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Chapter 1

Introduction

The origin of turbulent flow remains one of the most important unsolved problems in fluid

mechanics. Turbulence often being associated with undesirable effects such as increased

energy dissipation, vibration and noise, an understanding of its origins is of both funda-

mental and practical interest. The process by which a laminar flow becomes turbulent

is called transition. Transition is believed to be the result of the instability of laminar

flow and, in many cases, the flow is observed to progress from laminar, through laminar-

turbulence intermittency, to finally become fully turbulent. Hydrodynamic stability has a

long history, going back to Reynolds and Lord Rayleigh in the late 19th century [37, 39].

When the original laminar flow is disturbed slightly, the disturbance may either die away,

persist as a disturbance of similar magnitude or grow to the extent that a different lami-

nar or turbulent flow results: these outcomes are respectively classified as stable, neutrally

stable and unstable.

Our work concerns the instabilities of three-dimensional boundary layers. A boundary

layer is a thin layer of fluid in the immediate vicinity of a solid wall which owes its existence

to viscous wall friction and in which the velocity of the fluid, relative to the wall, increases

from zero at the wall to its full value in the (essentially inviscid) external flow. By three-

dimensional we mean that all three components of velocity are nonzero. The process by

which laminar boundary layers become turbulent is known as boundary-layer transition.

At present, this process is not fully understood. However, as the result of intensive research

over many decades, certain features have become gradually clear. It is generally believed

that the process proceeds through a series of stages. The initial stage of the natural

transition process is known as the receptivity phase [40]. Small external disturbances, such

as freestream turbulence, surface imperfections, acoustic noise, etc., perturb the boundary
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2 1. INTRODUCTION

layer. The second stage of the process results from the exponential growth of unstable

disturbances. Since this stage (primary instability) is linear, it can be analysed using

linear stability theory. Thus, the disturbances grow according to linear stability theory

until nonlinear interactions intervene in the form of secondary instability, beginning the

process of transition to turbulence.

In many practical applications, the boundary-layer is three-dimensional. This in-

cludes oblique flow around essentially two-dimensional bodies (e.g. aircraft wings). In

contrast with the primary instability of the classical Blasius flat-plate boundary layer,

three-dimensional boundary layers usually exhibit shear instabilities, rapidly leading to

transition [38]. The rotating disk has often been used as the canonical example for the

study of instability of three-dimensional boundary layers because it is undoubtedly the

simplest to analyse theoretically. The motivation of the present experimental work is a

new transition control strategy of the rotating-disk boundary layer suggested by Pier [36].

The aim is to study the natural and forced behaviour of the flow in the transition region

and to compare the results with theory, in order to test the theoretical predictions and lay

the foundations for future implementation of the proposed control strategy.

The rotating-disk flow is attractive because the Navier-Stokes equations have an exact,

self-similar solution, first proposed by von Kármán [18] in 1921, that describes axisymmet-

ric, steady flow for an infinite disk rotating at constant angular velocity in otherwise still

fluid. Disk rotation and viscosity induce azimuthal rotation of the fluid within a boundary

layer of constant thickness δ =
√

ν/Ω, where ν is the kinematic viscosity and Ω the disk

rotation rate. Centrifugal effects due to rotation in turn produce radial flow in the bound-

ary layer. The profile of the radial component of velocity as a function of distance from the

disk surface has an inflection point, leading to shear instability. As distance from the disk

axis increases, this instability leads to growth of cross-flow vortices within the boundary

layer. As shown by Smith [45] in 1946 using hot-wire anemometry and illustrated in fig-

ure 1.1, these vortices spiral outwards from the axis and then abruptly give way to a fully

turbulent region. Smith found sinusoidal disturbances of around 32 periods per revolution

(corresponding to 32 vortices), outwards from a non-dimensional radius R = r/δ ≈ 430 to

transition at R ≈ 530. The spirals are approximately logarithmic of angle ǫ with respect

to the azimuthal direction, where ǫ ≈ 110 − 140.

Despite its simplicity, the rotating-disk flow displays many of the features observed in

other three-dimensional boundary layers in situations of higher complexity or with more

elaborate geometries, e.g. when the fluid at infinity is in rigid-body rotation at a different
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Figure 1.1: Flow visualization illustrating the spiral vortices and turbulence on a rotating
disk [20].

rate to the disk [1, 48], or the flow in a finite circular cylinder, one of whose end disks is

fixed, while the other rotates at constant angular velocity [7, 17, 22, 43].

The literature on instability shows that, in the early days, the principal motivation for

the study of three-dimensional boundary-layer flows was the understanding of the mecha-

nism of transition on swept wings. Using flight-test data, Gray [10] (1952) observed a row

of regularly spaced streaks in the laminar-flow region near the attachment line of a swept

wing. These streaks were interpreted as a series of steady vortices. His visualisation ex-

periments showed that transition occurs at much lower Reynolds numbers on swept wings

than unswept wings. This work was documented in the seminal paper of Gregory, Stuart

& Walker [11] in 1955. Since then, many studies have shown a close relationship between

the mechanisms of instability and transition of the rotating-disk boundary layer and the

boundary layer on swept wings [3, 5, 11, 23]. Thus, the boundary layer on a swept wing is

quite similar to the boundary layer over a rotating disk: both are three-dimensional with

a point of inflection in the velocity profile, and both are susceptible to cross-flow instabil-

ity. However, the rotating-disk flow has certain advantages over swept-wing flows: while

retaining all the features of a general three-dimensional boundary layer, it is theoretically

psfigures_theoretical_background/kohama1984a.ps


4 1. INTRODUCTION

simpler, has constant boundary-layer thickness and its experimental realisation does not

require a wind tunnel. For these reasons, we, like others before, have chosen to study the

rotating-disk flow and we specialise to that flow from here on.

In 1955, Gregory et al. [11] analysed the frequency content of disturbances in the

boundary layer and concluded that, relative to the disk, there exist both travelling and

stationary components. They suggested that the stationary component was due to small

imperfections (roughness) of the disk surface. This idea was taken further by Wilkinson

& Malik [47], who used a single, deliberate roughness element attached to the disk surface

to force disturbances of the flow and observed the resulting stationary wave patterns.

In a similar vein, Lingwood [24, 25] forced the boundary-layer flow using an impulsive

disturbance (a pulsed jet of air from outside the boundary layer) to excite a broadband

frequency response.

Interest in this flow was renewed by Lingwood’s discovery [24], using local linear

stability analysis, that the nature of the impulse response changes at a critical radius

of R = Rca ≃ 510: inside the critical radius, growing perturbations are swept out

of the flow domain (i.e. the flow is convectively unstable), whereas beyond the crit-

ical radius, perturbations grow in situ (i.e. the flow is absolutely unstable). More-

over, this critical radius closely approximates the experimentally observed onset of tur-

bulence [6, 9, 11, 19, 26, 29, 46]. This strongly suggests that transition of the rotating-disk

boundary layer is due to absolute instability (and not, for instance, to breakdown of the

cross-flow vortices). The analytical prediction of the critical radius of absolute instability

has subsequently been verifed by Pier [33] and Davies & Carpenter [8]. Thus, there is

general agreement on the existence of a region of absolute instability of the rotating-disk

boundary-layer flow, outwards of an agreed critical radius, though the precise role of abso-

lute instability in the transition to turbulence is still argued and no full understanding of the

mechanism responsible for breakdown to turbulence has yet been achieved. Lingwood [26]

has also performed an experimental study, designed to capture the temporal growth of

disturbances produced by short-duration air pulses. These pulses were introduced in the

convectively unstable zone and the evolution of the azimuthal velocity fluctuations followed

using a hot-wire sensor placed at different radial and azimuthal positions. Her measure-

ments show the formation of wave packets with well defined leading and trailing edges (see

figure 1.2).

Further progress in the understanding of the instability mechanism of the rotating-disk

boundary-layer flow was made by Davies and Carpenter [8] using numerical simulations of
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Figure 1.2: Experimental measurements of wavepackets in the rotating-disk boundary-layer
flow, here reproduced from Lingwood [26]. The period of the disk is T . (a) Disturbance contours;
(b) estimates of the leading edge (×) and trailing edge (o) of the wavepacket, the latter apparently
asymptoting to the vertical dashed line at Rca = 507, beyond which the flow is absolutely
unstable. The wavepackets become hard to identify as R = Rca is approached.

the linearised Navier–Stokes equations. They showed that, when the real spatially inho-

mogeneous flow is approximated by a spatially homogeneous flow (the local parallel-flow

approximation) the results of the simulations are in full accord with the theory of Ling-

wood [24]. Furthermore, when the inhomogeneous nature of the flow is taken into account,

there is close agreement between the simulations and Lingwood’s experiment for the paths

traced out by the leading and trailing edges of the wavepackets (see figure 15(b) of Ling-

wood [26] and figure 19 of Davies and Carpenter [8], as well as our figure 1.2). According

to their investigations, in absolutely unstable regions the short-term behaviour of the sim-

ulated disturbance exhibits strong temporal growth and upstream propagation. However,

this growth is not sustained for longer times and eventually the disturbance decays. They

therefore concluded that the absolute instability of the rotating-disk boundary layer does

not produce amplified global modes and that the flow is linearly stable. However, there

is huge transient growth, almost certainly enough to produce nonlinear effects in practice.

Such effects would take the flow beyond the scope of the (linear) simulations before the

onset of decay. Thus, the result, that the flow is linearly stable, although of academic in-

terest, need not call into doubt the explanation of transition as a consequence of absolute

instability.

psfigures_theoretical_background/lingwood_wavepacket.ps


6 1. INTRODUCTION

The analytical studies of Pier [33] went yet further. He examined the secondary insta-

bility of saturated nonlinear waves in the absolutely unstable regime, R > Rca. Such waves

result from saturation of the primary absolute instability. To avoid confusion, it should

be borne in mind that these saturated waves are the result of absolute instability and are

not those which would result from growth of the cross-flow vortices to finite amplitude.

His investigation showed that, near the critical radius, the primary saturated waves, re-

sulting from absolute instability, are already absolutely unstable with respect to secondary

perturbations. Thus, according to this scenario, primary saturated waves, resulting from

absolute instability, are a prerequisite for the development of secondary instability, but

as soon as they achieve finite amplitude, secondary perturbations grow in situ, leading to

immediate transition to turbulence.

A strategy aimed at controlling transition, by delaying it to beyond where it would

naturally occur, has recently been proposed by Pier [35, 36]. The idea is to delay absolute

instability by deliberately exciting disturbances using forcing in the convectively unstable

zone. The forcing can be weak, but must be of sufficient amplitude that the resulting dis-

turbance significantly modifies the natural flow prior to R = Rca [34]. Pier’s investigation

showed that maximisation of the critical radius depends on the correct choice of forcing

parameters (forcing disturbance frequency ωf and azimuthal modenumber βf). He found

that by applying forcing of convectively unstable waves (cross-flow vortices) with ωf = 50

and βf = 40, absolute instability may be delayed by up to 100 boundary-layer units beyond

the natural critical radius of convective to absolute instability, Rca ≃ 510. Figure 1.3 is

taken from Pier [36] and shows a sketch illustrating the proposed methodology for delaying

absolute instability. As noted earlier, the present work is motivated by this proposed con-

trol strategy. Its realisation requires the excitation of travelling disturbances with specified

frequency and modenumber, hence the need for forcing which is not stationary relative to

the disk.

To date, most experimental studies of the rotating-disk boundary layer with forcing have

used disturbances induced either by fixed roughness elements [16, 47], or by air impulses [24,

25, 31]. Neither of these choices allows the excitation of the periodic, travelling waves

required by the proposed control strategy. In the present work, forcing is implemented

using pins attached to a rotating cylinder mounted above the disk. The pins reach down

into the boundary layer and hence perturb the flow there. The forcing assembly can be

rotated at any desired rate, independently of that of the disk.
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Figure 1.3: (a) Sketch of the naturally occurring flow. Turbulence arises at Rca due to absolute
instability. (b) Sketch showing the expected effect of appropriate forcing. Localised harmonic
forcing applied at Rf produces a radially amplified response. Finite-amplitude cross-flow vortices
persist beyond their saturation radius Rnl < Rca and break down due to absolute instability at
the modified critical radius R̂ca > Rca.

In chapter two, the theoretical background and results for the rotating-disk boundary

layer flow are discussed. Chapter three concerns the experimental setup, in particular,

the calibration of the hot-wire probe and its traversing mechanism. Validation of the

experimental setup is described in chapter four. This includes a quality assessment of the

disk surface and the traversing mechanism, leading to a procedure for compensating for

lack-of-flatness of the disk and misalignment of the traversing mechanism.

The naturally occurring boundary-layer flow is investigated in detail in chapter five.

This includes measurements of mean velocities, spectral analysis and phase-locked velocity

averages. At distances from the axis where flow is laminar, mean-flow velocity profiles are

observed to follow precisely the analytical profile of von Kármán [18]. Mean-flow velocity

profiles at larger radii, where the flow is expected to be fully turbulent, are found to be

nearly linear in log(Z) over much of the boundary layer, where Z is distance from the disk

surface. This corresponds to the logarithmic law of the wall for turbulent flows. High-

resolution spectral analysis of the azimuthal velocity time-series shows that the frequency

spectrum is composed of discrete and continuous parts: the discrete part represents a flow

component which is periodic with the disk rotation frequency. As distance from the axis

increases, spectra initially show exponential growth of a single peak. This peak corresponds

psfigures_theoretical_background/control_response.ps


8 1. INTRODUCTION

to the fastest-growing of modes which are stationary with respect to the disk (cross-flow

vortices). Harmonic peaks due to nonlinearity then appear, followed by a broadband

component of increasing level as transition to turbulence intervenes. Spectra in the fully

turbulent region are found to have an “inertial range” in which they follow power laws

with exponents comparable with the Kolmogorov value of −5/3. Phase-locked averaging

of the velocity time-series is used to extract those disturbances which are periodic with the

disk rotation period. The results show growth with distance from the axis of sinusoidal

oscillations in time. Around 32 oscillations are found per disk revolution, corresponding

to the expected fastest-growing mode and 32 cross-flow vortices. Although the oscillations

are locally sinusoidal, their amplitude varies over the disk rotation period.

The flow response to forcing is investigated in chapter six. A series of experiments

are described to study the boundary-layer response to stationary (in the laboratory frame

of reference) and rotating forcing elements. Two different types of forcing elements are

used: one is a pin with a spherical head, the other a pin with a cylindrical head. When

these disturbance elements are stationary in laboratory frame, they are found to perturb

the mean-flow in their vicinity, each producing a wake which decays with distance from

the element. This is in accord with the theory which predicts decay of all modes which

are stationary in the laboratory frame. In the second part of the study, the boundary-

layer is forced at various frequencies by rotating the forcing elements. The wakes take

the form of wavepackets whose spatial propagation is studied. The results are found to

be in good agreement with theory. Thus, preliminary to full experimental implementation

of the transition control methodology, which would require many identical pins, we have

characterised in detail the response to forcing by individual pins.



Chapter 2

Theoretical background

This chapter reviews the theory of the rotating-disk flow and its instabilities. As noted in

chapter 1, the rotating-disk flow is attractive because the Navier–Stokes equations have an

exact self-similar solution that describes axisymmetric, steady flow for an infinite disk ro-

tating at constant angular velocity in otherwise still fluid. This solution was first obtained

by von Kármán [18] in 1921. Disk rotation and viscosity induce azimuthal rotation of the

fluid within a boundary layer of constant thickness δ =
√

ν/Ω, where ν is the kinematic

viscosity and Ω the disk rotation rate. Centrifugal effects due to rotation in turn produce

radial flow in the boundary layer. To compensate for this radial motion, a comparatively

weak axial flow brings in fluid from outside the boundary layer. Thus, all three compo-

nents (in the radial direction r, in the azimuthal direction θ and in the axial direction z)

are nonzero, i.e. the flow is three-dimensional. The axial flow towards the disk surface

counteracts viscous thickening, leading to a constant boundary-layer thickness over the

entire disk surface.

Throughout this chapter we use nondimensional variables. Due to the fact that infinite-

disk problem lacks an intrinsic length scale, the boundary-layer thickness δ is taken as

length scale and 1/Ω as time scale. Using cylindrical coordinates, r, θ, z, the nondimen-

sional Navier–Stokes equations can be written as [41]:

∂Vr

∂t
+ Vr

∂Vr

∂r
+

Vθ

r

∂Vr

∂θ
−

V 2
θ

r
+ Vz

∂Vr

∂z
= −

∂Π

∂r
+

(

∂2Vr

∂r2
+

∂

∂r

Vr

r
+

1

r2
∂2Vr

∂θ2
−

2

r2
∂Vθ

∂θ
+

∂2Vr

∂z2

)

(2.1)
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∂Vθ

∂t
+ Vr

∂Vθ

∂r
+

Vθ

r

∂Vθ

∂θ
+

VrVθ

r
+ Vz

∂Vθ

∂z
= −

1

r

∂Π

∂θ
+

(

∂2Vθ

∂r2
+

∂

∂r

Vθ

r
+

1

r2
∂2Vθ

∂θ2
+

2

r2
∂Vr

∂θ
+

∂2Vθ

∂z2

)

(2.2)

∂Vz

∂t
+ Vr

∂Vz

∂r
+

Vθ

r

∂Vz

∂θ
+ Vz

∂Vz

∂z
= −

∂Π

∂z
+

(

∂2Vz

∂r2
+

1

r

∂Vz

∂r
+

1

r2
∂2Vz

∂θ2
+

∂2Vz

∂z2

)

(2.3)

∂Vr

∂r
+

Vr

r
+

1

r

∂Vθ

∂θ
+

∂Vz

∂z
= 0. (2.4)

where t is nondimensional time, while Vr, Vθ, Vz (in vector form V) and Π respectively

represent the nondimensional radial, azimuthal and axial velocity components and pressure.

