
HAL Id: tel-00590970
https://theses.hal.science/tel-00590970

Submitted on 5 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tatouage des bases de données
David Gross-Amblard

To cite this version:
David Gross-Amblard. Tatouage des bases de données. Computer Science [cs]. Université de Bour-
gogne, 2010. �tel-00590970�

https://theses.hal.science/tel-00590970
https://hal.archives-ouvertes.fr
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Place à la musique. Je salue les membres du projet NEUMA : Hervé Audéon, Cécile Davy-Rigaux, Zoé
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Forewords

Alice: Look. I am old enough now. I think I can bear a pretty tatoo on my shoulder.
Maestro: Thanks for using the french vocable, but I think that you mean a ”watermark”.
Roberto: At least a watermark will be invisible.
Augusto: And robust ! Just remember to keep a small part of it secret.
Alice: Ok then, let’s go for a watermark.
Eva: But if you do so, you will have to respect some constraints...
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1
Introduction (English)

This introductory chapter gives a brief overview of watermarking and database watermarking specificities.
It presents an informal survey of the main results.

Digital watermarking

Informally, digital watermarking is a voluntary alteration of an electronic document, in order to attach a
message – a watermark – to it. Applications of watermarking are numerous, including:

• Intellectual property protection: in various scenarios, a data owner/provider has spent time and efforts
to build high quality documents (for example terrain explorations to devise an accurate geolocalized
data set). But due to the digital nature of these data, the legitimate owner is threatened by unfair
customers, reselling illegal, perfect copies of the document. By hiding the owner’s identity into a
document, watermarking offers the ability to prove ownership once a suspect document has been found
(Figure 2.1). A natural example is the Digimarc watermarking plugin for Adobe Photoshop1.

• Fingerprinting: instead of hiding only the owner’s identity, hiding the customer’s identity into the
document allows to track back the exact malevolent customer reselling copies (Figure 2.2). A classical
example is the detection of Academy award voters that helped illegal broadcast of so-called screener
copies of films2.

• Meta-data hiding: dissimulating in a document its unique id number, or the exact technical parameters
used for data acquisition, guarantees that these meta-data will remain permanently attached to the
document, whatever format transformations or file manipulation occurring in the future.

Classically, a watermarking protocol uses two algorithms, the marker and the detector, that respectively
hide and extract a watermark. The watermark is usually thought as being invisible, hence watermarking
shares some similarities with information hiding techniques (that rather deal with secret communications,
disregarding the very nature of the document used). Most applications consider also watermarks that are
robust to malevolent operations from attackers wishing to erase them (there exists also visible and/or fragile
watermarking techniques, but we do not consider them in this work). Common constraints on watermarking
systems are:

• Invisibility: hiding a watermark should not impact the intended use of the document (should not lower
its quality beyond a reasonable limit). It is noteworthy that a watermarking method is doomed to
alter the original document to be efficient. Indeed, hiding information in the document representation
(in unused bits for example) is extremely sensitive to informed attackers. Hence, watermarking has to
alter the data semantics, but in a restricted way.

1https://www.digimarc.com/solutions/
2http://www.msnbc.msn.com/id/4037016/
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• Controlled capacity: the amount of data that can be hidden in a document should be predictable. A
high capacity if often searched for.

• Low false-positive rate: the probability to detect a message in a non-watermarked document must be
negligible.

• Robustness: the detector should be able to detect the hidden message in reasonnably altered data sets
by a malevolent attacker. The attacker is nevertheless limited as he needs a still salable document.

• Public access to the algorithm: the security of the method should not rely on the secrecy of the
algorithm, but on a private secret key only (Kerckhoffs’principle [59, 60]).

• Security: an attacker should not infer the watermark localization or content, or the secret key [20].

• Blindness: the detector should operate without the use of the original, unwatermarked document.

There is a natural trade-off between the watermark robustness and its invisibility: a more robust water-
mark requires a stronger alteration of the original document. The attacker is also limited by the invisibility
constraint: the attack (alteration) of the watermark document must be limited, so that the attacked docu-
ment remains valuable.

Database watermarking

While original watermarking techniques mainly arose in the multimedia domain for images, sound or video,
they have natural applications in databases. The amount of structured data available on the Internet
is drastically increasing, with source ranging from public agencies (e.g. environmental measurements) to
professional data sets (sales databases, stock exchange databases, customers profiles, etc.). There exist also
examples from the past where structured data sets have been modified for intellectual property protection.



A famous specimen is the use of contrived number rounding conventions by editors of onerous logarithm
tables (Figure 2.3).

Figure 1.3: Paper logarithm table: number rounding conventions where used for ownership proofs
(source:Wikipedia)

Modern data sets represented as database show interesting specificities that lead to new questions for
digital watermarking:

• Interwoven relationships between data: while an image is a regular juxtaposition of pixels, a data
set describes various irregular relationships between tuples, without a clear ordering between them.
This yields a synchronization problem to the marker and detector, that require to precisely locate the
watermark in the data.

• Shared semantics: a data set is usually used among other sources, for example joining hotels data with
touristic roadmaps. Hence there is a shared semantics between data sets, for a sound naming of objects
(e.g. name of a road in both hotel and roadmap data sets). This limits the attacker possibilities, as
an altered data set still have to comply with this shared semantics to be valuable.

• Multiple data types: numbers, categorical data, streams, spatial data, etc.

• Versatile use: oppositely to multimedia documents, that are used in a limited number of ways, a data
set can be explored in various ways, through expressive query languages.

• Many-faceted quality constraints: usually, multimedia quality is expressed as a global measure between
the original and watermarked document, or between watermarked and attacked document (like peak-
signal to noise ratio – PSNR) . On the contrary, a database is prone to formal quality constraints: tuple-
wise data accuracy, functional dependencies between tuples and in a general setting, any application-
defined constraint expressed in a general query language (e.g. semantic integrity constraints).

• Access model: data sets can be accessed by the detector as plain tables, but also only through specific
views.

• Incrementality: in many contexts, a data set is a temporal object, that needs regular updates to remain
accurate (for example, a variation of 10% can be observed between two updates of national geographical
databases [91]). Hence there is a need to maintain the watermark as long as updates are propagated
to legitimate customers.
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• Efficiency: because databases are usually huge and part of a general data management system, the
watermarking procedure has to be included into the system and hence should perform efficiently,
according to databases systems standards. This is relevant specifically for data sets with a short-time
value, like e.g. weather forecasts, stock exchange real time values and so on.

The following example presents a database watermarking scenario, where database-specific quality con-
straints are illustrated.

Example 1 Tables below present a touristic database instance. For this application, the goal is to hide
information by slightly modifying transport prices, under the following quality constraints devised by the data
owner:

• C1: Allow a distortion ±10 of each price (tuple-wise, accuracy constraint).

• C2: Allow is distortion ±20 on the total of all prices (relation-wise aggregate constraint, without
parameter).

• C3: For any travel t, a distortion ±10 is allowed on the total price of travel t (relation-wise, parametric
aggregate constraint).

Route:
travel transport
India discovery T1
India discovery T2
Nepal Trek T1
Nepal Trek T3
Nepal Trek T4
TourNepal T4
TourNepal T5

PriceTable:
transport departure arrival type price
T1 Paris Delhi plane 35
T2 Delhi Nawal. bus 20
T3 Delhi Kathm. plane 15
T4 Kathm. Simikot plane 30
T5 Kathm. Daman jeep 50
T6 Kathm. Paris plane 10

PriceTable′:
... price

45
30
25
20
10
10

PriceTable′′:
... price

25
30
5
40
40
10

PriceTable represents the original instance of the data owner. PriceTable′ and PriceTable′′ are two
watermarked instances (prices are modified). PriceTable′ breaks constraint C3 , because the cost of the India
discovery travel is now 75 instead of 55. PriceTable′′ respects all the former quality constraints.

According to the previous example, the search of valid watermarks can turn into a difficult combinatorial
problem, for general quality constraints.

Line of research

Various initial propositions on database watermarking where announced independently at VLDB’2002 by
Rakesh Agrawal and Jerry Kiernan, SIGMOD’2003 by Radu Sion, Mickael Attalah and Sushil Prabakhar, and
PODS’2003 for our work. On the one hand, Agrawal and Kiernan proposed a complete, blind watermarking
method for numerical databases, as part of their Hippocratic Databases project [9]. They did not consider the
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Figure 1.4: Criteria for database watermarking

preservation of the result of queries, but they observed that the mean and variance of numerical attributed
are slightly altered by watermarking. On the other hand, Radu Sion et al. and myself proposed the first
query-preserving watermarking methods3. Radu Sion et al. technique was oriented toward a practical
solution, and the search for query-preserving watermarks was performed through a greedy search method.

Our work was started at Cedric Lab., CNAM-Paris, in Michel Scholl’s Vertigo team (now directed by
Michel Crucianu). This study first explored these issues on the theoretical side, following the methodology
developed in the database field, with a new security flavor:

• Expressing the database watermarking problem by logical means: expressing the quality constraints a
watermarking procedure must respect using a logical or practical language.

• Describing the set of valid watermarks that respects all quality constraints, according to syntactical
and structural properties of constraints and data sets. This means also providing lower bounds on
the watermarking capacity of data sets, or impossibility results. As a side effect, this yields lower and
upper bounds on the unavoidable alterations of data.

• Obtaining a practical solutions with a simple user-oriented constraint language, with optimizations at
the logical and physical level.

• Generalizing to specific data types manipulated by databases.

• And of course, complying with all concerns of any watermarking system (invisibility, high capacity,
robustness, blindness, etc.)

This line of research addresses some specific aspects of database watermarking, compared to the classical
work in the multimedia domain. These specificities are summed up on Figure 2.4.

In the sequel, we present a global overview of our results: the theoretical study of query-preserving
watermarking in Chapter 3, the obtention of efficient algorithms in Chapter 4, and variations around these
techniques for several application domains in Chapters 5, 6 and 7. The chosen presentation is thematic, and
does not respect the exact chronology of papers publication.

Chapter 3: query-preserving watermarking

The first chapter of this work focuses on modelling basic quality constraints for numerical data sets, by means
of aggregate sum queries (published in PODS 2003 [39] and TODS 2010 [40]). We consider, borrowing the

3A property-preserving method for graphs was nevertheless proposed by Sanjeev Khanna and Francis Zane in 2000 [61]. We
discuss this work later on and in depth in Chapter 3.
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now classical approach of both database theory and descriptive complexity, the relationship between the
watermarking capacity on the one side, and the expressive power of the query language used for constraint
specification on the other side. For example, constraint C3 of Example 1 is equivalent to preserving the sum
of prices of transports v for a given travel u, selected by the first-order query

ψ(u, v) ≡ ∃x1x2x3x4x5Route(u, v) ∧ PriceTable(v, x1, x2, x3, x4, x5).

In this direction, but not in a database perspective, Khanna and Zane [61] proposed a protocol with guar-
anteed capacity for a specific parametric query: shortest path queries on weighted graphs. Their information
insertion does not modify the length of shortest path between any pair of vertices beyond an acceptable
distortion. The watermarking capacity is Ω(n1/2−1/d) for distortion d, for any graph with n edges. From
the theoretical point of view, they observe that shortest path queries have a low computational complexity,
and suspect that watermarking protocols for NP-hard search spaces are difficult to analyze.

Starting from this approach, we have first generalized their model to databases instances with numerical
values (not only weighted graphs). We have also considered the preservation of properties expressed in a
query language, not only a specific property like shortest paths.

For a brief overview of the obtained results, the main interesting parameters are the size of the database
instance that we denote n in this introductory chapter, and the maximal distortion occurring on the quality
constraints, denoted by d. For the sake of simplicity, alteration on each numerical attribute in either +1 or
-1, without loss of generality.

First, consider for example the problem of computing the total number of valid watermarked Travel
databases of Example 1, i.e. the watermarking capacity of this database. It turns out that the general
problem is difficult:

Theorem 2 (informal) Computing the watermarking capacity is #P-complete.

Then, we are interested in lower-bounds on this capacity, taking into account the trade-off with data
alteration.

Theorem 3 (informal) For any set of constraints and any database instance, there exists a watermarking
scheme with capacity Ω(d log n) and error at most d.

But d logn is considered as a minute capacity, and one is interested in nc-capacity watermarking schemes,
for a constant c. A first result is that, if the constraints are a finite set of non-parametric queries (like
constraint C2 in example 1), the watermarking capacity is huge:

Theorem 4 (informal) For any finite set of non-parametric constraints and any database instance, there
exists a n-capacity watermarking scheme with constant error 0.

The main idea is to find two tuples that participate in and impact exactly the same set of constraints,
and to modify their values oppositely. Recalling Example 1, tuples T 1 and T 2 impact both the travel
India discovery. Adding 1 to the price of T 1 and substracting 1 on T 2 (or the contrary), has no impact
on the travel cost. Each of such compensating pairs allows to hide one bit of information. If we turn to
parametric queries (like constraint C3), which yields intricate sets of constraints, finding such pairs is harder.
Indeed, we first show that the watermarking impact is unbounded if no hypothesis is given. Indeed, using
tools from PAC learning theory [113], namely the Vapnik-Chervonenkis dimension [16], the set of tuples is
shattered by the parameters : there is always a parameter value that can isolate the very place where the
+1 and -1 alterations stand:

Theorem 5 (informal) There exists a parametric query and a database instance without constant-error
nc-capacity watermarking schemes.

Then, we use restrictions on data sets that were proposed in another context, i.e. the study of the
complexity of structures according to their degree or their tree-width (which measure its similarity with a
tree). In this setting, the following results were obtained:



Theorem 6 (informal) There always exists constant-error nc-capacity watermarking schemes for:

• parametric local queries on structures with bounded-degree Gaifman graph (for example, simple SQL
queries on bounded degree graphs). Local languages includes FO (SQL), order-invariant queries or
AGGRQqueries (basic SQL with aggregates).

• parametric monadic second order queries on trees or structure of bounded tree width (for example XML
trees with small XPath fragments).

Using tools from Gröhe and Tùran [37], one can show that, without these hypothesis, no watermarking
can be obtained. Moreover, in a recent work [40], we have shown that:

Theorem 7 (informal)

• There exists a parametric query of arity k such that any nc-capacity watermarking scheme has at least
error k.

• For the previous class of database instances and queries, there exists a corresponding watermarking
scheme with error at most k (hence an optimal scheme).

These results show that, for natural databases, there is a huge watermarking capacity. But our first
theoretical solution did not fulfill classical watermarking properties. For example, the algorithm was not
blind (the whole original data set is required for detection). Exploring the watermarking space, and obtaining
an (almost) blind algorithm is the subject of the second chapter.

Chapter 4: practical aspects, the Watermill system

The second chapter focuses on practical aspects of watermarking, to achieve a full system dedicated to
database watermarking. This study was done during the ACI Tadorne project4, funded by the French
national research agency (ANR), of which I was the initiator and coordinator. During this project, the design
of a simple and user-oriented constraint language was performed. The previous constraints of Example 1
can be expressed by the following declarations:

(C1) local 10 on price

(C2) global 20 on (select sum from price)

(C3) forall t in (select route from travel)

global 10 on (select sum(price) from route where travel=t)

The proposed real watermarking algorithm relies on the discovery of compensating pairs, as proposed
in the previous chapter. On the database side, the main problem is to reach scalability for their discovery.
The used technique is to translate the search of these pairs into a unique SQL query, that is devoted to the
RDBMS. On the security side, various improvements where made. First, we adapted an algorithm proposed
by Agrawal and Kiernan [7, 8] (that did not take relation-wise quality constraints into account) to obtain
watermark synchronization and security. We obtain data-blindness of the algorithm by replacing the simple
method of compensating pairs (that requires the original for detection) by opposite bit exchange into values
(Example 8).

4http://ufrsciencestech.u-bourgogne.fr/~gadavid/tadorne/
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Example 8

Absolute value compensation (non-blind) Opposite bit exchange (data-blind)

transport price (original) price (watermarked)
T1 35 25 (-10)
T2 45 55 (+10)

total 80 80

transport price (original) price (watermarked)

T1 (35)2 = 10 0 011 10 1 011 = 43

T2 (45)2 = 10 1 101 10 0 101 = 37

total 80 80

The method is semi-blind: the whole data set is no longer needed, but the set of watermarked positions
has to be memorized and produced at detection time (as in all other existing query-preserving watermarking
methods [103]). The algorithm is also equipped with a sophisticated collusion-secure fingerprinting scheme
due to Tardòs [109]. The complete method [26, 67] obtained with Julien Lafaye, Camélia Constantin and
Meryem Guerrouani, was implemented into the GPL software Watermill5, and validated on huge data
sets. It was possible to watermark 1,000,000 tuples respecting 100 constraints in a few minutes (while other
methods requires hours or days).

Chapters 5, 6 and 7: Specific algorithms

The next part of our work consisted in the design of database watermarking algorithms for specific datatypes.
Here, the basic skeleton of the algorithm is Agrawal and Kiernan’s, and the focus is on the very specificities of
the application: mainly XML streams, symbolic musical databases, geographical databases and multimedia
databases. We focus here on the three first kind.

Chapter 5: Typed Xml streams

The first specific method considers the watermarking of XML streams. In the classical streaming context,
data has to be processed in a memoryless manner: any operation like type validation or data transformation
has to be performed by a finite state automaton (Figure 2.5). In this work with Julien Lafaye [66], we
considered the problem of watermarking XML structures while preserving their type, expressed by a non-
recursive DTD. It is known that typechecking such streams can be performed by finite automaton [101]. We
watermark such streams by copying the stream during its typechecking, but we sometimes perform a detour
into equivalent runs of the automaton. The performed error is controlled by the edit distance between the
original and watermarked stream.

URL YEAR MONTH DAY

q9 q15 q20

q7 q10 q11 q12 q13 q16 q17 q19 q21

q8 q14 q18
1

2

9

0

0-9 0-9 -

0

1

1-9

0-2

-

3

1-2

0

0-1

1-9

0-9

Figure 1.5: A partial specification of a stream type for a date element

Chapter 6: Symbolic musical scores

A second result was obtained when I joined the Le2i-CNRS Lab, in the SISI team directed by Kokou
Yetongnon. After developping a watermarking method for multimedia data with Richard Chbeir [21], I

5http://watermill.sourceforge.net



considered music databases. This work was part of the Neuma project6, also an ANR funding, initiated
in 2008 and directed by Philippe Rigaux. Music is considered in a symbolic representation, i.e. not as
sound files or music score sheets images, but by the fine descriptions of notes, rhythms and annotations, for
example in MusicXML. Part of this system is a set of watermarking solutions for symbolic descriptions. In
this approach, we saw musical scores as streams of notes. The first solution is the watermarking of a useful
annotation for beginner musicians, fingering annotations. Basically, a fingering is a choice of which finger
to use to produce each note. From the computational point of view, the quality of a fingering is a function
of the difficulty to play the fingering, and is related to the human hand capabilities (several works model
such capabilities). The main idea is to watermark the score by choosing specific fingerings into the space
of all possible fingerings. The original fingerings are usually hand-made and of a very high quality. The
challenge is then to produce correct fingerings with a controlled alteration (Figure 2.6). We obtained such a
method [43] with Philippe Rigaux, Lylia Abrouk and Nadine Cullot.

Figure 1.6: An original score with a high-quality fingering, and its watermarked counterpart. Fingering
annotations appear upon the staff (right hand, 1: thumb,...5: little finger). Below is indicated the physical
cost of playing the fingering. The watermarked version is harder to play, with three altered positions indicated
by an M .

Chapter 7: Geographical data

This last result concerns geographical data sets, and was also obtained during the Tadorne project with the
Cogit Lab (IGN, National Geographical Institute), along with Julien Lafaye, Jean Béguec and Anne Ruas.
We provided a solution for vectorial maps used for their precision, with a focus on the building layer (the
biggest part of professional data sets). The main problem with respect to the related work is to obtain robust
identifiers for polygons, and to take into account the specific quality metrics use in geographical applications.
In this work, we relied on the presence of a common reference system to reason about positions (the WGS
84 GPS system for example). Then we constructed robust identifiers of building by choosing the highest
significant bits of the coordinates of their centroid (an attacker has to perform huge transformations in order
to alter these bits). Finally, data hiding was performed through scaling of the building according to its main
orientation, as shown in Figure 2.7.

This very simple method yields interesting properties, and mainly has a small impact on the angular
quality of the buildings, related to other existing methods. Second, it is robust against most common
attacks, specially the squaring attack or line simplification.

6http://www.neuma.fr
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Figure 1.7: Building watermarking by oriented stretching

Organization

This document is organized as follows. The subsequent chapters dive into the details of definitions and
technical results of each part: Chapter 3 presents theoretical results on query-preserving watermarking.
Chapter 4 turns to its practical counterpart as developed in the Watermill software. Then, we consider
watermarking methods for specific data types: XML streams (Chapter 5), symbolic music streams (Chap-
ter 6), and geographical databases (Chapter 7). The final chapter concludes with possible developments,
and Appendix A presents other studies.



2
Introduction (French)

Ce chapitre d’introduction donne une vue générale du tatouage, de ses spécificités pour les bases de données,
et présente les principaux résultats obtenus.

Tatouage de documents électroniques

Informellement, le tatouage (digital watermarking) est une altération volontaire d’un document électronique,
dans le but d’y dissimuler un message : une marque. Les applications du tatouage sont nombreuses, par
exemple :

• La protection de la propriété intellectuelle (figure 2.1) : dans de nombreuses applications, les fournis-
seurs ou propriétaires de données ont fortement investi en temps ou en argent pour la construction des
documents électroniques de grande qualité (citons par exemple l’exploration de zones géographiques
pour la fabrication de données géo-localisées). Mais, en raison du caractère électronique de ces docu-
ments, des acheteurs malveillants peuvent tenter de les revendre en leur nom. Par dissimulation de
l’identité du propriétaire dans les documents, le tatouage permet de prouver l’identité du propriétaire
quand un document suspect est découvert. Un exemple classique est la fonctionnalité de tatouage de
photographies de Digimarc pour le logiciel Adobe Photoshop1.

• La traçabilité des documents, ou estampillage (fingerprinting) : à la place de l’identité du propriétaire,
il est possible de dissimuler l’identité de l’acheteur des documents, afin de remonter à la source d’une
vente illicite (figure 2.2). Citons par exemple l’identification, parmi les votants des Academy awards,
de ceux qui ont divulgué leurs copies personnelles des films en compétition2.

• L’incrustation de méta-données : il s’agit de dissimuler dans le document son identifiant unique, ou
les paramètres techniques qui ont permis sa réalisation. Ainsi, ces méta-données restent attachées au
document, quelles que soient les transformations (raisonnables) du document dans le futur.

Un protocole de tatouage requière deux algorithmes, le marqueur et le détecteur, qui dissimulent et
extraient respectivement la marque. Cette marque est considérée généralement comme invisible : le tatouage
a donc des similitudes avec le domaine de la communication cachée (information hiding – qui traite de la
communication, sans relation avec le document qui servira de support à cette communication). La plupart des
applications nécessitent également des marques robustes aux opérations malveillantes que pourrait réaliser
un attaquant (il existe également des techniques à base de marques fragiles, mais elles ne sont pas traitées
ici).

1https://www.digimarc.com/solutions/
2http://www.msnbc.msn.com/id/4037016/
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Figure 2.1 – Scénario classique de tatouage (watermarking)
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Figure 2.2 – Scénario classique de traçabilité, ou estampillage (fingerprinting)

Les contraintes usuelles des protocoles de tatouage sont les suivantes :

• Invisibilité : l’ajout d’une marque de doit pas impacter l’usage normal du document (ne doit pas
diminuer sa qualité en deçà d’une limite raisonnable). Il faut cependant remarquer que le tatouage est
voué à altérer le document original pour être efficace. En effet, dissimuler de l’information uniquement
dans l’encodage du document (dans les bits inutiles par exemple) serait extrêmement sensible à un
attaquant sérieux et informé. Ainsi, le tatouage doit altérer la sémantique du document, la difficulté
résidant dans le contrôle de cette altération.

• Mâıtrise de la capacité : la quantité d’information dissimulable dans un document doit être prédictible.
Une capacité élevée est bien sûr souhaitable.

• Faible taux de faux-positifs : la probabilité de détecter une marque dans un document non tatoué doit
être négligeable.

• Robustesse : le détecteur doit être capable de détecter la marque dans des documents raisonnablement
altérés par un attaquant. La force des altérations réalisées par ce dernier est néanmoins limitée, car
l’attaquant souhaite obtenir des données ayant toujours une valeur marchande, donc d’une qualité
raisonnable.

• Publicité des algorithmes : la sécurité de la méthode de tatouage ne doit pas reposer sur le secret des
algorithmes employés, mais seulement sur une clé privée (principe de Kerckhoffs [59, 60]).

• Sécurité : un attaquant ne doit pas pouvoir inférer le lieu du tatouage ni la clé utilisée [20].

• Méthode aveugle : le détecteur doit idéalement fonctionner sans avoir accès au document original, non
tatoué.



Parmi ces nombreux critères, il est important de souligner le compromis entre la robustesse du tatouage
et son invisibilité : un tatouage plus robuste nécessite une plus forte altération des données originales.
L’attaquant est également limité par la contrainte d’invisibilité : son attaque (altération) doit être limitée,
de façon à ce que le document reste de bonne qualité et soit ainsi revendable.

Tatouage des bases de données

Si les techniques de tatouage sont apparues initialement dans le domaine multimédia pour l’image, le son
ou la vidéo, elles ont des applications naturelles en bases de données. En effet, la quantité de données struc-
turées disponibles sur Internet est en augmentation continue, qu’il s’agisse de données publiques (données
environnementales, sociétales, économiques, comme dans le projet Data Publica3) ou de données commer-
ciales (statistiques de ventes, information boursière, profiles clientèle, etc.). Cette augmentation va de paire
avec le besoin de protection. Il existe d’ailleurs des traces historiques d’une altération volontaire des données
afin d’en protéger la propriété intellectuelle. Un exemple remarquable [57] est le choix de règles d’arrondies
spécifiques par les éditeurs de tables de logarithmes sous forme papier (figure 2.3).

Figure 2.3 – Une édition de tables de logarithmes : les conventions d’arrondies furent utilisées pour la
preuve de propriété (source : Wikipédia)

Les bases de données comportent cependant des spécificités importantes pour le tatouage :

• Riches interconnexions entre données : alors que les images sont des juxtapositions régulières de pixels,
un jeu de données décrit des relations variées entre n-uplets, sans ordonnancement précis entre eux.
Ceci pose le problème de la synchronisation du marqueur ou du détecteur avec les données, afin de
localiser précisément le tatouage.

• Sémantique partagée : une base de données est généralement utilisée ou croisée avec d’autre bases
de différentes provenances, comme par exemple la jointure des informations hôtelières avec une carte
touristique. Il existe donc une sémantique partagée entre jeux de données, pour un nommage cohérent
des informations (par exemple un même nom ou un même code pour la rue d’un hôtel et d’un site
remarquable). Cette sémantique limite les possibilités de l’attaquant, car un jeu de données altéré devra
respecter cette sémantique pour conserver une valeur quelconque.

3http://www.data-publica.com/
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• Nombreux types de données : nombres, données catégoriques, flux, données géométriques, etc.

• Usages variés : à la différences des documents multimédia qui sont utilisés de façon directe, une base
de données peut être explorées de nombreuses façons, à travers des langages de requêtes expressifs.

• Contraintes de qualité diverses : le tatouage doit respecter la qualité du document. En général, la
qualité d’un document multimédia s’exprime comme une mesure globale entre le document d’origine et
sa version tatouée, ou entre le document tatoué et sa version attaquée (comme par exemple le rapport
signal-bruit, ou PSNR). De façon différente, les bases de données se prêtent à une formalisation des
contraintes de qualité : précision des valeurs des n-uplets, impératifs de dépendances fonctionnelles
entre n-uplets, et de façon générale, toute contrainte dépendant de l’application visée et exprimée
idéalement dans un langage générique (contraintes d’intégrité sémantiques).

• Nombreuses modalités d’accès : les données suspectes peuvent être accessibles directement par le
détecteur sous forme de relations brutes, mais également au travers de vues partielles.

• Incrémentalité : de façon générale, une base de données doit être mise à jour afin de rester précise (par
exemple, une variation de 10% du jeu de données intégral peut être observée entre deux mises à jour
des données géographiques nationales [91]). Ainsi, il est nécessaire de savoir maintenir ou faire évoluer
le tatouage au fur et à mesure que la base de données est mise à jour chez les utilisateurs légitimes.

• Efficacité : comme les bases de données sont en général de très grande taille et enfouies dans un
système de gestion standardisé, la procédure de tatouage doit y être intégrée et doit donc s’exécuter
efficacement, en engendrant un faible surcoût. Cette propriété est particulièrement importante pour la
vente de données à courte durée de vie, comme les données de prévisions (par exemple météorologiques
ou boursières).

L’exemple suivant présente un scénario de tatouage de bases de données, où des contraintes de qualité
spécifiques sont illustrées.

Exemple 1 La relation suivante présente une instance de base de données touristique. Pour cette applica-
tion, l’objectif est de dissimuler de l’information en modifiant légèrement le prix des transports proposés, tout
en respectant les contraintes de qualité imposées par le propriétaire des données :

• C1 : Autoriser une altération ±10 sur chaque prix (price) (contrainte de précision au niveau de chaque
n-uplet).

• C2 : Autoriser une altération ±20 sur le total global des prix (contrainte portant sur un agrégat de
toute la relation, sans paramètre).

• C3 : Pour chaque voyage (travel) proposé t, une altération ±10 est autorisée sur le prix total du voyage
t (contrainte d’agrégat sur une partie de la relation, dépendant d’un paramètre).

Route :
travel transport
India discovery T1
India discovery T2
Nepal Trek T1
Nepal Trek T3
Nepal Trek T4
TourNepal T4
TourNepal T5



PriceTable :
transport departure arrival type price
T1 Paris Delhi plane 35
T2 Delhi Nawal. bus 20
T3 Delhi Kathm. plane 15
T4 Kathm. Simikot plane 30
T5 Kathm. Daman jeep 50
T6 Kathm. Paris plane 10

PriceTable′ :
... price

45
30
25
20
10
10

PriceTable′′ :
... price

25
30
5
40
40
10

PriceTable représente l’instance originale du propriétaire des données. PriceTable′ et PriceTable′′ sont
des instances tatouées (les prix sont altérés). PriceTable′ ne respecte pas la contrainte C3, car le coût du
voyage ≪ India discovery ≫ est maintenant de 75 au lieu de 55. Au contraire, PriceTable′′ respecte toutes
les contraintes de qualité demandées.

Comme illustré dans l’exemple précédent, la recherche d’un tatouage valide respectant toute les contraintes
peut s’avérer un problème combinatoire difficile, pour des contraintes générales.

Démarche de ce travail

Plusieurs propositions initiales pour le tatouage de bases de données ont été présentées indépendamment
aux conférences VLDB 2002 par Rakesh Agrawal et Jerry Kiernan, SIGMOD 2003 par Radu Sion, Mickael
Attalah et Sushil Prabakhar, et PODS 2003 pour le présent travail.

D’une part, Agrawal et Kiernan ont proposé une solution complète de tatouage dans le cadre de leur
projet de bases de données hippocratiques [9]. Ils ne considèrent pas explicitement le problème de l’impact du
tatouage sur le résultat de requêtes, mais ont observé que la moyenne et la variance des attributs numériques
– prises sur l’intégralité des relations – ne sont que peu altérées par le tatouage.

D’autre part, Radu Sion et al. et le présent auteur ont proposé les premières méthodes de tatouage de
bases de données intégrant la préservation du résultat de requêtes importantes4. La technique de Radu Sion
et al. est orientée vers une solution complète et en pratique. La recherche d’un tatouage valide est réalisée
par une approche d’essais et erreurs.

Le présent travail a débuté en 2001 au laboratoire Cedric du CNAM-Paris, dans l’équipe Vertigo alors
dirigée par Michel Scholl (équipe actuellement dirigée par Michel Crucianu). Cette étude a commencé par
les aspects théoriques du tatouage, en suivant une méthodologie courante en base de données mais avec une
parfum de sécurité :

• Exprimer les contraintes de tatouage par un langage reposant sur des logiques connues.

• Décrire l’ensemble des tatouages valides, en tirant partie de la structure syntaxique des contraintes
et de la structure des données. Cette description doit permettre d’obtenir des bornes inférieures sur
la capacité de dissimulation d’une instance, ou des résultats d’impossibilité. En parallèle, obtenir des
bornes inférieures et supérieures sur l’altération que doit subir la base de données.

• Obtenir une solution pratique avec un langage de description de contraintes simple et une optimisation
du tatouage au niveau logique et physique.

• Généraliser les techniques à des types de données spécifiques.

• Et bien sûr, réaliser cela en respectant les critères usuels des protocoles de tatouage (invisibilité, grande
capacité, robustesse, caractère aveugle ou non, etc.).

Cette démarche souligne les spécificités du tatouage de bases de données, comparées aux travaux classique
sur le tatouage. Ces spécificités sont résumées dans la figure 2.4. Dans la suite est présentée une vue d’en-

4Il faut noter qu’une méthode de tatouage de graphes valués avec préservation d’une propriété unique a été proposée par
Sanjeev Khanna et Francis Zane en 2000 [61]. Ce travail sera discuté en détail dans le chapitre 3.
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Figure 2.4 – Critères pour le tatouage de bases de données

semble des travaux : l’étude théorique du tatouage avec préservation de requêtes au chapitre 3, l’obtention
d’un algorithme efficace au chapitre 4, et une variation autour de ces techniques pour différents domaines
d’application aux chapitres 5, 6 et 7. L’ordre de présentation choisi est thématique et ne respecte pas l’exact
chronologie des publications.

Chapitre 3 : tatouage avec préservation de requêtes

Le premier chapitre de ce travail concerne la modélisation de contraintes de qualité pour les bases de données
numériques, au moyen de requêtes d’agrégat de somme (publication à PODS 2003 [39] et TODS 2010 [40]).
Nous y considérons, en empruntant une méthodologie maintenant classique en théorie des bases de données
et en complexité descriptive, la relation entre d’une part la capacité de tatouage, et d’autre part la puissance
d’expression du langage de requêtes utilisé pour la spécification des contraintes. Par exemple, la contrainte
C3 de l’exemple 1 est équivalente à la préservation de la somme des prix des transports v pour tout voyage
donné u, sélectionné par la requête du premier ordre

ψ(u, v) ≡ ∃x1x2x3x4x5Route(u, v) ∧ PriceTable(v, x1, x2, x3, x4, x5).

Dans cette même direction, mais sans rapport avec les bases de données, Khanna et Zane [61] ont proposé
un protocole de tatouage à capacité de dissimulation garantie avec préservation d’une requête paramétrique
spécifique : la longueur du plus court chemin sur les graphes valués. Leur technique d’insertion d’information
ne modifie la longueur des plus courts chemins entre n’importe quelle paire de sommets que dans une limite
prescrite. La capacité de tatouage est en Ω(n1/2−1/d) bits pour une altération d des longueurs des plus courts
chemins, pour tout graphe à n arêtes. Du point de vue théorique, ils observent que la requête de plus court
chemin à une faible complexité, et indiquent que les protocoles de tatouage pour des propriétés NP-difficiles
sont probablement difficiles à analyser.

Dans un premier temps, nous avons généralisé leur modèle aux bases de données à valeurs numériques
(plus seulement les graphes valués). Nous avons également considéré la préservation de requêtes exprimées
dans un langage de requêtes, et pas seulement une propriété unique comme le plus court chemin.

Pour une rapide présentation des résultats obtenus, les paramètres pertinents sont la taille de l’instance
de base de données considérée, que nous notons n dans cette introduction, et la distorsion maximale sur
les contraintes de qualité, notée par d. Pour simplifier et sans perte de généralité, l’altération autorisée sur
chaque valeur numérique sera de +1 ou -1.



Considérons tout d’abord le problème de calculer le nombre total de tatouages possibles pour la base
de données Travel de l’exemple 1, c’est-à-dire la capacité de tatouage de cette instance. Il apparâıt que ce
dénombrement est aussi difficile que de compter le nombre de chemins acceptants d’une machine NP :

Theoreme 2 (informel) Calculer la capacité de tatouage est #P-complet.

Ce constat étant fait, on s’intéresse aux bornes inférieures de cette capacité, en tenant compte du com-
promis avec l’altération des données.

Theoreme 3 (informel) Pour tout ensemble fini de contraintes et toute instance de bases de données, il
existe un protocole de tatouage de capacité Ω(d log n) avec erreur au plus d sur le résultat des requêtes.

Mais d log n bits est traditionnellement considéré comme une capacité minuscule, et l’on recherche plutôt
des protocoles de tatouage à capacité nc, pour une constante c. Un premier résultat est que, si les contraintes
sont un ensemble fini de requêtes non-paramétriques (comme la contrainte C2 de l’exemple 1), la capacité
de dissimulation est importante :

Theoreme 4 (informel) Pour tout ensemble de contraintes non-paramétriques et toute instance de base de
données, il existe un protocole de capacité n avec erreur constante nulle.

L’idée principale de la méthode est de trouver deux valeurs numériques (deux n-uplets distincts) qui
impactent exactement le même sous-ensemble de requêtes, et de modifier leur valeur de façon opposée. En
rappelant l’exemple 1, les n-uplets T 1 et T 2 impactent ensemble le voyage India discovery. Ajouter 1 au
prix de T 1 et retrancher 1 au prix de T 2 (ou le contraire) n’a pas d’impact sur le prix complet du voyage.
Chacune de ces paires de compensation permet de dissimuler 1 bit d’information. Si l’on considère maintenant
les requêtes paramétriques (comme la contrainte C3), qui engendrent un ensemble de contraintes complexes,
trouver de telles paires de compensation est plus délicat. En effet, nous avons montré que l’impact du tatouage
est illimité si aucune hypothèse n’est faite sur l’instance. En utilisant un outil courant en apprentissage (PAC
learning [113]), à savoir la dimension de Vapnik-Chervonenkis [16], on peut montrer que l’ensemble des n-
uplets est ≪ pulvérisé ≫ par les requêtes : il existe toujours une valeur du paramètre qui permet d’isoler
un sous-ensemble quelconque des altération +1 ou -1. Il existe donc une valeur du paramètre rassemblant
par exemple tous les +1. Leur impact cumulé permet alors de dépasser toute limite constante imposée sur
l’altération du résultat d’une requête.

