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Chapter 1

Introduction

The understanding of the mutual influence between spin polarized current
and magnetization dynamics in solid state mesoscopic systems, boths from
experimental and theoretical point of view, is at the basis of spintronic, the
science aiming at utilizing spin-dependent effects in the electronic transport
properties [105].

Technological progress in the fabrication of hybrid structures using mag-
netic metals as well as in nano-lithography has allowed the realization of
mesoscopic devices, called spin valves, consisting of alternating stacks of
ferromagnetic (F) and normal (N) metals, where spin dependent transport
properties depend on the relative orientation of the magnetization inside the
F layers.

Spin valves exhibits the well-known giant magneto-resistance (GMR)
effect [6, 11], that is, the resistance depends on the relative angle between the
magnetizations of the F layers. Nowadays, this useful property is extensively
used in magnetic sensors [33, 72].

The converse effect, discovered in 1996 independently by J. C. Slon-
czewski [88] and L. Berger [9] is that a direct current can transfer spin an-
gular momentum between two magnetic layers separated by either a normal
metal or a thin insulating layer. This phenomenon, called spin torque, leads
to a very efficient destabilization of the orientation of a magnetic moments
[95], which can induce stable precession or reversal of the magnetization
inside the F layers [57]. Practical applications are the possibility to control
through a current the digital information in magnetic random access mem-
ories (MRAMs) [3, 43] or to produce high frequency signals in spin transfer
nano-oscillators (STNOs) [76].

The first theoretical description of GMR effect in collinear spin valves
(i.e. systems where the magnetizations in the two F layers are aligned or an-
tialigned) was given by T. Valet and A. Fert in 1993 [97]. After that, many
approaches have been developed to treat the more general case of electronic
transport through non collinear spin valves, where the magnetization be-
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6 CHAPTER 1. INTRODUCTION

tween the two F layers are not aligned. These approaches range from purely
quantum [89, 16, 34] to semi-classical Boltzman equation, circuit theory [15]
and generalized circuit theory [7] or Random Matrix Theory (RMT) [8, 103],
and allow to calculate local (spin current, spin accumulation and spin torque)
and global (resistance) transport properies of magnetic multilayers. A good
understanding has now been reached in the respective domains of appli-
cability and links between the various approaches. The reader can find a
comprehensive introduction to spintronic and to the different approaches to
spin transport in Refs. [47] and [14].

The most important aspects of these mesoscopic devices is that magneti-
zation dynamics and spin transport are coupled: a given magnetic configura-
tion has an influence on the propagation of current (GMR effect), which itself
influences the dynamics of the magnetization (spin torque). The physics of
such systems cannot be properly captured by simple (analytically tractable)
models, and numerical simulations that treat the magnetic and transport de-
grees of freedom on an equal footing are needed. At present, micromagnetic
simulations [37] can describe correctly the dynamics of the magnetization,
whithout taking into account the effect of spin transfer on the dynamics.
Concerning simulations that couple magnetic and transport degrees of free-
dom, several steps have already been taken in that direction [49, 108, 10],
which are based on two possible strategies: i) the three dimensional texture
of the magnetization inside the sample is described correctly using micro-
magnetic simulations, but the spatial variation of spin torque is neglected or
ii) the spatial variation of the magnetization is neglected, using a macrospin
approximation and spin torque is then introduced. These approximations
neglect the effects related to the spatial inhomogeneity of transport and mag-
netization inside the sample, which are determinant for a deep understand-
ing of the physics of these systems. In particular, macrospin approximation
cannot simulate the different spin wave modes excited by spin transfer ef-
fect, which are essential characteristics of a STNO. The main novelty of this
work is that we have developed an approach that takes into account cor-
rectly both the spatial variation of spin torque and the three dimensional
texture of the magnetization inside a realistic spin valve.

The first part of this work is dedicated to the development of a general
and flexible model of electronic transport in magnetic mesoscopic devices,
that allows to calculate local and global transport properties. Our model
of transport consists in two different and complementary approaches, both
related to the Landauer-Buttiker formalism [19]. The first approach, called
Continuous Random Matrix Theory (CRMT) [79] is a model based on RMT,
which allows to include classical concepts like spin accumulations and chemi-
cal potentials into scattering formalism. The second approach is based on an
effective Tight-Binding (TB) model for magnetic multilayers. The TB model
is solved at a purely quantum level using the Non Equlibrium Green Func-
tion (NEGF) formalism [27, 53], and can describe systems with arbitrary
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geometry and connected to an arbitrary number of electronic reservoirs. For
diffusive materials, we find a close agreement of TB with CRMT so that the
same parametrization can be used for both. Indeed CRMT is an extension
of the Valet-Fert diffusive equation [97] to non collinear systems, so that non
Ohmic materials have to be described at the quantum level. On the other
hand, a full numerical simulations of a realistic spin valve is prohibitive at
the TB level. We show how one can combine CRMT with TB method in a
multiscale approach, to consider realistic systems where CRMT alone is not
applicable. Since CRMT is parametrized by the same set of experimentally
accessible parameters as the Valet-Fert theory [97], it has no free parameters
and can describe many ohmic materials.

In the second part of this work, we have coupled CRMT to Nmag [37], a
finite element micromagnetic solver, and we have included spin transfer effect
into micromagnetic simulations, taking into account the three dimensional
texture of magnetization and spin transfer. This has allowed to simulate the
dynamics of a perpendicularly magnetized circular nanopillar crossed by a
dc Current Perpendicular to the Plane (CPP) of the layers. A comprehen-
sive analysis of the Spin Wave (SW) spectrum of this system has allowed
for a precise identification the modes excited by spin transfer, and of the
associated selection rules. A detailed comparison with Ferromagnetic Res-
onance (FMR) experiment performed with Ferromagnetic Resonance Force
Microscope (MRFM) [23, 28, 31] have shown the effectiveness of our model.

To summarize, The construction and the application of a general and
flexible spin transport model, that allows to describe in a realistic way the
complexity of both electronic transport and magnetization dynamics, is the
main achievement of this work. This manuscript is organised as follows:

Chapter 2 consists in an introduction to spintronic and quantum trans-
port. We start with an overview on magnetic multilayers and on the Valet-
Fert theory, and we describe the problem in a general way introducing a
quantum Hamiltonian for itinerant electrons. This allows to introduce the
concepts of spin current and spin torque, whose definition and computation
is the main problem faced in the development of our transport models. We
introduce also NEGF formalism, scattering matrix theory and Random ma-
trix theory, which constitute the basis of CRMT and TB approaches, and
allow to relate them in a direct way.

Chapter 3 is devoted to the description of CRMT, and of the link with
Valet-Fert and generalized circuit theory. The model is then applied to
the computation of the angular dependence of spin accumulation and spin
torque in spin valves.

Chapter 4 contains a detailed description of the TB approach. The
model is applied to the computation of transport properties of different bulk
materials and spin valves, like spin current, spin torque and magnetoresis-
tance. A comparison with CRMT shows the equivalence of these models for
Ohmic conductors, and allows to parameterize TB model. The CRMT/TB
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multiscale approach is then implemented in a natural way using the Fisher-
Lee formula [38], that relates scattering and Green function formalism.

Chapter 5 provides an introduction to the Landau-Lifshitz-Gilbert (LLG)
equation [62], to describe the magnetization dynamics in ferromagnets. In
particular, we show how to introduce spin torque into the LLG equation
according to the Slonczewski-Berger model. Then, we describe an analyt-
ical model for spin wave modes [45] inside the simplest possible geometry:
the normally magnetized circular spin-valve nano-pillar. This allows to de-
scribe the coupled dynamics of the two F layers, to classify spin wave modes
according to their symmetries, and to introduce selection rules for SW ex-
citations.

Chapter 6 contains the main results of this work. At first, we describe
the MRFM experiment that has allowed to determine the spectrum of the
STNO, under the influence of different excitations (rf field, rf current and
dc current). Thanks to the preserved axial symmetry, a simplified spectro-
scopic signature of the different SW eigen-modes is expected. Then, we have
performed micromagnetic simulations with spin torque, obtained coupling
CRMT to Nmag, and we have compared the simulations with experimen-
tal datas. This has allowed to characterize the spectrum of the nanopillar
given by dc current excitation, and to determine the selection rules for the
excited SW modes. The predictions are coherent with the experimental re-
sults, and provide an good test for CRMT as well as a good interpretation
of experiments.

1.1 Spin transport in multilayers: a brief intro-
duction

In this work we focus on the transport properties of alternating stacks of
Ferromagnetic (F) and non magnetic (or normal-N) materials (multilayers),
with sizes ranging from some nanometers to some hundredths of nanometers.
Although the model we shall develop in next chapters is quite general (we
can describe systems with arbitrary geometry and connected to an arbitrary
number of electron reservoirs), we shall restrict to FNF trilayers connected
to two contacts, traversed by a current perpendicular to the plane of the
layers (CPP configuration). The conctacts (called leads) are assumed to be
perfect nonmagnetic conductors, through which electrons propagate like in
a waveguide, encountering a negligible resistance (the concept of resistance
for a perfect conductor shall be described in the follwing chapters).

Transport properties inside ferromagnets depend on the orientation of
spins with respect to the localised magnetic moments of the material. In
a first approximation, we shall consider that the localized magnetic mo-
ments have uniform orientation inside the whole ferromagnetic layer. This
simplification allows to consider the assembly of these moments as a single
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Figure 1.1: Cartoon of an FNF trilayer. A flux of unpolarized electrons
impinges layer F1, with magnetization M1. The spins of incoming electrons,
polarized along M1, produce a torque τ on M2, which depends on the angle
θ. betweenM1 andM2. The resistance of the system depends on the mutual
orientation of M1 and M2: it is minimal in the parallel state and maximal
in the antiparallel.

magnetization vector M . In the following (chapers 5 and 6) whe shall see
the exact meaning of this approximation, and how to describe electronic
transport in case of a non-uniform magnetization texture.

Let us consider a F1NF2 system like the one depicted in FIG.(1.1), where
the two magnetic layers F1 and F2 have magnetization M1 and M2 corre-
spondingly, and electrons near the Fermi energy propagate from left to right.
Inside a ferromagnet, conduction electrons with spin parallel to the magne-
tization (majority, ”up”- � electrons), have lower resistiviy than electrons
with spin antiparallel to the magnetization (minority, ”down”-� electrons).
While crossing F1, electrons are spin polarized through exchange interaction
with the localised magnetic moments of the layer, so that their spins align
with M1. As a consequence, an FNF trilayer has lower resistivity in parallel
than in antiparallel configuration. As we shall see, the resistance depends
on the angle θ between M1 and M2. For this property, FNF multilayers are
called spin valves: acting on the magnetization it is possible to regulate the
resistance of the system, and consequently the current flowing through it.

This effect, known as Giant Magneto Resistance, has been observed for
the first time by M. N. Baibich et al. [6] and G. Binash et al. [11], and
has been described within a diffusive model by T. Valet and A. Fert [97]
for collinear spin valves. Transport properties of these systems are related
to two important lengthscales: the mean free path lσ, which corresponds
to the mean distance traveled by an electron with spin σ ��, � between two
collisions, and the spin diffusion (or spin flip) length lsf , which corresponds
to the mean distance traveled by an electron before its spin is changed,
from up do down or vice-versa (typically by spin-orbit interaction). lσ is
directly related to the resistivity of the spin channel σ, while lsf gives a
lengthscale below which electrons mantain their spin polarization (shorter
in ferromagnet than in normal materials), and transport depends on spin.
Conductors are called ballistic if they are shorter than the mean free path,
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Figure 1.2: Cartoon that represents a F/N interface. Inside the F material,
the current is highly polarized along M , while inside the N material the
current polarization goes to zero. At the interface between the two layers,
there is a region of spin accumulation (in this case, of up spins), which
extends over the spin diffusion lengths lsf�F � and lsf�N�.

and diffusive if they are longer than the mean free path [26]. In this work
we shall focus on diffusive conductors shorter than the spin diffusion length.

Let us consider FIG.(1.2), which represents the interface between a fer-
romagnet F and a normal metal N. Inside F majority electrons carry more
current than minority electrons, while inside N both spin channels carry
the same current. Therefore, there is an accumulation of majority electrons
within a distance smaller than lsf from the F/N interface. this means that
the two spin channels have different chemical potentials µσ, to which cor-
respond a diffusion spin current jσ. The degree of spin polarization of the
current is defined as P � �j��j��~�j��j��, and vanishes inside a normal metal
far from the F/N interface. In this description, both the bulk materials and
the F/N interfaces are responsible for the resistance of the system [97].

So far we have described the effect of the magnetization on transport,
now we shall focus on spin transfer, an effect discovered independently by
Slonzcewski [88] and Berger [9], which allows to manipulate the dynamics
of the magnetization in a ferromagnet through a spin polarized current. Let
us consider an electron at the Fermi energy that enters a ferromagnet. If its
spin has a component transverse to the magnetization of the ferromagnet,
the electron is described by the linear superposition Sψ�r, t�e � a��r, t�Sk�F e�
a��r, t�Sk�F e of kσF being the wavevector at the Fermi energy for spin σ ��~ �. The two coefficients aσ�r, t� oscillate as a function of the position
(this corresponds to the precession of the spin around the exchange field
Hsd [94]). This transverse component of the spin is ”absorbed” within a
length lÙ � π~Sk�F � k�F S of a few nanometers, and the magnetic moment
associated to the transverse spin is transferred to the localised magnetic
moments of the ferromagnet. Spin transfer effect acts as a spin torque that
destabilizes the magnetization [FIG.(1.1)]. In our description, F1 (called



1.1. SPIN TRANSPORT IN MULTILAYERS: A BRIEF INTRODUCTION11

Figure 1.3: Current induced magnetization reversal (1) Schematic of
the nanopillar used in the experiment: two Cobalt (Co) layers of 40 nm
(polarizer) and 2.5 nm (free layer) are separated by a Copper (Cu) spacer
of 6 nm. The nanopillar has section 120 � 60 nm. (2) GMR graph of the
nanopillar: an external applied field controls the relative orientations of
the magnetizations in the two Co layers: parallel and antiparallel states
correspond to low and high resistance states. (3) Figure showing the mag-
netization reversal by spin transfer effect: at zero applied field, a dc current
stabilizes parallel and antiparallel states. The current density needed to
reverse the magnetization is around 107 A~cm2. Figures extracted from
Ref.[3].(4) Spin wave generation. The system used in this experiment
is a Co40nmCu10nmPy3nm nanopillar with section 120 � 70 nm. For certain
values of the current, the plot dV ~dI has some peaks, corresponding to the
precession of the free Py layer. Figure extracted from Ref.[56].
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fixed layer) acts as a polariser and F2 (called free layer) is affected by spin
torque. Electrons flowing through F1 are spin polarized along M1 and exert
a torque onM2 proportional to J�M2��M2�M1�� [88], J being the current
per unit surface crossing F2. When M1 and M2 are parallel or antiparallel,
spin torque vanishes (since the component of spin transverse to M2 is zero).
At sufficiently high current, spin torque induces a stable precession (or even
a reversal) of M2 with respect to its equilibrium position, and tends to
bring back M1 to its equilibrium position. Experimental results of stable
precession and magnetization reversal are shown in FIG.(1.3). Changing the
direction of the current reverses this situation: we can induce the precession
of M1 and stabilize M2, so that choosing the thick layer as polarizer is just
a matter of convenience. The dependence of spin torque on the direction of
the bias current shall be discussed in details in chapter 2.

The dependence of resistance and spin torque on the mutual orienta-
tion of M1 and M2 accounts for the strong coupling between magnetization
dynamics and transport properties: spin torque influences the dynamics of
M2, which has an influence on the resistance of the system and on trans-
port properties. This, together with the fact that both magnetization and
transport properties are spatially inhomogeneus, are the main sources of
complexity inside our system. In the following chapters we shall see how
to provide a theory that takes into account these aspects. The leading idea
is that transport properties depend on the probability of electrons to cross
a system with different magnetic configurations. We shall see how the dif-
ferent physical quantities introduced above (jσ, µσ, lσ, lsf , lÙ) are related to
these probabilities, and how to calculate transport properties of multilayers
in a general way.



Chapter 2

Electronic transport and
Random Matrix Theory

2.1 Introduction

In this chapter we review some well established models of electronic trans-
port inside multilayers, and we introduce an approach based on Random
Matrix Theory [8, 103], which constitutes the basis of the transport theory
developed in chapter 3. In this work we consider diffusive conductors at
low temperature and we neglect electron-electron or electron-magnon inter-
action. We consider conducting electrons near the Fermi energy, and we do
not take into account the band structure of the material.

The physical picture we use is the following: an electron propagates in
a semi infinite perfect conductor (called lead) until it crosses a conducting
system. Here it undergoes a certain number of scattering events, due to
impurities of the material, and then exits the system and goes through
another lead. The system is characterized by some probability coefficients
that tell how much the electron is likely to be transmitted or reflected.
Global and local transport properties, such as conductance, spin current
and spin torque, are related to these coefficients.

In Sec. (2.2) we describe two approaches to spin transport. At first we
describe the Valet-Fert (VF) theory [97], a diffusive model that allows to
describe electron propagation in collinear spin valves. The concept of spin
accumulation and chemical potential are included in this model. The param-
eters of this theory, which are experimentally accessible, plays a key role in
the formulation of Continuous Random Matrix Theory (CRMT)[79]
described in chapter 3. The second approach is based on the description of
multilayers using a general quantum Hamiltonian for conduction electrons
[102], containing a kinetic part and an impurity potential, which accounts
for different transport properties for majority and minority electrons and for
spin flip phenomena. Using this Hamiltonian, we introduce the formalism

13
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for non collinear spin spin valves, and we define properly spin density, spin
current and spin torque.

In Sec. (2.3) we review the Landauer-Buttiker scattering formal-
ism [19]. Scattering matrices keep track of the spin degree of freedom and
are sensitive to a rotation in spin space, and can describe non collinear spin
valves.

In Sec. (2.4) we describe Random Matrix Theory (RMT) [8], which
is related to the scattering matrix formalism, and provides a useful tool
to express transport properties using simple concepts like transmission and
reflection probabilities for an electron crossing the system. This formalism
can describe non collinear spin valves [103], and it consitutes the basis for
the semiclassical approach to spin transport described in chapter 4.

Sec. (2.5) is dedicated to an introduction to Non Equilibrium Green’s
Function (NEGF) formalism [27], through which one can describe quan-
tum transport for conductors at finite temperature. In the case of non in-
teracting electrons, and at low temperature, this formalism is equivalent to
scattering formalism [38].

We have recollected the main theories of spin transport in this chapter
for two main reasons. First, they give a landscape of the different approaches
to magnetic multilayers. Then, they are conceptually related, as it will be
shown in the following chapers. We shall see that CRMT is a particular
case of RMT, which is itself derived from scattering matrix formalism. Be-
sides, scattering matrix and NEGF formalism are equivalent (in the case of
zero temperature and no electron-electron interactions), while CRMT is a
generalization of VF theory to non collinear spin valves. There is a neat dis-
tinction between fully quantum theories (like scattering formalism or NEGF)
that can treat purely quantum phenomena like tunneling and semiclassical
theories (like VF theory), which describe Ohmic conductors and contain
naturally the concepts of chemical potential and spin accumulation. In this
sense, CRMT is a bridge between VF and quantum theories, since it is for-
mulated in the language of scattering matrices, it takes into account Sharvin
Resistance [93, 26] (a purely quantum phenomena), but apart from this is
equivalent to VF for collinear spin valves (only Ohmic conductors can be de-
scribed), and chemical potential can be naturally introduced in the theory.
The different approaches and their connections are shown in FIG.(2.1)

2.2 Electronic transport through a multilayer

2.2.1 The Valet-Fert theory of spin transport

The Valet-Fert (VF) theory [97] provides a description of electronic trans-
port in magnetic multilayers based on a diffusive equation, obtained starting
from the Boltzmann equation. In the VF formulation, one considers a given
current density j flowing along the x axis perpendicular to the plane of the
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Figure 2.1: Schematic of the theories discussed in this work. (a) contains
quantum theories for non collinear spin valves. Scattering and NEGF for-
malism (implemented using a Tight Binding (TB) Hamiltonian) belong to
this family. RMT and CRMT are derived from the scattering approach.
The VF theory for collinear spin valves belongs to a different ”family”,
since it is based on a diffusive model derived from Boltzmann equation.
The arrows represent the direct connections between different theories. For
example, scattering formalism and TB model are equivalent, CRMT is a
generalization of VF for non-collinear systems (in the collinear case they are
equivalent, up to the Sharvin resistance [79] that is contained in CRMT,
while in VF has to be added a posteriori). TB and RMT are equivalent
only for Ohmic conductors. The figure is separated into two regions that
divides purely quantum from semiclassical theories. RMT is semiclassical
essentially because i) interference effects are averaged [103], and ii) expo-
nential suppression of the conductance (tunnel effect) cannot be described.
CRMT is obtained from a particular parametrization of RMT [79].
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layers (CPP-Current Perpendicular to Plane geometry), and takes into ac-
count only configurations where the magnetizations of a given ferromagnetic
layer is ”up” or ”down” along the z axis, taken as spin quantization axis.
The theory describes the propagation of the current jσ, when the spin σ is
parallel (σ ��) or antiparallel (σ ��) to the local magnetization in a mag-
netic layer. The VF theory expresses the variation of the current in the x
direction, as a function of the electrochemical potential µ̄σ, defined as

µ̄σ�x� � µσ�x� � eV �x�, (2.1)

µσ�x� being the chemical potential for spin σ and V �x� being the bias
voltage applied to the conductor.

In all the layers composing our system we consider a single parabolic
conduction band, where electrons have the same effective mass m and Fermi
velocity vF . Collisions of electrons with impurities and defects are supposed
to take place both at interfaces between different materials and inside the
bulk, and are responsible for the resistance of the system. The collision rates
are described using two characteristic times: τσ, the mean time between
two collisions that preserves the spin σ; and τsf , is the mean time between
two collisions with spin flip. The inverse of these two times are related to
the transition probability between two states with wave vectors Ñk and Ñk�.
Since the collisions are elastic, the norm of Ñk and Ñk� is preserved, and only
the direction of the velocity is changed at each collision. Two lengths are
associated to the characteristic times:

lσ � vF �1~τσ � 1~τsf��1, (2.2)

lsfσ � �1
3
vF lστsf�1~2

� �Dστsf�1~2
, (2.3)

respectively the electron mean free path lσ and the spin diffusion length
lsfσ for spin σ. The quantity Dσ is the diffusion constant for spin σ. The
mean free path represents the mean distance traveled by electrons between
two successive collisions, while the spin diffusion length represents the mean
distance at which an electron loses its spin due to spin orbit interaction,
or through exchange scattering by paramagnetic moments present in the
nonmagnetic layers [20]. The theory being at zero temperature, there are
no other source of scattering.

If the spin diffusion length is much longer than the mean free path, the
Boltzmann equation model reduces to the two Valet-Fert equations:

jσ �
gσ
e

∂µ̄σ
∂z

, (2.4)

∂jσ
∂z

�
gσ
e

µ̄σ � µ̄�σ

lsf2
σ

, (2.5)
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that relate current density and electrochemical potential. The first equation
is just the Ohm’s law: the voltage drop is related to the current density jσ
through the conductivity gσ, which is different for the two spin channels �
and �. The second equation is a sort of continuity equation: it states that,
in steady state, the spin accumulation [98]

µ �
µ� � µ�
eV

(2.6)

due to the spin current divergences is balanced by spin flip processes. The
spin dependent electrochemical potential can be written as µ̄� � µ̄ � ∆µ,
where ∆µ is the term related to the spin accumulation. ∆µ is related to the
out of equilibrium magnetization ∆M via

S∆µS � 2µ0

3nµB
S∆M S, (2.7)

where n is the electron density and µB is the Bohr magneton. ∆µ satisfies
the equation

∂2∆µ
∂z2

�
∆µ
l2sf

(2.8)

where 1~l2sf � �1~lsf� �2
��1~lsf� �2 is the average spin diffusion length. Eq. (2.8)

describes the exponential decay of the spin accumulation as a function of the
distance from an interface between materials with different magnetization.
In the following, we will refer to lsf as spin flip length.

The difference between the resistivity for � and � electrons predicted by
Eq. (2.4), is described in a phenomenological way introducing a bulk spin
asymmetry coefficient β as follows

ρ�~� � 1~g�~� � 2ρ�F ��1 � β�� (2.9)

Here ρ�~� is the bulk resistivity for spin up (down). The greater is β, the
bigger is the difference in resistivity for up and down spins. β itself is defined
from the resistivity ρ�~� as

β �
ρ� � ρ�
ρ� � ρ�

(2.10)

In a normal metal β vanishes, so that ρ� � ρ��2ρ�N . In the same way, we
introduce an interfacial spin asymmetry coefficient γ, that accounts for the
resistivity of the interface between two materials:

r�~� � 2r�b ��1 � γ�� (2.11)

In this picture, interfaces are described as virtual materials with witdh d
and given resistivity for up and down electrons, and spin diffusion length



18CHAPTER 2. ELECTRONIC TRANSPORT AND RANDOM MATRIX THEORY

Figure 2.2: (a) Schematic of an electron that propagates from left to right
leads, crossing a disordered region. The electronic spin is sensitive to the
orientation of the magnetic moments inside the two ferromagnet Fa and Fb.
The Hamiltonian of the system takes into account impurity scattering as well
as spin dependent scattering. (b) Schematic of the system, where we have
introduced fictitious leads. The slight difference on chemical potential of
electrons near the Fermi energy creates a flow of electrons in the x direction.

leffsf . This virtual material is taken to be infinitely thin d � 0, while taking

the ratio δ � d~leffsf finite. the parameter From Eq.(2.11) one defines

γ �
r� � r�
r� � r�

(2.12)

Much is known experimentally [110, 107] about rb�~�, but there are much
less experimental data [73] for δ (and those are mainly for normal-normal
interfaces). The parameters ρ�, β, r�, γ and lsf define the VF theory for
bulk and interfaces. This parametrization plays a key role in CRMT theory,
and allows to obtain transport properties of a multilayer starting from a few
easily accessible parameters.

2.2.2 General quantum Hamiltonian for conduction electrons

In this section we describe a completely different approach to spin trans-
port. Let us consider a Ferromagnetic-Normal metal-Ferromagnetic (FNF)
trilayer connected to two electrodes (leads) on the left and right, as shown
in FIG.(2.2a). The electrodes are perfect conductors (normal or magnetic)
connected to two electronic reservoirs with a given chemical potential. A
difference of chemical potential between the leads creates a flux of electrons
propagating inside the system. In our model we consider only electrons at
the Fermi energy EF , and neglect the complete band structure of the sys-
tem. The two ferromagnetic layers are labeled Fa and Fb, while the normal
metal spacer is labeled N . The magnetic moments of Fa and Fb point in the
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direction of unit vectors m̂a and m̂b respectively. The angle between m̂a

and m̂b around the y axis is θ. We assume that m̂b points in the z direction,
while the electron current flows in the x direction. As we will see, the fact
that the current flows from left to right (x� direction) or from right to left
(x� direction) has a significant physical effect. It is convenient to add pieces
of ideal lead (labeled 1, 2, 3 and 4) between the layers Fa, N and Fb.

We describe conduction electrons with the general Hamiltonian

H � S dr Q
α,β�

��,�

φ�α�r�Hαβφβ�r� (2.13)

where φα�r� is the wave function associated to an electron with spin α. This
wave function has spinor structure:

φ�r� � � φ��r�
φ � �r� � (2.14)

The 2 � 2 matrix

H � �

Òh2

2m
Qa1 � V �r� �EF (2.15)

contains kinetic, potential and Fermi energy. Here 1 is the 2�2 identity
matrix, which accounts for the spinor structure of the wave function while
the potential V �r� represents spin-independent scattering from impurities,
as well as spin-dependent effect of local exchange field and spin-flip effect due
to spin orbit interaction inside the ferromagnets. In general the distribution
of the impurities is different from sample to sample, so that V �r� changes
from one sample to the other. The 2 � 2 matrix V �r� reads

V �r� � e�iσyθ�r�~2 � Vmaj�r� V ��
sf

V ��
sf Vmin�r� � eiσyθ�r�~2. (2.16)

here the diagonal terms account for majority (Vmaj) and minority (Vmin)
electrons, while the off diagonal terms are responsible for spin flip. A par-
ticular choice of these matrix elements strongly depends on the model we
use to describe the distribution of impurities inside the sample and on the
material. the matrix exp��iσyθ�r�~2� rotates the potential from the exter-
nal reference frame to the direction of the local exchange field. Outside the
ferromagnet, Vmaj � Vmin. For the system under consideration, the angle
θ�r� � θ inside Fa and zero elsewhere.

The physical meaning of this Hamiltonian is clear: a flux of electrons with
a given spin and kinetic energy enters the system and feels a potential that
depends on its spin. This potential is a source of scattering, responsible for
the resistance and for spin flip phenomena. The angle θ has an influence on
the transport properties of the system. In general, when a flux of electrons
enters a ferromagnetic system, it has no spin polarization, i.e. the spins
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of the electrons are randomly distributed, so that the rotation around a
given axis of the potential has no effect upon the flux. In order to have
some spin dependent effect, the structure of Eq.(2.16) tells us that the flux
of incident electrons has to be spin-polarized. Thus, in our system, for
electrons propagating in the x� direction the layer Fb acts as a spin filter
that polarizes the flux of electrons through exchange interaction, and align
their spins with m̂b. this makes the flux of electrons sensitive to the direction
of m̂a. Of course the direction of the current can be reversed. In this case
the electrons are polarized along m̂a, and become sensitive to the orientation
of m̂b.

The potential V �r� vanishes in the leads. Nevertheless, we have to
take into account another potential: the electrons are confined in the z
and y directions, since they cannot propagate outside the system. This
confining potential enters the Hamiltonian as boundary conditions of the
wave functions in the transverse directions. In particular, in the leads a
propagating mode is factorized as

φ�r� � ψ�y, z� exp��ikxx�, (2.17)

where the wave vector of the transverse part ψ�y, z� is quantized due to
boundary conditions, while the longitudinal part is a free plane wave with kx.
Of course the leads are not really infinite, but since the system is almost one
dimensional, and the length of the leads is much bigger than their transversal
direction, they may be considered infinite without losing any generality or
physical meaning. The factorization of the wave function in plane waves
plays a key role in the scattering formalism, as it will be explained below.

2.2.3 Spin density, spin current and spin torque

Starting from the electronic wave functions, one defines spin density η�r�
as:

η�r� � Òh
2
Q
αβ

φ�
α�r�Ñσαβφβ�r�, (2.18)

where Ñσ � �σx, σy, σz�T is the vector of Pauli matrices, and α,β are indexes
in the spin space. The time evolution of spin density reads

∂

∂t
`η�r�e �

iÒh `�H,η�r��e
� �Ñ© � j�r� � i

2
aφ��r��V �r�, Ñσ�φ�r�f , (2.19)

with the spin current density tensor j defined as
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Figure 2.3: Schematic of the out of plane component of the torque τva v̂
(left side) and the in plane component of the torque τva ŵ (right side). The
equilibrium exchange interaction only has an out of plane component, while
the non equilibrium torque is mainly in plane.

j�r� � � iÒh2

4m
aφ��r�Ñ©Ñσφ�r� � Ñ©φ��r�Ñσφ�r�f . (2.20)

Spin current density has one index in spin space and one index in real space,
while `...e stands for quantum mechanical expectation value. Eq. (2.19)
shows that, unlike charge current, spin current is not conserved inside the
ferromagnet. If a difference of chemical potential is set between the two
reservoirs, a nonequilibrium spin current flows through the sample. The
non conservation of the current implies that the currents in region 0 and 3
are different [see FIG. (2.2b)]. In absence of potential difference there is an
equilibrium current: the spin current in both regions 0 and 3 vanishes, but
the current in regions 1 and 2 is not necessary zero. The existence of a zero
bias spin current and the resulting torques is a consequence of the itinerant-
electron-mediated exchange interaction (also known as RKKY interaction,
see Refs. [77, 111, 52, 46]) between two ferromagnetic films separated by a
normal-metal spacer. The current induced torque follows from the non con-
servation of the nonequilibrium spin current, while the magnetic exchange
interaction follows from the nonconservation of the equilibrium spin current
between Fa and Fb [102]. The total torque τa and τb on the layers Fa and
Fb is given by the spin current absorbed by the two ferromagnetic layers:

τa � J0 � J1, (2.21)
τb � J2 � J3,

where Ji is the total spin current that flows in the region i � 1,2,3,4,

Ji�x� � Òh2

2m
ImS dydz cφ��x�Ñσ ∂

∂x
φ�x�h (2.22)

The total torque takes into account the contribution from both equilibrium
and nonequilibrium current.
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Let us focus on the torque τa acting on the magnetic moment of layer
Fa [see FIG. (2.3)]. In absence of spin flip scattering, the spin current in the
direction of m̂a is always conserved, so that there is no component of the
torque in the direction of the magnetization. Even if spin flip is present, we
consider materials where the magnetization is saturated, so that the effect of
the spin torque in the direction of the magnetization is negligible, thus the
only component of the torque we are interested in are those perpendicular
to the m̂a. In addition to the unit vector m̂a that points along the magneti-
zation direction of Fa, we introduce the unit vectors v̂ � m̂a�m̂b~Sm̂a�m̂bS,
which is normal to the plane spanned by m̂a and m̂b, and ŵ � m̂a�v̂, which
lies in the plane spanned by m̂a and m̂b and is perpendicular to m̂a. For
the configuration of FIG. (2.3), v̂ is the unit vector in the y direction and
the plane spanned by m̂a and m̂b is the xz plane.

