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Chapter 1. Introdution
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1.1. Prefae1.1 PrefaeMahine learning [73, 12℄ is the art of designing, developing and evaluating algorithms whihare apable of evolving behaviors based on the empirial data. Mahine learning algorithmsautomatially improve their performane P based on some experiene E at some task T . Asan example, onsider the problem of developing a system whih learns to play hekers. In thisase, the task T is to play hekers, the performane measure P is the perentage of games wonin a world tournament and E is the opportunity of play against self.Mahine learning has reently emerged as one of the key areas of arti�ial intelligene. Oneof the primary reasons for its popularity lies in the eager wish of humans to explore and repliatethe human learning proess. Mahine learning an be viewed as a two-fold task, onsisting oflearning the invariant and ommon properties of a set of samples haraterizing a lass, and ofdeiding that a new sample is a possible member of the lass by noting that it has propertiesommon to those of the set of samples [78℄.Mahine learning algorithms an be broadly ategorized in three di�erent ategories: super-vised learning in whih ase the learning is based on a set of labeled data (also alled trainingdata), unsupervised learning whih does not require any sort of human intervention and doesnot have a training phase (it is usually used when the lasses are not known in advane), andsemi-supervised learning lying in between the supervised and unsupervised settings.Mahine learning has been suessfully applied in various di�erent settings like lassi�ation(e.g. handwritten digit reognition [63℄, doument lassi�ation [55℄, fae reognition [105℄ et.),lustering (k-means lustering [11℄, spetral lustering [115℄), bio-informatis, �nane, informa-tion �ltering systems that automatially learn users' interests, detetion of hazardous smokes onindustrial failities [39℄ et. It is based on learning from data and hene is losely related to the�eld of data mining. Data mining deals with extrating useful patterns from raw data so as tomake it a more useful ommodity.Every mahine learning algorithm works with a set of examples. Among this set, some ofthe examples are used to learn the underlying harateristis of the data based on a set offeatures. This subset is termed training set. In order to validate the algorithm, the trained orlearned algorithm is run on unseen examples, also known as the test set. A validation set an beoptionally employed so as to �ne tune the di�erent parameters of the algorithm.1.2 MotivationWe onsider two objets e.g. douments or images whih need to be ompared. In order todo this omparison, similarity or distane an be found between these two objets. Most ofthe time, default measures, i.e. Eulidean distane in the ase of images and osine similarityfor text lassi�ation, are employed whih onsider that the metri between di�erent objets isparametrized by an identity matrix. In other words, measures like Eulidean distane and osinesimilarity onsider a very simple underlying geometry for the spae in whih the data lie. Manyworks have proved that it is far better to learn the metri struture from the data rather thanassuming a simple geometri struture.The reent popularity of Internet has led to an enormous inrease in the amount of information3



Chapter 1. Introdution

Figure 1.1: OASIS: A distane metri learning algorithm to �nd similar images [16℄as well as the growth of researh areas devoted to automated organization of this information.An evaluation forum named Cross Language Evaluation Forum (CLEF) has been run everyyear sine 2000, with the aim of evaluating information retrieval systems operating on Europeanlanguages in monolingual as well as ross-language ontexts. An information �ltering (INFILE)ampaign has been run as a pilot trak of CLEF in 2008 and 2009. The aim in INFILE was to�lter a ontinuous stream of douments into di�erent prede�ned topis. In the ase of information�ltering, osine based thresholds ould be learned based on the inoming stream of douments,provided there is at least some sort of supervision. The Online algorithm was developed in 2008and was the only partiipation for INFILE in that year. Furthermore, the bath algorithm gotthe best F-sore during 2009 among di�erent partiipants. Learning a omplete metri is a wiserdeision than learning only the thresholds, if one is working in a fully supervised setting. Thishas given rise to a domain alled metri learning [54, 53℄. Figure B.1 shows the top �ve images asranked by OASIS [16℄, an image distane learning algorithm, 1 on four examples of query-imagesin a Google proprietary dataset. The relevant text queries for eah image are written beneaththe image. The top most row shows a query-image, originally retrieved in response to the textquery illusion. It may also be notied that all of the �ve images ranked highly by OASIS aresemantially related, portraying other sorts of visual illusions. The rest of the three examplesshow that OASIS was able to grab the semantis of animal photos (ats and dogs), mountainsand di�erent food items.1In this work, no distintion is made between the distane and the similarity.4



1.3. Thesis PlanThe primary aim of metri learning is to learn a metri well adapted to the problem underonsideration. Algorithms for data lassi�ation and lustering rely heavily on the presene of agood metri. Apart from these areas, metri learning is a very important ingredient in problemslike fae reognition, visual objet reognition, automated speeh reognition [107℄, languageproblems, musi similarity, pose estimation, image similarity and searh [59℄ et. For manymetri learning algorithms, both online as well as bath learning is possible. Metri learning anbe further subdivided into two di�erent types: distane metri learning and similarity metrilearning.Most of the works related to metri learning onentrate on distane metri learning onlyand try to learn Mahalanobis distane metri. However, in many pratial situations, similaritiesmay be preferred over distanes. This is typially the ase when one is working on texts, forwhih the osine measure has been deemed more appropriate than the standard distane metrislike the Eulidean or the Mahalanobis ones. Furthermore, several experiments show that the useof the osine similarity should be preferred over the Eulidean distane on several, non textualolletions as well (see e.g. [18, 72, 84, 87℄). Being able to e�iently learn appropriate similaritymeasures, as opposed to distanes, e.g. for kNN lassi�ation, is thus of high importane forvarious olletions. If several works have partially addressed this problem (as for example [1,46, 52℄) for di�erent appliations, we know of no previous work whih has fully addressed it inthe ontext of learning similarity metris for kNN lassi�ation. This is the basi motivationbehind this work. In the �rst instane, an unonstrained similarity metri learning algorithm isdeveloped in whih ase the normalization is ompletely independent of the similarity matrix.Proofs were developed to show that the error on unseen examples is limited and the algorithmhas good generalization properties. This is followed by the development of an algorithm basedon generalized osine having a normalization dependent on the similarity matrix. Moreover theunonstrained similarity learning is ompared with the RELIEF family of algorithms. AlthoughRELIEF is basially a feature re-weighting algorithm, it has been reently proved by Sun andWu [102℄ that it is a distane metri learning algorithm whih optimizes an approximation of the
0− 1 loss. We show here that this approximation is too loose, and propose a striter one, bettersuited for lassi�ation.1.3 Thesis Plan
• We desribe in Chapter 2 the basi onepts related to Mahine Learning along with the sur-vey of various state of the art tehniques for metri learning. The two main types of mahinelearning, i.e. supervised and unsupervised learning, are disussed in detail. Furthermore, thebasis of online as well as bath algorithms are disussed. Some of the key distane met-ri learning algorithms, e.g. Weinberger's Large Margin Nearest Neighbor (LMNN) [112℄,Davis's Information Theoreti Metri Learning [28℄ and Shalev's POLA [99℄, are disussedand ompared thoroughly. Furthermore, similarity as well as similarity based methods arealso examined. RELIEF, a well known feature reweighting algorithm along with its mathe-matial interpretation is also presented. Evaluation metris and the tehniques for lassi�ers'omparison are �nally disussed.
• In Chapter 3, we show how osine based thresholds an be learned e�etively when little or5



Chapter 1. Introdutionno supervision is present. This tehnique is established for a �ltering task where a huge setof douments is �ltered aording to user pro�les. Online as well as Bath algorithms aredisussed and ompared extensively. The algorithms are developed as a part of the InFileampaign of the CLEF ompetition.
• Chapter 4 starts with the desription of an unonstrained similarity metri learning method,alled SiLA, where the normalization is ompletely independent of the learned similaritymatrix. SiLA is ompared with the RELIEF algorithm for whih Sun and Wu [102℄ haveshown that it basially learns a distane metri while optimizing a ost funtion approximatingthe 0 − 1 loss. We show that the approximation used by RELIEF is loose, and propose astriter version using a ost funtion loser to the 0 − 1 loss. This striter version leads toa new, and better RELIEF based algorithm for lassi�ation. Furthermore, a generalizedosine similarity learning algorithm (gCosLA) is developed, in whih ase the normalizationis dependent on the similarity matrix.
• The di�erent similarity metri learning algorithms developed during the ourse of this thesisare evaluated in Chapter 5. In order to assess whether the results are signi�antly di�erentor not, a s-test is used. We show that similarities are a more viable option as omparedto the distane metris on many datasets. Furthermore, the unonstrained similarity metrilearning algorithm as well as the generalized osine similarity one are ompared with di�erentstate of the art lassi�ation algorithms. The similarity learning algorithms outperform theirounterparts on some of the UCI datasets.
• Chapter 6 presents the onlusion along with the limitations of the proposed approahes andthe future perspetives.
• Finally proofs for onvergene and good behavior have been provided for SiLA and gCosLA.
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2.1. Introdution2.1 IntrodutionMahine learning is basially a proess by whih an unknown dependeny (input, output) of asystem is estimated, using a limited number of observations or examples. A typial mahinelearning system is omposed of three omponents: a generator of random input vetors denotedby x, a system that returns an output y for a given input vetor x, and the learning mahinewhih estimates the mapping of the system from the observed samples omposed of input andoutput. This senario desribes many real world problems like lassi�ation, regression (e.g.Gaussian proesses [92℄), lustering et. The generator produes random vetors x ∈ R
d having

d dimensions, drawn independently from a �xed but unknown probability density funtion p(x).The system provides an output value y for every input vetor x, based on the �xed but unknownonditional density p(y|x) (probability of observing y given x). The third omponent of a mahinelearning system is the learning mahine whih is apable of implementing a set of funtions
f(x, ω), ω ∈ Ω, where Ω is a set of abstrat parameters used to index the set of funtions. Herethe set an be any set of funtions, hosen before the learning has begun. The learning mahinemust selet a funtion (from a set of funtions it supports) whih best approximates the system'sresponse. This seletion proess is based on the observation of a �nite number n of examples.The training data, omposed of inputs and outputs is independent and identially distributed(i.i.d.) as per the joint probability density funtion (pdf):

p(x, y) = p(x) p(y|x)The training data from this distribution an be desribed as:
(x(i), y(i)), (i = 1, · · · , n)An instane spae, X is de�ned as a spae ontaining all of the instanes i.e. x(1), x(2), · · · , x(n).Similarly, a label set, Y ontains all of the possible labels or lasses.The quality of the learning proess is measured using a loss funtion L(y, f(x, ω)) whihrepresents the disrepany between the atual output y produed by the system for a givenexample x, and its approximation y′ = f(x, ω) by the learning mahine. In general, the loss isalways non-negative, with higher values indiating a poor approximation [19℄. In the rest of thishapter, various approahes for metri learning are disussed in detail whih onstitutes the oreof this thesis.After explaining a typial mahine learning system, the next setion disusses the funda-mental onepts related to mahine learning inluding a omparison between supervised andunsupervised learning, and an insight into the di�erenes between online and bath learning.2.2 Mahine Learning FundamentalsSome notations are provided here, whih will be used throughout the thesis. An input objetan be represented as x ∈ R

d where R is the set of real numbers and d denotes the number offeatures or dimensions. As x is a vetor, the features of x an be aessed by the subsripts
xi, 1 ≥ i ≥ d. The output is denoted by y. The vetors are not written in bold and the transposeof x is represented as xt. 9
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Figure 2.1: A typial mahine learning system using observations of the system to predit theoutputsA fundamental hypothesis of statistial learning theory is that all of the examples are gen-erated independently using a probability distribution P. In other words, it an be said that theexamples are i.i.d. (independent and identially distributed) as per P.Another very important onept is that of error, also known as ost or loss. Given a preditionfuntion f , the loss �nds the aord between the predition f(x) and the target output y. In thease of lassi�ation, a ommonly used loss funtion is the 0− 1 loss 2, whih is either 0 (orretlassi�ation) or 1 (wrong lassi�ation):
L(f(x), y) =







1 if f(x) = y

0 otherwiseThe error in the ase of regression is the square of the di�erene between the atual output andthe antiipated one (target output) [81℄:
L (f(x), y) = (f(x)− y)2With this, the risk assoiated with the predition funtion f(x) an be alulated for all of theexamples (x, y). This loss is also known as the generalization risk and is de�ned as the expetationof the loss funtion:

Rgen(f) = E [L (f(x), y)] =

∫

L (f(x), y) dP(x, y)where P represents the probability distribution desribed earlier. In general, the risk Rgen(f)annot be omputed sine the probability distribution is not known to the learning algorithm.Nevertheless, an approximation for the generalization risk an be alulated by averaging theloss funtion over the training set. This approximation is termed empirial risk and is given by:
Remp(f) = 1

n

n∑

i=1

L
(

f(x(i)), y(i)
)where n stands for the number of examples in the training set.2

0− 1 loss is also known as the leave-one-out error10



2.2. Mahine Learning Fundamentals2.2.1 Supervised vs Unsupervised LearningMahine learning algorithms ould be broadly lassi�ed into two main ategories: supervisedand unsupervised learning algorithms. Supervised learning is based on learning a funtion froma set of training samples in the form of pairs. Eah pair is made up of input objets (usuallyvetors) and desired output values also known as target values. The funtion learned an havedi�erent types of outputs: ontinuous values (regression) or a predited lass label for the inputobjet (also referred to as lassi�ation). The aim is to predit the value of the funtion onethe learner has enountered a su�ient number of examples (training phase) in order to lassifyunseen examples (test phase). The auray of the learned funtion strongly depends on thequality of the objet representation. The input objets are, oftenly, desribed in the form offeature vetors. The number of features must be hosen in a way that they an predit theoutput aurately. Some of the key supervised algorithms inlude pereptron algorithm, supportvetor mahines (SVM) et.On the other hand, a model is �tted to observations (unlabeled examples) in the ase ofunsupervised learning 3. In many real world appliations, the labels are not present. Theunsupervised learning methods work without a teaher as opposed to supervised learning. Itdoes not have a priori output as opposed to supervised learning and helps to learn larger andmore omplex models than with supervised learning. The reason is that in supervised learning,the aim is to �nd the onnetion between two sets of data but the di�ulty of the learningtask inreases exponentially in the number of steps required in �nding the relation betweenthe two data sets. On the ontrary, unsupervised learning an proeed hierarhially from theobservations to more abstrat levels of representation. Some examples of unsupervised algorithmsare lustering, self-organizing maps (SOM) et.Clustering is based on organizing the given examples into di�erent lusters in suh a way thatthe similar examples are put into the same luster while di�erent examples appear in di�erentlusters. In general, lustering o�ers a way to know the impliit struture of the dataset.Apart from the major ategorization of the mahine learning algorithms (supervised andunsupervised), there is another way in whih a mahine learning algorithm ould be lassi�ed:online or bath learning.2.2.2 Online Learning vs Bath LearningLearning an be bath or online depending on the targeted task. Bath learning or o�inelearning deals with all of the available examples in one-go. In general, the learned parametersannot be updated one the learning is omplete. It is assumed that a probability distributionover the produt spae XxY exists, where X is an instane spae while Y is a label set asexplained in setion 1.1. Moreover, it is also assumed that there is aess to a training set drawni.i.d. from this distribution. The aim is to generate an output hypothesis from the training set.Furthermore, the bath algorithm should have the ability to generalize well beyond the trainingset and aurately predit the labels for unseen test examples sampled from the distribution.3The frontier between supervised and unsupervised learning is blurred: e.g. semi-supervised learning in whihase the lassi�er an be initialized based on the labeled examples whih then learns without supervision on therest of the unlabeled examples, transdutive learning et. 11



Chapter 2. State of the Art Approahes to Metri LearningExamples of bath algorithms inlude linear disriminant analysis (a model employing stohastidependene between terms that relies on the ovariane matries of di�erent ategories), Rohiolassi�er et.Most of the Mahine Learning models are designed for the bath ase. However, anothertype of learning is oftenly used nowadays. It is alled online learning (also known as inrementallearning, instantaneous learning or on-the-�y learning) and uses the examples one-by-one tolearn the parameters for the employed algorithm. In other words, the instanes are obtained ina sequential manner. It starts building the lassi�er one it has examined the very �rst trainingexample. After reeiving an instane, the online algorithm makes a predition using a defaulthypothesis h1, the type of whih depends on the problem being treated e.g. in the ase of binarylassi�ation, it is a +ive/ − ive deision [23℄. Upon making a predition (ŷ), the algorithmreeives a feedbak in the form of orret predition (y). Based on the true label, the algorithman su�er from an instantaneous loss. The umulative loss on a sequene of rounds is the sumof instantaneous losses su�ered on eah of the rounds in the sequene. The umulative loss orthe empirial loss is the sum of hinge losses for the entire training set. The instane-label pairtogether enables the online algorithm to modify its predition mehanism and eventually helpsin making aurate preditions over the rest of the instanes. An online algorithm is de�ned byits default hypothesis and the update rule to de�ne new hypothesis. In general, an example isused only one by the online algorithm. However, the algorithm ould be run more than one tooptimize its performane.Online learning is usually simpler to implement, memory e�ient and faster as omparedto the bath learning [30℄ and is preferred in the environments where the best model hangesgradually over the passage of time or when the storage spae is limited. Apart from thesepratial advantages, online algorithms often have formal guarantees in the form of worse asebounds on their performane. Furthermore, sometimes there is a senario e.g. text or information�ltering where the examples are provided in a sequential manner and the preditions must bemade on-the-�y.In ase, there is no loss for an online algorithm, the urrent hypothesis hτ is left unhanged.On the ontrary, if there is some loss, two goals must be balaned:1. Change the urrent hypothesis hτ as it has enountered a ertain loss for the urrentexample. However, the hange must be enough so that the urrent error is not repeated inthe future.2. Do not hange hτ too muh, sine hτ was able to orretly lassify the last enounteredexample. If the urrent hypothesis is hanged exessively, then one annot be sure that thenew hypothesis would be able to over the previously seen examples.Suppose that the hanges in hτ are measured by taking into aount the Eulidean distanebetween the updated hypothesis hτ+1 and the old one hτ . This ase, where the �rst goal isenfored while the the seond one is minimized, orresponds to the lassial gradient desentupdate rule.In order to satisfy the two major goals (given above) of an online algorithm, a passive andaggressive strategy is required. It should be aggressive enough to avoid the repeat of errors,12