Theoreme 5 (informel) Il existe une requête paramétrique et une instance de base de données qui ne
possèdent pas de protocole de tatouage de capacité nc et à erreur constante.

Puis, nous avons utilisé des hypothèses de restriction sur les instances qui sont apparues dans d’autres
contextes, comme l’étude de la complexité des données en fonction de leur degré ou de leur largeur d’arbre
(qui mesure leur similarité avec un arbre). Dans ce cadre, les résultats suivants ont été obtenus :

Theoreme 6 (informel) Il existe toujours un protocole de tatouage à capacité nc et à erreur constante pour :

• les requêtes paramétriques locales sur les instances de degré de Gaifman borné (par exemple, les requêtes
SQL sur des graphes de degré borné). Les langages locaux incluent FO (SQL), les requêtes invariantes
à l’ordre ou les requêtes AGGRQ(SQL avec agrégats),

• les requêtes paramétriques du second ordre monadique sur les arbres ou les instances à largeur d’arbre
bornée (par exemple les arbres XML et des requêtes utilisant des fragments d’XPath).

Enfin, en utilisant les résultats de Gröhe and Tùran [37], on peut démontrer que, sans ces hypothèses,
aucun protocole de tatouage (de bonne capacité et à erreur constante) ne peut être obtenu. De plus, dans
une publication récente [40], nous avons montré que :
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Theoreme 7 (informel)

• Il existe une requête paramétrique d’arité k telle que tout protocole de tatouage de capacité nc a au
moins erreur k.

• Pour les classes d’instances et de requêtes précitées d’arité k, il existe un protocole de tatouage de
capacité nc avec erreur au plus k. Ce protocole, que nous explicitons, est donc optimal.

L’ensemble de ces résultats montre que, pour des bases de données naturelles, il existe une grande capacité
de tatouage. Mais la solution théorique proposée ne remplie pas tous les critères usuels des protocoles de
tatouage. Par exemple, l’algorithme proposé n’est pas aveugle (l’ensemble des données d’origine est requis
lors de la détection). L’exploration effective des tatouages valides et l’obtention d’un algorithme (presque)
aveugle est le sujet du chapitre suivant.

Chapitre 4 : aspects pratiques, le système Watermill

Ce chapitre concerne les aspects pratiques du tatouage, dans le but d’obtenir un système complet. Cette
étude a été réalisée durant le projet ACI/ANR Tadorne5 dont j’ai été l’initiateur et le coordinateur. Durant ce
projet, la conception d’un langage de contrainte facile d’utilisation a été réalisé. Les contraintes de l’exemple 1
peuvent ainsi être exprimées :

(C1) local 10 on price

(C2) global 20 on (select sum from price)

(C3) forall t in (select route from travel)

global 10 on (select sum(price) from route where travel=t)

L’algorithme de tatouage réalise la recherche de paires de compensation du chapitre précédent. Du point
de vue de son implantation, la difficulté principale est le passage à l’échelle. La technique proposée a été de
traduire l’opération de recherche de tatouage en une requête SQL unique, dont l’évaluation est relayée au
SGBD. Du point de vue du tatouage, plusieurs amélioration ont été obtenues. D’abord, nous avons adapté
les techniques d’Agrawal and Kiernan [7, 8] (qui ne prennent pas en compte les requêtes à préserver) pour
obtenir la synchronisation avec le tatouage et sa sécurité. Nous avons obtenu un meilleur caractère aveugle de
l’algorithme en remplaçant la méthode simple des paires de compensation (qui nécessite les données originales
pour la détection), par la recherche de bits de valeur opposée dans les données elles-mêmes (exemple 8).

Exemple 8

Compensation de la valeur absolue (non-aveugle) Compensation de bits opposés (aveugle aux données)

transport price (original) price (tatoué)
T1 35 25 (-10)
T2 45 55 (+10)

total 80 80

transport price (original) price (tatoué)

T1 (35)2 = 10 0 011 10 1 011 = 43

T2 (45)2 = 10 1 101 10 0 101 = 37

total 80 80

La méthode est semi-aveugle, ou aveugle aux données : l’ensemble des données originales n’est plus
nécessaire, mais l’ensemble des positions de tatouage doit être mémorisé et produit lors de la détection
(comme pour la méthode de Sion et al. [103]). L’algorithme met également en oeuvre un code anti-collusion
sophistiqué du à Tardòs [109]. La méthode complète [26,67] obtenue avec Julien Lafaye, Camélia Constantin
et Meryem Guerrouani, a été publié dans TKDE 2008. Elle a été implantée dans le logiciel GPLWatermill6,
et a été validée sur de grands jeux de données. Il a été possible par exemple de tatouer 1 000 000 de n-uplets
tout en préservant 100 contraintes en quelques minutes, alors que les méthodes concurrentes nécessitent
plusieurs heures ou jours.

5http://ufrsciencestech.u-bourgogne.fr/~gadavid/tadorne/
6http://watermill.sourceforge.net



Chapitres 5, 6 et 7 : algorithmes spécifiques

La suite de ce travail a été la conception d’algorithmes spécifiquement adaptés à certains types de données,
au delà des données numériques. Dans ce cadre, le squelette des algorithmes utilisés est toujours la méthode
d’Agrawal et Kiernan, et la contribution réside dans l’adaptation à des applications précises : les flux XML,
les bases de données musicales symboliques, les bases de données géographiques et les bases de données
multimédia. La suite de ce document présente les trois premiers types.

Chapitre 5 : flux Xml typés

La première méthode spécifique concerne le tatouage de flux XML. Dans le cadre classique d’étude des flux
à haut débit, les données doivent être traitées en mémoire constante : toute opération comme la validation
de type ou la transformation de données doit être réalisée par un automate fini (figure 2.5). Dans ce travail
mené avec Julien Lafaye et présenté à DbSec 2006 [66], nous avons considéré le problème du tatouage de flux
XML tout en préservant leur type, exprimé par une DTD non-récursive. Le validation de tels types peut être
réalisée par un automate fini [101]. Nous tatouons ces flux par une recopie du flux durant sa vérification de
type, mais en empruntant parfois un détour dans une exécution équivalente de l’automate. L’erreur réalisée
est contrôlée par la distance d’édition entre le flux d’origine et sa version tatouée.
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Figure 2.5 – Spécification partielle d’un type de flux pour un élément date

Chapitre 6 : partitions musicales symboliques

Un second résultat a été obtenu lors de mon arrivée au laboratoire Le2i, dans l’équipe SISI dirigée par Kokou
Yetongnon. Après avoir développé une méthode de tatouage pour les données multimédia avec Richard
Chbeir [21], je me suis tourné vers les bases de données musicales. Ce travail a été réalisé dans le cadre
du projet Neuma7, également financé par l’ANR, initié et coordonné par Philippe Rigaux. La musique y
est considérée dans une représentation symbolique : non comme un fichier son ou comme l’image d’une
partition musicale, mais comme la description précise des notes, rythmes et annotations. Un exemple en est
le format MusicXML. Nous avons proposé dans le système Neuma un outils de tatouage de telles partitions
musicales symboliques. Dans notre approche, une partition est vue comme un flux de notes. Comme cible du
tatouage, nous avons sélectionné une annotation utile pour les musiciens débutants, les annotations de doigté
(figure 2.6). En clair, une annotation de doigté précise quel doigt de la main utiliser pour la réalisation de
chaque note, et plusieurs doigtés sont possibles pour une même partition. D’un point de vue informatique,
la qualité d’un doigté dépend de la difficulté à jouer ce doigté, qui est reliée aux capacités physiques de
la main (plusieurs travaux modélisent cette capacité). L’idée principale est de tatouer la partition annotée
en favorisant un doigté particulier parmi tous les doigtés possibles. Les doigtés originaux sont en général
réalisés par des experts et sont de grande qualité. L’objectif est donc de produire des doigtés tatoués avec
une altération contrôlée par rapport aux doigtés d’origine. Cette méthode, obtenue avec Philippe Rigaux,
Lylia Abrouk et Nadine Cullot, a été présentée à ISMIR 2009 [43].

7http ://www.neuma.fr
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Figure 2.6 – Une partition originale avec une annotation de doigté de grande qualité, et sa version tatouée.
Les annotations de doigté figurent au dessus de la portée (main droite, 1 : pouce, ..., 5 : auriculaire). En
dessous figure le coût physique pour jouer ce doigté. La version tatouée est plus difficile à jouer, avec trois
positions altérées indiquées par un M .

Chapitre 7 : données géographiques

Ce dernier résultat concerne les bases de données géographiques, et a été obtenu également durant le projet
Tadorne en partenariat avec le laboratoire Cogit (IGN – Institut géographique national), avec Julien Lafaye,
Jean Béguec et Anne Ruas. Il a été présenté à SSTD 2007 [65]. Nous avons proposé une solution de tatouage
par les cartes vectorielles utilisées pour leur précision, avec un accent sur la couche dite du bâti (les bâtiments
– la plus grande part des bases de données géographiques professionnelles). La difficulté nouvelle par rapport
à l’existant est de trouver un identifiant raisonnable pour chaque polygone, et de prendre en compte les
métriques de qualité spécifiques utilisées dans les applications géographiques. Dans ce travail, nous avons
supposé que les données sont référencées suivant une norme commune à tous les participants (le WGS 84 du
système GPS par exemple). Puis nous avons construit des identifiants robustes de polygones en prenant les
bits de poids fort de leur centröıde (un attaquant doit modifier énormément la position d’un bâtiment pour
modifier cet identifiant). Enfin, la dissimulation de données a été réalisée par étirement du bâtiment selon
sa direction principale, comme indiqué dans la figure 2.7.

Cette méthode très simple possède de bonnes propriétés, et a un faible impact sur la qualité angulaire
des bâtiments, par rapport aux autres méthodes existantes. De plus, elle est robuste aux attaques courantes,
en particulier l’attaque par équarissage (visant à rendre droits les angles presque droits) ou la simplification
de lignes (cherchant à supprimer des points parmi ceux qui sont presque alignés).

Plan

Ce document est organisé de la façon suivante. Les chapitres suivants plongent dans les détails des définitions
et des résultats techniques de chaque partie : le chapitre 3 présente les résultats théoriques sur le tatouage
avec préservation de requêtes. Le chapitre 4 présente une version utilisable en pratique telle qu’elle figure
dans le logiciel Watermill. Enfin, nous considérons le tatouage pour des types de données spécifiques :
les flux XML (chapitre 5), les bases de données musicales symboliques (chapitre 6) et les bases de données
géographiques (chapitre 7). Le dernier chapitre conclue avec des pistes de développement et l’appendice A
résume nos autres travaux, non présentés ici.
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Figure 2.7 – Tatouage d’un bâtiment par étirement
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3
Numerical database watermarking with query

preservation

In this chapter we consider database watermarking where the result of valuable queries has to remain
invariant. We define the notion of query-preserving watermarking protocols. We then distinguish between
two approaches: the view model, where the data owner has to prove ownership using only results of queries,
and the instance model, where a full access to the suspect instance is provided. We also consider adversarial
and non-adversarial scenarios.

Query-preserving watermarking We focus on the watermarking of databases, in the general setting
where data servers perform queries in a language L. The data owner has a valuable database instance, and
data servers apply for a copy of this database, providing queries ψ1, . . . , ψk they will answer to final users.
These queries will be parametrized by final users’inputs. The problem is then to construct a query-preserving
watermarking protocol that respects the following conditions:

• the protocol hides a messagem into the owner’s database instance, and induces a guaranteed distortion
on the results of queries ψ1(ā), . . . , ψk(ā), for any user input ā.

• the protocol is able to extract the message hidden in a suspect data set, based on answers to queries
ψ1, . . . , ψk only (the owner acts as any final user to get these answers).

• the protocol fails extracting messages from unwatermarked databases.

• the protocol is robust against reasonable attacks, like random distortion of query answers.

• the protocol has a scalable capacity: the amount of hidden bits grows with the database size.

Such a watermarking protocol is driven by what is important to the final user: results of queries. Notice
that data servers may answer other queries to users, but only distortion on ψ1, . . . , ψk is guaranteed.

Example 9 Tables below present a touristic database instance. The goal is to hide information by slightly
modifying transport prices so that the total cost of any travel remains unchanged. This is equivalent to
preserving the following aggregate query, for any value of parameter t:

ψ(t) ≡select sum(price) from PriceTable, Route

where PriceTable.transport= Route.transport

and travel = t.
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Route:
travel transport

India discovery T1
India discovery T2
Nepal Trek T1
Nepal Trek T3
Nepal Trek T4
TourNepal T4
TourNepal T5

PriceTable:
transport departure arrival type price

T1 Paris Delhi plane 35
T2 Delhi Nawalgarh bus 20
T3 Delhi Kathmandu plane 15
T4 Kathmandu Simikot plane 30
T5 Kathmandu Daman jeep 50
T6 Kathmandu Paris plane 10

Watermarking capacity The fundamental difficulty in query-preserving watermarking is to obtain a
protocol with a reasonable bandwidth. For example, if n bits can be hidden in a data set, 2n distinct
messages can be hidden. By mapping distinct messages with distinct data servers, the message extraction
allows to identify the suspect server that performed a copy. Another application is to combine the hidden
message with an error-correcting code in order to increase its robustness against attacks. Hence, obtaining
lower bounds on the watermarking capacity is interesting.

In this direction, [61] proposed a protocol with guaranteed capacity for a specific parametric query:
shortest path queries on weighted graphs. Their information insertion does not modify the length of shortest
path between any pair of vertices beyond an acceptable distortion. The watermarking capacity is Ω(n1/2−1/d)
for distortion d, for any graph with n edges. From the theoretical point of view, they observe that shortest
path queries have a low computational complexity, and suspect that watermarking protocols for NP-hard
search spaces are difficult to analyze.

Contribution: watermarking and learning theory In this chapter, we study the capacity of water-
marking protocols that preserve any set of predefined queries from a language L. Up to our knowledge, this
is the first work dealing with this problem in the database theory perspective. Our goal is not to propose
a new watermarking algorithm for databases, but to study the potential watermarking bandwidth that can
be awaited from given data sets and queries (the present work has nevertheless a practical counterpart [67]
as explained in the related work).

Our first contribution is an extension of [61]’s graph watermarking model into the relational setting. This
natural extension requires some care, as a general query on a general structure is much more intricate than
properties considered in their work (shortest paths on graphs, which are simply subsets of the graph). We
then study the complexity of computing the exact watermarking capacity, which turns out to be intractable.

Our first main result shows that the difficulty of query-preserving watermarking is linked to the informa-
tional complexity of sets defined by queries, rather than their computational complexity. This is related to an
important combinatorial parameter in computational learning theory, the Vapnik-Chervonenkis dimension
of sets (or VC-dimension, see for example [16]). Roughly speaking, a set is said to be shattered if all its
subsets can be defined by a query, and the VC-dimension represents the largest cardinality of such shattered
sets. It is well known that a finite VC-dimension for a family of sets is equivalent to its learnability (in the
PAC learning model [113]). In summary, our result states that if the VC-dimension is not bounded but is
maximal on all input structures, that is, if any set is shattered by queries, no watermarking protocol can be
obtained.

[37] showed that the VC-dimension of sets defined by first-order logic and monadic second-order logic
is bounded on restricted classes of structures, and this characterization is, in some sense, optimal. These
restrictions concern bounding the degree of the Gaifman graph of the structure, or bounding its tree-width,
which measures its similarity with trees. This latter restriction has also fruitful applications in both database
theory and computational complexity (see for example [31]).

Our second main result shows that under the same restrictions, a watermarking protocol with guaranteed
capacity can be obtained. First, we construct a watermarking protocol for database instances with bounded
degree Gaifman graph, preserving any local query. Local languages contain particularly first-order logic,
order-invariant queries [36], and relational AGGRQ queries [49], that expresses mostly plain SQL by adding
grouping and aggregate functions to relational calculus [44,74]. Second, we provide a watermarking protocol



for first-order and monadic second-order queries on trees or tree-like structures. Monadic second-order logic
(MSO) is of a special interest, since it is commonly used to model pattern queries on labeled trees, as a
formal query language for Xml documents (see for example [81]).

Finally, on structures with unbounded degree Gaifman graph, one can construct a first-order formula
that defines sets with unbounded and maximal VC dimension. There also exists an MSO-formula yielding
such sets on structures with unbounded tree-width. For both, no query-preserving watermarking protocol
can be obtained. This maps a rather complete panorama of query-preserving watermarking.

Organization The chapter is organized as follows: we first give basic definitions on query-preserving wa-
termarking on Section 3.1. We show on Section 3.2 that computing the exact watermarking capacity is hard,
and that no watermarking protocol can be obtained for unrestricted database instances, even for trivial
queries. We then exhibit restrictions on database instances and query languages that allow watermarking
with a reasonable amount of hidden information: local languages on structures with bounded degree Gaif-
man graph on Section 3.3, monadic second-order queries on trees and tree-like structures on Section 3.4.
Section 3.5 extends the previous results so that malevolent attacks are taken into account. Complementary
results on easier database watermarking scenarios are given in Section 3.6, and the incremental updatability
of watermarked instances is exposed in Section 3.7. Finally, Section 3.8 compares the present method with
its practical counterpart, and the last section concludes.

Related work A wide part of the watermarking literature focuses on multimedia data including images,
sound and video [28, 57, 120]. The watermarking capacity is a classical topic in multimedia watermarking,
where the common tool is information theory [19]. But this community does not consider intricate query
answers on structured data sets, but rather global metrics like peak signal-to-noise ratio (PSNR) on a signal
(an image) without formal structure.

Beside works cited in the introduction [7, 61], watermarking of structured data like trees, graphs, or
solutions of an optimization problem are studied in [88, 89, 116, 118]. These approaches do not consider
the notion of queries. [104] and [39] introduced query-preservation methods for watermarking. [104] handle
potentially any kind of constraints by a greedy procedure calling external checking programs (usability
plugins). [102] extend this work so that better watermarks are obtained. These very general methods do not
elaborate on the syntactical form of queries in order to find valid watermarks. [39] and [67] take into account
the syntactic form of aggregate constraints, so that the watermark search procedure is optimized.

Our formalism follows the approach of [61]. In this work, a unique parametric query is considered, namely
shortest paths in weighted graphs. This formal approach was first generalized in [39]. In this latter work,
a lower bound on the watermarking capacity is obtained for queries taken from several query languages,
along with an upper bound on data distortion. No lower bound on data distortion was provided. In the
present work, we propose such a lower bound. We also provide a watermarking protocol achieving this
minimal error. Hence this bound is tight. Finally, even without a malevolent attacker, the previous method
was probabilistic, while the method presented in this chapter is deterministic. We also provide results on
different scenarios, where the data owner has full access to the suspect instance, and when non-parametric
queries are to be preserved.

3.1 Query-preserving watermarking

3.1.1 Basic definitions

Weighted structures In this work, attention is focused on watermarking numerical data for the sake of
simplicity. Generalization to other domains with a distance function (for example strings with a similarity
measure, or a semantic distance) can be considered. The data owner distinguishes those numerical values
that can be modified for watermarking, denoted in the sequel by weights. Our watermarking protocols will
modify weights of a database instance, while leaving other values unchanged. We model such database
instances by weighted structures [35]. Let τ be a signature (or database schema), that is a finite set of
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relation symbols {R1, . . . ,Rt}, with respective arity r1, . . . , rt. A finite structure G = 〈U , R1, . . . , Rt〉 (or
database instance) is an interpretation of each relation symbol of the schema τ on a finite universe U . We
denote by STRUCT [τ ] the set of all τ -structures. For a given s ∈ N, a weighted structure (G,W) is defined
by a finite structure G and a weight function W , which is a partial function from Us to N, that maps a
s-tuple b̄ to its weight W(b̄).

Example 10 The owner of the previous instance (Example 9) chooses a unique weight attribute “price”.
The corresponding structure is G = 〈U , Route, PriceTable〉, with, as an example of possible tuples
(TourNepal, T 4) ∈ Route, (T 1, Paris,Delhi, plane) ∈ PriceTable and W(T 1) = 35.

Measure of distortion Our watermarking algorithms will introduce perturbations into the structure’s
weight function W , and these perturbations must be under control of the data owner, so that the data set
quality is preserved. The finite part of the weighted structure will remain unchanged: hence watermarking
is equivalent to mapping the weighted structure (G,W) to a new structure (G,W ′).

First, we limit the alteration of weights. Given a constant c ∈ N, a weighted structure (G,W ′) is said to
be a c-local distortion of (G,W) if and only if for all b̄ ∈ Us, |W ′(b̄)−W(b̄)| ≤ c.

It is sometimes useful to view the watermarked structure has the addition of the original structure plus
a watermark, or a mark for short. We denote a mark by a function δ : Us → Z. A watermarked structure
(G,W ′) of (G,W) is said to contain mark δ if, ∀b̄ ∈ Us,W ′(b̄) =W(b̄) + δ(b̄).

Second, we take into account the impact of distortions on the result of queries. As a query language we
will consider for example first-order (FO) or monadic second-order (MSO) formulas. First-order formulas
are built from atomic formulas on the database schema with equality, and are closed under classical boolean
connectives ∧,∨,¬ and quantifiers ∃, ∀. In monadic second-order logic, quantification is also on sets of
elements.

Since queries are performed by data servers upon final users’inputs, we are interested in parametric
queries. A formula with parameter ū is a formula ψ(ū, v̄) with two distinguished variable vectors, ū and v̄,
with arity r and s respectively. Given a structure G, let ψ(ā,G) = {b̄ ∈ Us|G |= ψ(ā, b̄)}. Variables ū can be
assigned to a value ā by a final user wishing to obtain the result of ψ(ā,G).

Let ψ(ū, v̄) be the parametric query to be preserved (we focus on the preservation of a unique query ψ,
but extension to several queries ψ1, . . . , ψk is straightforward by projection techniques). The weight of a
tuple extends to the weight of a query: given a weighted structure (G,W) and a parametric query ψ(ū, v̄),
its weight W(ψ(ā,G)) for parameter ā is the sum of weights of its tuples:

W(ψ(ā,G)) =
∑

b̄∈ψ(ā,G)

W(b̄).

Example 11 For the database instance in Example 9, we consider the first-order query

ψ(u, v) ≡ ∃x1x2x3Route(u, v) ∧ PriceTable(v, x1, x2, x3),

extracting, given a travel u, the set of transports v part of this travel. Summing their corresponding weights
models the total cost of travel u. We obtain the following weights:

W(ψ(India discovery,G)) =W(T 1) +W(T 2) = 35 + 20 = 55,

W(ψ(Nepal Trek,G)) = 35 + 15 + 30 = 80,

W(ψ(TourNepal,G)) = 30 + 50 = 80.

These weights corresponds to answers of the parametric aggregate query of Example 9.

Query preservation can now be defined. Let d ∈ N. A weighted structure (G,W ′) is a d-global distortion
of a structure (G,W) with respect to ψ if and only if, for all ā ∈ Ur,

|W ′(ψ(ā,G))−W(ψ(ā,G))| ≤ d.



Example 12 We consider the original instance given in Example 9 and the same query ψ. Let PriceTable′

and PriceTable′′ be two possible distortions of PriceTable:

Route:
travel transport

India discovery T1
India discovery T2
Nepal Trek T1
Nepal Trek T3
Nepal Trek T4
TourNepal T4
TourNepal T5

PriceTable:
transport departure arrival type price

T1 Paris Delhi plane 35
T2 Delhi Nawal. bus 20
T3 Delhi Kathm. plane 15
T4 Kathm. Simikot plane 30
T5 Kathm. Daman jeep 50
T6 Kathm. Paris plane 10

PriceTable′:
... price

45
30
25
20
10
10

PriceTable′′:
... price

25
30
5
40
40
10

PriceTable′ is a c-local distortion of PriceTable for constant c = 10, but not a d-global distortion with
respect to ψ for d = 10, because

W(India discovery, P riceTable′) = 75,

and

W(India discovery, P riceTable) = 55.

P riceTable′′ respects both local and global distortions for c = 10 and d = 10.

3.1.2 Watermarking protocols and the non-adversarial view model

The goal of query-preserving watermarking is, given an original structure from a class of structures and a
query ψ, to produce altered structures that respect the prescribed local and global distortions.

Definition 13 A watermarking problem is a tuple (K, ψ), where K is a class of weighted structures and ψ
is a parametric query.

We generalize definitions of [61] for watermarking structured data. A watermarking protocol is a pair of
algorithmsM and D, standing for the “marker” and the “detector”, respectively. MarkerM takes as input
an original structure and a binary message m to be hidden in the data, and computes the watermarked
version of the original structure. This structure must preserve the result of a prescribed query ψ. Detector
D, given a suspect structure G∗ as input, extracts the hidden message m. In the first part of this chapter,
we focus on the non-adversarial model, where the suspect server does not alter its data set in order to evade
detection (the full, adversarial model will be considered in Section 3.5). However, even in the non-adversarial
model, constructing correct structures preserving ψ is a combinatorial problem on its own.

37



Definition 14 Given a watermarking problem (K, ψ), and l, d ∈ N, a (l, d)-watermarking protocol preserving
ψ in the non-adversarial model is a pair of algorithms M and D such that:

1. M takes as input an original structure (G,W) ∈ K and a boolean message m ∈ {0, 1}l and outputs a
1-local distortion Gm = (G,Wm) ∈ K such that Gm is a d-global distortion of (G,W).

2. Algorithm D, given as input the original structure (G,W) and the unchanged suspect structure G∗ = Gm,
outputs the hidden message m.

Parameter l stands for the number of bits to be hidden. Value d is the maximum acceptable global distortion
on structures produced by the marker. Note that the suspect structure G∗ is exactly Gm, as we consider first
the non-adversarial model. Note also that we restrict our attention to 1-local distortions: weights will only
be incremented (+1) or decremented (-1). In fact, we will focus on the asymptotic behavior of the number
of distinct watermarked structures. There is at most (2c+ 1)|U

s| different c-local distortions of (G,W), and
restricting to c = 1 does not alter this number drastically.

The definition is still not satisfactory. Indeed, the above-defined detector has full access to the suspect
structure G∗ during detection. We call this easier case the instance model (considered in Section 3.6). In
a more realistic scenario, the data owner can only access suspect data by acting as a simple data user. By
providing parameters ā to a suspect server, the owner will obtain answers to the query ψ(ā,G∗). We call this
model the view model. In the sequel we denote by A(ψ(ā,G)) the set of answers to query ψ on parameter ā,
along with their weights:

A(ψ(ā,G)) = {(b̄,W(b̄))|b̄ ∈ ψ(ā,G)}.

Example 15 Recalling Example 12, we have

A(ψ(India discovery,PriceTable’)) = {(T 1, 45), (T 2, 30)}.
The set of all possibles answers is defined by A(ψ,G) = {(ā,A(ψ(ā,G)))|ā ∈ Ur}. This yields the complete

definition:

Definition 16 Given a formula ψ, and l, d ∈ N, a (l, d)-watermarking protocol preserving ψ in the non-
adversarial view model is a (l, d)-watermarking protocol preserving ψ in the non-adversarial model such that
the detector uses only A(ψ,G∗) as input.

Definition 17 A watermarking problem (K, ψ) is said to have a (l, d)-watermarking protocol if there exists
l, d ∈ N and a pair (M,D) that is a (l, d)-watermarking protocols preserving ψ for structures in K.

3.1.3 Scalable watermarking protocols

Capacity and active tuples Of course, one is interested in protocols with a large hiding capacity. The
largest message size l is clearly bounded by the size of the structure. But since the suspect data set is only
available through queries to a server, watermarks should be hidden into weights of active tuples of the data
set, that is in those tuples that are part of a query answer. Otherwise the detector has no way to recover
their weights and to extract the hidden message.

Let WG,ψ be the active tuples of (G,W) with respect to ψ:

WG,ψ =
⋃

ā∈Ur

ψ(ā,G).

We will often use notation W for short.

Example 18 Recalling Example 9, active tuples are W = {T1,T2,T3,T4,T5}, and T 6 is inactive.

In the rest of this chapter, we will only distort weights of active tuples. As a consequence, there will be
at most |W | useful weights to modify, and the maximum watermarking capacity is |W |. It is noteworthy
that ψ(ā,G) and W do not depend on the weight function W: we can perturb W without modifying ψ(ā,G)
or W . Indeed, function W is not part of the vocabulary of ψ.



Scalable watermarking protocols A watermarking problem may have a watermarking protocol for a
constant value of l. The interesting situation is when l is an increasing function of |W |, i.e. the number of
hidden bits grows with the number of active tuples of the problem. The best situation would be to hide |W |
bits of data, without distorting results of queries at all.

Definition 19 A watermarking problem (K, ψ) possesses a scalable watermarking protocol if there exists
0 < q ≤ 1 and a constant d ∈ N such that the same pair of algorithms (M,D) is a (Ω(|W |q), d)-watermarking
protocol for (K, ψ).

3.2 General case

3.2.1 Computing the watermarking capacity

Let (K, ψ) be a watermarking problem, and d ∈ N. Given a weighted structure in K, we consider the problem
of counting the exact number of d-global distortions with respect to ψ. We call this problem #Mark(≤ d).
We do not know the exact time complexity of #Mark(≤ d) on the class of all structures, but we show that
a simple variation of this problem is as hard as computing the number of accepting paths of any NP Turing
machine, hence is complete for the classical complexity class #P [112]. In the following, we restrict our
attention to 1-local distortions that entail a +1 alteration on an initial segment of the active tuples of size k.
For a given watermarking problem (K, ψ) and d ∈ N, we call #kMark(≤ d) the number of such structures
with global distortion at most d:

Definition 20 (#kMark(≤ d) problem)

• INPUT: a weighted structure (G,W) in K.

• OUTPUT: the number of 1-local, d-global distortions (G,W ′) of (G,W) such that, forW = {b̄1, . . . , b̄k, . . .}:

∀i ∈ {1, . . . , k},W ′(b̄i) =W(b̄i) + 1.

We prove the following result:

Theorem 21 For every d ∈ N, #(d+ 1)Mark(≤ d) is #P -complete on the class of all structures.

We start by proving the NP-completeness of a class of related problems, that we callBipartite-Mark(d),
for d ∈ N. Let G = (V1, V2, E) be a bipartite graph. A mark δ for G is a map from V2 to {−1, 0, 1}. For a
given mark δ, the distortion ∆(v) of a vertex v ∈ V1 is the sum of alterations of its neighbors, that is:

∆(v) =
∑

v′∈V2:E(v,v′)

δ(v′).

Definition 22 (Bipartite-Mark(d) problem)

• INPUT: a bipartite graph G = (V1, V2, E) where V2 = {v21, v22, . . . , v2(d+1),...}.

• OUTPUT: true if there exists a mark δ such that:

– for all i ∈ {1, . . . , d+ 1}, δ(v2i) = +1 ;

– for all v ∈ V1, |∆(v)| ≤ d.

Lemma 23 For every d ∈ N, Bipartite-Mark(d) is NP-complete.

Proof. For a given d ≥ 1, we proceed by reduction from 3Sat. Let x1, . . . , xn be a set of boolean variables
and {C1, . . . , CN} be a set of clauses with exactly three literals. We will encode this 3Sat instance into a
bipartite graph G = (V1, V2, E). The set V1 is composed of:
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Minus gadget

bv1i

b v21
b v22
. . .

b v2(d+1)

b v2negi

Variable gadgets

bv1x

b v2x

b v2neg1
. . .

b v2negd

bv1x̄

b v2x̄

b v2neg1
. . .

b v2negd

bv1x′

b v2x
b v2x̄
b v2neg1
. . .

b v2negd+1

bv1x′′

b v2x
b v2x̄
b v21
. . .

b v2(d−1)

Clause gadget

bv1Ci

b v2x1

b v2x̄2

b v2x3

b v2neg1
. . .

b v2negd+1

Figure 3.1: Gadgets for 3Sat reduction

• vertices v11, v12, . . . , v1(d+1),

• vertices v1xi
, v1x′

i
, v1x′′

i
, v1x̄i

for each variable xi in the 3Sat instance,

• vertex v1Ci
for each clause Ci in the 3Sat instance.

The set V2 is composed of:

• vertices v21, v22, . . . , v2(d+1) for its first d+ 1 elements,

• vertices v2neg1 , v2neg2 , . . . , v2negd+1
,

• for each variable xi in the 3Sat instance, vertices v2xi
and v2x̄i

.

We now turn to the description of edges in E. Figure 3.1 shows the set of gadgets that we are going to
use. First, recall that, by definition, any solution to Bipartite-Mark(d) will put a +1 alteration on vertices
v21, v22, . . . , v2(d+1). We obtain a set of useful -1 alterations by considering the Minus gadget. In order to
guarantee distortion at most d on vertex v1i, that is, |∆(v1i)| ≤ d, the only possible marks δ have to set a
-1 alteration on vertex v2negi . We copy this Minus gadget for vertices (v11, v2neg1 ), . . . , (v1(d+1), v2negd+1

) in
order to enforce (d+ 1) alterations -1 on vertices v2neg1 , . . . , v2negd+1

.
Second, we encode each boolean variable xi with Variable gadgets. The first two gadgets above ensures

that vertices v2x and v2x̄ can only support a 0 or +1 alteration (-1 is not possible because, due to v2negi ,
the distortion would be smaller than −d). The last two Variable gadgets below ensures that the sum of
alterations on v2x and v2x̄, that is δ(v2x)+ δ(v2x̄), is equal to 1 (if d = 1, edges from v1x′′ to v2i are omitted).
As a conclusion, any valid mark has to choose between v2x or v2x̄ for a +1 alteration, and is forced to set a
zero alteration on the remaining vertex. This mimics the boolean valuation of variable x.

It remains to encode clauses. The Clause gadget of Figure 3.1 encodes for example clause x1 ∨ x̄2 ∨ x3.
Each literal x or x̄ is encoded by an edge to vertex v2x or v2x̄. Because of the edges to v2neg1 , . . . , v2negd+1

,
at least one vertex encoding literals has to bear a +1 alteration so that the global distortion is greater than
−(d+ 1).

This construction guarantees that a Bipartite-Mark(d) solution corresponds to a #(d+1)Mark(≤ d)
solution, and reciprocally. For a solution to the 3Sat instance, it is sufficient to choose δ(v2x) = +1 for
each variables positively valued, and δ(v2x) = 0 otherwise. All other alterations are determined by this
initial choice and the graph constraints. Conversely, given a solution of the Bipartite-Mark(d) problem,
a satisfying valuation for the 3Sat instance is obtained by valuating positively all variables x such that
δ(v2x) = +1, and by valuating negatively the remaining variables.



Finally, the encoding of N clauses on n variables requires d2 + 4d+ 6n+N + 3 vertices and d2 + 3d+
n(4d+6)+N(d+4)+ 2 edges. The overall size of the produced graph is then linear in n and N , and hence
in the size of the 3Sat input instance.

As a conclusion, this reduction from 3Sat shows that searching a valid mark for distortion d ≥ 1 is
an NP-hard problem. It is also in NP by guessing a mark and checking conditions. Hence the problem is
NP-complete. This result generalizes to the special case d = 0 with a similar construct. �

We can now prove the theorem.
Proof. [of Theorem 21] By reduction from Bipartite-Mark(d). We see the input bipartite graph G =
(E, V1, V2) as a structure, and consider the trivial query ψ(u, v) = E(u, v). We choose a weight function
W such that ∀v ∈ V2,W(v) = 0. Observe that W = V2. Deciding if this structure has a watermarked
weight function W ′ with d + 1 alterations +1 on its first elements with global distortion less or equal to d
is equivalent to the decision of Bipartite-Mark(d). This latter problem is NP-complete, by Lemma 23.
Furthermore, the used reduction is parsimonious, that is, preserves the number of solutions. Hence, for
any d ∈ N, #(d + 1)Mark(≤ d) is #P -complete, since counting the number of solutions of a NP-complete
problem through parsimonious reductions is #P -complete. �

3.2.2 Impossibility results

The difficulty of finding distortions that preserve the weight of all sets ψ(ā,G) is related to the intrication of
these sets. A powerful tool to study this intrication is the Vapnik-Chervonenkis dimension. Let V be a set
and C be a family of subsets of V . A set U ⊆ V is shattered by C if C∩U = 2U , where C∩U = {C∩U |C ∈ C}.
The VC-dimension V C(C) of C with respect to V is the maximum of the sizes of the shattered subsets of V ,
or∞ if the maximum does not exist. For a formula ψ(ū, v̄) and a structure G, let C(ψ,G) = {ψ(ā,G)|ā ∈ Ur},
and V C(ψ,G) = V C(C(ψ,G)). We say that ψ has bounded VC-dimension on a class of structures K if there
exists k ∈ N such that, for all G ∈ K, V C(ψ,G) ≤ k. We say that the VC-dimension is maximal if, for all
G ∈ K, V C(ψ,G) = |WG,ψ|, hence when the full set of active tuples is shattered. In this situation, guaranteed
watermarking for arbitrary structures, preserving even trivial queries is impossible.

Theorem 24 In the non-adversarial view model, a problem (K, ψ) with maximal VC-dimension does not
possess a scalable watermarking protocol.

Proof.
Let (K, ψ) be a watermarking problem with maximal VC-dimension. With at most k distorted weights,

one can produce at most
∑k

i=1

(

|W |
i

)

2i ≤ (2|W |)k different weighted structures, encoding at most O(k ln |W |)
bits. Suppose that there exists a scalable watermarking protocol encoding |W |q bits for a given q with

distortion d0. Then it must use a mark δ with at least h(|W |) = 1
2

|W |q

ln |W | distortions with the same sign, say

+1. The function h is increasing with respect to |W | (since |W |q > ln |W |), and there exists n0 such that
h(n0) > d0.

We now consider a structure Gn0
which universe has n0 elements. The watermarking protocol must

add distortion +1 to weights from a set of elements P with |P| = h(n0) > d0. Since, by hypothesis,
V C(ψ,Gn0

) = |WGn0
,ψ|, there exists a subset S of Us of size |WGn0

,ψ| which is shattered by sets in C(ψ,Gn0
).

