieve
fairness in the PF scheduler.

4.6.3 Automated healing algorithm

In this section, we describe the use of SLAH in conjunction with α-fair
scheduling in order to achieve the required Quality of Service (QoS) ob-
jective. The cause of the degraded performance of an eNB is assumed to be
due to excessive inter-cell interference.
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In the first step, SLAH automated healing methodology uses the Inter-cell
Interference Coordination (ICIC) for the mitigation of excessive intereference.
The details of SLAH methodology and ICIC scheme are explained in 4.4.2.2
with the ICIC RRM parameter α renamed as γ in this section for the sake of
clarity. The KPIs chosen for SLAH are the mean Block Call Rate (BCR) and
the mean Average Bit Rate (ABR) of mobiles attached to an eNB. The sub-
script, in the mathematical notation of a KPI or a RRM parameter denotes
the corresponding eNB. NS1 is the set of first tier neighbours of the prob-
lematic eNB, eNBc. In SLAH we achieve our QoS objective by optimizing
γs. Where eNBs is the most coupled eNBj, j ∈ NS1, with eNBc in terms
of interference. This coupling is determined by the intereference matrix [4]
element Icj. Icj is the sum of interference experienced by mobiles attached to
eNBc caused due to downlink transmissions of eNBj, j ∈ NS1. The SLAH
optimization objective in this case is defined as the utility function:

U1 = ABRc +
∑
j∈NS1

ωjABRj. (4.42)

As mentioned in SLAH methodology, the KPIs ABRj and BCRj are logistic
function of γs as in equation (4.8). The weighting coefficients ωj depend on
the relative contribution of Icj with respect to the sum on all eNBs in NS1
and are given by:

ωj =
Icj∑

l∈NS1 Icl
(4.43)

satisfying the condition
∑

j∈NS1 ωj = 1. The optimization problem is formu-
lated as follows:

γs = argminγ′sU1(γ′s) (4.44)

subject to BCRq < ThBCR ; q ∈ c∪NS1. ThBCR is the maximum allowable
threshold for BCR.

In the second step, we optimize the individual eNBqs, q ∈ c ∪ NS1,
by optimizing the corresponding αqs in order to achieve coverge/capacity
compromise. As mentioned in Section III, varying αq of an eNB has little
impact on the KPIs of the neighbouring eNBs. Hence, we can optimize αq of
an eNB independently of its neighbours. In order to achieve our optimization
objective we try to maximize following utility function:

U2 = argmaxαq(ABRq) ; q ∈ c ∪NS1 (4.45)

subject to BCRq < ThBCR − δ.
Here, δ is a small number that ensures that after optimization BCRq

does not exceed ThBCR. It is noted that ABRq and BCRq are the logistic
functions of αq as in equation in (4.8).
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A data point pqk is denoted by the vector pqk = (αq, ABRq, BCRq)k, where
q ∈ c ∪NS1 and k denotes the iteration index. The α-fair scheduling based
enhancement procedure starts with few initial data points and a new data
point is generated after each optimization iteration. Hence, the iteration
index equals the total number of generated data points. P q

k denote a set of
k data points for eNBq, q ∈ c ∪NS1.

The complete automated healing algorithm is given below as:

1. Apply SLAH algorithm as given [4] untill γs, converges to an
optimal value.
Initialization:
2. Generate the initial set of k data points P q

k , q ∈ c ∪ NS1, by
applying k different αq values to the network/simulator one by one
and obtaining the corresponding KPIs.
Repeat until convergence:
3. For each eNBq, compute the statistical model using LoR for
BCR and ABR using the corresponding data points in P q

k

4. Compute a new αq, q ∈ c ∪NS1 (using equation (4.45))
5. Apply the new αq values to the network/simulator and observe
(ABRq) and (BCRq), q ∈ c ∪NS1.
Compute the new data point pqk+1

6. Update P q
k+1: P j

k+1 = P q
k ∪ p

q
k+1

7. k=k+1

4.6.4 Simulations and results

4.6.4.1 Simulation scenario

A LTE network composed of 27 eNBs in a dense urban environment, as de-
picted in Figure 4.27, is simulated using MATLAB-based simulator described
in 4.4.3.1. We consider downlink transmissions. The simulation parameters
are listed in Table 4.10.