The time-independent, axisymmetric flow given by the von Kármán’s (1921) exact

similarity solution of the Navier–Stokes equations has the form:





Vr(r, z)
Vθ(r, z)
Vz(r, z)



 =





rU(z)
rV (z)
W (z)



 and Π = P (z). (2.5)

Figure 2.1(a) shows the self-similar components U(z), V (z) and W (z), which are governed

by the set of ordinary differential equations [41, 42]:

2U +W ′ = 0 (2.6)

U2 + U ′W − V 2 − U ′′ = 0 (2.7)

2UV +WV ′ − V ′′ = 0 (2.8)

P ′ +WW ′ −W ′′ = 0 (2.9)

where the primes denote differentiation with respect to z and the boundary conditions are:

z = 0 : U = 0, V = 1, W = 0,

z = ∞ : U = 0, V = 0.

Figure 2.1(a) shows that the azimuthal component is larger than the radial one. This

is to be expected, since it is the azimuthal component which is directly driven by disk

rotation (hence V = 1 at z = 0). The maximum of the radial component occurs near

z = 1 and is less than 20% of the disk velocity. Figure 2.1(b) shows a 3D representation of



2.1 Local linear instability properties 11

the velocity profiles over a rotating disk. The radial and azimuthal velocity components,

rU(z) and rV (z) respectively, vary linearly with axial distance, whereas the axial velocity

component W and pressure P are independent of r. At large r, the axial component within

the boundary layer is small compared with the others, but it persists outside the boundary

layer, tending to a constant value at infinite z. Thus, as noted earlier, there is a weak axial

flow towards the disk outside the boundary layer.

2.1 Local linear instability properties

The von Kármán solution provides a basic flow whose stability can be studied. Perturbing

the basic flow, we write

V(r, θ, z, t) = U(r, z) + u(r, θ, z, t) (2.10)

Π(r, θ, z, t) = P (z) + p(r, θ, z, t) (2.11)

where V and Π are the total flow velocity and pressure, U and P are the basic-flow velocity

and pressure, and u and p represent the perturbation. Equations for the perturbation

velocity and pressure can then be obtained by subtracting the Navier–Stokes equations and

boundary conditions for the basic flow from the corresponding equations for the perturbed

flow. For sufficiently small perturbations, one can then neglect terms which are second-

order in the perturbation, leading to linear theory.

Analysis of the linearised perturbation equations is complicated by the fact that they

contain coefficients which depend on r. Fortunately, it turns out that instability arises

only at large values of r and that growing perturbations vary over spatial distances of

the same order as the boundary-layer thickness, which has a nondimensional value of 1.

Thus, r varies little over the length scales associated with the perturbation and we can

approximate it locally as a constant. That is, we focus on the flow near to r = R and

approximate the coefficients in the linearised perturbation equations by their values at

r = R. R becomes a parameter of the stability problem representing the radial location

on the disk whose stability we wish to study. The perturbed flow is

U(z;R) + u(r, θ, z, t),
P (z) + p(r, θ, z, t).

}

(2.12)

and, having adopted the above local approximation, r, θ and t independence of the coef-

ficients of the linearised perturbation equations allows normal-mode solutions of the form
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Figure 2.1: (a) Similarity profiles of radial U , azimuthal V and axial W velocity components
over a rotating disk, (b) 3D representation of the basic flow over a rotating disk showing all three
components of velocity field. The radial and azimuthal components vary linearly with distance
from the axis, while the axial flow component is independent of r.
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u(r, θ, z, t) = ul(z;α, β;R) exp i(αr + βθ − ωt),
p(r, θ, z, t) = pl(z;α, β;R) exp i(αr + βθ − ωt),

}

(2.13)

where α = αr+iαi is a complex radial wavenumber, β is an integer azimuthal mode number

(because of periodicity in the azimuthal direction) and ω = ωr + iωi is a complex angular

frequency. ul and pl are the associated complex velocity components and pressure. Using

equations 2.13, the locally-approximated, linearised version of the perturbation equations

yields an eigenvalue problem in the axial direction z with eigenvalue ω. Solution of this

problem gives the local linear dispersion relation

ω = Ωl(α, β;R) (2.14)

together with the eigenfunctions ul(z;α, β;R) and pl(z;α, β;R).

Two additional points are important to note. Firstly, R can be thought of as either

a nondimensional radial location, as above, or as a Reynolds number based on the local

disk velocity and boundary-layer thickness. Secondly, unless otherwise stated, the results

of instability analysis given in this chapter are taken from Pier [32, 33, 36].

2.2 Local temporal instability results

Temporal instability concerns the study of time evolution of spatially harmonic distur-

bances. Mathematically, this requires computing the dispersion relation (equation 2.14)

for real α, leading to complex ω. Linear instability of the rotating-disk boundary layer

is, by now, well understood [24, 27, 33, 36]. Temporal instability results are shown in

figure 2.2 for different values of R. The region inside the thick curve(s) corresponds to

temporal growth, ωi > 0, of at least one mode, whereas outside this region all modes are

decaying. One concludes that the flow is unstable beyond a critical radius, R ≈ 285.

2.3 Local spatial instability results

Spatial instability concerns the study of the spatial evolution of disturbances due to time-

harmonic forcing at a given radial location. This only makes sense outside the region of

absolute instability because growth in situ of the perturbation will otherwise dominate the

response to forcing, i.e. in the presence of absolute instability, the response to forcing will
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Figure 2.2: Curves of constant growth rate resulting from local, linear instability theory for
R = 300, 400, 500, 600. Ωl

i = 0 thick curves, Ωl
i = 1, 2, 3 thin solid curves, Ωl

i = 0.5, 1.5, 2.5, 3.5
thin dashed curves.

not be time-harmonic with the forcing frequency. For this reason, we restrict attention

to the stable and convectively unstable regions throughout this section. Mathematically,

spatial stability analysis involves solving the dispersion relation (equation 2.14) for given

real ω and β to obtain complex α. This yields two types of solutions (branches) symbolised

by α−, the branch corresponding to upstream response to forcing, and α+, representing

the downstream response to forcing. The imaginary part of α− is negative so the upstream

response decays for all frequencies ω and mode numbers β. In consequence, and for ease

of presentation, the α+ branch will be written as α in the remainder of this section and

the upstream branch will be ignored. More precisely, we concentrate on the solution, α,

of equation 2.14 with minimum αi, representing the downstream mode with fastest radial

growth (or least rapid decay when all modes are decaying) for the given R, β and ω.

Figure 2.3 shows isolines of radial growth rate (−αi) in the (β, ω) plane, computed

at R = 500. The thick solid curve corresponds to αi = 0 (marginal stability), which

separates the regions of radial growth and decay. The region of β, ω inside this curve

represents spatially growing modes. The maximum growth rate occurs for β = 62 and

ω = 47. Modes that are stationary with respect to the disk are characterised by ω = β, the

psfigures_theoretical_background/temporal_growth.ps
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Figure 2.3: Isolines of radial growth rate −αi computed from the linear dispersion relation at
R = 500.

dotted line in figure 2.3. Stationary modes are spatially amplified in the radial direction

for 20 . ω . 60. The fastest spatial amplification of stationary modes occurs for ω ≃ 32

(the large dot in figure 2.3).

For the sake of comparison of experimental results with theory, values of α have been

computed for 400 ≤ R ≤ 500. For ease of presentation of the results, α is averaged over

the range 400 ≤ R ≤ 500. Figure 2.4 shows plots of averaged αr and −αi versus ω for

β = 20, 25, 30, ..., 70. Those values of β and ω for which −αi is positive correspond to

spatially growing modes. It can be seen that each mode number 22 . β . 60 is associated

with radial growth for some range of ω. The maximum growth rate is −αi ≈ 0.07 and

corresponds to a mode with ω = 50 and β = 40. Since ω and β differ, this mode is travelling

with respect to the disk. Disturbances that are stationary with respect to the disk (ω = β)

are represented in figures 2.4(a,b) by circles. The maximum growth rate of stationary

modes is −αi = 0.056 and occurs for ω = β = 30 (solid circles in figures 2.4(a,b)). The

real part of the wavenumber, αr, for stationary modes is found to increase almost linearly

with frequency ω (figure 2.4(a)).

2.4 Local absolute instability

The complex absolute frequency, ω0, is important in studies of open flows with self-

sustained oscillations [12, 13, 14, 15]. It is defined as the frequency observed by an observer

at fixed spatial location in the long-time linear response to a localised impulse. For a ra-

dially localised, i.e. at fixed R, impulse with a given azimuthal mode number β, the local

psfigures_natural_flow/spatial_ai_w=b_R=500.ps
psfigures_natural_flow/spatial_ai_R=500.ps
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Figure 2.4: (a) αr and (b) −αi, averaged over the range 400 ≤ R ≤ 500 and plotted versus ω
for β = 20, 25, 30, ..., 70. Stationary modes are represented by circles.

absolute frequency ω0 and local absolute wavenumber α0 can be obtained from the lo-

cal linear dispersion relation using the Briggs [4] and Bers [2] pinch-point criterion. This

criterion implies that ω0, α0 satisfy the vanishing radial group velocity condition:

ω0(β;R) = Ωl(α0, β;R) with
∂Ωl

∂α
(α0, β;R) = 0. (2.15)

If ω0,i < 0, disturbances decay at fixed r and will ultimately leave the source region

undisturbed: the flow is locally stable or convectively unstable. However, if ω0,i > 0, dis-

turbances grow exponentially in situ and the flow is absolutely unstable. Plots of isolines of

local absolute frequency, ω0,r, and absolute growth rate, ω0,i, in the (R, β) plane are shown

in figure 2.5. The solid thick curve in figure 2.5(b) is the the marginal curve separating

convective and absolute instability. Those β and R inside this curve are associated with ab-

solute instability. As distance from the axis increases, the transition from local convective

to absolute instability first occurs at Rca ≃ 507 for βca = 68 (solid dots) with a marginal

real absolute frequency of ωca
0 = 50.5. Figure 2.5(b) also shows that each azimuthal mode

number β ≥ 51 is associated with an absolutely unstable range of R. Recalling that insta-

bility begins at R = Rsc ≃ 285, the flow over a rotating-disk is convectively unstable for

Rsc < R < Rca and absolutely unstable when R > Rca ≃ 507. Note that, in the absolutely

unstable region, the linear response to localised time-harmonic forcing is dominated by the

absolute frequency and is not harmonic with the forcing frequency. Thus, as noted earlier,

psfigures_theoretical_background/spatial_instability_wb_ar.ps
psfigures_theoretical_background/spatial_instability_wb_ai_new.ps
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Figure 2.5: Isolines of (a) ω0,r and (b) ω0,i in the (R, β)-plane. The solid dots mark the onset
of absolute instability at Rca = 507 and βca = 68 with ωca

0 = 50.5.

psfigures_theoretical_background/absolute_frequency.ps
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spatial stability analysis loses its relevance in the presence of absolute instability.

As discussed in chapter 1, the location, R = Rca, of transition from convective to

absolute instability corresponds closely with the observed abrupt transition from lami-

nar to turbulent flow, which strongly suggests that absolute instability is responsible for

laminar/turbulent transition. In the absolutely unstable region, temporal growth in situ

means that it is impossible for the perturbation to remain of small enough amplitude that

linear theory applies. Near R = Rca, a possible outcome of growth of the marginal mode

(βca = 68, ωca
0 = 50.5) is a saturated, nonlinear wave having the same periodicity in θ and

t. However, Pier [33] has shown that the resulting flow is absolutely unstable. In conse-

quence, such a saturation scenario cannot be achieved and, according to the experiments,

the flow becomes turbulent.

As also discussed in chapter 1, Pier [36] has suggested a laminar/turbulent control

strategy for such flows. The basic idea is to delay absolute instability by deliberately

exciting disturbances using harmonic forcing in the convectively unstable zone. Provided

the forcing amplitude is sufficient, the perturbation should attain finite amplitude and may

saturate to fully nonlinear, periodic waves (saturated cross-flow vortices, though not those

with the period of the naturally occurring vortices), prior to R = Rca. This, in turn, would

modify the basic flow and hence its convective/absolute transition threshold (Rca = 507

for the natural flow). Pier [36] showed that, if realised, this strategy can delay absolute

instability by up to about 100 boundary-layer units. Note that convective instability helps

in this scenario: the initial forcing amplitude can be weak and still attain saturation prior

to R = Rca.

Experimental realisation of this control strategy provides the motivation of the present

work, ultimately requiring forcing in the convectively unstable region which is periodic

in θ and t. To this end, it is envisaged to use many rotating pins. However, it has not

been possible in the time scale of this PhD to go beyond measurements of the response to

forcing by single pins. This is an important preliminary step and, to allow comparisons

with theory, we next describe a theoretical model of the response of the rotating-disk

boundary layer to a single forcing element.

2.5 Response to a single rotating forcing element

Consider a localised forcing element at radial position rf in the convectively unstable

region, rotating at angular frequency Ωf (the element is located at r = rf , θ = Ωf t). For
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simplicity sake, we use local, linear theory with R = rf and suppose the perturbation due

to forcing to be steady in the frame of reference of the element. The perturbation in r > rf

is a linear superposition of spatial modes of the form

u(r, θ, z, t) = ul(z; β) exp i
(

α(β)r + β(θ − Ωf t)
)

, (2.16)

where α(β) = α+(β, ω = βΩf ;R = rf) and ul(z; β) = ul(z;α(β), β;R = rf) represent the

fastest-growing downstream spatial mode with mode number β and frequency ω = βΩf (a

relation which follows from steadiness in the reference frame of the element). Combining

modes with different values of β,

u =

∫

β

dβ A(β)ul(z; β) exp i
(

α(β)(r − rf) + βθ′
)

, (2.17)

where θ′ = θ − Ωf t is the azimuthal coordinate in the forcing frame and A(β) the modal

forcing amplitude, which depends on the details of the forcing.

At large r− rf (but not so large that the local approximation is called into doubt), the

modulus of the exponential in 2.17,

exp
(

− αi(β)(r − rf )
)

, (2.18)

has a sharp peak at the maximum of the radial growth rate, −αi(β), as a function of β,

which occurs at β = βmax (the value of β which yields the fastest-growing spatial mode

among those which are steady in the forcing frame). Thus, the integral in 2.17 is dominated

by values of β near βmax. The phase of the exponential in 2.17 is

αr(β)(r − rf) + βθ′, (2.19)

leading to rapid, nearly self-cancelling oscillations of the integrand near β = βmax unless

κ = θ′/(r − rf) is close to

κmax = −
dαr

dβ
(βmax). (2.20)

Thus, the response to forcing is expected to be a wavepacket of mode number βmax, exhibit-

ing radial growth with growth rate −αi(βmax) and which propagates along the trajectory

described by θ′/(r− rf ) = κmax. This trajectory defines the expected location of the wake

of the forcing element.
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Figure 2.6: (a) Sketch of the wavepacket produced by a rotating forcing element; (b) Sketch of
a typical impulse response in (x, t) space.

The above analysis describes the central part of the wavepacket, but one may also

analyse its tails using the method of steepest descent to evaluate 2.17 asymptotically for

large r − rf . The saddle point, β = β∗, is generally complex and characterised by zero

derivative of the argument of the exponential:

dα

dβ
(β∗) = −κ. (2.21)

Thus, the expected complex mode number is constant along rays κ = constant. The

modulus of the exponential in 2.17, evaluated at the saddle point, is

exp
(

− (αi(β
∗) + κβ∗

i )(r − rf)
)

, (2.22)

hence the radial growth rate associated with the given ray is

σ(κ) = −αi(β
∗)− κβ∗

i . (2.23)

Note that, when κ = κmax, β
∗ = βmax and σ = −αi(βmax), thus one recovers the earlier

results for the wavepacket centre. Leading and trailing edges of the wavepacket, κ = κl

and κ = κt, can be defined by σ(κ) = 0, i.e. the rays with no growth or decay.