Since the torque is perpendicular to the magnetization, τa can be de-
composed on the basis �v̂, ŵ�:

τa � �τa � v̂�v̂ � �τa � ŵ�ŵ (2.23)

for simplicity from here we set τa � v̂ � τva and τa � ŵ � τwa . The equilibrium
torque can be calculated combining the commutator

�V �r�, σy� � �2i
∂V

∂θ
(2.24)

with Eq.(2.19), and it is simply given by the derivative of the energy E � `He
of the trilayer to the angle theta:

τ va �
∂E

∂θ
, (2.25)

while a straightforward calculation gives, for the nonequilibrium torque:

τwa � �
1
2 Sr>Fa

dr aφ��r��Vmaj � Vmin��σ � v̂�φ�r�f . (2.26)

The in-plane torque τwa , pushes m̂a towards or away from m̂b. The equilib-
rium torque is simply given by

τ eqa � �J2 � �J3 � �τb. (2.27)

This relation, combined with with the requirement that τa and τb are per-
pendicular respectively to m̂a and m̂b, implies that, in equilibrium, the
in-plane torque vanishes. The out-of-plane torque causes a precession of
one magnetic moment around the other one. This is similar to the Lar-
mor precession of the moments in a (possibly θ dependent) magnetic field.
In the presence of dissipation, the system will relax to the lowest energy
configuration, where the energy is minimal and the torque is zero (Eq.2.25).
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Figure 2.4: Schematic that shows the dependance of spin torque on the
direction of the current. For electrons coming from the right, their spin is
polarized alongma, and a torque τa (respectively τb) acts onma (respectively
ma) as shown in fig. (a). When the direction of the current is reversed, the
direction of the torque is reversed as well, as shown in fig. (b).

In the following we will consider only the nonequilibrium spin torque,
since the role of equilibrium spin torque is negligible (the reason will become
clear when we will discuss Random Matrix Theory).

The presence of two ferromagnetic layers has the effect of allowing for
multiple scattering of the electrons between the two layers, which gives rise
to an asymmetry of the torque with respect to the current direction. To
see how this asymmetry arises, let us consider the FNF system shown in
FIG.(2.4). When the current enters the sample from the right, electrons
transmitted through Fa are polarized along m̂a. The spin polarized flux of
electrons impinges on Fb and exerts a torque on the moments of Fb so as
to align m̂b with m̂a. When electrons enter from the left, repeating the
argument for Fb, we find that the spin of the electrons reflected from Fb
are aligned antiparallel to m̂b, and hence, in turn, exerts a torque on the
moments of Fa trying to align m̂a antiparallel to m̂b. Subsequent multiple
reflections of electrons between Fa and Fb reduce the magnitude of the initial
torques, but they do not eliminate or reverse them, since the elctron flux is
reduced after each reflection.

If there were no other forces acting on the magnetization (anisotropy,
shape effects...) the result would be a pinwheel motion with both moment
rotating in the same direction. When the current is injected from the right,
the direction of the torques are reversed: now the flow of electrons exerts
a torque on Fa trying to align its moment parallel to m̂b, while it exerts a
torque on Fb that push the moment m̂b antiparallel to m̂a.
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2.3 Scattering matrix approach to electronic trans-
port

2.3.1 Definition of scattering matrix

In the previous section we have written a Hamiltonian H [Eq.(2.15)] that
describes what happens inside the conductor. In order to solve the problem
of electron propagation we should in principle diagonalize the Shroedinger
equation

Ĥφ�r� � Eφ�r� (2.28)

inside all the regions of the trilayer (Fa, N , Fb and the leads), a task that
might be extremely complicated. Scattering matrix formalism, developed
by R. Landauer, Y. Imry and M. Buttiker [19], offers an alternative view
of the problem which provides a complete description of transport inside a
coherent conductor at low frequency, temperature and voltages, under cir-
cumstances where electron-electron interactions can be neglected. In this
view an electron propagates inside a perfect lead as a plane wave, enters
the conductor, and is transmitted to another lead (or reflected back) with a
certain probability amplitude. The formalism is apt to describe the trans-
port through a conductor connected to an arbitrary number of leads. In
this simple description there is no need to diagonalize the problem inside
the conductor: the Hamiltonian simply determines the transmission and re-
flection probability for the electron entering the system from a lead. The
theory to calculate these coefficient will be described in the next chapters.
For the moment we consider the transmission and reflection coefficients as
free parameters of the scattering formalism.

As we have seen in the previous section [Eq. (2.17)], the wave function
ψ of an electron in a lead separates into a longitudinal and transverse part,

ψ�n�r� � Φn�y, z� exp��iknx�. (2.29)

Mode n has a real wave number kn A 0 and a transverse wave function Φn.
Due to the boundary conditions on Φn, the transverse wave vectors ky and kz
are quantized. The integer n � 1, ...,Nch labels the propagating modes, also
referred to as scattering channels. The normalization of the wave function
is chosen such that it carries unit current.

We will first deal with spinless particles, the generalization to 1/2 spin
electrons being straightforward. Let us consider the system depicted in FIG.
(2.5). The ”spinless electrons” propagating in lead 1 and 2 can be written
on the basis of the ψn as follows:

Ψ1�r� � Nch

Q
n�1

�a�nψ�n�r� � a�nψ�n�r��, (2.30)
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Figure 2.5: Cartoon representing plane waves that move inward and outward
a conductor. The wavefunctions Ψpm

1 and Ψpm
2 , propagating in lead 1 and

2 correspondingly, are linear superpositions of the propagative modes. The
conductor is represented with a scattering matrix S that relates incoming
modes to outgoing modes.

Ψ2�r� � Nch

Q
n�1

�b�nψ�n�r� � b�nψ�n�r��. (2.31)

where the superscripts ��,�� refers to waves propagating from left to right
and from right to left correspindingly, while coefficients an and bn refers
respectively to lead 1 and 2. Thus, a wave incident on the disordered region
is described by a vector of coefficients

cin � �a�1 , a�2 , ...a�Nch
, b�1 , b

�

2 , ..., b
�

Nch
�. (2.32)

The first set of Nch coefficients refers to the left lead and the second set of
Nch coefficients to the right lead. Similarly, the outgoing wave has vector of
coefficients

cout � �a�1 , a�2 , ...aN�

ch, b
�

1 , b
�

2 , ..., bN
�

ch�. (2.33)

The scattering matrix S is a 2Nch � 2Nch matrix which relates the two
vectors,

cout � Scin. (2.34)

It has the block structure

S � � r t�

t r�
� (2.35)

with Nch�Nch transmission matrices t and t� (transmission amplitudes from
left to right and from right to left) and reflection matrices r and r� (reflection
amplitudes from left to left and from right to right). In the case of spinless
particles the coefficients of the scattering matrix are complex numbers. The
generalization to 1/2 spin particles is done replacing each of the coefficients
tn, t

�

n, rn, r
�

n of the nth propagating mode with 2�2 matrices. This keeps track
of the spinor structure of the wave functions propagating inside the leads,
and associates to each spin up and down state a transmission and reflection
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Figure 2.6: Scattering matrix that connects leads p and q in a multi-terminal
device. In such a device, each pair of leads has its own scattering matrix
that describe transport properties

amplitude. Taking into account the spin degree of freedom, S is a 4Nch �

4Nch matrix, and each block described by Eq.(2.35) contains 2Nch�2Nch

transmission and reflection matrices. So, in general, each coefficient of the
scattering matrix relates different modes with arbitrary spin and it is thus
specified by four indexes: two channel indexes �m,n� and two spin indexes�σ,σ��. In this way, scattering formalism properly describes spin dependent
transport, where electrons can be transmitted or reflected preserving or
changing their spin, according to the microscopic interactions that take place
in the disordered region.

From scattering matrix one can calculate various transport properties of
the system. In particular the conductance

G � limV�0
Ī

V
(2.36)

defined as the ratio of the time average electrical current Ī over the voltage
difference V between the two electron reservoirs in the limit of vanishingly
small voltage. At zero temperature, the conductance is given by the Lan-
dauer formula [19, 26]

G �
2e2

h
Tr�tt�� (2.37)

where t is the transmission matrix of the system, and the trace has to be
taken in the channel and spin spaces. Eq. (2.37) has a simple interpreta-
tion as sum over the transmission probability of all the modes entering the
system. The prefactor G0 � 2e2~h is the quantum of conductance, and the
factor 2 is due to the twofold spin degeneracy.
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Figure 2.7: Cartoon representing the multiple reflections of a particle cross-
ing two systems connected in series, described by the scattering matrices Sa
and Sb.

2.3.2 Scattering matrix for a multi-terminal device

The same formalism can be adapted to a system with many terminal, by
adding a pair of indexes �p, q� to the transmission and reflection coefficients,
that label the terminals considered. We can see a multi-terminal device
like a system endowed with more than one scattering matrix, each matrix
describing the transport between leads p and q [FIG.(2.6)]. In general, a
scattering matrix Spq relates the modes cinpq that enter the system from leads
p and q, to the modes coutpq that comes out from the system through these
leads. Eqs. (2.34) and (2.34) then become

coutpq � Spqc
in
pq, (2.38)

Spq � � rpq t�pq
tpq r�pq

� . (2.39)

The Landauer formula can be simply generalized to a multi-terminal device.
At zero temperature, current Ip and voltages Vp and Vq at leads p and q are
related via the conductance Gpq:

Ip �Q
q

Gpq�Vp � Vq�, (2.40)

where the conductance now reads

Gpq �
2e2

h
Trtpqt�pq. (2.41)

In general we refer to the transmission probability T̄pq � Trtpqt
�
pq between

leads p and q as transmission function. The reader can find a comprehensive
description of scattering matrix formalism in Ref.[26]
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2.3.3 ”Ohm’s law” for quantum conductors

Let us consider two conductors a and b, described by the scattering matrices
Sa and Sb, and connected in series. Classical electromagnetism tells us that
the resistance of the composed system is Ra�b � Ra�Rb. When two quantum
conductors a and b are connected in series, the scattering matrix of the total
system a � b has to be calculated adding all the possible processes leading
to the transmission of the electron through the two systems [FIG.(2.7]. The
transmission matrix ta�b of the two conductors a and b connected in series
can be written as a sum

ta�b � tbta � tb�rar�b�ta � tb�rar�b��rar�b�ta � ..., (2.42)

that includes the direct process where the electron is transmitted by a and b
(tbta), the process where the electron is transmitted by a, reflected by b and
a and transmitted by b (tb�rar�b�ta) and so on. This series can be summed
as:

ta�b � tb�1 � rar�b��1ta (2.43)

A similar procedure gives the other transmission and reflection coefficients:

ra�b � rb � tb�1 � rar�b��1rat
�

b (2.44)
t�a�b � t�a�1 � rbr�a��1tb (2.45)
r�a�b � r�b � tb�1 � rbr�a��1r�ar

�

b (2.46)

These rules describe how transmission and reflection amplitudes (i.e. com-
plex numbers which take into account the phase shift accumulated by the
electron crossing the conductor) have to be summed when two or more con-
ductors are put in series. In Sec. (2.4.1) we shall see how to apply the sum
rule to transmission and reflection probabilities. This gives an equivalent of
the Ohm’s low at quantum level. The sum rule plays a key role in the theory
of transport that we shall describe in the following two chapters.

2.3.4 Application of scattering matrix formalism to the study
of an FNF trilayer

In this section we show how to apply scattering matrix formalism to the
study of spin transport inside an FNF trilayer. Although we shall restrict
our formulas to this simple case, this method is applicable for an arbitrary
array of alternating magnetic-nonmagnetic layers. In this section we follow
mainly Ref.[103]. FIG. (2.8 ) shows the FNF junction where fictitious
perfect leads (labeled 0,1,2 and 3) have been added in between the layers F
and N and between the F layers and the electron reservoirs on either sides
of the sample. The introduction of these leads allows for a description of the
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Figure 2.8: Schematic of the setup used for the definition of the scattering
matrices in the layers Fa, Fb and N . Amplitude of left and right moving
propagating waves are defined in fictitious ideal leads 0,1,2 and 3 between
the layers and between the layers and the reservoirs.

system using scattering matrices. Inside the leads, the transverse degrees of
freedom are quantized [see Eq. (2.29)], giving Nch propagating modes at the
Fermi level, where Nch�A~λ2

F , A being the cross section area of the junction
and λF the Fermi wave length. Expanding the electronic wave functions in
these modes, we can describe the system in terms of the projection Ψi,L~R

of the wave function onto the left (right) going modes in region i. The
Ψi,L~R are 2Nch-component vectors, counting the Nch transverse modes and
spin. Normalization is done in such a way that each mode carries unit
current. The amplitudes of the wave function into two neighbouring ideal
leads are connected through the scattering matrices Sb, Sa and SN , that
relate outgoing modes and ingoing modes at the layers b, N and a as follows:

� Ψ3L

Ψ2R
� � Sb � Ψ3R

Ψ2L
� , (2.47)

� Ψ1L

Ψ0R
� � Sa � Ψ1R

Ψ0L
� , (2.48)

� Ψ2L

Ψ1R
� � SN � Ψ2R

Ψ1L
� . (2.49)

We decompose these matrices into 2Nch � 2Nch transmission and reflection
matrices:

Sb � � rb t�b
tb r�b

� , (2.50)

With the same decomposition for Sa and SN . Due to the spin degree of
freedom, the reflection and transmission matrices are expressed in terms of
four Nch �Nch blocks:

rb � � rb�� t�b��
tb�� r�b��

� (2.51)
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where the subscripts �, � refers to spin up and down in the z-axis basis. The
scattering matrix of the magnetic layers depends on the angle θ the moments
may have with the z axis. The matrix Sa�θ� is related to Sa�θ � 0� through
a rotation in spin space. For example, ra�θ� reads

ra�θ� � Rθra�0�R�θ, (2.52)

where

Rθ � � cos θ2 � sin θ
2

sin θ
2 cos θ2

�a 1Nch (2.53)

is the matrix that realizes the rotation in spin space around the y axis
for each channel. Inside the normal layer the transmission and reflection
subblocks are diagonal, so that a non magnetic layer does not affect the
spin state. To calculate the net spin current deposited into each magnetic
layer, we need to keep track of the amplitudes in the different regions of the
system. Therefore, we define 2Nch � 2Nch matrices ΓL~R

i and ΛL~R
i so that

we may express all the ΨL~R
i as a function of the amplitudes incident from

the two electrodes (region 0 and 3):

� ΨiL

ΨiR
� � � ΓiL ΛiL

ΓiR ΛiR
�� Ψ0L

Ψ3R
� (2.54)

with the convention that Γ0L � Λ3R � 1 and Γ3R � Λ0L � 0. In order to
calculate the torque exercised on layer Fb for a current entering from the
left, we need to calculate the matrix Γ2L. To simplify the notation from here
we write Ω � Γ2L. The matrix Ω relates Ψ2L to the incoming amplitudes
Ψ0L coming from the right. To calculate it, we set Ψ3R � 0 and, using Eqs.
(2.47-2.49) we get the equations

Ψ1L � t�aΨ0L � raΨ1R,

Ψ1R � tnΨ2R � r
�

nΨ1L,

Ψ2L � rnΨ2R � t
�

nΨ1L,

Ψ2R � r�bΨ2L,

Ψ3L � t�bΨ2L, (2.55)

from which we obtain

Ω �
1

1 � rnr�b
t�n

1
1 � ratnr�b�1 � rnr�b��1t�n � rar

�

n

t�a. (2.56)

The modes inside the reservoirs are at Fermi level εF . When the chemical
potential in the left (right) reservoir is sligthly increased by δµ3 �δµ0�, a non
equilibrium spin current flows. For each region i � 0,1,2,3 the spin current
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Ji is the difference between left going and right going contribution. From
Eqs. (2.22) and (2.54) one gets:

∂Ji
∂µ0

�
1

4π
Re�Tr2Nch

ÑσΓiRΓ�
iR �Tr2Nch

ÑσΓiLΓ�
iL� (2.57)

,
∂Ji
∂µ3

�
1

4π
Re�Tr2Nch

ÑσΛiRΛ�
iR �Tr2Nch

ÑσΛiLΛ�
iL�, (2.58)

where the trace is taken on the channel space. If the spin current inside
regions 2 and 3 is different, then angular momentum has been deposited
in the layer Fb. This creates a torque τb on the magnetic moments of the
ferromagnet

τb � J3 � J2. (2.59)

Setting δµ0 � �eV0 one has the following expression for spin torque:

∂τb
∂V0

� �
4

4π
ReTr2Nch

�ΣΩΩ�� (2.60)

where the matrix Σ reads

Σ � Ñσ � t��b Ñσt�b � r��b Ñσr�b. (2.61)

This expression contains both non equilibrium and equilibrium spin torque
[Eqs.(2.59) and (2.60)]. Since the former is typically a factor 1~Nch smaller
and vanishes upon ensemble averaging [8, 103]), it will be negelected in our
calculations based on random matrix theory (see next section). For the non
equilibrium torque one has ∂τb~∂V0 � �∂τb~∂V3, up to a correction of order
1~Nch.

2.4 Random matrix theory

2.4.1 Sum of amplitudes and sum of probabilities

In a multilayer, scattering happens inside the bulk , and at the interfaces
between different materials (due to the potential barrier felt by electrons at
the crossing between materials with different properties). Each subpart of
the system has its own scattering matrix, and it is important to be able to
combine several parts to obtain the global Ŝ matrix [Eqs.(2.43) and (2.44)].
This is particularly important when one is interested in calculating the spin
torque, as one also needs to calculate the spin current flowing inside the
system and not only near the electrodes. On the other hand, the sum of
scattering matrices of subpart of a system gives reflection and transmission
amplitudes for electron flowing through it, while the physical quantities are
obtained from transmission and reflection probabilities. In this section we
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show how to sum transmission/reflection probabilities of subparts of the sys-
tem to obtain the properties of the system as a whole. This procedure, which
gives an equivalent of the Ohm’s law at quantum level, is the cornerstone of
the transport models developed in this work.

Let us consider the sum rule for a spinless particle crossing two conduc-
tors a and b connected in series, described by the scattering matrices Sa and
Sb. The generalization to 1/2 spin electrons is straightforward and consists
simply in adding an index for the spin degree of freedom to the element of
scattering matrices. Let us suppose that the these matrices are diagonal in
channel space, so that there is no mixing of channels in the propagation of
particles. According to Eq. (2.43) the transmission amplitude ta�b for the
two conductors in series is

ta�b � tb
1

1 � SraSSrbSeiφ ta (2.62)

where whe have written separately the modulus of the coefficients ra and rb
and their phase eiφ. The transmission probability Ta�b of the two systems
in series is given by Sta�bS2. If the conductor has many open channels, the
phase eiφ varies randomly from channel to channel, so that the average over
the channels is done averaging on the angle φ:

Ta�b �
1

2π S
2π

0
StbS2StaS2 1

1 � rarbeiφ
1

1 � r�b r
�

b e
�iφ

dφ (2.63)

This integral can be calculated performing the substitution z � eiφ, and
dz � ieiφdφ� dφ � �idzz :

Ta�b �
�i

2π
StaS2StbS2S

C

1
1 � rarbz

1
1 � rarb

z

dz

z
, (2.64)

where C is the circle with unit radius. A straightforward calculation with
the residual theorem gives:

Ta�b � Tb
1

1 �RaRb
Ta, (2.65)

where we have set StiS2 � Ti and SriS2 � Ri, i � a, b. Thus, in this simple
spinless case, the sum rule for the transmission probabilities is the same
as the sum rule for the transmission amplitudes, and is obtained simply
substituting the transmission and reflection coefficients with their square
modulus. For the conservation of the probability one has Ti �Ri � 1, thus
Eq.(2.66) takes the form

1
Ta�b

�
1
Ta

�
1
Tb

� 1 (2.66)

The resistance of each block, expressed in Ohms, is obtained multiplying
1~Ti by the Sharvin resistance [93, 26] Rsh � h~�e2Nch�:
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Ra�b � Ra �Rb �RSh (2.67)

When more than two conductors are put in series, the Sharvin resistance
has to be added only once, independently of the number of conductors that
have to be added. Indeed, the Sharvin resistance is a contact resistance, i.e.
as an additional resistance given by the fact that electrons reservoirs, which
contain number of channels that might be considered infinite, are connected
to a conductor with a finite number of channels. Thus, a perfect conductor
with does not have zero resistance, but a resistance of h~e2 per propagative
channel. In macroscopic conductors the number of channels is huge, and the
Sharvin resistance is negligible. However, in mesoscopic its effect has to be
taken into account.

Indeed, Eq.(2.66) holds in general, and the sum rule of ”probability
matrices” is exactly the same as the sum rule of scattering matrices. To
each scattering matrix s containing �t, t�, r, r��, we associate a ”hat matrix”,�t̂, t̂�, r̂, r̂��, which represents the transmission/reflection probability for an
electron crossing the system. The sum rule for hat matrices is exactly the
same as the sum rule for scattering matrix.

t̂a�b � t̂b�1̂ � r̂ar̂�b��1t̂a (2.68)
r̂a�b � r̂b � t̂b�1̂ � r̂ar̂�b��1r̂at̂

�

b

t̂�a�b � t̂�a�1̂ � r̂ar̂�b��1t̂b

r̂a�b � r̂�b � t̂b�1̂ � r̂br̂�a��1r̂�at̂
�

b

This substitution of amplitudes with probabilities and of the whole system
with a sum of simpler subblocks is the leading idea of the multiscaleap-
proach that will be described in chapters 3 and 4: a given system can be
decomposed in subblocks, where transport properties are computed using
the most convenient approach (semiclassical or fully quantum). When one
has obtained the hat matrices of each subblock, one can sum them using
Eq.(2.68) to in order to obtain the hat matrix of the system as a whole.

2.4.2 Scattering matrices and ”hat” matrices

In the previous section we have found an addition law for probability ”hat
matrices” in a general way, without making any assumption about the struc-
ture of those matrices. In this section, we shall give a precise definition of
hat matrices and their relation with quantum transport.

Random matrix theory (RMT) treats large matrices whose elements are
randomly distributed. Once the probability distribution of the matrices has
been chosen, one can calculate the correlation functions of eigenvalues and
eigenvectors. Different physical properties can be related to these correla-
tion functions. RMT was developed by Dyson, Wigner, Mehta and Gaudin
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[67], to understand the statistics on energy levels inside heavy nuclei. More
recently RMT has been applied to chaotic systems [12] and quantum trans-
port [1, 8, 103]. In this section we shall see how to apply RMT to spin
transport.

According to Eq.(2.60), the torque on the magnetic moments of the two
layers Fa and Fb not only depends on the scattering matrices Sa and Sb of
these layers, but also on the scattering matrix Sn of the normal layer in be-
tween. If the normal layer is disordered, spin torque depends on the location
of the impurities, while if it is ballistic, spin torque depends sensitively on
the phase shift accumulated in N . In general, sample to sample fluctuations
of the torque are a factor 1~Nch smaller than the average [8]. Nch is large
(typically Nch�103

� 105), the torque is well characterized by its average.
Inside a single system with many channels, the transmission and re-

flection coefficients vary randomly from channel to channel. The scattering
matrix can be therefore considered as a matrix whose elements are randomly
distributed. In particular, the scattering matrix of the normal layer can be
written using the polar decomposition [68, 66]

Sn � � U 0
0 V �

�� º
1 � T i

º
T

i
º
T

º
1 � T

�� U � 0
0 V

� , (2.69)

Where U , V , U � and V � are 2Nch�2Nch unitary matrices and T is a diagonal
matrix containing the eigenvalues of tnt

�
n. Since Sn is diagonal in spin space,

U , U �, V and V � are block diagonal:

U � � u 0
0 u

� (2.70)

with similar definitions for U �, V and V �. According to the isotropic approx-
imation [8], these matrices are uniformly distributed in the group U�Nch�.
Thus, the central matrix in Eq.(2.69) contains the transmission properties
of the layer, while the outer blocks mix the modes in an ergodic way: an
electron entering the system in a given mode will leave it with a certain
probability and an arbitrary mode, and gets a random phase in the process.

We shall calculate the average spin torque, obtained averaging over T
and the unitary matrices. this averaging can be done in a general way
according to the following prescription: to a given 2Nch�2Nch matrix a one
assigns a 4�4 ”hat” matrix â with elements

Aηλµν �
1
Nch

TrNch
�aηλa�µν�, (2.71)

where we have implied channel indices in matrices a, a�, each of the index
η, λ, µ, ν is a spin index � ~ �, and the trace has to be taken in each of the
Nch �Nch blocks. A general property of this average is that the fluctuations
are a factor of order Nch smaller than the average. This justifies the fact
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that we have neglected the equilibrium spin torque, which is a factor Nch

smaller than the non equilibrium torque. Eq.(2.71) in extenso reads

â �
1
Nch

TrNch

�������

A��A
�
�� A��A

�
�� A��A

�
�� A��A

�
��

A��A
�
�� A��A

�
�� A��A

�
�� A��A

�
��

A��A
�
�� A��A

�
�� A��A

�
�� A��A

�
��

A��A
�
�� A��A

�
�� A��A

�
�� A��A

�
��

�������
, (2.72)

With the prescription Eq.(2.71) one can associate to a given scattering ma-
trix S defined in Eq.(2.35), the hat matrix

Ŝ � � r̂ t̂�

t̂ r̂�
� (2.73)

where each element is a 4� 4 hat matrix that accounts for transmission and
reflection trough a given system. To get an insight on the physics described
with this formalism, let’s focus on the transmission matrix t̂. This matrix
reads

t̂ �

�����
T���� T���� T���� T����
T���� T���� T���� T����
T���� T���� T���� T����
T���� T���� T���� T����

����� , (2.74)

The elements T���� and T���� are real numbers that represent the transmission
probabilities for an electron with spin parallel (up) and antiparallel (down)
to the magnetization of the layer Fb, while T���� and T���� represents the
probability for an electron to be transmitted flipping its spin (for an electron
with spin up to be transmitted with spin down and vice versa).

The terms on the diagonal T���� and T���� � �T������, called mixing trans-
missions and denoted Tmx, are complex numbers. In a magnetic material
Tmx measures how much a spin transverse to the magnetic layer is likely
to be transmitted. Due to the large number of modes the average Tmx de-
cays rapidly with the size of the ferromagnet. Thus this terms are small in
magnetic systems, but they play a role when the magnetic moment of the
electrons and the magnetization of the layer are not aligned, since they are
responsible for the spin torque, as it will be shown below. To simplify the
notation, from here we set

T���� � T�� (2.75)
T���� � T��

T���� � T��

T���� � T��

with this notation, Eq.(2.74) can be written in the more compact form
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t̂ �

�����
T�� . . T��
. Tmx . .
. . T �

mx .
T�� . . T��

����� (2.76)

This matrix contains all the terms necessary to describe transport our system
(the other terms represented by dots do not have any physical meaning in
our description). As a further simplification, we define

T� � T�� � T��

T� � T�� � T�� (2.77)

The coefficient T� represents the probability for an electron injected with
spin up or down to be transmitted with spin up. It is the sum of two
processes: the process when an electron enters with spin up and its spin is
unchanged (T��), and the process where an electron enters with spin down
and undergoes a spin flip (T��). In the same way, the coefficient T� is the
probability for an electron to be transmitted with spin down. The same
notation as Eqs.(2.75-2.76-2.77) is used for reflection hat matrices.

From Eq.(2.75,) one can write the conductance G of the system as

`Ge � Nche
2

h
�T�� � T�� � T�� � T��� . (2.78)

This formulation relates the conductance to the probabilities for different
processes (spin flip and spin preserving) through which transmission may
occur, and it corresponds to the Landauer formula [Eq.(2.37)], where tt�

has been substituted with the transmission probability averaged over the
propagative channels. Using the definitions of Eq.(2.75) we can write the
spin-polarization of the current as

P σI �
T�σ � T�σ
T�σ � T�σ

. (2.79)

Notice that in the averaging process one considers only the propagative
channels, so that exponential suppression of the conductance is not taken
into account. This means that the theory is suitable for Ohmic conductors,
while tunnelling phenomena cannot be described within this formalism.

So far, the coefficients of hat matrices appear as free parameters of the
theory. In chapters 4 and 5 we shall describe two different procedures to
obtain these coefficients.

The Sharvin resistance relates transmission probabilities to the resistance
expressed in Ohms. In particular, the intrinisic total resistance (i.e. the
resistance of the conductor minus the Sharvin resistance) RσI for spin σ of
a conductor is
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RσI �Rsh � 1
T�σ � T�σ

� 1� . (2.80)

This relation takes into account both the transmission probability without
spin flip (Tσσ) and the transmission with spin flip (Tσσ�). Eq.(2.67) gives
a prediction which is in contrast with the Ohm’s law, according to which
the resistance of two conductors connected in series should sum up exactly.
As the size of the conductor increases, the number of channels grows and
the Sharvin resistance quickly goes to zero, so that in the classical limit the
Ohm’s law is recovered.

2.4.3 Application to the FNF trilayer: comparison with the
scattering matrix formalism

In this section we apply RMT to the description of the FNF multilayer
treated in Sec.(2.3.4) This allows to see the analogy between scattering ma-
trix formalism and RMT, and to define spin torque using hat matrices. We
suppose that the trilayer is described by the hat matrices Ŝa, ŜN and Ŝb. In
particular, the hat matrices of the normal layer read

t̂n �
gn
Nch

14, (2.81)

r̂n � �1 �
gn
Nch

�14, (2.82)

where gn is the conductance of the normal layer and 14 is the 4 � 4 identity
matrix. Proceeding in the same way as in Sec. (2.3.4), one can define the
matrix

Ω̂ �
1

1 � r̂nr̂�b
t̂�n

1
1 � r̂at̂nr̂�b�1 � r̂nr̂�b��1t̂�n � r̂ar̂

�

n

t̂�a. (2.83)

which has a structure similar to Eq. (2.56). In the same spirit, one is
brought to define (compare with Eq. 2.61)

Ñ̂σ � 1
Nch

TrNch

�����
Ñσ�� Ñσ�� Ñσ�� Ñσ��
0 0 0 0
0 0 0 0Ñσ�� Ñσ�� Ñσ�� Ñσ��

����� . (2.84)

Using these matrices, spin torque now reads

c ∂τb
∂V0

h � � e

4π
ReTr4�Ñ̂σΩ̂� (2.85)

and the total transmission hat matrix of the system reads

t̂ � t̂�bΩ̂ (2.86)
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After the averaging one has that `∂τb~∂V0e � � `∂τb~∂V3e (see [103]), so that
the linear response of the torque to a small bias voltage (which is the regime
we want to describe) reads

τb � c ∂τb
∂V0

h �V0 � V3�. (2.87)

Averaging over the propagative channel has allowed us to reduce enor-
mously the parameters of the model, without losing generality and physical
insight. Scattering matrix provides a fully phase coherent description of
the FNF trilayer, containing 4Nch�4Nch parameters for each of the trans-
mission/reflection matrices of the system. Averaging over the propagative
channels reduces the parameters to 16 for each hat matrix appearing in
the computation, while completely eliminates the phase coherence. For an
Ohmic, diffusive spin valve, the physics of transport is fully caputured by
Random Matrix Theory.