The simulator takes the Monte Carlo snapshots of the simulated network
at each time step of one second. These snapshots account for the time evolu-
tion of the network. After each time step, the position of mobile terminals are
updated, Call Admission Control (CAC) is performed for new users, mobile
Handovers HOs are carried out and some mobiles leave the network because
either their session duration is completed or they are dropped.

Streaming traffic supporting the H.264 standard with variable bitrate
varying from 64 Kbits/sec to 50 Mbits/sec is considered. The CAC procedure
of a new user is defined as follows: Given the SINR of the users in a cell, if
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Figure 4.27: The network diagram of the simulated system.

a new user arrives, its bit rate is calculated alongwith the already scheduled
users using (4.41). (4.41) uses (4.40) which calculates r

(k)
i,tu+1

from S
(k)
i,tu+1

(i.e., SINR of user i on PRB k at tu+1), using quality tables obtained from
link level simulations. The new user is only admitted if its bit rate is above
64 Kbits/sec. Otherwise, the new user is blocked.

The streaming session of a user is dropped if its bit rate falls below the
threshold of 64 Kbits/sec for 5 consecutive seconds.

The mean ABR is an indicator of the capacity of an eNB. On the other
hand, the mean BCR is used as the coverage indicator. Lower α value setting
for an eNB means that lower SINR users will get less resources. Hence, a low
SINR user may be not be admitted to the eNB because of the CAC procedure
described in the previous paragraph. This results in higher mean BCR (bad
coverage) and higher mean ABR (good capacity). On the other hand, higher
α means that lower SINR users are assigned resources to achieve fairness and
are admitted by eNB. This results in a lower mean BCR (good overage) and
lower mean ABR (bad capacity).

For each new α or γ value, the duration of each simulation is 3300 time
steps. While calculating KPIs, in order to account for initial transient effects,
the KPIs are averaged starting from 500 seconds. However, the interference
matrix I used in the SLAH algorithm is calculated over time intervals from
500 to 7000 seconds, using reference solution or the default γ=0.5 [4], for an
increased accuracy. The default α value of an eNB is set to 1.
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Parameters Settings
System bandwidth 5MHz
Cell layout 45 eNBs, single sector
Maximum eNB transmit power 32 dBm
Inter-site distance 1.5 to 2 KM
Subcarrier spacing 15 kHz
PRBs in each sub-band 18 (6 in each sub-band)
Path loss L=128.1 + 37.6

log10(R), R in kilome-
ters

Thermal noise density -173 dBm/Hz
Shadowing standard deviation 6 dB
Traffic model streaming to support

H.264 video bit rates
Streaming session duration 30sec
Packet scheduling scheme α-fair scheduling
Mobility of mobiles 20%
Mobile speed 8.33 m/s

Table 4.10: System level simulation parameters

4.6.4.2 Automated healing scenario

A problematic eNB with the worst performance in the simulated network
of Figure 4.27, namely eNBc=1, is selected for automated healing using the
SLAH algorithm. The eNBj, where j ∈ NS1 = {2, 3, 11, 14, 15, 18}, is one
of the six first tier geographical neighbours of eNBc=1. The set NS2 of
the second tier neighbours of the problematic eNB consists of eNB4, eNB7,
eNB8, eNB10, eNB12, eNB13, eNB16, eNB17, eNB19, eNB21, eNB23 and
eNB27. Denote by optimization zone the subnetwork comprising eNBc=1

and its first tier NS1. Hence, eNBq, q ∈ c ∪ NS1, denotes an eNB of the
optimization zone.

4.6.4.3 Results

After the first step of the SLAH optimization γs=3 converges to a value of
0.49 with the corresponding values of γj=2 = 0.70, γj=11 = 0.74, γj=14 = 0.96,
γj=15 = 0.68 and γj=18 = 0.74. There is a 61% improvement in mean BCR of
problematic eNBc=1 as compared to the reference solution value. The mean
BCR of eNBc=1 decreases from a value of 11.98% to 4.62% i.e., below the
maximum allowable threhold of 5%. The mean BCR of NS1 is improved by
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αc=1 αj=2 αs=3 αj=11 αj=14 αj=15 αj=18

P
h

a
se

I

0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.40 0.40 0.40 0.40 0.40 0.40 0.40
0.7 0 0.70 0.70 0.70 0.70 0.70 0.70

1 1 1 1 1 1 1
1.3 1.3 1.3 1.3 1.3 1.3 1.3

P
h

a
se

II 1.2 0.8 1.2 0.6 0.1 0.9 0.7
1.2 0.8 1.2 0.6 0.1 0.8 0.7
1.2 0.8 1.3 0.6 0.1 0.9 0.8
1.2 0.8 1.3 0.6 0.1 0.9 0.8

Table 4.11: Phase-I shows the initially chosen αq values for optimization zone
. Phase-II shows the αq values calculated during optimization.