Figure 2.6(a) illustrates the above results via a sketch of the wavepacket in the (θ′, r)

plane. This may be compared with figure 2.6(b), which shows a typical impulse response

in (x, t) space. For later comparison with experimental results, figures 2.7(a,b) show plots

of βmax, ωmax = Ωfβmax and −αi,max = −αi(βmax) computed at R = 400 for the range

of forcing frequency 0.63 ≤ Ωf ≤ 1.0 (recall that Ωf is nondimensionalised using the disk

psfigures_theoretical_background/impulse_response_new.ps


2.5 Response to a single rotating forcing element 21

 20

 30

 40

 50

 60

 70

 80

 90

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

β m
ax

, 
ω

m
ax

Ωf

(a)

ωmax

βmax

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

- 
α i

, 
m

ax

Ωf

(b)

Figure 2.7: (a) Plots of azimuthal mode number and frequency, βmax and ωmax, versus forcing
frequency at R = 400 for the fastest growing of modes which are stationary in the frame of
reference rotating with the forcing element. (b) Radial growth rate, −αi,max, of the same mode.
Crosses (×) represent the value Ωf ≃ 0.68, below which the linear spatial response to forcing
decays. The big dots (•) at Ωf ≃ 0.81 correspond to maximum radial growth.
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−κmax,−κl, and −κt are plotted against forcing frequency. The cross (×) represents the value of
Ωf below which the linear spatial response to forcing decays. The big dot (•) corresponds with
the forcing frequency, Ωf ≃ 0.81, of fastest spatial growth.

rotation frequency). The crosses (×) in these plots represent the limiting value, Ωf ≃ 0.68

below which the response to forcing decays. The big dots (•) are associated with the forcing

frequency, Ωf ≃ 0.81, which produces the largest radial growth, −αi,max ≃ 0.053. Finally,

figure 2.8 shows −κmax, −κl and −κt as functions of forcing frequency for R = 400.

psfigures_theoretical_background/omegaF_da_over_db.ps


Chapter 3

Experimental Facility

3.1 General setup

The experimental setup of the present rotating-disk boundary-layer flow investigation has

been designed to study the naturally arising flow instabilities to investigate the response

of the boundary-layer flow to an externally controlled forcing. In order to study the flow

instabilities, and in particular transition to turbulence, the Reynolds number a(Ω/ν)1/2

(where a a is the disk radius and Ω is its angular velocity) needs to exceed the critical

value of 500, where transition from convective to absolute instability occurs. Another

way of writing the Reynolds number is as a/δ, where δ = (ν/Ω)1/2 is the boundary layer

thickness, which must then be less than 1/500 th of the disk radius. A disk diameter

of 500mm was used, implying a boundary-layer thickness less than 500µm and hence a

rotation rate Ω of 600 rpm or above.

The overall installation is shown in figure 3.1, which is composed of disk and forcing

assemblies. The forcing assembly is supported on three metallic columns. These columns

are firmly fixed on a heavy metallic base which is placed on an aluminium frame. Two

electric motors are mounted underneath, one is used to rotate the glass disk and the second

is used to rotate the forcing device. Rubber dampers are placed between the metallic frame

and the aluminium base to minimize the transfer of motor vibrations to the disk and

forcing assemblies. Local velocity measurements are made using a hot-wire probe which

can be displaced in both radial and disk-normal directions. Given the small boundary-

layer thickness, a high-precision positioning mechanism is needed and is mounted beside

the disk.

23
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Figure 3.1: Full experimental setup showing the glass-disk along with the forcing assembly
which is mounted above the disk-surface.

3.2 Rotating-disk assembly

In the experiments, a glass disk of 500mm diameter is used which is glued to an aluminium

platter, shown in figure 3.2. Its rotation is driven by an electric motor (see figure 3.3) via

a belt and pulley/sheave mechanism up to 1500 rpm. The motor is powered by a DAN-

FOSS VLT 2800 variable-frequency drive which is coupled with an RFI filter. A variable-

frequency drive (VFD) is a system for controlling the rotational speed of an alternating

current (AC) electric motor by controlling the frequency of the electrical power supplied

to the motor. The RFI filter ensures that the frequency converter will not disrupt other

electrical components that are connected to the mains and might cause operating disrup-

tion, this filter is connected between the main supply and DANFOSS VLT 2800. The disk

out-of-flatness is measured and found to be around 50µm (please refer to chapter 4 which

contains a detailed study of the disk surface quality assessment). Special care was taken

to make sure the test room remains clean and dust free. Before each measurement we used

wipes to clean the disk surface carefully.

psfigures_experimental_setup/exp_setup_full.eps
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Figure 3.2: Experimental setup consisting of a glass disk of 50 cm diameter with hot wire
positioning mechanism. A small webcam is placed near to the disk for the surveillance.

Figure 3.3: Electric motor placed underneath the disk assembly, on the right side there is a
sensor placed for the measurement of disk rotation rate.

psfigures_experimental_setup/disk_setup.ps
psfigures_experimental_setup/motor_and_sensor.ps
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Figure 3.4: Picture of a rotating-disk experimental setup showing a glass disk with a flow
excitation assembly mounted above the disk surface.

3.3 Flow excitation assembly

While designing the flow excitation device we keep in mind the goal of the present study,

that is to delay the transition, which requires the boundary-layer flow to be excited with

a given azimuthal modenumber and frequency. Recall that Pier [36] suggested optimized

parameters (βf = 40 and ωf = 50) to delay the natural transition by up to 100 boundary-

layer units beyond the critical radius of convective to absolute instability Rca. In other

words, we need a forcing device that can support azimuthally a given number of forcing

elements and should be able to rotate them at a given frequency, not necessarily equal to

the disk frequency. The forcing assembly is designed and mounted above the disk surface

and is shown in figure 3.4. This assembly is mounted concentrically with the disk center

and is supported by three metallic columns shown in figure 3.2. The forcing assembly is

composed of a hollow cylinder, which contains evenly spaced small holes on its periphery

to support the forcing elements. The radial distance between these holes and the axis is

130mm. For the moment, in figure 3.4 only a single forcing element is plugged in, however

up to 120 forcing elements can be plugged evenly on the periphery of forcing device.

psfigures_experimental_setup/ensemble_assembly.ps
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Figure 3.5: The cross-sectional view of the forcing device.

A separate electric motor is used for the rotation of the forcing device and can rotate it

up to a maximum of 700 rpm. This motor is coupled with the forcing device via belt and

pulley/sheave mechanism. Figure 3.5 shows a cross-sectional view of the forcing device.

It can be seen from this view, that the forcing cylinder (on which the forcing elements

are fixed) is shielded between two stationary cylinders. The reason for this is to avoid

any possible interference between the axial incoming flow and the rotation of the forcing

device.

3.4 Measurement and data acquisition devices

This section will give a rapid overview of the measurement devices used in the experiments.

Local flow velocities are measured using a hot wire probe. Its calibration and adjustment

procedure is described in section 3.6. For the measurement of the disk rotation rate, a

sensor is mounted at the bottom of the same shaft which rotates the disk. This sensor

produces 400 square signals per disk rotation and is shown in figure 3.3. Two more sensors

are used, one is placed under the disk which produces one square signal per disk rotation.

psfigures_experimental_setup/forcing_cross_section.eps
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Figure 3.6: Schematic diagram of data acquisition setup.

The other sensor is placed near the forcing device and produces one square signal per

forcing device rotation. The signals coming from both sensors are then used in the post-

processing, for computing phase-locked averages with respect to disk or forcing device.

Since the whole experiment setup is placed in a clean room and the data acquisition is

done from outside the experiment room, two small webcams are used for the surveillance.

The National Instruments PCI-6251 M Series data acquisition (DAQ) card is used, which

is a high-speed device operating at frequency sampling rates of up to 1.25 million samples

per second. The schematic diagram of different elements of data acquisition setup and

their connections are shown in figure 3.6.

3.5 Traversing mechanism and its calibration

A high-precision two-axes traversing mechanism is used for positioning of the hot-wire

probe with radial and axial precisions of 20µm and 2µm respectively. The mechanism is

composed of two step motors mounted perpendicular to one another, as shown in figure

3.7. These two axes allow the hot-wire probe to be easily positioned to a desired radial

position on the disk and to any useful height above the disk surface. A digital controller,

figure 3.10, is used for the displacement of the carriage holding the hot-wire probe. The

calibration is done for both motors with respect to the digital controller using a digital

vernier calliper of 10µm precision: for this we measure the distance of the hot wire probe

holder, mounted on the carriage, with some reference at different counter positions of a

digital controller.

Figures 3.8 and 3.9 are the calibration curves in which square symbols are the measured

distances from a reference position, plotted against the controller counter along with a

linear fit (solid line). Hence, there is a good linear relationship between these step motors

psfigures_experimental_setup/labview_schematic.ps
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Figure 3.7: Left: rear view of traversing assembly showing two step motors for axial and radial
displacement of the hot wire holding probe, right: front view showing the rail on which the
traversing assembly moves radially.

and digital controllers, which control the radial and axial movement of these motors. This

calibration process was necessary only once while we were in the process of setting up the

facility. Linear fitting of the data shows that the approximate distance covered by the

carriage in radial and axial directions for one unit of the digital controller is approximately

8µm and 2µm respectively.

3.6 Hot-wire anemometry, calibration and adjustment

process

For the local velocity measurements, a constant-temperature hot-wire anemometry is used,

which is particularly suitable for the measurement of flows with very fast fluctuations at a

fixed point in space. A single Dantec hot wire of type 55P01 is used, which consists in a

5µm diameter and 3mm wide platinum plated tungsten wire with 1.25mm flow sensitive

length at its center. A DANTEC StreamLine constant temperature anemometer (CTA),

see figure 3.10, is used which comes along with a temperature monitor for the measurement

of room temperature. The hot wire is positioned parallel to the disk surface and aligned

in the radial direction to measure the azimuthal flow component.

The hot-wire probe is mounted on the traversing mechanism as shown in figure 3.7,

psfigures_experimental_setup/axial_traversing.ps
psfigures_experimental_setup/radial_traversing.ps
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Figure 3.8: Calibration curve of a step motor responsible for the radial positioning of the
hot-wire sensor.

Figure 3.9: Calibration curve of a step motor responsible for the axial positioning of the hot-wire
sensor.

psfigures_experimental_setup/radial_disp_calib.ps
psfigures_experimental_setup/axial_disp_calib.ps
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Figure 3.10: Left top: Dantec Dynamics StreamLine constant temperature anemometer, left
bottom: digital controller for the hot-wire positioning above the disk surface, right: PVC light
weight disk used for the radial alignment of the hot wire.

which is computer-controlled. The hot wire should be parallel to the disk surface and

should be placed so that it follows the path of a diameter of the disk while moving radially.

To assure these conditions, we use a cathetometer, see figure 3.11, which is a telescope with

graticules, and it was mounted on a slider that can be translated in the vertical direction.

We measure the difference between hot wire and its reflected image by the glass disk, see

figure 3.11, at different counter readings of the digital controller, responsible for the axial

movement of the hot wire and make a linear fit in order to obtain the counter reading at

which the hot wire would touch the disk surface. This provides a reference datum and then

all further positions of the hot wire from the disk surface are measured with respect to this

datum. To assure the condition of radial alignment of hot wire while moving radially we

use a PVC light weight disk, see figure 3.10, with a reference line that passes through its

center. This disk is placed above the glass disk concentrically and provides a reference so

that the hot-wire probe may be positioned accordingly.

The hot wire must be calibrated using known flow velocities and in many experiments

the free-stream velocity provides a reasonably good reference. However, for the rotating-

disk flow there is no free stream flow outside the boundary layer (apart from a weak axial

flow component): the only known speed is the speed of rotation of the disk and therefore

the speed of flow at the surface of the disk. Clearly a hot wire cannot measure the flow

speed at the disk surface, so as an initial alternative we did calibration in a separate wind

tunnel, but this involved frequent removal of the hot-wire probe from its carrier. Each

time the probe is removed and replaced, it needs careful re-alignment with the radial

psfigures_experimental_setup/anemometer_controller.ps
psfigures_experimental_setup/alignment_disk.ps
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Figure 3.11: Left: a telescope with graticules fixed on a slider and used for finding the distance
between hot wire and its mirror image on the disk surface, right: a closeup of the hot-wire sensor
showing its mirror image on the disk surface.

and circumferential direction, and also the height of the hot wire from the disk surface

must be remeasured. Furthermore repeated removal of the probe increases the risk of

damaging the wire. For these reasons, it was decided to calibrate the hot wire against the

laminar boundary-layer profile, given by boundary-layer similarity theory. By knowing the

speed of rotation of the disk, the height of hot wire from the disk surface and its distance

from the disk axis, the mean velocity at the hot wire position can be calculated. The

hot wire can then be calibrated by measuring the mean output voltage from the hot-wire

anemometer for a range of mean flow speeds. During the whole process of calibration,

no disturbance was applied and the only disturbances were those that occurred naturally

and only radial positions well below Rca are used. The mean flow speed measured by

the probe can be varied by changing the rotational speed or by changing the radial and

axial positions of the probe. In this calibration process, the rotational speed or position

of the probe were chosen to correspond to a Reynolds number below the critical value

for the onset of growing stationary disturbances. A fourth order polynomial is used to

fit the velocity-voltage data pairs, as shown in figure 3.12. This polynomial was then

used to convert measured voltages to flow velocities. Keeping in mind that the hot wire

has a great dependence on temperature, this calibration is repeated each time before any

measurement.

psfigures_experimental_setup/cathetometer.ps
psfigures_experimental_setup/hotwire_1.ps
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Chapter 4

Basic flow and disk out-of-flatness

compensation

In this chapter the preliminary velocity profile measurements will be discussed together

with their comparison with the analytical/theoretical basic-flow velocity profiles. The aim

of this chapter is to assess the quality of the disk assembly and of the traversing mechanism.

We will explain the verifications and measurement procedures done for the determination

of the out-of-flatness of the disk, using a linear variable displacement transducer (LVDT).

The objective is to determine - and to compensate for - the sources of errors due the quality

of the disk surface or the misalignment between the disk surface and traversing mechanism.

In the initial sections we will present the basic flow velocity measurements done for the

azimuthal flow component and their comparison with the analytical velocity profile. The

different possible reasons responsible for the errors in the measured velocity profiles will

be discussed. In the following sections, the detailed investigation to obtain the disk out-

of-flatness characteristics will be presented. Finally our measurements of the disk surface

will be validated and it is shown how improved velocity measurements are obtained after

taking into account the previously determined positioning errors.

4.1 Preliminary disk-surface measurement

The disk used for the experiments is of glass with a diameter of 500mm. Initially a dial

indicator of 10µm precision, which is placed at the border of the disk using a clamp, is used

for obtaining a rough estimate of the disk out-of-flatness. During these measurements we

observed that there exists two high and two low areas over the edge of the disk surface which

35
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make a total out-of-flatness of around 50µm in rotation. This seems to be a production

fault of the disk, or its supporting platter, that cannot be adjusted by regulating the three

levelling screws under the platter which support the glass disk.

4.2 Preliminary flow measurements

Initially azimuthal flow velocity measurements are done at 16Hz disk rotation for the

range of non-dimensional radii from R = 350 to R = 500. The initial ambient temperature

was 12oC. Boundary-layer thickness was then computed and found to be of 380µm. Hot

wire is calibrated at R = 350 which is well below the critical radius Rca. Recall that

during measurements, at a given radial position, we recorded the voltage given by the

hot-wire sensor at different disk-normal positions. These voltage values are then converted

to velocity using the calibration coefficients, for details see section 3.6.

All velocity and length scales are nondimensionalized by the local disk circumferential-

velocity and boundary-layer thickness δ respectively. Figures 4.1(a,b) represent the mean

velocity measurements (with symbols), each measurement is averaged over 50 revolutions

of the disk. We notice that for R ≤ 370, the measured velocity profiles follow well the

analytical curve, see figure 4.1(a). A discrepancy is observed for larger distances from the

disk axis: for example, we observe shifts in measured velocity against the theoretical curve,

which are more prominent and become important as we approach the disk surface (Z ≤ 2),

see figure 4.1(b) which shows the measurements for 350 ≤ R ≤ 450. In this region, the

boundary-layer should not display any mean flow distortion, so that it seems that these

shifts appear in some systematic manner which shows the accumulation of errors at larger

radii. This behaviour was found to be repeatable with the velocity measurements.

