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Résume de la these :
Spécification Modulaire et Analyse
Compositionnelle de Systemes
Stochastiques

0.1 Introduction

0.1.1 Contexte

De nombreux secteurs industriels dont le secteur des sgst@émbarqués ont récemment
connu de profonds changements dans leur organisation. dotsuss de I'automobile et de
I'aérospatiale en sont les principaux exemples. Dans le&als étaient organisés autour de
compagnies intégrées verticalement supportant toutedinelde développement, du design a
limplémentation. Aujourd’hui, les systemes sont si gros@mplexes qu’il est quasiment im-
possible qu’une méme équipe ait le contréle de toute la el@d@rdesign. Dans la pratique, les
systémes complexes résultent de 'assemblage de mulktiphegosants, généralement dévelop-
pés par des équipes qui travaillent indépendamment lesdasesutres, tout en étant d’accord
sur les interfaces de chaque composant. Ces interfaceifiesptéd la fois les comportements
des composants et I'environnement dans lequel ils peuventuélisés. L'avantage principal
de cette méthodologie est de n’imposer aucune contrainta fagon dont les composants sont
implémentés.

Différents composants peuvent étre implémentés par eliffés équipes a la con-
dition que chaque équipe respecte l'interface sur laqualies se sont toutes mises
d’accord.

Dans la pratique, les interfaces sont généralement desiepar des documents textuels,
générés avec Word/Excel, soit dans des langages de maidélisels qu'UML/XML. A
l'inverse, afin de limiter au maximum les ambiguités, nousppsons de baser notre raison-
nement sur des formalismes mathématiques. Le développemérmalismes mathématiques
permettant de raisonner au niveau abstrait des interfaoesld but de déduire des propriétés
des systémes globaux et de décrire ou (ré)utiliser des ceamp®est un domaine de recherche
particulierement actif, appel@isonnement compositionngl7]. Selon le point de vue du
“software engineering”, nécessairement orienté verspl@émentation, les propriétés néces-
saires a une bonne théorie d’'interface sont les suivantes.



Remarque 0.1.Dans le reste du document, en fonction du contexte, plustetumes pourront
étre utilisés pour désigner les mémes notions : spécificatiinterface; implémentation =
composant.

1. 1l est nécessaire de pouvoir décider si une interface adme implémentation (aussi
appelée modele). En patrticulier, il doit étre possible deidi si les propriétés spéci-
fiées par l'interface sont implémentables, et de généretelleeimplémentation le cas
échéant. Dans le cadre de notre théorie, une implémentaidoit pas étre vue comme
un langage de programmation mais plutét comme un objet mmattig¢ue représentant
un ensemble de langages de programmation partageant umldasge propriétés. Le
fait de pouvoir décider si un composant implémente unefaerest d’'une importance
particuliére et doit pouvoir étre décidé a I'aide d’algbnites efficaces.

Si I'on considére qu’une spécification est une représemiathathématique
d’une propriété devant étre satisfaite, alors la satisi@ctdoit coincider avec
le principe de vérification par implémentation.

2. Il est important de pouvoir remplacer un composant par wineasans pour autant
modifier le comportement du systéme global. Au niveau desfaxes, cela correspond
au concept deaffinement Le principe du raffinement est de permettre de remplacer,
dans n’'importe quel contexte, une interface par une irterfdus détaillée. Le raffine-
ment doit étre garant de la substituabilité d’interface, que toute implémentation qui
satisfait le raffinement satisfait aussi le raffiné. Dansuede limiter la complexité du
procédé de développement, il estimportant de pouvoir éédié I'existence d’une inter-
face raffinant deux autres interfaces. C’est le principeatiinement partagéDans de
nombreux cas, on rechercheplus grande borne inférieure.e. le raffinement partagé
qui serait raffiné par tous les autres raffinements partagés.

3. Les systemes de grande taille sont développés de mamigcarcente pour leurs dif-
férentsaspectou points de vugar différentes équipes utilisant différents outils et dif
férentes méthodes. Par exemple, ces aspects incluenplestsfonctionnels ou les as-
pects de sécurité. Chacun d’eux nécessite des méthodddstidiérents pour I'analyse
et la conception. Pour autant, ils ne sont pas entieremdapandants et il leur arrive
d’interagir. Le probleme de traiter des aspects multiplesrcore des points de vue mul-
tiples semble donc essentiel. Notamment, cela impliquegtpseurs interfaces peuvent
étre associées a un méme composant, en l'occurrence au ur@rngar point de vue.
Ces interfaces doivent alors étre traitées de maniere ecotije, et cette conjonction doit
satisfaire la propriété suivante :

Etant donnés deux points de vue, représentés par deuxaoés:ftoute implé-
mentation satisfaisant la conjonction de ces interfacasgitisfaire les deux
points de vue.

4. Une bonne théorie d’interface doit comprendre, en pditic une opération de combi-
naison reflétant la notion standard d’interaction/compmsientre systémes. D’un point
de vue pratique, I'existence d’un environnement dans ledgax composants peuvent
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interagir, d’'un point de vue compositionnel, doit étre détile. Un autre objectif, cer-
tainement plus ambitieux, est de pouvoir synthétiser uarteironnement. Pour finir, la
composition doit satisfaire la propriété suivante :

Etant donnés deux composants satisfaisant deux interfécehéorie doit
assurer gue la composition des deux composants satisfeitrtgosition des
interfaces correspondantes.

5. Il doit étre possible de vérifier si un systéeme composé dsiguirs composants satisfait
une propriété en raisonnant uniquement sur ses compogasrsappliquant le raison-
nement compositionnel.

Le développement de théories d’interface a été le sujet direuses études. Aujourd’hui,
les recherches dans ce domaine se concentrent sur deuxesnade(l) lesautomates
d’interface[54], et (2) lesspécifications modalg¢$00]. Les automates d’interface sont basés
sur des automates a entrées/sorties avec une sémantigue te fraitent les systémes ouverts,
leur raffinement et composition, tout en mettant I'emphaséescompatibilité d'interfaces. Les
spécifications modales sont aussi expressives que le rautHd]. En ce sens, elles admettent
une algébre compositionnelle plus riche, comportant désatgurs de conjonction, composi-
tion et méme résiduation. Ces deux modeles sont aujourbieniétablis, et implémentés dans
des outils[31, 102, 4, 57].

Dés lors que les systemes contiennent des algorithmeoiadSatdes protocoles proba-
bilistes ou encore dés lors qu'ils interagissent avec uir@mvement physique, des modéles
stochastiques sont nécessaires pour les représenterétitésr. Ce besoin est d’autant plus
présent que des demandes de tolérance aux fautes, d’anaigsstative pour connaitre le
nombre de fautes que les systemes peuvent supporter, oreateanesure des délais pou-
vant apparaitre se font de plus en plus importants. CommiséattHenzinger et Sifakis [77],
I'introduction des probabilités dans les théories de cptioa de systémes permet de mesurer
la dépendance de ces systémes informatiques comme cesiugficouramment dans d’autres
sciences de l'ingénieur. Cette these sera donc consacdapteales théories d’'interface aux
systemes stochastiques.

0.1.2 Contributions et plan de la these

Cette thése présente des contributions originales pownreeption et la vérification de sys-
témes mixant des aspects non-déterministes et stochestijos résultats peuvent étre divisés
en trois axes qui sont décrits ici.

Le premier axe d’étude concerne la généralisation desidgdiinterface aux systemes
stochastiques. Dans la méme lignée que les systéemes diédaransodaux [100], les Chaines
de Markov a Intervalles (IMCs) généralisent les notions aelafités aux systemes stochas-
tiques. Les IMCs ont été introduites par Larsen et Jonss6hd@mme un formalisme de
spécification et donc une base pour une méthode de raffinement par étapEssives avec
laquelle les spécifications initiales sont tres abstraatesous spécifiees, puis sont rendues de
plus en plus précises jusqu’a étre concrétes. Outre ledatlgs ont été introduites dans le but
de servir a la spécification, les IMCs ont plutdt été utilssdans un but dbstractiondans le
cadre du model-checking, ou I'on abstrait les modéles @isgar des modéles moins précis,
sur lesquels les propriétés sont plus faciles a prouved2361, 89].

\Y



De maniére informelle, les IMCs étendent les Chaines de dWegk étiquetant les transi-
tions par des intervalles de probabilités autorisées aaleeplle valeurs concrétes. Les implé-
mentations des IMCs sont des chaines de Markov dont leshdistns de probabilité cor-
respondent aux contraintes introduites par les intervall€ette définition de satisfaction/
implémentation est similaire a la notion de simulation pesrautomates. Les IMCs représen-
tent un modele efficace sur lequel le raffinement et la conipagieuvent étre effectués grace
a des algorithmes efficaces relevant de I'algébre linéaftaheureusement, comme nous al-
lons le voir, I'expressivité des IMCs n’est pas suffisantergeermettre de traiter a la fois la
composition logique et la composition structurelle.

. H <190 H > 160

A %@HEMO > %@HSM W <90 B5AS2 H <190
©, ®© ®

T~ e W > 60 H > 160

1) @ W <90 [ 1] @ W > 60 W <90 @ 2 % W > 60

Figure 1: IMCsS; et S; illustrant la non-cloture par conjonction.

Soient les deux IMCsS; et S; données dans la figure 1.1. Elles spécifient différentes
contraintes de probabilité relatives a la taifeet au poiddV d’une personne lambda. Lorsque
'on tente d’exprimer la conjonctio®; A S, en tant qu'une IMC en effectuant simplement
I'intersection des bornes des intervalles, nous obter®néslultat suivant z; < % % <zp < %

é < z3 et% < z,. Pour autant, cette construction naive n’est pas asses@réla distribution
(21,22, 23, 21) = (3.3, 3, ) Satisfait les contraintes, mais la probabilité résultarateindre
un état pour lequell > 160, i.e. z;+2, = % est en dehors des bornes spécifiéesSpall nous
faudrait donc pouvoir exprimer des dépendances entre dbmpilitész,, 25, 23 etz, en dehors
du fait d’étre une distribution de probabilité correctetzot23+24 = 1). La bonne combinaison
conjonctive s’exprime avec les trois contraintes suivanei ne pourraient étre exprimées en
utilisant des IMCs iz +2 < 3, § < z3+21, 3 < 2+2. Un exemple similaire montre que
les IMCs ne sont pas non plus closes pour la compositionlpkralPourtant, les IMCs sont
largement acceptées par la communauté scientifique enuarthgorie de spécification pour
les systemes stochastiques [61, 89]. Il est donc intéred&tndier leurs propriétés ainsi que
leurs limites.

Le chapitre 2, résumé en section 0.2, présente nos réscitaternant les IMCs et leur
possible utilisation en tant que méthodologie de concept@mpositionnelle. En particulier,
nous proposons une procédure polynomiale pour vérifierrguiMC est consistante (C), i.e.
gu’elle admet au moins une implémentation. Nous proposassi aine procédure exponen-
tielle permettant de vérifier 4 IMCs sont consistantes entre elles, i.e. si elles admetieat
chaine de Markov qui les satisfait toutes — um@lémentation commur§€l). Nous prouvons
de plus que ce probléme (CI) est EXPTIME-complet. Lorsk@st constant, le probleme de-
vient polynomial. En particulier les deux problémes caiasisa vérifier si deux spécifications
peuvent étre satisfaites par une méme implémentation enthé&iser cette implémentation
peuvent étre résolus en temps polynomial. Dans [86], uratioel de raffinement exhaustif
(Thorough Refinement - TR) est définie comme I'inclusion deseebles d'implémentations.
Il est aussi défini une procédure pour vérifier TR. Nous proswians ce chapitre que cette
procédure peut étre implémentée en temps simplement exfieinet montrons que TR est
EXPTIME-complet. Pour finir, nous définissons des notionsliéerminisme pour les IMCs
et montrons que, pour les IMCs déterministes, le raffinereeaustif coincide avec deux no-
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tions de raffinement syntactique : le raffinement faible ealéinement fort. Il existe, pour
ces notions syntactiques, des algorithmes co-inductifeitent en un nombre polynomial
d’itérations. La théorie des MTS supportant le raffineméntonjonction et la composition
parallele, les questions étudiées ici I'avaient déja ébs dmcadre des MTSs. En I'occurrence,
il avait été prouvé que les deux problémes de Cl et TR correfgus étaient eux aussi
EXPTIME-complets [10, 17]. Il est aussi prouvé, dans [86ie ¢ formalisme des IMCs con-
tient celui des MTSs, éclairant nos résultats sous une hensiérprenante : d’'un point de vue
complexité théorique, et considérant les problemes de TR, dtsemblerait que la généralisa-
tion de MTSs aux IMCs soit gratuite. Malheureusement, corntmeléja été dit, les IMCs ne
sont pas suffisamment expressives pour permettre de parl@rgonction, composition par-
allele ou encore de disjonction. Il est donc nécessaireridiein ce modéle pour obtenir une
théorie de spécification qui soit fermée a la fois pour la@odiion et la composition parallele.

Dans le chapitre 3, résumé en section 0.3, nous présentonguweau formalisme pour
la spécification, basé sur une extension des IMCs : les ChaleeMarkov a Contraintes
(CMC). Les CMCs autorisent des contraintes complexes siprlebabilités de transition, con-
traintes potentiellement plus expressives que les intesvdes IMCs. En ce sens, les CMCs
généralisent le formalisme moins expressif des IMCs. Danshapitre, nous prouvons que
de simples contraintes linéaires suffisent a obtenir unermdar conjonction, et que des con-
traintes polynomiales suffisent a obtenir la cl6ture par position parallele. Le formalisme
des CMCs est la premiere théorie de spécification pour chaleeMarkov offrant de telles
notions de cléture. Tout comme pour les IMCs, nous définssi@s notions de déterminisme,
et prouvons que, sur I'ensemble des CMCs déterministesffiegment exhaustif peut étre
approché de maniére s(re par le raffinement faible et le eafimt fort. Pour finir, nous pro-
posons des réductions de I'ensemble des automates pristehi I'ensemble des CMCs. Ces
réductions prouvent que notre nouveau formalisme, les GM§lggénéral. Pour autant, nous
prouvons que toutes les opérations et toutes les relatioiesCMCs sont calculables.

Bien que les CMCs relévent d’'un formalisme général, la motie satisfaction associée est
basée sur le principe de vérification par implémentation18%]. 1l est pourtant parfois néces-
saire de décrire des propriétés en utilisant des formutggues. Pour cela, il faut considérer
une nouvelle notion de satisfaction permettant de premii@mpte ces formules. Par exem-
ple, considérons la notion de disponibilité. Cette notiempet de représenter une mesure du
temps durant lequel un systéme satisfait une propriétéé@mnme mesure importante lorsque
I'on concoit des systemes critiques. Dans le but de perendtirspécifier de telles notions,
nous avons développé une autre théorie de spécificatianbtine relation de satisfaction plus
expressive.

Dans le chapitre 4, résumé dans la section 0.4, nous présenbdre troisieme contribu-
tion : une théorie de spécification qui étend les contratstigse/garantie, introduits dans [21].
Le paradigme d’hypothese/garantie a été introduit pourdangere fois par Abadi et Lamport
dans [3] comme un formalisme de spécification. L'avantagedatrats hypothése/garantie tels
gu'ils sont présentés dans [21] est gu'ils sont plus génégae la notion classique d’automates
d’interface. Dans ce chapitre, nous développons une #héornpositionnelle a base de con-
trats pour, d’'un c6te, des systemes non-stochastiqueletautre cote, des systemes stochas-
tiques. Nous associons a ce formalisme deux notions ddagaiis quantitatives la fiabilité
et la disponibilité. De plus, nous proposons des définitaathématiques pour les notions de
composition, conjonction et raffinement.

Nous établissons par la suite une théorie de vérificationpositionnelle pour les opéra-
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tions définies ci-dessus et les deux notions de satisfactiosidérées. Une telle théorie permet
de raisonner sur le systeme complet en considérant uniqudegecomposants individuelle-
ment. Selon le type de contrats considérés, la théorierdiffpar exemple, nous prouvons que
si un systémes; satisfait un contrat probabiliste & un niveapet si un systemeé, satisfait

un contrat probabilisté’; a un niveaus, alors la composition dé; et .S, satisfait la compo-
sition deC et Cy a un niveau d’au moina + 3 — 1. Notre théorie est trés générale : les
systémes et les contrats sont représentés par des enseiekésitions. Pour finir, nous pro-
posons des représentations symboliques et effectivesi@mapntrats et les systémes, basées
sur des automates pour représenter les ensembles, pidemtiat infinis, d’exécutions. Si
I'on suppose que les hypothéses et les garanties sonteaepéés par des automates de Biichi,
permettant de les spécifier en utilisant des logiques comirh¢1l08] ou PSL [60], nous obser-
vons que I'on peut vérifier si un systeme (éventuellemegtststique) satisfait une propriété de
fiabilité en utilisant des techniques classiques, implééesdans des outils comme SPIN [127]
ou LIQUOR [35]. Nous prouvons que I'on peut vérifier la satctfon de propriétés de disponi-
bilité en utilisant une extension des résultats préserags [$3]. Finalement, toutes les opéra-
tions présentées pour les contrats peuvent étre facilemp@liuées sur leurs représentations.

Les contributions présentées ci-dessus ont pour but laepdion de systémes, et, en patrtie,
la vérification et la conception incrémentales. Cependbatrive que I'on doive vérifier des
sous-systemes implantés dans une architecture de grahele Dmns ce cas, la difficulté est
d’effectuer la vérification sans pour autant construiréggeaement I'ensemble d’états correspon-
dant a I'architecture totale.

Dans le chapitre 5, résumé en section 0.5, nous avons éteigigobleme au travers d’'un
exemple : un cas d’étude industriel appelé HCS (systeme mencmication hétérogene), deé-
ployé pour assurer la communication en cabine dans un awitbnl@ topologie de ce systeme
est présentée dans la figure 2.
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Figure 2: Modéle de I'exemple HCS. Les NACs effectuent lmrdancement des différents
messages échangés entre le serveur et les différentsitifspeprésentés par les rectangles.

Le HCS est un systéeme hétérogene qui fournit aussi bienfeissgs de divertissement (par
exemple les services d'audio/vidéo a la demande des pasyage les services critiques de
sécurité (par exemple I'éclairage cabine, les annonces ded détecteurs de fumée), mis en
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oeuvre dans des applications distribuées en parallélayers différents dispositifs au sein de
l'avion, et communiquant au travers d’'un réseau partagee Bar le protocole Ethernet. Le
systéme HCS doit satisfaire des exigences strictes tallesadfiabilité de la transmission des
données, la tolérance aux fautes ainsi que des contrauntés Synchronisation des différents
périphériques. Nous avons étudié en détail une de ces gtéprila précision de synchronisa-
tion des horloges internes entre périphériques.

Une premiere solution aurait été d’explorer en détail lsEspd’états du systéme complet et
de vérifier que la propriété est satisfaite pour toute pagreétiphériques. Malheureusement,
cette approche n’est pas réalisable a cause de la complaxytiénportante du systéme global.
La deuxieme idée considérée a été d’'appliquer les techsideenodel-checking statistique.
Encore une fois, la complexité trop importante du systerobajla fait que I'algorithme im-
plémenté n’avait toujours pas terminé apres trois jourgétetion. Pour donner un ordre de
grandeur de cette complexité, le systéeme global est congmplis de280 périphériques tra-
vaillant en collaboration et échangeant de I'informatione fois mise a plat, cette architecture
génére un systéme comprenant plugie’ états.

La solution que nous avons proposée est de construireabsiaction stochastiqude
'environnement dans lequel les deux composants considsit implantés, i.e. une ab-
straction des comportements des autres composants dmsystéde leurs interactions avec
le serveur et le périphérique choisi. Dans ce but, nous guwamsierement identifié les interac-
tions entre deux périphériques quelconques et leur emament, puis nous avons caractérisé
ces interactions en introduisant des distributions de gité sur les comportements possi-
bles de I'environnement. Ces distributions, qui rempla¢environnement, et donc tous les
autres composants du systeme, sont apprises en effecessinaulations du systéme global.
Ce gue nous obtenons alors est un systéeme stochastiquetdillmérés inférieure a celle du
systeme global, sur lequel les techniques comme le modelkaty statistique sont applicables
de maniére efficace (sur ce systeme réduit, nos algorithenesértent en moins d’une minute).
En appliquant cette méthodologie, nous avons pu calcukebdenes sur la synchronisation
et prouver que les exigences originellement demandéesAiaE e pouvaient physiquement
pas étre respectées. En plus d’améliorer I'efficacitéilisation du model-checking statistique
nous a aussi permis de vérifier des propriétés qui ne poun&tienformalisées en utilisant les
logiques temporelles classiques (par exemple, la gigwedsrive d’horloges).

Dans [14], nous avons appliqué avec succes le concept thabeh stochastique dans le
cas de la vérification de propriétés d’'un systeme hétérogasé sur IAvionics Full Duplex
Switched Ethernet (AFDXL], une technologie clé pour les systemes embarqués dans le
A380/A350, des avions de ligne. Les résultats que nous avbteus dans ce cadre sont
plus précis que ceux de [32, 33, 118], obtenus par I'utiisadiu model-checking temporel [5]
ou encore du calcul réseau [47]. Nous présenterons un beeflade ces travaux dans la these.

0.2 Chaines de Markov a Intervalles

Comme présenté dans la section précédente, les IMCs omtietéuites pour la premiere fois
par Larsen et Jonsson dans [86] en tant que formalisme déisgon pour les systemes
stochastiques, utilisant une sémantique de chaines deoM@rg&ir figure 3 pour une illustra-
tion). Pourtant, les IMCs ont été principalement utiliséesyme base pour des techniques de
raffinement par étapes, par exemple pour le model-checkBgip, 61, 89].
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Figure 3: Exemples de chaines de Markov et de chaines de Maiiktervalles.

En effet, les IMCs sont difficilement utilisables pour faite la spécification composition-
nelle car elles manquent d’opérations de composition géesrDans [86], Jonsson et Larsen
ont étudié en détail le raffinement pour ces modéles, maikimse de cbté les aspects compo-
sitionnels et les notions de complexité. Dans le chapitmeo®,contributions principales sont
les suivantes :

e Nous proposons dans un premier temps de répondre a un peblampositionnel —
celui de I'implémentation commune— en utilisant les IMCs. Le probleme de
'implémentation commune consiste en décider si un enseditMCs admet une chaine
de Markov les satisfaisant toutes. Dans un cadre composglpce probleme est aisé-
ment résolu en construisant la conjonction de cet ensemiiMEd, puis en vérifiant si
cette conjonction admet une implémentation. Malheurees¢nies IMCs n’étant pas
closes par conjonction, il est impossible d’appliquerecetéthode ici. Nous proposons
donc une autre solution a ce probleme, permettant de ddadetence d’une implé-
mentation commune, et, le cas échéant, d’en construire Nnas prouvons que cette
procédure est exponentielle et que le probleme générat (@veensemble d’'IMCs de
taille non bornée) est EXPTIME-complet.

e Dans le cas particulier d'un ensemble d'IMCs de taille bermgous montrons que le
probléme de l'implémentation commune est polynomial. Nwotent, nous montrons
gue dans le cas de deux IMCs, il est possible de décider siadimettent une implémen-
tation commune, et, le cas échéant, d’en construire unep éenps polynomial.

e Nous proposons aussi une procédure polynomiale permelashdcider si une IMC est
consistante, i.e. si elle admet au moins une chaine de Méalsatisfaisant.

e Par la suite, nous établissons que la procédure permetarérdier le raffinement ex-
haustif, présentée dans [86], peut étre implémentée enstsimplement exponentiel,
et prouvons de méme que le probleme général du raffinemeatstthest EXPTIME-
complet.

e Pour finir, nous définissons une notion de déterminisme pesiiMCs, et prouvons
que, sur 'ensemble des IMCs déterministes, la notion sémande raffinement ex-
haustif coincide avec les notions syntactiques de raffineérfiagble et raffinement fort,
pour lesquelles il existe des algorithmes co-inductifsiteant en un nombre polynomial
d’itérations.



Nos résultats sont d’'un intérét particulier, les IMCs etrleons de raffinement présentées
ici étant couramment utilisées dans les travaux récent8fB@®1]. De plus, les bornes de com-
plexité que nous proposons permettent de répondre a ddsmedbrestés 20 ans sans solution.
Ces résultats sont robustes quant au formalisme utilisé nepuésenter les IMCs. Par exem-
ple, nous considérons que les états des IMCs sont étiquatésipensemble de propositions
atomiques, mais nos résultats s’étendent aisément a desleles d'’ensembles de propositions
atomiques. De la méme maniére, si nos IMCs ont un uniquerétial i les résultats sont aisé-
ment transférés au cas des IMCs avec une distribution depildb sur un ensemble d’états
initiaux.

Finalement, bien que nous proposions une solution a un émablcompositionnel,
'implémentation commune, il reste vrai que les IMCs ne pettent pas de répondre a de nom-
breux autres problemes de la sorte. Nous proposons dorendiétles IMCs en un nouveau
formalisme dont le but sera d’étre pleinement composigbn@e sera le sujet de la prochaine
section.

0.3 Chaines de Markov a Contraintes

Dans le chapitre 3, nous proposons une nouvelle approchidéepdéveloppement d’'une théorie
compositionnelle de spécification de systemes stocha&stigueschaines de Markov a con-
traintes(CMCs) sont un tel formalisme, pouvant étre utilisé pourefae la conception a base
de composants pour des systéemes stochastiques. Les CMCsnsoextension des IMCs
permettant de spécifier des contraintes riches sur les Ipifdés de transitions plutdt que de
simples intervalles. Nous montrons que des contraintéailies suffisent pour obtenir une clé-
ture par conjonction, et que des contraintes polynomiatesipttent d’obtenir la cl6ture par
composition paralléle. Nous définissons des notions daeaffent, de consistance, de compo-
sition structurelle et de composition logique sur les CM@ss les ingrédients essentiels pour
obtenir une théorie de conception compositionnelle. Desngtes de chaines de Markov et de
CMCs sont présentés dans la figure 4. Les notions de saitsfade raffinement faible et de
raffinement fort sont des extensions conservatrices dessatimilaires sur les IMCs. En plus
de la définition de ce nouveau formalisme, nos contributsmm les suivantes :

e Nous caractérisons les différentes relations de raffingsnéible et fort en terme
d’inclusion d’ensembles d’'implémentations. En partieylnous définissons une notion
de déterminisme et prouvons que, sur I'ensemble des CME@sndigiistes, ces relations
coincident avec I'inclusion des ensembles d'implémeortetiaussi appelé le raffinement
exhaustif ou sémantique. Enfin, nous proposons un algogifigrmettant, a partir d'une
CMC quelconqueés, de générer une CMC déterministe conterfant

e Nous proposons une notion de composition pour les CMCsglmgde principe de sé-
paration des préoccupations. Selon ce principe, la coripogiaralléle des distributions
de probabilité est effectuée séparément de la composiéisesembles de propositions
atomiques. Cette séparation est présente dans tous lealigmas dont les automates
probabilistes sont le modéle sémantique [121, 72, 87, 78lisNbrouvons d’ailleurs que
les automates probabilistes peuvent étre représentéep@NCs, et montrons comment
la notion traditionnelle de composition paralléle sur calgle peut se traduire dans notre
formalisme, en obtenant sans effort toutes les propriégsécongruence.
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Figure 4: Deux spécifications (CMCs) et deux implémentatidAC) d’un relais optique.

e Nous proposons une opération de conjonction et la compardopération de compo-
sition paralléle en terme d’expressivité. Nous prouvors, dprsque I'on considére des
ensembles de propositions atomiques indépendants, laositop paralléle est toujours
un raffinement de la conjonction (le contraire étant fauxglaQoermet de déduire un
ensemble de CMCs a contraintes linéaires clos pour la cotfgomET la composition.

e Nous proposons une étude de la complexité des différenasore et opérations pour
'ensemble des CMCs a contraintes polynomiales, une cldssgMCs close pour la
conjonction et la composition paralléle en général.

e Finalement, nous montrons que les CMCs ne sont généralgrasmioses par disjonc-
tion et étudions le probléme de la décision de I'univeréalitine CMC.

Les CMCs représentent donc le premier formalisme composiél pour la spécification
de systemes stochastiques.

0.4 Contrats (Probabilistes)

Dans [21], Benveniste et ses coauteurs ont proposé undeltdmiconception basée sur les
contrats hypothese/garantie. Un tel contrat est une stiqui, contrairement aux automates
d’interface [54, 52] et aux systémes de transition moda0®]lautorise de séparer explicite-
ment les hypothése faites sur un composkrst garantiey des hypotheses faites sur son envi-
ronnementleés hypothéségs Cette séparation explicite permet de définir une reladiosatis-
faction plus élaborée que celles définies dans le cadre tewates d’interface ou modaux. De
plus, les auteurs de [21] utilisent pour représenter lestigses et les garanties une représenta-
tion permettant de s’abstraire de leur structure. De paaitecktte théorie permet de représen-
ter des propriétés plus élaborées que les modéles graghitassiques.
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Dans le chapitre 4, nous développons une théorie de conoeggmpositionnelle a base de
contrats pour deux catégories de systémes : nous présafansasin premier temps une telle
théorie pour des systémes non-déterministes et non-stighes, puis nous étendons cette
théorie a des systémes non-déterministes et stochastiquesme dans le cadre de la véri-
fication classique non-modulaire [37, 129], la relation dgs$action que nous présentons est
Booléenne pour les systemes non-stochastiques et quiaetitizans le cas contraire, ce qui
nous pousse a développer deux notions de contrats. De plusconsidérons deux notions de
satisfaction différentes : laabilité et ladisponibilité La disponibilité représente une mesure
du temps durant lequel un systéme satisfait une proprigi@ééin pour toutes les exécutions
possibles du systeme. La fiabilité, elle, exprime une medeiéensemble des exécutions du
systeéme satisfaisant une propriété donnée. Ces deux gisssunt importantes pour la concep-
tion de systémes critiques, par exemple. Les notions d&aetion que nous introduisons sont
dites dépendantes des hypotheses. En effet, nous comsdgre les exécutions qui ne satisfont
pas les hypothéses sont “correctes”. Cette interprétasioggérée par nos partenaires indus-
triels, est nécessaire si I'on veut obtenir une théorie asitipnnelle incluant, notamment,
I'opérateur de conjonction. Dans ce chapitre, nos pridegpeontributions sont les suivantes :

e Nous proposons des définitions mathématiques pour la cotigpoparallele, la con-
jonction et le raffinement, les trois opérations esseersglermettant de traduire la plu-
part des demandes des industriels (Notamment nos padsrags projets Européens
COMBEST [45] et SPEEDS[126]). La composition entre costragui ressemble a la
composition classique entre systémes, consiste, infegmeht, a construire
I'intersection des garanties et I'intersection des hypsés. La conjonction, en revanche,
construit un contrat dont les hypotheses sont I'union dgstheéses initiales, et les
garanties les intersections des garanties initiales. Mnesis qu'un contralC; raf-
fine un contrat’;, si les garanties dé€’; contiennent celles d€; et si les hypothéses
de C; contiennent celles d€';. Cette définition booléenne n’est valable que pour les
contrats non-probabilistes. Une définition quantitatigeasproposée pour les contrats
probabilistes.

e Nous établissons des propriétés de raisonnement congusgtipour cette théorie, re-
liant les opérations présentées ci-dessus et les deuxsat®osatisfactions considérées.
Ces propriétés permettent de raisonner sur un systéme se@ngoone s'intéressant a
ses composants qu’individuellement. Les résultats olsteldpendent évidemment du
type de contrat et du type de notion de satisfaction conssdé?ar exemple, nous mon-
trerons, dans le cadre des contrats non-probabilistesuetigootion de fiabilité, que si
un systemes; satisfait un contraf’; et qu’'un systeme, satisfait un contrat’;, alors la
compositionS; N S, des systémes satisfait la composition | C, des contrats. Dans
le cadre des contrats probabilistes et toujours avec lamdt fiabilité, nous montrerons
gue si un systemsg, satisfait un contraf’; avec un niveaw, et qu’'un systeme, satis-
fait un contratC; avec un niveaw, alors la composition des systemesn S, satisfait
la composition des contrats, || C, avec un niveaw + $ — 1. Un exemple est donné
dans la figure 5.

e Nous proposons des représentations symboliques et effeqiour les contrats et les
systemes. Ces représentations sont basées sur des astperaettant de représen-
ter des ensembles d’exécutions potentiellement infinipré&enter les hypotheses et les
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Figure 5: Un exemple de contrats et de propriété de fiabitéur chaque contrat, la
lettre V' représente I'ensemble des variables, la lettreeprésente les hypothéses et la
lettre G représente les garanties.

garanties avec des automates de Blchi, permettant de spdesipropriétés exprimables
dans des logiques comme LTL[108] ou PSL [60], permettraiv@ier si un systeme
satisfait une propriété de fiabilité en utilisant des teghas classiques, déja implémen-
tées dans des outils tels que SPIN [127] ou encore LIQUOR [RBLs montrerons de
plus que la satisfaction de propriétés de disponibilitét paeffectuer en étendant les
travaux présentés dans [53]. Pour finir, nous prouveronsoyiies les opérations définies
pour les contrats peuvent étre aisément effectuées suelgrsentations symboliques.

0.5 Abstraction Stochastique et Model-Checking d’un Sys-

teme Hétérogene de grande taille
Dans les chapitres précédents, nous nous sommes focalisés conception de systemes
et la vérification incrémentale. Dans le chapitre 5, noussnatéressons a la vérification

d’applications évoluant & I'intérieur d’un systeme héggnoe. Les systemes intégrant de mul-
tiples applications distribuées, communiquant au tragiens réseau commun, sont rencontrés
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frequemment dans de nombreux domaines sensibles telsayienique ou I'automobile. En
général, la vérification d’applications particuliéres slan tel cadre est une tache ardue et sou-
vent hors de portée des techniques de vérification exhaudéssiques. La principale difficulté
de cette vérification provient des communications réseapeunettent a toutes les applica-
tions d’'interagir entre elles, et impliquent donc une exgtion exhaustive de I'espace d’états
du systéme complet.

Dans ce chapitre, nous proposons une solution a base deationg| appelée model-
checking statistique [78, 122, 136]. Contrairement auxhoeés classiques de vérification ou
de tests exhaustifs, les méthodes a base de simulation nemtqras de résultat exact. Etant
basées sur un nombfimi de simulations, elles permettent d’évaluer une notion tijizdive
de satisfaction d’'une propriété donnée, tout en donnanbdases sur la précision et sur la
confiance que I'on peut avoir en le résultat. Malheureusénfeaille du systeme que nous
considérons est telle que méme ces méthodes basées sur bireriminde simulations ne sont
pas applicables. Il est en effet impossible, en un tempsmaable, de générer suffisamment
de simulations pour donner des estimations avec une padgsifisante.

Nous proposons donc d’exploiter les connaissances deailzste du systeme complet pour
augmenter I'efficacité de sa vérification. L'idée est simpiutdt que d’effectuer la vérification
sur le systeme complet, nous proposons d’analyser sépar@maque application dans un
environnement, appedbstraction stochastiquiu systéme, qui représente les interactions avec
les autres parties du systeme. Cet environnement est géméféectuant un nombre réduit de
simulations du systeme complet, sur lesquelles nous mesues caractéristiques ayant un
effet sur le comportement de I'application considérée dansut de les remplacer par une
distribution de probabilité.

Dans ce chapitre, nous appliquons cette méthode pour andé/systeme de communi-
cation hétérogenéHCS) déployé pour assurer la communication réseau dareblaed’un
avion de ligne. Une des propriétés critiques, que noussbitudier dans ce chapitre, concerne
la précision de la synchronisation des horloges des différeomposants. Cette propriété,
présente dans le cahier des charges du HCS, stipule qué&lieedde entre les horloges locales
de toute paire de périphériques doit étre inférieure a umeebfixée. Il semble donc impor-
tant de pouvoir générer la plus petite borne pour laquell@dpriété de synchronisation est
satisfaite. Vu la complexité du systéme, il est clairemeariassible d’obtenir manuellement
une telle borne. Nous proposons donc de construire un méméhel du HCS, puis de lui ap-
pliquer des algorithmes basés sur des simulations pourlealcette borne. La méthode est la
suivante : nous fixons une borne puis vérifions si la synckatiain est satisfaite. Selon le résul-
tat, nous diminuons ou augmentons la borne jusqu’a troavpluls petite borne pour laquelle
la synchronisation est satisfaite. Pour que notre apprsaiiéonctionnelle, nous devons nous
baser sur un outil qui soit capable de modéliser les syst@gtésogenes ainsi que de simuler
leurs exécutions et les interactions entre composants.s ldeons choisi d'utiliser BIP [15]
(Behaviour-Interaction-Priority; un outil permettant de construire des systemes a partir de
composants atomiques communiquant au travers d’interectiBIP offre aussi la possibilité
de simuler les systémes et permet, combiné avec des algesttie model-checking statistique,
de vérifier des propriétés complexes. Les contributionshdyitre sont les suivantes :

e Le développement, a I'aide de BIP, d’'un modéle complet du H@3equel nous pour-
rons étudier les exigences d’EADS quant a ce systéme. Celenestal’une taille impor-
tante : il comprend enviroB00 composants atomiquesits horloges, ce qui correspond
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Figure 6: Abstraction stochastique du protocole PTP entsefveur et un composant.

a2468 lignes de code en BIP, sdi018 lignes de code C générées automatiquement. Une
fois linéarisé, ce systeme comporte envigdti® états.

e L'application de la méthode d’abstraction stochastiguesentée ci-dessus au modele
BIP du HCS dans le but d’étudier avec précision la synchatiuis des horloges des
différents composants. Pour ce faire, nous avons simuléoldeta global et déduit, a
partir de ces simulations, des distributions de prob&iéprésentant les délais associés
a la transmission des messages du protocole de synchronjgatcision Time Protocol
(PTP) [2]. Ces distributions de probabilité permettentutiéer en détail I'exécution de
PTP entre le serveur central et les différents composamts,un. Le principe est illustré
dans la figure 6.

e La mesure, a partir du modéle réduit, de bornes précised guarsynchronisation des
horloges, pour chague composant du systeme. Nous avonsisiengkuré, pour dif-
férentes bornes, la probabilité avec laquelle la synckatinin est assurée. Les exigences
d’EADS quant a la synchronisation n’étant pas satisfages informations quantitatives
ont été appréciées. Dans ce sens, nous avons propose s'enfitrenations quantita-
tives : le nombre moyen, par exécution, d’erreurs de symibation. Finalement, nous
avons étudié I'influence de la dérive d’horloges sur la syoisation.
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Chapter 1

Introduction

Context

Several industrial sectors involving complex embeddetesys have recently experienced deep
changes in their organization, aerospace and automoting tiee most prominent examples.
In the past, they were organized around vertically integtatompanies, supporting in-house
design activities from specification to implementation.

Nowadays, systems are tremendously big and complex, asdliniost impossible for one
single team to have the complete control of the entire chhuhesign from the specification
to the implementation. In fact, complex systems now resolnfthe assembling of several
components. These many components are in general desigteahhs, workingndependently
but with a common agreement on what the interface of each oo should be. Such an
interface precises the behaviors expected from the cormp@sewell as the environment in
where it can be used. The main advantage is that it does nofsengny constraint on the way
the component is implemented:

Several components can be implemented by different teaemgjimfeers providing
that those teams respect the interfaces on which all of thgpeea

According to state of practice, interfaces are typicallgaibed using Word/Excel text
documents or modeling languages such as UML/XML. We insteadmmend relying most
possibly on mathematically sound formalisms, thus besiaed ambiguities. Mathematical
foundations that allow to reason at the abstract level @rfates, in order to infer properties
of the global implementation, and to design or to advisedijuse components is a very active
research area, known easmpositional reasoninfy7]. Aiming at practical applications fine
the software engineering point of view naturally leads tftillowing requirements for a good
theory of interfaces.

Remark 1.1. In the rest of the thesis, we will use the following equiveésn(depending on the
context): specification = interface; implementation = camnpnt.

1. It should be decidable whether an interface admits anemehtation (a model). This
means that one should be able to decide whether the requitestated by the interface
can be implemented. One should also be capable of synthgsiniimplementation for
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such an interface. In our theory, an implementation shédllbeoviewed as a program-
ming language but rather as a mathematical object thatseptg a set of programming
languages sharing common properties. The ability to degltether a given component
implements a given interface is of clear importance, ans mhist be performed with
efficient algorithms.

If one assumes that the specification is a mathematical septation of a
property that should be satisfied, then satisfaction coiesiwith the so-called
implementation verification principle.

. Itis important to be able to replace a component by anatherwithout modifying the
behaviors of the whole design. At the level of interfacess torresponds to the con-
cept ofRefinementRefinement allows replacing, in any context, an interfaca more
detailed version of it. Refinement should entail substiilitalof interface implementa-
tions, meaning that every implementation satisfying a esfiant also satisfies the larger
interface. For the sake of controlling design complexitys idesirable to be able to de-
cide whether there exists an interface that refines twordfffieinterfaces. This is called
shared refinemenin many situations, we are looking for tigeeatest lower bound.e.,
the shared refinement that could be refined by any other shefiedment.

. Large systems are concurrently developed for their idiffeaspectsor viewpointsby
different teams using different frameworks and tools. Epla® of such aspects include
the functional aspect and the safety aspect. Each of thpsetasequires specific frame-
works and tools for their analysis and design. Yet, they ateatally independent but
rather interact. The issue of dealing with multiple aspectsultiple viewpoints is thus
essential. This implies that several interfaces are agatiwith a given component,
namely (at least) one per viewpoint. These interfaces abe faterpreted in a conjunc-
tive way. This conjunction operation should satisfy thédwing property:

Given two view-points represented by two interfaces, apyamentation that
satisfies the conjunction must satisfy the two view-points.

. The interface theory should also provide a combinatioaragon, which reflects the
standard interaction/composition between systems. latipea one should be capable
of deciding whether there exists at least one environmewhiere two components can
work together, i.e., in where the composition makes sens@thr, but more difficult,
objective is to synthesize such an environment. Finalgycthmposition operation should
satisfy the following property:

Given two components satisfying two interfaces, the thearst ensure that
the composition of the two components satisfies the congosittheir cor-
responding interfaces.

. A verification procedureOne should be capable of verifying whether a system contbose

of several components satisfies a property, simply by inspgethe various components
and exploiting the compositional reasoning methodology.
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Building good interface theories has been the subject ehsive studies. Nowadays, re-
searchers concentrate on two models: iit¢rface automatgp4] and (2) modal specifica-
tions[100]. Interface automata is a game-based variation oftioptput automata which deals
with open systems, their refinement and composition, anslthetemphasis on interface com-
patibility. Modal specifications is a language theoreticamt of a fragment of the modal
mu-calculus logic [64] which admits a richer compositiogeddra with product, conjunction
and even residuation operators. Both models are now welbkstted and implemented in
tools[31, 102, 4, 57].

As soon as systems include randomized algorithms, prabtdprotocols, or interact with
physical environment, probabilistic models are requikedetason about them. This is exac-
erbated by requirements for fault tolerance, when systesed to be analyzed quantitatively
for the amount of failure they can tolerate, or for the deldyst may appear. As Henzinger
and Sifakis [77] point out, introducing probabilities intesign theories allows assessing de-
pendability of IT systems in the same manner as commonlytipegtin other engineering
disciplines. Lifting interface theory to stochastic syssewill be the core subject of this thesis.

Contributions

This thesis presents new contributions in designing andyirgg systems mixing both non-
deterministic and stochastic aspects. Our results canvisediinto three main contributions
that are described hereafter.

We start our study by trying to generalize interface theotiethe stochastic setting. Gen-
eralizing the notion of Modal Transition Systems [100] te tion-functional analysis of prob-
abilistic systems, the formalism of Interval Markov Cha{fidCs) was introduced by Larsen
and Jonsson [86] asspecificatiorformalism, so a basis for a stepwise-refinement like model-
ing method, where initial designs are very abstract and napéeified, and then they are made
continuously more precise, until they are concrete. Degpé&m being introduced with specifi-
cation in mind, IMCs have not been used for this purpose sitety. Instead more commonly
they served a dual purposeabstractionin model checking, where a concrete system is being
abstracted by a less precise system in order to prove thegiegpmore easily [43, 42, 61, 89].
Informally, IMCs extend Markov Chains by labeling transits withintervalsof allowed prob-
abilities rather than concrete probability values. Impdatations of IMCs are Markov Chains
(MCs) whose probabilistic distributions match the cornstsainduced by the intervals. This
definition of satisfaction is similar to the notion of simtiten for automata. IMCs is known
to be an efficient model on which refinement and compositionbeaperformed with efficient
algorithms from linear algebra. Unfortunately, as we shall see, the expressive power of
IMCs is inadequate to support both logical and structuredgosition.