19%. However, these improvements are at the cost of 4% decrease in mean
ABR of the optimization zone.

In the second step, the optimization using α-fair scheduling is carried out.
The convergence of inidividual αq values is shown in table 4.11. Almost all
the αq values converge to an optimal value just after 4 iterations during the
optimization phase.

Figure 4.28(a) and 4.28(b) show mean BCR and mean ABR curves, re-
spectively, for eNBc=1, eNBq=2, eNBq=3 and eNBq=15 after convergence by
α-fair optimization. The covergence of this scheme is apparent from the con-
centration of data points around final αq values. The KPI curves of eNBq=11,
eNBq=14 and eNBq=18 are not shown for the sake of clarity as they follow a
similar trend.

After the α-fair optimization, an improvement of 3.10% in mean ABR of
optimization zone as compared to its value after SLAH optimization. On the
other hand, the degradation in mean BCR of each eNB in the optimization
zone remains below the threshold of 5%.

4.7 Application of SLAH for LTE mobility

The details of SLAH are the same as explained in Section 4.2 and 4.4.1. The
enhancement using a priori knowledge or α fair scheduling is not done in
this case. The Optimization block diagram is modeifed as:

• Optimization: The aim of the optimization problem is to determine x̂
i.e., the value for a RRM parameter x that minimizes a cost function of
a set of KPIs denoted as the optimization set Ao, subject to constraints
on a second set of KPIs denoted as the constraint set Ac. The utility
function U is given as

U =
∑
m∈Ao

wmŷm (4.46)
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(a)

(b)

Figure 4.28: Mean KPI values and LoR regression curves as a function of αq
for eNBq=1, eNBq=2, eNBq=3 and eNBq=15 (a) mean BCR (b) mean ABR.
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where

– ŷm has the functional relation form as in (4.8).

– wm is the weight given to ŷm.

This section discusses the adaptation of SLAH for the automated heal-
ing of mobility in LTE, in terms of the handover margin which deter-
mines the handover process from one eNB to an adjacent one. The
LTE Mobility model used is same as in Section 2.7. The simulation
results, which we obtain for a practical use case, show the advantage
of this new, automated troubleshooting methodology.

4.7.1 Adaptation of SLAH to mobility parameter

We now consider the adaptation of the troubleshooting algorithm to the
mobility parameter of the LTE network by optimizing the HM param-
eter of the degraded eNBs. We assume that the cause of the degraded
performance has been diagnosed and is related to a bad mobility pa-
rameter setting of the mobile terminals attached to the problematic
eNB and its first tier neighboring eNBs.

Let us denote by eNBc (c standing for central) an eNB with degraded
performance. Let NS1 and NS2 denote the set of first and second tier
neighbouring eNBs of eNBc, respectively. Hence, eNBj where j ∈ NS1
and eNBt where t ∈ NS2, denote the first and second tier neighbours
of eNBc respectively.

To heal eNBc, HMjc, j ∈ NS1, are updated and optimized. In order
to reinforce the effect of optimization of HMjc on the KPIs, the HMjt

and HMcj for the immediate geographical neighbours are calculated as
a function of HMjc, given as: HMcj = HMmax −HMjc and HMjt =
HMjc, where HMmax is the maximum HM value between any two
eNBs.

We use the notion of coupling between eNB j and c which is expressed in
terms of the interference that eNBj produces on the mobile terminals
connected to eNBc and can be written in terms of the interference
matrix element Icj [85] [86]. Hence the larger Icj, the stronger the
coupling between the two eNBs. In this work, the matrix element Icj is
equal to the sum of the interferences perceived by the mobile terminals
attached to eNBc and generated by the downlink transmissions to the
mobile terminals of eNBj.
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The use of SLAH to jointly optimize all the elements of the vector
(HMjc), j ∈ NS1, is not a simple task. Denote by s, s ∈ NS1,
the index of the eNB which is the most coupled with eNBc, namely
s = argmaxj(Icj), s and j ∈ NS1. To reduce the complexity of the
SLAH process and to enhance its scalability, we propose to adjust the
HMjc parameter according to the degree of coupling between eNBj

and eNBc.