2.2. Mahine Learning Fundamentalswhile passive at the same time so that a new hypothesis lassi�es orretly the examples alreadyenountered by the algorithm.The Passive Aggressive Family of Online AlgorithmsCrammer et al. [23℄ have de�ned a family of online algorithms termed as passive aggressivealgorithms. The basi idea is the same as that of the goals mentioned earlier. However, insteadof simply ensuring that a orret lassi�ation is made with the help of rule 1, it is ensured thatthe orret lassi�ation is made with a margin of at least 1. The examples are onsidered inthe form of instane-label pairs i.e. (xτ , yτ ) where xτ ∈ R
n, yτ ∈ {+1,−1} and τ represents theurrent iteration or round. The preditions are made based on a lassi�ation funtion of theform: sign(w . x) where w ∈ R

n represents the vetor of weights. The aim of the algorithm is tolearn the vetor of weights in an inremental fashion. The margin on the round τ an be givenby yτ (wτ . x
τ ). In ase the margin is positive (sign(wτ . x

τ ) = yτ ), it an be stated that thealgorithm has made a orret deision. However, the aim is to predit with higher on�deneand to ahieve a margin of at least 1 in as many rounds as possible. Whenever the margin is lessthan 1, the algorithm su�ers from a hinge loss whih an be given as:
lτ (w; (x

τ , yτ )) =







0 if yτ (w . xτ ) ≥ 1

1− yτ (w . xτ ) otherwiseHene, the loss is zero whenever the margin is greater than 1. On the ontrary, the loss is equalto the di�erene between 1 and the margin value if the margin is less than 1. For regression,the hoie of the margin an be de�ned by the user as well. It has been further shown that thealgorithms have a small umulative square loss over the set of T examples (∑T
τ=1 l

2
τ ).The initial weight vetor w1 is initialized with all zeros for all of the variants of the passiveaggressive algorithm for binary lassi�ation. However, the update rule for the weight vetordi�ers for eah of the three variants. The simplest and the strongest of the rules requires thenew weight wτ+1 to be the solution of the following onstraint optimization problem:

wτ+1 = arg minw∈Rn

1

2
‖w − wτ‖2 subjet to lτ (w; (x

τ , yτ )) = 0whih has a losed form solution:
wτ+1 = wτ + δτy

τxτ where δτ =
lτ

‖xτ‖2Here δτ ≥ 0 and is a Lagrange multiplier. Moreover, wτ+1 is the projetion of wτ onto the spaewhere the hinge loss on the urrent example is zero. Whenever the loss is zero, wτ+1 = wτand the algorithm is said to be passive. However, if the loss is positive (it annot be negative),the algorithm aggressively fores the update wτ+1 to satisfy the onstraint l(wτ+1; (x
τ , yτ )) = 0imposed by the urrent example, while remaining as lose as possible to wτ . That is the reasonthese algorithms have been termed as passive aggressive. The passive approah is for the retentionof the information gathered during the earlier iterations while the aggressive nature is usefulwhenever there is a mislassi�ation. 13



Chapter 2. State of the Art Approahes to Metri LearningAnother related work is that of Helmbold et al. [50℄ who showed the relationship betweenthe amount of progress made at eah iteration and the amount of information retained from theprevious ones. Here, the update requires wτ+1 to orretly lassify the urrent example xτ witha high margin and in this way, the progress is made (aggressiveness). Similarly wτ+1 shouldstay lose to wτ whih enables the algorithm to retain the information learned from the previousiterations (passiveness).In order to redue the aggressiveness of Passive Aggressive algorithms, two more update ruleshave been introdued, whih employ gentler updates and use a non-negative slak variable ξ torede�ne the optimization problem:
wτ+1 = arg minw∈Rn

1

2
‖w − wτ‖2 + Cξ subjet to l(w; (xτ , yτ )) ≤ ξ ∧ ξ ≥ 0Here the objetive funtion is diretly proportional to the slak variable ξ and C. C is a positiveaggressiveness parameter that ontrols the impat of the slak term on the objetive funtion.More preisely, C ontrols the trade o� between two objetives: remaining lose to the previousweights wτ and minimizing the loss on the urrent example. It has been shown that the largervalues of C indiate a more aggressive update. The resulting algorithm has been termed as PA-I.This update is termed gentler as it is no longer required that the loss must be equal to zero andin this way, the loss onstraint is relaxed.In another variation (named as PA-II), an objetive funtion has been de�ned whih salesquadratially with ξ:

wτ+1 = arg minw∈Rn

1

2
‖w − wτ‖2 + Cξ2 where l(w; (xτ , yτ )) ≤ ξThe variants PA-I and PA-II have the same losed form solution as that of PA-I exept the valueof δτ :

δτ = min{C, lτ
‖xτ‖2

} (PA-I)
δτ = lτ

‖xτ‖2 + 1

2C

(PA-II)It is important to mention here that the Passive Aggressive family of algorithms learn onlya vetor of weights and are not interested in learning a omplete matrix.Dredze et al. [33℄ have developed on�dene-weighted (CW) linear lassi�ers whih also belongto the family of Passive Aggressive algorithms. The main harateristi of these lassi�ers isthat they maintain a probabilisti measure of on�dene in eah of the attributes. The lesson�dent parameters are updated more aggressively than more on�dent ones. In CW learningmethods (Dredze et al. [33℄, Crammer et al. [24℄) seond-order information is used to represent theunertainty about the linear lassi�er's feature weight estimates. This seond-order informationould be modeled as a Gaussian distribution over the lassi�er's weight vetor. In these ases,the mean of the weight vetor is used for lassi�ation, whereas the ovariane matrix is used tomodulate the learning rate over di�erent features [67℄. However, the CW learning methods usediagonal approximations for the full ovariane matrix, and hene lose the information regardingross-feature orrelations whih an help towards faster onvergene. Ma et al. [67℄ show in whihases it is advantageous to use a full matrix rather than using the diagonal one.14



2.2. Mahine Learning FundamentalsOnline to Bath ConversionSometimes, a bath algorithm must be developed that not only is omputationally e�ient andeasier to implement than an online algorithm but also has the good generalization properties ofbath algorithms. A simple way to develop suh an algorithm is to use online to bath onversion.Many people have desribed suh onversion e.g. Gallant [40℄ has developed a Poket algorithmwhih is basially a onversion of online pereptron algorithm to a bath one. This methodretains the longest surviving hypothesis i.e. whih has made the fewest number of mistakesduring the training phase.Littlestone et al. [65℄ have desribed a ross-validation tehnique where the training set ispresented to the online algorithm. After running the algorithm for T rounds, a sequene ofhypothesis h0, · · · , hT is olleted where h0 is the default hypothesis. This is followed by seleting
h (the output of the bath algorithm) to be one of the T +1 hypothesis whih onverts the onlinealgorithm to a bath one.Helmbold and Warmuth [51℄ have argued that rather than seleting only a single hypothesisfrom the set of hypothesis, it is better to onsider h to be some ombination of the entire set ofhypothesis. The di�erent hypothesis ould be ombined by taking a majority or by averaging. Inthis way, the information retained by eah and every hypothesis is used to de�ne h and ultimatelypromotes robustness and stability. Furthermore, the training data plays absolutely no role in theproess of ombining di�erent hypothesis whih gives these methods the name data independentmethods.Dekel and Singer [30℄ have shown that the matries (or vetors) learned during the earlieriterations of an online algorithm an be disarded as the online algorithm makes more mistakesin the beginning as ompared to the end (e.g. h0 is determined without observing any trainingexample). This means that, in a sequene of p matries learned (A1, · · · , Ap), one an rely on thelast q one and use the average over these q hypothesis (su�x averaging onversion). One extremeof this approah is to use all of the hypothesis while the other extreme is to retain only the lasthypothesis or matrix and is also known as last-hypothesis tehnique [29℄. Su�x averaging �ndsthe best trade o� between these two extremes. However, all of the hypothesis must be stored inmemory as it �nds the optimal su�x length only one the entire hypothesis sequene has beenformed. Moreover, the required memory spae grows linearly with the training set size.Dekel [29℄ has addressed the problem faed by the su�x averaging tehnique and developeda method alled uto� averaging. One extreme of this method is just like the simple averagingmethod. However the other extreme onverts this method to the longest survivor tehnique.In this way, there is no need to store all of the online hypothesis in the memory unlike thesu�x averaging method and the memory spae sales with square-root of the number of trainingexamples in the worst ase senario. In a typial ase, the required memory is muh less thanthat of the worst ase. A uto� parameter k is used to get the online hypothesis sequene. Itrepresents the minimum number of rounds during whih the online algorithm must not su�erany loss. This is followed by �nding a weighted averaging of the hypothesis seleted, where theweight represents the additional number of iterations a hypothesis has survived one seleted. Itmay be noted that in order to �nd the best value of k, the entire training data must be proessed.However there is no need to store the entire sequene of hypothesis. The only requirement is togroup together the hypothesis by their survival times, and store the average hypothesis for eah15



Chapter 2. State of the Art Approahes to Metri Learninggroup along with the umulative loss in eah group.2.2.3 Some Key Mahine Learning MethodsPereptron AlgorithmThe pereptron algorithm was developed by Frank Rosenblatt [93℄. It is a linear lassi�er usedfor binary lassi�ation and an be regarded as the simplest form of feed-forward neural network.It separates the objets using a linear hyperplane as shown in Figure 2.2. It is a very simplealgorithm and it has been proved by Noviko� [77℄ that it onverges after a �nite number ofepohs (iterations) if the data is linearly separable.

Figure 2.2: A hyperplane separating the two lassesThe pereptron algorithm is an online supervised algorithm and the learning takes plae inrounds or iterations. At eah round, a new hypothesis is estimated based on the previous one.The algorithm starts with a hypothesis initialized with zero w1 = 0. At eah step, an instane xτis presented to the pereptron algorithm whih makes a predition ŷ using the urrent hypothesis
wτ . This is followed by the revelation of the atual label yτ . In ase the atual label is di�erentfrom the predited one, the hypothesis is updated as wτ+1 = wτ + yτxτ . On the ontrary if theatual label mathes with that of the predited one, the urrent hypothesis is left unhanged.The proess is repeated for all of the training examples.Voted pereptron of Freund and ShapireFreund and Shapire [37℄ have introdued a variant of the pereptron algorithm for linearlassi�ation while attaining large margin, and have termed it as the voted-pereptron algorithm.Weights have been added to the predition vetors whih justi�es the name weighted pereptron.Moreover, the standard pereptron algorithm (online) has also been onverted to a bath one,16



2.2. Mahine Learning Fundamentalsfollowed by an in-depth disussion on the online (inremental) to bath onversion. It an alsolassify instanes having a relational representation (e.g. trees, graphs, or sequenes). The proofsof onvergene have been provided for both the separable as well as non-separable data.It has been further suggested that the "kernel trik" an also be applied to the voted-pereptron algorithm [96℄. The kernel trik is basially a method in whih a linear lassi�eris onverted to a non-linear one by mapping the original observations (e.g. x and x′) to a higherdimensional spae (φ(x) and φ(x′)) and then taking their inner produt. This is equivalent tousing the kernel funtion whih is a funtion of two variables K(x, x′) and an be represented asan inner produt φ(x).φ(x′) for some funtion φ. This implies replaing eah inner produt x.x′with a kernel funtion omputation K(x, x′). Kernel funtions have also been used with supportvetor mahines (SVMs).The voted pereptron algorithm, being a supervised algorithm is omposed of two steps:training and predition. The initial predition vetor v1 is set to zero just like the originalpereptron algorithm. The predition vetor is used to predit the label of the new instane
x. In the ase of a wrong predition ŷ 6= y, the predition vetor is updated while in the aseof orret lassi�ation, it remains unhanged. The update is similar to that of the pereptronexept the fat that the weight related with the urrent predition vetor i.e. wτ is also updated.The weight is inreased by one in ase of orret lassi�ation. However, for mislassi�ation,the weight related to the new predition vetor wτ+1 is initialized with 1. This proess is thenontinued with the next example and is repeated for T epohs. One the training is omplete, aset of predition vetors have been generated after eah and every mistake. The weights relatedto the predition vetors orrespond to the number of examples they have survived until thenext wrong lassi�ation. The weighted pereptrons an then be used to lassify unseen testexamples.The Voted-Pereptron AlgorithmTrainingInput: a labeled training set {(x(1), y(1)), · · · , (x(n), y(n))}, number of epohs TOutput: a list of weighted pereptrons {(v1, w1), · · · , (vk, wk)}Initialize: k = 1, v1 = 0, w1 = 0Repeat T times:For i = 1, · · · , nCompute preditions: ŷ = sign(vk . x

(i))If ŷ = yi then wk = wk + 1else vk+1 = vk + y(i)x(i)

wk+1 = 1

k = k + 1PreditionGiven: the list of weighted pereptron: {(v1, w1), ......, (vk , wk)}, an unlabeled instane: xCompute a predited label ŷ as follows:
s =

∑k
i=1wisign(vi.x); ŷ = sign(s) 17



Chapter 2. State of the Art Approahes to Metri LearningDuring predition, the votes are taken from all of the weighted pereptrons. As T approahes
∞ for linearly separable data, the voted pereptron onverges to the original pereptron algorithmwhere the predition is made using the last predition vetor.The online to bath onversion an be alled as a voting onversion as eah online hypothesis(v1, · · · , vk) asts a lassi�ation vote for an unseen example x; and x gets the label that reeivesthe highest number of votes.Li et Long [64℄ have proposed an online algorithm alled as ROMMA (Relaxed Online Max-imum Margin Algorithm) for lassi�ation using a linear threshold funtion. The algorithm hasbeen ompared against the pereptron algorithm and the voted pereptron algorithm of Freundand Shapire, and it has been found that ROMMA performed better than the pereptron algo-rithm, and an aggressive version of ROMMA performed even better than the voted pereptron.Collins extension of voted pereptronMihael Collins [20℄ has used a variant of the pereptron algorithm for the part-of-speehtagging and base noun phrase reognition, related to the domain of Natural Language Proessing.In this work, the voted or averaged version of the pereptron algorithm has been extended,originally introdued by Freund and Shapire. In addition, a parameter vetor α (also referredto as the weights) is also introdued, whih is trained on a set of training examples. This vetor isthen used for part-of-speeh tagging or base noun phrase reognition. The proofs of onvergenehave been provided for the separable as well as for the non-separable data. Furthermore, it hasbeen shown that the number of errors made by the algorithm is bounded not only on the trainingexamples but also on unseen examples. The algorithm proposed by Collins an be applied todi�erent other domains as well.The parameter is onsidered to be assoiated with a trigram (x, y, z) as αx,y,z and the oneassoiated with a tag/ word pair (t, w) as αt,w. Moreover, a sequene of words (w1, · · · , wn) isrepresented as w[1:n] while t[1,n] is used to desribe a tag sequene (t1, · · · , tn). The training setis made up of n tagged sentenes where the length of ith sentene is ni. This helps to write theexamples as (wi

[1:ni]
, ti[1:ni]

) where i = 1, · · · , n. Furthermore, Viterbi algorithm is used in orderto �nd the best tagged sequene for the sentene wi
[1:ni]

whih is denoted by z[1:ni]. For everytag trigram (x, y, z) seen c1 times in ti[1:ni]
and c2 times in z[1:ni] with the ondition that c1 6= c2,the parameter assoiated with a trigram (x, y, z) an be expressed as:

αx,y,z = αx,y,z + c1 − c2Similarly for eah tag/word pair (t, w) seen c1 times in (wi
[1:ni]

, ti[1:ni]
) and c2 times in (wi

[1:ni]
, z[1:ni](with c1 6= c2), αt,w an be written as:

αt,w = αt,w + c1 − c218



2.2. Mahine Learning FundamentalsInput: Training examples (x(i), y(i))Output: Parameters αInitialization: Set α1 = 0Algorithm:For T iterations, i = 1, · · · , nCalulate z(i) = arg max
z∈GEN(x(i))φ(x

(i), z).αIf (z(i) 6= y(i)) then
αl+1 = αl + φ(x(i), y(i))− φ(x(i), z(i))where n represents the number of examples. If the highest soring sequene under the urrentmodel z(i) is not orret (z(i) 6= y(i)), the parameter α is updated in a simple additive manner.It has been shown experimentally that instead of using only the �nal parameter α, it is betterto use averaged parameters over T passes and n examples i.e. the averaged parameter γ an bewritten as:

γ =
∑

t=1,··· ,T ; i=1,··· ,n

αt,i

nTThe task in this algorithm is to learn a mapping from inputs (x ∈ X ) to outputs (y ∈ Y).The parameter vetor α ∈ R
d is initialized with zero whih is subsequently optimized over thetraining data. The funtion GEN lists a set of andidates GEN(x) for an input x.Support Vetor MahinesSupport vetor mahines (SVMs) are no doubt the most popular lassi�ation algorithms thesedays, mainly due to their results [26℄, [103℄. We �rst disuss here the binary lassi�ationproblem. The input spae is denoted by X ⊆ R

d where the value of d is �xed. A linear lassi�eris a funtion of R in −1, 1 having the form:
f(x) = sign(btx+ b0)where b ∈ R

d, while b0 ∈ R. The sign(t) = 1 if and only if t > 0, otherwise is equal to 0. It anbe noted that the lassi�er f(x) = btx+ b divides X into two sub-spaes: {x ∈ X | btx+ b0 < 0}and {x ∈ X | btx+ b0 > 0}Here, a lassi�er f(x) = btx + b0 having zero empirial loss is onsidered. This means thatthis lassi�er lassi�es orretly all of the examples in S. Sine it is supposed that S is linearlyseparable, hene there exists a salar suh that the examples (x(i), y(i) whih are nearest to thehyperplane satisfy |btx + b0| = 1. Two examples x(1) and x(2) are further onsidered belongingto opposite lasses, suh that btx(1) + b0 = 1 and btx(2) + b0 = −1. The margin an be de�nedas the distane between these two points, where the margin is alulated perpendiular to thehyperplane. The margin (given in the �gure 2.3) an also be represented by:
b

‖b‖(x
(1) − x(2)) =

2

‖b‖It an be seen that in order to inrease the margin, ‖b‖ must be dereased. This an eventuallyhelp in order to have a hyperplane with a maximum margin. 19