2.4.4 Rotation of hat matrices

The scattering matrix of a piece of magnetic material is most easily found
in the basis parallel to the local magnetization, i.e. the reflection and trans-
mission matrices are given for the majority and minority electrons. For
non-collinear multilayers where different magnetization directions come into
play, one needs to rotate the original S matrix onto its form

S̃ � Rθ,ÑnSR
�
θ,Ñn (2.88)

in the chosen working basis, where

Rθ,Ñn � exp��iÑσ � Ñn θ~2� � cos�θ~2� � iÑσ � Ñn sin�θ~2� (2.89)

is the rotation matrix of angle θ around the unit vector Ñn that brings the
magnetization onto the z-axis of the working basis. In term of hat matrices,
this translates directly into

ˆ̃S � R̂θ,ÑnŜR̂
�
θ,Ñn (2.90)

with,

R̂ση,σ�η� � Rσσ�R�

ηη� , (2.91)

a unitary matrix. Rotating hat matrices allows one to describe transport
for noncollinear systems,as we have done with scattering matrices.
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2.5 Green’s function and quantum transport

The scattering matrix provides the response at one lead due to an excitation
at another. Green’s function is a more general concept that allows to deter-
mine the response at any point of the system due to an excitation at any
other. When electron-electron or electron-phonon interactions are present,
one has to include excitation inside the conductor and Green’s function for-
malism is a powerful tool to describe electronic transport in this case (see
for example [26, 27]). As we shall see in this section, global and transport
properties of a multilayer connected to an arbitrary number of leads are
directly related to the Green’s function.

For non interacting transport, the only excitations that one has to take
into account are those due to the waves incident from the leads to the sys-
tem. In this simple case, scattering matrix and Green’s function are related
concept, and one can use both formalisms in an equivalent way. In partic-
ular, one can express transmission and reflection coefficients of the system
via the Green’s function [see Sec.(4.3)].

2.5.1 Green’s function and self energy

For a system with Hamiltonian H, the retarded Green’s function G�r,r�� is
the solution of the equation HG�r,r�� � δ�r,r��, that describes the response
at position r due to an excitation at r�. G is defined as

G � �E �H � iη��1 (2.92)

E being the energy of the system, and iη�0� being a small imaginary part
that includes boundary conditions. To solve Eq.(2.92) numerically, we dis-
cretize the spatial coordinates so that the conductor becomes a network of C
sites, and G�r,r�� becomes the C�C matrix Gij , which relates the response
at site i to an exitation at site i.

The Green’s function of our system has, in addition to the coordinates,
two indexes for the spin (that take into account spin preserving and spin-flip
transmission/reflection phenomena). these indexes will be introduced later
to express the relation between G and the scattering matrix.

Once the Hamiltonian for the discrete system has been defined, the com-
putation of G consists in finding the the matrix ��E � iη�1 �H��1. Since
the leads extend to infinity, the coductor is an open system. If one simply
truncates the matrix at some point, then one would effectively be describing
a closed system with fully reflecting boundaries.

The open system can be described by a closed one with new boundary
conditions, given by the presence of the leads. In particular, we add a term
to the Hamiltonian, called self energy ΣR

p , that describes the interaction
between the system and lead p [See FIG.(2.9)]. The superscript R is a
reminder that this self energy refers to the retarded Green’s function. Self
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Figure 2.9: Cartoon representing a conductor connected to three leads that
extend to infinity(a), and a finite conductor whose leads have been substi-
tuted with self-energies (b). Self-energy describe the effect of the leads on
the conductor, and correspond to an additional term of the Hamiltonian of
the system.

Figure 2.10: Cartoon of a conductor connected to two leads. The overall
Green’s function can be split into a component for the isolated lead p (Gp), a
component for the isolated conductor c (Gc), and a component that couples
the two system (Gpc)

energy is defined as follows: consider a conductor connected to the lead p as
shown in FIG. (2.10). The Hamiltonian of the whole system can be split into
three terms HC , Hp and VpC , that describe respectively the conductor C,
the lead p and the coupling between them. In the same way one can divide
the Green’s function into GC � ��E � iη�1�HC��1, Gp � ��E � iη�1�HP ��1

and GpC � ��E � iη�1 � VpC��1 for the three systems. One can show that
(see [26]) ΣR

p � �VpC��GpCVpC , and that the Green’s function that takes into
account the presence of the leads reads

G � �E1 �HC �ΣR��1
(2.93)

ΣR
� PpΣR

p is the total self-energy of the system. In a similar way, one can
define the advanced self energy ΣA

p related to the advanced Green’s function
[26].

The eigenvalue equation �HC �ΣR�ψα � εαψα of the system in presence
of self-energy allows to get insight on the effect of the leads of the system.
The eigenenergies are now complex:
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εα � εα0 �∆α �
i

2
γ, (2.94)

where εα0 is the eigenenergy of the isolated conductor described by HC . The
time evolution operator reads

exp��iεαt~Òh�� exp��i�εα0 �∆α�t~Òh� exp��γαt~2Òh� . (2.95)

∆α represents the shift in the energy due to the modification of the dynamics
of the particle inside the conductor by the interaction with the leads, while
the imaginary part of the energy γα make Eq. (2.95) exponentially decaying
in time. the quantity Sψα�t�S2 � SψαS2 exp��γαt~Òh� expresses the probability
to find an electron inside the conductor. This means that a particle injected
anywhere in the conductor will disappear through one of the leads after a
characteristic time Òh~γα.

The properties of the leads are described by the matrix Γ � i�ΣR
�ΣA�.

In Sec.(4.3) we shall see how to relate this matrix to the eigenfunctions of
the system.

Once we have chosen the shape of the conductor, the position of the
leads and the number of sites C of the whole system, and we have written
the Hamiltonian, the problem of finding the Green’s function is completely
defined, and the computation consists in inverting a matrix with C�C ele-
ments. To compute the Green’s function G in a performant way, we start
considering a small region of the conductor, described by the Green’s func-
tion g, and coupled to a neighbouring region with a small term U , such that
one has G�1

� g�1
� U . One can express G using the self consistent Dyson

equation [26]

G � g � gUG, (2.96)

That can be expanded into the perturbative series G � g � gUg � gUgUg �
gUgUgUg � ..., which allows to express G as a function of the unperturbed
Green’s function g and of the perturbation U . The technique at the basis
of the calculations that we have performed is the following: after we have
divided the system into a network of sites, we define a Hamiltonian that
contains a probability amplitude for an electron to jump from one site to
the other. We compute at first the Green’s function of a site, and we treat
the hopping with neighbouring sites as the perturbation U . The Green’s
function can be computed adding one site at a time until the whole system
is described.

2.5.2 A short introduction to NEGF formalism

Local and transport properties of a quantum system, described by a given
Hamiltonian and connected to several leads, can be calculated via the for-
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malism of the Non Equilibrium Green’s Functions (NEGF) [54, 21]. This
formalism allows to properly take into account the transport properties of
the system, and the interactions of the systems with the ”external world”,
modeled by a certain number of leads, connected to electron reservoirs.
Each lead p is described via a self-energy, and the statistics of the electron
reservoirs are described by the Fermi function, which takes into account the
temperature Tp and the chemical potential µp of lead p. In the formalism of
second quantization, the non equilibrium lesser Green function reads

G@

σi,ηj�E� � iS dte�iEt bc�ηjcσi�t�g (2.97)

where the indexes �i, j� stand for position in the lattice and the indexes�σ, η� for spin, while c�σi and cσi are the usual creation and annihilation
operators for an electron propagating inside the lattice. The simplicity of
this formalism comes from the fact that in our case, without electron-electron
interaction, G@ can be written in terms of the retarded Green’s function G,
defined in Eq.(2.93):

G@
� GQ

p

fp�Σ�
p �Σp�G�, (2.98)

where fp � 1~�1 � exp��E � µl�~kTp�� is the Fermi function, and Σp are the
self-energies at lead p. Eqs. (2.97) and (2.98) together allows to go from
language of creation and annihilation operators to the languages of retarded
Green’s functions. For example, the spin density at site i reads

Ñni � Òh
2
Q
η,η�

c�iηÑσηη�ciη� (2.99)

and using G@ one has

ηi �
1

2π
ImS

�ª

�ª

dEG@

ii�E�. (2.100)

Spin current is calculated from the time evolution of spin density, which
depends on the Hamiltonian of the system:

∂

∂t
`nie � iÒh `�H,ni�e . (2.101)

To resolve this equation, it is necessary to specify the Hamiltonian of the sys-
tem. This approach is taken in chapter 4, where we consider a Tight-Binding
(TB) Hamiltonian, and we represent the system as a discrete lattice. The
TB Hamiltonian shall be described in chapter 4, here we anticipate that this
Hamiltonian is the sum of three parts (hopping, spin orbit interaction and
impurity potential), so that the commutator �H,ni� splits into three sepa-
rate terms, from which one obtains three current densities having different
physical meaning:
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jσ,ij � �
1
2

Im�tij bc�σiÑσσσcσjg� (2.102)

jsoσi,ηj � �
1
2

Im bc�σitsoσi,ηjÑσcηjg (2.103)

ρσi �
2Òh� ÑVσi � Ñnσi� (2.104)

Eq.(2.102) corresponds to spin current density associated to transmission
and reflection phenomena that preserve the spin, Eq.(2.103) correspond to
spin current densities of spin-flip processes, and Eq. (2.104) is a spin density
associated to the onsite potential. Notice that at equilibrium the spin density
is constant in time, so that the first term of Eq.(2.101) vanishes, so that the
three current densities are related:

jσ,ij � j
so
σi,ηj � ρσi � 0. (2.105)

The first term is the one we refer to as spin current density, and is the one
used in our computations to obtain spin torque. These terms can be written
using lesser Green’s functions. In particular, spin current density reads:

jij �
1

4π S dE�tijÑσG@

ji � tjiÑσG@

ij�. (2.106)

(2.107)

In our picture the system is divided into sites, and jij refers to the spin
current that propagates from site i to site j. We are interested in the total
spin current that flows through a cross section of the system. Such current is
obtained summing jij over the cross section of the system. Substituting G@

with Eq.(2.98), one obtains spin current expressed using retarded Green’s
functions. We remind that we consider zero temperature, where the Fermi
function reduces to a step function, and electronic transport occurs near the
Fermi Energy.

The formalism described in this section has been adopted for transport
calculations described in chapter 4. The computations have been performed
using the KNIT package [80], based on an algorithm described in Ref.[53],
that allows to compute Green functions for a system with arbitrary geome-
try, connected to an arbitrary number of electron reservoirs.
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Chapter 3

Continuous Random Matrix
Theory

3.1 Introduction

The basic ingredients of the RMT theory presented in the previous chapter
are the hat matrices of the various subparts of the system. Once those
are known, they can be concatenated to obtain various physical observables
using the sum rule defined in Eq.(2.68). There are two routes that one can
take to obtain those matrices. The first one is to go back to their definition
in term of the original quantum problem, and compute them from purely
quantum calculations. This route has been taken with ab-initio calculation
for the interfaces between several magnetic and non-magnetic layers [110,
106]. In next chapter we shall describe a quantum approach to magnetic
multilayer based on TB Hamiltonian. The second route taken here is to
derive those matrices from phenomenological considerations.

In Sec.(3.2) we associate to hat matrices some probability vectors that
account for the probability for an electron to be in a specific region of the
system. These vectors play the role of the wave functions in the scattering
formalism, and allow one to define spin accumulation and spin current in a
natural way.

In Sec.(3.3) we show how to derive hat matrices from phenomenological
considerations. The Ŝ matrix for a piece of bulk material or for an interface
between two different metals will be parametrized by a few parameters. The
leading idea behind this parametrization is that a conductor can be divided
in infinitely thin ”slices”. Once the hat matrix of a ”slice” is known, we can
determine the hat matrix of the system as a whole, integrating this matrix
over the length of the system. The model obtained with this procedure is
what we call Continuous Random Matrix Theory (CRMT) [79].

In Sec.(3.4) we show how to put CRMT parameters in one to one cor-
respondance with the parameters of the well established Valet-Fert theory

45
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Figure 3.1: Cartoon of the Ŝ matrix approach. We define the region 0 on
the left and the region 2 on the right (region 1 in between will appear later
in the text). The � (�) respectively stands for right (left) going modes. The
mode amplitude ψi�σ at the quantum level become Pi�σ in RMT.

described in Sec.(2.2.1). This has a double advantage, since it allows to
make a direct connection with a widely spread theory, and it also allows to
make direct use of the important experimental effort that has been done to
parametrize Valet-Fert theory.

In Sec.(3.5) we make the link between CRMT and Generalized Circuit
Theory [7], a powerful tool that allows to perform transport calculations in
noncollinear configuration of the magnetization.

Sec.(3.6) is dedicated to a direct integration of CRMT in some simple
cases. This allows for a better definition of the VF parameters in diffusive
systems.

In the Sec.(3.7) whe show some application of the theory to the compu-
tation of spin accumulation and spin torque in realistic spin valves.

3.2 Hat matrices and probability vectors

3.2.1 Probability 4-vectors

The matrix Ŝ contains transmission and reflection probabilities for right-
moving and left-moving electrons, and has a form similar to Eq.(2.35),

Ŝ � � r̂� t̂

t̂� r̂
� , (3.1)

In analogy with scattering matrices, we introduce 4-vectors Pi�, which cor-
responds to the modes amplitudes ψi�σ:

Pi� �

�����
Pi�,�
Pi�,mx
P �

i�,mx

Pi�,�

����� (3.2)

The components of the 4-vector Pi� have interpretation in term of prob-
abilities. For instance, P0�� (P2��) accounts for the probability to find a
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right (left) moving electron in region 0 (2) with spin � (�) [see FIG.(3.1)].
The mixing components, Pmx are complex numbers which correspond to the
probability to find the electron with spin along the x (real part) or y (imag-
inary part) axis. Inside magnetic layers where the z axis will correspond to
the direction of the magnetization, they will correspond to the small prob-
ability for the spin to have a part transverse to the magnetization. Again,
in analogy with Eq.(2.35) which expresses the amplitudes of the outgoing
modes in term of the incoming ones, we have,

� P0�

P2�
� � Ŝ � P0�

P2�
� . (3.3)

When the ”mixing” components of the 4-vectors play no role, as in collinear
systems, Eq.3.3 has an obvious interpretation in term of a Master equation.
For instance, its first row expresses that the probability to find a left going
electron in region 0 has two contributions coming from the probability to
have a reflection and transmission event. In other word, instead of the orig-
inal interference problem with amplitudes, one now deals with the classical
equivalent with probabilities. For non-collinear system however, the pres-
ence of the quantum SU(2) structure of the spin introduces some quantum
numbers (the mixing coefficients) and the Markov process interpretation
does not hold, strictly speaking.

The expression for the currents and spin current in term of the ”hat”
matrices given in Eqs.(2.58) and (2.58), can be now reformulated in terms
of P -vectors:

Ji �
Nch

4π
�Ñσ �Pi� � Ñσ �Pi�� (3.4)

and

I �
1

eRsh
�P�� � P�� � P�� � P��� (3.5)

where I is the charge current and Rsh � h~�Nche
2� is the Sharvin resistance.ÑÑσ � �Ñσ��, Ñσ��, Ñσ��, Ñσ��� is 4-vector composed of components of Pauli matrices.

To complete the theory, we need the boundary conditions imposed on the
incoming electrons on both sides of the system. We focus here on normal
electrodes, but these conditions can be easily generalized to the case where
the electrodes are themselves magnetic. We have,

P0� �

�����
µ0

0
0
µ0

����� , P2� �

�����
µ2

0
0
µ2

����� (3.6)
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Figure 3.2: Cartoon of the system made of two subsystems a and b.

where µ0 and µ2 are the respective chemical potentials of the two electrodes.
For a given matrix Ŝ, the combinations of Eqs.(3.3,3.4,3.5) and Eq.(3.50)
form a complete set of equations to obtain the physical quantities. Eq.(3.3)
reads for each of them,

� P0�

P1�
� � Ŝa � P0�

P1�
� ,� P1�

P2�
� � Ŝb � P1�

P2�
� (3.7)

Eliminating P1 we find addition law for hat-matrices:

� P0�

P2�
� � Ŝa�b � P0�

P2�
�with, (3.8)

t̂a�b � t̂b
1

1̂ � r̂�ar̂b
t̂a (3.9)

r̂a�b � r̂a � t̂ar̂b
1

1̂ � r̂�ar̂b
t̂a (3.10)

and similar expressions for r̂�a�b and t̂�a�b, which justifies Eq.(2.68). We can
also use Eq.(3.7) to express P1� in terms of the incoming fluxes:

� P1�

P1�
� � ��

1
1�r̂�

ar̂b
t̂a r̂�a

1
1̂�r̂br̂�

a
t̂�b

r̂b
1

1̂�r̂�

ar̂b
t̂a

1
1�r̂br̂�

a
t̂�b

��� P0�

P2�
� (3.11)

Using Eqs.(3.4,3.50,3.11), one can calculate the spin current in the region 1
inside the system.

3.2.2 From scattering degrees of freedom to spin accumula-
tion and spin current

The natural variables of RMT, as it was introduced above, are the 4-vectors
Px� which characterize the ”probability” to find a left or right moving elec-
tron in region x. Let us now introduce a new set of variables defined as

j�x� � �P��x� �P��x��~�eRsh�, (3.12)

µ�x� � �P��x� �P��x��~2 (3.13)
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As we shall see, these two 4-vectors correspond respectively to the spin re-
solved current and chemical potentials flowing in the system. There are
two complementary ways to make this connection. The first one is to write
our fundamental equations [essentially Eq.(3.3)] in term of these new vari-
ables. This will be done toward the end of this section, and we will find that
j�x� and µ�x� satisfies the well known Valet-Fert diffusive equations for
continuous collinear systems and the equations of circuit theory for discrete
non-collinear ones. This connection is very interesting from the theoretical
point of view as very different routes have been taken to obtain these equa-
tions (scattering and Random matrix theory on one side and Keldysh Green
function formalism and quasi-classical approximation on the other side). It
has also a practical interest as one can use Eq.(3.12) and Eq.(3.13) to go
back and forth between a ”scattering” approach and a ”diffusive” approach
and both have technical advantages for practical calculations.

There is a second, more direct, way to connect respectively j�x� and
µ�x� to the concepts of spin currents and spin accumulation. For j�x�, the
connection is staightforward, as Eq.(3.4) reads,

ÑJ�x� � Òh
2e

ÑÑσ � j�x� (3.14)

while
I � j� � j� (3.15)

The connection between µ�x� and a hypothetical spin resolved chemical
potential is more problematic as scattering theory does not have any notion
of local chemical potential. In fact, the existence of a local chemical potential
would imply some sort of local equilibrium inside the system. However,
the theory that we have developed so far is purely elastic and such a local
equilibrium is not present. We will find that everything happens as if there
were some sort of local equilibrium, except for one important point: the
presence or absence of the contact resistance (see the discussion at the end
of this section).

In order to provide a physical undertanding of µ�x�, we make use of a
theoretical method known as the voltage probe [17, 18]: we connect a point
inside the system (region 1) to an external electrode and adjust the (spin
resolved) chemical potential of this electrode so that no (spin) current flow
from/to it. In the absence of magnetism, this could be achieved experimen-
tally with the help of a STM tip. In mesoscopic physics, the voltage probe
is used to induce some decoherence [55] in an otherwise perfectly coherent
theory, hence introducing a finite phase coherence time which depends on
the coupling of the system with the probe. Here, we will take this coupling
to be extremely small, so that the probe will not affect the physics of the
system. On the other hand, we are interested in the voltage that one must
apply on the probe to stop any current from flowing from/to it: this will be
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Figure 3.3: Cartoon of the system in presence of the voltage probe.

our definition of an effective local chemical potential, and we shall find that
this definition matches the one of µ�x�. The setup is shown in FIG.(3.3).

In addition to Ŝa and Ŝb defined previously, we introduce the matrix Ŝε
which describe the (small) coupling to the probe,

Ŝε �
���

0 1 � ε ε
1 � ε 0 ε
ε ε 1 � 2ε

��� , (3.16)

with εP 1. When ε � 0 the probe is decoupled from the conductor and the
electrons freely propagate between the regions 1 and 1�.

The full system is entirely determined by the following set of equations,

� P0�

P1�
� � Ŝa � P0�

P1�
� ,� P1��

P2�
� � Ŝb � P1��

P2�
�

���
P1�

P1��

Pp�

��� � Ŝε
���
P1�

P1��

Pp�

��� , (3.17)

to which one must add the incoming boundary conditions on the three elec-
trodes P0�, P2� [Eq.(3.50)] and Pp� (the probe). Eliminating P1,1� we obtain
Ŝ. In particular we get to leading order in ε,

Ŝp,0 � ε�1̂ � r̂b� 1
1̂ � r̂�ar̂b

t̂a

Ŝp,2 � ε�1̂ � r̂a� 1
1̂ � r̂br̂�a

t̂�b

Ŝp,p � 1 � 2ε �O�ε2� (3.18)

We now impose that Jp � 0 [Eq.(3.4)] which provides our boundary condition
on the probe:

Pp� �
1
2ε
Ŝp,0P0� �

1
2
Ŝp,2P2� (3.19)
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Using Eq.(3.11) and Eq.(3.13), we arrive at,

Pp� �
1
2
�P1� �P1�� � µ1 (3.20)

In other words, the spin resolved voltages that one need to apply on the
probe is equal to the formal chemical potential that we have defined in
Eq.(3.13) so that it is legitimate to call µ�x� a chemical potential.

3.3 Continuous Random Matrix Theory

3.3.1 General form of the hat matrices in magnetic and non
magnetic materials.

A typical magnetic multilayer consists of alternating layers of magnetic and
non-magnetic materials of various widths. We decompose the corresponding
S matrices in the bulk and interface parts that will be parametrized inde-
pendently. The general form of a hat matrix (t̂ in what follows but similar
considerations apply to t�, r and r�) is a full 4�4 matrix given by Eq.(2.72).
In the absence of spin-orbit scattering (and/or magnetic impurities), spin
is a good quantum number of the problem and the t matrix is diagonal in
spin space (in the basis parallel with the magnetization). Hence t̂ is also
diagonal. It consists on one hand of the probabilities T�� (T��) for an � (�)
spin to be transmitted and on the other hand of the mixing transmission,
Tmx � �1~Nch�TrNch�t��t���. In order to take into account spin-orbit inter-
action, a finite probability T�� (T��) for a � (�) spin to be transmitted as
a � (�) spin must be considered (spin flip probabilities). In the following,
we suppose that mixing elements (complex numbers) that also involve spin-
flip scattering can be totally ignored, leading to the following form of the
hat-matrix:

t̂ �

�����
T�� 0 0 T��
0 Tmx 0 0
0 0 T �

mx 0
T�� 0 0 T��

����� . (3.21)

with the probabilities Tσσ� � 1~NchTrNch
�t�σσ�tσσ��. Note that the unitarity

of the S matrix imposes the following constraint on the mixing coefficient:

STmxS B»T��T��. (3.22)

In a non-magnetic material there is no preferred direction for the spin,
thus a hat matrix of the non-magnetic metal must be invariant with re-
spect to rotations. One finds by inspection that there are two 4�4 matrices
invariant with respect to rotation around an arbitrary axis:
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Î1 �

�����
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

����� , Î2 �

�����
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

����� (3.23)

Hence, we write the hat matrix of a normal layer as a combination of these
two invariants:

t̂ � �T � 2Tsf �Î1 � Tsf Î2. (3.24)

where T is the total transmission probability while Tsf is the probability of
transmission with spin-flip.

3.3.2 hat matrices for an infinitely thin conductor

So far we have discussed the form of the hat matrices for an arbitrary subpart
of the system. This general form is directly useful for the parametrization
of the hat matrices of interfaces. For bulk material, we introduce the Ŝ
matrix of a very thin slice of material of width δL. The matrix Ŝ�δL� (and
therefore the bulk properties of the material) is entirely characterized by
two matrices Λt and Λr defined as,

t̂�δL� � 1 �ΛtδL (3.25)
r̂�δL� � ΛrδL (3.26)

Once Ŝ�δL� is known, one can make use of the addition law discussed in
Sec.(2.4.1) to obtain a differential equation that allows the computation of
Ŝ�L�: combining Ŝ�L� and Ŝ�δL� one obtains Ŝ�L � δL�. For example
t̂�L � δL� reads

t̂�L � δL� � �1̂ � r̂�L�ΛrδL �ΛtδL�t̂�L�. (3.27)

So, in the limit δL�0 one obtains

∂r̂

∂L
� Λr �Λtr̂ � r̂Λt � r̂Λrr̂ (3.28)

∂t̂

∂L
� �Λtt̂ � r̂Λrt (3.29)

Eq.(3.28) and Eq.(3.29) can be integrated analitically to obtain Ŝ�L� of
an arbitrary bulk part (see the following of this chapter). However, for
numerical purposes, it is more efficient to use directly Eqs. (3.9) and (3.10)
which can be used recursively, leading to an extremely fast integration time
� logL.



3.4. CORRESPONDENCE BETWEEN CRMT AND VALET FERT THEORY53

The matrices Λt and Λr are parametrized by the general form given
in Eq.(3.21) an Eq.(3.24). The parametrization is further constrained by
the unitarity of S (conservation of current). Due to the origin essentially
ballistic of the finite mixing coefficient, we neglect the corresponding contri-
bution to Λr. Eventually, a bulk magnetic material is characterized by four
independent parameters Γ�, Γ� Γsf and Γmx:

Λt �

�����
Γ� � Γsf 0 0 �Γsf

0 Γmx 0 0
0 0 Γ�

mx 0
�Γsf 0 0 Γ� � Γsf

����� , (3.30)

Λr �

�����
Γ� � Γsf 0 0 Γsf

0 0 0 0
0 0 0 0

Γsf 0 0 Γ� � Γsf

����� , (3.31)

These four parameters correspond in turn to five different lengths. The two
most important one are the mean free paths for majority (l�) and minority
(l�) electrons defined as lσ � 1~Γσ. Next comes the spin diffusion length lsf ��4Γsf�Γ� � Γ����1~2 [see below Eq.(3.40] and Sec.(3.6)). Last the complex
number Γmx � 1~lÙ�i~lL where lÙ is the penetration length of transverse spin
current inside the magnet while lL is the Larmor precession length. These
definitions are supported by the form of Tmx�L� which is readliy obtained
by integrating Eq.(3.29),

Tmx�L� � e�L~lÙ�iL~lL (3.32)

lÙ and lL, are believed to be roughly equal, and the smallest characteristic
lengths with typical values in the nm range. The explicit form of Tσσ��L�
will be discussed in the last section of this chapter. In a normal metal, the
parametrization obeys Eq.(3.24) and we have

Λt � �Γ � 2Γsf �Î1 � Γsf Î2. (3.33)

Λr � �Γ � 2Γsf �Î1 � Γsf Î2. (3.34)

The theory is now formally complete. A given multilayer is then constructed
by using the addition law defined in Eq.(2.68) for the various bulk layers and
the corresponding interfaces.

3.4 Correspondence between CRMT and Valet Fert
theory

VF parameters are experimentally accessible, and allow for a precise charac-
terization of transport properties of many materials. This parametrization
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can be used to parametrize the matrices Λt and Λr of CRMT. On one hand,
this allows to build a theory of transport whose parameters are completely
determined by experimental data, on the other hand, it allows to verify that,
for collinear systems, VF theory and CRMT are strictly equivalent (up to
the way Sharvin resistance is introduced, as we shall see soon).

1. Parametrization of Bulk. Let us start with Ŝ�δx� which relates
P��x� and P��x � δx� on the two sides of a thin slice of material ac-
cording to Eq.(3.3). The explicit form of Ŝ�δx� given by Eqs. (3.26)
and (3.26) provides differential equation for P��x� which are the coun-
terparts of Eq.(3.28) and Eq.(3.29):

∂P��x�
∂x

� �ΛtP��x� �ΛrP��x�
∂P��x�
∂x

� �ΛrP��x� �ΛtP��x�. (3.35)

In the absence of magnetic texture, the equations for P�,� and P�,� are
decoupled from the equations for P�,mx and P �

�,mx. Focussing on the
first and the last row of the Eq. (3.35) we get explicitly,

∂

∂x
� P��
P��

� � �Λ̃t � P��
P��

� � Λ̃r � P��
P��

� , (3.36)

where Λ̃t and Λ̃r are 2�2 matrices,

Λ̃t~r � � Γ� � Γsf �Γsf

�Γsf Γ� � Γsf
� (3.37)

Eq.(3.36) accounts for the conservation of probability in the scattering
events, i.e. it is the Master equation of the underlying Brownian
motion undertaken by the electrons upon the various reflection and
transmission events.

Using Eq.(3.12) and Eq.(3.13) we can now write Eq.(3.36) in terms of
j�x� and µ�x�, and arrive at,

j�~��x� � �1~�eΓσRsh� ∂xµ�~��x� (3.38)
∂xj�~��x� � 4Γsf~�eRsh� �µ�~��x� � µ�~��x�� (3.39)

which are precisely the Valet-Fert equations. [97] Hence, for a collinear
system, C-RMT simply reduces to VF theory. This allows us to build
a one to one correspondence between the CRMT parameters (Γ�, Γ�

and Γsf ) and the VF parameters ρ�, ρ� (resistivities for majority and
minority electrons) and lsf :
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1
lsf

� 2
»

Γsf

»
Γ� � Γ� (3.40)

β �
Γ� � Γ�

Γ� � Γ�
(3.41)

ρ�

Rsh
� �Γ� � Γ��~4 (3.42)

Note that the mixing coefficient Γmx is not fixed by this parametriza-
tion as they only play a role in non collinear configurations. So far
there are very few experimental data [92] allowing to extract Γmx so
that one often relies on model or ab-initio calculations to estimate it.

2. Parametrization of interfaces. In VF theory, the interface bound-
ary conditions are obtained by introducing an virtual material of width
d, resistivity ρeffσ and spin diffusion length leffsf . This virtual material
is then taken to be infinitely thin d � 0 while keeping the interface
parameters finite: δ � d~leffsf and rbσ � ρeffσ d. Repeating the same
procedure for CRMT allows us to map the VF parameters to CRMT
interfaces,

T�� �
�1 � e�δ�~2

1 � 2�rb�~Rsh��1 � γ� (3.43)

T�� �
�1 � e�δ�~2

1 � 2�rb�~Rsh��1 � γ� (3.44)

T�� �
�1 � e�δ�~2

1 � 2�rb�~Rsh��1 � γ� (3.45)

T�� �
�1 � e�δ�~2

1 � 2�rb�~Rsh��1 � γ� (3.46)

R�� � 1 �
1

1 � 2�rb�~Rsh��1 � γ� ,R�� � 0 (3.47)

R�� � 1 �
1

1 � 2�rb�~Rsh��1 � γ� ,R�� � 0 (3.48)

(3.49)

Alternatively, the interface Ŝ matrix can be obtained directly from
ab-initio or model quantum calculations (see the next chapter). Once
again, the mixing reflection and transmission coefficients are not fixed
by CPP GMR experiments. Those numbers can be extracted from
angular resolved magneto-resistance or spin pumping experiments but
limited data are available so far [94].
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We have just proved that for a collinear system, VF theory and CRMT
are simply equivalent. There is however a small difference that appears
in the boundary conditions at the electrodes. In CRMT those boundary
conditions come from the (quantum) Landauer formula and the presence of
different voltages between the reservoirs located at, say, x � 0 and x � L
imposes P�σ�0� � eV �0� and P�σ�L� � eV �L� [see Eq.(3.50)]. A direct con-
sequence of these boundary conditions is the existence of a finite resistance
(the Sharvin resistance described in the previous chapter), even for perfectly
transparent interfaces and materials with negligeable resistivity. In the con-
text of mesoscopic physics, this leads to the quantization of conductance in
unit of 2e2~h which has been observed repeatedly [99, 104]. These boundary
conditions can be expressed in term of µσ�x� and jσ�x�, and give,

µσ�0� � �eRsh~2� jσ�0� � eV �0� (3.50)
µσ�L� � �eRsh~2� jσ�L� � eV �L� (3.51)

In other words, one needs to add Rsh~2 resistors on the two sides of the
multilayer. For typical spin valve pillars, the intrinsic resistance of the pillar
is only a few time Rsh so that one really needs to take into account the
presence of these Sharvin resistances in series to properly describe the pillar.
We note that those proper boundary conditions can easily be included in a
standard VF calculation.