Hence, we define a functional relationship between HMsc and HMjc,
HMjc = gj(HMsc), that accounts for the coupling terms Ics and Icj
mentioned above, as follows:

HMjc = gj(HMsc) = HMsc + (12−HMsc)(1−
Icj
Ics

) (4.47)

By using Eqn. (4.47), just one parameter, HMsc, needs to be opti-
mized.

The process is scalable in the sense that the automated healing can be
performed simultaneously on any number of eNBs provided they are
not direct neighbours.

Two KPIs are used in the SLAH process: the Average Bit Rate (ABR)
and the Block Call Rate (BCR) of the mobile terminals attached to an
eNB. SLAH aims at maximizing the ABR for eNBc and of its direct
neighbours while verifying the constraints on BCRj, j ∈ c ∪NS1.

We define the utility function used for optimization as:

U = ABRc +
∑
j∈NS1

ωjABRj (4.48)

It is noted that ABRj is a function of HMjc and hence, via equa-
tion (4.47), of HMsc. ABRj also depends on the interference from
its neighbouring eNBj. The weighting coefficients ωj depend on the
relative contribution of Icj with respect to the sum on all eNBs in NS1
and are given by:

ωj =
Icj∑

k∈NS1 Ick
(4.49)

satisfying the condition
∑

j∈NS1 ωj = 1.

The optimization problem can now be formulated as follows:

HMsc = argmaxHM ′sc
U(HM ′

sc) (4.50)



Chapter 4. Automated Healing by Statistical Learning 128

Initialization:
1. Identify the most coupled eNB s with eNB c among
the neighbours in NS1
2. For each eNBj, j ∈ c ∪NS1, compute an initial set of k

data points P j
k

Repeat until convergence:
3. For each eNBj, compute the statistical model using LR for ABR and

BCR using the corresponding data points in P j
k

4. Compute a new vector (HMjc), j ∈ NS1 (using equations (4.47)
and (4.50))
5. Apply (HMjc) in the network/simulator and observe (ABRj) and

(BCRj), j ∈ c ∪NS1. Compute new data point pjk+1 (equation (4.51))

6. Update P j
k+1: P j

k+1 = P j
k ∪ p

j
k+1

7. k=k+1
End Repeat

Table 4.12: The complete SLAH Algorithm

subject to BCRj < BCRth ; j ∈ c ∪NS1.

BCRth is the threshold for BCRj. The ABR and BCR indicators
in equations (4.48) and (4.50), are given in the form of a Logistic
Regression (LoR) function (Eqn. (4.8)) obtained using the Statistical
Learning block defined above.

Denote a data point pjk as the vector:

pjk = (HMjc, ABRj, BCRj)k ; j ∈ c ∪NS1 (4.51)

The set of k data points for an eNBj, j ∈ c ∪NS1, is denoted by P j
k .

The SLAH algorithm is given in Table 4.12.

The initial set P j
k of data points in Step 2 is obtained by applying k

(HMjc) vectors to the network/simulator one by one and obtaining the
corresponding KPIs.

4.7.2 Simulations and results

4.7.2.1 Simulation scenario

We consider a LTE network composed of 45 eNBs in a dense urban
environment, as depicted in Figure 4.10.
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The same Matlab LTE simaulator as described in 4.4.3.1 has been used.
The network simualtion parameters are given as in Table 4.13.

Parameters Settings
System bandwidth 5MHz
Cell layout 45 eNBs, single sector
Maximum eNB transmit power 32 dBm
Inter-site distance 1.5 to 2 KM
Subcarrier spacing 15 kHz
PRBs per eNB 21
Path loss L=128.1 + 37.6 log10(R), R in kilometers
Thermal noise density -173 dBm/Hz
Shadowing standard deviation 6 dB
Traffic model FTP
File size 5700 Kbits
PRBs assigned per mobile 1 to 3 (First-come, first-serve basis)
Mobility of mobiles 90%
Mobile speed 15 m/s
HMmax 12dB

Table 4.13: System level simulation parameters

The simulations are run for 3300 time steps, with a fixed HM value, and
the KPIs are averaged using the interval between 500 and 3300 seconds
to account for transient effects. The interference matrix elements used
in equations (4.47) and (4.49) are calculated once for the reference
solution, described next, during a longer time interval varying from 500
to 7000 seconds to achieve higher accuracy.