Chapter 2. State of the Art Approahes to Metri LearningSVM with a hard margin: The onstraints |btx+b0| = 1 an be written as y(btx+b0) = 1for the examples whih are near to the hyperplane. The overall aim thus, is to resolve thefollowing optimization problem: min
b∈Rd, b0∈R

1
2‖b‖

2suh that ∀i, y(i)(btx(i) + b0) ≥ 1It an be observed that a quadrati optimization problem is being solved along with the linearonstraints. A work around is to solve a dual problem in the following manner:max
(α1, ··· ,αn)∈Rd

d∑

i=1
αi − 1

2

d∑

i=1

d∑

j=1
y(i)y(j)αiαjx

(i)tx(j)suh that d∑

i=1
y(i)αi = 0

∀i, αi ≥ 0An advantage of the above formulation lies in the fat that b (the solution of the initial opti-mization problem) an be written as:
b =

d∑

i=1

yiαix
(i)where (α1, · · · , αn) aounts for the optimal solution of the dual problem. One an also showthat αi > 0 if and only if yi(btx(i) + b0) = 1. The maximal margin hyperplane depends only ona subset of the examples. These examples lie exatly on the margin and are alled the supportvetors. The rest of the examples an lie anywhere outside the margin. In other words, one getsexatly a similar solution even if the training set S ontains only the support vetors.SVM with a soft margin: The SVM desribed earlier annot deal with inseparable dataand is therefore termed as having a hard margin. In atual pratie, the data is rarely separable.One of the reasons is the presene of noise in the data. In ase of non-separable data, SVM mustlive with wrongly lassi�ed examples. A simple way is to introdue slak variables, in whih asea slak variable is assoiated with eah examples. The use of slak variables allows to alulate aloss eah time an example is mislassi�ed. The resulting algorithm is said to have a soft margin.This also hanges the aim and the new objetive is to maximize the margin and minimize thenumber of examples violating the onstraint on the margin. In other words, the norm of b andthe overall loss assoiated with the slak variables is minimized. This new optimization probleman be written as: min

b∈Rd, b0∈R

1
2‖b‖

2 + C
∑n

i=1 ηisuh that ∀i, y(i)(btx(i) + b0) ≥ 1− ηi
∀i, ηi ≥ 0where ηi stand for the slak variables while C is a positive real number whih must be tuned.Whenever ηi is positive, this means that the margin onstraint is not obeyed. The loss assoiated20



2.2. Mahine Learning Fundamentals

Figure 2.3: Maximum margin for support vetor mahines (SVM)with this an be written as Cηi whih an be ompensated while dereasing the norm of b. Inase C is large, even a little violation of the onstraint would be ostly. Hene hyperplaneswith small margins would be hosen with less number of errors. On the other hand, if C issmall, the margin would be large and so do the number of errors. One way to tune C is to useross-validation.
k Nearest Neighbor AlgorithmThe k Nearest-Neighbor (kNN) algorithm [21℄, developed by Fix and Hodges [34℄, has beenstudied by many researhers, from many di�erent ommunities. In the database ommunity,for example, it is used to determine the instanes losest to a given query point. In ase-basedreasoning, pattern reognition and mahine learning, the kNN rule, beause of its simpliity andgood performane, is still heavily used for lassi�ation purposes e.g. image and text lassi�a-tion, web site lassi�ation [62℄ et. This method is ategorized as a non-parametri supervisedlearning algorithm and lassi�es instanes based on the losest training examples in the featurespae. In this method, all of the training points together with their lass labels are kept inmemory (hene referred to as memory-based method) and the omputation is deferred until las-si�ation. Hene it is also known as a lazy method whih belongs to the instane-based learning(IBL) methods. Nearest-neighbor learning has been shown to be the algorithmi parallel of theexemplar model of human learning [43℄. Normalization of feature vetors may be required insome ases.During the lassi�ation phase, when a query point is given, the lassi�ation of that point ismade keeping in view the k nearest points. First of all, same features as for the training examplesare omputed for the query point, whih is followed by the alulation of distane/similarity toall of the stored feature vetors. A metri is required for alulating the distane or the similaritybetween the query point and the instanes from the training data in order to make preditions.21



Chapter 2. State of the Art Approahes to Metri Learning

Figure 2.4: An example of a 3 nearest neighbor lassi�ation [108℄Some popular hoies for the metri are the Eulidean distane and the osine similarity. Somepeople use the term metri in order to signify distane or similarity, and sometimes this term isused to refer to distane only. However, the hoie mainly depends on the problem domain. Thedistanes and similarities are arranged in asending and desending order respetively. This isfollowed by the seletion of the the top k values in the sorted list. In the standard version, thequery point is assigned the lass that appears most frequently within the k nearest examples.Figure 2.4 shows the 3 nearest neighbors lassi�ation for an example represented by the symbol
?. This method is often suessful when the deision boundary is very irregular [49℄. In order tolassify a new example x, the distanes di(x, x(i)), i = 1, · · · , k between the new example andthe k nearest neighbors are alulated. The smaller the distane, the greater is the similaritybetween two examples. Furthermore, the lasses for the k nearest neighbors are also found. Thisis followed by assigning the new example x to the majority lass g among the k nearest neighbors:

C(x) = argmaxg∈G k∑

i=1

ki|ki = ωgwhere C(x) represents the lass of x and G is the set of all possible lasses.An important fator in this algorithm is the right hoie of k whih an strongly in�uenethe quality of lassi�ations assigned. The value of k an be determined from a validation setof examples. A smaller value of k leads to large variane in preditions for a given problem.On the other hand, larger values of k redue the e�et of noise on lassi�ation. Hene, kshould be hosen in suh a way that the value is large enough to minimize the probabilityof mislassi�ation. Many experiments have shown that inreasing the value of k does notsigni�antly degrade the performane [98℄.Another important issue is breaking ties among the k nearest neighbors. A tie ours whentwo or more lasses beome the majority lass. This an happen when k is even or odd in amultilass problem. In the ase of a binary problem, a tie an our only when the value of k iseven. A naïve approah to break ties is to pik any random majority lass, but is de�nitely not22



2.2. Mahine Learning Fundamentalslogial. Another type of a tie is the distane tie, whih ours when two or more neighbors areat the same distane from an example. Devroye et al. [31℄ have desribed a strategy where theties are broken by indies i.e. if x(i) and x(j) are equidistant from x, then x(i) is delared loserto x if i < j.Like any smoothing parameter, there is an optimal value of k for every problem. One possiblemethod to �nd this optimal value is to use ross-validation. The simplest or the degenerate aseis when the value of k = 1 and the algorithm is known as nearest neighbor (1NN) algorithm orsometimes as �rst nearest neighbor rule (FNN). It has been also shown that the FNN rule hasan asymptoti error rate that is at most twie the Bayes error rate, independent of the distanefuntion used.Baoli et al. [2℄ have argued that having a �xed value for k results in a bias on large lasses.This is speially true when the distribution of di�erent lasses in the training set is uneven. After�nding the original k nearest neighbors, the probability that an example belongs to a ertain lassis omputed using only some top p nearest neighbors for that lass, where p is extrated from kbased on the size of the lass cm. Generally speaking, di�erent number of nearest neighbors areused for di�erent lasses. In order to make the omparison between di�erent lasses reasonable,the probabilities are derived from the proportion of the similarity sum of examples belonging toa lass to the total sum of similarities for all of the seleted neighbors for that lass. The deisionfuntion an be given as follows:
y(di) = argmaxm ∑

x(j) ∈ top−p−kNN(cm)

sim(di, x
(j)) y(x(j), cm)

∑

x(j) ∈ top−p−kNN(cm)

sim(di, x
(j))where top − p − kNN(cm) represents the top p neighbors in the original k nearest neighbors. pan be alulated in the following manner:

p =
k N(cm)max{N(cj) | j = 1, · · · , Nc}Here N(cm) represents the size of the lass cm while max{N(cj) | j = 1, · · · , Nc} is the size ofthe largest lass in the training set.The advantage of this algorithm lies in the fat that it is easier to implement and has goodauray but, on the other hand, as it performs all of the omputations at run time, it is aomputationally intensive algorithm. Another possible approah for kNN is adding a thresholdfor eah lass, whih may be learned using a validation set of examples [119℄. In this ase, thekNN method is not lazy any longer and a real training is performed. But at the same time, thereis a loss in inremental behavior.The nearest neighbor algorithm is less appealing with limited training examples beause of theurse of dimensionality. Support vetor mahines have also been used along with kNN to inreasethe margin between the positive and the negative examples in the weighted spae in whih thelassi�ation is performed. Nok and Sebban [74℄ have developed a non-linear hyperplane witha large margin by omputing the weights of the referene examples.Another variant of kNN is the Weighted kNN [18℄, [79℄ where an ith neighbor (i = 1, · · · , k) isassigned a weight wi. The test sample x is lassi�ed as the lass ŷ that is assigned the maximum23



Chapter 2. State of the Art Approahes to Metri Learningweight:
ŷ = argmax

g∈G

k∑

i=1

wiI{y(i)=g}Here G represents the set of lasses while I is the indiator funtion having the value 0 or 1.Distane-weighted nearest neighbor rule allows all of the training samples to ast votes wherethe votes for the losest samples have greater weight than the samples further away. The intuitionbehind this idea is that the nearer neighbors should provide more information than the distantones. The weight for a vote dereases with the inrease in distane from the query point. Anothervariation is the rank-weighted nearest neighbor tehnique, in whih the losest neighbors an astmore votes as ompared to the far-o� neighbors.Bay [4℄ has developed a tehnique MFS (Multiple Feature Subsets) whih ombines multiplenearest neighbor lassi�ers eah using only a subset of features.2.3 Metri LearningMetri has always been a very important and deisive ingredient of many mahine learningproblems. Among these, the performane of k-nearest algorithm heavily depends on whether themetri hosen takes into aount the underlying geometry of the spae in whih the exampleslie or not. Metri learning an be further subdivided into two di�erent types: distane metrilearning and similarity metri learning.2.3.1 Distane Metri LearningDistane measures the dissimilarity in a given data set. A value of 0 indiates the examples tobe totally similar while a value of 1 means that the examples are ompletely distint. Thereare many di�erent possibilities for distane funtions like the Eulidean distane, the City-Blokdistane, the Mahalanobis distane et.De�nition of a Distane: The distane over a set X is de�ned as a funtion d (also known asthe distane funtion) suh that:
d : XxX ⇒ R,

∀x, x′, x′′ ∈ R, this funtion needs to satisfy the following four onditions:1. d(x, x′) ≥ 0 (also known as non-negativity)2. d(x, x′) = 0 i� x = x′ (distinguishability)3. d(x, x′) = d(x′, x) (symmetry)4. d(x, x′) + d(x′, x′′) ≤ d(x, x′′) (triangle inequality)The �rst and seond onditions together produe the positive semi-de�nitiveness [82℄. A pseudo-metri satis�es all of the requirements for a metri, exept the seond one. This means that onemay have d(x, x′) = 0 for even distint values x 6= x′.Various distanes are de�ned hereafter:24



2.3. Metri LearningFor two examples, x(x1, x2, · · · , xd) and x′(x′1, x
′
2, · · · , x′d), the Eulidean distane funtion(also known as L2 norm) an be written as:

d2(x, x
′) =

√
√
√
√

d∑

i=1

(xi − x′i)
2A generalization of the Eulidean distane is the Minkowski funtion whih an be written as:

dt(x, x
′) = t

√
√
√
√

d∑

i=1

wi(xi − x′i)
tHere wi represents the weight orresponding to the ith feature of x and x′. The Eulideandistane an be obtained by setting t to 2 and eah weight, wi, to 1 in the above equation.Setting t and all of the weights wi to 1 results in the L1 norm (also known as Manhattan or CityBlok distane). It represents the distane between two points in a ity road grid and examinesthe absolute di�erenes between oordinates of a pair of points:

d1(x, x
′) =

d∑

i=1

|xi − x′i|Setting t to ∞, gives the maximum value distane or Chebyshev distane:
d∞(x, x′) =

d
max
i=1

|xi − x′i|A family of metris over a vetor spae X ould be obtained by omputing Eulidean distanesafter performing a linear transformation x′′ = Lx. These metris ompute square distanes inthe following manner:
d2L(x, x

′) = ‖L(x− x′)‖22 (2.1)where the linear transformation is parametrized by the matrix L. The equation 2.1 an also bewritten in terms of a square matrix A:
A = LtLAny matrix A reated from a matrix L in this manner is always positive, semi-de�nite (PSD)(written as A � 0) whih means that there are no negative eigenvalues [112℄. The square distanesan also be expressed in terms of the matrix A:

d2A(x, x
′) = (x− x′)tA(x− x′) = ‖x− x′‖2A (2.2)where equation 2.2 de�nes the Mahalanobis distane [69℄. The Mahalanobis distane [3, 10℄ isused, originally, to desribe the quadrati forms in Gaussian distributions where it was the inverseof the ovariane matrix used to inorporate the orrelations of di�erent feature dimensions [106℄.It generalizes the Eulidean distane by admitting arbitrary linear salings and rotations of thefeature spae [28℄. Choosing A to be the identity matrix, the Mahalanobis distane redues tothe Eulidean distane. The Mahalanobis distane an either be parametrized in terms of thematrix L or in terms of A, whih means that either a linear transformation L is estimated or a25



Chapter 2. State of the Art Approahes to Metri LearningPSD matrix A. The optimization is unonstrained in the ase of the �rst approah while in theseond approah it is mandatory to enfore the onstraint that the matrix A must be positive,semi-de�nite.Moreover, in ase the matrix A is diagonal, the resulting distane is alled the normalizedEulidean distane where the di�erent axes are given di�erent weights:
dNE(x, x

′) =

√
√
√
√

d∑

i=1

(xi − x′i)
2

σ2
iwhere σi is the standard deviation of xi over the sample set.Having introdued various distane metris, the next question is how to learn these distanemetris in an e�etive manner [109℄. Many state of the art metri learning algorithms are nextpresented and ompared in detail.Metri learning algorithms an be broadly lassi�ed into supervised metri learning algo-rithms and unsupervised learning algorithms (overing linear (Prinipal Component Analysis(PCA) [45℄, Multidimensional Saling (MDS) [22℄) and nonlinear embedding methods (e.g. Lo-ally Linear Embedding (LLE) [94℄) depending on the fat whether the label or side informationhas been used or not. Empirial studies have shown that, in general, supervised metri learn-ing algorithms outperform unsupervised ones [107℄. Unlike most supervised learning algorithmswhere eah training example has been assigned a label, a supervised distane metri learningalgorithm is generally based on two types of pairwise onstraints: equivalene and inequivaleneonstraints. Equivalene onstraints onsider those examples whih belong to the same lasseswhere as inequivalene onstraints deal with data points belonging to di�erent lasses 4.Rather than using the absolute qualitative feedbak (e.g. A and B are similar or A and C arenot similar), some works like Shultz and Joahims [97℄ and Frome et al. [38℄ onsider relativequalitative examples (e.g. A is more similar to B than A is to C). A pratial example of thissenario is searh-engine query logs, where the douments that are liked an be onsidered tobe semantially loser than the ones that the user observed but deided not to lik.Supervised metri learning algorithms ould be further ategorized into global metri learningalgorithms, loal metri ones or pseudo global/loal ones. It is possible to formulate ertaindistane metri learning problems as onvex optimizations over the one of PSD matries.Global Distane Metri LearningGlobal metri distane learning algorithms learn the distanes in a global sense where the aimis to satisfy all of the pairwise onstraints (equivalene as well as inequivalene) simultaneously.Suh algorithms try to learn metris in suh a way that all of the examples belonging to the samelasses are kept lose while separating apart the examples from di�erent lasses. More oftenly,the distane funtion is expliitly learned in suh a way that the distane between exampleswithin the equivalene onstraints is minimized while the distane between examples belongingto inequivalene onstraints is maximized [113℄, [116℄, [117℄.4Wang et al. [106℄ have termed the equivalene onstraints as must-link onstraints while inequivalene onesas annot-link onstraints.26



2.3. Metri LearningInformation Theoreti Distane Metri LearningDavis et al. [28℄ have developed an Information-theoreti (Information-Theoreti MetriLearning - ITML) approah to learn (squared) Mahalanobis distanes. This method does notrequire semi-de�nite programming and eigen-value deompositions whih makes it faster andsalable. Two types of relationships between the examples are onsidered: similarity and dissim-ilarity. In this regard, two points x and x′ are onsidered similar if the distane between themis less than a ertain threshold u. Similarly, these points are dissimilar if the distane betweenthem is greater than a su�iently large threshold l.The aim here is to learn the positive de�nite matrix A whih parametrizes the Mahalanobisdistane given in the equation 2.2. An input Mahalanobis matrix A0 is also onsidered, whihan be determined from the training data. For Gaussian data, A0 an be initialized with theinverse of the sample ovariane. Similarly A0 an also be determined using the squared Eulideandistane. This is followed by bringing the matrix A (also known as the output matrix) as lose aspossible to the initial matrix A0 using an information theoreti approah. The set of Mahalanobisdistanes are related to the set of multivariate Gaussian distributions 5 with an equal mean µ asfollows:
p(x;A) =

1

Z
exp(−1

2
dA(x, µ))where p(x;A) is the multivariate Gaussian of the matrix A or the probability density funtion(pdf), Z is a normalizing onstant and A−1 is the ovariane matrix of the Gaussian distribution.The greater the distane dA, the smaller the value of the probability. This helps to alulate thedistane between the two Mahalanobis distane funtions parametrized by A0 and A i.e. d(A0‖A)using the relative entropy or the Kullbak-Leibler divergene (KL divergene) 6 between theirmultivariate Gaussians:

d(A0‖A) = KL((p(x;A0) ‖ (p(x;A)) =

∫

p(x;A0) log p(x;A0)

p(x;A)
dxThus, the distane metri learning problem an be written as:minA KL ((p(x;A0)‖(p(x;A))with dA(x, x

′) ≤ u (x, x′) ∈ S

dA(x, x
′) ≥ l (x, x′) ∈ DHere the aim is to minimize the KL divergene between the two Gaussians. Moreover, S rep-resents the similar points whereas D is used to denote the dissimilar points. In order to useBregman projetions to learn the matrix A, it has been shown that the information theoretiobjetive an be desribed in terms of Bregman divergene. Considering the fat that the Log-Det (logarithm-determinant) divergene (Dld) is atually a Bregman divergene de�ned over theone of PSD matries [60℄, [61℄:

Dld(A,A0) = tr(AA−1
0 )− logdet(AA−1

0 )− n5Also known as multivariate normal distribution.6KL divergene is also known as the information gain or information divergene. 27



Chapter 2. State of the Art Approahes to Metri LearningFurthermore, Kulis et al. [60℄ have shown that the KL divergene between two multivariateGaussian distributions an be written as the onvex ombination of Mahalanobis distane be-tween mean vetors and the LogDet divergene between the ovariane matries. Considering themeans of the two Gaussians to be the same, the KL divergene an be related to the Mahalanobisdistane in the following manner:KL((p(x;A0)‖(p(x;A)) =
1

2
Dld(A

−1
0 , A−1) =

1

2
Dld(A,A0)Moreover, the LogDet divergene is independent of the saling of the feature spae. With this,the distane metri learning problem an be written as a LogDet optimization problem:minA�0

Dld(A,A0)suh that tr(A(x(i) − x(j))(x(i) − x(j))t) ≤ u (i, j) ∈ S,

tr(A(x(i) − x(j))(x(i) − x(j))t) ≥ l (i, j) ∈ D,The imposed onstraints on the distanes an be relaxed using slak variables to �nd an admissiblesolution.It an be onluded that by using a LogDet divergene between two matries along withan initial PSD matrix, all of the subsequent matries are PSD as well and no projetion isrequired [60℄. However, a major shortoming of this algorithm is its quadrati dependeny onthe dimensionality d.Davis and Dhillon [27℄ learn low rank Mahalanobis distane metris for high dimensionalproblems.Pseudo-distane Online Learning Algorithm (POLA)Shalev et al. [99℄ learn pseudo-distanes parametrized by positive semi-de�nite matries alongwith a salar threshold in an online as well as bath setting. Convex optimizations over theone of PSD matries for distane metri learning have also been proposed. Like many otherdistane metri learning algorithms, the aim is to learn a metri that shrinks distanes betweensimilarly labeled examples while expanding distanes between examples with di�erent labels.The algorithm is termed as Pseudo-distane Online Learning Algorithm or POLA. Examples areomposed of an instane pair and a label whih an be +1 or −1 depending on the fat that theinstanes are similar or dissimilar. The algorithm is based on Mahalanobis distane dM just likeXing et al. [114℄. However this algorithm is online and omes with theoretial error guarantees.Using a threshold b ∈ R, the onstraints for similar and dissimilar examples ould be de�nedin the following manner:
∀(x, x′, y) : y = +1 → (d(x, x′))2 ≤ b− 1,

∀(x, x′, y) : y = −1 → (d(x, x′))2 ≥ b+ 1,where the maximum distane in ase of similar examples is b− 1. Consequently, the distane isat least equal to b + 1 for the dissimilar examples. These two inequalities an be ombined toform a single linear onstraint:
y(b− (dA(x, x

′))2) ≥ 128



2.3. Metri LearningThe aim here is to learn the matrix A, where A � 0 like many other distane metri learningmethods. Being an online algorithm, the algorithm reeives the examples in the form of tuples
(xτ , x

′
τ , yτ ) in a sequential manner. A distane dM (xτ , x

′
τ ) is alulated for eah pair of examplesat a time step τ . In ase, the square of this distane is greater than the threshold b, the urrentpair is onsidered as dissimilar. On the ontrary, it is onsidered as similar. One the preditionhas been given, the true label yτ is reeived, based on whih the algorithm may su�er from aloss:

lτ (A, b) = max{0, yτ ((dA(xτ , x′τ ))2 − b) + 1
}It may be noted that this loss is a modi�ed form of the hinge loss. The goal of the onlinealgorithm is to redue the umulative loss. The matrix A and the threshold b are updated ateah step upon reeiving the feedbak yτ .In order to de�ne an online update rule for A and b, an orthogonal projetion has beenused. Suppose there is a vetor x ∈ R

p along with a losed onvex set C ⊂ R
p. The orthogonalprojetion of x onto C an be given as:

PC(x) = argmin
x′∈C

‖x− x′‖22In order words, the aim is to �nd the losest point of x in the set C. Here PC(x) is the vetor in
C that is losest to x. Moreover, (A, b) is onsidered both as a matrix-salar pair and as a vetorin R

n2+1 where the �rst n2 elements represent the matrix A where as the last element stands forthe threshold b. At eah time step τ , the set Cτ ⊂ R
n2+1 an be de�ned as follows:

Cτ =
{

(A, b) ∈ R
n2+1 : lτ (A, b) = 0

}where Cτ represents a set of all those matrix-threshold pairs that attain zero loss on the urrentexample i.e. (xτ , x
′
τ , yτ ). Moreover, it is known that A � 0 and the threshold must be greaterthan or equal to 1, sine the loss between two similar points would be non-zero if b < 1. Thisallows to de�ne another set Ca whih is the set of all admissible matrix-threshold pairs:

Ca =
{

(A, b) ∈ R
n2+1 : A � 0, b ≥ 1

}The update for the online algorithm onsists of two projetions: �rst onto Cτ and then onto
Ca. The �rst projetion onto Cτ gives (Aτ̂ , bτ̂ ) as the matrix-threshold pair. The aim is tokeep (Aτ̂ , bτ̂ ) as lose as possible to (Aτ , bτ ), while (Aτ̂ , bτ̂ ) is fored to attain a zero loss on theurrent example. The seond projetion onto Ca gives (Aτ+1, bτ+1) whih makes sure that thenew matrix-threshold pair is admissible for deiding whether the urrent examples are similar ornot.Projetion onto CτIn order to projet (A, b) onto Cτ , w ∈ R

n2+1 is onsidered to be the vetor representationof (A, b). Similarly wτ , wτ̂ and wτ+1 represent the vetors assoiated with (Aτ , bτ ), (Aτ̂ , bτ̂ ) and
(Aτ+1, bτ+1) respetively. Moreover, let Xτ ∈ R

n2+1 be the vetor representation of the matrixsalar pair (−yτvτv
t
τ , yτ ) where vτ = xτ − x′τ . It is further known that the projetion onto Cτ29



Chapter 2. State of the Art Approahes to Metri Learningensures zero loss whih means that:
yτ (b− d2A) ≥ 1

⇒ yτb− yτd
2
A ≥ 1

⇒ yτb− yτ (x− x′)A(x− x′)t) ≥ 1The de�nition of Cτ an be rewritten as:
Cτ =

{

w ∈ R
n2+1 : w.Xτ ≥ 1

}The projetion of wτ onto Cτ an be given by:
PCτ (wτ ) = wτ + ατXτwhere ατ = 0 i� w.Xτ ≥ 1. Otherwise ατ = 1− wτ .Xτ

‖Xτ‖22
. Furthermore, ατ an be written as:

ατ =
lτ (Aτ , bτ )

‖Xτ‖22
=

lτ (Aτ , bτ )

‖vτ‖42 + 1The updates for Aτ as well as for bτ an now be written as:
Aτ̂ = Aτ − yτατvτv

t
τ , bτ̂ = bτ + ατyτProjetion onto CaAfter projeting (Aτ , bτ ) onto Cτ , (Aτ̂ , bτ̂ ) is projeted onto Ca whih an be written as:

(Aτ+1, bτ+1) = PCa(Aτ̂ , bτ̂ )where Aτ+1 is the projetion of Aτ̂ onto the set of all positive semi-de�nite (PSD) matries and
bτ+1 is the projetion of bτ̂ onto the set b ∈ R : b ≥ 1. The projetion of bτ̂ onto the aforemen-tioned set is maximum of 1 and bτ̂ . In order to projet Aτ̂ onto the set of all PSD matries, thereare two possibilities: yτ = +1 or yτ = −1. In ase where the urrent examples are dissimilar, theupdate would be Aτ̂ = Aτ + ατvτv

t
τ where ατ ≥ 0. This implies that Aτ̂ � 0. Hene the proje-tion of Aτ̂ onto the set of PSD matries is Aτ̂ . In ase the urrent examples are similar, thereis no surety that Aτ̂ � 0. Sine Aτ̂ is symmetri, it an be rewritten in terms of its eigenvaluesand eigenvetors:

Aτ̂ =

n∑

i=1

λiuiu
t
iwhere λi stands for the i'th eigenvalue while ui represents the i'th eigenvetor of Aτ̂ . Sine thematrix Aτ+1 is the projetion of Aτ̂ onto the PSD one, Aτ+1 an be written in the followingmanner:

Aτ+1 =
∑

i : λi>0

λiuiu
t
iHere it an be seen that the interest lies only in the positive eigenvalues. Moreover, using theeigenvalue Interlaing Theorem, it is known that Aτ̂ an have at most a single negative eigenvalue.With this, the projetion onto the PSD one an be written as:

Aτ+1 = Aτ̂ − λnunu
t
n30



2.3. Metri Learning

Figure 2.5: Neighbors of the instane x(i): before and after training [108℄where λn represents the minimal eigenvalue of Aτ̂ while un is its orresponding eigenvetor.Large sale lassi�ation using distane metri learningWeinberger et al. [110℄, [112℄ have used the Mahalanobis distane for k nearest neighbor(kNN) using semi-de�nite programming. A semi-de�nite program, also known as SDP, is alinear program where the matrix whose elements are linear in the unknown variables must bepositive, semi-de�nite having no negative eigenvalues. SDPs are onvex whih means that theglobal minimum an be omputed easily.The distane is optimized in suh a way that the k nearest neighbors belonging to the samelass (also alled as the target neighbors) are attrated while examples belonging to di�erentlasses (alled as the impostors) are separated by a large margin. In other words, the targetneighbors de�ne a perimeter around an example x(i), whih the di�erently labeled inputs shouldnot invade. Furthermore, the di�erently labeled examples that invade this perimeters are referredto as the impostors. The overall aim is to redue the number of impostors. This is shown in�gure 2.5. The distane is optimized with the view that the target neighbors (belonging to thesame lass) are loated within a smaller radius after training; while di�erently labeled neighborsare loated outside this radius, with a margin of at least one unit distane. This helps to maintaina large (�nite) distane between the impostors and the perimeters established by target neighbors.The idea is to learn a linear transformation L where:
d(x, x′) = ‖L(x− x′)‖22In order to desribe the impostors, x(j) is onsidered to be a target neighbor of an example x(i)with a label y(i). Then x(l) represents an impostor with the label y(l) 6= y(i) suh that:

‖L(x(i) − x(l))‖22 ≤ ‖L(x(i) − x(j))‖22 + 1 (2.3)The loss funtion is made up of two terms: the �rst one pulls the target neighbors loser andredues the distanes while the seond one ats to push di�erently labeled examples further apartand hene inreases the distanes. 31



Chapter 2. State of the Art Approahes to Metri LearningThe �rst term in the loss funtion penalizes large distanes between an input and its targetneighbors. The sum of these squared distanes an be given by:
εpull(L) =∑ ‖L(x(i) − x(j))‖2where x(j) is a target neighbor of x(i). A good thing about this approah is that it only penalizeslarge distanes between an input example and its target neighbors and not with all of the exampleshaving similar lass labels.The seond term in the loss funtion disfavors small distanes between an input and all otherexamples that do not share the same lass label. In order words, this terms penalizes the violatorsof the equation 2.3:

εpush(L) =∑
ij

∑

l

(1− y(il))[1 + ‖L(x(i) − x(j))‖2 − ‖L(x(i) − x(l))‖2]+where y(il) = 1 if and only if y(i) = y(l), and is 0 otherwise. Moreover, the terms [z]+ = max(z, 0)and represents the standard hinge loss. It has been further suggested that the unit margin anbe hanged if desired.With this, the two terms (εpull and εpush) an be ombined to form the loss funtion. Asthe two terms have di�erent aims: to attrat the target neighbors and to repel the impostors; aweighting parameter µ ∈ [0, 1] is used:
ǫ(L) = (1− µ) εpull(L) + µ εpush(L)The loss funtion de�ned above is not onvex. In order to redue the loss, gradient desentalgorithm ould be used. However, this might result in loal minima. A work around is torewrite the loss funtion as an instane of semi-de�nite programming.The algorithm has been tested on di�erent datasets e.g. Iris, Wine, Isolet et. The PrinipalComponent Analysis (PCA) is used in order to redue the number of dimensions. The resultsshow signi�ant improvement as ompared to kNN algorithm employing Eulidean distane onall but the smallest data sets. The results are even omparable to the one using multi-lassSVMs [25℄.Xing's Distane Metri Learning Algorithm for ClusteringXing et al. [114℄ were the people who �rst proposed a onvex objetive funtion. An algorithmwas presented to learn the Mahalanobis distane for lustering based on similar and dissimilarpairs of points. Given a set of data points, the aim is to minimize the squared distane betweensimilar examples or points while maximizing the distanes between di�erently labeled examples.If two examples x and x′ are similar, (x, x′) ∈ S where S represents all of the similar examples(also known as equivalene onstraints) just like the ITML algorithm of Davis et al [28℄. Similarly

D represents the pairs whih are dissimilar in ase the information about the dissimilar pairs isavailable. On the ontrary, all of the pairs whih are not in S, an be added in the D set to formthe inequivalene onstraints. This an be expressed in the form of an optimization problem:minA∈Rdxd

∑

(x,x′)∈S ‖x− x′‖2A,suh that ∑

(x,x′)∈D ‖x− x′‖A ≥ 1,

A � 032



2.3. Metri Learning

Figure 2.6: Xing's algorithm on 3 lass data (a) Original data (b) Resaling orresponding tolearned diagonal matrix A () Resaling orresponding to full A [114℄The onstraint on D makes sure that the problem is feasible and bounded and A does notollapse the dataset into a single point in whih ase the distane between all similar pointswould beome zero. Furthermore, it has been argued that if the squared distane is used forthe dissimilar points as well, then the matrix A will always have rank 1 and the data would beprojeted on a line. Both of the onstraints are onvex whih makes the optimization problemas onvex. The algorithm is used to learn both diagonal A as well as full A. For diagonal A, theNewton-Raphson method has been used to learn A whereby g(A) is minimized:
g(A) =

∑

(x,x′)∈S

‖x− x′‖2A − log ∑

(x,x′)∈D

‖x− x′‖A



The �rst term or the distane between the similar points is redued while the seond term withinthe logarithm or the distane between dis-similar examples is inreased.In ase where the full matrix is learned, the Newton-Raphson method annot be used sineit beomes way too expensive omputationally. This is the reason why gradient desent is usedlike Weinberger's LMNN [112℄, along with the iterative projetions to learn A. The resultingproblem an be given as: maxA g(A) =
∑

(x,x′)∈D ‖x, x′‖Asuh that f(A) =
∑

(x,x′)∈S ‖x, x′‖2A ≤ 1,

A � 0

(2.4)Here, the aim is slightly hanged and the e�ort is made to maximize the distane between dis-similar points whih belong to D whereas the original optimization problem was to minimize thedistane between the similar points. Figure 2.6 shows a 3 lass data in whih ase the entroidsof the lusters di�er only in x and y diretions. As shown in �gure 2.6(b), the learned diagonalmetri orretly ignores the z diretion. Furthermore, in the ase of full A (�gure 2.6()), thealgorithm �nds a projetion of the data on a line that maintains the separation between thelusters.A gradient asent step is used to optimize equation 2.4 whih an be given as A = A +

α∇Ag(A). This is followed by repeatedly projeting the A matrix onto the sets C1 = {A :
∑

(x,x′)∈S ‖x−x′‖2A ≤ 1} and C2 = {A : A � 0}. The projetion of A onto C1 an be written as:
A = argminA′{‖A′ −A‖2F : A′ ∈ C1} 33



Chapter 2. State of the Art Approahes to Metri Learningwhere ‖.‖F represents the Frobenius norm, a type of the entry-wise norms. A Frobenius norm ofa matrix P is the square root of the sum of the entries pij where i represents the rows whereas
j stands for the olumns. For the seond projetion onto C2, the diagonalization of the matrix
A is found:

A = Xt
ΛXwhere Λ is a diagonal matrix that is omposed of the eigenvalues of the matrix A (λ1, · · · , λn)and the olumns of the matrix X make up the eigenvetors for A. In order to onvert A intoa positive semi-de�nite matrix, only the positive eigenvalues are taken into aount and thenegative ones are replaed with zeros. The following formula an then be used:

A′ = Xt
Λ

′Xwhere Λ
′ is a diagonal matrix onsisting of only positive eigenvalues.Xing's algorithm is bath and does not has a omputationally e�ient online version like thatof POLA [99℄. Moreover, there are no theoretial error guarantees whih means that there is nosurety that the algorithm would make a limited number of mistakes on unseen examples. It is alsoimpliitly assumed that the lasses form a single ompat onneted set, whih is detrimental inthe ase of highly multimodal lass distributions.Maximally Collapsing Metri Learning (MCML)Another global distane metri learning approah is developed by Globerson et al. [41℄ wherethe aim is to ollapse all of the examples belonging to the same lass to a single point and pushthe examples from di�erent lasses in�nitely apart. The goal is to learn a Mahalanobis distanemetri. The objetive funtion in this ase is onvex over the spae of positive, semi-de�nitematries, whih in other words mean that there is a unique minimum. The goal is to have zerodistane between the examples from the same lass where as the distane between examplespertaining to di�erent lasses should be in�nite. A onditional distribution has been de�ned foreah of the training examples x(i) over other examples x(j) where i 6= j:

pij =
exp(−‖Ax(i) −Ax(j)‖2

∑

j 6=i exp(−‖Ax(i) −Ax(j)‖2 , pii = 0where pij represents the probability with whih an example x(i) selets another example x(j) asits neighbor and x(j) share the lass label with x(i). The ideal ase where all the examples fromthe same lass are mapped to a single point and in�nitely apart from the examples belonging todi�erent lasses an be represented as:
p′ij ∝

{

1 y(i) = y(j) (dij = 0)

0 y(i) 6= y(j) (d∞ = 0)The idea is to �nd a matrix A in suh a way that pij is as lose as possible to p′ij . This an beahieved by minimizing the KL divergene between the two probability distributions:
minA