We also observed during the whole investigation that the temperature rises by several

degrees which may affect the calibration of the hot wire and change the boundary-layer

thickness due to the change in its viscosity and therefore give false positioning of the

hot-wire sensor above the disk surface. We repeated the same measurements for R from

500 down to 350, instead of from 350 up to 500, and the same result was obtained: the

discrepancy increases at larger values of R and, therefore, cannot be due to effects of rising

temperature. We also repeated the same investigation by moving the setup to a thermally

isolated test cell, where the fluctuations in temperature outside the room do not have any

effect inside the test cell. In this new room, the temperature only rises one degree after a

long run, but the same problems with the mean-velocity profile measurements are obtained.
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Figure 4.1: Preliminary measurement of azimuthal velocity profile at various non-dimensional
radii for the range of 350 ≤ R ≤ 450, (a) measured velocities follow well the analytical curve for
R ≤ 400, (b) at larger radii measured velocities start deviating from the theoretical curve due
to misalignment between the traversing mechanism and disk surface and the error seems to be
accumulating from one radial position to the next.
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Further investigations were done by recording the time series and Fourier transforms

to see in detail the origin of errors. Time series were measured for 500 disk rotations with

16 kHz sampling frequency at disk-normal position Z = 2. Figure 4.2 shows the phase-

locked ensemble average of the time series averaged over 500 disk rotations. At a glance, we

observe that for Reynolds number R ≤ 460, there is no evidence of disturbance fluctuations

in the ensemble average of time series, and these become important at Reynolds number

higher than 490. However, it is also noticeable that for Reynolds number higher than

400, there is a gradual increase of velocity. From time series measurements, it is clear

that the deviation of velocity measurement from the theoretical profile for the region well

below the critical onset of instability, i.e. Rca, is not due to the distortion produced by

finite-amplitude perturbations.

Furthermore fast Fourier transforms of the azimuthal velocity time series are calculated

to investigate the frequency components present in the signal. This is done by taking

the average of 30 spectra, each was calculated for 250 disk rotations, and is shown in

figure 4.3. In this figure, abscissa represents frequency components nondimensionalized by

disk frequency whereas ordinate represents power of each frequency component contained

in the signal. We observe no characteristic frequency component in the time series for

psfigures_disk_surface/pre_ensemble_average.ps
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Figure 4.3: Power spectra of azimuthal time series with a frequency resolution of ∆(ω/Ω) = 1.

Reynolds number below 460 and the spectra are only composed of background noise at a

certain level. However, as expected, we notice a first principal peak that starts to appear in

the spectra for Reynolds numbers R ≥ 490 around ω/Ω = 30, representing the development

of cross flow vortices.

Here we come to the conclusion that the deviation of the measured velocity from analyt-

ical profile cannot be the result of early transition towards turbulence. Hence we decided to

go through a detailed measurement of the disk surface using a linear variable displacement

transducer.

4.3 Disk-surface measurement study

The need for detailed disk-surface measurements arose from the observed unexpected shift

in the measured mean velocity data points against the theoretical profiles for increasing

radial positions. This shift may be due to ill-positioning of the hot-wire sensor above the

disk surface. The cause of these errors could be a wrong estimation of the absolute posi-

tion of the hot-wire probe or an out-of-flatness of the disk. Therefore we studied in detail

the form of the disk surface using an LVDT which is an acronym for Linear Variable Dif-

ferential Transducer. For our experiments we used RDP Electronics LVDT Displacement

psfigures_disk_surface/pre_fft.ps
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Transducers (model: LVDT-E725 Microprocessor based Transducer Indicator/Controller

AC Input Version), with its technical specifications in the table below.

Type GT0500XRA
Linear range ±0.5mm
Sensitivity 206.63mV/V/mm
Linearity 0.10 %
Uncertainty of calibration 1.2µm

4.4 LVDT calibration procedure

The transducer requires calibration before it is used for distance measurements. In our

case, we calibrate the transducer by moving axially the LVDT so that it comes close to the

middle of its maximum range. At this position we regulate the zero and gain screwdriver

potentiometers so that the output voltage shown on the voltage-meter equals zero or comes

close to zero. Then, the armature is moved axially by a known amount using the same

LABVIEW script which is used for the hot-wire positioning. At each displaced position,

the voltage output displayed on the voltage-meter is recorded. Figure 4.4 represents the

measured displacement-voltage data points along with a linear fit. This linear relationship

between the analogue output of the E725 and the transducer displacement is then used

to convert the voltage output of the controller to millimetres (or µm) during disk-surface

measurements.

4.5 Measurement procedure

This section summarizes the steps taken for the measurement of the disk-surface. In order

to map out the whole disk surface we decided to make the measurements of the disk surface

at eight azimuthally equispaced positions, for a range of radial positions. These positions

are named as position 1, 2, 3, 4, 5, 6, 7, 8. Computer controlled measurements are done

using LABVIEW. The traversing mechanism used in the measurements is the same as that

used for the positioning of the hot-wire probe over the disk surface while measuring flow

velocities. This traversing mechanism does not allow us to position the LVDT at all radial

locations but only covers the outer region. For each azimuthal position, measurements of

the disk surface in the range of 112mm 6 r 6 236mm have been carried out. The radial

step used for these measurements is 0.25mm. Care has been taken to avoid any dust on

the disk surface by wiping it before starting measurements at each azimuthal position.
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Figure 4.4: LVDT analogue output calibration data points along with a linear fit and it’s
equation.

4.6 Post-processing

Measurements from the LVDT sensor at all positions are plotted in figure 4.5 which dis-

plays unexpected regular peaks. While closely observing these regular patterns, we found

that these regular peaks always appear precisely on the same radial positions, irrespective

of azimuthal location. As we do rotate the disk between each azimuthal position, it is

concluded that these regular patterns are due to the radial traversing mechanism, and not

to features of the disk surface. The traversing mechanism for radial movements consists of

a motorized arm (see figure 3.7) which slides in the radial direction driven by a rotating

screw. These regular peak patterns could be due to a slight misalignment of the axis of

the screw with the axis of the step motor which powers the radial movement, and indeed

these peaks correspond to the thread of the screw. Thus we conclude that the rapidly

fluctuating part in this signal is due to misalignment of the screw for radial displacement.

This fluctuating part is no more than 20µm in amplitude and is superimposed to the in-

formation of the actual form of the disk surface. Since this fluctuating part is deemed to

be reproducible, irrespective of the azimuthal position of the disk, we will attempt first to

extract it and then subtract it from the total measurement.

psfigures_disk_surface/lvdt_calib.ps
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We initially make a supposition that the signal from the LVDT consists of a smooth

part of nth order polynomial, which depends on both r and θ (i.e. the expected smooth

form of the disk) and the rapidly fluctuating part repeatable at each azimuthal location.

This fluctuating part is assumed to be coming from the traversing mechanism and to only

depend on r. We shall validate this hypothesis later on in this chapter.

Hence, the LVDT readings are assumed to be of the following form:

z(r, θ) = z̄n(r, θ) + φ(r, θ) (4.1)

where z(r, θ) is the actual LVDT measurement, z̄n(r, θ) is an nth order polynomial fit and φ

is the remaining repeatable pattern. In this expansion, the φ-component is assumed to dis-

play rapid and small-amplitude fluctuations in r and to have only a negligible dependency

on θ.

In order to exploit this multi-scale behaviour, we rewrite equation 4.1 and define

φn
i (r) ≡ φn(r, θi) = z(r, θi)− z̄n(r, θi) (4.2)

where, i = 1, . . . 8 refers to one of the eight azimuthal positions. For assessing the θ-

dependency of the two components of the signal, we calculate the following error integrals:

R
n
φ =

∫ 8
∑

i=1

|φn(r, θi+1)− φn(r, θi)|
2dr, (4.3)

R
n
z̄ =

∫ 8
∑

i=1

|z̄n(r, θi+1)− z̄n(r, θi)|
2dr, (4.4)

where it is understood that θ9 = θ1. The evolution of these error integrals with polynomial

order n is given in figure 4.6(a).

The disk axisymmetric component of the LVDT measurements is calculated by taking

the average of LVDT data points over all eight azimuthal positions for each radial position,

Zavg(r) =
1

8

8
∑

i=1

z̄n(r, θi). (4.5)

The resulting smooth polynomial function then represents the axisymmetric component

of the measured misalignment between the disk surface and traversing mechanism. The

results are discussed in section 4.7. After having obtained this polynomial form, we are in
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a position to compensate (in the LABVIEW code) for this radial misalignment so as to

exactly position the hot-wire probe at a prescribed distance from the disk surface at each

radial position.

4.7 Results

In this section we will discuss results obtained by using data processing technique explained

in section 4.6. Figure 4.5 shows the actual measurements of LVDT for the range of 120 ≤

R(mm) ≤ 236 at eight different equispaced azimuthal positions, named as positions 1, 2, 3,

4, 5, 6, 7, 8. By observing the difference between the lowest curve (position 8) and highest

curve (position 4) in figure 4.5, we find that the maximum out-of-flatness for a given radius

is about 60 microns, which corresponds well with the preliminary measurement made using

a dial indicator near the edge of the disk. In the radial direction, the measurements vary by

a quite larger amount, approaching 150µm. This is the main source of error that has been

observed in our preliminary measurements of mean-velocity profiles (see figures 4.1(a) and

4.1(b)). In figure 4.5, top abscissa is labelled in nondimensional radius R. It is quite clear

from this figure that the out-of-flatness seems to increase by a big margin for R ≥ 380,

which supports the preliminary velocity profile measurements where the measured velocity

followed quite well the theoretical velocity profile for R ≤ 370 and discrepancies appeared

only for higher Reynolds numbers.

As already explained in section 4.6 that the crude measurement from LVDT consists

in a smooth part and some reproducible regular peaks. Figure 4.6(a) compares graphically

the θ-dependency of the smooth part (z̄) and the fluctuating part (φ) of the measurement,

calculated using eq. 4.3 and eq. 4.4. By comparing Rφ versus Rz̄, it is clear from this

comparison that the Rz̄ ≫ Rφ, which points to the fact that the rapidly fluctuating part

in the signal is coming from the traversing mechanism and not from the out-of-flatness

of the disk surface. Figure 4.6(b) shows the variation of residue (root mean square error)

versus order of polynomial fitted on the LVDT measurement. It is seen from this graph

that beyond 8th order polynomials, the residual error stagnates at about 5µm. Hence, it

is reasonable to use 10th polynomial fit.

Since, we observed that azimuthally the disk surface has light modulations of around

60microns, which can not be compensated during real-time velocity measurements. It

is reasonable then to consider the axisymmetric component of LVDT measurements as

expected disk out-of-flatness in azimuthal direction. Figure 4.7 shows the plot of average
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Figure 4.5: Surface measurement using LVDT sensor at eight equally spaced different az-
imuthal locations. Bottom abscissa represents distance in mm from the centre of the disk and
ordinate shows measurement record in µm. Top abscissa is represented in terms of dimensionless
parameter R = r/δ which is nondimensionalized by boundary layer thickness δ = 380µm.
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Figure 4.7: Symmetrical part of the out-of flatness of the disk surface with 10th order polynomial
fit.

value of LVDT, calculated using equation 4.5 along with a 10th order polynomial fit. We

shall use this polynomial as a compensation for the default out-of-flatness of the disk

surface for true positioning of a hot-wire sensor over a disk.

4.8 Validation of disk out-of-flatness correction

In this section we will validate the assumptions made in section 4.6. In this validation

process we manually rotate the disk for few number of rotations by fixing the LVDT sensor

over the disk surface at a pre-defined fixed axial position. This measurement is done for

the range of radial positions 146 ≤ R(mm) ≤ 206 with a step of 2mm. The purpose

of this procedure is to get the whole disk-surface information and then, by subtracting

the expected smooth axisymmetrical part of the out-of-flatness, obtained by fitting a 10th

order polynomial as discussed in detail in sections 4.6 and 4.7 and shown by figure 4.7,

psfigures_disk_surface/RmmvsZavg.ps
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we expect the resulting disk surface cartography to display an out-of-flatness of less than

60microns. For this the region having most out-of-flatness is selected, for example in our

case we chose 146 ≤ R(mm) ≤ 206, see figure 4.5. Measurement of the whole circumference

of the disk surface was done for the range of radial positions by rotating the disk manually

and recording the data of displacement transducer along with two reference signals: one

measuring the number of exact rotations and the second consisting of 200 square waves per

rotation which are used to extract the azimuthal positions of the transducer data points.

Figure 4.8 represents the measurement of the disk surface i.e. z(r, θ), defined by equa-

tion 4.1 (plotted in red). It is observed that the total misalignment between the disk

surface and the traversing mechanism is less than 140microns, which is consistent with the

measurements shown in figure 4.5 for the range of 146 ≤ R(mm) ≤ 206. After subtracting

the smooth part, i.e. z̄(r, θ) as a 10th order polynomial, from z(r, θ), the resulting form of

the disk surface is also shown in figure 4.8 (plotted in blue). In comparing the two plots,

we notice that after correction, the remaining out-of-flatness does not exceed 60microns.

Beside the flatness of the disk, we observed that the disk is also locally imperfect and has

a small valley. Figure 4.9 show colour-mapped plots of the disk-surface. From this plots,

one can visibly quantify the approximate disk-surface modulations. Radial variation of

disk surface is seen to be less than 20µm, however, azimuthally a depression on the disk-

surface is clearly visible. This imperfection is also observed in the phase-locked average of

azimuthal velocity time-series using a hot wire in section 5.3.

4.9 Experimental verification

Experimental verification is performed by repeating the measurements of the mean velocity

profile, as done in the preliminary measurements section 4.2, but this time by correcting

for the smooth symmetrical part of the misalignment between disk surface and traversing

mechanism so that the hot-wire probe is positioned at the correct prescribed distance rela-

tive to the disk surface. Figure 4.10(a) shows the mean velocity preliminary measurements

for 350 ≤ R ≤ 450 obtained at disk rotation rate of Ω = 950 rpm, the solid red coloured

curve represents the analytical solution and the hot wire is calibrated at R = 350. In these

measurements, the error accumulating due to misalignment is not corrected and hence

the measured velocities are not in agreement with the analytical profile even for Reynolds

number below critical. Figure 4.10(b) shows the new mean velocity measurements after
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correcting for misalignment. In this figure, the measured mean-flow profiles follow pre-

cisely the analytical curve even at larger values of R. It is clear from these data that we

can avoid misalignment-induced errors in the hot-wire measurements by re-scripting the

displacement controller so that it follows the symmetrical part of the out-of-flatness during

radial movements.

4.10 Summary and conclusion

To assess the overall quality of the disk and the traversing mechanism, a detailed in-

vestigation of the disk surface has been carried out by measuring the form of the disk

surface using a linear variable displacement transducer (LVDT). In the first part, the

measurements are done at eight equally spaced azimuthal positions for the range of radii

112mm 6 r 6 236mm in radial steps of 0.25mm. LVDT measurements showed a pattern

of regular peaks in the radial direction which appear irrespective of the azimuthal position

(see figure 4.5). These peaks (of less than 20µm in amplitude) are found to be associated

with the misalignment between screw axis and the axis of the electric motor used for the

radial displacement LVDT. The symmetrical part of the LVDT measurement is calculated

(see figure 4.7) and a smooth polynomial was fitted to data, which is assumed to be the

expected radial misalignment between the traversing mechanism and the disk surface.

In the next step, we validate the assumption that there is a misalignment between

the radial traversing mechanism and the disk surface which can be approximated by a

smooth polynomial. It is also found that the disk is locally imperfect and there exists a

small valley over the disk (see figures 4.8 and 4.9). The disk surface is found to have a

maximum out-of-flatness of less than 70µm in azimuthal direction, i.e. in θ. However, the

radial misalignment between the disk surface and traversing mechanism (which was found

to be of about 150µm) could be taken into account during real-time measurements and

verification is done by mean-flow velocity profiles measurements (see section 4.9). After

compensating for the misalignment between the disk and the traversing mechanism, the

issue of systematic shifts in the measured velocities has been satisfactorily resolved.
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Figure 4.10: Comparison of measured azimuthal mean-flow velocity with and without taking
into account the misalignment between the disk surface and the hot-wire traversing mechanism.
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Chapter 5

Natural Flow Instability and

Transition

In this chapter, results of hot-wire measurements of the rotating-disk boundary layer with-

out forcing are presented. The aim is to characterise the naturally occurring growth of

instabilities and transition to turbulence.

Throughout this chapter, the axial coordinate Z and radial coordinate R are nondi-

mensionalised using the boundary-layer thickness δ =
√

ν/Ω. Measurements were carried

out for nondimensional radii 350 ≤ R ≤ 650, which includes the expected range of growing

laminar instabilities, as well as the region of transition to turbulence and the fully turbulent

regime. Measurements for R ≤ 600 were performed with a disk rotation rate of 950 rpm,

whereas (for technical reasons to do with the limited range of the hot-wire traversing mech-

anism and the finite disk radius) those for R > 600 employed the slightly higher value,

1050 rpm in order to gain access to such values of R. To reduce external perturbations to a

minimum, these measurements were performed in a closed room, controlled and monitored

from outside. The misalignment between the traversing mechanism and the disk surface

was corrected for as described in the previous chapter.

5.1 Mean-velocity measurements

Time-averaged, azimuthal velocity profiles were determined for 100 disk revolutions, with

500 time samples per revolution, i.e. an average over 50, 000 data points in all. The results

for different values of R are shown, in dimensionless form and alongside the von Kármán

solution for flow over an infinite disk, in figure 5.1. Figure 5.2 shows the difference between

51
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the measured profile and the analytical one. These results are consistent with those of

Lingwood [26].