An optimal default value for HM is chosen as 6dB for all eNBs in the
network and serves as the reference (default) solution. This reference
solution is calculated in 4.4.3.1 and is used as a starting point for the
automated healing process.

4.7.2.2 Automated healing scenario

We now select, for the sake of illustration, eNBc=13 in the simulated
network of Figure 4.10 as the problematic eNB. The eNBj, where
j ∈ NS1 = {14, 15, 22, 23, 43, 45}, are the six first tier geographical
neighbours of eNBc=13. The set NS2 of the second tier neighbours of
the problematic eNB consists of eNB1, eNB10, eNB11, eNB16, eNB18,
eNB24, eNB37 and eNB44.
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HMjc

j = 14 j = 15 j = 22 j = 23 j = 43 j = s = 45

P
h

a
se

I

11.7 11.5 11.8 11.9 11.6 11.4
10.5 9 10.9 11.6 9.9 8.7
9.2 6.8 9.9 11.3 8.2 6
8 4.4 9 11 6.4 3.3

6.7 2 8 10.7 4.8 0.6
P

h
a
se

II

9.2 6.8 9.8 11.3 8.0 5.7
9 6.4 9.8 11.3 7.9 5.6

8.9 6.2 9.7 11.2 7.8 5.4
8.9 6.2 9.7 11.2 7.7 5.3
9 6.4 9.8 11.2 7.9 5.6

8.9 6.2 9.7 11.2 7.8 5.4
8.9 6.2 9.7 11.2 7.8 5.4

Table 4.14: Phase-I shows the initially chosen HMjc values. Phase-II shows
the HMjc values calculated during optimization.

Denote by the optimization zone the subnetwork comprising eNBc=13

and its first tier NS1, and by the evaluation zone the subnetwork com-
prising the eNBc=13 and its first two tiers NS1 and NS2. eNBs=45 is
the eNB most coupled with eNBc=13.

4.7.2.3 Results

The first five values of HMsc,s=45 in Table 4.14 are chosen in the ini-
tialization phase of SLAH. The next seven values (Phase-II in Table
4.14) are calculated iteratively by the SLAH algorithm. The values
of HMjc,j=14, HMjc,j=15, HMjc,j=22, HMjc,j=23 and HMj=43 are calcu-
lated using equation (4.47). In spite of the noisy data, one can see from
Phase-II that HMsc,s=45 converges in a few iterations. HMsc,s=45 = 5.4
is chosen as the optimized solution for the next Figures.

Figure 4.29(a) shows the mean BCR (points as well as extracted LR
curves) for eNBc=13, eNBj=22, eNBj=23 and eNBj=43 as a function of
HMsc,s=45 after convergence. For the sake of clarity, the mean BCR
curves for eNBj=14, eNBj=15 and eNBj=45 are not shown; they are
below the maximum allowable mean BCR threshold of 5%.

The concentration of mean BCR data points around HMsc,s=45 = 5.4
indicates the convergence of the SLAH algorithm.

The mean ABR along with its LR curves for eNBj=13, eNBj=15, eNBj=43

and eNBs=45, after convergence, are shown as a function of HMsc,s=45

in Figure 4.29(b).

The mean ABR curves for eNBj=14, eNBj=22 and eNBj=23 are, again,
not shown for the sake of clarity; they show a similar trend.
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(a)

(b)

Figure 4.29: Mean KPI values and LR regression curves as a function of
HMsc for eNBj=13, eNBj=22 and eNBj=43 (a) mean BCR (b) mean ABR.
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Figure 4.30(a) shows the gain brought about by the SLAH algorithm
for the optimization zone (set NS1 of eNBs). The mean BCR of the
problematic eNBc=13 is reduced below the threshold of 5% to 4.73%
with respect to the mean BCR value of the reference solution of 9.52%.
Similarly, after optimization, the mean BCR of each eNBs in NS1 is
below the 5% threshold.