But since sets in C(ψ,Gn0
) are all subsets of W , there exists only one possible S: S = W (sets in C(ψ,Gn0

)
can not shatter sets outside W ). So the set W is shattered by results of queries, and there exists a tuple ā
such that P = ψ(ā,G). Hence distortion on ψ(ā,Gn0

) is greater than d0, which contradicts the hypothesis
to have a scalable watermarking protocol. �

It is worth noting that this impossibility argument can be followed with even trivial queries:

Theorem 25 In the non-adversarial view model, there exists an FO formula ψ and a class of structures
that do not possess a scalable watermarking protocol preserving ψ.

Proof. It is sufficient to consider the formula ψ(u, v) ≡ E(u, v) and the class of structures Gn with 2n+ n
vertices, and the simple binary relation E that links the ith vertex of the first 2n vertices to the ith subset
Wi of the n last vertices. The set of active tuples is clearly shattered by ψ and Theorem 24 applies. �
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Remark 26 Unbounded VC-dimension is not sufficient: one can construct a class of structures Gn of size
n where only half of the active tuples are shattered (V C(ψ,Gn) = |W |/2), with a (|W |/4, 0)-watermarking
protocol. Consider the class of structures Gn with 2n/2+1+n vertices, and the simple binary relation E that
links the ith vertex of the first 2n/2 vertices to the ith subset of the n/2 last vertices, and the 2n/2+1th vertex
a to all of the n last vertices. The watermarking problem defined by the query ψ(u, v) = E(u, v) has n active
tuples and unbounded VC-dimension. The last n/2 vertices of the active tuples are involved only for query
E(a,Gn). Putting balanced distortions (+1,−1) or (−1,+1) only on their n/2 weights gives a watermarking
protocol encoding n/4 bits with distortion 0.

3.2.3 Lower bound on distortion

The previous results shows that, as soon that all subsets of size d of W can be captured by ψ, there is no
scalable watermarking protocol with error smaller than d/2. This yields the following lower bound:

Lemma 27 For any d ∈ N, for any class of structures K and any logic with equality, there exists a query ψ
such that (K, ψ) does not possess a scalable watermarking protocol with error smaller than d.

Proof. For d = 1, consider the following query:

ψ(u1, u2, v) ≡ (v = u1) ∨ (v = u2).

On any class of structures, this query captures all subsets of active tuples of size 2. If a scalable watermarking
protocol exists, for large enough structures it must use at least 2 weight alterations of the same sign, say
(+1). Hence there exists parameters (a1, a2) capturing these two tuples, and distortions exceeds d = 1,
which contradicts the hypothesis. This argument generalizes for any value of d. �

3.3 Watermarking while preserving local queries

3.3.1 Locality of queries

The previous sections show that, on generic structures, even trivial queries do not possess a scalable wa-
termarking protocol. In this section we limit the relationship between tuples in the structure, and use the
locality of queries to provide a scalable watermarking protocol. Given a structure G = 〈U , R1, . . . , Rt〉,
its Gaifman graph [33] is the new structure 〈U , E〉, where (a, b) ∈ E if and only if there is a relation
Ri in G and a tuple c̄ in Ri such that a and b appear in c̄. The distance d(a, b) between two elements
a and b is the length of a shortest path between a and b in the Gaifman graph of G. If no such path
exists, d(a, b) = ∞. Given a ∈ U , ρ ∈ N, the ρ-sphere Sρ(a) is the set {b|d(a, b) ≤ ρ}, and for a tu-
ple c̄, Sρ(c̄) = ∪a∈c̄Sρ(a). Given a tuple c̄ = (c1, . . . , cn), its ρ-neighborhood Nρ(c̄) is defined as the
structure 〈Sρ(c̄), R1 ∩ Sρ(c̄)r1 , . . . , Rt ∩ Sρ(c̄)rt , c1, . . . , cn〉, where ∀i, Ri has arity ri. Let ≈ denotes iso-
morphism of structures. We consider the equivalence relation ≈ρ on elements of a structure G where
ā ≈ρ b̄ if and only if Nρ(ā) ≈ Nρ(b̄). Finally, let ntp(ρ,G) be the number of equivalence classes of the
relation ≈ρ. We introduce the important notion of the locality rank of a query:

Definition 28 Given a query ψ(u1, . . . , ur), its locality rank is a number ρ ∈ N such that, for every
G ∈ STRUCT [τ ] and two r-ary tuples ā1 and ā2 of G, Nρ(ā1) ≈ Nρ(ā2) implies G |= ψ(ā1) ⇔ G |= ψ(ā2).
If no such ρ exists, the locality rank of ψ is ∞. A query is local if it has a finite locality rank. A language is
local if each of its queries is local.

For example, Gaifman’s theorem [33] states that every first-order (relational calculus) query is local. The
locality rank of a formula ψ is basically exponential in the depth of quantifier nesting in ψ, but does not
depend on the size of G.
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Figure 3.2: Instance and neighborhoods

Example 29 We consider a graph instance G = 〈U , R〉 and the query ψ(u, v) ≡ R(u, v) that enumerates all
elements v at distance 1 of element u. This query has locality rank 1: it is sufficient to look at a neighborhood
of radius 1 around u and v to devise if G |= ψ(u, v). Figure 3.2 shows G and neighborhoods N1(a) and N1(d)
of elements a and d. Observe that there are 3 distinct neighborhoods of radius 1 (up to isomorphism), and
that N1(a) ≈ N1(b), N1(d) ≈ N1(e) and N1(c) ≈ N1(f).

3.3.2 Watermarking and locality

In the sequel, we restrict our attention to structures in STRUCTk[τ ]: structures with Gaifman graph of
bounded degree k. An example of such structures is the class of graphs of bounded degree. Our aim is now
to prove the following result:

Theorem 30 In the non-adversarial view model, there exists a scalable watermarking protocol preserving
any local query ψ(u1, . . . , ur, v1, . . . , vs) on STRUCTk[τ ], with capacity Ω(|W |) and constant global distortion
r.

Proof. Let ψ be a formula of locality rank ρ, and 〈U , E〉 be the Gaifman graph of G. Let type(b̄) ∈ N be
the isomorphism type of any element b̄ ∈W with respect to relation ≈ρ. We obtain a set P of watermarking
positions by the following algorithm. Let t0 be the isomorphism type of an equivalence class of ≈ρ on W
with maximal size (that is, ∀t 6= t0, |{b̄|type(b̄) = t}| ≤ |{b̄|type(b̄) = t0}|). Since there is a maximal number
K of such isomorphism types, depending only on k, then |{b̄|type(b̄) = t0}| ≥ |W |/K. We build the set
P of watermarking positions by repeatedly choosing an element b̄ in {b̄|type(b̄) = t0} and by removing all
elements in its 2ρ-neighborhood. Since a 2ρ-neighborhood has at most sk2ρ elements, the obtained set P
has size at least |W |/Ksk2ρ.

Then, we construct marks δP according to the set P by assigning a zero distortion on tuples outside P ,
and by assigning +1 or −1 distortions on tuples in P , such that they sum up to 0:

∑

b̄∈P

δP(b̄) = 0, and, ∀b̄ 6∈ P , δP(b̄) = 0.

There is 2Ω(|W |) possible such marks δP . We now show that for any tuple ā, distortion ∆(ψ(ā,G)) =
|W ′(ψ(ā,G))−W(ψ(ā,G))| is a constant. First, observe that

ψ(ā,G) = (ψ(ā,G) ∩ P)
⊎

(ψ(ā,G)/P),

where
⊎

denotes disjoint union. Since δP(b̄) = 0 whenever b̄ 6∈ P , we have W ′(b̄) =W(b̄) and

∆(ψ(ā,G)) = ∆(ψ(ā,G) ∩ P).
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Second, for B = Sρ(ā)
s, the set of s-tuples in the neighborhood of tuple ā, we have

∆(ψ(ā,G)) ≤ ∆(ψ(ā,G) ∩ (P ∩B)) + ∆(ψ(ā,G) ∩ (P/B)).

Because of the distance between ā and elements in P , the maximal size of B ∩ P is r (this occurs when
each element a1, . . . , ar of tuple ā is in the neighborhood of an element in P).

Notice also that for b̄i, b̄j ∈ P/B, because of the choice of P and because b̄i and b̄j are not in the
neighborhood of ā, (ā, b̄i) and (ā, b̄j) are isomorphic. Hence, due to the locality of ψ, G |= ψ(ā, b̄i) ↔ G |=
ψ(ā, b̄j). Then, by the definition of the watermarking method,

∑

b̄∈P

δP(b̄) = 0.

Then
∑

b̄∈P

∆(ψ(ā, b̄)) = 0,

and finally
∑

b̄∈P/B

∆(ψ(ā, b̄)) ≤ |B| ≤ r.

The overall distortion ∆(ψ(ā,G)) is then smaller than r.
The scheme is deployed deterministically as follows. Given (G,W) and ψ, a precomputation phase, done

once, generates the set P . Given a word m of length l to hide, the marker returns (G,Wm), where Wm is
the mth weights distortion of tuples in P .

Once a suspect data server is localized, the detector (acting as a final user), asks the data server for
all possibles queries, and obtains weights described in W∗. By comparing them with the original ones, the
corresponding subset of W∗ is identified and message m is recovered.

The marker performs O(ntp(ρ,G)|Ur |) isomorphism tests on constant size graphs. The detector checks
O(|W |) values by querying the suspect server. Notice that the marker needs only to compute P once, and
can compute from it every watermarked instance. �

Combined with the lower bound of Lemma 27, there exist queries with r parameters with watermarking
error at least r. Hence the previous result is tight.

3.4 Preserving MSO-queries on trees and tree-like structures

3.4.1 Trees and automaton-definable queries

In this section we consider the problem of watermarking labeled trees and tree-like structures, while preserv-
ing MSO-queries. These structures can easily model Xml documents.

Example 31 Figure 3.3 shows an Xml document with one of its possible 1-local distortion. We consider
the following parametric XPATH query:

ψ(a, v) = /school/student[name=a]/exam,

that specifies the set of exam results of persons whose first name is a. The goal is to watermark the document
while preserving the sum of these exam results. This sum is W(ψ(Robert,G)) = 28 on the original document,
and has global distortion 2 on the second.

Xml deals actually with unranked trees, but several methods exist to encode them into binary trees (as
in [78]), so we will restrict our attention to the binary case. We will use [37] notion of definability of a k-ary
formula by a tree-automaton.

A binary tree is viewed as a {S1, S2 �}-structure, where S1, S2 and � are binary relation symbols. A tree
T = 〈T, ST

1 , S
T
2 ,�T 〉 has a set of nodes T , a left child relation ST

1 and right child relation ST
2 . Relation �T



school

student

name

John

exam

11

student

name

Robert

exam

16

student

name

Robert

exam

12

school

student

name

John

exam

11

student

name

Robert

exam

15

student

name

Robert

exam

11

Figure 3.3: An Xml documents and a possible 1-local distortion

stands for the transitive closure of ST
1 ∪ST

2 , the tree-order relation. Given a subset U of nodes in T , we denote
by lca(U) the least common ancestor of all elements in U according to order �T . A weighted tree (T ,W) is
a tree with a weight assignmentW : T s → N. Given a finite alphabet Σ, let τ(Σ) = {S1, S2,�}∪{Pc|c ∈ Σ}
where for all c ∈ Σ, Pc is a unary symbol. A Σ-tree is a structure T = 〈T, ST

1 , S
T
2 ,�T , (P T

c )c∈Σ〉, where its
restriction 〈T, ST

1 , S
T
2 ,�T 〉 is an ordered binary tree and for each a ∈ T there exists exactly one c ∈ Σ such

that a ∈ P T
c . We denote this unique c by σT (a).

We consider trees with a finite number of distinguishable pebbles placed on vertices. For some k ≥ 1, let
Σk = Σ × {0, 1}k. For a Σ-tree T and a tuple ā = (a1, . . . , ak) of vertices of T , let Tā be the Σk-tree with
the same underlying tree as T and σTā(b) = (σT (b), α1, . . . , αk), where αi = 1 if and only if b = ai.

A Σ-tree automaton is a tuple B = (Q, δ, F ). Set Q is a set of states, and F ⊆ Q is a set of accepting
states. Function δ : ((Q ∪ {∗})2 × Σ) → Q is the transition function (∗ 6∈ Q). A run ρ : T → Q of B on a
Σ-tree T is defined as follows. If a is a leaf then ρ(a) = δ(∗, ∗, σT (a)). If a has two children b1 and b2, then
ρ(a) = δ(ρ(b1), ρ(b2), σ

T (a)). If a has only a left child b then ρ(a) = δ(ρ(b), ∗, σT (a)) and similarly if a has
only a right child b, ρ(a) = δ(∗, ρ(b), σT (a)). Finally, a Σk+s-tree automaton defines a s-ary query with k
parameters B(ā, T ) = {b̄ ∈ T s|B accepts Tāb} on each Σ-tree T . Let W =

⋃

ā B(ā, T ).
It is well known that MSO-sentences and tree-automata have the same expressive power. For formula

with free variables, a Σk-tree automaton is equivalent to an MSO-formula ψ(u1, . . . , uk) of vocabulary τ(Σ)
if for all Σ-tree, B(T ) = ψ(T ).

Lemma 32 ( [37]) For any MSO-formula ψ(u1, . . . , uk) of vocabulary τ(Σ) there exists a Σk-tree automa-
ton B that is equivalent to ψ.

3.4.2 Preserving MSO-queries

Our final goal is now to prove the following theorem:

Theorem 33 In the non-adversarial view model, there exists a scalable watermarking protocol preserving
any MSO-definable query on trees or classes of structures with bounded clique-width or bounded tree-width.

To prove this result, we first prove the following theorem, in order to apply Lemma 32.

Theorem 34 In the non-adversarial view model, given a query ψ defined by a tree automaton with m states,

there exists a scalable watermarking protocol preserving ψ with capacity |W |
4m .

We begin by the following lemma:

45



Lemma 35 Let B be a Σ2-tree automaton with m states. Then for every Σ-tree T , there exists n = |W |/4m
distinct sets V1, . . . , Vn ⊆W and n distinct pairs (bi, b

′
i) ∈ Vi2 of distinct elements such that ∀i 6= j, Vi∩Vj =

∅, and ∀a ∈ T :
a 6∈ Vi → (bi ∈ B(a, T )↔ b′i ∈ B(a, T )).

Proof. Informally, we will iterate a construct from [37]: from the bottom-up, we form |W |/4m subtrees
of T of size at least 2m. Since the automaton has only m states, one can find in each Vi a pair of vertices
such that the automaton ends in the same state on a given subtree, for all a 6∈ Vi. Then, the automaton
can not distinguish between these elements. By using a pair marking on such pairs, the overall distortion is
controlled.

More formally, from the bottom-up of T , let U1 be a minimal subtree with respect to inclusion with
at least 2m elements. Since T is binary, U1 contains at most 4m elements. We can repeat this construct
2n = ⌊|T |/4m⌋ times, obtaining sets U1, . . . , U2n.

We consider the binary relation F on H = {U1, . . . , U2n} to be the set of all pairs (Ui, Uj) such that
lca(Ui) ≺T lca(Uj), and there is no k such that lca(Ui) ≺T lca(Uk) ≺T lca(Uj). Then (H,F ) is a forest
with 2n vertices and at most 2n − 1 edges. Therefore there is at most n elements of this forest with more
that 1 child. Without loss of generality, suppose that U1, . . . , Un have at most one child.

If Ui has no child, let Vi = {v ∈ T |lca(Ui) �T v}, the elements of the subtree of T rooted at lca(Ui).
If Ui has one child Uj , then let Vi = {v ∈ T |lca(Ui) �T v and lca(Uj) 6�T v} the set of all vertices of the
subtree of T rooted at lca(Ui) that are not in the subtree rooted at lca(Uj). Observe that V1, . . . , Vn are
pairwise disjoint.

Let 1 ≤ i ≤ n. If Ui has no child, since |Ui| ≥ 2m is greater than the number m of automaton states,
there exists two distinct elements bi, b

′
i ∈ Ui such that:

For all a 6∈ Vi, automaton B running on Tabi or Tab′
i
reaches lca(Ui) in state qi.

Now if Ui has a child Uj , and q1, . . . , qm are the states of B, we define pairs bi,k, b
′
i,k for 1 ≤ k ≤ m by

induction on k. Suppose 1 ≤ k ≤ m and that bi,l and b
′
i,l are already defined for l < k. Since |Ui| ≥ 2m

we have |Ui\{bi,1, . . . , bi,k−1}| > m. Therefore there exists distinct elements bi,k, b
′
i,k ∈ Ui\{bi,1, . . . , bi,k−1}

such that:

There is a state qi,k of B such that if a 6∈ Vi, the automaton running on either Tabi or Tab′
i
and leaving

lca(Uj) in state qk reaches lca(Ui) in state qi,k.

Finally, if Ui has no child, and a 6∈ Vi, B accepts Tabi if and only if B accepts Tab′
i
. If Ui has one child

Uj , a 6∈ Ui and B ends in lca(Uj) in state qt, B accepts Tabi,t if and only if B accepts Tab′
i,t
. �

We now claim that pairs (bi, b
′
i) are good candidates for a watermarking algorithm.

Proof. [of theorem 34] Let (b1, b
′
1), . . . , (bn, b

′
n) be the n distinct pairs of

Lemma 35, W ′ be a subset of {1, . . . , n}, and consider a mark that applies (+1,−1) or (−1,+1) distor-
tions on pairs (bi, b

′
i). There are 2n such marks that sums all to zero. For a Σ2-tree automaton, let a ∈ T .

Suppose there is a j such that a ∈ Vj . Notice that in this case j is unique. Then for all i 6= j, a 6∈ Vi
and B accepts Tabi if and only if it accepts Tab′

i
. Since distortion on weights bi and b′i is zero, distortion

on W(B(a, T )) is limited by the pair bj, b
′
j . This distortion is at most 1. Otherwise, if ∀i, a 6∈ Vi, then the

induced distortion of all pairs is 0. Finally, the number of pairs is |W |/4m. This result generalizes to a
Σr+s-tree automaton with distortion at most r.

The time complexity of this method corresponds to a full traversal of the tree T to form subsets of size
at most 4m, and for each set, to a search of pairs of nodes that force the automaton to end in the same
state. It takes at most |T | steps to visit the tree and (4m)2 runs of the automaton on |T |/4m sets. The
overall complexity is then O(m|T |). �

We can now end with the proof of the main theorem.
Proof. [of theorem 33]

We prove the existence of a scalable watermarking protocol preserving MSO-formulas on (1) tree struc-
tures, (2) bounded clique-width structures and (3) bounded tree-width structures:



1. Let ψ be an MSO-formula on trees. By applying Lemma 32, we obtain an automaton B equivalent to
ψ. Then, by Theorem 34, there is a corresponding scalable watermarking protocol preserving B, hence
ψ, on trees.

2. For structures with bounded clique-width, we apply Lemma 16 of [37]: given a structure G with
bounded clique-width, we can construct a labeled parse-tree T such that, for any MSO-formula ψ(ū)
there exists a MSO-formula ψ̃(ū) such that ψ(G) = ψ̃(T ). This reduce the bounded clique-width case
to the tree case and, by step (1) of this proof, there exists a scalable watermarking protocol preserving
ψ̃, hence ψ, on bounded clique-width structures.

3. Finally, structures with bounded tree-width k have a bounded clique-width of at most 2k. Then,
by step (2) of this proof, there exists a scalable watermarking protocol preserving MSO-formulas on
bounded tree-width structures.

�

If we lower the restriction on the class of structures, scalability is lost:

Theorem 36 In the non-adversarial view model, there exists an MSO formula ψ and a class of structures
with unbounded tree-width that do not possess a scalable watermarking protocol preserving ψ.

Proof.
Example 19 in [37] exhibits aMSO formula ψ with unbounded V C-dimension on the class of grids, which

has unbounded tree-width. This shows actually that for all grid G, the set
⋃

ā ψ(ā,G) is shattered by sets in
{ψ(ā,G) : ā ∈ Ur}. The corresponding watermarking problem with the same formula ψ on the same class of
structures is such that for all G,WG,ψ =

⋃

ā ψ(ā,G). Hence for all G, its set of active tuples is shattered, so
V C(ψ,G) = |WG,ψ|, showing by Theorem 24 that no scalable watermarking protocol is possible. �

3.5 Adversarial model

Up to now, we considered a non-adversarial model. In the adversarial model, data servers can perform any
reasonable distortion on the watermarked structure Gm, or on their query answers. The reasonable limit
of the global distortion is denoted d′. Once data servers are allowed to perform distortions, deterministic
detectors are no longer possible: as a matter of fact, an unstoppable strategy for the attacker is to guess
the inserted mark and its position, and to modify weights accordingly. Hence we consider detectors with a
controlled probability of error δ, where δ is chosen by the data owner (with for example δ = 10−6).

More formally, a probabilistic algorithm has the ability to pick a random bit b at each step, and to adapt
its computation according to the value of b. Hence a given computation is a path in the tree of all possible
random choices along with its corresponding probability: both form a probability space Ω. We consider a
watermarking protocol that may succeed with high probability and may fail (stop and abandon), or produce
an incorrect result with a small probability:

Definition 37 Given 0 ≤ δ < 1 and l, d, d′ ∈ N, a (l, d, d′, δ)-watermarking protocol preserving ψ in the
adversarial view model is a (l, d)-watermarking protocol preserving ψ such that the detector, using only
answers A(ψ,G∗) from a d′-global distortion G∗ of Gm, verifies:

Pr
Ω
[D outputs m] ≥ 1− δ.

[61] proposed a general technique to turn a non-adversarial protocol into an adversarial one. Their
result is quite general as it applies to their edge model (that corresponds to our view model), and also to
their distance model, that corresponds to a detector using only the aggregate value W(ψ(ā,G)) of the query
answer, and not all the set A(ψ(ā,G)) (we will elaborate on this distinction in the conclusion section). We
recall their result here for completeness, adapted to our view model, and refer the reader to the original
paper for a more precise exposition.
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Two natural hypothesis are used to constraint the behavior of the attacker. Let (G,W) be an original
structure, (G,W ′) be a watermarked version, and (G,W∗) be a voluntary alteration of (G,W ′). The first
assumption indicates that there is a limit to the distortion the attacker can add to a structure, imposed by
its intended use:

Assumption 38 (Bounded distortion) The attacker respects the global distortion assumption, for an
absolute constant d′, that is, for all ā ∈ Us,

|W∗(ψ(ā,G)) −W(ψ(ā,G))| ≤ d′.

It is noteworthy that there is no relationship between d′ and the owner maximal distortion d. This allows a
large freedom to the attacker.

Let S be the set of marks used by the marker algorithm, and Q be the set of tuples queried by the detector.
The second assumption guarantees the probabilistic independency between the set of queries Q and the set
of marks S. Given a mark δ :W → Z, we define Wδ such that, for all b̄ ∈W , Wδ(b̄) =W(b̄) + δ(b̄).

Definition 39 A set Q ⊆W is low-bias with respect to S ⊆ {−1, 0,+1}W if for all ā ∈ Q,

|δ(ā)| ≤ 1 and ∀z ∈ {−1, 0,+1}, Pr
δ∈S

[δ(ā) = z] ≤ 1

2
.

Definition 40 Let γ, p > 0. A set S ⊆ {−1, 0,+1}W is (γ, p)-unpredictable if for any Q ⊆ W such that Q
is low-bias with respect to S and |Q| = ω(1), any strategy W∗ available to the adversary satisfies

Pr
δ∈S

[

∑

ā∈Q

[W∗(ā) = δ(ā)] > (
1

2
+ γ)|Q|

]

< p.

Assumption 41 (Limited knowledge) The attacker has limited knowledge on the mark distribution of
the owner, that is, for any S ⊆ {−1, 0, 1}W such that |S| = ω(1), S is (γ, p)-unpredictable.

This second assumption indicates that the attacker does not know exactly what information has been
introduced into the structure (and does not know the original, non-marked structure). This models also the
situation where a server is indeed not malicious, but uses data from an other source, similar to the owner’s
database (false positive detection).

Khanna and Zane’s framework is the following. Given a watermarking protocol in the non-adversarial
model for ψ(u1, . . . , v1, . . . , vs), the framework requires a pair of distinct values v1, v2 ∈ {−1, 0, 1}, a set of
marks S ⊆ {−1, 0, 1}|W |, and a set of query parameters Q = {ā1, . . . , āL} ⊆ Us such that:

• Q and S have a significant size, that is |Q|, |S| ≥ ω(1);

• Q is low bias with respect to S;

• The allowed global distortion is d, that is, for all δ ∈ S, for all ā ∈ Us

|Wδ(ψ(ā,G))−W(ψ(ā,G))| ≤ d.

• Any set of query answers can be mapped to a unique δ ∈ S: for any D : Q→ {v1, v2}, there is a unique
δ ∈ S such that

∀ā ∈ Q,Wδ(ā) =W(ā) +D(ā).

Theorem 42 [61] Under the Bounded distortion and Limited knowledge assumptions, given γ < 1
9(d′+1)

and p ≥ e−o(L), any non-adversarial scalable watermarking protocol consistent with the framework can be
used to encode O(L) bits in the adversarial model, with a detector’s error probability at most max{2p, o(1)}.



Observe that the watermarking robustness is obtained by lack of knowledge (an attacker knows there is a
mark, but do not know its amplitude and distribution) and not by using the intractability of a computational
problem, like in the cryptographic setting. All the watermarking protocols presented in this chapter comply
with Khanna and Zane’s framework, so extend to the adversarial setting.

Corollary 43 There exists a scalable watermarking protocol in the adversarial view model preserving

• local queries on structures with bounded degree Gaifman graph;

• MSO-queries on trees and structures with bounded clique-width or tree-width.

Proof.
By Theorem 30 and 33, there exists a non-adversarial scalable protocol for the above logical fragments

and classes of structures. Let d ∈ N be the allowed global distortion.
For local languages, by the proof of Theorem 30, there is a subset P ⊆ W such that any distortions δ

restricted on P summing up to 0 lead to a correct structure with global distortion smaller than d. We split
P into disjoint pairs V1, . . . , Vn. For any pair Vi = {b̄i1, b̄i2}, the set of marks S is obtained by choosing
uniformly and independently between {δ(b̄i1) = +1, δ(b̄i2) = −1} or {δ(b̄i1) = 0, δ(b̄i2) = 0}, for each set Vi.
Any such choice also leads to an overall distortion on P smaller than d. For MSO-queries, Lemma 35 also
provides such sets P and V1, . . . , Vn, suited for the same set of marks S. Let v1 = +1 and v2 = 0. We choose
the set of query Q = {b̄11, . . . , b̄1n}, that is the first tuple of each pair.

Because the considered protocols are scalable, |P| = 2n is Ω(|W |), hence |Q| and |S| are ω(1), and
moreover |S| is exponential in |Q|. Q is low-bias with respect to S because alterations in S are chosen
independently and uniformly. The maximum distortion implied by any δ is smaller than the prescribed d.
For any valuation D : Q → {v1, v2} = {1, 0} of recovered values from Q by the detector, we can find the
unique corresponding mark δ:

∀b̄i1 ∈ Q, δ(b̄i1) = D(b̄i1), δ(b̄i2) = −D(b̄i1).

This protocol corresponds to the framework. Hence, by Theorem 42, O(n) bits can be encoded such that
the error probability of the detector is at most max{2p, o(1)}. Finally, n = ⌈|W |/2⌉ = Ω(|W |). Thus, there
exists an adversarial scalable protocol for the considered logical fragments and classes of structures. �

We do not consider here the general problem of collusion attacks, where servers combine several water-
marked copies of the database to erase the watermark (a full exposition is given in [67]).

3.6 Instance model and non-parametric queries

In this section we consider two easier models that guarantee a huge watermarking bandwidth.

Instance model In this model, the detector as full access to the suspect instance: the marker can hide
information outside the set of active tuples W . Let ψ(u1, . . . , ur, v1, . . . , vs) be the query to be preserved.
The corresponding watermarking bandwidth then depends on the size of W , relatively to the size of the set
Us of all possible tuples:

Theorem 44 In the instance model, there exists a (|Us| − |W |, 0)-watermarking protocol preserving any
query ψ(u1, . . . , ur, v1, . . . , vs).

Proof. Let F = Us\W . Hence, any tuple in F does not participate in any set ψ(ā,G), thus the
corresponding weights have no impact on any W(ψ(ā,G)). By putting a distortion 0 or (+1) on each tuple
in F , |F | bits can be hidden with global distortion 0. The time complexity related to this protocol corresponds
to the computation of the set of active tuples W . �

If |Us| − |W | is small, that is if W covers a non-negligible part of Us, the problem reduces to the view
model.
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Non-parametric queries Queries considered up to now have parameters fulfilled by data users. In the
present setting, users simply obtain the result of a set of predefined queries without parameters ψ1(v1, . . . , vs),
. . . , ψk(v1, . . . , vs) (observe that there is no parameter ū):

Theorem 45 There exists a (|W |, 0)-watermarking protocol preserving non-parametric queries ψ1(v1, . . . , vs),
. . . , ψk(v1, . . . , vs).

Proof. Let w̄ ∈ W be an active tuple. Being active, it belongs to the image of some ψi on G. Let
cl(w̄) = {i|w̄ ∈ ψi(G)} be the class of w̄, that is the set of query indices whose image contains w̄. Observe
that two tuples of the same class appear in the same set of queries. Hence, if their alterations sum up to zero,
the overall distortion on their common set of queries is also zero. There is at most 2k distinct classes. Hence,
there is set W0 ⊆ W of size at least |W |/2k such that ∀w̄, w̄′ ∈ W0, cl(w̄) = cl(w̄′). Consider any partition
of this set into pairs, and any mark that sums up to zero on each pair. This yields 2|W0| different marks.
The partition size is |W |/2k+1, which is Ω(|W |) (this bound can be enhanced to |W | − 2k by considering all
possible classes, and discarding at most 2k tuples because of odd-size classes). Computing the active tuples
W and their respective class can be done in one pass, and the overall time complexity of this protocol is
equivalent to the computation of the set W . �

3.7 Incremental watermarking

In this section we suppose that a data owner needs to update the database and propagates changes to
each of the registered data servers. The problem is then to maintain the watermark he has inserted. In
the sequel, an update u is a function that maps a weighted structure (G,W) to an updated structure
u((G,W)). Hence, a sequence of updates u1, . . . , un yields a sequence of weighted structures (G1,W1) =
u1((G0,W0)), . . . , (Gn,Wn) = un((Gn−1,Wn−1)).

Definition 46 For a class of updates U , a watermarking protocol maintaining U is a triplet (M,MU ,D),
where:

• M is a marker as in Definition 14, producing, given an original structure (G0,W0) and an initial word
m, a watermarked structure (G0m,W0

m);

• MU is a function that, given an update u ∈ U on the owner’s current structure (Gi,W i), outputs a
new watermarked structure (Gim,W i

m);

• D is a detector as in Definition 14, but for any watermarked structure (Gim,W i
m).

Let (G,W) be a weighted instance. We consider weights-only updates : a weights-only update u = (ā,∆)
where ā ∈ Us,∆ ∈ N, is an update that alters only the weight ā by the value ∆, and leaves the finite part
unchanged, that is:

• u((G,W)) = (G,W ′);

• W ′(ā) =W(ā) + ∆, and ∀ā′ 6= ā,W ′(ā) =W(ā).

For this class, updating the watermarked instance is easy.

Theorem 47 Previous watermarking protocols maintain weights-only updates.

Proof. First, recall that the set of active tuples, W , is not sensitive to the weights values, as its definition
rely only on the finite structure G. Then tuples involved in queries do not change during an update. Let δ
be the used mark. For a mark distortion

W i
m(ā) =W i(ā) + δ(ā),



in the current watermarked instance (Gim,W i
m), and a weights-only update (ā,∆) such that

W i+1(ā) =W i(ā) + ∆,

we propagate the same update ∆:
W i+1
m (ā) =W i

m(ā) + ∆.

The same global distortion is obtained for the new instance. Since the detector extracts the watermark by
computing the difference between the watermarked and original weights, for example,

W i+1
m (ā)−W i+1(ā) = (W i(ā) + ∆+ δ(ā))− (W i(ā) + ∆) = δ(ā),

it is only sensitive to the watermark δ, and not the update ∆. Hence, any weights-only update (ā,∆) on the
original structure is simply propagated as an update (ā,∆) on the watermarked one. �

3.8 Practical aspects

The proposed protocols are rather efficient: first, the set W of active tuples has to be computed. Then,
a set of watermarking positions P has to be computed once, and the proper watermarking and detection
operations takes linear time in |P|. Finding the set P has a linear time complexity according to the size of
the structure G: for example, the marker for local languages on structures with bounded-degree Gaifman
graph performs O(ntp(ρ,G)|Ur |) isomorphism tests on constant size graphs. The marker for an MSO query
ψ on trees requires O(m|T |) steps, where m is the size of the automaton simulating ψ. It is known [107]
that in the worst case, m is in tower(n), where n is the size of the formula ψ. The tower function is such
that tower(0) = 1 and for i ≥ 1, tower(i) = 2tower(i−1). The main difficulty from the computational point
of view is then the role of these huge constants.

Similarly, while error bounds presented in this work elaborate on previous ones, the watermarking rate
suffers from the involved constants. Indeed, the watermarking rate is |W |/Kskρ, where K is the number
of possible isomorphism type of connected graphs with at most k vertices, and ρ is the locality rank of the
query, which is exponential in the number of quantifier alternation of ψ. But the method of compensating
distortions is still fruitful in the practical context. As shown in [67], a heuristic search of pairs is likely to
succeed, yielding only a minute distortion. In this latter work, several practical questions not considered in
the present work were resolved. We mention them here for completeness:

• Identification of tuples weights, using key dependencies (in the present protocol, the owner has to
specify its instance as a finite part and a weighted part, which is not always trivial);

• Blindness of the protocol: the present protocol required the original data set for detection, which is
not always affordable. The (+1,−1) pairing was enhanced to an exchange of distinct bits between two
values;

• Robustness against collusion attack: malevolent data servers may compare their watermarked data
set in order to locate differences. By choosing marks in a collusion-secure fingerprinting code [110],
robustness against a prescribed collusion size in guaranteed.

3.9 Conclusion

In this chapter we considered the problem of watermarking databases or Xml documents, while preserving
a set of queries in a specified language L. We gave structural arguments for the existence of a watermarking
protocol related to the VC-dimension of sets definable in L. We showed that watermarking on arbitrary
instances is impossible, and that languages and structures with bounded VC-dimension established by Grohe
and Turán have also good watermarking properties. But we do not know if bounded VC-dimension is a
sufficient condition to obtain a scalable watermarking protocol.
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This work can be extended in various directions. First, one can elaborate on the error model: we
considered an absolute error on local and global distortions, while classical studies from the approximation
literature consider relative errors rather than absolute ones, because relative approximation is preserved
under composition. Observe however that a relative perturbation 1 ± ε of weights always yields a global
distortion of at most 1 + ε. Hence the watermarking problem becomes trivial. But a mix between local
absolute error and global relative error can be considered.

Second, our model is limited to the instance and view models. The adversarial framework from [61]
adapts also to a more general aggregate view model, where only the numerical results of queries is needed to
perform detection. We think that, by controlling the impact of alterations on queries for each parameter,
protocols for this aggregate model could be obtained for the same logical fragments and classes of structures
we considered here.

Third, our model does not capture exactly the result from [61] since shortest path queries are indeed an
optimization problem (notice however that the VC-dimension of weighted graphs with respect to their shortest
path is bounded). Optimization has received a large interest from the finite model theory community [62,86].
An interesting point is to find relationships between logical definability of such problems, mainly their
weighted versions [122], and their watermarking capacity.

Related publications

• David Gross-Amblard. Query-Preserving Watermarking of Relational Databases and
XML Documents. To appear in ACM Transactions on Database Systems (ACM TODS),
36(1), 2010 (tentatively scheduled).

• David Gross-Amblard. Query-Preserving Watermarking of Relational Databases and
XML Documents. In ACM Principles of Database Systems (PODS), 2003, pages 191–
201.



4
Practical aspects: the Watermill system

In this section we elaborate on the theoretical results of the preceding chapter to convey to a practical solution
of query-preserving watermarking. We also discuss other resolution methods like linear programming.

Our contribution In this section, we present Watermill [27], an optimized watermarking and finger-
printing system for relational databases. It features a built-in usability constraints definition language as well
as an efficient watermarking engine to override the limitations of the greedy method. Our system achieves
the following capabilities:

• Speeding-up the watermarking/fingerprinting process. We identify a set of constraints patterns for
which it is possible to translate the watermarking problem into an integer linear program (ILP). Valid
watermarks are found among the solutions of this system. These patterns capture what we call weight-
independent constraints, that include aggregate and join computations, which are central in the design
of usability constraints used in real-world datasets [77]. To produce valid watermarks, we propose two
approaches, both implemented in Watermill. The first one uses existing ILP solvers. The second one,
the Pairing algorithm, searches for pairs of compensating alterations. It performs a precomputation
to obtain a simple description of a huge set of valid watermarks. After precomputation, finding several
valid watermarks is immediate (linear time). This second approach is far much faster and best suits
huge databases (millions of tuples).

• Resisting attacks from a collusion of purchasers, while preserving usability: when distributing several
fingerprinted versions of a database, the owner is exposed to collusion attacks. In this setting, several
malicious purchasers may collude to compare their watermarked versions. By locating positions where
their documents differ, they can discover where alterations were performed. By modifying documents
on these positions, they might obtain a new version without a readable watermark, hence evading
detection. The design of efficient collusion-secure fingerprinting codes is a long-standing effort [17,
47, 110]. To achieve collusion-security, watermark messages must be carefully chosen from a precise
codebook, and inserted in the same positions in all the distributed versions. We show that for the
aforementioned weight-independent constraints, a family of good watermarks can be quickly found, so
that bit alterations are always performed at the same positions. Hence using a collusion-secure code
is possible, while preserving usability constraints.

