N
N

N

HAL

open science

Learning prototype-based classification rules in a

boosting framework: application to real-world and
medical image categorization

Paolo Piro

» To cite this version:

Paolo Piro. Learning prototype-based classification rules in a boosting framework: application to
real-world and medical image categorization. Human-Computer Interaction [cs.HC]. Université Nice

Sophia Antipolis, 2010. English. NNT: . tel-00590403

HAL Id: tel-00590403
https://theses.hal.science/tel-00590403

Submitted on 3 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-00590403
https://hal.archives-ouvertes.fr

Université de Nice - Sophia Antipolis

ECOLE DOCTORALE STIC

Sciences et Technologies de I'Information et de la Communication

THESE

pour obtenir le titre de

Docteur en Sciences
de I'Université de Nice - Sophia Antipolis

Mention : Automatique, Traitement du Signal et des Images

présentée et soutenue par

Paolo PIRO

Laboratoire Informatique, Signaux et Systemes Sophia Antipolis

LEARNING PROTOTYPE-BASED CLASSIFICATION RULES IN A
BOOSTING FRAMEWORK: APPLICATION TO REAL-WORLD AND

MEDICAL IMAGE CATEGORIZATION

These dirigée par Michel BARLAUD

Soutenue publiquement le 18 janvier 2010 devant le jury composé de

Cordelia SCHMID Directeur de recherche INRIA

Luigi CORDELLA Professeur des Universités (Naples)

Patrick PEREZ Directeur de recherche INRTA

Francesco TORTORELLA Professeur des Universités (Cassino)

Giulio JANNELLO Professeur des Universités (Campus Bio-Medico-Rome)
Michel BARLAUD Professeur des Universités (Nice-Sophia Antipolis)

Membre de I'Institut Universitaire de France

Présidente
Rapporteur
Rapporteur
Examinateur
Directeur en co-tutelle

Directeur de theése



ii




To my parents



iv




“Et pour que je ne me décourageasse pas,

elle m’assura que du jour ot je serais bien portant,
le travail viendrait tout seul par surcroit.”

M. PROUST



vi




CONTENTS

Acknowledgements xi
1 Introduction 1
1.1 Problem and challenges . .. .................. 1
12 Outlineofthethesis. . . . ... ................. 2
I Features and Similarity Measures for Effective Image Index-
ing 3

2 Sparse Multiscale Patches (SMP) 5
2.1 Introduction . ... ... ... ... ... . . L. 6
2.1.1 Measuring similarities between images . . . ... .. 6

2.1.2 Proposed feature space and measure . . . . . ... .. 7

2.2 Feature space: Sparse Multiscale Patches . . .. .. ... .. 9
2.2.1 Multiscale coefficients: advantages and drawbacks 9

2.2.2  Multiscale patches for color images . . ... ... .. 9
2.2.3 Multiscale transform . . . . ... ... ... ...... 11
2.2.4 Sparsity of the multiscale patches . . . ... ... .. 11
2.3 Similarity measure . . ... .. ... ... ... . ... 11
2.3.1 Definition . . ... ... ... ... ... . 11

2.3.2 Limits of the parametric approaches to the estimation 13
2.3.3 Non-parametric estimation of the similarity measure 13

2.4 Application: Image Retrieval . . .. ... ... ... ... .. 15
241 Content-based image retrieval . . ... ... ..... 15

242 Database and parameter settings . . . . ... ... .. 16
2421 Databases . . .. ... ............. 16

2422 Parametersettings . . .. ........... 16

243 Numerical experiments . . ... ... ......... 17
2.4.3.1 Robustness to geometric deformations . . . 17

2.4.3.2 Robustness to JPEG2000 compression . . . . 18

vii



viii Contents

2.43.3 Image retrieval performances (I): ROC curves
and comparison with a SIFT-based method
2.43.4 Image retrieval performances (II): precision
curve and comparison with the UFM method
244 Computational speed-up(s) . .. ... ... ......
2441 GPUimplementation . .. ..........
2442 Preselection of the relevant images . . . . .
25 Conclusion . . . ... ... L oo

3 Data Structures for Bregman NN Queries
3.1 Introductionand priorwork . . . . ... ... ... .. ...
3.2 k-NN search via Bregman data structures . . . . .. ... ..
3.2.1 Randomized sampling for approximate NNs . . . . .
3.2.2 Bregman ball trees (BB-trees) . . ... ... ......
3.2.3 Bregman Vantage-pointTrees . . . . . ... ... ...
33 Experiments . .. ... ...... ... .. ... ... ...
3.3.1 BB-tree construction . ... ...............
332 Treesearch. .. ......................
3.3.3 Bvp-tree construction . ... ..............
334 Bvp-treesearch .. ....................
34 Conclusion . . .. ... ... . ..

II Inducingk-nearest neighbor Classifiers in a Boosting Frame-
work

4 UNN: Universal Nearest Neighbors

41 Introduction .. ... .... ... ... ... .. ... ...
41.1 Generic visual categorization . . . .. ... ... ...

4.1.2 k-NN classification . . . ... ... ... ........
4121 Learning the distance metric . . . . . .. ..

4122 Kernel nearest neighbors . . . .. ... ...

4123 Weighted --NN . ... ... .........

4124 Boostingk-NN . . ... ............

413 Opverview of thechapter . . . . ... ... ... ....

42 Method . . . ... ... L
421 Problem statement and notation . ... ... ... ..

4.2.2 Boosting k-NN for minimization of surrogate risks .

423 Leveragedk-NNrule. . ... .. ... . ... .....
4231 Edgematrix ..................

424 UNN: learning of classifier h® . .. ... ... ...,

425 Propertiesof UNN . . ... ... .. ... .. ....
4251 Observations . . .. ..............

43 Experiments . . . ... ... ... .0 o oL

20

21
23



Contents ix

431 Syntheticdatasets. . . ... ... ...... .. .... 76
432 UCldatasets . . ... ................... 78
43.3 Image Categorization using global Gist descriptors . 80
43.4 Image categorization based on Bag-of-Features . . . . 87
44 Conclusion . . .. ... ... . L o 88

III Leveraging Multi-class

Kernel Density Classification 93
5 MLNN: Multi-Class Leveraged k-NN 95
51 Introduction . ... .... ... ... ... . ... . ... ... 97
51.1 Inherently multi-class learning . . . ... ... .... 97

5.1.2 k-NN class density estimator . . . ... ... ... .. 98

51.3 Supervised kernel density learning . . . . . . ... .. 101

52 Method . . . .. ... .. 102
521 Problem statement and notations . . . . ... ... .. 102

52.2 (Leveraged) kernel density classification . ... ... 103

5.2.3 Multi-class surrogate risk minimization . . . . . . .. 104

524 MLNN: Multi-class Leveraged k-NNrule. . . . . . . 107

525 KernelsforMLNN . . ... ............... 108

52.6 Propertiesof MLNN . ... ............... 110

527 MLNNandSVM . . ... ... ... .. .. ..... 111

53 Experiments . . ... ... ... ... o 0oL 112
5.3.1 Scene categorization using Gist descriptors . . . . . . 115

5.3.2 Categorization using Bag-of-Features descriptors . . 122

54 Conclusion . . . ... .. ... ... Lo o 129
IV Classification of medical images 133
6 Content-based medical image categorization 135
6.1 State-of-the-art medical image classification . . . . . ... .. 136

62 Method . . ... ... .. ... .. 138
6.3 Databaseandsettings. . . ... ... .............. 140
6.4 Experiments . ... ....... ... ... .. ... .. ... 141
6.5 Conclusion . . . . ... ... . L 146

V  General conclusion 149

7 Conclusion 151



X Contents

VI Appendices 155
A UNN appendix 157
A1l Generic UNN algorithm . . .. ... ... ........... 157
B MLNN algorithm 163
B.1 Generic MLNN algorithm . . . ... .............. 163
B.2 MLNN using exponentialloss . . ... ............ 163
B.3 MLNN using logisticloss . . . ... .............. 165

Bibliography 179



ACKNOWLEDGEMENTS

This PhD thesis has been a long and amazing excursion in a very attractive
scientific field. I feel grateful to all the persons who have guided me along
this way.

Many thanks to Prof. Michel Barlaud for advising me with great constancy
and fervor. Thanks to Frank Nielsen and Richard Nock for their inestimable
collaboration. Thanks to Prof. Giulio Iannello for his warm advice. Also
thanks to Eric Debreuve and Sandrine Anthoine for their precious hints in
my everyday work.

Finally, I am specially thankful to all friends and colleagues who have
shared with me the joys and difficulties of such an exciting experience, par-
ticularly Vincenzo, Pietro and Marianna.

xi



xii

Acknowledgements




- CHAPTER 1 -

INTRODUCTION

§ 1.1 PROBLEM AND CHALLENGES

Automatic indexing, retrieval and classification of images are challenging tasks
in computer vision that have attracted much research interest in the recent
years. A huge number of different approaches have been proposed in or-
der to clearly define such image understanding problems from a compu-
tational point of view and provide technical tools able to tackle them in
an effective way. A broad class of such systems share a common paradigm,
which splits the task of image indexing/classification in two main steps: (1)
representation of the low-level visual content in a (high-dimensional) fea-
ture space, and (2) supervised learning of a classification function using anno-
tated images and possibly a-priori knowledge. Several reference databases
have been created in order to evaluate and compare different techniques,
and the best performing methods on such data generally follow the men-
tioned paradigm. Some popular examples are represented by kernel ma-
chines (e.g., support vector machines), boosting classifiers (e.g., AdaBoost)
and prototype-based classifiers (e.g., k-nearest neighbors), which have been
repeatedly tailored to effectively deal with a number of image descriptors,
ranging from local appearance descriptors to shape descriptors or global
layout features. Although most of these techniques provide satisfactory
results on standard image databases, their performances easily drop off
when dealing with real search/classification problems, involving complex
image collections with a huge number of images (billions and more) and
categories. For instance, consider the problem of categorizing real-world
scenes, where, according to a recent study of Xiao et al [ ], one
should consider almost one thousand categories that may overlap, due
to the inherent hierarchical nature of concept-based annotation. Further-
more, even the best performing methods often cannot match the computa-
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2 Chapter 1. Introduction

tion time constraints of these real applications. Therefore, designing effec-
tive methods that match the scalability requirement in terms of both size of
image databases and number of tags/class labels is the main challenge of
current research on image indexing/ classification.

§ 1.2 OUTLINE OF THE THESIS

In this PhD thesis we address some major topics related to indexing and
classification of images. In particular, we investigate the most relevant
functional blocks of an image retrieval /categorization system, and propose
original solutions to address some of their specific issues. First of all, we
describe our original “Sparse Multiscale Patches” (SMP) image descriptor,
which represents the texture information located at different resolution lev-
els in a sparse way (Chap. 2). The SMP descriptor is associated to a new
information-theoretic similarity measure, which can be computed in a k-
nearest neighbor (k-NN) estimation framework. Then, in Chap. 3, we ad-
dress the problem of how to efficiently organize data arising from images
in order to perform fast k-NN search with respect to generic dissimilar-
ity measures, like the broad class of Bregman divergences (symmetrized
or not). The core part of the thesis is devoted to analyze and improve
instance-based classification methods like the k-NN rule in a supervised
framework that is inspired by boosting. We first describe our one-versus-
all learning method, called “Universal Nearest Neighbors” (UNN), which
brings the boosting principle into prototype-based classification, by defin-
ing prototypes as weak classifiers to be induced via the minimization of
a risk functional (Chap. 4). Then, we describe our inherently multiclass
MLNN algorithm (Chap. 5), that further generalizes the UNN approach by
modifying the risk function in order to learn prototypes in all classes si-
multaneously, and allowing to use suitable density estimation kernels for
improving the precision of local density classification. The main practical
advantage of our method is to considerably reduce the size of the prototype
set that is to be used at classification time, by rejecting "noisy" prototypes,
thus enabling better precision at a reduced computational cost. We vali-
dated our novel approach on some well-known real-world image datasets,
which contain from 8 to 15 challenging categories. Experiments show that
the proposed method improves over the state-of-the-art prototype-based
classification significantly, while comparing favourably with the best per-
forming methods in terms of computational complexity. We also applied
our method to the challenging problem of medical image classification, par-
ticularly focusing on the body part recognition from radiographic images
(Chap. 6). Finally, we report a conclusion (Chap. 7) and two appendices
that provide more mathematical details on our UNN (Appendix A) and
MLNN approaches (Appendix B).
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- CHAPTER 2 -

SPARSE MULTISCALE PATCHES (SMP)
FOR IMAGE RETRIEVAL

In this chapter we present a framework for defining an objective measure
of the similarity (or dissimilarity) between two images for the purpose of
image indexing. The problem is twofold:

e define a set of features that capture the information contained in the
image in a relevant way for the given task;

e define a similarity measure in this feature space.

In particular, we propose a novel feature representation of images as well
as a statistical information-theoretic measure on this representation. Our
feature space is based on a global descriptor of images in a multiscale trans-
formed domain. Indeed, after decomposition into a Laplacian pyramid, the
transform coefficients are arranged in intra-scale/inter-scale/inter-channel
vectors, that we call patches, reflecting the dependencies of neighboring co-
efficients in presence of specific structures or textures. At each scale, the
probability density function (pdf) of these patches is used as a descriptor
of the relevant information. Due to the sparsity of the multiscale transform,
the most significant patches, called Sparse Multiscale Patches (SMP), describe
these pdfs efficiently. Thus we propose to use an information-theoretic dis-
torsion measure (the Kullback-Leibler divergence) based on the compari-
son of these probability density functions. Interestingly, this measure can
be effectively estimated via the nonparametric, k-nearest neighbor frame-
work, without explicitly building the pdfs.

We tested our method on the query-by-example image retrieval task.
Experiments on two publicly available databases showed the potential of
our SMP approach for this task. In particular, our method provides per-
formances comparable to those of a SIFT-based retrieval method and two

5



6 Chapter 2. Sparse Multiscale Patches (SMP)

versions of a fuzzy segmentation-based method (the UFM and CLUE tech-
niques), while showing good robustness to different geometric and radio-
metric deformations of the images.

§ 2.1 INTRODUCTION

2.1.1 Measuring similarities between images

Defining an objective measure of the similarity (or dissimilarity) between
two images (or parts of them) is a challenging problem in many tasks of
image processing and computer vision, which has been addressed from
different perspectives. For instance, when dealing with inverse problems
such as image denoising or deconvolution, a similarity measure is needed
in order to assess how well the estimate explains the observations. How-
ever, for this class of problems, efforts have been concentrated in condition-
ing the inverse operator as well as the spatial properties of the estimated
images. The measure of fitness to the data has been less studied and has
been commonly defined as a simple Euclidean distance in the pixel space,

such as: d(I}, ) = \/Zie{pixel} |[1(i) — L(i)|>. Conversely, when analyz-
ing research in other applications, the similarity measure is at the core of
the problem and has received much more attention. This is the case for
tasks like tracking or image indexing/retrieval. Namely, in this latter ap-
plication, the task consists in ranking the images in a database according to
their visual similarity (or dissimilarity) to a given query image. Indepen-
dently on the particular application, defining a similarity measure can be
modeled as a two-steps process:

1. Define a set of properties (or features) that capture the visual informa-
tion that is relevant for the given task. This step defines the so-called
feature space.

2. Define a similarity measure between data (or subsets of data) in the
feature space. This measure needs not to be necessarily a distance
metric, as it should be adapted to the inherent geometric structure of
the feature space.

A huge number of techniques have been investigated for solving the fea-
ture space problem. Some feature extraction approaches involve a trans-
formed domain (e.g., wavelet transforms), others are based on different
descriptors of the appearance, shape or layout of images. A variety of

descriptors (see [ ] for a review) has been proposed in the litera-
ture. Among these, local descriptors such as salient points of Loupias et
al [ ] are based on a subset of pixels (typically arranged as blocks),

whereas global descriptors give information about the image as a whole (e.g.,
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color histograms [ ). Thus, on the one hand, local descriptors exploit
the information given by a limited (generally variable) number of interest
points along with their spatial neighborhood. The best known state-of-the-
art local descriptor, widely used for image indexing/classification, is the
SIFT descriptor [ 1, which has been shown to outperform the most
common descriptors of interest regions [ ]. On the other hand, global
descriptors represent information of the whole image and range from the
simplest histograms of gray-scale values or color histograms [ ], to the
more recent Bag-of-Feature histograms [ ], spatial pyramids of local
descriptors [ ], Gist descriptors of the image layout [ ], Fisher
kernels [ ] and VLAD descriptors [ ]. Such descriptors are typi-
cally based on probabilistic models of the distribution of descriptor of local
patches, thus not directly representing the visual information extracted at
the pixel level. In our work, we concentrated on the so-called “global”
patch descriptors, i.e., global descriptor that include spatial and/or scale
correlations at tha patch level, as supported by fundamental studies on im-
age statistics [ ].

So as for the dissimilarity measures, they range from simple metric dis-
tances like the Euclidean norm to more sophisticated distorsion measures.
E.g., robust estimators have been used for the optical flow [ ], Bhat-
tacharya distance for tracking [ ], entropic measures such as entropy,
Kullback-Leibler divergence or mutual information for image registration
[ , . A general requirement for the similarity measure is the
visual relevance, i.e., strong correlation with the human perception of simi-
larity between images. Research in vision science has already brought some
perspectives on how to accomplish such a requirement [ ]. Never-
theless, designing systems merely based on the perceptual characteristics
of the human visual system is a difficult task. Therefore, once meaningful
features have been selected, metrics that are mathematically well-founded
and can be easily implemented are generally preferred for applications. For
this purpose, several distance metrics have been used to compare feature
vectors for various tasks of image processing [ ]. In this chapter we
propose a new feature extraction method, as well as a statistical measure on
the related feature space. In particular, we compute global descriptors in a
transformed domain, that we call Sparse Multiscale Patches. Then, we pro-
pose to use a discrete estimation technique for computing an information-
theoretic distorsion measure between the pdfs of such patches.

2.1.2 Proposed feature space and measure

We propose a new descriptor based on Sparse Multiscale Patches. In short,
we propose to use probability distributions for integrating the local infor-
mation brought by the SMP. The key aspects of these descriptors are the
following:
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o they provide a multiscale representation of the images;

e inter-/intra-scale patches describe the image structure locally at a
given scale;

e they represent images in a sparse way, i.e., most of the energy is con-
centrated in a few patches.

Note that the occurrence in different parts of an image of similar patches of

spatially neighboring pixels has been already exploited in image processing
, , ]. In our work, we ground on the same idea gener-

alized to multiscale coefficients, as proposed by Portilla et al [ I

The visual content of images is represented by patches of multi-resolution
coefficients. The extracted feature vectors are viewed as samples from an
unknown multi-dimensional distribution. The multi-resolution transform
of an image being sparse, a reduced number of patches yields accurate ap-
proximation of the underlying distribution. Then, we estimate the similar-
ity between images by a pseudo-distance (or distorsion measure) between
these multi-dimensional probability density functions. Namely, we pro-
pose to use the Kullback-Leibler (KL) divergence as a measure for quan-
tifying the dissimilarity between two probability density functions. This
measure has already shown good performances in the context of image
retrieval [ ]. It has been already used for the simple case of param-
eterized marginal distributions of wavelet coefficients [ , ],
assuming independence of the coefficients. In contrast, we define multi-
dimensional feature vectors (patches), that capture inter-scale and intra-scale
dependencies among subband coefficients. These are better adapted to the
descriptor of local image structures and texture. In addition, for color im-
ages, we take into account the dependencies among the three color chan-
nels; hence patches of coefficients are also inter-channel. This approach
should involve estimating distributions in a high-dimensional statistical
space, where fixed-size kernel options to estimate distributions or diver-
gences fail. Alternatively, we propose to estimate the KL divergence di-
rectly from the samples by using the k-nearest neighbor (k-NN) approach,
i.e. adapting to the local sample density.

In this chapter, we first define our feature space, which relies on inter-
/intra-scale and inter-channel patches of Laplacian pyramid coefficients
for color images, called Sparse Multiscale Patches (Sec. 2.2). Then we de-
fine the global similarity on this feature space by combining similarities be-
tween the probability density functions of these patches at different scales
(Sec. 2.3). The comparison between pdfs is measured by the KL divergence.
We also explain how to estimate this quantity. Finally, in the last section we
illustrate the use of the proposed measure for the image retrieval task.



2.2. Feature space: Sparse Multiscale Patches 9

§ 2.2 FEATURE SPACE: SPARSE MULTISCALE PATCHES

Throughout this chapter, we will denote the input image by I, the scale of
the multi-resolution decomposition by j, and the location in the 2D image
space by k.

2.2.1 Multiscale coefficients: advantages and drawbacks

The wavelet transform enjoys several properties that have made it very
successful in image processing and that are relevant for the definition of
similarity between images. Indeed, it provides a sparse representation of
images, meaning that it concentrates the information content of an image
into few coefficients of large magnitude while the rest of the coefficients are
small. This aspect, combined with a fast transform, makes wavelet thresh-
olding methods very powerful. Indeed, only selecting large coefficients is
sufficient for discriminating where the most relevant information is local-
ized in the image. For example, denoising can be done very efficiently by
simply thresholding wavelet coefficients, as proved in [ . Such sim-
ple coefficient-wise treatments provide results of excellent quality at a very
reduced computational cost.

In fact, these classical wavelet methods treat each coefficient separately,
relying on the fact that they are decorrelated. However, the wavelet co-
efficients are not independent and these dependencies are the signature
of structures present in the image. For example, a discontinuity between
smooth regions at point kg will give large coefficients at this point at all
scales j (w(I) ik, large for all j). Classical methods using coefficient-wise
treatments may destroy these dependencies between coefficients and hence
alter the local structure of images. Therefore, models exploiting depen-
dencies between the coefficients have been proposed and successfully used
for image enhancement (e.g. [ , D). In particular, Portilla et
al [ ] introduced the concept of patches of wavelet coefficients (which
they called “neighborhoods of wavelet coefficients”) in order to represent
efficiently fine spatial structures in images.

2.2.2 Multiscale patches for color images

Following these ideas, we define a feature space based on a sparse descrip-
tion of the image content by means of a multi-resolution decomposition.
More precisely, in order to build a multi-resolution version of an image, we
propose to use the Laplacian pyramid [ ]. Originally proposed for im-
age compression, this technique consists in applying a Gaussian pyramid,
i.e., multiresolution filtering using a Gaussian filter, and then retaining at
each level the “error” image, that is the difference between images at two
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Figure 2.1: Building a patch of multiscale coefficients, for a single color channel
image.

consecutive levels of the Gaussian pyramid. In order to build our descrip-
tor, we group the Laplacian pyramid coefficients of the three color chan-
nels of image I into coherent vectors called patches. Here the coherence is
sought by grouping coefficients linked to a particular scale j and location k
in the image.

In fact, the most significant dependencies are seen between a coefficient
w(I);, and its closest neighbors in space: w(I); 1 g1y, W(I)j41(10) and in
scale: w(l)]’—u« where j — 1 represents the scale a step coarser than the
scale j. Grouping the closest neighbors in scale and space of the coefficient

w(I); in a vector, we obtain the patch %(I) jk (see Fig. 2.1):

ﬁ
w(I)j,k = (w(I)j,k/w(I)j,k:I:(l,O)/w(I)j,kﬂ:(O,l)/w(I)j—l,k) 21

which describes the structure of the grayscale image I at scale j and location
k. The probability density functions of such patches at each scale j have
proved to characterize fine spatial structures in grayscale images [I’'S\W503,
PAHDO5]. Such patches are therefore relevant features for our problem as
will be seen in Section 2.4.3.

We consider color images in the luminance/chrominance space: 1 =
(IY, IS IV). Since the coefficients are correlated through channels, we aggre-
gate in the patch the coefficients of the three channels:

w(D) = (W) (1), (1)) 22)
with w(1Y) 5, w(I4) ;5 and w(1V);; given by Eq. (2.1).

The low-frequency approximation resulting from the Laplacian pyra-
mid is also used fro building additional feature vectors. Namely, 3 x 3 pixel
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neighborhoods along all three channels are joined together to form patches
of dimension 27 (whereas patches from the higher-frequency subbands are
of dimension 18, as defined in Eq. (2.2)). The union of the higher-frequency
and low-frequency patches forms our feature space. The patches of this
augmented feature space will be denoted by w(I) ik

2.2.3 Multiscale transform

The coefficients are obtained by a Laplacian pyramid decomposition [ I
Indeed, critically sampled tensor wavelet transforms lack rotation and trans-
lation invariance and so would the patches made of such coefficients. Thus
we prefer to use the Laplacian pyramid which shares the sparsity and inter-
/intra-scale dependency properties with the wavelet transform while being
more robust to rotations.

2.2.4 Sparsity of the multiscale patches

As explained above, multiscale coefficients provide a sparse representation
of images by concentrating the information into few coefficients of large
amplitude and this sparsity is exploited by thresholding methods on the
raw coefficients. As illustrated in Fig. 2.2, our experiments show that the
patches of multiscale coefficients of large overall energy (sum of the square
of all coefficients in a patch) also concentrate the information. More pre-
cisely, we selected a fixed proportion of patches at each scale of the de-
composition and proved that the resulting similarity measure (defined in
Sec. 2.3) remains consistent. Since the total number of patches is 4/3N with
N the number of pixels in an image, the number of samples we have in the
feature space is quite large as far as measuring a similarity is concerned.
The possibility of selecting a small number of patches which represent the
whole set well is highly desirable and we will exploit it to speed up our
computations.

Note that other selecting procedures may be investigated such as using
the energy of the central coefficient, using the sum of absolute differences
in the patches or thresholding based on the variance of the patches.

Let us now explain how we define a similarity in this feature space.

§ 2.3 SIMILARITY MEASURE

2.3.1 Definition

Our goal is to define a similarity measure between two images I; and I
from their feature space i.e. from their respective set of patches {w(I1);};x
and {w(12);x};x- When images are clearly similar (e.g. different views of
the same scene, images containing similar objects...), their patches w(Iy); .
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Most significant patches ([1/8 1/8 1/8])

Figure 2.2: White indicates the location of patches of largest energy (1/8 of the
patches is selected for each subband).

and w(lz); s, do not necessarily correspond. Hence a measure compar-
ing geometrically corresponding patches would not be robust to geometric
transformations. Thus, we propose to compare the pdfs of these patches.
Specifically, for an image I, we consider for each scale j the pdf p;(I) of the
set of patches {w(I); ; }x.

In order to compare two pdfs, we use the Kullback-Leibler divergence,
that is a Bregman divergence defined from the Shannon differential entropy
as generator function (see Chap. 3), and quantifies the amount of informa-
tion in a random variable through its pdf. Namely, the Kullback-Leibler
divergence (Dy;) is defined as follows [PRTB99]:

Du(p1llp2) = /Pl log(p1/p2), (2.3)

This divergence has been successfully used for other applications in image
processing in the pixel domain [BDB07, ADB08], as well as for evaluating
the similarity between images using the marginal pdf of the wavelet co-
efficients [DV02, WWS706]. In this chapter, we propose to measure the
similarity S(I;,12) between two images I; and I, by summing over scales
the divergences between the pdfs p;(I;) and p;(I>):

Sy, L) = Z‘XjDkl(Pj(Il)Hpj(IZ)) (2.4)
j

where a; is a positive weight that may normalize the contribution of the
different scales.
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2.3.2 Limits of the parametric approaches to the estimation

The estimation of the similarity measure S consists of the evaluation of di-
vergences between pdfs p;(I;) of high dimension. This raises two problems.
First, estimating the KL divergence, even with a good estimate of the pdfs,
is hard because this is an integral in high dimension involving unstable
logarithm terms. Secondly, the accurate estimation of a pdf itself is difficult
due to the lack of samples in high dimension (curse of dimensionality).
The two problems should be embraced together to avoid cumulating both
kinds of errors.

A first idea consists in parametrizing the shape of the pdf. The marginal
pdf of multiscale coefficients is well modeled by generalized Gaussians. In
this case, the KL divergence is an analytic function of the pdf parameters.
This technique has been used in [ , ] to compare images on
the basis of the marginal pdf of their wavelet coefficients. To our knowl-
edge, the generalized Gaussian model cannot be extended to account for
correlations in higher dimension. Mixture of Gaussians on the other hand
are efficient multi-dimensional models accounting for correlations that fit
well the pdf of wavelet coefficients patches [ ]. However the KL
divergence is not an analytic function of the model parameters.

Thus, we propose to make no hypothesis on the pdf at hand. We there-
fore spare the cost of fitting model parameters but we have to estimate the
divergences in this non-parametric context. Conceptually, we combine the
Ahmad-Lin approximation of the entropies necessary to compute the di-
vergences with “balloon estimates” of the pdfs using the k-NN approach.

2.3.3 Non-parametric estimation of the similarity measure

The KL divergence can be written as the difference between a cross-entropy
Hy and an entropy H (see Eq. (2.3)):

Hy(p1, p2) :_/Pl log p2, H(pl)z—/pllog p1- (2.5)

Let us explain how to estimate these terms from an i.i.d sample set W! =
{w%,w%, . w}\h} of p; and an i.i.d sample set W? = {w%, w%, . w%\,z} of p>.
(The samples are in IRY.)

Assuming we have estimates p;, p> of the pdfs p;, p2, we use the Ahmad-

Lin entropy estimators [ I

N] Nl
HY (1, p2) = — 5 ) log[pa(wy)],  HY(51) = —x Y log[pi(wy)].
n=1 n=1

(2.6)
General non-parametric pdf estimators from samples can be written as
a sum of kernels K with (possibly varying) bandwidth & (see [ ] for a
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review):
= Zn Ko (x — wy). (2.7)

e Parzen estimators #(W?!,x) = h: the bandwidth is constant. They
perform very well with samples in one dimension but become un-
adapted in high dimension due to the sparsity of the samples: the
trade-off between a bandwidth large enough to perform well in low
local sample density (which may oversmooth the estimator) and a band-
width small enough to preserve local statistical variability (which
may result in an unstable estimator) cannot always be achieved. To
cope with this problem, kernel estimators using adaptive bandwidth
have been proposed;

e Sample point estimators h(W?!, x) = hy1(w}),i € {1, Nq}: the band-
width adapts to each sample w; given the sample set W';

e Balloon estimators h(W!, x) = hyn(x): the bandwidth adapts to the
point of estimation x given the sample set W1.

We use a balloon estimator with a binary kernel and a bandwidth com-
puted in the k-nearest neighbor (k-NN) framework [ ]. This is a dual
approach to the fixed-size kernel methods and was firstly proposed by
Loftsgaarden and Quesenberry [ ]: the bandwidth adapts to the lo-
cal sample density by letting the kernel contain exactly k neighbors of x
among a given sample set:

1
Ky (x = w,) = ) (5[[|x —w,|| < pk,Wl(x)} (2.8)
kW1

with v, the volume of the unit sphere in IR? and py 1y (x) the distance of x to
its k-th nearest neighbor in WW. Although this is a biased pdf estimator (it
does not integrate to one), it has proved to be efficient for high-dimensional
data [ ]. Plugging Eq. (2.8) in Eq. (2.6), we obtain the following estima-
tors of the (cross-)entropy:

Ny
H"(51) = log N o] — log(k) + - 3 (loglpgyw: (wh)) , (29

n=1
d 3
H"™(f1, p2) = log[Na va] — log (k) + N o (loglpnz(wy)]) - (2:10)

n=1

As previously stated, these estimates are biased. A correction of the
bias has been derived in [ ] in a different context. In the non-biased
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estimators of the (cross)-entropy the digamma function (k) replaces the
log (k) term:

Ny

H""(51) = log[(N1—1)v4] — (k) + Iiill Zl(log[Pk,WI (w)]) . (211)
Ny

L d
H™ (P, 2) = log[Na va] = (k) + 5 1 (loglokwa(wy)]) - (212)

n=1

And hence the KL divergence reads:

Ny Ny
Du(pillp2) = 108[*1\;?]31] + 4 ) Toglogwe (W)l — 5 Y log[og i (wy)] -
n=1 n=1

(2.13)
This estimator is valid in any dimension d and robust to the choice of k.