As seen in figure 5.1(a), at the lower end of the range of R, the measured profiles

very closely follow the von Kármán values. For 490 ≤ R ≤ 540 (figure 5.1(b)), small

but significant deviations of the measured profiles from the theoretical curve are observed.

Figure 5.2(b) shows that these deviations are confined to the boundary layer (say, Z ≤ 6)

and attain a maximum of about 5% of the disk velocity by R = 540. In the convectively

unstable range, 284 ≤ R ≤ 507, they can be interpreted as reflecting the radial growth of

instabilities (cross-flow vortex modes) in the boundary-layer. The confinement in Z, with

a maximum in the range Z ≤ 4, is consistent with the structure of the unstable-mode

eigenfunctions.

For R & 550, figure 5.1(c) shows the development of strong mean-flow distortions and

that the mean-flow correction progressively extends to beyond Z = 15 by R = 600; such

boundary-layer thickening is characteristic of the development of a turbulent boundary

layer. In figure 5.3, mean-flow velocities for 550 ≤ R ≤ 650 are plotted against Z using

a logarithmic scale. It is found that the velocity profiles are nearly linear in log(Z) for

R ≥ 600: such behaviour is characteristic of fully turbulent boundary layers and known

as the log law or law of the wall. Velocity profiles for R ≤ 590 are not linear in log(Z),

suggesting that the flow is not yet fully turbulent and still in the transitional regime. Thus,

we conclude from the mean-velocity measurements that the flow begins transition around

R ≈ 540 and is fully turbulent by R ≈ 610.

5.2 Spectral analysis

Fourier power spectra were calculated to show the frequency content of the azimuthal

velocity time series at different nondimensional radii and disk normal positions, Z = 1,

1.5, 2, 2.5, 3 and 4. These spectra were computed using the Fast Fourier Transform (FFT)

function of the LABVIEW program. 30 FFT’s were taken, each using 500, 000 time samples

recorded over 200 disk revolutions. The squared moduli of the complex Fourier amplitudes

was then averaged over the 30 FFT’s to form the power spectrum, P (ω). The result will be

referred to as a “high-resolution” spectrum and has a frequency resolution of ∆ω = 0.005,

where ω is frequency nondimensionalised by the disk frequency. Low-resolution spectra are

obtained by smoothing the high-resolution spectra using frequency bins of width ∆ω = 1,

centred on integer values of ω. Smoothing is done by taking the average of the spectral
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Figure 5.1: Azimuthal mean-flow velocity profiles at various nondimensional radii in the range
350 ≤ R ≤ 650, along with the analytical profile (solid line): (a) measured profiles closely follow
the analytical curve for R ≤ 480, (b) small deviations of the measured profile from the analytical
curve are observed for Z ≤ 6 and 490 ≤ R ≤ 540, (c) mean-flow velocity profiles corresponding
to transitional and fully turbulent flow: large deviations from the analytical curve are observed,
extending beyond Z = 15 by R = 650.
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Figure 5.2: Mean-flow corrections obtained by subtracting the analytical profile from the mea-
sured ones for the same values of R as figure 5.1: (a) R ≤ 480: corrections are very small, (b)
490 ≤ R ≤ 540: small corrections, confined to Z ≤ 6, (c) R ≥ 550: rapidly increasing deviations
from the analytical profile, extending to larger Z as the flow undergoes transition to turbulence.
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Figure 5.3: Mean-flow velocity profiles of the transitional and fully turbulent flow regimes
plotted against Z on a logarithmic scale. For R ≥ 600, there is a linear dependency corresponding
to the log law of fully turbulent boundary layers. Solid lines are linear fits to the data in the
range 1 ≤ Z ≤ 16 for R = 600, 620 and 650 (slopes are respectively dV/dln(Z) = −0.139, −0.138
and −0.133). The root-mean-square error of each fit is around 0.005.

energy contained in each frequency bin. We first discuss the low-resolution spectra, then

the high-resolution ones.

5.2.1 Low-resolution spectra

Low-resolution power spectra for the range 350 ≤ R ≤ 610 at Z = 1, 1.5, 2, 2.5, 3, 4 are

presented in figure 5.4. At low R, the spectra are found to mainly consist of uniform back-

ground noise. The noise level increases when approaching the disk surface. For instance,

in figure 5.4(a) (R = 350), the noise level at Z = 4 is around 102, increasing progressively

to about 104 for Z = 1. There is also a peak near ω ≈ 72 (≈ 1145Hz). This peak always

appears at the same dimensional frequency of around 1145Hz, independent of the disk

rotation rate, which suggests that it is an experimental artifact. For this reason, we ignore

it in what follows. Note that, at higher values of R, the peak is, in any case, dominated

by others.

Starting at R = 450 (figure 5.4(c)), a peak with a maximum near ω ≈ 30 emerges.

This is an indication of the development of growing cross-flow modes with a characteristic

frequency around 30, but these modes as yet cause no significant distortion of the mean

flow: as we saw earlier, for R ≤ 480, the measured mean-flow profiles closely follow the

von Kármán solution.

At higher R, power spectra show the progressive growth and development of the dis-

turbance. A second-harmonic peak appears at R ≈ 490 (figure 5.4(e)), indicating effects

psfigures_natural_flow/turbulence_loglaw.ps
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of nonlinearity. At still higher R (figures 5.4 (f, g, h)), higher harmonics of the funda-

mental peak arise near ω ≈ 90, 120, 150, and 180. Note that the harmonics first appear

at different values of R depending on the distance Z from the disk surface. For instance,

figures 5.4(e,f,g) show no harmonics for Z = 4, whereas harmonics are present for Z ≤ 3,

while figures 5.4(h,i,j) show harmonics extending out to Z = 4.

At and above R ≈ 520, figures 5.4(h, i, j, k, l) show the progressive increase of a

broadband spectral component, followed by the disappearance (or drowning out) of the

modal peaks. This corresponds to transition to turbulence. By R ≈ 610, there are no longer

any clear peaks associated with the modes and the flow is fully turbulent. Lingwood [26]

concludes that the flow is fully turbulent beyond R ≈ 622, thus it seems that the position

where the natural flow over a rotating-disk becomes fully turbulent is quite robust.

5.2.1.1 Turbulence and power-law spectra

In this section we take a closer look at the turbulent spectra with the aim of looking for

Kolmogorov-type power laws. In figure 5.5, spectra corresponding to the transitional and

fully turbulent regimes are plotted using a log-log scale to bring out possible power-law

behaviour. These plots are shown for R = 570, 590, 600, 610, 620, 625 and Z = 1.0, 1.5,

2.0, 2.5, 3.0, 4.0. For R = 570, the modal peak and its harmonics are apparent, whereas at

R = 600 and above, the peak is absent and there is a linear range extending over a good

fraction of a decade in frequency upwards from where the peak would occur. The figure

shows linear fits to the data in the range 30 ≤ ω ≤ 200 for R ≥ 600. Such linear behaviour

corresponds to spectral power laws with exponents equal to the slopes of the lines, listed in

table 5.1. For reference purposes, the figure also shows a straight line with the Kolmogorov

slope −5/3. From the figure and the table, it will be seen that the power-law exponents

are not far from the Kolmogorov value, particularly at the largest two values of R where

the turbulence is most developed.

As is also apparent from table 5.1, the power-law exponent depends on both R and

Z, tending to decrease in absolute value as R increases and increase with Z. A possible

explanation of these variations, more qualitative than quantitative, refers to the physics

of the turbulent energy cascade from large to small scales which forms the basis of Kol-

mogorov’s theory. Large scales, here corresponding to frequencies at and below ω ≈ 30,

break down to smaller scales, which in turn break down to yet smaller scales, etc. This

creates an energy flux from larger to smaller scales, which, if assumed the only controlling
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Figure 5.4: Low-resolution power spectra for R = 350, 400, 450, 470, 490, 500, 510, 520, 530,
550, 600 and 610. Spectral amplitudes are plotted on a logarithmic scale for disk normal positions
Z = 1, 1.5, 2, 2.5, 3 and 4. (Continued on the next page.)
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R 600 610 620 625

Z
1.0 -1.94 -1.76 -1.51 -1.42
1.5 -2.03 -1.85 -1.59 -1.45
2.0 -2.03 -1.81 -1.63 -1.55
2.5 -2.09 -1.89 -1.73 -1.68
3.0 -2.03 -1.96 -1.79 -1.72
4.0 -2.21 -1.96 -1.88 -1.85

Average -2.06 -1.87 -1.68 -1.61

Table 5.1: Slopes of the linear fit to spectra at R = 600, 610, 620 and 625 and Z =
1.0, 1.5, 2.0, 2.5, 3.0, 4.0. The corresponding straight lines are shown in figure 5.5. Fitting is
done for the data in the range 30 ≤ ω ≤ 200. The root-mean-square error of the linear fits is
around 0.05.

factor of turbulence dynamics of the small scales, leads to the −5/3 law by dimensional

analysis. However, this assumes a constant rate of energy supply from the large scales.

Imagine following a packet of turbulence as it is convected by the mean flow. If the

energy supply rate from the large scales increases with time, the energy flux was lower in

the past and, given that the cascade takes a certain time, we expect the spectral energy of

the small scales to be less than it would have been had the energy supply been constant,

hence a steeper slope on the log-log plot. This suggests larger absolute values of the power-

law exponent in the presence of an increasing supply rate, and smaller ones if the supply

rate decreases. In table 5.1, the absolute value of the Z-averaged exponent is seen to be

higher than 5/3 for the first three values of R. This is to be expected since the turbulent

intensity, and hence the energy supply rate, increases with R in the transitional region.

Both R = 600 and R = 610 have exponents above 5/3 for all Z, suggesting an increasing

supply rate at all distances from the disk. This is reasonable because the turbulence is

developing up to R = 610. For R = 620 and R = 625, the exponent is less than 5/3

towards the disk and greater than 5/3 at higher Z. This suggests a decreasing supply

rate near the disk and an increasing one further out. All the above results are reasonable,

although we should insist on the qualitative nature of the explanation.

5.2.1.2 Growth rates

Modal growth is studied by plotting the spectral level as a function of R for several frequen-

cies, ω = 29, 30, 31, 32, near the modal peak (the fastest growing frequencies). Figure 5.6



60 5. NATURAL FLOW INSTABILITY AND TRANSITION

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1  10  100

P
(ω

)

ω

R = 570

Z=1.0
Z=1.5
Z=2.0
Z=2.5
Z=3.0
Z=4.0

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1  10  100
P

(ω
)

ω

R = 590

Z=1.0
Z=1.5
Z=2.0
Z=2.5
Z=3.0
Z=4.0

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1  10  100

P
(ω

)

ω

Kolmogorov spectra slope (-5/3)

R = 600

Z=1.0
Z=1.5
Z=2.0
Z=2.5
Z=3.0
Z=4.0

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1  10  100

P
(ω

)

ω

Kolmogorov spectra slope (-5/3)

R = 610

Z=1.0
Z=1.5
Z=2.0
Z=2.5
Z=3.0
Z=4.0

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1  10  100

P
(ω

)

ω

Kolmogorov spectra slope (-5/3)

R = 620

Z=1.0
Z=1.5
Z=2.0
Z=2.5
Z=3.0
Z=4.0

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1  10  100

P
(ω

)

ω

Kolmogorov spectra slope (-5/3)

R = 625

Z=1.0
Z=1.5
Z=2.0
Z=2.5
Z=3.0
Z=4.0

Figure 5.5: Log-log plots of spectra in the turbulent regime (R = 570, 590, 600, 610, 620 and
625), along with linear fits for R = 600, 610, 620 and 625 and a reference line of slope −5/3.
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Figure 5.6: Growth with R of the spectral levels of frequencies ω = 29, 30, 31, 32 for Z = 1,
1.5, 2, 2.5. The straight lines are a linear fit for ω = 30 over 400 ≤ R ≤ 530.

shows the results for 350 ≤ R ≤ 630 and Z = 1, 1.5, 2, 2.5. Once the modal peak emerges

from the background noise, nearly linear variation is observed in the range 400 ≤ R ≤ 530.

Given the logarithmic vertical scale, this corresponds to exponential growth, which begins

to saturate at about R = 540. Linear fitting was carried out over 400 ≤ R ≤ 530 for ω =

29, 30, 31, 32, 33, 34, 35 and Z = 1, 1.5, 2, 2.5. The results for ω = 30 are indicated by

the straight lines in the figure. Since the quantity plotted is the average squared modulus

of the Fourier amplitude, the radial growth rate (−αi) is one half of the slope of the linear

fit. Table 5.2 gives the resulting radial growth rates.

Theoretical results based on local linear spatial stability analysis were given in sec-

tion 2.3. In particular, figure 2.3 shows isolines of the radial growth rate, −αi, computed

for real values of the mode number, β, and frequency, ω, at R = 500. According to this

figure, modes which are stationary with respect to the disk (ω = β) are radially amplified
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Z 1.0 1.5 2.0 2.5 Average

ω
29 0.039 0.039 0.043 0.041 0.040
30 0.041 0.042 0.042 0.046 0.043
31 0.039 0.039 0.042 0.045 0.042
32 0.040 0.044 0.046 0.048 0.044
33 0.040 0.042 0.042 0.043 0.042
34 0.041 0.042 0.042 0.044 0.042
35 0.040 0.042 0.042 0.043 0.042

Table 5.2: Radial growth rate, −αi, of the fastest growing frequencies (ω = 29, 30, 31, 32, 33,
34, 35) at Z = 1.0, 1.5, 2.0, 2.5.

for 20 . ω . 60. Maximal amplification of such modes occurs for ω = 32 (big dot in

figure 2.3), which closely corresponds to the fundamental of the harmonic peaks in fig-

ures 5.4(c-j). The theoretical growth rates, −αi, of stationary modes of frequencies ω =

29, 30, 31, 32 and 33 are found to be ≈ 0.05. As is apparent from table 5.2, the exper-

imentally determined growth rates, though lower, are not far from this value. Thus, the

measurements are in reasonable agreement with theory assuming growing modes which are

stationary with respect to the disk.

5.2.2 High-resolution spectral analysis

High-resolution spectra are calculated as described earlier. These spectra have a frequency

resolution of ∆ω = 0.005 and were taken at 350 ≤ R ≤ 650 and Z = 1, 1.5, 2, 2.5, 3 and

4. Figure 5.7(a), shows results for 350 ≤ R ≤ 625 and Z = 2.0. Overall, the high-

resolution spectra display the same features as the low-resolution spectra (figure 5.4), but

they also show the existence of discrete peaks at integer multiples of the disk rotation

frequency. These peaks are smoothed out when averaging the high-resolution spectra to

obtain the low-resolution ones. The discrete peaks are more clearly visible in the closeup

views in figures 5.7(b,c,d). Thus, the velocity spectra of the flow are found to be made up

of continuous and discrete parts. The discrete part corresponds to flow components that

have the same periodicity as the disk and that are probably stationary with respect to the

disk surface.

It is observed that both the discrete and continuous parts of the spectrum grow with R.

However, the discrete part is more prominent in the most amplified frequency band around
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ω ≈ 30. This is apparent in the closeup view of the range 20 ≤ ω ≤ 50 shown in figure 5.8.

At R = 350, the spectrum is essentially background noise. For, say, 450 ≤ R ≤ 510, the

discrete part grows to form a peak around ω ≈ 30. This growth continues up to R ≈ 530,

but involves a wider band of frequencies and then saturates. Starting at R ≈ 510, the

continuous part grows as absolute instability and transition to turbulence take their toll.

By R = 640, the discrete part is no longer visible.

Although we have no definite explanation of the existence of discrete peaks in the

spectra, they might be caused by localised imperfections (such as scratches) on the disk

surface which excite all multiples of the disk frequency.

5.3 Time-series measurements

The time series of azimuthal velocity was recorded together with a phase reference signal

which consists of square waves produced once per rotation of the disk. This reference

signal is used to slice the recorded time series into exactly N periods of the disk rotation.

Averaging over the N periods yields the phase-locked average of the velocity time series.

This process extracts the components of the flow which are periodic with the disk rotation

period, T . Put another way, it suppresses components, such as turbulence, which are not

repeated at each rotation of the disk. Measurements were taken at Z = 1, 2, 3, 4 and 22

values of R in the range 350 ≤ R ≤ 600. The phase-locked average was taken over N = 200

disk rotations. The resulting average velocity time series are shown in figures 5.9, 5.10,

5.11 and 5.12.

At low R, for example R = 350 (figure 5.9(a)), the averaged time series is found

to be almost flat with no disturbances. A deficit in velocity subsequently arises around

t/T ≈ 0.35 for Z = 1 (see figures 5.9(b-f)). This is due to a local imperfection of the

disk-surface, an imperfection which is apparent in the disk-surface measurements using

LVDT, see figure 4.9. In that figure it can be seen that there is a small valley in the disk

surface confined to 110o and 130o CCW from the reference line (the reference used in the

disk-surface measurements is the same as for phase-locked averaging of the velocity time

series). The location of this valley corresponds well with the time at which the flow deficit

occurs, i.e. around t/T ≈ 0.35 or 126o CCW from the reference line.