4.1 Databases watermarking

4.1.1 Example and Hypothesis

Example The example database mills shown in Figure 4.1 is used throughout the chapter. It consists of
a single relation, mills, containing descriptions of powerplants around towns in France. Each powerplant is
characterized by its type, its coordinates (x,y), the placewhere it is located, its height and its production.
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mills instance – mills relation

x y place type prod height

30 53 Dinan windmill 125 60

62 56 Challans windmill 223 90

55 22 Colmar mill 443 5

22 51 Chalain mill 53 2

50 18 Dijon geothermic 33 15

Figure 4.1: The original mills instance

mills2 instance – mills relation

x y place type prod height

35 53 Dinan windmill 127 60

62 56 Challans windmill 203 91

55 22 Colmar mill 463 5

22 51 Chalain mill 53 2

50 18 Dijon geothermic 33 15

mills3 instance – mills relation

x y place type prod height

40 53 Dinan windmill 125 60

62 56 Challans windmill 203 90

55 22 Colmar mill 423 5

22 51 Chalain mill 63 2

50 18 Dijon geothermic 33 15

Figure 4.2: Two fingerprinted instances

Note that the place attribute is the primary key of the relation mills. In Figure 4.2 are shown two examples
of fingerprinted mills, namely mills2 and mills3. They differ from the original data on several positions,
e.g., prod and height of place Challans. Remark that only integer values have been modified and that
primary keys have not been altered. When a suspect copy is discovered, the owner extracts his watermark.
If this watermark is similar to the one inserted in mills2 or mills3 (in a way defined later), he can claim
ownership over the dataset and charge the corresponding purchaser with illegal redistribution. We call
marker the algorithm for watermark insertion, and detector the algorithm for watermark detection.

Hypothesis We use the following common assumptions [7, 71–73]:

• Numerical values : We suppose that databases contain at least one column of numerical values, prefer-
ably integers. Watermark insertion is performed by modifying least significant bits of these numerical
values.

• Primary keys : We suppose that every relation has a primary key column and that this column, even
if numerical, is not altered during the watermarking process, or by the attacker. This assumption is
justified by the fact that (i) primary keys are the articulations between the different relations of the
database: for an attacker, it is possible but not easy to rename them in an uninvertible manner; and
(ii) primary keys often have a public meaning. For example, place Dinan can not be changed to Paris
without misleading all the users of a stolen dataset, hence annihilating all the efforts of the attacker.

Adversarial model In a näıve setting, the stolen database is kept identical to the purchased one. In
a more realistic, adversarial setting, a malicious purchaser might alter the stolen dataset (up to a realistic
extent) in order to erase the watermark. Classic types of attack are:

• Random data alteration: a subset of data is randomly distorted. The amplitude of this alteration is
limited so that the dataset remains valuable;



• Data loss : a subset of data is discarded;

• Mix-and-match: new data from an unknown dataset with the same schema is added to the dataset.

A good watermarking system is robust against such alterations.

4.1.2 Watermarking Basics

Watermarking identified values The main hypothesis, used also in [7, 39, 103], is that modified values
(i.e. watermark positions) must be identified values, i.e. must be in the scope of a primary key. Consequently
modified values are clearly identified, which helps watermark recovery in the adversarial setting. This is one
of the main differences with classic multimedia watermarking, for which similar keys do not exist.

Let d be a database. A numerical value appearing in the database is said to be an identified value if this
precise value can be uniquely identified in the entire dataset by its relation name r, attribute name a and
primary key value p . The tuple (r, a, p) is called the value identifier. In our example database mills, the
value identifier i0 = (mills, height, Challans) denotes the height of the windmill of Challans. When the
relation name is clear from the context, we use the notation ap for value identifiers (e.g. heightChallans).
Clearly, if all relations possess a primary key, every numerical value is an identified one. We denote by
I(d) the set of all value identifiers of database d. For example, I(mills) contains all x, y, height and prod

identifiers for key values in {Dinan,Challans, Colmar, Chalain,Dijon}. Finally, the set of all identified
values of the database d is seen as a vector ~v(d) indexed by value identifiers from I(d). On our example
databases, the height of the windmill of Challans, denoted by i0 is ~v(mills)[i0] = 90 on database mills, and
~v(mills2)[i0] = 91 on database mills2.

Watermarking method (starting point) We recall here Agrawal, Haas and Kiernan’s method [7] for
watermarking relational databases. It is used as a reference for the subsequent algorithms. Note also that a
different method, from Sion et al. [103] can also be used, but we do not consider it here due to lack of space.
The method relies on an integer pseudo-random generator S whose draws can not be predicted without the
knowledge of its seed. Several parameters are used: the secret key K, the ratio 1/γ of watermarked elements,
the maximum number ξ of alterable least significant bits (LSB), and the maximum probability δ of detection
errors1. The algorithm respects the following steps: for each value identifier i, the random number generator
is seeded with K concatenated with i (K and i are seen as binary strings). If the first integer produced by
S is 0 modulo γ, then the value ~v(d)[i] is considered for watermarking. In the binary expression of ~v(d)[i], a
position is chosen according to the next integer from S, computed modulo ξ. The bit located at this position
in ~v(d)[i] is replaced by a mark bit, whose value is given by the parity of the third production of S. The
detection algorithm proceeds identically by locating bit positions in a suspect dataset. The binary values
found at these positions are then compared with the expected ones, and the number of correct matches is
recorded. If the match ratio exceeds a given threshold, the dataset is declared suspect.

This method exhibits several important properties: robustness, accuracy, incremental, public system and
blindness (see [7] for a complete discussion). Among them, blindness means that the original dataset is not
needed for detection: only the watermarking parameters (K, γ, ξ, δ) and the suspect dataset are required.
Blindness is crucial in the context of very large datasets, since their backup, copy or transmission to a trusted
authority might not be possible.

In the sequel, we show how to add usability constraint preservation to this basic building block.

4.2 A Declarative Language for Usability Constraints

A watermarked version of a database is obtained by changing the values of some attributes. Consequently
the results of some queries on the watermarked dataset are likely to be modified. The purchaser or the
owner of the watermarked dataset might want to limit the impact of these modifications, both on attribute

1The number ν of relational attributes available is also used, but our use of value identifiers already captures the attribute
selection.
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values and on query results, by specifying some usability constraints. Similarly to [39, 103], we distinguish
between the set L of local usability constraints, that affect tuples individually, and the set G of global usability
constraints, that apply on a subset of tuples.

4.2.1 Constraints Examples

We introduce here the syntax of our declarative language through a list of short examples. The owner might
want to enforce the quality of the watermarked dataset by defining a set of local constraints L = {C1, C2, C3},
asking for a maximum alteration of 10 units on map coordinates x and y (C1), 1 meter on height of a windmill
(C2), and 20KW on a production measure (C3). Documents mills2 and mills3 of Fig. 4.2 respect each
constraint in L.

local 10 on mills.x, mills.y # C1

local 1 on (select height from mills# C2

where type=windmill)

local 20 on mills.prod # C3

A tuple value e is a modifiable value of a dataset d if e is within the scope of at least one local constraint
in L. In this work, alterations are done only on values that are both identified and modifiable. We denote by
M(d) the set of these elements. By definition,M(d) ⊆ I(d). We now enrich our example with a set of global
constraints G = {C4, C5, C6, C7, C8, C9}. We say that a watermark is valid if it simultaneously respects L
and G. Constraint C4 allows a maximal variation of 10 for the total production of mills and windmills.

global 10 on ( # C4

select sum(prod) from mills

where type in (mill,windmill))

Constraint C5 expresses that, for legal reasons, productions under 60 KW must remain under this limit
after watermarking.

invariant (select place from mills # C5

where prod < 60)

Document mills2 respects global constraintsC4 and C5, but not document mills3 (overall production for
windmills and mills increased by more than 10 units and production for Chalain exceeds 60KW). Constraint
C6 imposes that the distance between the Dinan powerplant and a power collector located in position (10, 10)
on the map must not be distorted by more than 5 units.

global 5 on ( # C6

select sqrt((x-10)^2+(y-10)^2)

from mills where place=Dinan)

Constraint C7 states that powerplants with equal heights should still have equal heights after watermark-
ing (but not necessarily with the same value). Note that this kind of pattern is a convenient way to express
foreign key constraints between tables.

invariant( # C7

select m1.place, m2.place from mills m1,m2

where m1.height = m2.height)

When constraints do not fit the previous patterns, call to an external checking program (named e.g.
qualityChecker) can also be used.

call "qualityChecker" # C8



Finally, arithmetic expressions can be used. Suppose that heights are expressed in feet for a windmill,
and in meter for a mill. Constraint C9 states that, for administrative reasons, the sum of the heights of the
powerplants of Challans and Colmar must not exceed a given limit, expressed in meters.

invariant ( # C9

select 0.304*p1.height + p2.height < 30

from mills as p1,mills as p2

where p1.place=Challans and p2.place=Dinan)

4.2.2 Semantics

We now give the formal semantics of these constraints (this section can be skipped in a first reading). In the
sequel, ϕ(d) denotes the result obtained by applying an Sql query ϕ on document d. The identified part
I(ϕ, d) is a subset of the set of identified values I(d). An identified value (r, a, p) ∈ I(ϕ, d) if and only if its
value is in ϕ(d) and can be traced through ϕ. For instance, for the query select type from mills where

height>80, ϕ(d)={windmill}. Although two tuples are of type windmill, only the one identified by place
Challans participates to the result; hence, I(ϕ, d) = {(mills, type, Challans)}. Computing I(ϕ, d) is not
always possible [18]. In what follows, we use only queries ϕ for which the computation of I(ϕ, d) is straight-
forward. It is the case for our previous sample queries. A conditional sentence ϕ is a conjunction/disjunction
combination of terms R.A θ c where R is a relation, A an attribute, θ ∈ {<,=, >} and c a constant. A set
of identifiers I is said to be independent of ϕ if no identifier in I has a relation name and an attribute name
of one of the terms of ϕ.

• Constraint local p on ψ: where p ∈ N and ψ is a query identifying single attributes. For k local
constraints with queries ψ1, . . . , ψk, the set of modifiable valuesM(d) is the set of all identified elements
of ψ1, . . . , ψk, i.e. M(d) =

⋃ I(ψj , d). Remark that constraints C1 and C3 are written in a convenient
abbreviated form whose expansion into the usual syntax is obvious. For instance C3 is expanded into
local 20 on (select prod from mills). A watermarked dataset d~w is such that, for all i ∈M(d),
~v(d~w)[i] = ~v(d)[i] + ~w[i], i.e. each value ~v(d~w)[i] in the watermarked dataset is the sum of the original
value ~v(d)[i] and an alteration ~w[i]. A dataset d~w is said to respect the local constraint if and only if
∀i ∈ I(ψ, d), |~w[i]| ≤ p.

• Constraint global p on ψ: where p ∈ N and ψ is a query returning a numerical value. A dataset d~w
is said to respect the global constraint if and only if |ψ(d)− ψ(d~w)| ≤ p.

• Constraint invariant (ψ): a watermarked dataset d~w satisfies this constraint if ψ(d) = ψ(d~w).

• Constraint call(program): represents a call to an external program that checks constraints (e.g. a
computation not easily definable in Sql). This clause is respected by dataset d~w if the program
answers ”yes” with d and d~w as input. This corresponds to the usability plugins of [103].

Finding alterations of the dataset that respect such constraints may be a difficult computational task.
The next section shows how we optimize the discovery of such alterations for specific patterns of constraints.

4.3 Fingerprinting as an optimization problem: ILP reduction

4.3.1 Splitting Constraints

Most of the previous constraints can be translated into linear constraints, i.e. inequations on sum of values
from the dataset. Our approach is then to split the set G of usability constraints into two sets: the set Lin of
linear constraints, and the set of remaining constraintsGen that can not be translated (e.g. call constraints).
We will resolve usability constraints from Lin using an ILP solver, obtaining a partial instantiation of a good
watermark vector, say ~w1. Watermark positions left undefined are denoted by M/~w1. The remaining
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constraints from Gen are explored using the greedy method GreedyMark [103] on positionsM/~w1, obtaining
a complete watermark vector ~w. Next sections present the automatic translation of constraints and our
watermarking algorithm.

4.3.2 Translation into Linear Constraints

Recalling the previous example, translation of constraint C9 is immediate:

0.304 ∗ ~w[heightChallans] + ~w[heightColmar] ≤ 30. #C9

Constraints C1 to C5 can also be expressed by means of linear inequalities, e.g.:

−10 ≤ ~w[xDinan] ≤ 10. #C1

Constraints C6 and C8 can not be linearized: there is no reason for C8 to be linear and C6 is quadratic.
Observe also that C7 can be linearized (as explained in the sequel), but its conditions do not hold in the
original dataset. Based on the previous example, we identify a set of constraint patterns that can be directly
translated into a linear program P . These patterns express useful usability constraints on the data and can be
easily recognized. We consider four patterns: local constraints and weight-independent [invariant/join/sum]
constraints. For each pattern, we give its general syntactic form, specific restrictions that must be checked,
and its translation into a linear inequation.

1. Local constraints (e.g. C1, C2, C3):

• Pattern: local p on ψ;

• Restrictions: ψ respects the following pattern:

select ... from ... where ϕ,

where ϕ is an Sql condition independent ofM(d);

• ILP constraint: ∀i ∈ I(ψ, d),−p ≤ ~w[i] ≤ p.

2. Weight-independent sum constraints (wis-constraints): a constraint is said to be weight-independent if
the set of value identifiers involved in the query computation is the same, whatever the perturbations
on identified values are. For instance, C4 is weight-independent: even if prod is modified, the set of
identified values in windmill or mill that are involved in the computation of C4 does not change. This
property allows to compute once for all the set of identified values used in a query computation, and
to assign variables to these values in the linear system. An example of weight-dependent constraint is
given below:

global 10 on (select sum(prod) from mills where prod<100).

If a prod is equal to 99, watermarking it to 100 will exclude it of the previous linear encoding. A
sufficient condition to obtain the weight-independence property is that the where clause is followed by
an Sql condition independent ofM(d). The formal pattern is the following:

• Pattern: global p on ψ;

• Restrictions: ψ has the following pattern:

select sum(attName) from relName where ϕ,

where ϕ is an Sql condition independent ofM(d).;

• ILP constraint: −p ≤ ∑

i∈I(ψ′,d) ~w[i] ≤ p, with

ψ′=select attName from relName where ϕ.



The weight-independent sum pattern can be easily extended to handle the mean aggregate. However,
quadratic constraints, e.g. on the standard deviation, can not be expressed.

3. Weight-independent invariant constraints (for example C5):

• Pattern: invariant(ψ);

• Restriction: ψ has the following pattern:

select ... from ... where ϕ and A θ c,

where ϕ is an Sql condition independent ofM(d), A is an attribute, θ ∈ {=, <,>} and c ∈ N;

• ILP constraint: for all i ∈ I(ψA, d):

~w[i] + ~v(d)[i] θ c,

with ψA =select A from ... where ϕ

4. Weight-independent join constraints (for example C7):

• Pattern: invariant(ψ);

• Restriction: ψ has the following pattern:

select ... from ... where ϕ and A = B,

where ϕ is an Sql condition independent ofM(d), A, B are attributes;

• ILP constraint: for any pair of value identifiers (i, j) ∈ I(ψAB , d) with ψAB defined by

select A,B from ...where ϕ and A=B,

we add constraint ~w[i] = ~w[j].

4.3.3 Algorithm

Clearly, any watermark satisfying the linear system respects all Lin constraints. Our aim is then to extend
Agrawal, Haas and Kiernan’s algorithm [7] so that only good watermarks are selected. The sketch of the
resulting algorithm is as follows:

1. we compute the distortions using the method of Agrawal, Haas and Kiernan and we memorize them
in a vector ~∆ (~∆[i] is the distortion on identified value i);

2. we create a new (0-1) variable ~s[i];

3. for each identified value i, we add the constraint ~w[i] = ~s[i].~∆[i] to the linear program obtained by
translating the usability constraints;

4. the watermark is the solution of the above integer linear program P that maximizes the number of
values ~s[i] which are equal to 1.

The overall algorithm includes Li, Swarup and Jajodia’s extension of the initial Agrawal, Haas and
Kiernan’s algorithm [7] to fingerprinting [73] (see Alg. 1). In order to hide the binary message m, at each
watermarking step, a bit of m is pseudo-randomly chosen. This bit is masked by an exclusive OR with a
pseudo-random bit. Symbol St(k) denotes the output number t of a pseudo-random generator initialized
with the seed k (see [7]). For the watermark detection we use the values at positions i such that ~s[i] = 1
(see Alg. 2) to recover the message. The value of each recovered bit is chosen using a majority voting. This
procedure is called ThresholdMajority (omitted due to space limitations) and returns the word formed by
the bits whose vote values exceed a predefined threshold 1/2 + α (0 < α < 1/2). Remark that some bits of
the word might remain undefined, e.g. when there are 50% of votes for both values 0 and 1.
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4.3.4 Properties

Blindness Our algorithm is blind in the sense of [103], i.e it does not require the original dataset for
detection. However, as explained in [103], positions used for a constraint-preserving watermarking must be
recorded for future detection (in our case, the positions i where ~s[i] = 1). Indeed, the recomputation of the
vector ~s on the watermarked dataset as the solution of the linear program does not necessarily yields to the
same value as the one computed before watermarking. Having to backup this set is not a real limitation
since it can be efficiently compressed (e.g. by simple interval encoding).

Robustness Note that when no usability constraints are to be preserved, this algorithm yields exactly
the same watermark as the one proposed by Agrawal, Haas and Kiernan (i.e. when all ~s[i] are equal to 1).
Therefore, its robustness against attacks is the same. The robustness of the algorithm varies when usability
constraints are taken into account. The more restrictive the constraints are, the easier it is to guess the
location of watermarked bits. A too complex group of constraints may even yield a non-watermarkable
dataset. Nonetheless experimental evaluations show that we are still able to find watermarks on practical
constraints (see Section 4.7).

Algorithm 1: LinearMark (dataset d, messagem, local constraints L, linear constraints Lin, arbitrary
constraints Gen , parameters K, ξ, γ)
P ← ∅; /* empty linear program */1

M(d)← ExtractModifiableIdentifiers (d,L);2

foreach modifiable identifier i ∈M(d) do3

if (S1(i ◦ K) mod γ = 0) then /* try mark this element */4

j ← S2(i ◦ K) mod ξ /* bit index */5

k ← S3(i ◦ K) mod |m|; /* letter index */6

mask ← S4(i ◦ K) mod 2;7

mark ← m[k]⊕mask; /* mark bit */8

ovalue← ~v[i];9

mvalue← ~v[i];10

mvalue[j]← mark;11

// compute distortion ~∆[i] ∈ {−2j, 0, 2j}
~∆[i]← (ovalue−mvalue);12

Add linear constraints to P
{

0 ≤ ~s[i] ≤ 1 and ~s[i] ∈ N;

~w[i]← ~s[i].~∆[i];13

Add translation of constraints from Lin to P ;14

~w1 ←LinearSolve (P , max~s(#si = 1)) ;15

~w←GreedyMark (m,M/~w1,K,L,Gen) ;16

return (~v + ~w,~s) ;17

Problem reduction State-of-the-art ILP solvers (like Ilog Cplex,Dash Xpress-Mp, IBM OSL, etc.) can
handle classically up to 104 variables. If the number of modifiable values exceeds this limit, which is likely
to occur on large datasets, several methods can be used: apply standard reduction techniques to lower the
number of useful variables ( [99, 117]), work only on active identifiers, i.e. those which are used in query
evaluation, or choose a random subset of variables, or group them according to a secret key. In what follows,
we present a heuristic which allows to compute efficiently a subset of solutions of the ILP.



Algorithm 2: LinearDetect(suspect dataset d,~s,message length l,key K,ξ)
for k in {1, . . . , l} do1

vote[k][0] ← 0 ;2

vote[k][1] ← 0 ;3

foreach identifier i in d appearing in ~s do4

j ← S2(i ◦ K) mod ξ; /* bit index */5

k ← S3(i ◦ K) mod l; /* letter index */6

mask ← S4(i ◦ K) mod 2; /* mask bit */7

readMark ← ~v[i][j] ⊕mask; /* read the mark */8

vote[k][readMark]← vote[k][readMark] + 1;9

// voting

return ThresholdMajority (vote);10

4.4 Fingerprinting as an optimization problem: Pairing Heuristic

4.4.1 Pairing Algorithm

For large datasets, using an ILP solver might not be efficient. So, we introduce a heuristic which allows to
find a large number of valid watermarks, by analyzing the form of the usability constraints. This heuristic
can be used for a subset of weight independent constraints, more specifically the subset of sum constraints.
The result is a set of l watermark positions where all binary messages of size l can be encoded. Any message
encoding on these positions will necessarily lead to valid watermarks w.r.t. usability constraints. The main
point is that these positions are computed once for all. No other usability constraint checking is needed
for further message encodings (for constraints respecting our patterns). We call this method the pairing
algorithm since it uses pairs of compensating alterations. The difference with the previous algorithm is
twofold. First, the pairing algorithm does not consider all the possible valid watermarks, but focuses only
on a restricted family. Thus, fewer watermarking bits can be discovered. Nevertheless the computing time
is smaller, since it does not solve an integer linear program. Second, its algorithm can be delegated to the
RDBMS, allowing for a better scalability.

4.4.2 Pairing for Weight-independent Sum Constraints

Suppose that ψ is a weight-independent sum constraint. The set of tuples contributing to the sum are the
same in the original instance and in the watermarked one. Hence, the distortion induced by the addition of
a watermark ~w is only the sum of marks ~w[i] for i ∈ I(ψ, d). We illustrate the algorithm on our example,
for the following weight-independent sum constraints:

ψ1 ≡ global 0 on (

select sum(prod) from mills where type=windmill),

ψ2 ≡ global 0 on (

select sum(prod) from mills where type in (windmill,mill));

In this setting, identified productions correspond to primary keysDinan, Challans, Colmar and Chalain.
Values associated with these primary keys are 125, 223, 443, 53. Query ψ1 has 125 + 223 as a result, hence
it depends on prod from Dinan and Challans. Query ψ2 has 125 + 223 + 443 + 53 as a result, and it de-
pends on prod from Dinan, Challans, Colmar and Chalain. We represent this information in the following
dependency matrix A(ψ1, ψ2):

Dinan Challans Colmar Chalain
ψ1 1 1 0 0
ψ2 1 1 1 1
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Let i1, . . . , i2l be the set of value identifiers. The aim of the pairing algorithm is to partition these values
into l dependency pairs {(i11, i21), . . . , (i1l , i2l ))}, so that, for all j ∈ {1, . . . , l},

• i1j and i2j are involved in the same constraints ;

• watermark distortions on i1j and i2j will be opposite.

Going back to our example, productions of Dinan and Challans are involved in {ψ1, ψ2}. Productions
of Colmar and Chalain participate only to {ψ2}. Hence the first pair will be (Dinan,Challans) and the
second (Colmar, Chalain). For example, hiding message ”10” could be achieved by applying the following
alterations:

• +1 on the prod of Dinan and −1 on the prod of Challans for the first pair;

• −1 on the prod of Colmar and +1 on the prod of Chalain for the second pair.

Observe that the overall distortion on constraints ψ1 and ψ2 will always be 0.

Ensuring blindness In order to produce a blind algorithm, the alteration on a pair (i1, i2) will only
depend on the primary key of i1. According to this key and to the allowed local distortion, we secretly
choose a bit position index. If the numerical values ~v[i1] and ~v[i2] are equal on this bit position, we can not
use the pair for watermarking. On the contrary, if they differ on this position, we can permute these bits
without altering the usability constraints. Our method is the following:

• We choose a pseudo-random binary mask mask;

• To encode a ’1’, we put (1⊕mask) on ~v[i1][index] and (0 ⊕mask) on ~v[i2][index];

• To encode a ’0’, we put (0⊕mask) on ~v[i1][index] and (1 ⊕mask) on ~v[i2][index].

Since these bits were different in the original dataset, this operation does not change their sum, and
the contribution of this pair to the global distortion is still zero. The complete algorithm includes the
precomputation phase (see Alg. 4) and the actual watermarking process (see Alg. 3). Note that, similarly to
the previous query-preserving algorithms [103], the set of positions used for watermarking must be recorded
for further detection. Anyway, this set allows for an efficient compact representation.

4.4.3 Detection

The detector considers each identified value ~v′[i] that was potentially watermarked, based on the set of
recorded pairs and on the secret key. The pseudo-random generator is used afterwards, similarly to [7,73], to
obtain the position j of the watermark bit. The bit value ~v′[i][j] on this position is masked by an exclusive
OR with a pseudo-random mask bit. The result is stored in readMark. This bit accounts for the letter k of
the hidden message m, where k is also computed by the pseudo-random generator. The vote for the value
readMark of this bit k is incremented in the vote array (see Alg. 5). Then, each position k in the detected
message is assigned one of values 0,1 or ’undef’. A binary value is assigned if the number of votes for one
value is significantly higher than for the other one, using majority voting (ThresholdMajority).

4.4.4 Enhancements and Extension to other Constraints

ComputePairs, efficient pairs computation The core of the method is the computation of pairs of
identifiers. Its implementation must be optimized to achieve scalability. In our prototype, this task is
mainly devoted to the RDBMS by computing and storing the dependency matrix as a relation. Suppose
that ψ1, .., ψn are n constraints. We create a relation matrix:(id,dep pattern) such that the id column
will contain the identifiers and the column dep pattern their dependencies expressed by binary patterns.
If (i, p) is a tuple from matrix, the k-th bit of p has the value 1 if ψk depends on the tuple identified by i,



and 0 otherwise. For our examples, the tuples of matrix are (Dinan, 11), (Challans, 11), (Colmar, 01) and
(Chalain, 01). In order to compute the sets of identifiers which have the same dependencies, we order the
tuples in matrix according to their binary pattern. Then the tuples involved in the same constraints are
shuffled.

SELECT id FROM matrix

ORDER BY dep_pattern, md5(concat(Kp,id));

Pairs of identifiers having the same dependencies are obtained by reading pairs of identifiers from the
sorted matrix relation.

Algorithm 3: PairMark(document d,message m, wis-constraints C,L,K, ξ, γ)
pairs= ComputePairs (d,C,L,K);1

// pairs of equal classes, with a pseudo-random order

// This computation is done only once

foreach pair of identifiers (i1, i2) in pairs do2

// Try to mark this pair

if (S1(i
1 ◦ K) mod γ = 0) then3

j ← S2(i
1 ◦ K) mod ξ; /* bit index */4

k ← S3(i
1 ◦ K) mod |m|; /* letter index */5

if (~v[i1][j] 6= ~v[i2][j]) then /* bits 1-0 or 0-1 */6

mask ← S4(i
1 ◦ K) mod 2;7

mark ← m[k]⊕mask; /* mark bit */8

~v[i1][j]← mark;9

~v[i2][j]← not (mark);10

if constraints in L are violated then11

~v[i1][j]← not (mark);12

~v[i2][j]← mark; /* undo modifications */13

else14

add (i1, i2) to markList;15

16

17

return markList;18

Matrix reduction and non-zero constraints It is possible to reduce the number of lines of the depen-
dency matrix. Observe first that if ψ1 and ψ2 depend on exactly the same values, we can use only ψ1 in
the dependency matrix without changing the solution. Second, this technique fits well for zero distortion
constraints. For the sake of simplicity, suppose that we only encode the marks +1 or -1, and that all the
constraints have the same global distortion t. Hence, if two queries ψ1 and ψ2 depend on the same values
except on t positions, using only ψ1 in the dependency matrix may introduce a maximal distortion of at
most t on query ψ2. For the general case, we delete all queries that are identical up to t divided by the
maximal allowed local distortion on each element.

Capacity Theoretical arguments [39] show that we are likely to find pairs on natural datasets. We assess
this property by our experiments in Section 4.7.

Handling join and invariant constraints For a join condition ~w[i] = ~w[j], we suppress j from the
set of modifiable identifiers M. When a value is assigned to ~w[i], we propagate it to ~w[j]. For invariant
constraints, we simply set to zero the allowed distortion on each considered identified value.
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Algorithm 4: ComputePairs(document d, wis-constraints {ψ1, . . . , ψk},L,K)
M(d)←ExtractModifiableIdentifiers (d,L);1

construct a matrix M with |M(d)| rows and two columns;2

foreach i ∈M(d) do3

set the i-th row of M to (i,

dependency pattern p
︷ ︸︸ ︷

0 . . . 0 );4

foreach wis-constraint ψj do5

foreach each i in I(ψj , d) do /* compute ψj */6

set p[j] to 1 in the i-th row (i, p) of M ;7

sort M according to p and hash(i ◦ K) ;8

// identifiers with the same dependencies look randomly shuffled

set cursor to the beginning of M ;9

repeat10

(i1, p1)← NextRow (M);11

(i2, p2)← NextRow (M);12

if (p1 = p2) then /* same dependency */13

add (i1, i2) into pairs;14

until (end of M) ;15

return pairs;16

Algorithm 5: PairDetect(suspect document d,markList,message length l,key K,ξ)
for k ∈ {1, . . . , l} do1

vote[k][0]← 0;2

vote[k][1]← 0;3

for (i1, i2) in markList do4

j ← S2(i
1 ◦ K) mod ξ; /* bit index */5

k ← S3(i
1 ◦ K) mod l; /* letter index */6

mask ← S4(i
1 ◦ K) mod 2; /* mask bit */7

readMark ← ~v[i1][j] ⊕mask; /* read the mark */8

vote[k][readMark]← vote[k][readMark] + 1;9

// voting

return ThresholdMajority (vote);10



Robustness An attacker that performs random alterations is more likely to hit a bit embedded in a pair
than a bit embedded at a single position. Therefore a watermark bit embedded in a pair is less robust than
a bit embedded at a single position. This slight loss of robustness is traded for computational speed-up
and collusion security, as explained in the next section. This phenomenon has to be put into balance with
the large amount of pairs discovered by the pairing algorithm. This allows for a large repetition of the
bit encoding, which enforces robustness. Experimental evaluations (Section 4.7) assess this property. If an
attacker knows which usability constraints are preserved in his watermarked dataset, a more sophisticated
attack may be envisioned. By running ComputePairs (which is assumed as being public), an attacker
might find the dependencies of identified values. But even if he knows that paired tuples share the same
dependencies, the exact pairing can not be guessed, because pairs are chosen according to a secret order,
known only by the data owner.

Complexity The following table sums up the number of query computations needed to find T distinct
watermarks. Parameter nl denotes the number of linearizable constraints and ng the number of non-linear
constraints. Remember that each query must be computed on a likely huge number of tuples.

Method #(query computation) #(ILP solving)

Greedy T.(ng + nl) 0

Linear nl + T.ng T

Pairing nl +T.ng 0

4.5 Collusion-secure fingerprinting

Suppose that three fingerprints m1 = 010,m2 = 100,m3 = 110 are used for the three users u1, u2 and u3.
If u1 and u2 compare their respective databases, they will observe that they differ on the positions where
the first and second bits of m1 and m2 have been embedded. Indeed, these bits are different in fingerprints
m1 and m2. Therefore u1 and u2 can guess that the embedding process modified the original database at
these precise locations. On the other hand, the positions where the third bit of the fingerprint messages
was embedded are not revealed, because this bit is the same in m1, m2 and m3. Suppose now that u1
and u2 combine their databases to obtain a third database in which the values located at the modified
positions are taken from both databases. Since m3 has the first bit of m2 and the second bit of m1, it can
happen that u1 and u2 actually build a database that carries the fingerprint of u3. At detection time, u3
will be considered as suspect. This kind of coalition of users that collude for framing another one, which is
innocent, must clearly be avoided. To achieve this, frameproof collusion-secure codes [17, 95, 110] have been
designed. Basically, they must provide the following two features: (i) no coalition of at most c users can
frame another innocent user and (ii) there exists a tracing algorithm A that, given a suspect fingerprint,
outputs at least one of the members that participated to the framing coalition. A codebook of collusion-
secure fingerprints is characterized by the length of its words which depends on the size c of the maximum
coalition for which the code is frameproof, the maximum probability ε of error of A and the maximum
number M of fingerprints. For instance, this length is O(c4 log(1/ε) log(M/ε)) for the Boneh and Shaw’s
scheme [17] (O(c4 log c log(M/ε)) with the improvements of Schaathun [95]) and 100c2 log(⌈1/ε⌉) for Tardos’
scheme [110]. For instance, if we want to be frameproof against any coalition of at most c = 3 purchasers
with a probability of error of ε = 10−4, the length of the fingerprints is 3 600. To be effective, there must
be some fixed set of positions within the database in which all the codewords can be embedded without
affecting the usability. A recurrent problem of collusion-secure codes is that their length tends to increase
quite quickly, making them not suitable for all practical fingerprinted applications.

Collusion-secure fingerprinting techniques have already been applied to databases [73] but without taking
into account the usability constraints. Query-preserving watermarking is highly challenging since usability
constraints drastically reduce the embedding bandwidth. The greedy approach [103] has some limitations
that prevent the use of efficient collusion-secure fingerprints. For example, it may embed the codeword for
user u1 in positions, say, i5 to i7 while embedding the codewords for u2 and u3 in positions i8 to i10, i.e. in
completely different positions than for u1. Hence databases of u1 and u2 differ on all watermarked positions,
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and all the bits of u1 are exposed. Consequently, the fixed positions requirement is not satisfied by the greedy
method. Moreover, this algorithm might actually embed a significantly small number of fingerprints, since it
discards the modifications performed by the watermarking algorithm when they do not satisfy the usability
constraints. The use of the pairing heuristic enables our algorithm to discover a large mark embedding
area, making the collusion-secure fingerprinting possible for large databases whereas the greedy approach
does not allow it. Furthermore, the modified positions do not change when different messages need to be
inserted. This fits the fixed set of positions required by the collusion secure codebooks that are used. In the
implementation of Watermill [27], we chose to use the Tardos scheme [110] for the following two reasons:
(i) codewords have a relatively small length compared to other schemes in our setting (large datasets and
a small number of purchasers), (ii) the number of users M has not to be a-priori fixed and finally, (iii) its
implementation is simple and efficient. The codewords of a Tardos scheme are randomly generated according
to M independent identically distributed Bernoulli variables whose parameters are functions of M and k.

4.6 Analysis

In this section, we provide an analysis of false hits and false misses occurrence probabilities. Both probabilities
highly depend on the detection threshold α. If α → 1/2, the detector is very selective and will lead to a
small rate of false hits but at the price of a loss of robustness (many false misses). On the contrary, if α→ 0,
there will be many false hits but the detection is going to be very robust (very few false misses).

4.6.1 False Hits

A false hit is the wrong detection of a watermark in a non watermarked database. In the case of 1-
bit fingerprints, we note v0 = vote[1][0], v1 = vote[1][1], and m = v0 + v1. A false hit occurs as soon
as v0/m > 1/2 + α (fingerprint 0 is detected) or v1/m > 1/2 + α (fingerprint 1 is detected). When
v0/m, v1/m ≤ 1/2+ α, no defined fingerprint is detected. For a non watermarked dataset, the value of each
readMark (see LinearDetect and PairDetect algorithms) can be modeled as the outcome of a binomial law
of parameter 1/2. We define the random variable S as the sum of the m random independent variables, thus
modelling the sum of m readMarks. Clearly, E[S] = m/2 and the probability of false hits is the probability
Pr (|S − E[S]| ≥ mα). Using this model, we obtain the following theorem:

Theorem 48 For all δ > 0, if α ≥ α+(m) =
√

− log δ
2m , then false hits occurrence probability (for one bit

fingerprints) is less than δ.

Proof. It has been shown by Hoeffding [50] that, for m independent random variables X1, .., Xm that are
bounded (ai ≤ Xi ≤ bi), their sum S satisfies the following inequality for any t > 0: Pr (|S − E[S]| ≥ mt) ≤
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(
∣

∣S − m
2

∣

∣ ≥ αm
)

≤
exp

(

− 2m2α2
∑

1,m 12

)

= exp
(

−2mα2
)

, whence Pr
(
∣

∣

S
m − 1

2

∣

∣ > α
)

≤ Pr
(
∣

∣

S
m − 1

2

∣

∣ ≥ α
)

≤ exp
(

−2mα2
)

. Hence, if

α ≤ α0 =
√

− log δ
2m , exp

(

−2mα2
)

≤ exp
(

−2mα2
0

)
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4.6.2 False Misses

A false miss occurs when the detected message on a modified dataset (e.g. an attacked one) contains
undefined bits or when it is different from the embedded one. Here, we perform an analysis in the 1-bit
fingerprint case. We model attacks using the model of p-attacks. A p-attack is an attack for which each
readMark has the probability p to be inverted. Common attacks like random bit-flipping and translation
attacks are captured by this model (for different values of p though). Suppose that the embedded fingerprint
is 0. Then, a false miss occurs on the attacked dataset if v0/m ≤ 1/2 + α. If v1/m > 1/2 + α, the invalid
message 1 is detected. If v1/m ≤ 1/2 + α, an ’undef’ message is detected.



Theorem 49 For all 0 < p < 1
2 , if α ≤ α−(m) = 1

2 − p−
√

− log δ
2m and m ≥ − 8 log δ

(1−2p)2 , then the false miss

occurrence probability (for 1-bit fingerprints) over p-attacked database is less than δ.

Proof. Let 0 < p < 1
2 , α = 1

2 (
1
2 − p) and t = (12 − p)− α. Hence, t = 1

2 (
1
2 − p) = α > 0. In the context of

a p-attack, the probability that each readMark is preserved is 1− p. Therefore the intended value for v0
m is

1− p and we can quantify the probability of diverting from this value using the Hoeffding inequality:

Pr
(∣

∣

∣

v0
m
− (1 − p)

∣

∣

∣
≥ t

)

≤ exp
(

−2mt2
)

.

Let x ∈
[

0, 12 + α
]

. Then x ≤ 1
2 + α. Since 1

2 + α = 1 − p− t, x ≤ 1 − p− t and x − (1 − p) ≤ −t < 0.
Hence, |x− (1− p)| = (1− p)− x ≥ t. In other words x ≤ 1

2 + α⇒ |x− (1− p)| ≥ t. From this implication
we obtain that:

Pr

(

v0
m
− 1

2
≤ α

)

≤ Pr
(∣

∣

∣

v0
m
− (1− p)

∣

∣

∣
≥ t

)

≤ exp(−2mt2).

Suppose now that m ≥ − 8 log δ
(1−2p)2 . Then,

exp
(

−2mt2
)

≤ exp

(

2
8 log δ

(1− 2p)2
t2
)

≤ δ

and

Pr
(∣

∣

∣

v0
m
− 1/2

∣

∣

∣
≤ α

)

≤ δ.