3.5 Correspondance between CRMT and Gener-
alized Circuit Theory

Let us now turn to non-collinear configurations. An alternative popular
and powerful approach in this case is the so-called circuit theory[7] where
the system is discretized into various parts connected by ”nodes” where one
defines the spin resolved chemical potential. Circuit theory, initially derived
for very resistive elements has been further extended into the ”generalized”
circuit theory to properly take into account the Sharvin resistance. The
similarity between (generalized) circuit theory and RMT was recognized
very early and it was shown in many cases that both theories gave the same
result [14]. Here we show that the analogy is in fact complete: RMT and
generalized circuit theory are the same theory written in different variables:
P� and P� for RMT and µ and j for circuit theory. One simply goes from
one to the other using Eq.(3.12) and Eq.(3.13).

The most general version of RMT between the two sides of a conductor
is given by Eq.(3.2). Turning now to µ and j variables on the two sides L
(left) and R (right) of the conductor, we get,
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�1̂ � r̂ � ô�t̂�eRsh

2
jR � 2ô�µL � �1̂ � r̂ � ô�t̂�µR (3.52)

�1̂ � r̂� � ôt̂��eRsh

2
jL � �1̂ � r̂� � ôt̂��µL � 2ôµR (3.53)

where ô � t�1 � r̂��1 and ô� � t��1 � r̂���1. These two equations can be
seen as the generalization of Ohm law and their linear combination provides
the conservation equation for spin current. Eq.(3.52) and Eq.(3.53) can
be considered as an extension of (generalized) circuit theory, including in
particular interface spin-flip scattering.

To recover generalized circuit theory, we need to make a few assumptions.
First, we neglect spin-flip scattering so that the hat matrices are purely
diagonal (in the local basis of the magnetization). Second, we suppose that
Rmx might be non zero but set Tmx � 0. Eq.(3.52) and Eq.(3.53) simplify
into

jLσ � jRσ �
1

eRsh

Tσσ
1 � Tσσ

�µLσ � µRσ� (3.54)

jL~R,mx � �
2

eRsh

1 �RL~R
mx

1 �RL~R
mx

µL~R,mx (3.55)

where RL~R
mx are the mixing reflections from left to left (RLmx) and right to

right (RRmx). Eq.(3.54) and Eq.(3.55) are precisely the equations that define
generalized circuit theory [7] which proves the equivalence with (C)RMT
in this limit. In fact, the renormalization coefficients of generalized circuit
theory [7] were chosen such that the calculation of the conductance with
RMT and generalized circuit theory fully agree with each other.

3.6 Direct integration of CRMT equations

In this section, we integrate the CRMT equations for the bulk properties of a
magnetic layer. The usual route for that would be to use the correspondance
between our matrix theory and Valet-Fert diffusion equation. Here, we use
a direct integration of Eq.(3.28) and Eq.(3.29), although it is probably more
tedious. Eq.(3.28) that defines hat reflection matrix is decoupled from the
Eq.(3.29) for hat transmission matrix and should be integrated first. For
an homogeneous magnetization, the first and last rows and columns of the
hat matrices decouple from the inner (mixing) part so we can effectively
consider 2�2 matrices.

We note r̂0 the large L limit of r̂�L�. We seek for a solution of Eq.(3.28)
in the following form: r̂�L� � r̂0 � r̂1�L�. Equation for r̂1�L� takes the form:

∂r̂1

∂L
� �r̂0Λr �Λt�r̂1 � r̂1�Λrr̂0 �Λt� � r̂1Λrr̂1 (3.56)
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with r̂0 having zeros everywhere except in the corners. We reduce r̂0 to 2�2
matrix r0 that obey the following equation:

Λ̃r � Λ̃tr0 � r0Λ̃t � r0Λ̃rr0 � 0 (3.57)

here we se 2 � 2 matrices Λ̃t~r defined in Eq.(3.37) since all transverse spin
decayed in infinitely large sample. Using Eq.(3.37) we find:

1 � r0

1 � r0
Γ

1 � r0

1 � r0
� ΓsfI1 (3.58)

with diagonal matrix Γ � diag�Γ�,Γ�� and full matrix I1 � �1,�1;�1,1�.
Following [84] we find the solution of Eq.(3.58)

r0 �
1 � Γ1~2

sf Γ�1�ΓI1�1~2

1 � Γ1~2
sf Γ�1�ΓI1�1~2

(3.59)

If we introduce new matrices:

r̂1�L� � eΩBLr̄�L�eΩAL (3.60)
Λ̄�L� � eΩALΛreΩBL, (3.61)

where ΩA � r0Λr �Λt and ΩB � Λrr0 �Λt. We can rewrite Eq.(3.56) for r̄:

∂r̄�1

∂L
� �Λ̄�L�, (3.62)

This equation can be trivially integrated. Applying Eq.(3.60) we find r̂�L�
and solving Eq.(3.29) we find t̂�L�. The analytical expressions of r̂�L� and
t̂�L� for the layer of an arbitrary length L are cumbersome. Let us consider
limiting case of a very long layer L Q lsf . From the elements of t̂ let
us calculate resistivity per spin channel ρ��, bulk spin asymmetry β and
spin flip length lsf . The resistivity of spin-channels is related to the total
transmission probability per spin:

ρ� �
1
L
� Rsh

T���L� � T���L�� (3.63)

ρ� �
1
L
� Rsh

T���L� � T���L�� . (3.64)

Using Eqs.(3.63,3.64) we find analogs of VF resistivity ρ�d and spin assymetry
βd in the deep diffusive limit. Spin flip length is related to the decay of the
polarization of the spin current that decays exponentially as e�L~ldsf and
eventually saturates toward its assymptotic value βd
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ρ�d � �ρ� � ρ��~4 (3.65)

βd �
ρ� � ρ�
ρ� � ρ�

(3.66)

1
ldsf

� �
1
L

log�T���L� � T���L�
T���L� � T���L� � βd� (3.67)

where Rsh now represents the Sharvin resistance for a system of unit surface
(typically Rsh � 0.5 fΩ.m2 for Cu). We express diffusive VF parameters in
terms of parameters in Eq.(3.30) for Λt,r in C-RMT and find the following
expressions:

1
ldsf

� 2
»

Γsf

»
Γ� � Γ� (3.68)

βd �
Γ� � Γ�

Γ� � Γ� � 1~ldsf (3.69)

ρ�d
Rsh

� �Γ� � Γ��~4. (3.70)

Now we compare diffusive values of ldsf , ρ
�

d, βd with ones found from the
mapping of the underlying C-RMT equations with VF. We find that βd
in Eq.(3.66) contains additional 1~lsf with respect to β in Eq.(3.40). We
note that the difference between β and βd become important only when
ρ�lsf P Rsh. It is known that polarization of spin current injected in a
normal layer N from a ferromagnetic layer F is less than the polarization of
spin current in the bulk of the ferromagnet F

β� �
β

1 � rsfN
~rsfF

, (3.71)

rsfN
� ρN lsf being the resistivity of a normal layer within spin flip length

and rsfF
� ρ�F lsf . If we plot the polarization of spin current in a layer of

Permalloy as a function of position inside the layer see FIG. 3.4 we find that
the polarization of spin current decreases towards the ends of the sample as
having some normal layer outside as in Eq.(3.71). In fact Eq.(3.50) defining
boundary conditions says that each spin channel of a magnetic conductor is
connected to leads through the half of the Sharvin resistance Rsh~2. The
decrease of the spin current polarization occurs due to the spin accumulation
near the contacts between the conductor and the leads. Using rsfN

�Rsh~4
and rsfF

� ρ�lsf we rewrite Eq.(3.71) in the following form:

β� �
β

1 �Rsh~�4ρ�lsf� . (3.72)
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Figure 3.4: Polarization of the spin current inside a Py layer of length 50
nm. In the middle of the sample polarization of the spin current is equal to
the β close to the ends it decreases due to the interface spin accumulation
to the value defined by Eq.(3.72).

Using Eq.(3.70) we find that β� � βd of Eq.(3.69). This means solution of
Eqs.(3.29,3.28) in LQ lsf takes into account boundary conditions Eq.(3.50).
If one defines VF parameters ρ�, β, lsf from the elements of t̂, r̂ using Eqs.
(3.65,3.66,3.67) one has to take into account the difference between VF β
and βd for L Q lsf . This example shows the importance of the theory for
the spin transport that takes into account Sharvin resistance Rsh.

3.7 Applications of CRMT to the description of
spin valves

We consider the valve depicted in FIG.(3.5a) and note ÑJA, ÑJN and ÑJB the
spin currents just before, in between and after the two magnetic layers FA
and FB. For non collinear magnetization, spin current is not conserved and
the spin torque on FA and FB is defined as,

τA � jA � jN , τB � jN � jB (3.73)

Let us start with a simple geometric construction that allows to get a phys-
ical picture for the torque in a rather general way. To do so, we need two
hypothesis: (i) the mixing transmission are small (it is the case for metallic
magnetic layers) so that JA and JB are parallel to the magnetization of FA
and FB respectively. (ii) the system is thin enough for spin-flip scattering
to be ignored in the active region so that ÑτA (ÑτB) is perpendicular to JA
(JB). The construction goes as follows, see FIG.(3.5b) and (c): first we
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Figure 3.5: (a) Schematic of a spin valve with two ferromagnetic layer FA
and FB whose magnetization makes an angle θ. (b) and (c): geometric
construction of the spin torque, see text. ÑJA, ÑJN and ÑJB are the spin currents
along the valve while ÑτA and ÑτB are the torque on the two magnetic layers.

plot JA and JB which make the same angle θ as the magnetization of the
respective magnetic layers. Then, we note that τtot � τA�τB � JA�JB does
not depend on the unknown JN and points from the tip of JB to the tip of
JA. The construction of the torque is then straightforward: the two vectorsÑτA and ÑτB are chosen such that they are perpendicular to their respective
layer and their sum goes from the tip of jB to the tip of JA. This simple
construction gives, in particular, the sign of the torque as a function of the
angle θ. We find that when, say, JB A JA the torque on the layer with
the highest polarization (FB) can become wavy [65, 41, 71], i.e. instead of
favoring the parallel or antiparallel configurations, the torque stabilizes (or
destabilizes depending of the direction of the current) a configuration with
a finite angle θ�. The critical angle θ� where the torque vanishes verifiesSJA~JB S � cos θ�. On the other hand, at small angle, one has the follow-
ing development SJA~JB S�θ� � 1 � ηθ2~2 � ... (Current conservation imposes
JA � JB at θ � 0 and the ratio is an even function of θ) so that “waviness” is
found when η A 1. In a symmetric structure η � 0, so that a finite asymmetry
is needed to enforce waviness.

Without spin-flip scattering, we find

η � �γBr�B � γAr�A � �γB � γA�r�Ar�B~Rsh�~�γBr�B � γAr�A� (3.74)

where the effective parameters γA and r�A include both the interface and
bulk properties of layer A. More generally, the crossover between normal
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Figure 3.6: a) Spin accumulation in the middle of a spin valve A �

Cu1000Co8Cu10Py8Cu5Au300 (thickness in nm) for different angle θ � 0
(circles),π~4, π~2, 3π~4 and π (squares). Symbols stand for VF calcula-
tions while lines correspond to C-RMT. b) torque τB�θ� (per total current
j) on the Py-layer of A for various Py-thickness LPy from 0.5nm (thick)
to 15nm (dashed). c) Stability angle θ� as a function of LPy for A (cir-
cles), B � Cu1000Co8Cu10PyLPy

Cu1000 with δ � 0 (squares) and B with
δCoCu � δCoPy � 0.25 (diamonds).
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and wavy can be discussed by looking at the small angle expression derived
by Fert et al [Eq.(5) in [36], we omit the ballistic corrections]. It can be
obtained by relating the spin accumulation in the spacer for θ P 1 to spin
current and spin accumulation at θ � 0, and then applying Eq.(3.55). It
reads,

dτB
dθ

Sθ�0 � �

Òh
e
�j� � j�

4
Sθ�0 �

µ� � µ�
2eRsh

Sθ�0� (3.75)

When, for instance, one crosses the assymetry border from JA A JB A 0 to
JB A JA A 0, the spin accumulation, proportional to the gradient of the spin
current, changes from negative to positive and the second term in Eq.(3.75)
becomes negative and begins to compensate the first one. The crossover
from normal to wavy occurs when, by a further increase of assymetry, the
spin accumulation term wins and reverse the sign of dτB~dθSθ�0 (see Gmitra
and Barnaś [41] for an extensive discussion of the normal to wavy crossover).

Typical examples of our numerical results are presented in FIG. (3.6)
for Co/Cu/Py samples in which the asymmetry comes from the short lsf
and large polarization and resistivity of Py. Starting from a small value of
LPy, an increase of the assymetry and finally a crossover to wavy (θ� x 0)
can be obtained by increasing LPy as shown in FIG. (3.6) (b) and (c). By
comparing the curves in samples with and without Au on the right of the
valve, one sees that the short lsf of Au in a layer close to Py tends to increase
the asymmetry and the waviness. On the other hand, interface spin-flip is
found to favour a normal spin torque. In the experimental results of Boulle
et al. [71] a wavy behaviour was found for Cu/Co/Cu/Py/Cu/Au structures
with equal thicknesses (8 nm) for Co and Py.
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Chapter 4

Effective quantum approach
to magnetic multilayers

4.1 Introduction

In this chapter we develop a different approach to spin transport, which
is based on the description of the system with an effective Hamiltonian
for itinerant electrons, and allows for numerical computations of transport
properties for systems with arbitrary shape and connected to an arbitrary
number of leads.

In Sec.(4.2) we define the Tight Binding (TB) Hamiltonian of the system.
According to this model, the conductor is represented as a network of sites,
each sites representing one atom or a group of atoms, and electrons jump
from one site to the other with some probability amplitude. An onsite
potential as well as a spin-orbit interaction are taken into account do describe
the resistance of the system due to impurities and spin flip phenomena.
These phenomena can be described with a few free parameters, namely
a ”disorder” for majority and minority electrons, spin-orbit coupling and
hopping between sites.

In Sec.(4.3) we show how to express hat matrices using Green’s functions,
via the Fisher-Lee formula [38].

In Sec. (4.4) we show numerical simulations of multilayers within the TB
model. Computation of spin current and spin torque for different structures
are shown. We have compared calculations performed with TB model and
CRMT, and we have found a good agreement between these calculations,
in the regime where Green’s function formalism and RMT are equivalent
(Ohmic conductors).

CRMT and TB approaches are different in performances (CRMT is
faster) and in the range of physical phenomena they can describe (CRMT
is purely one dimensional and semiclassical, while TB is fully three dimen-
sional and can describe purely quantum systems, such as tunnel junctions or

65
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semiconductors). In this chapter we show how to combine these approaches
to have a versatile and fast tool to describe quantum transport inside a
great variety of systems. The idea behind what we have called a multiscale
approach is simple: a system can be split into subparts. Each subpart can
be described using CRMT or TB model, according to the physics one want
to capture, and in order to minimize computational time. The outputs of
CRMT and TB calculations will be in the end hat matrices of the subblocks
of the system, that can be summed up to reproduce the transport properties
of the system as a whole, according to the sum rule described in Sec.(2.4.1)

4.2 Effective tight binding Hamiltonian approach
to spin transport

In this section, we take a completely different approach from the CRMT
theory described in the previous chapter, and derive a full quantum me-
chanical approach. Such an approach is a priori very tempting as it allows
to deal with many different systems (metals, tunnel junctions, magnetic
semi-conductors...) within one unified framework and using only few ap-
proximations. However, for practical calculations, such a direct approach
has a prohibitive numerical cost so that only very small systems can be
studied, even for the minimum model that we will introduce below. Hence,
instead of a full quantum general treatment, we focus on two goals: (i) we
want to study the validity of CRMT theory as well as deviations coming
from quantum effects. (ii) Certain systems cannot be treated accurately
within CRMT. It is the case for instance of tunneling junctions which are
intrinsically quantum (CRMT being a spin extension of Ohm law, it cannot
describe an exponential suppression of the resistance). For those systems,
we want to provide a purely quantum description of the pieces that require it
(for instance the oxide layers) to obtain effective boundary conditions while
the rest of the system is described by CRMT. This is the way we implement
the multiscale description of our system.

The starting point of our quantum approach is the choice of the Hamil-
tonian of the problem. Here we consider a tight binding (TB) Hamiltonian
parametrized to reproduce the main bulk and interface properties of a few
diffusive magnetic and non magnetic metals. TB approximation is concep-
tually simple and suitable for numerical simulations, since it is intrinsically
discrete. There are several way one can derive a TB Hamiltonian for mag-
netic multilayers. For instance, one can use multi-orbital (s, p, d...) models
where each site of the TB model corresponds to an atom and where all the
on site energies and hopping amplitudes are parametrized to reproduce ab-
initio calculations. When one is interested in transport properties however,
one is not interested in a model that reproduces the entire band structure of
a material, but only what happens around the Fermi level. Here, we take an
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Figure 4.1: A cartoon representing a conductor described by the TB model,
with hopping tij , disorder Vi and intersite distances by and bz. Hopping
can have an additional term tso that mix spin up and down channels and
describes spin-orbit interaction. The system is connected to two leads.

even more limited approach: we construct our model such that it correctly
reproduces the five characteristic length scales that were introduced in the
previous chapters (mean free path for majority (l�) and minority (l�) elec-
trons, spin-flip diffusion length (lsf ), transverse penetration length (lÙ) and
Larmor precession length (lL)). This quantum model can hence be viewed as
an effective approach valid for diffusive metals, but many features described
below do not depend on the specific details of the model. The simulations
shown in this chapter have been performed using the KNIT package [53, 80].

We discretize the inner space of a 3D conductor by introducing a cubic
lattice of intersite distances b�bx, by, bz� [See FIG.(4.1)], and we consider
electronic wave functions localized in the nodes of the lattice. Each node
may represent one atom, or a group of atoms. The general TB Hamiltonian
for electrons in a 3D lattice reads.

H � �Q
@i,jA

c�i tijcj � Q
@i,jA

c�i t
so
ij cj �Q

i

c�iVici (4.1)

Here the summation is taken over all the nearest neighbour sites @ i, j A, and�cσ�i , cσi � are the usual creation and annihilation operators for the electrons.
The indexes i, j stand for position in the lattice, while the index σ �� ~ �
refers to spin.

The first term of the Hamiltonian is the matrix

tij � � tÕ � tÙ 0
0 tÕ � tÙ

� , (4.2)

that represents the amplitude for an electron with spin up or down to jump
on neighbour sites on the lattice.This matrix depends on the material and
fixes the band structure. The coefficients tÕ and tÙ are the hopping along
the multilayer growth direction x and the transverse directions �y, z� cor-
respondingly. Allowing for different tÕ and tÙ is advantageous in the sim-
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ulations: it allows for different discretization steps in the x direction and
y, z plane. Also, by taking tÙ significantly smaller than tÕ, one ensures that
the number of propagating channels is maximum and constant over a large
window of energy, hence reducing mesoscopic effects. On the other hand,
the model acquires some intrinsic anisotropy not present in the original ma-
terials, so that the physical meaning of the calculations is doubtful outside
the quasi-one dimensional geometry considered here

The second term in the Hamiltonian represents the scattering potential
for electrons with different spins:

Vi � vi � W � 0
0 W � � . (4.3)

Electrons with different spin σ feel the same profile of the disorder defined by
random numbers vi distributed according to the uniform distribution with
vi > ��0.5,0.5�, but with different strength W σ. A different resistance for up
and down spin can be simulated also assigning a different hopping for the
two spin channels.

Since the system we study is diffusive, its resistance is proportional to
the inverse of the elastic mean free time τel of the electrons [26]. According
to the Fermi golden rule, this is related to the onsite potential via

1
τel

�
2πÒh S`SkSViSk�SeS2ν�Ef�, (4.4)

where ν�Ef� is the density of states per site at the Fermi level. Here
we consider Vi uniformly distributed in the interval ��W ~2;W ~2�, so thatS`kSViSk�eS2 �W 2~12 [2]. The resistance is though proportional to W 2.

The last term tsoij introduces some spin-orbit interaction responsible for
a finite spin-flip scattering length. Its spin structure respects time-reversal
symmetry and is given by,

tsoij �Wso � ξij �η�ij
ηij ξ�ij

� , (4.5)

where the elements of the matrix are random complex numbers distributed
according to the gaussian distribution, with η2

ij � ξ
2
ij � 1. Different pairs of

nearest neighbours have independent values of η2
ij and ξ2

ij . Wso represent
the strength of spin orbit interaction. The parameters tσÕ , tσÙ, W �,� and W so

which define the TB-model allow to tune the different characteristic lenghs
that have been introduced before.

In order to complete the model, the above bulk model has to be extended
to describe interfaces properties. Interfaces are represented as hopping ele-
ments that link the sites of two different materials. In this view, an interface
acts as a potential barrier between two adjacent materials, and does not con-
tain any disorder or spin orbit interaction. The Hamiltonian that describes
interfaces is thus simply given by
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Hint � �Q
i,j

c�i t
int
ij cj (4.6)

where the indexes i, j belong to the sites of the adjacent materials, and the
matrix tintij is given by

tintij � � t� 0
0 t�

� , (4.7)

4.2.1 Dispersion relation of the TB Hamiltonian

We consider first the one dimensional case, the generalization to a three
diimensional conductor being straightforward. Suppose that one has a uni-
form 1D wire with a constant potential V , then the eigenfunctions are plane
waves ψk�x� � eikx with the parabolic dispersion relation E � V � Òh2k2~2m.
For a discrete wire with lattice constant b and lattice sites indexed by j, the
Schroedinger equation is the finite different equation [26]

Eψj � �V � 2t�ψj � tψj�1 � tψj�1 (4.8)

which is satisfied by a solution of the form ψj � e
ikxj , xj � jb. Substituting

this solutions into Eq.(4.8) gives the dispersion relation

E � V � 2t�1 � cos�kb��, (4.9)

from which one obtains the electron velocity v �
∂E
∂k � 2bt sin�kb�. The

generalization to the 3D case reads

E�kx, ky, kz� � 2�tÕ cos�kxbx� � tÙ�cos�kyby� � cos�kzbz���, (4.10)

which defines one conduction band of width 6t. We have introduced two
different hoppings tSS, tÙ for longitudinal (x) and transverse (y, z) directions
correspondingly. The reason for this choice shall be specified soon.

In our simulations we have considered a parallelepiped-shaped system,
with L sites in the x direction, and M sites in the y and z directions.
Electron current propagates between the leads in the x direction.

Since the electronic wavefunctions vanish outside the system, the trans-
verse wave vectors ky and kz are quantized, and may assume only the values
nyπ~�My � 1�, and nzπ~�Mz � 1� for the y and z directions correspondingly
with ny (nz) entire numbers between 1 and My (Mz). The modes corre-
sponding to real value of Ñk determined by Eq. (4.10) are called propagative
channels, and are exactly the same as the channels of the scattering theory
(see chapter 3).
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4.2.2 Length-scales, energy and hopping

Eq. (4.10) shows that, at fixed energy E, if the hopping in the longitudinal
and transverse directions are the same, not all the channels are open, while
setting tÕ between 1 and 3 and tÙ � 0.4, allows one to open all the My�Mz

modes at E�0 (for this reason all our simulations have been performed at
zero energy).

Due to computational difficulties, if we use a model in which one lat-
tice site corresponds to one atom, we would be able to make numerical
calculations on samples with size of 10-15 nm. In our simulations it is not
necessary to consider one site as one atom. The lattice constant should be
smaller than the relevant length scales of the problem: the elastic mean free
path for majority and minority spins lσ, and the spin flip length lsf .

For the materials widely used in experiments these length are of the order
of 10-100 nm [44, 109]. Besides,the magnetization of a 3D multilayer system
varies on the length scale of about 2-5 nm [81], and the discretization length
of our systems should be smaller than this quantity. In all the simulations
we have taken a lattice constant b=1 nm. This allows us to make numerical
calculations on experimentally relevant samples, with sizes of about 200 nm.

4.3 Green’s function and hat matrices

The typical output of TB calculations is given in term of the retarded Green’s
function G of the system. In this short section we show that G is related by
the Fisher-Lee formula [38] to the scattering matrix. In particular, we are
going to derive an explicit formula for the hat matrices described in section
2.4.2, in terms of the Green’s functions of the system. The Fischer-Lee
formula reads

tnmση �
º
vnvmQ

ij

χn�σiGσi,ηjχ
m
ηj , (4.11)

rnmση � �δnm � i
º
vnvmQ

ij

χn�σiGσi,ηjχ
m
ηj . (4.12)

where tnmση and rnmση are transmission and reflection amplitudes between the
spin state η in channel m and the spin state σ in channel n; vm (vn) are the
velocities of an electron in channels m (n); χηmi is the value of the transverse
wave function of the m-th mode in the i-th site with spin η; Gσi,ηj is the
value of the retarded Green function between the spin state η at the j-th
site and spin state σ at the i-th site. The summation is taken over interface
sites �i, j� which are on the border between the system and a lead. Note
that in general the size of the transmission/reflection matrices 2Nch � 2Nch

is smaller than the total number of transverse sites, but in our numerical
simulations we will always take the transverse and longitudinal hopping in
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a way that Nch is equal to the number of transverse sites My�Mz. The
imaginary part of the self energy Γ, due to the presence of the leads, reads

Γσηij �Q
n

vnχ
σ
niχ

η�
nj . (4.13)

In a normal metallic lead an electron wave function has no spin dependence
thus Γ has no spin degree of freedom: Γij � Pn vnχni χn�j

In order to calculate t̂ and r̂ for a system we use Eqs.(4.11) and (4.12).
An arbitrary element of t̂ is given by:

Tσ�ση�η �
1
N

TrNch �ΓGσ�σΓG�
η�η� . (4.14)

Here the trace is taken over the transverse sites, Nch is total number of
channels in a lead, and Gσ�σ is the Green function matrix with elements
Gσ�i,σj . In the same way we obtain elements of r̂:

Rσ�ση�η � δσσ�δηη� �
i

N
δσσ�Tr �ΓG�

η�η� �
�
i

N
δηη�Tr �ΓGσ�σ� � 1

N
Tr �ΓGσ�σΓG�

η�η� (4.15)

These results show that Green function formalism and random matrix
theory describe quantum transport in an equivalent way (for Ohmic con-
ductors). Once one has computed the Green’s function of a system, one can
calculate the scattering matrix of the system, and obtain conductance and
spin current in terms of hat matrices, as shown in Sec.(2.4.2) and (2.4.3).

4.4 Numerical study of multilayers within the TB
model

Numerical simulations using the KNIT package [53, 80] are performed in
the following way: first we create a network of sites with a given shape and
connected to some leads, then we define the TB Hamiltonian of the system,
and we compute the corresponding retarded Green’s function using KNIT.
Finally, conductance is calculated from hat matrices using the Fisher-Lee
relation described in the previous section, and spin current is calculated
using the fomulas described in section (2.5.2).

The KNIT package allows us to compute the properties of bulk, multi-
layers, and interfaces alone, and it can be used to describe quantum system
for which CRMT is not adequate (such as tunnelling of electrons through an
insulator separating two ferromagnets). It is also an excellent way to test
the addition law of hat matrices defined in Sec.(2.4.1), and CRMT itself
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(since it comes from an application of the addition law). The standard way
to test the addition law of hat matrices will be the following: first we use
KNIT to compute the hat matrix of a given system (i.e. a FNF multilayer),
and we get conductance and spin torque, then we divide the system into
subblocks and we use KNIT to compute the hat matrices of each subblock.
If we sum up these matrices using the addition law [Sec.(2.4.1)] we should
obtain the spin current in both cases.

CRMT can be used to map the parameters of the TB model tσÕ,Ù, W �,�,
W so and b onto Valet-Fert parameters ρ�, β, lsf and lÙ, lmx for a given ma-
terial. Both CRMT and KNIT have advantages and drawbacks: KNIT is
more flexible and describes fully quantum effects in three dymensional sys-
tems, but is slow, the computation time scaling as My�MZ ; on the other
hand CRMT is fast (computation time proportional to the logarithm of the
length of the system), but is semiclassical and completely one dimensional.

A real avantage in simulation performances can be achieved if both
CRMT and KNIT work together. in what we use to call a multiscale ap-
proach to spin transport. The idea is the following: we use CRMT to
compute the parts of the system that can be treated in a semiclassical way,
while KNIT is used to compute the fully quantum parts of the system (tun-
nel junctions etc.). Since both KNIT and CRMT have a hat matrix as
output, the hat matrix of the system as a whole is obtained additioning the
hat matrices of each subblock according to the sum law described in section
(2.4.1).

4.4.1 Numerical study of the bulk

Let us perform a numerical study of our TB model starting from the prop-
erties of the bulk. The quantity of interest are the intrinsic total resistance
RσI for spin σ,

RσI
Rsh

�
1

T�σ � T�σ
� 1, (4.16)

which is related to the transmission matrix t̂ of the system via the Sharvin
resistance Rsh; and the polarization of the current transmitted P σI upon
sending polarized electrons along σ ��, � direction:

P σI �
T�σ � T�σ
T�σ � T�σ

, (4.17)

the mixing transmission Tmx and the spin-flip probability T��. FIG.(4.2) and
FIG.(4.3) show these quantities for two sets of parameters that correspond
respectively to a normal (Au) and a magnetic (Py) material as a function
of the thickness L of the sample. Together with the quantum calculations
(symbols) we also plot the results of the CRMT calculations (lines). The
latter is equivalent for this collinear case to the Valet Fert Ohmic theory.
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Figure 4.2: Comparison between TB (symbols) and CRMT (dashed lines)
calculations for transport properties of a normal metal as a function of the
thickness L of the sample. The parameters have been chosen to reproduce
the properties of gold (Au). Left panel: intrinsic resistance R�

I�L� � R�
I�L�

in unit of the Sharvin resistance. Right upper panel: P �
I �L� (up trian-

gles) and P �
I �L� (down triangles). Right lower panel: spin flip transmission

probability T���L�. These results have been averaged over 6 samples with
different realizations of the disorder.

We find that our TB effective model reproduces extremely well the semi-
classical results: the intrinsic resistance is indeed Ohmic (RσI � ρσL) and
the polarization reaches its asymptotic value βd after an exponential decay
controlled by lsf . Exact CRMT expressions for P σI �L� are cumbersome but
amount with good precision to

P σI �L� � βd � �βd � 1�e�L~lsf (4.18)

which is well verified by the TB quantum data. For magnetic material,
Tmx is also found to decay exponentially with a characteristic length of few
nanometers, as expected. Such an agreement between the TB model and
CRMT allows to use the experimentally measured CRMT (Valet Fert) pa-
rameters to tabulate the TB model. The corresponding parameters can be
found in Table 4.4.1. We note that the polarization saturates towards βd
which differs slightly from the Valet-Fert definition of, due to the depolariz-
ing role of the Sharvin resistances [Sec.(3.6)].
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Figure 4.3: Comparison between TB (symbols) and CRMT (dashed lines)
calculations for transport properties of a magnetic metal as a function of
the thickness L of the sample. The parameters have been chosen to repro-
duce the properties of permalloy (Py). Left upper panel: intrinsic resistance
R�
I�L� (circles) and R�

I�L� (squares) in unit of the Sharvin resistance. Left
lower: mixing transmission Tmx�L�. Right upper panel: P �

I �L� (up trian-
gles) and P �

I �L� (down triangles). Right lower panel: spin flip transmission
probability T���L�. These results have been averaged over 6 samples with
different realizations of the disorder.

Material ρ� β 1~lsf W� W� Wso tÕ� tÕ� tÙ
Cu 5 0 0.002 0.45 0.45 0.0055 1 1 0.4
Au 20 0 0.033 0.7 0.7 0.042 1 1 0.4
Co 75 0.46 0.017 4.1 2.05 0.022 3 1 0.4
Py 291 0.76 0.182 3 4.6 0.11 2 1 0.4

Table 4.1: Bulk TB parameters for a few metals. Valet Fert resistivity ρ�

is measured in units 10�9Ωm and spin-flip length in nm. The discretization
length bz is equal to 1nm. These parameters have been obtained averaging
the calculation of the resistance over 6 samples with different realizations of
the disorder.
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Figure 4.4: Schematic of two perfect conductors glued toghether with the
hopping element tSS,ij , which connects sites i and j belonging to the left and
right conductor correspondingly, that have the same y and z coordinates.

Interface r�b �10�15Ωm2� γ t� t�
AuSCo 0.5 0.77 1.257 2.2
CuSCo 0.51 0.77 1.253 2.21
CuSPy 0.5 0.7 0.99 2.17
AuSPy 0.5 0.77 1.257 2.2
AuSCu 0.5 0 1.86 1.86

Table 4.2: TB parameters for a few Normal-Ferromagnetic interfaces. We
find parameters of TB model using CRMT parameters for the interfaces
Eq.(3.43). The discretization length bz is equal to 1nm.