For R ≥ 420, small oscillations appear (figures 5.9(d-f)), corresponding to the growth of

cross-flow vortex modes. These oscillations are not yet strong enough to modify the mean

flow as already seen from the mean-velocity profile which closely follows the analytical
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Figure 5.7: High-resolution power spectra: (a) spectra at Z = 2 for the range 350 ≤ R ≤ 625,
(b) closeup view of (a) for 28 ≤ ω ≤ 40, showing discrete peaks at integer multiples of the disk
frequency, (c) spectra for R = 500 and Z = 1, 2, 3 and 4, showing the increase in amplitude of
the discrete peaks with decreasing Z. These peaks are more prominent for the most amplified
frequencies, 25 ≤ ω ≤ 35, (d) spectra corresponding to turbulent flow, showing how the discrete
peaks decay and disappear by R = 640.
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Figure 5.8: Radial evolution of high-resolution power spectra in the range 20 ≤ ω ≤ 50 for
Z = 2.0 and 350 ≤ R ≤ 640. This figure shows the emergence and development of discrete peaks
for R ≥ 450 and their disappearance by R ≈ 640.
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Figure 5.9: Phase-locked average of the velocity time series for R = 350, 400, 410, 420, 430,
440 and Z = 1, 2, 3, 4. T represents the disk rotation period.
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Figure 5.10: Phase-locked average of the velocity time series for R = 450, 460, 470, 480, 490,
500 and Z = 1, 2, 3, 4. T represents the disk rotation period. Two wavepackets can be seen,
centred around t/T ≈ 0.2 and 0.7 for R = 490. Similar behaviour was observed by Lingwood [26]
(see figure 5.13).
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Figure 5.11: Phase-locked average of the velocity time series for R = 510, 530, 540, 550, 570, 580
and Z = 1, 2, 3, 4. T represents the disk rotation period.
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Figure 5.12: Phase-locked average of the velocity time series for R = 590, 600 and Z = 1, 2,
3, 4. T represents the disk rotation period.

curve up to R = 480. The oscillations continue to grow with increasing R (see figures 5.10

and 5.11(a, b)). They are confined to the boundary layer, tending to fall in amplitude

with increasing Z. There are found to be about 31 oscillations per disk period. Smith [45]

in his study of flow transition on a rotating disk found 32 stationary (with respect to the

disk) vortices in the boundary-layer. In a subsequent flow-visualisation study, Gregory,

Stuart & Walker [11] observed 28 − 31 stationary vortices. Thus, our results are in good

agreement with earlier work. Note that the oscillations take the form of two wavepackets

in figure 5.10. These wavepackets spread out until they interact with each other, forming

a continuous wavetrain with amplitude modulations. Similar behaviour has been observed

by Lingwood [25, 26] and Le Gal [21]. See figure 5.13 taken from Lingwood [26].

At R = 530 (figure 5.11(b)), some of the peaks of the oscillations have become jagged.

Subsequently (figures 5.11(c-f), 5.12), the oscillations cease to grow, progressively losing

their locally sinusoidal character, then decay until little remains of them by R = 600.

5.4 Summary and conclusion

An experimental study of instability and transition of the natural flow over a rotating-disk

has been carried out using a clean, glass disk. The study shows good agreement with

theoretical predictions and previous experimental work. The measured mean-flow velocity

profiles for nondimensional radii R ≤ 480 were found to closely match the theoretical von

Kármán self-similar profile (figure 5.1(a)). For 480 ≤ R ≤ 540, small mean-flow corrections
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Figure 5.13: Figure 7.9 from Lingwood [26], showing the R ≈ 502 phase-locked average time
series containing two “kinks”: one at t/T ≈ 0.37 (labelled 1) and the other at t/T ≈ 0.87 (labelled
2).

(less than 5% of the disk velocity) were observed confined to Z ≤ 6 (figure 5.2(b)). These

corrections represent the effects on the mean flow of growing cross-flow vortex modes in

the boundary layer. For R ≥ 550, large mean-flow corrections appear due to transition and

the, now turbulent, boundary layer thickens considerably. Mean-flow velocity profiles for

R ≥ 600 were found to have a linear range in log(Z), characteristic of the law of the wall of

turbulent boundary layers (figure 5.3). This indicates that the flow becomes fully turbulent

beyond R = 600 and that the transition region extends over the range 540 ≃ R ≃ 600.

High-resolution spectral analysis of the velocity time series reveals that the spectrum

has both continuous and discrete parts. The latter appear at integer multiples of the

disk rotation frequency and represent flow components which are periodic with the disk

frequency and probably stationary with respect to the disk. A discussion of the evolution

with R of the continuous and discrete parts taken separately was given in section 5.2.2, but

we have mostly concentrated on the low-resolution spectra, which combine the continuous

and discrete parts by averaging the high-resolution spectra over frequency bins of width

∆ω = 1, centred on integer values of ω.

Starting at R ≈ 450, the low-resolution spectra show a growing peak around ω ≈ 30

(figure 5.4). This peak represents the most amplified disturbances in the boundary-layer

(cross-flow vortices). The peak grows exponentially with R and has a radial growth rate

which is not far from the theoretical prediction for the fastest growing of modes which are

stationary with respect to the disk. Harmonics of the fundamental peak, reflecting nonlin-

ear effects, progressively appear with increasing R. At and above R ≈ 520, a broadband

spectral component grows due to transition to turbulence, followed by the disappearance

of the modal peaks. By R ≈ 610, there are no longer any clear peaks associated with the

modes and the flow is fully turbulent.
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Power laws are identified in the velocity spectra for R ≥ 600, extending over the best

part of a decade in frequency (figure 5.5). The exponent of these power laws varies with

both R and Z, but is not far from the Kolmogorov value, −5/3 (see table 5.1). By R = 640,

discrete peaks are no longer discernible in the high-resolution spectra.

Phase-locked averages of the velocity time series were also calculated (figures 5.9,

5.10, 5.11 and 5.12). These represent the flow components which are periodic with the

disk period. As R increases, they first show the development of a small velocity defect

corresponding to a localised imperfection of the disk. Growing modal oscillations are

then observed with about 31 oscillations per disk rotation (corresponding to ≈ 31 cross-

flow vortices), which is consistent with results of earlier studies (e.g. Gregory et al. [11],

Smith [45]). Transition intervenes at R ≈ 530, progressively disrupting the oscillations

until they die out above R ≈ 600.
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Chapter 6

Response to forcing

This chapter describes experimental studies of the forced response of the rotating-disk

boundary layer. Extensive previous experimental work has been carried out to investigate

the effects of externally imposed disturbances on the flow. Most of these studies have used

forcing elements that are fixed on the disk-surface, e.g. Malik et al. [47], Jarre, Le Gal &

Chauve [16], but some more recent investigations have employed periodic air impulses, e.g.

Lingwood [24, 25], Othman & Corke [31].

The ultimate goal of our work is to implement the transition control strategy proposed

by Pier [36]. Based on the finding that transition of the rotating-disk boundary layer is

probably due to the onset of absolute instability, he suggested that the application of suit-

able small-amplitude forcing in the convectively unstable region might delay transition. To

do this, the disturbances due to forcing must reach finite amplitude before the naturally

occurring absolute instability at R = Rca, thus significantly modifying the basic flow and

hence the onset of absolute instability. His theoretical calculations showed that, with sinu-

soidal forcing of nondimensional frequency ωf = 50 and mode number βf = 40, absolute

instability may be delayed by up to 100 boundary-layer units beyond Rca.

The type of forcing is constrained by the requirements of the above strategy. In par-

ticular, neither forcing elements fixed to the disk, nor periodic impulses, are found to be

theoretically appropriate. For this reason, a different method of forcing has been developed:

pins held by a rotating cylinder above the disk, which extend down into the boundary layer

and can be rotated at any chosen rate (see section 3.3 for more details), independent of the

disk rotation frequency. In an ideal world, we would have gone directly to the large num-

ber (≈ 40) of pins required for control, but faced with uncertainties of pin geometry and

experimental development, we opted to begin with the simpler case of a single pin which

73
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Figure 6.1: Closeups of the spherical (left) and cylindrical (right) forcing elements. The spher-
ical forcing element is 5mm in diameter, the cylindrical forcing element has diameter 7mm and
height 5mm. The gap between the disk surface and forcing elements is 0.5mm.

can be rotated at a rate independent of that of the disk. In fact we used two, diametrically

opposed pins, one with a cylindrical head, the other having a spherical head. Since the

wakes of the two pins do not interact, they can be studied separately, as if each pin were

alone.

Two types of experimental studies are reported in this chapter: in the first part, effects

of stationary (in the laboratory frame of reference) forcing on the mean-flow velocity are

described. In the second part, the forcing elements (pins) are rotated at various frequen-

cies, producing disturbance wavepackets in the boundary-layer. The spatial evolution and

propagation of these wavepackets are discussed and compared with theory.

6.1 Forcing-device configuration

As explained in detail in section 3.3, the forcing assembly consists of a hollow cylinder

mounted above the rotating, glass disk (see figure 3.1). The forcing assembly can hold a

maximum of 120 forcing elements and can be rotated at any speed up to 700 rpm. However,

as noted above, in the present investigations only two forcing elements are used. One of

these forcing elements has a spherical head of 5mm diameter and the other a cylindrical

head with diameter 7mm and height 5mm (see figure 6.1). These forcing elements are

placed 180o azimuthally apart and located radially 130mm from the disk center, as shown

in figure 6.2(a). The gap between the disk surface and the forcing elements is ≈ 0.5mm,

which is comparable with the boundary-layer thickness.
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Figure 6.2: (a) Sketch showing the locations of the forcing elements, diametrically opposed
and 130mm from the disk center. In the case of rotating (in the laboratory frame) forcing, this
figure represents the time at which the spherical element crosses the hot-wire path. (b) In the
case of stationary (in the laboratory frame) forcing, a forcing element was centred at one of the
positions shown in the figure: −2o, 0o, 1o, 2o, 3o, 4o and 6o, relative to the hot-wire sensor. The
figure also indicates the direction of rotation of the disk. At the forcing radius of 130mm, 1o of
angle corresponds to an azimuthal distance of about 2.5mm ≃ 7δ.

6.2 Effects of stationary forcing on the mean-flow ve-

locity

Recall that the natural azimuthal mean-flow velocity measurements showed that for radii,

R ≤ 480, the measured velocity profiles closely follow the analytical profile (figure 5.1(a)).

The aim of this study is to investigate the modification of the mean flow by stationary

(in the laboratory frame) forcing elements. To this end, the disk was rotated at 950 rpm,

creating a boundary layer of thickness δ = 380µm over the disk-surface. As noted above,

the forcing elements are located at a distance from the disk center of 130mm, corresponding

to a dimensionless radial position of Rf = 340, which lies in the convectively unstable range

and is well below the value, R = 480, at which the naturally occurring mean flow begins

to diverge from the analytical one. Azimuthal velocities are measured and averaged over

200 disk revolutions with a total number of time samples of 50, 000.

Measurements were carried out for each of the forcing elements (spherical, of diameter

5mm = 13δ, and cylindrical, of diameter 7mm = 18δ). One or other element was placed

at −2o, 0o, 1o, 2o, 3o, 4o and 6o relative to the line of traverse of the hot-wire sensor, as

psfigures_excited_flow/stationary_forcing_position_new.eps
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sketched in figure 6.2(b). Recall that the hot wire is constrained to a fixed plane which

passes through the disk axis (this plane is represented in figure 6.2 by the radial lines marked

“Hot-wire sensor path”). Measurements were taken over the ranges 315 ≤ R ≤ 370 and

1 ≤ Z ≤ 8, with the exception of the forcing positions −2o, 0o. With these locations of the

forcing element, the hot-wire probe cannot be positioned at radii R < 356, so measurements

were confined to the smaller range 356 ≤ R ≤ 370.

Figure 6.3 presents results of mean azimuthal velocity measurements using the spherical

forcing element for the range of radii 320 ≤ R ≤ 360, alongside the analytical von Kármán

azimuthal velocity profile. Note that here, and throughout this chapter, velocities are

nondimensionalised using the local disk rotation velocity. For forcing positions −2o and 0o

(figures 6.3(a, b)), the measured velocity profiles closely follow the analytical profile at all

values of R. This indicates that the flow at the hot wire is unperturbed by forcing at these

positions. For forcing positions 1o, 2o, 3o, 4o and 6o, the measured profiles also follow the

analytical profile at radii R ≤ 340 (figures 6.3(c, e, g, i, k)). At higher radii, deviations of

the measured profiles from the analytical profile are observed, indicating modification of

the flow by forcing (see figures 6.3(d, f, h, j, l)).

The mean-flow distortion (i.e. the result of subtracting the analytical velocity from the

measured mean velocity) due to spherical forcing is shown in figure 6.4. The distortion

is negligibly small at all R for forcing positions −2o and 0o (figures 6.4(a, b)). For other

forcing positions, significant distortions are observed within the boundary layer (Z . 5).

The largest distortion is found for 1o and occurs at R = 348 and Z ≃ 1.5. For any given

forcing position, the distortion has a maximum as a function of R and Z. The maximum

distortion at forcing positions 1o, 2o, 3o, 4o and 6o is approximately 20%, 9%, 7%, 6% and

5% of the disk velocity (see figure 6.4(c, d, e, f, g)), decreasing as forcing distance from the

hot-wire track increases.

The results are summarised by the sketches in figure 6.5. The forcing element is rep-

resented by the solid circle, while the wiggly lines are an attempt to represent the region

of mean-flow distortion. Given that the dominant velocity component of the rotating-disk

flow is azimuthal (see figure 2.1) and in the direction of the disk rotation, it is perhaps not

surprising that the region of significant distortion resembles the classical wake of an obsta-

cle in a uniform stream and that its orientation is approximately azimuthal (though, given

the 3D character of the rotating-disk flow and the presence of a solid surface, the analogy

should not be pushed too far). The smaller radial flow is outwards from the axis, hence

the wake trajectory shows increasing r as it develops downstream of the forcing element.
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Figure 6.3: Mean-flow velocity profiles for a spherical forcing element positioned at
−2o, 0o, 1o, 2o, 3o, 4o and 6o relative to hot-wire sensor. Continued on the next page.
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o R = 320

R = 330
R = 340
R = 342
R = 344
R = 346
R = 348
R = 350
R = 352
R = 354
R = 356
R = 358
R = 360

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 1  2  3  4  5  6  7  8

V
 -

 V
an

al
y

ti
ca

l

Z

(e) Spherical disturbance at 3
o R = 320

R = 330
R = 340
R = 342
R = 344
R = 346
R = 348
R = 350
R = 352
R = 354
R = 356
R = 358
R = 360

Figure 6.4: Mean-flow distortions due to a spherical forcing element. Continued on the next
page.
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(g) Spherical disturbance at 6
o R = 320
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The dotted radial lines in figure 6.5(a) indicate the hot-wire paths θ = −2o, 0o, 1o, 2o, 3o, 4o

and 6o (θ = 0 passes through the center of the forcing element). When θ = −2o, the

hot-wire path lies upstream of the forcing element, whereas, when θ = 0, it runs through

the element. In either case, it is understandable that little distortion is observed (recall

figures 6.4(a, b)). Positive values of θ run through the wake, hence the observed mean-flow

distortion. θ roughly corresponds to downstream distance from the element, whereas R

is a cross-wake coordinate. The maximum distortion as a function of R and Z can be

interpreted as the wake center. As we saw earlier, the maximum distortion decreases with

increasing θ, i.e. the wake decays with downstream distance. This is consistent with the-

ory, which predicts that disturbances which are stationary in the laboratory frame should

be spatially decaying, rather than having unstable growth.

For given θ, the wake center can be identified by finding the maximum of the mean-flow

distortion. The resulting values of R are shown in figure 6.6. The data for θ = 2o, 3o, 4o

and 6o seem to follow a linear curve, thus linear fitting is carried out excluding θ = 1o. The

slope of the linear fit is found to be ∆R/∆θ = 206. The angle, φ, that the wake makes

with the azimuthal direction (see figure 6.5(b)) is

tanφ =
1

R

∆R

∆θ
. (6.1)

Taking ∆R/∆θ = 206 and R ≃ 350 gives φ ≃ 30o. Thus, although the wake is roughly
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Figure 6.5: Sketches illustrating the region of significant mean-flow distortion (wake) due to
a stationary (in the laboratory frame) forcing element, represented by the solid circle. (a) The
dotted radial lines indicate the different hot-wire paths, θ = −2o, 0o, 1o, 2o, 3o, 4o and 6o . (b) A
closeup view. The wake centerline makes an angle φ with the azimuthal direction.

in the azimuthal direction, its radial deflection is far from negligible. Note that, at, say,

Z = 1 the azimuthal and radial von Kármán velocities are approximately 50% and 20%

of the disk velocity. This makes the angle of the velocity vector, projected parallel to the

disk surface, about 20o relative to the azimuthal direction.