∑

j

KL[p′ij | pij]34



2.3. Metri Learningsuh that A is a PSD matrix. This optimization problem is onvex over the spae of PSD matriesand has a unique solution like many other approahes disussed earlier: POLA [99℄, Weinbergeret al. [112℄, Xing et al. [114℄. However, a disadvantage of this approah is that it assumes thatthe examples in eah lass have a unimodal distribution.This method is based on Neighborhood Components Analysis (NCA) by Goldberger et al. [42℄who also learn a Mahalanobis distane metri but espeially for kNN lassi�ation. This algo-rithm �nds the leave-one-out error or the 0−1 loss from a stohasti variant of kNN lassi�ation.However, the objetive funtion is not onvex unlike MCML and an su�er from the problem ofloal minima.Online Learning of Image Similarity - OASISGal et al. [16℄ learn image (dis)similarity using an online algorithm alled OASIS for OnlineLearning for Salable Image Similarity learning. OASIS learns a bi-linear distane measure andbelongs to the Passive Aggressive family of learning algorithms. The aim is to learn a pairwisesimilarity funtion S with large margin and an e�ient hinge loss based on the relative similarityof pairs of images. It does not require the similarity measure to be PSD or even symmetri unlikemany other works e.g. Weinberger et al. [112℄, Xing et al. [41℄ et.In order to dig deeper into the algorithm, onsider X to be a set of images, and rij =

r(x(i), x(j)) ∈ R be a pairwise relevane measure whih shows how strongly x(i) is related to x(j).Furthermore, an assumption is made that there is no full aess to all the values of r. On theother hand, it is assumed that a omparison an be made between the available relevane valuesto determine whih one is more relevant. Furthermore, if the relevane value is not available fora given pair of images then its value is onsidered as zero. The reason is that most of the imagesare not relevant to one another. The aim is to learn a Similarity funtion S(x(i), x(j)) in suh amanner that the pair having more relevant images are assigned higher sores:
S
(

x(i), x(j)
+
)

> S
(

(x(i), x(j)
−

)

, ∀x(j), x(j)+ , x(j)− ∈ Rsuh that r((x(i), x(j)
+
) > r((x(i), x(j)

−

)A parametri similarity funtion S having a bi-linear form is onsidered as follows:
SW (x(i), x(j)) ≡ x(i)

t

Wx(j)where W ∈ Rd×d. The idea is to �nd a funtion S in suh a way that all of the triplets obey thefollowing inequality:
SW (x(i), x(j)

+

) > SW (x(i), x(j)
−

) + 1where 1 represents the value of the safety margin. The hinge loss for a triplet an be alulatedin the following manner:
lW (x(i), x(j)

+

, x(j)
−

) = max{0, 1− SW (x(i), x(j)
+

) + SW (x(i), x(j)
−

)
}The goal is to minimize the global or the umulative loss LW over all of the possible triplets:

LW =
∑

(x(j),x(j)+ ,x(j)−)∈R

lW (x(i), x(j)
+

, x(j)
−

) 35



Chapter 2. State of the Art Approahes to Metri LearningPassive Aggressive algorithm [23℄ is applied in an iterative fashion to optimize W where W isinitialized to W0 = I. At eah iteration i, a triplet is seleted randomly before solving thefollowing onvex problem having a soft margin:
Wi = arg minW 1

2‖W −Wi−1‖22 +Cξsuh that lW (x(i), x(j)
+
, x(j)

−

) ≤ ξ and ξ ≥ 0The online update for W losely resembles that of PA-I and an be written as:
Wi = Wi−1 + τiV

iwhere
τi = min{C, lWi−1(x

(i), x(j)
+

, x(j)
−

)

‖V i‖2

}

and V i =
[

x
(i)
1 (x(k)

+ − x(j)
−

), · · · , x(i)d (x(k)
+ − x(j)

−

)
]tFurthermore, loss bounds have been provided for OASIS based on the one given for the passiveaggressive algorithms. This method is tested on Google proprietary data and found to be fastereven than the fast implementation of LMNN by Weinberger et al. [111℄. OASIS was also testedwith symmetri as well as PSD matries. In order to enfore symmetry, W is projeted onto theset of symmetri matries W ′ in the following manner:

W ′ = sym(W ) =
1

2
(W t +W )However, adding symmetry did not improve the results. For the PSD projetion, two di�erentstrategies were employed: projeting after every i iterations and projeting only one the trainingis ompleted. It was found out that the best performane an be ahieved by projeting intoPSD after learning.Loal Distane Metri LearningAs opposed to global distane metri learning algorithms where the aim is to optimize ompat-ness and separability in a global fashion, loal distane metri learning algorithms try to optimizeloal ompatness and loal separability. In general, most works in distane metri learning learnglobal distane funtions whih keep all points belonging to the same lass nearer while the pointspertaining to di�erent lasses are separated. In ase the lasses have multimodal distributions,it beomes very di�ult to satisfy the two goals (within-lass ompatness and between-lassseparability) simultaneously as shown in �gure 2.7 [118℄.In loal distane metri learning, the fous shifts on the loal pairs where the pairs belongingto the same mode of a lass are brought nearer while the nearby pairs from di�erent lasses areseparated. Yang et al. [118℄ have presented a probabilisti framework in order to learn the loalonstraints.Using the notations de�ned for global metri learning algorithms, the probability of makingthe right predition for a test example x (denoted by Pr(+|x)) an be de�ned in the following36



2.3. Metri Learning

Figure 2.7: Original data distribution (left) and data distribution adjusted by a global distanefuntion(right)manner: Pr(+|x) =

∑

x(i) ∈φS(x)

f(x, x(i))

∑

x(i) ∈φS(x)

f(x, x(i)) +
∑

x(j) ∈φD(x)

f(x, x(j))where S represents the equivalene onstraints, D stands for the inequivalene ones and f(x, x′)is a kernel funtion whih an be de�ned as:
f(x, x′) = exp(−‖x− x′‖2A)The log likelihood for S as well as for D an be written as:
Ll(A) =

∑

x∈T

log Pr(+|x)where T represents all of the data points present in the sets S and D. Using the maximum likeli-hood priniple, the loal distane problem an be written in terms of the following optimizationproblem: max
A∈Rdx d

Ll(A)suh that A � 0It may be noted that when an example x(i) is relatively far from x ompared to other examplesin φS(x) and φD(x), the kernel value f(x, x(i)) will be smaller than the kernel values for otherexamples (sine the kernel value between two examples in inversely proportional to the distanebetween them). This explains the fat that the examples that are distant from eah other wouldhave a lesser impat on the objetive funtion Ll as ompared to the ones whih are lose to oneanother. 37



Chapter 2. State of the Art Approahes to Metri LearningAnother loally adaptive distane metri learning algorithm is used in Hastie and Tibshi-rani [48℄. However, in this ase, the loality must be spei�ed in advane whih is a di�ulttask.2.3.2 Similarity Metri LearningSimilarity is a quantity that re�ets the strength of relationship between two objets. It normallyhas the values in the range of either −1 to +1 or the values are normalized into 0 to 1. One ofthe widely used similarities is osine similarity. The osine similarity between term frequeny-inverse doument frequeny (tf-idf) vetors is used in information retrieval and text mining fordoument lassi�ation. It has also been demonstrated to be a useful measure in gene expresspro�ling. The similarity between two examples x(x1, x2, · · · , xd) and x′(x′1, x
′
2, · · · , x′d), withangle Θ an be alulated utilizing osine funtion as given in the equation:sim(x, x′) = osΘ =

xtx′

‖x‖‖x′‖ =
x1x

′
1 + x2x

′
2 + · · · + xdx

′
d

√

x21 + x22 + · · · + x2d

√

x′21 + x′22 + · · · + x′2dThis ratio de�nes the osine angle between the two vetors where ‖.‖ represents the Eulideannorm of an example. Furthermore, it an be noted that sim(x, x′) = 1 if and only if x = x′,that means the x and x′ refer to the same example. And sim(x, x′) = 0 if and only if x ⊥ x′,that means the x and x′ share nothing in ommon (in ase of douments, this means that xand x′ share no words at all). With the derease in the angle between the vetors, the value ofosine approahes 1, meaning that the vetors are getting loser and the similarity is inreasing.This ratio an be used as a similarity measure between any two vetors representing douments,queries, snippets, images or a ombination of these. In Vetor Spae Model (VSM), x and x′an be replaed by a doument d(i) and a query q(j) to alulate the similarity between a query
q(j) and the list of douments ranked based on their similarity with the given query. A goodthing about osine similarity is that it is already normalized. Sine the examples are alreadynormalized to unit length, the osine similarity degenerates to the inner produt:sim(x, x′) = xtx′Threshold LearningYang et Liu [119℄ have proposed a variant of kNN algorithm, in whih a lass spei� threshold
b(j) is learned using a validation set of examples. Cosine similarity has been hosen and thismethod has been applied for text ategorization in order to �nd the similarity between twodouments. The deision rule for a test doument x with respet to the ategory c(j) an bewritten as:

p(x, c(j)) =
∑

d(i)∈kNN

sim(x, d(i)) p(d(i), c(j))− b(j)where sim(x, d(i)) is the osine similarity between a test doument x and a training doument
d(i) (one of the k nearest neighbors of doument x); p(d(i), c(j)) is the lassi�ation for doument
d(i) with respet to ategory c(j) (1 if it belongs to the ategory or 0 otherwise). Apart fromlearning ategory spei� thresholds, a similarity matrix is not learned and osine is rather used38



2.3. Metri Learningin its original setting. A ross-lassi�er omparison has also been performed between SVM, kNN,Linear Least Squares Fit (LLSF), Neural Network (NNet) and Naïve Bayes (NB) algorithms.The results show that the kNN performs better as ompared to LLSF, NNet and NB but isoutperformed by SVM for the miro-level analysis. On the other hand, the maro-level analysisindiate that the performane of SVM, kNN and LLSF are omparative and is better than NBand NNet approahes.Neural Network Based Similarity Metri LearningArti�ial Neural networks (ANN) have been used both in supervised (e.g. lassi�ation) as well asunsupervised settings (self-organizing maps). Diligenti et al. [32℄ have tried to learn similaritiesbased on a set of omparisons between pairs of examples while using multi-layer pereptron(MLP). The key idea is to have a mapping where the similar examples are loser in the outputspae while at the same time the dissimilar examples are far apart.Mellai et al. [72℄ as well as Maggini et al. [68℄ have learned similarities as opposed to distanesusing neural networks. More spei�ally, a feed-forward multi-layer pereptron (MLP) has beenemployed. A MLP is a modi�ation of the linear pereptron with three or more layers (input,output and one or more hidden) of neurons or nodes. This tehnique is termed as a similarityneural network (SNN) whereby a non-negative and symmetri funtion is learned.The training phase is based on dyadi supervisions (similar or dissimilar). The SNN is madeup of a single hidden layer with all the hidden neurons fully onneted with the input and outputlayers. Furthermore, bakpropagation algorithm is used to �netune the system with the followingproperties:1. The similarity (sim) or the output range is [0, 1] guaranteed by the use of sigmoidal fun-tion,2. The similarity between two examples x(i) and x(j) is symmetri i.e. sim(x(i), x(j)) =

sim(x(j), x(i)),3. Similarity is not a metri sine sim(x(i), x(i)) = 1 and the triangle inequality annot beguaranteed.SNN was evaluated on UCI datasets [36℄ (Iris, Balane and Wine) using similar pairs (pairsbelonging to the same lass) and dissimilar ones (pairs pertaining to di�erent lasses). It wasompared with Eulidean and Mahalanobis distanes using the umulative neighbor purity indexwhih measures the perentage of orret neighbors up to the k-th neighbor, averaged over theentire data set.Similarity Based Classi�ationBernal et al. [5℄ have developed a similarity based lassi�ation algorithm (SBC) in whih theonept of maximal margin has been replaed, whih is basially a binary onept, by a oneptof robustness of the deision funtion that is independent of the number of lasses. E�etivelythe replaed onept is equivalent to the maximal margin in the binary ase. 39



Chapter 2. State of the Art Approahes to Metri LearningGiven a set of n lass-labeled training objets (x(i), y(i)), i = 1, · · · , n, where y(i) representsthe lass of the example x(i), and for an unlassi�ed objet x′, the lass similarity of x′ is de�nedwith respet to a lass C in the following manner:
SC(x

′) =
∑

x(k)∈C

αk sim(x(k), x′) (2.5)where sim(, ) is the similarity funtion and αk ≥ 0 shows the relative importane given to eah
x(k) with respet to lassi�ation. Thus, the lass of x′ an be predited using the followingfuntion:

C(x′) = argC{max(SC(x
′))} (2.6)From equation 2.6, a stronger version an also be derived, whih requires that not only x′ is moresimilar to lass C than any other lass, but is also more similar to lass C than it is to the unionof any other olletion of lasses. The stronger rule an be written as:

C(x′) = argC{max(SC(x
′) >

∑

D 6=C

SD(x
′))}Moreover, in order to ompare this algorithm with lassial mahine learning ones that dealwith binary lassi�ation, the ase of only two lasses A and B is also onsidered. Thus theequation 2.5 an be written in another way:

SA(x
′)− SB(x

′) > 0 ⇒ C(x′) = A

SA(x
′)− SB(x

′) < 0 ⇒ C(x′) = B

SA(x
′)− SB(x

′) = 0 ⇒ C(x′) is not de�nedFor the similarity measures, Radial Basis funtions (RBF) and polynomial kernels have beenseleted. RBF alulates the distane between two points using the formula:
s(x, x′) = exp(

‖x− y‖2
2σ2

)The similarity matrix is de�ned as:
S = [δ s(x(i), x(j))]where i, j ∈ n, δ = 1 i� C(x(i)) = C(x(j)), and δ = −1 otherwise.Some other Similarity Metri Learning methodsGrabowski et al. [46℄ have desribed a method for learning similarities on omplex strutureswhere similarity spaes are �rst learned on elementary domains like the domain of simple at-tributes et. This is followed by learning these spaes on approximation spaes, whih an beonstruted from similarity spaes. The �nal goal in this ase is to design similarities to be usedfor automated ontology extration from rih, omplex strutures. Interestingly, the similaritymeasure onsidered is an asymmetri variant of the Jaard oe�ient. However, this approahin general is more inlined towards feature seletion than the similarity metri learning.40



2.4. How to use the best features for a datasetAnother interesting work is the one desribed by Hust [52℄, on Collaborative InformationRetrieval (CIR), where individual users ollaborate to improve the overall Information Retrievalsystem. Here, a variant of the osine similarity is learned to re-rank the douments.Peterson et al. [84℄ have shown that it is better to use weight-optimized osine similarityinstead of weighted Eulidean distane on UCI olletions like Pima, Ionosphere et. GenetiAlgorithms are employed to improve the performane of kNN using weight and o�set optimiza-tions. In the ase of Eulidean distane, eah feature j of an example x(i) is transformed in thefollowing manner:
x′

(i)
j = x

(i)
j ∗ wjwhere w represents the weight vetor. Eulidean distane is invariant to o�set shifting.Eah feature is independently shifted positively or negatively for the osine measure, thushanging the angular point of referene and ultimately the lassi�ation:

x′
(i)
j = (x

(i)
j −Oj) ∗ wjwhere O stands for the optimization vetor and w for the weight vetor.Pearson orrelation is also used, whih measures the strength of a linear relationship betweentwo feature vetors x(i) and x(k) in the following manner:Pearson(x(i), x(k)) = ∑d
j=1(x

(i)
j − x̄(i))(x

(k)
j − x̄(k))

(d− 1)SDx(i)SDx(j)where x̄ is the mean value of the example x whereas SDx is its standard deviation. The rangeof pearson orrelation is [−1,+1]. +1 indiates a strong positive linear relationship while −1represents strong inverse linear relationship. On the ontrary, the osine similarity is nevernegative.Furthermore, Stahl et al. [100℄ have learned loal similarity measures instead of global oneswhere the similarities are omputed between individual attributes using an evolution programwhih is a speial form of geneti algorithm. There are still some other approahes in whih theterms distane and similarity are used in the same ontext (e.g. the work of Chen et al. [17℄).Mandl [70℄ use neural networks to learn a similarity matrix based on the similarity betweendouments and queries. Liu et al. [66℄ desribe an algorithm whereby a similarity metri is learnedin non-orthogonal spae suh that the similarity of features a�et the similarity of objets, andvie versa.2.4 How to use the best features for a datasetIn general, the features of a dataset are either redued to a set of more meaningful ones or featurereweighting tehniques are used. However, there are some other situations in whih the di�erentfeatures of a dataset have di�erent sales and the sale e�ets must be removed in order to usethe attributes in an e�etive manner.2.4.1 Dimensionality RedutionIn many pratial ases, the number of features or the dimensions must be redued to improvethe performane of the lassi�er. This is partiularly the ase when many of the features are41



Chapter 2. State of the Art Approahes to Metri Learningirrelevant or redundant. In these ases, the aim is to redue the dimensionality of the vetorspae from d to d′ where d′ ≪ d. This an be exploited to vastly redue the storage andsearh time requirements for kNN algorithm. Moreover, by hoosing d′ = 2 or d′ = 3, onean ompute low dimensional visualizations on labeled datasets using a linear projetion [42℄.The matrix L in equation 2.1 is onsidered to be non square of size d′X d. It has been furtherargued that by using this matrix L, the omputational load of kNN an be redued to quite alarge extent by restriting the metris to be those of rank at most d′. Figure 2.8 shows howGoldberger's Neighborhood Component Analysis (NCA) algorithm outperforms PCA (PrinipalComponent Analysis) and LDA (Linear Disriminant Analysis) when the data is visualized in 2dimensional spae. There are two broad ategories of feature seletion methods: loal dimensionredution and global dimension redution. In loal dimension redution methods, the number ofdimensions is redued separately at eah of the query points. On the other hand, in the ase ofglobal methods, the original feature spae is onverted into an optimally hosen subspae withlesser number of features [49℄.Partridge and Calvo [80℄ have de�ned a fast and simple algorithm where they alulate theapproximate prinipal omponents (PCs) of a dataset before reduing its dimensionality.2.4.2 Feature ReweightingThe feature reweighting algorithms learn the weights of the attributes. RELIEF (originally pro-posed by Kira and Rendell [57℄) is a simple yet an e�etive online feature reweighting algorithm.Unlike many other heuristi measures for estimating quality of the attributes, the onditionalindependene of the attributes is not assumed. Sine its development, many people have modi-�ed and extended this algorithm (ReliefF, RReliefF, I-Relief et.) It has been proven suessfulin many di�erent settings. It learns a vetor of weights (for eah of the features) desribing theimportane or quality of di�erent attributes or features.It has been shown that it solves onvex optimization problem while maximizing a margin-based objetive funtion using k-NN algorithm. The weights are updated based on the nearesthit (nearest example belonging to the lass under onsideration or sometimes referred to as thenearest target neighbor) and the nearest miss (nearest example belonging to other lasses).RELIEF learns only a diagonal matrix in the original setting. However, Sun et al. [102℄ haveextended RELIEF to learn a full distane matrix. It has been further proved that Relief is anonline algorithm. RELIEF outperformed standard kNN algorithm on standard UCI olletionslike Banana, Splie, Waveform et.Let x(i) be a vetor in Rd having y(i) as the lass label with values +1,−1. Let w be a vetormeant for iteratively estimating the qualities of attributes initialized with 0. The aim is to learn
w on a set of training examples. Suppose an example x(i) is randomly seleted. This is followedby �nding two nearest neighbors of x(i): one from the same lass (termed as nearest hit or H)and other from the di�erent lass than that of x(i) (termed as nearest miss or M). The updaterule in ase of Relief doesn't depend on any ondition and an be represented as:

wl = wl −
di�(l, x(i),H(x(i))