4.4.2 Interface properties of the TB model

A similar study can be performed for interfaces properties. In this case, the
quantity of interest is the interface resistance Rσint for spin σ,

Rσint
Rsh

�
1
Tσσ

� 1 (4.19)

where Tσσ represents the transmission probability of the interface. An inter-
face can be simulated as follows: we build two perfectly conducting systems
and we ”glue” them together via a hopping t���� [see FIG.(4.4)]. In this
way the resistance of the system is determined only by the hopping, which
describes the properties of the interface.

The resistance has been calculated as a function of t���� and fitted with
simple functions[FIG.(4.5)]. Knowing how the interface resistance varies as
a function of the hopping allows us to use the Valet Fert experimentally
measured parameters to tabulate the TB model for the interfaces, as we
have done with the bulk. The TB parameters calculated for some materials
are shown in Table 4.4.2.
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Figure 4.5: Resistance of the interface as a function of the hopping t between
two adjacent materials, expressed in units of Sharvin resistance. The inter-
face resistance is different if the adjacent materials have different hopping.
Red squares represent the interface resistance for ’up’ spin between two ma-
terials with tÕ� � 3 and tÕ� � 1 correspondingly. the points fit the function
R� � 0.09 � �t2 � 3�2~t2. Green diamonds represent the interface resistance
for ’up’ spin between two materials with tÕ� � 2 and tÕ� � 1 correspondingly.
the points fit the function R� � 0.14��t2�2�2~t2. Black circles represent the
interface resistance for ’up’ or ’down’ spin between two materials with the
same hopping tÕ���� � 1. the points fit the function R���� � 0.29��t2�1�2~t2.
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Figure 4.6: Comparison between TB (symbols) and CRMT (dashed
lines) calculations for the angular dependence of the spin torque τ ex-
erted on the ferromagnet at the right hand side of the stack. Left
panel: Cu5Py20Cu5Py20Cu5 multilayer (length in nm). Right panel:
Cu159Co8Cu10Py8Cu4 which shows a wavy behaviour.

4.4.3 Comparaison between CRMT and TB for a spin valve.

Now that our model is fully tabulated and that we have checked that all
individual pieces (bulk and interfaces) agree with CRMT theory, we can go
ahead and perform quantum calculation for entire spin valves. The results
are presented in FIG.(4.6) where we calculate the spin torque τ (defined
as the difference of spin current on the two sides of the free ferromagnet
[88, 103]) as a function of the angle θ between the magnetization of the
two magnetic layers. Two different stacks are presented (lengths in nm):
Cu5Py20Cu5Py20Cu5 (left panel) and Cu159Co8Cu10Py8Cu4 (right panel).
The first one is symmetric and shows a usual τ � sin θ torque. The CRMT
and TB calculations are in close agreement. For the second stack which
is assymetric, we find a good agreement of the torques, except at small
angle where the the TB calculation shows a strong deviatin from the sin θ
behaviour. As a result, the TB torque vanishes for a finite value θ � θ�

and the corresponding structure is wavy [See Sec.(3.7)]. The corresponding
CRMT calculation is close, but below, to the wavy instability threshold.
This small discrepancy already indicates a weakness of the effective TB
approach as its physics is fairly sensitive to the choice of TB parameters.

To proceed further, we consider the symmetric Cu5Py20Cu5Py20�θ�Cu5

stack and compute the spin current inside the sample as a function of the
position x along the stack. Once again, we observe a very good agree-
ment between the two approaches. However, this new calculation points to
another weakness of the TB approach: the error bars in the TB calcula-
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Figure 4.7: Comparison between TB (symbols) and C-RMT (dashed
lines) calculations for the polarization of the spin current inside the
Cu5Py20Cu5Py20�θ�Cu5 stack. Magnetization of the second Py layer is
rotated around in XZ plane, while the first one point in the Z direction.
Left, middle and right panels stand for θ � 0, π~2 and π respectively. Upper
(Lower) panels shows the spatial x dependence of the spin current jx � Jx~I
(jz � Jz~I) along the X (Z) direction.

tion correspond to the mesoscopic fluctuations upon averaging on different
samples (typically 10 in those calculations). Real spin valves nano pillars
typically have Nch � 104 channels so that mesoscopic fluctuations � 1~Nch

are negligeables. Our TB calculations are performed with typically 50� 100
channels, hence do show significant sample to sample fluctuations so that
quantitative correspondance with CRMT calculations are only obtained af-
ter averaging over different disorder configurations.

To conclude this section, we have found an extremely good agreement
between the TB approach and the CRMT approach even in regimes where
it was not really expected: the derivation of CRMT assumes that the differ-
ent channels are ergodically mixed, which is only achieved when the typical
thickness of the layers is large compared to their mean free path. In that
sense, the present TB results can be viewed as a proof of the robustness of
the CRMT approach as good agreement is also obtained in fairly transparent
regimes. On the other hand, as the TB calculations are numerically much
more demending than CRMT, practical calculations are best performed with
the latter approach which do not suffer from mesoscopic fluctuations. How-
ever, for certain systems (such as tunneling barriers) CRMT alone fails.
In these cases, a multiscale combination of both approaches will be very
effective.



Chapter 5

Magnetization Dynamics

5.1 Introduction

In the next two chapters we make a thorough attempt to perform SW spec-
troscopy inside a normally magnetized nano-pillar composed by the stack
of two dynamically coupled magnetic disks. Its scope encompasses devices
allowing transfer of spin angular momentum or electrical charge between
the two magnetic layers by applying a current across the nano-pillar. Our
main objective has been to provide a comprehensive identification of the SW
eigen-modes inside a spin-transfer nano-oscillator but more generally to pro-
vide an experimental method to study the magnetization dynamics in spin-
valve structures, where one expects the phenomenological Landau-Lifschitz-
Gilbert equation to be complemented by the additional Slonczewski-Berger
term. By using the CRMT model developed in the previous chapters and
introducing it inside a micromagnetic simulation code, this allows to make
simulations, where the 3D texturing of the transport and magnetization
dynamics is taken on an equal footing.

From the experimental side, our study rely on independent method of de-
tecting the magnetic resonance inside a spin-valve nanostructure. Our main
tool has been a Magnetic Resonance Force Microscope (MRFM) [112, 101,
48, 23, 60], which detects all the excited SW modes independently of their
phase [29, 70]. It has allowed us to perform SW spectroscopy in the exact
normal configuration, which is the simplest possible geometry for a STNO
as it coincides with the universal oscillator model [85]. It also illustrates the
performance of this novel technique [32, 74, 75] to study the dynamics of
small buried objects. The review actually permits a direct comparison of its
sensitivity compared to voltage-FMR, where one detects the voltage drop
produced across the STNO by SW excitations. It shows that the MRFM
sensitivity allows the detection of precession angle as low as 1X in the thin
layer, which is about the sensitivity achieved here by rectification effects.

In this chapter we shall describe the equation of motion of the magne-
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tization, and the different terms that can be included in such equation to
describe the effect of an external perturbation of the magnetization.

Sec.(5.2) gives a brief introduction to ferromagnets and to the Landau-
Lifshitz-Gilbert (LLG) equation [62, 40], which describes the dynamics of
the magnetization in ferromagnets. The terms of this equation that account
for external perturbations of the magnetization are described in Sec.(5.3).
In particular, we describe how to introduce the effect of rf field, rf current
and dc current in the equation of motion. In the previous chapters we
have seen how to calculate spin torque in a general way, here we see how
spin torque acts on the magnetization, according to the Slonczewski-Berger
model [88, 9].

Sec.(5.4) is devoted to the description of spin wave modes inside a per-
pendicularly magnetized cylindrical nanopillar. An analytical description
allows to classify SW modes in this simple geometry. Spin torque effect
and spin wave classification are the cornerstone on which next chapter is
built: starting from this description, we are going to define selection rules
for spin wave modes, based on the symmetry of the different excitations.
Experiment and simulations of chapter 6 are devoted to the understanding
of those rules.

5.2 The Landau-Lifshitz-Gilbert (LLG) equation

Ferromagnets are substances that contain elementary magnetic moments,
which are spontaneusly ordered below a certain temperature called Curie
Temperature TC . The elementary magnetic moments in ferromagnets are
due mainly to the electronic spins, and exchange interaction is responsible for
the alignment of the spins in the same direction. This alignment may create
a macrospopic magnetic field. Because of dipolar interaction, a magnetic
material is usually divided into regions, called magnetic domains, where
the magnetic moments point in the same direction. Usually the direction
of the magnetic moments inside the domain varies from one domain to the
other, so that the macroscopic magnetic stray field may vanish. A schematic
of magnetic ordering and magnetic domains in a ferromagnet is shown in
FIG.(5.1).

The local elementary magnetic moments MS are associated to the spin
operator S via the relation Ms � ��gµB~Òh�S, where g is the Lande factor,
whose value for a free electron is close to 2, µB � eÒh~2me is the Bohr mag-
neton expressed in S.I. units, me is the electron mass, while the minus sign
shows that magnetic moment and spin are antiparallel.

The collective precession of spins inside a ferromagnet involves a huge
number of electrons in a small volume, and can be naturally described in-
troducing a continuous magnetization vector field ÑM�r, t�, instead of taking
into account the individual atomic moments. The magnetization vector is
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Figure 5.1: (a) Alignment of the localised spins of electron in a ferromag-
net, due to exchange interaction. (b) Schematic of a ferromagnet divided
in magnetic domains. (c) Spontaneus magnetization as a function of tem-
perature. The magnetization decreases as a function of temperature, and
vanishes at the Curie temperature TC . Our experiments are performed at
room temperature, where the saturation magnetization MRT is smaller than
a zero temperature.

defined considering an assembly of magnetic moments M averaged over a
small volume ∆V of the sample:

M �
P∆V M

∆V
. (5.1)

In this definition, an assembly of magnetic moments pointing in the same
direction is substituted by their spatial average M . This makes sense at
length scales of the exchange length, i.e. the length at which exchange
energy is significant (around 5 nm in Py), so that the orientation of magnetic
moments is uniform .

At equilibrium, the magnetization is oriented along the effective field
Heff , given by the interplay of all the forces acting on the individual atomic
moments. At equilibrium, the effective field Heff is defined as the functional
derivative δHm~δM of the magnetic energy Hm with respect to the magne-
tization M . When such equilibrium is broken by an external perturbation
(like an applied field or a spin polarized current), the magnetization evolves
toward a new equilibrium position, that takes into account the contributions
of the perturbation and of the different energies inside the ferromagnet. The
effective field is a local quantity, defined on same lengthscale as the magne-
tization. The magnetic energy contains the following contributions:

1. Exchange energy Eex � 2A
M2 �Ñ© �M�2 (A being the exchange constant)

which favors the alignment of the magnetic moments, and depends on
the spatial inhomogeneity of the magnetization.

2. Zeeman energy EZ � �M �Hext, which represents the interaction of
the magnetization with the external field Hext, and depend on the
angle between these vectors.
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3. Demagnetizing energy Ed � 2π�NxM
2
x � NyM

2
y � NzM

2
z �, which is a

long range energy associated to the dipolar interaction between the
individual magnetic moments, and tends to align them antiparallel to
one another. This energy is written using the demagnetization factors�Nx,Ny,Nz�, which depend on the shape of the sample.

4. Magnetocrystalline anisotropy energy (which in case of uniaxial anisotropy
reads Ek � K1 sin2 θ �K2 sin4 θ � ...), the energy which facilitates the
alignment of the magnetization with certain directions of the chrystal
network, called easy magnetization axes.

5. Magnetoelastic energy, which tends to align the direction of the mag-
netization along the axis of deformation constraints and the surface
energy, which introduces an anisotropy at the interface between mag-
netizd layers.

The reader can find a detailed description of the different energy contribu-
tions in Ref.[5].

When a uniform external magnetic field Hext is applied to the sam-
ple, the magnetic moments of the various domains tend to align with the
field, adding together to create a non vanishing average magnetization. The
stronger the external magnetic field, the more the domains align, so that`Me grows until saturation is attained: an increase of Hext cannot in-
crease `Me further. The norm of the space average magnetization `Me
in a saturated ferromagnet is called saturation magnetization. The space
averaged magnetization as a function of a (uniform and time independent)
magnetic field is shown in the hysteretic curve FIG.(5.2)b. The saturation
magnetization depends strongly on the temperature of the sample. At zero
temperature, a ferromagnet reaches the state of lowest energy, in which all
the magnetic moments point in the same direction. As the temperature
increases, more and more spins deviate randomly from the common direc-
tion, increasing the internal energy and reducing the net magnetization, so
that the saturation magnetization decreases with temperature. The satu-
ration magnetization as a function of temperature in shown in FIG.(5.1).
In this work we shall always consider the saturation magnetization at room
termperature.

The local equation of motion of the magnetization in a ferromagnet was
first proposed by Landau and Lifshitz in 1935 [62]. This equation describes
the precession of the magnetization around the effective field at the length-
scale of exchange length, where the saturation magnetizationM is a constant
of motion. The derivation shown below starts considering the magnetic mo-
ments of the ferromagnet as a sum of classical tops. Let us consider an
assembly of tops contained in a small volume V (the order of magnitude of
exchange length), with angular momenta J and magnetic moments M. In
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Figure 5.2: Magnetization as a function of field and temperature. (a)
Schematic of the magnetization as a function of applied field for different
temperatures T1 @ T2 @ T3. At high fields the magnetization saturates to a
value that depends on the temperature. Due to thermal disorder, the higher
is the temperature, the lower is the value of the saturation magnetization.
(b) First magnetization graph (solid line) and hysteresis loop (dashed line)
that show the magnetization as a function of applied field. The arrows
show the direction in which the hysteretic loop is ranged. When the field
is brought back to zero, the material has a remanent magnetization �MR.
Two critical values Hc corresponds to the values of the field that annihilate
the magnetization.

such a volume the tops precess uniformly. The equation of motion of each
top can be written as

Òh∂J
∂t

�M �Heff , (5.2)

To make appear the magnetization, it is sufficient to multiply Eq.(5.2) by
the number of tops per unit volume V :

∂M

∂t
� �γM �Heff , (5.3)

This term, called adiabatic torque, can be derived from quantum mechanics,
and does not allow for energy dissipation. Solving the above ordinary differ-
ential equation leads for confined geometries to a series of discrete solutions.
The different eigen-values ω satisfy the equality ω � γHeff, where ω~�2π�
represents the Larmor precession frequency and γ is the gyromagnetic ratio.
In order to take into account dissipation, Landau and Lifshitz proposed to
include in the equation of motion a phenomenological term:

∂M

∂t
� �γM �Heff �

γαLLG
M

M � �M �Heff� (5.4)

where αLLG is a dimensionless dissipation parameter. Gilbert [40] proposed
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Figure 5.3: Schematic of the dynamics of the magnetization vector M . The
adiabatic torque (or Larmor term) L � �γM �Heff is responsible for steady
precession of M around Heff , while the damping D � αM � ∂M~∂t, is
a viscous friction that tends to align M with Heff . The motion of the
magnetization is a spiral around the effective field.

an equivalent form of the equation of motion, where the damping term is
described as a viscous force:

∂M

∂t
� �γM �Heff �

alphaLLG
M

M �
∂M

∂t
(5.5)

In general we shall refer to Eqs.(5.4,5.5) as Landau-Lifshitz-Gilbert (LLG)
equation. This equations predict that the magnetization precesses with a
spiral around the effective field, and eventually aligns with it, with a char-
acteristic time of �αLLGγHeff��1 [see FIG.(5.3]. Developing the double cross
product of the dissipation term of Eq.(5.4) one obtains

γαLLG
M

M � �M �Heff� � γαLLG
M

�M�Heff �M� �HeffM
2�, (5.6)

which shows that the dissipation is equivalent to the relaxation ofM towards
Heff with a caracteristic rate 1~τ � γαLLGHeff .

The dimensionless damping ratio αLLG represents the dissipation pro-
cesses (coupling between magnons, phonons, electrons...) and governs the
rate of approach to equilibrium.

The theoretical description of the magnetization dynamics of large sam-
ples is done through micromagnetic simulations, where the sample is mod-
eled through a lattice of sites, each site representing a magnetic domain with
uniform magnetization. In this picture, the magnetization in each site obeys
the LLG equation, and the sites are coupled through exchange interaction.
The quantity of interest in these simulations is the space-averaged magneti-
zation, that take into account the contribution of each site. This description
is coherent with the experimental technique described in the following chap-
ter, where only the space-averaged magnetization can be detected.
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Figure 5.4: Cartoon of the multilayer studied in this work. Two permalloy
layers with different thickness (thin=4 nm, thick=15 nm), and with a radius
R=125 nm are separated by a Cu spacer of 10 nm, and connected to two
contacts. An homogeneus field applied along the axis of the cylinder satu-
rates the magnetization of both layers. The dynamics of the magnetization
can be excited by various means (dc or rf current, rf field).

5.3 Excitation of the magnetization dynamics

5.3.1 Dynamics inside a normally magnetized system

Excitations that compensate the damping and lead to stable precession of
the magnetization can be described adding supplementary terms to the LLG
equation. In particular, we shall describe the role of spin torque in the
excitation of the dynamics. We focus on the dynamics inside a multilayer
like the one shown in FIG.(5.4), which corresponds to the system that we
shall study through experiments and simulations in the next chapter.

In such a system, the dynamics of the magnetization occurs inside thin
and thick layer (labeled layer 1 and 2), with magnetization M1 and M2

correspondingly, and both layers are saturated by an external field parallel
to the the axis of the cylinder êz. In this system, steady precession is circular
at fixed angle θ, and the equilibrium axis corresponds to the direction of the
applied fieldHext (in general this is not the case). The magnetization can be
divided into a static (longitudinal) component and an oscillating (transverse)
component. This subdivision allows to describe the energy absorbed and
released by the system in terms of changes of the longitudinal component.

The LLG equation of a ferromagnetic layer, in presence of an external
periodic excitation field f , can be written as

�1
γ
∂tM �M �Heff �M � d �M � f exp�iωt . (5.7)
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The second term and third torque terms of Eq.(5.7) describe two energy
non-conservative process which are respectively the dissipative field d and
the external periodic driving field f . An oscillating forced motion at one
of the eigen-frequency of the system, leads to a steady state precession of
M , whose oscillating component expresses the equilibrium between f � d,
where

d � �αLLG �êM �Heff� , (5.8)

We have introduced here the notation M � M êM , with M the norm of
the magnetization (a constant of the motion) and êM a unit vector in the
direction of the magnetization.

5.3.2 rf field, rf current and spin torque excitations

The external excitation f is decomposed in three different contributions

f � fu � fo � fs, (5.9)

which correspond to different excitations.The first type of excitation field
corresponds to a uniform RF magnetic field applied perpendicularly to the
effective field Heff. This configuration corresponds to the conventional mean
of performing FMR spectroscopy. The force field then reduces to the ex-
pression:

fu � hrfêx. (5.10)

where êx is a unit vector in the in-plane direction, assuming from now on
that the sample is uniformly magnetized along the pillar axis êz.

In this work, SW spectroscopy is also performed by injecting a uniform
RF charge current irf across the nano-pillar (i.e. along the pillar axis êz).
First this produces an ortho-radial RF Oersted field

fo � �4π
10

� irf
2πR

�rêr � êz� , (5.11)

where R is the radius of the pillar and êr is a unit vector along the radial
direction. The prefactor between the square brackets is here for consistency
purpose with the cgs unit system. In this formula the current should be
expressed in A (instead of esu/sec) and the quantity between the square
bracket in the prefactor converts A/cm into Oe.

In this case a second contribution comes from RF Slonczewski-Berger
[88, 9] term:

fs �
irf

2πλ
�êM � êP � , (5.12)
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where êP is a unit vector in the direction of the spin polarization of the
current, which coincides with the direction of magnetization of the so-called
fixed layer P (in our case the thick layer M2), the proportionality coefficient
being

1
λ
�

ηh

2eMV
, (5.13)

where λ has the dimension of a distance (i.e. the product irf~λ is equivalent
to a magnetizing field). The value of λ depends on η the degree of spin
polarization of the current, h the Planck constant, e the modulus of the
electron charge, and V the volume of the layer.

If one assumes that there is no direct spin current flowing through the
layers (Idc � 0), d in Eq.(5.8) reduces to the natural dissipation term written
in the Landau-Lifshitz form, which is proportional to the Gilbert damping
constant αLLG. The quantity measured experimentally is usually the full
linewidth ∆H � 2d. The damping ratio γ∆H~ω reduces to αLLG only in
the case of samples homogeneously magnetized and when the precession is
circular (as opposed to elliptic). If direct spin polarized current Idc flows
through the layers, spin transfer effects opposes to d and compensates it at
threshold current

Ith � 2πλαLLGHeff , (5.14)

the result is a steady state precession of the magnetization above critical
current. We remark that spin torque has an influence on both layers, which
depends on the direction of the current, as described in Sec.(2.2.3). In this
work we focus on the case where the current decreases the damping of thin
layer and increases the damping of fixed layer, so that it induces a precession
in the thin layer.

For circular precession, one can define a longitudinal and transverse com-
ponent of the magnetization in the steady-state regime, respectively the
component parallel and perpendicular to the precession axis [FIG.(5.5)]:

MÕ � M �M êM (5.15)

MÙ �
1
ω
∂tM � êM (5.16)

where the overline typography expresses the time averaged quantity (here
the magnetization) over a precession period. In this sense, êM is a unit
vector parallel to Heff, the precession axis. M being a constant of the mo-
tion, the two components are related through the equality M2

Õ �M
2
�M2

Ù ,
which reduces to MÕ � M �M2

Ù~�2M� for small oscillation MÙ P MÕ. At
steady state, the precession angle θ between the Hext and M is constant.
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Figure 5.5: An excitation (typically an RF field or a spin polarized current)
opens a precession angle θ between the magnetization M and the effective
field Heff , which reduces the longitudinal component Mz of ∆Mz. At fixed
angle θ, Mz is static while the transverse part MÙ precesses at the Larmor
frequency. the angle θ increases when some energy is absorbed and decreases
when is dissipated.

When some energy is absorbed (released), the precession angle increases (de-
creases), so that the value of MÕ decreases (increases). The energy absorbed
(or released) by the system in such process depends only on the variation
∆MÕ of the longitudinal magnetization:

E � S
V
δM�r� �Heff�r� � Òhω0

∆Mz

γÒh . (5.17)

Within a particle-like intepretation, this means that a photon absorbed by
the system lowers the magnetization of a quantity γÒh (a magnon is created),
and the energy stocked by the system corresponds to the number of photons
necessary to lower the magnetization of ∆MÙ, multiplied by the energy of a
photon Òhω0.

To gain further insight about the dynamics, it is useful to decompose
the instantaneous magnetization vector in respectively a static and dynamic
component.

êM � êM � εM exp�iωt (5.18a)

êP � êP � εP exp�iωt (5.18b)

where εM exp�iωt �MÙ~M P 1 represents the dynamic part of the magne-
tization renormalized by M and it is perpendicular to êM . We have also
included in the equation of motion the existence of coupled dynamics, with
the excitation of both the ”free” layer and the ”fixed” (polarizer) layers εP .
The case of couple dynamics, relevant for our system, will be described in
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Figure 5.6: Effect of spin torque τ on the dynamics of the magnetization.
When τ compensates damping it induces a stable precession of the magne-
tization at fixed angle θ.

details in the following of this chapter. Using this notation, we can now
rewrite the equation of motion shown in the introduction by collecting the
time dependent fields in two terms:

d � �αLLG �εM �Heff� � Idc

2πλ
�εM � êP � êM � εP � . (5.19a)

f � hrf �
irf

2πλ
�êM � êP � εM � εP � . (5.19b)

where we have added the possibility of adding a Idc excitation. The different
cross terms have been divided in two separate contributions: one propor-
tional to the periodic external drive signal and another proportional to the
dynamic magnetization. The static mixed terms corresponds to a change of
the precession axis are collected inside the static field H�

H�
� Heff �

Idc

2πλ
�êM � êP � �

irf
2πλ

�εM � êP � êM � εP � (5.20a)

The additional contributions to Heff can potentially change the nature of
the normal modes inside the system. In our case, they are small compared
to Heff and we can make the approximation H�

�Heff and thus the nature
of εM and εP do not change with the dc current.

5.4 Spin waves

So far our description of the dynamics of the magnetization has been local,
in the sense that we haven’t taken into account how the precession profile
of the magnetization varies inside the sample. In the most general case
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Figure 5.7: (Color online) Color representation of the spin-wave normal
mode inside a disk as a function of the azimuthal mode index ` with fixed
radial index m � 0. In our color code, the hue indicates the phase (or
direction) of the transverse component of the magnetization MÙ, while the
brightness indicates the amplitude diminution of the longitudinal (static,
normal to the plane) component, MÕ. Thus the nodal positions are marked
on the figure in white. Nodes are regions where MÙ vanishes (no precession).
A shadow effect has been added to visually enhance the precession regions.
The arrows are a snapshot of MÙ inside the disk. All vectors are rotating
synchronously in-plane at the Larmor frequency.

the dynamics of the magnetization is described by the vector field M�r, t�,
and an excitation of the magnetization propagates as a spin wave inside
the sample. In particular, one has to take into account the geometry of
the sample, and the fact that thin and thick layers are coupled via dipolar
interaction and possibly by spin torque. Strictly speaking, the picture of
fixed and free layer does not hold, since the dynamics inside the two layers
is coupled.

In this section, we discuss the boundary-value problem for spin-wave
propagation inside normally magnetized structures. We describe the normal
mode representations for axially symmetric geometries both for the single
and the bi-layer case. In particular, we classify their symmetries, which point
the way to the possible selection rules for spin-wave coupling in spin-valve
nano-pillars.

The essential point that we shall discuss below is that in our case, the
dynamics inside the two ferromagnetic layers is coupled via dipolar interac-
tion.

5.4.1 Spin waves inside a single disk

FIG.(5.7) shows a generic representation of the magnetization dynamics in-
side a normally magnetized sample. The precession movement of the local
magnetization vector Ms is decomposed in MÕ, a large static component,
and in MÙ, a small oscillating component rotating at the Larmor frequency.
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Figure 5.8: (Color online) Same color representation of the normal mode
spin-wave basis as a function of the radial mode indexm with fixed azimuthal
index ` � 0 or ` � �1. The blue and red traces superposed show the precession
profile along a median axis.

These two components are respectively longitudinal and transverse to the
local precession axis. The longitudinal component is static only because
Ms precesses regularly along a circular orbit, a unique feature of the normal
configuration. For perpendicularly magnetized samples, the uniform mag-
netic state is only approached asymptotically and the magnetization at the
periphery is always slightly canted along the edge as it forms a so-called
cone state. At first, we shall assume that the local precession axis is uni-
formly defined by the unit vector êz in the direction normal to the plane
layers and thus MÕ reduces to Mz. In the following, we shall restrict fur-
ther our study to the case of thin layers (less than 15nm in thickness) so
that one can assume hereafter that the magnetization dynamics is uniform
along the thickness. In this approximation, the linearized Landau-Lifshitz
equation about the equilibrium orientation, simplifies to two equations de-
scribing the circular precession of the transverse magnetization projections
Mx and My, which itself depends only on only two spatial variables x and
y (two-dimensional model). In general the diagonalization of the Landau-
Lifshitz equation restricted to the adiabatic term (see appendix) inside a
confined geometry lead to a discrete series of normal modes each having
a different eigen-value, ω~�2π�, the so-called Larmor precession frequency.
The two real equations can be rewritten as one complex equation for the
dimensionless complex variable
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c �
Mx � iMy

2Ms
(5.21)

that depends on the spatial position

p � r exp�iφ, (5.22)

where we introduced here the two polar coordinates (r, φ). For disk geome-
tries, the solutions are known and have the following analytical expression
[51, 45].

c�p, t� � J`�k`,mr� exp�i`φ exp�iωt, (5.23)

where J`s are the Bessel functions of the first kind and k`,m is the modulus of
the in-plane SW wave vector, which depends on the boundary conditions. In
this notation, ` and m represent respectively the azimuthal and radial mode
index i.e. the number of zeroes in the circumferential and radial directions.

Such solutions to the boundary-value problem leave one adjusting pa-
rameter, which is the ratio of precession between the center and the edge
of the disk, a quantity associated to pinning phenomena. The amount of
pinning should be in principle identical for all eigen-modes. Hereafter we
shall assume that all the modes satisfy the dipolar pinning condition [45],
which corresponds to k`,m � κ`,m~�R� t�, where κ`,m is the �m�1�th root of
J`�x�, R is the radius of the disk and t its thickness. The dipolar pinning
condition can be viewed as equivalent to the total pinning condition at the
periphery of a virtual disk, whose radius as been augmented by the disk
thickness MÙ�R � t� � 0.

FIG.5.7 shows a color representation of the normal modes spatial pattern
for three values of the azimuthal mode index ` � 0,�1,�1 with the radial
index being fixed at m � 0. In our color code, the hue indicates the phase
(or direction) of the transverse component of the magnetization MÙ, while
the brightness indicates the amplitude of the longitudinal component, MÕ.
Thus the nodal positions are marked on the figure in white. A node is a
location where the transverse component vanishes and the magnetization
vector is aligned along the equilibrium axis. This coding scheme allows us
to visualize distinctly the phase and amplitude of the signal. The black
arrows are a snapshot of the orientation of MÙ inside the disk. All arrows
are rotating synchronously in-plane at the Larmor frequency.

The first panel on the left shows the ` � 0 mode, also called the uniform
mode. It usually corresponds to the lowest energy mode since all the vectors
are pointing in the same azimuthal direction at all time. The middle panel
is the ` � �1 mode. It corresponds to spin-waves that are rotating around
the disk in the same direction as the Larmor precession. The correspond-
ing phase of the signal is in quadrature between two consecutive quadrant
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positions. The obtained spatial pattern of MÙ preserves the rotation invari-
ance symmetry. Another property of this mode, is that it has a node at
the center of the disk. We have also put on the figure the ` � �1 mode in
the right panel. This mode describes spin-waves that are rotating around
the disk in the opposite direction as the Larmor precession. The resulting
pattern has a contra-rotational invariance. Another way to differentiate it
from the ` � �1 is to use a concept developed in fluid dynamics, where the
two cases are separated by an opposite vorticity. We mention that in the
magneto-exchange approximation, the two ` � �1 modes are degenerate in
energy.

The upper row of FIG.(5.8) shows a color representation of the same
orthogonal functions for three values of the radial mode index m � 0,1,2,
with the azimuthal index being fixed at ` � 0. They represent clearly higher
harmonics with increasing number of nodal rings in the radial direction.
Each ring separates region of opposite phase along the radial direction. For
completeness purpose, the representation in FIG.(5.8) is repeated below
for another values of the azimuthal index ` � �1. It is worth to mention
at this point that the `-index usually carries the discriminant symmetry
for the coupling to an external coherent source. The obtained spin-wave
spectrum represents then a probing of the magnetization dynamics along
one particular value of the `-index. One example is the case of conventional
FMR, which uses a uniform RF magnetic field to excite the disk. Only
modes which have non-zero spatial average couple to the excitation field.
Therefore all the normal modes having ` x 0 are invisible because they
have no overlap with the RF magnetic field excitation. Conventional FMR
spectrum is a partial representation of the eigen-modes as a function of the
m-index projected upon ` � 0-index value.