�

Example Suppose that ξ = 3. If an attacker randomly selects one of the ξ least significant bits and
inverts it, the probability for each watermarked bit to be inverted is 1/3. If we want to have both false hits
and false misses occurrence probabilities below δ, we need to have α+(TC) ≤ α ≤ α−(TC), which can be
achieved using α = 1−2p

4 as soon as α+(m) ≤ α−(m), i.e. when m ≥ − 16 log δ
(1−2p)2 . For δ = 10−3, we obtain

m ≥ 994.71. If the database contains 10, 000 tuples, setting γ = 10
(

≃ 10000
994.71

)

for watermarking achieves the
target robustness.

4.6.3 Extension to Arbitrary Length Fingerprints

Suppose in the following that the embedded fingerprints have the length l. We notemi = vote[i][0]+vote|i][1].

Corollary 50 For all δ > 0, if m = min(mi) and α ≥ α+(m) =
√

− log δ
2lm , the probability that a fully defined

message is detected in a third party dataset is less than δ.

Proof. For i = 1 . . . n, the probability that the bit i of the detected message is defined is at most
exp(−2miα

2) ≤ exp(−2mα2) ≤ δ1/l. Then, for a message of l bits, the probability that all l bits are defined
is at most δ. �

Notice that this corollary deals only with detecting a fully defined message. Not every message may be
valid if the owner has only distributed N copies. In this case, the probability that a valid fingerprint is
recovered is at most N

2l
δ. An interesting case is the one of the p-attacks on datasets in which fingerprints of

length l > 1 were embedded. In the 1-bit case, p-attacks when p < 1/2 were not discussed. Indeed, they were
likely to invert the fingerprint and thus avoid detection. When fingerprints contain several bits, if p < 1/2,
then all the bits of the fingerprint are very likely to be simultaneously inverted. In that case, the recovered
fingerprint may seem as suspect as the original one (think of it as a negative image of a black and white
picture). Hence, attacks are going to be effective only if p = 1/2 which is possible (e.g. by inverting all bits
of the dataset) but at the same time destructive since all the values are altered.
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4.7 Experimental Results

Context Our methods are implemented on our open platform Watermill [27]. The experiments were
performed on a workstation running Debian GNU/Linux (AMD64 port). Hardware includes an EMT64
P4@3.2Ghz HT Intel processor, 1Gb of RAM and a 80Gb 7200RPM 8MB cache SATA hard drive. We use
Mysql version 5.0.18 (Debian packaged), Sun’s Java J2RE 1.4.2 Standard Edition (Hotspot 64-Bit Server
VM), and JDBC is supported through mysql-connector-java version 3.1.6. No special hardware nor soft-
ware (except for the Watermill prototype) tuning was performed. Mysql databases use MyISAM, e.g. a
transaction-less physical storage engine. Swap space is 2Gb.

Benchmark datasets Experiments were performed on two different datasets: a synthetic dataset and the
Forest CoverType database from the UCI KDD archive [5]. The synthetic relational database corresponds
to a sales database, with n products, each product having an associated cost. A number of p shopping carts
are filled with random subsets of k products. We denote such an instance by B(n, p, k). For different values
of n, p and k, we modified the cost attribute, with the following usability constraints: the distortion on the
cost of each product must not exceed 1 Euro, and the distortion on the total cost for each shopping cart
must not exceed 1 Euro.

Observe that for an increasing number of carts, these constraints are very restrictive and hard to respect
simultaneously, even on a small dataset. The second set of experiments was performed on the Forest Cover-
Type database [5]. This database gathers information on forest parcels, for a total of 581,012 tuples. We
have restricted our attention to the elevation and the aspect attributes. We created virtual primary keys
for the dataset that do not exist in the original dataset. We watermarked the aspect attribute, with a local
distortion of 1. We split the elevation values into 50 random overlapping intervals. The 50 corresponding
usability constraints impose that the mean (i.e sum) of aspects of data with elevation in the same interval
must not be altered by more than 1 unit (meaning maximal global distortion of 1).

4.7.1 Speed and Capacity

4.7.2 Synthetic Dataset

For the instance B(5000, 1000, 3), checking the global constraints takes on average 145s. If γ = 10 (one tuple
out of ten is altered), the global constraints are going to be checked about 500 times for the greedy method,
requiring more than 20 hours. Remark that B(5000, 1000, 3) is not a large database. Consequently for huge
datasets, using the greedy method is impossible since it requires to perform costly computations each time
a watermark bit is to be embedded. For our experiments, we used only small datasets to be able to make
a comparison between the two methods. The greedy method refers to the method of Agrawal, Haas and
Kiernan [7] with a check of the constraints every time a bit is modified. If the constraints are respected, the
modification is accepted otherwise it is discarded. To compare speed and capacity, we performed a series
of experiments, using the instance B(1000, p, 3) i.e. 3 products per cart. For a number of carts p ranging
from 10 to 50, we compared watermarking times, the number of watermarked bits and watermarking rates
(number of valid watermarked bits per second) for both greedy and pairing algorithms. For each experiment,
two values were recorded: the time to obtain a watermarked database and the number of altered bits. A
higher number of bits is better because it allows for a larger embedding bandwidth. For the pairing method,
two time values were recorded: the highest represents the precomputation of the pool whereas the lowest is
the time to obtain a watermarked database once the pool has been precomputed. Results are presented in
Fig. 4.3, watermarking speed using a logarithmic scale on Fig. 4.3(a), watermarking capacity on Fig. 4.3(b)
and the watermarking rate on Fig. 4.3(c). Clearly, the pairing algorithm outperforms the greedy one from
the speed point of view. It can be argued than significantly more bits can be hidden using the greedy method.
Indeed, the capacity is 3 to 4 times higher for the greedy method. There are several reasons for this. First,
bits are altered by pairs (a factor 2). Second, not all pairs are altered, only the one having different binary
values at the watermarked positions (statistically, another factor 2). Third, the pairing algorithm does
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Figure 4.3: Comparison of the greedy and pairing algorithms on a synthetic database

Table 4.1: Comparison of greedy and pairing methods on a real database
Greedy method Our method

γ 8 3

Hidden bits 39813 48052

Watermark density 6.9% 8.27%

Mean square error 0.0059 0.0825

Precomputation negligible 8min15s

Obtaining the first
mark

62h30min 8min15s +
5min53s.

Obtaining a new
mark

62h30min 5min53s.

not find all possible alterations but only a subset of them, as the greedy method do. Nevertheless, the
watermarking rate is about 10 times better for the pairing method.

4.7.3 Forestcover Dataset

With the Forest CoverType dataset, experiments show that more than 70000 bits can be embedded using the
pairing algorithm (with γ = 8). To reach the same number of watermarked bits, the greedy method would
have to check the constraints at least 70000 times, which is expected to be very slow. Table 4.1 presents
the results. The greedy method requires more than 2 days of computation whereas our method needs only
a few minutes. Situation becomes worse when another fingerprinted instance with the same constraints has
to be obtained. Suppose that we want to distribute fingerprinted copies to 4 different purchasers. Here, the
fingerprints can be coded as binary strings of length 2. To each one of the n valid bit embedding positions is
randomly mapped one of the two bits of the fingerprint. Then, it can be shown that, on average, the whole
fingerprint is embedded m ≃ n

2 times (i.e. both bits 1 and 2 of the fingerprint are embedded more than m
times). In our example, for 4 purchasers, the fingerprint is redundantly embedded 24026 times using the
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pairing method and 19906 times using the greedy one. Going back to our introductory example, if the value
time-window of the Forest CoverType dataset is one week, it is not possible to distribute it to 4 customers
using the greedy method. Indeed, each fingerprinted instance requires more than 2 days of computation, i.e.
more than 8 days for 4 customers.

4.7.4 Robustness

An attack is considered as effective if it successfully cheats the detector while introducing a distortion on the
data comparable to the distortion introduced by the watermarking process. Here, we measure the distortion
by the mean of squared errorsmse (we do no use the mean since it is not modified by the pairing algorithm).
If d and d′ are two databases such that I(d) = I(d′), mse(d, d′) is defined as follows (N = |I(d)|):

mse(d, d′) =
1

N

N
∑

i=1

(~v(d)[i]− ~v(d′)[i])2.

For a database d̃ obtained by watermarking d, mse(d, d̃) = ‖~w‖2/N .

4.7.5 Subset Attacks

The subset attack consists of discarding from the relation every tuple with a probability q. Figure 4.4 shows
the detection ratio of watermarked bits against the value of q for an instance B(1000, 100, 5). For each
experiment the threshold value α was chosen so that the false hit occurrence probability remains below
0.1%. Points within a radius α of 1/2 have been colored in gray. They represent the watermark removal
area. Observe that the detection ratio remains 1 for all attacks. Note also that, in order to keep a false hit
occurrence probability under 0.1%, α increases with q. The attacks always fail unless γ = 3 and q > 80%,
i.e. when the attack discards almost the entire dataset.
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Figure 4.4: Watermark detection after subset attacks



4.7.6 Data Alteration Attacks

Another kind of attack consists of modifying the values within the dataset. Remark that such modifications
are likely to break usability constraints. An
ε-attack is an attack where a bounded random distortion is added to a randomly selected set of tuples.
The maximum distortion is called the amplitude and is noted ε. To each tuple (watermarked or not) is
added a random distortion d (0 ≤ d < ε) with a probability i. We followed the protocol, with ξ = 1:

1. Create the instance I = B(1000, 100, 5).

2. Precompute the constraints on I.

3. For each (ε, γ) ∈ {2, 3} × {1, 2, 3}:

• get a watermarked instance Iγ with insertion rate γ;

• for each value of ε and each value of i ∈ 0 . . . 100, get an attacked instance Iγ,ε;

• compute the bit detection ratio x and the mean squared mse error after the attack;

• plot (mse, x).

Results of experiments (see Fig. 4.5) are represented with the mse of the attack displayed horizontally,
and the detection ratio vertically. The watermark removal area is displayed as a gray rectangle (chosen here
so that the false positive occurrence probability is at most 0.1%). Graphs are labelled by the mse of the
watermarking process. Successful (resp. unsuccessful) attempts to remove the watermark are pictured by
dots inside (resp. outside) the gray rectangle. The majority of successful attacks is observed for ε = 2 (only
one attack is successful for ε = 3). This can be explained by the fact that the lower ε, the higher is the
probability for an alteration to ’hit’ the watermarked bit. Second, if the attacker wants to erase the mark,
he has to alter the quality of the data significantly more than the watermarking process. For instance, when
γ = 2 and ε = 2 (Fig. 4.5(c)), first successful attacks are observed for a mean squared error of 0.5 whereas
the watermarking process introduced an error of 0.11. Once more, the price an attacker has to pay for a
perfect watermark removal is significantly higher than the one paid for watermarking.

Collusion-secure fingerprinting On the Forest Covertype benchmark, the pairing heuristics identifies
48 052 embedding positions in roughly 14mins. By setting γ = 4 200, the execution of the greedy methods
takes roughly the same amount of time but locates only 93 embedding positions. Assuming that each bit of
the fingerprint is embedded 5 times, we can embed fingerprints that have length 48 052/5 ≃ 10 000. Using
the Tardos codebook [110], the maximum size c of a coalition of users against which the scheme is frameproof
can be computed as c = (l/(100 log(⌈1/ε⌉))1/2. For ε = 10−4, we obtain c ≃ 3.3. Fingerprints are then
frameproof against a coalition of 3 users.

4.8 Related Work

Several recent works consider relational databases watermarking [7, 39, 71, 73, 103]. Agrawal, Haas and
Kiernan’s method [7] hides information in the least significant bits (LSB) of numerical attributes. The
database owner can control the alteration on attributes by setting the number of LSB that can be modified.
Although a small overall distortion on the mean of the watermarked attributes is observed, more general
usability constraints are not considered, like the ones preserving the result of important Sql queries. Their
technique was extended [73] to collusion-resilient fingerprinting by using collusion-secure codebooks [17]. But
again, usability constraints are not handled. Sion, Atallah and Prabhakar [103] introduced the greedy method
for watermarking with usability constraints. They handle potentially any kind of constraints by calling
external checking programs (usability plugins). This very general method is not optimized as explained
in the introduction, since the syntactical form of usability constraints is not explored (but another kind
of optimization is considered in [102]). It can also be applied to fingerprinting, but the computational
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Figure 4.5: Watermark detection after subset ε-attacks



effort is tremendous. Combining their method with collusion-secure codebooks is also possible but with
some limitations: there is absolutely no guarantee that the same watermark positions will be found for
all watermark messages in the codebook since their method is greedy. Besides, it is noteworthy that their
embedding method, that differs from the LSB embedding introduced by Agrawal, Haas and Kiernan, can
be adapted to our approach with a small effort. Weight-independent sum constraints were introduced from
the theoretical point of view by one of the authors of the present work in [39]. This specific query pattern
was studied in order to obtain a lower bound on the number of distinct acceptable watermarks that one is
likely to discover. The algorithmic counterpart of this previous paper is less suited for practical applications.
The present work considers algorithms that behave correctly with large datasets. Moreover, the algorithms
of this previous work were not blind, while our new algorithms are. Finally, collusion attacks and other
constraints described in the current chapter were not considered by [39].

4.9 Conclusion

It this section, we present an optimization technique for the discovery of good watermarks in a dataset
that respects several usability constraint patterns. We have also considered the problem of collusion-secure
fingerprinting under these constraints. Natural extensions of this work are the following. First, the number
of our constraint patterns could certainly be increased. Second, we would like to address databases finger-
printing where purchasers do not share the same usability constraints. Finally, we would like to devise tools
for proving ownership on datasets after a specific rewriting.

Related publications

• Julien Lafaye, David Gross-Amblard, Camélia Constantin and Meryem Guerrouani. Wa-
termill: an optimized fingerprinting system for highly constrained data. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 20(4): 532-546, April 2008.

• Camélia Constantin, David Gross-Amblard and Meryem Guerrouani. Watermill: an Optimized Finger-
printing Tool for Highly Constrained Data. In ACM Workshop on Multimedia and Security (MMSec),
New-York, USA, August 1-2 2005, pp. 143-155, 2005.

• (soft) Camélia Constantin, David Gross-Amblard, Meryem Guerrouani et Julien Lafaye. Watermill:
an optimized watermarking/fingerprinting tool for databases.
http://watermill.sf.net
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5
Typed Xml streams

Xml streams are online, continuous, distributed, high throughput sources of information. For streams carry-
ing a significant intellectual and/or industrial value, proving ownership over pirated copies is a requirement
for data producers. While watermarking methods already exist for numerical streams, they do not meet the
specific requirements of Xml streams. In this chapter, we introduce the ℓ-détour algorithm, which allows
for watermarking Xml streams so that (i) the watermark embedding and detection processes are done on-
line and use only a constant memory, (ii) the stream distortion is controlled, (iii) the type of the stream
is preserved and finally (iv) the detection procedure does not require the original stream.We also evaluate,
analytically and experimentally, the robustness of ℓ-détour against attempts to remove the watermark.

5.1 Introduction

Streams. Data streams are high throughput sequences of tokens, potentially infinite. They are used in a
growing number of applications (see e.g. [12]) and their specificities make them a challenging application [76].
Since Xml has become the standard for specifying exchange formats between applications, the focus in this
chapter is on Xml streams. Xml streams are commonly available online and processed by distant peers.
Data producers, e.g. news providers, generate the tokens of the stream which is later on processed by
consumers. Consumers do not accept arbitrary streams, but place restrictions on their input types. For Xml
based systems, types are usually specified through a Document Type Definition (DTD) or an Xml Schema.
High throughput requirement puts severe constraints on consumers: they must be able to process each token
of the stream quickly and cannot buffer an arbitrary number of tokens (bounded memory). For any arbitrary
DTD, typechecking Xml streams can not be done while respecting these constraints. Hence, we focus on
acyclic DTDs , where no element is a sub-element of itself (for example, Rss is an acyclic DTD). Under this
hypothesis, typechecking can be done using deterministic finite automata (DFA) and types can be specified
using regular expressions [101].

Example 51 The Xml news feed of Fig. 5.1 may be regarded as a stream on an alphabet of closing and end-
ing tags (< news >, < /date >..), letters (S,o,d,e,1,...) and predefined sequences of letters (Cinema, Politics,
...). It can be typechecked using the regular language <news><priority>[123]

</priority><title>(.*)</title>..<date>D</date>...</news>, where the expression
D=(19|20)[0-9][0-9]-(0[1-9]|1[0-2])-(3[0-1]|0[1-9]|[1-2][0-9]) captures valid dates (for the sake of sim-
plicity we do not try to check dates like 2005-02-31). Observe that the DTD standard does not allow the
definition of a precise date format, since the contents of elements are mostly of type PCDATA (i.e. almost
any sequence of letters). A more sophisticated model like Xml Schema allows for such precise definitions.
Our model applies to both formalisms.

Watermarking. High-quality streams carry a great intellectual and/or industrial value. Malicious users
may be tempted to make quick profit by stealing and redistributing streams illegally. Therefore, data
producers are interested in having a way to prove their ownership over these illicit copies. Watermarking is
known to bring a solution to that issue by hiding copyright marks within documents, in an imperceptible
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...</news><news>

<priority>1</priority>

<title>Soderbergh won the Golden Palm</title>

<url>http://www.imdb.com/title/tt0098724/</url>

<date>1989-05-23</date>

<text>Soderbergh’s movie, Sex, lies and videotapes, won the ...</text>

<category>Cinema</category>

</news><news>...

Figure 5.1: An Xml stream snapshot

and robust manner. It consists of a voluntary alteration of the content of the document. This alteration is
parameterized by a key, kept secret by the owner. Accordingly, the secret key is needed to detect the mark
and thus, to prove ownership. The robustness of the method relies on the key in the sense that removing
the mark without its knowledge is very difficult. A first challenge of streams watermarking is to control and
minimize the alteration of the stream, i.e. to preserve its quality. We measure the alteration by means of a
relative edit-distance and propose a watermarking algorithm that introduces a bounded distortion according
to this measure. A second challenge is to preserve the type of the stream so that it remains usable by its
intended consumers. ExistingXml watermarking schemes embed watermarks by modifications of the content
of text nodes. We believe that other embedding areas may be used, e.g. within the tree-like structure itself.
Obviously, altering the structure can not be done näıvely. For instance, in some text watermarking schemes,
bits are embedded by switching words of the document with their synonyms. This can not be directly applied
to our context: if the name of an opening tag is switched, the corresponding closing tag has to be switched
to ensure well-formedness. Even if tag names are switched consistently, the resulting document may become
invalid with respect to its original type. In that case, watermarked documents are unusable by their target
consumers. Remark also that a good watermarking method must be robust, i.e. still detects marks within
streams altered (random noise, statistical analysis, ..) by an attacker (up to a reasonable limit).

Our Contribution. In this work, we introduce the ℓ-détour algorithm, a robust ε-preserving watermark-
ing scheme for Xml streams, valid with respect to acyclic DTDs. The idea of ℓ-détour is the following. We
identify two relevant parts of the stream, based on its semantics. The first unalterable part can not be altered
by any attack without destroying the semantics of the stream. The second alterable part is still useful for the
application, but can be altered within reasonable limits. For the automaton of Figure 5.1, the unalterable
part will be e.g. the path name in the url element (but not the host name, since it can easily be replaced
by an IP number). The alterable part will be e.g. the two digits of the day in the date element. Alterable
parts can capture purely textual information as well as structuring one. A finite portion of the unalterable
part, combined with a secret key known only by the data owner, is used to form a synchronization key.
A non-invertible (cryptographic) pseudo-random number generator, seeded with this synchronization key,
determines how the alterable part of the stream is modified to embed the watermark. This process, repeated
along the stream, introduces local dependencies between parts of the data stream. These dependencies,
invisible to anybody who does not possess the key used for watermarking, are checked at detection time
by the owner. Only the private key and the suspect stream are needed. It can be viewed as an extension
of Agrawal and Kiernan’s method [7] which considered relational databases watermarking (primary keys
played the role of our synchronization keys). In order to respect the type constraint, we simulate the DFA
that typechecks the stream. Each time the insertion of a dependency is required, we change a sequence of
tokens of the stream so the walk on the automaton follows a detour, leading to the same state. If the altered
sequence lead to state q, the chosen detour still leads to q. The length ℓ of the detours and the frequency of
the alteration control the quality of the stream. The DFA is also used to define the alterable and unalterable
parts of the stream.

Contribution. In Section 5.2, we present our main contribution: the ℓ-détour algorithm, which allows
for watermarking Xml streams so that (i) the watermark embedding and detection processes are done online



URL YEAR MONTH DAY

q9 q15 q20

q7 q10 q11 q12 q13 q16 q17 q19 q21

q8 q14 q18
1

2

9

0

0-9 0-9 -

0

1

1-9

0-2

-

3

1-2

0

0-1

1-9

0-9

Figure 5.2: A partial specification of the stream type for news items (date element)

and use only a constant memory, (ii) the stream distortion is controlled, (iii) the type of the stream is
preserved and finally (iv) the detection procedure does not require the original stream. In Section 5.3, we
discuss on the robustness of ℓ-détour against attempts to remove the watermark and show that attackers
have to alter more the streams than the watermarking process did to remove the mark. Comparison with
related work is presented in Section 5.4. Section 5.5 concludes.

5.2 The ℓ-détour Algorithm

5.2.1 Preliminaries

In this chapter, we use ω-rational languages on words, i.e. a simple, yet expressive, extension of regular
languages suited to infinite words.

• Streams: Let Σ be a finite alphabet. Letters from Σ are called tokens. A Σ-stream σ is an infinite
sequence of tokens from Σ.

• Stream Automaton: A stream automaton is a deterministic finite state automaton such that all
states are accepting, except one which has no outcoming edge to an accepting state. This state is called
the blocking state.

• Stream Acceptance: Let G be a stream automaton. A stream σ is accepted by G if the walk on G
due to σ never enters the blocking state.

• Stream Types: A set of streams L is a stream type if there exists a stream automaton G such that L
is the set of all streams accepted by G.

Example 52 Figure 5.2 shows a partial specification of a stream automaton for the input type of a news
items consumer. It checks that the syntax of the date is correct. The part checking that the stream is
well-formed and conforms to the complete DTD is not depicted here. All unspecified transitions lead to the
blocking state.

As a means to measure the distortion introduced by watermarking algorithms, we introduce the relative
edit-distance. It is based on the edit-distance for strings [69]. In our context, the edit-distance de(x, y)
between words x and y is defined as the minimum number of operations (substitution/deletion/insertion of
a token) that are needed to transform x into y. For instance, if y has been obtained by substituting one
symbol of x, de(x, y) = 1. The relative edit-distance between x and y is defined as the average number of
operations per symbol that are needed to transform x into y. We measure the relative edit-distance from
finite prefixes of streams:

Definition 53 (Distance) Given σN (resp. σ′M ) a finite initial segment of a stream of length N (resp.
M), the relative edit distance d(σN , σ′M ) is defined by:

d(σN , σ′M ) =
de(σ

N , σ′M )√
N
√
M

.
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Example 54 d(babba, dabba) = 1/5. Letter b has been substituted for d (edit-distance 1), and both words
have length 5.

5.2.2 Informal Introduction to ℓ-détour

Suppose that we want to watermark a data stream σ flowing from a producer P to a consumer C which input
type is specified by a stream automaton G. Since P produces a usable stream for C, its outputs correspond
to non blocking walks on G. Assume that there exist in G two different edges (paths of length 1), labelled by
different tokens, and having same start and same end (for example, paths from q17 to q20 in Fig. 5.2). These
edges can be loops on a single node. The idea of our algorithm is to change the value of some tokens of the

stream so that the walk on G follows one of these edges rather than the other (for instance, q17
1→ q20 instead

of q17
2→ q20). These tokens are chosen as a function of (1) the secret key Kp of the owner and (2) a finite

portion, carefully chosen, of the path previously covered. The original walk on the automaton is diverted,
and becomes specific to the data owner. This process is repeated along the stream. Notice that following an
edge once does not imply that it will always be chosen because the path previously covered varies. Then, a
watermarked stream is composed of alternated sequences of unaltered segments (synchronization segments)
and altered segments of length 1. The value of an altered segment cryptographically depends on the value
of its preceding synchronization segment. This method ensures that the type of the stream is respected.
Furthermore, the modified stream is close to the original: each choice between two different paths adds
at most 1 to the edit-distance between the original and the watermarked stream (and less to the relative
edit-distance).

5.2.3 Finding Detours

The previous paragraph gave the idea of the 1-détour algorithm because paths of length 1 were altered in
order to embed the watermark. The extension of this algorithm to path of length exactly ℓ is given the name
of ℓ-détour. In ℓ-détour, not all paths of length ℓ may be changed but only those called detours :

Definition 55 (Detours) Let G be a stream automaton. The path p = qi → ... → qj is a detour of length
ℓ in G if its length is ℓ and if there is no path p′ in G, distinct from p, of length at most ℓ, having the same
end points qi and qj, and an internal node in common.

Example 56 In any stream automaton, all edges are detours of length 1 since they do not contain any
internal node. Remark also that as soon as ℓ > 1, cycles are not allowed in detours of length ℓ. On the

automaton of Fig. 5.2, there are detours of length 2: q7
1→ q8

9→ q10 and q7
2→ q9

0→ q10. Conversely, paths
from q13 to q16 going through q14 are not detours because q14 is an internal node common to 9 paths of length
2 between q13 and q16. There are 9 paths from q14 to q16 labeled by 1 to 9.

The proof of proposition 57 provides a constructive way to compute detours. Due to space reasons, it is
not detailed. Remark that space complexity of the method is O(n2|Σ|ℓ) whereas it is usually O(n2|Σ|ℓ) to
compute paths (and not detours) of length ℓ.

Proposition 57 Let Σ be the alphabet, n the number of states of the automaton and ℓ ∈ N, ℓ > 0. Detours
of length ℓ can be computed in space complexity O(n2|Σ|ℓ) and time complexity O(n3ℓ).

Proof. (sketch) Since detours are paths, i.e. finite sequences of labelled edges, a first näıve strategy is
to compute the set of paths of length ℓ and remove paths which are not detours. If Sk(i, j) is the set of
paths of length k between states i and j, the formula Sk+1(i, j) =

⋃

q∈states(G)

Sk(i, q) × S1(q, j) permits to

define an iterative algorithm to compute Sk(i, j) for any k > 0 (if R,S are two sets, R× S is defined as the
set containing the concatenation of every item of R with every item of S). Unfortunately, this leads to an
exponential blowup because the number of paths of length ℓ is n|Σ|ℓ in the worst case. This blowup can
be avoided by getting rid of paths which will not become detours, at each iteration. Indeed, if p, p′ are two



detours having the same end points and e is an edge in G, p.e and p′.e are not detours because they share an
internal node: end(p) = end(p′). This fact remains true for any two paths which have p and p′ as prefixes.
Similarly, if p is a detour of length k between i and q and e, e′ are two edges between q and j, p.e and p.e′

are not detours. Hence, we can reduce the number of paths which are detours in the sets computed by the
näıve algorithm by modifying the definition of the × operator: if R and S are not singletons, R × S = ∅.
This can be checked in constant time. Another condition is necessary to strictly compute sets of detours: if
p1 (resp. p2) is the only detour of length k > 1 between states i and q1 (resp. q2) and e1 (resp. e2) is the
only edge between states q1 (resp. q2) and j, p1.e1 and p2.e2 are detours of length k + 1, unless p1 and p2
share their first edges. To check this when computing R× S, buffering only the first edge of each path in R
is needed. There are at most |Σ| such edges.

This leads to a time complexity O(n3ℓ) and a space complexity O(n2|Σ|ℓ). At each of the ℓ iterations,
there are n2 sets of detours to compute, each step requiring at most n operations. Space complexity is
O(n2|Σ|ℓ) because the number of detours is at most |Σ| between any two states (two detours can not begin
with the same edge). There are n2 pairs of states and the maximum length of a detour is ℓ. �

5.2.4 Watermark Embedding

The ℓ-détour algorithm can be divided into three successive steps. Steps (1) and (2) are performed once
for all, while step (3) is used online and requires constant memory.

(1) Precomputation of the detours given a target detour length ℓ.

(2) Annotation of the automaton. The set of detours is split up into the set of alterable ones and the set
of unalterable ones. Among the set of remaining edges (i.e. edges not part of a detour or part of an
unalterable detour), a subset of synchronization edges is selected.

(3) On-the-fly watermarking. The stream is continuously rewritten by substituting some sequences of ℓ
tokens.

STEP 1: Precomputation. For a given input type, a canonical choice for the stream automaton is the
minimal deterministic recognizer of the DTD, but any equivalent deterministic recognizer may be used. A
strategy is to start with the minimal one and to compute the detours using Prop. 57. If their number is
too small or if they do not fit the owner’s needs, the automaton can be unfolded into an equivalent one by
splitting nodes and duplicating edges, and detours recomputed.

STEP 2: Annotation of the automaton. Not all detours are suitable for watermarking. For instance,

on Fig. 5.2, there are two detours of length 2 between states q7 and q10: q7
1→ q8

9→ q10 and q7
2→ q9

0→ q10.
Using these detours for watermark embedding would imply changing the millennium of a news item, resulting
in an important loss of semantics. A solution is to divide the previously computed set of detours into two
subsets: the subset of alterable detours and the subset of unalterable ones. This partition is done by the owner
based on semantical criteria. All the remaining edges can not be used as synchronization edges. Indeed,
some of them may be changed by an attacker without too much altering the semantics of the data which
would result in the impossibility to resynchronize during the detection process and makes the watermark
ineffective. For instance, we should not use the title as synchronization key because it can be altered, e.g.
by adding spaces or changing the case of some characters, without changing its semantics. Conversely, the
path in the url is not likely to be changed in an uninvertible manner (e.g. replacing letter ’a’ by code %61).
The corresponding edges in the automaton can be chosen as synchronization ones.

Example 58 A natural choice for watermarking news items is to modify the least significant part of the
date. This can be achieved by using only detours from states q17 to q20, detours from states q18 to q21 and
detours from states q19 to q21 as alterable ones.

79



STEP 3: On-the-fly Watermarking. In this last step, the core of ℓ-détour, some portions of the
stream are changed to insert the watermark. It is called streamWatermark and sketched on Fig. 5.3. Its
execution is basically a walk on the automaton used to typecheck the stream. At each move, the last covered
edges are changed if they match an alterable detour of length ℓ. Inputs of streamWatermark are a stream
σ, the private key Kp of its owner and an extra parameter γ used to change the alteration rate (on average,
one alterable detour out of γ is altered).

The streamWatermark procedure uses two variables: p and Ks. The path p is a finite queue having size
at most ℓ containing the last covered edges, used as a finite FIFO: before adding a new edge at the end of
a full p, its first edge is discarded. When p is full, it contains a candidate detour, likely to be changed if
it matches an alterable detour. The second variable Ks stands for the synchronization key. It is used as a
bounded-size queue of tokens. It will contain any symbol that corresponds to a synchronization edge.

The streamWatermark algorithm starts in A and regularly loops back to this cell. In A, we read a token
from the input stream which generates a move on the automaton. The covered edge is added to p. Then, we
move to cell B. If length(p)< ℓ, we move back to A. When length(p)= ℓ, we move to C. In cell C, we test
whether p is going to be changed i.e. whether p is an alterable detour (from states i to j) and whether there is
at least one another other detour from i to j. When these two conditions are met, we move to the watermark
cell E. In E, the path p is converted into an integer: its rank in an arbitrary ordering of all detours from i to
j. This integer, together with the synchronization key Ks, the private key of the owner Kp and γ, is passed
to the procedure intWatermark (Alg. 6). Its output is the number of a new detour which labelling symbols
will be added to the output stream. This procedure, derived from [7], uses a pseudo-random generator R
seeded with Ks.Kp to choose (1) whether the passed integer is going to be altered or not (2) which bit of
the passed integer is going to be modified and (3) what will the new value of this bit. The synchronization
key Ks is reseted to the empty queue. Remark that this modification only depends on the private key of the
owner and tokens of the stream which are not altered. If the conditions to move to cell E are not met, we
move to cell D. Path p not being an alterable detour does not mean that its suffix of length ℓ− 1 is not the
prefix of another detour. So, in D, the first edge of p is discarded and, if it is a synchronization edge, its
labelling token c added to Ks. Simultaneously, c is added to the output stream. The process loops back to
the initial cell A.

Hence, the ℓ-détour algorithm outputs 0,1 or ℓ tokens every time it reads a token from the input stream.
If N tokens have been read from the input stream, at least N − ℓ and at most N tokens have been outputted
which makes the process a real-time one. The output of streamWatermark is a stream of the form c1e1c2e2...
where each ci comes from the input stream and ei is the result of a pseudo-random choice seeded with the
synchronization part of ci concatenated with the private key of the owner. Each segment ei has length ℓ.

Algorithm 6: intWatermark(i,Ks,Kp, γ)

Output: 1 ≤ j ≤ n
R.seed(Ks.Kp) /* seed the random generator */ ;1

// (1) decide whether i is going to be changed

if R.nextInt() % γ = 0 then2

p = R.nextInt() % ⌈log2(n)⌉ /* (2) choose which bit of i to change */ ;3

b = R.nextInt() % 2 /* (3) new value of bit p of i */ ;4

j := i where bit p is forced to b;5

return j;6

Example 59 Suppose that we are in the middle of the watermarking process of the Xml segment of Fig.
5.1. Detours of length ℓ = 1 have been chosen and the partition of detours has been done in Example 58.
Suppose also that the algorithm has just reached cell A, that the current position on the automaton is state

q13 (last read token is -), that Ks = K0
s =<url>http://www.imdb...</url> and p = q12

-→ q13. The path

q12
-→ q13 has length 1 but is not a detour, so we move to cell D through cell C. In cell D, the first token of
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Figure 5.3: streamWatermark(σ,Kp, γ)

p, - is removed, appended to Ks and added to the output stream. Then, p = [] and we move to cell A. The

token 0 is read from the input stream and the edge q13
0→ q14 appended to p. Still, p is not an alterable detour

and the same sequence of steps through cells B,C,D is performed. Then, the algorithm moves through edges

q14
5→ q16, q16

-→ q17 and q17
2→ q20; the tokens 5,-,2 are processed the same way the token 0 was. The token

3 coding for the lowest significant digit of the day in the month is read in cell A. The path p =q20
3→ q21

is a detour of length 1 from states q20 to q21. Since there are 10 detours between these states, we move to
watermarking cell E. The intWatermark procedure is called with Ks = K0

s .05-2 and r = 4 (p is the fourth
detour from q20 to q21). A one-way cryptographic choice of a new detour is done by Alg. 6, depending only
on Ks and Kp. For instance, if intWatermark outputs 7, the seventh detour is chosen and the token 6 added
to the output stream. The watermarked date is 1989-05-26. Then, Ks and p are reseted and we loop back
to A.

5.2.5 Quality Preservation: Setting Alteration Frequency γ

The following theorem quantifies to what extent the quality of a watermarked stream is preserved. Let G
be a stream automaton. Let S (resp. E) be the set of starting (resp. ending) nodes of the alterable detours.
We define the inter-detours distance c as the length of the shortest path between a node in E ∪ q0 and a
node in S. For the automaton of Fig. 5.2, {q17, q18, q19} ⊆ S and {q20, q21} ⊆ E so c is at most the minimum
of the distances between q0 and q17 and between q21 and q17 (the actual inter-detours distance can not be
given because of the partial specification).

Theorem 60 Let σN a finite prefix of a stream and σ̃N its watermarked version using ℓ-détour. Then, at
most d(σN , σ̃N ) ≤ (1 + c

ℓ )
−1 and on average d(σN , σ̃N ) ≤ 1

γ (1 +
c
ℓ )

−1.

Proof. A finite segment σN of a stream σ can be written as σN = c1e1..cnenr where c1, .., cn are token
sequences used as synchronization keys, e1, .., en are token sequences labelling detours and r is the remaining.
ℓ-détour introduces a distortion of at most nℓ. Since the length of each ci is at least c, the relative distortion
ε = nℓ∑

|ci|
1,n

+nℓ+|r] is such that ε ≤ (1 + c/l)−1. On average, 1
γ pairs ciei are altered. �
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Hence, for a maximum error rate e = 0.1%, a detour length ℓ = 2 and an inter-detour distance c = 10,
the value of γ is chosen so that 1

γ (1 +
c
ℓ )

−1 ≤ e i.e. γ ≈ 6000. So, on average, one over 6000 tokens labelling
alterable detours should be altered to comply with this error rate.

5.2.6 Watermark Detection

Since the alterations performed by the watermarking process depend only on the value of the private key
Kp of the owner, exhibiting a key and making the dependencies appear is a strong proof of ownership. The
detection process locates the synchronization keys and checks whether the detours taken by the suspect
stream match what would be their watermarked value. It is very close from the watermarking algorithm
except that the content f the stream is not changed. We use two counters, tc and mc, tc standing for total
count and mc for match count. We increment tc every time we meet a detour that would be watermarked
(this corresponds to line 2 of Alg. 6). We increment mc every time a detour matches what would be its
watermarked value. Therefore, tc ≥ mc. When tc = mc, we can conclude of the presence of a watermark.
When tc > 0,mc = 0, we are probably in front of an attacker who successfully inverted every bit of the mark.
This inversion is considered as suspicious as the full presence of the mark (think of it as a negative image
of a black and white picture). For a non-watermarked stream, we can assume that there is no correlation
between the distribution of the data and the pseudo-random watermark embedding process (assumption
verified in our experiments). In this case, the probability that each bit of a detour matches what would be
its watermarked value is 1/2 . Then, we can await for tc to be twice the value of mc when there is no mark.
To sum up, the watermark is found when |mc/tc− 1/2| > α, where α is a predefined threshold. The choice
of α is very important: if α is too large, the detection raises false alarms; if α is too small, slightly altered
marks become undetectable, raising false negatives. The choice of α is discussed in the next section. Remark
also that only the suspect stream and the private key of the owner are needed to check for a watermark.

5.3 Robustness: Analysis and Experiments

A watermarking algorithm is said to be robust when an attacker, unaware of the secret key used for watermark
embedding, has to alter more the data than the watermarking process did, in order to remove the mark. In
that case, the attacked stream suffers a huge loss of semantics, which is very likely to destroy their quality.