H < 190 R H > 160

@/@H>160 C?) @H<190 W<90 H < 190

\ W > 60 H > 160

(3.1] @ W <90 @ W > 60 W <90 @ 2 2 W > 60
Figure 1.1: IMCs showing non-closure under conjunction

Consider two IMCs,S; andS,, in Figure 1.1 specifying different probability constresn
related to the height/ and weightil of a given person. Attempting to express the logical
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composition, also called conjunctiof; A S, as an IMC by a simple intersection of bounds
givesz < 3, ¢ <z < 3, <z and; < z;. However, this naive construction is too coarse:
whereas( 2, 2o, 23, 24) = (%, %, é, %) satisfies the constraints the resulting overall probagbilit
of reaching a state satisfying > 160, i.e. z;+2, = % violates the upper boun%ispecified in
S;. What is needed is the ability to express dependencies batthie probabilities, 2o, 23, 24
besides that of being a probability distribution ¢ 22+ 23+ 24 = 1). The correct conjunctive
combination is expressed by three following constraintsgeding the expressive power of
IMCs: z1+2, < 3, £ < z3+21, § < 2o+24. A similar example shows that IMCs are also not closed
under parallel composition. Despite this fact, IMCs areelydaccepted as a specification
theory for stochastic systems [61, 89]. It is thus of intetesurther study their properties and
limits.

In Chapter 2, we aim at advancing our knowledge of IMCs anitt tfse in a compositional
design methodology. In particular, we propose a polynomiatedure for checking whether
an IMC isconsisten{C), i.e. it admits an implementation as a Markov Chain. Vé® alon-
tribute an exponential procedure for checking wheth&vICs are consistent in the sense that
they share a Markov Chain satisfying all-eammon implementatiaiCl). We show that this
problem is EXPTIME-complete in general. As a special casebmgerve that Cl is polynomial
for any constant value @f. In particular checking whether two specifications can beutiane-
ously satisfied, and synthesizing their shared implemientagn be done in polynomial time.
In [86] athorough refinemenTR) between IMCs is defined as an inclusion of implementatio
sets, and a procedure is given that establishes TR. Here ove thiat this procedure can be
implemented in single exponential time, and having disedske lower bound, show that TR
is EXPTIME-complete. Finally, we define suitable notionsleterminism for IMCs, and show
that for deterministic IMCs thorough refinement coincidegwwo simulation-like preorders
(the weak refinemerdind strong refinement For these there exist natural co-inductive algo-
rithms terminating in a polynomial number of iterations.eftheory of MTS already supported
refinement, conjunction and parallel composition. Witlgicent years, the same questions have
been studied for MTSs, obtaining EXPTIME-completeness ot the corresponding notion
of Cl [10] and of TR [17]. In [86] it is shown that IMCs propergontain MTSs, which puts
our new results in a somewhat surprising light: in the coxipleheoretic sense, and as far as
Cl and TR are considered, the generalization from MTSs tosM@es come for free. Unfor-
tunately, as we already stated, IMCs are not expressivegénimucapture many requirements
of the compositional design methodology. This includeguwaction, parallel composition and
disjunction. As a consequence, it is necessary to enricmtiael of IMCs in order to obtain a
specification theory that will be closed under both conjiomcéind parallel composition.

In chapter 3, we propose a new specification formalism, bageah extension of IMCs.
Constraint Markov Chains permit rich constraints on pralggldistributions and thus gen-
eralize prior abstractions such as IMCs. We show that limeasstraints suffice for closure
under conjunction, while polynomial constraints sufficedmsure under parallel composition.
This is the first specification theory for MCs with such clasproperties. Like for IMCs, we
define suitable notions of determinism and show that, foerdenistic CMCs, thorough re-
finement also coincides with the weak and strong refinemémtsilly, we provide reductions
from probabilistic automata to CMCs, showing that our foliera is fully general. Despite this
generality, all operators and relations are computable.

Although CMCs are very general, their notion of satisfatii® based on the implementation
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verification principle [74, 105]. However, it is sometimescessary to describe properties
by logical formulas. This requires a new definition of sattsion relation. As an example
consider availability, that represents a measure of the tinring which a system satisfies a
given property. This notion may play an important role whesigning critical systems, but
cannot be expressed using CMCs. This motivates the develupaod another specification
theory with a richer satisfaction relation.

Our third contribution, presented in Chapter 4, extendsnibtéon of assume-guarantee con-
tracts introduced in [21]. The assume-guarantee paradigmfinst proposed by Abadi and
Lamport in [3] as a specification formalism. The advantagassime-guarantee contracts, as
presented in [21], is that they are more general than thsickEsotion of interface automata.
In Chapter 4, we develop a contract-based compositionalyhfer both non-stochastic and
stochastic systems. In this formalism, we propose two qiaine notions of satisfaction,
namely reliability and availability. Moreover, we propas@thematical definitions for compo-
sition, conjunction and refinement. We then establisfompositional reasoning verification
theory for those operations and the two notions of satidiplte consider. This methodology
allows to reason on the entire design by only looking at iithligl components. The theory
differs with the type of contracts under consideration. Asgample, we will show that if a
systems; satisfies a probabilistic contra€t; with probability o and a systend, satisfies a
probabilistic contract’s with probability 3, then their composition satisfies the composition of
C; andCs with probability at leastr + g — 1. The theory is fully general as it assumes that
both systems and contracts are represented by sets of runadly,Fve propose effective and
symbolic representations for contracts and systems. Tiepsesentations rely on an automata-
based representation of possibly infinite sets of runs. Wgsy that assumptions and guaran-
tees are represented with Blichi automata (which allowseoigpassumptions and guarantees
with logics such as LTL[108] or PSL [60]), we observe thatdalirg if a (stochastic) system
satisfies a reliability property can be done with classieehhiques implemented in tools such
as SPIN[127] or LIQUOR [35]. We show that satisfaction of ikalzlity properties can be
checked with an extension of the work presented in [53]. Ikinae also show that operations
between and on contracts can easily be performed on the atddmsed representations.

The above contributions focus on system design and, dgytial incremental design and veri-
fication. It is however sometimes required to verify subsyst within a huge architecture. The
difficulty is to conduct this verification without consideg the full state-space.

In Chapter 5, we begin the study of this problem through areewpent. We consider an in-
dustrial case study that is tieterogeneous communication sys(gt€S for short) deployed
for cabin communication in a civil airplane. See Figure h2d topological view of the cor-
responding system architecture. HCS is an heterogenestensyroviding entertainment ser-
vices (ex: audio/video on passengers demand) as well asetirative safety critical services
(ex: cabin illumination, control, audio announcementd)jol are implemented as distributed
applications running in parallel, across various devicéhiwthe plane and communicating
through a common Ethernet-based network, see Figure lahfdlustration. The HCS system
has to guarantee stringent requirements, such as reliatadg¢rdnsmission, fault tolerance, tim-
ing and synchronization constraints. An important requiat that we address is thecuracy
of clock synchronizatiohetween any two devices.
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Figure 1.2: HCS example model. NACs perform scheduling efdfiferent messages ex-
changed by the server and the devices shown as the many boes diagram.

A first solution would have been to explore the entire staies of the overall system and
verify the property on each pair of devices (as an exampleyden Server and Devid®, 3)
given in Figure 1.2). Unfortunately, this approach is intedle due to the high complexity of
the design. Our second idea was to apply statistical moaslkihg. Unfortunately, due to the
complexity of the design, computing simulation was too toonasuming and the algorithm did
not terminate in a reasonable time. To give the reader aitirgidea about this complexity, we
mention that the system is constituted of more th&hcomponents working in collaboration
and exchanging information. This complex architectureegisise to a flat system with more
than23°% states.

The solution we promoted was to buildstochastic abstractionf the environment where
the two components are working, i.e., an abstraction of gf@biors of the other components
and their interactions with the master and the chosen detoedoing so, we first identified
the interactions between the two devices and their enviesrim\We then characterized these
interactions by introducing probability distributions thre behaviors of the components. Those
distributions, which replace the environment (and heneedtner components) were learnt
by conducting simulations on the entire system. The resealbbtain is a smaller stochastic
system on which techniques such as statistical model ahgadn be applied in an efficient
manner (there the algorithm terminates in less than a minBieapplying this methodology,
we have been capable of deriving bounds on the synchrooiizatid showing that the original
requirements made by EADS were simply falsified by their giesin addition to improving
the efficiency, the use of statistical model checking alsdenapossible to verify properties
that could not be formalized with classical temporal logesample: clock drift and jitter).

In [14], we have successfully applied the stochastic abstia concept to verify proper-
ties of anAvionics Full Duplex Switched Ethernet (AFDN) heterogeneous system, a key
technology in the computer system of A380/A350 aircraftse Tesults we obtained are more
accurate than those of [32, 33, 118], which were obtaineddoygutimed model checking [5]
or network calculus [47]. We will give a brief overview of ghivork in the thesis.



Chapter 2

Interval Markov Chains

2.1 Introduction

Interval Markov Chains (IMCs for short) were first introdddey Larsen and Jonsson in [86]
as a specification formalism for probabilistic systems. lesv, they have mainly been used
as a basis for stepwise-refinement, for example in modedkecheg [43, 42, 61, 89].

Indeed, IMCs are difficult to use for compositional spectfmadue to lack of basic mod-
eling operators. In [86] Jonsson and Larsen have investigatfinement of such processes in
detail, but have left out the compositional aspects unerplas well as the complexity aspects.

Consider the issue of combining multiple specificationhefsgame system. As we already
observed, it turns out that conjunction of IMCs cannot beresged as an IMC itself. This is
caused by relative lack of expressiveness of intervalsirfst&ance, consider a simple specifica-
tion of a user of coffee machine. Let the model prescribedlttgpical user orders coffee with
milk with probability z € [0, 0.5] and black coffee with probability € [0.2,0.7] (customers
also buy tea with probability € [0,0.5]). Now the vendor of the machine delivers another
specification, which prescribes that the machine is seabieconly if coffee (white or black)
is ordered with some probability € [0.4, 0.8] from among other beverages, otherwise it will
run out of coffee powder too frequently, or the powder becono® old. A conjunction of
these two models would describe users who have use patmsatible with this particular
machine. Such a conjunction effectively requires thattadl interval constraints are satisfied
and that: = =+ y holds. However the solution of this constraint is not ddsetiby an interval
overx andy. This can be seen by pointing out an extrememal point, wisatot a solution,
while all its coordinates take part in some solution. $ay 0 andy = 0.2 violates the interval
for z, while for each of these two values it is possible to seleottz@r one in such a way that
z's constraint is also held (for example = 0,y = 0.4) and(z = 0.2,y = 0.2)). Thus the
solution space is not an interval overandy. It is worth mentioning that IMCs are also not
closed under parallel composition, but this problem wilHgeessed in the next chapter.

This lack of closure properties for IMCs motivates us to addrthe problem of reasoning
about conjunction, without constructing it — the so-caléeinmon implementation problem:
Given a set of IMCsS, does there exist a Markov Chain satisfying all the IMCsSir? In
other words, is the conjunction of all the IMCs tsatisfiable ? In this chapter we aim at
advancing our understanding of algorithms and complexfoe consistency, common imple-
mentation, and refinement of IMCs, in order to enable contjposil modeling. In particular,
we contribute:



A polynomial procedure for checking whether an IMCGa@nsisten{C), i.e. it admits an
implementation as a Markov Chain.

e An exponential procedure for checking whetthdMCs are consistent in the sense that
they share a Markov Chain satisfying all-eemmon implementatiqi€l). We show that
this problem is EXPTIME-complete.

e As aspecial case we observe that Cl is polynomial for anytanhsalue ofc. In particu-
lar checking whether two specifications can be simultangsasisfied, and synthesizing
their shared implementation can be done in polynomial time.

e In[86] athorough refinemen(R) between IMCs is defined as an inclusion of implemen-
tation sets, and a procedure is given that establishes TR weshow that this procedure
can be implemented in single exponential time, and haviegusised the lower bound,
show that TR is EXPTIME-complete.

e We define suitable notions of determinism for IMCs, and shioat for deterministic
IMCs thorough refinement coincides with two simulatioreligreorders (theveak re-
finementand strong refinement For these there exist natural co-inductive algorithms
terminating in a polynomial number of iterations.

The theory of Modal Transition Systems (MTS), was introdlbg Larsen in [100] as a
specification formalism for discrete-time non-probahitisystems. It supports refinement,
conjunction and parallel composition. Within recent ye#lie same questions have been stud-
ied for MTSs, obtaining EXPTIME-completeness both for toeresponding notion of ClI [10]
and of TR [17]. In [86] it is shown that IMCs properly containT8s, which puts our new
results in a somewhat surprising light: in the complexitydtetic sense, and as far as Cl and
TR are considered, the generalization from MTSs to IMCs doese for free.

The chapter proceeds as follows. In Section 2.2 we introthuedasic known definitions.
In Section 2.3 we discuss deciding TR and other refinementepiures, expanding on the
ramifications of determinism on refinements in Section 2.4e Problems of C and CI are
addressed in Section 2.5. We close with discussing thetsesudl a conclusion (Section 2.6).

2.2 Background

In this section, we introduce the basic definitions usedugihout the chapter. In the following
we will write Intervalsy, ;; for the set of all closed, half-open and open intervals idetlin
[0, 1].

We begin with settling notation for Markov Chains. A Markoh&n (sometimes MC
in short) is a tupleC' = (P,p,, 7, A, V), where P is a set of states containing the initial
statep,, A is a set of atomic proposition¥, : P — 24 is a state valuation labeling states
with propositions, andr : P — Distr(P) is a probability distribution assignment such that
> pepm(p)(p) = 1forallp € P. If the states of” are ordered, i.eP = {pi,...,p,}, then
7 can be seen as a matrix iy 1]"*™ such that the celt;; represents the probability of going
from statep,, to statep,. The probability distribution assignment is the only comeuot that is
relaxed in IMCs:



0 07 02 0.1
0 1 0 0
0 0 1 0
0 0 0 1

(a) A Markov ChainC (b) The transition matrix of (c)AnIMC I
the Markov ChairCC

Figure 2.1: Examples of Markov Chains and Interval Markoai@h.

Definition 2.1 (Interval Markov Chain) An Interval Markov Chairis a tuplel = (Q, ¢,, ¢, A,
V1), where( is a finite set of states containing the initial state A is a set of atomic propo-
sitions,V; : Q — 2% is a state valuation, ang: Q — (Q — Intervalsy ), which for each
g € @ andq € @ gives an interval of probabilities.

Instead of a distribution, as in MCs, in IMCs we have a funttioapping elementary
events (target states) to intervals of probabilities. Werpret this function as a constraint
over distributions. This is expressed in our notation albfed. Given a statg € Q and a
distributiono € Distr((Q), we say that € ¢(q) iff o(¢') € ¢(¢)(¢) forall ¢ € Q. If the
states of() are ordered, i.e)Q = {q1,-..,qn}, a distributions € Distr(Q)) can be seen as a
vector in|0, 1]™ such that the cely;, represents the probability of going to state We will
say that the vectar € [0, 1]™ is in ¢(q) iff it defines a distribution, and this distribution is in
©(q). Occasionally it is convenient to think about a Markov Chaof an IMC, whose alll
probability intervals are closed point intervals.

We visualize IMCs as automata with intervals on transitios an example consider the
IMC in Figure 2.1c. It has two outgoing transitions from tinéial stateA. No arc is drawn
between two states if the probability is zero (or more pedgithe interval i90, 0]). So in the
example there is zero probability of going from statéo A, or from B to C, etc. Otherwise
the probability distribution over successorsAis constrained to fall intg0.7, 1] and|0, 0.3]
for B andC respectively. StateB andC' have valuatior, whereas statd has valuationy, .
Also observe that Figure 2.1a presents a Markov Chain usieagéame convention, modulo
the intervals. The corresponding transition matrix is giwe Figure2.1b. Remark that our
formalism does not allow “sink states”, i.e. states with mgoing transition. However, in
order to avoid clutter in the figures, we sometimes represtatds with no outgoing transitions.
They must be interpreted as states with a self-loop of pridibal.

A satisfaction relatiorestablishes compatibility of Markov Chains (implemeras) and
IMCs (specifications). The original definition, reporteddve has been presented in [86, 87].

Definition 2.2 ((Direct) Satisfaction Relation)Let C' = (P, p,, m, A, V) be a MC and let
I =(Q,q, ¢, A, Vi) be an IMC. A relationR C P x (@ is called a satisfaction relation if
whenevep R g then

e their valuation sets agre&(p) = V(¢) and
e there exists a probability distributioh € Distr(P x @) such that
1. > yedW.q) =n(p)(p') forall p’ € P,

9



(a) lllustration of a satisfaction relation be-
tween a MCC' and an IMCI using a di-
rect redistribution of the probability mass
(Def 2.2).

(b) lllustration of a satisfaction relation between a MGnd an IMCI
using a correspondence matrix (Def 2.3).

Figure 2.2: lllustration of satisfaction relations usinigedt and indirect redistribution of the
probability mass.

2.3 epd(p.d) € p(g)(q) forall ¢ € Q, and
3. ifo(p',q") > 0,thenp’ R¢'.
In our work, we use a slightly modified, but strictly equivaléefinition using a concept of
correspondence matrixThis notion of satisfaction is more intuitively linked tioet notions of
weak and strong refinement that will be presented later sixg&ction. This definition requires

that both the states of the MC and the states of the IMC areedldé-igure 2.2 compares the
two definitions using an example side by side.

Definition 2.3 (Satisfaction) LetC' = (P, p,, m, A, V) be a MC withP = {py,...,p,} and
let I = (Q, g, v, A, V;) be an IMC withQ = {q1,...,qn}- ArelationR C P x @ is called a
satisfaction relation if whenever. R ¢, then

e valuations ofp; andq, agree: Vg (p;) = Vi(q,) and
e there exists a correspondence mattixc [0, 1]**™ such that

1. forallp; € P such thatr; ; > 0, the rowA; defines a distribution o,
2. the vectorr; x Aisinp(q,), and
3. ifA; 5 > 0, thenp; R gs.
In the above definitiony; x A represents the classical matrix product between the vector

m; € [0,1]" and the matriXA € [0, 1]"*™. Formally,c = m; x A is a vector in0, 1™ such that
Os = E}Lo mj-Ajforalll <s <m.

10



We writeC' |= [ iff there exists a satisfaction relation containifag, ¢,). In this case(' is
animplementatiorof 7. The set of implementations éfis written[/]. Figure 2.2b presents an
example of satisfaction between statend A. The correspondence matrix is visualized using
labels on the dashed arrows i.e. the probability mass goorg &tatel to 3 is distributed to
stateB andC' with half going to each.

We will say that a state of an IMC isconsistentif its interval constrainiy(q) is satisfiable,
i.e. there exists a distributiom € Distr(Q) satisfyingy(q), Soo € ¢(q). Obviously, for a
given IMC, it is sufficient that all its states are consistenbrder to guarantee that the IMC
is consistent itself—there exists a Markov Chain satigfyitn We discuss the problem of
establishing consistency in a sound and complete mannetiio® 2.5.

There are three known ways of defining refinement for IMCs fiderature: the strong re-
finement (introduced asimulationin [86]), weak refinement (introduced under the name of
probabilistic simulationn [61]), and thorough refinement (introducedrainemenin [86]).

We will recall their formal definitions:

Definition 2.4 (Strong Refinement)Let I, = (Q, q,, 1, A, V1) and I, = (S, s,, 2, A, V3) be
two IMCs such tha) = {q¢i,...,¢,} andS = {s1,..., s, }. ArelationR C @ x S is called
a strong refinement relatiahwhenever; R s,, we have that

e their valuation sets agred?;(¢;) = Va(s,) and

e there exists a correspondence mattixe [0, 1]"*™ such that for any vectar < [0, 1]",
if o € p1(q:), then

1. for eachy; € @ suchthatr; > 0, the rowA; defines a distribution o,
2. we haver x A € ¢y(s,), and
3. forallg; € @ ands, € S, if A;;, > 0, theng; R s;.

We say that; strongly refineds,, written I; <s I, iff there exists a strong refinement relation
containing(qo, So)-

Intuitively the strong refinement between stateg,and states of, requires the existence
of a single correspondence, which witnesses satisfaaioarfy resolution of probability con-
straint over successorsin Figure 2.3aillustrates such a correspondence betwetes dtand
« of two IMCs. The non-zero coefficients of the correspondanagix are given by labels on
the dashed lines. Itis easy to see that regardless of howabalpility constraints are resolved
the correspondence matrix distributes the probabilitysmas fashion satisfying,.

Contrasting with strong refinement, the weak refinement etvstates af; and/, requires
that for any resolution of probability constraint over sessors in/; there exists a correspon-
dence, which witnesses satisfactionaf Thus the weak refinement achieves the weakening by
swapping the order of quantifications. Figure 2.3b illussasuch a correspondence between
statesA and« of another two IMCs. Here stands for a value if0.2, 1] (arbitrary choice of
probability of going to stat€’). Notably, for each choice af there exist € [0, 1] such that
p-x €[0,0.6]and(1 —p) -z € [0.2,0.4].

Definition 2.5 (Weak Refinement)Let Iy = (Q,q,p1,A, V1) and I, =
(S, So, 2, A, Vo) be two IMCs such thaf) = {q,...,q¢,} andS = {sy,...,s,}. A rela-
tion R C ) x S is called aweak refinement relatioiiwhenever; R s,, we have that

11



(a) lllustration of a strong refinement (b) HNlustration of a weak refinement re-
relation between an IMCI; and an lation between an IMQ3 and an IMC
IMC 1. I2; p is a parameter.

Figure 2.3: lllustration of strong and weak refinement refs.

e their valuation sets agred?;(¢;) = Va(s,) and

e for eacho € [0, 1] such thato € ¢;(¢;), there exists a correspondence matiix e
0, 1]™*™ such that

1. for eachy; € @ suchthatr; > 0, the rowA; defines a distribution o,
2. we haver x A € ps(s,), and
3. forallg; € Qands, € S,if Aj, > 0, theng; R s,.

We say thatl; weakly refined,, written I; <\ I, iff there exists a weak refinement relation
containing(qo, S,)-

Finally, we introduce the thorough refinement as defined &j: [8

Definition 2.6 (Thorough Refinement)MC I; thoroughly refinesMC I, written I; <1 I>,
iff each implementation of, implementds: [1;] C [I5]

Thorough refinement is a semantic notion of refinement: an IMthoroughly refines an
IMC I, iff all the implementations of; are implementations af. In this way, it is the finest
possible notion of refinement.

2.3 Refinement Relations

As said in the previous section, thorough refinement is theate refinement relation for any
specification formalism. In our formalism, both strong anebw refinements soundly approx-
imate the thorough refinement. Indeed, since they are tramsind degrade to satisfaction
if the left argument is a Markov Chain, whenever strong orkwedinement holds, thorough
refinement also holds. However, the converse does not hatiled proofs of these facts are
given in a more general setting in the next chapter. We wilf discuss procedures to compute
weak and strong refinements, and then compare the gragwéthese relations, which will
lead us to procedures for computing thorough refinement.

12



2.3.1 Weak and Strong Refinement

Consider two IMCdl; = <P, Po, P1, A, ‘/1> andlg = <Q, qo, P2, A, ‘/2> with P = {po, S ,pn}
and@ = {qo, - - -, gm }. Informally, checking whether a given relatiGghC P x () is a weak re-
finement relation reduces to checking, for each paiy) € R, whether the following formula
is true: vV € ¢1(p), 3A € [0,1]™™ such thatr x A satisfies a system of linear equations /
inequations. Since the set of vector distributions satigfy; (p) is convex, checking such a
system is exponential in the number of variables, h&fe |@Q|. As a consequence, checking
whether a relation oP x @ is a weak refinement relation is exponential| #y - |Q|. For
strong refinement relations, the only difference appeatkarformula that must be checked:
JA € [0, 1]™™ such that/m € ¢,(p), we have that x A satisfies a system of linear equations
/ inequations. Therefore, checking whether a relatioPox () is a strong refinement relation
is also exponential ihP| - |Q|.

Finally, deciding whether weak (strong) refinement holdsveen/; and/, can be done in
the usual coinductive fashion by considering the totaki@al x () and successively removing
all the pairs that do not satisfy the above formulae. The eefient holds iff the relation we
reach contains the paipo, ¢o). The algorithm will terminate after at mos®| - |Q)| iterations.
This gives an upper bound on the complexity to check stromgvegak refinements. To the
best of our knowledge, the lower bound remains unknown.

2.3.2 Granularity

In [86] an informal statement is made, that the strong referars strictly stronger (finer) than
the thorough refinement<y) 2 (<s). In [61] the weak refinement is introduced, but with-
out discussing its relations to neither strong nor thororggimement. The following theorem
resolves all open issues in relations between the three:

Theorem 2.1. Thorough refinement is strictly weaker than weak refinemehitch is strictly
weaker than strong refinement<t) 2 (Sw) 2 (<s).

Proof. The first inequality is shown by exhibiting IMQs and/; such that/, thoroughly, but
not weakly refineds: they are given in Figure 2.4.

Let M be an implementation of; andR a corresponding satisfaction relation. L2te
the set of states af/ implementingB. Each state € P either satisfies);, 5, or both. Call
P, the set of statep € P such thap satisfiess; and P, the set of states € P such thatp
satisfies3, and not3;. We build a satisfaction relatioR’ such that, for aly € M, if gR A
theng R’ «; if ¢ € Pi, thengR' 31; if ¢ € P, thengR' 35; if ¢ RC, thengR' 6; andq R’ dy;
and if¢gR D thengR' v, andq R’ ~». By constructionR’ is a satisfaction relation, anty is
an implementation of;. Thus,[1,] C [I5].

However, it is impossible to define a weak refinement reldtietveen’, and/; : obviously,
B can neither refing; nor 3,: Let o be a vector distribution admitted 8 giving probability
1 to stateC'. Because of the intervéd, 0.5] on the transition fronw, to ¢;, at leas.5 must be
assigned to, butC' and~; can not be related. A similar argument shows thatan not refine
Pa.

The second inequality is shown by demonstrating two otheC$M; and 5 such that/s
weakly but not strongly refinek: they are given in Figure 2.3b.

13



(a) IMC I, (b) IMC I;

Figure 2.4: IMCsl, and/; such that/, thoroughly but not weakly refine

e StateA weakly refines state: Given a valuer for the transitionA — C, we can split

it in order to match both transitions 2% 5, anda ~—""% §,. DefineA [0,1]3% as
follows :

0 00 0
A = 010 0
00 p (1-p)
with
0 if02<z<04

03 jf04 <2 <08
0.6 if08<u

p:

A is a correspondence matrix witnessing a weak refinemerniaelaetweend anda.

e However, one cannot find a coefficignthat would work for allz. It is thus impossible
to build a strong refinement relation betwelgrand /5.

O

2.3.3 Deciding Thorough Refinement

As weak and strong refinements are strictly stronger thamtigh refinement, it is interesting
to investigate complexity of deciding TR. In [86] a procegl@omputing TR is given, albeit
without a complexity discussion. We close the problem of plaxity class of TR as follows:

Theorem 2.2. The decision problem TR of establishing whether theresaiiorough refine-
ment between two given IMCs is EXPTIME-complete.

The upper-bound is shown by observing that the algorithragaried in [86] runs in single

exponential time. For the sake of completeness, and in dadelarify several typesetting
inaccuracies of the original presentation, we report balmventire construction due to [86].
Then we analyze its complexity.

Definition 2.7 (Subset simulation)Let I; = (P, po, 1, A, V1) and I, = (@, qo, p2, A, V3) be
IMCs with P = {py,...,p,} andQ = {qo, . .., @ }. LEt29 = {T, ..., Tom }. Atotal relation
R C P x 2% is asubset-simulatioiff for each state € P:
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1. pRT impliesVi(p) = Vi(t) forall ¢t € T and

2. for each vector distribution € ¢, (p) and each correspondence mati € [0, 1]"*2"
such thatsupport(A!) C R, there exists a sef such thatp R 7" and for eacht € T,
there exists a vector distributione ¢,(t) and a correspondence mati¥? € [0, 1]™*2"
such that

(a) if A2, > 0 theng, € T, and
(b) we haver x Al = p x A2,

Intuitively, this relation associates to every statef /; a sample of sets of statég; , . ..,
T;,) of I, that are “compatible” withp. Then, for each admissible redistributidt of the
successor states pf it states that there exists one of the sEtsuch that for each of its states
t', there is a redistribution\? of the successor states#that is compatible with\!. In [86] it
is shown that the existence of a subset-simulation betweemMCs [; and/, is equivalent to
thorough refinement between them.

Example. Consider the IMCd, = ({A, B,C, D}, A, p4,{a,b,c,d}, Vy) andIs = ({«a, (1, Ba,
91,02, 71,72}, @, s, {a, b, ¢, d}, V) given in Figure 2.4. They are such thitthoroughly but
not weakly refineds (c.f. proof of Theorem 2.1). Since thorough refinement holescan
exhibit a subset simulatioR C P x 2% betweenl, and I5: Let R = {(A, {a}), (B, {51}),
(B, {B2}), (C,{61,62}), (D, {m,72})}. We illustrate the unfolding dR for statesA and B of
1. The rest is left to the reader.

Consider stated of 1,.

1. We haved R{a}, andV,(A) = a = V;(a).

2. The only distributionr € @4(A) is such thatr(B) = 1. Let for exampleA! € [0, 1]
be the correspondance matrix such tlntagb{ﬁl_} :_1/2 and A}B,{QQ} = 1/2. Let{a} be
the set such thatl R{«a}. Let g be the distribution or) such thato(5;) = o(5:) =
1/2. oisindeed inp;(a). LetA? € [0,1]™**" be the correspondance matrix such that
A% 5y = landAj = 1. Itis then obvious that

B2,{B2}
(a) foralltandT, if A7 > 0, thent € T', and
(b) m x A = o x A? holds.

Consider state3 of I,.
1. We haveB R{(,} and B R{/3,}. It holds thatV,(B) = b = V5(51) = V5(52).

2. Consider a distributiomr € ,(B) (for example such that(C) < 1/2). LetA! be an
admissible correspondance matrix. We must haye; ;, = LandApL . . = L.
Consider{ 3, } the set such thaB R{ 5, } (if 7(C) > 1/2 then pick up{3.} instead). Let
o be the distribution such thai(s,) = #(C) and o(y,) = 7(D). Sincer(C) < 1/2,
we haveo € ¢5(f1). Let A? be a correspondance matrix such thsf 5 5, = 1and

) B i .
A%{%w} = 1. It is obvious that

(a) foralltandT,if A7, > 0, thent € T', and
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(a) AMTS M (b) The IMC M

Figure 2.5: An example of the translation from Modal TrainsitSystems to IMCs

(b) ™ x A = o x A? holds.
The rest of the unfolding is obvious, aRdis thus a subset simulation.

Given two IMCs I, andI,, the existence of such a subset simulation betwigesnd I
is decidable, using a standard calculation. The algorittorkgvas follows: first consider the
total relation and check whether it is a subset-simulafidren refine it, by removing violating
pairs of states, and check again until a fixpoint is reachedeGomes a subset-simulation or
it is empty). Checking whether a given relation is a subsetfation has a single exponential
complexity. Checking the second condition in the definittam be done in single exponential
time by solving polynomial constraints with fixed quanti§iéor each paitp, 7') in the relation.
There are at mosP| - 29! such pairs, which gives a single exponential time boundfercost
of one iteration of the fixpoint loop. There are at m@3t - 2/°! elements in the total relation
and at least one is removed in an iteration, which givgs| - 2/%!) as the bound on the number
of iterations. Since a polynomial of two exponentials, il atsingle exponential, we obtain a
single exponential time for running time of this computatio

Interestingly this tells us that all three refinements aleX®PTIME. Still, weak refinement
seems easier to check than thorough. For TR the number afides on the state-space of the
relation is exponential while it is only quadratic for theakerefinement. Also, the formula to
check at each step of the procedure involves a single quarditiernation for the weak, and
three alternations for the thorough refinement.

The lower bound of Theorem 2.2 is shown by a polynomial redonabf the thorough refine-
ment problem for modal transition systems to TR of IMCs. Tpadblem is known to be
EXPTIME-complete [17].

First recall the following definitions of Modal TransitioryS&ems and their implementa-
tions.

Definition 2.8 (Modal Transition System)A modal transition system (an MTS in short) [100]
is atupleM = (S,sg, A,—,--»), whereS is the set of states;, is the initial state, and
— C S x A x S are the transitions thanustbe taken and-» C S x A x S are the transitions
thatmaybe taken. In addition, it is assumed thatC--».

An implementation of an MTS is a labelled transition system, an MTS wheré—) =
(--»). We say that an MTS is deadlock-free if and only if each of itdes has at least one
outgoing must transition.

Consider now the following definition for refinement of MTS.
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Definition 2.9 (Refinement for MTS) A modal transition system/ = (.5, sy, A, —, --+) re-
fines another modal transition syste¥n= (7', t,, A, —, --+) iff there exists a refinement rela-
tion R C S x T containing(sy, to) such thatif(s,¢) € R then

1. whenever % t' then there exists’ € S such thats % s and(s',t') € R

2. wheneves -2» ¢ then there exist§ € 7 such that -=» ¢ and(s',#') € R

A labelled transition systemmplements MTS if it refines it in the above sense. Thorough
refinement of MTSs is defined as inclusion of implementatais,sanalogously to IMCs.

We describe here a translation of MTSs into IMCs which presemmplementations. By def-
inition, Markov chains do not allow deadlock-states. Thassistent IMCs must not allow
deadlock-states either. As a consequence, in order to bererth we assume that we only
work with modal transition systems that have no deadloakest This is a safe assumption: it
is easy to transform two arbitrary MTSs into deadlock-freey without affecting the thorough
refinement between them. We present a transformation tked tny two MTS and transforms
them into MTSs without deadlocks preserving the notion ofdligh refinement between them.
Let M = (S, s9, A, —,--+) be a MTS. Letl. ¢ A be a new action variable, aRdZ S be
a new state variable. Define a new MT8, = (S U {q},s0, AU{L},—.,--»,) as follows:
forall s,s € Sanda € 4, s 5, s <= s = s ands 8 = s -% 4. 1In

addition, consider the following transitions: for alle S U {¢}, s 5, g ands _%n q. In
this way, every state af/, has at least one must outgoing transition. Moreover, itugatrthat
this transformation preserves the notion of thorough refe. This is stated in the following
lemma:

Lemma 2.3. Let M and M’ be two MTS. IfL is in neither of their sets of actions, we have
[M] € [M] <= [M.] € [M]]
We now describe the polynomial translation of MTSs withoeiddlock states into IMCs

which preserves implementations. The IMT corresponding to a MTS/ = (S, sg, A,
—, --+) is defined by the tuplé/ = (Q, qo, AU {€}, p, V), with e ¢ A, and where

e Q=5x%x({eJUA),

® o = (5076).

forall (s,z) € Q,V((s,z)) ={z}, and

v is defined as follows: for all, s € S andb, a € ({e} U A),

= o((t:0))((s,a)) =]0, 1] if t = 5,

— @((t,0))((s,a)) = [0,0] if t /7> 5, and
— ¢((t,0))((s,a)) = [0, 1] otherwise.
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Remark that since ¢ A, the only state that is associated to the valuatids the initial
state.

The encoding is illustrated in Figure 2.5, where unreaahatates are omitted.

We first state two lemmas that will be needed in order to prbeenhain theorem of the
section: the encoding presented above reduces the prolilenecking thorough refinement
on modal transition systems to checking thorough refineroemiCs.

Lemma 2.4. Let M = (S, sg, A, —,--») be an MTS and = (S}, s}, A, —) be a transition
system. We have

I=M=[I] C[M]

Proof. We first recall the definition of a satisfaction relation fof8: Let M = (.S, s, A, —
,--+) be an MTS and = (S}, s}, A, —) be a transition systeml = M iff there exists a
relationR C S; x S such that

1. S(I]RSO
2. Wheneves; R s, we have

(@) Foralla € A, s, € Sy, s; — s, in I implies that there exists € S such that
s -2» s'in M ands} R s'.

(b) Foralla € A, s € S, s % s’ in M implies that there exists, € S; such that
s; — s in M ands, R s'.

Such a relation is called a satisfaction relation for MTS.

Let M = (S, sg, A, —,--») be an MTS and = (S}, s{, A, —) be a transition system. Let
M = (Q,q0, AU {e}, 0, V) and] = (Q;,ql, AU {e}, ¢, V;) be the IMCs defined using the
above transformation. L&? = {qo,...q¢,} andQ; = {¢}, ... ¢!, }.

Suppose that = M. There exists a satisfaction relation for MTSC S; x S such that
s) R so. We prove thafl] C [M].

Let T = (Qr,qL, 77, A, V) be an MC such tha®y = {¢Z.....¢"} andT € [I]. As a
consequence, there exists a satisfaction relation for IRCS Qr x Q; such thay! R, ¢} =
(s}, €). Define the new relatioR, C Qr x @ such thay” R, ¢ = (s, x) iff there existss; € S;
such thaty” R, ¢' with ¢’ = (s;, ) ands; R s. We prove thaiR, is a satisfaction relation for
IMCs betweeri” and M.

Letq! €,Q7,q¢ = (s,7) € Q andq¢’ = (s;,z) € QF such thay’ R, ¢’ ands; R s, i.e.
q" R2q. We have

1. Sinceq" R1 ¢! = (s;,2), we haveVr(¢h) = Vi((s;,x)) = {z}. ThusVi(¢?) =
V((s,2)) = {x}.

2. Let Al[0, 1]**™ be the correspondence matrix witnessidgR (s, z), and letA? e
[0, 1]** such that for all;] € Q7 andg, € Q with ¢, = (5", y), if {s] € S; | s} R s'} #
f ands -2+ ¢, then define

Ail - Z

1
AJ7T .
Yy Y
1 / 1 iz
{al=(s}»)eQT | sy R s} {s" € 5|s;Rs"ands -=» s"}|
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Else,A%, = 0.

Recap that we suppose that all must transitions are also raagitions. The definition
above potentially gives a non-zero valueﬁtél, with ¢, = (¢, y), if there exists a may
(or must) transition frons to 5" in .S labelled withy and if there exists a staté in I such
thats), R s'. Since there may be several statésuch thats -2» s, the termA} . may
appear in the definition of several coefficiezﬁ%l. Thus the fraction in the definition of
A
Letq] € Qr. We provetha}_;" j A%, = 1: By definition of A", we have) " (Al = 1.

n 2 AL
Zl:O AjJ - Z{ql (s'5y) | 3s, s R s ands——»s’} Z{Qr (sTu) | sTRs"} |{s"€S | SIRS”aI"IdS——-)S”H

Clearly, for allg) = (s7,y) such thatA}, > 0, the term‘{snes v i;ands_gﬂ”}l will
appear exactly{s” € S | s, Rs" ands -2» s"}| times in the expression above. As a
consequence, ", A7, = > (Al = 1. Finally, the rowA? defines a distribution on
Q.

Moreover, we prove that the distribution vectgrx A% isin¢((s, x)). Letq = (s',y) €

Q. By constructionyp((s, z)(s',y)) is either{0}, [0, 1] or]0, 1]. We will thus prove that
(a) if Zf o7 (7)A3, > 0, thenp((s, z)(s', y)) # {0}; and (b) ifp((s, 2)(s",y)) =0, 1],
then> % #7(; )AQl > 0.

=0T

(a) Supposgj _o 7 (j)A3, > 0. By definition, there must exigtsuch thatr/ (j) > 0
and A%l > 0. As a consequence, by definition A, there exists a transition

s =% s/ in M ande((s,2), (s'.)) # {0}.
(b) If o((s,2)(s',y)) =]0, 1], then there exists a transition-% s’ in M. As a con-

sequence, byR, there exists;, € S; such thats; % s, in I ands, Rs'. Thus
or((sr, ), (sh,y)) =]0,1]. Letq! = (s},y). By definition of A', we know that
St o mF(j)AL, > 0, thus there existgl € Qr such thatr? (z) > 0andAl, > 0

Sinces,; R s’ ands % s/, we haveA? ; > 0, thuszJ _o 7} (J)AZ, > 0.

Finally, if A%, > 0 with ¢, = (s',y), there exists} € S; such thats} R s’ andAj, > 0
with ¢/ = (s7,y). By definition of A', we have;] R, ¢/. As a consequence; R, q;.

R, satisfies the axioms of a satisfaction relation for IMCs,sttiuc [M] and finally
[7] < [M].
U

Lemma 2.5. Let M = (S, sy, A, —,--+) be an MTS and = (S}, s}, A, —) be a transition
system. We have

McM=TEM

Proof.

Let M = (S, s, A, —,--+)be an MTS and = (S}, s}, A, —) be a transition system. Let
M = (Q,qy, AU {e}, 0, V) and I = (Qr,qt, AU {e}, o1, Vi) be the IMCs defined by the
transformation form MTS to IMC. Le® = {qo, ..., ¢} andQ; = {¢, ..., ¢’}
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Suppose thal/] C [M ]] We prove thaf = M.

LetT =

(Qr.qF, 77, Vi, A) be an MC withQr = {¢Z.,....¢"} such thatl’ € [I]. As a

conseguence, there exists two satisfaction relationM@sIR; C Qr x Q; andRy, C Q7 X Q
such thayl Ry ¢l = (s, €) andpy Ra g0 = (s, €). Define the new relatio®R C S; x S such
that s; R s iff there existsq” € Qr andz € ({e} U A) such thaty” R, ¢ = (sr,x) and

" Roq =

(s,z). We have

1. ¢F Ri(sh, €) andgd Ra(so,€). As a consequencel R s.

2. Letg! € Qr,q= (s,2) € Qandq’ = (s;,z) € Q; such thay! R, ¢’ andq! R, q and
let Al € [0, 1]**™ andA? € [0, 1]**" be the associated correspondance matrices.

(@)

(b)

Lety € A ands, € S; such thats; % s, in I. We prove that there exist$ € S
such thats -2» ¢’ ands} R s. Letg! = (s}, ).

By definition of I, we havep;((s;, z), (s}, v)) ]0 1]. As a consequencey; x
A, =% (7l (j)Al, > 0. Thus there existg] in Qr such thabrT( ) > 0 and

j=0 T
A}, > 0. As a consequence, by definition&f, we havey] R, ¢/ = (s7,y), thus

Vr(q)) = Vi((shy) = {y}-

By definition of A, sincen (j) > 0, we know thaty_,' /A* = 1. As a conse-
quence, there exists = (s, z) € @ such thatAil > 0. By definition of A2, we

haveq] R, q = (s',z) and sincé/r(q] ) = {y}, we must have = y.

Moreover, By definition ofA?, we know thafr! x A?], € o((s, ), (s',y)). Since
7 % A% = Sl (028 > 0, we havep((s.a), (5.4)) # {0} Thus, by

definition of 1/, there exists a transition -2+ s in M. Finally, we have both
g/ Ri(s7,y) andg] Ry(s', ), thuss; R s'.

Lety € Aands’ € S such thats % s in M. We prove that there exist$ € S;
such thats; % s/ in I ands, R 5. Letq = (s',y).

By definition of 1/, we havey((s, =), (s',y)) =]0, 1] As a consequencér; x
A?], = Zf o™ (j)A?, > 0. Thus there existg] in Qr such thatr](j) > 0
andA?, > 0. By definition of A%, we haveq] Ry q = (5',y), thusVr(q)) =
V((s"y) = {y}.

By definition of A', sincex/(j) > 0, we have} " Al = 1. As a conse-
quence, there existg = (s}, z) € Q; such thatA} . By definition of A', we have
¢ R1q} = (s}.z) and sincé/r(q; ) = {y}, we must have = y.

Moreover, by definition ofA! we know that[r! x A'], € ¢;((s1, ), (s}, y)).
Since [r] x A", = Yfwl (A}, > 0, we havep;((sr,2), (s.y)) # {0}.
Thus, by definition ofl, there exists a transitiosy - s7in I (remember thaf is
a classical transition system). Finally, we have bgftfR,(s7,y) andq] Ra(s',y),
thuss; R s'.