The results obtained using the cylindrical forcing element were rather similar to the

spherical case (see figures 6.7 and 6.8 for some typical results). The larger diameter of

the cylindrical element leads to a somewhat wider wake. However, as for the sphere, the

mean-flow distortion is confined to the boundary layer, the wake is aligned in much the

same way and again decays with downstream distance. In consequence, neither element

perturbs the flow outside its neighbouring region, reflecting the lack of spatially unstable

growth of disturbances which are stationary in the laboratory frame.

6.3 Response to rotating forcing

In the case of rotating forcing elements, the disk was rotated at 560 rpm, inducing a

boundary layer of thickness δ = 520µm. This implies a nondimensional forcing radius

Rf = 250, just below the theoretical onset of convective instability at R = 284 and

allowing us to study the forced response from the start of the convectively unstable range,

hence the choice of disk rotation rate. The disk radius of 250mm corresponds to R = 480,
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Figure 6.6: Values of R at which the maximum mean-flow correction is found in figure 6.4,
for θ = 1o, 2o, 3o, 4o and 6o. Data points are plotted as black dots and a linear fit to the data
(excluding θ = 1o) is shown as a solid line.
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Figure 6.7: Mean velocity profiles for a cylindrical forcing element located at 2o relative to the
hot-wire sensor.
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Figure 6.8: Mean-flow distortions for a cylindrical forcing element located at 2o relative to the
hot-wire sensor.
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placing an upper limit on R. To avoid effects of finite disk radius, measurements were

performed in the range 280 ≤ R ≤ 460 (the upper limit being 20δ inside the edge of the

disk).

The forcing elements were rotated at various frequencies in the range 0.4 ≤ Ωf ≤

1.0, where Ωf is nondimensionalised by the disk rotation frequency. According to linear

instability theory the lower limit, Ωf = 0.4, lies below the range of spatial growth of modes

which are stationary in the forcing frame of reference (see figure 2.7(b), which shows

the maximum radial growth rate of such modes for R = 400). Thus, we might expect

decay of disturbances due to forcing in the lower part of the range of forcing frequencies.

Measurements at frequencies Ωf > 1.0 are not performed because, for technical reasons,

the forcing assembly cannot be rotated for a long time at such rotation rates. Note that the

chosen range, 0.4 ≤ Ωf ≤ 1.0, includes the forcing frequency of fastest growth according

to figure 2.7(b).

6.3.1 Azimuthal-velocity time series

Time series of azimuthal velocity were recorded for 280 ≤ R ≤ 460 and Z = 2. Results

covering two rotations of the forcing assembly are shown in figure 6.9 for Ωf = 0.9, 0.7. Two

wavepacket-like disturbances are observed per rotation, corresponding to the two forcing

elements. The labels ‘C’ and ‘S’ respectively indicate the disturbances due to the cylinder

and sphere. Note that t = 0 corresponds to the time at which the cylinder passes through

the hot-wire path. Thus, a ‘C’ disturbance packet originates at R = 250, t = 0. Since

the sphere is diametrically opposed to the cylinder, its disturbance packets arrive Tf/2

apart from those of the cylinder, where Tf is the rotation period of the forcing assembly.

To facilitate identification of the disturbance-packet trajectories, dotted straight lines have

been drawn through one of the disturbances produced by the sphere. It will be observed

that the disturbance packets follow very nearly linear trajectories in the t, R plane and

that their amplitude tends to increase with R, i.e. they are growing.

It is apparent from figure 6.9 that, although the disturbance packets recur periodically,

they are not periodic in detail. That is, successive disturbances due to a given forcing

element are not identical. This indicates that the disturbances are not stationary in the

forcing frame of reference. To see why this is, we estimate the Reynolds number of the

forcing elements as follows. Since the heights of the elements are large compared with

δ, they extend well outside the boundary layer, where the air velocity in the laboratory

frame is small. In this region, the velocity of the element relative to the ambient air is
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its rotational velocity, proportional to Ωf and equal to 7.6m/s when Ωf = 1. Basing the

Reynolds number on this velocity and on the diameter (5mm for the sphere, 7mm for

the cylinder) of the elements gives Re ≈ 3000Ωf . The minimum Reynolds number occurs

when Ωf = 0.4 and is ≈ 1000. Based on experience with uniform flow around obstacles

(for instance, the wake of a sphere, which becomes unsteady for Reynolds numbers above

≃ 210 [30, 44]), this is sufficient for unsteadiness of the wake in the frame of reference

of the forcing elements. Indeed, it is probably sufficient for turbulence in the wake of

the elements, which may explain the apparently random fluctuations in figure 6.9 between

successive disturbance packets of a given element.

6.3.2 Phase-locked averaged time series

In addition to the azimuthal velocity, a reference signal, consisting of one square wave per

rotation of the forcing assembly, was recorded. This allows phase-locked averaging of the

velocity time series to extract those components which are periodic with the period, Tf ,

of the forcing assembly. Such averaging is equivalent to a discrete-time average (having

temporal separation Tf between samples) in the forcing frame of reference. Unless the

flow in the forcing frame happens to have a discrete frequency component at a multiple

of the forcing frequency, we expect the result to be the same as taking the mean flow in

the forcing frame. Assuming this to be the case, the phase-locked averages of this section

can be interpreted as representing the mean flow in the frame of reference of the forcing

assembly. That mean flow is a function of θ′ = θ − Ωf t, R and Z, allowing the measured

phase-locked time series at fixed θ to be converted into mean-flow results for all θ and t.

In particular, the time series over a forcing period, Tf , should correspond to a 2π range of

θ at fixed t.

Phase-locked averaging was performed over 200 forcing periods, yielding the results

shown in figure 6.10. These plots show the averaged response over two periods of the forc-

ing assembly for Ωf = 1.0, 0.9, 0.8, 0.7, 0.6, 0.4 and 280 ≤ R ≤ 460. Disturbance ‘humps’

coming from the cylinder and sphere are apparent and labelled ‘C’ and ‘S’. Whereas linear

theory predicts decay of disturbances which are stationary in the forcing frame at the lower

values of Ωf , the humps grow in height as R ≥ 320 increases for all Ωf . This suggests that

the disturbances have sufficient amplitude that nonlinear effects are significant, a sugges-

tion which is also in accord with the lack of the expected wavepacket dispersion (linear

theory predicts dispersing wavepackets as R increases, whereas the observed humps remain

localised). The maxima of the humps follow nearly linear trajectories in the t, R plane,
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Figure 6.9: Azimuthal-velocity time series at Z = 2 and R = 280, 300, 320, ..., 460 for two
rotations of the forcing assembly and forcing frequencies Ωf = 0.9, 0.7. The disturbance packets
due to the cylinder and sphere are respectively labelled ‘C’ and ‘S’. Dotted straight lines indicate
a disturbance due to spherical forcing originating at R = 250, t/Tf = 0.5, where Tf is the rotation
period of the forcing assembly.
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corresponding to linear dependence of θ on R. The slope, ∆θ/∆R, of these trajectories

increases with Ωf . In figures 6.10(a, b, c, d), small oscillations are observed between the

humps.

Figure 6.11 shows a closeup of the phase-locked average time series over one forcing

period for Ωf = 0.4, 0.7 and R = 280, 320, 360, 400, 440. The disturbances show a clear

progression with R for all but the first value, R = 280, which is different from the others.

This difference is more apparent for Ωf ≥ 0.6 and it will be seen from figure 6.11(b) that

there are large-amplitude spikes at R = 280 which disappear at higher R. This figure also

shows the oscillations between the humps which were remarked on above: these oscillations

grow in amplitude up to R ≈ 360, then decay, whereas the humps keep on growing.

6.3.3 Disturbance trajectories

To quantify the trajectories of the disturbances, the time, t, at which the phase-locked

average velocity is a maximum was determined and converted to an equivalent angle,

δθ = Ωf t. At any given time, δθ(R) gives the angular separation between the disturbance

maximum at radial position R and the cylindrical forcing element. Figure 6.12 shows the

results for forcing frequencies 1.0 ≥ Ωf ≥ 0.4. It will be seen that, as noted earlier, the

disturbance trajectories make θ a very nearly linear function of R. Omitting the exceptional

case, R = 280, linear fits to the data in the range 300 ≤ R ≤ 460 yield the slopes, ∆θ/∆R,

which are plotted as functions of Ωf in figure 6.13(a). The slope is found to be the same

for the cylinder and sphere and to increase very nearly linearly with forcing frequency.

As described in section 2.5, local linear theory can be used to predict the trajectory of

the disturbance due to a rotating forcing element. The theory represents the disturbance

as a superposition of modes which are stationary in the forcing frame, the one with the

fastest radial growth producing a wavepacket whose trajectory, θ(R), is a linear function of

R. The predicted slope of the trajectory, ∆θ/∆R, for forcing at R = 400 (the approximate

center of the experimental range of R) is represented as a function of Ωf by the solid line

in figure 2.8 (this figure also shows the predicted slopes of the leading and trailing edges

of the wavepacket as dashed lines). These results are reproduced in figure 6.13(b) for the

range of growing Ωf (Ωf > 0.68) predicted by theory, together with the experimental slope.

It will be seen that there is reasonable agreement between theory and experiment for both

the cylinder and sphere, and this despite the likelihood, noted earlier, of nonlinear effects

in the experiment. Thus, we are in the, perhaps unusual, position of finding agreement

between experiment and a theory whose basis is questionable.
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Figure 6.10: Phase-locked average of the azimuthal velocity time series taken over 200 forc-
ing periods and plotted over two periods for Ωf = 1.0, 0.9, 0.8, 0.7, 0.6, 0.4, Z = 2, R =
280, 300, 320, 340, 360, 380, 400, 420, 440, 460. Tf denotes the forcing period. Disturbances due
to the cylinder and sphere originate at R = 250 when t/Tf = 0 and t/Tf = 0.5.
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Figure 6.11: Closeup view of the phase-locked average over one forcing period for Ωf = 0.4, 0.7,
Z = 2, R = 280, 320, 360, 400, 440.
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Figure 6.12: Angular location of the maximum disturbances due to the cylinder and sphere, as
functions of 280 ≤ R ≤ 460, at forcing frequencies Ωf = 1.0, 0.9, 0.8, 0.7, 0.6, 0.4.
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Figure 6.13: (a) Slopes of the disturbance trajectories (∆θ/∆R), calculated from a linear fit
to the data of figure 6.12 over the range 300 ≤ R ≤ 460 and plotted as a function of Ωf . (b)
Comparison of experimental and theoretical disturbance trajectory slopes for the range 0.68 ≤
Ω ≤ 1.0. The figure also indicates the slopes of the theoretical wavepacket’s leading and trailing
edges.

psfigures_excited_flow/fit_da_over_db_pin12_R300_to_R460.ps
psfigures_excited_flow/da_over_db_comparison_pin12_R300_to_R460_2.ps


6.3 Response to rotating forcing 91

Figure 6.14: Sketch of the disturbance generated by a single forcing element rotating with the
disk.

Figure 6.14 shows a sketch of the disturbance trajectory generated by a forcing element

rotating with the disk. This corresponds to a forcing frequency Ωf = 1, for which the

disturbance slope is ∆θ/∆R = 0.015 according to figure 6.13(a). Thus, the angle γ in

figure 6.14 between the disturbance trajectory and the radial direction follows from:

tanγ = R
∆θ

∆R
= 0.015R. (6.2)

Taking R = 400 gives γ = 81o, agreeing well with the observations of Jarre, Le Gal and

Chauve [16] and Mack [28] for disturbances due to roughness elements fixed on the disk

surface. Based on our results, calculations of γ can be performed for forcing frequencies

other than Ωf = 1.

6.3.4 Disturbance amplitude

Figure 6.15 shows the maximum phase-locked average velocity as a function of R for various

forcing frequencies. The disturbance amplitude initially drops, then grows as a nearly linear

function of R. In the initial phase, there are noticeable differences between the cylinder

and sphere, as well as between different forcing frequencies, but the later phase of linear
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growth seems to be essentially independent of both the type of forcing and the value of Ωf .

Of course, as we saw in the previous section, the slope of the disturbance trajectories does

depend on Ωf . Note that there is no sign of the exponential growth or decay predicted

by linear theory (recall that, at R = 400, modes which are stationary in the forcing frame

should decay for Ωf < 0.68 and grow for higher values of Ωf ), which again suggests that

the forcing elements perturb the boundary layer with sufficient strength that nonlinear

effects are significant from the start.

6.3.5 Spectral analysis

Fourier power spectra were calculated from the azimuthal velocity time series (no phase-

locked averaging) over 200 forcing periods (yielding a frequency resolution, ω/Ωf = 0.005)

for Z = 2 and various values of R and Ωf . Results are shown in figure 6.16. Discrete peaks

are observed at multiples of the forcing frequency, corresponding to the periodic component

which has been discussed in some detail in earlier sections using phase-locked averaging

to extract it from the rest. The aperiodic part of the flow is here visible as a broadband

spectral base. Note that, at the lower frequencies, the discrete part of the spectrum is

dominated by the even harmonics (ω/Ωf = 2, 4, ...) of the forcing frequency.

To study the periodic part of the flow in more detail, spectra were calculated from

the phase-locked average time series described earlier. Since these are periodic with the

forcing period, they only contain multiples of the forcing frequency. Results are shown in

figure 6.17. At low frequencies, one sees oscillations in amplitude of successive frequencies,

reflecting the dominance of even harmonics noted above. Spectral peaks are also observed

in some of the spectra for Ωf = 1.0, 0.9, 0.8, 0.7, respectively centred around ω/Ωf ≈

19, 21, 24, and 28. These peaks seem to correspond to the oscillations in the phase-locked

average time series between disturbance packets whose existence was remarked on earlier.

6.4 Summary and conclusion

In this chapter, we have investigated the response of the rotating-disk boundary layer

to both stationary and rotating forcing. Two types of forcing element, spherical and

cylindrical, were used in an attempt to ascertain the effects of element geometry on the

resulting disturbances, though it turns out that few significant differences were found.
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Figure 6.15: Maximum phase-locked average velocity plotted against R in the range 280 ≤
R ≤ 460 for Ωf = 1.0, 0.9, 0.8, 0.7, 0.6, 0.4 . Recall that the forcing position is R = 250.
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Figure 6.16: Spectra computed from the azimuthal velocity time series at Z = 2.0, taken over
200 forcing periods and plotted for Ωf = 0.4, 0.6, 0.7, 0.8, 0.9, 1.0 at R = 280, 340, 360 and 460.
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Figure 6.17: Spectra computed from the phase-locked average azimuthal velocity time series,
plotted for Ωf = 0.4, 0.6, 0.7, 0.8, 0.9, 1.0 at R = 280, 340, 360 and 460.
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Figure 6.5 summarises the results of forcing which is stationary in the laboratory frame

of reference and applied at nondimensional distance Rf = 340 from the disk axis. The

disturbance is confined within the boundary layer and to a region elongated ‘downstream’

of the element. This wake region is roughly oriented in the direction of motion of the

disk with an outward radial deflection of about 30o from the azimuthal direction. This

is understandable because the azimuthal component of the Von Kármán flow exceeds the

radial one. Despite the forcing being applied within the convectively unstable region,

R > 284, the disturbance is found to decay with downstream distance: the element only

perturbs the flow in its neighbourhood. This is consistent with the theoretical finding that

disturbances which are stationary in the laboratory frame decay.

Rotating forcing was applied at Rf = 250, just below the start of the convectively

unstable region, for various rotational frequencies in the range 0.4 ≤ Ωf ≤ 1. Figure 6.9

shows the resulting wavepacket-like disturbances coming from the cylinder and sphere.

These disturbance packets tend to grow with R and follow linear trajectories in the t, R

plane. Although they arrive periodically, successive packets from a given forcing element

are not identical, indicating that the flow is not stationary in the frame of reference of the

forcing elements. This is consistent with the estimated Reynolds number, Re ≈ 1000, of

the elements, which is probably sufficiently large that the wake of an element is unsteady

in its reference frame.

With the aim of extracting the component of the flow which is stationary in the forcing

frame, phase-locked averaging was applied using a reference signal consisting of one square

wave per rotation of the forcing assembly. Figures 6.10 and 6.11 show disturbance ‘humps’

coming from the cylinder and sphere. As for the disturbance packets of the raw time series,

the phase-locked average disturbances tend grow with R and follow linear trajectories in

t, R. According to linear theory, disturbances which are stationary in the forcing frame

should decay at the lower values of forcing frequency, Ωf . This, together with the lack of

the expected wavepacket dispersion, suggests that nonlinear effects are significant. This

conclusion is reinforced by figure 6.15, which shows linear disturbance growth with R,

rather than the exponential behaviour predicted by linear theory.