5.3.1 Synchronization Attacks

A watermarked stream can be attacked by modifying synchronization parts. Indeed, ℓ-détour requires these
parts to remain identical for detection. Such attacks are limited by the constant requirement to keep streams
valid with respect to the input type of their consumers. A non-valid stream cannot be resold by a malicious
user. As explained in STEP 2 of ℓ-détour, synchronization parts are chosen to be semantically relevant
which means that they cannot be changed without widely affecting its semantics. Therefore, a type breaking
attack requires to alter data semantics more than the watermarking process did.

5.3.2 Detours Attacks

Since the attacker is unaware of which detours were actually altered, two strategies are available to him.
First, he can try to remove the mark by randomly modifying the altered detours. We model this attack as
a random attack.

Random Attack. For 0 < p < 1, a random attack of parameter p is an attack inverting each bit of the
watermark with a probability at most p. The false negative occurrence probability pfn(p) is the probability
that an attacker performing a random attack of parameter p cheats the detector. Theorem 61 (see [42] for a
complete proof) shows how to choose α (detection threshold) and tc (number of altered detours to poll) to
get this probability maximally bounded by an owner-defined probability δ (e.g. δ = 10−6). These parameters
also allows for a false positive occurrence probability pfp bounded by δ.



Theorem 61 Let 0 < δ, p < 1, tc ∈ N, p 6= 1/2, tc0 = − log(δ/2)
2(1−2p)2 ,

α1(tc) =
− log(δ/2)

2tc and α2(tc) =
1
2 − p−

√

− log(δ/2)
2tc . Then,

(tc ≥ tc0 and α1(tc) ≤ α ≤ α2(tc))⇒ (pfp ≤ δ and pfn(p) ≤ δ).

Proof. (sketch) The fact that a detour matches its watermarked value is seen as the outcome of a
Bernoulli’s law of parameter 1/2. Suppose that we are able to retrieve n possibly watermarked positions in
the stream. The probability that a false positive occurs is exactly the probability that the number of positive
outcomes in n outcomes of Bernoulli’s experiments deviates from the standard value n/2 by a distance α.n.
The higher n is, the smaller this probability. It can be bounded using a Hoeffding inequality [50] to obtain
a maximal bound for the occurrence of a false positive. Similarly, one can bound the probability that a false
negative occurs. By combining these two results, we find the minimum number of potentially watermarked
detours one must consider to test the presence of a watermark and simultaneously stay under the target
probability δ. �

Listen& Learn Attack. When a synchronization key is met twice, the two corresponding watermarked
bits will have the same position and the same value. If c.e1 and c.e2 are two sequences synchronization
key.detour, the watermarked bit is among the set of bits which have the same value in the binary representa-
tions of the rank of e1 and the rank of e2. An attacker may try to learn such dependencies in order to perform
a Listen & learn attack. This attack consists in the following two steps. First, learning associations between
synchronization keys values and watermarked bits. Second, attacking the watermark using this knowledge.
Notice that this can not be done in constant memory and requires an external and efficient storage. This
does not comply with computational constraints on streams, that also apply to the attacker.

5.3.3 Experiments

Test Sample. We used Rss news feeds provided by CNN [1] from September 8th 2005 to September
14th 2005 for a total of 1694 news items (or 523041 tokens). Alterable detours were chosen to be the edges
associated to the highest significant digit of the minutes field and the lowest significant digit of the seconds
field. Hence, dates of news item are changed by at most 50 minutes and 9 seconds. Synchronization keys
include the content of the link element and edges not part of an alterable detour in the pubDate element.

Detour-witching Attack. A detour-switching attack consists in randomly switching all alterable detours.
It is parameterized by the alteration frequency q: with probability 1/q each detour is replaced by another
one, having same start and same end, randomly chosen. We performed experiments for various values of q
and γ. A summary of the results is displayed in Table 5.1(a). For each combination of q and γ, the set of
news items was watermarked and attacked 100 times. We count the number of positive detections PD of the
watermark and the relative extra alteration QL introduced by the attack, compared to the watermarking
process. If the watermarking process altersWL tokens of the stream, then the attack has an overall distortion
of WL+QL. For instance, when q = 1 and γ = 3, the attack successfully erases the watermark (PD= 0%)
but at the price of a significant quality loss QL= 0.39% compared to the alterations introduced by the
watermarking process WL= 0.22%. On the contrary, for q = 1 and γ = 1, the attack is a success (PD= 0%,
QL= 0%). This shows that choosing γ = 1 is a bad idea for the data owner, as it means watermarking every
possible position, hence giving a severe hint to the attacker. As soon as γ > 1, the mark is not removed if
the attack does not alter more the stream than the watermarking process did.

Listen & Learn Attack. We performed experiments of this attack using two strategies. In the destructive
strategy we change every alterable detour unless we know it is a watermarked one. In the surge strategy, a
detour is altered only if we are sure it is a watermarked one. We performed experiments for different learning
times, ltime ranging from 100 detours to 1500. The detection process begins after the end of the learning
period to maximize the effect of the learning attack. For each strategy and learning time combination, 100
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Table 5.1: Attack Experiments: WL (quality loss due to watermarking), QL (extra quality loss due to
attacks), PD (ratio of positive detections)

P
P
P
P
P

q
γ

1 (high rate) 2 3 (low rate)

1
WL:0.65% WL:0.32% WL:0.22%
QL:0% QL:0.38% QL:0.39%
PD:0% PD:0% PD:0%

2
WL:0.65% WL:0.32% WL:0.22%
QL:0% QL:0.19% QL:0.19%

PD:100% PD:100% PD:100%

3
WL:0.65% WL:0.32% WL:0.22%
QL:0% QL:0.13% QL:0.13%

PD:100% PD:100% PD:100%

❵
❵
❵
❵
❵
❵
❵
❵

strategy
ltime

100 500 1500

surge
QL:0.27% QL:0.39% QL:0.24%
PD:100% PD:100% PD:100%

destructive
QL:0.57% QL:0.49% QL:0.27%
PD:52% PD:100% PD:100%

(a) Random Attack (b) Listen & Learn Attack
Failure probability δ = 0.01 δ = 0.01,γ = 3 and WL= 0.22%

experiments were performed. Results are presented in Table 5.1(b). In only one case, the watermark is
removed. This is not surprising because when ltime = 100, the destructive strategy is a random attack with
p = 1. Indeed, not enough knowledge has been acquired. Even for longer learning times, the attack does
not affect the detection.

5.4 Related Work

Our work is an extension of [7] which considered relational database watermarking. In [7], the watermarked
information is located in the least significant bits of numerical values whereas ours is located at any position,
provided this position can be localized by an automaton. Type-preservation is implicit since the structure of
the databases (relation name, attribute names, key constraints) is not altered. In the Xml context, structure
is far more flexible and can be used to embed watermarking bits. This motivates structural modifications
in the purpose of watermarking, but while keeping the data usable, i.e. respecting its original type. Such
structural modifications are not discussed. It is noteworthy that our automata-based model can mimic their
algorithm for numerical values with a fixed size (which is a usual hypothesis in practice).

In [105], a watermarking scheme for sensor streams is proposed. Streams are defined as continuous
sequences of numerical values. Watermarking is performed by altering salient points of the stream. This
method can be seen as type-preserving since a flow of numerical values is mapped to another flow of numerical
values. But this typing system (any sequence of numerical values) is very poor and numerical streams can
not be considered as really structured. In that sense, the problematic is different from ours.

Other works [26, 39, 53, 82, 90, 121] address watermarking Xml information in various contexts. In all
these works Xml documents are viewed as a whole, and not as streaming information. In [26, 53, 82, 121],
watermark embedding values are located through the use of specific XPath queries. It is not discussed
whether these techniques can be applied in a streaming context but a starting point is that XPath can not
be efficiently evaluated over streaming data [34]. Only one work [53] considers structural modification as
bandwidth for watermarking which are often viewed as attacks [90, 121] watermarkers must deal with. A
theoretical work [39] explores the watermarking of Xml databases while preserving constraints which are
specified trough parametric queries. Type constraints does not fit into this framework.

5.5 Conclusion

In this work, we have presented the ℓ-détour algorithm which permits the embedding and the detection
of copyright marks into Xml streams. Thus, it enables detections of illegal redistributions of such objects.
Future work is to study whether it is possible to detect watermarks after one or several transformations by
consumers. Obviously, this is impossible in the most general setting but preliminary results [42] show that



this question can be answered for a restricted class of transformations, expressing deterministically invertible
stream rewritings.

Related publications

• Julien Lafaye and David Gross-Amblard. XML Streams Watermarking. In 20th Annual IFIP WG
11.3 Working Conference on Data and Applications Security (DBSec2006), Sophia Antipolis, France,
7/31 - 8/02 2006, pages 74–88.
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6
Symbolic musical scores

In this section we propose a new watermarking method that hides the writer’s identity into symbolic musical
scores featuring fingering annotations. These annotations constitute a valuable part of the symbolic repre-
sentation, yet they can be slightly modified without altering the quality of the musical information. The
method applies a controlled distortion of the existing fingerings so that unauthorized copies can be identified.
The proposed watermarking method is robust against attacks like random fingering alterations and score
cropping, and its detection does not require the original fingering, but only the suspect one. The method is
general and applies to various fingering contexts and instruments.

6.1 Introduction

In this work we consider symbolic musical scores that contain fingering annotations. Such fingerings ease the
score interpretation for the beginner player, and can guide the professional player. Producing high quality
fingerings is a complex and costly task for the score writer. Up to now, it mainly remains an hand-made
task, although several automatic fingering methods have been proposed recently [11, 48, 119].

The score writer’s investment is threaten by the development of musical scores in digital form. Any buyer
of such scores can obtain a perfect copy of the files and resell illegal copies. Watermarking is a known tool
to protect the intellectual property of digital content, and it can be envisioned for musical scores as well.
This would enable the distribution and sharing of score files marked by the copyright of their owner(s), just
like score sheets are nowadays, but with the numerous advantages associated with the digital format.

Several methods have been proposed to hide the owner’s identity into score images, by changing pixels [32],
staff thickness [96] or symbols shape [97, 98]. These approaches are well fitted for protecting score images,
but are not relevant for data exchange in a symbolic format like MusicXML [92]. Given the high cost of
producing a symbolic digital score, writers may demand a robust mechanism to embed their copyright mark
in the music symbolic representation. This copyright mark must be preserved throughout the operations that
can be applied to the digital representation (e.g., transposition). It should not depend on side aspects such
as graphical output details (e.g., the thickness of staff lines) which can easily be replaced or even eliminated
without harm, as they are not part of the symbolic representation. Finally, the watermark should not alter
the music content. In order to satisfy these requirements, our approach consists in watermarking the existing
scores annotations. In the present chapter we apply the idea to fingering annotations. Up to our knowledge,
this is the first work on watermarking the music semantics itself.

The key idea of the method, given a musical score and a hand-made high quality fingering, is to choose
several short secret fragments of the score. Given a score fragment, we replace the existing fingering with
another fingering, chosen secretly among several computer-made fingerings of comparable quality. All secret
choices are made using a cryptographic pseudo-random number generator, seeded by a summary of the
musical structure and with a secret key known only by the legitimate owner. The resulting fingering will be
published with the musical score. Finally, given a suspect score, the correspondence of the suspect fingering
with our secret choices on our secret fragments acts as the proof of ownership. Our method applies to any
fingering scenario, as soon as a quality metric of fingerings is available along with an automatic fingering
method for small fragments (such as in piano or guitar music for example).
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Figure 6.1: Different fingerings of the same score, with cumulative costs

It should be clear that we protect the combination of the score and its fingering, and not the score itself.
We also suppose that the attacker cannot afford to alter the score significantly, as this would result in an
unsellable score (nevertheless we moderate this assertion in Section 6.3).

6.2 Fingering and watermarking

6.2.1 Fingering

The method proposed in this work applies to any fingering context, but for the sake of simplicity we will
focus on right-hand piano fingering for melodic inputs. Given a score in symbolic notation, we abstract it
as a sequence s = (n1, . . . , nN ) of N consecutive notes. A fingering f(ni) for a note ni is an integer in
{1, 2, . . . , 5}, where number 1 to 5 represents the right-hand fingers, respecting the usual conventions. For
example, f(A) = 2 means that note A will be played by the forefinger.

The watermarking method uses an estimate of the quality of a fingering, that is related to the player
inner feelings. We suppose the existence of a cost function cost(f, s) that provides the cost of fingering f for
the score s: the higher the cost output by this function, the lower the quality of the provided fingering (such
functions exist for several instruments like piano [48]). We will explicit this function in our experiments in
Section 6.5, but our method applies to any such function. We also often use the cost of a fragment w of the
score s, that we denote cost(f, w, s).

The first staff of Figure 6.1 presents an original score fragment with fingering annotations build by the
score writer. Fingering annotations appear above the score. Annotations below the score are presented here
only for the purpose of explanation, but are not published by the score writer. They show the cumulative
cost of playing the score with the corresponding fingering (for example, playing the whole score costs 50
according to the chosen cost function).

6.2.2 Watermarking protocols

A watermarking protocol is a pair of algorithms (W ,D), where W and D are respectively the marker and
detector algorithms (see Figure 6.2). Given an original score s and a high quality fingering f , the score
writer will watermark it by obtaining a specific fingering fM =W(s, f,K), depending on a secret numerical
key K. The watermarked score (s, fM ) is sold to the customer. If a suspect copy (s∗, f∗) is discovered, the
detector D applied on (s∗, f∗) using the secret key K should output guilty if f∗ was obtained from fM ,
and not guilty if f∗ is a fingering obtained independently from fM . A watermarking protocol is said to be
blind if the original fingering is not needed at detection time, which may be useful as writer’s fingerings may



not be accessible easily or archived properly. The suspect fingering may have been also attacked/distorted
before reselling, in order to erase the watermark. A watermarking protocol is said to be robust if it can still
detect reasonably altered fingerings. Finally, respecting usual conventions, marker and detector algorithms
are public, and their security relies only on the secret key.

illegal reselling

secret key

secret key

document owner’s side

detectorproof
of ownership

lawful user

malevolent user

users side

attacks

watermarked
document

altered document

markeroriginal
document

Figure 6.2: Protecting score and fingering by watermarking

6.3 Fingering Watermarking

6.3.1 Watermarking algorithm

Algorithm 7 gives the pseudo-code of the watermarking algorithm. Given a score s, the algorithm scans
s by considering only a window of k consecutive notes (line 4 and 5). For each window, we first decide if
it constitutes a good candidate for watermarking (line 6 and 7). This choice is secret and is based on the
window content, the secret key K and a watermarking ratio γ known only by the score writer (this will be
explained in the next section).

Algorithm 7: Watermarking

Input: a score s of N notes n1, . . . , nN , a high quality fingering f for s, a secret key K, a window size
k, a quality threshold ε, a period γ.

Output: A watermarked fingering f ′.
begin1

// copy f to f ′
2

f ′ := f3

for i = 1 to N − k + 1 do4

w = ni.ni+1 . . . ni+k−1 // reference window5

seed PRNG G with signature(w).K6

if (G.nextInt() mod γ = 0) then7

// try to watermark the first note8

f ′(ni) := G.nextInt() mod 59

if (|cost(f ′, w, s) − cost(f, w, s)| > ε) then10

// revert changes11

f ′(ni) := f(ni)12

return f ′
13

end14

If a given window w is considered for watermarking, we focus on its first note ni. We try to replace
the original fingering f(ni) for this note by another one, f ′(ni), also chosen secretly between the 5 possible
fingerings for our piano example (line 9).
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We compare the cost of this new fingering cost(f ′, w, s) on window w with the cost of the original fingering
cost(f, w, s) on w (line 10). If the new cost exceeds the previous one by a limit ε, we cancel this modification
(line 12). If the new fingering has a reasonable cost, we keep it for publication. Parameter ε, chosen by
the score writer, controls the allowed amount of alteration that results from the watermarking process, and
guarantees to produce fingerings with a good quality.

The second staff on Figure 6.1 demonstrates the process. For example, the 9th note (E) is considered for
watermarking. Its original fingering (finger 2) has been replaced by a new fingering (finger 1). This yields
an overhead cost of 2, which is considered reasonable for this example. The overall watermarking process
yields a total overhead cost of 4 on the score fingering.

6.3.2 Randomness

We now explain how random choices are made. Given a window w, we compute its musical signature
based its core music content (signature() function, line 6). The signature is independent from annotations
and ornaments that are pointless for our algorithm. It is robust against näıve transposition attacks as it
transposes the score into a common key (but of course, fingering costs are computed according to the original
score). It is also invariant against score rewriting replacing a note or group of notes by an equivalent encoding
(for example, replacing a half note by two tied quarters). In this work, the signature is the concatenation
of transposed note pitches, where consecutive equal pitches are suppressed. For example, the signature of
ABAABC is ABABC (seen as a number), and time is not taken into account.

We concatenate this signature with the secret key K (a number), known only by the score writer. Then,
we seed a cryptographic pseudo-random number generator (PRNG) with this number (as in [7]). This
generator is used for all subsequent choices and has interesting properties. First, if it is seeded with the
same value, the produced numbers are deterministic. Hence, if we know the secret key, we will be able to
reproduce the pseudo-random choices made at watermarking time. Second, if the secret key is unknown, the
generator outputs look completely random and can not be reproduced. Hence an attacker, unaware of the
secret key, is fighting against randomness.

6.3.3 Detection algorithm

The detection algorithm (see Algorithm 8 for the pseudo-code) proceeds like the marker algorithm. Using the
same window size, watermarking ratio and secret key used at watermarking time, we seed the generator with
each window signature and the secret key (line 7). Hence, the same random choices made at watermarking
time are reproduced. Thus we can locate exactly those windows selected at watermarking time (line 8).
Then, since the detector does not have the watermarked fingering for comparison (blind detector), we have
to assess that this position has really been used for watermarking. For that, we replace the fingering of
the first note by the awaited one, using the random generator (line 11). We then compute the cost of this
fingering. If it exceeds the error limit ε, we discard this window and restore the initial fingering (line 20). If
error limit is respected, then this position is probably a watermark (line 14). We then compare the awaited
fingering with the found one (line 15). For the whole score, we maintain the ratio of the number of matching
fingerings with the number of windows considered for detection. If this ratio exceeds a given threshold (line
24), we consider the score as suspect (the threshold value is discussed below).

6.4 Discussion

In this section we discuss several classical issues related to watermarking algorithms.

Impact on quality. Since the PRNG outputs random numbers with uniform distribution, the probability
for a window w to be considered for watermarking is 1/γ. The impact of watermarking this window can not
be higher than ε. Hence, for a N notes score, the mean overall alteration is at most ε⌊N − k⌋/γ.



Algorithm 8: Detection

Input: a suspect score s of N notes n1, . . . , nN with its fingering f∗, a secret key K, a window size k,
a quality threshold ε, a period γ, a security parameter δ.

Output: guilty or not guilty.
begin1

// copy f∗ to f ′
2

f ′ := f∗
3

total := 0, match := 04

for i := 1 to N − k + 1 do5

w = ni.ni+1 . . . ni+k−1 // reference window6

seed PRNG G with signature(w).K7

if (G.nextInt() mod γ = 0) then8

// check this window9

// compute awaited value10

f ′(ni) := G.nextInt() mod 511

if (|cost(f ′, w, s) − cost(f∗, w, s)| ≤ ε) then12

// probably watermarked position13

total++14

if (f ′(ni) = f∗(ni)) then15

match++16

else17

f ′(ni) := f∗(ni) // revert changes18

if (match/total > 1
5 + threshold(N, δ)) then19

return guilty20

else21

return not guilty22

end23

91



Window size. As the window size k increases, the amount of randomness injected into the random gen-
erator extends. If we consider reasonable scores whose notes spans 2 octaves, there is up to 14k potential
fingerings for k consecutive notes. We chose k = 5 in our experiments, leading to half-a-million distinct
window signatures.

False positives probability and threshold function. A false-positive detection occurs when the detec-
tor considers a random score as guilty. Clearly, this probability must be negligible. Let δ be this acceptable
probability, say δ = 10−10. Let us consider a random score. The probability of a given window to be selected
by the detector is 1/γ. For piano fingering, the probability of a fingering to correspond – by chance – to
the watermarked one is 1/5 (as there is 5 different possible fingerings). Hence the average number of total
matches on a random score is ⌊N − k⌋/5γ. By the Hoeffding Bound [50], the probability that the detector
ratio match

total on a random score deviates from the previous average is such that

P [|match
total

− 1

5
| > threshold(N, δ)] < e−2N

γ
threshold(N,δ)2 .

Hence, choosing threshold(N, δ) =
√

γ
N ln 1

δ guarantees a false positive rate smaller than δ. For example,

on a score of 10 000 notes with a watermarking period γ = 10 and δ = 10−10, the recommended threshold
is 0.22.

Available bandwidth. Robustness and significance are proportional to the amount of watermark bit
that can be hidden. In popular guitar pieces (e.g., guitar scores and tablatures for beginners), a significant
number of watermark positions are available. But music for expert players may contain only a few fingering
annotations. If this number is not sufficient to reach the security limit, or if the musical corpus is made of
small pieces only, a natural extension is to consider the watermarking of an entire piece collection (collected
in a CD for example). The watermark is spread on the collection, and since the detection method uses only
a finite-size sliding window, the order of pieces within the collection is pointless at detection time. The
method is also robust enough to recover the watermark on a subset/superset of scores.

Attacks. An attacker suspecting the occurrence of a watermark may try to evade detection by several
means. First, the attacker can add easy-to-correct errors in the fingering. To be successful, the attacker
will have to add such errors all along the piece, in order to erase sufficient watermark positions. Hence the
overall fingering is full of errors. Second, the attacker can leave the fingering unchanged, but add errors on
the score itself, in order to break synchronization with the fingering. If errors are simply note rewritings,
the signature method will probably recover the correct one. If the error is big, it will break one watermark
position. Again, errors must span the whole score to be efficient, which is unreasonable (due to lack of space,
we omit the mathematical proof of these statements. They are similar to the false-positive analysis).

Another approach for the attacker is to refinger the score. A complete rewriting represents a significant
amount of work, so why would this attacker bother buying a fingered score in the first place ? On the
contrary, a small refingering acts as a random attack, as the attacker has no idea where to perform this
fingering.

Finally, the malevolent user can attack the score structure. Brute-force transposition is not sufficient, as
we normalize the score in a specific key for detection. A first technique is to resell only subscores (excerpts).
This can occur even for a normal buyer using the score. However, as long as a significant fraction of the
piece is present, the watermark can be detected (this fraction is typically 30% in the database watermarking
literature [7]). If less than 1/3 of the piece is stolen, the loss of property is harmless. If an attacker mixes a
watermarked collection with a huge number of unwatermarked pieces, the argument is similar.

A last technique is to fold or unfold the score according to repetition symbols. This attack can be
counterfeited by discarding repeated parts in the signature() function, both for watermarking and detection.



6.5 Experiments

6.5.1 Data, cost function, parameters

Our experiments are based on 50 Chopin piano pieces from the KernScores repository [94], for a total of
around 10,000 notes. Original fingerings were found with a Dijkstra algorithm using a fingering cost function
close to [48] and [11] (our method supposes hand-made high quality fingerings, but this approach is sufficient
to measure the watermarking impact on quality). These models encompass the cost of playing a note with
a given hand position (vertical cost costv(f, n)), and the cost of the transition between one hand position to
the next one (horizontal cost costh(fi, ni → fi+1, ni+1)). These costs are constant values that agree with the
human hand physical possibilities (the precise definition of these costs in not relevant for the present work,
we refer the reader to [11] for in-depth explanation.) The cost cost(f, n) of a fingering f is the sum of its
horizontal and vertical costs, i.e.,

cost(f, n) =
N
∑

i=1

costv(fi, ni) + costh(fi, ni → fi+1, ni+1).

We used window size k = 5, error tolerance ε = 10 and detection threshold 0.8 (vertical and horizontal
costs for one note or transition spans between 0 and +14).

6.5.2 Experiments

Figure 6.3 shows the impact of the watermarking method for various values of watermarking period γ.
Clearly, a period smaller than 5 yields a huge distortion, and greater values tend toward a constant error
with respect to the original fingering. Figure 6.4 and 6.5 study the impact of a random attack that tries to
erase the watermark as follows: a note fingering is chosen with probability 1/γa, and changed into a random
fingering up to a cost impact of 10. Figure 6.4 shows the attack impact on the watermarked fingering
quality for various values of γa. It appears that the attack impact is larger than the watermark impact
on the fingering cost: choosing γa < 5 leads to fingerings with poor (unsellable) quality. Figure 6.5 shows
the attack impact on the detector ratio. Choosing a detection threshold of 0.8 guarantees that all suspect
fingerings are correctly detected, expect for those with attack γa smaller than 6. Hence, Figure 6.4 and 6.5
argue that any attack tricking the detector also destroys the fingering quality. Finally, Figure 6.6 shows that
using a random secret key does not yield false positive detection (the correct key is presented at index 50.)

Figure 6.3: Impact of watermarking on fingering cost
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Figure 6.4: Impact of attack on fingering cost

Figure 6.5: Impact of attack on detector’s output

Figure 6.6: Detector output for random secret keys (correct one at 50)



6.6 Related work

Hiding information (for various purposes) in musical scores is an old story. A study of music score water-
marking was performed during the WEDELMUSIC project. A good survey [79] recalls these approaches.
In the visual domain, classical but adapted image watermarking techniques can be applied on the image
of a musical score. The watermark can be hidden by altering grayscales, or the binary representation of
images, or the pixels themselves. In the musical notation (but still into the score image), one can alter
the staff thickness, the vertical or horizontal distance between notes or groups of notes, notes orientation,
thickness [96] or shape [97, 98]. Little is known on information hiding into the music semantics, where our
work stands.

Our method shares some similarities with database watermarking methods: watermarking of relational
databases of numerical values [7], numerical data streams [106] and XML streams [66]. All these methods
use the same PRNG technique, and [104] and [66] also use a finite window to scan a numerical or textual
stream. The main difference is that our method has to control a non-local cost on data and may require
rollbacks.

6.7 Conclusion

On-line distribution of musical scores is a promising area. Among other advantages, it could offer instant
access to music collections, a wide diffusion of rare musical pieces, and computer-based services to browse,
recommend, search and analyze music. However, producing music scores is a costly process and the protection
of score writers against illegal copies is a prerequisite for on-line collection to emerge. In the present chapter,
we propose a watermarking algorithm based on the idea that the owner signature should be based on
the musical content (which can hardly be modified) and hidden in a valuable annotation of this content
– namely, fingerings. We propose a simple algorithm and show that it results in an effective protection.
Although currently limited to fingerings, we believe that our approach can be extended to music annotations
in general, for instance texts in vocal music. We are currently investigating this larger context.

Related publications

• David Gross-Amblard, Philippe Rigaux, Lylia Abrouk and Nadine Cullot. Fingering wa-
termarking in symbolic digital scores. In International Conference on Music Information
Retrieval (ISMIR), 2009, Kobe, Japan.
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7
Geographical data

In this chapter we focus on the watermarking of geographical data in a fully applicative perspective. We
put the emphasis on the building layer of common geographical data sets, and take into account both data
accuracy and a so-called angular quality of the data.

7.1 Introduction

Geographical Information Systems (GIS) have existed for more than 40 years, and their application domain
is now wide, ranging from environmental surveillance by country agencies to localization-aware services for
individual mobile users. This phenomenon is stressed for the general public by the increasing availability
of GPS devices (e.g. car navigation) and the recent development of Google Earth and GeoPortail [2].
Most of these geographical applications rely on an underlying vectorial spatial database (points, polylines
and polygons). Even in Google Earth or GeoPortail , where the user interface is image-oriented, the
provided satellite images are semantically underlined with polygonal structures representing points of interest
(viewpoint, services), buildings or road networks.

Gathering such accurate information is an onerous task for the data owner. Hence, huge and detailed
vectorial databases carry a high scientific and/or economical value. For example, 50 USD is the usual fee
to be licensed to use polygons from a narrow one square kilometer area. This price is 10 times higher for a
reproduction license and far much higher for a full commercial license. Due to the ease of reproduction of
digital media, unauthorized copy and use threaten geographical data providers. Protecting the intellectual
property (IP) of rights owner is then a requirement.

On the legal side, data providers restrict the way buyers are allowed to use their data. On the technical
side, robust watermarking is a known technique for IP protection. It consists of hiding a copyright mark
within the data set. Embedded marks must be robust against removal attempts to be useful. In this section,
we propose a robust watermarking method for polygonal data sets.

To embed the watermark, the data has to be altered. What might sounds as a drawback is common to
most watermarking methods [57]. There is a trade-off between watermark robustness and data alteration:
the more alterations are allowed, the more robust the embedded watermark is. So, defining precisely what
makes the value of a data set is a prerequisite for watermarking.

Some applications do not rely only on spatial accuracy (i.e. the distance between a point in the real world
and this point in the data set). For example, spatial accuracy is not crucial for tourist city maps designers
who apply strong transformations to road polylines and building polygons in order to increase readability.
Some others focus on objects like forests, cliffs and shallows for which precise borders can be difficult to
define. But most applications rely on accurate data for automatic operations (e.g. service proximity search,
GPS navigation, spatial analysis of risks, etc.). Accuracy can even be mandatory, e.g. for reefs locations
on IHO/SHOM boat maps [111]. Finally, accurate data sets must conform with some standard reference
system for interoperability purposes (e.g. the World Geodetic System – WGS84, which is the GPS reference
system). So any watermarking method must respect data accuracy.

Beside accuracy, real world requirements entail specific constraints within the data set. For example, it
turns out that most of the vectorial content of geographical databases consists of building polygons (80% on
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the professional data set used in the experiments). Building polygons are under the scope of the squaring
constraint: data is systematically corrected so that buildings with right angles are mapped to polygons with
right angles in the data set. This squaring operation, available in any GIS, is systematically performed
by data owners and data users, and increases the angular quality of the data set. It is also very invasive
since potentially each point of the data set is moved. Experiments show that it also tends to increase data
accuracy. But surprisingly, squaring impact has never been taken into account by existing watermarking
proposals e.g. [85, 100]:

• On the owner side, watermarking is likely to turn squared shapes into skewed ones, reducing the data
quality;

• On the user side, squaring is likely to wipe out the watermark of the owner, lowering its security.
This natural transformation, along with other common filters, can be interpreted as an attack on the
watermark.

To take these effects into account, we model the quality of a data set by means of (1) its accuracy and (2)
its angular quality. This choice is motivated by a recently published survey [83], where it is deeply discussed
that quality encompasses accuracy and must take into account shapes and topology.

In this section, we propose an effective method for watermarking the building layer of a GIS. This
watermarking is robust against geographical transformations (including squaring and simplification) and
attacks by malicious users. As far as we know, this is the first method which takes into account the essential
squaring transformation. It provides a high level of security while controlling the impact on the quality of the
data set (point accuracy and angular quality) and not introducing topological errors (overlapping polygons).
An extended version of our method can even resists the MBR attack, which replaces each building by
its minimum bounding rectangle. Moreover the scheme is blind: the original data set is not required for
detection, definitely an important property for huge data sets.

A classical skeleton [7] of databases watermarking algorithms is to create a secret dependency between (1)
a robust identifier of the data and (2) one of its characteristics, e.g. between the primary key of a tuple and
one of its numerical attributes. Revealing this dependency acts as a proof of ownership. In our approach, we
get rid of the primary key by constructing a robust identifier for each building using a well chosen portion of
the highest significant bits of the coordinates of its centroid. Then, we rely on the observation that buildings
have an intrinsic orientation and that most of their edges are parallel or perpendicular to this orientation.
To hide a watermark bit, we expand or shrink buildings along their orientation. The expansion ratio is
deterministically chosen among a set of quantized values according to the robust identifier of the polygon,
the secret key of the owner and the bit to be embedded. By embedding the watermark within the shapes
of a building rather that within the coordinates of its vertices, we achieve robustness of watermarks against
squaring. Our scheme is also robust against other transformations we present later. Any malicious attacker
has to tremendously reduce accuracy and/or angular quality of the data set to erase the watermark.

Outline After describing a simple model for the quality of a buildings database, we introduce watermarking
basics and common geographical filters in Section 7.2. Our watermarking procedure is described in Section
7.3. Correction, efficiency and robustness of the method are assessed in Section 7.4, through an extensive
series of experiments. Related work is exposed in Section 7.5 and Section 7.6 concludes.

7.2 Preliminaries

7.2.1 Quality of Geographical Data

We suppose, as in any geographical application, that a reference system R0 has been chosen and that
all spatial coordinates are expressed in R0 (e.g. cartesian coordinates on the World Geodetic System, or
WGS84).

A point p = (x, y) is defined by its 2-dimension coordinates (x, y) in some reference system R0. A simple
polygon P = (p1, . . . , pn, pn+1 = p1) is represented by the list of its points. Two polygons taken from a real



data set are shown on Fig. 7.1(a). A geographical database instance is defined by (R,DB) where R is a
reference system and DB = {Pi}, i ∈ {1, . . . , N} is a set of N polygons. It is always provided with some
reference system otherwise it is of no use for automatic operations (nevertheless, we discuss in Section 7.4.4
the problem of missing reference system).
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Figure 7.1: Buildings polygons

We do not rely on the order of polygons within the data set, nor on the order of points within a polygon.
Furthermore, there is no primary key identifying these polygons. Polygons are supposed non-overlapping as
in many geographical applications. They can have holes. In that case, we process them as the full polygon
having the same envelope. More sophisticated models of spatial data expressing topology exist, but we omit
these enhancements for the sake of simplicity.

The (economical) value of a data set (R,DB) is correlated with its mean accuracy, its maximum accuracy
and its angular quality. The mean accuracy (resp. maximum accuracy) is the mean (resp. maximum) value
of the distance between a point of a (real) building and its corresponding point in the data set. The angular
quality [10] is defined as the opposite of its angular energy. The energy of an angle is a continuous piecewise
quadratic whose minima are reached for multiples of π/4. The angular energy of a polygon is the sum of
the energies of its angles. The intuition is that angles of real-world buildings are mostly right, or at least
multiples of π/4. So, regular buildings have lower energy levels.
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7.2.2 Watermarking

A watermarking procedure is defined as a pair of algorithms (W ,D), whereW is the watermarking algorithm,
and D is the detection algorithm. Algorithm W takes as inputs a data set (R,DB) , a secret key K, tuning
parameters, and produces a watermarked data set (R,DBK). The aim of the detector is, given a suspect
data set (R′, DB′) and the secret key K, to decide whether this data set holds a watermark or not. A
watermarking procedure is said to be blind if the original data set is not needed by the detector D. It is
said to be robust if it detects marks in altered watermarked data sets. It is well known that any robust
watermarking method must alter the data [57]. Hence, there is a trade-off between the allowed alteration,
i.e. the allowed impact on the quality, and the robustness of the algorithm.

To evade detection, an attacker may use one of the following attacks: random alteration of point positions,
mixing polygons from various data sets, applying the same or another watermarking algorithm, and specific
attacks like polygon-wise rotations. We discuss these attacks in Section 7.4. Of course, the attacker, who
still wants to re-sell a valuable data set must adopt a common reference system and limit the quality loss so
that profit can still be made from the attacked database.

7.2.3 Geographical Filters & Attacks

Geographical data sets are likely to undergo transformations by legitimate or malicious users. A broad
collection of such transformations is presented below. They can be divided into correction filters (SQ,
DP), readability improvements (ETR, MBR, CE) and malicious attacks (GN, OW, CA). Nevertheless, this
taxonomy is not fixed as a malicious user might apply correction filters and a legitimate one might crop a
large data set to keep only the part useful to him. A robust enough watermarking algorithm should resist
all of them:

• Squaring (SQ) For each polygon, its vertices are moved so that its angular energy is lowered. The
strength of the squaring is controlled by the maximum allowed alteration d on coordinates. Fig. 7.1(b)
shows a squared building, to be compared with its original counterpart depicted in Fig. 7.1(a).

• Douglas-Peucker simplification (DP) The Douglas-Peucker simplification algorithm [29] is a poly-
line simplification algorithm. It works by removing the vertices of polygons that draw small artifacts
on the edges of this polygon. Its strength is controlled by a threshold distance d. The higher d, the
larger the removed artifacts are.

• Cropping (CA) Polygons not contained within a given rectangle are discarded.

• Gaussian noise (GN) A random noise is added to each point of the database. The distribution of
the noise has mean 0 and a variable deviation d.

• Over-watermarking (OW) Applying the watermarking algorithm with a different key on an already
marked data set.

• Enlarge to rectangle (ETR) This filter replaces buildings by their bounding rectangle. Two modes
are available. The first one replaces each building with a rectangle having the same surface. The
second one takes as input a target scale and replaces the buildings that are too small (for a legally
fixed threshold value) to be legible on a map at that scale.

• Change elongation (CE) Applies a fixed ratio elongation along their orientation on all buildings of
the data set.

• Minimum bounding rectangle (MBR) Replaces each building by its minimal bounding rectangle.

Translating or rotating the whole data set are not an issue, since we focus on data sets with a reference
system: such transformations can be easily reversed. Observe that printing/scanning a map drawn from the
data set is out of the scope of our approach, since such paper maps are of no use for automatic operations.



7.3 Building Watermarking

7.3.1 Outline of the Algorithm

The rationale for many watermarking algorithms is to hide a secret dependency between (1) a robust part of
the data set, that will survive most alterations, and (2) one of its characteristics, whose alteration is allowed
up to a reasonable limit. Revealing this secret dependency acts as a proof of ownership. We build a robust
identifier idi for each polygon Pi by using the highest significant bits of the coordinates of its centroid,
expressed in the predefined reference system R0. This identifier is robust since it is invariant through
the modifications of vertex coordinates, involving only least significant bits. High amplitude modifications
are likely to break the identifiers but also to lead to visible shapes alterations and/or polygon overlappings.
Furthermore, if the coordinates of the polygon of the centroid are expressed in a reference system R′, different
from R0, it is easy to convert them back into R0. Indeed, no geographical data comes without a reference
system.

In order to hide a bit of information in polygon Pi, we expand or shrink it along its orientation. This
orientation is computed relatively to the centroid (see Fig. 7.1(c)), and represents the majority weighted angle
among edges directions. We present its computation in Section 7.3.3. For a rectangular shape, this orientation
is parallel to the longest edge. Choosing to expand along this orientation offers several advantages. First,
we observed that most edges of a polygon are parallel or perpendicular to this orientation. For example,
there are 3 directions in polygon A (Fig. 7.1(c)): SW-NE, SE-NW and W-E. The main direction, i.e.
the orientation is clearly SW-NE since the longest edges are heading this direction. Other directions are
perpendicular or make a π/4 angle with the orientation. When a polygon is expanded along its orientation,
geometrical relations between directions do not change. Second, an expansion along the orientation can still
be detected if the polygon is rotated. Finally, the impact on polygon surfaces has tighter bounds compared
to the case where shrinking or expanding along several directions is allowed.