Finally, R is a satisfaction relation for MTS, and= M

From the two lemmas stated above, we deduce the followiray¢ne.
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Theorem 2.6.Let M = (S, s, A, —,--+) be an MTS and = (S, s{, A, —) be a transition
system. We have

[EM < [I] C[M]

We now define a constructiofithat builds, for all implementatiors of M, a correspond-
ing implementatiory (C') of M:

Let M = (S, s0, A, —,--») be a MTS. LetM = (S x ({e} U A), (so,€), {e} U A, o, V)
be the transformation of/ defined as above. L&t = (Q, g0, A, 7, V') be a MC such that
CE M for some satisfaction relation on IM®.

Define f(C) = (@, g0, A, —) the transition system such that™ ¢’ wheneverr(q, ¢') > 0
andV’(¢') = {a}.

By construction, it is trivial that (1Y (C) = M for some satisfaction relation on MT&'
and (2)C & f/(a) for some satisfaction relation on IMJ&". These satisfaction relations are
defined as followsy R’ s whenever there existse {e}UA such that R(s,x), andg R" (¢, =)
whenever = ¢'.

From the above construction and Theorem 2.6, we obtain the tieorem of the section:
the transformatiod/ — M preserves thorough refinement.

Theorem 2.7.Let M and M’ be two Modal Transition Systems and and M’ be the corre-
sponding IMCs defined. We have

M <7 M — ]/\JjT ]/\4\/
Proof. Let M andM’ be two MTS, and\/ and M’ the corresponding IMCs.

= Suppose that/ <" M’, and letC be a MC such thaf’ |= M. We have by construction
f(C) = M, thusf( ) = M'. By Theorem 2.6, we havg'(C)] C [[J\//f’]], and we know
thatC = f( ). As a consequencé; = M

= Suppose that/ <th M’, and let be a TS such that = M. By Theorem 2.6, we have

[1] € [M ]] thus by hypothesi§l] C [[M’]] Finaly, by Theorem 2.6, we obtain that
I =M.

O
Crucially the translatiod/ — Mis polynomial. Thus if we had a subexponential algorithm
for TR of IMCs, we could use it to obtain a subexponential atgen for TR of MTSs, which
is impossible according to [17]. This proves that TR of IMEsi least EXPTIME-hard.

2.4 Determinism

Although both are in EXPTIME, deciding weak refinement isieathan deciding thorough

refinement. Nevertheless, since these two refinements dmiratide, in general, a procedure
to check weak refinement cannot be used to decide thorougiemeént. Observe that weak
refinement has a syntactic definition very much like simatafor transition systems. On the
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other hand thorough refinement is a semantic concept, jusa@sinclusion for transition sys-
tems. It is well known that simulation and trace inclusiomcale for deterministic automata.
Similarly for MTSs it is known that TR coincides with modafireement for deterministic ob-
jects. It is thus natural to define deterministic IMCs andoghehether thorough and weak
refinements coincide on these objects.

In our context, an IMC is deterministic if, from a given stab@e cannot reach two states
that share common atomic propositions.

Definition 2.10 (Determinism) Let I = (Q, qo, p, A, V) be an IMC.I is deterministiciff for
all statesq, r, s € @, if there exists a probability distribution € ¢(q) such thatz(r) > 0 and
o(s) >0, thenV(r) # V(s).

The above definition verifies that two states that are redehaith the same admissible
distributionalways have different valuations. In a semantic interpi@tathis means that there
exist no implementation of in which two states with the same valuations can be successor
of the same source state. One can also propose anothetlyshgire syntactic definition for
determinism.

Definition 2.11 (Strong Determinism)Let I = (Q, qo, ¢, A, V') be an IMC.I is strongly de-
terministiciff for all statesq, r, s € Q, if there exist a probability distributionr € ©(g) such
thato(r) > 0 and a probability distributiorp € ¢(q) such thato(s) > 0, thenV(r) # V(s).

This definition differs from Definition 2.10 in that it reqes that, from a given statg
one cannot possibly reach two stateand s with the same set of propositions, even using two
different distributions (implementations).

Checking weak determinism requires solving a cubic numlbdinear constraints: for
each state check the linear constraint of the definition—gareeach pair of successors of a
state. Checking strong determinism can be done by solvihgaoquadratic number of linear
constraints—one per each successor of each state. Ludkiyto the convexity of the set of
admissible distributions in a state, these two notionsad@for IMCs, so the more efficient,
strong determinism can be used in algorithms. However, Wieseg in Chapter 3 that these
notions differ when considering more expressive specifinat

Theorem 2.8. An IMC [ is deterministic iff it is strongly deterministic.

Proof. It directly follows from the definitions that strong detenism implies weak determin-
ism. We prove that if an IMQ is not strongly deterministic, then it is not weakly detemistic
either.

Let I = (Q,q0, 9, A, V) be an IMC. If I is not strongly deterministic, there exist two
admissible distributions on next states foroc andp € ¢(q) such thaio(r) > 0, o(s) = 0,
o(r) =0, o(s) > 0andV(r) = V(s). In order to prove that is not weakly deterministic, we
build a distributiony that we prove correct w.r.t the interval specifications, 4.ec ¢(q), and
such thaty(r) > 0 and~(s) > 0.

Sinceo(r) > 0, there exists > 0 such thatp(q)(r) = [0, a] or [0,a[. Moreover, since
o(s) > 0, there exist$ > 0 such thatp(q)(s) = [0,b] or [0,b]. Letc = Min(a, b), and define
v(¢) =o(q) forallqg ¢ {r,s}, v(r) = o(r)—c/2,andy(s) = ¢/2. By constructiony € ¢(q)
and we have/(r) > 0 andvy(s) > 0. As a consequencé,is not weakly deterministic.

Finally, an IMC is strongly deterministic iff it is also weakly determindst
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Figure 2.6: An IMCI whose semantics cannot be captured by a deterministic IMC

O
It is worth mentioning that deterministic IMCs is a strictbslass of IMCs. Figure 2.6
shows an IMCI whose set of implementations cannot be represented by ardetstic IMC.
We now state the main theorem of the section that shows thaleterministic IMCs, the
weak refinement, and indeed also the strong refinement atigroapture the thorough refine-
ment. The proof of this theorem is postponed to Section 3@hiapter 3, where it will be given
in a more general setting.

Theorem 2.9.Let I and I’ be two deterministic IMCs with no inconsistent states. #qsiv-
alent to say that (1Y thoroughly refined’, (2) I weakly refined’” and (3) I strongly refines
I,

2.5 Common Implementation and Consistency

We now turn our attention to the problem of implementatios@feral IMC specifications by
the same probabilistic system modeled as a Markov Chain.ta¥evath defining the problem:

Definition 2.12 (Common Implementation (Cl))Givenk > 1 IMCs I;,i = 1.. .k, does there
exist a Markov Chair” such that”' = [, for all :?

Somewhat surprisingly we find out that, similar to the cas@Rf the CI problem is not
harder for IMCs than for modal transition systems. The fellg theorem summarizes our
main result about CI:

Theorem 2.10. Deciding the existence of a common implementation betvie&Cs is
EXPTIME-complete.

We will establish lower and upper bound for common impleragah. We will then use these
results to solve the consistency problem.

To establish a lower bound for common implementation, we@pse a reduction from the
common implementation problem for modal transition systéMTS). This latter problem
has recently been shown to be EXPTIME-complete when the rumbMTS is not known
in advance and PTIME-complete otherwise [10]. For a set oflahtransition systems/;,

1 = 1...k, translate eachi/;, into an IMC]\/J\Z, using the same rules as in Section 2.3. It turns
out that the set of created IMCs has a common implementdtandionly if the original modal
transition systems had. Thus the following theorem.

Theorem 2.11.Let M; be MTSs foi = 1, ..., k. We have
AIVi: I = M; < 3CVi: C = M,
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where [ is a transition system(’ is a Markov Chain and/\/E is the IMC obtained with the
transformation defined in Section 2.3.3.

Proof. =: Let M; be MTSs fori = 1,... k. Let] be a TS such thati, I = M,. We prove
that there exists a MC' such thatvi, C' = M.

Let1 < i < k. Sincel |= M;, we have, by Theorem 2.6, thel] C [[]\/J\i]].
Moreover, by definition]7] # (). Thus there exists a MC' € [I], andVi, C' = M.

<: Let M; be MTSs fori = 1,...,k. Let M be a MC such thati, M ]\Z We prove that
there exists a T$ such thatvi, I = M;.
Let1 < < k. SinceC | J\//Z we have, by the transformatighdefined in Section 2.3.3,
that f(C) = M,. As a consequence, we have thatf (C) = M,. O
As for TR, since the translation is polynomial, the problen@bfor IMCs has to be at least
EXPTIME-hard (otherwise it would give a sub-EXPTIME algbm for CI of MTSS).

To address the upper bound we first propose a simple coristidotcheck if there exists a Cl
for two IMCs. We start with the definition afonsistency relatiomhat withesses a common
implementation between two IMCs.

Definition 2.13. Let I, = (Q1, g, 01, A, Vi) and I = (Qs, ¢2, v2, A, V») be IMCs. The rela-
tion R C @1 x @), is aconsistency relatioon the states of; and I iff, whenever(u,v) € R
then

o Vi(u) = Va(v)and
e there exists @ € Distr(Q); x ()7) such that

1. vu' € Ql : ZUIEQQ Q(ulvv/) S ()Ol(u)(u/) A V'€ Q? : Zu’te Q(ulvvl) €
wa(v)(v'), and

2. V(u',v") € Q1 X Qg st p(u/,0") > 0, then(u/,v') € R.

We now prove that the existence of a consistency relatiogus/alent to the existence of a
common implementation between two IMCs.

Theorem 2.12.Let I} = (Qy, 4}, ¢1, A, Vi) and I, = (Qa, ¢2, p2, A, V) be IMCs withQ, =
{@d,...,ql}andQy = {4, ..., 4% }. I, and I, have a common implementation iff there exists
a consistency relatio® such thaig R q;.

Proof. =: Assume that there exists a MC= (P, po, 7, A, V¢), with P = {po, ..., pr}, such
thatC' |= I, andC' |= I,. This implies that there exists satisfaction relatidsC P x (), and
Ra C P x @y such thaty Ry ¢} andpy R q2.

Let R C @1 x Q- the relation such that; R ¢ iff there existsp € P such thatp R, ¢,
andp R, ¢o. We prove thaR is a consistency relation relating andq?. Indeed(q¢}, ¢3) € R
because by definition af', we havep, R, ¢} andp, R ¢3. Let (¢',¢*) € R andp; € P such
thatpl R1 ql andpi Ro q2.

1. By Ry andRy, Vi(q') = Vo(pi) = Va(q?).

24



2. LetA! andA? be the correspondance matrices witnessirfg, ¢! andp; R, ¢>. Define
o € Distr(Q1 x @2) such thatforalll </ <nandl <r <m,

olal,¢?) ZmA (2.1)

By definition of A’ and A?, we have}’ l<l<n o(ql,¢?) = 1, andg is indeed a

1<r<m
distribution on@; x Q-.

Let qll S Ql-

ZQQlaqr ZZWZ]
r=0

r=0 j=0

k m
= mi- AL A2)
j=0 r=0

= Y my,-Al, bydefinition ofA®
1<j<k | 7i,;>0
c o1(q")(q) by definition of A'.
Similarly, for all g7 € Qa, 371 0(ai, 7) € #2(4*)(a7)-

3. Letq! € Q; andg? € Q, be states such thafg/, ¢?) > 0. Then at least one term in Eq.
(2.1) is positive. Thus, there exists< 57 < k such tha‘rA1 A2 > 0. This implies that
both factors are positive, and by definitionaf andA?, we have thatp;, ¢/) € R, and
(pj, @) € R, and therefore;, R ¢2.

This proves thaR is a consistency relation.

<: Assume that there exists a consistency relafiorelating¢; andgi. We now construct
a common implementatiofi, such that”' = I; andC' = I,; we prove the former first. Let
C = (P, py, m, A, V¢) such that

o P={(¢"¢*) € Qi x Q2| ' R’} = {po.- .., ps};
* po= (4, 49);
o Vol(qh, ¢%) = Vi(q') = Va(q?) by definition of R;

e For eachy;,p; € P with p; = (¢*,¢?) andp; = (q/,¢?), letm ; = o(q},¢?), whereg is
the distribution witnessing the membership(g¥, ¢) in R.

To show satisfaction betweeri and I;, defineR, C P x (), the relation such that =
(¢", ¢®) Ry ¢ iff ¢* = ¢"". We now prove thaR, is a satisfaction relation betweé€hand ;.
Letp; = (¢', ¢°) € P such thatq', ¢*) R ¢'.

1. By definition ofC, Vo (p;) = Vi(q').
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Figure 2.7: IMCslg, I, andly

2. LetA € [0,1]%*" be the correspondance matrix derived as follows; = 1 if p; =
(¢}, ¢) for somet and O else.

(a) Letp; € P.

> Aj, =1 by definition

=0

(b) Letq; € Q1.

k
D miiA = > o)
=0

pi€P | pi=(qi V)

r=0
€ ¢v1(¢")(q}) by definition of R .

(c) Letp; = (¢},¢?) € P andq; € @, such thatA;;, > 0. Theng} = ¢/ and by
definition, (¢}, ¢?) R q; -

ThusR, is a satisfaction relation, and = ;. Analogously, it can be shown that = 1.
Finally C'is a common implementation éf and /5. U

The consistency relation can be computed in polynomial tisieg a standard coinductive
fixpoint iteration, where pairs violating Definition 2.13auccessively removed frofhy x Q5.
Each iteration requires solving a polynomial number ofdinequation systems, which can be
done in polynomial time [93]. For the general problem of coommmplementation of IMCs,
we can extend the above definition of consistency relatidhed-ary relation in the obvious
way, and the algorithm becomes exponential in the numbdvi@isik, as the size of the state
space [\, |Q;| is exponential irk.

As a side effect we observe that, exactly like for modal titéars systems, Cl becomes
polynomial for any constant value &f i.e. when the number of components to be checked is
bounded by a constant.

Example. Consider the three IMCs in Figure 2.7. We construct a coasarsy relationR for

k = 3. The triple(A, 1, «) is in the relationR witnessed by the distribution that assigns
t10(B,2,0), s 10(C,2,03), 510 (D,3,7), ¢ to (E,4,0), and to (E,4,¢). The triples that
are given positive probability by are also in the relation each by the distribution assigning
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probability 1 to itself. A common implementatich= (P, py, 7, A, V) can be constructed
as follows: P = {q|l¢g € R}, po = (A,1,«a), V(p) is inherited fromIg, 17, and g, and
7(p)(p') = o(p’), wherep is the distribution witnessing thate R.

Consistency. A related problem is the one of checking consistency of alsiigC I, i.e.
whether there exists a M@/ such thatV/ = I.

Definition 2.14 (Consistency (C))Given an IMCI, does it hold thaf 7] # (?
It turns out that, in the complexity theoretic sense, thabpem is easy:

Theorem 2.13.The problem C, of deciding whether a single IMC is consistantbe solved
in polynomial time.

Given an IMCI = (Q, qo, ¢, A, V), this problem can be solved by constructing a consis-
tency relation ove) x ) (as if searching for a common implementatiortbivith itself). Now
there exists an implementation 6fiff there exists a consistency relation containifag, qo).
Obviously, this can be checked in polynomial time.

The fact that C can be decided in polynomial time casts amastig light on the ability
of IMCs to express inconsistency. On one hand, one can glepdcify inconsistent states
in IMCs (simply by giving intervals for successor probdaié that cannot be satisfied by any
distribution). On the other hand, this inconsistency appéa be local. It does not induce
any global constraints on implementations; it does notcaffensistency of other states. In
this sense IMCs resemble modal transition systems (whial disallow expressing inconsis-
tency), and are weaker thamixed transition systenid8, 9]. Mixed transition systems relax
the requirement of modal transition systems, not requitfirag(—) C (--»). It is known that
C is trivial for modal transition systems, but EXPTIME-coleig for mixed transition systems
[11]. Clearly, with a polynomial time C, IMCs cannot posyil@xpress sophisticated global
behaviour inconsistencies in the style of mixed transiggstems, where the problem is much
harder.

We conclude the section by observing that,given the IME (Q, qo, ¢, A, V'), with Q =
{qo, - .,q,}, and a consistency relatioR C @ x @, it is possible to derive @arunedIMC
I ={(Q%, ¢, ¢*, A, V*) that contains no inconsistent states and accepts the saofdraple-
mentations ag. The construction of * is as follows:Q* = {¢ € Ql|(q,q) € R}, ¢ = qo,

V*(q*) = V(¢g*) forall ¢* € Q*, and for allg;, g5 € Q*, v*(q1)(45) = ¢(q7)(43).

Theorem 2.14.Consider an IMCI and its pruned IMC*. We havd ] = [I*].

Proof. By construction, the IMC* is a restriction ofl. As a consequence, it is obvious that
every implementation of* is also an implementation df Thus,[/*] C [I].

Moreover, if there exists an implementation= (P, po, 7, A, Vp) of I = (Q, qo, 0, A, V)
such that a state € P statisfies a state € (), it is obvious that there also exists a consistency
relationR between/ and/ that includeg. Indeed there will exist @ C Distr(Q x @) satisfying
the constraints of: =(p). As a consequence, all the states belonging to a satigfaetiation
for I will be states of@Q*. Thus all the satisfaction relations férwill also be satisfaction
relations for/*. Finally, we havd ] C [I*].

O
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(@ IMC1I (b) Pruned IMCI*

Figure 2.8: An IMC and its pruned version

Example. Consider the IMCI in Figure 2.8a. Building a consistency relation, we see that
(1,1) is in the relation witnessed by the distribution assigninggability 0.8 to (2,2) and0.2

to (4,4). This probability distribution "avoids" the inconsistestate(3, 3); this state does not
admit a probability distribution. Likewis¢2, 2) and(3, 3) are in the relation, witnessed by the
distributions that gives probability 1 t@®, 2) and (3, 3), respectively.

I* is shown in Figure 2.8b.

In the next chapter, we present a more general algorithmrioripg, that does not involve
constructing a consistency relation.

2.6 Conclusion and Related Work

This chapter provides new results for IMCs [86, 124, 34, 68} is a specification formalism
for probabilistic systems. We have studied the expresess®and complexity of three refine-
ment preorders for IMCs. The results are of interest asiagistorks on IMCs often use one
of these preorders to compare specifications (for abstregti{86, 89, 61]. We have estab-
lished complexity bounds and decision procedures for thels¢ions, closing a 20 years old
left open problem in the seminal work on IMCs [86]. Finallye Wwave studied the common im-
plementation problem that is to decide whether there eaisisnplementation that can match
the requirements made by two or more specifications. Outiealis constructive in the sense
that it can build such a common implementation.

Our results are robust with respect to simple variationgi€$. For example sets of sets
of propositions can be used to label states, instead of $guopositions. This extends the
power of the modeling formalism, which now can not only eggrabstractions over probability
distributions, but also over possible state valuationsl ol results easily translate to this
setting without any changes to the complexity classes.|&ityian initial distribution, or even
an interval constraint on the initial distribution, coulel bsed instead of the initial state in IMCs
(and MCs) without affecting the results. Finally, the sejtive propose here only considers
MCs and IMCs sharing the same sets of atomic propositionts. Séiting could easily extend
to MCs / IMCs with distinct sets of atomic propositions, a#l i done in the next chapter.

There exists many other specification formalisms for deswgi and analyzing stochastic
systems; the list includes process algebras[79, 8, 103}gcdl frameworks [73, 129]. We
believe that IMCs is a good unification model for such fors@ls. A logical representation
is suited for conjunction, but nor for refinement and viceseefor process algebra. As an
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example, it is not clear how one can synthesize a MC (an imgteation) that satisfies two
Probabilistic Computation Tree Logic formulas.

IMCs and their extensions have been used as specificatiorafiems for stochastic sys-
tems. Unfortunately, as we already stated, IMCs are notesgpre enough to capture many
requirements of the compositional design methodology.s Tintludes conjunction, parallel
composition and disjunction. Conjunction allows solvimyeral problems, notably common
implementation. The solution promoted in this chapter mles a methodology in order to
solve the common implementation problem for a set of IMCshaut explicitly computing
their conjunction. However, there are also problems ugwalived using conjunction that the
methodology presented in this chapter cannot solve. As ample, the problem of deciding
whether the common implementations of two given specificagtiare also implementations
of a third specification cannot be addressed using IMCs. énsime way, the methodology
presented in this chapter does not allow us to reason onlgdacamposition and thus on in-
cremental design. Disjunction, which allows to select le&twthe requirements of many spec-
ifications remains an open problem. This operation is of irgree for any procedure that
would use IMCs as a symbolic representation for possiblyitgfisets of MCs. Using such
symbolic representation in a fixed point computation, oneld/dave to decide whether the
union of two IMCs is refined by another IMC. It is thus neceggarenrich the model of IMCs
in order to obtain a specification theory that will be closeder both conjunction and parallel
composition. This will be the subject of the next chapter.
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Chapter 3

Constraint Markov Chains

3.1 Introduction

In the previous chapter, we have introduced IMCs that is aipation theory for stochastic
systems. One of the main drawbacks of this model is that ibisctosed under conjunction
and composition, two requirements for a good interface rthe®@ne way to approach this
problem could be to work with two types of specifications: IBHOr refinement and structural
composition, and a probabilistic logic such as PCTL [73] dmicl a logical conjunction is
naturally defined. Such a solution is clearly non satistgcimdeed, it is not clear how one can
synthesize a MC (an implementation) that satisfies two P@Finélas. It is also not possible
to structurally compose two PCTL formulas.

In this chapter, we promote a new approach to the problem:eweldpConstraint Markov
Chains(CMCs for short) as a new specification formalism that cande&las a foundation for
component-based design of probabilistic systems. CMCs &wether extension of IMCs al-
lowing rich constraints on the next-state probabiliti@sirany state. Whereas linear constraints
suffice for closure under conjunction, polynomial consitsiare necessary for closure under
parallel composition. We provide constructs for refinemeantsistency checking, logicahd
structural composition of CMC specifications — all indisp&inle ingredients of a compositional
design methodology.

The notions of satisfaction and strong/weak refinement€MCs conservatively extend
similar notions for IMCs [61, 86], presented in Chapter 2. &karacterize these relations in
terms of implementation set inclusion. In particular, ie tinain theorem, we prove that for
deterministic CMCs weak and strong refinements are comypi¢erespect to implementation
set inclusion. In addition, we provide a construction, viahior any CMCS returns a deter-
ministic CMC p(S) containing the models of. Refinement relations are not complete for
non-deterministic CMCs, but one can show that the weak ne#me is more likely to coincide
with implementation set inclusion in such a context. We skiwat refinement between CMCs
with polynomial constraints can be decided in essentiatigle exponential time.

In CMCs, each state is also labelled with a set of subsetsoofiatpropositions. Those
propositions represent properties that should be satisfigde implementation. The idea be-
ing that the satisfaction relation ensures that an impleatiem matches at least one of the
subsets. This allows the specification to make additiorslraptions on the behaviors of the
implementation. Hence, at the level of specification, oudei@resents choices on subsets of
actions. However these choices are independent from thEapilcstic ones in the sense that
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any CMC whose states are labelled with a set of subsets ofi@mepositions can be turned
to an equivalent (in terms of set of implementations) CMC séhstates are labeled with a sin-
gle subset of atomic propositions. There, choices betwaesubsets of actions disappear. It
is thus not surprising that our notion of parallel compasitis following the widely accepted
principle of separation of concernsThe idea is to separate parallel composition of proba-
bility distributions from synchronization on sets of aciso This separation can be found in
probabilistic specification theories that have probatiilisutomata as an underlying semantic
model [121, 72, 87, 79]. In fact, we show how probabilistitcemata can be represented as
CMCs, and how the traditional notions of parallel compositon such model can be derived
in our framework with precongruence properties obtainedrée. This latter result shows that
CMCs capture computational structure of known models aretaiprs, laying down a basis
for studying shared properties of many probabilistic awttarbased languages. As already
mentioned, we exemplify this by showing how precongruenmoperties for composition of
probabilistic automata and known refinements can be olddigpeeductions to CMCs.

We also compare the expressivity of the operation of pdratimposition and the one of
conjunction. It turns out that for independent sets of viadues, composition refines conjunc-
tion, but the opposite is not true. This result allows toasela class of CMCs and CMCs
operations that is closed under linear constraints. Binale also show that CMCs are not
closed under disjunction and we discuss the problem of degighether a CMC is universal.

Structure of the chapter. In Section 3.2, we introduce the concept of CMCs and a satisfa
relation with respect to Markov Chains. Consistency, refieet and conjunction are discussed
in Section 3.3. Structural composition is introduced int®ec3.4 where we also compare the
operation to conjunction. Disjunction and universalitg discussed in Section 3.5. In Section
3.6, we introduce deterministic CMCs and show that, for thass of CMCs, strong and weak
refinements coincide with inclusion of implementation s&sction 3.7 discusses the class of
polynomial CMCs, which is the smallest class of CMCs closedau all the compositional
design operations. Section 3.9 concludes the chapter aldbed and future work.

3.2 Constraint Markov Chains

Since we aim at building a compositional specification tigibmay be of interest to consider
structures with possibly different sets of atomic progoss. In order to take care of this
possibility, we propose the following operations on setatoinic propositions. Lel, B be
sets of propositions witill C B. Therestriction of i/ C B to A is given byW| .= W N A.
If 7 C 28, thenT | = {W|a| W € T}. ForWW C A define theextension of’ to B as
W1B={V C B|V]|4= W}, so the set of sets whose restriction4ds . Lift it to sets of
sets as follows: ifl’ C 24 thenT18= {W C B | W|4€ T}. Let M, A € [0, 1]"* be two
matrices and: € [0, 1]'** be a vector. We writd/;; for the cell inith row and;th column of
M, M, for the pth row of M, andz; for theith element ofz. Finally, A is acorrespondence
matrixiff 0 < - A, < 1foralll <i<n.

We recall the definition for Markov Chains, allready intraeéd in Chapter 2. Markov
Chains act as models in our specification formalism.

Definition 3.1 (Markov Chain) C' = (Q, 0, M, A, V') is a Markov Chainif @ is a finite set of
states containing the initial staig A is a set of atomic proposition$] : Q — 24 is a state
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(a+b+c>2)A(e=0)

or1(1)(z) = (z1=0)A (x2>0.7) e2(D)(y) = (1 =0)A(ys=202)
ANz + 23 =1) Ay2 +ys = 1)
(a) CMC S, the customer specification of the op-  (b) CMC S2, The manufacturer specification of the
tical relay relay

{a,b,c}

(c) Markov ChainC satisfyingS; andSs (d) Markov ChainC>, satisfyingsS; and.S,

Figure 3.1: Two specifications (CMCs) and two implementaiMCs) of an optic relay

valuation. Assuming that the states(hare ordered, i.e.Q = {q,...,q,}, M € [0, 1]™*"
is a probability transition matrix:3> "7, M;; = 1 for i = 1,...,n. The cellM;; defines the
probability of the transition from statg to stateg;.

Like in Chapter 2, our formalism does not allow “sink states€. states with no outgoing
transition. However, in order to avoid clutter in the figuree sometimes represent states
with no outgoing transitions. They must be interpreted atestwith a self-loop of probability
1. We now introduceConstraint Markov Chain§CMCs for short), a finite representation for
a possibly infinite set of MCs. Roughly speaking, CMCs geimgaViCs in that, instead of
specifying a concrete transition matrix, they only conistiarobability values in the matrix.
Constraints are modelled usingharacteristic functionwhich for a given source state and a
distribution of probabilities of leaving the state evaksto 1 iff the distribution is permitted by
the specification. Similarly, instead of a concrete vatwafunction for each state,@nstraint
on valuationds used. Here, a valuation is permitted iff it is containedhiea set of admissible
valuations of the specification.

Definition 3.2 (Constraint Markov Chain)A Constraint Markov Chaiis a tupleS = (Q, o, ¢,
A, V), where@ is a finite set of states containing the initial state A is a set of atomic
propositions) : Q — 22" is a set of admissible state valuations. Assuming that ttestnQ
are ordered, i.eQ = {q1,...,q.}, ¢:Q — [0,1]* — {0, 1} is a constraint functiorsuch that
if (j)(z) = 1 then ther vector is a probability distributionz € [0, 1]* and>_F | #; = 1.

As introduced in Chapter 2nterval Markov ChaingIMCs for short) [86] are CMCs whose
constraint functions are represented by intervals, solfdr & i < k there exist constants;,
B; such thatp(j)(z) = 1iff V1 <i <k, x; € [a, Bi]-
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Example. Two parties, a customer and a vendor, are discussing a desfignrelay for an
optical telecommunication network. The relay is desigoethplify an optic signal transmitted
over a long distance over an optic fiber. The relay should hsexeeral modes of operation,
modelled by four dynamically changing properties and dpetby atomic propositions b, c,
ande:

Atomic propositions in the optic relay specifications

a ber< 10~? bit error rate lower than 1 per billion bits transmitted
b | br> 10Gbits/s | The bit rate is higher than 10 Gbits/s.

c P < 10W Power consumption is less than 10 W.

e Standby The relay is not transmitting.

The customer presents CM&; (Figure 3.1a) specifying the admissible behaviour of the
relay from their point of view. States are labelled with fotess characterizing sets of valua-
tions. For instance)(a + b+ ¢ > 2) A (e = 0)” at state2 of S, representd/;(2) = {{a, b},
{b,c},{a,c},{a,b,c}}, wherea, b, ¢, ande range over Booleans. State 1 specifies a standby
mode, where no signal is emitted and only marginal power rsamed. State 2 is the high
power mode, offering a high signal/noise ratio, and hencéé bitrate and low error rate, at
the expense of a high power consumption. State 3 is the lowrpowde, with a low power
consumption, low bitrate and high error rate. The custonresspribes that the probability of
the high power mode (state 2) is higher thaf. The vendor replies with CMG, (Figure
3.1b), which represents possible relays that they can b8i&tause of thermal limitations, the
low power mode has a probability higher tharz.

A stateu of S is (directly) reachablefrom a state if there exists a probability distribution
x € [0, 1]* with a nonzero probability,, which satisfies(i)(z).

We relate CMC specifications to MCs implementing them, byeding the definition of
satisfaction presented in Chapter 2 to observe the vatuatinstraints and the full-fledged con-
straint functions. Crucially, like in Chapter 2 and in [8&jf abstract from syntactic structure of
transitions—a single transition in the implementation VED contribute to the satisfaction of
more than one transition in the specification, by distribgitts probability mass against several
transitions. Similarly many MC transitions can contribtaghe satisfaction of just one spec-
ification transition. The concept is strictly the same asraefifor IMCs in Chapter 2. Again,
this definition is slightly different but strictly equivaieto the definition used in [86]. Unlike
in [86], our definition is a particular case of the refinemehtions that will be presented later
in this section.

Definition 3.3 (Satisfaction Relation)Let C'= ({1, ...,n},0oc, M, Ac, Vo) be a MC andS =
<{1, Cey ]{5},05, (P,AS, V5> be a CMC withAg C Aq. ThenR C {1, R ,n} X {1, Ce k‘} isa
satisfaction relatiobetween states @f and S iff whenevep R u then

1. their valuations are compatiblé:-(p)] 4, € Vs(u), and
2. there exists a correspondence mathixc [0, 1]"** such that

o forall 1 <p' <nwith M, £0,35 Ay =1,
e o(u)(M, x A) holds, and
o if Ay, # O0thenp R/
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(a+b+c>2)N(e=0)

[(a+b+c<1)V w3(1,1)(2) = (V). 21,5 = 0) A (22,2 + 22,3 > 0.7)
((a=0)A(b=c=1))] )
Ale=0) A (222+223+232+233 = 1) A (Vi. 2,1 =0)

1(1)(@) = (21 = 0) A (22 > 0.7) A (o2t 23 202)

A (1’3 > 0.2) A (1’2 + a3 = 1)
(a) CMC S, generalizingSs, soS; < Sy (b) S3 = S1 A S3. Constraints on propositions,
pairwise conjunctions of constraints 8f and S,
are left out to avoid clutter

Figure 3.2: Examples of refinement and conjunction for CMCs

o
O = = O
= o O O
o
o O R = O
—_
3

(a) Correspondence for initial states@f and  (b) Weak refinement for initial states 8 andS,
S1

Figure 3.3: Examples of refinement and satisfaction for CMCs

We write C' = S iff there exists a satisfaction relation relating and og, and callC' an
implementatiorof S. The set of all implementations of is given by[S] = {C | C | S}.
Rows of A that correspond to reachable stateg’cdlways sum up to 1. This is to guarantee
that the entire probability mass of implementation traosg is allocated. For unreachable
states, we leave the corresponding rowg\iunconstrained.C' may have a richer alphabet
thansS, in order to facilitate abstract modelling: this way an iemplentation can maintain local
information using internal variables. Algorithms to dexishtisfaction are particular cases of
algorithms to decidesfinemenbetween CMCs. See the next section.

Example. We illustrate the concept of correspondence matrix betvatifications; (given

in Figure 3.1a) and Implementatiati, (given in Figure 3.1d). The CMG; has three outgoing
transitions from state 1 but, due to constraint functionlinthe transition labelled withe;
cannot be taken (the constraint implies = 0). The probability mass going from state 1 to
states 2 and 3 i, corresponds to the probability allowed By from its statel to its state2;
The redistribution is done with the help of the matftixgiven in Figure 3.3a. Théh column

in A describes how big fraction of each transition probabilifgr(transitions leaving 1) is
associated with probability; in S;. Observe that the constraint functign(1)(0,0.8,0.2) =
©1(1)((0,0.7,0.1,0.2) x A) is satisfied.

CMC semantics follows the Markov Decision Process (MDRJitran [124, 34]. The MDP
semantics is typically opposed to the Uncertain Markov @lsamantics, where the probability
distribution from each state is fixed a priori.
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States of CMCs are labeled with a set of subsets of atomicogibpns. A single set of
propositions represents properties that should be satisfi¢he implementation. A set of sets
models a choice of properties, with the idea being that thisfaation relation ensures that
an implementation matches at least one of the subsets. tigsahe specification to make
additional assumptions on the behaviors of the implememtatFor an implementation, in
each state the discrete choice of proposition set and tHeapiiestic choice of successor are
independent.

It turns out that any CMC whose states are labelled with afsilzsets of atomic proposi-
tions can be turned into an equivalent (in terms of sets ofempntations) CMC whose states
are labeled with sets that contains a single subset of atproositions. Hence working with
sets of subsets of valutations is a kind of modeling sugardésa be removed with a transfor-
mation to thesingle valuation normal form

Definition 3.4. We say thata CMG = ({1,...,k},0, ¢, A, V) isin Single Valuation Normal
Formif all its admissible valuation sets are singleton¥'(i)| = 1 for eachl < < k).

More precisely every consistent CMC with at most one adrlissialuation in the initial state
can be transformed into the normal form preserving its im@ietation set by using the follow-
ing polynomial algorithm.

The normalization algorithm basically separates eacle statith m possible valuations
into m statesu,, . . ., u,,, each with a single admissible valuation. Then the condtfanction
is adjusted, by substituting sums of probabilities goinght® new states in place of the old
probabilities targeting.. The transformation is local and syntax based. It can beopadd in
polynomial time and it only increases the size of the CMC polyially. We will write N/(.5)
for a result of normalization af.

Definition 3.5 (Normalization) Let S = ({1,...,k},0,¢, A, V) be a CMC. If there exists a

(b) Foralll1 <i#j <k N@G)NN()=0;
©) VI<i<k NG| = V()

If, moreover|V (0)| = 1, the normalization of isthe CMCN (S) = ({1,...,m}, o, ¢, A, V')
such that\ (o) = {0’} and

1.Vl <j<m,

Vi)l =1
2. V1 <i <k, V(l) = Uu@\/(i)vl(u);
3. V1 <i<kVu,veN(i),utv < V'(u) #V'(v);

4. V1 <j<m,

G, tm) = N TN D Tuees Y )



T, ZLq Yo, Yz

30 33000

{oH{ctH{cHdt} {{e}} o3y} {4} {{d}t {{e}}
e(1)(x) = (22 < 0.2) A (z3 < 0.7) ¢ ()(z) = (y2 +y2r £0.2)
Azg + z4 < 0.4) Ays + vz < 0.7)
AY2 + y2r +ya < 0.4)

(a) CMC S before normalisation (b) CMCN(S)

Figure 3.4: lllustration of normalization.

By construction)/(.S) is in single valuation normal form. Moreover,Sfis consistent, then a
function V' satisfying the conditions above exists.

The following example illustrates the normalization aigon.

Example. Consider the CMCS = ({1,2,3,4},1,¢,{a,b,c,d, e}, V) given in Figure 3.4a.
Since state® and 3 have two subsets of atomic propositiogsjs not in single valuation
normal form. Define the following normalisation function

1— {1}
2 —{2,2'}
3—1{3,3}
4 —4
The result of applying the normalisation algorithm%as the CMCN (S) = ({1,2,2,3, 3,
4},1, ¢, {a,b,c,d, e}, V') given in Figure 3.4b. Following the algorithm, Stattand 3 of S

have been each separated into two states with a single sobsgomic propositions. The
constraint function of staté usesy; + y» andys + y3 instead ofr, andx; respectively.

As expected, the above algorithm builds a CMC in single w@uanormal form that has
the exact same set of implementations as the initial CMC.

Theorem 3.1.LetS = ({1,...k}, 0,9, A, V) be a consistent CMC. |¥/(0)| = 1, then for all
MC C, we havel' = S < C = N(9).

Proof. LetS = ({1,...,k}, 0,0, A, V) be a consistent CMC such that(o)| = 1. Let S’ =

= LetC = ({1,...,n},0c, M, Ac,Vc) be aMC such that’ = S. Let’R be the associated
satisfaction relation. LeR’ C {1,...,n} x {1,...,m} suchthapRu <= V(p) €
V'(u) andp R N~ (u). We will show thatR’ is a satisfaction relation. Let « such that
p R u.

1. By definition, we havé-(p) € V'(u).
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2. We havep RN ~1(u). Let A € [0,1]"** be the associated correspondence matrix.
Define A" € [0, 1]"*™ such thath | = A, 1) if V,(¢) € V'(v) and0 else. As
every coefficient ofA appears once and only once in the same roW/oft is clear
thatA’ is a correspondence matrix. Moreover,

(a) If ¢is such tha\f,, # 0, then} " | Al . =0 Ay =1;

(b) Foralll < i <k, > .y ([M, x A'];) = [M, x A];. As a consequence,
@' (u) (M, x A') = (N (u))(M, x A) holds.

(c) If ¢,v are such that\] , # 0, thenA, 1,y # 0 andVe(q) € V'(v), thus
qR v.

Finally, R’ is a satisfaction relation. It is easy to see thaR’ o’. As a consequence, we
haveC = N(S).

< LetC = ({1,...,n},00, M, Ac,Vc) be a MC such that = N(S). LetR be the
associated satisfaction relation. 7t C {1,...,n} x {1,...,k} suchthapR' v <
J5 € N(u) s.t. pR j. We will show thatR' is a satisfaction relation. Let v such that
pR u.

1. We have/(p) € V(u) = Ujenw)V'(J).

2. Letj € N(u) such thap R j, and letA € [0, 1]"*™ be the associated correspon-
dence matrix. Definé\’ € [0,1]"* such that\] , = > ien(w) Dgi- Itis clear that
forall ¢, 2F_ AL, =2 Ay ThusA' is a correspondence matrix. Moreover,

(@) If ¢is such that\,, # 0, then}"r_| Al =3"" A, =1;

(b) Foralll < i <k, [Mp x Ay = >, e ([Mp x Al;). As a consequence,
p(u) (M, x A) = ¢'(j)(M, x A") holds.

(c) If ¢,v are such that\] , # 0, then there exists € N (v) such thatA, . # 0,
thusq R’ v.

Finally, R’ is a satisfaction relation. It is easy to see thaiR’ 0. As a consequence, we
haveC = S.

O
Crucially, note that this algorithm cannot be applied to i81thdeed, normalization intro-
duces a linear complexity in the constraint functions, ashmseen in Item 4 of Definition 3.5.
Finally, normalization obviously preserves determinism.

3.3 Consistency, Refinement and Conjunction

In this section, we study the consistency problem that isgcid® whether a CMC admits
at least an implementation. Then we propose algorithms deroto check refinement and
implementation set inclusion. Finally, we propose a metthagly to compute the conjunction
of two CMC:s.
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(a) CMC S before pruning (b) CMC 3(S) (c) CMC 3*(S)

Figure 3.5: lllustration of the pruning algorithm.

3.3.1 Consistency

A CMC S is consistentf it admits at least one implementation. We now discuss hwdecide
consistency. A state of S is valuation consisteniff V' (u) # (; it is constraint consistent
iff there exists a probability distribution vectar € [0,1]*** such thato(u)(x) = 1. It is
easy to see that iach stateof S is both valuation and constraint consistent thieis also
consistent. However, inconsistency of a state does noyimpbnsistency of the specification.
Indeed, an inconsistent state could be made unreachabtedigg the probabilities to reach it
to zero. The operations presented later in this chapter nieyduce inconsistent states, leaving
a question if a resulting CMC is consistent. In order to deeithetherS is inconsistent, state
inconsistencies are propagated throughout the entie sgatce usingaruning operators that
removes inconsistent states fra#n The result3(S) is a new CMC, which may still contain
some inconsistent states. We defihrmally.

Definition 3.6 (Pruning operatory)). LetS = ({1,...,k},0, ¢, A, V). The pruning operator
[ is defined as follows:

e If ois locally inconsistent then lgt(S) = 0.
e If S does not contain locally inconsistent states ti#f) = S.

e Else proceed in two steps. First fbf < &k define a function : {1,... k} — {L,1,...,
k'}, which will remove inconsistent states. All inconsisteates are mapped ta. For
all 1 <i < ktakev(i) = Liff [(V(i) =0)V (Vo € [0,1]%, ¢(i)(x) = 0)]. All remain-
ing states are mapped injectively info, ... &'} v(i) # L = Y5 # 1, v(j) # v(i).
Then let3(S) = ({1,....k},v(0),¢', A, V'}, whereV'(i) = V(v~1()) and for all
1 < j <K the constrainty’(j)(yi, ..., yw) iS: Jx1, ...,z such that

[V(q):J_ = xqzo} A [Vlglgk" : yl:x,,q(l)} A [(,O(V_l(j))(xla . axk’)]

The constraint makes the inconsistent states unreachadethen ! is dropped as a state.

The operator is applied iteratively, until a fixpoint is rBad. S is consistent iff the resulting
CMC g*(S) contains at least one state. The following example illtegréhe pruning algo-
rithm.

Example. Consider the CMG = ({1,2,3,4},1, ¢, {a, b, c}, V) given in Figure 3.5a. Define
p as following : p(1)(z) = (x2 < 0.3) A (22 + 23 = 1), ¢(2)(2) = (2, = 1). The constraint
of States3 and4 are not relevant for this example.
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State4 is obviously not valuations consistent. State® and 3 are all valuations and
constraint consistent. As a consequence, the first stegdrtiming algorithm will only mark
state4 as inconsistent. For this, define the following function

1—1
2—2
3—3
4— 1L

Then define3(S) = ({1,2,3},1,¢',{a,b,c}, V') such that, after reductiony’(1)(y) =
(Y2 < 0.3) A(y2 +ys = 1), and¢'(2)(y") = 3y, (24 = 0) A (2} = 1). 5(S) is given in
Figure 3.5b.

Obviously, State of 3(S) is now constraint inconsistenty’(2)(y’) is not satisfiable. We
thus apply another time the pruning operatdm order to remove State This time we obtain
a consistent CM@*(.5), given in Figure 3.5c.

The fixpoint of 3, and thus the entire consistency check, can be computegl asjnadratic
number of state consistency checks. The complexity of eaebkcdepends on the constraint
language chosen. The following proposition shows thatipgupreserves the set of implemen-
tations.

Proposition 3.2. LetS = ({1,...,k},0,¢, A, V)} be a CMC and5*(S) = lim,,_., 5"(S) be
the fixpoint of3. For any MCC, we have (110 = S <= C = g(S) and (2)[S] = [5*(9)]-

Proof. LetS = ({1,...,k},0,90,A,V) be a CMC (with at least an inconsistent state) and
C={1,...,n},o0, M, Ac,Vc) be a MC. LetS" = ({1,...,k'}, 0, ¢, A, V') = 3(S). If
B(S) is empty, then botts and3(S) are inconsistent.