J
+

di�(l, x(i),M(x(i)))

J
(2.7)where J represents the number of iterations, the algorithm has been run while di� is a funtionused to �nd the di�erene between the values of an attribute i for x(i) and the nearest hit or miss42



2.4. How to use the best features for a dataset

Figure 2.8: Dataset visualization results for PCA, LDA and NCA applied to onentri rings,wine, faes and digits (Top to bottom). The datasets are redued to 2 dimensions in eahase. [42℄
43



Chapter 2. State of the Art Approahes to Metri Learningrepresented by H or M . If the instanes x(i) and H have di�erent values for an attribute i thenthis means that it separates the two instanes in the same lass whih is ertainly not desirable, sothe quality estimation wl is dereased. Similarly if the instanes x(i) and M have di�erent valuesfor an attribute i then this attribute separates two instanes belonging to di�erent lasses whihis desirable, so the quality estimation for i is inreased. In the ase of disrete attributes, thevalue of di�erene is either 1 (the values are di�erent) or 0 (the values are the same). However,for ontinuous attributes, the di�erene is the atual di�erene normalized to the losed interval
[0, 1] whih is given by: di�(l, x, x′) = |xl − x′l|

max(l)−min(l)Furthermore, the same di� funtion is used to �nd the nearest hit and the nearest miss as well,where the total distane is the sum of di�erenes for all of the attributes (Manhattan distane).The overall aim is to learn the estimation of the qualities of attributes.The omplexity of Relief is O(Jdn) where J is the number of iterations, d is the number offeatures, and n represents the total number of instanes. However, the omplexity is �xed for allof the senarios.In the original setting, RELIEF an only deal with binary lass problems and annot workwith inomplete data. In order to ope with this problem, it was extended in the form ofRELIEFF algorithm [58℄. Instead of just �nding the nearest hit and miss, it �nds k nearest hitsand the same number of nearest misses from eah of the di�erent lasses.Mathematial Interpretation for RELIEF algorithmSun and Wu [102℄ have provided a mathematial interpretation for the RELIEF algorithm. Themargin for an instane x(i) an be de�ned as:
pi = d(x(i) −M(x(i)))− d(x(i) −H(x(i)))where M(x(i)) and H(x(i)) are the nearest miss and nearest hit for x(i) respetively, and d(.)represents a distane funtion. d(x) =∑l |xl| is de�ned just like the one used in original RELIEFalgorithm. The margin is positive only if x(i) is nearer to the nearest hit as ompared to thenearest miss, or in other words, is lassi�ed orretly as per the 1NN rule. The aim is to saleeah feature in suh a way that the leave-one-out error ∑n

i=1 I(pi(w) < 0) is minimized, whereI(.) is the indiator funtion and pi(w) is the margin of x(i) with respet to w. As the indiatorfuntion is not di�erentiable, a linear utility funtion has been used so that the averaged marginin the weighted feature spae is maximized:arg max
w

∑n
i=1 pi(w) =

∑n
i=1

{
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l=1wl
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∣
∣x

(i)
l −Ml(x

(i))
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∣
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l=1wl

∣
∣
∣x

(i)
l −Hl(x

(i))
∣
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∣

}

,suh that ‖w‖22 = 1, and w ≥ 0,

(2.8)where w ≥ 0 makes sure that the learned weight vetor indues a distane measure. Theequation 2.8 an be simpli�ed by de�ning:
z =

n∑

i=1

(|x(i) −M(x(i))| − |x(i) −H(x(i))|44



2.4. How to use the best features for a datasetand the simpli�ed equation an be written as:max
w

wtz where ‖w‖22 = 1, w ≥ 0The Lagrangian of the above equation an be written as:
L = −wtz + λ(‖w‖22 + 1) +

d∑

l=1

θl(−wl)where both λ and θ ≥ 0 are Lagrangian multipliers. In order to show that the optimum solutionan be alulated in a losed form, the following steps are performed: the derivative of L is takenwith respet to w and is set to zero. This gives:
∂L

∂w
= −z + 2λw − θ = 0 and w =

z + θ

2λThis is followed by deriving the losed form solution for w. In order to prove that λ > 0, it issupposed that zi > 0. This implies that zi + θi > 0. In ase λ < 0, then this means that wi isnegative, whih ontradits the onstraint w ≥ 0. Therefore, it an be dedued that λ is alwayspositive.Di�erent ases for zi ould be further veri�ed using the Karush-Kuhn-Tuker ondition(∑i θiwi = 0):1. When zi = 0, θi = 0 and wi = 0;2. When zi > 0, zi + θi > 0 ⇒ wi > 0 ⇒ θi = 0; and3. When zi < 0, θi < 0 ⇒ wi = 0 ⇒ zi = −θiThe optimum solution an be alulated in a losed form in the following manner:
w =

(z)+

‖(z)+‖2
(2.9)where (z)+ = [max(z1, 0), · · · ,max(zd, 0)]

t. While omparing the above equation with that ofweight update rule for RELIEF, it an be noted that RELIEF is an online algorithm to solve theoptimization problem given in equation 2.8. This is true exept when wi = 0 for zi ≤ 0 whih isnormally related to irrelevant features.In the original setting, RELIEF algorithm uses only a diagonal matrix. Sun and Wu [102℄have instead used a full distane matrix in whih ase the optimization problem an be writtenas: max
w

∑n
i=1 pi(w) =

∑n
i=1m

t
iWmi −

∑n
i=1 h

t
iWhi,suh that ‖W‖2F = 1, and W ≥ 0,

(2.10)where mi = x(i) −M(x(i)), hi = x(i) −H(x(i)), and ‖W‖F represents the Frobenius norm of Wwhih an be written as: √
∑

i,j

w2
i,j =

√
∑

i

λ2
i 45



Chapter 2. State of the Art Approahes to Metri LearningHere λi stands for the ith eigenvalue for W . It is to be noted that equation 2.8 and 2.10 havesimilar meanings. Furthermore, W , being a distane funtion is symmetri and positive, semi-de�nite.The performane of a lassi�er an be enhaned using feature transformation mehanisms.Two ommonly used ones are feature standardization and feature fuzzi�ation.2.4.3 Feature StandardizationIt is a proess used to remove the sale e�ets when di�erent features have di�erent measurementsales [83℄. The raw feature values are transformed into z-sores using the mean and standarddeviation of feature values over all of the samples. The z-sore for ith sample and jth featurean be written as:
zij =

x
(i)
j − µj

σjwhere x
(i)
j is the value for ith sample and jth feature or attribute, µj represents the average ofall x(i)j for feature j and σj stands for the standard deviation of all x(i)j over all of the inputexamples. In ase the feature values represent a Gaussian distribution, then the histogram forthe z-sores represent a normal distribution having zero mean and the variane of unity. Onethe standardization has been performed, the range and sale of the z-sores would be similar.2.4.4 Feature Fuzzi�ationThis tehnique exploits the unertainty in feature values so as to inrease the lassi�er perfor-mane [83℄. The original feature values are replaed by a mapping into 3 fuzzy sets representinglinguisti membership funtions in order to failitate the semanti interpretation of eah fuzzyset. The fuzzi�ation proess starts by determining xmin and xmax as the minimum and max-imum values of x(i)j for feature j over all of the input samples i and q1 and q2 as the quantilevalues of x(i)j at the 33rd and 66th perentile respetively. This is followed by omputing thefollowing averages: Avg1 = xmin+q1

2Avg2 = q1+q2
2Avg3 = q2+xmax

2The next step is to translate eah value of x(i)j for feature j into 3 fuzzy membership valueshaving the range [0, 1] as µlow,i,j µmed,i,j µhigh,i,j using the following relationships:
µlow,i,j =







1 x < Avg1
q2−x

q2−Avg1

Avg1 ≤ x < q2

0 x ≥ q2,46



2.5. Classi�er Comparison Tehniques
µmed,i,j =







0 x < q1Avg2−xAvg2−q1
q1 ≤ x < Avg2

q2−x

q2−Avg2

Avg2 ≤ x < q2

0 x ≥ q2,

µhigh,i,j =







0 x < q1

x−q1Avg3−q1
q1 ≤ x < Avg3

1 x ≥ Avg3.The omputations for µlow,i,j, µmed,i,j and µhigh,i,j give 3 fuzzy sets or vetors µlow,j µmed,j µhigh,jof length n whih replae the original input feature.2.5 Classi�er Comparison TehniquesThe performane of di�erent lassi�ers an be ompared based on many di�erent metris. Themost widely used riterion is auray whih is the number of orret lassi�ations to the totalnumber of lassi�ations made. Some of the other riterions are preision, whih is the ratioof the number of relevant objets retrieved to the total number of objets retrieved, and reall,whih is measured as the number of relevant objets retrieved, divided by the total number ofrelevant objets (whether retrieved or not):preision = P =
Number of relevant objets (or douments) returnedTotal number of objets (or douments) returnedreall = R =

Number of relevant objets (or douments) returnedTotal number of relevant objets (or douments)Another standard evolution measure is the F-measure whih is a ombination of preision andreall, and depends on a parameter α. It an be de�ned as:F-measure = 1

α 1
P
+ (1− α) 1

RBy hoosing α = 0.5, same importane is given to preision and reall. In this ase, F-measurebeomes the harmoni mean of the two values: P and R.2.5.1 Cross ValidationCross validation is basially a model evaluation method. There are many di�erent types of rossvalidation tehniques like holdout method, K fold ross validation, leave-one-out ross validationet. 47
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Figure 2.9: Cross validation [101℄The holdout method is the simplest of all ross validation methods. In this method, thedata set is divided into training and test set. The algorithm is trained on the training set andthe performane is assessed on the test set. The bene�t of this method is that it requires muhless time to exeute. However, the evaluation is dependent on the distribution of examples intotraining set and the test set and it may have a high variane. In K fold ross validation, thedataset is presented K times to the lassi�er [120℄ as shown in the �gure 2.9. The training isdone on K−1
K

of the samples while the rest of 1
K

samples are used as a test set. At the end,the average error aross all K trials is found. One of the key advantages of this method is thatit hardly matters how the data is divided. Every example is seleted one in the test set while
K−1 times for the training set. The disadvantage of this approah is that the training algorithmhas to be exeuted for K times, onsequently inreasing the omputation ost by K times.Leave-one-out ross validation is equivalent to K fold ross validation with K hosen to beequal to n, the number of examples in the training set. This implies that the algorithm is run for
n times, eah time training on n − 1 examples and testing on the only example whih was left.In this approah also, the average error is found to evaluate the performane of the algorithm.2.5.2 Signi�ane TestsTwo systems or lassi�ers an be ompared based on signi�ane tests whih an be broadlylassi�ed into two sub ategories: miro level tests and maro level tests [119℄. The miro leveltests (e.g. s-test, p-test) are based on deisions on individual doument/lass pairs. On the otherhand, maro level test (e.g. S-test, T-test et.) is alulated from the performane sores foreah ategory.A miro sign test, s-test, ompares two lassi�ers, A and B. This test is based on the binary48



2.6. Conlusiondeisions for all doument/lass pairs. In order to explain this test, the following notation isused: n represents the total number of binary deisions made by eah of the two lassi�ers, aimeasures the suess of lassi�er A for ith deision (i = 1, · · · , n). Similarly bi is used to alulatethe suess for lassi�er B. The allowed values for ai and bi are 0 or 1. Furthermore, m is used todesribe the number of times lassi�er A and lassi�er B have di�erent lassi�ation. k desribesthe number of times the system A is better than system B i.e. ai is larger than bi. The nullhypothesis is k = 0.5m whih means that 50% of the time lassi�er A is better than lassi�erB or in other words k has a binomial distribution Bin(m, p) where p = 0.5. Consequentlythe alternate hypothesis says that k has a binomial distribution with p > 0.5. If m ≤ 12 and
k ≥ 0.5m, the one sided P value an be omputed using the binomial distribution:

P (Z ≥ k) =
m∑

i=k

(

m

i

)

∗ 0.5mHowever, if m ≤ 12 and k < 0.5m, P-value of the other extreme an be alulated as follows:
P (Z ≤ k) =

k∑

i=0

(

m

i

)

∗ 0.5mThe P-value shows the signi�ane level of the observed evidene against the null hypothesis(whether lassi�er A is better or worse than lassi�er B).If m is greater than 12, the P-value an be approximated using the normal distribution:
Z =

k − 0.5m

0.5
√
mApart from miro level signi�ane tests, there are also some maro levels tests e.g. S-test, T-testand T'-test et. These tests evaluate the systems at a maro level; using the performane soreson eah ategory as the unit measure. Furthermore, the authors have argued that the mirolevel tests are dominated by the performane of the lassi�ers on ommon ategories. On theother hand, the maro level tests are more re�etive of the performane of the lassi�ers on rarelasses.2.6 ConlusionMahine learning studies the mehanisms and methods by whih an entity onstruts and usesknowledge, with the aim of improving its performane with experiene. Mahine learning al-gorithms an be lassi�ed into supervised (e.g. kNN algorithm, SVMs et), unsupervised (e.g.lustering) or semi-supervised learning algorithms. The supervised learning is based on learningfrom labeled examples. On the other hand, unsupervised learning algorithms work without anysort of supervision. Semi-supervised learning lies in between supervised and unsupervised learn-ing in whih ase the data onsists of labeled as well as unlabeled data. There is yet another wayin whih mahine learning algorithms an be distinguished: online vs bath learning. Many ofthe mahine learning algorithms rely heavily on the metri employed. Among the most ommonones are Eulidean distane and the osine similarity. However both of these do not take intoaount the underlying geometry of the spae in whih the data lie and hene are not the best49



Chapter 2. State of the Art Approahes to Metri Learningoptions. This has paved the way for a new researh theme known as metri learning. Metrilearning an be divided into distane metri learning and similarity metri learning. Most ofthe distane metri learning algorithms are based on learning Mahalanobis distane metri, anextended form of the Eulidean distane e.g. Information Theoreti Metri Learning [28℄, LargeMargin Nearest Neighbor lassi�ation [112℄ et. However, people have showed that osine simi-larity should be preferred over the Eulidean distane on datasets whih are not neessarily textones. In order to selet the best features of a dataset for the learning proess, various tehniqueslike dimension redution and feature reweighting tehniques (e.g. RELIEF algorithm) ould beemployed. In order to evaluate an algorithm, ross validation tehniques ould be used. Further-more, signi�ane tests are used in order to show that a method is signi�antly better than itsounterparts.
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3.1. Introdution3.1 IntrodutionIn doument �ltering, a stream of douments is �ltered as per the pro�les of various topis. In theabsene of any supervision, standard osine an be found between a doument d and the topisas cos(d, ti), before adding the doument to the pro�le having the greatest osine similarity. Inase, there is some possibility of supervision, the standard osine an be adapted to learn someparameters related with the osine similarity. Apart from the similarity between douments andtopis, another possible one is between di�erent douments assigned to a partiular topi andomes into ation only in the presene of some sort of supervision.In this hapter, a simple �ltering method is desribed whereby the kNN algorithm is adaptedto learn similarity thresholds. This represents the �rst step towards learning the omplete simi-larity metri. The adaptive kNN algorithm is developed in the ontext of INFILE (INformationFILtering Evaluation) [9, 7℄ ampaign and is based on strong onstraints on the similaritiesbetween douments and topis and between di�erent douments within a topi.The INFILE ampaign was run as a pilot trak of CLEF (Cross Language Evaluation Fo-rum) in 2008 and 2009. It was sponsored by the Frenh National Researh Ageny (ANR) 7 andwas o-organized by the CEA-LIST, ELDA and the University of Lille3-GERiiCO. It extendedthe TREC (Text REtrieval Conferene) 2002 �ltering trak and was basially a ross-languageadaptive �ltering evaluation ampaign where the aim was to suessfully separate relevant andnon-relevant douments with respet to a given pro�le, the doument and the pro�le beingpossibly written in di�erent languages. INFILE used 300,000 Agene Frane Presse (AFP) om-parable newswires overing the years 2004 to 2006 in three languages (100,000 for eah): Arabi,English and Frenh. It also inluded a set of 50 topis in general and spei� domain (sien-ti� and tehnologial information). The News artiles written in di�erent languages were notneessarily translation of eah other, and were enoded in XML format and followed the NewsMarkup Language (NewsML) spei�ations. NewsML is an XML standard designed to providea media-independent, strutural framework for multi-media news and is developed by Interna-tional Press Teleommuniations Counil 8. The ompetitors were asked to ompare eah topiin a soure language to the douments in the target languages. Every possible soure/target lan-guage pair was allowed. The partiipants had the possibility of partiipating in the monolingual�ltering, ross-lingual �ltering (e.g. soure language is English and target language is Frenh) ormulti-language �ltering (with a mixed set of douments from di�erent target languages).In this hapter, the partiipation in INFILE 2008 and 2009 is desribed in detail whihovered only the monolingual partiipation using English language. The goal of the INFILEampaign was to �lter 100,000 douments into 50 topis (plus a ategory 'other'). Out of these50 topis, 30 were related to general news and events (e.g. national and international a�airs,sports, politis et.), whereas the rest onerned sienti� and tehnial subjets. A doumentbelonged to zero, one or more topis; eah topi being desribed by a set of sentenes. The topisor pro�les have been reated by ompetitive intelligene (CI) professionals from INIST 9, ARIST7http://www.agene-nationale-reherhe.fr/8http://www.newsml.org9The Frenh Institute for Sienti� and Tehnial Information Center, http://international.inist.fr 53