§ 2.4 APPLICATION: IMAGE RETRIEVAL

2.4.1 Content-based image retrieval

With the rapid growing of general-purpose image collections, performing
efficiently a search on such large datasets becomes a more and more criti-
cal task. Content-based image retrieval (CBIR) systems tackle this task by
analyzing the content of images in order to provide meaningful signatures
of them. Automatic search of the target images is made possible by defin-
ing a similarity measure on the underlying signature space which has a
reduced dimension. As a result, content based image retrieval mainly re-
lies on describing the image content in a relevant way (the feature space)
and defining a quantitative measure on this space (the similarity measure):
the retrieval task is then accomplished by ranking images in increasing or-
der of the pseudo-distance between their feature vector and the one of a
given query image.

As seen in the introduction, a variety of descriptors and similarity mea-
sures have been proposed to represent image content. In this chapter, we
will compare our SMP approach to three different approaches to image
retrieval, two of them relying on the same similarity measure. The first ap-
proach is based on SIFT descriptors [ ], which are considered state-
of-the-art amongst local descriptors. Salient points are extracted by detect-
ing the highest coefficients in the wavelet transform of the image and SIFT
features are then represented by histograms of the gradient orientation in
regions of interest. Matching the SIFT features obtained in two images al-
lows then to quantify their similarity. The other methods to which we com-
pared ours use a segmentation-based fuzzy logic approach called UFM for
Unified Feature Matching [ ]. Here the descriptors are fuzzy features
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(called fuzzy sets) reflecting the color, texture, and shape of each segmented
region. The UFM measure then integrates the fuzzy properties of all the re-
gions to quantify the similarity between two images. Using this measure,
the authors proposed two image retrieval algorithms. The first one is a
strictly content-based approach (similarly to ours): it consists in ranking
the database images based solely on their UFM distance to the query. We
refer to it as the UFM approach. The retrieval accuracy is improved by
a second method called CLUE: the UFM distances between target images
themselves are used to obtain a clustering of the data from which the rank-
ing is obtained. Consequently, this method involves additional information
compared to strict content-based systems such as our approach.

2.4.2 Database and parameter settings
2.4.2.1 Databases

Numerical experiments were performed on two different databases. The
first one contains small categories and allows to evaluate specific perfor-
mances of a retrieval system such as its robustness to deformations; while
the second database, with larger categories, allows to test global retrieval
performances.

One of these databases contains 1,000 images of the Nister Recogni-
tion Benchmark collection [ I. The images of size 640x480 pixels are
grouped by sets of four images showing the same scene or object. Their
content is quite various, from indoor scenes with a single object to outdoor
scenes. Images belonging to the same group are related by geometric defor-
mations (rotation, translation, zoom and perspective) as well as radiomet-
ric deformations (changes of brightness and contrast). The ground-truth
for any query image is clear: exactly the three other images of the same
group are relevant.

The SMP retrieval method was also tested on a general-purpose image
database from COREL that has been widely used for CBIR evaluation pur-
poses. In particular, results presented in [ ] can be considered as a
reference. We used the same subset of the COREL database as in [ ].
It includes 1,000 images of size 384 x 256 or 256 x 384 which are classified
in 10 semantic categories (Africa, Beach, Buildings, Buses, Dinosaurs, Flowers,
Elephants, Horses, Food, Mountains). In some categories, the visual similar-
ity between two given images is not always obvious since the grouping has
been made in a semantic sense (e.g., category “Africa”).

2.4.2.2 Parameter settings

To build the patches as defined in section 2.2.2, the Laplacian pyramid was
computed for each channel of the image (in the YUV color space) with a
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5-point binomial filter ws = [14 6 4 1]/16, which is a computationally effi-
cient approximation of the Gaussian filter classically used to build Lapla-
cian pyramids. Three high-frequency subbands plus the low-frequency ap-
proximation were used.

In the following experiments, 1/64 (resp. 1/32, 1/16 and all) of the
patches were selected in the first high-frequency (resp. second, third and
low-frequency) subband to describe an image (see 2.2.4). At each scale, the
KL divergence was estimated in the KNN framework, with k = 10. The con-
tributions to the similarity measure from the divergences of all subbands
were equally weighted (¢; = 1in Eq. (2.4)).

Note that the use of the Jensen-Shannon divergence, which is a sym-
metrized version of the KL divergence, has also been studied. We found
that the performances of this symmetric measure are less good than with
the KL divergence, and so until further understanding of this phenomenum,
we report here only the results with the KL divergence.

2.4.3 Numerical experiments

This section presents an experimental analysis of the SMP method; the
patch-based retrieval algorithm is evaluated in terms of its ability to re-
trieve similar images in a query-by-example context. Images belonging to
the Nister database were used to evaluate the robustness of the method
to different geometric transformations. A set of artificially-degraded im-
ages of this database was also used to evaluate the retrieval performances
with respect to radiometric deformations (JPEG2000 compression noise).
The global retrieval performances on the Nister database were evaluated
by ROC (Receiver Operating Characteristic) curves and our method was
compared to a reference SIFT-based retrieval algorithm. For the COREL
database, the global retrieval performances were evaluated by precision
curves and our method was compared with the fuzzy, segmentation-based
UFM approach. Note that for all the following experiments, the given dis-
tance between images is S (Eq. (2.4)), hence the smaller the given distance
is the more similar the two considered images are.

2.4.3.1 Robustness to geometric deformations

The robustness of a retrieval system to geometric deformations is its abil-
ity to find relevant images in spite of some transformations of the query,
such as changes of viewpoint, rotations, zoom. This is an important re-
quirement in image retrieval, e.g. for finding a given object in different
images independently of the viewpoint. Because of its structure, the Nis-
ter database allows to evaluate the robustness of the proposed method to
geometric deformations. Indeed, the database is composed of groups of
four images containing the same object or scene under different viewpoints



18 Chapter 2. Sparse Multiscale Patches (SMP)

Image #17 Dist=17.1 Dist = 20.5
: - [ e

Dist =24.9 Dist = 39.8
g Ml.mft X | i - it

e

Dist =39
AN )1}

‘k-.:: b

Dist = 75.9

Figure 2.3: Retrieval results for 5 images of the Nister database. For each row, left
to right: query image; first 4 ranked images of the database (excluding the query).
For each retrieved image, the distance to the query is also shown (smaller distances
meaning more similar).

and/or lightening conditions.

Examples of retrieval for five query images taken from the database
are presented in Fig. 2.3. In this figure, each row displays the retrieval
result for the query image shown in the leftmost column. From the second
column on, one can see the first 4 retrieved images ranked in increasing
order of their distance to the query. Hence the second leftmost image is the
most similar one, excluding the query image which is always ranked first
with a distance of zero. The first retrieved images are generally relevant
for the query, in spite of rotations (row 2), changes of viewpoint (rows 1,
3, 5) and zooms (rows 2, 4). This shows that the proposed descriptors and
similarity measure are robust in terms of geometric deformations for the
retrieval problem.

2.4.3.2 Robustness to JPEG2000 compression

Another important requirement for content-based retrieval systems is the
robustness to radiometric deformations. Transmission on heterogeneous
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Figure 2.4: Evaluation of the robustness to [PEG compression for one query im-
age. Displayed distances are from the query to the 6 relevant images - 3 compressed
(A, B, C) and 3 geometrically transformed versions of the query - and to the first 2
non-relevant images. PSNR of the compressed versions: A: 31.8dB, B: 29.7dB and
C:29.34B.

networks requires compression. This process induces a loss of quality that
can be significant especially in critical transmission conditions. A retrieval
system is expected to be robust to compression quality. To test the proposed
method on this specific point, groups of images from the Nister database
were expanded. Namely, three highly-compressed versions of one image
were added to each group. They were obtained by setting three different
quality levels of JPEG2000 compression.

Queries were launched on this dataset with both original and com-
pressed images. An example of the results is shown in Fig. 2.4, where a
non-compressed image is used as a query. The distance from the three com-
pressed versions to the query image being quite small, the system ranked
them first and before any geometrically deformed version of the query.
This behavior is general and still holds when compressed images are used
as queries, confirming the reliability of the proposed similarity measure
in terms of its robustness to compression. Moreover, the distance to the
query increases as the compression level increases. This is shown in Fig. 2.4,
where images A, B, C are compressed versions of the query image in de-
creasing order of quality, the PSNR being respectively of 31.8, 29.7 and 29.3
dB.
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Figure 2.5: Retrieval performance of the SMP method for different subset sizes of
the Nister database; the ROC curves were obtained for cut-off values ranging from
1to9.

2.4.3.3 Image retrieval performances (I): ROC curves and comparison
with a SIFT-based method

The overall performances of the SMP retrieval method were evaluated by
analyzing retrieval results on the Nister dataset; namely, each of the 1,000
images was used as a query and the similarity measure to all other images
was computed. The same experiment was conducted by using a state-of-
the-art retrieval method based on (local) SIFT descriptors [ ]. For this
method, the similarity measure is defined as the number of points of inter-
est that can be matched between two images. The results of both methods
were quantitatively compared by means of ROC curves. These are recall
versus 1 — precision curves' averaged over all queries. The larger the pre-
cision and recall values, the better the retrieval performances (this corre-
sponds to the top left side of the plot of an ROC curve).

The results of our SMP retrieval method are shown in Fig. 2.5 for dif-
ferent subset sizes of the database. Namely, average results on the first 100,
200 or 500 images are compared to those on the whole dataset (1000 im-
ages). Although the probability of retrieval errors increases with the size of
the database, global performance is still satisfactory for a larger dataset. In
any case, the best trade-off between precision and recall was reached when
we retrieved three images, i.e. when the cut-off value matches exactly the

1 Recall or positive rate = %, 1-precision or false positive rate = 1 — %,

with R=#{relevant images for a given query}, C=#{desired number of retrieved images} or cut-off
D=#{correctly detected images}.



2.4. Application: Image Retrieval 21

ROC curves for 100 images UkBench

0.9
T 08 : : ; -
& i | ——matches of SIFT points
ol i | =6~ KL div of multiscale patches
207 i : T Y
= : : : :
14
T O T .
k3
L
o IS . 1% SRS S S S— N—— S — 1
A 05

i i i i i
0 0.1 0.2 03 04 0.5 0.6 0.7
False Positive Rate (1 - Precision)

Figure 2.6: Comparison of the retrieval performances of the SMP approach and
the SIFT-based algorithm; the ROC curves were obtained for cut-off values going
from1to 9.

number of relevant images; as a result, there is a high probability that the
retrieved images are all and only the relevant ones.

Finally, the results for our SMP and the SIFT-based approach are shown
in Fig. 2.6. The latter were obtained by running a publicly available Mat-
lab implementation of the SIFT algorithm [ ]. Because of the long
processing time of the SIFT implementation (4.8 s on average for each com-
parison between two images), performing a query with each image of the
database could not be done in a reasonable time. In consequence, a com-
parison was made by querying a subset of 100 images. In light of the ROC
curves, the performances of our SMP method and the SIFT-based algo-
rithm are comparable for this experiment.

2.4.3.4 Image retrieval performances (II): precision curve and compari-
son with the UFM method

The SMP retrieval method was also tested on a subset of the COREL database
and compared to the UFM and CLUE methods [ ]. This database is
made of a small number of categories (10) containing a large number of
images per category (100). Hence, ROC curves are not adapted to evaluate
the global performances of a retrieval system in this case. Instead, we used
the Average Precision to evaluate the retrieval performances for each cate-
gory (the precision values for a cut-off equal to 100 were averaged over all
images of the category) as in [ ].

Examples of our retrieval results are shown in Fig. 2.7 and the Aver-
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Figure 2.7: Retrieval results for 5 images of the COREL database. For each row,
left to right: query image; first 4 ranked images of the database (excluding the
query image). For each retrieved image, the SMP similarity measure to the query

is also shown.



2.4. Application: Image Retrieval 23

age Precision is given for each category in Fig. 2.8 (dark blue bars). The
results of the UFM and CLUE approaches are also displayed in this latter
figure for comparison. Fig. 2.7 illustrates the fact that the most of time, the
first four retrieved images belong to the query’s category (row 1, 4, and
5). This figure also illustrates well the difficulties encountered in this task:
since the categories are quite large and diverse, images belonging to dif-
ferent categories may have very similar visual properties that are picked
by our method. For example, the elephant and building (row 2 of Fig. 2.7)
have dominating vertical structures and same dominant colors. Likewise,
images belonging the “mountains” or “beaches” are freqently mismatched
(row 3 of Fig. 2.7). These retrieval errors are common to all methods com-
paring images solely on the basis of the image content (i.e. introducing no
semantics) and explain the fluctuation of the results displayed in Fig. 2.8
for all three methods. Our method compares well with the two established
methods displayed here: it is more accurate than UFM (gray bars) for six
categories out of ten; the accuracy is also better than or comparable to CLUE
(white bars) for five categories out of ten. On average, our method per-
forms better than the UFM approach and slightly less well than the CLUE
one. As pointed out in Section 2.4.1, the SMP and UFM approaches are
strictly content-based approaches. The CLUE method, while performing
better, uses additional image distances and is therefore much more time-
consuming. Thus, the performances of our method seem quite promising
for three reasons:

e It performs slightly better than the UFM approach which relies on the
same information.

e The results are not far from those of the more advanced CLUE ap-
proach which relies on more information.

¢ A similar clustering processing as the one applied with the UFM mea-
sure in CLUE may be applied to improve the SMP approach.

In conclusion, in its current state of development, the proposed SMP mea-
sure does not outperform the state-of-the-art methods selected as bench-
mark here. However, it does bring a novel approach to tackle the problem
of image retrieval.

24.4 Computational speed-up(s)

The evaluation of our SMP similarity requires the computation of several
KL divergences in a non-parametric framework. Since this is a time-consuming
task, we propose two ways to speed-up the computations. The first one is
based on a GPU implementation of the algorithm, the second on a prese-
lection of the relevant images in the database.
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Figure 2.8: Average Precision for each category of the COREL database. Dark blue
bars: SMP approach; gray bars: UFM approach; white bars: CLUE approach.

24.4.1 GPU implementation

When computing the similarity between two images with the SMP ap-
proach, most of the time is devoted to the search of the k-th nearest neigh-
bors in the evaluation of the KL divergences. Indeed, finding a k-th nearest
neighbor requires to compute and sort distances between features (here the
patches). The “brute force” algorithm has a complexity of order O(N?) for
N samples in the feature set. Smarter algorithms with a lower complexity
(typically of order O(N log N)) such as the classical KD-tree (ANN) algo-
rithm [ ] have been designed. Nevertheless, in practice, the com-
putation time of a similarity between two images with the SMP approach
remains large even with this low-complexity algorithm: on average 2.2s on
a Pentium 4 3.4 GHz (2GB of DDR memory) with the ANN algorithm.

To speed up the computation time, we developed a parallel implemen-
tation of the kNN search on a Graphic Processing Unit (GPU) [ ] us-
ing CUDA. This implementation is based on a brute force approach since
recursive algorithms (the preferred strategy when using trees such as in
ANN) are not parallelizable. It was implemented on an NVIDIA GeForce
8800 GTX card with 768 MB of memory. The computation time for one sim-
ilarity measure between two images required 0.2s on average (i.e., 10 times
less than with the CPU implementation of ANN).

As of today, the brute force algorithm parallelized on GPU is by far the
fastest implementation of our method. Developing smart algorithms (such
as the KD-tree one), which may not be parallelizable but have a very low
complexity, is a topic of active research, as is the development of GPU for
computational purposes. Hence both types of methods should be kept in
mind for efficient implementations in the near future.



2.5. Conclusion 25

2.4.4.2 Preselection of the relevant images

The computational speed can be improved by splitting the retrieval task
into two steps:

1. Only the low frequency contribution to the similarity measure de-
fined in Eq. (2.4) is computed for all images in the database. This
“partial” similarity measure produces a first ranking of the database
images from which the first n images are selected for the next step.

2. The complete similarity measure is computed between the query and
the n selected images.

This procedure saves computation time as it computes the whole similar-
ity measure only for a reduced number of images (computing only part
of it for images that are unlikely to be relevant to the query). The smaller
the size of the preselected subset, the greater the improvement in terms
of computation time. For example, when a query on the Nister database
is processed following the described two-step procedure with a selected
subset of 50 images, the average computation time per image drops from
0.2s to about 0.06s with the GPU implementation (and with similar re-
trieval performances). It is clear however that the number of preselected
images cannot be arbitrarily small without seriously affecting retrieval per-
formances. It should be large enough compared to the number of images
in the database as well as the number of relevant images for the query.

§ 2.5 CONCLUSION

In this chapter, we proposed a new image similarity framework based on
high-dimensional probability distributions of patches of multiscale coeffi-
cients which we call Sparse Multiscale Patches. Feature sets are represented
by these patches of subband coefficients that take into account intrascale,
interscale and interchannel dependencies. The similarity between two im-
ages was defined as a linear combination of the “closeness” between the
distributions of their features at each scale measured by the KL divergence.
The KL divergences are estimated in a non-parametric framework, via a
k-NN approach. The proposed similarity measure seems to be stable when
selecting a reduced number of patches, proving that a few significant patches
are enough to represent the image features. This is a consequence of the
sparsity of the multiscale transform.

We applied this framework to image retrieval. The proposed approach
takes advantage of the properties of its global multiscale descriptors. In
particular, it is robust to JPEG2000 compression (i.e. it matches the vi-
sual similarity between images with different amounts of blur or compres-
sion noise). Retrieval experiments were conducted on two publicly avail-
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able datasets of real world images (Nister Recognition Benchmark and the
COREL database) to evaluate the average performances of the method. In
particular, the Nister dataset was used to benchmark the robustness to sev-
eral geometric image deformations, such as change of viewpoint, rotation
and zoom. Our results showed the reliability of the SMP approach with
respect to these deformations. Furthermore, although our method is new,
its performances tested on two databases are very close to those of several
established retrieval methods: a reference retrieval method based on (local)
SIFT descriptors and two versions of a fuzzy, segmentation-based UFM ap-
proach: UFM and CLUE . This indicates that the SMP approach adapts to
quite different retrieval tasks, from the object level (on the Nister database)
to the level of general categories (on the COREL database).
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DATA STRUCTURES FOR FAST
BREGMAN NEAREST-NEIGHBOR QUERIES

k-nearest neighbor (k-NN) search is a crucial tool in many challenging ap-
plications of computer vision, ranging from image and information retrieval,
to classification and data mining. An example has been presented in Chap. 2,
where we have proposed to use a k-NN kernel density estimator as a ba-
sic tool for computing an information-theoretic divergence between sets of
image descriptors. Other applications are detailed in the following chap-
ters, where we focus on k-NN as a voting rule in the context of super-
vised classification. Although many efforts have been made to speed up
k-NN retrieval, this computational task still remains unsatisfactorily ex-
pensive and critical in applications. In this chapter, we describe the ex-
tension of two well-known data structures for fast indexing and k-nearest
neighbor retrieval to the information-theoretic class of Bregman divergences
(symmetrized or not): metric ball tree and vantage point tree.

On the one hand, we propose an effective Bregman ball tree (BB-tree)
construction algorithm that adapts locally its “arity” degree to the inherent
geometric characteristics of the datasets. As attested by extensive exper-
iments, this allows one to meet more often pruning conditions whenever
traversing the tree for exact or approximate NN queries without yet penaliz-
ing the construction time. Since symmetric measures are usually preferred
for applications in content-based information retrieval and categorization,
we furthermore extend the BB-tree to the case of symmetrized Bregman di-
vergences, such as the Jensen-Shannon divergence (i.e., the symmetrical
Kullback-Leibler divergence). Exact and approximate 1-NN search exper-
iments using high-dimensional data arising from real-world images (SIFT
signatures, color histograms) illustrate that our method improves over the
state of the art significantly (up to an order of magnitude).

On the other hand, we generalize the vantage point tree (vp-tree) to the
same class of distorsion measures. This data structure was originally intro-

27
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duced for information retrieval in metric spaces, and has recently shown
very good performances for the retrieval of image patches with respect to
the /> metric. Later in this chapter, we present our extended algorithm for
building and searching for Bregman vantage point trees, and evaluate its
performances similarly as for BB-trees.

§ 3.1 INTRODUCTION AND PRIOR WORK

Finding nearest neighbors (NNs) is a common task occurring in many ap-
plications that range from computer vision to machine learning and data
mining. Let S = {p1, ..., p,} be a set of n d-dimensional data (with d typi-
cally ranging up to a few thousand dimensions). Given a query point g, the
nearest neighbor NN(q) is defined as the “closest” point in S with respect
to a dissimilarity measure D:

NN(q) = argmin D(q,p;) . (3.1)

Instead of merely considering the closest neighbor, queries can be enlarged
to report the first k “closest” points (e.g., k-NN classification). Furthermore,
many applications enable to relax the exact search for getting just good ap-
proximate nearest neighbors [ I

Besides the theoretical puzzling questions related to the dreaded curse
of dimensionality [ ], practitioners make every endeavor to speed up
applications by designing tailored schemes for improving over the naive
linear-time O(dn) brute-force method (perhaps accelerated by paralleliza-
tion on GPUs [ ). Among the flourishing literature on NN search
techniques!, we may distinguish two main classes of methods:

o those relying on tree-like space decompositions with branch-and-bound

queries, such as kD-trees, vantage point trees [ 1 and metric ball
trees [ ], and
e those based on mapping techniques [ 1 (e.g., locality-sensitive

hashing, random projections).

The former tree-based methods improve over the brute force algorithm by
pruning sub-trees whenever traversing the trees with queries (exact NN) or
stopping after visiting a given budget of leaves (approximate NN). The lat-
ter methods concentrate on reducing dimensions while preserving as much
as possible distances and controlling geometrically collisions of hash func-
tions, thus only enabling approximate NN search.

Since the Euclidean distance D(p, q) = ||p — q|| = \/Z;l:l(p(f) —q\))2
is often inappropriate for meaningfully measuring the proximity of feature

1See http://simsearch.yury.name/tutorial.html
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points arising from image applications, a wide range of distortion mea-
sures has been proposed and NN data structures have been first extended
to arbitrary metrics (e.g., vantage point trees [ ]). However, in order
to prune, these NN search methods rely fundamentally on the triangle in-
equality property, which is not satisfied by information-theoretic statistical
distances [ ], such as the Kullback-Leibler divergence (KL for short)?:

4l
KL(p|lg) = ) pY 10gw : (3.2)
b

Cayton has recently extended metric ball trees to the broad class of Breg-
man divergences [ ], thus introducing the Bregman ball tree (BB-tree),
which has been later adapted to range search [ ]. A Bregman diver-
gence Dr on vector set X C IRY is defined for a strictly convex and differen-
tiable generator F(x): X C R? — R as:

De(pllq) = F(p) —F(q) — (p—q)"VE(q) , (3.3)

where VF denotes the gradient of F. (See Fig. 3.1 for a geometric inter-
pretation.) These divergences (parameterized by a generator F) include all
quadratic distances (known as Mahalanobis squared distances, which are the
only symmetric Bregman divergences and are obtained for F(x) = L 'z,
where I > 0 is the positive-definite variance-covariance matrix) and the
asymmetric KL divergence (F(x) = 2?21 xjlog xj, i.e., the negative Shannon
entropy), for which Dr(p||q) # Dr(q||p). Bregman divergences are essen-
tial distortion measures as they are provably the canonical distances that gen-
eralize the Euclidean flat geometry [ , . Many fundamental al-
gorithms, such as k-means [ ] and PCA, as well as data structures,
such as Voronoi diagrams [ ], have been generalized to this class of
divergences, thus offering meta-algorithms that can work for any Bregman
divergence. For example, Banerjee et al [ ] have shown that the
celebrated Lloyd k-means algorithm extends to (and only to) the class of
Bregman divergences, thus unifying various former algorithms. The Breg-
man k-means hard clustering algorithm proceeds iteratively in two stages
by first assigning points to the closest cluster center (centers are initialized
by selecting randomly points from the dataset), then updating these k clus-
ter centers by taking their centroids until convergence is reached (Fig. 3.2).
Bregman NN queries can be used to improve computationally the assign-
ment stage [ ]. Since Bregman divergences are typically non-metric
asymmetric distortion measures, one can consider both left/right-sided

2Also called relative entropy, discrimination divergence, or information divergence (I-
divergence for short).
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- Dr(p, q)
(P—q,Vr(q))

Figure 3.1: Geometric interpretation of the Bregman divergence as the remainder
computed at p of the first order Taylor expansion of F around q [ 1.

and symmetrized NN searches, defined as follows:

NNr(gq) = argmin; Dr(pi||q) (right — sided)

NNk(q) = argmin; Dr(q||p;) (left — sided)

NNr(q) = argmin;(Dr(pillq) + Dr(qllpi))/2 (Symmetrized)( N

3.

Besides BB-tree, an alternative data structure for fast NN search is the
vantage point tree (vp-tree), which was introduced by Yianilos [ ] for
partitioning a general metric space in a hierarchical way. A tree structure is
built by recursively splitting each node covering a set into two siblings cov-
ering corresponding subsets. Such a node partitioning is based on a ran-
domly chosen vantage point. For each point of the node, its distance to the
vantage point is compared to a distance threshold. Points with distances
smaller than the threshold are classified as “near” and assigned to, say, the
left subtree, the remaining others are classified as “far” and assigned to
the right subtree. The threshold is usually computed as the median of all
distances to the vantage point, thus balancing the two sub-trees.

Vp-trees have been rarely but successfully used in applications, such as

image indexing [ ] and music information retrieval [ ]. In ad-
dition, they have recently shown very good performances for image patch
retrieval with respect to the ¢, metric [ 1.

On the one hand, our work takes on the results® of Cayton [ ], and

improves and generalizes his Bregman ball-tree (BB-tree) approach. On the
other hand, we investigate the use of vantage point tree tailored to the class
of Bregman divergences (Bvp-tree). In the following sections, we first sum-
marize the randomized sampling method, which is the reference method
for approximate brute-force search and is used for comparisons (Sec. 3.2.1).

3C source code and datasets available at http: //www.cse.ucsd.edu/ lcayton/
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Figure 3.2: Schema of BB-tree data partitioning by means of Bregman 2-means
clustering.

Then we present our contributions to the BB-tree data structure (Sec. 3.2.2),
that are:

e significantly speed up the construction time of Cayton’s BB-tree using
k-means++ [ ] and let the tree node arity degree adapts locally to
data correlations in order to better balance the tree;

e optimize the projection of queries onto Bregman balls using a novel
geodesic bisection search controlled by the Hessian V2F;

e handle the case of symmetrized Bregman divergences using either
explicit or implicit representations for the underlying symmetrized
centroids.

Then, we describe our construction and search algorithms for the Bregman
vantage point tree (Sec. 3.2.3). Finally, in Sec. 3.3, results of experiments
carried out on datasets of high-dimensional SIFT (d = 1111) and Corel (d =
64) histograms are shown to compare favourably with Cayton’s [ ]
(gain up to a magnitude order).

§ 3.2 k-NN SEARCH VIA BREGMAN DATA STRUCTURES

3.2.1 Randomized sampling for approximate NNs

A simple strategy to significantly speed-up over the brute force NN algo-
rithm consists in sampling the source dataset by choosing to keep a point
with probability, say a. At query time, one performs the exact NN query
on the sample of mean size an instead of the full point set, thus obtaining a
speed-up factor % The impact of sampling the dataset on the NN precision
can be measured as the rank R,;, of the approximated NN, i.e., the true
rank of the reported NN in the full set. A probabilistic analysis shows that
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the expected value:

ElRyy = L (1) —a(n+2)

n n (3.5)

is well-approximated by 1 for large datasets (n — o). For a single query
the rank is related to the Number Closer (NC) used by Cayton [ I
which is defined as the number of points closer to the query than the re-
ported NN. Indeed: Ry, = 1+ NC. For experiments on multiple queries
the measure is averaged over all queries, thus providing the Average NN
Rank. Note that this approximate NN sampling method applies to any kind
of distance measures, and will therefore serve us as the reference basis to
compare the efficiency of our improved BB-tree space partitioning method.

3.2.2 Bregman ball trees (BB-trees)

Without loss of generality, we consider only right-sided NN queries, as left-
sided NN queries can be handled similarly by considering the dual diver-
gence:

Dr-(VF(q)||VF(p)) = Dr(pllq) , (3.6)

arising from the Legendre conjugate F* of F, VF* being the functional in-
verse of VF~1. (See [ , ] for details.) Indeed Bregman genera-
tors come by pairs (F, F*), e.q., the dual Legendre conjugates F(x) = xlogx
and F*(y) = expy (related by F'(x) = (F*'(y)) '), see [ 1

Outline of Bregman ball trees (BB-trees) Similar to metric ball trees, a
BB-tree is built in a top-down fashion by applying recursively a partitioning
scheme. First, the root is created to handle the source dataset S. A 2-means
(Bregman k-means according to Banerjee et al [ ], with k = 2) is
computed, splitting S according to the two centroid points, say ¢; and ¢,
with respect to Dr. These two centroids define a partition S = §; U S, that
can be covered geometrically with corresponding Bregman balls B(¢;, R))
and B(c¢,, R,), possibly overlapping. (See Fig. 3.2.) This hierarchical de-
composition of § is carried out recursively on §; and S, until a stopping
criterion is eventually met. Such criterion is either a predefined maximum
number of points [y (stored at leaves) or a prescribed maximum radius ro.
Note that the source points are stored at leaves of BB-tree only, and the
subsets S; and S, may be theoretically unbalanced. Internal nodes store
only two left/right Bregman balls covering the point sets stored at their
left/right sub-trees.

In both exact and approximate NN queries, we perform a branch-and-
bound search to answer queries. For a given query g, the tree is traversed
in depth-first-search order from the root to the leaves. At an internal node,
we choose to branch first on the sub-tree whose corresponding ball is closer
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to the query g (the sibling is temporarily ignored). Once a leaf node is
reached, the closest point to g among the points stored at the leaf is com-
puted using the brute-force method. This first visited leaf yields the very
first NN point candidate p/, thus giving an upper bound Dg(p'||q) to the
NN distance. In exact search, the tree traversal goes on through all for-
merly ignored subtrees. In order to decide whether a subtree must be ex-
plored or not, we check whether Dr(p'||q) > min,cp(.r) Dr(z||q), where
p’ is the current NN candidate. This test is performed by projecting g
onto the Bregman ball. The projection of a point g onto a Bregman ball
B is the unique minimizer g = arg mingep Dr(x||q) [ ] (we present
an improved algorithm later in this section). Instead of projecting exactly
the query point onto the ball, we rather make use of a Bregman annulus
B(¢,R,R") = {x | R < Dp(x|lc) < R’} that contains the projection by
construction: gg € B(c¢,R,R"). If Dr(p'||g) < R then the node can be
pruned; If Dr(p’||q) > R’ then the node must be explored (Fig. 3.3). These
lower /upper bounds are computed during the geodesic bisection search
of the projection [ ]. To conclude, observe that the less the number
of pairwise intersecting balls stored at nodes, the better the BB-tree per-
formance. Although exact NN retrieval on BB-trees can often be achieved
with much smaller computational cost than the brute-force search, the prac-
tical interest of BB-trees is to get significant speed-up search when perform-
ing approximate NN queries. The approximate search allows one for large
speed-up as it stops the branch-and-bound algorithm after exploring a pre-
scribed number of leaves [ ].

In the following, we generalize the BB-tree data structure to arbitrary
degree ball trees by allowing the algorithm to tune the node arity accord-
ing to the corresponding subset. Experiments show that this method sig-
nificantly increases the number of pruned tree nodes.