Consider a functions for removing inconsistent states (one exists because Hrerén-
consistent states), such thdt < £ and for alll < i < k, v(i) = L < [(V(i) =
0) Vv (Vo € [0,1]%, =p(i)(x))] andv(i) # L = Vj # 4, v(j) # v(i). We first prove that
CES < CEp(®s).

= Suppose that’ = S. Then there exists a satisfaction relati®rsuch thab. R o. Define
the relationR’ C {1,...,n} x{1,...,k'} such thap R’ v iff there existsu € {1,...,k}
such thap R v andv(u) = v. Itis clear thabc R' o’. We prove thafR’ is a satisfaction
relation. Letp, u, v such thap R u andv(u) = v.

— Asv(u) # L, we have by definition that’(v) = V(u), thusVe(p)la€ V'(v).

— Let A € [0,1]"** be the correspondence matrix witnessin@ u. Let A’ €
[0, 1]"*¥" such thatA],, = A1) It is clear thatA’ is a correspondence ma-
trix. We first show that

Vu' e {1,... .k}, (v(u)= 1) =

(Vg€ {1,...,n}, Mgy =0). (3.1)

Let ' € {1,...,k} such thatv(u') = L, and suppose that there exigtse
{1,...,n}, Ay # 0. As A is a correspondence matrix, we hay® v’. Thus
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Ve(q) La€ V(v'), which means that(u') # 0, and there exist\” such that
o(u') (M, x A”). Thus, there exists € [0, 1]'** such thatp(u’)(x). As a conse-
quence, we cannot hawvéu’) = L, which is a contradiction, thus (3.1).

We now prove thaR’ satisfies the axioms of a satisfaction relation.
1. Letp’ € {1,...,n} such thatM,, # 0. This implies, by definition, that
k K’
> Ay =1.Wehave) ;| A, = Zre{l k) | w(r)l Dprre

.....

.....

2. Lety = M, x A" € [0,1]"* andz = M, x A € [0,1]'**. We know that
¢(u)(z) holds. Moreover, by (3.1), it(¢) = L, thenz, = 0, and for all
le{l,....k'}, yi =z, Clearly, this implies thap'(v) (M, x A’) holds.

3. Letp’,v" € {1,...,n} x {1,...,k'} such thatA, , # 0. We haveA],, =
A1y # 0, thus there exists’ € {1,...,k} such thap’' R« andv(u') =
o', Finally p’ R'v'.

Finally, R’ is a satisfaction relation such that R’ o, thusC' = 3(.9).

< Conversely, the reasoning is the same, except that we ndd Auirom A’ saying that
Ag =0if v(v) = LandA, = A ) otherwise.

We have proved that is implementations-conservative, thus the fixpointioferifies the
same property.
O

3.3.2 Refinement

Comparing specifications is central to stepwise design odetlogies. Systematic comparison
enables simplification of specifications (abstraction) aahding details to specifications (elabo-
ration). Usually specifications are compared usimgfemementelation. Roughly, ifS; refines
Sy, then any model of; is also a model of5;.

We will now introduce two notions of refinement for CMCs thatend two well known
refinements for IMCs [86, 61], that we introduced in ChapteY\2 not only generalize these
refinements, but, unlike [86, 61], we also characterize tienerms of implementation set
inclusion — also calledhorough refinemert and computational complexity. We will prove
that the ordering we obtain between the three refinemeniagetais the same as the one we
obtained in Chapter 2. We then propose algorithms to contpete refinements for CMCs.

The strong refinement between IMCs, by Jonsson and Larsg¢rep@énds to CMCs in the
following way:

Definition 3.7 (Strong Refinement)LetS; = ({1,..., %k}, 01,1, A1, V1) and Sy = ({1, ...,
]{52}, 02, P2, AQ, ‘/2> be CMCs W|thA2 - Al- A relation R - {1, RN ]{51} X {1, RN ]{32} is a
strong refinement relatidmetween states ¢f;, and.S, iff whenevew R u then

1. their valuations are compatiblé’; (v)] 4,C Va(u), and

2. there exists a correspondence mathixc [0, 1]¥***2 such that, for all probability distri-
bution vectors: € [0, 1]7*%1, if o, (v) () holds then
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o1, £0=31 Ay =1,
e ¢o(u)(z x A) holds, and
) |f Av/ul §é 0 thenv/T\’,u'.

We say that CMG5, strongly refines CMG; , written S; <g Sy, iff 01 R 0, for some strong
refinement relatiork.

Strong refinement imposes a “fixed-in-advance” correspocelenatrix regardless of the
probability distribution satisfying the constraint fuitet. In contrast, theveak refinement
which generalizes the one proposed in [61] for IMCs, alloWwsasing a different correspon-
dence matrix for each probability distribution satisfyihg constraint:

Definition 3.8 (Weak Refinement)LetS; = ({1,...,ki}, o1, 91, A1, V1) and S, = ({1,...,
ko}, 09, 02, As, Vo) be CMCs withd, C A;. TherelationR C {1,...,k} x {1,...,k}isa
weak refinement relatioiff whenevern R u then

1. their constraints are compatiblé’ (v)] 4,< V5(u), and

2. forany distribution: € [0, 1]**** satisfyingp; (v)(z), there exists a matrid € [0, 1]%**2
such that

o forall Sy statesl <i <k, z#0 = 52 Aj=1,
e vo(u)(x x A) holds, and
o If Ay # 0, thenv Ru'.

We say that CMGCS; (weakly) refines CMG,, written S; < S5, iff 0o R 0, for some weak
refinement relatiorik.

Example. Figure 3.3b illustrates a family of correspondence masiparametrized by, wit-
nessing the weak refinement between initial stateés ahd S, (defined in Figures 3.2a-3.2hb).
The actual matrix used in proving the weak refinement dependise probability distribution
vectorz that satisfies the constraint functign of state(1, 1). Takey = OZ% if 299 <0.7 and

v = 2522 otherwise. Itis easy to see thag((1,1))(z) impliesp,(1)(2 x A).
The following theorem shows that weak refinement impliesl@m@ntation set inclusion.

Theorem 3.3(Soundness of weak refinemeritetS; = ({1,..., ki }, 01,01, A1, Vi) andS, =
({1,...,ka}, 09,2, Ag, V5) be two CMCs. If5; < S5, then we havés;] C [Ss].

Proof.

SinceS; < 55, there exists a weak refinement relati®nC {1,..., k1 } x{1,...,ky} such
thato; R 0,. ConsiderC' = ({1,...n},0c, M, Ac, Vi) such that” = S;. By definition, we
haveoc |= o, and there exists a satisfaction relatiBh C {1,...,n} x {1,..., k;} such that
oc R o;.

LetR”" C {1,...,n} x {1,...,k} suchthapR"u <= Fv e {1,... ,k} withpR v and
v Ru. Let’'s show thatR” is a satisfaction relation. First, it is clear thé&t C A, C Ac.

Now, considelp, u such thatp R” u. By definition, there exists such thatp R’ v andv R u.
SinceVe(p)la, € Vi(v) andVy(v)] a,€ Va(u), we haveVo(p)la,€ Va(u).
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We now build a correspondence matiiX that satisfies the axioms of Definition 3.3. Let
r = M, € [0,1]"*" and A’ € [0,1]"** be a correspondence matrix witnessing= v. Let
y =z x A € [0,1]"**1. By definition of A’, we havep, (v)(y). Let A € [0, 1]****2 be the
correspondence matrix witnessing=< v and defineA” = A’ x A € [0,1]"**2. By Lemma
3.5, A” is also a correspondence matrix. We prove thatsatisfies the axioms of Definition
3.3.

1. Letl < p’ < n such thatM,,, # 0. As a consequencgg‘f;1 Al = 1. We want to
prove thaty "2 | A7, = 1.

ko k1

ko
DAY= DD Ay Ay)
j=1

j:l q:l
k1 ko

_ /

- E Ap’q'(E :Al}j)
q=1 j=1

Letq such thatA),  # 0. Itis then clear thay, > M,,, - A}, > 0. As A is a witness of
v = u, we haveZ?il Ag; = 1. Finally, this implies thagfil Al = 1.

2. By constructiony,(u)(M, x A”) holds.

3. Letp',u’ such thatA”, , # 0. By construction, it is clear that there existssuch that
A7, #0andA,,s # 0. By definition of A’ andA, this implies thap’ R’ ' andv’ R/,
thusp’ R” v'.

From 1-3, we can conclude thRt' is a satisfaction relation. Sineg R” 0,, we haveC' € [S;]
and[[Sl]] - [[Sg]]

O

Since strong refinement implies weak refinement by constmcit also holds that strong

refinement imply implementation set inclusion. In Sectiof, 3ve shall see that the converse
holds for a particular class of CMCs. However, this is notdaige in general: strong refinement
is strictly stronger than weak refinement, which is strigtyonger than implementation set
inclusion. Formally, we have the following proposition.

Proposition 3.4. There exist CMCS§,, S, S. and S; such that
e S, weakly refiness,, and.S, does not strongly refing,;

e [S.] € [S4], andS. does not weakly refing,.

Proof.
We provide separate constructions for the two items of tlestem:

1. Consider the CMCS, andS,, given in Figures 3.6a and 3.6b respectively. Call(resp.
Xy) the stateX in S, (resp.S,). We first show that there exists a weak refinement relation
R such thatS, < S, with 1, R 1,. We then show that there exists no strong refinement
relation betweerd, and.S,.
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{A}} {4}

{B1y  Hey {oh {B1y {{ehy {eoy Hph

wa(1)(z1, 22,23, 74) = (x1 = 0)A ob(1)(y1,Y2,y3,¥4,y5) = (y1 = 0)A
(z2 + 23 > 0.7) A (3 + 24 > 0.2)A (y2 +y3 > 0.7) A (ya +y5 > 0.2)A
(w2 + 23 +a4 =1) (y2+yzs+va+ys=1)

(@) CMC S, (b) CMC S,

Figure 3.6: CMCsS, and.S;.

1 00 0 0 1 00 0 0
1 1
A, = 0 0 0 0 A 0 0 0 0
00 v (1—=7) 0 00 a (1—a) 0
0 00 0 1 000 0 1

Figure 3.7: Correspondence matrices$gr=< Sj,.

(@) LetR = {(1a,1p), (24,25), (34, 30), (34, 46), (44, 5p) }. We show thafR is a weak
refinement relation. We first focus on building the corregfgrte matrix for the
couple(la, 1,). Letz be a “valid” valuation of the outgoing transitions bf. Let
v o= 073“’2 if 2, < 0.7 and°8r 22 otherwise. Asz satisfiesp,(1,), we have
0 <~ < 1. Consider the correspondence mathix given in Figure 3.7.

It is easy to see that for all valuation satisfyingy,(1,), vs(1p)(z x A,) also
holds. The correspondence matrices for the other paifs ame trivial since there
are no outgoing transitions from those states. TRus a weak refinement relation
betweensS, and.S;.

(b) Suppose that there exists a strong refinement reldiosuch thatl, R’ 1,. Let
A be the correspondence matrix associatet,t8’ 1,. Since2,, 3, and4, can all
be reached from, with an admissible transition, the sum of the elements in the
corresponding rows ith must be one. From the valuations of the states, we obtain
that A is of the type given in Figure 3.7, witl > 0.
Moreover, if R’ is a strong refinement relation, then we have that for all atidn
x satisfyinge, (1), pp(1p)(z x A) also holds.
Letz! = (0,0.6,0.1,0.3) andz? = (0,0.8,0.1,0.1). Bothz' and? satisfyp,(1).
If there exists a strong refinement, this implies thgtl ) (2 x A) andypy (1) (22 x A)
also hold. Howeverp,(1)(z! x A) = 1 implies thata > 1 andy,(1)(z? x A)
implies thata < 0.
It is thus impossible to find a unique correspondence matarking for all the
“valid” valuations of the outgoing transitions ®f. As a consequence, there cannot
exist a strong refinement relatid®( such thatl, R’ 1.

44



Y2

{1 {D}} {ch {{D}}
0e(2) (21, 2, 23,24) = (21 = 22 = 0)A wa(1)(y1,y2,y3,y4,95) = (y1 = y4 = y5 = O)A
((z3=1Az4=0) V(zg=0Az4=1)) ((y2=1Ay3=0)V (y2=0Ay3 =1))

(a) CMCS.. (b) CMC S,

Figure 3.8: CMCsS. andS,.

2. Consider the CMCS, andS, given in Figures 3.8a and 3.8b. Itis easy to see.$haind
S, share the same set of implementations. However, due to tistraints, State of S,
cannot refine any state 6. As a consequencg, cannot refines,,.

0
So our refinement relations for CMCs can be ordered from fioesbarsest: the strong refine-
ment, the weak refinement, and the implementation set ilmclusAs the implementation set
inclusion is theultimaterefinement, checking finer refinements is used as a pragnyatiaxs
driven, but sound, way of deciding it.

As we shall see in the next paragraphs, the algorithms farkihg weak and strong refine-
ments are polynomial in the number of states, but the treatwfecach state depends on the
complexity of the constraints. For the case of implemeotaset inclusion, the algorithm is
exponential in terms of number of states. Checking impldatem set inclusion seems thus
harder than checking weak or strong refinement. In Sectiébnv@e will propose a class of
CMCs for which strong and weak refinements coincide with enpntation set inclusion.

We now briefly discuss algorithms for checking implemewtaset inclusion and refinements.
We start with algorithms for checking weak and strong refiests between two CMCS; =
<{1, e ]{51}, 01, Y1, Ay, ‘/1> and S, = <{1, e ]{52}, 02, P2, As, ‘/2> Letn = max(k:l, ]{52)
Checking whether arelatioR C {1,...,k} x{1,..., ko} is a strong (resp. weak) refinement
relation reduces to checking, for &ll j) € R, the validity of the followingrefinement formu-
las: A, Vz, 01(i)(2) = 2(5) (2 x A)A NGO A = 1) ANy i ((RF"V Ay = 0) for the
strong refinement, andr, v, (7)(z) = 3A, pa(J )(mx A)AN, (Z Ay =1) ANy 7 (("RGV
Ay = 0) for the weak refinement. Strong and weak refinements can béetdbby iterated
strengthening ok with refinement formulas, starting fro®, = {(, 7)|Vi(i) [4,< Va(j)},
until either(oq, 02) ¢ R, in which caseS; does not strongly (resp. weakly) refisg, or R is
found to be a strong (resp. weak) refinement.

The exact complexity of the algorithm depends on the typeooktraints that are used in
the specifications. As an example, consider that all thetcainss inS; and.S; are polynomial
of degreed with less thank bound variables — we shall see that polynomial constrasits i
the least class under which CMCs are closed. There, decréiimgement formulas can be
done by quantifier elimination. When the number of quantiikernations is constant, the
cylindrical algebraic decomposition algorithf7, 28], implemented in Maple [135], performs
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this quantifier elimination in time double exponential i tiumber of variables. Consequently,

refinement can be checkeda}(n222"2) time.

However, considering constraintscontain only existential quantifiers, quantifier alterna-
tion is either one or two for strong refinement and exactly foveveak refinement. There
are quantifier elimination algorithms that have a worst casaplexity single exponential only
in the number of variables, although they are double expialen the number of quantifier
alternations [16]. Thanks to these algorithms, decidingtwérR is a strong (resp. weak)
refinement relation can be done in time single exponentidgdémumber of states and in the
number of bound variables appearing in the constraint®(n?s”k ")) where P is a
polynomial.

We now turn to the case of implementation set inclusion. 6),[Barsen and Jonsson proposed
an algorithm for solving such problem for the case of IMCssidering that we generalize the
constraints. This algorithm has been analyzed in moreldet&@hapter 2. It directly extends
to CMCs. The main difference with the algorithms for solvimgak and strong refinements is
that the algorithm for implementation set inclusion is exgatial in the number of states of the
two CMCs.

Finally, let us mention that lower-bounds for the strong avrebk refinement checking
remain open problems. In Chapter 2, we have shown that ingi&ation set inclusion is
EXPTIME-hard for IMCs, hence providing a lower bound also@MCs.

3.3.3 Conjunction

Conjunction also calledogical compositioncombines requirements of several specifications.
One of the most important uses of conjunction is the so-@gatmmon implementation prob-
lem, that we introduced in Chapter 2. This problem consistieciding wether there exists an
implementation that will satisfy all the elements of a seCMCs, and eventually computing
one such implementation. As we will see later, it can be dgnedmputing the conjunction of
all the considered CMCs and checking wether it is consistent

Definition 3.9 (Conjunction) LetS; = ({1,...,k1}, 01,01, A1, Vi) andSy = ({1,..., ka}, 09,
o, Ag, Vo) be CMCs. The conjunction af;, and S,, written S; A S5, is the CMCS =
{1, .. kb1, ko), (01, 00), 0, A, VY With A = AjUAy, V((u,v)) = Vi(u)T4 NVa(v)14,

and
O((u, V) (T11, 1,2, T2y Thy hy) =

k. k
901(@6)(2]-2:1 O WERERE Zjil Thy,j)A
k k
(V) (D5t Tils e v v s D iy Tiky)-

Conjunction may introduce inconsistent states and thuss#sshould normally be followed by
applying the pruning operator‘. As already stated in the introduction, the result of camjog
two IMCs is not an IMC in general, but a CMC whose constrainttions are systems of linear
inequalities. Figure 3.2b depicts a CMfg expressing the conjunction of IMC§ and S, (see
Figures 3.1a-3.1b). The constraint; + z33>0.2 in state(1,1) cannot be expressed as an
interval.

In order to build correspondence matrices for a conjunctieem need to define the following
operation® on matrices: ifA € [0,1]**¢ andA’ € [0, 1]**" are two correspondence matrices,
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we defineA” = A@ A’ by A” € [0,1]@ andAf, = A;-Aj,. As stated in the following
lemma, this operation preserves the structure of corresgpure matrices.

Lemma 3.5.LetA € [0, 1]**7and A’ € [0, 1]**" be two correspondence matrices. The matrix
A" = A ® A’is a correspondence matrix.

Proof. Letl <i < Fkand(j,n) € {1,...q} x {1,...7}. We haveA}, , = A;; - Aj,. Thus,

i(jn
q r
" _ "
> o = 222 Al
(J,n)e{l,...¢}x{1,...r} j=1 n=1

q r
=Y ) Ay A

j=1 n=1

j=1 n=1

O
As expected, conjunction of two specifications coincidethuheir greatest lower bound
with respect to the weak refinement (also caédred refinemept

Theorem 3.6.Let Sy, S; andS; be three CMCs. We have ()5; A Ss) = S1)and((S1AS2) <
52) and (b) |f(53 = Sl) and (Sg < Sg), thenS;J, < (Sl N Sg)

Proof.
Let51 = <{1, Ceey ]{71}, 01, ©1, Al, ‘/1>, SQ = <{1, e ]{52}, 02, P2, Ag, ‘/2> and53 = <{1, ce
ks}, 03, 3, Az, V3) be three CMCs.

(@) LetSi A Sy =S = ({1,.... k) x {1,... ko), 0,0, A, V).

LetR C ({1,...,k1} x {1,...,ko}) x {1,... Kk} such thatlu,v) Rw <= u =
w. We will prove thatR is a strong refinement relation. Let € {1,...,k;} and

v e {l,..., k}. We have(u,v) Ru. By definition of S, we also have/ ((u,v))]a,=
(Vi(@) T4 Vo (0)14)] 4, € Va(w).

Let A € [0, 1]"7*k1 such thatA(; ;); = 1 andA(; ;) x = 0if k # 7. By definition, we
havev(i, ), >1, Aujx = 1. As a consequencd is correspondence matrix. We now
prove that it satisfies the axioms of a satisfaction relafioriu, v) R .

(@ If = € [0,1)*F*2 is such thaty((u,v))(z), it implies by definition that
o1 (W) (52 g oyk T g) = 1 () (2 x A) holds.
(b) If A vy # 0, we have by definition’ = w’" and (v, v") R /.

From (a) and (b), we conclude thAtis astrong refinement relation.
Since(oy, 05) R 01, we haveS; A Sy < S;. By symmetry, we also havg A Sy < Ss.

(b) Suppose that; < S; and.S; < S;. By definition, there exist two refinement relations
R, C {1,...,/{53} X {1,...,]{31} anng - {1,...,]{33} X {1,...,/{52} SUChth&bgRlOl
andos; Ry 09. LetS; A Sy =S = <{1, e ]{51} X {1, e ]{72}, O,QO,A, V>
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LetR C {1,...,ks} x ({1,...,k1} x {1,...,ko}) such thatt R(v,w) <= uRsv
andu R, w. We now prove thaR is a weak refinement relation.

Consideru, v, w such that R (v, w).

(a) By definition, we hav&s(u)| 4, C Vi(v) andVs(u)l4,C Vo(w). As a consequence,
Va(u)[aC V((v,0)).

(b) Letx € [0, 1]"**s such thatpz(u)(z). Consider the correspondence matrices
[0, 1]>F and A’ € [0, 1]%>*2 given byu R, v andu R, w for the transition vector
r. LetA” € [0, 1]ks>krk2 = A@A’. By Lemma 3.5A" is a correspondence matrix.
We now prove that it satisfies the axioms of a refinement @idtr u R (v, w).

i. Let 1 < i < k3 such thatz; # 0. By definition of A and A’, we have

SHA =1 andZ"”2 Al =1.By construction,
Z(]q Ye{l,...k1}x{L,..., k:g} (Z ) ’ (ZkQ /‘ ) =

ii. By definition of A andA’, bothgol( )(x X A) andg02 w)(x x A’) hold. Let
r' =z x A" ltisclearthatr xA = (332, 2 5,..., 22 1x,m)and9:><A’ =

(or @, o0 2 ,,). As a consequence((v,w))(z x A”) holds.
iii. Let «/,v’,w" such thatA, ., . # 0. By construction, this implief\,,, # 0
andA!, ,, # 0. As a consequence, R, v" andu’ R, w’, thusu' R(v', w').

From (i) - (iii), we conclude thaR is a weak refinement relation. SinegR (o1, 02), we
haveS; < (51 A Ss).

O
In fact, as follows from the later results of Section 3.6, se¢ of implementations of a
conjunction of twodeterministicspecificationsS; and S, coincides with the intersection of
implementation sets o$; and S, (the greatest lower bound in the lattice of implementation
sets).

3.4 Compositional Reasoning

Let us now turn testructuralcomposition. In our theory, as we already said in the intobidn
and after presenting CMCs, choices regarding the set ofitiahs and stochastic choices are
independent from each others. This property of the modelrally leads to a definition of the
parallel composition operator based on the principlgagfaration of concernd he idea is that
probabilistic behaviours are composed separately fronsyhehronization of the sets of state
valuations. This allows realizing probabilistic compamitas a simple product of independent
distributions.

Remark 3.1. The principle of separation of concerns is intensively usede definition of par-
allel composition for many systems that mix stochastic addeterministic choices. Among
them, one can cite many theories for probabilistic procdgelara [121, 87]. Similar princi-
ples are also applied for continuous time stochastic mqdels slightly different setting based
on CTMCs [79]. In Section 3.8, we shall see that our strudtacanposition covers the one of
probabilistic automata.
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z €10,1/2) O O yi € [1/2,1]

Ha}{a,b}} {Hel}
nellf3l]] ¢ g lyze[o.g/g]

ey @ Q) tan

(a) Two CMCsS andS’
Sync Q 1
(a=d)N(b="c)
Prox:
(c) Synchronizebync (d) (S || ) A Sync

Figure 3.9: Parallel composition and synchronization of@M

Following the separation of concerns principle, composiant composed first into a prod-
uct (or effectively just a vector of independent entities)¢d then synchronized by constraining
their behaviour. This design is both simple and express#iadiows applying diverse synchro-
nization mechanisms, beyond just matching inputs to oatpMioreover it elegantly exploits
the prior knowledge on logical composition, as the synciaation operator turns out to be
realizable using conjunction.

We start by discussing how systems and specifications canobgased in a non-
synchronizing way, then we introduce a notion of synchratam.

3.4.1 Independent parallel composition

The non-synchronizingndependentomposition is largely just a product of two MCs (or
CMCs).

Definition 3.10 (Parallel Composition of MCs)Let C;, = ({1,...,n1},01, M’, A1, V4) and
Cy = {{1,...,n2},00, M", Ay, V5) be two MCs with4; N A, = (). The parallel composition of
CrandCyisthe MCCY || Cy = ({1,...,m} x {1,...,na}, (01,02), M, Ay U Ay, V') where:
M € [0, 1](mxn2)x(mxn2) js such thatV, g5y = M), - M., andV ((p,q)) = Vi(p) U Va(q).

gs’

And in general for CMCs:

Definition 3.11 (Parallel Composition of CMCs)Let S} = ({1,...,k1}, 01,1, 41, V1) and
So = ({1,...,ka}, 09,2, Az, V) be CMCs withA; N Ay = (). The parallel composition of
Sy and Sy isthe CMCSy || So = ({1,...,ki1} x {1,...,ka}, (01,09), 0, A1 U Ay, V'), where
O((u,0)) (211, 2125+« - 2205+« s Zhyky) = JT1y oy Thyy Y1, - -+, Uk, € [0, 1] such thatv(i, j) €
{1,... ki } x{1,..., ks} we havey; ; = z;-y; andy (u)(z1, ..., Tk, ) = ©2(V) (Y1, - - -, Uky) =
LandV((u,v)) ={Q1U Q2 | Q1 € Vi(u), Qs € Va(v)}.

It is worth mentioning that IMCs are not closed under comippmisi Consider IMCsS and
S’ given in Figure 3.9a and their compositiéh|| S’ given in Figure 3.9b. Assume first that
S| §"isan IMC. As a variable;; is the product of two variables andy;, if S || S”is an IMC,
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then one can show that the interval fgy is obtained by computing the products of the bounds
of the intervals over whichr; andy; range. Hence, we can show that € [0,1/2], 2, €
[0,1/3], 201 € [1/6,1], 220 € [0,2/3]. Let][a,b] be the interval for the constraint;, it is easy
to see that there exists implementatidanof S; and I, of S, such that/; || I, satisfies the
constraintz;; = a (resp.z;; = b). However, while each bound of each interval can be satisfied
independently, some points in the polytope defined by thegwats and the constraibt z;; = 1
cannot be reached. As an example, consiger= 0,215 = 1/3, 291 = 1/3, 290 = 1/3. Itis
clearly inside the polytope, but one cannot find an implewgom / of S || S’ satisfying the
constraints given by the parallel composition. Indeedjrwaw;; = 0 implies thatz; = 0 and
thus thatz;, = 0.

In order to build correspondence matrices for a compositi@meed to define the following
operation® on matrices: ifA € [0, 1]**? andA’ € [0, 1]"* are two correspondence matrices,
we defineA” = A © A" by A” ¢ [0,1]*7(@) and A7 ) = Qi - A, As stated in the

. . . i,5)(n,p :
following Lemma, this operation preserves the structureoofespondence matrices.

Lemma 3.7.LetA € [0,1]**7and A’ € [0, 1]"** be two correspondence matrices. The matrix
A" = A ® A’is a correspondence matrix.

Proof.

Let(i,7) € {1,...k} x{1,...rtand(n,p) € {1,...q} x {1,...s}. We haveA[, , =
Ay - A, Thus,

q s
> Al o) = D D A A,

(n,p)e{l,...q} x{1,...s} n=1 p=1
q s
= (38w ()
n=1 p=1
<1

O
The following theorem shows that the weak refinement is agmgwence with respect to
parallel composition. Remark that the same is also truetfong refinement.

Theorem 3.8.1f S}, S, S1, Sy are CMCs thert| < S; and S, <.S, impliessS] || S, < Sy .Sa,
so the weak refinement is a precongruence with respect tdlpbecamposition. Consequently,
for any MCsC; andC; we have that’; =57 A Cy =S, impliesCy || Cy | S| Ss.

Proof.

Let S = ({1,..., ki }, b, oh, AL VD), S = ({1, Kb}, b b, A5, V), S = ({1,
ki}, 01,01, A1, Vi), So = ({1,...,ka}, 00, 02, Aa, Vo) be four CMCs. Suppos#, < S; and
S5 = 9,.

LetS = ({1,...,ki} x{1,...,ka}, (01,02),0, A, V) =51 || S; andS" = ({1,...,k}} x
{1,... K}, (0h,0h), ¢, AL, V') = S || S
By definition, there exist two weak refinement relatidRg and R, such thato] R, o, and
0y, Ry 09. DefineR such that(v', v') R(u,v) <= « R,u andv’' Ryv. Consider now such
(v, v") and(u,v). We prove thaRR satisfies the axioms of a refinement relation betweén’)
and(u, v).
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1. We havgV'((v/,v")))|a={Q € 2% | 3Q: € V{(v), Q2 € V3 (v'), Q = Q1 U Qs}a=
{Q €230 € VI(u), Q2 € V3(v'), @ = Q1la, UQ2la,}. Thus(V'((w,v")))1aC
V((u,v)).

2. Letz’ € [0,1]"**k2 such thaty' (v, v")(2'). We now build the correspondence mattix
witnessing(u’, v") R(u, v). Consider the correspondence matricesand A, given by
u' Ry u andv’ Ry v for the transition vector’. DefineA = A} ® Ay € [0, 1]F1kexkike,
By Lemma 3.7 A is a correspondence matrix. Moreover, sint@/, v')(2’) holds, there
existsa’ € [0,1]* andy’ € [0, 1]"** such that/i, j, 2(, ; = =} - y; andy (u')(2’) and

5 (0")(Y').

(@) Let(u”,v") € {1,..., Kk} x {1,...,k}} such thatz ) # 0. By definition of
' andy’, this implies thatr),, # 0 andy,, # 0. ThusY> ™ Ay, = 1 and
252:1 AQv”j = ]_

(r,s)e{1,....k1 } x{1,....k2}

(T,S)E{l ..... kl}X{l ..... kz}
k1 ko

= Z Z Alu”r ’ A21}”3

r=1 s=1

k1 k2
= (Z A1u”7”) ’ (Z A?v”s) = 1.
r=1 s=1

(b) Letz =2/ x A € [0,1]"F k2 Remark that = (2/ x A1) ® (v x Ay).
Letz = 2’ x Ay andy = ¢ x Ay. Sinceu’ R, u andv’ Ry v, we havep, (u)(x)
andy,(v)(y). Thusp(u,v)(2 x A).

(C) Letu”, ’U//, u”v" such thaﬁ(uuwn)(u///,v///) 7& 0. By definition, it ImplleS thaﬂluuum 7&
0 andA,,.,» # 0, and as a consequen@€’, v") R (v, v").

From (a),(b),(c), we conclude th&tis a weak refinement relation. Singé, o,) R(o1, 02), we
haveS’ < S.
The proof of the second part of the theorem is similar, andiéethe reader. Remark that
this proof easily adapts to the case of strong refinement.
U

3.4.2 Synchronization

As alphabets of composed CMCs have to be disjoint, the coitpogioes not synchro-
nize the components on state valuations like it is typicdtiye for other (non-probabilistic)
models. However, synchronization can be introduced byanimg the composition with a
synchronizer—a single-state CMC whose valuation function relates tbenat propositions of
the composed CMCs.
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Example. CMC S || S’ of Figure 3.9b is synchronized with the synchron&atc given in Fig-
ure 3.9¢.Sync removes front' || S’ all the valuations that do not satisty = d) A (b = —¢).
The result is given in Figure 3.9d. Observe that an incoesisy appears in Statd, 1). In-
deed, there is no implementation of the two CMCs that canhsgnize in the prescribed way.
In general inconsistencies like this one can be uncoveredpmying the pruning operator,
which would return an empty specification. So synchronieaeble discovery of incompati-
bilities between component specifications in the same wéysaknown for non-probabilistic
specification models.

Synchronization is associative with respect to compasjtichich means that the order of syn-
chronization and composition is inessential for final fumeality of the system.

Theorem 3.9. Let 51, S, and S3 be three CMCs with pairwise disjoint sets of propositions
Ay, Ay and A;. LetSync,,5 be a synchronizer oved; U A, U Az and letSync,, be the same
synchronizer with its set of propositions restricted4pU A,. The following holdg[((.S; ||

S) A'Syncyy) || S5] A Syncygs] = [(Si || S2 || S3) A Syncyas].

Proof.

Let S;, Sy and S5 be three CMCs with disjoint sets of atomic propositiohs A; and As.
Let Syncyyy = ({1}, 1,7 Az = 17, A; U Ay U As, Vsyne) be a synchronizer betweety, A,
andAs;. ConsideiSync,, = ({1}, 1,7 \x.x =17, A1 U Ay, Voyncl 4,04,)- We want to prove that
[[((S1 [| S2) A Syncyy) || S5] A Syneygs] = [[Si || S2 || S3] A Syncyys].

We first prove the following statement. L&t and S, be two CMCs with disjoint sets
of atomic propositions4; and A,. Let Sync, be a synchronizing vector od;. We have
(Sl || Sg) A Syncl = (Sl VAN Syncl) || 52.

First, remember that synchronizers are single state CM@h, avsingle transition taken
with probability1. As a consequence, computing the conjunction with a symirgopreserves
the structure of any CMC. The only change lies in the sets lofatens.

Let p be a state of5; andq be a state of,. We have(Vi(p) U Va(g)) N Vaync, 141942=
(Vi(p) N Vsyne,) U Va(q). As a consequence, the valuationg 8f A Sync,) || S, are the same
as the valuations dfS; || S2) A Sync;.

By monotony of conjunction, we hav&, || S2) A Syncy, < (S; || S2). By Theorem 3.8,
it implies that[((S} || S2) A Syncyy) || S5] A Syncies = [S1 || S || S3] A Syncy,s, and finally
[[((S1 [| S2) A'Syncyy) || S5] A Syneyos] C [[S1 || Sz || S3] A Sias].

We now prove thatS, || Sa || S3] A Syncygs = [((S1 || S2) A Syncyy) || S5] A Syncyys. By
monotony of conjunction, we havg; || Ss || Ss]ASyncyeg < [S1 || S2 || S3] ASyncio ASyncys.
Moreover, by the statement proved above, we Haye|| Sy || S3] A Syncy, < ((S1 || S2) A
Syncy,) || Ss. As a consequence, we ha\g || Sz || S3] A Syncias = [((S1 ]| S2) A Syncys) ||
S5] A Syncyy, and thug[Sy [| Sz || Ss] A Syncygs] € [[((S1 || S2) A Syneyy) || Ss] A Syncygs].

O

Finally, synchronized composition also supports compthesed refinement in the style

of Theorem 3.8:

Theorem 3.10.1f 57, S5, Sy, S, are CMCs Sync is a synchronizer and] <.S; A S5 =<5, then
(S111:55) ASync = (St S2) A Sync.

Consequently, a modeller can continue independent refineohspecifications under synchro-
nization, knowing that the original synchronized spectf@awill not be violated.
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3.4.3 Comparison of conjunction and parallel composition

We now compare conjunction and composition with respeatnfgémentation set inclusions.
We shall see that if the two operations are defined on CMCs withpendent sets of valu-
ations, then composition refines conjunction; the oppatoes not hold. We first show that
composition refines conjunction.

Theorem 3.11.Let S; and.S; be consistent CMCs with; N A, = (. It holds thatS; || S; =<
S1ASs.

Proof. LetS; || Sy = ({1,....ki} x {1,...,ka}, (01,00), ), A, VY and S; A Sy =
{1, .k} x{1,... ka}, (01,09), ", A, V"), whereA = A; U A;. We build a refinement
relationR on ({1,... . ki } x {1,... ko}) x ({1,..., ki} x {1,..., ko}) as(u,v) R(u',v') if
and only ifu = v/ andv = /.

Let (w,v) € {1,...,k1} x {1,...,ko} such thatu,v) R(u,v). We now show thaR is a
refinement relation:

1. By construction, we have that!((u,v)) = {Q1 U Qs | Q1 € Vi(u),Q2 € Va(v)}.
Moreover, sinced; N A, = 0, we have that/"((u,v)) = Vi(u)14 NVa(v)14= {Q; U
Q2 | Q1 € Vi(u), Qs € Va(v)}. ThusVI((u,v)) = V((u,v)).

2. Letz = (211,212, Zmae) € [0, 1572 such thatpll((u,v))(z) holds. Define the
correspondence matrix € [0, 1]*1k2)x(k1-k2) a5 the matrix With ) (ue) = 1if 2, #
0 and 0 otherwise. Observe thaix A = z.

e Trivially, by construction, for a4, j) € {1,..., ki } x {1,...,k2} such that; ; #
0, we have thad _, ., A j @ = 1.

e We prove thaty"((u,v))(z) holds: By hypothesisy!((u,v))(z) holds. Thus,
by definition, there exist € [0,1]* andy € [0,1]* such thatp; (u)(z) holds,
w2(v)(y) holds and for al € {1,...,k} andj € {1,...,ko}, we havez; ; =
z; - y;. As a consequence, we haye!", z,; = y; forall j € {1,...,k,} and
S8 2y = foralli € {1,... ki}. Since bothp: (u)(x) andy(v)(y) hold, we
have thaty” ((u, v))(z x A) holds.

e By construction o\, A, ) (v, 7# 0 implies thatu = «' andv = +/, and therefore
implies (u, v) R(u',v").

We conclude thaR is a refinement relation, and;, 0,) R(o1, 02). Thus,S; || Sy < S1AS,. O

A direct consequence of the above theorem is that any modleéafomposition is a model
for the conjunction, i.e[5; || S2] C [S1AS2]. We now show that the opposite inclusion does
not hold.

Theorem 3.12.Let.S; and.S; be consistent CMCs with; N A, = (). It holds that[S; AS2] €
[S1152].

Proof. We establish the proof by providing in Figure 3.10 CM&sandS; and a MCI, such
that/ ): S1 A Ssy and/ bé S || S9.

The common structure of conjunction and parallel compmsits shown in Figure 3.11.
However the constraint function is not equal: we hav¢l, 1)(2) = 200+ 223 = 202+ 232 =
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{Hat} e}

{d}}
(@) St p1(1)(z) =22 = (0) S2, p2(1)(y) = y2 = (O

Figure 3.10
{{a.ct} {{a.d}}

b, e}} {{b,d}}

Figure 3.11: Common structure of conjunction and paratehposition

0.6 A 239+t 233 = 223+ 233 = 0.4 andcp”(l, 1)(2) = 292 = 0.36 A 93 = 232 = 0.24 N Z33 =
0.16. I will satisfy the conjunction, but not the parallel compa@sit since the probability mass
0.4 of going to state2 in , can not be distributed t@, 2) of S; || S5.

U

Remark 3.2. Crucially, a conjunction of two MCs is not a MC, but a proper CMwhile
parallel composition of MCs results in a new MC.

3.5 Disjunction and Universality

In this section we show that CMCs are not closed under dispmcWe then solve thaniver-
sality problemthat is the problem of deciding whether a CMCs admits anyiempgntation.

3.5.1 On the Existence of a Disjunction of CMCs

In this section we discuss the problem of computing a CM@hose models are the union
of the models accepted by two other CMGs = ({1,...,k1},01,¢1,41,V7) and Sy =
({1,...,ka}, 09,09, Az, V5). In general, such a CMC may not exist. Indeed, assumeSthat
and S, have independent initial state valuations, and that thetcaimt functions ob; ando,
do not share the same set of satisfying probability vectong. initial stateo of any specifica-
tion representing the union could take valuations admissibcording ta; and a distribution
according ta, (but noto;). That is, we can not express that, depending on the vafuafithe
initial state of the implementation, a certain constraiitdd be chosen.

However, if S; and S, have the same initial state valuation, i.€{o;) = V5(03), then we
can construct the disjunction explicitly. L8t vV S, = (Q, 0, ¢, A, V) where
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Q=1{1,....ki}U({L,... k) U{0O},
[ ] A:A1UA2,

V(0) = Vi(o1) = Va(og), andV(u) = Vi(u) if u € {1,... ki }, V(v) = Va(v) if
’UE{l,...,k‘g},

The constraint functiop: Q — [0, 1]*+*2+1 — [0, 1} is given by

k1
©(0) (w0, @1, oy Thys Tary -, Tpy) = (Zx, =1Ap1(01)(xy,... ,xk1)>

1=1
ky
\ Zx2:1A¢2(02><x177$ké)

=1’

k1
80(7;)(370,.1}'1,...,,I'kl,l'l/,...,l'ké) = sz =1A
i=1

v1(o1)(z, ..y mpy), 1E€{L ..k}

k)
cp(j)(xo,xl,...,xkl,xll,...,xké) = sz =1A

=1’

@a(02) (2, ), JE{L,.. .k}

By construction, the so defined disjunction ®f and .S,, S; VvV Ss, is such that its set of
implementations is the union of the sets of implementatadrts and.S,.

Theorem 3.13.Let ST = <{1, e ]{71}, 01, Y1, Al, ‘/1> and Sy = <{1, ceey ]{72}, 02, P2, AQ, ‘/2>
be two CMCs such thaf; (o;) = V5(09). It holds that

[S:] USs] =[SV Sa.

3.5.2 The Universality Problem for CMCs

We study the universality problem for CMCs, i.e., the problef deciding whether a CMG
admits any model defined on a given set of atomic propositiang&or doing so we simply
check whether the universal CM@niv* representing all these models thoroughly refises
The CMCAUnivA is formally defined asniv! = ({1},1,¢, A, V), wherep(1)(z) = 1 and
V(1) =2,

Theorem 3.14.Let Univ' = ({1},1,¢, A, V) be the universal CMC on the set of atomic
propositionsd and let/ = ({1,...,n}, 0, M, A7, Vi) be any implementation such th&atC A;.
We have thaf |= Univ*.
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(2) ({a.b}. o e}

(2) ({a.b}. o}

1 e {{a,¢},{a,c}}

o(D(x) = (w2>0.7) o(M@) = (2220.7)
/\(1’2 +x3 = 1) /\(1’2 + a3 = 1)
x4 =0
() CMCS (b) CMC S, with added statd

Figure 3.12: CMCs> andS”

Proof. Construct the relatio® = {1,...,n} x {1}. We show thaR is a satisfaction relation:
Leti € {1,...,n}suchthat R 1.

1. Itis clear that/; (i) a€ V(1) = 2*".

2. ConsiderM;. We build a correspondence matix € [0, 1]"*! such thatA;; = 1 if
M;; > 0, and O else.

e By constructionA;; = 1 for all j such that\/;; > 0.

e SinceM; x A =1, ¢(1)(M; x A) holds.
e Leti such that\; ; > 0. By construction ofR, i’ R 1.

We conclude thaR is a satisfaction relation, sineeR 1, and thus/ = Univ™. O
We now switch to the problem of deciding whether the unionvad CMCs S; and .S,

is universal. This is a more intriguing problem as we havengbat CMCs are not closed

under union. As a solution to this problem, we proposgate-extendedotion that consists in

creating a new initial state with a new special valuatiog A and then redistribute the entire

probability mass to the original initial state. Formallye wropose the following definition.

Definition 3.12. Fora CMC S = ({1,...,k},0,p, A, V) and a valuationz ¢ A, we define
the state-extended CM&" = ({1,...,k,0'}, 0, ¢, A’, V') where

o A'=AU{{z}},
o V(o) ={x}andV’(i) = V(i) forall i € {1,...,k}, and
o V() (x)=1x,=1andy/(i)(z) = p(i)(x1,...,2x) Nxy =0foralli e {1,... k}.

An example is given in Figure 3.12. The union of the statemaéd versions af; and
S, can now be computed and compared to the state-extendedrvefdiniv’. It is obvious

that all the implementations of the state-extended versi@given CMCC' are state-extended
versions of implementations 6f.
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{{a. b, c}{a, i}} {{a}}

or(1) (w1, 22, 73, 74) =

{{a,b}} d) ((xa=1A23=0)
E\@Dl \/(SL‘QZO/\Z'3=1))

{{a,c}{b, c}}

Figure 3.13: A CMCI" whose set of implementations cannot be represented witkeandia-
istic CMC

3.6 Deterministic CMCs

Clearly, if all implementations of a specificatioh also implement a specificatid, then the
former is a proper strengthening of the latter. Indegdspecifies implementations that break
no assumptions that can be made about implementatiatis dhus, as it was previously said
in Chapter 2, implementation set inclusion — also catlearough refinement is a desirable
refinement for specifications. Unfortunately, this problisnstill open for CMCs, and, as we
have said, the weak and the strong refinement soundly appatiit. Had that approximation
been complete, we would have had an effective decision groweefor implementation set
inclusion. In this section, we argue that, as proven for IMC<hapter 2, this indeed is
the case for an important subclass of specificatiaeterministic CMCs The definition for
determinism is the same as the notion of strong determirosifCs introduced in Chapter 2.
A CMC S is deterministicff for every states, states reachable froihave pairwise disjoint
admissible valuations:

Definition 3.13. LetS = ({1,...,k},0,¢, A, V) be a CMC.S is deterministidff for all states
i,u,v € {1,...,k}, if there existss € [0, 1]* such that(x(i)(z) A (2, # 0)) andy € [0, 1]
such that(p (i) (y) A (v, # 0)), then we have that (u) NV (v) = 0.