It remains to compute the expansion factor to apply, and to choose which polygons are going to be
altered. These operations must be done so that any attacker, aware of the watermarking method, is unable
to guess on which polygons they were actually applied. A classical method to achieve this [7] is the following:
use the concatenation of the given identifier idi of a polygon and the secret key K of the owner to seed a
pseudo-random number generator (PRNG). Use pseudo-random drawings from the generator to determine
whether the current polygon is modified and, eventually, with which expansion factor. The sequence of
numbers produced by the generator is predictable if and only if idi.K is known. It appears purely random
to anyone who does not possess this seed (an attacker may easily compute idi, but K remains unknown).

Example 62 An example of our watermarking method applied on polygons A and B is shown on Fig. 7.3.
Original shapes are shown in black and watermarked ones in gray. First, we compute the centroid of A and
B, obtaining for example OA = (293, 155) and OB = (171, 447). To form unique identifiers idA and idB,
we concatenate the two highest significant digits of each coordinate, obtaining idA = 2915 and idB = 1744.
Choosing these two digits is correct under the hypothesis that any reasonable alteration is below 10 meters and
that the typical distance between any two buildings is more than 10 meters (this example considers decimal
base while our algorithm considers binary base). Second, based on the pseudo-random choices of a generator
seeded with idA and the secret key K, we decide that A must be watermarked with a mark bit 0. We compute
the main orientation ~u of A and find the vertex p such that ~u. ~Op is maximal. Let xmax denote this value.
Finally, we expand the building along its main orientation so that xmax becomes a predefined value x0max,
encoding bit 0. Polygon B is processed identically. Remark that A has been expanded whereas polygon B has
been shrinked, and that most angles are invariant under this transformation.

In the following, we detail the three consecutive steps of our algorithm: (1) computation of polygon
identifiers and orientations, (2) computation of expansion factors and (3) watermarking by expansion.
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Figure 7.3: Bit embedding by expansion

7.3.2 Computing Robust Identifiers

As a robust identifier, we use the highest significant bits of the centroid of the polygon. If P is a polygon
with n points p1, . . . , pn, pn+1 = p1, its area A and its centroid O = (x0, y0) can be computed using the
following common formulae:

A =
1

2

∑

1≤i≤n

(xiyi+1 − xi+1yi),

xO =
1

6A

∑

1≤i≤n

(xi + xi+1)(xiyi+1 − xi+1yi),

yO =
1

6A

∑

1≤i≤n

(yi + yi+1)(xiyi+1 − xi+1yi).

Centroids of polygons A and B are represented as black dots on Fig. 7.1(a) and 7.1(b).
We need to ensure that the chosen highest significant bits are significant enough. Suppose that the h-th

bit is the least highest significant bit. On the one hand, h must be high enough to that small modifications
of the polygon do not change the identifier. On the other hand, h must be small enough so that two adjacent
polygons do not share the same identifier. The identifier of a polygon P is computed by pruning in the
binary representations of its x and y coordinates the bits that represent powers of two at most h − 1 and
concatenating them. We denote by hsb(O, h) this operation.

id = hsb(O, h) = concat(hsb(xO, h), hsb(yO, h)).

As we will see later, two watermarked polygons sharing an identifier will be expanded using the same
quantization step. Such an information may be used by an attacker to break the watermark. Therefore,
shared identifiers must be avoided. A good choice is to select the smallest value h for which the identifiers
vary from one polygon to the other. We illustrate how we compute h by means of an example. For our
real-life data set (detailed in Section 7.4), we measured, for each polygon, the distances between the centroid
and the farthest vertex from the centroid. We obtain a mean of 12 meters and a standard deviation of 10.5
meters, that is, most polygons have an interior maximum distance between 2(12 − 10.5) = 3 meters and
2(12 + 10.5) = 50 meters. Considering 3 meters as a minimum size for a polygon, most polygons have their
centroid spaced by at least 6 meters. Even if there are pathological configurations, it is very likely that, by
choosing h = 2 meters, two polygons do not share the same identifier. When h = 2, l = 2h = 22 = 4 meters
is considered as the minimum significant distance. Experimentally, we verified that, by choosing h = 0, 2, 4
and 8, we had 0, 0, 40 and 300 cases of identifiers collision out of 4278 polygons. Hence, it seems that a good



Table 7.1: Angles Buckets

bucket 0 1 2 3 4 5 6 7 8 9

#edges 3 0 0 8 0 0 0 0 6 0
weight 9.02 0 0 62.4 0 0 0 0 45.2 0

heuristic is to use h = ⌊log2(2.(l̄+ δl))⌋ if l̄ and δl are the mean and the deviation of the main lengths of the
polygons in the data set.

7.3.3 Computing Polygon Orientation

We define the main orientation ~u of a polygon as the maximum weighted orientation of its edges. For instance,
if e1 and e2 are the only edges to have orientation α, then the weight of angle α is the sum of the lengths of
e1 and e2. The problem is that parallel walls in the real world are not necessarily mapped to parallel edges
in the data set. So, we need to sum the lengths of edges that are almost parallel. We define ε the tolerance
angle, that is e1 and e2 are considered as having the same orientation if their orientations α1 and α2 are such
that |α1 − α2| < ε. To efficiently compute the orientation, we defined a bucket-based classifying algorithm
based on the observation that there is often only a small number of different orientations per polygon. The
algorithm consists of the following three steps. First, we create a set of k empty buckets, provided we choose
k such that π/k < ε. In bucket i, we put all edges having an orientation between (i−1).πk and i.πk . Hence, in
buckets i and i+1 we have all edges that are almost equal to i.π/k. Then, we aggregate these small buckets
into bigger ones by merging two buckets if there is no empty bucket between them. The main orientation of
a building is computed as the mean value of the bucket having the highest cost (the cost of a bucket being
defined as the sum of the lengths of the edges in that bucket). It can happen that three or more buckets
need to be aggregated, leading to consider orientations as equal when their difference is greater than angle
tolerance. This is very unlikely. Indeed, we observed that on buildings, there is only a few directions per
polygon (2, 3 in most cases) which are clearly separated. A similar approach was followed in [30] with the
main difference that this latter method requires to compute the weight of all π/k orientations and select the
one with the highest weight. Our method is more efficient but may be less accurate in a restricted number
of situations.

Example 63 We illustrate the orientation computation algorithm on polygon A of Fig. 7.1(b). The number
of classes is set up to 10. Table 7.1 contains the number of edges and the weight of each bucket. The highest
cost bucket is bucket 4, i.e. the orientation is between 3π/10 and 4π/10 = 2π/5. The computation of the
weighted mean angle of bucket 4 gives 0.96 rad.

For some specific shapes, e.g. perfect squares and circles, our definition of orientation is ambiguous.
Instead of arbitrarily choosing an orientation, we simple ignore these unusual cases for polygon expansion.
On the test sample of our experiments, we had to ignore 1 polygon out of 4278.

7.3.4 Expansion as a Bit Embedding Method

In this subsection we show how to embed a single watermark bit b into a polygon P . To ensure that the
watermark is robust enough, we alter the overall shape of the polygon. More precisely, we alter the longest
distance xmax (see Fig. 7.3) along the orientation ~u from the centroid O to a vertex p. For a rectangular
polygon, this length is half the length of the longest edge. We name main length this longest distance. But
only altering the coordinates of p is not sufficient because it may lower angular quality (right angles may
be flattened by this transformation). Hence, we choose to alter all lengths along the orientation ~u so that
most angles are preserved. Defining by ~v the unary vector such that (0, ~u, ~v) is a direct orthonormal basis,
watermarking is done as follows:

• compute the x coordinate xi of each point pi of the polygon in (0, ~u, ~v);
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• compute the main length xmax = maxi{|xi|};
• expand all points coordinates along direction ~u so that xmax becomes one of the values {x0max, x1max}
coding a watermark bit 0 or 1.

This latter operation on xmax is known as quantization. Given a quantization step d, we define 0-
quantizers (resp. 1-quantizers) as qk0 = k.d (resp. qk1 = k.d + d/2), k ∈ Z. Intuitively, 0-quantizers (resp.
1-quantizers) are used to code a bit 0 (resp. a bit 1). To quantize the value xmax using the i-quantizers
(i ∈ {0, 1}), we look for k0 such that |qik0 − xmax| is minimal. More precisely, this is achieved with the
following steps (quantization on 0-quantizers is presented):

• compute kr = xmax/d;

• round kr to the closest integer k0;

• define the quantized version of xmax as x′max = k0.d.

The quantization process is illustrated on Fig. 7.4.
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Figure 7.4: Encoding 0 or 1 into the main length xmax using quantization

The expansion coefficient of the polygon is defined as σ = x′max/xmax. We transform each point p =
x.~u+ y.~v in the original polygon into a point p′ = σ.x.~u + y.~v in the watermarked polygon.

p = x.~u + y.~v original point p.

p′ = σ.x.~u + y.~v modified point p′.

The expansion is such that the maximum distortion on a vertex of a polygon is at most d/2. Remark
that this distortion can be reached only for the vertices that are the farthest from the centroid along ~u. On
the average, and for these points, the actual distortion is d/4.

7.3.5 Watermarking Algorithm

Watermarking The complete algorithm is presented in Alg. 9. Let 1/γ be the target ratio of watermarked
polygons. It is a parameter of the algorithm. For each polygon of the data set, we compute its robust identifier
id. Then, we seed a pseudo-random number generator G (PRNG) with K.id. If the first integer produced
by G modulo γ is 0, we embed a bit in the polygon. The bit is chosen according to the next binary value
produced by G and embedded using the previously described expansion method.

Variable Step Quantization We do not use a single quantization step d but a quantization interval
[dmin, dmax]. Indeed, if d is the same for the whole data set, main lengths of all watermarked polygons will
be multiples of d. This could be easily detected and used by an attacker to alter the watermark. To prove
this, we measured the cumulative distributions of main lengths in three data sets: an unwatermarked one, a
watermarked one using a fixed quantization step and another watermarked one using a variable quantization
step, randomly chosen. For the two watermarked data sets, all polygons were watermarked (γ = 1) to
emphasize differences. Graphs are shown on Fig. 7.5. We notice that, when the quantization step is fixed,
the cumulative distribution is piecewise constant whereas it is very close to the original one when a variable
quantization step is used. Fixed-step quantization is too visible through statistical analysis. So, we use a
different quantization step for each watermarked polygon.



Algorithm 9: Watermarking algorithm: given a secret key K, watermarking ratio 1/γ, h, quantization
step interval D = [dmin, dmax], original data set (R0, DB), outputs the watermarked dataset (R0, DBK)

foreach building P in DB do1

O ← Centroid(P )2

id← hsb(O, h) // robust identifier id3

seed(G,K · id) // seed the PRNG G with K · id4

if NextInteger(G) mod γ = 0 then5

// Watermark this building6

~u← orientation(P ) // orientation7

xmax ← max{p ∈ P | ~Op · ~u} // main length8

d← dmin + NextFloat(G). (dmax − dmin) // quantization step9

b← NextInteger(G) mod 2 // watermark bit b10

x′max ← quantize(xmax, d, b) // quantize xmax11

σ ← x′max/xmax // expansion ratio12

Shrink(P,O, ~u, σ)13

if collisions() then14

rollback()15

Discussion Using this method, the watermark is spread almost uniformly over the data set. This process
being controlled by a secret key, it is impossible to find the exact locations of expanded polygons, assuming the
PRNG is secure. To alter the watermark, an attacker has to alter much more polygons than the watermarking
process did if he wants to be sure to affect all watermarked polygons. The choice of watermarking parameters
γ, dmin and dmax depends on the specific usage of the data set. They cannot be fixed arbitrarily for all
applications but the following rules are always valid:

• there is an unavoidable trade-off between quality (γ ↑, dmin ↓, dmax ↓) and robustness of the watermark
(γ ↓, dmin ↑, dmax ↑). Experiments presented in Section 7.4 give indications on how to choose optimal
values;

• if the accuracy (maximum distance between a point in the data set and in the real world) of the
unwatermarked database is β1, then the accuracy of the watermarked one is β1 + dmax/2. If the
watermarked data set is sold under the agreement of an accuracy β2, then dmax must be chosen so
that dmax < 2(β2 − β1);

• the allowed alteration on the building, i.e. dmax must be higher than the typing accuracy of the data
set. Below this value, alterations can be considered as noise and rounded by a malicious user without
altering the quality of the data set at all. For instance, a 1 millimeter alteration is meaningless in a
data set of accuracy 1 meter.

7.3.6 Handling Data Constraints

The bit embedding method using expansion does not take into account topological relationships between
buildings. We voluntarily chose to ignore them during bit embedding and to detect errors and cancel
modifications when needed (function collisions). Such a strategy is valid as soon as few errors occur. By
choosing dmax = 4 meters, the alteration on each point of a polygon is at most 2 meters. Usually, even in
urban areas, polygons are spaced by a distance superior to 2 meters. Indeed, with this value, we got only
one case of overlapping, even in the worst setting, i.e. when γ = 1. This validates the detect-and-cancel
strategy. Such a post-watermarking filtering enables to handle any kind of errors which can occur sparsely
during the watermarking process. Observe that since bit embedding is a local operation, collisions can only
occur is a small area around the polygon. This allows the use of classical spatial indexing techniques to
check for collisions.
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Figure 7.5: Statistical invisibility of watermarked data using variable step quantization

7.3.7 Detection

Outline Given a suspect data set (R′, DB′), we translate it into the original reference system R0. Then,
we perform the actual detection which is very similar to the watermarking algorithm, with the essential
difference that no alteration is performed. It consists of two steps: computing the ratio of matching polygons
and comparing this ratio to a predefined threshold value α. The values of dmin, dmax, h, γ and K used for
detection must be the same as the ones used for watermarking. So they must be kept as part of the secret.
For each of the polygon we seed a random generator with K concatenated with its identifier. If the polygon
satisfies the watermarking condition (i.e. nextInteger(G) mod γ = 0), we compute the expected bit value
b as nextInteger(G) mod 2. We also compute the quantization step d between dmin and dmax. Then, we
decode the bit b′ embedded in the main length xmax of the polygon and compare it with b.

Decoding To decode a bit from a quantized value x, we simply check whether it is one of the 1-quantizers
or one of the 0-quantizers. If x is none of the i-quantizers, we compute the closest quantized value x′1 in
1-quantizers and the closest quantized value x′0 in 0-quantizers. We compare the distance d0 = |x′0 − x| and
d1 = |x′1 − x|. If d0 < d1, we decode a bit 0; if d0 > d1, we decode a bit 1. If d0 = d1 no bit can be decoded.
Note that a quantized value, with step d, can be altered up to d/4 without leading to a decoding error.
Quantization has been chosen because it optimizes the trade-off between average distortion (here, d/2) and
the minimum alteration leading to a decoding error (here, d/4).

If the expected bit b and the decoded bit b′ are the same, we say that the polygon matches. We maintain
two counters, t (total) and m (match). The first one is incremented each time a polygon satisfying the
watermarking condition is found. The second one is incremented each time this polygon carries the expected
mark bit. Hence, the detection ratio m/t is the ratio of matching polygons.

It is easy to see that on a third party data set, the probability that each polygon matches is 1/2. Therefore,
the ratio m/t is compared to its expected value 1/2 to decide whether the mark of the owner is present in
the document or not. Practically, a detection threshold α must be set to bound the detection area. We
detect a mark when |m/t− 1/2| ≥ α. The relevance of the detection process highly relies on the value of α.
Prop. 64 gives the detection threshold for a maximum false positive occurrence probability fp.

Proposition 64 (direct application of [50]) Let p the number of polygons satisfying the watermarking con-
ditions. If each polygon has a probability 1/2 to match, the probability P = Pr (m/t− 1/2 ≥ α) is such that



Algorithm 10: Detection algorithm: given a secret key K, watermarking ratio 1/γ, h, quantization
step interval D = [dmin, dmax], max. false positive occurrence probability fp, reference system R0 and
(R′, DB′), a suspect data set, outputs MARK or NO MARK

Convert DB′ into R01

forall building P in DB do2

O ← Centroid(P )3

id← hsb(O, h) // robust identifier id4

seed(G,K · id) // seed the PRNG G with K · id5

if NextInteger(G) mod γ = 0 then6

t++ // increment total count7

~u← orientation(P ) // orientation8

xmax ← max{p ∈ P | ~Op · ~u} // main length9

d← dmin + NextFloat(G). (dmax − dmin)10

b← NextInteger(G) mod 2 // expected bit b11

x′0 ← quantize(xmax, d, 0) // closest 0-quantizer12

x′1 ← quantize(xmax, d, 1) // closest 1-quantizer13

if |xmax − x′0| > |xmax − x′1| then14

b′ ← 1 // found bit is b′ = 115

else16

b′ ← 0 // found bit is b′ = 017

if b = b′ then18

m++ // increment match count19

α← Threshold(fp, t)20

if |m/t− 1/2| > α then21

Return MARK22

else23

Return NO MARK24

P ≤ e−2αt2 .

Then, the false positive occurrence probability defined as f = P (|m/t− 1/2| ≥ α) is such that f ≤
2e−2αt2 . Choosing α = − log(δ/2)/2t as the detection threshold permits to keep f under δ. We use this
formula in our experiments to keep false positives occurrence probability under δ0 = 10−4.

7.4 Experiments

7.4.1 Framework

Data All experiments presented in this section (except speed ones) were realized on buildings from the
French city of Pamiers. The data is part of the BD TOPO [54], a topological database product from
the French National Mapping Agency (IGN), the major maps provider on the French market. The product
consists of several coherent layers (hydrographic network, roads, buildings...) from which we extracted only
the buildings layer. This layer is composed of 4 278 polygons (35 565 vertices), representing dense build
areas (downtown – west side) as well as sparse ones (residential blocks – east side). It has a contractual
accuracy of 1 meter. A glimpse on the Pamiers data set is given in Fig. 7.6.

Software We developed a Java version of our algorithm and packaged it as a library for our generic
database watermarking framework [67]. The data set was stored in a Postgresql/Postgis database. Ad-
vanced geographic functions from GeOxygene [23] were also used. GeOxygene is an open source application
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Figure 7.6: Pamiers buildings (extract)

developed at IGN. It aims at providing an open framework which implements OGC/ISO specifications for
the development and deployment of geographic applications. The core watermarking method is available
under the GPL license [64].

Filters/Attacks We performed an extensive series of experiments to validate the robustness of our method.
All the filters/attacks presented in Section 7.2.3 were tested.
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Figure 7.7: Examples of filters

Protocol We consider that an attack is successful if it destroys the watermark with high probability while
inducing a quality loss comparable to the one introduced by the watermarking process. In a same manner,
we consider that a watermarking algorithm A is better than an algorithm B against a specific attack if it
is as robust as B while inducing a quality loss significantly smaller than B. To emphasize the benefits of



watermarking by expansion, we put side by side a random noise based method and ours and compare them
in terms of robustness/distortion trade-offs. So, we begin by quantifying the quality losses of both schemes.

7.4.2 Impact of Watermarking on Quality

To evaluate the impact of our watermarking algorithm on the Pamiers data set, we applied it with differ-
ent watermarking ratios 1/γ, with γ ∈ {10, 15, . . . , 100}, and different quantization ranges [dmin, dmax] ∈
{[1, 2], [3, 4], [5, 6]}. These ranges start from data accuracy (1 meter) to the maximum reasonable alteration
(6 meters).

Average Accuracy Alteration The impact on the accuracy is displayed on Fig. 7.8(a). Alteration
increases when quantization steps increase and when γ decreases. We observe that the average alteration of
accuracy is proportional to (dmin+dmax)/γ. For instance, when [dmin, dmax] = [3, 4], a good approximation
of the average alteration of accuracy is 0.07.(dmin + dmax)/γ. The ratio 1/γ is not surprising since on the
average, 1/γ polygons are watermarked. Furthermore, the expected alteration for the farthest vertex from
the centroid is (dmin+dmax)/4. The alteration of all the points from a watermarked polygon are proportional
to the alteration of this particular vertex. These dependencies can be used by the watermarker to choose
the parameters of the marking algorithm: if dmax is obtained as the maximum allowed alteration, and if the
target alteration is fixed, one can easily compute γ.

Maximum Accuracy Alteration The behavior is similar to the one obtained for average accuracy
alteration.

Angular Quality We verify that the variation of angular quality introduced by our method is negligible
on Fig. 7.8(b). Even for the highest quantization steps, [dmin, dmax] = [5, 6], the highest angular energy
variation is at most +0.08. As a comparison, a weak gaussian noise (deviation d = 0.2m) increases the
angular energy by +6.19.

Area Modification The impact of the watermarking algorithm on the areas of the polygons of the data set
is displayed on Fig. 7.9. On Fig. 7.9(a) is displayed the maximum relative area alteration. Its is proportional
to the mean of minimum and maximum quantization steps. On Fig. 7.9(b) is displayed the average signed
area alteration, which shows that alterations compensate themselves, a good property. On Fig. 7.9(c) is
displayed the average relative area alteration. Its behavior is similar to average accuracy alteration.

Detection: False Positives On Fig. 7.10 are displayed the detection ratios obtained with different secret
keys on a previously watermarked data set. A hundred different keys were tested, among which the one used
for watermarking. Detection threshold α ≈ 15% was chosen so that false positive occurrence probability is
at most 10−4. It appears that only the secret key K = 100 used in the embedding process leads to a positive
detection of mark. This experimentally validates the relevance of the detection algorithm.

Watermarking Speed To evaluate the watermarking rate our implementation can achieve, we used a
significantly larger data set, still extracted from the BD TOPO . It consists of the building layer from
the Pyrénées Orientales (64), a French department. It contains 243 201 polygons ( 1 880 405 points and 65
megabytes for the geometry). Using γ = 20, the whole data set was watermarked in 74 mins 30s (including
database I/O times),i.e. more than 50 polygons per second. The detection process took 1min 38s. A simple
notebook powered by an Intel Core Duo processor running at 1.6Ghz with 2Gb of RAM and a 7200rpm hard
drive was used for this experiment.

109



10 20 30 40 50 60 70 80 90 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Quality Benchmark : Distance

Gamma

M
ea

n 
di

st
an

ce
 a

lte
ra

tio
n 

(m
)

D=[1.0,2.0]

D=[3.0,4.0]

D=[5.0,6.0]

(a) Mean accuracy

10 20 30 40 50 60 70 80 90 100
−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Quality Benchmark : Angles

Gamma

A
ve

ra
ge

 a
ng

ul
ar

 e
ne

rg
y 

ch
an

ge

D=[1.0,2.0]

D=[3.0,4.0]

D=[5.0,6.0]

(b) Angular energy

Figure 7.8: Impact of our watermarking method on quality

7.4.3 Comparison with Random-Noise Based Watermarking

The random noise scheme is based on the insertion of a pseudo-random noise within the data. Even if it is not
a scheme found in the literature, it supersedes existing ones and mimic the behavior of others. It is similar,
in most cases, to the schemes that introduce perturbation in the data set without taking into account the
shapes of the polygons [83]. The point is that if shapes are expected to be regular, a watermarking algorithm
working by altering these shapes is suboptimal in terms of robustness/distortion trade-off. Indeed, most users
will correct the shapes so that the regularity aspect is brought back. This operation is very likely to remove
the watermark.

The algorithm consists of looping over all the vertices of the data set. The x and y coordinates of the
vertices are watermarked independently. For each coordinate, a PRNG is seeded with its highest significant
bits. Only the least significant bits are altered. Their positions and values are determined according to the
drawings of the PRNG. This method can be seen as a straightforward extension of the existing AKH [7]
scheme in which most significant bits of the coordinates are used as primary keys and least significant bits
as alterable attributes.

The quality loss introduced by such a random noise scheme is controlled by three parameters: the
watermarking ratio 1/γ, the least highest significant bit lspow2 and the number ξ = 2 of alterable powers
of two. For instance, if lspow2 = 2 and ξ = 2, the maximum distortion on a coordinate is 2lspow2−1 = 2 and
the minimum distortion is 2lspow2−ξ = 1. Using higher values of ξ enables for extra embedding bandwidth



but lead to distortions that are removed by any rounding of the coordinates. In what follows, we compare
our scheme (with dmin = 3 and dmax = 4) with two random noise schemes parameterized with two sets of
parameters. For the first one, RNW1, lspow2 = −1, ξ = 1; for the second one, RNW2, lspow2 = 2, ξ = 2.
These values were chosen for the following reasons: RNW1 achieves an average accuracy alteration (compare
Fig. 7.8(a) and Fig. 7.11(a) - both curves decrease as 1/γ and have a mean accuracy alteration of 0.025 for
γ = 10) very close to the one observed using our method) whereas RWN2 has a maximum alteration on each
vertex equals to ours.

7.4.4 Robustness against Filters and Attacks

For all the experiments, we present the detection ratios observed after application of a filter, together with
the detection threshold of the mark (computed for a false positive occurrence probability of 10−4). We put
side by side the results obtained using our method, RNW1, RNW2 and the combined scheme presented in
Section 7.4.5.

Squaring We present on Fig. 7.13, the detection ratios observed after squaring. Three different values of
the maximum allowed point position alteration were tested, namely d = 1.0 (commonly used value), d = 1.5
and d = 2.0 (very aggressive squaring, used here only for validation). For our scheme, squaring has no effect
on the detection ratio no matter the watermarking parameters. Even in a worst case scenario, γ = 100 and
dmax = 2, the watermark is still detected. For RNW1 and RWN2, the detection ratio is considerably lowered
when the data is squared.

Douglas & Peucker Simplification The Douglas-Peucker algorithm [29] is a polyline simplification
algorithm. It is systematically used by geographic data users with a small factor to filter points of the
database. It consists of pruning the points of a polyline whose distance to the line joining the polyline
bounds is too small. The distance threshold under which these points are pruned is called d. The higher this
threshold, the more aggressive the algorithm is. An example of Douglas-Peucker simplification with d = 5
meters is given on Fig. 7.7(c). We tested the robustness of our algorithm against Douglas-Peucker filtering
for different threshold values. The results are displayed on Fig. 7.14. Note that our algorithm behaves
very well when the Douglas-Peucker filtering distance is 1 or 2 meters. The detection ratio never falls below
the detection threshold. The reason is that the shapes of the polygons are regular enough so that they are
invariant to these filters. For a filtering distance of 5 meters, the mark is removed in some situations. But
such a filtering is very aggressive: it can remove a 4m× 4m room in a building.

Cropping Observe that the whole data set is not necessarily interesting for a malicious user, since profit
can still be made from the (illegal) redistribution of a subset. Our method does not require the whole
suspect data set to perform detection. This is illustrated on Fig. 7.15 for our scheme. We randomly
generated rectangular subsets of the watermarked data set and performed detection on them. On the x-axis
is displayed the number of polygons in a crop while on the y-axis we plotted the number of watermarked
and matching polygons against the number of polygons in a crop. We also added the minimum number
of matching polygons that must be found to detect the watermark, i.e. the detection threshold. In all
cases the watermark is detected. Furthermore, the curves are, once removed local artifacts, almost linear.
This indicates that the distribution of the watermarked polygons over the data set is nearly uniform. For
other schemes, experiments not presented here show that the repartition of watermarked polygons is nearly
uniform so detection is not too much affected by squaring.

Gaussian Noise Gaussian noises with deviations of 20cm, 60cm and 1m were tested and the results
displayed in Fig. 7.16. For reasonable noises (d = 20cm or d = 60cm), marks are still detected. When
d = 1m, the watermark is removed for a large range of γ. Interestingly, the application of a squaring
algorithm on a noised data set increases the detection ratio for our scheme. It even permits the recovery of
the watermark for higher values of γ. RNW1, RNW2 and the combined scheme show similar behaviors.
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Applying a New Watermark On Fig. 7.17(a), we show how the detection algorithm copes with a new
application of the watermarking algorithm with a different key. Different watermarking parameters for the
attack were tested: highest quantization steps and lowest γ. For all parameters, the observed detection
threshold is such that the first watermark is still detected. Applying another watermark has a limited
effect on the first watermark. This is due to the fact that the two watermarks are embedded into distinct
polygons. Moreover, on the sparse polygons chosen simultaneously by the two watermark embeddings, the
second watermark is the only one to be detected on these polygons. RNW1, RNW2 and the combined
scheme show similar behaviors.

Enlarge to rectangle filter For this experiment, we used the Map Generalization Toolbox of OpenJump
[3]. The enlarge to rectangle filter consists of replacing each building of the max with its minimum bounding
rectangle. If a map is to be drawn from the geodata, its scale can be passed as an argument to the enlarge
to rectangle filter. In this case, illegible buildings are replaced by their minimum bounding rectangle and
enlarged so that they are visible. Larger buildings are not modified. The threshold values are chosen
according to the Swiss Society of Cartography [108], e.g. 0.25mm for width and 0.35mm × 0.35mm for
buildings minimum size on maps. The results of the experiments are presented on Fig. 7.18. They show
that replacing all buildings by their bounding rectangle washes out the watermark. When a watermarked
data set is used for map generation, the detection ratio decreases as the scale increases. This is not surprising
since a high scale implies that many buildings are represented by a minimal area rectangle. So bits embedded
in such buildings can not be recovered. Nevertheless, it is interesting to notice that watermarking one polygon
out of ten (i.e. γ = 10) enables to recover marks in a map with scale 25000. Compared to RNW1 and RNW2,
our scheme performs better.

Elongation Change Filter The elongation change filter consists of multiplying the main length of all
polygons with a fixed factor. For experiments presented on Fig. 7.19, ratios 0.85,0.9,...,1.2 were used.
Hopefully, when the ratio is 1, the detection ratio is close to 1. If the ratio is between 0.95 and 1.05,
the watermark is still detected. This means that an attacker who wants to ensure that the watermark is
removed must alter the main length of all polygons by more than 5%. Compared to RNW2 and RNW2,
our scheme is not as good since elongation ratios 0.9 and 1.1 remove the watermark embedded using our
scheme whereas the ones embedded using random noise based scheme are still detectable. Elongation change
filter is the worse attack our scheme can encounter since it precisely affects the embedding area used for
watermarking. But this attack results in a poor quality data set, whose accuracy is lowered for all polygons
(see also Section 7.4.5).

Minimum Bounding Rectangle Filter This filter replaces each polygon by its minimum bounding
rectangle. This filter is very aggressive, too for both algorithms since the watermark is removed for a large
range of γ in all cases. But, as it can be seen on Fig. 7.20, our scheme performs slightly better.

Missing Reference System Without a reference system, a data set is useless for automatic operation
and interoperability. Meanwhile, the suspect data set can be mapped into the original reference system to
perform the detection process. This mapping operation is quite common and easy, as soon as (a reasonably
large part of) the original data set is available.

Other Attacks Many other kinds of attacks may be envisioned. The mixing attack consists of mixing
a portion of a watermarked data set with an unwatermarked one. This attack is expected to lower the
detection ratio but not render the watermark unreadable.

The aliasing attack consists of switching the edges of the polygon with zig-zag shaped sequences of edges.
The goal is to modify the orientation of the polygon. But it implies adding a huge number of extra (fake)
points to the database and altering the overall shapes of polygons. Furthermore, the artifact needs to have
an amplitude exceeding angle tolerance ratio.



Note also that our method is invariant to polygons rotation since the expansion coefficient is defined
relatively to polygon orientation and not to a particular reference system.

We also observe that, for our scheme, squaring the data prior to the watermarking process, beside
increasing its value, enhances slightly the detection ratio.

7.4.5 Discussion

Table 7.2 sums up robustness experiments. Robustness results for our method are presented in the WM
column. Whether a method achieves robustness is indicated with the appropriate Yes/No status. When
a method is robust as far as enough polygons are watermarked, the threshold watermarking ratio under
which the method has been experimentally proven robust is also indicated. Remark that robustness might
also be achieved for higher values of γ. In the second and third columns are shown the average quality loss
introduced by the attacks. These must be put into balance with the distortion introduced by watermarking
algorithms (see Section 7.4.2 and 7.4.3).

As we expected, our method resist all kinds of squaring, including the most destructive ones. On the
contrary, watermarks embedded using random-noise based algorithms are washed out. Our method shows
also robustness against the majority of attacks. The fact that GN(d=1m) and DP(d=5m) erase the water-
mark must be put into balance with the quality losses these attacks introduce. They tremendously reduce
the quality of the data set. Furthermore, it behaves well against change elongation filters since the length of
polygons must be increased or decreased by more than 10% to ensure watermark removal. But this remains
the weak point of our method since the embedding area is directly affected.

Compared to random-based schemes, our algorithm performs better in the majority of cases. Whereas
RWN1 and RWN2 are more robust against the change elongation filter, they have a significantly higher
impact on quality compared to our method. In that sense, the experiments show that our algorithm achieves
a very good distortion/robustness trade-off.

In the last column of the table, we combined our scheme and RNW2 into an expand-and-translate scheme.
In a first time, we apply our scheme and then apply RNW2 on the centroid of the polygon (left invariant
by the first step). We obtain a modification of the coordinates of the centroid which is used to translate
the polygon. Obviously, this combined scheme introduces a larger quality loss but it achieves robustness for
all the filters/attacks used in the present work. It can be preferred to our basic scheme if robustness is to
supersede quality for a specific application.

7.5 Related Work

In our database approach, polygons are stored in a relational database management systems enriched with
geographical features. Since polygons are stored in relational tables, state-of-the art watermarking algorithms
for relational databases might have been used. It happens that least significant bits modifications used in
previous works [7] can not be mapped onto our geographical setting. It is easy to alter least significant bits
of points of the map but the angular quality is not taken into account (on the contrary, least significant
bits methods may perform well on simple points databases, like point-of-interest data sets in use in GPS
viewers). Methods described in [39, 104] allow for the description of usability queries to be preserved by
watermarking. But they either focus on basic numerical aggregates like SUM queries [39], which are not rich
enough to represent angular constraints, or based on a trial and error method to handle generic black-box
queries [104]. Using the latter method, it might not be possible to reach a valid set of alterations since no
search strategy is defined.

Despite that state-of-the art is very rich on watermarking still images which can be directly applied to
image maps, fewer works were carried on on watermarking vector maps. A complete study of vector maps
watermarking [83] has been recently published which divides this field into three categories: spatial do-
main watermarking, transform domain (DCT,DWT,. . . ) watermarking and 3D meshes adapted algorithms.
Spatial domain watermarking consists of modifying directly the coordinates of the vertices of the data set.
Patch-based techniques [56, 84, 93, 115] are based on a decomposition of the data set into patches in which
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Table 7.2: Robustness and impact of watermarking
Filter Precision alt. Angular energy WM RNW1 RNW2 Combined

SQ (d=1m) 0.19 -14.1 Yes No Yes Yes

SQ (d=1.5m) 0.23 -16.2 Yes No γ < 90 Yes

SQ (d=2m) 0.27 -17.2 Yes No γ < 80 Yes

DP (d=1m) N/A - 1.3 Yes Yes Yes Yes

DP (d=2m) N/A - 0.3 Yes Yes Yes Yes

DP (d=5m) N/A 68.1 γ < 70 Yes Yes γ < 100

CA 0 0 Yes Yes Yes Yes

GN (d=0.2m) 0.18 6.19 Yes γ < 30 Yes Yes

GN (d=0.6m) 0.53 40.00 Yes No γ < 75 Yes

GN (d=1m) 0.89 78.52 γ < 65 No γ < 30 γ < 75

OW - - Yes Yes Yes Yes

ETR N/A -6.53 γ < 40 No γ < 25 γ < 50
ETR(scale=25000) N/A -6.06 No No No γ < 40
ETR(scale=250000) N/A -0.03 Yes Yes Yes Yes

CE(scale=0.90) 1.06 0.16 No No γ < 45 Yes

CE(scale=0.95) 0.53 0.02 γ < 95 No Yes Yes

CE(scale=1.0) 0 0 Yes Yes Yes Yes

CE(scale=1.05) 0.53 0.09 γ < 95 Yes Yes Yes

CE(scale=1.10) 1.06 0.27 No No γ < 50 Yes

MBR N/A -6.6 γ < 75 γ < 35 γ < 50 γ < 75

bits are embedded by vertices translation [84] and/or data distribution within a patch [56, 93, 115]. Such
schemes are sensitive to patch decomposition that can vary when the data set is cropped. Schemes of [56,93]
create detectable nodes aggregations; [84] is not blind and [115] does not respect the shape of smooth objects
(including squared buildings).

Vertices addition based [52, 75, 87] techniques are the best from a quality viewpoint. They consist of
interpolating the existing edges of the data set with fake points. In the context of buildings where the
shapes are regular, such interpolations are easily detected and removed by simplification algorithms. In our
context, these schemes are not robust enough. The least-significant bit watermarking method presented
in [114] preserves accuracy but is very sensitive to vertices addition, which destroys synchronization.

In [100], a high watermarking capacity algorithm for vector maps is introduced. It is based on a previous
work on 3D meshes watermarking by the same authors. It is robust against common geographical filters like
Douglas-Peucker simplification algorithm. It is based on a decomposition of the database into patches and by
moving points of a common patch into a subpatch to embed the watermark. Nevertheless, efficient attacks
erasing the watermark without destroying the quality of the data set can be easily planned, as the method
requires known synchronization points. Another approach followed by [13] synchronizes the watermark based
on a triangular mesh decomposition. Within secretely chosen groups of adjacent triangles, a vertex is moved
in order to hide a bit of information.

Our method shares a common skeleton with the popular AHK algorithm [7]. But it differs on several
aspects: it does not require primary keys, and do not use high significant bits to replace them in a straight-
forward manner (instead the centroid is used); the bit embedding operation is not a least significant bit
embedding, which is very fragile against rounding, but a quantization method.