(a)

(b)

Figure 4.30: KPI of the eNBs in the optimization zone for the reference
solution (white) and optimized (black) network conditions; mean BCR (a)
and mean ABR (b).

As of the mean ABR, the improvement obtained by the SLAH algo-
rithm in the optimized zone with respect to the reference solution is
shown in Figure 4.30(b). The mean ABR of eNBc=13 is increased by
2.79% whereas the average mean ABR of NS1 is increased by 2.51%.
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Figures 4.31(a) and 4.31(b) show, in a descending order, the mean
BCR and the mean ABR, respectively, for the reference (square) and
the optimized (circle) eNBs in the evaluation zone. It is noted that
the order of the stations in the two curves of each figure may not be
preserved. One can see that, on average, the mean BCR and the mean
ABR in the evaluation zone are improved. The average improvement
of the mean ABR in the evaluation zone is equal to 3.51%.

(a)

(b)

Figure 4.31: KPIs in descending order for the eNBs in the evaluation zone,
mean BCR (a) and mean ABR (b).

4.8 Conclusion

This chapter has presented an automated healing methodology that
uses a statistical learning approach for extracting a model from data.
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The model provides closed form expressions that approximate the func-
tional relations between KPIs and RRM parameteres. The model helps
in anticipating the behaviour of a network sub-system to new values of
RRM parameters. The model is subsequently used in the optimization
process for improving KPIs of the degraded eNB. The model improves
during each optimization iteration. An automated healing methodol-
ogy based on this principle denoted as SLAH is proposed that converges
to an optimal RRM value within few iterations. The case study of the
application of SLAH in the automated healing of ICIC and mobility
parameters of LTE is also proposed.

We also presented, in this chapter, the enhancement in SLAH auto-
mated healing methodolgy using α-fair packet scheduling. The SLAH
methodology has been used for LTE healing use case by sequentially
modifying inteference mitigation and packet scheduling parameters.
The results show that in the first step the coverage problem of an eNB
is removed using SLAH while minimizing the degradaion in capacity.
In the second step, the packet scheduling based enhancement optimizes
the capacity under the given coverage constraint.

Finally, this chapter shows how the a priori knowledge can be intro-
duced into- and improve the performance of the Statistical Learning
Automated Healing (SLAH) method. It has been shown that the a
priori knowledge can avoid an initially bad statistical model, and hence
increases robustness of SLAH as well as accelerate its convergence.



Chapter 5

Conclusion and Perspectives

5.1 Conclusion

This thesis report has described my research work related to automated
healing of LTE wireless networks using statistical learning. The auto-
mated healing is an important functionality of self organizing networks
(SON). The main goal of the thesis has been to propose effective, prac-
tical and robust automated healing algorithms for wireless networks.
This work is motivated by the necessity for wireless networks to sim-
plify and reduce the cost of network management on the one hand and
to provide a method to improve QoS of the end users in badly param-
eterized cells on the other hand. Lack of previous contributions in the
domain of automated healing has further motivated the work of this
thesis.

The automated healing methodogy developed uses the statistical mod-
eling of performance data from the network in the form of RRM-KPI
pairs. The statistical learning techniques used are the linear and logis-
tic regression. The linear regression is used beacause of its simplicity.
However, for certain cases it is not adapted and the logistic regression is
used because of its capability of modeling saturation effects in KPIs. A
generic automated RRM management architecture that utilises statis-
tical learning has been proposed. In this context, the results obtained
for the case studies of monitoring and auto-tuning of LTE network as
a part of generic RRM management architecture show the usefulness
of this approach.

A generic architecture for the automated healing methodology for wire-
less networks has also been proposed. Automated healing algorithms
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based on this architecture have been developed. These algorithms are
iterative, namely a new data point is generated in each iteration that
gradually improves the statistical model. RRM parameter optimiza-
tion approach in the context of automated healing takes into account
typical hard constraints for management teams, namely resolve the
problem in a short time with a small number of iterations. Due to the
small number of required iterations and data points, the traditional
optimization techniques are inappropriate for real network operations.
Hence, an important objective of this thesis has been to come up with
a new approach for automated healing in which bad RRM parameter
settings are optimized in a few iterations. The small number of it-
erations and low computational complexity of the proposed approach
makes it suitable for implementation in the OMC. The effectiveness
of this automated healing methodology has been demonstrated in two
case studies of automated healing, namely interference mitigation and
mobility parameters of LTE networks. This methodology has also been
applied to sequential automated healing of interference mitigation and
packet scheduling parameters.