In Figures 3.1a and 3.1b, both and.S; are deterministic specifications. In particular st&es
and3, reachable froni in both CMCs, have disjoint constraints on valuations. Gadther
hand, the CMCI’ given in Figure 3.13 is non-deterministic. Indeed, for &atand3, which
can both be reached from Stdtewe have that’;(2) NV (3) = {{a, c}} # 0.

Deterministic CMCs are less expressive than non-detesticrones, in the sense that the
same implementation sets cannot sometimes be expressesid@oagain the CMT given in
Figure 3.13. It is such that its set of implementations cabeaepresented by a deterministic
CMC. Indeed, any merging of State@nd3 in 7" would result in a CMC that accepts models
where one can loop on valuatidn, ¢} and then accept valuatidma } with probability1. Such
a model cannot be accepted By

Proposition 3.15. Conjunction and composition preserve determinism.

Determinism of a CMC with polynomial constraints can be dediin single exponential
time in the number of states. The problem becomes polynortiah restricting constraints
to linear inequalities. Consider a CME= ({1, ..., k},0, ¢, A, V) with linear constraints of
the formy(i)(z) = = x C; < b;. SincesS is deterministic, for each statés; such that < j,
we must have that’ (i) NV (j) # 0 implies for allk, {z | z x Cy < by Ax; = 0} = ( or
{y |y x Crp<by Ny;=0} = (. This can be decided in polynomial time using Fourier-Maizk
elimination [119].
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We now present a determinization algorithm that can be ag@glh any CMCS whose
initial state is a single valuation set. This algorithm eslion normalizing the specification
first, and otherwise applies an algorithm which resemblésrdenization of automata (a sub-
set construction). The result of the algorithm is a new CMfihesl by S. Consequently the
implementation set of the result includes the on& ¢éee Theorem 3.16 below ). This weak-
ening character of determinization resembles the knoweraization algorithms for modal
transition systems [18].

Definition 3.14. LetS = ({1,...,k}, 0,9, A, V) be a consistent CMC in the single valuation
normal form. Letm < kandh : {1,...,k} — {1,...,m} be a surjection such that (1)
{1,...)k} = Upepr, b '(v) and (2) for alll < ¢ # j < k, if there existsl < u <
kandz,y € [0,1]F such that(p(u)(z) A z; # 0) and (p(u)(y) Ay; # 0), then(h(i) =
h(j) <= V(i) = V(j)); otherwiseh(i) # h(j). A deterministic CMC fofS is the CMC
o(S) = ({1,....,m}, 0, ¢, A, V') whereo = h(o), V1 < i < k, V'(h(i)) = V (i), and for
eachl <i <m,

O (W)W Ym) = 3T1, ., T,
Vo (V1<i<m oy= > x)Ap(u)(z,... o).

weh=1(4) vEh=1(4)
Theorem 3.16.Let.S be a CMC insingle valuation normal forfrwe haveS < o(.5).

Proof. LetS = ({1,...,k},0,¢, A, V) be a CMC in single valuation normal form. Let
o(S)=({1,...,m},d, ¢, A V') be adeterminization o andh : {1,... k} — {1,...,m}
the associated projection.

DefineR C {1,...,k} x{1,...,m} suchthat Rv <= h(u) = v. We will show that
R is a strong refinement relation. Letv such that R v.

1. By definition, we havé(u) = v, thusV’'(v) = V' (u).

2. LetA € [0,1]**™ suchthath, ; = 1if k(i) = j and0 else.A is clearly a correspondence
matrix.

(@) Letz € [0,1]* such thatp(u)(z). Foralll < j < m, we havey; = Zieh,l(j) Z;
andy(u)(z), thusg'(v)(z x A). Moreover, foralll <i <k, 37", A;; = 1 by
construction.

(b) If Ay # 0, thenh(u') = o' and thusy' R v'.

Finally, R is a strong refinement relation andR o', thus S strongly refines(S). As strong
refinement implies weak refinement, we also h&ve o(.5).
O
We now state the main theorem of the section, and one of theatesults of the chapter:
the weak refinement is complete with respect to implememtatet inclusion for deterministic
CMCs in single valuation normal form (recall that it is sodndall CMCs):

Theorem 3.17.Let Sl = <{1, ey ]{?1}, 01, ¥1, Al, ‘/1> and Sg = <{1, RN ]{?2}, 02, P2, Ag, ‘/2>
be two consistent and deterministic CMCs in single valuatiormal form withA, C A;. We
haVE[[Sl]] - [[SQ]] = Sl = Sg.
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We suppose that the CMCs we consider in this proof are pruleceover we only consider
CMCs in single valuation normal form. Given two CMGgand.S; such thafS;] C [S:], we
prove thatS; < S,. The proof is structured as following.

1. e We define the relatio® betweenS; and.Ss.

R={(v,u) |VI,VNpel, pEv=pkEu}

We considern: andv such thaty R w and prove thaR satisfies Axiom(1) of the
refinement relations.

e Axiom (2) of the weak refinement relations : Given a distributiomn the outgoing
transitions ofv, we must find a correspondence mattixsatisfying Axioms2(a),
2(b) and2(c) of the refinement relation :

— We consider a distributio” on the outgoing transitions fromand we build
a MC [ satisfying.S; such that the outgoing probabilities of the stateare
exactly X.

— This leads tov; = u and gives a correspondence matfix, which we will
take as our correspondence mathix

— By definition, A satisfies the axiom3(a) and 2(b) of the weak refinement
relations.

2. As A comes from a satisfaction relation, the axi@fa) of the refinement relation is
not so immediate. It tells us that if a coefficieat,,, is not0, then there exists an
implementatiory and a state; such that’, = v" andv; = «'. What we need is that for
all implementationd’ and statey’ such thap’ = «', we havey’ = «'. The rest of the
proof is dedicated to proving that this statement being fale leads to a contradiction

Assumlng there exist8 andp’ such thap = o andp’ |~ «/, we build an implementation
1 from I and I’ such that the state‘ of I'is syntactically equivalent to the stgie We
then prove that this staté of T still satisfies the state’ of S, because it is a successor
of v and S, is deterministic. As the staté of I is syntactically equivalent to the state
of I’, this means that' = «/, which is a contradiction.

We now go through the mathematical foundations of this proof

Proof.

Let S = <{1, ceey ]{?1}, 01, P1, Ay, ‘/1> andS; = <{1, R ]{52}, 02, P2, As, ‘/2> be two con-
sistent and deterministic CMCs in single valuation nornaahf such thatd, € A; and
[51] € [5:].

First, remark thab; < Sy <= S! = ({1,...,k1}, 01,01, A2, Vila,) < Ss. Itis thus safe to
suppose thatl; = A,. Similarly, if I = (..., A;,V;)isaMC,we havd = 5, <— [' =
(...,, A1, Vila,) E Si. As a consequence, itis also safe to suppose that impletitersthave
the same set of atomic propositionsgsand.S;.
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1. LetR C {1,...,k1} x {1,...,ko} such thatv R u iff for all MC I and statep of I,
p E v = p | u. As we consider pruned CMCs, there exist implementationslio
states.

Considerv andw such thaty R w.

(a) By definition ofR, there exists a MC and a state of 7 such thap = v andp = w.
ThusV;(p) € Vi(v) andV;(p) € Va(u). AsS; andsS, are in single valuation normal
form, Vi (v) andV;(u) are singletons, st (v) = Va(u).

(b) Considerr € [0, 1]*** such thatp, (v)(z) and build the MCI = ({1, ..., ki}, 01,
M, Ay, VY) such that for alll < w < &y,

e V/(w) is the only valuatiory’ such that; (w) = {T};
o If w # v, the line M, is any solution ofp;(w). One exists becaus® is
pruned,;
o M, =r.
When necessary, we will address statef / asw; to differentiate it from statev
of S;. We will now build the correspondence matrx
I clearly satisfiesS; with a satisfaction relatioR; = Identity, andv; = v. By

hypothesis, we thus have = u. ConsiderR, the satisfaction relation such that
vr R u andA, the corresponding correspondence matrix. Aet A,.

(c) As a consequence,
L VI<i<h,a£0=Y2 Ay =1
ii. po(u)(x x A) holds;

2. Letv’ be a state of; such that Ifz,, # 0 andA,., # 0. By definition of / andA, we
havev) = v" andv) = «/. We want to prove that for all implementatioffsand state’
in ', p' = impliesp’ = u'.

Suppose this is not the case. There exists an implementatiod{1, ... ,n}, o', M’ Ay,
V') and a stat@’ of I’ such thap’ |= v" andp’ [~ u'. Let R’ be the correspondence matrix
witnessingy’ = v'.

Consider the MJ = {1,k k41, .. .,k1+n},01,]\/4\, Al,V’). Intuitively, the first

k, states correspond toand the next. states td’. The state’; will be the link between
the two and its outgoing transitions will be the oneg’'oDefine

o My =M,if1<ij<k andi#v
o My; =0if1<j<k
o M;=0if 1 <i<k andi+v andj > k

—~

o
° Mv/j - mp/7j_k1

if 1>k
° ]\//Tij:Oifi>k1and1§j§k1

—

o M;; = m;_km_kl if i > kyandy > k.
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(a) The transition matrix/

1

N
NV
M,
(b) The MCT

o V(i)=V{(i)ifi <k

[ )
<)

We want to prove that% satisfies:’. This should imply thap/, also satisfies’, which is
absurd.

Consider the relatio® between the states dfand the states df; defined as follows :

R ={(q.w) € Ry | ¢ #v'}U
{(q,w) | (¢ = k1) R'w}U
{(,w) | p' R w}
Intuitively, R is equal toR, for the stateg < k;, except’, and equal t&R’ for the states
q > ky. The states related iq are the ones that were relatedptavith R’.
We will show thatR is a satisfaction relation betweefrandSl.

Let ¢, w such tha‘qﬁw. For all the pairs where # v%, the conditions of the satisfaction
relation obviously still hold because they held ®y if ¢ < k; and forR’ otherwise. It
remains to check the conditions for the pairs where v%.

Considerw such thaw;f%w.
(a) Becausdv;) and (p},) are both implementations of, it is clear thaﬂA/(v}) =
V(p'). Asp/ R/ w, we know thatl”(p') € Vi (w). Thus,V (v4) € Vi(w).
(b) Consider the correspondence mathigiven byp’ R w. Let A e [0, 1]kiFm)xks

such that&j =0if i <k, andﬁij = A’(i_kl)j otherwise.
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i. We want to show that iftf,. ) # 0, then3>"%, A,; = 1. We know that
M(v’f)(w’) =0if v’ < k. Takew’ > ky such thaM(v/f)(w/) 7£ 0. Then we know
that M,y = My, ) BecauseR' is a satisfaction relation, it implies

k ki A
thaty ;1) Al _py; = 1. Thus,> oL, Ay = Z Alyr—gy; = L.
ii. We want to show now tha,bl(w)(vaf x A) holds. Letl < j < k. We have
MMy, x Aty =Y My - Ay

=1

ki+n g .
=04+ > Muy -4y
I=k1+1
= Z M, - A= [M, x A

As a consequencé\?/f x A = M, x A’. SinceA' is a witness of’ R w
p1(w)(M], x A) holds. So doe&l(w)(ﬂ//fv/f x A).

i. We want to show that if\f,., # 0 andA,,, # 0, thengRw'. We only need
to considergy > k; (since otherwiseM(U/ = 0) andw’ such thatA,,, # 0.
In this casej\/i(v% =My, 1,) #0andA ., #0. AsA’is a witness of

p' R’ w, it has to be thatq — kl) R w', which |mpI|es, by definition ofR, that
gRuw'.

Finally 7 satisfiesS;, and in particularp; = v. AsvRu, itimplies thatv; = u. As a
consequence, there exigi$ e [0, 1]*1")** such thatp, (u) (M, x A”).

(A) Consideru” # u' such thatl;(u”) = Va(u'). Due to determinism of,, and to the

fact thatu’ is accessible from, we have[]\/fw x A"]» = 0. Since]\/J\ A #0
and]\/f(w)(vg) . A( v 1S part of[MUA x A"],», we must have‘k” o = 0.
I T I
(B) Consideru” such thatV (u") # V(u'). Itis clear thatA” L = 0sinceA” is

witnessing satisfaction betwedrand S..
T k
(C) Moreover, we know thaM(vIA)(vff) # 0. Thus,Zji1 A;’%j =1

According to (A) and (B), the only non-zero value in the sum(@) must be /('va)u/-
1
SinceA” is witnessing/ = S, this means that?. = «'.

By construction,v% andp’ only differ by state names. This contradicts the assumption
thatp’ = «'. Thusy’ R «/, andR is a weak refinement relation.

Finally, we have by hypothesis thi; ] C [S,], which implies thab; R o,.
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Since any consistent CMC with a single valuation in initi@te can be normalized, Theorem
3.17 holds even it; andS; are not in single valuation normal form, but only have a sngll-
uation in the initial state. Thus, weak refinement and thdemgntation set inclusion coincide
on the class of deterministic CMCs with at most single vaturain the initial state. Finally,
Theorem 3.17 also holds for strong refinement. Indeed, tl@fimg theorem states that weak
and strong refinements coincide on the class of deterngr@$iCs.

Theorem 3.18.LetS; = ({1,...,ki1},01,01, A, Vi) and Sy = ({1,...,ka}, 00, 2, A, V5) be
two deterministic CMCs in normal form. If there exists a wesfknement relatiork such that
S1R S5, thenR is also a strong refinement relation.

We start with the following lemma, which is a direct consawee of the notion of de-
terminism. It states that correspondence matrices agedcia a satisfaction relation for a
deterministic CMC have at most one non-zero value per row.

Lemma 3.19.LetS = ({1,...,k}, 05, p, A, Vs) be a deterministic’ M C in single valuation
normal form. LetC' = ({1,...,n},oc, M, A, V) € [S] and a satisfaction relatiorR such
that oc Rog. Letp € {1,...,n} andu € {1,...,k} such thatpRu, and letA be the
associated correspondence matrix. We have

Vp' e {1,...,n}, Myy #0=|{u' € {1,...,k} | Apw #0} = 1.

Let Sl = <{1, RN ]{51}, 01, ¥1, A, ‘/1> and52 = <{]_, ey ]{?2}, 02, P2, A, ‘/2> be two deter-
ministic CMCs in normal form such th&t < S, with a weak refinement relatioR. We prove
thatR is in fact a strong refinement relation.

Proof.
Letv e {1,...,k}andu € {1,..., ky} such that R u.

1. By hypothesisV;(v) C Vi (u);

2. We know that for allz € [0, 1]** satisfyingy,(v), there exists a correspondence matrix
A” satisfying the axioms of a (weak) refinement relation. Welilld a correspondence
matrix A° that will work for all z. Letp € {1,...,k;}.

e Ifforall z € [0,1]", ¢1(v)(x) = x, = 0, then letA) = (0,...,0).
e Else, consider € [0, 1]* such thatp,(v)(z) andx, # 0. By hypothesis, there

exists a correspondence mati¥ associated to R u. Let Ag = A}. By Lemma
3.19, thereis a single¢’ € {1,..., ky} such thatA? , # 0. Moreover, by definition
of A7, we know thaty"* | A? =1, thusA?, = 1.

Suppose there exisis#£ = € [0, 1]* such thatp, (v)(y) andy, # 0. Let AY be the
associated correspondence matrix. Asifothere exists a uniqué’ € {1, ..., ky}
such thatA? , # 0. MoreoverAJ , = 1. Leta’ = z x A% andy’ = y x A,
By definition, bothy,(v)(z’) andgs(y') hold, z;, # 0 andy,, # 0. As A7, =
A7, =1, we havely(u') N Va(u”) # 0. By hypothesisS, is deterministic, thus

u ="
As a consequence, we hade = AY, soVz € [0,1]", (¢1(v)(2) A (2, # 0)) =
A7 =AY,

p p

Finally, consider\° defined as above. Lete [0, 1]* such thatp; (v)(z). We have
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@@ #A0= AV =A? = 37 AV =1;
(b) z x A =z x A, thusy,(v)(z x A°) holds;

(c) If AY,, + 0, thenthere existg € [0, 1] such thatp, (v)(y) andA?, , = AY, ,,
thusv’ R /.
Finally, R is a strong refinement relation.
O

Finally, we remark that the above results on completenesgdterministic specifications
carry over to IMCs, proving Theorem 2.9 of Chapter 2. Theselts also translate to refine-
ments of [86] and [61], which are special cases of our refimemeCompleteness properties
for these refinements were open problems until now.

Discussion: A weaker Definition of Determinism. The notion of determinism presented here
may look too strong. Indeed, it assumes that, from a givde gtane cannot reach two states
u andv that share common sets of valuations. The assumption is mddpendently of the
distributions used to reach the two states, i.e., it may bed#ise that there exists no distribution
in where bothu andv can be reached simultaneously. As presented in Chapteet ih
another natural way to solve the problem: consider a weakesion of determinism, that
would be equivalent to the notion of determinism introdure@hapter 2. More precisely, we
say thata CMCS = ({1,...,k},0,¢, A, V} is weakly deterministic if whenever there exists
x € [0, 1]* and states, u, v such thatp (i) (x) andz, > 0 andz, > 0, we have/ (u)NV (v) = .
This version of determinism is weaker than the one given ifird®n 3.13. Indeed, only states
that can be reached by the same distribution should hav@rtisgets of valuations.

In Chapter 2, it is proven that the two notions coincide fa¥ garticular case of IMCs.
However, this is not the case for CMCs because the consttainbt necessarily allow only
convex solutions.

Moreover, though this notion seems reasonable, the CM@®d.S; given in Figures 3.8a
and 3.8b are both weakly deterministic, asidthoroughly but not weakly refineS,;. Hence
working with this weaker, but natural, version of deterramidoes not close the gap between
weak and thorough refinements.

3.7 Polynomial CMCs

It is not surprising that CMCs are closed under both logical structural compositions. In-
deed, CMCs do not make any assumptions on constraint funsctibhere are however many
classes of constraints that are practically intractabldil&\this chapter is mainly concerned
with the development of the theoretical foundations for Gyi@e now briefly study classes of
CMCs for which operations on constraints required by ouordigms can be managed quite
efficiently.

A first candidate could be linear constraints, which is theéi@ls generalization of interval
constraints. Unfortunately, linear constraint CMCs areatmsed under structural composition.
Indeed, as we have seen in Section 3.4 the composition ofitwarl constraints leads to a
polynomial constraint. However, what is more interestisghiat polynomial constrainisre
closed under both logical and structural composition aatittese operations do not increase
the quantifier alternations since they only introduce exisal quantifiers. Hence, one can
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claim that CMCs with polynomial constraints and only exmital quantifiers are certainly the
smallest extension of IMCs closed under all operations.

From the algorithmic point of view, working with polynomiabnstraints should not be
seen as an obstacle. First, we observe that algorithms garaloand structural composition
do not require any complex operations on polynomials. Theement algorithms (presented
in Section 3.3) are polynomial in the number of states, aruth @ration requires a quanti-
fier elimination. This procedure is known to be double expoia¢in general, but there exist
efficient single exponential algorithms [27, 28] when qiifeertalternations are fixed. Those al-
gorithms are implemented in Maple [135]. The pruning opereits polynomial in the number
of states, but each iteration also requires an exponergetitent as one has to decide whether
the constraints have at least a solution. Again, such pmolokn be solved with efficient algo-
rithms. Finally, determinizing a CMC can be performed witbracedure that is similar to the
determinization procedure for finite-state automata. Suphocedure is naturally exponential
in the number of states.

Remark 3.3. In Section 3.4, it was shown that, assuming independentsgtduations, par-
allel composition is refined by conjunction. We have alsceolesd that the conjunction or
disjunction of two linear constraints remains linear, bbhait composition may introduce poly-
nomial constraints. From an implementation point of viewndy thus be more efficient to
work with linear constraints only. For doing so, one can siyrgpproximate composition with
conjunction.

3.8 On the relation with Probabilistic Automata

CMCs are a newcomer in a long series of probabilistic moddlmguages and abstractions
for them. Throughout the chapter we have indicated that nooyr results directly translate
to simpler abstractions, like IMCs. We shall now furthercdiss this foundational aspect of
CMCs, showing how they subsume a few established notionsfiolement and composition
for probabilistic automata (and for process algebra bagetiem).

Below we write DistS) for the set of all probability distributions over a finite setGiven
two setsS and7 and a probability distribution: € Dist(S x T'), we denote the marginal distri-
bution overS asa, = . @, and similarly forl". We say thap is anon-deterministic dis-
tribution constraintover set/ if all solutionsz of © are point distributions, i.edi. x; = 1. Write
[;] to denote a particular point distribution for Whi{?@]i = 1. Notice that non-deterministic
distribution constraints model a non-deterministic clkaxt an element frony. They will be
used to encode non-determinism in CMCs.

A probabilistic automaton (PA for short) [121] is a tuflle= (S, Act —, s1), whereS'is a
finite set of states;~C S x Actx Dist(.S) is a finite transition relation ang, € S is the initial
state. Thederived combined transition relatioof S is given by—. € S x Act x Dist(.S). If
7 € Dist(S) andp € Dist(T") thent® o denotes the unique independent product distribution
suchthatlr®p)s; = 75 - 01

We say that-2 .o iff ¢ is a convex linear combination of vectors fram= {p; | t-20;},
Sop = gx ), where) is a distribution vecton < [0, 1]l¢l. We interpretp as a matrix, where
1th column is a distributiom;.

Consider two PAS = (S,Act —“, sy) andT = (T,Act —7,,). For a binary relation
R C S x T we define a derived relatioR* C Dist(S) x Dist(7") such thatr R* iff there exists
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Figure 3.14: Reducing a PA to CMC. Theredenotes a distribution constraint, which has a
unique solutionr.

a distributiona € Dist(S x T') and (1)a, r=m, forall g€ S, (2) ag, = o, for all € T" and (3)
o #0 impliessRt.

Definition 3.15 (Simulation [121]) A relation R C S x T is asimulationiff (s, t) € R implies
that wheneves -2 for a distributionr, thent -2 o for distribution ¢ such thatr R*p.

R is a probabilisticsimulation iff (s,t) € R implies that if s thent-* .o for some
distributionp, andw R*p.

Let A C Actbe the subset of actions on whiShandT should synchronize. Thearallel
compositionof S andT is a PAS || T = (S x T, Act —, (so, 1)), where— is the largest
transition relation such thdt, t)-“7 ® o if: @ € A ands-%57 andt--.Tp, or

a ¢ Aands-%r ando =[], or
a ¢ Aandr =[] andt- 2T p.

3.8.1 Reduction from Simulation

We now propose a linear encoding of PAs into CMCs, which redsimulation and composi-
tion of PAs to refinement and composition of CMCs (see FigdB.letS= ({s1, . . ., sk}, Act
—,50) be a PA. And letl be the number of reachable action-distribution pairs{so=
{(ay,m1),...,(a,m)} = {(a,7) | s € S.s%7}. The corresponding CMC i§ =
({1,...,2k+l},1,p,Actu L, V}) , where L ¢ Act S has three kinds of states. Type-1
states,1 ...k, correspond directly to states 8f Distributions leaving these states model a
non-deterministic choice. Type-2 statés+ 1,...,2k, model a possibility that a component
remains idle in a state. Type-3 statek;+ 1, . .., 2k+I model the actual distributions &f

V assigns valug(} to type-1 states and valyé | } } to type-2 states. For type-3:(2k +
i") = {{ay}} for 1 < ¢ <. The distribution constraints are as follows:
G(i) () if iistype-lands = [, 51" Jors;“my Aw=[ 2 Tfor 1< <U.
P(k +i)(x) if k+iistype-2andr=[, ,, .,].
o2k + ') (x) if 2k + 7" is type-3 andr = 7.
We can now relate simulation of PA to refinement of CMCs:

Theorem 3.20.T simulatesS iff S strongly refinedT.
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We begin by demonstrating a lemma about non-determinigidiolition constraints.

We say that a constraint is a single-point constraint, isibnly satisfied by a unique
distribution. Observe that all constraints in the encodingsented in Section 3.8 are non-
deterministic distribution constraints or single-poionstraints.

Lemma 3.21.Lety and« be single-point constraints. If for eaehe [0, 1]'*** such thatp(x)
holds, there exists a correspondence matxix € [0, 1]***2 such that)(z x A,) holds then
there exists a correspondence mattixe [0, 1]***2 such that for allz € [0, 1]**** we have
thato(z) = ¥(z x A).

The lemma holds trivially because there is only one distiilvusatisfyingy.

Lemma 3.22. Letp (respectively)) is a non-deterministic distribution constraint ovr, . . .
ki} (respectively{1, ..., k}). Then if for each distribution vector satisfyingy there ex-
ists a correspondence matrix, € [0,1]>**2 such thaty)(z x A,) holds then there ex-
ists a correspondence matriX € [0, 1]****2 such that for allz € [0,1]"** we have that
p(z) = Pz x A).

Proof. Letx be such thap(x) holds (then there exists< i < k; such that;; = 1). Thereisa
finite number of such vectors. Let denote the one that has 1 on thie position. TakeA such
that A; = (A,:); (the witness from the lemma assumption)ifsatisfiesp and A; = 0%
otherwise.

Now for eachx’ satisfyingy we have thatr’ x A = 2 x A, and thenp(z') =
P(x' X Ayi) <= P(z' X A). O

Corollary 3.23. For any two probabilistic automata and T we have thaF strongly refinedT
iff S weakly refined.

Lemma 3.24. For any two probabilistic automat& and T such thatT simulatesS we have
thatS weakly refined.

Proof. (sketch) LetR C S x T be the relation witnessing the simulationSoby T. Consider a
relation@ as follows:

Qr=A{07) [te{l,....ki}, 7 €{L,... ka}, (i, ¢;) € R}

Qa={(k1 +i,ka+j)|ie{l,...;k1},7€{1,... ka}, (Simki» tj—ry) € R}

Qs ={(2ks + ', 2ka + j') | € {1,..., i}, 7 € {1,..., o}, (ai, ™) € Qs, (aj, 0;) € Qr,
a; = aj, (m;,0;) € R*}

Q =Q1UQUQ3

It is easy to show thab) is a weak refinement. First observe that valuations alwayshma
for pairs in@). The valuation is empty for both and7" in @y, itis { L} in Q,, and{a;} in Qs.

For a pair in(i, j) € @, a distribution vector: satisfying the constraint of is always a
point distribution. Ifz;, ; = 1, takeAy, 4, x,+; = 1 and zero otherwise. Ify,, 1, = 1 take
Ao, +ir 2k, = 1 @and zero otherwise, wheypiéis such that;, o, andr; R* ;.

For a pair(k, + i, ks + j) € () takeA,; ; = 1, and zero otherwise.

For a pair(2k; + ', 2k + j') € Q3 takeA such that for(z, j) € {1,..., ki} x {1,..., ko}
we haveA;; = «;;/x;, or zero ifz; = 0, wherea is the distribution witnessing, R*o;,. [
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Lemma 3.25. For any two probabilistic automat8 and T such thatS strongly refinesT we
have thafl simulatesS.

Proof. (sketch) Assume that strongly refinedT is witnessed by a relatioR C {1,...,2k; +
Li} x {L,...,2ky + lo}. Show that a relatiod) = {(s;,t;) € S x T | (i,j) € R,i €
{1,...,k1},7 € {1,..., ko}} is a simulation relation.
In the crucial point of the proof consider, ;, = A;; - 7 (s;), wherery is a distribution
being the only solution of a point constraint for stéte {2k, ..., 2ky + [1}. O
Theorem 3.20 follows as a corollary from the above two lemndhtae Corollary 3.23.
Another, very similar, but slightly more complicated, edtw exists, for which weak re-
finement coincides witprobabilisticsimulation. It will be presented at the end of this section.
The same encoding is used to characterize parallel conmposit PAs using parallel com-
position of CMCs.

Theorem 3.26.For two PAsS and T over the same set of synchronizing actions Act and a set
A C Act we have tha$ || T is isomorphic to

(S || T[«/alacact) A Sa) [#f(aa); @t %(La)] yenc
whereS 4 is a synchronizer over Actx Act|, defined by
VaeA.a<=d)N(Va¢ A (a= L")\ (d = 1)).

ExpressionS[@i/ay; . .. %/ap)a ... aneact dENOtES @ substitution, substituting a primed ver-
sion of name,; for each occurrence im;, for all actions inAct

Interestingly, the precongruence property for the pdrathenposition of PAs is obtained
for free as a corollary of the above two reduction theorenasTdmm. 3.8. Similarly, we obtain
precongruence with probabilistic simulation using a sal@éancoding—a good example how
CMCs can be used to study properties of simpler languagegemeric way.

3.8.2 Encoding Probabilistic Simulation

We now present another encoding of PAs into CMCs, which aitreapturing probabilistic
simulation (as opposed to simulation).

Consider a PA = (S,Act —, s;), whereS = {sy,...,s;}. Let{(s',as),..., (s, a))} =
{(s,a) | s€ S N aeAct}. The corresponding CMC is

S=({1,...,2k+1},1,¢,Act U L, V1),

where_L is a fresh symbol not i\ct. We have three types of states (see Figure 3.15). Type-
1 states{1,...,k}, correspond directly to statds;, ..., s, }—their distribution constraints
encode the non-deterministic choice of action. Type-2stét + 1, .. ., 2k}, represent ability
of a state to be idle. We will use them in parallel compositibype-3 states{2k + 1, ..., 2k +
[}, encode choice of a probability distribution as a linear boration of distributions allowed
by the automaton.

The valuation functions are given by:

V(i) = {0} forl <i <k,
V(k+i)={{L}} for1 <i <k,
V(2k +i') = {{as}} for1 <i' <I.
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Figure 3.15: An attempt to visualize the second encoditfgdenotes a constraint expressing
a probability vector that is a linear combination of all pabidity distributions labeled by:.
Below this is formalized ag(2k + i')(z).

and

Qi) (z)isap; =10rIN<i' <. zop =1 A ' =s;
for1<i<k (type-1 states)

ok +i)(z)isz; =1
for1<i<k (type-2 states)

o2k +14')(z) is3N € Dist(1, ..., |w|).z = wA

for 1<i' <l (type-3 states)

whererr = {7 | s’ Z.7}. Technically speaking is a matrix, whose columns are distributions
7. We write|7r| for the number of columns ifr. Additionally z is implicitly required to be a
probability distribution ovef1, ..., 2k + [}.

Observe tha$ is only polynomially larger thas.

Lemma 3.27 (Soundness)For any two probabilistic automat& and T such thatS weakly
refinesT, we have thafl probabilistically simulates.

Proof. LetS = (S,Act —% s;) andT = (T,Act —7T t,), with S = {s1,...,s} and
T = {ti,...,t,}. Inthe proof we writep to refer to the constraint function 8f andg to refer
to the constraint function df. Also [, andl, are used to refer to the number of combinations
of state-action of respectively andT. Finally ¢; and r; are used to range over statesdn
(respectively ifll"), whens, andt; are bound to some concrete value.

LetR e {1,...,2k1+ 11} x{1,...,2ks+ I} be a weak refinement relation betwekand
T, witnessing the assumption of the lemma. The proof procbgdsiowing that

Q={(sistj) | (i,j) ERN1<i <k AN1<j<ho}

is a probabilistic simulation relation betweBrandT.

We apply the usual coinductive proof technique. Téket;) € (). Letnw € Dist(S) be
such thats; 2.7, and (s, ay) = (s;,a).t

By construction of the encoding we know that any probabitltgtribution » satisfying
©(i)(z) is a point distribution, and: such thatry,,, = 1 is possible. So consider such a

1The equality bindg’ to be the index ofs;, a) on the list of state-action pairs in the encodingof
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distributionz. Since(i,j7) € R we know that there exists a correspondence malrix
[0, 1]k thx2k2tl2 gych that)(f) (x x A) holds. Moreover x A must be a point distribution by
construction of the encoding. $0 x A)qy,+;» = 1 for somel < j’ < l,. And, by refinement
again, we get that valuation functions for bath + " and for2k; + ;' both return{{a}} and
that(le + 7;/, 2ky + j,) € R.

But T is also constructed using the encoding, so it necessarthats ; % o for somep €
Dist(T).

Observe thap(2k; +¢')(m) holds, because is always a convex linear combination of a set
of vectors containing it. Sinc€k, + 7', 2k, + j') € R, there exists a correspondence matrix
A € [0, 1]2kthx2ktl gyuch that) (2k, + j/)(m x A’) holds. The latter implies that x A’ is
a linear combinations of vectors ;n= {¢ | ;- p}.

It remains to show that R* (7 x A’). Takeaq,,, = m - Aj;. We first argue thatv €
Dist(S x T). Clearlym,A}; € [0,1] for all 4, j. Also 35, S mAL = S8 7 =1 (the
former because each row of a correspondence matrix sumsiyp to
A/)Considerozqij =3 gy, = T A = Zfil Al = m; as required byr R*(m x

Now consideryg,,, = n Qg = S m- AL = (mx A'); as required byt R* (7 x A').

Now if avy, ., # 0thenAj; # 0, whichin turn W|th refinement dfk, + ;' by 2k, +4' implies
that(z, j) € R, and furthermorés;, s;) € () by construction, as required lyR*(m x A"). This
finishes the proof.

U

Lemma 3.28(Completeness)For any two probabilistic automatd and T such thafl proba-
bilistically simulatesS, we have tha® weakly refined.

Proof. LetS = (S,Act—° s;) andT = (T,Act -7 t,), with S = {s1,...,s,} and
T ={ty,...,tr,}. Let@Q C S x T be the probabilistic simulation relation betwe®andT,
witnessing the assumption of the lemma.

The proof proceeds by showing that a relat®rC {1,...,2k; + 11} x {1,...,2ky + [}
is a weak refinement relation betweg®andT.

Take the following candidate fak:

Ry =A{(i,7) | (si. 1;) € Q}

Ry = {(k1 +1i, k2 + ) | (si,t)) € Q}

Ry = {(2ky +7',2ks + §') | (si,t;) € RAs; =5 At; =1}
R= R, URyUR;

We apply the usual coinductive proof technique.

Case 1. Takegi, j) € R, andz satisfyingy(i)(z). We know thatr can only be a point-
distribution. If z;, ; = 1 then we take\ such thatAy, 1, x,1; = 1 (andA is zero for all other
cells). ClearlyA is a correspondence matrix. Moreovex A is a point distribution with 1
on (k2 + j)th position, sa)(j)(x x A) holds by construction of the encoding (see first case in
encoding of constraints). Als@; + i, ks + j) € R; since(s;, t;) € Q.

If x9r,++ = 1 then it means that; YW+ for somer and actionV/(i). But then, smce
(si,t;) € Q, itis possible thatj%cg for some distributiorp. Let ;' be such that; = =
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anda; = V(7). Take a correspondence matrixsuch thatAy, 1+ 25,4+ = 1 (andA is zero
for all other cells). We have that x A is a point distribution with 1 o2k, + j'th position,
soy(j7)(x x A) holds by construction of encoding resultingjiifisee first case in encoding of
constraints). Als@2k, + ', 2k, + j') € R3 C R by definition of R.

Case 2. Takék; + i, k2 + j) € R,. The argument is almost identical to the first subcase in
Case 1. We omit it here.

Case 3. Take2k, + i/, 2k, + j') € Rs andx satisfyingp(2k; + ')(x). Lets; = si'lland
t; = t/'. By Ry we know that(s;, ;) € Q. By construction of the encodinng
and furthermoretjm—”>cg, wherep = o x A for some probability distributiom\ €
Dist(1,...,|o|). Clearlyy(2ky + j')(0) = 1. It remains to check that can be correspon-
dence t.

To this end consider a correspondence matiguch that

A — O‘si,tj/'ri if xz#OandZSkl,jng
Yo otherwise

Now (JJ X A)J = Z?ill—”l xZAZJ = Zfil L * Qg ot /xl = Zfil Qsit; = QSt; = 05 by TR
(this discussion only holds fgr < k5, but the remaining cells are zero, which is easy to argue
for. Also somewhat sloppily we ignored the possibilty ofidign by zero — indeed it cannot
happen since far; = 0 we said that\;; is simply zero). Effectively: x A = p, so it satisfies
1 (2ks + j'). Valuations obviously match.

Moreover if A;; # 0 thenay,,, # 0. then(s;,¢;) € @ and then(i, j) € Ry € R, which
finishes the proof. O

Theorem 3.29 is a corollary from Lemmas 3.27 and 3.28.

Theorem 3.29.T probabilistically simulate§ iff S weakly refineq.

Similarly, we obtain precongruence with probabilistic slation using a suitable encod-
ing.

3.9 Related Work and Concluding Remarks

In this chapter, we have presented CMCs—a new model for septig a possibly infinite
family of MCs. Unlike the previous attempts[86, 61], our nebds closed under many de-
sign operations, including composition and conjunctiore Neve studied these operations as
well as several classical compositional reasoning prassrshowing that, among others, the
CMC specification theory is equipped with a complete refingmelation (for deterministic
specifications), which naturally interacts with parallehgosition, synchronization and con-
junction. We have also demonstrated how our framework camsbd to obtain properties for
less expressive languages, by using reductions.

Two recent contributions [61, 90] are related to our workches et al. [61] propose a model
checking procedure for PCTL [36] and Interval Markov Chdjother procedures recently ap-
pear in [34, 69]), which is based on weak refinement. Howewer,objective is not to use
CMCs within a model checking procedure for probabilististeyns, but rather as a specifica-
tion theory.

Very recently Katoen and coauthors [90] have extended Fisclerk to InteractiveMarkov
Chains, a model for performance evaluation[80, 82]. Thbstmaction uses the continuous
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time version of IMCs [89] augmented with may and must traosg, very much in the spirit
of [100]. Parallel composition is defined and studied fos @ibstraction, however conjunction
has been studied neither in [61] nor in [90].

Over the years process algebraic frameworks have beengwdgor describing and ana-
lyzing probabilistic systems based on Markov Chains (MQ@s) Blarkov Decision Processes
[79, 8, 103]. Also a variety of probabilistic logics have hakeveloped for expressing proper-
ties of such systems, e.g., PCTL [73]. Both traditions supgéinement between specifications
using various notions of probabilistic simulation [61, &Bld, respectively, logical entailment
[81]. Whereas the process algebraic approach favors stelatomposition (parallel com-
position), the logical approach favors logical composit{conjunction). Neither of the two
supportsothstructural and logical compaosition.

There are many directions in which we can still contributéhbior IMCs and CMCs.
First, it would be interesting to see whether the resultsgmeed in Chapter 2 extend to
the continuous-time model of [89, 90]. Another interestinture work would be to extend
these results to other specification formalisms for systé#rasmix both stochastic and non-
deterministic aspects. Among them, one finds probabiléitomata [112] where weak/strong
refinement would be replaced by (probabilistic) simulafidi, 87].

It would also be of interest to design, implement and evale#ficient algorithms for pro-
cedures outlined both in this chapter and in Chapter 2. Defiaiquotient relation for CMCs,
presumably building on results presented in [101], seemmanrtant next step. The quoti-
enting operation is of particular importance for compomense [116, 113, 114, 25, 115]. One
could also investigate applicability of our approach in mlothecking procedures, in the same
style as Fecher and coauthors have used IMCs for model ¢itgeBIGCTL [61].

Another interesting direction consists in using CMCs or 885 abstraction models for
solving stochastic games, following the approach initddig Larsen et al in [49]. We could
also propose to use our IMCs or CMCs in an abstraction-basszhpilistic model checking
procedure [42, 96, 71]. For this purpose, it would be impdrta study the logical fragment
that can be expressed using CMCs.

We should also mix our results with those recently obtair@edimed specifications [50,
23, 22], hence leading to the first theory for specificatiotimm&d probabilistic systems [98].

In the spirit of [56], it would be interesting to extend oumgposition operation by con-
sidering products of dependent probability distributioRgnally, one should propose a more
guantitative version of the refinement operation like thill lae done for contracts in Chap-
ter 4.
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Chapter 4

Probabilistic contracts: a compositional
reasoning methodology for the design of
stochastic systems

4.1 Introduction

In [21], Benveniste et al. have proposed a component-bassdritheory calledontracts An
assume-guarantemntract is a structure that, contrary to interface autarfist, 52] and modal
transition systems [100], allows to distinguish hypotlsese a componeng(aranteesfrom
hypotheses made on its environmeaggumptions This explicit separation allows defining a
more elaborate satisfaction relation than the ones deforedterface or modal theories. More-
over, the authors of [21] use a language theoretic abstraofi systems behavior to represent
both assumptions and guarantees, hence allowing to reprmasee general properties than the
classical graphical-based models.

In this chapter we will focus on developing a contract-basgupositional theory for two
classes of systems, that are (1) non-stochastic and ppssibideterministic, and (2) stochas-
tic and possibly non-deterministic. As in classical nonear verification [37, 129], the sat-
isfaction relation will be Boolean for non-stochastic gyss and quantitative otherwise, hence
leading to two notions of contracts. In addition, we will saarer two notions of satisfaction,
namelyreliability andavailability. Availability is a measure of the average time during which
a system satisfies a given property, for all possible rund@fistem. In contrast, reliability
is a measure of the set of runs of a system that satisfy a grapegy. Both quantities play
an important role when designing, for instance, missioticat systems. Our notion of satis-
faction is assumption-dependent in the sense that runslthatt satisfy the assumptions are
considered to be “correct”. This interpretation, which baen suggested by many industrial
partners, is needed to propose compositional design ogesaguch as conjunction.

Aside from the satisfaction relation, any good contracdaktheory should also support the
following requirements.

1. Refinement and shared refinement. Refinewfasuntracts expresses inclusion of sets of
models, and therefore allows to compare contracts.

2. Structural compositionThe contract theory should also provide a combination dpera
on contracts, reflecting the standard composition of mdagle.g. parallel product.
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3. Logical composition/conjunctionDifferent aspects of systems are often specified by
different teams. The issue of dealing with multiple aspectsiultiple viewpoints is thus
essential. It should be possible to represent severalawst(viewpoints) for the same
system, and to combine them in a logical/conjunctive fashio

The theory should also support incremental design (caistcan be composed/conjunct in any
order) and independent implementability (composablerectg can always be refined sepa-
rately) [55].

We propose mathematical definitions for composition, cociion and refinement. It is in
fact known that most of industrial requiremenfisr component-based design translate to those
operations. Composition between contracts, which mimissecal composition for systems,
consists in taking the intersection between the assungtod the intersection between the
guarantees. Conjunction produces a contract whose assmspte the union of the original
ones and guarantees are the intersection of the original die say that a contract refines
another contract if it guarantees more and assumes lessdéfimition is Boolean for non-
probabilistic systems and quantitative otherwise.

We also establish aompositional reasoning verificatiatheory for those operations and
the two notions of satisfiability we consider. This methadyl allows to reason on the entire
design by only looking at individual components. The thediffers with the type of contracts
under consideration. As an example, we will show that if a-stmthastic systerf; reliably
satisfied a contractC; and a non-stochastic systesnreliably satisfies a contract,, then the
composition of the two systems reliably satisfies the contiposof the two contracts. When
moving to stochastic systems, we will show thabif satisfiesC; with probability o and S,
satisfiesC'; with probability 3, then their composition satisfies the compositiopfand C;
with probability at leastr + 3 — 1. The theory is fully general as it assumes that both systems
and contracts are represented by sets of runs.

Our last contribution is to propose effective and symbajresentations for contracts and
systems. Those representations rely on an automata-begsgsentation of possibly infi-
nite sets of runs. Assuming that assumptions and guaraateegpresented with Blchi au-
tomata (which allows to specify assumptions and guarantébdogics such as LTL [108] or
PSL [60]), we observe that checking if a (stochastic) systatisfies a reliability property can
be done with classical techniques implemented in tools sScBPIN [127] or LIQUOR [35].
We show that satisfaction of availability properties canchecked with an extension of the
work presented in[53]. Finally, we also show that operatibetween and on contracts can
easily be performed on the automata-based representations

4.2 Preliminaries

In this section, we recap some definitions and conceptserklat automata theory. We then
introduce some notations and concepts that will be useceinest of the chapter.