5.4.2 Spin waves inside two mutually coupled disks

In this section, we review the diagonalization process to describe the dy-
namics of two mutually coupled magnetic layers. The dynamical coupling
considered here is the dipolar interaction mediated by the bi-layer tensor el-
ement N �j,j��

xx , which represents the in-plane contribution of the dipolar field
inside layer j � 1,2 produced by the in-plane component of the magnetization
of layer j� � 2,1. The mathematics of the exact diagonalization procedure is
tedious and it leads to very complex analytical expressions. To simplify the
problem, we shall retain only the first order term in the decomposition of
the solutions using the SW normal basis expressed by the Bessel functions.
In other words, we shall assume that the shape of the precession profiles of
the modes in each layer are unperturbed by the dynamical coupling. The
equations of motion of `cje and `cj�e, the spatial average dimensionless com-
plex variables attached respectively to the reduced transverse magnetization
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Figure 5.9: (Color online) a) Schematic representation of the mutually cou-
pled dynamics of two dislike magnetic disks. When the two disks are apart,
the uniform mode of the thick layer resonates at a lower frequency than the
uniform mode in the thin layer. When the two disks are coupled by the
dipolar interaction, the binding state corresponds to having the two layers
oscillating in opposition of phase a, while the anti-binding state corresponds
to having the two layers oscillating in phase s. This is shown schemati-
cally by displaying the precession profile of each layer, where light-colors
represent the contribution of the thin layer, while dark-colors represent the
contribution of the thick layer. b) We propose to describe the dynamics of
the bi-layer system by adding a new index a or s indicating if the precession
occurs mostly in the thick or in the thin layer respectively.
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in each layer, are coupled

∂t`cje � �iωj`cje � η�j,j��`cj�e (5.24)

The coupling term
η�j,j

��
� 4πγ ��N �j,j��

xx ��Mj� (5.25)

represents the overlap integral through N �j,j��
xx between the oscillatory modes

in each layer. The overlap is expected to be maximum between two modes
bearing similar wave numbers. We thus simplify further the problem by
reducing the number of coupled modes to a pair of same index. Concentrat-
ing on the coupled dynamics between uniform modes (` � 0 and m � 0), the
coupling takes the form:

��N �j,j��
xx �� � 1`J0e2 SVj

d2rdzJ0�k0r�
S

R

0
dr�J0�k0r

��∂Nxx �r�� �r, z�
∂r�

(5.26)

where the quantity under the integral operand, dr�∂Nxx �r�� �r, z�~∂r�, rep-
resents the stray field produced by a ring of width dr�, radius r�, and thick-
ness tj� at the position �r, z�. This term uses the known analytical expression
for Nxx �r�� [91], which is defined as the depolarization tensor of a full disk
of radius r�. One can generalize the coupling integral introduced in Eq.5.26
to any arbitrary modes and show that the coupling strength is maximum if
c1 and c2 have the same ` and m indices.

We resolve the two differential equations above by making an analogy to
two coupled harmonic oscillators in the weak coupling approximation η P ω.
Making the scale transformation:

C1 �

¿ÁÁÀη�12�

η�21�
`c1e (5.27)

C2 �

¿ÁÁÀη�21�

η�12�
`c2e (5.28)

(5.29)

the sum of the two equations simplifies to

�∂tC1�2
� �∂tC2�2

� �ω2
1C

2
1 � ω

2
2C

2
2 � Γ2C1C2 (5.30)

where
Γ2

� 2 �η�12�ω2 � η
�21�ω1� (5.31)

The solutions of the above equation are well known and can be formulated
into a problem of a quadratic equation with two variables. The diagonaliza-
tion of the quadratic form includes a rotation of the coordinate system,

�Cs
Ca

� � �� cosϕ � sinϕ
� sinϕ � cosϕ

��C1

C2
� (5.32)
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where the angle ϕ satisfies the equality tan 2ϕ � Γ2~�ω2
1 � ω

2
2�. The new

variable Ca and Cs corresponds to a collective dynamics (anti-symmetric
and symmetric) involving a contribution of both oscillators. The decou-
pled Hamiltonian obtained by the rotation of coordinates has two normal
frequencies:

ω2
s �

1
2
�ω2

1 � ω
2
2 �

¼�ω2
1 � ω

2
2�2 � Γ4� (5.33a)

ω2
a �

1
2

4ω2
1ω

2
2 � Γ4

ω2
1 � ω

2
2 �

»�ω2
1 � ω

2
2�2 � Γ4

(5.33b)

It is useful to introduce the frequency quantity Ω �
1
8Γ2 tan 2ϕ~ω, where

ω � �ω1 � ω2�~2 is the average of the two eigen-values in the absence of
coupling. As shown below, Ω � η�12�η�21�~�ω1 � ω2� represents the amount
of frequency shift induced by the dynamical coupling (about 0.17 GHz).
For our nano-pillar Ω is small compared to ω (about 10 GHz). It implies
that the angle ϕ is small and the nature of the collective mode defined
in Eq.5.32 will bear mostly the dynamical characteristics of the separated
structure. A numerical application with the characteristics of our sample,
leads to an amount of mixing between the two modes, which is about ϕ �

�13X. We mention that the sign of ϕ is positive meaning that the dynamical
dipolar coupling between the two disks is binding when both layers vibrate
in antiphase. Thus, the fundamental mode is the collective mode Ca with
eigen-frequency ωa � ω2 � Ωω~ω2,. It corresponds to having a collective
motion, where the precession is mostly located in the thick layer c2 A c1

but with the thin layer also precessing in antiphase. It is easy to show
that in this case c2~c1 � �ω1 � ωa�~η�12�. Reciprocally, the excited state
is the collective mode Cs, whose eigen-frequency is ωs � ω1 � Ωω~ω1. It
corresponds to a collective motion, where the precession is mostly located
in the thin layer c1 A c2, but with the thick layer also precessing in phase.
in this case c1~c2 � η

�12�~�ωs � ω1�.
The important parameter that determines the coupling regime perti-

nent to our system, is the ratio of the dynamical coupling strength to the
difference of eigen-frequencies of each separate oscillator. A common char-
acteristic of spin-valve structures is that they usually consist of different
magnetic layers. In our case the spin-valve comprise two different Permalloy
thickness: a thin layer, labeled 1, and a thick layer, labeled 2. Thus the
normal modes with the same indices will resonate at different frequencies
depending whether they occur in the thin or thick layer. The difference of
eigen-frequency will have two origins: i) the difference in internal demag-
netizing field (intra-layer static dipolar coupling) and ii) the difference of
stray field of one layer on the other (inter-layer static dipolar coupling).
We concentrate first on the coupled dynamics between the uniform modes,
which bears the index ` � 0 and m � 0. Cavity-FMR spectroscopy performed
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at fixed frequency on the reference film in the perpendicular configuration
find the magnetic field position of the resonance of the thin layer, H1, is
1.4 kG lower in field (higher in energy) than the position of the resonance
of the thick layer, H2. The difference H2 �H1 A 0 is ascribed to a difference
of magnetization inside the layers: M1 @ M2. After the patterning into a
nano-pillar, one expects that the resonance value of the uniform mode, that
we continue to label H1 and H2, further decreases due to a decrease of the
depolarization tensor Nzz inside both disks. This decrease should affect,
however, more strongly the thick layer, so that the difference H2 �H1 de-
creases. The amount of decrease is however small compared to the difference
of magnetization 4π�M2 �M1�, which remains the dominant contribution.
Furthermore, this decreases is partially compensated by the difference of
stray field produced by the nearby layer. The effect of the stray field is to
further lower the resonance field of both layers. But the thick layer pro-
duces a stronger stray field on the thin than reciprocally. In consequence, in
order to reach the same value of the total effective magnetic field, a smaller
additional external applied magnetic field should be required to excite the
resonance of the thin layer compared to the thick. To summarize this, we
have displayed schematically on FIG.5.9a the relative position between the
two eigen-values in the absence of dynamical coupling. On both side of the
bi-layer diagram we have reported on an energy scale their relative position,
where the eigen-frequency of the thick layer (dark grey) ω2 is put below the
eigen-frequency of the thin layer (light grey) ω1.

The above energy difference needs now to be compared with the strength
of the dynamical dipolar coupling between the layer. The later quantity de-
pends on the inter-layer tensor N �jj��

rr representing the in-plane contribution
of the dipolar magnetic field inside layer j � 1,2 produced by the in-plane
component of the magnetization of layer j� � 2,1 (see more details below).
In our case the strength of this effect is weak compared to the difference
in static dipolar coupling: NrrM2 P M2 �M1. This implies that the na-
ture of the collective mode will bear mostly the dynamical characteristics
of the separated structure. Because, we are in a perpendicular geometry,
the dynamical dipolar coupling between the two disks is attractive (lower
in energy) when both layers vibrate antisymmetrically. Thus the binding
state corresponds to a collective motion where the two layers vibrate anti-
symmetrically. Since we have identified above the uniform mode of the thick
layer as the lowest energy mode of the system, this binding mode will bear
approximately the characteristic of the thick layer with the eigen-frequency
ωa � ω2. This collective mode will be labeled a0,0. Reciprocally the anti-
biding state corresponds to a collective motion where the two layers vibrate
symmetrically. The associated collective mode will have thus the charac-
teristic of the thin layer with the eigen-frequency ωs � ω1. This collective
mode will be labeled s0,0. FIG.5.9a gives a schematic representation of this
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coupled dynamics. We have superposed on the figure the precession profile
of each layer as defined in FIG.5.8 adopting a color code, where light-colors
represent the contribution of the thin layer, while dark-colors represent the
contribution of the thick layer. The anti-symmetric state is represented
in the form of two profiles having opposite polarity and dominated by the
profile of the thick layer, while the symmetric state is represented by two
profiles having the same polarity and dominated by the profile of the thin
layer.

FIG.5.9b shows the extension of this concept of collective motion on
modes of other indices. We propose to describe the dynamics of the bi-layer
system to add a new index a or s indicating if the precession occurs mostly
in the thick or in the thin layer respectively. We thus have three indices to
label the observed eigen-modes: the usual azimuthal and radial indices for a
single disk (`,m), plus an additional index referring to the antisymmetrical
or symmetrical (a or s) coupling between both layers.

To conclude this discussion about dynamical coupling, we would like to
emphasize that, although the spectral distortions are small in our geometry,
the symmetry of the collective motion and the synchronous excitation of
the adjacent magnetic layer bears some important consequence in regards
to spin transfer effects. There it is the relative difference of the dynamics at
the interface that matters and small change of the relative angles between
the two layers can play an important role.



Chapter 6

Current driven dynamics
inside a nanopillar:
experiments and simulations

6.1 Introduction

In this chapter we shall discuss in details the dynamics of the magnetization
in a spin torque nano oscillator, both on an experimental and theoretical
viewpoint.

In this study, we have compared the SW spectra excited by a uniform
in-plane RF magnetic field and by an RF current flowing perpendicularly
through the layers. By studying the influence of a spin polarized dc cur-
rent on the magnetization dynamics and by comparing mechanical-FMR
to voltage-FMR spectra, some insight on which magnetic layer contributes
mostly to the different SW modes has been obtained. From the theoret-
ical side, a comprehensive labeling of the SW eigen-modes in the studied
geometry, which preserves the axial symmetry, has been introduced. Three
indices are required to identify the SW modes in the nano-pillar, the usual
azimuthal and radial indices for a single disk (`,m), plus an index refer-
ring to the anti-symmetrical or symmetrical (a or s) coupling between the
two magnetic layers. By confronting the experimental SW spectra to 3D
micromagnetic simulations, the observed SW modes have been identified
according to this labeling.

Two main results have been deduced from this extensive study. Firstly,
we have derived the selection rules that apply to the RF field and to the
RF current excitations. Indeed, in the normal configuration, these two ex-
citations lead to SW spectra having mutually exclusive symmetries. Only
` � 0 modes are excited by a uniform RF magnetic field, while only ` � �1
modes are excited by an RF current flowing through the nano-pillar, due to
the orthoradial symmetry of the induced Oersted field. Thus, the `-index,
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related to the azimuthal symmetry of the SW modes, is the discriminating
parameter for the selection rules. Moreover, we have shown how these selec-
tion rules are affected by breaking the axial symmetry of the exact normal
configuration. Namely, ` � 0 modes can also be excited by an RF current
owing to the non zero ST-FMR excitation if the magnetizations in the two
layers are not collinear. Secondly, the importance of the dynamical dipolar
interaction, which couples the magnetization dynamics in both layers, has
been pointed out. By analyzing the experimental SW spectra in the frame-
works of a 2D analytical model and of full 3D micromagnetic simulations,
it was demonstrated that the collective character of the SW eigen-modes in
the nano-pillar cannot be disregarded, although the corresponding spectro-
scopic shifts might be small in the FMR spectra. In fact, we have shown
that the SW modes dominated by the thick layer always involve a precession
of the thin layer in anti-phase, and reciprocally, the SW modes dominated
by the thin layer also involve an in phase precession of the thick layer.

This chapter is organized as follows: In Sec. 6.2 We describe composi-
tion and geometry of the sample used in this spectrosopic study. Then we
describe the Magnetic Resonance Force Microscope (MRFM) setup used for
the spectroscopic characterization of the normally magnetized nano-pillar.
MRFM has been used to measure the excitation spectra obtained using an
RF current flowing through the nano-pillar perpendicularly to plane (the
configuration used in transport characterization) and a uniform RF mag-
netic field applied parallel to the layers (the configuration used in conven-
tional ferromagnetic resonance). At last, MRFM has been used to study
spin transfer effect on the observed spectra, injecting a CPP continuous
current through the nanopillar. The studies presented in this section are
limited to a dc current up to the threshold current for auto-oscillations in
the thin layer.

In Sec. 6.3 we provide a theoretical characterization of the spectra (at
zero dc current) using Nmag [37], a micromagnetic simulation package based
on finite element discretization of the pillar. In this way we have interpreted
the spectrum and identified the spin-wave modes of the nanopillar, according
to the classification given in chapter 5.

Sec. 6.4 contains the main results of this work. We have coupled Nmag
to CRMT, in order to perform micromagnetic simulations that include spin
transfer effect. The approach described in this chapter allows to take into
account the spatial variation of magnetization and spin tranfer in a realistic
way. In this way we have performed a comprehensive theoretical study
of current drivend dynamics near (and above) the critical threshold. In
particular, we have described selection rules for spin torque excitation in
agreement with experimental results.
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6.2 Ferromagnetic resonance force spectroscopy

6.2.1 The litographically patterned nano structure

The spin-valve structure used in this study is a standard Permalloy (Py) bi-
layer structure sandwiching a 10 nm Copper (Cu) spacer: the thicknesses of
the thin and thick layers are respectively t1 � 4 nm and t2 � 15 nm. Special
care has been put in the design of the microwave circuit around the pillar.
FIG.(6.1a) shows a scanning electron microscopy top view of this circuit.
The nano-pillar is located at the center of the cross-hair, in the middle of
a highly symmetric pattern designed to minimize cross-talk effects between
both RF circuits shown in blue and red, which provide two independent
excitation means.

The nanopillar is patterned by standard e-beam lithography and ion-
milling techniques from the extended film, (Cu60 S Py215 S Cu10 S Py14 S
Au25) with thicknesses expressed in nm, to a nano-pillar of nominal ra-
dius 100 nm. Precise control allows for stopping the etching process exactly
at the bottom Cu layer, which is subsequently used as the back contact
electrode. A planarization process of a polymerized resist by reactive ion
etching enables to uncover the top of the pillar and to establish the top
contact electrode [see FIG.(6.1b)]. The top and bottom contact electrodes
that sandwich the nano-pillar are shown as red pads in FIG.(6.1a). These
pads are impedance matched to allow for high frequency characterization
by injecting an RF current through the device. The bottom Cu electrode
is grounded and the top Au electrode [red dot on the central pad at the
bottom of FIG.(6.1a)] is wire bonded to the central pin of a microwave ca-
ble. Hereafter, spectra associated to SW excitations by this part of the
microwave circuit will be displayed in red tone. The nano-pillar is also con-
nected through a bias-T to a dc current source and to a voltmeter through
the same contact electrodes, that can be used for standard current perpen-
dicular to the plane (CPP-GMR) transport measurements. In our circuit,
a positive current corresponds to a flow of electrons from the bottom Py2

thick layer to the top Py1 thin layer and stabilizes the parallel configuration
due to the spin transfer effect.

The originality of our design is the addition of an independent top mi-
crowave antenna, whose purpose is to produce an in-plane microwave mag-
netic field at the nano-pillar location. In FIG.(6.1a) this part of the mi-
crowave circuit is shown in blue. The broadband strip-line microwave an-
tenna consists of a 300 nm thick Au evaporated on top of an insulating layer
of polymer that provides electrical isolation from the rest of the structure
[see FIG.(6.1b)]. The width of the antenna constriction situated exactly
above the nano-pillar is 10 µm. Injecting a microwave current from a syn-
thesizer inside the top antenna produces an homogeneous in-plane linearly
polarized microwave magnetic field, oriented perpendicular to the stripe di-
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Figure 6.1: (Color online) a) Top view SEM image of the microwave circuit
developed for this comparative study about the dynamical behavior of a spin
transfer nano-oscillator (STNO). The two independent excitation schemes
are shown in different colors. The electrodes in the bottom (red) allow
for injecting an RF current perpendicular-to-plane through the nano-pillar.
The electrode in the top (blue) enables to produce an RF in-plane magnetic
field for standard FMR spectroscopy. The Py2/Cu/Py1 nano-pillar itself is
placed at the center of the cross-hair. b) Section view of the nano-pillar
along the A-A axis of the cross-hair. The external magnetic field is applied
perpendicularly to the magnetic layers plane. The red and blue arrows
show the orientation of respectively the RF current and the RF magnetic
field excitations. The mechanical-FMR is inserted above to monitor the
dynamics of the buried structure.
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Figure 6.2: (Color online) Schematic representation of the source modulation
sequence. The mechanical-FMR measures the change in the time averaged
component of the magnetization when the RF is ON (M � MÕ, left) and
OFF (M �Ms, right).

rection [cf. FIG.(6.1b)]. Hereafter, spectra associated to SW excitations by
this part of the microwave circuit will be displayed in blue tone.

One parameter that will be important for the indexation of the SW
spectra is the radius of the nano-pillar. The nominal value set during the
e-beam process is 100 nm, but the exact lateral size obtained at the end
of the nano-fabrication process cannot be measured easily, as the nano-
pillar is buried under several layers whose total thickness is larger than
its diameter. We have therefore used the radius R as the only adjustable
parameter in our simulations (see section 6.3). As will be shown below, the
best fit value is obtained for R � 125 nm, which we will consistently refer
to as the radius of our nano-pillar. The discrepancy with the nominal value
is within the uncertainty of the nano-fabrication process. Another point is
that this parameter represents a dynamical size, which also incorporates the
issue of the pinning at the edge of the disk. Because we make no attempt
to fit the pinning (we assume that the edge is a node) the fitted value of R
represents an effective dynamical radius valid for both disks.

6.2.2 Mechanical-FMR

The nano-fabricated sample is then mounted inside a Magnetic Resonance
Force Microscope (MRFM), hereafter named mechanical-FMR [60]. The
whole apparatus is placed inside a vacuum chamber (10�6 mbar) operated at
room temperature. The external magnetic field produced by an electromag-
net is oriented out-of-plane, i.e., along the pillar axis êz. The mechanical-
FMR setup allows for a precise control, within 0.2X, of the polar angle be-
tween the applied field and the nanopillar axis. In our study, the strength of
the applied magnetic field shall exceed the saturation field (� 0.8 T), so that
the nano-pillar is studied in the saturated regime. Thus, the local precession
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axis of the SW excitations is uniformly defined by the unit vector êz.
The mechanical detector is an ultra-soft cantilever, an Olympus Biolever

having a spring constant k � 5 mN, with a 800 nm diameter sphere of soft
amorphous Fe (with 3% Si) glued to its apex. Standard piezo displace-
ment techniques allows for positioning the magnetic spherical probe precisely
above the center of the nano-pillar, so as to retain the axial symmetry. This
is obtained when the dipolar interaction between the sample and the probe
is maximal, by searching to minimize the cantilever frequency [32].

The mechanical oscillator is insensitive to the rapid oscillation of the
transverse component in the sample, which occurs at the Larmor precession
frequency, i.e., several orders of magnitude faster than its mechanical res-
onances. The dipolar force on the cantilever probe is thus proportional to
the static component of the magnetization M inside the sample, where the
overline symbol expresses the time averaged quantity. The latter is equal
to the longitudinal component MÕ of the magnetization, which for our nor-
mally magnetized sample reduces to Mz. We emphasize that for a bi-layer
system, the force signal integrates the contribution of both layers. More-
over, the local Mz�r� in the two magnetic layers is weighted by the distance
dependence of the dipolar coupling to the center of the sphere. In our case
this weight is constant because the separation between the sphere and the
sample is much larger than the sample dimensions. Hence, the measured
quantity is `Mze, where the chevron brackets express the spatial average
over the full sample volume.

The mechanical-FMR spectroscopy presented below consists in record-
ing by optical means the vibration amplitude of the cantilever as a function
of the bias out-of-plane magnetic field at a fixed microwave excitation fre-
quency. This type of spectroscopy is also called cw, for continuous wave, as
it monitors the magnetization dynamics in the sample under a forced regime.
Actually, a source modulation is applied on the cw signal. It consists in a
cyclic absorption sequence, where the microwave power is switched ON and
OFF at the cantilever resonance frequency, fc � 11.85 kHz. The resulting
periodic force signal produces a cantilever vibration amplitude proportional
to

4π`∆Mze � 4π`MzeOFF � 4π`MzeON (6.1)

where `MzeOFF � Ms. Thus the signal, recorded by a lock-in detection,
is enhanced by the quality factor Q � 2000 of the mechanical oscillator
(see FIG.(6.2). Note that this modulation technique does not affect the
line shape in the linear regime, because the period of modulation 1~fc is
very large compared to the relaxation times of the studied ferromagnetic
system [58, 59]. Since the mechanical-FMR signal originates from the cyclic
diminution of the spatially averaged value of the magnetization inside the
whole nano-pillar synchronous with the absorption of the microwave power,
it detects all possible modes without any selection rules [29]. The force
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Figure 6.3: (Color online) Schematic representation of the different spec-
troscopy configurations available with our setup. On the excitation side
(arranged by row), two different means are available to put the system out-
of-equilibrium: an RF magnetic field applied parallel to the layers (blue
arrow) and an RF current flowing perpendicularly to the layers (red arrow).
On the detection side (by column), our experimental setup can measure the
excitation spectrum by mechanical-FMR (see text) and by voltage-FMR (dc
voltage across the pillar). Both detections can be acquired simultaneously,
under the exact same bias conditions.

sensitivity of our mechanical-FMR setup is better than 1 fN, corresponding
to less than 103 Bohr magnetons in a bandwidth of one second for the
perpendicular coupling geometry [60].

Finally, we mention that in mechanical-FMR, the magnetic stray field
produced by the magnetic sphere modifies the FMR spectra of the sample.
In our regime of weak coupling, it simply leads to an overall shift of the full
FMR spectra towards lower field [22]. This is in contrast with the strong
coupling regime, where the stray field of the magnetic probe can be used to
localize SW modes below the MRFM tip [63]. Here, the separation between
the center of the spherical probe and the nano-pillar is set to 1.3 µm [see
FIG.(6.1b)], which represents an optimum between sensitivity and spectral
distortion [60]. The perturbation produced by the sphere is weak as it does
not affect the profiles of the intrinsic SW modes in the sample. It reduces
to a shift of the peak position by ��Hsph�, where the curly brackets express
a spatial average over the sample volume weighted by the precession profile
of the SW mode [60].

In the following, all the mechanical-FMR spectra are recorded with the
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Figure 6.4: (Color online) Comparative spectroscopic study performed by
mechanical-FMR at f0 � 8.1 GHz on the normally magnetized spin-valve
nano-pillar. The upper panel (a) shows the SW spectrum excited by a
uniform in-plane RF magnetic field. The bottom panel (b) shows the SW
spectrum excited by an RF current flowing perpendicularly through the
nano-pillar. Blue squares (upper panel) and red dots (lower panel) corre-
spond to the value of the fields at which resonance occurs. The positions of
the peaks are reported in Tables 6.2 and 6.3.1.

magnetic sphere at the same exact position above the nano-pillar. To allow
for direct comparison, this is also the case for the voltage-FMR spectra,
in which the dc voltage produced by the magnetization dynamics accross
the nano-pillar is monitored. To symbolize this, we have represented the
sphere above the nano-pillar for the voltage-FMR measurement sketched in
FIG.(6.3). The shift ��Hsph� induced by the probe on the SW spectra can
actually be directly measured in the voltage-FMR configuration by removing
it from the vicinity of the nano-pillar. This enables to record the intrinsic
spectrum and to measure the shift induced by the spherical magnetic probe,
found to be ��Hsph� � �190 Oe.
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Figure 6.5: (Color online) Frequency-field dispersion relation of ` � �1 modes
in the nano-pillar. The horizontal spectrum is the same as in FIG.6.4b, i.e.,
it is obtained by sweeping the magnetic field at fixed frequency f0 � 8.1 GHz
of the RF current irf through the nano-pillar. The vertical spectrum is
obtained at constant bias field H0 � 1 T by sweeping the frequency of irf.
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6.2.3 RF magnetic field vs. RF current excitations

The comparative spectroscopic study performed by mechanical-FMR at f0 �

8.1 GHz on the normally magnetized spin-valve nano-pillar is presented in
FIG.(6.4). In these experiments, there is no dc current flowing through the
device, and the spectra are obtained in the small excitation regime, i.e., they
show the linear response of the magnetic system (precession angles less than
5X) The upper panel (a) shows the SW spectrum excited by a uniform RF
magnetic field applied in the plane of the layers, while the lower panel (b)
displays the SW spectrum excited by an RF current flowing perpendicularly
through the magnetic layers. The striking result is that these two spectra
are different: none of the SW modes excited by the homogeneous RF field
are present in the spectrum excited by the RF current flowing through the
nano-pillar, and vice versa.

Let us first focus on FIG.(6.4a), where the obtained absorption spectrum
corresponds to the so-called standard FMR spectrum. Here, the output
power of the microwave synthetizer at 8.1 GHz is �3 dBm, which corre-
sponds to a linear amplitude of the uniform RF magnetic field hrf � 2.1 G
produced by the antenna. In this standard FMR spectrum, only SW modes
with the azimuthal index ` � 0 should appear, as the ` x 0 modes cannot
couple to a homogeneous RF field excitation due to their vanishing spatial
average. In field-sweep spectroscopy, the lowest energy mode occurs at the
largest magnetic field. So, the highest field peak at HÌ � 1.072 T should be
ascribed to the uniform mode, whose indices are ` � 0 and m � 0. Since this
peak is also the largest of the spectrum, it corresponds to the precession of a
large volume in the nano-pillar, i.e., the thick layer is dominating in the dy-
namics. In mechanical-FMR, a quantitative measurement of the longitudinal
magnetization is obtained [69, 29]. For the power level used here, the am-
plitude of the peak at HÌ corresponds to 4π`∆Mze � 14 G, which represents
a precession angle `θe � 3.1X. This sharp peak is followed by a broader peak
with at least two maxima at H�i � 0.968 T and H� � 0.954 T, and at lower
field, by two smaller resonances around H� � 0.870 T and H� � 0.857 T.
Among these other peaks, there is the uniform mode dominated by the thin
layer, which has to be identified and distinguished from higher radial index
SW modes. Also, one can notice that the lower field modes are broader than
the peak at HÌ, suggesting that the higher harmonics modes are subject to
some form of inhomogeneous broadening [30]

Let us now turn to FIG.(6.4b), corresponding to the spectroscopic re-
sponse to an RF current of same frequency 8.1 GHz flowing perpendicularly
through the nano-pillar. Here, the output power of the microwave syn-
thetizer is �22 dBm, which corresponds to an rms amplitude of the RF
current irf � 170 µA The SW spectrum is acquired under the exact same
conditions as for standard FMR, i.e., the spherical magnetic probe of the
mechanical-FMR detection is kept at the same location above the sam-
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ple. The striking result is that the measured spectrum in FIG.(6.4b) is
shifted down in field by about half a kilo-Gauss compared to the one in
FIG.(6.4a). The lowest energy mode in the RF current spectrum occurs at
H � 1.025 T. This is again the most intense peak, suggesting that the thick
layer contributes to it. At this power, 4π`∆Mze � 26 G, which represents
a precession angle `θe � 4.2X. But the main resonance line is now split in
two peaks, with a smaller resonance in the low field wing of the main peak,
about 100 G away. At lower field, two distinct peaks appear at H4Y � 0.920 T
and H4 � 0.910 T and another peak is visible at HB � 0.824 T.

The fact that the position of the peaks in FIG.(6.4a) and (6.4b) do not
coincide implies that the two spectra have a different origin. This is due to
the difference in the two methods of excitation, which probe two different
`-index symmetries, as it will be confirmed in the next section. In the first
experiment, ` � 0 modes are excited by the uniform RF magnetic field of
amplitude 2.1 G, whereas in the second experiment, ` � �1 modes are ex-
cited by the RF Oersted field induced by the RF current flowing through the
nano-pillar, which is about 3.8 G at the periphery and has the appropriate
orthoradial symmetry. The uniform and orthoradial RF field symmetries are
mutually exclusive, therefore the observed SW modes in the two different
cases have no overlap. Still, the two spectra are somewhat in translational
correspondence with each other, even though the relative amplitudes be-
tween the resonance peaks are different. We shall demonstrate that the
reason behind the similarity between the two spectroscopic signatures is
that the peaks in translational correspondence bear the same m and a~s
indices.

Notice that one can perform spectroscopy at fixed field, to obtain reso-
nance peaks as a function of frequency. The evolution of the ` � �1 modes
is presented in FIG(6.5). Here, we took the advantage of the broadband
design of the electrodes that connect the nano-pillar to measure the FMR
spectrum at a fixed bias magnetic field H0, by sweeping the frequency of
the RF current through it. It allows for a direct check of the equivalence
between frequency and field sweep experiments in the normally saturated
state. (We note that the same frequency-sweep experiment cannot be per-
formed as cleanly with the RF field excitation due to the high power that
has to be injected in the microwave antenna and to some impedance mis-
match). In our micromagnetic simulations resonance peaks are calculated
as a function of frequency.

6.2.4 Direct bias current

To gain further insight about the peak indexation, we have measured the
spectral deformations produced on the SW spectra of FIG.6.4 when a finite
dc current Idc x 0 is injected in the nano-pillar. We recall that for our sign
convention, a positive dc current stabilizes the thin layer and destabilizes
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Figure 6.6: (Color online) Evolution of the SW spectra measured at f0 �

8.1 GHz by mechanical-FMR for different values of the continuous current
Idc flowing through the nano-pillar. The upper panel (a) corresponds to exci-
tation by a uniform RF magnetic field [as in FIG.(6.4a)], and the lower panel
(b) to excitation by an RF current through the sample [as in FIG.(6.4b)].
Blue squares (upper panel) and red dots (lower panel) correspond to the
value of the fields at which resonance occurs.
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the thick one due to the spin transfer torque, and vice versa [88, 9]. The
results obtained by mechanical-FMR are reported in FIG.6.6.

Let us first concentrate on FIG.(6.6a), in which the excitation that
probes the different SW modes is the same as in FIG.(6.4a), i.e., a uni-
form RF magnetic field hrf � 2.1 G. Two main features can be observed in
the evolution of the SW spectra as Idc is varied. First, the amplitude of the
peak at HÌ smoothly increases with the positive current and smoothly de-
creases with the negative current. At the same time, the peak at H�, which
is about five times smaller than the peak at HÌ when Idc � 0 mA, almost
disappears for positive current and strongly increases at negative current,
until it becomes larger than the peak at HÌ when Idc � �4 mA. These two
features are consistent with the effect of spin transfer if we ascribe the peak
at HÌ to the uniform mode of mostly the thick layer and the peak at H� to
the one of mostly the thin layer. More precisely, it is expected that in the
sub-critical regime (Idc @ Ith, where Ith is the threshold current for auto-
oscillations, Ith @ 0 for the thin layer and Ith A 0 for the thick layer), the
effective damping d scales as αLLG�1 � Idc~Ith� [82, 24]. It means that the
linewidth of a resonance peak that is favored by spin transfer should de-
crease as the current gets closer to Ith, and that its amplitude, which scales
as 1~d, should increase.

Although the effect on the peak amplitude noted above is clear in FIG.(6.6a),
it is not on the linewidth. The reason is that in this experiment, the strength
of the driving RF magnetic field is kept constant to 2.1 G. As a result, the
shape of the growing peaks in FIG.(6.6a) becomes quite asymmetric, which
is a signature that the driving field is strong enough to change the inter-
nal field by an amount of the order of the linewidth. This leads to some
foldover of the resonance line [4, 83]. In other words, the distortion of the
line shape as the peak amplitude increases prevents to see the diminution
of its linewidth [25]. It would be necessary to decrease the excitation ampli-
tude as the threshold current is approached [24] so as to maintain the peak
amplitude in the linear regime in order to reveal it.

The opposite signs of the spin transfer torques which influence the dy-
namics in the thin and thick layers are clearly seen in FIG.(6.6a). Their
relative strengths can also be determined, as the efficiency of the spin trans-
fer torque is inversely proportional to the thickness of the layer. In fact, the
amplitude of the peak at H� grows much faster with the negative current
than the one of the peak at HÌ with the positive current. Whereas the pre-
cession angle in the thick layer does not vary much with Idc (from � 2.5X at
�4 mA to � 3.5X at �4 mA), the precession angle that can be deduced from`∆Mze in the thin layer grows from almost zero at Idc � �4 mA to more than
11X at Idc � �4 mA. Moreover, the peak position H� shifts clearly towards
lower field as the negative current is increased. This is due to the onset
of spin transfer driven auto-oscillations in the thin layer, which occurs at a
threshold current �4 @ Ith @ �3 mA, and that produces this non-linear shift
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[85].