The RRM optimization of the LTE networks, during automated heal-
ing process has been further enhanced, by incorporation of the a priori
knowledge into the automated healing methodology. The use of the a
priori knowledge has the advantage of avoiding a wrong initial model
due to noisy data, of allowing much faster convergence and of making
the method more suitable for the off-line implementation. This im-
proved methodology is applied for the automated healing of Inter-Cell
Interference Coordination (ICIC) parameter in a LTE network.

5.2 Perspectives

Different directions for the future works related to the thesis can be
envisaged. The automated healing methodology proposed can be ex-
tended to the automated healing of other RRM parameters of conges-
tion control, cell selection/reselection and other mobility parameters
such as timing advance etc.

The results obtained from the simulation use cases demonstrate the
benefits of our automated healing scheme. In the simulator, noise has
been generated numerically to adapt and test the robustness of the
automated healing scheme. There are some assumptions and approxi-
mations made in the simulation that may be different from an actual
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operating network. Hence, it is important to apply this automated
healing scheme on the data from the real network to verify the effec-
tiveness of this automated healing methodology. It is noted that the
methodology developed in this thesis is about to be tested on a real
UMTS network.

In future research, more attention can be focused on multi-RRM pa-
rameter automated healing aspect. In this thesis, we have limited our-
selves to the automated healing of the fault caused by one RRM param-
eter. At the most, we have considered a self healing process which ad-
justs two RRM mechanisms, namely interference mitigation and packet
scheduling in a sequential iterative manner. Similarly, the automated
healing can be developed to heal, at the same time, the fault caused by
multiple faulty RRM parameters. However, this problem will require
the modeling of KPIs as a function of multiple RRM parameters, hence
the number of initial data points will increase exponentially.

As mentioned in this thesis, the initial model in the SLAH methodol-
ogy is very sensitive to the noise in calculated data points due to their
small number. In order to overcome this problem, an approach can be
adopted that involves measuring the reliability in the estimated model.
A measure of reliability of the estimated model may enable us to cal-
culate the amount of exploration required in the solution space of the
RRM parameter to increase its accuracy. This leads to a more accu-
rate model and results in faster convergence of the automated healing
algorithm.
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Appendix A

LTE interference model

Starting from the interference coordination scheme, presented in section
2.4, we assume that the spectral band is composed of C resource blocks,
one third of the band is reserved for the cell edge users and the rest is
for cell centre users.

The resource allocation is made according to users’ received signal qual-
ity. The users with the worst quality signal are assigned to cell edge
band. When the cell edge band is full, the remaining unassigned users
are assigned to cell center band. The eNB transmit power in each cell-
edge resource block equals the maximum transmit power P . To reduce
intercell interference, the eNB transmit power in the cell-centre band
must be lower than P . Let εP (where ε ≤ 1) be the transmit power in
the cell-centre band.
The interference should be determined for two different users accord-
ing to their positions: the cell-centre user and the cell-edge user. Let
mc and me be two users connected to a cell k. the mobile mc uses
the central band whereas me uses the cell-edge band. Let denote the
interference matrix between cells, where the coefficient Λ(i, j) equals 1
if cells i and j use the same cell-edge band and zero otherwise.
For cell-edge user me, the interference comes from users in the cell cen-
tre of the closest adjacent cells and from the cell-edge user in other
cells. The mobile me connected to the cell k and using one resource
block in the cell-edge band, receives an interfering signal from a cell i
equals

Ii,me = ((1− Λ(k, i)) βciPi + Λ(k, i)βeiPi)
Gi,me

Li,me

(A.1)

where Pi is the downlink transmit power per resource block of the cell
i. Gi,me and Li,me are respectively the antenna gain and the path loss
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between cell i and the mobile station me. The factor βci (respectively
βei ) is the probability that the same resource block in the cell-centre
band (respectively the cell-edge band) is used at the same time by
another mobile connected to the cell i.
Since the analysis considers a long time scale (of the order of seconds),
the interference is averaged. So, the factor βci is the percentage of users
using cell-centre band and βei is the percentage of those using cell-edge
band