Let X be an alphabet. A finite word ovét is a mappingw : {0,...,n — 1} — X.
An infinite word (or w-word) w over X is a mappingw : N — 3. An automaton is a tu-
ple A = (X,Q,Q0,9, F), whereX is a finite alphabet() is a set ofstates @y € @ is the

1Example: those of the European projects COMBEST [45] andESFE126].
2“Reliably satisfy” means that all the runs that satisfy tesiamption must satisfy the guarantee.
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set ofinitial states § : Q x ¥ — 2% is atransition function(§ : Q x ¥ — @ if the au-
tomaton is deterministic), anfl C (@ is a set ofacceptingstates. Afinite runof A on a
finite wordw : {0,...,n — 1}—X is a labelingo : {0,...,n}—Q such thate(0) € Qo, and
(V0<i<n—1)(o(i + 1) € §(o(i),w(7))). Afinite run g is acceptingfor w if o(n) € F. An
infinite runof A on an infinite wordw : N—X is a labelingo : N—@ such thaib(0) € Q,, and
(VO <i)(o(i+1) € 6(0(i), w(7)). Aninfinite runp is acceptingor w with the Bilchi condition

if inf(o) N F # (), whereinf(p) is the set of states that are visited infinitely oftendyWe
distinguish between finite-word automata that are finit@m@atta accepting finite words, and
Bilchi automata[29] that are finite automata accepting iefiwords. A finite-word automaton
accepts a finite word if there exists an accepting finite run farin this automaton. A Bichi
automaton accepts an infinite woudif there exists an accepting infinite run farin this au-
tomaton. The set of words acceptedAys called thdanguage accepted by, and is denoted
by L(A). Finite-word and Blichi automata are closed under inteieeind union. Inclusion
and emptiness are also decidable. Both finite-word and Biigioimata are closed under com-
plementation and, in both cases, the construction is knonretexponential. However, the
complementation operation for Blichi automata requirescatie algorithms that not only are
worst-case exponential, but are also hard to implement ptichize (see [130] for a survey).

Let N, = N U {w} be the closure of the set of natural integers &ipd= [0...n — 1] the
interval ranging from) ton — 1. Let V' be a finite set o¥ariablesthat takes values in@domain
D. A stepo : V — D is a valuation of variables df. A runonV is a sequence of valuations
of variables ofl’. More precisely, a finite or infinite run is a mapping: N, — V — D,
wheren € N, is the length ofw, also denotedw|. Lete be the run of lengtl. Given a
variablev € V and a timei > 0, the value ofv at timei is given byw(i)(v). Givenw a
finite run onV ando a step on the same variablesg is the run of lengthw| + 1 such that
Vi < |wl, (w.o)(i) = w(i) and(w.o)(Jw|) = o. The set of all finite (respectively infinite)
runs onV is denoted byV]" (respectively[V']*). The set of finite and infinite runs oA is
denoted V] = [V]* U [V]“. Denote[V]" (respectively[V/]=") the set of all runs oV of
length exactlyn (respectively not greater thar). Thecomplemenof Q C [V]|™ is given by
-Q = [V]*\ Q. Theprojectionof w on V' C V' is the runw |y such thatw |y/| = |w|
andvv € V', Vn > 0, w |y (n)(v) = w(n)(v). Given a runw’ on V', theinverse-projection
of w’ onV is the set of runs defined by’ V= {w € [V]* | w |y= w'}. A systemover
V is a pair(V,2), where( is a set of (finite and/or infinite) runs o. Let S = (V,Q)
andS’ = (V', Q) be two systems. Theompositionof S and.S’, denotedV, ) N (V', ),
is given by (V U V', Q") with Q7 = Q VYY" nQ 1YYV, The complemenbf S, denoted
-5, is given by—S = (V,—=Q). The restriction of system§ = (V) to runs of length not
greater tham € N, (respectively exactly) is the systent|<" = (V,Qn [V]S") (respectively
SI™ = (V,Q N [V]"). In Section 4.4, it will be assumed that systems can respomyery
possible input on a set of probabilistic variables. Suclesys are said to beceptiveto those
variables. GiverU C V, a set of distinguished variables, systém= (V. () is U-receptive
if and only if for all finite runw € Q N [V]" and for all inpute : U — D, there exists a step
o:V — Dsuchthatr |;= pandw.c € Q. GivenU C V N V’, two U-receptive systems
S =(V,Q)ands’ = (V’', Q) areU-compatible if and only ifS N S” is U-receptive.

A symbolic transition systeoverV is a tupleSymb = (V, Qs, T, Qs0), whereV is a set of
variables defined overfaitedomainD, (), is a set of states (a state is a mapping fidro D),

T C Qs x Qy is the transition relation, an@,, C @, is the set of initial states. A run ¢fymb
is a possibly infinite sequence of statggg,; ... such that for eacti>0 (gsi, ¢sir1)) € T
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andgs € Q5. A symbolic transition system for a systefir, 2) is a symbolic transition
system ovel” whose set of runs iQ. Operations of (inverse) projection and intersectionlgasi
extend from systems to their symbolic representationsh(sapresentation may not exist).
Let B4 = (£,Q,Q0,6,F C @) be an automaton such thatis a mapping” — D. The
synchronous produdietweens, andSymb is the automatos , « symp = (0, Q', Qp, d', F),
where@' = Qs x Q, Q) = Qs X Qo, (a',0') € §((a,b),0) iff (a,a’) € T and¥’ € §(b,a),
F' = {(a,b) € Q'|b € F}. Each state in the product is a pair of states: oneSfpnb and
one forB,. If we do not take the information fron%, into account, a run of the product
corresponds to a run dfymb.

4.3 Non-Probabilistic Contracts

In this section, we introduce the concept of contract for-atmthastic systems. We also study
compositional reasoning for such contracts. We will préskeea theory in the most general
case by assuming that contracts and systems are given byofpgiossibly infinite sets of
runs [21]. In practice, a finite representation of such setequired and there are many ways
to instantiate our theory depending on this representatirthe end of the section, we will
give an example of such a representation. More preciselyyiWéllow a successful trend in
Model Checking and use automata as a finite representati@y$tems and contracts. We will
also derive effective algorithms based on this symbolicesgntation.

4.3.1 Contracts

We first recap the concept obntract[20], a mathematical representation that allows to distin-
guish between assumptions made on the environment andrpesps the system.

Definition 4.1 (Contract) A contract overl/ is a tupleC' = (V, A, G), whereV’ is the set of
variables ofC, systemd = (V, Q4) is theassumptiomnd systent’ = (V, Q)¢) is theguarantee

The contractC' is said to be incanonical formif and only if -A C G. As we shall see
in Section 4.3.2, the canonical form is needed to have umifootions of composition and
conjunction between contracts.

We now turn to the problem of deciding whether a system sagisficontract. A system that
satisfies a contract is amplementatiorof the contract. There are two types of implementation
relations, depending on the property captured by a contiadirst possible interpretation is
when the contract represents properties that are definednsnof the system. This includes
safety properties. In this context, a system satisfies aaciif and only if all system runs that
satisfy the assumption are included in the guarantee. Tpkes to reliability properties, and
a system implementing a contract in this way is saiR1satisfythe contract. Another possible
interpretation is when the contract represents propdhasare defined on finite prefixes of the
runs of the system and when one wants to evaluate how oftesysitem satisfies the contract.
We will say that a system-satisfiesa contract with leveln (0 < m < 1) if and only if for
each of its runs, the proportion of prefixes of system rung dhea either in the guarantee or
in the complement of the assumption is greater or equat.torhis concept can be used to
checkaverage safeness reliability, i.e., to decide for each run whether the average number
of positions of the run that do satisfy a local condition isajer or equal to a given threshold.
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Mean-availability until positiort is
computed for the runs of the sys-
tem w.r.t a contract with assumption
{z,y}* and guarantee the set of fi-
nite runs ovef z, y } such that in the
final statex # 1 ory # 1. Posi-
tions where the contract is satisfied
are white.
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Figure 4.1: lllustration of mean-availability.

Definition 4.2 (R-Satisfaction) SystemS = (U, Q2) R-satisfies contraat’ = (V, A, G) up to
timet € N, denotedS =%® C, ifand only if S|t N A C G.

Discussion.In this chapter, we assume that runs that do not satisfy thegstions are “good”
runs, i.e., they do not need to satisfy the guarantee. Intmary, assumptions are thus used
to distinguish runs that must satisfy the property from éthgat are not forced to satisfy the
property. There are other interpretations of the paradigmssume/guarantee in which the runs
that do not satisfy the assumptions are considered to beWadand our industrial partners)
believe that our definition is a more natural interpretatisrihere is no reason to eliminate runs
on which no assumption is made. Another advantage of thisoapp, which will be made
more explicit in Section 4.4, is that this interpretatiolvais to define a conjunction operation
in the stochastic case.

The definition of A-satisfiability is more involved and retgs additional notations. The
objective is to compute an invariant measure of the amoutitred during which the system
satisfies a contract. This relation can be combined diitcounting, which allows to give
more weight to faults that arise in the early future. kete [V]™ be a (finite or infinite)
run andC = (V, A, G) be a contract. We define the functigfj : N, — {0,1} such that
©S(n) =1 < wp, € GU-A. If we fix an horizon in time € N, and adiscount factor
d<1, defineDy'(w) = 130 ¢S (i) if d = 1and D' (w) = 254 S0 dipS (i) if d < 1.
Dtc’d(w) is the mean-availability until positiohalong the execution corresponding:@towith
discount factorl. The concept is illustrated in Figure 4.1. A-Satisfactiam cow be defined.

Definition 4.3 (A-Satisfaction) A systemS = (U, (2) A-satisfies at leveln contractC' =
(V, A, G) until positionk with discount factor/, denotedS ):;25’;) C, iff:

: kd -
we(ér#]rulv)‘ Dgivov (w) 2 m ifk<w

we(si%}ffuv)\k hrtlll;?f DCTqu(w) >m  fk=w.

3Discounting is a concept largely used in many areas suchoamety.
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It is easy to see that the limit in Definition 4.3 convergeeceing > 0. In Section 4.3.4 we
will propose techniques to check satisfiability for contsatat are represented with symbolic
structures.

In the rest of the section, we propose definitions for contmosi conjunction, and re-
finement. We also study compositional verification with exgpo these definitions and the
satisfaction relations we considered above.

4.3.2 Compositional reasoning

In this section, we first define operations between and orractstand then propose a com-
positional reasoning framework for contracts. We starhwilie definition forcompositiorand
conjunction Composition between contracts mimics classical comipositetween systems at
the abstraction level. Informally, it consists in taking intersection between the assumptions
and the intersection between the guarantees. Conjunatiamiore intriguing operation that
has no translation at the level of systems; it consists inlyecing a contract whose assump-
tions are the union of the original ones and guarantees aratitrsection of the original ones.
Roughly speaking, the conjunction of two contracts reprisstheir common requirements.

Definition 4.4. Let C; = (V;, A;, G;) with i = 1,2 be two contracts in canonical form. We
define

e Theparallel compositiometweerC; and C,, denoted”; || Cs, to be the contractl; U
va, Al N A2 U _|(G1 N Gg), Gl N Gg)

e TheconjunctionbetweerC; andCs, denoted”; A Cy, to be the contractl; U V5, A; U
Ay, G N Gy).

It is easy to see that both conjunction and composition pveseanonicity.

Discussion. As pointed out in [20], the canonical form is needed to havioum notions

of composition and conjunction between contracts. Indeeasider two contract§’;, =
(V,0,[V]>) andCy = (V,0,0). Observe that’; is in canonical form and’; is not. As-
sume also that any system can satisfy bothandCs. The parallel composition betweé&n
andCs is the contractV, [V']°, (). This contract can only be satisfied by the empty system.
Consider now the contract, = (V, 0, [V]>), which is the canonical form fofs. It is easy

to see that the composition betweéh and C’, is satisfied by any system. Non-canonical
contracts can also be composed. Indeed, the compositiowamhbn-canonical contracts
Cy = (V1,A1,Gy) andCy = (Vh, Ag, Gs) is given by the following formula’; ||,.. Co =

(V1 U Vs, (A1 U=Gh) N (Ay U =Gy), Gp N G,y). Observe that this composition requires one
more complementation operation, which may be computatipmdensive depending on the
data-structure used to representedndG (see Section 4.3.4).

We now turn to the definition akefinementwhich leads to a preorder relation on contracts.

Definition 4.5. We say thatC; refinesC, up to timet € N, denotedC; <P (C, if it
guarantees more and assumes less, for all runs of length maitey thant: A, 1:V"2D
(A2 TVlUV2)|§t and (Gl TV1UV2)|St g G2 TV1UV2.
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Property 4.1. By a simple inspection of Definitions 4.4 and 4.5, one obsettvat both con-
junction and composition are associative, i.€5 || (Cy || C3) = (Cy || Cy) || C5 and
Cy N (Cy A C3) = (Cp A Cy) A Cy (incremental design). Considér, || Cs (respectively,
Cy A C3). We also observe thatdf; <=9 Cy, then(Cy || C3) <Y (Cy || C3) (respectively,
(C A C3) =D (Oy A O3)) (independent implementability).

It is interesting to see that the conjunction of two consamincide with theirgreatest
lower boundwith respect to refinement preorder. Thus the following then

Theorem 4.2. Consider two contract§’; andC,, we have that
o (U1 Ny j(gt) 4 andCl A Cy j(gt) Oy, and

e for eachC such thatC <=t ¢} andC <=t Cy, we havel' <=t (C) A Cy).

4.3.3 Compositional Verification

In this chapter,compositional verificatiorrefers to a series of results that allow to deduce
correctness of a global system by observing its atomic compis only. We start with the
following theorem for reliability.

Theorem 4.3([20]). ConsiderS;, S, two systems and, Cs two contracts in canonical form.
The following propositions hold for atl € N:

e S E® Op andS, RO Cy implies that(S; N Sy) =R (Cy || Cs);
° Sl ’:R(t) Cl and51 ’:R(t) Cg iff Sl ’:R(t) (Cl A Cg),
e S E®M ¢ andCy ==Y C, implies thatS; =20 .

The above theorem can thus be used to deduce satisfactidn tw.cconjunction or compo-
sition without computing the result of these operationsliekly. The double implication in
the second item of the theorem is valid as conjunction is efihdd at the level of systems.
The theorem can also be used to decide satisfaction on adefomgract without performing
any computation. By combining the definitions of compositioonjunction, refinement, and
Theorem 4.3, we get the following corollary.

Corollary 4.4. Let S be a system and’, C5, C53 be three contracts in canonical form. We have
the following results.

o SR O | (o || G5 IfES RO (O | o) | O
o SERD LA (CyACy)iff S EED (Cy A Cy) A Cs;

o If C) =) Oy and S ERY (O || C3) (respectivelyS =79 (Cy A Cy)), thenS O
(Cy || C3) (respectivelyS =F® (Cy A Cs)).

We now switch to the case of availability. We propose theofeihg theorem that, for ex-
ample, gives a lower bound on availability for conjunctiomalisjunction without computing
them explicitly.
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Theorem 4.5. ConsiderS; and S, two systems and’, Cs two contracts in canonical form.
Letd < 1 be a discount factor. The following propositions hold fdriaé N_.:

o Sy, ¢ andS, " O, implies that(S; N Ss) i (1 || Co);

d,mi+mo—1

e 5 ):dml C; andS; ):A(t Cs implies thats; =3 (C1 A Cy);

d,mi+ma—1
e 5 ):257? Cy andCy <= ¢, implies thatS, ):257? C

The above theorem is an extension of Theorem 4.3 to the camaibdbility. It is interesting
that the double implication in item two of Theorem 4.3 doesremain valid in this extension.
This is because of the definition of availability. Observattine last item of Theorems 4.3 and
4.5 also stands if’; andC;, are not in canonical form. Observe also that Theorem 4.5 call
for a direct extension of Corollary 4.4 to the case of avdlilgb Before we give the proof
for Theorem 4.5 and discuss the extension, we first recapdit@ving classical algebraic
properties.

Property 4.6. ConsiderlV C V’ C V" three sets of variables anfl and E” two sets of runs
overV andV” respectively. We have:

(ET) 1Y =B (4.61)
(E1Y") Ly =E1" (4.62)
(E" lv) lv =E |v; (4.63)
weE =w|ye R |y (4.64)
weE=wl"CE. (4.65)

We now give the proof of Theorem 4.5.

Proof of Theorem 4.5.
For the sake of simplicity, we will consider that= w. The proofs fork < w are simpler
versions of those presented here. We consider the thres dkthe theorem.

1. LetS = (U,Q) = S;nSyandC = (V, A,G) = C, || Cs. SinceC; andC, are contracts
in canonical form, we havé/; = G; U -A; andGy; = G5 U —A,. Similarly, since
composition preserves canonicity, we héave- G U - A.

Considen € ((S; TV1Y02 NG, 11V2) UV Ik L etw, = w |p,uy, andws = w 1,01,
By (4.64), we have

wy € (((Sy T9RU2) 1UOUV)* |1, By (4.61) and (4.62), this implies thatw, €
(S; 1YV R, Similarly, we also have, € (S, TV2VV2)|,

Considert < k andi < t. By definition, if 91" (i) = 0, thenwy ¢ G 17°V. By
(4.65), we deducé(w; ;) ¢ G1 TV*9") V (wap ¢ G2 1Y27'2)]. As a consequence,

(pgTUUV (Z) Z @giTUlUVl (7,) + QOC2TU2UV2 (7,) -1

w2
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= Wt <k, Ddow (w) =D o, (w1)

ClTUlle

_'_ DC TUZUVZ <w2) - 1

= liminf D00y (w) > liminf DY TUluvl (w1)

+ h:grilknf Dc sV, (wy)

-1

By hypothesis, we have

hrtri)l]?fD TU1UV1 (wy) > my

llgrilglf DC TUQUVQ( wy) > M.

As a consequence,

llgri)lglf DchdU)UV( ) >my +mg — 1.

Finally,

Vw € (8 179Y)¥, liminf DIy (w) Zmy +m
—1

. (t,d)
- we(slﬁffwnk lin nf Do (w) Zmy +my

-1
U

2. LetC = (V, A, G) = C; AC,. SinceC; andCs, are contracts in canonical form, we have
G = G1U—-A; andG, = G2 U —A,. Similarly, since conjunction preserves canonicity,
we haveG = G U —A.

Considerw € (S; 11V |k, Letw, = w |y,u1, andw, = w |y,uy,. BY (4.64), we have
wy € ((S; TYYY)* Ly,ov, - By (4.62), this implies thatw, € (S; 1V*YY1)|F. Similarly,
we also haveu, € (S; TV1VV2)|k,

Considert < k andi < t. By definition, if oC'”""" (i) = 0, thenwy,; ¢ G 1V1Y. By
(4.65), we deducé(w; ;) ¢ G1 TV*") V (wapp ¢ G2 1Y1V"2)]. As a consequence,

cruivv . C,1U1uVy . CytU1UVa .
Pt D) Z )+ et () - 1
=Vt <k, Dg’TdU)luv (w) >D(C [?Uluvl (wl)

+ DD () — 1

Cs TU1UV2

81



= hm mf D&

CTUIUV

(w) > hm 1nf Dc TU1U"1 (wy)

+ lntrllknf Dc T (ws)

—1.
By hypothesis, we have

hm 1nfD TU1UV1 (wy) > my

hItInglf DC TUIUVQ( wy) > M.

As a consequence,
lim inf D2

PRy CTUlUV( ) Z my + mo — ]-

Finally,

o d
Yw € (S TVV)|F, hrtri)l]?f Dnglw(w) >my + my

—1
- we(SllTl}’wa” hrtri)l,?f DCTU uv( ) >my + my
— 1.

U
3. Considenw € (S; TVY2) %, Letw' € w 1YYV andw;, = v’ |y,u1;- By (4.61) and
(4.62), we havew, € (S; TV |k,

Consider nowt < k andi < t. By definition, ¢S (i) = 1 <= wy €
(G1 U—Ap) V1Y% By hypothesis((G; U —A;) Tvluvz)‘gk C ((GyU—Ay) TV1UV2)|§k_
Thug T[t])y$4(6;5) (GLU—A)) TU1UV1UV2)|Sk C ((Gy U —Ay) T2 )<k,

If ST (4) = 1, then

wip € (G U—Ay) 1797
= 'UJl[O, Z] TU1UV1UV2g ((Gl U _‘Al) TU1UV1UV2)|§/€
= w1 [0, 1] TIIIVRC (G U ~Ay) TUIWVaUV2) <k
Wi, € (Ga U —A,) TNV
W Lonu € (Ga U =Ag) 1719192 1y oy, by (4.64)
= wy) € (G2 U—Ay) 11101 by (4.62)
= O (i) = 1.
Thus,
<k Yt TR 2 ol ()
=Vt <k, DU o, (w) > DYoo, (1)

= hm me (w) > hm mf DC s (wy).

Cs TU1UV2
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By hypothesis,

.. t,d
h?i 1knf D 1010w

(’LUl) 2 m.
As a consequence,

Vw € (S TVVV2) |k, lirtn inf D" (w) >m

k CzTUlUV?

. .. t.d
’ > m.
= s oy TR Doy () 2 m

O
Theorem 4.4 also extends to the case of availability. Hemedyave the following corollary

Corollary 4.7. Let S be a system and’, C5, C53 be three contracts in canonical form. We have
the following results.

o S O (Cy || Cy)iff S LY (O | o) | Cs;

o SELM CA(Cy A Cy)iff S LW (A Cy) A Cy;

d,m

o If O ==Y ¢y and S ):252) Cy || Cs (respectively,S ):iffb) Ci A Cs), thenS ):252)
(Cs || Cy) (respectivelysS =5 (Cy A ).

4.3.4 Effective algorithms/representations

We proposesymbolicand effectiveautomata-based representations for contracts and systems
Those representations are needed to handle possibly endigiis of runs with a finite memory.
We will be working with variables defined overfimmite domainD. According to our theory,

a symbolic representation is effective for an assumptiesgr a guarantee) if inclusion is
decidable and the representation is closed under comptatieen (needed for refinement),
union, and intersection. A representation is effectiveafgystem (that is not an assumption or

a guarantee) ifitis closed under intersection and (inygnsgection, and reliability/availability

are decidable.

We assume that systems that are not assumptions or guaranteepresented wigym-
bolic transition systemgsee Section 4.2 for properties) and that assumptions aagiees
are represented with either finite-word or Buchi automatet (I_ = (V, A, G) be a contract,

a symbolic contracfor C' is thus a tuplgV, B4, Bs), whereB,4 and B, are automata with
L(B4) = AandL(Bg;) = G. Observe that there are systems and contracts for whick ther
exists no symbolic representation.

Since both finite-word and Blchi automata are closed undaptamentation, union and
intersection, itis easy to see that the composition anddhgiaction of two symbolic contracts
is still a symbolic contract. Moreover, since inclusion ecilable for those automata, we
can always check whether refinement holds. We now focus osatigfaction relations. We
distinguish between R-Satisfiability and A-Satisfiabiliye consider a symbolic contraCt=
(V, B4, Bg) and a symbolic transition systefiymb = (V, Qs, T', Qs0).
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¢ Reliability. When considering R-satisfaction, we will assume thatand B are Blchi
automata. It is conceptually easy to decide whefhenb R-satisfie<”. Indeed, follow-
ing results obtained for temporal logics [131, 132], impémed in theSPINtoolset [127],
this amounts to check whether the Blchi automaton obtaigeédking the synchronous
product betweetsymb and—(Bg U —B,4) is empty. Observe that assumptions and guar-
antees can also be represented by logical formalisms thatéhranslation to Bichi au-
tomata — this includesTL [108] andETL[134]. The theory generalizes to other classes
of infinite word automata closed under negation and unionathelr logical formalisms
such asCTL[40] or PSL[60].

e Availability with level m and discount factor d. In [53], de Alfaro et al. proposed
DCTL, a quantitative version of the CTL logic[40]. DCTL has thewasyntax as CTL,
but its semantics differs : in DCTL, formulas and atomic msitions take values be-
tween0 and1 rather than in{0,1}. Lety; andy, be two DCTL formulas, the value
of 1 A g (resp. ¢y V ¢») is the minimum (resp. maximum) between the valuegof
andp,. The value oV, (resp. Jy;) is the minimum (resp. maximum) valuation of
1 over all the runs. In addition to its quantitative aspect,TlR@Iso allows to discount
on the value of the formula as well as to compute its averdgedperator, wherel is
the discount : see the semantics with= 1 andd < 1 page6 of [53]) on a possibly
infinite run. We assume thd&, and B, are completefinite-word automata and show
how to reduce A-satisfaction to the evaluation of a DCTL mrtyp Our first step is to
computeSymb’, the synchronous product betwegpmb andB; U —B4. The resulting
automaton can also be viewed as a symbolic transition systerse states are labelled
with a propositionp which is true if the state is accepting and false otherwisefatt,
finite sequences of states §f/mb’ whose last state is accepting are prefixes of runs of
Symb that satisfyB; U —34. Hence, checking whethéfymb A-satisfiesC' boils down
to compute the minimal average to gee 1 in Symb’. Our problem thus reduces to the
one of checking for each initial state 8fymb’ whether the value of the DCTL property
V/\4 pis greater or equal ton.

4.4 Probabilistic Contracts

We now extend the results of the previous section to systéaisnmix stochastic and non-
deterministic aspects. As for the previous section, allresults will be developed assuming
that contracts and systems are represented by sets of rdrikeaman automata-based repre-
sentation will be proposed.

Consider a system whose set of variableslUis Our way to mix stochastic and
non-deterministic information consists in assuming taagny moment of time, the value of a
set of variableg” are chosen with respect to a given probability distributidhe value of the
variables inU \ P are chosen in a non-deterministic manner. From the poinissi of com-
positional reasoning, it matters whether variable® iare local to a given system or global and
shared by all the systems. Indeed, without going to the Idetd@aling with local probabilis-
tic variables would require to handle conditional probiéiles in composition and conjunction
operations. To simplify the problem, we assume that vaembi P are global and shared by
all the systems involved in the design. Remark that one aaady model a lot with global
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variables. Classically, the idea is to view some of the \@eisas “don’t care” in the systems
in where they do not matter. Without loss of generality, veoassume that for a given system,
the value of the non-deterministic variables remain theeséonthe initial position of all the
runs. This allows to select the initial value of the variabdd the run by using the probability
distribution only.

We will assume that systems are receptivefanDue to this property, one can see that
runs of a system on a set of variablEswith P C U are runs onP in where each po-
sition is augmented with an assignment for the variable& if P. In addition, we sup-
pose that, in a given position, the probability to select tiegt values of the variables in
P is independent from the non-deterministic choice. Thisasalby assuming the exis-
tence of a unique probability distributidh over [P]* and extending it tdP|* as follows:
Vw € [P]*, P(w) = f{w,epw | w<w) P(w’)dw’, where< is the prefix order on runs.

Remark 4.1. Our model of computation is clearly not as powerful as Mark®cision Pro-
cesses (MDPs). Indeed, in an MDP, at any given moment of tireeshoice of the values of
variables inU \ P may influence the distribution on the next values of variaiple”. As we
assume a unique global distribution on the set of runs, tleécehof the values of the variables
in U \ P does not influence the probability distribution that is fixeddvance and only depend
on the probabilistic choices.

Before defining relations between systems and contracis,fitst necessary to define a
probability measure on the set of runs of the system. By Hg®i$, this measure has been
defined on the set of runs ovErand we have to lift it to runs off. As the system is receptive
on P, one could think that the measure directly extends to the nfrthe system. This is
actually not true. Indeed, one can associate several gifferalues of the non-deterministic
variables to a given run of the stochastic variables. Thoblem can be solved with the help of
a scheduler that, in a given moment of time, associates ae@nigjue to each non-deterministic
variable with a given value of the probabilistic variablés.practice, systems are not defined
as sets of runs but rather as symbolic objects, e.g., Marlenidibn Processes, that generate
runs from a set of initial states. In such context, the rasmiuof the non-determinism is
incremental. The process starts from an initial value ofpfababilistic variables to which is
associated a unigue value of the non-deterministic vasallhen, at any moment of time and
for any run, the scheduler associates a unique non-detstinichoice to a given value of the
probabilistic variables. As the system is receptive/gna scheduler basically associates to
any position of any run o® a value for the non-deterministic variables in order toiegt a
run of the system. This is sufficient to define a probabilityaswee on subsets of runs of the
system. The assignments can either depend (1) on the lasbpas the run, in which case the
scheduler is said to be memoryless, or (2) on a prefix of theinumhich case the scheduler is
said to be history-dependent.

We now propose a general definition of the “effect of a schexdjile., computing a subset
of runs ofS receptive onP and on which a probability measure can be defined. Charaicigri
the effect of the scheduler is enough to reason on compnoaltéesign. This is different from
the application of the scheduler itself, i.e, the choice enatla given position. Consider a
systemS = (U, 2). From a definition point of view, since the system is receptim P, the
effect of a schedulef can be characterized by a mapping from every finite (or ird)minw
on probabilistic variable® to a runf(w) of S which coincides withu for every probabilistic
variable. This can be formalized with the following defiaiti
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Definition 4.6 (Scheduler) A schedulerf of systemS = (U,Q2), with P C U, is a
monotonous mappind]” —  such that for alkw € [P]", f(w) | p= w. The set of schedulers
corresponding to a systemis denoted byched(S).

For simplicity of the presentation, we use the term schedoleefer either to the resolution
of the non-determinism in a given position (which will be ded in Section 4.4.3) of the run
or to the effect of applying the scheduler to generate a suifseins of the system whose
probability measure is defined. L¢tbe a scheduler defined on a finite set of runs of length
k. To be coherent with classical definitions of schedulersrésolve non-determinism starting
from the initial set of states, we have to suppose fhiatcausal. More precisely, given a run of
lengthk + 1, this means that cannot change the non-deterministic assignments to ttie pre
of lengthk of the run. Formallyyw, w’ € [P]",w < w' = f(w) < f(w’). In practice, thisis a
natural assumption that is only emphasized as it will be uséue proofs.

The above theory is illustrated in Figure 4.2. Figure 4.2esents the set of runs of a
probabilistic variablep that can take two valuest and2. Figure 4.2b presents the set of
runs of a system whose unique probabilistic variablg. i3he runs colored in dark are those
selected by the schedulers. One can see that the probab@é#gure of these runs Is=
0.24 + 0.06 + 0.28 4 0.42, while the measure on all runslisi6. The reason is that probability
values are duplicated due to non-determinism. As an exarfipla the state : 1,n : 5, the
probability thatp = 2 in the next step i9.2. However, this probability is duplicated because
p : 2 can either be associatedia 0 or ton : 5. The scheduler will choose between those two
values. For doing so, it may use the history of the run.

A

pil p:2
p:l p:2 p:l p:2
24 .06 28 42

.24 .06 .06 .28 .28 42 42

(a) Set of runs for a probabil- (b) Set of runs with a probabilistic variabjeand a
ity variablep and its probabil- non-deterministic variable, and a schedulef
ity distribution.

.24 .06 .28 42

(c) Measure on the sets of runs af-
ter applying the schedulgr

Figure 4.2: lllustration of a scheduler defining a prob&piineasure on a set of executions
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4.4.1 Probabilistic contracts

We will say that a contragt’ = (V, A, G) is aprobabilistic contractff P C V/, i.e. iff its set
of variables contains all the probabilistic variables. V@svrturn to the problem of deciding
whether a systerfi = (U, 2) satisfies a probabilistic contra€t= (V, A, G). As it was already
the case for non-probabilistic contracts, we will distirgjuR-Satisfaction and A-Satisfaction.

In Section 4.3, R-Satisfaction was defined with respect t@aléan interpretation: either
the system R-satisfies a contract or it does not. When mowiiget probabilistic setting, we
can give gguantitativedefinition for R-Satisfaction that igor any scheduler, is the probability
to satisfy the contract greater or equal to a certain thrdsi?o

Definition 4.7 (P-R-Satisfaction) A systemS = (U, (2) R-satisfies a probabilistic contract
C = (V, A, G) for runs of lengthi: (k € N*°) with levela, denoteds =" ¢, iff

el (AP N (GU=4) 1] L) 2 o

Observe that, as for the non-probabilistic case, we congide runs that do not satisfy the
assumption are good runs. In addition to the motivationmiveSection 4.3.1, we will see
that using such an interpretation is needed when consgi#r@conjunction operation (see the
observation after Theorem 4.8).

Though A-Satisfaction was already qualitative, we now hlavake into account the prob-
abilistic point of view: instead of considering the mininvalue of the mean-availability for all
runs of the system, we now consider thminimal expected valueof the mean-
availability for all schedulers.

Definition 4.8 (P-A-Satisfaction) A systemS = (U, 2) A-satisfies a probabilistic contract
C = (V,A,QG) for runs of lengthk (k € N°°) with levela and discount factor/, denoted

S 4% e, iff
inf / P(w) - F(w)dw > «
f€ESched(STUVV) we[P]k
with

py = | Pt <
YT tminfe DR (Fw) ik = w.

4.4.2 Operations on probabilistic contracts and Compositinal reasoning

We now leverage the compositional reasoning results oi@e4t3.2 to probabilistic contracts.
We consider composition/conjunction and refinement séglgra

Composition and Conjunction

Composition and conjunction of probabilistic contractdefined as for non-probabilistic con-
tracts (see Definition 4.4). We thus propose an extensiomebilems 4.3 and 4.5 which takes
the probabilistic aspects into account.
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Theorem 4.8 (P-R-Satisfaction) Consider three systems = (U,?), S; = (U,€,) and
Sy = (Us, §25) and two probabilistic contract§; = (V;, Ay, G1) andCy = (Vs, A, Go) that
are in canonical form. We have the following results:

1. Composition.  Assume thaf, and S, are P-compatible. If S; [="® ¢, and
S, |5 ¢y, thenSy 0 S, ="M ¢y || €, withy > a + 8 — 1 if a + #>1 and 0 oth-
erwise.

2. Conjunction. Assume th&t is P-receptive. IfS |): ¢, and S |):R(’c C,, then
S |):f(k) Ci NCywithy > a+  — 1if a + >1 and 0 otherwise.

Remark that the choice ofin Theorem 4.8 is tight: this bound is matched in many cases. W
first state a classical algebraic property, which in factifies the choice fory in the theorem,
and two lemmas that will be needed in the proof of TheoremWsthen present the proof.

Property 4.9. Let £; and E; be two sets of runs ovér. We have:

P(=(Ey N Ep)) < P(=Ey) + P(=Ey)
= 1-P(E,NE,) < (1-P(E))+ (1 —P(E))

We now propose the two lemmas.

Lemma 4.10. ConsiderS = (U, 2) a P-receptive systenf, € Sched(S) a scheduler ot and
U’ a set of variables. I C U’ C U, then we have:

[P]* — Sl
’ Sched(S [i/).
flu { w e fw) Lo }6 ched(S |yv)

Proof. Let f' = f |y. By definition, f' : [P]* — S |y. Consider nomv € [P]* and
w' < w. Sincew’ < w, we havef(w') < f(w). As a consequencg;(w’) < f'(w). Moreover,
f(w) |p=wandP C U’, thus by (4.63), (f(w) lu/) |p=w.

U

Lemma 4.11. ConsiderS = (U, (2) a P-receptive systent, € Sched(S) a scheduler of and
U’ andU” two sets of variables. IP C U’ C U, P CU” CU andU’' U U"” = U, then

Vw € (P)>, f Lo (w) N f lyn (w) = {f(w)}.

Proof.

Letw = f |y (w)andw” = f |yv (w). w, w" andw” are such thati € N,Vv €
V' fw)(i)(v) = w'(z)(v) andVi € N, Vo € V", f(w)(i)(v) = w”(i)(v). Moreover, because
w’ andw” are both projections of (w), Vi € N,Vo € V' 0 V", f(w)(i)(v) = w'(i)(v) =
w" (i) (v).

Now, considetwy € f v/ (w)N f Ly» (w). Sincewy € (f Ly (w)) T, we havew, |y= w
ThusVi € N,Vo € V', wy(i)(v) = w'(i)(v) = f(w)(i)(v).
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Similarly, sincew, € (f [y~ (w)) 1V, we haveVi € N,Vv € V', wy(i)(v) = w”(i)(v) =

f(w) (@) (v).
Finally, Vi € N,Yo € V = V' U V", w"(i)(v) = f(w)(i)(v), thusw” = f(w).

We now give the proof of Theorem 4.8

Proof of Theorem 4.8.
We separately prove the two items of the theorem.

1. LetS = (U,Q) = S1NSyandC = (V, A, G) = C; || C2. SinceC; andC, are in canonical

form and since composition preserves canonicity, we witistder thatz; = G; U - A4,
G2 = G2 U _'Ag andG = G U —A.

Considerf € Sched(S 1Y“"). SinceS; and S, are P-compatiblef is defined over
all runs in [P]¥. Moreover, sinceS = (S; TVY%2) N (S, 191Y02) we have(f €
Sched((S; TU1WV2) TUUVY)) A (f € Sched((Sy TV1VY2) 1UYVY), By (4.6:1), we obtain

(f € Sched(S; 1Y°V)) A (f € Sched(S, TV)).

Let fi = f lo,uy, @ndfs = f lo,u1,- By Lemma 4.10, we have

A (f1 € Sched((S1 17°Y) Lv,un))
(fo € Sched((S2 T7°Y) Luv,un))

Thus, by (4.62),
(f1 € Sched(S; 1U19Y1) A (fy € Sched (S, TV29Y2)).

Consider noww € [P]*. If fi(w) € G; 1YY", then by (4.65) and (4.61), f1(w) V2V C
Gy VY. Similarly, if fo(w) € Gy V29" then fo(w) TV9VC Gy, 1YYV, As a
consequencef;(w) TV Nfy(w) 1Y9YC (Gy N Gy) 1YYV, and, by Lemma 4.11,
f(w) € (G NGy) 1YYV, As a consequence,

P A Gr 199 1o Ta(PT) 1 Ga 1907 1
C (P NG 1] Lp.

'

E

This implies, by (4.9t), thatP(E) > P(E;) + P(E,) — 1. Moreover, by hypothesis,

P(E)
P(Es)

(AVARAYS

3.
Thus,P(E) > a+ ( — 1 and

Vf € Sched(S 1Y),
P([f([PI)NG 1"V |p) = a+ -1,
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= adnt RSP NG 1PV L) >

a+ [ —1.

2. We willuseC = (V, A,G) = C; A Cy. SinceC; andC, are in canonical form and since
conjunction preserves canonicity, we will consider that= G, U—A;, G, = GoU—A,
andG = G U —A.

Considerf € Sched(S 1Y). SinceS is P-receptivef is defined over all runs ifP].

Let fi = f lvuv, andfo = f lyuw,. By Lemma 4.10, we have

{/\ (f1 € Sched((S 1Y) lyun))
(fg € Sched((S TUUV) lUUVg))

Thus, by (4.82),

(f1 € Sched(S TV“"1) A (f, € Sched(S 1V29%2)).

Consider noww € [P]*. If fi(w) € Gy 1YY", then by (4.63) and (4.61), f1(w) 1YYV C
G TUUV. Slmllarly, if fg(w) € Gy TUUV2, then fg(’LU) TUUVQ Go TUUV. As a
consequencef;(w) VY nfy(w) TV°VC (G1 N Gy) 1YYV, and, by Lemma 4.11,
f(w) € (G NGy) 1YYV, As a consequence,

TP N Gr 7] 1N TR(PT) 0 Ga 179 15
CYEH e e

E

This implies, by (4.9t), thatP(E) > P(E;) + P(E,) — 1. Moreover, by hypothesis,

Thus,P(E) > a+ ( — 1 and

Vf € Sched(S 1Y),
P(f([PI)NG1" Y] lp) >a+ B —1

1 k Uuv
> it PIAIPING T 1e) 2

a+p3—1.
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Remark 4.2. Consider two contract$A;, G;) and (A,, G3) such thatd; C Gy, Ay C Gs
and (4; U Ay) N (G1 N Gy) = (. Itis easy to see that any system will reliably satisfy both
contracts with probabilityl. According to an interpretation where one considers thatsrthat

do not satisfy assumptions are bad runs, the probability &hsystem satisfies the conjunction
is always). With our interpretation, there are situations where thislpability is strictly higher
than0: those where there are runs that do not belongitoor A,.

Let us now consider to the case of P-A-Satisfaction. we pgepbe following theorem.

Theorem 4.12(P-A-Satisfaction) Consider three systents = (U,Q2), S; = (Uy,€;) and
Sy = (Us, §2y) and two probabilistic contract§; = (V;, Ay, G1) andCy = (Vs, A, Go) that
are in canonical form. We have the following results:

1. Composition. Assume thaf; and S; are P-compatible. If S, \):Q(j) ¢, and
Sa =0 Coy thenS; N Sy |=3" €y || Co withy > @+ 8 — 1if a + #>1 and 0 oth-
erwise.

2. Conjunction. Assume that is P-receptive. IfS |):2f) C, and S ”:2(;) Cy, then
S |):2Ef) Ci NCywithy > a+ (8 —1if a + 3>1 and 0 otherwise.

Proof.
For the sake of simplicity, we will consider that= w. The proofs fork < w are simpler
versions of the ones presented here. We consider the twe @éthe theorem.

1. LetS = (U,Q) = S;NnSyandC = (V, A, G) = C, || C2.SinceC; andC, are in canonical
form and since composition preserves canonicity, we witisider thatz; = G; U —A;,
G2 = G2 U _'Ag andG = G U —A.

Considerf € Sched(S 1YY). SinceS; and S, are P-compatiblef is defined over
all runs in[P]¥. Moreover, sinceS = (S; 1V19V2) N (S, 1V1902) it is clear that(f €
Sched((S; TV1WV2) tUUV)) A (f € Sched((Sy TV1VV2) 1YYV, Thus, by (4.6t),

= (f € Sched(S; TVYY)) A (f € Sched(S, TVY)).

Let fi = f lo,u, @ndfs = f l,u1,- By Lemma 4.10, we have

(f1 € Sched((S1 17°Y) Lv,un))
= A
(fo € Sched((S2 17°Y) uv,un))

Thus, by (4.82),

(f1 € Sched(S; TV*YY1) A (fa € Sched (S, TV2V'2)).
Considerw € [P)*,t < kandi < t. If gp%;])w(z’) = 0, thenf(w)p ¢ G 1V°V. By
(465) and (462), we deduce thd(fl(w)[oﬂ ¢ G4 TUlUVl) v (fz(w)[oﬂ ¢ G TU2UV2)]-

As a consequence,
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C11U1VVs CotlU2VV2 .
)2 ¢ D+ e ()1

=Vt <k, DYDY L (f(w)) =DYY o (fi(w))

cuuv C1TV1vV1

+ D(t Ca1U2UV2 (f2( ))
—1

= hm 1nfD TUUV (f(w)) > lim inf D(t’?ZJluvl (fi(w))

+ hm 1nf Dc U202 (fa(w))
— 1.

As a consequenc&w < [P]*,

hmlnfDCTqu(f( ))>hm1nfD TUluvl(fl( w))

t—k t—k
+ lirtri)i]?f DCQ’TU2UV2 (fa(w))
-1
:>/ P(w) - hm 1nf D(CTUUV(f(w))dw >
we[Plk
M)lmmuﬁww¢mmmw

E[P}k t—k

+/ P(w) - hmmeé TU2UV2(f2(w))dw
1

Thus,Vf € Sched(S VYY),

/ Pw) - lininf DU, (F(w))dw > o+ 6 - 1
[Pk

2. LetC = (V, A,G) = C; NCy.SinceC; andCs, are in canonical form and since conjunction
preserves canonicity, we will consider that = G; U =A;, G5 = G, U ~A, and
G =GU-A.
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Considerf € Sched(S 1Y). SinceS is P-receptivef is defined over all runs ifP}*.
Let fi = f lvuv, andfo = f |y, By Lemma 4.10, we have

_ {A (f1 € Sched((S 1Y) lyun))
(f2 € Sched((S 1Y) louw))

Thus, by (4.62)

(f1 € Sched(S 1VYV1) A (f, € Sched(S 1VV"2)).

Considerw € [P]*, t < kandi < t. If goggfj)“v(z’) = 0, thenf(w)p, ¢ G 1Y%V, By

(4.6:5) and (4.62), we deduce thal f1(w),; ¢ G1 1Y) V (fa(w), & Ga2 TV9Y2)].
As a consequence,

Uuv Uuvy vuv:
Sof(T ) (i) > Qoii(Tw) (1) + SO%(T ) 2(Z) —1
= Vit < k, Dg’fguv(f( )) ZDct [TiUUVl <f1<w>>
+ DC2TUUV2 <f2<w>>
—1

= lim inf D( td) (f( )) > liminf D((: TV (f1<w>>

t—k crovv t—k

+11m1nfD Tqug(fz( w))
— 1.