7.6 Conclusion

In this section we presented a blind watermarking algorithm for polygon data sets. It is well suited to
building layers of geographical data sets since watermarks are invariant through aggressive geographical
filters applied by data users, including squaring and replacement by bounding boxes. We experimentally
showed that it is difficult for an attacker to erase the watermark without paying an extra quality fee, compared
to watermarking. The algorithm has been implemented into an open database watermarking framework [67]
and is available online [64]. We are currently working on designing algorithms for other layers of geographical



data sets. A real challenge we are faced with is to deal with the interactions between the different layers.
Indeed, watermarking algorithms must be adapted to the data; there is no unique solution. Even if we
know how to perform watermarking and detection on a single layer, it is challenging to orchestrate several
algorithms on several layers so that resulting watermarked layers remain consistent.

Related publications

• Julien Lafaye, Jean Béguec, David Gross-Amblard and Anne Ruas. Invisible Graffiti on your Buildings:
Blind & Squaring-proof Watermarking of Geographical Databases. In 10th International Symposium
on Spatial and Temporal Databases (SSTD), July 16-18, 2007, Boston. LNCS 4605, pages 312-329.
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Figure 7.9: Impact of our watermarking method on areas
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Figure 7.13: Squaring filter
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Figure 7.14: Douglas-Peucker simplification
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Figure 7.16: Gaussian noise
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Figure 7.17: Over-watermarking
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Figure 7.18: Enlarge to rectangle filters
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Figure 7.19: Change elongation filter
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8
Conclusion & perspectives (English)

The work presented here is a crossover between two fields, watermarking and databases. In this conclusion I
will first present some direct possible extensions: obtaining a richer constraint language and exchange model.
Then I will discuss on the impact of databases methods, mainly their logical formalization, for classical
watermarking theory. Finally I will conclude on the relationships between watermarking and databases in
the Web era.

Natural extensions

Query-preservation: more expressive constraint languages

Up to now, the constraint-preservation methods we developed are mostly aggregate sum queries on a vocabu-
lary that excludes numerical values. We consider here various extensions. First, the method of compensating
alterations should extend to various aggregates and functions like statistical ones. Indeed, as long as the
target function has a controllable variation when we alter its parameters, compensation can be applied.
Some care is nevertheless needed when the precision of numbers comes into play.

Second, we would like to relax the constraint language so that altered values appear in the constraint
itself (for example, watermarking a set of prices so that the number of equal prices remains the same).
This extension is probably easy for constants in the language vocabulary. It may require supplementary
hypothesis on data sets for general numerical values, as now the query to be preserved can assert properties
on the numerical data.

It is also tempting to parameterize watermarking methods for geographical data with a spatial constraint
language, like first-order logic on the real numbers with addition and order [55, 63]. For example, one may
express that building watermarks should preserve their total surface. Again, for surfaces, compensation
techniques apply. But it is well known that metrical aspects of spatial data are evading closed logical
description in general [14].

Protocols: richer view model

In the presented model, the detector has access to the entire set of tuples that participate into the computation
of the query to preserve. A richer model is introduced in [61], where the detector accesses only the result of
aggregate queries. This extension for the present work is a natural direction.

In an even more general setting, the detector may only access to derived views of the suspect data set. In
this case, the detector would have to first rebuilt a pertinent data set from these views. This goal is probably
out of reach, since answering queries using views is a known difficult problem even if views are given [80],
which is not the case in an adversarial setting. Results in this direction could nevertheless be obtained in
a more restricted frame, namely views of streaming data. In the streaming context, views can be modeled
by finite state transducers, and these machines possess interesting learning properties [68]. By monitoring
a suspect stream based on the owner stream, and by performing continuous changes on original data, the
detector may learn the view.
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Relationship between the database and watermarking fields

From watermarking: revisiting classics

In the present work, the focus was voluntarily made of database-specific aspects. But there is a legitimate
need to transpose and evaluate well-known watermarking classics in the context of databases. We mention
a few directions here:

• Side-information attacks: while existing work considers uniformly distributed data, an attacker may
use well-known data distributions to defeat the detector.

• Oracle attacks1: a particularly hard situation is when the attacker has access to a detector with a
correct key as a black box. The attacker knows when the watermark is detected, and also knows the
exact detection score. This confers a gradient descent strategy to erase the watermark: the attacker
simply alters data and checks if the detection score decreases. Assessing the reality of this attack for
databases and devising countermeasures is a must.

• More sophisticated embedding methods: most of the presented algorithms consider substitution wa-
termarking, where mark bits replace existing data. These methods have known limitations, and other
embeddings like quantization methods are to be preferred [22]. Nonetheless, this latter method is used
in our geographical watermarking scheme.

• Full blindness vs. data blindness: the existing query preserving watermarking schemes still require
side information at detection time, in addition to the secret key. This amount could be reduced.

• And more: public-key watermarking, zero-knowledge watermarking, etc.

To watermarking: an approach for security proofs

There may be a case where database methods, or rather its logical formalization, can contribute. A long-
standing goal in the watermarking field is the obtainment of complete proofs of watermarking protocols, as
they exist in the cryptographic setting. It is sometimes assessed that known proofs of watermarking protocols
are limited to specific algorithms and classes of attacks, and lead to an ”arm race” between markers and
attackers. A better situation is a proof that any successful attacker would resolve an NP-complete problem
efficiently or break some commonly accepted cryptographic assumption.

A small step in this direction was discussions with the SCALP project2, that aims at proving crypto-
graphic protocols using a proof assistant like Coq [15]. We obtained with Pierre Coutieu, Julien Lafaye,
Philippe Audebaud and Xavier Urbain a rather limited proof of the Agrawal and Kiernan watermarking
protocol, which lacked of generality.

Recent papers have proposed frameworks for strong watermarking proofs [51]. The method rely on the
abstraction of watermarked data as a metric space with controlled properties. But such abstractions are
often considered unrealistic [70]. The formalization obtained in Khanna and Zane’s work [61] and the present
one can give some insights in this direction. Indeed, modeling the distance between database instances under
constraints has at least a clear and formal definition, which is not directly the case for multimedia documents.
Obtaining a strong watermarking method for a simple case, for example graphs with a very specific similarity
metric would be a first result. A glimpse in this direction was obtained by Julien Lafaye who considered the
computational difficulty of computing key parameters of a watermarking method, when the similarity metric
is given as a program. He has shown that this is respectively NP -hard for metrics defined by matrices, and
EXP -hard on metrics defined by circuits.

1No, I do not mean Oracle’s response to the IBM Almaden watermarking scheme.
2http://scalp.gforge.inria.fr/



(Watermarked) Data on the Web

As a conclusion to this conclusion, it is time to take a wider perspective, and – of course – to talk about the
Web. On the one side, databases on the Web are facing semi-structured data formats, navigational query
languages, and large-scale distributed computations to name a few examples. On the other side, the Web
allows any user to become a content provider by using forums, blogs, twits, social networks, and so on.
Sophisticated on-line contents can be elaborated by combining data from various sources and Web-service
calls. In these scenarios, users may require (some) right management methods to assess intellectual rights
on personnal productions. Hence, there is a natural need for scalable digital right management platforms
that are able to broadcast on-demand content with personalized watermarks (see for example [58]).

Back to the database perspective, I would like to address the following questions:

• How to integrate intellectual property tools in flows of Web documents, that are dedicated to exchange,
transformations and combinations with other documents during their life-time.

• How to specify intellectual rights policies for incoming and outgoing documents, and deploy them in a
scalable and trustable way.

This year seconding at the WebDam project3 is certainly a good starting point for this topic.

3http://webdam.inria.fr
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9
Conclusion & perspectives (French)

Ce travail a présenté une hybridation entre deux domaines, le tatouage et les bases de données. Dans cette
conclusion je présente quelques extensions possibles : enrichir le langage de contraintes ou le modèle d’échange
des données. Ensuite je discuterai de l’impact des méthodes issues des bases de données, en particulier de
leur formalisation logique, pour la théorie classique du tatouage. Enfin, je conclurai sur les relations entre
tatouage et bases de données dans le contexte du Web.

Extensions naturelles

Préservation de requêtes : des langages de contraintes plus expressifs

Jusqu’à présent, les méthodes de préservation de contraintes que nous avons développées portent princi-
palement sur les requêtes d’agrégat de somme sur un vocabulaire qui exclue les valeurs numériques. Nous
considérons ici différentes extensions. Tout d’abord, la méthode des paires de compensation doit s’étendre
à d’autre agrégats ou fonctions, comme celles issues de la statistique. En effet, du moment que la fonction
cible possède une variation contrôlée lorsque l’on modifie ses paramètres d’entrée, la compensation peut être
appliquée. Quelques précautions doivent cependant être prises si la précision des nombres vient à jouer un
rôle.

Ensuite, nous voudrions permettre au langage de contraintes de manipuler les données numériques elles-
mêmes (par exemple, tatouer un ensemble de prix de telle façon que le nombre de prix identiques reste le
même). Cette extension est probablement facile pour l’ajout de constantes dans le langage. Des hypothèses
supplémentaires sur les données seront probablement nécessaires dans un cas général, car alors, l’altération
des valeurs numériques modifie les ensembles définis par les requêtes.

Il est également tentant de paramétrer notre algorithme de tatouage de données géographiques avec un
langage de contraintes spatial (géométrique), comme la logique du premier ordre sur les nombres réels avec
addition et ordre [55, 63]. Par exemple, on souhaiterait exprimer que le tatouage doit préserver la surface
totale d’un bâtiment. Si l’on se restreint à de telles surfaces, la méthode des paires de compensation se
généralise. Mais il est bien connu que les propriétés métriques des données géométriques échappent à une
caractérisation logique en général [14].

Protocoles : enrichir le modèle de vues

Dans le modèle actuel, le détecteur a accès à l’ensemble des n-uplets qui participent au calcul de la requête
à préserver. Un modèle plus sophistiqué et susceptible d’être rencontré en pratique a été proposé dans [61],
où le détecteur n’accède qu’au résultat des requêtes. Réaliser cette extension aux résultats présentés ici est
une direction naturelle.

Dans un cadre encore plus général, le détecteur n’a accès qu’à des vues dérivées des données suspectes.
Le détecteur doit alors convertir les données issues de ces vues dans le format initialement souhaité. Cet
objectif est probablement hors de portée, car répondre à une requête à partir de vues est un problème
jugé difficile même si les vues sont explicitement décrites [80], ce qui n’est pas le cas dans un modèle avec
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adversaire. Certains résultats pourraient cependant être obtenus dans un cadre plus restreint, par exemple
les vues sur des données en flux. Pour celles-ci, les vues doivent être modélisées par des transducteurs finis,
et ces machines possèdent d’intéressantes propriétés d’apprentissage [68]. En inspectant continuellement un
flux suspect tout en faisant varier le flux tatoué, le détecteur pourrait alors inférer la vue utilisée.

Relations entre bases de données et tatouage

Apports du tatouage : les classiques

Dans ce travail, l’accent est mis sur les aspects du tatouage qui sont spécifiques aux bases de données. Mais
il est également naturel de transposer et d’évaluer l’ensemble des résultats classiques du tatouage dans un
contexte de bases de données. Nous en mentionnons quelque-uns :

• Attaquant informé : alors que les travaux existants supposent une distribution uniforme des données,
un attaquant peut tirer partie d’une distribution connue a priori pour vaincre le détecteur.

• Attaque par Oracle1 : une situation particulièrement délicate est quand l’attaquant a accès à un
détecteur avec sa clé privée sous forme d’une boite noire. L’attaquant sait alors quand le tatouage
est détecté, et connait également le score de détection. Cette configuration permet à l’attaquant de
déployer une attaque par descente de gradient pour effacer le tatouage : l’attaquant altère une partie
des données et vérifie si le score de détection diminue. Etablir des contre-mesures pour ce type d’attaque
pour les bases de données est un impératif.

• Encodage du tatouage plus sophistiqué : la plupart des algorithmes présentés réalise un tatouage par
substitution, où les bits de marque remplacent les données existantes. Ces méthodes ont des limitations
connues, et ont leur préfère en général d’autres approches comme la quantification [22]. Nous utilisons
cependant cette dernière méthode dans notre algorithme de tatouage de données géographiques.

• Protocole purement aveugle ou aveugle aux données : les méthodes connues de tatouage avec préservation
de requêtes nécessitent de l’information supplémentaire lors de la détection, en supplément de la clé
secrète. Cette quantité d’information devrait être réduite.

• Et plus : tatouage à clé publique, à divulgation nulle, etc.

Apports au tatouage : techniques de preuve de sécurité

Dans certains cas, les méthodes issues de bases de données, où plutôt de leur formalisation logique, peuvent
contribuer aux connaissances sur le tatouage en général. Un des objectifs à long terme du tatouage est l’obten-
tion de preuves complètes de sécurité, dans un esprit similaires aux preuves des protocoles cryptographiques.
Il est parfois affirmé que les preuves existantes sont limitées à des algorithmes et des classes d’attaques
spécifiques, et conduisent inévitablement à une ≪ escalade ≫ entre tatoueurs et attaquants. Une meilleure
situation serait d’obtenir une preuve de la forme suivante : tout attaquant victorieux doit avoir résolu un
problème NP-complet efficacement, ou avoir transgressé une hypothèse cryptographique communément ad-
mise.

Un essai dans cette direction ont été des discussions avec les membres du projet ANR SCALP2, dont
le but est de certifier les preuves de protocoles cryptographiques en utilisant un assistant de preuve comme
Coq [15]. Nous avons obtenu avec Pierre Coutieu, Julien Lafaye, Philippe Audebaud et Xavier Urbain une
preuve (plutôt restreinte) du protocole d’Agrawal et Kiernan.

Des travaux récents proposent de nouveaux cadres pour des preuves fortes de protocoles de tatouage [51].
La méthode repose sur une abstraction des données à tatouer en un espace métrique avec de bonnes pro-
priétés. Mais ces abstractions sont par certains considérées comme non-réalistes [70]. Les formalisations

1Non, il ne s’agit pas de la réponse d’Oracle au schéma de tatouage proposé par IBM Almaden.
2http://scalp.gforge.inria.fr/



proposées par Khanna et Zane [61] ainsi que celles de ce document peuvent fournir quelques éclairages dans
cette direction. En effet, modéliser la distance entre instances de bases de données sous contraintes a au
moins un définition précise et formelle, ce qui n’est pas le cas directement pour les documents multimédia.
Obtenir une preuve forte d’un protocole de tatouage pour une métrique de similarité ad hoc serait un pre-
mier résultat. Un pas dans cette voie a été obtenu par Julien Lafaye qui a étudié la difficulté de calculer
des paramètres intéressants d’une problème de tatouage, lorsque la métrique de similarité est donnée comme
un programme. Il a montré que ces calculs sont NP-difficiles pour les métriques définies par matrices, et
EXP-difficiles pour celles définies par circuits.

Données (tatouées) sur le Web

En conclusion de cette conclusion, il est temps – évidemment – de parler un peu du Web. D’une part, les
bases de données, confrontées aux Web, ont intégré les données semi-structurées, les langages d’interroga-
tions navigationnels, les calculs de requêtes massivement distribués, pour citer quelques aspects. D’autre
part, le Web permet à n’importe quel utilisateur de devenir un fournisseur de contenu, par l’utilisation de
forums, blogs, twits, réseaux sociaux, etc. Des contenus en ligne sophistiqués peuvent ainsi être déployés
par combinaison de données de sources diverses et d’appels de services. Dans ces scénarios, les utilisateurs
peuvent avoir besoin de (quelques) méthodes de protection de la propriété intellectuelle pour leurs produc-
tions personnelles. Ceci motive la création de plateforme de tatouage passant à l’échelle capable de diffuser
du contenu à la demande avec des tatouages individualisés (voir par exemple [58]). En reprenant le point de
vue des bases de données, j’aimerais aborder les questions suivantes :

• Comment intégrer les outils de protection de la propriété intellectuelle dans un flot de documents Web,
qui sont par nature dédiés à l’échange, la transformation et la combinaison avec d’autres documents
durant leur cycle de vie.

• Comment spécifier des politiques de gestion des droits intellectuels pour les documents entrant et
sortant d’un système, et comment les appliquer à grande échelle et en toute confiance.

Cette année de délégation INRIA dans le projet WebDam3, dédié à la gestion de données sur le Web, est
certainement un bon point de départ pour ces questions.

3http://webdam.inria.fr
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Other studies

A.1 Work presented in this report

Journals

• Julien Lafaye, David Gross-Amblard, Camélia Constantin and Meryem Guerrouani. Wa-
termill: an optimized fingerprinting system for highly constrained data. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 20(4): 532-546, April 2008.

• David Gross-Amblard. Query-Preserving Watermarking of Relational Databases and
XML Documents. To appear in ACM Transactions on Database Systems (ACM TODS),
36(1), 2010 (tentatively scheduled).

Conferences

• David Gross-Amblard, Philippe Rigaux, Lylia Abrouk and Nadine Cullot. Fingering wa-
termarking in symbolic digital scores. In International Conference on Music Information
Retrieval (ISMIR), 2009, Kobe, Japan.

• Julien Lafaye, Jean Béguec, David Gross-Amblard and Anne Ruas. Invisible Graffiti on your Buildings:
Blind & Squaring-proof Watermarking of Geographical Databases. In 10th International Symposium
on Spatial and Temporal Databases (SSTD), July 16-18, 2007, Boston. LNCS 4605, pages 312-329.

• Julien Lafaye and David Gross-Amblard. XML Streams Watermarking. In 20th Annual IFIP WG
11.3 Working Conference on Data and Applications Security (DBSec2006), Sophia Antipolis, France,
7/31 - 8/02 2006, pages 74–88.

• David Gross-Amblard. Query-Preserving Watermarking of Relational Databases and
XML Documents. In ACM Principles of Database Systems (PODS), 2003, pages 191–
201.

Workshops

• Camélia Constantin, David Gross-Amblard and Meryem Guerrouani. Watermill: an Optimized Finger-
printing Tool for Highly Constrained Data. In ACM Workshop on Multimedia and Security (MMSec),
New-York, USA, August 1-2 2005, pp. 143-155, 2005.

Softs

• (soft) Camélia Constantin, David Gross-Amblard, Meryem Guerrouani et Julien Lafaye. Watermill:
an optimized watermarking/fingerprinting tool for databases.
http://watermill.sf.net
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A.2 Miscellaneous

A.2.1 Multimedia watermarking

In this work, a general framework for watermarking multimedia documents is proposed. A multimedia doc-
ument is seen as a relational structure between components (for example images and polygonal annotations
on them), along with functional dependencies. The framework guarantees that the watermarking of one
component is consistent with its dependencies.

Conferences

• Richard Chbeir and David Gross-Amblard. Multimedia and Metadata Watermarking Driven by Ap-
plication Constraints. In IEEE Multi Media Modelling conference (MMM), 8 pp., 2006.

A.2.2 Other supervised work

In this section I also mention papers of my former PhD student, Julien Lafaye, whose thesis is entitled
”Database watermarking under constraints” (defended 2007). Although I supervised his thesis, these works
are Julien’s own ideas.

Workshops

• Julien Lafaye. An analysis of database watermarking security. In International Workshop on Data
Hiding for Information and Multimedia Security (DHIMS), pages 462-467, Manchester, UK, 08/29 -
08/31 2007.

This paper studies the security of Agrawal and Kiernan’s scheme for database watermarking, elabo-
rating on new tools from Cayre, Furon and Fontaine [20]. It shows that using high significant bits of
numerical data sets as part of the secret key may lead to information leakage.

• Julien Lafaye. On the Complexity of Obtaining Optimal Watermarking Schemes. In International
Workshop on Digital Watermarking (IWDW), Guangzhou, China, 12/03-12/05, 2007.

In this paper, Julien Lafaye studies the computational problem of assessing the robustness and false-
positive rate of a watermarking method, described as a matrix or a circuit. It shows that this problem
is NP -hard on matrices and EXP -hard on circuits.

Softs

• Julien Lafaye and Jean Béguec. The geographical database watermarking library Watergoat (Open-
Jump module).
http://cedric.cnam.fr/~lafaye_j/index.php?n=Main.WaterGoatOpenJumpPlugin

A.3 Work non-related to watermarking

A.3.1 Web services ranking

Web services are a normalized W3C technology allowing Web servers to expose portions of their code to
users, instead of basic (static) Web pages. A wide amount of such services appeared recently, and there is a
crucial need for their indexing and ranking. Traditional solutions are based on open registries (UDDI), where
services types and descriptions are provided. If such descriptions are not available, no longer up-to-date or
simply not sufficient for ranking, we have proposed a Web service ranking method derived from Google’s
PageRank method. A Web service is seen as a Web page, while a service call from one service to another is
considered as a link between two pages. This approach, including time-dependencies, was part of Camélia
Constantin’s thesis.



Conferences

• Camélia Constantin, Bernd Amann, David Gross-Amblard. A Link-Based Ranking Model
for Services. In Cooperative Information Systems (CoopIS) International Conference,
2006, pages 327-344.

National journals

• Camelia Constantin, Bernd Amann and David Gross-Amblard. Un modèle de classement de services
par contribution et utilité. In Revue des sciences et technologies de l’information (numéro special
”Recherche d’information dans les systemes d’information avances”) (1633-1311) - 12(1) : 33-60, 2007.

A.3.2 Web publishing-by-example

Publishing data on the Web by dynamically extracting content from a database is nowadays a common
practice (with tools like Apache, Mysql, PHP, Python, etc.). However these techniques are limited to users
with reasonable programming skills. To allow natural users of blogs or wikis to access such data sets, or
to increase programmers productivity, we have proposed a publish-by-example model. In this setting, the
system extracts from the database or its schema a canonical database of examples. By building template
Web pages with such examples, users can obtain automatically a full publishing program that generalized
for a whole Website. The main point is to guarantee that the example data set is rich enough to express all
interesting queries (Sonia Guéhis’thesis and following publications).

Conferences

• Sonia Guéhis, David Gross-Amblard and Philippe Rigaux. Publish By Example. In IEEE International
Conference on Web Engineering (ICWE), July 14-18, 2008, Yorktown Heights, New York.

National journals

• Sonia Guéhis, David Gross-Amblard, Philippe Rigaux. Un modèle de production interactive de pro-
grammes de publication. Ingénierie des Systèmes d’Information (Networking and Information Sys-
tems), revue des sciences et technologies de l’information (RTSI) série ISI, 13 (5) : 107-130, octobre
2008.

Softs

• Sonia Guéhis. The DocQL publication suite.
http://www.lamsade.dauphine.fr/~guehis/docql/

A.3.3 Time-series management

Time-series is a key concept to handle useful information flows: environmental monitoring by sensors, stock
exchange, news articles, and so forth. Along with Zoé Faget, Virginie Goasdoué-Thion and Philippe Rigaux,
we proposed a query language and an algebra that manipulates time-series. Our main application is the
management of musical events into the NEUMA project.

Conferences

• Zoé Faget, David Gross-Amblard, Philippe Rigaux, Virginie Thion-Goasoué. Modeling Synchronized
Time Series. In International Database Engineering & Applications Symposium (IDEAS), Montreal,
QC, Canada , August 2010.
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Workshops

• Lylia Abrouk, Hervé Audéon, Nadine Cullot, Cécile Davy-Rigaux, Zoé Faget, David Gross-Amblard,
Hyunja Lee, Philippe Rigaux, Alice Tacaille, Elisabeth Gavignet, Virginie Thion-Goasdoué. The
NEUMA Project: Towards Cooperative On-line Music Score Libraries. In Workshop on Exploring
Musical Information Spaces (WEMIS), Corfu, Greece, 2009.



B
Résumé d’activité

B.1 Encadrement (thèses, postdocs, masters, ingénieurs)

Thèses

1 (en cours) Encadrement (33%) avec Lylia Abrouk (33%) et Christophe Nicolle (33%) de la thèse
de Damien Leprovost (boursier Jeune chercheur entrepreneur–JCE Conseil régional de Bourgogne),
intitulée “Découverte de communautés par analyse sémantique des usages”, débutée en septembre
2009.

2 Encadrement (95%) avec Michel Scholl (5%) de la thèse de Julien Lafaye (boursier AMX), intitulée
“Tatouage des bases de données avec préservation de contraintes”, débutée en septembre 2004, soutenue
le 7 novembre 2007 (durée 3 ans, 2 mois). Julien est qualifié en 27e section et actuellement salarié de
la SSII Scimetis.

3 Encadrement (30%) avec Bernd Amann (70%) de la thèse de Camélia Constantin (boursière MENRT),
intitulée “Classement de services par utilité”, débutée en septembre 2004, soutenue le 27 novembre
2007 (durée 3 ans, 2 mois). Camélia est actuellement mâıtre de conférences à l’Université Paris VI et
au LIP6.

Postdocs

1 (en cours) Encadrement (50%) avec Lylia Abrouk (50%) du stage post-doctoral de Chi Dung Tran,
dans le cadre de l’ANR NEUMA, portant sur les aspects collaboratifs des bases de données musicales,
de septembre 2010 à septembre 2011.

2 Encadrement avec Lylia Abrouk, Nadine Cullot et Elisabeth Gavignet du stage post-doctoral de Hyunja
Lee, dans le cadre de l’ANR NEUMA, portant sur la construction d’une ontologie musicale, de mai
2009 à mai 2010.

Masters avec résultats en recherche

1 Encadrement du master 3i / recherche (Université de Bourgogne) d’Émilien Antoine, intitulé “Tatouage
de partitions musicales symboliques par altération sémantique d’accords”, de mars 2010 à juin 2010
(noté 16/20, actuellement en thèse à l’INRIA sous la direction de Serge Abiteboul).

2 Encadrement du master VIIAM multimédia / professionnel (Université de Bourgogne) de Damien
Leprovost, intitulé “Liaison OpenOffice / Beamer”, de mars 2009 à juin 2009 (noté 17/20, actuellement
en thèse sous ma co-direction).

3 Co-encadrant (25%), avec Anne Ruas (50%) et Julien Lafaye (25%) du master Science de l’information
géographique / professionnel (Université de Marne-la-Vallée/Ecole nationale des sciences géographiques)
de Jean Béguec, intitulé “Diffusion et Tatouage des Données Géographiques”, de avril 2006 à septembre
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2006 (noté 17/20, actuellement employé par la société Capgemini). Résultats du stage publié dans la
conférence SSTD’2007 [65].

4 Encadrant (50%) avec Anne Ruas (50%) du master SAR/recherche (Université Pierre et Marie Curie
- Paris 6) de Ammar Mechouche, intitulé “Tatouage de données géographiques”, de avril à septembre
2005 (noté 18/20, meilleure note de stage du master, thèse effectuée à l’IRISA, actuellement en postdoc
à l’IGN).

5 Encadrant (100%) du master I3/recherche (Paris XI-Orsay) de Julien Lafaye, intitulé “Enhancing
security of Web Services Workflows using Watermarking”, de mars à juin 2004 (noté 16/20, a soutenu
une thèse sous ma direction).

6 Encadrant (50%) avec Bernd Amann (50%) du master SAR/recherche (UPMC) de Camelia Constantin,
intitulé “Calcul d’importance de services Web”, de mars à juin 2004 (notée 18/20). Stage ayant donné
lieu à publication en conférence [24] et à la revue des sciences et technologies de l’information [25]. A
soutenu une thèse sous ma co-direction.

Mémoire d’ingénieur et fin d’étude

1 Mémoire d’ingénieur de Camélia Constantin, École polytechnique de Bucarest, intitulé “Tatouage sous
contraintes”, de avril à juin 2003. Stage ayant donné lieu à publication [26]. A soutenu un thèse sous
ma direction (encadrant principal, Bernd Amann), avec financement MENRT.

2 Mémoire d’ingénieur Cnam de Meryem Guerrouani, intitulé “Tatouage de documents XML contraints”,
de septembre 2003 à juin 2005. Notée 18/20, stage ayant donné lieu à publication en conférence [26]
et revue [67], actuellement employée dans une SSII.

3 Différents autres mémoires d’ingénieur Cnam : Guillaume Chalade (2006), Karine Volpi (2006), Robert
Abo (2006), Mai Hoa Guennou (2007).

B.2 Animation scientifique

Projets et financements

PEPS CNRS STRATES Ce PEPS, obtenu en avril 2010, pour un montant de 10 kE, propose une ap-
proche inter-disciplinaire pour étudier les modèles économiques des données. Il est mené un col-
laboration avec un mathématicien-économiste du CEREMADE (Université de Dauphine), et deux
économistes de l’École d’économie de Paris. J’ai mené le montage de ce projet et en suis le coordina-
teur (taux d’acceptation inférieur à 1/10).

ANR Contenu et interaction NEUMA Cette ANR, obtenue fin 2008 pour une période de 3 ans et
pour un montant de 620 kE, s’intéresse au partage, au stockage et à l’interrogation de grands corpus
de données musicales sous forme de partitions. Ce projet, mené en collaboration avec des musicologues
du CNRS (Institut de recherche sur le patrimoine de musical en France - IRPFM), croise des techniques
de bases de données pures (stockage, interrogation) avec une approche contemporaine du Web (Web
collaboratif pour le partage) et de la sécurité (sécurisation des partitions par tatouage). Ce projet est
coordonnée par le LAMSADE (Université de Paris-Dauphine), en partenariat avec le Le2i (Université
de Bourgogne), l’IRPMF (CNRS), et une entreprise de gestion de contenu multimédia, ARMADILLO.

ACI Sécurité & Informatique Tadorne J’ai mené le montage de ce projet (rencontre avec les différents
intervenants, centralisation et finalisation de la proposition de projet). J’ai été coordinateur de cette
ACI obtenue pour la période 2005-2007, pour un montant total de 62 kE. Le projet Tadorne (tatouage de
données contraintes [4]) s’est attaqué au problème du tatouage de données et services sous contraintes,
en prenant pour application cible les données et services géographiques de l’institut géographique



national (IGN). Cette ACI a rassemblé huit chercheurs de différents laboratoires (CEDRIC/CNAM,
GREYC/université de Caen, LAMSADE/université Paris-Dauphine, COGIT/IGN).

BQR Codes d’estampillages incrémentaux Ce BQR a été obtenu en 2007 en collaboration avec l’équipe
Algorithmique combinatoire du laboratoire Le2i, pour un montant de 6 kE.

BQR Certification d’algorithme de tatouage Ce BQR a été obtenu en 2006 en collaboration avec
l’équipe Conception & programmation raisonnée du laboratoire Cédric, pour un montant de 7,7 kE.

Collaboration nationales

• Délégation INRIA à partir de septembre 2010, dans le projet WebDam ERC Grant de
Serge Abiteboul.

• Membre extérieur du PPFWisdom depuis janvier 2007 (Cnam-Paris, université de Dauphine, université
Paris VI), http://wisdom.lip6.fr/, et collaboration particulières avec Bernd Amann (Professeur,
LIP6) et Philippe Rigaux (Professeur, LAMSADE).

• Participant extérieur aux ACI SemWeb et SCALP.

• Collaboration avec Cristina Bazgan (professeur à l’université de Dauphine, dans le cadre de l’ACI
Tadorne).

• Collaboration avec Yannick Viossat (CEREMADE, mâıtre de conférences, Université Paris-Dauphine)
et Gabrielle Demange (directrice d’étude, École d’économie de Paris).

• Collaboration avec l’Institut géographique national (Anne Ruas, directrice du laboratoire Cogit).

Interventions en séminaires de recherche de haut niveau

• Tatouage de données contraintes, journées Codage et cryptographie (C2), Aussois, 30 janvier au 4
février 2005.

• Présentation du projet Tadorne, journées des ACI Sécurité & Informatique 2004, LAAS, Toulouse, du
15 au 17 novembre 2004.

• Tatouage de bases de données, séminaire Cryptographie, codage et algorithmique (CCA), ENSTA, 16
janvier 2004.

B.3 Relations avec le monde industriel ou socio-économique

J’ai participé à l’expertise de deux dossiers du réseau national des technologies logicielles (RNTL) en 2003,
et un dossier ANR avec partenariat industriel en 2006, portant sur la sécurité. Je participe à l’ANR 2008
Contenu et Interaction NEUMA, classée Recherche Industrielle, en partenariat avec l’entreprise de gestion
de contenu multimédia ARMADILLO. J’ai également réalisé une prestation de conseil technologique (PCT)
auprès d’une entreprise de nouvelles technologies en Bourgogne, en partenariat avec UB-Filliale Wellience.

B.4 Visibilité

Participation en jury de thèses

• (Comme examinateur) Sonia Guéhis, le 2 décembre 2009.
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• (Comme co-directeur) Julien Lafaye, soutenance le 7 novembre 2007, jury composé de Marie-Christine
Costa (présidente), Alban Gabillon, Jerry Kiernan (rapporteurs), Serge Abiteboul, , Cristina Bazgan
(examinateur), Michel Scholl (co-directeur).

• (Comme co-directeur) Camélia Constantin, soutenance le 27 novembre 2007, jury composé de Christine
Collet (présidente et examinatrice), Michalis Vazirgiannis (rapporteur), Serge Abiteboul, Michel Scholl
(examinateurs), Bernd Amann (co-directeur).

Invitation

• Tatouage de bases de données. Cours invité. École thématique BDA Masses de données distribuées,
École de physique des Houches, 16-21 mai 2010.

• Présentation invitée au Workshop intenational PresDB 2007 (International Workshop on Databases
Preservation, Edinbourgh, March 23, 2007), intitulée “Database watermarking: protection by alter-
ation”.

Comité de programme

• Comité scientifique de l’école thématique BDA - Masses de données distribuées, Les Houches, 16-21 mai
2010, organisé par Nicole Bidoit (LRI/Université Paris Sud 11) et Philippe Pucheral (PRISM/INRIA
Rocquencourt/Université Versailles Saint-Quentin).

• Membre du comité de programme des conférences internationales CSTST 2008, ICDIM 2008 et du
workshop étudiant MEDES-SW 2009.

• Président et membre du comité de sélection des démonstrations pour la conférence nationale Bases de
données avancées (BDA) 2008.

• Président et membre du comité de programme de l’atelier international SWAN (1st Workshop on
Security and Trust of Web-oriented Application Networks), Bangalore, 6-8 décembre 2006.

• Membre du comité de programme des conférences nationales Bases de données avancées (BDA) 2005,
2008, 2009 et 2010 (dont session de démonstration).

• Relecteur pour les revues JCSS (2005), TKDE (2005, 2006), Information systems (2007), TDSC (2005),
TISSEC (2005), WWWJournal (2005), Acta Informatica (2005), Infosec (2004) et TODS (2003).

• Relecteur secondaire pour les conférences ACM SIGSPATIAL GIS 2009, ACNS 2007, ASIACCS 2007,
ICDE 2007, ICDIM 2006 et 2007, ASIAN 2005, PODS 2005, SOFSEM 2005, VLDB 2005, EDBT 2004,
VLDB 2003.

Commissions

En 2010 Membre extérieur des CdS de Polytech/LIRMM Montpellier et de l’ESIAL/LORIA Nancy.

Depuis septembre 2008 Membre suppléant du bureau de la commission de proposition section 27 du
laboratoire LE2I UMR CNRS 5158 (université de Bourgogne).

De septembre 2006 à septembre 2008 Membre suppléant de la commission de spécialiste section 27 du
laboratoire LE2I UMR CNRS 5158 (université de Bourgogne).

De janvier 2005 à septembre 2006 Membre du bureau de direction du laboratoireCedric (4 membres),
responsable des relations avec la communauté (CNU, Spécif, etc.) ainsi que de la commission Web.

De janvier 2004 à septembre 2006 Membre extérieur titulaire de la commission de spécialiste section
27 du laboratoire LE2I UMR CNRS 5158 (université de Bourgogne).



De janvier 2001 à septembre 2006 Membre titulaire du conseil du laboratoireCedric, suppléant depuis
2005.

Primes

• Titulaire de la PEDR depuis septembre 2007.

Formations en relation avec le domaine de recherche

• (depuis juin 2009) Formation “Tatouage des bases de données”, École nationale de la statistique et de
l’analyse de l’information (ENSAI), Campus de Ker Lann, Rennes.

• Voir également la section “Invitation”.

B.5 Activité d’enseignement

Activités statutaires J’ai enseigné l’informatique à tous les niveaux du L1 auM2 professionnel ou recherche,
selon les quantités suivantes :

• 2001-2002 : 214 ETD

• 2002-2003 : 218 ETD

• 2003-2004 : 192 ETD

• 2004-2005 : 234 ETD

• 2005-2006 : 208 ETD

• 2006-2007 : 254 ETD

• 2007-2008 : 201 ETD

• 2008-2009 : 210 ETD

• 2009-2010 : 220 ETD

Responsabilités pédagogiques

• (L1-depuis 2008) Responsable du module Programmation objet en Java au niveau L1

• (M2-depuis 2006) Co-responsable du module de Systèmes d’information multimedia du master
professionnel VIIAM, avec Lylia Abrouk

• (M1-2004-2005) Co-responsable du module Bases de données et Web en valeur C (niveau Master
1) du Cnam-Paris, avec Dan Vodislav

• (L3-2004-2005) Co-responsable du cours de bases de données en valeur B (niveau L3) en 2004-2005
du Cnam-Paris, avec Dan Vodislav

Thématiques abordées

• Théoriques : théorie des langages, compilation, programmation objet et fonctionnelle, théorie des
bases de données, optimisation combinatoire, algorithmique.

• Appliqué : optimisation des bases de données, langage SQL, langages du Web (XML, DTD, XML
Schema, XPath, XSLT, Services Web), langages de programmation (Java, Ocaml, Pascal, PHP),
Système et réseaux, architecture des machines, systèmes distribués et parallèles (MPI).
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Abstract

Database watermarking techniques allow for hiding in-
formation in a database, like a copyright mark. While
watermarking methods are numerous in the multi-
media setting, databases present various specificities.
This work addresses some of them: how to watermark
a numerical database while preserving the result of in-
teresting aggregate queries, how to watermark a struc-
tured stream like a typed XML stream or a symbolic
music score, how to watermark geographical data sets.

Résumé

Les techniques de tatouage de bases de données per-
mettent la dissimulation d’information pertinente dans
les n-uplets, comme par exemple l’identité du pro-
priétaire des données. Les techniques de tatouage
sont nombreuses dans le domaine multimédia, mais le
tatouage des bases de données présente de nombreuses
spécificités. Certaines d’entre elles sont traitées dans
ce document : comment tatouer une base de données
numérique tout en préservant le résultat de requêtes
d’agrégat importantes, comment tatouer un flux struc-
turé, comme un flux XML typé ou une partition musi-
cale symbolique, comment tatouer une base de données
géographiques.