Speeding up construction time: BB-tree++ In order to preprocess datasets
efficiently by means of Bregman ball trees, instead of running the full regu-
lar Bregman k-means algorithm [ ], we just perform a careful light
initialization of the two cluster centers (seeds). Initialization turns out to be
the crucial phase of k-means. Indeed, k-means locally optimizes the poten-
tial P(C) = Y pes minecc Dr(pl|c), where C denotes the set of k centers.
Each round assignment/cluster adjustment decreases this potential func-
tion so that monotonous convergence is guaranteed. It is striking to know
that the worst-case running-time of k-means is theoretically exponential
with the dimension although a recent smooth analysis yields polynomial
amortized time [ ]. Moreover, a bad initialization traps k-means into
a local optimum. Thus initialization is all the more important, as k-means
is called at each internal node of the BB-tree to partition the datasets into
two sub-sets. Therefore the idea is to replace the k-means local iterative al-
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Dp(¥/|la) > Dp(alla) (explore)
Dp(p'|lq) < Dp(yllg) (prune out) BORR) ., L

Figure 3.3: Illustration of the Bregman annulus that allows for branch-and-bound
search

gorithm by a well-chosen initialization that provides a guaranteed upper-
bound on the optimal partition. This quantum leap for k-means was dis-
covered by Arthur and Vassilvitskii [ ] and later extended to Bregman
divergences by Nock et al [ I

In order to initialize the seeds, we first draw ¢; (cluster “center”) uni-
formly at random among the points of the dataset. Then, we compute the
Bregman divergence of this point to all points of S, and draw the second
seed ¢, according to the divergence distribution:

_— Dr(pil|c;)
;= .
Ypses De(pjller)

(3.7)

Thus ¢, can never be ¢, since Dr(¢||c;) = 0; therefore the probability of
drawing ¢; again is zero. This careful initialization yields an extremely
fast tree construction, which statistically provides nice splitting and tends
to balance subsets stored at leaves. Arthur and Vassilvitskii [ ] proved
that this initialization yields a k-means score P(C) at most 8(2 + log k) of the
optimal value. Similar bounds in O(log k) for generic Bregman divergences
were later reported by Nock et al [ ]. Note that the two left/right
Bregman balls stored at internal nodes tend to minimize the Bregman infor-
mation [ ] (i.e., variance for the square potential F(x) = x2, mutual
information for the negative Shannon entropy F(x) = xlogx, etc). Next,
we improve the partition at each internal node by learning its degree (num-
ber of siblings) from the local datasets.

Learning the tree branching factor Answering queries may range from
optimal logarithmic time (i.e., the shortest path to a leaf) up to linear time
for a complete tree traversal. Therefore, it is important to partition the
source datasets into as many as possible non-overlapping Bregman balls.
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However, consider a dataset consisting of three separated Gaussian point
samples. Forcing this set to be split into two will likely create overlapping
balls. Thus we better learn the number of sub-sets when partitioning the
data so that the induced Bregman balls better fit the intrinsic geometric
characteristics of the set (refer to Fig. 3.4). We propose to use the G-means
strategy [ ] for adapting the branching factor bf; (up to a maximum
branching factor BF) of each internal node of the BB-tree to the underly-
ing distribution of the data. The self-tuned splitting algorithm for internal
nodes is summarized in Alg. 1. The underlying idea is to assume Gaussian
distribution of each group of points (hence the name G-means). (This is not
so restrictive, as any smooth density function may be reasonably well ap-
proximated using a Gaussian mixture model.) Our use of G-means [ ]
algorithm starts by setting k = 2 and then test for Gaussian distribution
of the points using the Anderson-Darling statistical test. (This merely re-
quires sorting the data projected on a line, i.e., scalar values.) Given a confi-
dence level g, if the Anderson-Darling test returns true, we keep the center,
otherwise we split it into two. Between two rounds, we simply run Breg-
man k-means++ initialization on the dataset and get all the new centers that
hopefully refine the partitioning. We enforce a maximum degree to each in-
ternal node in order to strike a balance between the average tree depth and
the overall ball tree shape.

The initialization to k clusters follows the same principle. Namely, we
draw the [-th seed from the dataset uniformly according to the distribution:

. Dre(pillCi1)
" Ypes De(piliCio1)

(3.8)

where C;_; denotes the formerly chosen (I — 1)-th seed and Dr(p||S) =
minges De(pl|x).

When visiting the BB-tree for answering nearest neighbor queries, we
use a priority queue. In order to relax the exact NN to approximate NN
queries, the criterion of stopping the search once a few leaves have been
visited was proposed and proven successful by Cayton [ ]. However,
there was no guarantee to get a good approximation to the exact NN be-
cause leaves containing subsets that are close to the exact NN are not nec-
essarily close in the tree. We improve this point by a careful non-recursive
implementation of the tree traversal, which allows us to order the nodes
to be explored by their divergence to the query point (i.e., the divergence
of the query to the ball centers). Using a priority queue guarantees that
nearest nodes are always explored first when traversing back the tree, by
jumping appropriately to the most likely not yet visited sub-tree.
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Algorithm 1 Bregman Ball Partition (B(¢, R), BF, Ryip)

Input: Bregman Ball B(c, R), integer BF > 0 (max branching factor), real
R,in (min ball radius);
SET childrenList = EMPTY, tempQueue = EMPTY;
SET bf = 0 (branching factor);
Bi(ey, R;), By (¢r, Ry) < Bregman 2-Means(B(c, R));
if R; > R, then
PUSH (B, tempQueue); PUSH (B,, tempQueue);
else
PUSH (B,, tempQueue); PUSH (B, tempQueue);
end if
INCREMENT bf BY 2;
while tempQueue NOT EMPTY do
Bi(et, Ry) + POP(tempQueue);
if bf +1 < BF AND R; > Ry, then
B;, B, < Bregman 2-Means(B;(ct, R;)); NeedToSplit <— Anderson-
Darling Test (B, B,);
if NeedToSplit = FALSE then
PUSH (B;(ct, Ry), childrenList);
else
PUSH (B, tempQueue);
PUSH (B,, tempQueue);
INCREMENT bf BY 1;
end if
else
PUSH B¢ (¢, Ry), childrenList);
end if
end while
Output: childrenList, bf

Revisiting the geodesic bisection search We propose an improved geodesic
bisection search method controlled by the variation of the Bregman genera-
tor, namely its Hessian V2F. Let us recall that the geodesic I', linking p to
q is defined as T';; = {LERP(A, p,q) | A € R}, where:

LERP(A,p,q) = VF1((1 - A)VE(p) + AVF(q)) . (3.9)

(See [ , , ] for the details.)

In order to find the Bregman projection gp = arg min,cp (. ry Dr(z||c)
of a query point g onto a Bregman ball B(c, R), we first check whether g
is outside the ball or not: Dr(q|le) > R. If not, Dr(g||c) < R and the
projection is simply the point itself: gg = gq. Let us consider the geodesic
segment [cq], the projection point gp belongs necessarily to the geodesic
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Figure 3.4: Two examples of improperly choosing the value of k for k-means clus-
tering [ I

Ty g = LERP(Ay, ¢, q) for some A, € [0, 1]. The value A, is approximated

by a bisection search as follows. Initially, let /\,(19 ) = 0and )‘1(\91) = 1and

(0) 4 1(0)
consider a midpoint m = LERP(A("), ¢, q) obtained for A(0) = w If

Dp(m||e) > R then recurse on [/\,(nl),)\g\}[)] = [A,(,?),A(O)], otherwise recurse
on [)L,(nl ),Ag\}[)] = [A(O),AE\?] and so on until the range size /\5\14) — AW goes
below a threshold € (typically € € [1071°,107°]). This yields a fine approx-
imation of gz ~ LERP(A(), ¢, q) by splitting the “A” intervals a dozen of
times. (Recall that the algorithm keeps a Bregman annulus, and refine the
inner/outer radii to decide whether to prune or explore a sub-tree.) Halv-
ing the geodesic by halving the A coefficients is however sub-optimal since
the two portions [gm] and [mc]| of the geodesic splitted by m may have
significantly different divergences (e.g., Dr(g||m) # Dr(m||c) for KL).
There are several ways of formalizing the geodesic cut yielding to dif-
ferent formulas; here we present the method that worked best experimen-
tally. We split the geodesic [pq] in half amounts to seek for A such that:

Dr(p||LERP(A, p,q)) = Dp(LERP(A, p, q)l|q) - (3.10)
The Bregman divergence can be interpreted as the exact remainder of the
Taylor expansion of generator F [ ]:
_l T _
De(plla) = 5(p —a) V'F(e)(p —q) (3.11)

for some ¢ € [pq]. Thus it follows that:

Dr(pllq) ~ %(p —q)"'V*F(e)(p—q) (3.12)
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for any e € [pq]. For close points p and g, we can thus approximate as:

De(plla) =~ 5(p—a) VED)(p—a) | 6.13)
Dr(pllq) ~ %(p ~a)'V’F(q)(p—a) - (3.14)

For the sake of simplicity, let us consider 1D Bregman divergences so
that V2F = f". It follows from Dr(p||LERP(A, p, q)) = Dr(LERP(A, p,q)||q)
that:

P —a)f"(p) = 5(1-\2(p— a)f"(a) (3.15)

Hence:

(-2 )zzﬁgzg (3.16)

and, solving for A, we get:

) (3.17)

with ¢ ~ %. (For multivariate Bregman divergences, we let ¢ ~
|[V2E( )

[|V2F(p
Euclidean distance, the Hessian is constant f”(x) = 2 and for the KL diver-
gence, it is quickly varying as x — 0%: f”(x) = 1. Thus for two points p
and g in the KL geometry with p — 0, A tends to 0 and not %, as wished. For
squared Euclidean distance, this yields the usual dichotomic search (c = 1):
A = 1. The Hessian-based cut method reduces the number of iteration
steps for estimating the projection point gg. Note that this technique also
applies for walking efficiently toward any given point on geodesics, and
can thus be used to improve the computation of symmetrized Bregman
centroid, as described in [ ]. Furthermore, this method can be used
for checking whether two Bregman balls intersect or not (a primitive that
is also required for handling Bregman vantage-point trees).

) Note that A is guaranteed to fall always in [0, 1]. For squared

Handling symmetrized Bregman divergences Content-based informa-
tion retrieval and categorization systems often need the distortions mea-

sures to be symmetric [ ]. Except for generalized quadratic (Maha-
lanobis) distances, the symmetrized Bregman divergence is technically not
a Bregman divergence [ ]. An example is given by the symmetric KL

divergence (SKL), which goes by the name of Jensen-Shannon:

1S(p;q) = KL( r|p+q>+ KL( H””) .G
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It turns out that such symmetrized Bregman divergences [ ] are all
generalizations of the Jensen remainder obtained for convex generators F*:

ISe(pia) = 5 (F(p) + Fl@) ~ F (P57 .19
The symmetrized Bregman divergences can also be interpreted as a special
case of mixed Bregman divergences, for which a remarkable extension of
Bregman k-means++ has been reported [ I

The mixed Bregman divergence is defined for a value « € [0,1] and
triplets of points as follows:

Dr(l)|x]|r) = (1 — «)De(l||x) + aDe(z||r) . (3.20)

It thus includes the regular Bregman divergence (« = 0), the inversely ori-
ented divergence (« = 1) and the symmetrized Bregman divergence (x = 3
with I = 7). The construction of mixed Bregman ball trees follows similar
principles but instead of storing for each ball one center, we store two
left and right centers. Alternatively, the symmetrized Bregman centroid
may also be explicitly computed following the geodesic-walk algorithm
of [ ]. Indeed, the geodesic of symmetrized Bregman divergences

follows the same expression: I'pq = {LERP(A,p,q) | A € R}.

Sided or symmetrized Bregman divergence? SKL has already proven
useful and appropriate for numerous applications including image retrieval
applications (e.g., see [ ]). For asymmetric Bregman divergences like
KL, we still have to choose between either the left-sided or right-sided
query type. This choice depends on applications, as they exhibit differ-
ent mathematical properties, and thus report different exact/approximate
NN in practice. The right-sided query:

d ()
i lq) = i () 10g Pi_
arg min KL(pi||q) argglelg; p;’ log 70 (3.21)

is zero-looking: whenever a component gU/) of the query is close to zero, it
)
i
is potentially unbounded for 41/} = 0; but JS is always bounded). Similarly,
for left-sided query:

seeks for points p; with p.”” close to zero too (otherwise KL grows fast and

Y g0 log 1 3.22
argglelg];q o8 G - (3.22)

1

“4Besides the Jensen-Shannon divergence for F(x) = xlog x, these so-called Burbea-Rao
divergences also include the important COSH distance used in speech/sound processing
for the Burg entropy F(x) = —logx. These divergences are always bounded (cannot tend
to infinity).
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the left-sided NN is zero-discarding, as the component p/) is not taken into
account for i) — 0.

Banerjee et al [ ] showed a bijection between regular exponen-
tial families in statistics and (regular) Bregman divergences. This gives a
way to design the most appropriate Bregman divergence from signal mod-
eling. For example, the sound spectra tends to follow exponential dis-
tributions of the form p(x) = Ae*, and thus the corresponding diver-
gence is obtained for the Burg entropy F(x) = —logx. It is precisely
the well-known discrete Itakura-Saito divergence IS(p||q) = g + log % -1
that worked best experimentally for sound/speech processing. Note that
the KL divergence on d-dimensional point sets can be computed as the
KL divergence of corresponding exponential families [ ]. Indeed, d-
dimensional probability vectors (e.g., normalized histograms) can be con-
sidered as multinomial distributions with d — 1 degrees of freedom. There-
fore the BB-tree++ for KL can be built not on the source data points, but
rather on the (d — 1)-dimensional “natural” points for the generator F(x) =
log(1 + exp x), the logistic entropy (see [ ] for related details).

3.2.3 Bregman Vantage-point Trees

In this section we first describe the Bup-tree data structure based on the
seminal description of Yianilos’ vp-tree [ ], then we describe our algo-
rithm for checking the pruning conditions when visiting the tree, which is
our main contribution for extending this data structure to Bregman diver-
gences.

Outline of Bregman vantage point tree (Bvp-tree) A Bvp-tree is built
by applying recursively the same partitioning procedure as described in
[ 1, except for replacing distances by Bregman divergences. First, the
tree root is created, which represents the whole dataset S. Then a vantage
point v is randomly drawn from the dataset and the distance Dr(x||v) is
computed for each point x € S. A distance threshold 7 defines a par-
tition S = S U S,, where S; is covered by the Bregman ball B(v, ) =
{z | Dr(z||lv) < 7} and &, is contained in the complement subset S \
B(v,t) = {z | Dr(z||v) > t}. In our implementation, we define T as
the median of the distances { Dp(x||v) | «}. This hierarchical decomposi-
tion of S is applied recursively on S; and S, until a stopping criterion is
eventually met. This criterion is typically based either on setting: (1) the
maximum number of leaf points bs (bucket size), or (2) the maximum leaf
radius rg. When such a criterion is met, two leaves are created to store the
corresponding source points. (All internal nodes store only Bregman balls
B(v, 7).) Figure 3.5 shows an example of the space partition induced by a
Bvp-tree.
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Figure 3.5: Schematic description of Bup-tree construction for a set of 8 points
(wrt. SKL aka Jensen-Shannon divergence).

In order to retrieve the NN for a given query g, we perform a branch-
and-bound traversal of the tree. The tree is visited by traversing it from the
root to the leaves following a given branching order (depth first search).
Namely, at any internal node, we choose to branch first on the sub-tree
whose corresponding ball is closer to the query g. Temporarily ignored sib-
lings are added to a priority queue for successive exploration. (The smaller
the distance of a sibling node to the query point, the largest its priority.) The
first visited leaf yields the very first NN candidate point p/, thus giving an
upper bound Dr(p’||q) to the NN distance. Indeed, the true NN cannot
lie outside the boundary of the Bregman ball B(q, Dr(p’||q)) (query ball).
Then, in exact search, all formerly ignored subtrees are explored according
to their priority order. Each subtree needs to be visited or not depending
on whether Dr(p'||q) > mingcp(c,r) Dr(||q), where p' is the current NN
candidate. This test is performed by checking whether the ball B(c, R) in-
tersects the current query ball B(p/, Dr(p’||q)) or not. If the two balls do
not intersect, then the node can be pruned. Otherwise, it must be explored.
Every time a new NN candidate is found, the upper bound is updated,
thus progressively reducing the size of the search subspace. Pruning sub-
spaces is a major advantage of such data structures, since the more leaves
are pruned out, the more significant is the computational speed-up over
brute-force search.

Pruning condition In order to check whether the intersection between
two Bregman balls is void or not, we propose a test that enables us to prune
nodes that cannot contain a closer neighbor than the actual NN candidate.
Indeed, given a query point g and a NN candidate p/, the Bregman ball
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B(q,1") of radius ¥’ = Dr(p'||q) centered at ¢ defines the only space region
where a closer NN may be found. As a result, any subtree rooted at a
node that does not intersect B(g, ') can be pruned without impacting the
retrieval precision.

Consider two non-concentric Bregman balls By (p, r,) and Bz(g, 7). The
radical hyperplane Hy; is the locus of points that have equal power with re-
spect to these two balls. It is defined as follows:

H12 : Bl (a:) - Bz(ﬂ?) =0 ’ (323)

where:
Bi(z) : Drlallp) ~rp =0 (324)
Baz) : Delzlla) —r, =0 (325)

are the power equations of the two balls. Plugging the definition of D (x||)
yields the following equation of the radical hyperplane Hyy:

F(q) —F(p)+r2—r1+(z,Vr(q) = Ve(p)) + (P, Vr(p)) — (¢, VF(q)) =0,

(3.26)
where (z,y) denotes the vector inner product 'y. If the balls intersect,
then the radical hyperplane must necessarily contain points of intersection
(Fig. 3.6).

In order to test this condition, we propose to check the point of inter-
section between the radical hyperplane and the geodesic I'pq4 linking p to
g, which is defined as: ',y = {LERP(A,p,q) | A € R}. (See Eq. 3.9.) If
neither ball contains this point, then their intersection is empty. We imple-
ment this test as a bisection geodesic walk algorithm similar to that used in
[ ] for computing symmetrized Bregman centroids. Note that we first
check whether a ball contains the center of the other, as this would make
more iterations useless. Furthermore, we use bounds to stop the bisection
algorithm as soon as possible, without need for precisely computing the
common intersection point (Alg. 2).

§ 3.3 EXPERIMENTS

We carried out extensive experiments on the BB-tree++ and Bvp-tree data
structures by collecting various statistics for both KL and SKL queries. First
we focused on evaluating performances of both construction and search
of our adaptive ball trees, comparing them with the regular BB-tree of
Cayton [ ]. We used the same baseline C code and datasets so that
the presented results are as fair as possible °>. When a direct comparison

5We thank Lawrence Cayton (UCSD) for sharing with us both his code and SIFT/Corel
high-dimensional datasets.
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Algorithm 2 Bregman Ball Intersection(B,(q, R;), Bo(v, Ry), A, Ay)

Input: Bregman Balls B,(g,R,;) (query point ball), B,(v,R,) (vantage
point ball), A;, A, € (0,1);
SET z,, = VF1((1— A;)VF(q) + A,VF(v));
SET x,, = VF'((1— A,)VE(q) + A,VE(v));
if D]:(CL‘/\qu) < Rq OR D]:(:I}/\[ ‘ |’U) < Ry, then
return YES;
end if
SET A = At
SET x) = VF1((1 - A)VF(q) + AVF(v));
if Dp(il:/\Hq) > Rq AND Dp(il:/\H’U) > R, then
return NO;
else if Dr(x)||q) < Ry AND Dp(z,||v) < R, then
return YES;
else if Dr(x)||q) < R; AND Dp(z,||v) > R, then
SET A; = A;
return Ball Intersection(B,(q, R;), Bo(v, Ry), A1, Ar);
else if DF(CC/\Hq) > Rq AND DF(:B/\H’U) < R, then

SET A, = A;
return Ball Intersection(B,(q, R;), Bo(v, Ro), A, Ar);
end if
- @®
(a) (b) (c)

Figure 3.6: Examples radical hyperplanes for two (a,b) intersecting, and (c) non-
intersecting Bregman balls.



44 Chapter 3. Data Structures for Bregman NN Queries

to Cayton’s results was not possible (namely for symmetrized NN queries)
we compared our results to those of the Randomized Sampling method
(Sec. 3.2.1).

Then, we carried out experiments on Bvp-trees and evaluated the per-
formances of this data structure when varying the partitioning termination
criterion and the computational cost of construction, as well as the perfor-
mances of searching for both exact and approximate NN.

For this purpose, we used two feature sets originating from databases of
images, each set containing two parts: (1) a source point database, which is
used for building the tree structure at pre-processing time, and (2) a query
point set, which is used for performing on-line queries on the tree.

o The first dataset contains high-dimensional histograms of SIFT descrip-
tors (d = 1111), i.e.,, Bag-of-Features descriptors [ ], extracted
from images of the Pascal 2007 challenge [ ]. Such descrip-
tors are widely used in applications of image retrieval and catego-
rization, which generally require fast and precise nearest neighbor
search [ ]. The SIFT dataset contains 10,000 reference points
and 2,300 query points.

e The second dataset is a collection of color histograms obtained from
Corel images. This dataset has been extensively used for benchmark-
ing several computer vision applications. It contains 60, 000 reference
points and 6,616 query points (4 = 64).

In the following we present the most significant results of both exact
and approximate NN search. First, we show in Sec. 3.3.1 the typical com-
putational speed-up obtained by BB-tree++ for the construction stage. We
stress out the experimental properties of the ball trees obtained by gather-
ing various statistics when varying the maximum branching factor and the
partitioning termination criterion. Then we discuss NN retrieval results
in Sec. 3.3.2, specially focusing on approximate search using the asymmet-
ric KL divergence. In particular, we comment the experimental trend of
retrieval performances when varying the branch-and-bound stopping cri-
terion. These results are compared to those reported by Cayton [ ] for
the same datasets. Finally we present some novel results on symmetrized
and mixed Bregman queries, which significantly outperform the Random
Sampling approach, thus validating the effectiveness of our adaptive BB-
trees.
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3.3.1 BB-tree construction

First of all we analyze the typical profile of BB-tree++ as a function of two
fundamental construction parameters:

¢ the maximum number of points contained in a leaf (bucket size), and

e the maximum branching factor of an interior node BF. (See Alg. 1.)

These parameters determine the conditions for stopping the recursion when
constructing a BB-tree. We used different values of the construction param-
eters in order to highlight the benefits in terms of computational cost and
adaptivity to data distribution. In Table 3.1, we report results of making the
bucket size, bs, vary between 50 and 200, while relaxing the branching con-
dition for ball partitioning from BF = 2 to BF = 10. For each combination
of these two parameters, we measured the main properties that describe
the tree structure. In particular we give the maximum and average tree
depth, the average branching factor of interior nodes, the number of leaves and
the tree size (i.e., the overall number of tree nodes). As expected, the tree
size considerably depends on bs. However, for any fixed value of bs, the
tree size shows only slight variations as a function of the branching fac-
tor bf, whereas the number of leaves increases significantly with bf itself.
Indeed, increasing the branching factor tends to reduce the average tree
depth and concentrate more nodes at the lowest levels of the tree, specially
at the leaf level. The reason is clear when considering the ratio between
the tree size and the number of leaves: the larger the branching factor, the
larger the number of leaves with respect to the overall size. Consequently,
the computational cost of BB-tree construction is generally smaller, as it
is roughly proportional to the number of internal nodes. More precisely,
partitioning a node N; containing n; points with a branching factor bf; re-
quires 2n;(bf; — 1) divergence computations, which can be asymptotically
approximated by O(2n;), as variations of bf; are neglectable compared to
those of n;. Since this term represents the main contribution to the overall
construction cost, it justifies the benefit of reducing the average depth of the
tree, thus reducing the number of nodes to be partitioned. In addition, hav-
ing fewer interior nodes in a BB-tree generally allows for faster search, as it
is shown in Table 3.3 for the same dataset as in Table 3.1. Indeed, pruning
out a subtree in this case implies discarding more leaves, hence reducing
the overall number of branch-and-bound iterations.

We also evaluated performances of the Bregman 2-means++ partition-
ing method described in Sec. 3.2.2. Namely, Tab. 3.2 compares the BB-tree
construction results of our method (third row) to those obtained with up to
10 assigment/relocation iterations of 2-means clustering, using both classic
seeding (first column) and “careful” seeding (second column). (Results are
averaged over a number of trials.) Although the two full clustering algo-
rithms do not differ significantly, neither in terms of tree characteristics nor
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200 10 6.09 3.48 818 1147
50 12 5.81 3.04 2853 4251
100 10 4.64 3.86 1637 | 2209
200 9 3.93 5.13 997 1238

BF | bs depth | depthayg | bfavg | nleaves | size
2 50 24 14.09 2.00 2271 4541
2 | 100 24 13.78 2.00 1189 2377
2 | 200 20 11.47 2.00 592 1183
3 50 19 9.31 2.49 2605 4348
3 | 100 15 8.29 2.63 1300 2098
3 | 200 13 6.99 2.75 655 1028
4 50 16 7.90 2.80 2818 4385
4 100 17 6.96 3.07 1469 2178
4
10
10
10

Table 3.1: BB-tree construction results for the Corel dataset . BF and bs denote
respectively the maximum branching factor and the bucket size. BB-tree charac-
teristics are given as maximum tree depth (depth), average tree depth (depth,, ),
branching factor (bf), number of leaf nodes (nLeaves) and total number of tree
nodes (size). Results in bold highlight typical benefits of adaptive BB-trees for a
given bs.

speed-up (first two lines), the proposed 2-means++ initialization improves
significantly both the construction speed and the tree characteristics, since
it provides less unbalanced trees while considerably reducing the tree size.

3.3.2 Tree search

In order to investigate performances of both sided and symmetrized /mixed
Bregman NN queries, we first carried out experiments of both exact and
approximate NN queries wrt the KL divergence. Tab. 3.3 displays results
of exact search on the Corel dataset, for different settings of the maximum
branching factor. We noticed a significant computational speed-up with re-

BB-tree construction (bs = 50)
method iter | depth | depthgaye | Leav. | speed-up
2-means 10 53 28.57 594 1
2-means++ | 10 | 58.33 31.18 647 1.03
2-means++ 0 20 10.76 362 19.71

Table 3.2: Comparison between different partitioning methods when building a
BB-tree on the SIFT dataset. Bregman 2-means++ with iter = 0 means that only
the initialization step is carried out. The speed-up is by comparison with the more
computationally expensive k-means method.
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leaves
BF | speed-up | visited | total | ratio
2 2.11 725 | 2271 | 31.9%
3 2.22 731 2605 | 28.1%
4 2.21 752 | 2818 | 26.7%
10 2.23 740 | 2853 | 25.9%

Table 3.3: Exact search statistics on the Corel dataset (bs = 50).

spect to brute-force search because pruning conditions are frequently met,
thus enabling to ignore a large proportion of leaves (as shown in the last
column). Although overall results on exact search do not particularly im-
prove those obtained by Cayton [ ], we interestingly note that relax-
ing the constraint on branching factor generally provides better results (e.g.,
compare the speed-up for BF = 2 and BF = 10).

Rather than thoroughly investigating exact NN search, we mostly fo-
cused on approximate search, which turns out to be much more interest-
ing for practical applications. Indeed, when performing queries on large
databases (say, containing up to million descriptors), the nearest neighbor
retrieval task can be generally relaxed to find a “good” NN, i.e., a point that
is close enough to the true NN. This approximation allows one to get much
faster retrieval times. Namely, we used the maximum number of explored
leaves as a parameter for stopping the branch-and-bound search. In each
experiment of approximate search, we fixed a value of this parameter (from
near-exact search to visiting only a single leaf), then we evaluated error rate
and computational cost. The error rate is expressed as the number of closer
points to the approximated NN (a quantity called Number Closer), while the
speed-up is given by the ratio between the number of divergence computa-
tions in BB-tree over the brute-force search. Results on the two datasets are
shown in Fig. 3.7 and 3.9 for different settings of construction parameters.
Note that results are depicted in logarithmic scales (base 10), as they cover
a large range of both speed-up and Number Closer values. Results on the
SIFT dataset are particularly interesting, as they reveal impressive perfor-
mance of BB-tree++; e.g., the point marked by an asterisk in Fig. 3.7 refers
to a speed-up of about 66 (108) for an error of 35.5 (101%), i.e., only 0.36%
of overall database points. The improvement over Cayton’s results [ ]
is shown in Fig. 3.8. We gain up to a magnitude order over BB-tree when
the Number Closer equals 32 (10!*), which corresponds to a relative error
of 0.32% when compared with the overall number of database points. This
average error can be considered neglectable in most NN retrieval applica-
tions. At this point, we reach a speed-up of 66 (10®) against 1.7 (10!??) of
Cayton (these two points are marked by asterisks in the figure). In Fig. 3.9,
the marked point shows that a speed-up of 525 (10>72) corresponding to an



438 Chapter 3. Data Structures for Bregman NN Queries

SIFT dataset (KL)

=#-bb—tree++ (BF=4, bs=50)
-5-bb—tree++ (BF=4, bs=100)
H-bb-tree++ (BF=4, bs=200)

log Speed—up

0 1
log Number Closer

Figure 3.7: Results of approximate NN retrieval on the SIFT dataset wrt. KL
divergence (log-log plot).

error of about 21 points (1013%), i.e. less than 0.4% of database points.

One of the main contributions of this chapter is to adapt the BB-tree data
structure to perform symmetrized and mixed Bregman queries, as explained
in Section 3.2.2. We used the SIFT dataset to test the symmetrized Bregman
ball tree, where data are to be first converted to multinomial distribution
parameters for computing symmetrized Bregman ball centroids, following
the geodesic bisection algorithm of [ ]. As shown in Fig. 3.10, results
are similar to those of sided Bregman queries (Fig. 3.7), with significant
speed-ups for small error values (See Fig. 3.11 for a comparison with ran-
domized sampling.) We also tested mixed Bregman queries on the Corel
database (Fig. 3.12 and 3.13), which gave slightly better results than asym-
metric queries. (Note the marked point in Fig. 3.12, where a speed-up of
205 (10*3) is reached when the average error is only 13 (10*!), correspond-
ing to 0.02% of total database points.)

3.3.3 Bvp-tree construction

The low construction cost is a major advantage of Bvp-tree over other data
structures like BB-trees, which usually require running Bregman k—means
clustering [ ]. Indeed, when using random vantage points, only
one divergence has to be computed for each point in a Bregman ball. Hence,
the overall construction time is O(nd), n being the dataset size and J the
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SIFT dataset (KL)

-5-bb—tree++ (BF=4, bs=100)
-©-bb-tree Cayton

log Speed—up

0 1
log Number Closer

Figure 3.8: Comparison of bb-tree and bb-tree++ for approximate search on the
SIFT dataset (log-log plot).

Corel dataset (KL)

= bb-tree++ (BF=2, bs=50)
= bb—tree++ (BF=4, bs=50)
©-bb—tree++ (BF=10, bs=50)

[N
T

log Speed—up

0
log Number Closer

Figure 3.9: Results of approximate NN retrieval on the Corel dataset wrt. KL
divergence (log-log plot).
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SIFT dataset (SKL)

- bb-tree++ (BF=4, bs=50)
= bb-tree++ (BF=4, bs=100)
- bb—tree++ (BF=4, bs=200)

-1
Number Closer

Figure 3.10: Approximate search for symmetrized Bregman queries on SIFT
dataset wrt. SKL divergence. The marked point shows a speed-up of 60.3 (101-78)
when the Number Closer equals 14 (10%1°), i.e. 0.14% of database points.

\ SIFT dataset (SKL)
10 : T :
—&—BB-tree++ (BF=4, bs=100)
Random Sampling
[
510 g
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=
el
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=
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210 ¢ 1
[
o
wn
0
10" ‘ 1
10° 10' 10°

Average approximate NN rank

Figure 3.11: Approximate search for symmetrized Bregman queries on SIFT
dataset wrt. SKL divergence. The marked points show a speed-up of 60.3 (101-78)
for BB-tree against 19.1 (10'?®) of Random Sampling.
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Corel dataset (SKL)

- bb-tree++ (BF=2, bs=50)

0 L L L L
-1 0
Number Closer

Figure 3.12: Approximate search for mixed Bregman queries on Corel dataset (i.e.,
wrt. SKL divergence).

. Corel dataset (SKL)
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Average approximate NN rank

Figure 3.13: Approximate search for mixed Bregman queries on Corel dataset wrt.
SKL divergence. Marked points show that BB-tree++ outperforms randomized
search up to an order of magnitude.