Chapter 3. Online and Bath Doument Filtering Using An Adaptive Nearest Neighbor AlgorithmNord Pas de Calais 10, Digiport 11 and OTO Researh 12. The pro�les were de�ned with thefollowing struture:1. a unique identi�er2. a title desribing the topi (maximum 6 words)3. a sentene-long desription of the topi (maximum 20 words)4. a narrative desribing whih doument should be onsidered as relevant and whih shouldbe termed as non-relevant (maximum 60 words)5. Keywords (maximum 5)6. an example of relevant text taken from a doument not present in the olletion (maximum120 words)Any of the possible ombinations of these tags were allowed for �ltering. An example of a topiis given below:<top><num>110</num><title>The diversity in politis</title><des>The pro�le relates to the diversity in politis, the existing provisions to ensure betterrepresentation of all soial strata</des><narr>The relevant doument should desribe the problem of ultural ethni and soial diver-sity in poliy, the parity, lak of visibility of minorities in the politial arena, the �ght againstdisrimination, the various means for enabling this diversity, and the main obstales enoun-tered.</narr><keywords><keyword>Diversity in politis</keyword><keyword>Fight against disrimination</keyword><keyword>parity</keyword><keyword>visibility of minorities</keyword><keyword>Integration</keyword></keywords><sample>In the politial arena, the term diversity (or diverse) is used to desribe politialentities (neighborhoods, ities, nations, student bodies, et.) with members who have identi�-able di�erenes in their bakgrounds or lifestyles. The use of the term diversity may enompassdi�erenes in raial or ethni lassi�ations, age, gender, religion, philosophy, physial abilities,soioeonomi bakground, sexual orientation, gender identity, intelligene, mental health, physi-al health, geneti attributes, behavior, attrativeness, plae of origin, ultural values, or politialview as well as other identifying features. Politial reeds whih support the idea that diversity10Regional ageny for strategi information and tehnology, http://www.aristnpd.org11http://www.digiport.org12http://www.otoresearh.fr54



3.2. Doument Filtering using An Adaptive Nearest Neighbor Algorithmis valuable and desirable hold that reognizing and promoting these diverse ultures may aid om-muniation between people of di�erent bakgrounds and lifestyles, leading to greater knowledge,understanding, and peaeful oexistene.[itation needed℄ For example, "Respet for Diversity"is one of the six priniples of the Global Greens Charter, a manifesto subsribed to by Greenparties from all over the world. In ontrast to diversity, some politial reeds promote ulturalassimilation as the proess to lead to these ends </sample></top>In omparison with INFILE 2008, where there was only an online task, an additional bath�ltering task was added in the year 2009. As opposed to the online task, where the serverprovides the douments one by one to the user, all of the douments are provided beforehand inthe bath task. This hapter desribes the partiipation in the online task of 2008 [14℄, and thebath one of 2009 [88℄.3.2 Doument Filtering using An Adaptive Nearest Neighbor Al-gorithmMany studies have shown that similarity measures are more appropriate for the kNN algorithmas ompared to the distane ones, when dealing with texts (see e.g. [87℄). This explains the fatthat the osine measure was hosen for doument �ltering rather than Eulidean distane.In order to �lter the douments into various topis, a similarity measure between the newdouments and topis is employed, along with a set of thresholds on this similarity that evolvesover time. The similarity between a new doument d, to be �ltered, and a topi ti an be givenas: sim(ti, d) = α ∗ cos(ti, d)
︸ ︷︷ ︸

s1(ti,d)

+(1− α)max(d′ 6=d,d′∈ti)cos(d, d
′)

︸ ︷︷ ︸

s2(ti,d)

(3.1)where α ∈ [0,1℄. The similarity given in equation 3.1 is based on two similarities: one based on adiret similarity between the new doument and the topi (given by s1(ti, d)), and another onebetween the new doument and the set of douments already assigned to the topi (s2(ti, d)).One might think that only the �rst similarity would su�e. However, this is not the ase sinethe topis and the douments do not share the same kind of struture and ontent and henethe signi�ane and interpretation of these two similarities is not the same.Figure 3.1 13 shows the range of osine similarity values for all of the douments with respetto topi 1. It an be observed that most of the douments have the similarity even below 0.025.Furthermore, it was also observed that many of the douments have zero similarity with thetopi (i.e. all of the words in the doument and the topi are mutually exlusive). Similarly, themaximum value of osine similarity is 0.487 shared by only two douments (doument no. 13460and 72687). The average similarity value is 0.019.Nearly the same phenomenon is observed for topi 10 as shown in �gure 3.2, exept the fatthat the maximum value of osine similarity inreases to 0.565 (for doument number 48187) in13The sale is di�erent for the two �gures sine fewer douments have greater osine similarity values. Hene,as the range of osine similarity inreases, the number of douments appearing in that partiular range dereases.55
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Figure 3.1: Cosine similarity for the 100,000 douments for Topi 1

Figure 3.2: Cosine similarity for the 100,000 douments for Topi 10
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3.2. Doument Filtering using An Adaptive Nearest Neighbor Algorithm

Figure 3.3: Cosine similarity for 10 Nearest Neighbors for all of the Topisthis ase. The average similarity also inreases to 0.034.Figure 3.3 gives the values for the osine similarity for the 10 nearest douments for eah ofthe 50 topis. Most the values lie in the range 0.3−0.6. The maximum value observed is 0.813 for42nd topi whereas the minimum value (0.170) is for topi number 27. Here, the average osinesimilarity is 0.43. It an also be observed that only a few douments have a osine similarity lessthan 0.2, and even a fewer have got osine similarity greater than 0.7.The seond similarity helps to �nd the douments whih are loser to douments whih hadalready been assigned to a topi. α is used to ontrol the importane of the two similarities. Inthe beginning, when no douments are assigned to any topi, only the similarity between a topiand the new doument, s1(ti, d), is taken into aount for omputing the �nal similarity betweenthe doument and the topi.The similarity in equation 3.1 an be used for doument �ltering in an online or bath setting.The two possibilities are disussed in detail.3.2.1 Online Doument FilteringFirst, the online doument �ltering algorithms [15℄ based on the similarity given in equation 3.1are desribed. Two thresholds were introdued for eah of the topis, θ1i and θ2i :1. θ1i allows �ltering out douments in the early stages of the proess (i.e. when only a fewdouments have been assigned to the topi) and operates only on s1(ti, d). It helps to buildan initial base of 10 douments per topi using the possible feedbak from the server (50 intotal for the whole olletion of INFILE 2008). The use of feedbak limits the assignmentof non-relevant douments to the di�erent topis. The threshold θ1i is the value above57
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Figure 3.4: Range of osine similarity between topis and their 10 nearest doumentswhih, the value of s1(ti, d) is onsidered to be high enough to say that the doument d isrelevant to topi ti.2. θ2i operates on the global similarity, after a ertain number of douments have been assignedto the topi. It aounts for the fat that new information has been inorporated in thetopi as explained in the algorithm.The general algorithm for online �ltering is summarized:Online Algorithm (General)Set α to α0 and all θ1i to θ10for eah new doument dfor eah topi iConstrution of initial set:if ( li < NB )if (s1(ti, d) > θ1i )If feedbak is possible: Ask for feedbak
ti ⇐ d (only if feedbak positive)else ti ⇐ dAssignment of remaining douments to topis:else if (sim(ti, d) > θ2i )

ti ⇐ dwhere θ2i = mind∈tisim(ti, d)where li represents the number of douments assigned to a topi i. The parameter α and thethreshold θ1i were tuned during the dry run phase whih ran before the atual ampaign. Twotopis and ten douments were provided during the dry run phase. The value hosen for α0was 0.7 while that for θ10 was 0.42. It an be realled from �gure 3.3 that the average osinesimilarity between the 50 topis and their 10 nearest neighbors is 0.43 and thus very lose to θ10.58



3.2. Doument Filtering using An Adaptive Nearest Neighbor AlgorithmOne the initial set of douments has been onstruted (maximum 10 per topi), the algorithmworks to assign the remaining douments to di�erent topis. For eah topi i, its orresponding
θ2i is initialized with the osine similarity between the topi and its least similar doument. θ2iis updated whenever a new doument is added in the topi i.Simpli�ation of the general online algorithmIn addition to the general version of the online algorithm, a simpli�ed version has also beeninvestigated, whih neither uses any feedbak nor builds an initial set of douments. It does notupdate the threshold θ2i unlike the general algorithm. In this version, a threshold θ is derivedfrom θ1i and θ2i aording to equation 3.1, whih integrates the two similarities θ1i and θ2i operateupon:

θ = α ∗ θ1i + (1− α) ∗ θ2iDouments are then �ltered aording to the following, simple algorithm where the threshold θreplaes θ2i of the online algorithm.Online Algorithm (Simpli�ed)Set α to α0Assignment of douments to topis:for eah new doument dfor eah topi iif (sim(ti, d) ≥ θ)
ti ⇐ dHere again, values for the di�erent parameters were tuned during the dry run phase. This wasfollowed by slight modi�ations of these values in the �nal experiments.3.2.2 Bath Doument FilteringHere a bath algorithm [89℄ to �lter the douments into various pro�les/topis is desribed. Itis also based on the equation 3.1 like the online algorithm. As for the online algorithm, when nodouments are assigned to any topi, only the similarity between a topi and the new doument,

s1(ti, d) is onsidered. This similarity is used to �nd a ertain number of nearest neighbors foreah of the doument (10 in this ase) whih eventually helps to use the seond similarity. Athreshold was used for eah of the 50 topis. Feedbak is not possible in the ase of bath �lteringsine the omplete set of douments is transferred to the user in one go.Bath AlgorithmConstrution of initial set:for eah topi i�nd NB nearest neighbors based on s1 = cos(ti, d)for eah nearest neighbor d found
ti ⇐ d 59



Chapter 3. Online and Bath Doument Filtering Using An Adaptive Nearest Neighbor AlgorithmAssignment of remaining douments to topis:Set α to α0for eah topi i

θi = mind∈tisim(ti, d)for eah doument dfor eah topi iif (sim(ti, d) ≥ θi)
ti ⇐ d

θi = min(θi,mind∈tisim(ti, d))Yang and Liu. [119℄ have desribed a similar method, whereby they learn ategory-spei�thresholds based on a validation set. An example is assigned to a partiular ategory only ifits similarity with the ategory surpasses a ertain learned threshold. In ontrary, there is novalidation set in this ase to learn thresholds. Nevertheless, a simulated one is reated by �ndingnearest neighbors for eah of the 50 topis.3.3 Comparison between Online and Bath AlgorithmsA detailed omparison between the bath algorithm used in 2009 and the online algorithmsdeveloped for the online ampaign in 2008 is disussed.The main di�erene between the two algorithms (bath and general online) lies in the mannerin whih the initial set of douments relevant to the topis is reated. In the bath algorithm, only10 nearest neighbors are found for eah topi, with the assumption that the nearest neighborsfor a topi would, in general, belong to the topi under onsideration. However, for the onlinealgorithm, feedbaks were used (limited to 50) in order to add a doument to a pro�le if thesimilarity between a topi ti and a doument d is greater than a ertain threshold (θ1). Thisproedure is repeated until either 10 douments have been added to eah of the 50 topis orall of the 100,000 douments have been enountered. Hene it is possible that a ertain topihas less than 10 douments after the onstrution of the initial set. On the ontrary, the use ofnearest neighbors in the bath algorithm ensures that eah topi has exatly 10 douments afterthe buildup of the initial set.Furthermore, as the online algorithm builds the initial set of douments based on the threshold
θ1, hene, it is very important that this threshold is hosen very arefully (a dry run was usedto tune the value of θ1 during the online ampaign in 2008). On the other hand, the bathalgorithm does not use any threshold during the onstrution of the initial set.The seond phase of the two algorithms, where the remaining douments are assigned todi�erent topis, is similar exept the fat that the threshold θi in the bath algorithm is updated,only if the urrent threshold is smaller than the previously stored one. However, the onlinealgorithm does not make use of previously stored value of the threshold θ2i . This means that thebath algorithm is more lenient in assigning new douments to topis as ompared to the onlinealgorithm.Comparing the simpli�ed online algorithm with the rest of the two, it an be seen that as60



3.4. Evaluation Metristhe simpli�ed algorithm does not build an initial set of douments, hene it annot use s2(ti, d)unless some doument has been assigned to the topi ti.3.4 Evaluation MetrisThe results for the di�erent runs were evaluated based on di�erent measures, namely, preision,reall, F-measure, linear utility, antiipation (added in 2009) and detetion ost (see [6℄ and [7℄).The results indiating the assoiation of a doument with a pro�le were in the form of binarydeisions. The results for a given pro�le an be ategorized as per the ontingeny table 3.1.The di�erent metris an be de�ned in the following manner:Relevant Not RelevantRetrieved a bNot Retrieved  dTable 3.1: Contingeny TablePreision is de�ned as:
P =

a

a+ bReall is given by:
R =

a

a+ cF-measure, whih is a standard ombination of preision and reall, and depends on a parameter
α is de�ned as: F-measure = 1

α
1

P
+ (1− α)

1

RBy hoosing α = 0.5, same importane is given to preision and reall and the F-measurebeomes the harmoni mean of the two values: P and R. This means that in order to have agood F-measure, both the preision as well as the reall must be high.Detetion ost was onsidered in 2008 but not in 2009 sine the detetion ost values were of-ten low and were not disriminant between di�erent partiipants. In order to de�ne the detetionost, two measures are onsidered:1. The estimated probability of missing a relevant doument given by Pmiss =
c

a+ c2. The estimated probability of raising a false alarm on non-relevant doument given by
Pfalse =

b
b+ dWith this, the detetion ost an be de�ned:

cdet = cmiss × Pmiss × Ptopic × cfalse × Pfalse × (1− Ptopic)where cmiss is the ost of a missed doument, cfalse is the ost of a false alarm while Ptopic is thea priori probability that a doument is relevant to a given pro�le. During the INFILE ampaign61



Chapter 3. Online and Bath Doument Filtering Using An Adaptive Nearest Neighbor Algorithm2008, cmiss was hosen to be 10, cfalse = 0.1 while the value of Ptopic was given the value 0.001based on the average ratio of relevant douments.Linear utility is based on two parameters: importane given to a relevant doument retrieved(w1) and the ost of a non-relevant doument retrieved (w2). Linear utility an be written as:
u = w1 ∗ a− w2 ∗ bFiltering by linear utility is just like �ltering by estimated probability of relevane. For example,with w1 = 2 and w2 = 1, it orresponds to the rule: retrieve if P(relevane) > 0.33. A problemwith linear utility is that although it is bounded positively, it is unbounded negatively (negativevalues depend on the number of relevant douments for a pro�le). Thus, the average over allof the pro�les would give muh more importane to the few pro�les on whih the system hasperformed poorly. In order to average the value, the measure is saled in the following manner:

un =
max( u

umax
, umin)− umin

1− uminwhere umax is the maximum value of the linear utility and umin represents the minimum valuebelow whih a user does not onsider the following douments for the pro�le. The values hosenfor INFILE 2008 and INFILE 2009 were: w1 = 1, w2 = 0.5 and umin = −0.5. The value of uminwas the same as that of TREC 2002 ampaign.Antiipation measure is designed to give more importane to systems that an �nd the �rstdoument in a given pro�le. The interest in this measure is motivated by the fat that inompetitive intelligene, everyone wants to be at the utting edge of the domain and does notwant to miss the �rst information to be reative. It is alulated by the inverse rank of the �rstrelevant doument deteted in a list of relevant douments, averaged on all pro�les.3.5 ExperimentsThe algorithms have been run on the INFILE English orpus. For all of the douments, stemmingwas performed using Porter's algorithm [56℄. This was followed by the removal of stop-words,XML tags skipping and the building of a doument vetor (whih assoiates eah term withits frequeny) using the Rainbow pakage [71℄. During the InFILE ampaign, three runs weresubmitted during Online ampaign of 2008 while a single run was submitted during the Bathampaign of 2009. All of the topis' �elds were used for the �ltering proess. In the aseof Bath algorithm, 10 nearest neighbors were found for eah of the doument based on thesimilarity s1(ti, d) (between a doument and the topi). These douments were subsequentlyused to ompute s2(ti, d). The experiment was divided into 4 sub-parts, eah sub-part being runin parallel to inrease the e�ieny. However, this setting meant that the thresholds for the 50topis were di�erent for the di�erent sub-parts.There are 1597 douments relevant to one or more topis in the INFILE data. The averagenumber of relevant douments per topi is 31.94 whereas the standard deviation on the numberof relevant douments per topi omes out to be 28.45. The repartition of relevant doumentsaross the 50 topis is shown in �gure 3.5. The distribution of the relevant douments withrespet to di�erent topis is not uniform. On one hand, some topis have a very small number62



3.5. ExperimentsName Campaign Algorithm Do. ret Do. ret - relevantRun 1 run5G Online 08 Online (with feedbak) 7638 601Run 2 run2G Online 08 Online (w/o feedbak) 1311 411Run 3 runname Online 08 Online (w/o feedbak) 546 152Run 4 IMAG_1 Bath 09 Bath (w/o feedbak) 5513 413Table 3.2: Detail about the di�erent runs