Let us now briefly discuss FIG.(6.6b), which shows the same dependence
on Idc of the mechanical-FMR spectra excited by an RF current excitation
of rms amplitude irf � 170 µA [same as in FIG.(6.4b)]. Here again, a clear
asymmetry is revealed depending on the polarity of Idc and on the SW
modes. The double peak at H is favored by positive currents, hence it
should be ascribed to mostly the thick layer precessing, while the double
peak at H4 is strongly favored by negative curents, hence it should be
ascribed to mostly the thin layer precessing.

To summarize, the passage of a dc current through the nano-pillar en-
ables to determine which layer mostly contributes to the observed SW
modes, owing to the asymmetry of the spin transfer effect. However, the
detailed understanding of the coupling between the two layers requires mi-
cromagnetic simulations, which will be presented in the next two sections.
At first we will focus on micromagnetic simulations without taking into ac-
count spin transfer, then we shall add spin torque coupling CRMT to the
micromagnetic software. This shall lead to a precise identification of the
modes excited by spin torque and of their critical current.

6.3 Micromagnetic simulations at Idc � 0

We have performed below a more complete calculation of the predicted SW
spectrum inside our sample with Idc � 0 using an open source micromagnetic
simulation package: Nmag [37]. Nmag is a finite element solver based on the
general purpose multi-physics library Nsim. It is developed by the group of
Hans Fangohr and Thomas Fischbacher in the School of Engineering Sciences
at the University of Southampton.

In this simulation, the full three-dimensional dynamics of the bi-layer
system is calculated. The thin layer is discretized with a mesh size equal
to 4 nm (its thickness) while the thick layer is discretized with a mesh of
3 nm. The numbers of nodes used in the simulation are respectively 6135 in
the thin layer and 37598 in the thick layer. The magnetic parameters intro-
duced in the code are the ones extracted in FMR experiment (Table 6.1).
The magnetization vector is assumed to be uniform inside each cell. This
approximation is valid because the cell size is smaller than the exchange
length Λ � 5 nm in Permalloy. The simulation incorporates the perturbing
presence of the sphere attached on the cantilever. In this first part we neglect
any spin-diffusion effects between the layers: the 10 nm thick Copper layer
is replaced in the simulation by a vacuum spacer. Below we shall describe
how to simulate the presence of the Cu spacer using CRMT.
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Figure 6.7: (Color online) Color representation of the static configuration
of the magnetization inside the nano-pillar. In this micromagnetic simula-
tion, the external magnetic field Hext � 1 T is applied along the normal êz,
and the magnetic spherical probe is taken into account. The white regions
at the center of each disk correspond to the magnetization being aligned
along the normal within 0.05X. In the colored regions at the periphery, the
magnetization is twisted, with the hue indicating the direction of the static
transverse component.

4πM1 (G) αLLG1 4πM2 (G) αLLG2 γ (rad.s�1.G�1)
8.0 � 103 1.4 � 10�2 9.6 � 103 0.85 � 10�2

�1.87 � 107

Table 6.1: Physical parameters of the thin (1) and thick (2) Permalloy layers
measured by mechanical-FMR in the nano-pillar.

HÌ H�i H� H� H�
1.072 T 0.968 T 0.954 T 0.870 T 0.857 T
a0,0 a0,1 s0,0 s0,1 a0,2

5.96 GHz 8.89 GHz 9.77 GHz 11.91 GHz 12.15 GHz
1.072 T 0.973 T 0.944 T 0.872 T 0.864 T

Table 6.2: Comparative table of the resonance fields of the ` � 0 SW modes.
Top are the peak locations measured experimentally in the SW spectrum
excited by a uniform RF field at f0 � 8.1 GHz [see FIG.(6.4a)]. Middle are
the eigen-frequencies extracted from the simulation at H0 � 1 T. Bottom are
the corresponding fields through the affine transformation Eq.(6.4).
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Figure 6.8: (Color online) Comparison between the simulated dynamics
with the ` � 0 symmetry at H0 � 1 T (a) and the experimental SW
spectrum excited by a uniform RF magnetic field at f0 � 8.1 GHz (b).
The simulated spectrum is the Fourier transform of the time evolution of`c�t�e � �`Mx � iMye�~�2Ms� averaged over the whole sample volume [the
frequency is convered into field through the affine transformation Eq.(6.4)].
The contribution of each layer is displayed by the contrast of the circle sym-
bols in the plot: a light (dark) circle indicates that the dynamics mostly
occurs in the thin (thick) layer. The peaks are labeled according to their
precession profiles shown in FIG.(6.9).
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Figure 6.9: (Color online) Simulated precession patterns at the eigen-values
displayed in FIG.(6.8a). Column (a) shows the precession profiles across the
thin (light blue) and thick (dark blue) layer. Columns (b) and (c) show the
dynamics in respectively the thin and thick layers, with the same color code
as FIG.(5.7).
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6.3.1 Identification of the SW modes

Our first step is to calculate the equilibrium configuration of the normally
magnetized nano-pillar with the added presence of a spherical probe carrying
the magnetic moment 2 � 10�10 emu and placed at a separation distance
1.3µm above the upper surface of the nano-pillar on the axis center [see
FIG.(6.1b)]. The calculation is done in an external bias magnetic static
field of H0 � 1 T applied exactly along the disk axis. The convergence
criteria introduced in the code was that dm~dt @ 1X~ns. The result is shown
in FIG.(6.7) revealing the twisted state at the periphery. The amount of tilt
is less than 0.5 degree compared to the normal and the most tilted region is
located at the bottom interface of the thick layer.

Starting from the equilibrium state, we then calculate the time decay
response of the local magnetization to a small perturbation of the magnetic
configuration. Two different initial conditions are simulated. In the first
case, we have used the following perturbation vector field:

εM�r, z� � ϑ Q
m@6

J0�k0mr�êx (6.2)

This form corresponds to an excitation that put the same energy in the
lowest 6 m-index modes. At instant t � 0, we add, at every mesh, to the
local unit vector along the equilibrium magnetization, the small perturbation
vector defined in Eq.(6.2) and the initial condition becomes êM � êM � εM .
The angle ϑ � 0.01 P 1 corresponds to a small variation from the local
equilibrium axis of less than 1X degree. Such value is small enough to ensure
that non-linear effects are not dominant in the simulated spectrum. The
symmetry of the perturbation field used in Eq.(6.2) corresponds to a uniform
tilt (i.e. in same azimuthal direction) of the magnetic moments located near
the center of the disk. Such symmetry of the perturbation field reproduce
the symmetry used during the RF magnetic field excitation sequence. One
thus expect to reveal the SW spectrum projected along the ` � 0-index.
We then simulate the magnetization decay inside the whole sample. The
decay is recorded in a 10 ns time window with a sampling interval of 5 ps.
At every time step, the spatial average of the in-plane component of the
magnetization is recorded. For each layer j � 1,2, we cconsider the complex
reduced magnetization

`cj�t�e � �`Mjx�t�e � i`Mjy�t�e�~�2Mj� (6.3)

inside the layer. A complex Fourier transform of c leads to the fre-
quency spectrum of the magnetization decay. In order to compare it to the
experimental data, where the spectrum is recorded as a function of field [see
FIG.(6.8b)] we have applied the affine transformation to the frequency data

H �
2π
γ
�f � f0� �H0 (6.4)
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where f0 � 8.1 GHz is the RF frequency used in the measurement and H0

is the static field used in the simulations. Such linear correction assumes
that the sample is well into the saturation regime. This is valid above
0.8 T and discrepancies between the simulation and the mechanical-FMR
data are expected below this threshold. FIG.(6.8a) shows the power density
spectrum of the time decay of the full averaged reduced magnetization `ce ��`c1et1�`c2et2�~�t1�t2�, where t1 and t2 represent respectively the thickness
of the thin and thick layer. The eigen-values of all the peaks are reported in
Table.6.2. Since we also have access to the spectrum inside the individual
layer, we have indicated the contribution of each layer to the simulated
spectrum by modulating the contrast inside the circle symbols in the plot.
A light circle indicates resonance which mostly occur in the thin layer, while
dark circle indicate resonance which occur mostly in the thick layer. The first
two peaks are thus resonances occurring in the thick layer, while the third
peak is a resonance occurring in the thin layer. We emphasize at this point
that the relative amplitude between the peaks in the simulated spectrum
have no intrinsic meaning since it depends on the form of the perturbation
field. In contrast to the amplitude of the peaks, the relative phase and the
relative amplitude of the precession between the two magnetic layers give
an insight about the coupled dynamics.

The first peak of the spectrum labeled a0,0 occurs at the same field lo-
cation as the peak at HÌ observed experimentally. In order to visualize the
corresponding precession profile, we have registered the spatial orientation
of the transverse magnetization in the rotating frame at each eigen-values of
the spectrum. This is obtained by calculating the Fourier transform of the
quantity c at every mesh. The results are shown in FIG.(6.9) using different
representations. The first column shows the precession profile along the me-
dian direction in the thin (light blue) and in the thick (dark blue) layer. A
2D view of the spatial distribution of the transverse magnetization is shown
in the two right columns of FIG.(6.9), respectively for both the top and
bottom layer, using the normalized color scale defined in section 5.4, where
the hue indicates the phase (or direction) of the transverse component of
the magnetization MÙ, while the brightness indicates the amplitude of the
longitudinal component, MÕ. From the color code panel, we see that all the
modes of FIG.(6.9) have the same phase along the azimuthal direction and
thus they should all bear the same index ` � 0. The lowest energy mode
corresponds to the most uniform mode with the largest wave-vector. This
mode is also associated with a small uniform resonance in the thin layer.
This mode thus has the index m � 0. From the phase between the two dy-
namic susceptibility, one observes that the two modes between the thick and
the thin are oscillating in antiphase. In summary the spatial profile shown
in FIG.(6.9) confirms the lowest energy mode should be labeled a00 since
this mode bears the indices a (mode anti-symmetric), ` � 0 and m � 0. The
second peak labeled a01 occurs close to the peak H�i . This peak corresponds



118CHAPTER 6. CURRENT DRIVEN DYNAMICS INSIDE A NANOPILLAR: EXPERIMENTS AND SIMULATIONS

also to a resonance in the thick layer, and the color representation of the
local power absorption shows that this is the first harmonic (m � 1), with
one line of node in the radial direction. Again the two layers are oscillating
in antiphase as clearly shown by the profile along a median direction. The
profile also shows that this mode is coupled to the first harmonic of the thin
layer (m � 1). We emphasize once more that the relative phase between
two different modes has no intrinsic signification since it depends on the
initial condition. We find, however, that despite our initial condition which
synchronize all the modes at t � 0, the center of the disks of the thick layer
does not rotate exactly at the same phase between the two patterns shown
for the two modes a00 and a01. We associate this difference to small error
in the sampling of the fourier spectrum. A more proper comparison should
look at the phase at exactly the resonance (or maximum of the peak). The
third peak is labeled s0,0 and it located close to the peak at H�. It corre-
sponds this time to a uniform (m � 0) precession mainly located in the thin
layer. This is again in agreement with the observed spectrum in FIG.(6.8b).
The mode s0,0 corresponds this time to the two layers vibrating symmetri-
cally. We observe that the simulated pattern of the s0,0 slightly violates the
cylindrical symmetry both in the thin and in the thick layer. Since there is
nothing in our problem that should produce this asymmetry, we ascribe this
effect to the limit of the software and to a problem of propagation of errors
(the resolution set in the program is 10�7). Although the asymmetry is sig-
nificant, we do not expect this to change much the predicted eigen-value for
this mode.

The simulation works shown above also allow an estimation of the amount
of dynamical coupling between the disks. From the profiles shown in FIG.(6.9),
one can infer that in the case of the fundamental mode, a00, the amplitude
of precession is distributed in the ratio of 81% contribution from the thick
layer and 19% contribution from the thin layer. This illustrates dramatically
that although the spectral deformation are of the order of the linewidth, the
excitation of the adjacent layer is not small. This characteristics must be
weighted by the thickness of the layer, and this ratio drops for symmetric
modes (modes of the thin layer). In the case of the mode s00, the relative
weight drops to a ratio of 92% contribution from the thin layer and 8%
contribution from the thick layer. From these values one can estimate the
amount of field created by the layers one another.

As a check, another simulation has been performed by F. Boust and
N. Vukadinovic using a software base on finite differences. The dynamical
susceptibility spectra of the two Py disks has been simulated by a micro-
magnetic code developed by S. Labbé [61] and later by F. Boust and N.
Vukadinovic [13, 100]. In this approach, the disk volume is discretized by a
regular cubic mesh of total size 128� 128� 16, where each cube has an edge
size of 2 nm. Two 3D codes are used to calculate the dynamical response.
The first code calculates the stable configuration of the magnetization vec-
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tor M�r� at H0 � 1 T by solving the Landau-Lifshitz equation in the time
domain. In this simulation, the presence of the perturbing sphere of the
MRFM was not directly incorporated in the code and instead a constant
offset of 0.57 GHz (corresponding to an offset field of 190 G) was added to
all the eigen-values. The second code computes the full dynamic susceptibil-
ity tensor χ̂ from the linearization of the Landau-Lifshitz equation around
the local equilibrium configuration. The used material parameters are iden-
tical to the ones used by Nmag. This code has been used to calculate the
eigen-value of the three lowest energy modes having the ` � 0 symmetry.
The calculated eigen-value for the mode a00 is 5.9 GHz while the calculated
eigen-value for the mode s00 is 9.7 GHz. These values are in good agreement
with the ones obtained by the Nmag micromagnetic code (see Table 6.2).
The predicted eigen-value of the mode a01 is 8.7 GHz, a value somewhat
different from the result of Nmag, but the difference is attributed to the
approximation made, where a constant offset has been used to account for
the stray field of the sphere instead of doing the complete perturbation of
the perturbing influence [22]. These simulations also confirm the amount
of dynamical dipolar coupling. In the case of the fundamental mode, a00,
the two layers vibrate anti-symmetrically and the amplitude of precession is
distributed in the ratio of 79% contribution from the thick layer and 21%
contribution from the thin layer. In the case of the mode s00, the relative
weight drops to a ratio of 91% contribution from the thin layer and 9%
contribution from the thick layer. From these values one can estimate the
amount of field created by the layers one another.

Finally, one can also extract from the simulations the thickness depen-
dence of the precession profile. We find that the profile is thickness inde-
pendent within the uncertainty of the calculated profile which is about �2%.
This confirms the validity of the 2D approximation, and it explains why the
analytical model works so well in the prediction of the resonance location.

We have repeated the same simulation, but this time using an orthoradial
perturbation field. Starting again from the equilibrium configuration, we
add at t � 0 the following perturbation field at each node of the mesh:

εM�r, z� � ϑ Q
m@6

J1�k1mr�êr � êz (6.5)

where êr is the unit vector along the radial direction. The value of ϑ �

0.01 P 1 is identical. The symmetry of the perturbation reproduces the
one induced by the Oersted field of a current flowing perpendicular to the
layers. One thus expect to reveal the SW spectrum projected along the
` � �1-index. Again we monitor the time decay of the transverse magnetiza-
tion but this time we record the spatial average of `c exp�iφe, where φ is the
local azimuthal coordinate of the node of the mesh. In other words, we have
calculated the spatial average of the cylindrical component of the magneti-
zation in cylindrical coordinates (instead of cartesian). The power density



120CHAPTER 6. CURRENT DRIVEN DYNAMICS INSIDE A NANOPILLAR: EXPERIMENTS AND SIMULATIONS

H , f H4Y , f4Y H4, f4 HB, fB HD, fD
1.025 T 0.920 T 0.910 T 0.824 T 0.785 T

7.37 GHz 10.48 GHz 10.92 GHz 13.41 GHz 14.20 GHz
a1,0 a1,1 s1,0 s1,1 a1,2

7.32 GHz 10.45 GHz 11.04 GHz 13.48 GHz 14.06 GHz
1.026 T 0.921 T 0.902 T 0.826 T 0.800 T

Table 6.3: Comparative table of the resonance fields and frequencies of the
` � �1 SW modes. Top are the field peaks measured experimentally in the
SW spectra excited by an RF current at f0 � 8.1 GHz [see FIG.(6.4b)].
Second line are the experimental frequency peaks measured at H0 � 1 T by
sweeping the frequency of the RF current [see FIG.(6.10b]. Third line are
the eigen-frequencies extracted from the simulation at H0 � 1 T. Bottom are
the corresponding fields through the affine transformation Eq.(6.4).

spectrum shown in FIG.(6.10) represents the dynamics observed under the
forced oscillation with ` � �1.

Using the same procedure as above, we have also reported in FIG.6.11
the precession profile as well as a color map of the mode pattern using
the same color code convention. The striking new feature of these spectra
is the rotating phase in the azimuthal direction, characteristics of the ` �
�1 modes. Both sense of rotation are identical compared to the Larmor
direction of precession. In the representation of FIG.(6.11) where what is
shown is both a top and a bottom view projection of the nano-pillar stack,
the images give rise to apparently inverted sense of rotation between the two
layers. Repeating the analysis above concerning the a~s and m index, we
demonstrate that the labelling of the simulated spectra is clearly consistent
with the images provided.

6.4 Micromagnetic simulations at Idc x 0

Micromagnetic simulations that take into account spin transfer effect are
necessary to describe the dynamics in presence of a bias dc current, and the
associated selection rules of SW modes. In this section we shall describe a
method, based on CRMT, to include spin torque into Nmag computations.

Calculations of current driven dynamics in our nanopillar have been al-
ready performed by our group one of our group (V. Rychkov), whithin a
macrospin approximation. In this model, one approximates the magnetiza-
tion texture in each layer with a single magnetization vector. The dynamics
of the nanopillar is calculated solving numerically two LLG equations (one
for each layer) coupled through dipolar interaction, that include spin torque
calculated with CRMT. This approximation allows to describe magnetore-
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Figure 6.10: (Color online) Comparison between the simulated dynamics
with the ` � �1 symmetry at H0 � 1 T (a), the experimental frequency-
sweep SW spectrum excited by an RF current through the nano-pillar at
H0 � 1 T (b), and the corresponding field-sweep experimental SW spectrum
at f0 � 8.1 GHz (c). The simulated spectrum is the Fourier transform of the
time evolution of `c�t� exp�iφe averaged over the whole sample volume [the
frequency is converted into field through the affine transformation Eq.(6.4)].
The contribution of each layer is displayed by the contrast of the circle
symbols in the plot: a light (dark) circle indicates that the dynamics mostly
occurs in the thin (thick) layer. The peaks are labeled according to their
precession profiles shown in FIG.(6.11).
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Figure 6.11: (Color online) Simulated precession patterns at the eigen-values
displayed in FIG.(6.10a). Column (a) shows the precession profiles across
the thin (light red) and thick (dark red) layer. Columns (b) and (c) show
the dynamics in respectively the thin and thick layers, with the same color
code as FIG.(5.7).
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sistive effect, but it cannot describe SW modes, which related to spatial
inhomogeneity of the magnetization.

In our simulation we have moved one step further, considering a fully
three dimensional texture of the magnetization, and including transport only
along êz (neglecting lateral diffusion of electrons). When the simulations
described in this work were performed, CRMT was a 1D transport theory,
and a three dimensional extension of CRMT theory was under development.
Our approach is an intermediate step towards micromagnetic simulation
that incorporate a 3D theory of transport. Anyway, even in our simplyfied
picture, the selection rules associated to spin torque excitations have been
described correctly.

Since CRMT is tabulated with the same set of experimentally accessible
parameters as the Valet-Fert theory [see Sec.(3.4)] our method is suitable
for a large variety of materials. The algorithm to couple CRMT to Nmag
that we shall describe below can be easily adapted to geometries different
than a cylinder.

The starting point to include spin torque in our micromagnetic simula-
tion, consists in modifying the LLG equation at each node i of the Nmag
mesh as follows:

dêMi

dt
� �γ�êM i �Heff,i� � α�êMi �

dêMi

dt
� � τi~M, (6.6)

Here M is the saturation magnetization, êMi � Mi~M is the normalized
magnetization, τi is the non equilibrium spin torque, and Heff i is the effec-
tive field at site i, which takes into account the coupling with neighbouring
sites due to dipolar and exchange interaction as well as the external field.
Hereafter we shall describe how to include the torque τi, calculated with
CRMT, in the LLG equation resolved by Nmag.

6.4.1 Coupling CRMT to Nmag

Magnetization and spin torque are strongly coupled: at each instant, the
magnetic configuration determines spin torque, which influences the succes-
sive dynamics. In our numerical simulations, spin torque has to be included
into Nmag solver as follows:

1. At time t and site i Nmag computes the vector êMi�t�, and CRMT
the torque τi�t�

2. the quantity êMi�t� � τi�t�dt, (dt being the integration time step) is
set as new initial condition for the Nmag integrator at time t.

3. Nmag performs the time integration of the LLG equation between the
time t and t � dt, when spin torque is calculated anew and the whole
procedure starts again.
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Figure 6.12: A cartoon of the system, where circles represent the sites and
the lines that connect them represent the mesh. The two permalloy disks
are viewed from profile, with the current flowing along the z axis. Spin
torque acts directly only on the sites lying at surfaces 1 and 2: these are
the only sites for which the LLG equation has to be modified according
to Eq.(6.6). The other sites are affected by spin torque via exchange and
dipolar interaction. Different colours have been chosen for surface sites to
stress the fact that the torque is different in surfaces 1 and 2.
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Figure 6.13: Different simplified representation of our system. In fig. (a)
the disk is discretized using finite elements where each dot consists in a site
i with magnetization êMi, connected to the other sites through an irregular
mesh. In fig. (b) the same disk is discretized using finite differences, as an
assembly of pillars (represented by red squares) connected in parallel, each
one with the same cross section S. Fig. (c): each CRMT pillar contains one
site lying at the surface. See text for details about the coupling between
CRMT and finite element representation.

Since the penetration length of transverse spins is about 2-3 nm, [see section
(4.4.1)], spin torque acts only at the surfaces of the two disks that face
(hereafter referred as surface 1 and 2 for thin and thick layer respectively).
For meshes bigger than 3 nm, torque acts only the sites lying on those
surfaces, and we consider that spin torque depends only on the magnetic
configurations of these sites. We shall describe the points of surfaces 1 and
2 using Eq. (6.6), and all the other points with the LLG equation whithout
spin torque. A schematic of this simplification is shown in FIG.(6.12).

To perform this computation we need to associate to each site i a CRMT
system. For this purpose we consider the Nmag system as divided into
columns of sites, each column K representing a CRMT pillar with cross
section SK . The nanopillar is viewed as an assembly of these columns con-
nected in parallel, and spin torque has to be calculated in each column using
CRMT, and then associated to the sites lying on the column. This ”CRMT
representation” of the system is based on finite differences, which consist
into discretization of space in regular cubic cells. Nmag is based on finite
elements, where space is discretized with irregular triangles or thetraedra
that connect the sites. Our algorithm consists in a method to divide the
system, that couples these different representations [see FIG.(6.13)].

To calculate spin torque, let us consider the columnK shown in FIG.(6.15)
This column contains one site at surface 1 and one site at surface 2 At time
t these sites have magnetizations êM1�t� and êM2�t�, which form an angle
θ. Using CRMT we calculate the corresponding torques. For example, the
torque τ1�θ� acting on êM1 reads:
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Figure 6.14: A schematic of the technique used to divide the system (viewed
from provile, with current flowing in the z direction) into an assembly of one
dimensional columns, each one described using CRMT. (a) The columns of
sites inside the system are identified (see text for details). (b) In CRMT
representation, the system is described as an assembly of columns connected
in parallel. Spin torque and resistance is calculated in each CRMT column.
Notice that Nmag does not consider normal materials, while in CRMT they
are included (since they influence electronic transport).

τ crmt1 �
1

4π
Nchf1�θ�eU�êM1 � �êM1 � êM2�� (6.7)

where Nch is the number of propagative channels entering the column, e is
the electron charge, U is the potential difference between the contacts, θ is
the angle between êM1 and êM2, and f1 (f2) accounts for the angular de-
pendence of the torque in the thin (thick) layer and is the output of CRMT.
This torque is expressed in Joules, while the torque that enters the LLG
equation (6.6) for the normalized magnetization is τj � �gµB�~�ÒhVj�τjcrmt,
for j � 1,2. Vj is the volume that has to be associated to each site, that
shall be defined below. The CRMT calculation (6.7) has to be repeated for
all the columns that constitute the system, in order to obtain the torque for
each site of surface 1 and 2.

In general the mesh is not regular, so that there is not an obvious way
to divide the system into columns. FIG.(6.15) illustrates the method used
for the division of the system. We start considering a site with position r1

on surface 1, and we measure the distances between r1 and all the sites of
surface 2. Among these sites we consider the nearest one to r1, for example
r2, and we assign r1 and r2 to the same column. We proceed in the same
way for all the sites of surface 1, until each pair of sites of surface 1 and 2
have been associated to a column. This procedure is not optimal in terms
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Figure 6.15: A representation of the technique used to compute spin torque
for the sites of the surfaces 1 and 2.The system is viewed from profile, with
the current flowing along the z axis. The mesh is irregular (the irregularity
has been exagerated for better visualization of the technique used to build
the CRMT columns). (a) At first one selects a site of surface 1 and looks
for its nearest neighbour among the sites of surface 2. (b) to each couple of
sites with magnetization êM1 and êM2 we associate a CRMT system where
êM1 and êM2 represent the direction of the magnetizations inside the thin
and thick Py layers correspondingly.
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Figure 6.16: (a) For each couple of sites (represented by black dots) of the
Nmag mesh lying surface 1 and 2 we define a column K with given cross
section, which represents the CRMT system. In each column K there are
two cells: C1 (thin layer) and C2 (thick layer), that contains respectively one
sites of surface 1 and one site of surface 2. The effective spin torque that
acts on site 1 with magnetization êM1 (left) is proportional to the current
that crosses C1 divided by the volume of the cell C1. We assume that all
the columns of surface 1 (and consequently all the cells ) have the same
cross section, which is simply the surface of the disk divided by the total
number of sites NS1. Through the whole system flows a current Idc. Since
the columns are connected in parallel, each column (and consequently each
cell) of surface 1 layer receives a current IS1 � Idc~NS1. The same procedure
has to be repeated for C2.

of computation performances but, since it has to be done only once before
starting the simulation, it takes a time which is negligible (a few seconds for
our mesh) if compared to the time needed to perform the whole simulation.

Starting from Eq.(6.7) , we define now a proper expression for spin torque
that depends on the discretization of the system and on the injected cur-
rent. In our ”CRMT picture” the sample is dicretized parallelepiped-shaped
columns, each column describing the transport properties of a thin subpart
of the system. According to this subdivision, each CRMT column contains
two cells corresponding to the two sites atsurfaces j � 1,2, for which spin
torque has to be calculated, as shown in FIG.(6.16). Let’s focus on the thin
layer, which is divided into NS1 columns. According to our subdivision, NS1

is equal to the number of sites lying at surface 1.
We consider the column K of FIG.(6.16), which contains site 1. The

torque τ1 that acts on êM1 is the spin current deposited inside the cell
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C1, and is proportional to the current that flows through the C1 divided its
volume VC1. We assume that each cell of the thin layer has the same volume
Vc1 � V1~NV 1, where V1 is the total volume and NV 1 is the total number of
sites contained in the thin layer. in the same way, we assume that each cell
of thin layer has the same cross section SC1 � S1~NS1, S1 being the area of
surface 1. Starting from Eq.(6.7), we write the torque as

τ1 �
gµBNV 1ÒhV1

Nch

4π
fi�θ�eUŵ1 (6.8)

where for simplicity we have set ŵ1 � êM1��êM1� êM2�. Since the columns
are connected in parallel, the current through each column of the thin layer
is given by I1 � Idc~NS1. This current is related to the potential difference
between the conductors via the Ohm’s law: eU � RKIdc~NS1, where the
resistance RK of the column K depends on the angle θ between êM1 and
êM2 and on the Sharvin resistance Rsh:

RK �
Rsh

TK�θ�Sc1 , (6.9)

TK being the transmission probability for an electron to cross column K
(see chapters 2 and 3). The torque now reads:

τ1 �
gµBÒhV1

NV 1

NS1

eNch

4π
Rsh

SC1
Idc

f1�θ�
TK�θ�ŵ1. (6.10)

From the definition of Sharvin resistance, Rsh � h~�e2Nch�, the previous
formula becomes

τ1 �
gµB
2eV1

NV 1

NS1
IdcF1�θ�ŵ1, (6.11)

where F1�θ� � f1�θ�~TK�θ� is the angular dependence of spin torque cal-
culated by our CRMT numerical simulations. This formula the same as
Eqs.5.12, where spin torque is written as

γIdcM

2πλ
ŵ, (6.12)

whith λ�1
� �ηh�~�2eMV � [see Eq.(5.13)], where η is the degree of spin

polarization. In our computation η � NV 1

NS1
F1�θ� accounts for the geometric

characteristic of the layer through NV 1~NS1(number of sites at the surface
and inside the volume), and for the characteristic of the material and the
configuration of the magnetization through F �θ�(CRMT calculation). sub-
stituting γÒh with gµB Eq.(6.12) becomes �gµBIdcη�~�2eV �, which is the
same as Eq.(6.11).

This is the final expression that has to be included in the LLG equation
(6.6). The torque is proportional to Idc, as it should be, and the dependence
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Figure 6.17: Main panel: spin torque for thin and thick layer as a function of
the angle between the magnetizationsvof thin and thick layers. Small panel:
Angular dependence of the conductance.

4πM1 (G) α1 4πM2 (G) α2 γ (rad.s�1.G)
7.8 � 103 1.6 � 10�2 9.4 � 103 8 � 10�3 1.87 � 107

Table 6.4: Parameters of thin (1) and thick (2) layer used in micromagnetic
simulations with spin torque.

on discretization of the mesh is described by the two factors NV 1 and NS1,
which account respectively for the number of points inside the volume V1 �

t1πR
2 and on the surface 1 with area πR2, t1 being the thickness of the thin

layer and R being the radius of the pillar. The same procedure has to be
done to calculate the torque inside the cell C2 of each column K in which
the pillar is divided. The angular dependence of spin torque and resistance
in our system, computed using CRMT, is shown in FIG.(6.17). The torque
shown in this figure is perpendicular to the magnetization, and takes into
account the triple product of the form eM � eM �P , which depends on the
orientation of the magnetization êM and on the polarization P of the current
in each layer. The difference of resistance between parallel and antiparallel
state, ∆R � 27 mΩ, calculated using CRMT, is close to the experimental
value shown in the magnetoresistance hysteresis curve of the nanopillar [see
FIG.(6.18)].

The computation performances of Nmag are sensitively slower when the
magnetization is far from equilibrium. As a consequence, the discretization
length of 3-4 nm used in Sec.(6.3) was too time consuming. In our simula-
tions, we have used a mesh with an average discretization length of 13.8 nm.
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Figure 6.18: Magnetoresistance hysteresis curve of the nanopillar for an
in-plane mgnetic field. The dark (respectively light) symbols indicate the
magnetic field being ramped up (respectively down).

This value is variable according to the layer, whithin a minimum of 4 nm
in the thin layer and a maximum of 15 nm in the thick layer. This corre-
sponds to 651 nodes for the thin layer and 748 nodes for the thick layer. All
the simulations have been performed with an external field Hext along êz.
When the simulations described below were done, in experiments we used a
different nanopillar than the one described in Sec.(6.2). The parameters of
the older nanopillar, that have been used in our simulations (Tab.3.7), are
slightly different. As we shall see, these differences do not affect significantly
our results, which are still accurate enough to be comparable with experi-
ments and to describe correct selection rules. In our simulation we haven’t
taken into account the presence of the magnetic tip of the cantilever, but
we have introduced its effect a posteriori shifting the spectrum of 5.7 MHz
towards high frequency.

In FIG.(6.19) we have compared the spectrum calculated with our coarse
mesh with the spectrum calculated with the thinner mesh used in simulations
of Sec.(6.3). The spectra have been calculated using the parameters of table
(3.7) In both spectra we recognize the modes a`,0, a`,1 and s`,0, for ` � 0,1.
Their frequencies, reported in the table below, are similar, and we can safely
describe the system using our coarse mesh.