52 Chapter 3. Data Structures for Bregman NN Queries

dataset bs depth | depthaye | nLeaves cost

Corel 50 11 11 2048 | 6.6-10°
Corel 100 10 10 1024 | 6.0-10°
Corel 200 9 9 512 54-10°
dataset 1o depth | depthayg | nLeaves cost

Corel | 1.0-10° 13 10.50 3790 | 6.3-10°
Corel | 1.5-10° 13 10.09 3586 | 6.1-10°
Corel | 2.0-10° 13 6.71 718 40-10°

Table 3.4: Bup-tree construction results for different stopping criteria: bucket size
(bs) or leaf radius (ro).

average depth of the tree. (Note that the computational cost of BB-tree con-
struction is O(rnd), with r > 2 increasing with the number of k—means iter-
ations.) As mentioned in Sec. 3.2.3, we used either the bucket size (bs) or the
leaf radius (r¢) criterion for stopping the node branching. The first criterion
enables us to build a perfectly balanced vantage point tree, i.e., all leaves
have equal depth and store the same number of data points. On the con-
trary, the second criterion enables to partition even large Bregman balls that
contain very sparse data, thus giving a smaller number of leaves. Tab. 3.4
summarizes the typical characteristics of Bvp-trees for the Corel dataset, as
well as the construction cost, for different values of the construction param-
eters. The construction cost is expressed as the total number of divergences
computed when building the tree. The top half-table shows characteristics
of trees built with the bucket size criterion. In this case, trees are perfectly
balanced and the average tree depth equals the maximum one. The bottom
half-table refers to trees built with the leaf radius criterion, which gives un-
balanced trees, as proven by the difference between maximum and average
tree depth. Also note that trees having roughly equal average depth, but
constructed with different criteria, significantly differ in terms of the over-
all size (i.e., number of leaves).

3.3.4 Bvp-tree search

We tested our Bvp-tree algorithm for both exact and approximate NN re-
trieval. Furthermore, we evaluated performances of both sided and sym-
metrized Bregman NN queries on the two datasets. Table 3.5 displays
results of exact search for different settings of the tree construction. Per-
formances are expressed in terms of the computational cost ratio between
brute-force and Bvp-tree search. These results show a significant order of
magnitude speed-up over the brute-force method for the Corel dataset. On
the contrary, the SIFT dataset revealed to be more challenging because of
the very high dimensionality of data. Interestingly, SKL queries showed
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div | dataset | bs=50 | bs=100 | bs=200 || Bb-tree

KL Corel 2.12 2.33 2.04 24

KL SIFT 0.90 0.95 0.97 0.9
SKL | Corel | 3.24 3.13 2.79 -
SKL | SIFT 0.96 1.01 1.05 -

Table 3.5: Performances of exact Bup-tree search, measured as computational
speed-up over brute-force search. The last column displays results reported by
Cayton [ | for Bb-trees.

better performances than asymmetric KL queries. A comparison with re-
sults reported by Cayton [ ] for the KL divergence shows that Bvp-
tree does not improve over BB-tree (last column in Table 3.5). However,
experiments of SKL queries gave better results, although a direct compar-
ison with BB-tree is not possible, as this latter cannot handle symmetrized
queries.

Besides investigating exact search, we also tested our Bvp-tree for ap-
proximate NN retrieval. This approximation allows for significant speed-
ups when searching the tree. In order to find an approximate NN, we
performed the iterative Bvp-tree search procedure up to a maximum pre-
scribed number of visited leaves. In each experiment, we fixed a value of
this parameter, ranging from near-exact search to the exploration of a single
node, then we evaluated the Number Closer (i.e., the number of closer points
to the approximated NN) and the Speed-up (i.e., the ratio between the num-
ber of divergence computations of brute-force and tree search). Fig. 3.14
and 3.15 display the most significant results of such experiments (log-log

plot).
§ 3.4 CONCLUSION

In this chapter, we have addressed the problem of performing efficient k-
NN search when using a broad class of information-theoretic non-metric
distances, i.e., Bregman divergences. We have described generalizations
of two existing data structures to this class of distorsion measures: Breg-
man Ball trees, that we improved in terms of computational efficiency, and
Bregman Vantage Point trees, that we brought into the Bregman frame-
work. Furthermore, we adapted these data structures in order to deal with
symmetrized divergences as well, as these latter are often preferred for im-
age retrieval and classification. Experimental results show that our work
improves over the state-of-the-art, thus confirming our data structures as
suitable techniques for efficient data indexing when Bregman divergences,
like the Kullback-Leibler divergence, are expected to be more appropriate.
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Corel dataset (SKL)

—B max leaf size = 50
—Q— max leaf radius = 1.5
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Figure 3.14: Results of Bup-tree approximate NN retrieval (log-log plot) on the

Corel database.
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Figure 3.15: Results of Bup-tree approximate NN retrieval (log-log plot) on the
SIFT database.
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UNN: UNIVERSAL NEAREST NEIGHBORS

The k-nearest neighbors (k-NN) rule is one of the oldest and simplest meth-
ods for pattern classification [ ]. Besides still being a core tool in cer-
tain machine learning domains, it has proven extremely successful in many
computer vision applications, e.g., object recognition [ . In particu-
lar, often image categorization relies on uniform voting among the nearest
annotated instances (prototypes) in the space of descriptors. For example,
this is the case for several methods aiming at matching local descriptors
extracted from images, like SIFT descriptor matching [ ]. Philosophi-
cally, k-NN techniques can be related to the theory of prototype-based cat-
egorization, as it has been developed by Rosch et al in the "70s [ ,

]. According to Rosch’s theory, the way people categorize ob-
jects relies on matching them against the prototype, i.e., an “ideal exemplar”,
which contains the most representative features inside the category.

On an empirical point of view, despite its simplicity, k-NN is still a
very attractive tool to practitioners, as it generally shows very good perfor-
mances in practical applications. Moreover, k-NN is naturally adapted to
multi-class problems, where other more sophisticated tools, like SVM, fail
to provide reasonable trade-off between performances and computational
cost when dealing with a large number of classes.

However, in spite of the good generalization properties of the classic k-
NN rule, it suffers from high variance when dealing with sparse prototype
datasets in high dimension. A few techniques have been proposed with the
aim of improving the k-NN classification, which generally rely either on
deforming the nearest neighborhood relationship by learning the “most”
appropriate distance function or modifying the input space by projecting
data into the “best” low-dimensional subspace.

In this chapter, we briefly discuss such methods and describe a novel
approach to generalize and improve the k-NN rule by tackling the prob-
lem at its core. In particular, we provide a new k-NN boosting algorithm,
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that we call UNN (Universal Nearest Neighbors), for the induction of lever-
aged k-NN. Our approach consists in redefining the voting rule as a strong
classifier that linearly combines predictions from the k closest prototypes.
Therefore, the k-nearest neighbor examples act as weak classifiers and their
weights, called leveraging coefficients, are learned in such a way to mini-
mize a surrogate risk, which upper bounds the empirical misclassification
rate over training data. Interestingly, this surrogate risk can be arbitrarily
chosen from a class of Bregman loss functions, including the familiar expo-
nential, logistic and squared loss. Unlike several existing approaches, our
UNN algorithm does not require to learn a metric distance nor modify the
input space. Indeed, UNN does not affect the k-nearest neighborhood rela-
tionship, but rather acts on top of k-NN search. Moreover, a major feature
of UNN is the ability to learn which prototypes are the most relevant for a
given class, thus allowing one for effective data reduction by filtering the
training data.

Experimental results on the synthetic dataset of Ripley show that such
a filtering strategy is able to reject “noisy” prototypes, and yields classifica-
tion error close to the optimal Bayes error. Furthermore, the improvement
of UNN over a state-of-the-art metric learning algorithm is shown by ex-
periments on some datasets from the UCI repository. Finally, we concen-
trated on the image categorization task and carried out image categoriza-
tion experiments on two databases containing eight and thirteen classes of
natural scenes, respectively. In these experiments, we tested two differ-
ent state-of-the-art image descriptors, Gist and Bag-of-Features. We show
that our method outperforms the classic k-NN classification significantly,
while enabling significant reduction of the computational cost thanks to
data filtering. Furthermore, UNN compares favourably to other learning
techniques on Bag-of-Features data.

§ 4.1 INTRODUCTION

4.1.1 Generic visual categorization

In this thesis, we address the problem of generic visual categorization. This
is a relevant task in computer vision, which aims at automatically classi-
fying images of real-world scenes into a discrete set of categories, such as
indoor vs outdoor | , |, beaches vs mountains, churches vs towers.
Generic categorization is distinct from object and scene recognition, which
are classification tasks concerning particular instances of objects or scenes
(e.g. Notre Dame Cathedral vs St. Peter’s Basilic). It is also distinct from other
related computer vision tasks, such as content-based image retrieval (that aims
at finding images from a database, which are semantically related or visu-
ally similar to a given query image) and object detection (which requires to



4.1. Introduction 59

(b)

Figure 4.1: Two examples of common challenges involved in the image catego-
rization task (8-cat scene database [OT01]): (a) high intra-class variability for
category “tall buildings”; (b) low inter-class variability between categories “in-
side city” (left) and “street” (right).

find both the presence and the position of a target object in an image, e.g.
person detection).

Automatic categorization of generic real-world scenes is still a challeng-
ing task, due to the huge number of natural categories that should be con-
sidered in general. In addition, natural image categories may exhibit high
intra-class variability (i.e., visually different images may belong to the same
category, like in Fig. 4.1(b)) and low inter-class variability (i.e., distinct cate-
gories may contain visually similar images, like in Fig. 4.1(a)).

Classifying images requires an effective and reliable description of the
image content, e.g., location and shape of specific objects or overall scene
appearance. Although several approaches have been proposed in the re-
cent literature to extract semantic information from images [S51.04, V507],
most of the state-of-the-art techniques for image categorization still rely
on low-level visual information extracted by means of image analysis opera-
tors and coded into vector descriptors. In particular, the best classification
performances are generally provided by methods combining the visual rel-
evance of such low-level image descriptors with effective (supervised or
unsupervised) learning techniques. For instance, Bosch et al [BZMO08] have
recently shown the effectiveness of a hybrid (generative/discriminative)
learning approach to discover the occurrences of some “latent topics” in an
image, using vector quantized local features. For an extensive survey of the
most common scene classification techniques relying on such descriptors,
see the paper of Bosch et al [BMMO7].

4.1.2 k-NN classification

Apart from the descriptors used to compactly represent images, most im-
age categorization methods rely on supervised learning techniques for ex-
ploiting information about known samples when classifying an unlabeled
sample. Among these techniques, k-NN classification has proven success-
ful, thanks to its easy implementation and its good generalization prop-
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erties [ . A generalization of the k-NN rule to the multi-label classi-
fication framework has been also proposed recently by Zhang and Zhou
[ 1, whose technique is based on the maximum-a-posteriori principle ap-
plied to multi-labeled k-nearest neighbors. A major advantage of the k-NN
rule is not to require explicit construction of the feature space and be natu-
rally adapted to multi-class problems. Moreover, from the theoretical point
of view, k-NN classification provably tends to the Bayes optimum when
increasing the sample size.

Although such advantages make k-NN classification very attractive to
practitioners, it is an algorithmic challenge to speed-up k-NN queries and
design schemes that scale-up well with high dimensional datasets [ I
Furthermore, reducing the misclassification rate of the k-NN rule is yet an-
other crucial challenge, relying on two main issues that may significantly
influence the performances. The first one is related to the similarity crite-
rion, which depends on the underlying distance measure, as well as on the
selection criterion, e.g., fixing the value of k. This problem has been of-
ten addressed by learning an appropriate metric in the feature space, e.g.,
exploiting pairwise distance contraints between training points [ I
The second issue is how to combine the labels of the neighbors, i.e., which
voting rule to use for predicting unknown classes. The simple uniform ma-
jority vote may penalize k-NN classification, e.g., when dealing with high-
dimensional data and a large number of classes. This issue has been usu-
ally tackled by data reduction techniques [ ]. Furthermore, in a number
of prior work, the classification problem has been reduced to tracking ill-
defined categories of neighbors, interpreted as “noisy” [ I

Most of these recent techniques are in fact partial solutions to a larger
problem related to nearest neighbors” error, which does not have to be the
discrete prediction of labels, but rather a continuous estimation of class
membership probabilities | ]. This problem has been reformulated by
Marin et al [ ] as a strong advocacy for the formal transposition of
boosting to nearest neighbors classification. Such a formalization is chal-
lenging as nearest neighbors rules are indeed not induced, whereas all for-
mal boosting algorithms induce so-called strong classifiers by combining
weak classifiers (also induced, say by decision stumps).

A survey of the literature shows that at least four different categories of
approaches have been proposed in order to improve k-NN classification:

e learning local or global adaptive distance metric;
e embedding data in the feature space (kernel nearest neighbors);
o weighting nearest neighbors;

e boosting nearest neighbors.
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4.1.2.1 Learning the distance metric

Most approaches for improving the k-NN classification rule rely on learn-
ing an appropriate adaptive distance metric from training data. For in-
stance, refer to the seminal work of Fukunaga and Flick [ ], who pre-
sented an optimal global metric for k-NN. An analogous approach was
later adopted by Hastie and Tibshirani [ ], who carried out linear dis-
criminant analysis to adaptively deform the distance metric. Then, Pare-
des [ ] proposed a method for learning a weighted distance, where
weights could be either global (i.e., only depending on classes and features)
or local (i.e., depending on each individual prototype as well).

Several other metric learning techniques have been also proposed, as
described in a recent survey [ ]. Often, such methods require to learn a
Mahalanobis distance metric, i.e., a linear transformation of the input feature
space. This is accomplished by optimizing an objective function defined
on either labelled training data or positive (same class) and negative (dif-
ferent class) training pairs. The main difference among these methods lies
in the objective functions, which are usually tailored to the specific task
at hand. For instance, Goldberger et al [ ] have proposed a com-
pletely supervised algorithm, Neighborhood Component Analysis (NCA),
that aims at learning the Mahalanobis distance metric that minimizes the
expected leave-one-out test error from a stochastic variant of k-NN classi-
fication. Among the existing techniques for metric learning, Large Mar-
gin Nearest Neighbor (LMNN) [ ] and Information Theoretic Metric
Learning (ITML) are currently state-of-the-art. The first algorithm (LMNN)
tries to improve the classification accuracy of the k-NN rule by constraining
most of the data in a k-nearest neighborhood to have the same label. For
this purpose, LMNN learns a linear transformation of the input space by
minimizing a loss function that penalizes large distances between neigh-
bors in the same class, while also penalizing small distances between ex-
amples of different classes. In this sense, the Mahalanobis metric, which
is obtained as the solution to a convex semidefinite program, is to “defor-
mate” the Euclidean (circular) neighborhood to an ellipsoid that maximizes
the margin between the k-nearest neighbors and the rest of training data.
(See Fig. 4.2.) The LMNN algorithm has been also successfully extended
to the computer vision domain by Kumar et al [ ], who have demon-
strated its effectiveness for the face recognition task. The second state-of-
the-art technique to metric learning for k-NN is ITML [ ], which
is an information-theoretic approach to optimize the metric under a wide
range of possible constraints and prior knowledge on the Mahalanobis dis-
tance. An objective function is defined, that controls the trade-off between
satisfying the constraints on some positive and negative pairs, and regular-
ization, which constraints the solution to be as close as possible to a given
prior.
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Figure 4.2: Schematic illustration of the LMINN metric learning method [ 1.

Finally, Guillaumin et al [ ] have recently proposed a new method
for learning Mahalanobis metrics, whose effectiveness has been shown par-
ticularly for face identification. This method, called Logistic Discriminant
Metric Learning (LDML), uses logistic discriminant to learn a metric from
a set of labelled image pairs, by constraining positive pairs to have smaller
distances than negative pairs.

4.1.2.2 Kernel nearest neighbors

Another class of techniques apply the nearest neighbors rule to data em-
bedded in a high-dimensional feature space, according to the kernel trick ap-
proach of support vector machines (SVM). For example, Yu et al | ] have
proposed a straightforward adaptation of the kernel mapping to the near-
est neighbors rule, which yields significant improvement in terms of clas-
sification accuracy. In the context of vision, an effective technique, SVM-
kNN, has been proposed by Zhang et al [ ], which only involves a
“refinement” step at classification time, without requiring to learn the dis-
tance metric explicitely. This method trains a local support vector machine
on nearest neighbors of a given query, thus limiting the most expensive
computations to a reduced subset of instances.

4.1.2.3 Weighted k-NN

A third class of k-NN methods relies on weighting nearest neighbors votes
based on their distances to the query sample [ . Recently, Zuo et al
[ ] have proposed a similar weighting approach, where the nearest
neighbors are weighted based on their vector difference to the query. Such
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a difference-weight assignment is defined as a constrained optimization
problem of sample reconstruction from its neighborhood. The same au-
thors have proposed a kernel-based non-linear version of this algorithm as
well. Finally, a weighted k-nearest neighbor voting scheme has been tested
as a soft assignement strategy for matching local descriptors in the context
of object retrieval [ . In particular, this strategy relies on the Ra-
dial Basis Function (RBF) in order to weight the contributions of different
neighbors according to their distance from the query vector.

4.1.2.4 Boosting k-NN

Finally, only very few work have proposed the use of boosting techniques
for k-NN classification. For instance, Amores et al [ ] use AdaBoost
for learning a distance function to be used for k-NN search. On the other
hand, Garcia and Ortiz [ ] adopt the boosting approach in a non-
conventional way. At each iteration a different k-NN classifier is trained
over a modified input space. Namely, the authors propose two variants
of their method, depending on the way the input space is modified. Their
first algorithm is based on optimal subspace selection, i.e., at each boost-
ing iteration the most relevant subset of input data is computed. The sec-
ond algorithm relies on modifying the input space by means of non-linear
projections. But neither method is strictly an algorithm for inducing weak
classifiers from the k-NN rule, thus not directly addressing the problem
of boosting k-NN classifiers. Moreover, such approaches are computation-
ally expensive, as they rely on a genetic algorithm and a neural network,
respectively.

4.1.3 Overview of the chapter

In this chapter, we propose a complete solution to the problem of boosting
k-NN classifiers. Namely, we propose the first boosting algorithm, called
UNN, which induces a leveraged nearest neighbor rule that generalizes the
uniform k-NN rule. Indeed, the voting rule is redefined as a strong clas-
sifier that linearly combines weak classifiers induced by the k-NN rule.
Therefore, our approach does not need to learn a distance function, as it
directly operates on the top of k-nearest neighbors search. At the same
time, it does not require an explicit computation of the feature space, thus
preserving one of the main advantages of prototype-based methods. Our
UNN boosting algorithm is an iterative procedure that learns the weights
of weak classifiers, called leveraging coefficients. We show that this algorithm
converges to the global minimum of any chosen classification calibrated sur-
rogate' | ]. Hence, our framework handles most popular losses in the

LA surrogate is a function which is a suitable upperbound for another function (here, the
non-convex non-differentiable empirical risk).
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machine learning literature: squared loss, exponential loss, logistic loss,
etc. In particular, we prove a specific convergence rate for the exponential
loss (reported in our experiments) far better than the general rate of Nock
and Nielsen [ ]. Another important characteristic of UNN is that it
is able to discriminate the most relevant prototypes for a given class, thus
allowing one for significant data reduction while improving at the same
time classification performances.

In the following sections we present our approach to k-NN boosting.
Sections 4.2.1-4.2.3 present key definitions for k-NN boosting. These sec-
tions also describe how to replace the classic uniform k-NN rule by a lever-
aged k-NN rule. Leveraged k-NN classifiers are induced by UNN algo-
rithm, which is detailed in Sec. 4.2.4 for the case of the exponential risk.
Sec. 4.2.5 presents the generic convergence theorem of UNN and the up-
per bound performance for the exponential risk minimization. Our experi-
ments on both synthetic and image categorization datasets are reported in
Sec. 4.3. Then, Sec. 4.4 discusses results and mentions future work. Finally,
we postpone the general form of UNN algorithm and proofsketches of our
theorems to Appendix A.

§ 4.2 METHOD

4.2.1 Problem statement and notation

In this work, we address the task of multi-class, single-label classification.
Although the multi-label framework is quite well established in literature
[ ], we only consider the case where each image is constrained to be-
long to one single category among a set of predefined categories. The num-
ber of categories (or classes) may range from a few to hundreds, depend-
ing on applications. E.g., scene categorization with up to 899 real-world
categories has been recently studied [ ]. We treat the multi-class
problem as multiple binary classification problems (one-versus-all) as it is
customary in machine learning. Hence, for each class c, a query image is
classified either to ¢ or to ¢ (the complement class of ¢, which contains all
classes but c) with a certain confidence (classification score). Then the label
with the maximum score is assigned to the query.

When considering the image categorization task, the representation space
is formed by extracting local or global features. We refer to an image de-
scriptor as an observation x € X, which is a vector of n features and be-
longs to a domain X (e.g., R" or [0,1]"). A label is associated to each image
descriptor according to a predefined set of C classes. Hence, an observa-
tion with the corresponding label leads to an example, which is the ordered
pair (z,y) € X x R®, where y is termed the class vector, that specifies the
class membership of x. In particular, the sign of component y. gives the
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membership of example (x,y) to class ¢, such that y. is negative iff the
observation does not belong to class ¢, positive otherwise. At the same
time, the absolute value of y. may be interpreted as a relative confidence in
the membership. Inspired by the multi-class boosting analysis of Zhu et al

[ ], we constrain class vectors to be symmetric, that is:
C
Y y.=0. 4.1)
c=1

Hence, in the single-label framework, the class vector of an observation x
belonging to class ¢ is defined as:

ve=1, yc#fz_ﬁ (c=1,2,...,0). (4.2)
This setting turns out to be necessary when treating multi-class classifica-
tion as multiple binary classifications, as it balances negative and positive
labels of a given example over all classes. In the following, we refer to
an input set of m examples S = {(x;,y;),i = 1,2, ..., m}, e.g., arising from
annotated images, which form the training set.

4.2.2 Boosting k-NN for minimization of surrogate risks

We aim at defining a one-versus-all classifier for each category, which is to
be trained over the set of examples. This classifier is expected to correctly
classify as many new observations as possible, i.e., to predict their true la-
bels. Therefore, we aim at determining a classification rule h from the ex-
ample dataset, which is able to minimize the classification error over all
possible new observations. But since the underlying class probability den-
sities are generally unknown and difficult to estimate, defining a classifier
in the framework of supervised learning can be viewed as fitting a classi-
fication rule onto a training set S without overfitting. This corresponds to
defining a classifier that correctly classifies most of the example data them-
selves, thus minimizing the classification error over the example dataset
(empirical or “true” classification loss). Therefore, in the most basic frame-
work of supervised classification, one wishes to train a classifier on S, i.e.
build a function h : X — RRC with the objective to minimize its empirical
risk on S, defined as:

C m
e”'(h,S) = Z;le (h,i,c) <0], 4.3)

with [.] the indicator function (1 iff true, 0 otherwise), called here the 0/1
loss, and:

o(h,i,c) = yiche(z;) (4.4)
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the edge of classifier h on example (x;, y;) for class c. Taking the sign of k. in
{—1,+1} as its membership prediction for class ¢, one sees that the edge is
positive (resp. negative) when the membership predicted by classifier and
the actual example’s membership agree (resp. disagree). Therefore, the
empirical loss (4.3) averages over all classes the number of mismatches for
the membership predictions, thus measuring the goodness-offit of the clas-
sification rule on the training dataset. Provided that the example dataset
has good generalization properties with respect to the unknown distribu-
tion of possible observations, minimizing this empirical risk is expected
to yield good accuracy when classifying unlabeled observations. Unfortu-
nately, minimizing the empirical risk is mathematically not tractable as it
deals with non-convex optimization. In order to bypass this cumbersome
optimization challenge, the current trend of supervised learning (including
boosting and support vector machines) has replaced the minimization of
the empirical risk (4.3) by that of a so-called surrogate risk [ ], to make
the optimization problem amenable. In boosting, it amounts to sum (or av-
erage) over classes and examples a real-valued function 1, called surrogate
loss, thus ending up with the following rewriting of (4.3):

1& 1 :

e’ (h,S) = c ). o Y w(e(hic)) . (4.5)

c=1 i=1

Common choices available for ¢ include:
Pr = (1-x)%, (4.6)
PP = exp(—x), 4.7)
P8 = log(1+exp(—x)) ; (4.8)
(4.6) is the squared loss [ ], (4.7) is the exponential loss [ ], and

(4.8) is the logistic loss [ 1.

Surrogates play a fundamental role in supervised learning. They are up-
per bounds of the empirical risk with desirable convexity properties. Namely,
they provide a convenient primer for the maximization of edges, which
roughly amounts to finding the “true” predictions (o(h,i,c)) > 0) with
large “confidence” values (|o(h,i,c)) > 0| > 0). Therefore, the minimiza-
tion of surrogates remarkably impacts on that of the empirical risk, thus en-
abling to provide optimization algorithms with good generalization prop-
erties [ ].

In the following, we move from recent advances in boosting with sur-
rogate risks to redefine the k-NN classification rule. In particular, we con-
centrate on the exponential risk and provide a new algorithm that learns
a leveraged k-NN classifier, while provably converging to the global opti-
mum of a surrogate risk. Our algorithm, called UNN (Universal Nearest
Neighbors), meets boosting-type convergence properties under two mild
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assumptions on the training set, i.e., the properties of weak learning and
weak coverage. In Appendix, we describe how our UNN algorithm gener-
alizes to any surrogate loss, and provide the most general analysis, as well
as the information-geometric interpretation of our surrogate minimization
procedure.

4.2.3 Leveraged k-NN rule

We denote by NNy () the set of the k-nearest neighbors (with integer con-
stant k > 0) of an example (x,y) in set S with respect to a non-negative
real-valued “distance” function. This function is defined on domain & and
measures how much two observations differ from each other. The dissim-
ilarity function thus may not necessarily satisfy the triangle inequality of
metrics 2. The k-nearest neighborhood relationship is intrinsically asym-
metric, i.e., x; € NNi(x) does not necessarily imply that € NNj(z;) .
Indeed, a k-nearest neighbor of  does not necessarily contain  among its
own k-nearest neighbors.

The k-NN rule is the following multi-class classifier h = {h, : ¢ =
1,2,...,C} (k appears in the summation indices):

he(zg) = ). [ye>0], (4.9)
j: m]-GNNk(mq)

where x, is a test instance, h. is the one-versus-all classifier for class ¢ and
square brackets denote the indicator function. Hence, the classic k-NN clas-
sification is based on majority vote among the k closest prototypes to a test
observation.

We propose to weight the votes of nearest neighbors by means of real
coefficients, thus generalizing (4.9) to the following leveraged k-NN rule
ht={hnt:c=1,2,.,C}

Wi(zg)= Y ey, (4.10)
@ ENN(zq)

where a;. € R is the leveraging coefficient for example j in class ¢, with
j=12,.,mand c=1,2,..,C. Hence, the classifier (4.10) linearly com-
bines class labels of the k nearest neighbors (defined in Eq. 4.2) with their
leveraging coefficients. The definition of our leveraged classification rule
(4.10) can be conveniently rewritten as follows:

T

h(zq) = Y areyic [€r € NNi(z,)] (4.11)
t=1

2 Although our method is general, all experimental results presented in the following
sections refer to nearest neighbors with respect to the Euclidean distance.
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i.e., as a weighted voting among T < m prototypes selected from the train-
ing dataset S, where only votes from the k-nearest neighbors are in fact
non-zero valued. This redefinition is exactly equivalent to (4.10) when set-
ting T = m; otherwise, it can be interpreted as an approximation of (4.10)
due to filtering the prototype dataset, i.e., searching for k-NN in a (possibly
sparse) subset of the most relevant prototypes. This latter case is particu-
larly interesting for our purpose, as UNN is actually able to considerably
reduce the amount of prototypes needed for classification (see the follow-
ing sections).

The main contribution of our work is to define a general algorithm
(UNN) for learning the prototypes and their leveraging coefficients from
training data. This algorithm operates on the top of classic k-NN methods,
for it does not affect the k-nearest neighbor search when inducing weak
classifiers of (4.10). Indeed, it is independent on the way nearest neigh-
bors are computed, unlike most of the approaches mentioned in Sec. 4.1.2,
which rely on modifying the neighborhood relationship via metric distance
learning or kernel transformations. Indeed, our approach is still fully com-
patible with any underlying (metric) distance and data structure for k-NN
search, as well as possible kernel transformations of the input space.

4.2.3.1 Edge matrix

The key ingredient for bringing the boosting principle into the prototype-
based (k-NN) classification rule is to highlight the role of labelled examples
as prototypes that (possibly) vote for each others. This is clear when inter-
preting (4.11) on training data themselves,

hi(zi) = Y aicyje [2; € NNi(z:)] (4.12)
j=1

that is, computing the classification score for x; while searching for its k-
nearest neighbors among all m data in S. Because x; and z; vary in the
same dataset, a given training observation z; (I = 1,2,...,m) can be inter-
preted as:

e cither a fest vector for which the k-nearest neighbors vote according
to rule (4.12) withi = [;

e or a prototype vector that may possibly vote for another annotated
instance (considered as test vector). This amounts to fixing j = I and
make i vary over all possible indices between 1 and m. In particular,
due to the argument of the indicator function (in square brackets) in
(4.12), =; can actually vote only for its reciprocal nearest neighbors (i.e.,
those points for which «; itself is one of the k-nearest neighbors).
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This twofold role of training instances in our leveraged k-NN framework
is depicted in Fig. 4.3, where point x; is shown to be either test point with
respect to its k-nearest neighbors (left), or prototype voting for its recipro-
cal k-NN (right). Notice that in general the two sets of k-NN and recipro-
cal k-NN for a given point are not the same. (Typically, the closer a point
is to the dataset “centroid”, the more reciprocal k-NN it has, and vicev-
ersa [ ].) The information about k-NN and reciprocal k-NN, i.e., on
training examples and their corresponding prototypes, is coded into the
so-called k-NN edge matrix R\ € R"™*™, which is defined for each class
c=1,2,...,C as follows:

) . VieYie if  x; € NNi(z;)
r o { 0 otherwise : (4.13)

The name of R() is justified by an immediate parallel with (4.4). Indeed,
each example j serves as a prototype (i.e., weak classifier) for each example
x;, predicting 0 if x; ¢ NN (z;), Yjc otherwise, for the membership to class
¢. Hence, the jth column of matrix R() collects all edges of “classifier” xj,
whereas the i’ row collects edges of all classifiers for example ;. (Note
that non-zero entries of the j column correspond to the reciprocal k-NN
of x, whereas non-zero entries of the i row correspond to the k-NN of
x;.) By multiplying both sides of Eq. (4.12) by y;., we obtain the following
expression for the edge of the leveraged k-NN rule on example i for class c
is:

ohlyic) = Y aprl? (4.14)

1

M

Il
_

]

Eventually, the induction of the leveraged k-NN classifier A’ amounts to
fitting all a;c so as to minimize (4.5), after replacing the argument of ¢(-) in
(4.5) by (4.14).

424 UNN: learning of classifier h

We propose a novel classification algorithm which induces the leveraged
nearest neighbors classifier h’ (Eq. 4.10). In this section, we explain UNN
specialized for the exponential risk minimization, with pseudo-code shown
in Alg. 3. However, our analysis is much more general, as it involves the
broad class of classification-calibrated surrogate risks [ ], and is post-
poned to Appendix in order not to burden the methodology. Like common
boosting algorithms, UNN operates on a set of weights w; (i = 1,2, ...,m)
defined over training data. Such weights are repeatedly updated to fit all
leveraging coefficients a;c of (4.10). At each iteration, the index to leverage,
j € {1,2,..,m},is obtained by a call to a weak index chooser oracle WiC(_, .,.),
whose implementation is detailed later in this section. As for the notation,



70 Chapter 4. UNN: Universal Nearest Neighbors

Figure 4.3: Schematic illustration of the direct (left) and reciprocal (right) k-
nearest neighbors (k = 3) of example x; (green diamond). Red squares and blue
circles represent examples of positive and negative classes. Each arrow connects an
example to its k-nearest neighbors.

remark that prototypes that contribute to the output classifier may be con-
strained to a reduced dataset S’ C S, as our algorithm is able to perform
effective data selection by training. Hence, we call the reduced example
dataset “prototype” set and denote by NN, the k-NN computed on these
data.

Watch Fig. 4.4 for a block diagram of UNN algorithm. In particular,
notice that the initialization step, relying on k-NN search and edge matrix
computation, is clearly distinguished from the iterative procedure, where
at each iteration a new prototype is added, thus updating both the strong
classifier h!(x) and the weights w;.

The training phase is implemented in a one-versus-all fashion, i.e. C
learning problems are solved independently, and for each class c the train-
ing examples are considered as belonging to either class ¢ or the comple-
ment class ¢, i.e. any other class. Eventually, one leverage coefficient (a;c) per
class is learned for each weak classifier (indexed by j). In the Appendix,
we show that Alg. 3 is a specialization of a very general classification algo-
rithm, thus justifying the name “Universal Nearest Neighbors”. Namely,
Alg. 3 induces the leveraged k-NN classifier by minimizing the exponen-
tial surrogate risk (4.7), very much like regular boosting does it for inducing
a weighted voting rule for a set of weak classifiers.