βci =
occupied resource blocks in cell center band

total capacity of cell center band
=

Mc

2C/3

βei =
occupied resource blocks in cell edge band

total capacity of cell edge band
=

Me

C/3

Mc and Me are the number of resource blocks used in the cell centre
and cell edge respectively, and the sum Mc + Me is the total number
of resource blocks used in the cell. Let χi be the load of cell i given by

χi =
Mc +Me

C
(A.2)

Define the factor αi as the proportion of traffic served in the cell-edge
band, αi = Me/(Mc +Me). The factors βci and βei become respectively

βci =
3(1− αi)(Mc +Me)

2C
=

3(1− αi)χi
2

βei =
3αi(Mc +Me)

C
= 3αiχi



Appendix B

Pseudo code of the iterative
KPI tuning algorithm

Initialization: HMi,j =


6dB ∀BSi and BSj that are

geographical neighbours

10dB ∀BSi and BSj that are not

geographical neighbours
4T = 50sec

Iteration:For round = 1 to MaxRound
Collect KPI data corresponding to 4T
For i=1 to NumberOfBaseStations
If KPIi ≤ νKPI then:

For k=1 to NumberOfNeighboursOfBSi
If KPIk > νKPI then put BSk into the set Mi.

j=index of the BS with highest KPI in Mi

For k=1 to NumberOfElementsOfMi

l = BS index of the kth element in Mi

If l 6= j then calculate ηjl=
|KPIj−νKPI |
|KPIl−νKPI |

Calculate 4ij as

4ij =
aHM,1

1 + exp(
HMi,j−bHM,1

cHM,1
)

aKPI,1

1 + exp(
KPIi−bKPI,1

cKPI,1
)

1

1 +
∑

j 6=l
1
ηjl

For k = 1 to NumberOfElementsOfMi
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l = BS index of the kth element in Mi

If l 6= j then calculate 4il =
4ij

ηjl

For k = 1 to NumberOfElementsOfMi

l = BS index of the kth element in Mi

HMi,l =

{
HMi,l +4il if HMi,l +4il ≤ HMmax

HMmax if HMi,l +4il > HMmax

(B.1)

If KPIi > νKPI then:
For k = 1 to NumberOfNeighboursOfBSi

If KPIk < νKPI − δKPI then put BSk into the set Ni

j=index of the BS with lowest KPI in Ni

For k = 1 to NumberOfElementsOf Ni

l=BS index of the kth element in Ni

If l 6= j then calculate ηjl=
|νKPI−KPIj−δKPI |
|νKPI−KPIl−δKPI |

Calculate 4ij using (4.7)

4ij =
aHM,2

1 + exp(−HMi,j−bHM,1

cHM,2
)

aKPI,2

1 + exp(−KPIi−bKPI,2

cKPI,2
)

1

1 +
∑

j 6=l
1
ηjl

For k = 1 to NumberOfElementsOfNi

l=BS index of the kth element in Ni

If l 6= j then calculate 4il =
4ij

ηjl

For k = 1 to NumberOfElementsOfNi

l=BS index of the kth element in Ni

HMi,l =

{
HMi,l −4il if HMi,l −4il ≥ HMmin

HMmin if HMi,l −4il > HMmin

The parameters of the algorithm (∆T , MaxRound,νKPI , δKPI ,HMmin, HMmax

etc.) are determined using expert knowledge. The function of the sig-
moid functions, a

1+exp(−x−b
c

)
, used in calculating ij’s is to speed up/down the

changes in the HM values according to the operating point (i.e. the KPIi and
HMi,j). Therefore, the constants like aKPI,1, aKPI,2, bKPI,1, bKPI,2, cKPI,1,
cKPI,2, aHM,1, aHM,2, bHM,1, bHM,2, cHM,1, cHM,2 are adjusted according to
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the rate of increase/decrease of the HM values. The above algorithm is based
on a single KPI whose bad region lies above a threshold (e.g. BCR, DCR,
Load etc.). For a different KPI whose bad region lies below a threshold (e.g.
Throughput), all the inequalities concerning the KPI must be reversed and
the sigmoid functions must reverse their signs that are inside the exponen-
tials.
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