Assuming the phase-locked averaging gives access to the flow component which is sta-

tionary in the forcing frame, the averaged time series can be interpreted as giving the

disturbance as a function of the azimuthal coordinate, θ, at fixed time. Figure 6.12 shows

the linear trajectories of the disturbance maximum in the R, θ plane. The slopes of these

trajectories are plotted as a function of forcing frequency in figure 6.13(a) and compared
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with results of linear theory in figure 6.13(b). Surprisingly, given the significant nonlin-

earity noted above, the experimental and theoretical slopes are in reasonable agreement

except for the lower end of the range of Ωf . This may bring to mind surface-wave solitons

in shallow water, which represent an equilibrium between wave dispersion and nonlinear-

ity, maintain their form and height as they propagate, but nonetheless have propagation

velocities close to the linear-theory, shallow-water prediction.

Figure 6.13(a) can be used to calculate the angle between the disturbance trajectory

and the radial direction for Ωf = 1, i.e. disturbances which are stationary with respect to

the disk. The result, 81o, is in good agreement with the value found by Jarre, Le Gal and

Chauve [16] and Mack [28] for disturbances due to roughness elements fixed on the disk

surface.

Frequency spectra of the raw and phase-averaged time series are respectively shown

in figures 6.16 and 6.17. Figure 6.16 shows discrete frequency peaks at multiples of the

forcing frequency, as well as a broadband component. Following phase-locked averaging,

only the discrete part is present in figure 6.17. At low frequencies, these figures show that

even harmonics of the forcing frequency dominate odd harmonics. A peak is apparent in

some of the spectra of figure 6.17. This peak corresponds to the small oscillations between

the disturbance packets in figure 6.10.
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Chapter 7

Conclusion and future work

Motivated by a recently proposed transition control strategy for three-dimensional bound-

ary layers (Pier [36]), this thesis describes experiments on the instabilities and transition

to turbulence of the rotating-disk flow. This flow is the canonical example of a three-

dimensional boundary layer and is attractive because there is a self-similar solution of the

governing equations due to Von Kármán, whose instabilities lead to growth of vortical dis-

turbances and transition. In the present work, experiments have been conducted to study

the natural and forced behaviour of the flow.

The first two chapters describe the background to the work, while chapter 3 gives details

of the experimental setup, which consists of a clean glass disk rotating at constant angular

velocity and a constant-temperature, hot-wire probe (see figure 3.2). In the part of the

study concerning the flow’s response to forcing (chapter 6), an assembly is mounted above

the disk (see figure 3.4). This assembly holds pins (see figure 6.1) which extend down into

the boundary layer, thus perturbing the flow. It can be held fixed or rotated at any angular

velocity, independent of the disk rotation rate.

Chapter 4 describes preliminary measurements and comparisons with the Von Kármán

solution. The main aim was to assess the quality of the disk assembly and the hot-wire

traversing mechanism. To this end, a linear variable transducer (LVDT) was mounted on

the same traversing mechanism used for the hot wire, allowing the distance of the probe

from the disk surface to be mapped out as a function of position on the surface. It was found

that the disk was not quite flat (out-of-flatness of about 50µm) and that the traversing

mechanism was slightly misaligned with the disk surface. Although these imperfections

are small, they are a significant fraction of the boundary-layer thickness and hence cannot

be ignored. A method for compensating for the imperfections was developed. Following

99
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compensation, good agreement was found when comparing the measured velocity with the

Von Kármán solution in the absence of instabilities and transition, lending confidence in

the results of the subsequent work.

A series of experiments on the natural flow (i.e. without deliberate forcing) are de-

scribed in chapter 5. This includes the results of measurements of mean-flow velocities,

spectral analysis and phase-locked averages of the velocity time series. Azimuthal mean-

flow velocities were measured for nondimensional distances from the disk axis (nondimen-

sionalised using the boundary-layer thickness, δ) in the range 350 ≤ R ≤ 650 and were

found to closely match the von Kármán solution for R ≤ 480. For 480 ≤ R ≤ 540, small

mean-flow corrections (less than 5% of the disk velocity) were observed confined to Z ≤ 6

(figure 5.2(b)), where Z is the distance from the disk surface (also nondimensionalised by

δ). These corrections represent the effects on the mean flow of growing cross-flow vortex

modes in the boundary layer. For R ≥ 550, large mean-flow corrections appear due to

transition and the, now turbulent, boundary layer thickens considerably. Mean-flow ve-

locity profiles for R ≥ 600 were found to have a linear range in log(Z), characteristic of

the law of the wall of turbulent boundary layers (figure 5.3). This indicates that the flow

becomes fully turbulent beyond R = 600 and that the transition region extends over the

range 540 ≃ R ≃ 600.

The measured mean-flow velocity profiles for nondimensional radii R ≤ 480 were found

to closely match the theoretical von Kármán self-similar profile (figure 5.1(a)). For 480 ≤

R ≤ 540, small mean-flow corrections (less than 5% of the disk velocity) were observed

confined to Z ≤ 6 (figure 5.2(b)). These corrections represent the effects on the mean

flow of growing cross-flow vortex modes in the boundary layer. For R ≥ 550, large mean-

flow corrections appear due to transition and the, now turbulent, boundary layer thickens

considerably. Mean-flow velocity profiles for R ≥ 600 were found to have a linear range in

log(Z), characteristic of the law of the wall of turbulent boundary layers (figure 5.3). This

indicates that the flow becomes fully turbulent beyond R = 600 and that the transition

region extends over the range 540 ≃ R ≃ 600.

The rotating-disk flow is known to be absolutely unstable for R > Rca ≃ 507. Absolute

instability is thought to be responsible for the relatively rapid transition to turbulence

of the flow. However transition is not immediate, as witnessed by the azimuthal mean-

flow velocity measurements, which do not show anything remarkable near critical value,

R = Rca. A rapid increase in the mean-flow corrections was observed for R ≥ 540 (see

figure 5.1). The value, R = 540, for the start of transition is approximately 5% larger
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than Rca and is in reasonable agreement with the transitional Reynolds number reported

by Wilkinson & Malik [47], which was in the range 543 < R < 556. Our observations are

also consistent with those of Lingwood [25, 26].

Spectral analysis of the velocity time series revealed that the spectrum has both con-

tinuous and discrete parts. The latter appear at integer multiples of the disk rotation

frequency and represent flow components which are periodic with the disk frequency and

probably stationary with respect to the disk. A discussion of the evolution with R of the

continuous and discrete parts taken separately was given in section 5.2.2, but we mostly

concentrated on the low-resolution spectra, which combine the continuous and discrete

parts by averaging the high-resolution spectra over frequency bins of width ∆ω = 1, cen-

tred on integer values of ω.

Starting at R ≈ 450, the low-resolution spectra show a growing peak around ω ≈ 30

(figure 5.4). This peak represents the most amplified disturbances in the boundary-layer

(cross-flow vortices). The peak grows exponentially with R and has a radial growth rate

which is not far from the theoretical prediction for the fastest growing of modes which are

stationary with respect to the disk. Harmonics of the fundamental peak, reflecting nonlin-

ear effects, progressively appear with increasing R. At and above R ≈ 520, a broadband

spectral component grows due to transition to turbulence, followed by the disappearance

of the modal peaks. By R ≈ 610, there are no longer any clear peaks associated with the

modes and the flow is fully turbulent.

Power laws are identified in the velocity spectra for R ≥ 600, extending over the best

part of a decade in frequency (figure 5.5). The exponent of these power laws varies with

both R and Z, but is not far from the Kolmogorov value, −5/3 (see table 5.1). By R = 640,

discrete peaks are no longer discernible in the high-resolution spectra.

Phase-locked averages of the velocity time series were also calculated (figures 5.9,

5.10, 5.11 and 5.12). These represent the flow components which are periodic with the

disk period. As R increases, they first show the development of a small velocity defect

corresponding to a localised imperfection of the disk. Growing modal oscillations are then

observed with about 31 oscillations per disk rotation (corresponding to ≈ 31 cross-flow

vortices), which is consistent with results of earlier studies (e.g. Gregory et al. 1955,

Smith 1947). Transition intervenes at R ≈ 530, progressively disrupting the oscillations

until they die out above R ≈ 600.

Chapter 6 describes measurements of the response to forcing. Two sorts of forcing were

studied: stationary and rotating in the laboratory frame of reference. Two types of forcing
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element, spherical- and cylindrical-headed pins, were used in an attempt to ascertain the

effects of element geometry on the resulting disturbances, though it turned out that there

were few significant differences.

Figure 6.5 summarises the results of forcing which is stationary in the laboratory frame

of reference and applied at nondimensional distance Rf = 340 from the disk axis. The

disturbance is confined within the boundary layer and to a region elongated ‘downstream’

of the element. This wake region is roughly oriented in the direction of motion of the

disk with an outward radial deflection of about 30o from the azimuthal direction. This

is understandable because the azimuthal component of the Von Kármán flow exceeds the

radial one. Despite the forcing being applied within the convectively unstable region,

R > 284, the disturbance is found to decay with downstream distance: the element only

perturbs the flow in its neighbourhood. This is consistent with the theoretical finding that

disturbances which are stationary in the laboratory frame decay.

Rotating forcing was applied at Rf = 250, just below the start of the convectively

unstable region, for various nondimensional rotational frequencies in the range 0.4 ≤ Ωf ≤

1 (Ωf is nondimensionalised by the disk rotational velocity). Figure 6.9 shows the resulting

wavepacket-like disturbances coming from the cylinder and sphere. These disturbance

packets tend to grow with R and follow linear trajectories in the t, R plane. Although

they arrive periodically, successive packets from a given forcing element are not identical,

indicating that the flow is not stationary in the frame of reference of the forcing elements.

This is consistent with the estimated Reynolds number, Re ≈ 1000, of the elements, which

is probably sufficiently large that the wake of an element is unsteady in its reference frame.

With the aim of extracting the component of the flow which is stationary in the forcing

frame, phase-locked averaging was applied using a reference signal consisting of one square

wave per rotation of the forcing assembly. Figures 6.10 and 6.11 show disturbance ‘humps’

coming from the cylinder and sphere. As for the disturbance packets of the raw time series,

the phase-locked average disturbances tend grow with R and follow linear trajectories in

t, R. According to linear theory, disturbances which are stationary in the forcing frame

should decay at the lower values of forcing frequency, Ωf . This, together with the lack of

the expected wavepacket dispersion, suggests that nonlinear effects are significant. This

conclusion is reinforced by figure 6.15, which shows linear disturbance growth with R,

rather than the exponential behaviour predicted by linear theory.

Assuming the phase-locked averaging gives access to the flow component which is sta-

tionary in the forcing frame, the averaged time series can be interpreted as giving the
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disturbance as a function of the azimuthal coordinate, θ, at fixed time. Figure 6.12 shows

the linear trajectories of the disturbance maximum in the R, θ plane. The slopes of these

trajectories are plotted as a function of forcing frequency in figure 6.13(a) and compared

with results of linear theory in figure 6.13(b). Surprisingly, given the significant nonlinear-

ity noted above, the experimental and theoretical slopes are in reasonable agreement. This

may bring to mind surface-wave solitons in shallow water, which represent an equilibrium

between wave dispersion and nonlinearity, maintain their form and height as they propa-

gate, but nonetheless have propagation velocities close to the linear-theory, shallow-water

prediction.

Figure 6.13(a) can be used to calculate the angle between the disturbance trajectory

and the radial direction for Ωf = 1, i.e. disturbances which are stationary with respect to

the disk. The result, 81o, is in good agreement with the value found by Jarre, Le Gal and

Chauve [16] and Mack [28] for disturbances due to roughness elements fixed on the disk

surface.

Frequency spectra of the raw and phase-averaged time series are respectively shown

in figures 6.16 and 6.17. Figure 6.16 shows discrete frequency peaks at multiples of the

forcing frequency, as well as a broadband component. Following phase-locked averaging,

only the discrete part is present in figure 6.17. At low frequencies, these figures show that

even harmonics of the forcing frequency dominate odd harmonics. A peak is apparent in

some of the spectra of figure 6.17. This peak corresponds to the small oscillations between

the disturbance packets in figure 6.10.

Recalling that the motivation of this work was Pier’s [36] proposed transition control

strategy for three-dimensional boundary layers, which requires a large number (≃ 40) of

forcing elements equally spaced around the forcing assembly, an obvious extension is to

increase the number of pins. Furthermore, although we did not see much difference between

the cylindrical and spherical forcing elements, they have comparable sizes and both were

found to produce an immediate nonlinear response of the boundary layer. There is thus

considerable scope for reducing the size of the elements, while maintaining the finite-

amplitude disturbances prior to R = Rca required for control. Such reduction in size would

lower the Reynolds number and hence potentially decrease the unsteadiness in the forcing

frame of reference. It would also lower the disturbance amplitude, perhaps yielding a linear

response near the forcing radius. Both these effects would tend to more closely align the

experiment with the theoretical model, perhaps increasing the chances of successful control.
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visors, Pr. Julian SCOTT and Dr. Benôıt PIER, for their valuable guidance and support

throughout my PhD. Their encouragement, guidance and support from the initial to the

final stages, enabled me to develop an understanding of the subject. From the experiments

to writing down the manuscript for publication, I have always found both of them dynamic,

energetic and tireless. Without them, this dissertation would not have been possible. I am

indebted to them more than they know.

Special thanks to Pr. Rebecca LINGWOOD and Dr. Patrice LE GAL for evaluating

and for agreeing to examine the thesis. I am also thankful to Dr. Carlo COSSU, Dr. Fabien

GODEFERD and Pr. Nigel PEAKE for accepting the invitation for being the part of the

jury.

I am thankful to Dr. Mukund VASUDEVAN, for his valuable comments, suggestion,

ideas, discussion and above all, his help in doing some final measurements while I was busy

in writing the dissertation.

I express my deepest gratitude to Alexandre AZOUZI, Horacio CORREIA, Dominique
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Abstract

This dissertation concerns experimental work on the instability and transition of the rotating-disk boundary-

layer  flow.  In  the  case  of  the  natural  flow (i.e.  without  forcing),  measurements  of  mean-flow profiles,

frequency spectra and phase-locked averages of the velocity time series allow us to distinguish different flow

regimes as a function of nondimensional distance, R, from the disk axis. As R increases, the mean-velocity

profiles initially follow the von Kármán solution. At higher R, departures arise and increase with R. These

departures are due to the spatial growth of boundary-layer instability modes (cross-flow vortices), whose

radial growth rates are found to match linear-theory predictions. The flow becomes transitional at  R  530�

and fully turbulent by  R  600. The profiles in the fully turbulent region follow the log law of turbulent�

boundary layers and the velocity spectra exhibit Kolmogorov-type power laws. To study the response to

forcing,  an  experimental  apparatus  has  been designed  which  allows  the  excitation  of  stationary  (in  the

laboratory frame of reference) disturbances or disturbances which rotate with a frequency which can be

varied independently of the disk rotation rate. The flow response to both types of forcing and two forcing-

element geometries was studied. Stationary forcing produces a wake which decays with distance from the

element, in agreement with theory. Forcing due to rotating elements can generate growing wavepacket-like

disturbances, which although nonlinear, follow trajectories close to linear-theory predictions.

Résumé

Ce travail de thèse expérimental  étudie les instabilités et la transition de la couche limite produite par un

disque en rotation.  Pour l�écoulement naturel  (c.-à-d. sans forçage extérieur),  les mesures des profils  de

vitesse moyenne, de spectres en fréquence et de moyennes de phase des séries temporelles de vitesse ont

permis de distinguer différents régimes en fonction de la distance adimensionnelle R à l�axe du disque. Pour

les faibles valeurs de R, les profils de vitesse moyenne suivent la solution de von Kármán. Pour des valeurs

plus importantes de R, des écarts à cette solution analytique sont observés et augmentent avec R. Ces écarts

sont dus à la croissance spatiale de modes instables de la couche limite (vortex �cross-flow�), et la mesure du

taux de croissance spatiale de ces modes correspond bien aux prédictions théoriques de l�analyse de stabilité

linéaire. Dans cet écoulement, la transition se produit vers R � 530 et la turbulence pleinement développée

s�installe vers  R  � 600. Les profils dans la région pleinement turbulente suivent la loi logarithmique des

couches limites turbulentes et les spectres de vitesse présentent une loi en puissance de type Kolmogorov.

Pour  étudier la réponse au forçage, un dispositif expérimental a  été mis au point qui permet d�exciter des

perturbations stationnaires (dans le référentiel du laboratoire) ou en rotation  à une fréquence qui peut  être

réglée indépendemment de la fréquence de rotation du disque. La réponse de l�écoulement  à ces deux types

de forçage et avec deux formes différentes pour l�élément de forçage a été étudiée. Un forçage stationnaire

produit un sillage qui décroît avec la distance à l�élément de forçage, en accord avec la théorie. Le forçage

avec des éléments en rotation peut produire un paquet d�ondes amplifié qui, bien que non linéaire, suit des

trajectoires proches de celles prédites par la théorie linéaire.