The key observation when training weak classifiers using UNN is that,
at each iteration, one single example (indexed by j) is considered as a pro-
totype to be leveraged. Indeed, all the other training data are to be viewed
as observations for which j may possibly vote. (See Sec. 4.2.3.1.) In partic-
ular, due to k-NN voting, j can be a classifier only for its reciprocal nearest
neighbors (i.e., those data for which j itself is a neighbor, corresponding to
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non-zero entries in matrix (4.13) on column j). This brings to a remarkable
simplification when computing §; in step [1.2] and updating weights w; in
step [1.3] (Eq. 4.18, 4.19). Indeed, only weights of reciprocal nearest neigh-
bors of j are involved in these computations, thus allowing us to store only
the sparse not-null entries of matrix R, ¢ =1,2,...,C. Notice that the set
of reciprocal neighbors is splitted in two subsets, containing examples that
agree (respectively, disagree) with the class membership of j, thus yielding
the partial sums w;’ and w; of (4.17).

Note that when whichever w; or w; is zero, d; in (4.18) is not finite.

There is however a simple alternative, inspired by [ ], which consists in
smoothing out §; when necessary, thus guaranteeing its finiteness without
impairing convergence. More precisely, we suggest to replace:

1

wi — w4+ —, (4.15)
m
1

w;, <~ w, +— . (4.16)
m

Also note that step [I.1] relies on oracle WIC(., .,.) for selecting index j
of the next weak classifier. We propose two alternative implementations of
this oracle, as follows:

[a] alazy approach: T = m, Wic({1,2,..., m},t,c) =t

[b] the boosting approach: we first pick T > m, then we let j be chosen
by Wic({1,2,...,m},t,c) such that J; is large enough. Each j can be
chosen more than once.

There are also schemes mixing [a] and [b]: for example, we may pick T = m,
choose j as in [b], but exactly once as in [a].

4.2.5 Properties of UNN

In this section, we enunciate two fundamental theorems for UNN. The first
theorem reports a general monotonic convergence property of UNN to the
optimal loss, for any given surrogate function. The second theorem fur-
ther refines this general convergence theorem by providing effective con-
vergence bound for the exponential loss. In particular, we constrain ¥ to
meet the following conditions:

(i) im(p) = Ry;
(ii) V4(0) < 0(Vy is the conventional derivative);

(iii) ¢ is strictly convex and differentiable.
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Figure 4.4: Block diagram of the UNN learning scheme.
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Algorithm 3 UNIVERSAL NEAREST NEIGHBORS UNN(S) for p = P
Input: S = {(z;,v),i=1,2,...m, x; € X, y; € {—ﬁ,l}c}

(c) - YicYjc if | c NNk(a:l)
Let Tij { 0 otherwise
forc=1,2,...,Cdo
Letajc < 0, Vi=12,.,m
Letw; « 1, Vi=1,2,...m
fort =1,2,...,T do
[1.1] Weak index chooser oracle: Let j < Wic({1,2,...,m},t)

vVi,j=1,...,m, c=1,...,C

[1.2] Let
wj+ =) w w; = Y wi, (4.17)
i:r§;>>0 i:rl(/.c)<0
) 1 | (w]* ) (4.18)
i zlog | — | ; .
]
2 w;
[I.3] Let

W; < w; exp(—éjrgjc)), Vi : x; € NNi(x;) ; (4.19)

B [1.4] Let Kje < Qjc + 5]

Output: he(z,) = Y arcyie [2r € NNi(z4)], Ve=12,...,C

Conditions (i) and (ii) imply that ¢ is classification-calibrated: its local min-
imization is roughly tied up to that of the empirical risk. (iii) implies
convenient algorithmic properties for the minimization of the surrogate
risk [ I

Theorem 1. As the number of iteration steps T increases, UNN converges to
h! realizing the global minimum of the surrogate risk at hand (4.5), for any ¢
meeting conditions (i), (ii) and (iii) above. (proofsketch in Appendix A)

Although we prove the boosting ability of UNN for all applicable surro-
gate losses, we choose to show in particular its behavior for the exponential
loss 1P, which features far better convergence bound than the general one
[ ]

Computing this bound is based on defining a weak index assumption
(WIA), which is to nearest neighbors what the conventional weak learning
assumption is to general induced classifiers [ ]. (See Eq. (4.17) in Alg. 1
for the definition of w].+ and w; )

(WIA) let p; = w;r/(w;r + w]_) and ||wl||y = Yj°; w;. There exist some
v > 0and 7 > 0 such that the following two inequalities hold for
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index j returned by Wic(., ., .):

v, (4.20)
7. (4.21)

lpi—=1/2 =
(w +w;)/[|lwl|l =
Theorem 2. If the WIA holds for T < T steps in UNN (for each c), then
e’ (h!,S) < exp(—21727). (proofsketch in Appendix)

Inequality (4.20) is the usual weak learning assumption [ ], when
considering examples as weak classifiers. But a weak coverage assumption
(4.21) is needed as well, because insufficient coverage of the reciprocal neigh-
bors could easily wipe out even the surrogate risk reduction potentially due
to a large . In addition, even when classes are significantly overlapping,
choosing k not too small is enough for the WIA to be met for a large num-
ber of boosting rounds T, thus determining a potential harsh decrease of
¢”1(h!,S). This is important, as there are at most m different weak classi-
fiers available to WIC(., .,.), even when each one may be chosen more than
once under the WIA. Last but not least, Theorem 4 also displays the fact
that classification (4.20) may be more important than coverage (4.21).

4.2.5.1 Observations

The theorems proven above show that UNN converges (exponentially fast)
to the global optimum of the surrogate risk on the training set. Most of the
recent works that can be associated to boosting algorithms, or more gen-
erally to the minimization of some surrogate risk using whichever kind of
procedure, have explored the universal consistency of the surrogate mini-
mization problems. (See [ , , ], and references therein.)
The problem can be roughly stated as whether the minimization of the
surrogate risk guarantees in probability for the classifier built to converge
to Bayes rule as m — oco. This question obviously becomes relevant to
UNN given our results. Among the results contained in this rich litera-
ture, the one whose consequences directly impact on the universal con-
sistency of UNN is Theorem 3 of [ ]. We can indeed easily show
that all our choices of surrogate loss are classification calibrated, so that
minimizing the surrogate risk in the limit (m — o0) implies minimizing
the true risk, and implies uniform consistency as well. Moreover, this re-
sult, proven for C = 2, holds as well for arbitrarily C > 2 in the single-
label prediction problem. [ ] proved an additional result for AdaBoost
[ I: if the algorithm is run for a number T > m" boosting rounds, for
7 € (0,1), then there is indeed minimization in the limit of the exponential
risk, and so AdaBoost is universally consistent. From our Theorems above,
this implies the consistency of UNN, and this even has the consequence
to prove that the filtering procedure described in the experiments is also
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consistent, since indeed [ I's bound implies that we leverage a propor-
tion of 1/m!~" examples, "filtering out" the remaining ones. Moreover, the
results of | ] are also interesting in our setting, even when they are
typically aimed at boosting algorithms with weak learners like decision-
tree learning algorithms, that define quantizations of the observations (each
decision tree defines a new description variable for the examples). They
show that there exist conditions on the quantizers that yield conditions on
the surrogate loss function for universal consistency. It is interesting to
notice that the universal consistency of UNN does not need such assump-
tions, as weak learners are examples that do not make quantizations of the
observation’s domain. Finally, the work of [ ] explores the consistency
of surrogate risk minimization in the case where rejects are allowed by clas-
sifiers, somehow refusing to classify an observation at a cost smaller than
misclassifying. While this setting is not relevant to UNN in the general
case, it becomes relevant as we filter out examples (see the experiments),
which boils down to stating that they systematically reject on observations.
On the one hand, [ ] show that filtering out examples does not impair
UNN universal consistency, as long as filter thresholds are locally based.
On the other hand, they also provide a way to quantify the actual loss /,
caused by filtering out example j, which we recall is in between 0 (the loss
of good classification) and 1 (the loss of bad classification). For example,
choosing the exponential loss and using Theorem 1 in [ ] reveals that
the reject loss is:

min{w,, w; }

14

1T e

§ 4.3 EXPERIMENTS

In this section, we present experimental results of UNN on both synthetic
and real datasets. Our experiments aim at carefully quantifying and ex-
plaining the gains brought by boosting on nearest neighbors voting. We
first present results of UNN on two-class synthetic data (Sec. 4.3.1), which
clearly enlighten the data reduction ability of our technique. Furthermore,
we carried out experiments on some standard UCI datasets that are com-
monly employed for testing nearest neighbors-based techniques [AN]. We
present a comparison on these datasets with both regular k-NN and a state-
of-the-art metric learning method (Section 4.3.2). Then, we carried out ex-
periments of multi-class scene categorization on two broadly used datasets
of natural images. In Sec. 4.3.3 we discuss classification results of UNN
compared to those of plain k-NN when using global Gist descriptors. Fi-
nally, in Sec. 4.3.4 we provide an extensive comparison of UNN with the
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state-of-the-art categorization technique relying on the Bag-of-Features rep-
resentation.

4.3.1 Synthetic datasets

In order to investigate the experimental behaviour of UNN we first tested
our method on the synthetic Ripley’s dataset [ ], which consists of two
classes ®. Each population of this dataset is an equal mixture of two two-
dimensional normally distributed populations, which are equally likely.
Training and testing datasets consist of 250 and 1000 points, respectively.
(Testing data are displayed in Fig. 4.5.) Since the true underlying distribu-
tions are known, one can compute the optimal classification boundary of
the Bayes rule (shown in Fig. 4.5 as well), which corresponds to the best
theoretical error rate of 8.0% [ 1.

Fig. 4.6 validates the monotonous decay of the exponential risk (4.7)
on this dataset, as it is stated by Theorem 4 under the two basic weak
index/learning assumptions (Sec. 4.2.5). Namely, we found out that the
implementation of the WIC oracle, i.e., the criterion for selecting a weak
classifier at each iteration, significantly impacts on the convergence rate.
Namely, we compared the “boosting” approach (i.e., choosing the best weak
classifier at each round) with two “lazy” implementations, where UNN
only tests one weak classifier per iteration. (Examples are chosen either in
random order or following a class-based order.) Notice that the boosting
version of the WIC oracle provides much faster decay of the surrogate risk,
thus outperforming the two alternative implementations. Indeed, the quick
decrease in the first few iterations with boosting (red curve) corresponds to
selecting the most discriminative examples, whereas the slow decrease in
the next steps is due to adding more and more non relevant examples, thus
overfitting the final classifier on the training data.

Classification results of UNN are shown in Fig. 4.7 as a function of the
proportion 6 of annotated examples that are retained for testing. The re-
ported results were obtained for k = 5. They are compared to results of
regular k-NN with random sampling, whose performances are averaged
over a number of runs. Two main conclusions can be drawn from these
results. First, UNN significantly outperforms the uniform voting for any
value of 0, thus confirming UNN as a far more effective data selection tech-
nique than random sampling. Second, training a sparse subset of annotated
examples with UNN does not degrade classification performances, rather
significantly improves them. In particular, decreasing 6 down to values as
small as 6 = 0.1 reduces the test error, until reaching misclassification rate
very close to Bayes’. (Notice the 3% gap in UNN testing error between
using all the examples and retaining the smallest subset.)

SRipley’s dataset is part of the matlab Statistical Pattern Recognition Toolbox, which is
available at http://cmp.felk.cvut.cz/cmp/software/stprtool/.
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Figure 4.5: Testing data for the Ripley’s dataset. The theoretical Bayes boundary
is also displayed as reported in [ 1.

Bl

— WIC = boosting
WIC = random order 4
— WIC = class order

50

100 150 200 250
T

Figure 4.6: Decrease of eP(h',S) as a function of the number of UNN itera-
tions T for the Ripley’s dataset with different oracle implementations. Notice that
the boosting implementation ([bl, Sec. 4.2.4) always guarantees monotonic de-
crease of the surrogate loss, until the weak assumptions are matched (red curve).
Conversely, the lazy implementation ([al, Sec. 4.2.4) may select, at a given step,
a classifier that does not match those assumptions, thus preventing the loss from
strictly decreasing (see green and blue curves).
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Figure 4.7: Testing error for UNN and k-NN (random sampling) on the Ripley'’s
dataset as a function of the proportion 0 of examples retained for classification.
Bayes rule (the optimal classifier) achieves 8% error.

Indeed, assuming standard sampling assumptions [ ], filtering
actually benefits from two positive effects. The first is a margin effect, well
known for induced classifiers [ ]. The goodness-of-fit of the k-NN
rule is driven by the most accurate examples, i.e. those surrounded by ex-
amples of the same class, getting the largest « .. The least accurate ones, e.g.
those located in overlapping regions between two classes, get the smallest
(see expressions for §; in Table A.1). Discarding these latter examples tends
to increase a gap between class clouds, but each cloud may shelter exam-
ples of different classes. Fortunately, filtering with boosting is accompanied
by a subtle local repolarization of predictions which, as explained in Figure
4.8(c), makes this gap maximization translate to margin maximization, for
which positive effects on learning are known. The second effect is struc-
tural: in nearest neighbor rules, the frontier between classes stems from the
Voronoi cells of those least accurate examples. Their discarding separates
better the classes, as witnessed by Fig. 4.8(c). Above all, it reduces the num-
ber of Voronoi cells involved in the class frontiers, thus reducing structural
parameters (VC-dimension) of the classifier, possibly buying a reduction of
the test error as well.

4.3.2 UCI datasets

We carried out experiments using UNN on standard UCI datasets, and
compared our method with both regular k-NN classification (with respect
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Figure 4.8: Maps of Ripley’s training data and selected prototypes for k = 3
and (a) 8 = 0.75, (b) 0 = 0.5, (c) 0 = 0.25. Examples of class 1 (filled circles)
and those of class 2 (filled squares) with the largest ;. are retained as prototypes.
For this reason, when 6 = 0.25, filtering produces a clear-cut gap between the
two possible membership predictions (but not between the original classes). The
resulting classification boundary between classes is shown as well. Interestingly,
while this frontier still does not separate the original classes (without error), it
does separate the memberships predictions, with much larger minimal margin. The
combination of the data reduction and polarity reversal for memberships has thus
simplified the learning of S, and eased the capture of the optimal frontier with
nearest neighbors.
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to the Euclidean distance) and a state-of-the-art metric learning algorithm,
ITML, proposed by Davis et al [ ]. Both UNN and ITML aim at im-
proving the generalization ability of the k-NN rule, but they address this is-
sue from two complementary points of view. On the one hand, ITML aims
at selecting a suitable distance measure for k-NN search, thus not modify-
ing the uniform voting scheme among neighbor examples. In particular,
ITML learns a “Mahalanobis distance” in an information-theoretic frame-
work, where pairwise constraints between training data are incorporated.
Then, the labels of nearest neighbors are combined following the regular
majority voting rule. On the other hand, our UNN algorithm aims at select-
ing the most reliable instances to be combined in a weighted voting scheme,
without the need to modify the underlying distance measure in the feature
space. Results of our experiments show that, in most cases, rejecting the
less reliable instances from the training dataset, as carried out by UNN,
outperforms expensive optimizations of the distance metric provided by
ITML. Results of ITML were produced using the Matlab code provided by
the authors [ ], using the same settings as in their paper. We evalu-
ated classification performances on five runs of two-fold cross-validation.
In Table 4.1 we present average results over all cross-validation runs, as
well as the values used for k. The same results are presented as histograms
in Fig. 4.9, where the Binomial confidence intervals at the 95% level are
shown as well. Globally, UNN outperforms both ITML and k-NN. In par-
ticular, UNN significantly outperforms regular k-NN classification (except
for “glass” dataset), with the additional advantage of considerably reduc-
ing the time complexity of the classification phase, thanks to data filtering.
Furthermore, the accuracy improvement of our method over ITML is sig-
nificant on some medical datasets, like “liver” (6% improvement), “diabetes”
(8%) and “cancer” (1%). Indeed, such data are expected to be more subject
to “noisy” examples, due to the high inter-patient variability of medical
measurements. All reported results refer to choosing the value of 6 by
cross-validation. (In most cases, no more than 40% of the training data
were retained as reference instances for classification.)

4.3.3 Image Categorization using global Gist descriptors

We tested our UNN classification method on global descriptors for the cat-
egorization of natural images. In particular, we used the database of natu-
ral scenes collected by [ ], which has been successfully used to validate
several classification techniques relying on their Gist image descriptor. Gist
descriptor provides a global representation of a scene directly, without re-
quiring neither an explicit segmentation of image regions and objects nor
an intermediate representation by means of local features. In the standard
setting, an image is first resized to square, then represented by a single vec-
tor of d components (typically d = 512 or d = 320), which collects features
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Table 4.1: Classification accuracies for UNN, ITML and reqular k-NN on vari-
ous UCI data sets. For each dataset, the best performing method is highlighted by
bold digits.

DATASET k | UNN ITML k-NN
IRI1S 4| 3.07 3.47 5.73
BALANCE SCALE | 4 | 12.77 1146 19.71
IONOSPHERE 4] 1236 12.65 14.07
GLASS 1| 3.83 3.18 2.52
LIVER 8| 3241 38.49 33.62
CANCER 6 | 6.15 7.21 7.84
DIABETES 51 2544 28.78 28.10

related to the spatial organization of dominant scales and orientations in
the image. Using such a global representation instead of a local one has
the main advantage of providing a single compact descriptor of an image.
In particular, the ability of mapping an image to a single point in the fea-
ture space is crucial for the effectiveness of k-NN methods, where com-
puting the one-to-one similarity between testing and training instances is
explicitely required at classification time. Conversely, representing an im-
age with a set of multiple local descriptors is not directly adapted to such
discriminative classification techniques, thus generally requiring an inter-
mediate (usually unsupervised) learning step in order to extract a com-
pact single-vector descriptor from the set of local descriptors [ l. Eg.,
this is the case for Bag-of-Features methods, that we discuss in Sec. 4.3.4
along with an experimental comparison to our method. Finally, although
Gist is not an alternative image representation method with respect to local
descriptors, it has proven very successful in representing relevant contex-
tual information of natural scenes, thus allowing, for instance, to compute
meaningful priors for exploration tasks, like object detection and localiza-
tion [ ].

In the following, we denote as 8-cat the database of [ ], which con-
tains 2,688 color images of outdoor scenes of size 256x256 pixels, divided
in 8 categories: coast, mountain, forest, open country, street, inside city, tall
buildings and highways. One example image of each category is shown
in Fig. 4.10. In addition, we carried out categorization experiments on a
larger database of 13 categories as well, denoted as 13-cat. This dataset was
firstly proposed by [ ] and contains five more categories, as shown in
Fig. 4.11. We extracted Gist descriptors from these images with the most
common settings: 4 resolution levels of the Gabor pyramid, 8 orientations
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Figure 4.9: Classification error rates for UNN, ITML and regular k-NN classi-
fication. The 95% confidence intervals are also shown.

per scale and 4 x 4 blocks *. Then we reduced the dimension of the feature
vectors down to 128 by PCA.

We evaluated classification performances when filtering the prototype
dataset, i.e. retaining a proportion 0 of the most relevant examples as proto-
types for classification. Such a data reduction capability is one of the most
interesting properties of UNN, as it favourably impacts on the computa-
tional cost of classification, which grows at least logarithmically (at most
linearly) with the dataset size. Indeed, classification roughly amounts to
searching for the k nearest neighbors among prototypes, which is O (kd0m)
for linear exhaustive search, O(kd log(6m)) (at best) for fast kD-tree based
search [ I

In Fig. 4.12 and 4.13 we show classification performances in terms of
the mean Average Precision (mAP) ° as a function of §. We randomly chose
half images to form a training set, while testing on the remaining ones. In
each UNN experiment we fixed the value of 8 = T/m, thus constraining
the number of training iterations T such that at most T examples could
be retained as prototypes. Furthermore, we also removed prototypes with

* We used the matlab implementation by the author, which is publicly available at http:
//people.csail.mit.edu/torralba/code/spatialenvelope/sceneRecognition.m

5 The mAP was computed by averaging classification rates over categories (diagonal of
the confusion matrix) and then averaging those values after repeating each experiment 10
times on different folds.
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mountain open country street tall buildings

Figure 4.10: Examples of annotated images from the 8 categories database of
[OTO1].

kitchen

living room of fice

Figure 4.11: Examples of the five additional categories included in the 13 cate-
gories database of [ P05].
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Figure 4.12: Gist image classification performances of UNN compared to k-NN
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Figure 4.13: Gist image classification performances of UNN compared to k-NN
on the 13-cat database.
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negative leveraging coefficients, thus constraining all the retained classi-
fiers to have aj; > 0 (where ¢ is the true class of prototype j).

We compared UNN with the classic k-NN classification. Namely, in or-
der for the classification cost of k-NN be roughly the same as UNN, we car-
ried out random sampling of the prototype dataset for selecting proportion
0 (between 10% and the whole set of examples). UNN significantly out-
performs classic k-NN and the trend observed on the synthetic data when
filtering the prototype set is confirmed on image categorization results. In-
deed, selecting a reduced set of prototypes limits over-fitting on training
data, while improving classification performance on the test set up to 5%.
Namely, consider performances at 8 = 0.5 in Fig. 4.12, where UNN yields
the most interesting result, outperforming the best k-NN performance by
almost 2% with 50% of data. Moreover, on the 13-cat database our method
outperforms the technique proposed by [ 1 by 3% (look at the asterisk
in Fig. 4.13, which corresponds to the best result reported in their paper).

To summarize, UNN displays the ability to discriminate the most rel-
evant images of each class, thus inducing a classification rule robust to
“noisy” prototypes arising from low inter-class variations. Adjusting the
value of 0 enables to remove those confusing prototypes, thus reducing the
representation of each category to a sparse subset of meaningful prototype
images.

Fig. 4.14 shows two examples of how the leveraged k-NN rule may
correct misclassifications due to the uniform k-NN voting. E.g., in the first
example, the classic and the boosted k-NN methods are compared when
classifying an image belonging to class coast, with k = 11. The leveraged
rule with as few as 20% of prototype images is able to correctly label the
query image (first row). Below each nearest neighbor image we show its
contribution to the classifier of (4.10): note that negative votes are signifi-
cantly smaller than positive ones (up to an order of magnitude), thus deter-
mining positive labeling with high prediction score k¢, according to (4.10).
On the contrary, uniform voting rule with all prototypes misclassifies the
test image, not being able to reject contributions by “noisy” neighbor im-
ages. An example of prototypes selected by filtering the dataset is shown
in Fig. 5.9, where the leveraging coefficients refer to the first category (tall
buildings) versus the remaining ones.
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4.3.4 Image categorization based on Bag-of-Features

We validated the ability of UNN to “boost” the Bag-of-Features (BoF) im-
age classification approach. This technique is based on extracting a “bag” of
local descriptors (e.g., SIFT descriptors) from an image and vector quantiz-
ing them on a precomputed vocabulary of so-called “visual words” [ ].
An image is then represented by the histogram of visual word frequen-
cies. This approach provides an effective tool for image categorization, as
it relies on one single compact descriptor per image, while keeping the in-
formative power of local features.

In this section we describe categorization based on Bag-of-Features and
compare UNN with both classic k-NN voting and a state-of-the-art classifi-
cation method on the 8-cat database (Sec. 4.3.3). We used the experimental

setup of [ ] and reproduced their method using the probabilistic La-
tent Semantic Analysis (pLSA) implementation of [ ]16. So as for
the local descriptors, we used the VLFeat toolbox [ ] 7 for extracting

gray-scale dense SIFT descriptors at four resolution levels. In particular, a
regular grid with spacing 10 pixels was defined over the image and at each
grid point SIFT descriptors were computed over circular support patches
with radii 4, 8, 12 and 16 pixels. As a result, each point was represented by
four different SIFT descriptors. Therefore, given the image size 256 x 256,
we obtained about 2,500 SIFT descriptors per image. Then we split the
database in two distinct subsets of images, half for training and half for
testing (i.e., 1,344 images in each dataset). In order to build the dictionary
of visual words, we applied k-means clustering on 600,000 SIFT descrip-
tors extracted from training images. For this purpose, we first selected
a random subset of training images (about 30 images per class), then we
collected all SIFT descriptors of these images and run k-means. In all the
experiments, we computed dictionaries of 1,500 visual words, which was
found to be optimal by [ I

In Fig. 4.15 we show performances in terms of mAP as a function of
the proportion 6 of retained prototypes (like in Sec. 4.3.3). Namely, results
of UNN on BoF histograms are compared to those of classic k-NN on the
same descriptors. Futhermore, pLSA descriptors were learned from these
BoF histograms and used for k-NN classification as well (we set Z = 25
pLSA topics following [ ). UNN outperforms the two compared
methods by a significant amount, improving precision by 5% to 10% over k-
NN. The gain over pLSA is also significant (3% to 5%). In particular, notice
that UNN can reach performances equal or superior to those of k-NN for
very small values of 6, thus significantly decreasing the computation time
for classification. For instance, look in Fig. 4.15(a) at the point on the blue

6Code available at http://www.robots.ox.ac.uk/ vgg/software/pLSA/pLSA_demo.
tgz.
7Code available at http://www.v1feat.org/.
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curve for 0 = 0.3, where UNN outperforms the best k-NN accuracy by
3%, while matching the best pLSA result despite using only 30% of the
data. The same phenomenon is observed also in Fig. 4.15(b), where we
used L2-normalized Bag-of-Features histograms, instead of performing the
standard L1 normalization as in Fig. 4.15(a). In this second case the gap
between UNN and the two other methods is at most 5%, but our approach
still performs the best and, most importantly, it is much more robust to
histogram normalization. (Notice that the UNN curve in Fig. 4.15(b) looks
very similar to that in Fig. 4.15(a).)

To summarize, in spite of its simplicity and the reduced computational
cost due to selecting sparse prototypes, UNN is able not only to signifi-
cantly “boost” k-NN classification, but even to outperform a far more com-
putationally expensive and sophisticated method like pLSA, which relies
on fitting a probabilistic model in an unsupervised way.

Finally, the improvement of UNN over classic uniform voting is signif-
icant even when using a different metric for the nearest neighbor match-
ing. In Fig. 4.15(c) we tested the Histogram Intersection matching criterion.
This similarity measure was firstly proposed by [ ] for image indexing
based on color histograms, and, more recently, it has been successfully used
by [ ] in the context of Bag-of-Features image categorization. The His-
togram Intersection criterion turns out to be more appropriate than the Eu-
clidean distance when measuring similarities between L1-normalized Bag-
of-Features descriptors. In particular, notice that results of either k-NN or
UNN with this setting improve everywhere those reported in Fig. 4.15(a)
and 4.15(b) for the Euclidean setting (up to 5% gap for k-NN and 7% for
UNN). One more time, the most interesting point on the UNN curve refers
to selecting a sparse prototype subset: e.g., retaining only 20% of prototypes
(6 = 0.2) gives roughly the same precision as k-NN with the entire training
set. A general comparison between UNN and k-NN with the three dif-
ferent settings is depicted in Fig. 4.16. Notice that our method using the
Histogram Intersection matching outperforms all the compared curves for
as few as 30% of prototypes. E.g., consider the point on the upper black
curve for § = 0.3, which corresponds to the best precision-computation
time trade-off.

§ 4.4 CONCLUSION

In this chapter, we contribute to fill an important void of k-NN methods,
showing how boosting can be transferred to k-NN classification. Namely,
we have proposed a novel boosting algorithm, UNN (Universal Nearest
Neighbors rule), for inducing a leveraged k-NN rule. This rule generalizes
classic k-NN to weighted voting where weights, the so-called leveraging
coefficients, are iteratively learned by UNN. We prove that this algorithm
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converges to the global optimum of surrogate risks under very mild as-
sumptions.

Experiments on both synthetic and image categorization databases dis-
play that UNN provides significant performance improvements (up to the
best possible performance of the Bayes rule), as well as consistent data re-
duction ability, which results in significant speed-ups for classification (up
to a factor 2 when removing half of the coefficients).

Our approach is built on the top of k-NN search, thus being fully com-
patible with most existing techniques relying on metric distance learning
[ ] as well as PCA or kernel transformations of the input space,
which are expected to enable significant improvements of categorization
performances [ ].
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Figure 4.15: Performances of image categorization with Bag-of-Features (BoF) on
the 8-cat database: the mean Average Precision (mAP) is shown as a function of the
proportion 0 of instances that are retained for classification. (a) L1 normalization
of BoF histograms and k-NN search wrt Euclidean distance. (b) L2 normalization
of BoF and k-NN search wrt Euclidean distance. (c) L1 normalization of BoF and
k-NN search wrt Histogram Intersection kernel.
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Figure 4.16: Overall results of BoF classification with UNN compared to k-NN
for different settings of histogram normalization (either L1 or L2-norm) and near-
est neighbor matching (either Euclidean distance or Histogram Intersection).
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MLNN: MULTI-CLASS LEVERAGED k-NN

In the previous chapter, we have introduced the task of real-world image
categorization in a single-label supervised learning framework. In particu-
lar, we have focused on prototype-based methods like the k-NN voting rule,
which provides an effective tool for classifying images when relying on
appropriate descriptors of the visual information, In order to enforce su-
pervision in such methods so as to constrain the test error under certain
reasonable bounds, we have generalized the classic voting rule to a lever-
aged k-NN voting rule. In this framework, only the most relevant annotated
instances are taken into account for the classification of test data, as their
confidence is learned during the training phase by our UNN boosting-like
algorithm. Therefore, UNN allows us both to “boost” the classification ac-
curacy by weighting contributions of different examples according to their
prototypical relevance (importance weighting), and improve the computa-
tional efficiency thanks to the sparsity of the prototype set selected for test-
ing.

However, two major issues still remain unsolved in our UNN approach.
The first is related to the binary formulation of the learning problem, i.e.,
training classifiers on positive against negative examples, as inspired by the
classic boosting formulation (e.g., AdaBoost). In this framework, the multi-
class categorization task has to be redefined as multiple binary classification
problems. E.g., in Chap. 4, we have presented results of image categoriza-
tion using UNN in a one-versus-all framework, where examples of a fixed
category (“positives”) are trained against all the remaining examples (“neg-
atives”). This formulation significantly impacts on computational time of
both training and classification phase, which is linear in the number of cat-
egories for a fixed dataset size.

The second issue is related to the classification performances, which
are particularly sensitive to the sparsity of the prototype set, thus possibly
affecting the k-NN prediction accuracy when data are too sparse in a high

95
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dimensional feature space. This problem can be viewed from a statistical
point of view, as the issue of improving the local class density estimation
that underlies the k-NN voting rule.

In order to tackle these two problems, in this chapter we consider a
multiclass, kernel-based generalization of UNN, which we call MLNN (Mul-
ticlass Leveraged k-Nearest Neighbors). Indeed, the first issue is tackled by
modifying the risk function so as to take into account a single edge defined
over all classes simultaneously, thus exploiting the intrinsic multiclass na-
ture of k-NN classifiers (this is a major advantage of using k-NN over more
sophisticated approaches, which are instead constrained to binary classifi-
cation, like SVM). Furthermore, we address the second issue by proposing
a new formulation of the instance-based classification that grounds on a
statistical interpretation of k-NN as maximum-a-posteriori classification rely-
ing on non-parametric kernel-based density estimation. This consideration
allows one to generalize from the case of the k-NN kernel, which has the
major drawback of being too much local (thus too sensitive to setting of k),
as well as that of being uniform (thus not taking into account the geometric
configuration of neighborhoods in the feature space), to generic kernels tai-
lored for density estimation, like the Radial Basis Function (RBF) kernels,
which is commonly used in SVM as well. According to this interpretation
we generalize our boosted k-NN classifier to boosting generic kernels for
class density estimation. Furthermore, such a general formulation of our
learning problem closely resembles that of SVM, as it consists in optimiz-
ing a surrogate risk defined over training data. The main differences are
the nature of the cost functional to minimize, the minimization procedure
that, being inspired by the boosting theory, is more straightforward, and
the regularization term, which in our case is implicitely related to the num-
ber of boosting iterations, thus allowing directly to set the sparsity degree
of the solution, which is in general not guaranteed to be significant enough
in the case of classic SVM. In this chapter we show that the main theoreti-
cal results shown in Chap. 4 extend naturally to the multiclass case, as well
as to using kernels instead of k-NN. Therefore, we prove that, under mild
assumptions, MLNN converges fast to the global optimum of our multiclass
exponential surrogate risk functional.