According to our identifications of the SW modes performed in chapter
5 and at the beginning of this chapter, the modes s0,0 and s1,0 are the ones
withassociated to the dynamics of the thin layer that have lower energy.
For this reason they are the modes most easily excited by spin torque in
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Figure 6.19: Comparison between the two spectra obtained at Idc � 0 with
the thin mesh (a) and with the coarse mesh (b) used for simulations of
current driven dynamics. The two spectra have been calculated using the
parameters of table (3.7), and give close results. This confirms that we can
safely use the coarse mesh to describe the system.

Modes a00 a01 s00 a10 a11 s10

freq. thin mesh (GHz) 6.48 9.43 10.31 7.87 11.03 11.52
freq. coarse mesh (GHz) 6.72 9.45 10.44 7.7 11 11.45

our configuration, where the negative current Idc destabilizes the thin layer
and stabilizes the thick one. Spin torque excites all the symmetries in the
same way, so that the selection rules for ` � 0,1 are given only by the initial
configuration of the magnetization. Initial conditions where the magnetiza-
tion is uniformely tilted in a given direction with respect to êz favors l � 0
modes, while initial conditions where the magnetization is tilted in ortho-
radial direction with respect to the equilibrium axis êz favors ` � 1 modes.
To excite the modes ` � 0 we have started from a configuration where the
magnetization is uniformly tilted along êx with a polar angle of 19.5 de-
grees, then we have computed the time evolution of the system in presence
of oersted field and spin torque. For the excitation of ` � 1 modes we have
started from a configuration where the magnetization is uniformely aligned
with êz, and we have applied the following perturbation field at each node
of the mesh:

εM�r, z� � θêM�r,z� � êr � θêz � êr (6.13)

with θ � 0.01, corresponding to a uniform tilt in orthoradial direction. then
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Figure 6.20: (a) time evolution of the longitudinal component of the space
averaged magnetization of the thin layer, calculated for different currents, for
an external field Hz � 10KOe applied along êz; (b) resistance as a function
of time calculated for different currents; (c) precession angle as a function of
time calculated for different currents. After an intial transient regime, the
precession is stable in time.

we have calculated the time evolution of the system in presence spin torque
and oersted field. The time step of our simulations is 5 ps. We have recorded
the time decay of the magnetization in both layers, averaged in cartesian
and cylindrical coordinates in the same way as in Sec.(6.3), to study modes
with ` � 0 and 1 correspondingly.

6.4.2 Resistance as a function of current

In this section we shall see how the resistance of the system changes as
a function of dc current and applied magnetic field. abrupt changes of
the resistance allow to identify the different dynamical regimes of the nano
oscillator. In particular, we shall compare calculations of resistance with
time resolved dynamics of the magnetization, to see how the precession
changes when current increases.

At first, we show the time decay of the normalized magnetization (av-
eraged in cartesian coordinates) `me1 � `M1~M1e and `m2e � `M2~M2e
inside both layers, at different currents and magnetic fields. At sufficently
high current, both `m1e and `m2e precess with an angle α1 and α2 with
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respect to the equlibrium axis êz. Since we are interested in the variation of
resistance ∆R as a function of the angle θ between `m1e and `m2e, we have
set the resistance to zero in the parallel configuration. In FIG.(6.20a) we
have plotted the average longitudinal magnetization `mz,1e of the thin layer
as a function of time for different bias current, while FIG.(6.20b) and c show
∆R and θ as a function of time. The simulation has been performed with
an external field Hz � 10 KOe under the initial conditions for the excitation
of the modes ` � 0, and the decay has been monitored for 40 ns.

In this simulation the distinction between subcritical and supercritical
regimes appears clearly: at low bias currents `mz,1e is aligned with êz, while
starting from �5.6 mA the damping is compensated and the system starts
autooscillating. This appears as a reduction of the longitudinal magneti-
zation.. FIG.(6.20) allow to estimate the critical current Ith around �5.6
mA, where the stable precession becomes visible. In the next section we
shall calculate critical current from the analysis of the spectrum, and we
shall see that this first extimation is quite precise. Notice that, the higher
is the current, the shorter is the time needed for the magnetization to reach
steady precession state. With a current �10 mA about 10 ns are needed
to open a stable precession angle of 60X. At higher currents, reversal and
stable precession can be reached in about 5 ns.

For a precise caracterization of the dynamics, in FIG.(6.21) we report
a phase diagram of the resistance as a function of field (between 8 and 13
KOe) and current (between 0 and -29 mA). At high currents (more than -10
mA) the resistance oscillates as a function of time, so that time averaged
resistance has to be considered. To obtain this phase diagram, we have
monitored the decay for 20 ns, and we have time-averaged the resistance
in the window between 15 and 20 ns. The diagram can be divided into 4
regions (delimited by dashed white and black lines ) with different dynamics.

Region (1), in dark-blue tone, is the subcritical regime, where the current
is not sufficient to compensate damping, and both layers are oriented along
êz. It corresponds to a region of low resistance. In region (2) (light blue
tone), current starts exciting the precession of the thin layer. As a small
precession angle opens, the resistance increases slightly. Notice that critical
current depends on the applied fields: since it is responsible for the stiffness
of the system: as field increases, critical current is higher. Region 3 starts
around 10 mA, where the diagram changes abruptly: The magnetization
m1 is partially reversed, with a precession angle that approaches 160circ at
fields higher than 10.5 KOe. The dipolar interaction due to the reversal
of the thin layer, induces a precession of the thick layer. In this regime
both layers precess with angles α1 and α2 oscillating with time, which cause
fluctuations of the resistance. These fluctuations are damped with time, but
still visible at 20 ns. Region (4) is similar to region (3), since both layer are
precessing. The difference consists in the fact that the oscillations of α1 and
α2 disappear quickly (about 5 ns).
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Figure 6.21: Simulated phase diagram of the resistance as a function of
current and magnetic field. The diagram is divided in 4 regions with different
dynamics. Region (1): both the layers are aligned with êz; region (2):
precession of the thin layer; regions (3) and (4): magnetization reversal and
precession of both layers (see text).
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Figure 6.22: longitudinal average magnetization of thin (black) and thick
(red) layer as a function of time, calculated in each of the regions of the
phase diagram shown in FIG.(6.21).

Figure 6.23: Resistance as a function of current calculated for Hext � 11
KOe. Resistance varies sensitively from one region to the other, with the
steepest variation in region (3), when reversal occurs.
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Figure 6.24: Resistance as a function of current calculated for different ap-
plied field Hext. The stronger is the external field, the highest is the current
needed to destabilize the magnetization. The maximum of the resistance
(about half of the GMR) corresponds to a precession angle of about 156X .

The subdivision in regions with different resistances can be easily seen in
FIG.(6.23), where we have reported the resistance as a function of current,
calculated at Hext � 1.1 KOe. In region (3) one can see large variation of the
resistance as a function of current, that are not present in region (4), where
resistance decreases uniformly with current. More details of the resistance
as a function of current, calculated for different applied fields, are shown in
FIG.(6.24). Here the dependence of critical current on field appears clearly.

The dynamics of the different regions is shown in FIG.6.22 where we have
reported the time evolution of `mz,1e (thin) and `mz,2e (thick) respectively
in black and red tones. Above critical current [region (2)], `mz,1e decreases
(precession of the thin layer), while `mz,2e equals one (no precession of the
thick layer). This is coherent with the chosen direction of the current, which
compenates the damping of thin layer and increases the damping of thick
layer. At higher current, both layers precess as shown in regions (3) and (4).

The phase diagram FIG.(6.21) has been compared with macrospin com-
putations [FIG.(6.26)] performed by V. Rychkov and experimental datas
[FIG. (6.25]. Macrospin offers a qualitative description of the different re-
gions, which is similar to ours. In particular, the frontiers between region (1)
and (2) and regions (2) and (3) are situated at similar values of current and
field. In both cases, the line between regions (2) and (3), where reversal oc-
curs, starts near �10. This value is lower than the experimental one, where
reversal occurs between �15 and �20 mA. The main difference between our
simulations and macrospin consists in region (3), which in macrospin appears
completely homogeneus. In our simulations we can observe separate peaks



138CHAPTER 6. CURRENT DRIVEN DYNAMICS INSIDE A NANOPILLAR: EXPERIMENTS AND SIMULATIONS

Figure 6.25: Experimental phase diagram that shows resistance as a function
of current and applied field.

Figure 6.26: Resistance as a function of current and applied field calculated
whithin a macrospin approximation coupled to CRMT, for the computation
of current driven dynamics.
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that are the signature of the presence of different modes. Indeed, the possi-
bility to detect different SW modes is the most important difference between
this 3D model and a simple macrospin approximations. Our computations
have allowed to describe the different regions of the experimental phase di-
agram in terms of different dynamics of the magnetization. The agreement
between theoretical and experimental phase diagrams is not merely qualita-
tive: in both diagrams the maximum of the resistance is around 12 mΩ, and
the resistance of regions (1) and (2) reproduces experimental datas quite
correctly. However, there are two major differences: at first, in our simula-
tions the reversal occurs around �10 mA (between regions 2 and 3), while in
experiments the reversal occurs starting from about �15 mA. Then, at high
current (starting from -20 mS) experimental datas and simulations are quite
different. This discrepancy could have different origins, for example the fact
that non linear effects (such as the dependence of the damping parameters
αLLG on current) play an important role at high current, or that some sim-
plifying assumption that we have made in our model (such as the absence
of lateral diffusion of electrons) has to be discarded at high current. In the
following, we shall consider only regions 1 and 2, where our simulations can
describe the dynamics correctly.

6.4.3 Analysis of the spectrum

In this section we report a comprehensive analysis of the spin wave spectrum,
and we describe how it is modified by dc current. Linewidth (full width at
half height), frequency and relative height of the resonant peaks as a function
of current are the properties that we use to characterize the modes. The
simulations have been performed for Idc between 0 and -8 mA, with an
applied field of 10 KOe, a range that gives the possibility to observe the
behaviour of the system near critical current. This analysis allows for a
more comprehensive description of regions 1 and 2 of the phase diagram of
FIG.(6.21).

The modes s00 and s10 are the lowest energy modes correponding to
an excitation of the thin layer, and for this reasons are the one most easily
excited by spin torque (see chapter 5).these modes have been observed in our
experiments (see below). As we shall see, our simulations describe correctly
the behaviour of these modes excited by spin torque.

FIG.(6.27) shows the power spectrum (in logarithmic scale) for the ` � 0
modes as a function of current. Two important features are clearly visible.
first, the relative height of the peaks changes as a function of current: The
first group of peaks on the left, visible until �4 mA, corresponds to the mode
a00 at 6.72 GHz, which dominates the spectrum at low current. This is the
uniform mode which corresponds to a precession mainly concentrated in the
thick layer. Starting from �4 mA the mode s00 at 10.44 GHz is visible. The
spectral weight of this mode grows with current and dominates the spectrum
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Figure 6.27: Power spectrum (in logarithmic scale) of the modes ` � 0 cal-
culated for different dc currents, whith Hext � 10 KOe. At zero current the
mode a00 at 6.72 GHz is visible. This mode is associated to the precession
of the thick layer. Increasing current (around -4 mA), the mode s00 at 10.44
GHz starts growing and eventually dominates the spectrum. This mode is
associated to the precession of the thin layer, excited by spin torque. The
frequency of s0,0 is fixed until the critical threshold and then increases as
a function of current. This indicates that critical current for this mode
(marked by a blue dot) is between -5 and -5.5 mA.
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Figure 6.28: Power spectrum (in logarithmic scale) of the modes ` � 1 cal-
culated for different dc currents, whith Hext � 10 KOe. At zero current the
mode a10 at 7.7GHz is visile. This mode is associated to the precession of
the thick layer. Increasing current (around -3 mA), the mode s10 at 11.4
GHz starts growing and eventually dominates the spectrum. This mode is
associated to the precession of the thin layer, excited by spin torque. The
frequency of s1,0 is fixed until the critical threshold and then increases as
a function of current. This indicates that critical current for this mode
(marked by a red dot) is between -5.5 and -6 mA.
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starting from �4.5 mA.Physically, this means that at zero current the thick
layer carries all the excitation, and when current increases the thin layer
is excited and absorbs almost all the energy of spin transfer effect. This
behaviour is the signature of the selection rule for ` � 0 modes: it shows
which mode is much easily excited by spin torque, and relates it to initial
conditions of the magnetization. Notice that the peak corresponding to
s00 grows of about two orders of magnitude around critical current. The
frequency of s00 is fixed until �5 mA, and then starts growing with current.
This gives an indication to find critical current (indicated by a blue dot on
the graph), situated between -5 and -5.5 mA,since we expect the frequency
to be constant until critical threshold, and then to grow linearly with current
[85].

FIG.(6.28) shows the power spectrum (in logarithmic scale) of the thin
layer for the ` � 1 modes as a function of current. The group of peaks on
the left, visible until �4 mA, corresponds the mode a10 at 7,84 GHz, which
dominates the spectrum at low current. The presence of this mode indicates
that the precession is concentrated mainly in the thick layer. Starting from
�3.5 mA the mode s10 at 11.4 GHz is visible. The spectral weight of this
mode grows with current and dominates the spectrum starting from �4.5
mA. As in the previous case, this indicates that spin torque excites the
precession of thin layer. The frequency of s10 is fixed until �5.5 mA, and
then starts growing with current. This allows to situate critical current
(indicated by a red dot on the graph) between -5.5 and -6 mA.

The two spectra displayed in FIGS.(6.27) and (6.28) have been obtained
starting from two different initial configuration of the magnetization, de-
scribed in section (6.4.1). This is useful to describe the two spectra sepa-
rately, but it does not give any information about the possible cohexistence
and competition of modes with different ` symmetry. To gain further insight
on the properties of the spectrum, in FIG.(6.29) we haved compared ` � 0
and 1 modes. The two different spectra have been obtained starting ex-
actly from the same initial condition: at the beginning the magnetization is
aligned along ez, and then it is tilted uniformly in the orthoradial direction.
Starting from this initial condition, we have recorded the time decay of the
magnetization for 40 ns. If one averages the magnetization in cartesian co-
ordinates, then the Fourier transform shows the ` � 0 spectrum, while if one
averages the magnetization in cylindrical coordinates, the Fourier transform
shows the ` � 1 spectrum. Thus the two panels (a) and (b) of FIG.(6.29)
show exactly the same system where the spatial average of the magnetiza-
tion has been calculated in a different way. Changing the way of averaging
the magnetization allows to reveal a different spectrum. This shows that the
two modes s00 and s10 cohexist. This competition between modes has been
observed experimentally: FIG.(6.30) shows the power spectrum as a func-
tion of current and applied field. This measure has been performed at fixed
frequency, measuring the resistance fluctuations with a spectrum analyzer.
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Figure 6.29: Simulation of the competition between ` � 0 (blue tones) and
` � 1 (red tones) modes, computed for different currents. The plot are in
logarithmic scale. Changing the way of computing the spatial average of
the magnetization allows to see modes with ` � 0 (averaging in cartesian
coordinates) and modes with ` � 1 (averaging in cylindrical coordinates).
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Figure 6.30: Experimental diagram that shows the power spectrum as a
function of current and applied field. A dc current is injected to excite the
thin layer trhough spin torque. The two modes s00 and s10 coexist and have
different critical current (critical threshold, where the two modes are visible,
is indicated by a blue and red dot for ` � 0 and 1 correspondingly).

To make the resistance fluctuations visible, the applied field has a polar
angle of 2X with respect to êz. the resistance of the system) varies in time
with a frequency that changes for different SW modes. In this way one can
identify the spectrum from a transport experiment (MRFM has not been
used here). This experiment is not exactly comparable to our simulations,
since the physical conditions are not the same: the experiment is performed
in field domain, with a polar angle that shifts the overall spectrum toward
low fields (i.e. high frequencies), while our simulations are performed in
frequency domains with the field applied along ez. However, our simula-
tions predict the cohexistence of s00 and s10, their different critical current,
and their frequency shift above the critical threshold, in agreement with
experimental observations.

To determine critical current, we have calculated the linewidth (full
width at half height) ∆f` � 2αω0,` of the resonant peaks of the two modes
s`0 (` � 0,1) as a function of current. The linewidth of mode s`0 is related
to current Idc by the linear relation

∆ω`�Idc� � α�1 �
Idc
Ith,`

�ω`, (6.14)

and vanishes at critical current, when the damping is compensated. The
computation of critical current has been done as follows: we have computed
the power spectrum of the thin layer for different values of Idc. At each
value of current, we have fitted the peak of both modes with a Lorenzian,
obtaining linewidth and frequency of the modes as a function of current.
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Figure 6.31: Linewidth of the resonant peak of the modes s0,0 (blue circles)
and s10 (red squares) as a function of current, computed with an applied
field of 10 KOe. The datas fit the straight lines ∆f0 � �0.08�I � 5.4� (blue
dashed line) and ∆f1 � �0.08�I � 5.9�(red dashed line) respectively, from
which one finds a critical current of -5.4 and -5.9 mA correspondingly.

FIG. (6.31) shows the linear dependence of the linewidth of both modes
on Idc. The linewidth decreases linearly with current for both modes, and fits
the straight lines ∆f0 � �0.08�I�5.4� for mode s00, and ∆f1 � �0.08�I�5.9�
for mode s10. From these fits one obtains the two critical currents Ith,0 �
�5.43 mA and Ith,1 � �5.92 mA. We Notice that in our numerical simula-
tions, the linewidth cannot go to zero exactly at critical current. Moreover,
near critical threshold the shape of the peaks is slightly distorted, and the
exact computation of the linewidth fitting the peak with a Lorentzian is
not possible. However, the result of this fit is coherent with the estimation
of critical current done observing the spectra FIGS.(6.27) and (6.28). This
prediction is comparable with experimental results shown in FIG.(6.30): the
modes s00 and s10 are visible starting from critical current (around -6.2 and
-6.6 mA correspondingly. We stress that exact comparison between simula-
tions and experiments are not possible in this case, Since we do not simulate
the same experimental conditions, we do not expect a perfect agreement with
experiments.

We conclude this section with the computation of the nonlinear frequency
shift for s00 and s10. FIG.(6.32) shows the frequency as a function of current
for both modes. As expected, the frequency is constant until the critical
threshold. In the supercritical regime, the frequency grows with a slope of
1.89 GHz/mA and 2.55 GHz/mA for modes s00 and s10 correspondingly. We
have compared the prediction for s00 with experimental results: FIG.(6.33)
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Figure 6.32: Frequency of the modes s00 (blue circles) and s10 (red squares)
as a function of current, computed with an external field of 10 KOe. The
frequency is constant in the subcritical regime, and then grows linearly as a
function of current, with a slope of 1.89 GHz/mA for s00 (blue dashed line)
and 2.55 GHz/mA for s10.

Figure 6.33: Power density as a function of frequency and current, calculated
for an external magnetic field Hext � 8.2 KOe. The frequency of the mode
s00 (visible in the middle of the two white dashed lines) grows linearly as a
function of current, with a slope of about 2GHz~mA.
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is a colorplot of the power spectrum as a function of frequency and current.
Mode s00 (in evidence on the figure) grows with a slope of 2GHz~mA, in
good agreement with our predictions. The simulations and experiments are
not performd under the same conditions (the applied field is 8.2 KOe in this
experiment), but our prediction reproduces experimental observations quite
well.

6.5 Conclusions

In this last section we have summarized the main results of this work. At
first, we focus on some conclusive remarks on this chapter, then we shall
perform a more general comment on our model of spin transport and its
possible applications and improvement

The experimental results shown in this chapter have important conse-
quences regarding the optimization of the performance of STNOs, which are
rarely mentioned.

First, an accurate identification of the SW modes according to their
symmetry is required to understand the details of the high frequency, but
also of the static properties in magnetic nanostructures. For instance, SW
modes having different symmetries might influence differently the high fre-
quency noise of a spin-valve device. We also point out possible confusions
between the ` � 0 and the ` � �1 SW eigen-modes, whose two spectra are
in almost translational correspondence. In particular cases where the mag-
netization value is inferred from the SW spectrum, mislabeling the lowest
energy mode of the ` � �1 SW spectrum as the uniform mode (` � 0) will
lead to a fitted value of the magnetization through the Kittel formula that
underestimates the true value by about a kiloGauss. Small misalignment
with the perpendicular direction can further enhance the discrepancy.

Second, the collective character of the SW modes can directly influence
the spin transfer torque, for which the relative angle between the magneti-
zations in the two layers matters. One might expect, that the spin transfer
efficiency does not only depend on which layer (thick or thin) is dominat-
ing the mode, but also on the coupling (anti-symmetrical or symmetrical)
between both layers. To maximize spin-transfer effects in the normal config-
uration, one would like to have ideally the dynamics of the thin layer being
coupled anti-symmetrically to the dynamics of the thick layer. Since the
anti-symmetric motion is the binding state, this implies that the optimum
is obtained when the uniform mode of the thin layer is lower in energy than
the uniform mode of the thick layer. If the magnetization is the adjustable
parameter, that implies choosing a stack composition where the magnetiza-
tion of the thin layer exceeds the one of the thick layer.

Third, the above study provides us an unambiguous method to identify
the nature of the normal mode that auto-oscillates when the current exceeds
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the critical threshold. The result of this study will be published elsewhere in
an upcoming paper. The precise determination of the SW mode symmetry
of the auto-oscillating mode is important for the phase synchronization of a
STNO to an external source. In fact, it will be successful only if the latter
can couple efficiently to the spin transfer driven auto-oscillation modes, i.e.,
if it has the appropriate symmetry. Since excitation by the uniform magnetic
field produced by an external antenna or by the current across the nano-
pillar have been demonstrated to be mutually exclusive, depending on the
nature of the auto-oscillating mode only one of the two external excitation
circuit will provide an efficient mean to synchronize oscillators together.

Finally, the MRFM technique has allowed us to study spin-transfer ef-
fects in the normal configuration where ST-FMR effects are hidden due to
symmetry reasons. There are strategic reasons to understand in details
the dynamics in the perpendicular configuration for STNO applications.
Indeed, the excited modes have there the maximum non-linear frequency
shift coefficient [86]. This confers to this geometry the widest agility to
potentially phase-lock to an external source and therefore it corresponds
to one of the optimal candidate to achieve mutual phase synchronization
in large arrays of STNOs. Phase synchronization has been identified as
a possible mean to dramatically increase the generated microwave power
of these nano-oscillators and, at the same time, reduce their linewidth
[50, 64, 87, 42, 39, 78, 35, 90, 96]. Also, the perpendicular geometry cor-
responds to an optimal orientation for the spin polarized current to com-
pensate the damping, leading to a minimal current threshold to produce
auto-oscillations [88, 56].

In summary, we have reviewed the importance to classify the SW eigen-
modes inside a nano-pillar by their symmetries, in particular regarding their
potential applications in magneto-electronics.

Let us now focus on our approaches to quantum transport, developed in
chapters 3 and 4. CRMT and TB model are two complementary approaches
than can be used together to describe complicated systems where one re-
quires both high computational performances and a fully quantum approach
for certain regions (such as tunnel junctions). The good agreement between
CRMT and TB for Ohmic conductors allows to parametrize TB for a large
variety of materials. The multiscale approach, together with this possibility
to describe many different materials, are the aspects that make our model
flexible and general.

On the conceptual point of view, CRMT and TB model represent two
completely different approaches that relate scattering formalism, Random
Matrix Theory, Circuit Theory and Valet-Fert model. This sense our models
make a bridge between fully quantum and semiclassical approaches, intro-
ducing the concepts of spin accumulation and chemical potential into scat-
tering formalism. Two important relations are at the basis of our ”multiscale
description” of quantum transport. First, the addition rule for scattering
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and hat matrices [see sections (2.3.3) and (2.4.1)], which allows to decom-
pose and recompose the system when needed, and second the Fisher-Lee
formula [section (4.3)], that relates Green’s function to scattering (and hat)
matrices. The addition law, which describes transport as a sequence of mul-
tiple transmission and reflections amplitudes (or probabilities, if one refers to
hat matrices) is the cornerstone of CRMT. In particular, CRMT generalizes
Valet-Fert approaches essentially because the Sharvin resistance is included
through the addition law, and the matrix structure allows to describe non
collinear systems through a rotation in spin space.

The main novelty of this work is the fact that CRMT has been coupled
to a micromagnetic code to treat on an equal footing the complexity of
both electronic transport and magnetization dynamics. This has allowed
to describe correctly the spin wave spectrum of spin torque nano oscillator.
The fact that we have used CRMT instead of TB for our simulations is
essentially due to the different computational peroformances and to the large
mesoscopic fluctuations of TB calculations: describing our spin valve with
TB model would have been too time consuming and useless, since our system
is Ohmic. Coupling CRMT with Nmag has allowed to describe the interplay
between electronic transport and magnetization dynamics locally, and to
take into account the 3D texture of the magnetization and of transport
properties. The fact that CRMT has no free parameters has allowed to
calculate exactly the torque acting on both layers. The identification of the
correct selection rules, in agreement with the analytical model of chapter 5
and with experiments, is the main result of this work: it allows to determine
critical current, non linear frequency shift and to describe the coexistence
(observed experimentally) and the competition of modes with different `
symmetry. At the same time, it constitutes a good test of CRMT and
of the algorithm used to couple CRMT to Nmag. Notice that a simple
macrospin model cannot describe SW modes (apart from an approximation
of the uniform mode), and it is not suitable for a realistic description of a
STNO. This is the main avantage of a 3D computation.

Several developments and applications of our model are possible. At
first, it would be interesting to repeat our simulations with a thinner mesh,
to see if some important quantities (like resistance) depend on the mesh. To
do this, an optimization of the code that couples CRMT to Nmag should
be implemented to obtain better computational performances. It would be
interesting to apply our model to the computation of tunnel magnetoresis-
tance. The description of such systems requires the coupling between a real
multiscale model and a micromagnetic software, since TB model is needed to
describe tunneling inside the insulator, while CRMT can be used for metal
components.

Concerning possible improvements of our model, we have seen that our
description is doubtful at high current [compare our simulations with the
experimental phase diagram: FIGS.(6.21) and (6.25)]. A possible explana-
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tion is that we have taken the LLG damping coefficient constant, while in
reality it depends on current [85]. Another important aspect is that in our
simulations we have neglected the lateral diffusion of spins, since the system
is described using one dimensional ”CRMT columns”, where electrons prop-
agate only along the z direction. A further, natural step, is to use a fully
three dimensional CRMT model of transport. This model, which was not
ready when have performed these simulations, has now been implemented
by the group of X. Waintal. Our CRMT-1D model is effective to describe
selection rules into a perpendicularly magnetized nanopillar with magnetic
field applied along ez, but more complicate configurations (such as magnetic
vortexes) may require a CRMT-3D description.

To conclude, the approach taken in this work, is effective in the de-
scription of our realistic system, and takes into account the complexity of
transport and magnetization dynamics. The agreement as well as the dis-
crepancies that we have found between experiments and simulations are an
excellent guide to understand the LLG equation, as well as the validity of
our model and of the approximations that we have made. This work can
be considered as an intermediate step towards a more complete, fully 3D
description of transport and magnetization dynamics in realistic systems.
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[75] Benjamin Pigeau, GrÃ©goire de Loubens, Olivier Klein, An-
dreas Riegler, Florian Lochner, Georg Schmidt, and Laurens W.
Molenkamp. Optimal control of vortex-core polarity by resonant mi-
crowave pulses. Nature Phys., 2010.

[76] W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva.
Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20 Point Con-
tacts. Phys. Rev. Lett., 92(2):027201, 2004.

[77] M. A. Ruderman and C. Kittel. Indirect exchange coupling of nuclear
magnetic moments by conduction electrons. Phys. Rev., 96(1):99, Oct
1954.

[78] A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot,
R. Guillemet, K. Bouzehouane, S. Fusil, and A. Fert. Phase-locking of
magnetic vortices mediated by antivortices. Nature Nanotech., 4:528–
532, 2009.

[79] Valentin S. Rychkov, Simone Borlenghi, Henri Jaffres, Albert Fert, and
Xavier Waintal. Spin torque and waviness in magnetic multilayers: A



158 BIBLIOGRAPHY

bridge between valet-fert theory and quantum approaches. Phys. Rev.
Lett., 103(6):066602, Aug 2009.

[80] I. Rychkova, V. Rychkov, K. Kazymyrenko, S. Borlenghi, and
X. Waintal. KNIT : An open source code for quantum transport in
multi-terminal systems. ArXiv e-prints, October 2010.

[81] D. La Tourette S. Neil, D. Markham. Magnetoresistive measurements
of exchange constant in varied-thickness permalloy films. J. Appl.
Phys., 65(11):4362–4365, 1989.

[82] J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov, R. A.
Buhrman, and D. C. Ralph. Spin-Transfer-Driven Ferromagnetic res-
onance of Individual Nanomagnets. Phys. Rev. Lett., 96(22):227601,
2006.
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RÉSUMÉ

Transport électronique et dynamique de l'aimantation dans des systèmes magnétiques

L'objectif de ce travail de thèse est de comprendre l'influence mutuelle entre le transport électronique et la 
dynamique de l'aimantation dans des nanostructures hybrides magnétiques métalliques.
Dans une première partie on a développé un modèle théorique, basé sur la théorie des matrices aléatories, 
pour décrire au niveau microscopique le transport dépendent du spin dans une nanostructure hétérogène. Ce 
modèle,  appélé  CRMT (pour Continuous Random Matrix Theory) a ensuite été   traduit dans un code de 
simulation qui permet de calculer les proprietés locales (couple de transfert de spin, accumulation de spin et 
courant de spin) et macroscopiques (résistance) du transport dans des conducteurs ohmiques. Le modèle a été 
validé en le comparant avec une théorie du transport quantique basée sur le calcul des fonctions de Green 
hors  équilibre.  Le  couplage  des  ce  deux modèles  a  permis  d'effectuer  une  description  multiéchelle  du 
transport dans des nanostructures métalliques hybrides, où les parties ohmiques sont décrites par CRMT et 
les parties purement quantiques par le formalisme des fonctions de Green. 
CRMT a ensuite été incorporé dans un code de simulation micromagnétique, pour décrire de façon réaliste la 
texture  spatiale  de   la  dynamique  de   l'aimantation   induite  par   le   transfert  de  spin.  L'originalité   de  cette 
approche réside dans la modélisation des mesures spectroscopiques utilisant une détection mécanique de la 
résonance ferromagnétique, conduites sur des oscillateurs à transport de spin. Ce travail a permis d'obtenir le 
diagramme de phase dynamique de l'aimantation, ainsi que les règles de sélection des ondes de spin et la 
compétition   entre   les   modes   propres   du   systeme   lors   du   passage   d'un   courant   continu   à   travers   la 
multicouche, en accord partiel avec les données experimentales

Motsclefs:  multicouches magnetiques ;  couple de transfert de spin ;  approche multiéchelle ; résonance 
ferromagnétique ; ondes de spin ; règles de sélection.

ABSTRACT

Electronic transport and magnetization dynamics in magnetic systems

The aim of this thesis is to understand the mutual influence between electronic transport and magnetization 
dynamics in magnetic hybrid metallic nanostructures.
At firs, we have developed a theoretical model, based on random matrix theory, to desribe at microscopic 
level spin dependent  transport in   a heterogeneus nanostructure.  This model,  called Continuous Random 
Matrix Theory (CRMT), has been implemented in a simulation code that allows one to compute local (spin 
torque, spin accumulation and spin current) and macroscopic (resistance) transport properties of spin valves. 
To validate this model, we have compared it with a quantum theory of transport based on the non equilibrium 
Green's functions formalism.  Coupling the two models has allowed to perform a multiscale description of 
metallic hybrid nanostructures, where ohmic parts are described using CRMT, while purely quantum parts 
are described using Green's functions.
Then,  we  have  coupled  CRMT  to  a  micromagnetic   simulation  code,   in  order   to  describe   the  complex 
dynamics of the magnetization induced by spin transfer effect. 
The originality of this approach consists in modelizing a spectroscopic experiment based on a mechanical 
detection of the of ferromagnetic resonance, and performed on a spin torque nano oscillator. This work has 
allowed us obtain the dynamical phase diagram of the magnetization, and to detect the selection rules for 
spin waves induced by spin torque, as well as the competion between the eigenmodes of the system when a 
dc current flows through the multilayer,  in partial agreement with experimental data.

Keywords:  magnetic   multilayers;   spin   torque/spin   transfer   effect;   multiscale   approach;   ferromagnetic 
resonance; spin waves; selection rules.