As a consequenc&w < [P]*,

hm mf D(CT%UV(f( ) > hm mf Dc Tqul (f1(w))

+ hm mf Dc ULV (f2(w))

—1
:>/ - lim inf DCTUUV (f(w))dw >
we[Plk t—k
+ / - lim lnfD TUUVQ (fo(w))dw
we[P]k t—k
— 1.

By hypothesis, we have
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t—k

/ P(w) - lim inf Dc TUUVI(fl( w))dw > «
we[P)

t—k

/ P(w) - lim inf DY'1) v, (f2(w))dw > B.
we[P)

Thus,Yf € Sched(S VYY),

/we[P]k P( ) hmlglfD tTdUUV<f(U))>dw > o+ ﬂ 1

0
We now discuss the incremental design property. In fact,rapd?ty 4.1 is independent
from the systems and because of Theorems 4.8 and 4.12, vel\ydiwbtain extensions to the
availability case for the two first items of Theorems 4.4 aridl More precisely, we have the
following results.

Theorem 4.13.Consider three probabilistic contracty, C,, C3 and a systeny. Assume that
S”:fl(k) Cy, S”:fsk) Co, SH:iz(k) Cs. Let’)/ =1+ ay+ a3 — 2 if ap + g+ ag > 2 ando
otherwise. We have

o SIETMC | (Ca | o) iff ST (Cy | Co) | Cs.
o SIEI®CiA(CynC)iff SIEFV(CLACy) A Cs.

Theorem 4.14.Consider three probabilistic contracty, C,, C3 and a systeny. Assume that
S ey, SIELY €, S LY Co Lety = ar +ag + a3 — 2if @y + ag + a3 > 2 and0

d,a2

otherwise. We have
o Sl eyl (Coll Co)iff S =3 (C | Ca) || Cs.

o SIS CIA(Co NG iff SN (C A Co) NG

Refinement
We consider refinement for probabilistic contracts. Cawgtta the case of non-probabilistic
contracts, we will distinguish between R-Satisfaction Ar8atisfaction.

Following our move from R-Satisfaction to P-R-Satisfantiove propose the notion of
P-Refinementhat is the quantitative version of the refinement we progaseSection 4.3.
We have the following definition.

Definition 4.9 (P-Refinement) A probabilistic contractC; = (V1, A1, G1) P-Refines a prob-
abilistic contractC, = (V5, A, G) for runs of lengthk (kK € N°°) with level o, denoted
¢, <8W ¢, iff

Vf € Sched((Gy U —A;) 1119%2),
P([f([P]F) N (G2 U =Ay) 1T19] |p) > a
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(respectively(C; ACj) <A (CyNC3)). Observe that P-Refinement is not a preorder relation.
As a conseqguence, conjunction is not a greatest lower bouthdrespect to P-Refinement.
Quantitative refinement is compatible with the definitiorPeR-Satisfaction, which brings the
following result.

ConsiderC, || Cs (respectivelyCy A Cs). If Cy <5® ¢y, then(Cy || C5) <E® (¢, || C5)

Theorem 4.15. Consider aP-receptive systeny = (U, (2) and two probabilistic contracts
Ci= Vi, A;,G;) fori =1,2. If (G; U—A;) is P-receptive and prefix-closed, then

SEFY e ne 5% e, = SR C,.

Before giving the proof of the theorem, we propose the foilgrLemma, which proves
the existence of corresponding schedulers in two P-reeepyistems.

Lemma 4.16. ConsiderS = (U,Q2) and S’ = (U, ') two systems over the same set of vari-
ablesU. If S and.S’ are P-receptive and i§’ is prefix-closed, then for alf € Sched(S5), there
existsf’ € Sched(S’) such that

Vw € [P, f(w) € ' = [(w) = f(w).

Proof.
Considerf € Sched(S) and letf’ : [P]* — S’ such that :
flle)=¢
f(w.o) = fwo)if flwo) e S

f(w.o) = f'(w).0's.t.f(w).c' € S"ando’ | p= 0.
First of all, sinceS’ is prefix-closed, iff (w) € 5, then for allw’ < w, f(w') € S’, and as
a consequencé (w') = f(w'). Moreover, sincey’ is P-receptive, iff’(w) € S’, then for all
o € P — D, there exist$’ € U — D such thav’ | p= ¢ and f'(w).c’ € S’. This ensures
that the definition off’ is coherent.
We will now prove by induction that” € Sched(S").

o f'(e) = e satisfies the prefix property.
e Letw € [P]* andw’ < w. Suppose that'(vw’) < f'(w). Leto € P — D.
—If f(w.o) € 5, thenf (w.c) = f(w.c) andVw” < w, f'(w”) = f(w"). Sincef
is a scheduler, we havgw’) < f(w.o).
— Else,f'(w.0) = f'(w).c’ and as a consequengé(w’) < f'(w) < f'(w).0’.

We now give the proof for Theorem 4.15

Proof of Theorem 4.15.

Considerf € Sched(S 1Y“"2). By Lemma 4.10, there exisig € Sched(S 1VV"1Y"2) such
that ' |yuv,= f. Let fi = f' luuy,. By Lemma 4.10, we havé € Sched(S 1V°"1). Lemma
4.16 states that there exists € Sched((G; U —A4,) 1VYV19%2) such thatvw € [P]*, f'(w) €
(Gy U —Ay) Ve f1(w) = f'(w). Let fo = f5 L. By Lemma 4.10, we have
f2 c Sched((G1 U _|A1) TVlUV2.
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Considenw & [PJF. If fi(w) € (G1U-A;) 1VU%, then by (4.65), f'(w) € (G1U~A4,) 1VOV00
= fi(w) = f'(w). Moreover, if fo(w) € (Gy U—Ay) T V1 U Vs, then by (4.63), fi(w) €
(G2 U _\AQ) TUUVlUVQ. Thus,

f'(w) € (G U =Ay) TV

= f(’LU) € (G2 U _\AQ) TUUV2 by (464)
As a consequence, let

Ey =[fi([P]*) N (GLU=A) 199 |p
Ey =[f2([P)F) N (G U = Ap) T | p
E =[f([P]") N (G2 U—A4y) 1Y% | p

We havel; N By C E.
This implies, by (4.9t), thatP(E) > P(E;) + P(E,) — 1. Moreover, by hypothesis,

]P)(El) Z o
P(E,) > .

Thus,P(E) > o + 3 — 1 and¥f € Sched(S 1V9%),

P([f([P]*) N (G2 U—A2) 19 |p) 2 a+ 6~ 1

O
P-A-satisfaction and quantitative refinement are orthajomeasures. Indeed,
P-A-satisfaction measures the infimal expected avaitglafia system for all schedulers, while
guantitative refinement measures the infimal set of tracagpobbabilistic contract that corre-
sponds to another probabilistic contract. In such conteet,minimal schedulers for the two
notions may differ. We propose the following result, whiahks P-A-Satisfaction with the
definition of refinement proposed for non-probabilistic traots.

Theorem 4.17.Consider aP-receptive systeny = (U, (2) and two probabilistic contracts
Ci= Vi, A;,Gy)fori=1,2.1f § |):2(ak) C, andC; <= ¢, thenS ):ika) C,.

Proof.
For the sake of simplicity, we will consider that= w. The proof fork < w is a simpler
version of the one presented here.

Considerf € Sched(S 1Y“"2). By Lemma 4.10, there exisig € Sched(S 1VV"1Y"2) such
that f' |yuv,= f. Let fi = f' lyuy,. By Lemma 4.10, we also havg € Sched(S 1V°"1).

ClTqul

Consider noww € [P]*, t < kandi < t. By definition,o ', (i) =1 <= fi(w),, €
(GyU—A;) 1YY, By hypothesis,

((GrU=A) TV92)[5F C ((Ga U —A,) 111972 5F,
Thus, by (4.63),

((Gl U —|A1) TUUV1UV2)‘SI€ C ((G2 U —|A2) TUUV1UV2)‘§]€.
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If ?(TZ)U '(i) = 1, then

fi(w)g € (GrU—Ay) T )[=F
= fl(w)w[oﬂ] TR (G U —Ay) 17 s

= f1( Jw(0,4] TV ((Gy U —Ay) 17|

f (W) € (G2 U—Ay) TV

(W) loon€ (GoU—=4y) 1YY |1y, by (4.64)
= f( W), € (G2 U—Ay) U2 by (4.62)
= oy =1

Thus,

Wt <k, Vi <t @20 > G5 G)

=Vt <k, Dilvo, (f(w)) > Doy, (fi(w))
= lim inf Dy vow, (f(w)) = lim inf DY v, (f1(w)).

By hypothesis,

hrtlll,?ch Tle(fl( w)) > a.

As a consequence,

vw € [P]*, hmlnfD U0V (f(w)) >m

t—k

= - P(w) - hItIilknf Dc TUUVQ(f(lu))allu > m.
we

Finally, v € Sched(S 1U“"),

t—k

/ P(w) - Tim inf D%, (f())dw > m
we[P)

We now briefly discuss independent implementability in thebpbilistic case. For P-R-
Satisfaction, the property is defined with respect to P-Refient. For P-A-satisfaction we
use the notion of refinement introduced for non-probalilisbntracts. We have the following
theorem, whose proof is a direct consequence of Theorem4.438 4.15 and 4.17.

Theorem 4.18.LetS be aP-receptive system artty, C, andC; be three probabilistic contracts
such thatC; and C; are P-compatible, and’, and C; are also P-compatible. We have the

following results.

e Assume thatfG; U —A,) is prefix-closed andP-receptive. IfC,

S 5™ (Cy || Cs) (respectivelyS =5 (C A C3)), thenS [=X®)(c, || Cs) (respectively,

SN (Cy A Cy)), withy > a + 8 — 1if a+ 3 > 1 and0 else.

o If ¢; =M ¢, and SIE;V(C || Cs) (respectively, S =5 (C A C3)), then

SEa(C, || C3) (respectivelyS 5 (Ca A Cy)).
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— b=an-fi e d=(bVe)Afs —

SystemsS; Systems,
'fl 'fz 1f1 1f2

Aq : 7true” Ay : 7true”

G1:’00b=an—f1)” Gy :"0(d = (bVe) A= f2))”

(a) Systemsy; andS; and probabilistic contracty andCs.

fa

C U V= {f faya,bie d)
s, A true
| . b F . G - O((b=aA~f)
Ad = (bVec)Nfy))

fi

(b) SystemsS; N .S, and probabilistic contract; || Cs.

Figure 4.3: Reliability : Example

An illustration

The objective of this chapter is to introduce the theoréfmandations for contracts and their
stochastic extensions. Deliveraldlé.1 of the SPEEDS project (available at [126]) shows the
interest of industrials for our methodology and discusgbsroexamples for the case of non-
stochastic contracts. Also, the work in [66], which can blessumed by our contribution, has
been applied to an interesting case study. We now presempesexample that illustrates the
approach.

Consider the systems and contracts given in Figure 4.3. Asghaty: € N, P(f;(i) =
1) = 107 and P(fo(i) = 1) = 2.107% It is easy to show tha |l=("}) 4 C: and
Sa (175 1g-sy Ca. It is however more difficult to deduce the probability for e S; N S,
satisfies the contrad; || C,. Thanks to Theorem 4.8, we know that this probability is at
least(0.999)%° + (0.998)%° — 1 = 0.86. Considering’s = ({f1, f2,a,c,d}, true”,”0(d =

((aA—f1)Ve)A=fa)?), itis clear thaty || Co =Y ¢;, which implies thats; NS, =000 ¢,
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4.4.3 Effective algorithms/representations

The constructions are similar to those given in Sectior4 \Ble assume the reader to be famil-
iar with the concepts of (discrete) Markov Chains and tuaiedal Markov Decision Processes
(else, see [24, 117, 24, 46] for an introduction and refegsicRoughly speaking, a Markov
Chain is a symbolic transition system whose states areddhbeith valuations for variables in
P and whose transitions are labeled by probabilities. Thellialg by probabilities follows a
probability distribution, i.e., for a given state, the sufthee probability values for all outgoing
transitions must be less or equal to one. In a given statepmwks up the next valuation for
the probability variables, i.e., the next state. The prdtglto pick up a valuation is the value
given on the transition that links the current state to the adleosen one. There is a special state
called”:nit” from where one has to chose the first value. The concept odseptingP with

a Markov Chain is illustrated in Figure 4.5a, wheéte= {b} andD = {0, 1}. In this example,
the probability that a run starts with= 0 is 1/2. The probability that a run starts with the
prefix (b = 0)(b=1)(b = 0)is given by(1/2) x (1/4) x (1/3) = 1/24.

Let C' = (V, B4, Bs) be a symbolic contract anslymb = (V, Qs, T, Q) be a symbolic
transition system. We consider a getC V' of probabilistic variables. We assume that the
distribution overP is symbolically represented with a Markov Chain. At eachiestave have
a probability distribution over the possible set of valaas for the variables. The Markov
chain is finitely-branching a® is finite. Observe that each state ®§mb can be split into
two states, one for the valuations of the non-probabiligticables followed by one for the
valuations of the probabilistic variables. The result iseavrsymbolic systenbymb” where
one first evaluate® \ P and thenpP.

Example. The splitis illustrated in Figure 4.4. Consider the ste= {a = 1,0 =0,c =1}
in the system given in Figure 4.4a. This state can be sptittwb statesA = {a = 1,¢ = 1}
andE = {b = 0}. The stat&” = {a = 1,b = 1,c = 1} can be splitintoB = {a = 1,¢ = 1}
and F' = {b = 1}. In the split, there will be transitions from to £ and fromB to F. Any
transition fromX (resp.Y) toY (resp.X) will now be fromE (resp. F) to B (respA). SinceA
and B have the same label and successors, they can be merged,givasithe split in Figure
4.4Db.

It is easy to see that we can use the Markov Chain that repsstbenprobability distribution
in order to “transform” the transitions from a non-deterisiic variable state obymb” into
a probability distribution over the probabilistic variabstates simply by synchronizing the
two systems. By doing s&fymb” becomes durn-based Markov Decision Proce@€DP).
Recall that a turn-based MDP mixes both non-determinismpaiotabilities. In our setting,
non-determinism thus comes from the choice of the valuethBbnon-probabilistic variables,
while probabilities arise when evaluating variablesHn The transitions from states that are
labeled with probabilistic variables are thus non-detarstic (since one has to pick up the next
values for the non-probabilistic variables). Transitidresn states that are labeled with non-
probabilistic variables form a probability distribution the possible values of the probabilistic
variables. In this context, a run for the MDP is simply anraé&nce of valuations of the non-
probabilistic and the probabilistic variables.

Example. The concept of turn-based Markov Decision Process reguftom the product of a
split and a Markov Chain fol is illustrated in Figure 4.5. Observe that the stdte= 1, ¢ =
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OO O

(a) A symbolic transition systerfiymb for V- = {a, b, ¢}, wherg
the domain ofu, c is {1} and the domain ob is {0, 1}, b is the (b) The splitSymb” for Symb.
probabilistic input and the set of runs is given fy = 1,0 =
lL,e=1)U(a=1,b=0,c=1))~.

Figure 4.4: A symbolic transition system and its split.

Oy
T

®

|,

1/2

3/4

(b) A MDP for the product between the Markov chain in Rig-

(a) A Markov Chain for the distribution overUre 4.5a and the transition system in Figure 4.4b.

variables in P.

Figure 4.5: The product of a split symbolic transition sysiith a Markov Chain.

1} has been duplicated. Indeed, according to the Markov Chakigure 5.(a), the probability
to select{b = 0} in the first step is not the same as the one to select it aftdfirgtestep.

Assuming that the combination of the system with the distrdn can be represented with a
MDP, we now briefly discuss P-R-Satisfaction and P-A-Satisdn. Aschedulefor a Markov
Decision Process [36] is a mechanism that, in a non-detéstitirstate, selects the successor
state without taking predecessors into account. This diefimmatches the one we proposed in
Definition 4.6. In this context, we have the following metbbzby.

e P-R-Satisfaction Assuming thai3, and B, are Blchi automata, P-R-Satisfaction can
be checked with the technique introduced in [129, 51, 30j¢whequires a determiniza-
tion step from Bichi to deterministic Rabin[111]) and implented in theLIQUOR
toolset[35]. Indeed, this technique allows to compute theimmal probability for a
Markov decision process to satisfy a property which is repnéable with a Blichi au-
tomaton. We can thus consider assumptions and guaraniaeseated with logical
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formalisms that have a translation to Biichi automata, ETQL,[134].

e P-A-Satisfaction with level m and discount factor d The DCTL logic can also be
interpreted over MDPs. The definition of synchronous pro@asily extends to MDPs.
The product between a MDP and an automaton can be inter@eteMDP. We can thus
use the labelling technique with propositions that was psep for the non-probabilistic
case (assuming that the states of the automaton have alscspkie(see the split for
transition system)). For a given scheduler (which tramaothe MDP into a Markov
chain), we can compute thexpected valuéor the formula’A; p. We then compute
the minimum between the expected values for all schedulaiscaeck whether it is
greater thamn. More details about model checking DCTL over MDPs can be doan
Section 2.2 of [53]. The overall formula we model check/is[/\, p], whereE states
for “expected value”.

45 Some Related Work

In this section, we compare our work with related work on cacts, process algebra, modal
automata, and interface automata.

In [20], Benveniste et al. have presented a contract thedmyrevavailability, effective
representations, and stochastic aspects are not corssid@tieer definitions of contracts have
been proposed in [109, 67] and in[66], where the mathemdtieary of [20] is recast in a
reactive synchronous language setting. In [107], Pace ahdefder study the satisfaction
of contracts that combines deontic and temporal concepisap@sition for such contracts is
studied in [63, 62].

Works on behavioral types in process algebras bear comitiesatith contract theories.
In a similar way, the probabilistic contract theory must loenpared with stochastic process
algebras [103, 8]. In both cases, the main difference isciiaipositional reasoning is possible
only in contract theories thanks to the fact that contraatsraplications where an assumption
implies a guarantee. A second major difference with proa&gebras, is that contract theories
are general and can be instantiated in many different efeeatitomata-based settings. This
covers many logical frameworks (CTL [40], LTL[108], PCTL3Jf PSL [60],. . .) for specify-
ing properties of components.

In [100], Larsen proposeshodal specificationthat correspond tdeterministic modal au-
tomata i.e., automata whose transitions are typed vty and mustmodalities. A modal
specification thus represents a set of models; informalyuat transition is available in every
component that implements the modal specification, whileag transition needs not be. The
components that implement modal specifications are préfsed languages, or equivalently
deterministic automata. As contracts, modal specificatgupport both refinement, conjunc-
tion, and composition operations. Moreover, modal spetifios support a quotient operation
which is the adjunct of parallel composition[114]. The thebas recently been extended to
the timed setting [23, 22]. However, contrary to contragtedal specifications do not allow an
explicit treatment of assumptions and guarantees. It sskalswn that modal specifications are
not more expressive than nu-calculus [64], while the thedrgontracts is general and could
potentially embed any type of property. Finally, aside freome attempts that we present in
the next paragraph, there is no stochastic extension foahspecifications.
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In Chapters 2 and 3, we have presented two specification fismmafor stochastic systems:
Interval Markov Chains and Constraint Markov Chains. B&Ck and CMCs are meant to
provide a modeling language that allows designing, evghand reusing components. How-
ever, contrary to the theory we present in this chapter, II@CMCs do not allow an explicit
treatment of assumption and guarantees. Moreover, thegraphical-based models, which
is easy to use in a design setting. Unfortunately, they doendted any notion of complex
memory such as unbounded stack. Hence they are not capahtedefing calls and returns in
software. The formalism we present in this chapter is moreeg#, as it provides, for exam-
ple, quantitative notions of satisfaction and refinemenmfadunately, this generality comes
with a cost: the operations involved in the assume-guaggmigbabilistic contracts formalism
are more complex than the equivalent operations for CMCM@, loften involving union and
complementation.

In interface automata [54, 52], an interface is represehtedn input/output automaton
[104], i.e,, an automaton whose transitions are labeled wigut or outputactions. The se-
mantics of such an automaton is given by a two-player gamengauit player represents the
environment, and a@utputplayer represents the component itself. Interface au@oh@anot
encompass any notion of model, because one cannot digngetween interfaces and imple-
mentations. Alternatively, properties of interfaces asatibed in game-based logiesy, ATL
[6], with a high-cost complexity. The game-based integien offers a more elaborated ver-
sion of the composition operation than our contracts apgtrosiore precisely, the game-based
interpretation offers anptimistictreatment of composition: two interfaces can be composed if
there exists at least one environment (i.e., one stratagyhéolnput player) in which they can
interact together in a safe way (i.e., whatever the stratéglye Output player is). This is re-
ferred as compatibility of interfaces. However, contrargontracts, interface automata do not
allow an explicit treatment of assumptions and guaranteddteere is no stochastic extension.

Another assume-guarantee approach for the verificatiopstésis consists in decomposing
the system into sub-systems and choosing an adequate agsufop a particular decompo-
sition (see [44] for a survey). As we already said, those watkarly differ from ours. First,
they have to find a decomposition of the system in sub-systantssecond, they do not sup-
port compositional design operators (conjunction, refieeth Our work is much related to
the work by Basu et al.[19] on the BIP toolset[26]. In theirrgothey do consider a much
more elaborated composition operation. However, they docansider conjunction, avail-
ability (they mostly restrict themselves to safety projgs)t and stochastic aspects. Finally,
[97] presents assume-guarantee verification in which begbraption and guarantees are rep-
resented with finite probabilistic automata. Like IMCs and@s, probabilistic automata are
graphical-based models, hence less general than the medeiowide in this chapter. Though
guantitative notions of satisfaction are proposed for tgapeoperties, they do not consider
availability.

4.6 Achievements and Future Work

In this chapter we have proposed a new theory for (probaébijlisontracts, which extends the
one we developed for the European profePEED$126]. Our contributions are : (1) a theory
for reliability and availability, (2) a treatment of the staastic aspects and (3) a discussion on
effective symbolic representations.
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In addition to implementation, there are various otherdioms for future research. A
first direction is to develop a notion of quantitative refirerthat is compatible with P-A-
satisfaction. We also plan to consider other symbolic regamations such as visibly pushdown
systems [65]. Considering such representations will meguew DCTL model checking algo-
rithms. We also plan to extend our results to the continutons-setting, which would also
require a new DCTL algorithm based on the results in [12, P8).1Considering the case of
dependent probability distributions like in [56] is also lsaltenging issue. Finally, it would
be interesting to define another satisfaction for contrdcideed, in this chapter, effective al-
gorithms to check satisfaction of probabilistic contraetty on formal exhaustive techniques
[129]. Unfortunately, improvements in developments ofriat methods do not seem to fol-
lows the increasing complexity in system design. In the obapter, we will propose statistical
model checking [137, 136, 123, 39] that is a scalable saiutiahis problem. The idea of the
approach is to simulate the system and deduce whethersfisatihe property with some de-
gree of confidence. Up to now statistical model checking ritlgms have only been used to
verify properties of stochastic system; it would be of ies#rto adapt the technique to the satis-
faction of a probabilistic contracts. Unfortunately ountract formalism would be out of scope
of existing statistical model checking algorithms. Indetb@se algorithms assume that all the
samples are generated from the same distribution while antracts allow non-deterministic
aspects and hence build on several distributions.
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Chapter 5

Statistical Abstraction and
Model-Checking of Large Heterogeneous
Systems

5.1 Introduction

In the previous chapters, we have mainly focused on systeigmeand incremental verifica-
tion. In this chapter, we are interested in verifying apgtiiens working within an heteroge-
neous system. Systems integrating multiple heterogendistributed applications commu-
nicating over a shared network are typical in various semsttomains such as aeronautic or
automotive embedded systems. Verifying the correctneapafticular application inside such
a system is known to be a challenging task, which is often bheéyloe scope of existing exhaus-
tive validation techniques. The main difficulty comes froetwork communication which
makes all applications interfering and therefore forcqgdaation of the full state-space of the
system.

A solution to this problem would be to use a test-based agproafter the computer sys-
tem is constructed, it is tested using a numbetest casesvith predicted outcomes. Testing
techniques have shown effectiveness in bug hunting in madysirial problems. Unfortu-
nately, testing is not a panacea. Indeed, since there ignargl, no way for a finite set of test
cases to cover all possible scenarios, errors may remaigtected.

This lack of accuracy has motivated the development of ngardhms that combine test-
ing techniques with algorithms coming from the statistaraa. Those techniques, also called
Statistical Model Checking techniqugMC) [78, 122, 136], can be seen as a trade-off between
testing and formal verification. The core idea of the appndado conduct some simulations
of the system and verify if they do satisfy the property. Tésuits are then used together with
algorithms from the statistic area in order to decide whethe system satisfies the property
with some probability. Statistical model checking techugg can also be used to estimate the
probability that a system satisfies a given property [78, 88f course, in contrast with an
exhaustive approach, a simulation-based solution doeguaraintee a result with 100% confi-
dence. However, it is possible to bound the probability okimg an error. Simulation-based
methods are known to be far less memory and time intensive ékbhaustive ones, and are
sometimes the only option[138, 84]. Statistical model &veg gets widely accepted in var-
ious research areas such as software engineering, inyartfor industrial applications, or
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even for solving problems originating from systems biolpdly, 85]. There are several reasons
for this success. First, it is very simple to implement, ustind and use. Second, it does not
require extra modeling or specification effort, but simphyaperational model of the system,
that can be simulated and checked against state-basedtmeperhird, it allows to verify
properties [38, 39, 13] that cannot be expressed in clddsitgoral logics.

Unfortunately, SMC is also not a panacea and many importasses of systems are still
out of its scope. Among them, one finds systems integratinigpteiheterogeneous distributed
applications communicating over a shared network. Thopécgpions, also calletieteroge-
neous systemare typical in various sensitive domains such as aeronautiaitomotive em-
bedded systems. Verifying the correctness of a particydpli@tion (also called subsystem,
or combination of components) within such a system is knawlmeta challenging task, which
is often beyond the scope of any validation technique. Thim midficulty comes from net-
work communication which makes all applications interigrand therefore forces to explore
the full state-space of the system. One could hope thasstati model checking provides an
alternative solution to this problem. Unfortunately, ghnare many cases where the design is so
complex that it is even impossible to generate enough stmuakafor the algorithm to terminate
in a decent time while providing estimates with sufficientw@acy.

We propose to exploit the structure of the system in ordendcease the efficiency of the
verification process. The idea is conceptually simple:eagtof performing an analysis of the
entire system, we propose to analyze each application aebarbut under some particular
context/execution environment. This context istachastic abstractiomhat represents the
interactions with other applications running within thetm and sharing the computation and
communication resources. We propose to build such a coatgwimatically by simulating
the entire system and learning the probability distritngiof key characteristics impacting the
functionality of the given application.

The overall contribution of this chapter is an applicatiénhe above method on an indus-
trial case study, thbeterogeneous communication sys{ef@S for short) deployed for cabin
communication in a civil airplane. HCS is a heterogeneostesy providing entertainment ser-
vices (e.g., audio/video on passengers demand) as wellnaisigttative services (e.g., cabin
illumination, control, audio announcements), which ar@lemented as distributed applica-
tions running in parallel, across various devices withia ptane and communicating through
a common Ethernet-based network. The HCS system has togeearstringent requirements,
such as reliable data transmission, fault tolerance, iraimd synchronization constraints. An
important requirement, which will be studied in this chapigtheaccuracy of clock synchro-
nizationbetween different devices. This latter property statestti@mdifference between the
clocks of any two devices should be bounded by a small cofystdmich is provided by the
user and depends on his needs. Hence, one must be capablemfto the smallest bound
for which synchronization occurs and compare it with therzbexpected by the user. Un-
fortunately, due to the large number of heterogeneous casrge that constitute the system,
deriving such a bound manually from the textual specificat®oan unfeasible task. In this
chapter, we propose a formal approach that consists inibgial formal model of the HCS,
then applying simulation-based algorithms to this modealriter to deduce the smallest value
of the bound for which synchronization occurs. We start witlixed value of the bound and
check whether synchronization occurs. If yes, then we make that this is the best one. If
no, we restart the experiment with a new value.

At the top of our approach, there should be a tool that is dapatbmodeling heteroge-
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neous systems as well as simulating their executions andt#ractions between components.
In this chapter, we propose to use the BIP toolset[15] fongsb. BIP Behaviour-Interaction-
Priority) supports a methodology for building systems from atomimgonents encapsulating
behavior, that communicate through interactions, anddinate through priorities. BIP also
offers a powerful engine to simulate the system and can teusombined with a statistical
model checking algorithm in order to verify properties. Qiwst contribution is to study all
the requirements for the HCS to work properly and then deaiveodel in BIP. Our second
contribution is to study the accuracy of clock synchron@abetween several devices of the
HCS. In HCS the clock synchronization is ensured by Phecision Time ProtocolPTP for
short) [2], and the challenge is to guarantee that PTP masitiae difference between a master
clock (running on a designated server within the system)adinithe slave clocks (running on
other devices) under some bound. Since this bound cannotbesomputed, we have to verify
the system for various values of the bound until we find a blétane. Unfortunately, the full
system is too big to be analyzed with classical exhaustivifaation techniques. A solution
could be to remove all the information that is not relatedn® devices under consideration.
This is in fact not correct as the behavior of the PTP protacoifluenced by the other appli-
cations running in parallel within the heterogeneous sgst®ur solution to this state-space
explosion problem is in two steps (1) we will build a stoci@abstraction for a part of the PTP
application between the server and a given device; the astichpart will be used to model
the general context in which PTP is used, (2) we will applyistiaal model checking on the
resulting model.

Thanks to this approach, we have been able to derive preois&ls that guarantee proper
synchronization for all the devices of the system. We alsopmated the probability of sat-
isfying the property for smaller values of the bound, i.@uihds that do not satisfy the syn-
chronization property with probability. Being able to provide such information is of clear
importance, especially when the best bound is too high wespect to the user’s requirements.
We have observed that the values we obtained strongly depetite position of the device in
the network. We also estimated the average proportion hfrés per simulation for bounds
that are smaller than the one that guarantees synchramz&hecking this latter property has
been made easy because BIP allows us to reason on one ereatugitime. Finally, we have
also considered the influence of clock drift on the synclwation results. The experiments
highlight the generality of our technique, which could bela to other versions of the HCS
as well as to other heterogeneous applications.

The chapter is structured as follows. Section 5.2 brieflgonhtices the theory of statistical
model checking. Section 5.3.1 describes the methods ahdveoase in order to model and
abstract the HCS. The case study and its modelization aredéscribed in Section 5.4. In
Section 5.5, we give details of the experiments we perfornthenrHCS, while the results of
these experiments are presented in Section 5.6. Sectidmi&flf presents another application
of the methodology presented in the chapter. Finally, 8ac$i.8 concludes the chapter and
discusses future work.

5.2 An Overview of Statistical Model Checking

Consider a stochastic systesrand a propertyy. Statistical model checkinggfers to a series
of simulation-based techniques that can be used to answeguestions: (1Rualitative: Is
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the probability thatS satisfiesp greater or equal to a certain threshold? andJ@antitative:
What is the probability thaf satisfiesp? Contrary to numerical approaches, the answer is
given up to some correctness precision. In the rest of thiBoseeve survey several statistical
model checking techniques. L8t be a discrete random variable with a Bernoulli distribution
of parametep. Such a variable can only takevalues ( and 1) with Pr[B; = 1] = p and
Pr[B; = 0] =1 — p. In our context, each variablg; is associated with one simulation of the
system. The outcome fds;, denoted;, is 1 if the simulation satisfieg and0 otherwise.

5.2.1 Qualitative Answer using Statistical Model Checking

The main approaches[136, 122, 92, 91, 139] proposed to anbw/gualitative question are
based orhypothesis testingLet p = Pr(y), to determine whethey > 6, we can test{ :

p > 0 againstK : p < 6. A test-based solution does not guarantee a correct result b
it is possible to bound the probability of making an error. eBtrength(«, 5) of a test is
determined by two parametersand/3, such that the probability of acceptidg (respectively,
H) whenH (respectivelyK) holds, called a Type-I error (respectively, a Type-Il e less
or equal toa (respectively,3). A test haddeal performancef the probability of the Type-I
error (respectively, Type-Il error) is exactly (respectively5). However, these requirements
make it impossible to ensure a low probability for both typésrrors simultaneously (see
[136] for details). A solution is to use andifference regiorip;, po] (with 0 in [py, po]) and to
testH, : p > po againstH; : p < p;. We now sketch two hypothesis testing algorithms.

Single Sampling Plan.

To testH, againstH;, we specify a constant If Y " | b; is larger tharnc, then Hj is
accepted, elsél, is accepted. The difficult part in this approach is to find ealéor the pair
(n,c), called asingle sampling plan (SSP in sharguch that the two error boundsand 3
are respected. In practice, one tries to work with the srsiallalue ofn possible so as to
minimize the number of simulations performed. Clearlysthumber has to be greaterdf
and 5 are smaller but also if the size of the indifference regioansller. This results in an
optimization problem, which generally does not have a ddsem solution except for a few
special cases [136]. In his thesis [136], Younes proposesamybsearch based algorithm that,
givenpy, p1, «, 3, computes an approximation of the minimal valued@andn.

Sequential probability ratio test. The sample size for a single sampling plan is fixed in
advance and independent of the observations that are madevdr, taking those observations
into account can increase the performance of the test. Agane, if we use a single plan
(n,c) and them > cfirst simulations satisfy the property, then we could (defdemon the error
bounds) accept/, without observing the — m other simulations. To overcome this problem,
one can use theequential probability ratio test (SPRT in shoprpposed by Wald [133]. The
approach is briefly described below.

In SPRT, one has to choose two valuésind B (A > B) that ensure that the strength of
the test is respected. Let be the number of observations that have been made so fare$he t
is based on the following quotient:

Pim i PT(BZ' = bz | p= pl) pilm(]_ _ pl)m—dm
Pom = 5.1
H b (5.1)

Dom Pl Pr(Bi=b;|p=po) pgm(l — po)m—dm’
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whered,, = 37", b;. The idea behind the test is to accéptif L= > A, andH, if b= < B.
The SPRT algorithm computég's:l for successive values ot until eltherHO orH;is satisfied:
the algorithm terminates with probabilitf133]. This has the advantage of minimizing the
number of simulations. In his thesis[136], Younes propaaddgarithmic based algorithm
SPRT that givemy, p1, « and 5 implements the sequential ratio testing procedure.

Computing ideal valued,; and B;, for A andB in order to make sure that we are working
with a test of strengtk, 3) is a laborious procedure. In his seminal paper [133], Watsh&h
that if we defined,; > A = @ andB;; < B = (1 , then we obtain a new test whose
strength is(«/, #’) such thatt’ + 3’ < a + 3. This means that either < aor 3 < . In
practice, we often find that both inequalities hold.

5.2.2 Quantitative Answer using Statistical Model Checkig

In [78, 99] Peyronnet et al. propose an estimation procettucempute the probability for

S to satisfyp. Given aprecisiond, Peyronnet’s procedure, which we call PESTIMATION,
computes a value fgr' such thatip’ — p|<é with confidencel — «. The procedure is based
on theChernoff-Hoeffding boun@3]. Let B; ... B,, bem discrete random variables with a
Bernoulli distribution of parameter associated withn simulations of the system. Recall that
the outcome for each of thB;, denoted,, is 1 if the simulation satisfiep and0 otherwiSQe.
Letp’ = (>°1", b;)/m, then Chernoff-Hoeffding bound [83] giveéa-(|p’ — p| > §) < 2e= "1
As a consequence, if we take>+ log(2), thenPr(|p’ — p|<d) > 1 — o. Observe that if the
valuep’ returned by PESTIMATION is such that>6 — ¢, thenS = Prs4 with confidence

1—c.

5.2.3 Playing with Statistical Model Checking Algorithms

The efficiency of the above algorithms is characterized leyrthmber of simulations needed
to obtain an answer. This number may change from executmesédcutions and can only
be estimated (see [136] for an explanation). However, soanerglities are known. For the
gualitative case, it is known that, except for some situejGPRT is always faster than SSP.
When6¢ = 1 (resp. # = 0) SPRT degenerates to SSP; this is not problematic since SSP i
known to be optimal for such values. PESTIMATION can also edito solve the qualitative
problem, but it is always slower than SSP [136].0lfs unknown, then a good strategy is to
estimate it using PESTIMATION with a low confidence and thahdate the result with SPRT
and a strong confidence.

5.3 Validation Method and the BIP Toolset

We first present the method we use in order to abstract ourstadg. Then we describe the
tool used for the modelization: BIP.

5.3.1 Validation Method: Stochastic Abstraction

Consider a system consisting of a set of distributed appbics running on several comput-
ers and exchanging messages on a shared network infraserué&tssume also that network
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communication is subject to given bandwidth restrictiogsvell as to routing and scheduling
policies applied on network elements. Our method attenoptsduce the complexity of valida-
tion of a particular application of such system by decouptire timing analysis of the network
and functional analysis of each application.

We start by constructing a model of the whole system. Thisehotlust be executable,
i.e., it should be possible to obtain execution traces, &ted with timing information. For
a chosen application, we then learn the probability distidm laws of its message delays
by simulating the entire system. The method then constauceluced stochastic model by
combining the application model where the delays are defwedrding to the laws identified
at the previous step. Finally, the method applies stasistimodel-checking on the resulting
stochastic model.

Our models are specified within the BIP framework [15]. BIR somponent-based frame-
work for construction, implementation and analysis of egst composed of heterogeneous
components. In particular, BIP fulfills all the requiremenf the method suggested above, that
are, models constructed in BIP are operational and can eubbly simulated. BIP models
can easily integrate timing constraints, which are repregskwith discrete clocks. Probabilistic
behaviour can also be added by using external C functions.

The BIP framework is implemented within the BIP toolset [26hich includes a rich set
of tools for modeling, execution, analysis (both static anethe-fly) and static transformations
of BIP models. It provides a dedicated programming languagelescribing BIP models.
The front-end tools allow editing and parsing of BIP progsamnd generating an interme-
diate model, followed by code generation (in C) for exeaqutamd analysis on a dedicated
middleware platform. The platform also offers connectitmexternal analysis tools. A more
complete description of BIP is given in the next section.

5.3.2 An Overview of BIP

The BIP framework, presented in [15], supports a methodofog building systems from
atomic componentdt usesconnectorsto specify possible interaction patterns between com-
ponents, ang@riorities, to select amongst possible interactions. In BIP, data lagid transfor-
mations can be written directly in C.

Atomic components are finite-state automata extended \aitialies and ports. Ports are
action names, and may be associated with variables. Theysakfor synchronization with
other components. Control states denote locations at whechomponents await for synchro-
nization. Variables are used to store local data.

We provide in Figure 5.1 an example of an atomic componembedrouter that models
the behavior of a network router. It receives network pack&iough an input port and delivers
them to the respective output port(s), based on the destmatldress of the packets. The port
srvRec\wacts as an input port, whilé), s1, s2, s3, andsubNetSendct as output ports. The port
tick is used for modeling time progress and specific timing cai#s. The control locations
areRECV, SENDQ SENDQ SEND1 SEND2 SEND3 SENDINGandGAP, with RECVbeing
the initial location. It also has the variables, to_0, to_1, to_2, to_3, to_sub, to_all,frame
and parametdrameGap

A transition is a step from a control location to another,rged by a Boolean condition
on the set of its variables, labeled by a port. An examplesttem is from the initial location
RECVto SEND which is executed when an interaction including mutRecwvakes place, the
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t++ tH+;

sO
2 E
Csenca) -
I
o) done [t==frameGap]
= t=0; s2
> E [s2]
%]
Comon) 2 =
7 srvRecv
sl

route(); t=0; subNetSend

i

s0 [to_all]

Figure 5.1: An atomic component: Router.

default guard beingyue. On execution, the internal computation step is the exenutf the C
routineroute(), followed by the reset of the variable

Composite components allow defining new components froracsatipponents (atomic or
composite). Components are connected through flat or blaca connectorswhich relate
ports from different sub-components. Connectors reptessn of interactions, that are, non-
empty sets of ports that have to be jointly executed. They secify guards and transfer
functions for each interaction, that is, the enabling cbadiand the exchange of data across
the ports of the interacting components.

20
s1 To NAC top-lines
recv E = srvRecv S2
sen
o | ]
serviceg q
: sen
subNetSend
recv |: E Router
send . [ [ -
Classifier "0 [
service
" T1 From NAC top-lines
recv srvSend
send T2
FrameReceiver 3
subNet Recv
Classifier
NAC

Figure 5.2: Composite Component: Server.

Figure 5.2 shows a composite compon8etver It contains atomic componenservice
- service, FrameReceiverand composite componen@assifierand NAC. The NAC con-
tains aRouterand &lassifier The connectors are shown by lines joining the ports of the
components.
Priorities are used to select amongst simultaneously enabled intaracihey are a set of
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rules, each consisting of an ordered pair of interactiose@ated with a condition. When the
condition holds and both interactions of the correspongiaig are enabled, only the one with
higherpriority can be executed.

The architecture of a generic device is shown in Figure 5.3.

From Device/NAQ recv
——— > srvRecv s0 recv send
send - i
Service(q
FrameReceiver :
recv
send
To Device/NAG servicen
“ srvSend 0 0
send
[0
subNetRecv H subNetSend|

NAC Classifier
From Devici To Devic

Figure 5.3: A device component.

5.4 Case Study: Heterogeneous Communication System

The case study concerns a distributed heterogeneous cadoation system (HCS) providing
an all electronic communication infrastructure to be dgeth typically for cabin communica-
tion in airplanes or for building automation. The HCS systamtains various devices such as
sensors (video camera, smoke detector, temperatureupeestc.) and actuators (loudspeak-
ers, light switches, temperature control, signs, etc.neoted through a wired communication
network to a common server. The server runs a set of servicashitor the sensors and
to control the actuators. The devices are connected to tiversesing network access con-
trollers (NAC) as shown for an example architecture in Fegbod. An extended star-like HCS
architecture with several daisy chains of NACs and devisggesented in Figure 5.5.

The system-wide HCS architecture is highly heterogeneliuscludes hardware compo-
nents and software applications ensuring functions witfieidint characteristics and degree of
criticality e.g, audio streaming, device clock synchratisn, sensor monitoring, video surveil-
lance. It also integrates different communication and rganmeent protocols between compo-
nents. The HCS system has to guarantee stringent requitgnseich as reliable data trans-
mission, fault tolerance, timings and synchronizationst@ints. For example, the latency for
delivering alarm signals from sensors, or for playing aushoouncements should be smaller
than certain predefined thresholds. Or, the accuracy okagachronization between different
devices, should be guaranteed under the given physica¢mgitation of the system.

The HCS case study poses challenges that require compbased- design techniques,
since it involves heterogeneous components and commignaaiechanisms, e.g. streaming
based on the data-flow paradigm as well as event driven catigaiind interaction. Its model-
ing needs combination of executable and analytic modeksogafy for performance evaluation
and analysis of non-functional properties.
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Figure 5.4: HCS Example Model.

We have modeled an instance of the HCS system in BIP. As shoviigure 5.4, the
system consists of ortgerverconnected to a daisy chain of four NACs, addressed 3, and
several devices. Devices are connected in daisy chaindlatNACs, the length of each chain
being limited to four in our example. For simplicity, devicare addressed, j), wherei is
the address of the NAC anydis the address of the device. The model contains three tyfpes o
devices, namelhAudio Player Video Cameraand Smoke SensorThe devices connected to
NAC(0) and NAC(2) have similar topology. The first two daiglyains consist of onlyAudio
Player devices. The third daisy-chain ends wittsemoke Senspand the fourth daisy-chain
consists of just on¥ideo CameraThe devices connected to NAC(1) and NAC(3) have exactly
the same topology, consisting of sevehkaldio Playerand oneSmoke Sensalevices.

The system depicted in Figure 5.4 contaiiglevices in total. The BIP model contai2&r
atomic component£45 clocks, and its state-space is of or@ét’’. The size of the BIP code
for describing the system 168 lines, which is translated %018 lines in C. A description of
the key components of the HCS is given hereafter.