We tested MLNN on three datasets of natural images. Results obtained
using Gist descriptors show that MLNN significantly outperforms classic
k-NN and weighted k-NN voting. Furthermore, using an adaptive kernel
with MLNN provides significant accuracy improvement on such images.
Moreover, our multiclass learning technique dramatically reduces the com-
putation time by a factor C (number of classes), compared to the classic
one-versus-all approach. MLNN accuracy is also comparable with state of
the art metric learning method. Since MLNN is fully compatible with these
metric learning method, the best accuracy is obtained when using MLNN
with the optimal metric. Most interestingly, MLNN is able not only to re-
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duce the computational cost with respect to one-vs-all classification, but
also to improve the accuracy, and this gain becomes as more significant as
the number of classes gets larger.

Then, we carried out experiments using the state-of-the-art Bag-of-Features
descriptors, showing that choosing the right normalization and similarity
kernel may significantly improve classification performances. We quantify
the advantage of multi-class MLNN classification over the binary UNN in
terms of both precision and computational cost. Furthermore, we compare
our results to SVM (both linear and kernel-based), showing that MLNN
performances, although being inferior, are obtained at a significantly lower
computational cost, thus possibly providing a more reasonable precision/cost
trade-off when managing huge image collections.

§ 5.1 INTRODUCTION

5.1.1 Inherently multi-class learning

Recent research has devoted much effort to tailoring most existing learning
algorithms to multi-class classification problems in such a way that classi-
fication boundaries between all the classes could be learned at the same
time. Such classification approaches are inherently multi-class and they do
not require splitting the multi-class problem into multiple binary problems,
thus favourably impacting on the computational time when dealing with
many categories. Nevertheless, redefining discriminative methods in an
inherently multi-class framework is challenging, as their classic formula-
tion generally allows only to fit a boundary between two classes of positive
vs negative examples. Indeed, for many data mining and computer vi-
sion applications, the standard approach to multi-class problems is to split
them into several independent two-class problems. Generally, this is ac-
complished by either training classifiers on two distinct classes at a time
(one-versus-one methods), thus learning a boundary between each pair of
classes, or redefining the example labels in such a way that one class is con-
sidered as positive, whereas all the others are grouped into a single “nega-
tive” class (one-versus-all methods). This latter kind of approaches is more
convenient from a computational point of view, as the cost of training is lin-
ear in the number of categories, while one-versus-one training is quadratic.
Finally, a more general class of methods for splitting multi-class learning
problems into binary problems in based on Error-Correcting Output Codes
(ECOC), which have been extensively described by Allwein et al [ I
Besides strategies relying on problem splitting, several methods have
been also proposed, which try to make binary algorithms able to deal with
many classes simultaneously. Namely, in the context of boosting literature,
the simplest approach is AdaBoost.M1 [ ]. This is a straightforward ex-
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tension of the classic AdaBoost to multi-class learning, where weak classi-
fiers are allowed to give multi-class predictions. The limit of this approach
is that the same constraint on the accuracy of weak classifiers is imposed
as in classic AdaBoost, i.e., each classifier is required to have an accuracy
larger than 50%, which is as more difficult to be matched as the number of
classes gets larger. In order to relax this hard constraint, a very effective
approach has been recently proposed by Zhu et al [ ] for general-
izing AdaBoost to multi-class classifiers. This method is called SAMME
(Stagewise Additive Modeling using a Multiclass Exponential loss), and is
grounded on a statistical interpretation of AdaBoost as an iterative strategy
for fitting a linear expansion of the classification function using elemen-
tary functions (“weak classifiers”). The main advantage of SAMME is to
require that each weak classifier be only slightly more accurate than ran-
dom guessing, thus making it easier to fit the classification function using
“off-the-shelf” multi-class classifiers. The trick behind this strategy is to
define an inherently multi-class loss function that operates on a suitable
classification margin, so as to “balance” loss contributions from positive
and negative losses (they call this condition “symmetry” referred to the
target variables). The formulation of SAMME algorithm looks very similar
to that of classic AdaBoost, thus representing its most natural extension for
dealing with multi-class classifiers.

Inspired by the SAMME approach of Zhu et al [ ], we provide a
multi-class generalization of our UNN approach (described in Chap. 4). In
particular, our method, called Multiclass Leveraged k-NN (MLNN), con-
sists in a framework for inducing a generalized multi-class k-NN classifier
by minimizing an inherently multi-class risk function over training data.
The key aspect when generalizing from binary to multi-class learning is
properly defining a multi-class edge as a primer for the minimization of the
training error. Indeed, this edge takes into account the accuracy of induced
classifiers over all classes simultaneously (Sec. 5.2.3).

5.1.2 k-NN class density estimator

The k-NN rule is one of the simplest classification methods, though it turns
out to be still very attractive to practitioners in many application domains,
among which computer vision algorithms. Interestingly, besides the intu-
itive meaning of using the closest prototypes for predicting the unknown
labels of observations, a well-founded statistical intepretation of k-NN can
be formulated. Indeed, as pointed out by Duda and Hart [ 1, k-NN
classification can be viewed as a particular case of maximum-a-posteriori
classification, where one obtaines estimates of the local class density directly
from the annotated data, using the k-NN window for local non-parametric
density estimation. Roughly speaking, using the k-NN rule for classifying
unseen data is equivalent to counting the proportion of the k-nearest neigh-
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bor prototypes that belong to each class, i.e., the class density estimates
around those data, and then taking the labels maximizing these scores as
the final class predictions.

However, k-NN as a density estimator is part of a broader class of non-
parametric methods that have been deeply investigated in statistics. In
particular, the most interesting class of such estimators is represented by
multivariate kernel density estimators, i.e., estimation functions that rely on
similarity kernels in order to provide pointwise estimates of probability
densities. Following the general tractation of Terrell and Scott [ ], we
can define a generic kernel estimator as the following function:

fl@) =1y K (@) 61

where z is the estimation point, «; are the samples and n their number,
whereas h is a parameter related to the kernel scale, whose argument may
vary. In particular, dependingly on the argument of this parameter, three
main kinds of estimation kernels can be defined:

o Parzen window, when h is a constant parameter, i.e., independent from
the data. This is equivalent to considering a fixed-size window cen-
tered at « that weights samples” contributions.

e Balloon estimator, when h = h(x), i.e., the kernel scale is locally adapted
around the estimation point. This amounts to considering a window
centered at « whose scale depends — say — on the local density of
samples.

e Sample-point estimator, when h = h(x;), i.e., the kernel scale varies for
each sample. This is equivalent to computing a mixture of identical
but individually scaled kernels, each one being centered at a different
observation x;.

k-NN can be viewed as a special case of the balloon estimator, with uni-
form value inside a sphere centered at the estimation point, whose radius
equals the k-NN distance. Thus, k-NN kernel writes as follows:

R, (2, 20) = d [Haz—wzH
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where d is the dimension of the feature space, S; the hyper-surface area of
a d-sphere of unit radius, px is the k-NN distance to « and square brack-
ets denote the indicator function. (Term s% is only a normalization factor,
which is necessary for obtaining a true probability estimate.) Notice that
in (5.2) px plays the role of a scale parameter that, for fixed sample dataset,

depends only on the estimation point. Such a “hard” windowing function
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can be also used for the sample-point estimator, thus giving rise to the so-
called reciprocal k-NN estimator, where the only not-null contributions are
those from samples that are the reciprocal k-nearest neighbors of the esti-
mation point. In this case, the kernel definition looks very similar to (5.2),
but the scale parameter varies for every sample point:

_ d
KRNNk(:B/ 21:1') = ?d |:

H"B_‘BiH
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Also a mixed solution between the two has been proposed by Nock et al
[ ], called symmetric k-nearest neighbors, which are obtained by com-
bining contributions from both k-NN of (5.2) and reciprocal k-NN of (5.3)
(logic sum of the two conditions in square brackets). However, notice that
computing (5.3) is much more computationally expensive than (5.2), be-
cause evaluating this kernel at a single estimation point « requires to search
for the k-nearest neighbors of each sample. This is why non-symmetric k-
NN is preferable in many cases, although its behaviour may be less robust
[ 1

Independently on which particular kernel is used, estimator (5.1) can
be straightforwardly applied to maximum-a-posteriori classification, by com-
puting it separately on each class of annotated samples. Indeed, denoting
with ¢; = {1,2,...,C} the ground-truth annotation of sample x; and m the
total number of annotated data available, we can estimate the joint proba-
bility density of observations and classes as follows:

pm(z,c) = 1 Z h<1')dK(az,a:i;h(-)) ) (5.4)

iicj=c

Thus, using the Bayes’ rule, we have the following estimation of the a-
posteriori probability of class c given x:

pm(a:, c) _ Zi:c,v:c ﬁ K (5'3/ $i}h(‘)) .
chzl pm(,f) ﬁlﬁK(wriBi}h(‘))

P (c|) = (5.5)

This is the general formulation of the class probability estimation when
using kernels, which can be directly used for classification purposes using
the maximume-a-posteriori rule. In the special case of k-NN classification,
i.e., plugging kernel (5.2) into (5.5), we find the common definition:

kNN ~ Yie—cK(z,zih(7)) ke
Py (clxe) = K (z,aih()) Kk (5.6)

where k. is the number of k-NN of x that belong to class c.
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5.1.3 Supervised kernel density learning

In the following section, we use the generic formulation (5.5) of maximum-
a-posteriori classification using density estimation kernels as the basis for
our MLNN method. In particular, our method addresses the problem of
learning the “importance” of sample points for improving the robustness
of MAP classification using (5.5). Therefore, we propose a boosting strategy
for leveraging the contributions to the probability estimation from different
prototypes, while removing those instances that are noisy, thus less reliable.
The main idea behind our approach is to “fuse” the non-parametric class
density estimation problem with the boosting approach, thus exploiting
the benefits of discriminative learning as provided by boosting in terms of
generalization power and robustness to noisy data.

The problem of embedding discriminative approaches into a genera-
tive framework has been tackled by recent literature in different ways, e.g.,
by representing support vector machines in the framework of Gaussian
mixture densities, as proposed by Deselaers et al [ ]. Namely, they
present an approach to fuse SVM with a Gaussian mixture density classifier
trained in a generative framework, thus adding robustness to the genera-
tive model while reducing the risk of overfitting that may affect the dis-
criminative part. Also boosting algorithms have been demonstrated very
useful to improve generative models for both density estimation (unsu-
pervised learning) and classification (supervised). On the one hand, Ros-
set and Segal [ ] have applied the boosting approach to the unsuper-
vised learning problem of density estimation, particularly focusing on us-
ing Bayesian networks as weak learners. On the other hand, several meth-
ods have been proposed that use generative models like mixtures of Gaus-
sians as base learners for boosting density-based classification [ I
Our approach follows the aim of this research trend, exploiting density
kernel classifiers in a multi-class, leveraged way. In particular, prototypes
are interpreted as sample points for a kernel density estimation procedure,
whereas a boosting algorithm learns the best linear combination of them in
a discriminative way, i.e., minimizing an inherently multi-class risk func-
tion. Thus, this strategy provides a multi-class classification rule which
“fits” a non-parametric sample density using sparse prototypes of the dif-
ferent classes. In this framework of boosted prototype-based classification,
the UNN approach presented in Chap. 4 can be easily viewed as a particu-
lar case that arises from boosting a particular kernel density classifier (5.6)
for binary learning.

In this chapter, we test our MLNN approach on the challenging task
of real-world image categorization, showing its ability to significantly im-
prove vanilla k-NN on this task. MLNN does not need to learn a distance
function, as it directly operates on the top of k-nearest neighbors search.
At the same time, it does not require an explicit computation of the fea-



102 Chapter 5. MLNN: Multi-Class Leveraged k-NN

Query 1 |k—NN }—«>{ Classes 1 ‘
’ Dataset [Boosting | (PS) 3 ‘

Quefy n | k-NN }—«>{ Clz;sses n ‘

’Query 1 |k—NN| SVM I—«>{Classes 1 ‘

’Query n |k—NN| SVM I—«>{ Classes n‘
Figure 5.1:  Optimizing k-NN wvia MLNN (up, blue) and SVM-
KNN [ I (down, green). MLNN uses a boosting algorithm before being
presented any query, while SVM-KNN learns support vectors after each query is

presented. Bold rectangles indicate induction steps (PS = prototype selection; see
text for details).

ture space, thus preserving one of the main advantages of prototype-based
methods. Compared to other local learning approaches to k-NN classi-
fication, like that of Zhang et al [ I, MLNN also speeds up query
processing: instead of learning a local classifier for each query, MLNN per-
forms learning upwards, once and for all, and does not need to be run again
or updated depending on queries (Figure 5.1). Finally, the most significant
advantage of MLNN lies in its ability to find out the most relevant pro-
totypes for categorization, allowing to filter out the other examples. Ex-
perimentally, significant data reductions are observed with a simultaneous
increase in categorization performances.

In the following section we describe MLNN, along with the statement
of its theoretical properties. This section is followed by an experimental sec-
tion displaying the behavior of MLNN on a standard image categorization
database using the two best known state-of-the-art image descriptors (i.e.,
Gist and Bag-of-Features). A last section concludes. Finally, in Appendix B,
we provide the general formulation of our algorithm for the minimization
of any multi-class surrogate risk matching the same conditions as for UNN.
We discuss the solution of the learning equation more formally and we give
the specialization of our algorithm for the case of logistic loss.

§ 5.2 METHOD

5.2.1 Problem statement and notations

In this chapter, we address the image classification task in an inherently
multi-class way. Thus, instead of splitting the multi-class problem in as
many one-versus-all (two-class) classification problems — which is a frequent
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approach in boosting [ ] —we tackle directly the multi-class problem, fol-
lowing Zhu et al [ ]. Indeed, for a given query image, we compute
its classification score for all categories. While we basically use this vector
for single-label prediction using the category with the maximum score, our
algorithm can be straightforwardly extended to multi-label prediction and
ranking [ ]. We suppose given a set S of m annotated images. Each
image is a training example (x,y), where x is the image feature vector and
y the class vector that specifies the category membership of the image. In
particular, the sign of component y, gives the positive/negative member-
ship of the example to class ¢ (c = 1,2,...,,C), such that y, is negative iff
the observation does not belong to class c, positive otherwise. At the same
time, the absolute value of y. may be interpreted as a relative confidence in
the membership. Inspired by the multi-class boosting analysis of Zhu et al

[ ], we constrain the class vector to be symmetric, i.e.:
C
Y ye=0, (5.7)
c=1
by setting: y: = 1, yo+s = —ﬁ, where ¢ is the true image category. Fur-

thermore, we denote by K(x;, ;) a symmetric similarity kernel between
two examples z; and x;.

5.2.2 (Leveraged) kernel density classification

The vanilla k-NN rule is based on majority vote among the k-nearest neigh-
bors in set S, in order to predict the class of query x;. It can be defined as
the following multiclass classifier h = {h,, ¢ =1,2,...,C}:

M@MZ% Y [ie>0], (5.8)

i:x;ENNy(xg)

where h. € [0,1] is the classification score for class ¢, NNy (x) denotes the
set of k-nearest neighbors of observation x and square brackets denote the
indicator function.

Eq. (5.8) is equivalent to the following;:

1 —x;
he(zq) = E; [chpka < 1} [yie > 0] , (5.9)

where the first term inside the summation equals kernel (5.2), up to a con-
stant normalizing factor. In the following, for the sake of simplicity, we
only consider unnormalized kernels, like the following;:

||z — @]

S@- (5.10)



104 Chapter 5. MLNN: Multi-Class Leveraged k-NN

For the purpose of density-based classification, it is straightforward to ver-
ify that the “positive” prediction rule (5.8) can be equivalently transformed
into the following “real” classification rule, thus not affecting the final pre-

dictions:

m
1
he™ (ag) = ) 7 Knw (20, 20)ic (5.11)
i=1

where INN¢ € [— &1, 1], due to the definition of class vectors (Sec 5.2.1).
In this chapter, we propose to generalize rule (5.11) to the following
leveraged kernel density classification rule h* = {h!}:

T
hf(mq) = Z“]’K(mqra?j)yjc €ER, (5.12)
j=1

where prediction hf takes values in R. In (5.12), we have introduced the
three following elements to generalize (5.11):

e leveraging coefficients a;, that provide a weighted voting rule instead of
uniform voting;

e generic kernel K, which takes into account “soft” (real-valued) simi-
larities between query x,; and prototypes ;, instead of “hard” selec-
tion of the most similar (k-NN) prototypes;

o size T of the set of prototypes that are allowed to vote.

This last point is particularly interesting for computational purposes, as
our classification rule actually involves only a (possibly sparse) subset of
the training data as prototypes to be used at query time. Indeed, a proto-
type selection step is to be performed while training our classifier, in order to
determine the most relevant subset of training data, i.e., the so-called proto-
types, forming a set P C S (Figure 5.1). The prototypes are selected during
the training phase, which consists in fitting their coefficients «;, while re-
moving the least relevant annotated data from S.

5.2.3 Multi-class surrogate risk minimization

In order to fit our classification rule (5.12) onto training set S, we focus on
the minimization of a multi-class exponential (surrogate') risk:

£P (hf,s) = % fexp {—p(h‘f,i)} ) (5.13)
i=1

1We call surrogate a function that upperbounds the risk functional we should minimize,
and thus can be used as a primer for its minimization.
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where: c
) 1
p(h',i) = C Y yicht () (5.14)
c=1

is the multiclass edge of classifier h’ on training example z;. This function
is an upper bound of the empirical risk:

W(%@:lipW@<@. (5.15)
mis

Minimizing (5.13) acts as a convenient primer for the minimization of (5.15)
— convenient as (5.15) is not differentiable and often computationally hard
to minimize [ , ]. Both risks (5.13, 5.15) depend on quantity
yicht(z;), that is the edge of classifier h! on example (z;,v;) for class c.
This edge is positive iff the category membership predicted by the classi-
fier agrees with the true membership of the example. The surrogate risk
(5.13) uses a multi-class edge, which averages all the edges for the C classes.
In order to minimize (5.13), we propose a boosting-like procedure, i.e., an
iterative strategy where the strong classifier (5.12) is updated as follows:

hgt)(asl) = hgtil)(wi) + (5]-K(:I:i,x]-)yjc , (5.16)

with j being the index of weak classifier chosen at iteration t. Plugging
(56.16) into (5.14), and then into (5.13), turns the optimization problem to
finding 4; that minimizes the following objective:

w; - exp {—(5]‘1‘1‘]‘} , (5.17)

m
arg min
J; =1

fi 1

where w; is a weighting factor depending on past weak classifiers:

1& _
w; = exp {_C Z yichgt 1)(932)} , (5.18)
c=1

and r;; is a pairwise term only depending on data and kernel:

1 C
rj = K@y, @) 5 ) Vielje - (5.19)
c=1

Finally, taking the derivative of (5.17), the global minimization of surrogate
risk (5.13) amounts to fitting J; so as to solve the following equation:

m
Z wil‘i]‘ exp {—5]‘1'1']‘} =0. (5.20)
i=1

Eq. (5.20) always admits one finite solution iff there exist at least one pos-
itive and one negative entry on column j of the edge matrix [rj]mxm. (See
Appendix B for details on the solution of (5.20) and its regularized version
that we use in some particular cases.)
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Figure 5.2: Block diagram of the MLNN kernel-based learning scheme.
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Algorithm 4 MULTI-CLASS LEVERAGED k-NN MLNN (S)

Input: S ={(wz;,y), i=12,.,m, y;€ {—ﬁ,l}c}
Let

1 &
N = & 21 K(zi, ;) YicYje (5.21)
c=

Let a;<0, Vi=12,..,m
Let w;,«1/m, Vi=1,2,...m
fort=1,2,..,Tdo
[1.0] Weak index chooser oracle:
Letj < Wic({1,2, .., m},t)
[1.1] Compute J; solution of:

ZUZ'I'Z']' exp {—(3]1‘1]} =0; (522)
1

m
1=

[L.2] Let
w; <— W exp(—éjrij), Vi : Tjj # 0; (523)

B [1.3] Let Dé]' <— 061' + (5]
Output: hi(z;) = Y ajK(zg, xj)yjc, Ve=1,2,...,C

5.24 MLNN: Multi-class Leveraged k-NN rule

A block diagram of our MLNN algorithm is displayed in Fig. 5.2, where
the initialization phase, i.e., computing the kernel and the edge matrix on
training data, is clearly distinguished from the training phase, which con-
sists of the iterative “re-weighting” of the annotated examples and the con-
struction of the prototype set (“importance weighting”). Finally, the clas-
sification phase involves computing the similarity kernel between a new
observation and all prototypes and applying the multi-class classification
rule.

Pseudocode of MLNN is shown in Alg. 4. As it is common to boosting
algorithms, MLNN operates on a set of weights w; (i = 1,2,...,m) defined
over training data. Weights are repeatedly updated. At each iteration ¢
of the algorithm, a weak index chooser oracle WIC({1,2, ..., m},t) determines
index j € {1,2,...,m} of the example to leverage (step 1.0). Various choices
are possible for this oracle. The simplest is perhaps to compute Eq. (5.22)
for all the training examples. Indeed, ¢; in Eq. (5.22) can be used to obtain
a local measure of the class density [ |, which is as better as ¢; gets
large. This simple oracle thus picks j maximizing J;:

i Wic({1,2,...m},t) : §; = L 5.24
j { m},t) : 6 omax 5 (5.24)
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This oracle allows an example to be chosen more than once, thus letting
its leveraging coefficient a; be updated several times (step 1.3). It is known
that, in order to be statistically consistent some boosting algorithms require
to be run for T < m rounds [ ]. Cast in the setting of MLNN, this
constraint precisely supports prototype selection, as T is an upperbound
for the number of examples with non-zero leveraging coefficients.

The main ingredient to compute leveraging coefficients relies on the av-
eraged edge matrix R with general term 1; ; (Eq. 5.19). This generally depends
on the pairwise similarity between two training examples, as it is given by
the kernel. In the following, we describe the three main implementations
of MLNN, depending on which kernel is considered.

5.2.5 Kernels for MLNN

k-NN kernel Inthe most basic setting, that is using the k-NN kernel, term
K(x;, ;) in (5.19) behaves like a “hard windowing” function that only se-
lects those examples j that are k-NN of i. In this case (5.19) simplifies to:

1vC .
o eXevieyie if x; € NNi(z)
i { 0 otherwise (5.25)
and (5.22) has the following closed-form solution:
+
(C—1)2 (C_l)wj
0j C log wr , (5.26)
with:
w]* =Y w, w; = Y w;i. (5.27)
i I','j>0 i 1‘,']‘<0
Notice that, when whichever w;r or w;- is zero, ¢; in (5.26) is not finite.
There is a simple way to eliminate this drawback, inspired by [ ]: we

add 1/m to both the numerator and the denominator of the fraction in the
log term of (5.22). This smoothes out §;, thus guaranteeing its finiteness
without impairing MLNN convergence. This correction is part of a more
general regularization of Eq. 5.22, which is critical when using any trun-
cated kernel, as in this case the solution is not guaranteed to be finite. (See
discussion in Appendix B.)

Generic kernel When using a generic kernel, entries of the edge ma-
trix (Eq. 5.19) are real-valued, thus the solution of transcendental equation
(5.20) has to be computed numerically. In this thesis, we propose to solve
(5.20) by a Newton'’s iterative method, which gives the following approxi-
mation at step k + 1, given the previous one at step k:

5(k+1) _ 5(}() + 2:”:1 wilij €Xp {—5(]()1'1']'}

. 5.8
Yty wirg exp { oW} 529
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A crucial setting for obtaining quick convergence to the solution is the ini-
tialization. Namely, we propose to initialize the algorithm with the root of
a linearized version of Eq. (5.22):

m
50 — Yo witjj
YT wird
i=1 Wil

In our experiments, we tested two implementations using, respectively,
a Radial Basis Function (RBF) kernel and a Histogram Intersection kernel. The
first kernel is generally defined as a Gaussian, which provides “smooth”
pairwise similarities between feature points:

(5.29)

_ ||a; — | 2
Krpr(zi, ;) = exp gz [ (5.30)

where parameter ¢ may be either constant or adapted to the local sample
density (i.e., 0 = pi(x;), the k-NN Euclidean distance from x;). In this
chapter, we consider a Gaussian kernel that is truncated to the first k near-
est neighbors, thus providing a straightforward generalization of the k-NN
boosting. In this case the edge matrix writes as follows:

T;— T4 2 :
{ézcczlexp{—'zaz'}%c%c if @ €NNe@) - 5

rjj = .
0 otherwise

The latter kernel, i.e., the Histogram Intersection kernel, is particularly
adapted to histogram-like feature vectors and is generally defined as fol-
lows [ ]:

d d
. 1
Ky (5, x5) = hzlmm (xin, xjp) = 5 hZ:l[xih + X — [xin —xl] . (6.32)
This definition of the Intersection kernel is strongly related to the Manhat-
tan (/1) distance for “true” histograms, i.e., {;-normalized histograms (de-
noted by &). Indeed, it is simple to verify that the following relationship
holds in this case:

L 1
KHI(asi,wj) =1- EHxl — $]||1 . (533)

We exploit this relationship for improving time efficiency of computing the
egde matrix induced by the kernel (5.32). Namely, similarly as for the Gaus-
sian RBF kernel defined above, we propose to truncate the Histogram Inter-
section kernel (5.32), only keeping the k largest similarity values and setting
the others to zero. Due to (5.33), this is equivalent to searching for k-NN
wrt the Manhattan distance, thus specializing the edge matrix as follows:

RErE |2 — =l 1
= | e M| | < =Sl =], 639
= e B [ 2
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where are clearly distinguished three factors: (1) the usual label-dependent
term, (2) the selection of k-NN wrt the /; norm (p,l is the k-NN Manhattan
distance), which can be efficiently performed using tailored data structures
like kD-trees, and (3) a linear weighting only depending on the Manhattan
distances.

The different solutions of Eq. 5.22 depending on whether a “smooth” or
a “truncated” kernel is used are described in Appendix B with more details.

5.2.6 Properties of MLNN

In this section we provide formal details about our boosting analysis of
MLNN. In particular, we give the statements of two fundamental theorems
for MLNN, which bring to the multi-class case the same theoretical prop-
erties that hold for UNN, as stated in Sec. 4.2.5. Indeed, the first theorem
states the convergence of MLNN to the global minimum of the exponential
risk.

Theorem 3. MLNN converges with T to h' realizing the global minimum of
the exponential risk (5.13).

In Appendix B.1 we prove this theorem by giving the necessary condi-
tion for Eq. 5.22 to admit a finite solution. Furthermore, as done for UNN
in Chap. 4, we provide the general learning algorithm for the minimization
of a broad class of multi-class surrogate risk [ , ].

The second theorem provides a convergence rate for MLNN, which is
based on a fundamental assumption on weak classifiers.

Theorem 4. Let p; = w] /(w] +w;") and ||w|| = iy w;. If the following
weak index assumption (WIA) holds for T < T steps in MLNN:

(WIA) There exist some «y > 0 and n > 0 such that the following two inequalities
hold for index j returned by Wic({1,2,...,m},t):

lpj—Vcl > v, (5.35)
(! +w )/ [|wlh = 7. (5.36)

Then: €”'(h',S) < exp(—&17%7).

Ineq. (5.35) is the usual weak learning assumption, used to analyze
classical boosting algorithms [ ], when considering examples as weak
classifiers. A weak coverage assumption (5.36) is needed as well, because in-
sufficient coverage of the reciprocal neighbors could easily wipe out the sur-
rogate risk reduction due to a large <y in (5.35). In the framework of k-NN
classification, choosing k not too small is enough for the WIA to be met for
a large number of boosting rounds 7, thus determining a potential harsh
decrease of seXp(hg, §). This is important, as a big difference with classical
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boosting algorithms (e.g., AdaBoost [ ]) is that oracle Wic(.,.) has ac-
cess only to m different weak classifiers. Finally, the bound in Theorem 4
shows that classification (5.35) may be more important than coverage (5.36)
for nearest neighbors.

5.2.7 MLNN and SVM

The formulation of our MLNN classification rule (5.12) is very similar to
that of support vector machines (SVM) for the binary case. Indeed, for
C = 2,(5.12) is a kernel-based classifier that linearly separates positive and
negative data using a sparse set of prototypes. These prototypes are analo-
gous to support vectors of SVM, as they are a subset of the learning data that
determine the decision boundary. Furthermore, as support vectors’ coeffi-
cients are related to their distance to this boundary, similarly our leveraging
coefficients a; represent the “prototypical relevance” of data. However, the
relationship between weighting coefficients and the distance to the decision
boundary is different for SVM than MLNN. Indeed, SVM learning favours
the selection of data that are located close to the boundary as support vec-
tors, whereas our MLNN approach tends to give larger leveraging coeffi-
cients to the prototypes located further from the boundary, where the class
conditional probability is higher. Similarly, while data that are outside the
margin region are not useful to determine the decision boundary of SVM,
thus being rejected, conversely in MLNN adding prototypes that are close
to the boundary does not impact on decreasing the risk function signifi-
cantly, due to their small edges. This is mainly due to the different formu-
lations of the two learning algorithms as optimization problems. On the
one hand, SVM minimize the hinge loss over training data with a quadratic
regularizer, which constrains the maximum ¢;-norm of support vectors’
coefficients [ ]. On the other hand, MLNN minimizes a boosting-like
strictly convex risk, e.g., the exponential risk, with a sparsity inducing con-
straint on the ¢/1-norm of the leveraging coefficients, which is controlled by
setting the number of boosting iterations T [ ]. A comparison of
both SVM and MLNN loss functions is shown in Fig. 5.3, as well as the
true empirical loss.

The difference between learning using SVM and MLNN is clearly dis-
played in Fig. 5.4, 5.5, where the two methods are applied to the Ripley’s
dataset. In the first figure, we compare linear SVM with our basic MLNN
implementation (k-NN kernel), whereas in the second figure kernel SVM
and kernel MLNN are compared. Namely, we set the same kernel param-
eters for the two methods, i.e., Gaussian kernel with o = % and we set
the constraint parameters (C parameter of SVM and number of boosting
rounds T of MLNN) so as to retain the same number of support vectors
(top figure) as prototypes (bottom). Under these conditions, both meth-
ods are able to learn a good boundary between the two classes, although
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Figure 5.3: Comparison of SVM (hinge) and MLNN (exponential) loss func-
tions with the true empirical (0/1) loss.

the SVM boundary is a bit “smoother” that that of MLNN. However, the
main difference lies in the position of the selected data that are retained
for classification. Indeed, while most of the support vectors selected by
SVM are very close to the boundary, MLNN prototypes are mostly located
around the modes of the class conditional distributions. Roughly speaking,
this simple synthetic example shows that, while support vectors aim at in-
ducing the decision boundary directly, our MLNN prototypes are instead
more directly related to a sparse representation of the class distributions,
thus inducing the boundary indirectly. In this sense, our technique is more
“generative” than a purely discriminative approach like SVM, and thus is
more easily amenable to treating multiple classes.

§ 5.3 EXPERIMENTS

In this section, we present experimental results of MLNN with different
kernel settings and compare them with both baseline k-NN and some state-
of-the-art machine learning methods, like ITML [ ]Jand SVM | ].
In most of our experiments, we focused on evaluating how the average
classification precision varies as a function of the number of prototypes
that are used for testing. Indeed, one of the main features of our method
is to allow to explicitely fix the number of data to be used at classification
time, thus directly bounding the computational cost of the test phase. In
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Figure 5.4: Classification boundary on the Ripley’s dataset for: (a) linear SVM
with SVM cost parameter C = 103; (b)) MLNN with k = 5and T = 74. Notice
that our method with the most basic setting (k-NN kernel) is able to learn a good
classification boundary compared to linear SVM.
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Figure 5.5: Classification boundary on the Ripley’s dataset for: (a) SVM using
Gaussian kernel (5.31) with o = % and SVM cost parameter C = 103; (b)

MLNN with the same kernel settings and T = 74.
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particular, in all the reported experiments we carried out prototype selec-
tion by setting T < m, which corresponds to retaining at most T relevant
prototypes (the exact number of prototypes depends on which criterion is
chosen for the WIC oracle, namely whether allowing a prototype to be se-
lected at multiple steps or not). When running the baseline k-NN method,
we carried out random prototype selection, which is the easiest strategy for
data reduction, and averaged the classification results over a number of
iterations.

In the following sections, we report image categorization results on the
following three datasets, containing 8, 13 and 15 categories of real-world
images, respectively:

8-cat: firstly proposed by [ ], includes 2,688 color images grouped into
eight categories: 360 coast, 328 forest, 374 mountain, 410 open coun-
try, 260 highway, 308 inside of cities, 356 tall buildings, and 292 street.

13-cat: adds five more categories of gray-scale images to the 8-cat database
[ I: 241 suburb residence, 174 bedroom, 151 kitchen, 289 living
room, and 216 office.

15-cat: includes 13-cat database plus two more categories (gray-scale im-
ages) [ ]: 315 store, and 311 industrial.

In order to represent these images in terms of feature sets, we tested the
two most common descriptors for natural image classification, i.e., Gist fea-
tures [ ] and Bag-of-Features histograms computed from SIFT descrip-
tors [ ]

This section is organized by first reporting results of natural image cat-
egorization relying on global Gist descriptors (Sec. 5.3.1), where the ben-
efits of using our classification method over classic k-NN-based methods
are shown in terms of both classification precision and computational cost.
Then, we focus on classification using the state-of-the-art Bag-of-Features
descriptors, by investigating the most suitable dissimilarity measures for
such descriptors and comparing our method with SVM (Sec. 5.3.2).

5.3.1 Scene categorization using Gist descriptors

Settings In this section we report results obtained by splitting each of the
considered databases in two distinct subsets, one for training, the other
for test. Following the settings of [ ], we always used about 2,000
randomly selected training images. Namely, 250 images per category were
selected from 8-cat database, 150 from 13-cat and 15-cat. The remaining im-
ages were used to measure classification performances. In our experiments,
we mostly concentrated on evaluating the benefit provided by selecting a
sparse prototype dataset from training data. For this purpose, all the results
of MLNN are compared with those of classic k-NN for a fixed number of
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prototypes, i.e., for a fixed computational cost of classification. (So as for
k-NN, a random sample of the training set was selected and results were
averaged over a number of random sampling realizations.) All the results
we present were obtained with k = 11 and pre-processing Gist features
with PCA down to dimension d = 128, which provided the best results.

We also compared our MLNN algorithm with several methods on the
8-cat database. On the one hand, we tested:

e MLNN with the basic setting, i.e., the uniform k-NN kernel of Eq. (5.25);

o MLNN with fixed-size Gaussian kernel, which we denote as WMLNN;
namely, we set ¢ = 0.25 in kernel (5.30);

e MLNN with adaptive-size Gaussian kernel, called AdaWMLNN, for
which we set ¢ = v/2px(z;) in kernel (5.30) (ox(x;) being the k-NN
distance from example x;);

e MLNN “one-versus-all”, i.e. Alg. 1 with C = 2 applied to each cate-
gory independently (considering examples in the current category as
“positives”, the remaining ones as “negatives”).

Furthermore, we compared our method with different k-NN-based clas-
sification methods, which either rely on metric learning or not. Namely, we
tested:

e classic non-parametric k-NN;

o weighted k-NN (Wk-NN) voting with Gaussian weights, as proposed

by Philbin et al. [ |; namely, we use weighting factor (5.30) with
oc=1;
e k-NN voting with ITML metric learning [ I

We tested all these methods for a fixed number of prototypes, i.e., for a
fixed computational cost of classification. In particular, a random sample
of the training set was selected and results were averaged over a number
of random sampling realizations.

Finally, we integrated ITML metric learning with MLNN in order to
provide a unique method for simultaneously addressing the choice of the
metric distance and the rejection of “noisy” examples, which are the two
fundamental issues to be addressed for improving over k-NN classification.

Results The categorization test consists in assigning each test image to
one of the predefined categories. We measured the overall performance
rate as the mean Average Precision (MAP), which is the average of the clas-
sification rates for each category. The results reported in Fig. 5.6(a) show the
significant improvement provided by using a “smooth” kernel for learning
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the prototypes. Namely, the adaptive-size kernel provides the best perfor-
mances. Furthermore, the gap over the basic MLNN is more consistent
when retaining less prototypes, as AdaWMLNN it enables a finer class
density estimation even with very sparse examples (see, for instance, the
performance gap of 7% between MLNN and AdaWMLNN for T = 200).
Finally, notice that the multi-class version of our algorithm outperforms
the one-versus-all implementation (gap between 1% and 3%). Hence, our
multiclass MLNN not only is much less computationally expensive than
one-versus-all MLNN (which is equivalent to UNN described in Chap. 4),
as it avoids to run the boosting procedure C times independently, but it also
provides better classification accuracy.

On the same 8-cat database we also compared AdaWMLNN to k-NN
voting with or without metric learning (Fig. 5.6(b)). First of all, we notice
that our AdaWMLNN method significantly outperforms k-NN and Wk-
NN, i.e., non-learned voting rules (up to 6% improvement). Then, per-
formances of our method are overall comparable to those of ITML, being
slightly inferior to them, but the computational cost of MLNN is consider-
ably lower than that of metric learning. Finally, our results show that, when
combined with a metric learning strategy, MLNN is able to significantly
outperform all the other classification methods, thus enabling a significant
accuracy improvement over the state-of-the-art (up to 3% when retaining
few prototypes, e.g., see performance at T = 200).

In Fig. 5.9 we show an example of the 100 most relevant prototypes re-
tained when running MLNN on 8-cat database. Intuitively, the number of
prototypes per category is automatically adapted to better represent cate-
gories with larger intra-class variability (mostly in terms of texture infor-
mation, e.g., compare categories “tall building” and “coast”).

We also evaluated the confusion table (Fig. 5.7), which highlights the
difficulty of discriminating between couples of visually similar image cate-
gories. E.g., images of “tall building” are often confused with “inside city”,
“mountain” with “open country”. In spite of this phenomenon, which is
mainly due to ambiguous ground-truth annotation and ill-defined image
categories and has been already reported on this database [ ], perfor-
mances of MLNN are overall satisfactory and comparable to state-of-the-
art. In Tab. 5.1 we report the best results of both our method and regular
k-NN on the three databases. We observe that the improvement over unsu-
pervised classification becomes more consistent when dealing with more
challenging categories, like 15-cat database. (Remark the gap of 3.5% in
terms of MAP)) At the same time, MLNN considerably reduces the com-
putational cost of image classification. E.g., on 15-cat database, the best
precision of MLNN is obtained by decreasing the prototype number by a
factor 2.5 (from 150 to 60).

In Fig. 5.8 we focus on a more extensive comparison between regular
MLNN and classic k-NN on the 13-cat and 15-cat datasets. Here, we report
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Figure 5.6: Experimental results of categorization on 8-cat database in terms of
MAP as a function of the number of prototypes, for k = 11 and Gist descrip-
tors of dimension d = 128 (after PCA). (a) Comparison between 3 different im-
plementations of MLNN and one-versus-all MLNN. (b) Comparison between
MLNN with adaptive Gaussian kernel (AdaWMLNN), k-NN, weighted k-NN
and MLNN one-versus-all (UNN).
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Figure 5.7: Confusion table for MLNN on the 8-cat database.

Table 5.1: Performance comparison as a function of the average number of proto-
types per class.

# prototypes | MAP

8 cat MLNN 175 81.0
k-NN 250 79.2

13 cat MLNN 60 67.0
k-NN 150 65.6

15 cat MLNN 60 64.5
k-NN 150 61.0
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Figure 5.8: Performance of Gist-based classification using MLNN compared to
k-NN as a function of the average number of prototypes per class on (a) 8-cat, (b)
13-cat and (b) 15-cat datasets.



5.3. Experiments 121

tall building

Figure 5.9: 100 prototypes selected by MLNN among 2,000 training images of
the 8-categories database.
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the Mean Average Precision (MAP) as a function of the number of proto-
types per category. (Since this number varies from category to category, we
report the average number of prototypes over all categories.) Notice that
the gap between the two methods is most significant when retaining less
than half prototypes, namely 6% improvement with 80 prototypes on 8-cat
database, 7% with only 60 prototypes for both 13-cat and 15-cat. Besides
considerably improving precision over k-NN, we also drastically reduce
the computational complexity of classification, which deals with finding
nearest neighbors on a sparse dataset (gain up to a factor 4 when discard-
ing half prototypes).

We also tested our method for ranking, thus investigating its behaviour
when dealing with confusing or ill-defined image categories, as proposed
by Vogel and Schiele [ ]. In particular, whereas the categorization test
allocates an image to the category with the maximum score (Sec. 5.2.1), the
ranking test considers the first 7 categories with the largest scores, thus vir-
tually giving multiple labels to the image. Tab. 5.2 compares categorization
rates (the two columns for r = 1) with the ranking classification rates when
using the best label as well as the second one (columns for » = 2). The
results, which are given for the 15-cat database, clearly show that MLNN
significantly benefits from this setting on the most challenging categories.
The large precision jump on images of such categories (highlighted in the
table) suggests that those images are likely to be very close to those of an-
other category in the feature space (e.g., “tall building” and “inside city”,
“coast” and “mountain”). Indeed, visual descriptors are not sufficient to
convey relevant information for the semantical categorization of such im-
ages. Overall performance (last line in the table) jumps from 64.5% to 80.7%
(more than 16% improvement), while keeping a significant gap over k-NN
(more than 5%).

5.3.2 Categorization using Bag-of-Features descriptors

Settings In the context of generic image categorization, the Bag-of-features
scheme is among the best performing feature representation methods. Be-
sides its simplicity, the main advantage of this image representation ap-
proach is the one-to-one association between images and feature vectors,
that allows for a straightforward use of discriminative learning tools like
k-NN and SVM. Originally proposed for text categorization [ ], the
Bag-of-Features descriptors have been successfully applied to image classi-
fication problems, with several implementations, ranging from using them
as feature vectors for discriminative learning [ ] to more sophisti-
cated approaches like pyramid match kernels [ , I

In this section we present and discuss results we obtained using MLNN
for Bag-of-Features classification on the most challenging of the three databases
described in Sec. 5.3, i.e., the 15-cat database, which mixes outdoor scenes
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Table 5.2: Rank statistics for MLNN using Gist descriptors on the 15-categories
database.

MLNN k-NN
category r=1]r=2[r=1]r=2
tall building | 57.3 71.8 46.1 64.1
inside city 64.6 76.6 56.3 72.8
street 81.0 90.1 77.5 88.7
highway 78.2 88.2 80.0 86.4
coast 76.2 91.0 60.5 86.7
open country | 57.7 78.1 68.1 81.5
mountain 59.8 88.8 35.7 73.2
forest 86.5 91.0 85.4 88.8
suburb 85.7 91.2 91.2 95.6
bedroom 57.6 75.8 57.6 74.2
kitchen 45.0 73.3 33.3 58.3
living room 37.4 67.6 40.3 61.9
office 69.2 87.7 431 76.9
industrial 404 59.6 31.1 45.3
store 70.3 80.0 62.4 78.2

| MAP | 645 [ 80.7 [ 579 | 755 |

with more difficult indoor scenes. All the results presented in this section
refer to 10-fold cross-validation. Thus we split the 15-cat database in 10 dis-
tinct random folds, in order to form 10 different training/test subsets, each
one containing more than 4,000 training images and about 450 testing im-
ages. The following statistics refer to averaging over these ten folds. For
each training/test combination we first built a vocabulary of visual words,
that are SIFT descriptors densely extracted at four resolution levels on a
fixed regular grid (typically 1,000+10,000 SIFT per image). In order to build
the visual vocabulary, we ran k-means with k = 1500, thus representing
each image as a feature vector in dimension d = 1500.

Histogram Intersection metrics Although BoF descriptors are widely used
in most state-of-the-art image classification techniques, some crucial issues
are still unsolved and may significantly impact on classification perfor-
mances. In particular, we consider the two following problems:

1. how to normalize such image descriptors in order to make comparison
between different images as unbiased as possible;

2. which distance metric to use for measuring the dissimilarity between
two descriptors.

Such problems mainly arise from the histogram-based nature of BoF de-
scriptors and have been the object of much research effort in the computer
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vision community in the recent years. Indeed, on the one hand, their nor-
malization is particularly crucial when images differ significantly from each
other in terms of the local descriptors counts, thus resulting in largely vari-
able descriptor norms. Thus it is common to pre-process BoF descriptors
such that they have equal /; norms. Less commonly, these descriptors have
been />-normalized, mostly when normalization is part of a pre-processing
technique, like the squared root (sqrt) recently proposed by Perronnin et al
[ ]. The most common alternative to /1-normalization for BoF descrip-
tors is represented by the TF-IDF schema, which was originally proposed
in the context of text retrieval and then successfully applied to image in-
dexing, in order to take into account the larger informative “power” of rare
visual words [ ].

On the other hand, defining the right dissimilarity measure between his-
tograms (not necessarily /;-normalized) is challenging, and the resulting
behaviour often strongly depends on the application. E.g., the Euclidean
distance between ¢;-normalized descriptors [ ] or TE-IDF-weighted
descriptors [ ] are still the most common choices for image classifica-
tion. All the results we report in this section refer to normalizing Bag-of-
Features descriptors in terms of the /; norm and comparing them using the
Manhattan distance. This choice was motivated by our evaluation of dif-
ferent normalization/metric combinations that we report in Tab. 5.3, which
refers to 10-fold cross-validation using k-NN (k = 10). In particular, we
tested some of the most suitable histogram distance metrics, as defined in
a recent taxonomy of histogram intersection measures [ ], i.e., Man-
hattan, Canberra, Lorentzian, besides the baseline Euclidean distance. Fur-
thermore, we evaluated different descriptor normalization/pre-processing
methods, like the common #;, ¢, and TF-IDF | ], as well as the most
recent squared root pre-processing [ ] and the baseline (absence of nor-
malization). First of all, our results show that the /; normalization always
outperforms ¢, and the baseline for a fixed metric (except for the Euclidean
distance, for which /;-normalization is the best), and the gap is particularly
significant for distances like Manhattan and Lorentzian (more than 11%
over {p-normalization). The best performances are obtained for Manhattan
and Lorentzian with /;-normalization, and Manhattan with TF-IDF nor-
malization, which still outperform the squared root pre-processing strat-
egy. So as for the distance metric choice, our results clearly show that the
Euclidean distance is generally not the optimal choice for comparing those
histogram-like descriptors, thus suggesting intersection metrics as better
alternatives. (See for instance the 10% gap between Euclidean and Man-
hattan for ¢;-normalized BoF, or the 9% gap between the same two metrics
when using TF-IDF normalization.)

In Fig. 5.10 we quantify the gain provided by using the Manhattan
(¢1) distance over the Euclidean (¢;) distance for our MLNN approach.
Namely, we compare MLNN using the simple k-NN kernel of Eq. 5.2 with
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Table 5.3: Comparison of k-NN classification performances using different his-
togram normalization criteria and intersection metrics on the 15-cat database
(k = 10).

metric normalization | MAP
Euclidean 12 54.55
Euclidean none 57.56
Euclidean lr 59.60
Manhattan 12 64.29
Manhattan none 62.09
Manhattan 4> 53.19
Canberra 12 60.80
Canberra none 59.57
Canberra 4r 59.81
Lorentzian 12 64.34
Lorentzian none 58.21
Lorentzian 4> 52.07
Manhattan tf-idf 64.47
Euclidean tf-idf 55.22
Euclidean lr+sqrt 60.78
Euclidean {1+sqrt 62.22

MLNN using the Histogram Intersection kernel (5.32). Results of base-
line k-NN classification are also shown for both metric distances. This plot
shows that the choice of the kernel/k-NN metric significantly impacts on
the precision of our method, with a 10% gap between the Euclidean k-NN
kernel-based implementation and the Manhattan histogram intersection
kernel-based implementation.

MLNN performances Inorder to evaluate the classification performances
of our method, we report the trend of cross-validation MAP as a function
of the overall number of prototypes used for testing (Fig. 5.11). We also
compare these results, which were obtained using the MLNN implementa-
tion relying on the Histogram Intersection kernel, with our one-versus-all
UNN method described in Chap. 4 and the baseline k-NN classification.
Our method outperforms k-NN classification significantly (gap between
6% and 8%) while reducing the prototype dataset, thus the computational
cost, considerably. (See for instance the precision of MLNN for 400 proto-
types, which equals that of k-NN using 2,400 prototypes, thus resulting in
a dataset reduction by a factor 6.) Furthemore, the advantage of using our
multiclass MLNN algorithm over its binary counterpart, UNN, is mainly
concentrated at very low prototype set sizes, e.g., 10% of the original set,
where the multiclass learning allows for precision improvement up to 7%.
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Figure 5.10: Comparison between Manhattan (¢1) and Euclidean ({,) distances
for both MLNN and k-NN classification.

Notice that the number of prototypes for UNN is reported as the average
over the multiple one-versus-all problems, i.e., it should be multiplied by
the number of classes in order to compute the actual number of prototypes
involved in classification. Hence, although UNN performances appear al-
most identical to those of MLNN, this latter still benefits a significant com-
putational advantage over UNN, thus providing the best precision/cost
trade-off.

Then, we look deeper into MLNN classification performances by ana-
lyzing the confusion matrix (Fig. 5.7). Overall, the method performs well
on most outdoor scenes, as well as on the “office” category. Only some rea-
sonable confusions are present, e.g., between “coast” and “open country”
or “inside city” and “street”. Thus, average performance (MAP under 70%)
drops off mainly because of the low recognition rate in a few more challeng-
ing categories, such as the indoor category “bedroom” (recognition rate of
only 16.2%), and the “industrial” category (36.5%), that mixes outdoor and
indoor images, thus making recognition very challenging. In particular,
notice that “bedroom” images are more often misclassified into the “liv-
ing room” category, due to their similar scene layouts and the presence of
similar objects, e.g., paintings on the walls and sofas/beds. This drastically
reduces the prototypical relevance of bedroom images during the learning
phase, thus biasing misclassification into the “living room” category. This
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Figure 5.11: MLNN with Histogram Intersection kernel compared to UNN
(one-versus-all) and k-NN. All the three classification methods rely on the same
distance metric, that is ¢1 distance.

phenomenon is related to the well-knowm “semantic gap”, which affects
low-level visual descriptors that only collect statistics on the appearance
information without any semantic interpretation. This problem is particu-
larly critical for prototype-based methods when the inter-class variability
is low, preventing them from learning reliable discriminating prototypes.

A very simple strategy for improving the overall precision of MLNN is
to combine the scores from multiple MLNN tests, e.g., by summing the
classification scores corresponding to different values of k for the same
(truncated) Histogram Intersection kernel. An example of the performance
increase enabled by this strategy is shown in Fig. 5.13, where MLNN im-
proves by almost 2% by summing the scores obtained for k = 5,10, 15, with
a best MAP of 69.23%.

Comparison with SVM Finally, we ran state-of-the-art SVM classifica-
tion on the same database for the purpose of comparison, as reported in
Tab. 5.4. In particular, we used the matlab implementation provided in the
SVM-KM toolbox [ ], and carried out experiments with different set-
tings of the RBF kernel (we report those obtained setting kernel parameter
B = 1). These results show that SVM are still the best performing clas-
sification method on this dataset, with a 5% gap. Nevertheless, a major
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Figure 5.13: Results of MLNN and k-NN obtained when combining multiple k
values into the classification rule.
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Table 5.4: Comparison of the best cross-validation performances for SVM,
MLNN, UNN and k-NN on the 15-cat database.

method MAP
kernel SVM | 74.47
MLNN 69.23
UNN 67.81
k-NN 64.29

drawback of this method is the high sensitivity of its performances to the
choice of the optimization parameters (in particular, the regularization pa-
rameter C), which need to be tuned by time-consuming cross-validation.
For instance, Fig. 5.14 reports the trend of MAP as a function of parame-
ter C (in logarithmic inverse scale), showing that an inaccurate setting of
this parameter makes performances decrease by 12%. Furthermore, SVM
are not inherently multi-class, thus they need to treat each category sepa-
rately and, since the support vectors are often far from being really sparse,
the computational cost of classification, which is linear in the number of
classes C and support vectors n (computational cost of order O(Cnd), d

being the descriptor dimensionality [ 1), becomes easily huge in real
applications.

Therefore, our method, whose computational cost is O(dlogn) (when
using kD-trees for fast k-NN search [ ]) may be viewed a valuable

alternative to SVM classification when computational time is an issue. In-
deed, combining the simplicity of k-NN rule with the ability to build sparse
prototype sets, thus reducing the computational cost while still improving
the classification precision, MLNN provides a more reasonable trade-off
between precision of classification and computational time for large image
collections with many categories.

§ 5.4 CONCLUSION

In this chapter, we have tackled the problem of providing certain reason-
able bounds to the classification error when using prototype-based meth-
ods like k-NN and kernel density classifiers. For this purpose, we have pro-
posed to bring such classifiers into the boosting framework, by leveraging
prototypes in order to minimize a generic (surrogate) risk function defined
over training data. The algorithm we propose, MLNN, grounds on very
mild hypotheses on the nature of the loss function that is used to define
the surrogate risk, ranging from the classic exponential and logistic losses,
very common for image classification, to more sophisticated functions that
may be specifically tailored to the application at hand. Furthermore, our
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Figure 5.14: SVM performances as a function of (log C) =1, C being the reqular-
ization parameter of SVM.

framework adopts an inherently multi-class definition of the surrogate risk,
thus really exploiting the multi-class nature of prototype voting rules and
avoiding to split a single classification problem into multiple binary prob-
lems according to the widely used one-versus-all strategy. Our MLNN
training phase is implemented as an iterative algorithm that, at each step,
adds a new relevant prototype in order to decrease the multi-class surro-
gate risk down to its global minimum. On the one hand, using recent ad-
vances in boosting theory, we have proved that this algorithm converges
fast to the global optimum of the risk function, thus providing an empirical
upperbound to the training error. On the other hand, our training strat-
egy exploits the boosting principle for explicitely selecting the most rele-
vant prototypes among the training examples, thus removing confusing or
irrelevant data that may impair classifier generalization and significantly
reducing the computational cost of classification, which is logarithmic in
the number of retained prototypes.

Experimental results have proved the effectiveness of our method com-
pared to uniform k-NN voting, both in terms of classification precision,
gaining up to 5% MAP on a challenging database of real-world images,
and in terms of computational complexity, by reducing considerably the
prototype set size. The precision improvement is significant considering
that tests were carried out on small datasets (containing few thousands im-
ages), while boosting typically gets as better performances as the number
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of weak hypotheses available gets larger. Furthermore, performances of
MLNN are comparable to those of a state-of-the-art metric learning algo-
rithm, i.e., ITML, on UCI datasets, whereas our method is outperformed by
support vector machines (SVM) on image categorization. Indeed, although
our method overcomes some major drawbacks of k-NN, like uniform vot-
ing, uncertain classification bound and computational cost, it still suffers
from a common limit of prototype methods when using high-dimensional
feature vectors, i.e., the well-known “curse of dimensionality” that induces
“hubs” and makes k-NN distances “collapse”, thus dramatically reducing
the discriminative ability [ ].
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CONTENT-BASED MEDICAL IMAGE CATEGORIZATION

Because of the increasing amount of medical image data available, locat-
ing relevant information in an efficient way is the most critical challenge
when managing such huge collections. This problem involves analyzing
the content of images, classifying them according to a pertaining set of la-
bels, and searching for them effectively. Thus, recent research in image
management has devoted much effort on developing tools and systems for
content-based image analysis, indexing and searching. These tasks are in-
herently hard to solve, as they aim at using the low-level visual informa-
tion in order to provide a meaningful semantic interpretation of the image
content, i.e., useful for computer-aided diagnosis systems. In particular,
a crucial step involved in these systems is represented by the automatic
annotation of images. For instance, when dealing with radiologic images,
implementing automatic tools able to recognize the acquisition modality,
the body orientation, the body region and the biological system examined
can significantly help to improve the quality and efficiency of searching
image collections for diagnostic purposes. Indeed, automatic annotation
of medical images is expected to enable two major improvements over the
traditional manual labeling. The first consists in speeding up the search in
huge archives, where the amount of information available is consistently
growing. The second is related to improving the quality of query results,
i.e., making the annotation process more reliable and consistent, by com-
pensating errors induced in the tag assignment by manual classification.
In this chapter we concentrate on the task of automatic annotation of
a radiologic database, which includes intra- and inter-individual variance
and diseases. The main challenge when dealing with such data is repre-
sented by intra-class and inter-class variations that characterize these data.
Indeed, images annotated with the same label may present significant vi-
sual differences, whereas images belonging to different classes may look
very similar. On the one hand, higher visual intra-class variability im-
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proves difficulty of more generic recognition tasks related to such images,
like body part recognition, which we consider in the following sections. On
the other hand, when defining more specific categories, e.g., taking into
account body orientation or biological system as well as body region, the
classification task has to cope with the problem of inter-class variability,
which is considerably reduced, making categories significantly overlap in
the visual feature space.

In this chapter, we first present a brief survey of the recent literature
on medical image classification (Sec. 6.1). Then, we depict our MLNN
approach adapted to medical image categorization (Sec. 6.2) and describe
a benchmark radiographic image dataset, IRMA, which has been widely
used for validation purposes in the image retrieval and classification com-
munity (Sec. 6.3). Finally, we refer to our own work on medical image
classification by reporting experimental results on a modified database of
radiographs we extracted from the IRMA dataset, focusing on the task of
body part recognition more specifically (Sec. 6.4).

§ 6.1 STATE-OF-THE-ART MEDICAL IMAGE CLASSIFICA-
TION

Automatic categorization of medical images is a challenging task that can
be of crucial importance when managing real data collections for the clin-
ical routine. As pointed out by Tommasi and Deselaers [ ], manually
setting the tags of DICOM headers for medical radiographs may not be a
reliable procedure, as some entries are either missing, false, or do not de-
scribe the anatomic region precisely. Moreover, visual information in im-
ages cannot be always represented by a textual description satisfactorily.
Such issues have led to significant research interest in automatic methods
for indexing medical images based on the analysis and description of their
visual content, as attested by recent extensive evaluation challenges, like
the ImageCLEEF classification competition [ I

Although state-of-the-art approaches are now able to provide reliable
tools for — say — recognizing body parts in radiographs automatically, most
existing techniques are still too computationally expensive when dealing
with large databases containing many classes, or they require many train-
ing images in order to reach satisfactory classification performances. More-
over, extracting appropriate visual descriptors for a specific task is still an
open research challenge, which consists in reducing the gap between the
semantic interpretation of the visual content and the low-level representa-
tion of images [ , I

Many successful techniques for automatic categorization of medical im-
ages rely on the same kind of descriptors as some popular methods for
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Figure 6.1: Extraction of Local Binary Patterns (LBP) descriptors from im-
ages [ I

generic image classification. In particular, the Bag-of-Features (BoF) scheme
based on local descriptors (like SIFT) has shown good performances for
representing relevant information of medical images for the automatic clas-
sification purpose. E.g., recently, Avni et al [ ] have successfully ap-
plied the BoF approach to the classification of X-Ray images. Namely, their
method uses histograms of vector quantized SIFT descriptors for automatic
organ recognition. Furthermore, they also apply their method to discrim-
inate between healthy and pathologic cases on a set of chest radiographs.
SIFT descriptors and the BoF representation have been also successfully
applied to a binary classification problem related to endomicroscopic im-
ages, thus enabling to discriminate between neoplastic and benign cases
with high accuracy [ 1.

Another tool for feature extraction in medical image retrieval and clas-
sification is the Local Binary Patterns (LBP) descriptor [ ]. This de-
scriptor is based on a very simple idea to efficiently describe the local tex-
ture pattern around a pixel. Indeed, LBP consists in a binary code that is
obtained by thresholding a neighborhood by the gray value of its center, as
displayed in Fig. 6.1. The effectiveness of LBP for radiographic images has
been recently demonstrated by Jeanne et al [ ], who have found sig-
nificant performance improvement over other common visual descriptors.
This is mainly due to the luminance invariance of LBP, which consider-
ably helps to correctly classify image categories with significant exposure
changes. Several modifications of LBP have been also proposed in order
to further improve classification accuracy on X-Ray images. For instance,
Unay et al [ ] have proposed PCA as a valuable feature selection
method for reducing the computational complexity of supervised learning
relying on such texture descriptors.

Finally, the best performing methods for medical image classification
are those relying on multi-cue fusion, that is the combination of different
types of descriptors, e.g., local and global features. Generally, this strategy
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allows to capture most of the information that is relevant to classify im-
ages according to their content. For instance, Tommasi et al [ ] have
proposed an effective method for integrating two different local cues that
describe structural and textural information of image patches. The combi-
nation of these two descriptors is carried out by either concatenating them
into a single vector or combining the output of two kernel machines sepa-
rately trained on them. Tao et al [ ] have successfully addressed the
problem of automatically recognizing the projection view of chest radio-
graphs (posteroanterior /anteroposterior (PA-AP) and lateral (LAT) views),
by using a method that is based on sparse aggregation of learned local ap-
pearance cues.

Independently on the kind of image descriptors used, most state-of-
the-art approaches to medical image classification rely on discriminative
learning tools like support vector machines (SVM) [ ]. However, other
learning approaches have been also proposed in order to deal with specific
problems. For instance, Yang et al [ ] have recently proposed to
define the medical image categorization problem in a boosting framework,
where a distance metric is learned in order to enforce the visual similarity
between images that are semantically related to each others.

In this chapter, we propose a new approach to radiographic image clas-
sification, which also relies on a boosting framework, while not involving
to learn any distance metric. In particular, we adapted the MLNN learning
algorithm described in Chap. 5 to the classification of a standard database
of X-Ray images. In the following sections, we first describe this dataset,
then we discuss experimental results of our MLNN method and compari-
son with the baseline k-NN and state-of-the-art SVM classification.

§ 6.2 METHOD

In this thesis, we have proposed a novel supervised learning algorithm,
MLNN, which brings the classic prototype-based classification rules, like k-
NN, into a multi-class boosting framework. The main contribution of our
method is to “boost” the accuracy of image classification by simply learn-
ing the “prototypical importance” of annotated examples, while retaining
a sparse subset of these data as prototypes for the classification phase. Such
an importance learning strategy allows us to reduce the computational cost
of classification significantly. Moreover, compared to most state-of-the-art
discriminative learning techniques, which rely on splitting a multi-class
problem into multiple binary problems, the computational cost of MLNN
is significantly lower, thus generally enabling a better accuracy/time trade-
off.

We tested our method for the task of automatic classification of medical
X-Ray images, which gives rise to some critical issues, such as low inter-
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class variability, high intra-class variability and large class imbalance, which
may severely impact on classification performances [ ]. In order
to obtain a robust and meaningful representation of the medical image
content, we used the Bag-of-Features scheme combined with dense SIFT
descriptors extracted at multiple resolution levels (similarly to what pro-
posed in Chap. 5). While such local descriptors enable a fine representation
of body tissue details, the Bag-of-Features aggregation strategy provides a
compact descriptor of the overall image, thus allowing one to use discrim-
inative learning algorithms that need one-to-one correspondence between
labeled examples and feature vectors.

A crucial problem when dealing with the Bag-of-Features histogram de-
scriptors is to define a similarity measure being appropriate for prototype-
based classification. In this work, we propose to use the Histogram In-
tersection kernel [ I, which has been shown to provide better classi-
fication performances than classic Euclidean distance when dealing with
histogram-based descriptors. In particular, using the notation of Sec. 5.2.4,
the Histogram Intersection kernel is defined as follows:

1 & xin — xjnl
Ke(ai, @) =1-5 ) ————, (6.1)

where d is the number of features and both descriptors x;, ; are {;-normalized
histograms. Thanks to this latter condition, kernel (6.1) is closely related to
the ¢; distance between the two descriptors. In particular, the following
linear relationship holds:

1
Kui(@i, z) =1 -5 & —zjl[1 - (6.2)

Furthermore, in order to reduce the computational cost significantly, we
propose to “truncate” kernel (6.1) to the k-NN, similarly as for Gaussian
kernel in Sec. 5.2.4. Notice that, according to (6.2), the k-nearest neighbor-
hood relationship is to be defined in the sense of the ¢; distance, so as to
ensure that k-NN are those descriptors that maximize the Histogram Inter-
section similarity measure. Therefore, denoting as p; (z) the ¢ distance of
the k-th nearest neighbor to , we define the following truncated Histogram
Intersection (tHI) kernel:

|lzi — =[x
KtHI($‘,$') = KHI(w'/w') | <1, (63)
o o P (i)
where the square brackets denote the indicator function that selects the k-
NN. In practice, we only need to search for the k-NN of  in the sense of /;
norm, thus avoiding to compute the entire kernel matrix (6.1). This makes
the computation much more efficient, as k-NN search can be performed
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using fast data structures such as kd-trees, which are able to deal with any
¢, metric distance [ ]. In this case, kernel (6.3) can be viewed as a
simple weighting factor that takes into account the real-valued similarity
between an example and its k-NN.