54.1 Server

The server runs various applications including: 1) Md#sterClockthat runs the PTP master-
clock protocol between the server and the devices in ordieeep the device clocks synchro-
nized with the master-clock. The protocol exchanges PTRgiaof size 512 bits between the
server and the devices, and runs once every 2 minutésiddpGeneratorthat generates audio
streams to be playbacked by tAedio Playerdevices. It generates audio streams at 32kHz
with 12 bit resolution (audio chunks). We have assumed tB@ataudio chunks are sent in a
single frame over the network, (that gives the size of an@frdime to be 1344 bits) at the
rate of 33 frames per second. SjnokeDetectoservice that keeps track of the event packets
(size 736 bits) sent from thBmoke Senspand 4)VideoSurveillanceervice for monitoring
the Video Camerasin addition, the server needs to handle the scheduling @mthg of the
generated Ethernet packets over the communication baekddre scheduling and routing of
the packets is handled by the NAC component.
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Figure 5.5: Heterogeneous Communication System (HCS).

5.4.2 Network Access Controller (NAC)

The NACs perform the data routing from the server to the sutleeices and vice versa. A
NAC essentially consists ofrauter (as shown in Figure 5.1 in Section 5.3.2), that transmits the
packets from the server to the devices, arulbasifier(see Figure 5.6), that sends the packets
from the devices to the server. The classifier enforces adsding on the packets to be sent,
based on their types. As a result, packets may be queued bp MACs adding to their delay
en route to the server. Hence, the scheduling policy in thssdier plays an important role in
the transmission delay of the packets.

recvyg
e =
recvs
From Devices: In Out —— Send } To Server

el

@I Scheduler

Figure 5.6: Component: Classifier

We have implemented and tested two scheduling schemes. r§hediheduling policy is
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based on static priorities of the packets. The second paladied weighted fair queuing mixed
with priorities, is introduced in order to give a fair sharfetloe bandwidth of the network to
each type of packets.

Fixed priorities. With this algorithm, the packets transfered on the netwaoekdassified
in four categories that are (1) PTP, (2) Audio, (3) Events @&jdvideo. The PTP packets
are exchanged in the process of the PTP synchronizationy Wikbe further detailed in
Section 5.5.1. Audio packets are sent from the server to wkdéalevices. A priori, since
these packets are going from the server to the devices, tilayoivhave to be scheduled — the
scheduling is done by the server before sending the padkegsnts packets are sent by smoke
detectors to the server. Finally, Video packets corresgontaffic between video camera
devices and the server.
It is possible to classify these packets by order of impa#ai he highest priority goes to PTP
packets. Indeed, they need to be transmitted as fast ab[@lsscause they are critical for the
synchronization of the system. Audio and Events packetsheayitical in case of a punctual
problem during the flight: if a fire is detected, then the infation has to be transmitted as soon
as possible to the server. On the other hand, if a criticablpro is detected, the passengers
have to be informed without delay. Finally, the Video paslate less critical.
One can use this classification to define scheduling in the SNBZ following the order of
importance it defines. This is the principle of fixed pri@#i use as many FIFO buffers to
store the incoming packets as there are levels of prioriifésen several buffers are ready to
send, empty first the one with the highest priority, then et retc...

Unfortunately, if the network is flooded by higiriority packets, then the low-priority pack-
ets are never sent. This problem may be solved by using ametheduling algorithm that we
now present.

Weighted fair queuing (WFQ). Weighted fair queuing (WFQ) is a scheduling algorithm that
allocates to each data flow a share of the total data rate gfhtheical links. In WFQ, as in
fixed priorities, the packets are classified in categorieshEategory has its own FIFO buffer
in the switches. The difference with fixed priorities is tfat WFQ, each category is given a
weight that will not act has a priority but has a regulationhef data flow: Consider a physical
link of data rateR. If there arelN active categories with weights,, ws, . .. wy, meaning that
their buffers are non-empty, the WFQ scheduler will enshiat the category numbeégachieves
an average data rate of

R- w;

Wy + W2 ...+ WN

In practice, a scheduler will keep a dynamic information loe data rate of each category of
packets, and will only transmit packets corresponding tatagory for which the current data
rate is under the specified rate. What we have implementedrisdified version of WFQ
called WFQ mixed with priorities.

WFQ mixed with priorities. In this version, packets are both assigned a weight and an
order of priority. Moreover, we fix a size for the window ovehimwh each category must
satisfy its allocated rate. This means that packets of asireh smaller than the window may
sometimes be transfered with a higher rate than allocatedjded that the average rate on
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the total window is still respected. The priorities are atldeorder to partially resolve nen
determinism in the scheduling: when several packets carabsrhitted without violating the
rates, the one with the highest priority is sent first.

The main drawback of WFQ mixed with priorities is that theayesl of packets within one
category can have a high variance. Indeed, the packets aégorg with a high priority may
be sent at the beginning of a window, introducing low delaystfiem. Once the “quota” is
reached, however, all the remaining packets have to waitn®mext window before being
sent, introducing a high delay.

5.4.3 Device

Each device run one or more services which either generakesfor the server, or consumes
packets generated from the server. As devices are connealady chains, they also perform
routing of packets, hence each device provides a NAC funality. Services modeled in our
example aréAudio Player PTP SlaveClockSmoke Sens@ndVideo Camera Video frames
are generated at a rate of 25 frames per second, the sizevadldoeframes being given as a dis-
tribution. Separate distributions are provided for higealution camera (with mean frame size
of 120 kb) and for the low-resolution camera (with mean frame of 30kb). The architecture
of a generic device is shown in Figure 5.3 in Section 5.3.2.

5.4.4 Complexity of the modeling

Table 5.1 gives an overview about the number and the contplexinodel components defined

in BIP. The columns are as follows: is the number of control location¥}; is the number of
discrete variables (can be Boolean or arbitrary type likeaené or an array of frames); is
number of clocks{ is the clock rangeSize is the approximated size of the state-space; and
Number is the number of occurrences of the module in the example.

5.5 Experiments on the HCS

One of the core applications of the HCS case study is the Pateqwl, which allows the syn-
chronization of the clocks of the various devices with the ofithe server. It is important that
this synchronization occurs properly, i.e., that the défee between the clock of the server and
the one of any device is bounded by a small constant. Studiiiagrroblem is the subject of
this section. Since the BIP model for the HCS is extremelyddnumber of components, size
of the state space, ...), there is no hope to analyse it wittkhaustive verification technique.
Here, we propose to apply our stochastic abstraction. Givarecific device, we will proceed
in two steps. First, we will conduct simulations on the ensiystem in order to learn the prob-
ability distribution on the communication delays betweleis tdevice and the server. Second,
we will use this information to build a stochastic abstractof the application on which we
will apply statistical model checking. We start with thedtastic abstraction for the PTP.

5.5.1 The Precision Time Protocol IEEE 1588

The Precision Time Protocol [2] has been defined to syncheotiocks of several computers
interconnected over a network. The protocol relies on madti communication to distribute a
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Component type Name S Vy|V, C Size | Number
Router 8| 7| 1| 5120 | 2u 63
Forwarder 41 1|1 5120 | 28 -
FrameReceiver| 2 | 1 | 1 | 5-120 | 27 -

Atomic MasterClock 3/1| 1| 0-2000 | 22 1
AudioGenerator 2 | 1 | 1 | 0-3125| 23 1
SmokeDetector| 3| 1 | 1 | 0-300 | 2! 4
VideoGeneratorg 3 | 1 | 1 | 0-40000| 2'¢ 2
NAC -] - - - 234 63
Server - - - - 286 1

Compound Audio Player - - - - 244 52
Camera - - - - 250 2
SmokeSensor | - | - | - - 251
HCS System - - - - 23122 1

Table 5.1: State-space estimation.

reference time from an accurate clothkd masterto all other clocks in the networllte slaves
combined with individual offset correction, for each slagecording to its specific round-trip
communication delay to the master. The accuracy of synchatan is negatively impacted by
the jitter (i.e., the variation) and the asymmetry of the cwmication delay between the master
and the slaves. Obviously, these delay characteristichighdy dependent on the network
architecture as well as on the ongoing network traffic.

We present below the abstract stochastic model of the PTiBqmidbetween a device and
the server in the HCS case study. The model consists of twer(daistic) application com-
ponents respectively, the master and the slave clocks,vemgrobabilistic components, the
media, which are abstraction of the communication netwetkvben the master and the slave.
The former represent the behaviour of the protocol and aserided by extended timed i/o-
automata. The latter represent a random transport delaym@@nsimply described by proba-
bilistic distributions. Recap that randomization is usedepresent the context, i.e., behaviors
of other devices and influence of these behaviors on thodeeahaster and the device under
consideration.

The time of the master process is represented by the clo@l@é,,,. This is considered
the reference time and is used to synchronize the time ofléve slock, represented by the
clock variabled,. The synchronization works as follows. Periodically, thaster broadcast a
syncmessage and immediately aftefalowUp message containing the timgat which the
syncmessage has been sent. Timeas observed on the master cloél. The slave records
in t5 the reception time of theyncmessage. Then, after the reception of thkkowUp, it
sends a delayequestmessage to the master and records its emission#jmBoth ¢, andt;
are observed on the slave clogk The master records an the reception time of theequest
message and sends it back to the slave orréply message. Agair, is observed on the
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z=Plz:=0 > ?sync
lsync 01 to == 0,

sync, followUp, reply
IfollowUp(t1) ? followUp(t1)

Trequest Irequest
ty =0, request t3 := 0

Ireply(ts) ?reply(ts)
0:= (t2+t3—t1 t4)/2
- - -7 0s:=0s—o0

Figure 5.7: Abstract stochastic PTP between the server dediee.

master clockd,,,. Finally, upon reception ofeply, the slave computes the offset between its
time and the master time based @y),—, » and updates its clock accordingly. In our model, the
offset is computed differently in two different situatiors the first situation, which is depicted
in Figure 5.7, the average delays from master to slave anddracsupposed to be equal i.e.,
u(o1) = p(e2). In the second situation, delays are supposed to be asyiometr, i(o1) #
w1(02). In this case, synchronization is improved by using an eaffset correction which
compensate for the difference, more preciselys (to +t5 —t1 —t4)/2 + (11(02) — 1(01))/2.
This offset computation is an extension of the PTP spedificatnd has been considered since
it ensures better precision when delays are not symmet&$ection 5.5).

Encoding the abstract model of timed-#otomata given in Figure 5.7 in BIP is quite
straightforward and can be done with the method present§tbin The distribution on the
delay is implemented as a new C function in the BIP model. Wasth mentioning that, since
the two i/o automata are deterministic, the full system cheyi in Figure 5.7 is purely stochas-
tic.

The accuracy of the synchronization is defined by the absetaiue of the difference be-
tween the master and slave clodis — 6|, during the time. Our aim is to check the (safety)
property of bounded accuragw, that is,always|d,, — 0| < A for arbitrary fixed non-negative
real A.

Finally, a simpler version of this protocol is considered @malyzed in Section 5.5.2. In
that study, delay components have been modeled using nenydeistic timed i/0 automata
as well and represent arbitrary delays bounded in somevaigdr, U]. It is shown that, if the
clock drift is negligible, the best accuracy* that can be obtained using PTP is respectively
Y-L in the symmetric case, aré*+2—11=L2 in the asymmetric case. That is, the property of
bounded accuracy holds trivially ifk > A*.
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5.5.2 Parametric Precision Estimation for PTP

We introduce hereafter an analytic method to estimate thegion achieved within one round
of the PTP protocol, depending on several (abstract) paemsuch as the initial difference
and the bounds (lower, upper) on the allowed drift of the tlecks, the bounds (lower, upper)
of the communication delay between the master and the stve,

5 ’
t m a m

real a1 a) as as a4 as

Figure 5.8: One round of the PTP protocol.

The difference between the master and the slave clocks @fePTP round can be de
termined from a system of arithmetic non-linear consteextracted from the model of the
protocol and communication media. Let us consider one cetapbund of the protocol as de-
picted in Figure 5.8. The first two axes correspond to thec@neate) clocks of the master and
slave respectively. The third axis correspond to a periferrence clock. Using the notation
defined on the figure we can establish several constrai@tsmglinitial and final values of the
master and slave clocks,(, 0,0’ ,0"), timestampst(, t,, t3, t4), offset ), communication

Sy¥Ymr»Vs

delays(L,, Uy, Ly, Us), reference datesi{, a/, as, as, ay) as follows:

e initial constraints and initial clock difference
O — 0, =, 0,, =t 0, =t!

e evolution of the master clock is constrained by some maxdarittle,,
(1 —en)(as —ar) <ty —t, < (L+en)(as —ar)
(1 —en)(as —ay) <2, —t2 < (1+€,)(as — aq)

e evolution of the slave clock is constrained by some maximiétl €,
(1—e)laz —ar) <7 —t, < (14 6)(a2 — ar)
(1 —e)az —az) <] — 2 < (1 +€)(as — as)
(1 —€5)(as —as) <t —t3 < (1+¢)(as — az)

e communication delays, forward., U;) and backward L,, U,)
Li<ay—a <U;
Ly <az—a) <U,
Ly <ay—az3 <U,
Li<as—a, <U;

¢ internal master delay/, «) for sending thdollowUp aftersync
[<ady—a <u
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¢ offset computation and final clocks values
o= (2413 —tl —t2)/2,60, =t ,0.=1>—o0

m! 7S

This system of constraints encodes precisely the evolutfidhe two clocks within one
round of the protocol. The synchronization achieved cpoed to the differencé,, — 0.. We
analyze different configurations and we obtain the follaywiesults:

1. symmetricdelay$, = L, = L, U; = Uy = U, no drifte,, = ¢, =0

_U;Liﬁ%_%SU—L

2. symmetric delay$, = L, = L, U; = U, = U, no master drift,, = 0

U-L  &(5U~L+u) U—L  e(U+2L+u)

<@ -0 <
2 2 SO0 =0 = 2 2
3. asymmetric delays, no dridt, = ¢, =0
U2 - Ll / / Ul - L2
— <@ —0 <
;SO bis

4. asymmetric delays, no master deft = 0

_UQ;LI _63(3U1—|—2U;—L1+u) g@;n—é‘;g

Ul—Lg 63(2U1+2L2+u)
2 i 2

We remark that, in general, the precision achieved doesepsret on the initial difference
between the two clocks. Nevertheless, it is strongly imghdty the communication jitter,
which is, the differencé/ — L in the symmetric case and differendés— L,,U; — L, in the
asymmetric case.

Moreover, we remark that in the asymmetric case, the lowdrupper bounds are not
symmetrici.e., the precision interval obtained is not centered adodn The bounds of the
interval suggest us an additional offset correction:

(Uy = Uy) + (Ly — Ly)
4

0p =

which will shiftthe interval towards 0. For example, using this additioatection we obtain
in the case of asymmetric delays with no drift better precisi

_@@+w);uq+Lg§9%_%§

(Uy + Uy) — (L1 + Ls)
4
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5.5.3 Model Simulations

In this section, we describe our approach to learn the pibtyathistribution over the delays.
Consider the server and a given device. In a first step, we iraalaions on the system
and measure the erid-end delays of all PTP messages between the selecteckdawil the
server. For example, consider the case of detamyestmessages and assume that we made
33 measures. The result will be a series of delay values andedoh value, the number of
times it has been observed. As an example, delags been observetitimes, delayl9 has
been observedl times. The probability distribution is represented witlablé of33 cells. In
our caseg cells of the table will contains the valdeand30 will contain the valuel9. The
BIP engine will select a value in the table following a unifoprobability distribution. This
method is used both for the fixed priority scheduling and fierweighted fair queuing mixed
with priorities.

According to our experiment2)00 delay measurements are enough to obtain an accurate
estimation of the probability distribution. Indeed, fromstatistics point of view, a sample con-
sisting of 2000 values is more than enough in order to leacarately a probability distribution
without having to apply kernel methods [125, 88, 120] or Btraping [58, 59]. In the case of
fixed priorities, we have observed that it is possible to cand000 measurements without be-
ing too time-consuming. Indeed, each simulation4e®0 measurements takes approximately
40 minutes on a Pentium 4 running under a Linux distributlarthis case, we have thus con-
ducted4000 measurements. In the case of weighted fair queuing mixdd pviorities, since
the scheduling algorithm is more complex, oa8)0 measurements have been performed for
each delay. Indeed, in this case, each simulatioB#06 measurements takes approximately 3
hours on the same Pentium 4.

Regardless of the scheduling algorithm, we have obsenatdhb value of the distribution
clearly depends on the position of the device in the topolddys is shown in Figure 5.9 for
fixed priorities and Figure 5.10 for weighted fair queuinged with priorities. In both figures,
the solid plot shows the distribution of delays from Devi:8] to the server and the dashed
plot shows the delay from Device(3,3)to the server.

It is worth mentioning that running one single simulatiotoaing 4000/2000 measure-
ments of the delay of PTP frames requires running the PTR@obwvith an increased fre-
guency i.e., the default PTP period (2 minutes) being fabigacompared with the period for
sending audio/video packets (tens of milliseconds). Tioegewe run simulations where PTP
is executed once every 2 milliseconds and, we obtain 4000/&teasurements by simulating
approximately 8/4 seconds of the global system lifetimechEsimulation uses microsecond
time granularity.

5.6 Experiments on Precision Estimation for PTP

Three sets of experiments are conducted. The first one i®ooed with the bounded accuracy
property (see Section 5.5.1). In the second one, we studpgedailure per execution for a
given bound. Finally, we study the influence of drift on theuies. We do these experiments
for the two scheduling policies described in Section 5.4.2.

121



Device to Server delay (for PTP DELAY-REQUEST frames)

1000 T T T T T T T T
Dev(0,3) ——
Dev(3,3)  ====---
800 |- i -
600 |- i .
> i
o
c
(]
3
o
o
L HHH
400 i .
200 | i .
0 " ||||| Al aaadl b bobsnnd Vode s - i bt i s ali
0 50 100 150 200 250 350 400 450

Delay (micro secs)

Figure 5.9: Delay distribution for Device(0,3) and Devig&) using fixed priorities for 4000
measurements.

Device to Server (for PTP DELAY-REQUEST frames)
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Figure 5.10: Delay distribution for Device(0,3) and Dey&8) using weighted fair queuing
mixed with priorities for 2000 measurements.
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Probability of bounded accuracy

(0,00 (03) (1,00 (1,10) (20) (23) (3.0 (3.3
Device

Figure 5.11: Probability of satisfying the bounded accynamperty for a bound\ = 50us
and the asymmetric version of PTP.

5.6.1 Property 1. Synchronization

Our objective is to compute the smallest bouxndnder which synchronization occurs properly
for any device.

Experiment 1. We start with an experiment that shows that the value of thenbalepends
on the place of the device in the topology. For doing so, welAise 50us as a bound and
then compute the probability for synchronization to occtoperly for all the devices. For
the sake of presentation, we will only report on a sampleadevices:(0,0), (0, 3), (1,0),
(1,10), (2,0), (2,3), (3,0), (3,3), but our global observations extend to any device. We use
PESTIMATION with a confidence af.1. We first report the results we obtained using the fixed
priority scheduling algorithm. Then we compare these tesalthe ones obtained for weighted
fair queuing mixed with priorities, for several configumats of the weights and window size.
Fixed Priorities: The results, which are reported in Figure 5.11, show thapthee in the
topology plays a crucial role. Devig8, 3) has the best probability value and Devi@e0) has
the worst one. All the results in Figure 5.11 have been catediuan the model with asymmetric
delays. For the symmetric case, the probability values arehnsmaller. As an example, for
Device (0, 0), it decreases from.388 to 0.085. The above results have been obtained in less
than4 seconds.
Forweighted fair queuing mixed with priorities, we have selected three different configura
tions of the weights in order to give a hint of the differenhaeior we obtain. Since we want
to study bounded accuracy, it is legitimate to always giveghédr priority to PTP packets. As a
consequence, all the studied configurations give a highgghtiveo PTP packets. We have also
selected two distinct window size. Indeed, the size of thedaw can have some importance
when it is either close to the size of the packets or much biggjethe experiments have thus
been done both for a window af5m.s and for a window ofi00ms.

The first (resp. second, third) configuration gives a weiltesp. 5, 8) to PTP pack-
ets, while giving weigh® to audio and events packets, and weigh video packets. It will
be referred as 3:2:2:1 (resp. 5:2:2:1, 8:2:2:1). For thidigarations, the results of bounded
accuracy for a boundh = 50us are given in Figure 5.12a for the window dfms and in
Figure 5.12b for the window of00ms. The results for similar experiments are given in Fig-
ures 5.12c and 5.12d for configuration 5:2:2:1 and in Figlrd®2e and 5.12f for configuration
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Precision 1071 1072 1073
Confidence 107° | 10710 | 107° 10710 107° 10710
4 4 48824 4 48824291 4
PESTIMATION 883 | 9488 88243 | 948760 882429 94875993
17s 34s 29m 56m > 3h > 3h
ssp 1604 | 3579 | 161986 | 368633 | 16949867 | 32792577
10s 22s 13m 36m > 3h > 3h
1
SPRT 316 1176 12211 22870 148264 311368
2s 7s 5H3s 1m38s 11m 31m

Table 5.2: Number of simulations / Amount of time required RESTIMATION, SSP and
SPRT.

8:2:2:1.

From these results, we observe that the different weighiengio PTP packets do not seem
to influence a lot the bounded accuracy. The reason for thisatsweighted fair queuing
allocates to each types of packet a bandwidth that is fumatfotheir weight. Since PTP
packets are very small, they do not need a very high bandwoadib almost always transmitted
without delay. As a consequence, increasing the size ofahewidth allocated to them has
almost no impact on bounded accuracy. However, we also abteat the size of the window
has some impact on bounded accuracy. Indeed, the priotfitedsare mixed with weighted
fair queuing ensure that, while respecting the bandwidtication, PTP packets are always
transmitted first. However, once the “quota” of PTP packess lieen reached, the other types
of packets are all transmitted — creating a gap in the trassion of PTP packets. The largest
the window, the largest this gap will be. This gap will grgatifluence synchronization and
thus bounded accuracy.

Experiment 2. As a second experiment, we have used SPRT and SSP to vahégbeaba
bility value found by PESTIMATION with a higher degree of dmtence. Table 5.2 compares
the computation times of SPRT, SSP and Estimation. Thetsegrdsented are computed for
Device (0, 0) with fixed priorities, but they are representative of theutssfor all the experi-
ments presented here, both foted priorities andWFQ mixed with priorities . We observe
that SPRT is faster than SSP and PESTIMATION.

Experiment 3. The next step was to estimate the best bound. For doing seafdr device
we have repeated the previous experiments for valués leétweenl 0ps and120us for fixed
priorities and betweenhOu.s and140.us for weighted fair queuing mixed with priorities.
Forfixed priorities, Figure 5.13 gives the results of the probability of satisfythe bounded
accuracy property as a function of the bouldor the asymmetric version of PTP. The figure
shows that the smallest bound which ensure synchronizadraany device isl05.s (for De-
vice (3,0)). However, device$0, 3) and (3, 3) already satisfy the property with probability
for A = 60us.

For WFQ mixed with priorities , the results are presented in Figure 5.14. In this case, we
observe that the smallest bound ensuring synchronizaticeriy device id 25,5 regardless of
the configuration and window size. It is the exact bound fovibee(3, 3). Still, some devices
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(a) Probability of satisfying bounded accu (b) Probability of satisfying bounded accu-
racy for configuration 3:2:2:1 and a window racy for configuration 3:2:2:1 and a window

of 1.5ms. of 100ms.
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(c) Probability of satisfying bounded accu- (d) Probability of satisfying bounded accu-
racy for configuration 5:2:2:1 and a window racy for configuration 5:2:2:1 and a window

of 1.5ms. of 100ms.
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(e) Probability of satisfying bounded accu- (f) Probability of satisfying bounded accu-
racy for configuration 8:2:2:1 and a window racy for configuration 8:2:2:1 and a window
of 1.5ms. of 100ms.

Figure 5.12: Probability of satisfying the bounded accynamperty for a bound\ = 50us
and weighted fair queuing mixed with priorities.
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Probability of bounded accuracy

Figure 5.13: Probability of satisfying the bounded accug@operty as a function of the bound
A for the asymmetric version of PTP.

Precision 107! 1072 1073

Confidence 107° | 1071 | 107® | 10719 | 107> | 10710
110 | 219 | 1146 | 2292 | 11508 | 23015
1s 1s 6s 13s 51s 1md4s

SSP/SPRT

Table 5.3: Number of simulations / Amount of time required P&ESTIMATION and SSP.

(Device(0,0) and Device0, 3) for instance) already satisfy the property with probagpilifor
A = 65us.

Experiment 4. Table 5.3 shows, for Device (0,0) and fixed priorities, a carngon of the
time and number of simulations required for PESTIMATION &8P with the same degree of
confidence. Once again, these results are representatiie oésults obtained for all devices
and scheduling policies.

Experiment 5. The above experiments have been conducted assuming sonslaf 1000
BIP interactions an@6 rounds of the PTP protocol. Since each round of the PTP takes t
minutes, this also correspondslit2 minutes of the system’s life time. We now check whether
the results remain the sames if we lengthen the simulatiod$iance system’s life time. Fig
ures 5.15a and 5.15b show, for Devid@s0) and (3, 0) respectively, the probability of syn-
chronization for various values df and various length of simulation$000, 4000, 8000 and
10000 (660 minutes of system’s life time) steps) fiored priorities. For WFQ mixed with
priorities , the same results are presented in Figures 5.15c and 5.flt&ldase of configuration
8:2:2:1. These results are representative of all the othefigurations. We used PESTIMA-
TION with a precision and a confidence®f.. The best bounds do not change. However, the
longest the simulations are, the more the probability tead® eithei) or 1 depending on the
bound.
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Figure 5.14: Probability of satisfying bounded accuracg asction of the bound for weighted

fair queuing mixed with priorities.
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Figure 5.15: Evolution of the probability of satisfying theunded accuracy property with the
length of the simulations.

5.6.2 Property 2: Average failure

In the previous experiments, we have computed the best Gougchrantee the bounded aecu
racy property. It might be the case that the bound is too heghanding the user’s requirements.
In such case, using the above results, we can already repdhteoprobability for synchro-
nization to occur properly for smaller values of the bounde Wéw give a finer answer by
guantifying the average number of failures in synchromirathat occuiper simulationwhen
working with smaller bounds. For a given simulation, greportion of failuress obtained by
dividing the number of failures by the number of rounds of Pie will now estimate, for a
simulation of1000 steps (6 rounds of the PTP), the average value for this proportion.

Experiment 1. As a first experiment, we have measured (for each devicepthjgortion on
1199 simulations with a synchronization bound &f = 50us. Each of these measures takes
about6 seconds.

For fixed priorities, as an example, we obtain average proportiors@f6 and0.014 for De-

vice (0, 0) using the symmetric and asymmetric versions of PTP rey@dgtiAs a comparison,
we obtain average proportions @b64 and0.075 for Device(3,0). The average proportion of
failures with the bound\ = 50,5 and the asymmetric version of PTP is given in Figure 5.16.
For WFQ mixed with priorities , the results are presented in Figure 5.17 for all the studied
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Figure 5.16: Average proportion of failures for a boukd= 50..s and the asymmetric version
of PTP.

configurations. Once again, we observe that the configuratiehe weights does not have a
strong influence on the average proportion of failures. Harehe size of the window does
not influence the average proportion of failures either.

Experiment 2. The first experiment was then generalized to other valuelseobobund. Fig
ure 5.18 gives the average proportion of failures as a fanaf the bound fofixed priorities.
Figure 5.19 presents the results for the three configumtma two window sizes foWFQ
mixed with priorities .

The above experiment gives, for several value\oand each device, the average propor-
tion of failures with respect ta199 simulations. We have also used PESTIMATION with
confidence of).1 and precision of).1 to verify that this value remains the same whatever the
number of simulations is. The result was then validatedgiSIiBP with precision of0—* and
confidence ofl0~1°. Each experiment took approximately two minutes.

Experiment 3. Finally, we have conducted experiments to check whetherdhelts still
stand for longer simulations. Figures 5.20a and 5.20b ptdke results fofixed priorities,

for Device (0,0) and Device (3,0) respectively. Figures06.2nd 5.20d present the results
for Device (0,0) and Device (3,0) usingdFQ mixed with priorities , with the configuration
8:2:2:1 and a window of00us. Observe that the average proportion of failures nevergésn
with the length of the simulation, which confirms that usiimg@ations of length 1000 is fully
representative of the system.

5.6.3 Clock Drift

We have considered a modified version of the stochastic PTdelmath drifting clocks. Drift

is used to model the fact that, due to the influence of the hamelwlocks of the master and
the device may not progress as the same rate. In our modklisdncorporated as follows:
each time the clock of the server is increased kiyne unit, the clock of the device is increased
by 1 + ¢ time units, withs € [-1073,107%]. Using this modified model, we have re-done the
experiments of the previous sections and observed thag¢ st remains almost the same. This
is not surprising as the value of the drift significantly si@eathan the communication jitter, and
therefore it has less influence of the synchronization. & dfil time unit has a much higher
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Figure 5.17: Average proportion of failures for a bouhd= 5015 and weighted fair queuing
mixed with priorities.
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Proportion of failures

Figure 5.18: Average proportion of failures as a functioringf boundA for the asymmetric
version of PTP.

impact on the probability. As an example, for Devi6e0), it goes from a probability of, 387
to a probability of0, 007 in the case of fixed priorities. It is worth mentioning thahexstive
verification of a model with drifting clocks is not an easykas it requires to deal with complex
differential equations. When reasoning on one executi@rtiabe, this problem is avoided.

5.7 Another case study: the AFDX Network

In this section, we briefly introduce another applicatiortted methodology presented in this
chapter. A full description is available in [14].

As we have already seen, the evolution of avionics embeddadmas and the number ofin
tegrated functions in civilian aircrafts implied a hugergase in the quantity of data exchanged
and thus in the number of connections between functions. Alifeeaft Data Networks used
until now had either point to point connections, which irredr a high cost in aircraft pro-
duction as well as increase of weight, or mono transmitteebwvith very low performances
(100Kbits/s).

The HCS architecture presented in the previous sectionsdkition to this problem. How-
ever, HCS also has drawbacks. As an example, there is a stesd) for synchronization
between the devices. As we have seen, studying synchrimmzathe HCS architecture is not
easy. A different solution to this problem would be to useAk@®nics Full Duplex Switched
Ethernet (AFDX)[1]. Because of the property they guarantee — reliabilitg daterminism,
AFDX networks offer synchronization for free.

In AFDX reliability is achieved with redundancy while detginism with the definition of
Virtual Links (VL), which put constraints on the allowedffie. A network is deterministic if
we can guarantee an upper bound for the time a message ndasisiétivered to its destina-
tion. For AFDX such upper bounds can be provided with anedytinethods [47]. The bounds
obtained are over approximations of the worst case and #lgsas can only be performed on
very abstract models [33]. There is thus the need for new odlstthat will guarantee more
realistic upper bounds on more realistic models.

In [14], we have proposed such a method. More precisely, autributions are the follow-

ing.
1. Model of the network. We propose a BIP model for AFDX architecture. To the best
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Figure 5.20: Evolution of the average proportion of faikivgth the length of the simulations.

of our knowledge, this is the first complete, fully operatiband timing accurate, model
of AFDX developed using a formal framework. One shall obsé¢hat our construction
can be adapted to more complex network topologies.

2. Verification. We then examine th&atency requirementproperty in AFDX, i.e., we
check that the total delivery time for packets on virtuakéins smaller than some pre
defined values. The difficulty is that our model of AFDX is ctiged of many BIP
components — this is needed to obtain an accurate model ofetfweork. Combining
these components leads to a system that is too big (in termtat#s) to be analyzed
by classical verification techniques such as model checkingrder to overcome the
problem, we suggest to abstract some of these componehtpnehability distributions,
hence producing another BIP model of the network that is ehststic abstraction of the
original one. We then apply statistical model checking tineste a value of the bound
for which the requirement is satisfied with probability 1.i9ts an important feature as
correct upper bounds are mandatory for certification. We st®w that one can use our
approach to compute the probability that the latency requént is satisfied for a given
value of the bound. This latest feature is of interest to Hdagpnfigure the network for
better average performances.

We are not the first to propose the use of formal methods tya@&FDX networks. Other
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models are either performance models built within netwarkugators or timed automata med
els, restricted to few functionalities or describing vemgle network configuration. The work
of [7] focused on redundancy management and identified agsues occuring in the presence
of particular network faults. Alternatively, [32, 33, 11&al with computing bounds for end-
to-end delays in AFDX networks. The papers [32, 33] repopeeixnents using three analysis
methods: network calculus, stochastic simulation usind\@®land timed model-checking us-
ing Uppaal. The results confirm the well-established kndg#eabout these methods. Network
calculus [47] provides pessimistic, unreachable bounéswhbirk stochastic simulation provide
reachable bounds, however, these bounds hardly depené smthlation scenario considered
and can be too optimistic. Timed model-checking [5] prosideact bounds, however, it suffers
from state explosion due to model complexity, and hencenaascale to realistic networks.
Finally, the work in [118] provides a method for compositbanalysis of end-to-end delays. It
is shown that, to measure delays for a given virtual links #gmough to consider only the traffic
generated by the virtual links influencing, i.e., which €hpaths within the network. This ob-
servation allows talicethe network and therefore to reduce the complexity of anghémming
analysis. However (1) our model is more detailed and easiextend/modify due to the use of
the component-based design approach and (2) we are capabtadve stochastic information
on the network.

This second experiments suggests that our stochasti@atistr method can be automa-
tized and hence further developed.

5.8 Achievements and Future work

The contributions of this chapter are twofolds: (1) the nmimgdeof the HCS using the BIP
framework, and (2) a verification method and experimentallte obtained on this case study.

We have proposed a complete method for modeling and abatyast industrial case study
using the BIP toolset [15]. Due to the size of the HCS, we psepa stochastic abstraction
of the global model in order to verify properties using stital model checking. Thanks
to this approach, we have been able to reduce the size of tidelraad to derive precise
bounds that guarantee proper synchronization for all thecds of the system. This technique
is fully general and can be applied to other case studiesnfexample, we have showed in
Section 5.6.3, that the bounds we obtain for synchroniratiiti hold on a modified model with
drifting clocks — this property could not easily be verifiegddassical verification techniques.
In Section 5.7, we have also applied the method to an AFDX owt{d4].

We now illustrate a key feature of our approach. We constideHCS example introduced
in Section 5.4. Assume that we are interested in verifyirgpprties of the subsystem com-
posed of (1) the server, and (2) one arbitrary device. Ourcgmb consists in abstracting away
the rest of the system. Our technique proceeds by first stmgléhe entire heterogeneous
system in order to compute the stochastic abstraction.i$lkisne by an on-the-fly generation
of executions/simulations of the system resulting from ¢beposition of the many compo-
nents that participate to the design. When performing thisputation, one has to resolve the
non-determinism that arises from the composition of the mamments. This is generally done
by random choices using uniform distributions among erthbl®ices. The key observation
relevant to statistics is that, the mixing of those many cameffects result in smooth distribu-
tions characterizing the random behaviors of the subsys(€li (2)) of interest. Furthermore,
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the particular form for the random choices performed dutimg simulation does not really
influence the resulting stochastic behavior of the stoahasistraction — this relies on argu
ments of convergence toward so-caltdble distribution$140]. Our approach is thus clearly
different from those who would have artificially characted the stochastic behavior of the
subsystems.

Several directions can be considered as future work. Festomputed many simulations
in order to learn the probability distributions of the deddgr PTP packets. This is necessary
if we want to produce a stochastic abstraction whose digtabs are accurate estimations of
the real distributions. In the case of systems of a higheerocdmplexity, we cannot always
assume that it will be possible to generate as many simaktis needed. However, there are
techniques from the statistics area (for example kernehaust [125, 88, 120], wavelets [88]
or bootstraping [58, 59]) that could enable us to reason amaller number of simulations,
and still produce a reasonable approximation of the stdichasstraction. Second, our exper-
iments highly depend on the ESTIMATION algorithm, which istentially computationally
expensive. We could adapt Bayesian statistical model ¢hgdR5] in order to improve the
efficiency of ESTIMATION. Preliminary results are given it41]. Third, it would be of inter-
est to integrate statistical model checking and BIP in a tioal would be used to design and
analyse probabilistic systems in a compositional way. Thisot an easy task because of the
requirements of statistical model checking that the systemst be fully probabilistic, which
may be a big obstacle to compositionality. Moreover, it vdolé of interest to extend statis-
tical model checking in order to verify more complex propesiike Availability, presented in
Chapter 4 or unbounded properties [92, 91, 139, 110]. Kinslich a tool could be used, for
example, to verify satisfaction of probabilistic contsact
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Chapter 6

Conclusion

In this thesis, we have presented new results for the desgrnexification of systems that mix
both nondeterministic and stochastic aspects.

Our first main contribution was to lift the interface theari® the stochastic setting. We
started with new results on the expressiveness and corptéthree refinement preorders for
Interval Markov Chains. Those results are of clear impareas existing works on IMCs often
use one of these preorders to compare specifications [86189\Ve also proposed a construc-
tive solution to the common implementation problem, i.ee gimoblem of deciding whether
there exists an implementation satisfying all the spedifosa in a given set. It is worth men-
tioning that these results are robust and still hold on sempliations of IMCs. As an example,
one can use sets of sets of propositions to label the statesaohof sets of propositions. We
can also use an initial distribution instead of an initi@tet However, even though IMCs are
an attractive formalism, they are not powerful enough tadwapall the good requirement for
an interface theory (composition, conjunction, disjuma}i This motivates the development of
Constraint Markov Chains, the first complete compositiapecification theory for stochastic
systems. CMCs are an extension of IMCs, which allows compderstraints on the transition
probabilities instead of simple intervals. We have prodidefinitions for satisfaction and re-
finement, which extend those proposed for IMCs. In additiesmhave designed algorithms for
consistency checking and structural and logical compmsitMoreover, we have provided a
comparison between the structural and logical operatoxmeMrecisely, we have shown that
conjunction acts as an abstraction for composition. We lads@ observed that the conjunc-
tion or disjunction of two linear constraints remains lindaut that composition may introduce
polynomial constraints. From an implementation point @wit may thus be more efficient
to work with linear constraints only. For doing so, one can@y approximate composition
with conjunction. Finally, we provide reductions from padiilistic automata to CMCs, show-
ing that our formalism is fully general. Despite this getigyaall operators and relations are
computable.

There are various research directions to continue this wiwokne of them have already been
presented in Section 3.9. The most promising directionsvasolds: We think it is important
implement and evaluate the algorithms proposed in thesechapters. Extending CMCs to
the continuous-time setting seems a natural next stepethd@ntinuous-time Markov Chains
(CTMCs) are one of the most important semantical modelsefak-time probabilistic systems.
CTMCs have been widely used in performance and dependadildlysis, their applications
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ranging from Markovian queuing networks to calculi for st biology [75, 94, 76, 95].

Our second main contribution is a new theory for (probatijscontracts, which extends
the work of [21]. First, we have proposed new notions fors$atition of both probabilistic
and nonprobabilistic contracts: reliability and availabilitiReliability is a classical notion as it
gives a measure of the sets of runs of a system that satisfresraggoperty. In contrast, avail-
ability is a new notion, measuring the amount of time durifgol a system satisfies a given
property. Both notions play an important role in the desigmission-critical systems. Second,
the theory has been adapted in order to treat stochastictaspe this way, the probabilistic
assume guarantee contracts theory allows consideringmsgsvolving in a stochastic environ-
ment. Finally, we have proposed effective symbolic repregens of contracts and systems.
These representations are based on automata represeosisiglp infinite sets of runs. We
have showed that if assumptions and guarantees are ref@@seth Blchi automata, check-
ing reliability satisfaction and refinement can be done witissical techniques.

In addition to what has already been discussed in Sectionwkbelieve that the main
direction for future work is on the implementation. The nmebabilistic setting could be
implemented in the SPIN toolset[127], while the LIQUOR &=il[35] seems more appropriate
for the probabilistic approach.

Finally, our most promising contribution may be our studytef EADS HCS. We propose a
new simulation-based technique for verifying applicasicamning within the HCS, which is the
cabin communication system of an airplane. Our technigatssby performing simulations
of the system in order to learn the context in where the agftin is used. Then, it creates
a stochastic abstraction for the application, which takescbntext information into account.
This smaller model can be verified using efficient techniqueh as statistical model checking.
This technique has been applied to verify the clock synakation protocol i.e., the application
used to synchronize the clocks of all computing devicesiwitie system.

The important lessons we learnt from this experiment arg(fl)grobabilities can be used
as a concise representation of the context in where a givesystem is running, and (2) sim-
ulations combined with statistics make verification anddatlon faster and more general. We
thus believe that the concept of stochastic abstractionldHme further formalized, automa-
tized, and developed. We are also convinced that stalistiocdel checking algorithms can be
made more efficient by taking the methodology used to desigisystem into account. Study-
ing stochastic abstraction and improving statistical thodecking algorithms are the two main
directions for future research.

The stochastic abstractioshall be obtained by simulating the entire design (systesl le
model) in order to learn the environment in where the sulesysinder consideration is running.
Generating simulations of a complex design may take timethi¥e suggest to use techniques
from the statistical area to better exploit the simulationgenerating an accurate estimate
of the distribution. Stochastic abstraction may also be lwoed with classical abstraction
techniques, especially when memory has to be considerée itdsign.

We also suggest to improve the efficiency of statistical rhodecking algorithms in two
ways. First, as the system is assumed to be “well-desigroedt’ ,can postulate that the prop-
erty under verification should rarely be falsified. This me#mat we are trying to compute
probabilities of violation that should be very closeitoStatistical model checking algorithms
should address this issue in an efficient manner. This isaligtnot the case. Also, due to
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her engineering knowledge about the system, the designgigoess some prior knowledge
regarding the probability for the system to violate the mtyp This information could be used
to improve the efficiency of statistical model checking.

One of the recurrent difficulties with formal verificatiorcteniques is the development of
specific tools and the acceptance of the underlying teclygploy engineers, as part of their
design process. To ensure that our approach is acceptedbstiials, we will collaborate
with an industrial partner who develops tools for desigmeterogeneous systems. At the very
beginning of our study, the experiments will be conductetthwcademic tools such as the BIP
toolset[15, 26] used for EADS and AFDX in Chapter 5. Accogdin EADS designers, the
language of BIP is expressive enough to “mimic” the concnetelementation of the HCS.
However, the experiment could not have been conducted utitihe help of EADS designers
who validated our mathematical model of the system. In ai@eope with other case studies,
we will have to integrate our technology in the tool chainmdustrials. Such an integration
creates new difficulties. As an example, it requires to be abljointly simulate models of
different parts of the system, possibly expressed usirfgrédifit formalisms. Fortunately, cor
responding so-called “co-simulation” (also called “hakssemulation”) technologies (see [128]
for an illustration) have been recently developed by tooldaes (such our industrial partner)
to cope with this problem. We plan to integrate this techggland extend it to a more general
context. Another major difficulty will be to provide feedbkato the user in case her require-
ments are not satisfied.
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Abstracts

Abstract. This thesis presents new contributions in the design anificagron of systems
mixing both nondeterministic and stochastic aspects. Our results canvided into three
main contributions. First, we generalize interface theotd the stochastic setting. We build
upon the known formalism of Interval Markov Chains to deype@onstraint Markov Chains,
the first fully compositional specification theory for stashic systems. Second, we extend
the notion of assume-guarantee contracts and develop eactbbtsed theory for stochastic
systems, proposing quantitative notions for satisfachiod refinement. Finally, we propose a
methodology for the verification of complex systems. Thishndology is based on a stochas-
tic abstraction of the environment where two componentsvarding, allowing to verify the
components individually. Combined with statistical modeécking, this methodology is suc-
cessfully applied to the verification of an industrial cakaly.

Résumeé. Cette thése présente des contributions originales pownieeption et la vérification
de systemes non-déterministes et stochastiques. Nosatéssbnt divisés selon trois lignes
directrices. Premiérement, nous généralisons la théesarderfaces au cas stochastique, en
s’appuyant sur le formalisme classique des chaines de Markatervalles pour construire la
premiere théorie de spécification compositionnelle postesyes stochastiques : les chaines de
Markov a contraintes. Deuxiémement, nous étendons lamdgacontrats hypothése-garantie
et développons une théorie compositionnelle a base deatemour systemes stochastiques,
pour laquelle nous proposons des notions quantitativeaffieement et de satisfaction. Fi-
nalement, nous proposons une méthodologie pour la vérificde systemes complexes, basée
sur une abstraction stochastique. Cette méthodologigyiogm avec le model-checking statis-
tique, est appliquée avec succes a un cas d’étude industriel
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