§ 6.3 DATABASE AND SETTINGS

We focused on the automatic classification of radiographic images, which
has been an open challenge in the computer vision community in the re-
cent years. In particular, the task of automatic annotation of radiographs
has been part of the well known ImageCLEF competition, which is a broad
evaluation campaign that has been carried out for several years with the
aim of benchmarking advances in the area of visual data management. The
ImageCLEF medical image annotation task focuses on the automatic clas-
sification of X-Ray images, which were collected from the medical routine.
The last edition of this benchmark database (that of 2009) contains more
than 10,000 images. In order to annotate these images in a relevant way for
real medical applications, a complex hierarchical labeling scheme, called
IRMA (Image Retrieval in Medical Applications) code [ 1, was pro-
posed. Namely, the IRMA annotation scheme consists of four parts that en-
code imaging modality, body orientation, anatomical region and biological system
examined. Each part of the code is then organized in a mono-hierarchical
way, such that ambiguities in textual classification are avoided. In particu-
lar, in the last editions of the benchmark (2008 and 2009), a special scoring
scheme was defined for comparing performances of the different methods,
such as to really exploit this labeling hierarchy, by penalizing wrong classi-
fication in the highest hierarchy positions over the lowest ones, as well as
penalizing the false category associations over the assignment of unknown
codes [ ].

The data we consider in the following come from the ImageCLEF 2009
database for the medical annotation task. This database contains 12,677 X-
Ray images, which were manually annotated according to the IRMA code,
such that 193 distinct classes are to be considered when taking into account
the four annotation codes. Image categories in the IRMA database are very
unbalanced, i.e., they contain a largely variable number of images, thus
making the full annotation task very challenging.

In our experiments, we focused on a reduced dataset, which was specif-
ically tailored to the task of body part recognition. Indeed, we removed im-
ages that were not related to a specific organ or body part and took into
account only the annotation codes related to the main anatomical regions,
thus drastically reducing the number of categories. The new dataset we ob-
tained is called IRMA-12, and contains 12 categories of radiographs whose
labels refer to the anatomical regions examined. In particular, we retained
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Figure 6.2: The 12 categories of radiographic images from IRMA database [i1111]
we considered in our experiments.

8981 images from the original dataset (more than 70%). These images were
grouped into the following categories: Ankle and lower leg (565 images),
Breast (332 images), Chest (3500 images), Cranium (1129 images), Elbow (259
images), Foot (480 images), Hand (811 images), Hip and upper leg (259 im-
ages), Knee and middle leg (575 images), Pelvis (277 images), Shoulder and up-
per arm (355 images), Spine (439 images). Exemplar images of these twelve
classes are displayed in Fig. 6.2. Notice that our IRMA-12 database is highly
unbalanced, as the number of images per category ranges from 259 up to
3500.

In order to test the effectiveness of our method we removed the unbal-
ancing between classes, that may affect the evaluation, and we reserve to
investigate the effects of class unbalancing separately. Namely, we retained
250 random images per category, thus forming a balanced database of 3,000
images, i.e., uniformly distributed over the classes. We used this database
for carrying out 10 fold-cross validation experiments. Thus, we split the
dataset in ten subsets of equal size, i.e., each one containing 300 images,
and run ten classification experiments. Each time, one different fold was
used as testing set, after learning on the remaining nine folds. The results
reported in the following section refer to averaging the classification per-
formances over these ten folds.

§ 6.4 EXPERIMENTS

In this section, we report our experimental validation of MLNN on the
database of medical radiographs described in Sec. 6.3. Indeed, we focused
on the task of body part recognition, which is expected to represent a cru-
cial preliminary step in a real content-based computer-aided diagnosis sys-



142 Chapter 6. Content-based medical image categorization

——1.1 distance

_*__ 1.2 distance

74 1 | i ! i 1

Figure 6.3: Comparison of k-NN classification using ¢1 and ¢, distance as a
function of k.

tem. In particular, we tested MLNN with the implementation described
in Sec. 6.2, and compared our results with those of both classic k-NN clas-
sification, in order to quantify the improvement provided by our method,
and support vector machines, which provide the best state-of-the-art per-
formances up to date.

First of all, we investigated the effect of changing the distance metric
for prototype-based classification, replacing the classic Euclidean distance
by the ¢; distance, as proposed in Sec. 6.2. Indeed, due to relationship
(6.2), this is equivalent to computing the Histogram Intersection similar-
ity measure on ¢1-normalized Bag-of-Features descriptors and then finding
the k largest scores. In Fig. 6.3 we report cross-validation performances
(in terms of MAP) of classic k-NN classification when varying the value
of k. In particular, we compare ¢; and /¢, distances as dissimilarity criteria
for k-NN search. Besides showing a linear performance decrease when in-
creasing k, those results show the significant improvement in classification
accuracy (more than 6%) provided by using the ¢; distance, thus confirm-
ing the Histogram Intersection kernel as a valuable similarity criterion for
Bag-of-Feature-based classification.

Then, we evaluated performances of our MLNN algorithm using the
implementation detailed in Sec. 6.2. In particular, we carried out experi-
ments of MLNN using the Histogram Intersection kernel truncated at k-
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Figure 6.4: Performances of MLNN on the IRMA database.

NN, when varying the proportion of retained prototypes. Cross-validation
results are displayed in Fig. 6.4, where MLNN is compared with k-NN
classification (in both cases k = 10). (We implemented data reduction for k-
NN as a random selection of a fixed proportion of prototypes, and in each
experiment we averaged results over 10 different random subsamples.)
Such plots can be viewed as the cost-accuracy trade-off for those prototype-
based classification methods, since their computational complexity only
depends on the number of prototypes (for k fixed). In particular, both
MLNN and k-NN methods have computational cost of classification log-
arithmically increasing with the number of prototypes. Comparison with
k-NN results shows that our method yields better performances for a fixed
number of prototypes (up to 9% gap), while providing comparable perfor-
mances using much fewer prototypes (86% MAP for 50% of prototypes),
thus confirming the ability of MLNN to learn the most relevant prototypes
to use at classification time. This data reduction ability allows us to reduce
the computational cost of classification significantly, while keeping satisfac-
tory performances compared to those of full k-NN classification (i.e., k-NN
using all the training data as prototypes).

In Tab. 6.1 we show the confusion table for MLNN using the Histogram
Intersection Kernel truncated at k-NN (with k=10). Cross-validation results
are reported in terms of recognition rate (percentage) per category. Notice
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Table 6.1: An example confusion table for the radiographic image dataset. Results
correspond to 10-fold cross-validation using MLNN with the Histogram Inter-
section Kernel truncated at k = 10. Legend of categories: A Ankle and lower leg,
B Breast, Ch Chest, Cr Cranium, E Elbow, F Foot, Ha Hand, Hi Hip and upper
leg, K Knee and middle leg, P Pelvis, Sh Shoulder and upper arm, Sp Spine.

[ [ A ] B[Ch][]CGJ[ETJTF T ][Ha[H [ KTJ]PTJShT]Sp|]
A 86.4 | 12 0.0 0.8 2.4 2.0 2.0 1.6 2.0 1.6 0.0 0.0
B 00 | 96.8 | 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.4 0.8 1.2
Ch 0.0 00 | 984 | 12 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0
Cr 0.0 0.0 04 | 964 | 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.4
E 4.8 0.8 0.0 28 | 67.6 | 24 4.0 4.0 72 4.8 1.2 0.4
F 0.8 0.8 0.0 1.2 1.6 | 868 | 52 1.2 0.0 1.2 1.2 0.0
Ha 0.0 0.0 0.0 1.2 0.8 76 | 900 | 0.0 0.0 0.0 0.0 0.4
Hi 1.2 1.2 0 0.8 24 0.0 28 | 66.8 | 28 | 196 | 04 2.0
K 7.2 0.0 0.0 0.0 4.0 0.8 0.8 44 | 828 | 0.0 0.0 0.0
p 0.0 0.4 0.4 0.4 0.0 0.0 0.0 3.2 00 | 95.6 | 0.0 0.0
Sh 0.8 1.2 1.2 2.8 1.2 0.8 1.2 3.6 0.0 08 | 844 | 20
Sp 0.0 0.0 44 6.4 0.0 0.0 0.0 0.4 0.0 8.0 04 | 804

the high confusion between category Hip and upper leg and Pelvis (19.6% of
images of the former class are misclassified into the second). This can be
easily understood by considering the strong visual similarity between pro-
totypical images of the two categories, which exhibit low inter-class vari-
ability, as shown in Fig. 6.5.

Finally, we compared MLNN performances to those of support vector
machines (SVM). SVM classification is the most widely used state-of-the-
art learning tool for medical image classification, as it generally provides
the best performances [ ]. Nevertheless, SVM are still affected by two
major drawbacks that severely impact on the time efficiency of both train-
ing and classification when dealing with large image collections, such as
those tipically involved in medical information systems. The first one is
represented by the high computational cost of both training and test when
using non-linear kernels, such as the common Gaussian kernel, whereas the
second consists in the need for splitting multi-class learning problems into
multiple binary problems to treat distinctly, thus multiplying the computa-
tion time by the number of classes. Namely, the computational complexity
of non-linear SVM classification with n support vectors (prototypes) in di-
mension d and C classes is O(Cnd), that is linear in the size of prototype
dataset and in the number of classes. Our MLNN method with k-NN-
truncated kernel, instead, has computational complexity only depending
on k-NN search, that is O(d log n) when using appropriate data structures
like kD-trees for fast search [ ]. A common solution adopted by
SVM-based approaches for speeding up classification is to use linear SVM,
which allows for much faster training and classification. In particular, the
computational complexity of linear SVM classification is O(Cd), i.e., inde-
pendent on the number of support vectors, while still being linear in the
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Figure 6.5: Two exemplar images from categories (a) hip and upper leg, and (b)
pelvis. These two categories feature low inter-class variability, due to the pres-
ence of the hip joint in prototypical images of both classes. This justifies the high
confusion rate between the two classes.

Table 6.2: Performance comparison of MLNN with standard k-NN and SVM
classification on IRMA images (cross-validation).

| method |mAP|[ C [ d | n | complexity |
MLNN | 8452 | 12 | 500 | 1080 | O(dlogn)
MLNN | 86.20 | 12 | 500 | 1863 | O(dlogn)
k-NN 84.37 | 12 | 500 | 2700 | O(dlogn)
kernel SVM | 92.70 | 12 | 500 | 248 O(Cnd)
linear SVM | 88.63 | 12 | 500 | 315 O(Cd)

number of classes. However, this computational speed-up is generally ob-
tained at the price of worse classification performances. In Tab. 6.2, we
report cross-validation performances (in terms of MAP) of our method, k-
NN and SVM (both Gaussian kernel-based and linear), along with their
computational complexity and the size of the prototype dataset (i.e., num-
ber of support vectors for SVM). Although kernel-based SVM still yield
the best performances, their computational cost is significantly higher than
that of prototype-based classification, due to the linear dependence both on
the number of support vectors and on the number of classes. Indeed, even
though MLNN is outperformed by SVM, it allows for much faster classifi-
cation, due to the logarithmic dependence of the computational complexity
on the number of prototypes, which can be drastically reduced without im-
pairing the classification precision significantly and still outperforming the
baseline k-NN. (See the first two lines in Tab. 6.2.)
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§ 6.5 CONCLUSION

In this chapter, we have addressed the task of medical image categoriza-
tion, particularly focusing on recognition of body parts in radiographic
images. Namely, we extracted a balanced database containing 12 body
part categories from a benchmark database that has been widely used in
the recent years. We carried out experiments with the purpose of vali-
dating our MLNN method on such a challenging task. In particular, we
tested our algorithm using the kernel-based implementation described in
Sec. 6.2, and compared our results with those of both baseline k-NN and
SVM classification. On the one hand, experimental results enlight the cru-
cial role of the distance metric when comparing histogram-based descrip-
tors like the state-of-the-art Bag-of-Features descriptors, suggesting that in-
tersection distance measures like the ¢; distance are the most appropriate
ones. On the other hand, results show that MLNN method, although being
still outperformed by kernel-based SVM significantly, is able to better deal
with the precision-speed trade-off, enabling for much faster classification
than kernel-based machines while yielding satisfactory performances. This
makes MLNN a good candidate algorithm for addressing the medical im-
age classification task when facing with hard computation time constraints.
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Figure 6.6: Some examples of prototypes selected during the training phase (notice
the variability in the number of prototypes per category).
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CONCLUSION

In this thesis, we have focused on some major tasks involved in automatic
processing systems for indexing, retrieval and classification of image collec-
tions. These tasks range from the extraction of meaningful descriptors of
the visual content, i.e., able to represent visual information in a relevant
way, through the efficient organization of such image representations in
data structures adapted to fast similarity-based retrieval, to supervised learn-
ing of classification rules based on similarity to relevant prototypes of im-
age categories. Indeed, in the first part of this thesis, we have first pro-
posed a new scalable descriptor (SMP) for image indexing that is related to
an information-theoretic similarity measure, then we have described our
generalization of two well-known data structures (BB-trees and Bvp-trees)
for fast similarity retrieval when using Bregman divergences as distorsion
measures in the feature space. However, the “core” of this thesis has been
devoted to the third mentioned point, i.e., image classification, because
defining tools for tackling this task in an efficient and reliable way is a
crucial challenge in nowadays applications, that require to manage huge
collections of images effectively (e.g., medical image systems and multime-
dia repositories).

For this purpose, we have proposed a novel learning algorithm (UNN)
that is methodologically inspired by the prototypical classification principle,
which has been proposed as a reasonable model of the way human them-
selves accomplish the visual categorization task [ ]. According to this
principle, deciding the label of an unknown image consists in retrieving the
most similar instances from a learned (possibly sparse) set of prototypes.
Thus we started from the classic k-NN voting rule, which implements this
idea in the simplest way, and generalized it in a boosting framework, which
allows us to “leverage” votes from the closest prototypes as weak classi-
fiers, while constraining the training error under certain convenient bounds
that enable significant improvements in classification performances. Be-
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sides weighting contributions from the k-nearest neighbors according to a
“soft” voting rule, our UNN algorithm is also able to learn a sparse sub-
set of the annotated data according to their “prototypical relevance”, thus
providing better resilience to annotation ambiguities. The basis idea is to
rely the relevance of an example to the local “coherence” of this recipro-
cal neighborhood, i.e., to the probability of giving uncorrect vote to its re-
ciprocal k-NN. In this sense, our method shares a common philosophical
principle with the well-known Google PageRank algorithm for document
ranking [ ], although this latter is based on a completely different op-
timization problem. Indeed, UNN exploits the ground-truth annotation of
the training images in order to estimate their “popularity” for a given cat-
egory, i.e., the local density of neighbor examples that “agree” with their
own category.

Moreover, such a prototype selection, which can be tuned at training
time directly, by setting the number of boosting iterations, impacts on com-
putational efficiency very favourably, due to reducing the k-NN search
space considerably.

Then, we have further extended our approach to generic kernel density
classification, in order to improve the precision of local class density esti-
mation that underlies our prototype-based classification rule. In particular,
we have proposed a novel algorithm, MLNN, as a framework for leverag-
ing such classifiers in an inherently multi-class fashion, which avoids the
common trick needed for most discriminative learning methods, i.e., split-
ting the multi-class problem into multiple binary problems. This enables
significant speed-up in both training and classification over — say — one-
versus-all strategies, whose computational cost is linear in the number of
categories. Such a speed-up is obtained while maintaining satisfactory per-
formances, e.g., yielding precision equal to that of classic k-NN using as
few as 10% or 20% of prototypes, or outperforming k-NN by 5% to 10% (in
terms of MAP) using up to 50% of prototypes.

Globally, experimental results suggest that our novel learning frame-
work for boosting k-NN and prototype-based classification is very promis-
ing for applications requiring a suitable trade-off between precision and
computational speed. In particular, our multiclass algorithm MLNN meets
the requirement of scalability in the database size and in the number of
categories, which has become crucial in nowadays applications involving
huge image collections and real-world annotation tasks. Furthermore, our
MLNN framework has the advantage of operating “on the top” of both
visual content representation and similarity/dissimilarity measures used
for learning the voting rule, thus being straightforwardly adapted to more
effective image representation schemes, like visual vocabularies with soft
assignement [ 1, aggregation of local descriptors using spatial pyra-
mids [ ], Fisher kernels [ ]Jor VLAD | ], as well as metric
learning techniques like ITML [ I
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Nevertheless, in terms of absolute performances, our method is still
outperformed by state-of-the-art support vector machines (SVM) for the
image classification task. Indeed, MLNN for image categorization is still
affected by a major drawback of instance-based methods working in a high-
dimensional feature space, that is the curse of dimensionality, which induces
the emergence of “hubs” and collapsing distances between feature points,
thus reducing the discriminant ability of k-NN and related voting meth-
ods. At the same time, our evaluation of most existing dimensionality
reduction techniques, like PCA or pLSA, did not provide significant im-
provements, thus suggesting that this problem should be specifically rede-
fined for high-dimensional descriptors arising from images, such as Gist or
Bag-of-Features histograms, e.g., investigating suitable manifold learning
techniques.

However, better performances of SVM are obtained at a much higher
computational cost, which makes this method very impractical on large
databases containing many categories. This is mainly due to the high com-
putational complexity of non linear SVM learning and classification, be-
sides their binary nature, which obliges one to treat each class separately.
Furthermore, classification performances of SVM are largely sensitive to
value of the optimization parameter, that has to be selected accurately, e.g.,
learning it via time-consuming cross-validation.

To summarize, our MLNN approach should be viewed as a general ap-
proach for improving k-NN and prototype-based classification methods by
embbedding them in a boosting framework. This framework not only con-
strains those classifiers under certain classification bounds, thus generally
improving testing performances significantly, but also reduces the compu-
tational cost at classification time, thus making MLNN a good candidate
for replacing traditional voting rules in applications where fast computa-
tion is a critical requirement.
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UNN APPENDIX

§ A.1 GENERIC UNN ALGORITHM

The general version of UNN is shown in Alg. 5 as a pseudocode. This
algorithm induces the leveraged k-NN rule (4.10) for the broad class of
surrogate losses meeting conditions of [ ], thus generalizing Alg. 3.
Namely, loss function ¥ is contrained to meet the following conditions:

(ii) Vy(0) < 0(Vy is the conventional derivative of 1),
(iii) v is strictly convex and differentiable.

The two first conditions (i) and (ii) imply that ¢ is classification-calibrated,
i.e., its local minimization is roughly tied up to that of the empirical risk
[ ]. Furthermore, condition (iii) implies convenient algorithmic prop-
erties for the minimization of the surrogate risk [ ]. Three common
examples of such strictly convex losses (SCS) have been shown in Eq. (4.6 —
48).

The main bottleneck of UNN is step [I.1], as Eq. (A.2) is non-linear.
However, this equation always admits a solution, finite under mild assump-
tions [ |. In particular, in our case, J; is guaranteed to be finite when
there is no total matching nor mismatching of example j’s memberships
with its reciprocal neighbors’, for the class at hand. The second column of
Table A.1 contains the solutions to Eq. (A.2) for the surrogate losses men-
tioned in Sec. 4.2.2. Those solutions are always exact for the exponential
loss (*P) and squared loss (¥*14); for the logistic loss (1'°8) that is exact
when the weights in the the reciprocal neighborhood of j are the same,
otherwise it is approximated. Since the starting weights are all the same,
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Algorithm 5 Algorithm UNIVERSAL NEAREST NEIGHBORS UNN(S, ¢)

Input: S = {(w;,y;),i = 1,2,..m, xz; € X, y; € {_&,1}%, { meet-
ing (i), (ii), (iii) (Sec. A.1);
Letr) = { Yieje I @ ENNe(@i) vy g5 om0 C
0 otherwise
forc=1,2,...,Cdo
Letaj <0, Vj=12,..,m
Letw; <~ —Vy(0) €RY,, Vi=12,..,m
fort =1,2,...,T do
[1.0] Let j + Wic({1,2,...,m},t)

[1.1] Let
w;’: Y wi, w; 2 w; , (A.1)

i:rfjc) >0 i r <0

Let (5j € R solution of:

[\13

Y iy (3! + vl (—w) =0 (A2)

I
—_

[1.2] Vi : xj € NNk(a:i), let

w;  —Vy (82 + V1 (—w)) (A3)

B [1.3] Let Xjc — Xje + (5]
Output: he(x) = Y1 aseyic [ € NNp(z)], Ve=1,2,..,C

exactness can be guaranteed during a large number of inner rounds de-
pending on which order is used to choice the examples. Table A.1 helps
to formalize the finiteness condition on §; mentioned above: when either
sum of weights in (A.1) is zero, the solutions in the first and third line of
Table A.1 are not finite. A simple strategy to cope with numerical problems
arising from such situations is that proposed by [ . (See Sec. 4.2.4.)
Table A.1 also shows how the weight update rule (B.4) specializes for the
mentioned losses.

Proofsketch of Theorem 3 We show that UNN converges to the global
optimum of any surrogate risk (Sec. 4.2.5). For this purpose, let us consider
the surrogate risk (5.13) for a given classc = 1,2, ..., C:

ngE

el (h,S) = p(a(h,i,c)) - (A4)

1
m

Il
—_

In this section, we use the following notations:
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Table A.1: Three common loss functions and the corresponding solutions J; of

(A.2) and w; of (B.4). (Vector r]@ designates column j of R') and ||.||; denotes
the L1 norm.) The rightmost column says whether it is (A)lways the solution, or
whether it is when the weights of reciprocal neighbors of j are the (S)ame.

| loss function | 6;in(A2) | w;in(B.4) | Opt |
exp _ 1 w](-CH (C)
PP = exp(—x) 5 log F w; exp <—(5]-rl.j ) A
(C)+_ (c)—
wsqu = (1 — x)z % w; — 2(5]1‘1(]6) A
Tj 1
(c)+ ; —5r(c))
log - B L w; exp(
P log(1+exp(—x)) | log <w50)> — <1+exp< : ,(]))> g

e {(x) = ¢p*(—x), where Pp*(x) = xV;l(x) — 1/J(Vl;1(x)) is the Legen-
dre conjugate of ¢, which is strictly convex and differentiable as well.
(¢ is related to ¢ in such a way that: V5(x) = —V@l (—x).)

o Dy(willw)) = ¢P(w;) — Pp(w]) — (w; — w})V5(w]) is the Bregman di-

1 1
vergence with generator ¢ [ .

Let w; denote the " weight vector inside the “for ¢” loop of Alg. 5 (as-
suming wy is the initialization of w); similarly, h! denotes the ¢/ leveraged
k-NN rule obtained after the update in [1.3]. The following fundamental
identity holds, whose proof follows from [ I

p(o(hi,i,c)) = g+ Dy(0|lwy) , (A.5)

where ¢(m) = —(0) does not depend on the k-NN rule. In particular, Eq.
(A.5) makes the connection between the real-valued classification problem
and a geometric problem in the non-metric space of weights. Moreover,
Eq. (A.5) proves in handy as one computes the difference between two suc-
cessive surrogates: el (h!,,,S) — el (h{,S). Indeed, plugging Eq. (A.5) in
Eq. (A.4), and computing ¢; in Eq. (A.2) so as to bring h! 41 from h{, we
obtain the following identity:

1 m
el (hiy,S) — el (hf,S) = %; (tﬂ)iuwﬁ). (A.6)

Since Bregman divergences are non negative and meet the identity of the
indiscernibles, (A.6) implies that steps [I.1] — [1.3] guarantee the decrease
of (A.4) as long as §; # 0. But (A.4) is lowerbounded, hence UNN must
converge.
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Figure A.1: A geometric view of how UNN converges to the global optimum of
(5.13). (See Appendix for details and notations.)

In addition, it converges to the global optimum of the risk (5.13). Since
predictions for each class are independent, the proof consists in showing
that (A.4) converges to its global minimum for each c. Let us assume this
convergence for the current class c. Then, following the reasoning of Nock
and Nielsen [ 1, (A.2) and (B.4) imply that, when any possible 6; = 0,
)T

. . . T
the weight vector, say we., satisfies RO w! =0, ie, we € kerR(®) , and

Weo is unique. But the kernel of R(C)T and W, the closure of W (i.e., the
manifold where w’s live), are provably Bregman orthogonal [ ], thus
yielding:

m
Dy (0lfw) = 3Dy (0w
\ —_— Z__\,—/
me? (R!,S)—mg me! (hL,,S)—mg

o

Il
—_

+
NgE

, 1D¢ (Weoi| [w;), Yo € W . (A.7)
1=

>0

Underbraces use (A.5) in (A.4), and k! is a leveraged k-NN rule corre-
sponding to w. One obtains that h’, achieves the global minimum of (A.4),
as claimed.
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The proofsketch is graphically summarized in Figure A.1. In particular,
two crucial Bregman orthogonalities are mentioned [ ]. The red one
symbolizes:

m m
YDy Olfwi) =YDy (0lfwg 1)
i=1 i=1

m

+ZD¢< W(t41)i Hwtz> ’ (A.8)

i=1

which is equivalent to (A.6). The black one on we, is (A.7).

Proofsketch of Theorem 4 Using developments analogous to those of
[ ], UNN can be shown to be equivalent to AdaBoost in which m
weak classifiers are available, each one being an example. Each weak clas-
sifier returns a value in {—1,0,1}, where 0 is reserved for examples outside
the reciprocal neighborhood. Theorem 3 of | ] brings in our case:

80/1(h€

ﬁ\*—‘

C T
L1172 7\, (A.9)

t=1

where Zt(c) =y, zbl(f ) is the normalizing coefficient for each weight vector

in UNN. (wff ) denotes the weight of example i at iteration (¢,c) of UNN,
and the Tilda notation refers to weights normalized to unity at each step.)
It follows that:

2 = a0 (1-2yia )
o (- (12 o))

< exp <—77 (1 —y/1 —472>) < exp(—2177) ,
plo) T Fral) T ) = ol et = ol et The

H(0)+
jt ]t
first inequality uses 1 —Xx § exp(—x), and the second the WIA. Since even
when the WIA does not hold, we still observe Zt(c) < 1, plugging the last
inequality in (A.9) yields the statement of the Theorem.

IN

where 0: = w
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MLNN ALGORITHM

§ B.1 GENERIC MLNN ALGORITHM

Pseudocode of the general version of MLNN is shown in Alg. 6. This is
the multi-class version of the same algorithm presented in Appendix A. In-
deed, the edge definition is inherently multi-class, and no loop over classes
is required while learning the multi-class weak classifiers. As a result, a
single leveraging coefficient «; is learned for each selected prototype. Fur-
thermore, defining the multi-class edge for the use of generic kernels allows
us to learn a Multi-class Leveraged Kernel Density classifier, as explained
in Chap. 5. Alg. 6 generalizes Alg. 4 of Chap. 5 to the same class of (multi-
class) surrogate risks as defined in Appendix A. (See Table A.1.)

§ B.2 MLNN USING EXPONENTIAL LOSS

As pointed out in Sec. 5.2.3, minimizing the multi-class risk function (5.13)
amounts to finding ¢; that solves the following equation:

m

— Z wirij exp {—(5jri]'} =0 ’ (B5)
i=1

with: w; >0, 1; € {_(C%l)z’ ﬁ} The following theorem states the

existence and uniqueness of the solution for Eq. B.5.
Theorem 5. For any fixed j, Eq. (B.5) has a finite solution §; € R iff there exists

a pair of distinct indices h,1 € {1,2,...,m}, such that: 1y - 117 < 0. Moreover, if
a solution exists, then it is unique.
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Algorithm 6 MULTICLASS LEVERAGED KERNEL DENSITY CLASSIFICATION

(S, 9)

Input S = {(zy), i =12.,m, y € {—5,1}} ¢ meet-
ing (i), (i1), (iii) (Appendix A.1);

Let 1= %2,?:1 K(z;, :nj)yicyjc

1)
Let a;j«0, Vji=12,.,m
Let w;«~1/m, Vi=1,2,..m
fort=1,2,...,Tdo
[1.0] Weak index chooser oracle:
Letj < Wic({1,2,..,m},t)
[1.1] Compute J; solution of:
m
I'Z']'V¢ <5]'1'1‘]' + V;l(—wi)) =0; (B.2)
i=1
m
ZUZ'I'Z']' exp {—5]'1'1‘]'} =0; (B3)
i=1
[1.21Vi=1,2,...,m,]let
w; —le (5]‘1'1‘]' + V;l(—wi)) . (B.4)
B [1.3] Let Nj < o + (5]'

Output: hi(z;) = ¥/, aiK(xq, x)y;e, Ve=12,...,C

(Proof) Consider the following function ¢(x)

m
¢(x) = — ) wiajexp {—aix}, (B.6)
i=1
with w; > 0, a; € R. Notice that (B.6) is monotonically increasing. Then,
for any fixed j and a; = r;;, x = J;, (B.5) is equivalent to:
P(x) =0. (B.7)

Unless to rearrange terms in the summation, we assume without loss of
generality that:

ap <ap < S <0< S <<y, (B.8)

and split (B.6) into the sum of negative and positive terms:

k m
p(x) =¢T(x)+ ¢ (x) = =) _wjajexp {—aix} — ; w;a;exp {—a;x} .
i=1 i=kt1
(B.9)
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If 1 <k < m,we have:
e forx — —oo, ¢*(x) = 0, ¢ (x) = —oo, hence ¢(x) — —oco
e forx — +o00, ¢p*(x) = 400, ¢~ (x) — 0, hence ¢p(x) — +oo

Therefore ¢(x), which is monotonic, has a zero for some x € R, thus prov-
ing that the condition in theorem’s statement is sufficient. Moreover, it is
also necessary because, when all 4;’s in (B.6) have the same sign, ¢(x) does
not change its sign, thus not admitting any zero.

In practical cases, a finite solution is always guaranteed to exist when
using a “smooth” kernel that gives rise to a non-sparse edge matrix r;;.
For instance, when using the Gaussian kernel (5.31), each column of the
edge matrix has both positive and negative entries, thus guaranteeing the
finiteness of the solution. However, when the k-NN or truncated kernels
are used, column j of the edge matrix may contain only positive (negative)
entries, due to its sparsity. In this case, in order to still guarantee to have
a finite solution, we propose to modify Eq. B.5 by adding a regularization
term, as follows:

rijwiexp (=rijd) + gy (P “e o1 ) P \em )|
(B.10)
where ¢ is a small constant, e.g.: ¢ = . This generalizes to generic trun-

cated kernels the setting proposed in Sec. 5.2.4 for the k-NN kernel, which
reads as follows:

m

i=1

5 = (B.11)

€0 e ire]

When no closed-form solution exists for (B.10), we adapt our Newton iter-
ative scheme for computing the solution numerically.

§ B.3 MLNN USING LOGISTIC LOSS

In this section, we give the specialization of Alg. 6 for the minimization of
another widely used loss function, i.e., the logistic loss 1'°8. Let us consider
the following definition of P, as provided in Appendix A (Table A.1):

#°8(x) = log (1 +exp (—x)) (B.12)
Plugging (B.12) into the general MLNN learning equation (B.3), we obtain:
L ’(Dl‘ exp (—(5]1‘1])

1 .
i:zl el 1 + wi exp (—(5]1'1])

=0, (B.13)
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where we have defined: w
~ 1

Wi

1w (B.14)
In general, (B.13) does not admit a closed-form solution (unless we use the
k-NN kernel and all the reciprocal k-nearest neighbors of x; have equal
weights w;. This latter case corresponds to the particular solution provided
in Tab. A.1).

Similarly, by using (B.12) we can write the weight update rule of MLNN
in the case of logistic risk minimization:

ZDi exp (—(5]1'1])

Wi < (B.15)

"1+ wiexp (—Oirj)

In order to solve Eq. (B.13), we implemented a Newton’'s iterative scheme,
similarly as for MLNN with exponential loss (Eq. 5.28).
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