Figure 3.5: Number of relevant douments for eah topi in the three languages (English, Frenhand Arabi)of relevant douments e.g. topi no. 108, 112, 116, 140 et. On the other hand, some topis liketopi no. 127 and 143 have got more than 100 relevant douments. Apart from these two topis,topi no. 101, 118, 125-130, 136, 137, 139, 141, 143 and 145 have got equal to or more than 50relevant douments.The general online algorithm and its simpli�ed version developed in 2008 are ompared withthe bath algorithm of 2009. Table 3.2 desribes the di�erent runs along with the number ofdouments retrieved and the number of relevant douments found. Various measures ould beomputed like miro preision, miro reall et. from table 3.2. Run 2 has the highest miropreision whereas Run 1 has got the highest miro reall. These values are omputed on theentire orpus.For Run 2 (run2G), θ1 was hosen to be 0.45 while θ2 was set to 0.8. Similarly for Run 3,the values for θ1 and θ2 were 0.4 and 0.7 respetively.Figure 3.6, 3.7, 3.8 and 3.9 give an insight on the number of relevant douments retrievedduring the di�erent runs. num_ret stands for the number of douments retrieved, num_rel_retdesribes the number of relevant douments retrieved while num_rel is used for the atual numberof relevant douments. It is pertinent to mention that the number of relevant douments is notuniformly distributed among the 100,000 douments. Almost one �fth (approximately 300) ofthe relevant douments lie in the range 90,000-100,000. Another important thing is that thesale is not the same for the di�erent runs. From these two �gures, no signi�ant di�erene anbe notied between Run 2 and Run 4, in terms of the number of douments retrieved duringthe entire proess. However, Run 1 returns muh more douments between 10,000-20,000 and80,000-90,000 douments. Similarly Run 3 retrieves more douments between 10,000-40,000 and50,000-70,000 douments. 63
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Figure 3.6: Number of douments retrieved for Run 1

Figure 3.7: Number of douments retrieved for Run 464
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Figure 3.8: Number of douments retrieved for Run 2

Figure 3.9: Number of douments retrieved for Run 3 65
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Figure 3.10: Sore Evolution for Run 1The evolution of di�erent measures are omputed at di�erent times in the proess, eah time10,000 douments have been proessed.For Run 1 (Figure 3.10), all of the measures, exept utility and preision, randomly vary butremain approximately the same at the end. The urve at the bottom represents the detetionost for all of the runs. The evolution for di�erent measures for Run1 is as follows: Preisionhanges from 0.18 in the beginning to 0.29 at the end, 0.18 vs 0.20 for Reall, 0.24 vs 0.34 forUtility, and 0.16 vs 0.20 for F-measure.For Run 4 (Figure 3.11), the urve just above the one meant for detetion ost, desribesantiipation. For Run 4, all of the measures randomly vary but inrease signi�antly as omparedto the initial values (0.17 vs 0.30 for Preision, 0.15 vs 0.20 for Reall, 0.15 vs 0.25 for Utility,
0.12 to 0.19 for the F-measure, and 0.04 in the beginning vs 0.125 at the end for antiipation)during the ourse of the �ltering proess.For Run2 (Figure 3.12), Preision dereases from 0.25 to 0.23 during the �ltering of 100,000douments, Reall's initial and �nal values are the same (0.14), Utility inreases from the startvalue of 0.21 to 0.31 while F-measure inreases from 0.15 to 0.19.The di�erent measures hange in the following manner for Run3 (Figure 3.13): Preisiondereases 0.18 to 0.08, Reall dereases from an already low value of 0.07 to 0.05, Utility inreasesa little bit from the initial value of 0.21 to the �nal value of 0.25, and F-measure redues from
0.09 to 0.04.Table 3.3 desribes the maro values for the di�erent runs. These values represent the averagesore over the omplete set of 50 pro�les. P represents preision, R represents reall, F represents66
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Figure 3.11: Sore Evolution for Run 4

Figure 3.12: Sore Evolution for Run 2 67
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Figure 3.13: Sore Evolution for Run 3
Maro_P Maro_R Maro_F Maro_LU Maro_DC AntiipationRun 1 0.306 0.260 0.209 0.351 0.007 0.307Run 2 0.357 0.165 0.165 0.335 0.008 0.317Run 3 0.366 0.068 0.086 0.311 0.009 0.207Run 4 0.256 0.295 0.206 0.205 0.002 0.430Table 3.3: Run Sores

68



3.5. ExperimentsF-measure, LU represents linear utility while DC represents detetion ost. The best results aregiven in bold. Run 4 has the best maro reall (0.295) as ompared to all of the runs. It an benoted that Run 1, 2 and 3 are all preision-oriented sine the preision values are learly muhbetter than the reall values. On the other hand, Run 4 is reall-oriented sine it has got abetter reall as ompared to the preision value. The maro F-measure for the Run 1 and Run
4 are signi�antly greater than that of Run 2 and 3. However, Run 1 surpasses Run 4 in termsof maro preision. The overall maro detetion ost is very low in all of these runs (less than
0.01), with Run 4, being the most eonomial. This is a strong point for these algorithms. Themaro linear utility of Run 1 is greater than that of Run 4. On ontrary, antiipation for Run 4is signi�antly better than that for the other runs.3.5.1 An Insight into the Miro soresAs far as the miro values for di�erent topis are onerned (Referene Appendix), they di�er alot from topi to topi. For example, Run 1 has got a reall of 0.857 for topi no. 107, 0.962 fortopi 118, 0.845 for topi 125 and a miro reall of 0.917 with topi 146. Among these, topi 120and 146 have got very less number of relevant douments. However, among the topis onsideredabove, only topi 125 and 146 have got a Miro F-sore and Miro linear utility greater than
0.63.Similarly for Run 2, topi 107, 118, 120, 125, 146 and 148 have got a Miro reall greaterthan 0.70. However only topi 107, 125 and 148 have got a Miro F-sore and Miro linear utilitygreater than 0.635.For Run 3, only topi no. 146 has got a Miro reall, F-sore and linear utility greater than0.63.In the ase of Run 4, only topi 107, 119, 120, 123, 132, 140 and 146 have got a Miro reallgreater than 0.63. All of these topis exept topi no. 123 ontain fairly small number of relevantdouments. As for majority of these topis, the Miro preision is quite low, the Miro F-soreremains low as well (exept topi no. 107 and 132) The miro linear utility for Run 4 is greaterthan 0.63 for topi no. 107 and 132. These �gures indiate that a high Miro F-sore indiatesa high Miro linear utility. Similarly, in order to have a good F-sore, both preision as well asreall must be good enough.It an be easily onluded from these results, that the use of limited number of feedbaks(only 50 i.e. one per topi) did not help to get very good results, although it helped to inreasedthe miro reall.3.5.2 Comparison with other approahesTable 3.4 shows the omparison between the two online algorithms employed at INFILE [8℄. Theother partiipant was from University of Wollongong, Dubai (UOWD). It an be observed thatthe best performane was from IMAG team while using the run run5G. It retrieved the highestnumber (601) of relevant douments out of a total of 1597 relevant douments. Consequently, itgot the highest reall as well as the highest F-sore among all of the di�erent runs. The run5Gwas the most useful of all of the runs. runname got the best preision sore whereas the highestantiipation was for run2G. The F-measure, preision and utility for run5G is the highest among69



Chapter 3. Online and Bath Doument Filtering Using An Adaptive Nearest Neighbor Algorithmteam run year num_rel_ret Pr Re F LU AIMAG run5G 2008 601 0.31 0.26 0.21 0.35 0.31IMAG run2G 2008 411 0.36 0.17 0.17 0.34 0.32IMAG runname 2008 152 0.37 0.07 0.09 0.31 0.21UOWD base 2009 20 0.00 0.01 0.01 0.03 0.05Table 3.4: Comparison between di�erent approahes for Online Filteringteam run num_rel_ret Pr Re F LU AIMAG IMAG_1 413 0.26 0.30 0.21 0.21 0.43UAIC uai_4 1267 0.09 0.66 0.13 0.054 0.73SINAI topis_1 940 0.02 0.50 0.04 0.00 0.57Table 3.5: Comparison between di�erent approahes for Bath Filteringall of the di�erent ampaigns: monolingual frenh and ross-language frenh -> english.Di�erent bath algorithms are ompared in the Table 3.5. Among the other partiipants wereUniversitatea Alexandru Ioan Cuza of IASI (UAIC), Romania and University of Jean (SINAI),Spain. Only the best runs for eah of the three teams is provided. The best run in termsof preision and F-measure is IMAG_1. It has also got the highest utility among the 3 runsonsidered. Although the reall for uai_4 is 0.66, yet the preision is only 0.09 whih explainsthe reason for overall low F-sore. However, the best antiipation (0.73) is for the run uai_4.It is evident that both the runs uai_4 and topis_1 are reall oriented sine the reall valuesare muh greater than the ones for preision.3.6 ConlusionA simple extension of the kNN algorithm using thresholds has been presented to de�ne onlineand bath �ltering algorithms. The results obtained an be deemed enouraging as the maroF-measure in the ase of online algorithm as well as the bath one equals approximately 20%, fora olletion of 100,000 douments and 50 topis, out of whih only 1597 douments are relevant.While omparing the online results of 2008 with those for the bath ampaign of 2009, it an beseen that the bath algorithm has a muh better maro reall (almost 30% against 26% in 2008)along with a lower maro detetion ost (0.002 vs 0.007) and a muh better antiipation (0.430vs 0.307). Considering the evolution of di�erent measures, it an be observed that the values forall of the measures inrease, with the inrease in the number of douments �ltered. The maindi�erene between the bath and online algorithms lies in the way the initial set of douments isonstruted. In bath algorithm, the initial set is built from �nding the 10 nearest neighbors foreah of the pro�le, whereas feedbaks are used in the online algorithm to onstrut the initial setof douments. It an be onluded from the results that the use of a limited number of feedbaks,in general, does not help to get very good results.Furthermore, omparing the online results submitted by di�erent partiipants, it an be seen70



3.6. Conlusionthat IMAG team got the best results for all of the metris. Moreover, the run run5G had gotthe highest reall and F-sore and was the most useful of all of the runs. For Bath �ltering,IMAG team got the highest preision, F-sore and Utility among all of the submitted runs.
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4.1. Introdution4.1 IntrodutionIn Chapter 3, thresholds based on osine similarity were learned. However, the approah followedis only interesting provided only a slight supervision is available. In ase, omplete supervisionis available, it is better to learn the omplete metri. An example is the ase of lassi�ationproblems where people prefer to learn the omplete metri ([28, 99, 112℄) whih has proved tobe a better hoie as ompared to only learning the thresholds.Most works on metri learning for kNN lassi�ation have foused on distane metri learning(see for example [32, 99, 112℄). However, in many pratial situations, similarities may bepreferred over distanes. This is typially the ase when one is working on texts, for whihthe osine measure has been deemed more appropriate than the standard distane metris likethe Eulidean or the Mahalanobis ones. Furthermore, several experiments show that the useof the osine similarity should be preferred over the Eulidean distane on several, non textualolletions as well (see e.g. [18, 72, 84, 87℄). Being able to e�iently learn appropriate similaritymeasures, as opposed to distanes, for kNN lassi�ation is thus of high importane for variousolletions. If several works have partially addressed this problem (as for example [1, 46, 52℄) fordi�erent appliations, no previous work is known whih has fully addressed it in the ontext oflearning similarity metris for kNN lassi�ation.There is a wide range of options for seleting a similarity metri. However, the interest herelies in the salar produt of the form xtx′ where x and x′ are two examples and t represents thetranspose.A similarity metri between two examples x and x′ an be de�ned in the following manner:
sA(x, x

′) =
xtAx′

N(x, x′)
(4.1)where A is a (p × p) similarity matrix (diagonal or not) and N(x, x′) is a normalization whihdepends on x and x′ (this normalization is typially used to map the similarity funtion to apartiular interval, as [0, 1]). Equation 4.1 represents an unonstrained similarity metri learningproblem sine the normalization is ompletely independent of the similarity matrix.A generalized osine similarity an also be de�ned from the equation 4.1 in whih ase thenormalization is dependent on the similarity matrix and the similarity matrix is positive, semi-de�nite as desribed in the following equation:

sA(x, x
′) =

xtAx′√
xtAx

√
x′tAx′

(4.2)Here the normalization is dependent on the similarity matrix A and A is a PSD matrix.As opposed to Passive Aggressive algorithms [23℄ whih use diagonal approximations for afull ovariane matrix, we are interested in learning omplete similarity matries.The next setion desribes the unonstrained similarity metri learning followed by its ex-tension based on PSD matries in Setion 4.3. The unonstrained similarity metri learning isompared with the RELIEF algorithm in Setion 4.4. Setion 4.4 also ontains the desription ofa RELIEF based similarity learning algorithm (RBS) along with a striter version of RBS, alledsRBS. Generalized osine similarity learning as well as its omparison with the unonstrainedsimilarity learning is provided in Setion 4.5. 75



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ation4.2 Unonstrained Similarity Metri LearningIn this setion, unonstrained similarity metri learning problem based on equation 4.1 is pre-sented. Equation 4.1 generalizes several, standard similarity funtions. For example:1. Standard osine measure, widely used in text retrieval, is obtained by setting A to theidentity matrix I, and N(x, x′) to the produt of the L2 norms of x and x′.2. Die oe�ient is obtained, from presene/absene vetors (i.e. all oordinates of x and x′are either 0 or 1), by setting A to 2I, and N(x, x′) to the sum of the L1 norms of x and x′.3. Similarly, the Jaard oe�ient, again omputed between presene/absene vetors, or-responds to A = I and N(x, x′) = |x|+ |x′| − xtx′ (where |x| denotes the L1 norm).Furthermore, the fat that no ondition is imposed on A (apart from being square) allows toonsider both symmetri as well as asymmetri similarity funtions, depending on the targetedtask. For example, Bao et al. [1℄, make use of two asymmetri similarity funtions: the RelativeFrequeny Model, whih is an asymmetri version of the osine, and the Inlusion ProportionModel, whih is an asymmetri version of the Die oe�ient, and show that these asymmetrimeasures are better than their symmetri ounterparts in order to retrieve partial opies of textdouments.4.2.1 Problem FormulationThe problem addressed here is to learn a similarity funtion of the general form given in equa-tion 4.1 from the training data, to be used in kNN lassi�ation. Let (x(1), c(1)), · · · , (x(n), c(n))be a training set of n labeled examples with inputs x(i) ∈ R
p and disrete (but not neessarilybinary) lass labels c(i) (where c(i) represents the lass of the ith example). The aim is to learna (p × p) similarity matrix A that aims at optimizing the kNN lassi�ation where the neigh-borhood funtion is given in equation 4.1. To do so, for eah x(i), its k target neighbors areintrodued as in Weinberger et al. [112℄, whih are the k elements in c(i) losest to x(i), aordingto a base similarity measure. For example, one may be interested in learning a matrix A whihgeneralizes the osine similarity. In this ase, the k target neighbors will be de�ned aording tothe standard osine similarity, and will not hange during the proess of learning the similaritymatrix A. The target neighbors of x(i) are denoted by: y

(i)
l , 1 ≤ l ≤ k. Furthermore, for eah

x(i), its k nearest neighbors in c̄(i) are found, also known as the impostors and represented as:
z
(i)
l , 1 ≤ l ≤ k.A notion of separability an now be formalized, apturing the fat that any example shouldbe loser to its k target neighbors than to any other set of k examples.De�nition 1 Let S = (x(1), c(1)), · · · , (x(n), c(n)) be a training sequene of n vetors in R

d andlet k be an integer. Let (y
(i)
1 , · · · y(i)k ) be the k target neighbors of x(i) in c(i). Lastly, let c̄(i)denote the omplement of c(i) in the ategory set. It an be said that S is separable with somemargin γ > 0 i� there exists a (p× p) matrix A, with ‖A‖ = 1, suh that:

∀i, ∀(z1 , · · · , zk) ∈ c̄(i),

k∑

l=1

(sA(x(i), y(i)l )− sA(x(i), zl)) ≥ γ76
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Figure 4.1: A lassi�ation senario along with similarity valueswhere ‖A‖ represents the Frobenius norm of the matrix A. Figure 4.1 depits a senario wherea new objet (in the enter) has to be lassi�ed as a router or as a swith based on its similaritywith the examples of these two lasses. Here the examples belonging to the router lass, alsoknown as the target examples, an be represented as: y1, y2 and y3, whereas the examples fromthe swith ategory, also known as the impostors, an be written as: z1, z2 and z3. Furthermore,an assumption is made that the value of the threshold γ is 0.3. This sequene is separable sinethe di�erene of the sum of similarities between the new example and the examples belonging tothe same lass i.e. router and the sum of similarities between the new example and the examplesfrom the swith lass is greater than the threshold value i.e. 1.8− 1.3 = 0.5Of ourse, in pratie, the data is not likely to be separable in the above sense e.g. when thedi�erene between the sum of similarities with the same lass examples yl and the examples fromdi�erent lasses zl is less than the threshold γ. Nevertheless, a measure desribing how lose amatrix A is to separate the data with margin γ an be de�ned as follows:De�nition 2 Let S = (x(1), c(1)), · · · , (x(n), c(n)) be a training sequene of n vetors in R
p, let

A be a (p × p) matrix suh that ‖A‖ = 1, and let γ > 0. The γ-related measure of example i isde�ned as:
ǫi = max(0, γ −mi)with

mi =

k∑

l=1

sA(x(i), y(i)l )−max(z1 ,··· ,zk)∈ c̄(i)

k∑

l=1

sA(x(i), zl)The overall separation measure DA,γ of S with respet to A and γ is de�ned as:
DA,γ =

√
√
√
√

n∑

i=1

ǫ2iIf the data is separable with margin γ aording to de�nition 1, then there exists A suh that:
DA,γ = 0. Looking at the example disussed earlier, one an note that the value of mi is77
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(c)Figure 4.2: In (a) the input point is separated with k = 3, whereas it is not in (b). () illustrates theproess being aimed at: moving target points loser to the input point, while pushing away di�erentlylabeled examples.
1.8 − 0.8 = 1.0 where 1.8 is the sum of similarities between the new example and the targetneighbors whereas 0.8 is the maximum similarity value between the example to be lassi�ed andthe impostors. As γ −mi = 0.3 − 1.0 = −0.7 is less than zero, hene the γ-related measure ǫiand the overall separation measure DA,γ beome zero.If no example an be separated by A with margin γ, then DA,γ > 0, with the property thatthe lower the DA,γ , the higher the apaity of A to separate S with margin γ.The notion of separation being onsidered here is relatively loose as there is no strit require-ment that all target neighbors must be in the k nearest neighbors of an example. Rather, theaim is that any point be, globally, loser to k points from the same lass than to k points fromany other lass. This simpli�ation, also used in Weinberger et al. [112℄, allows one to avoidsetting omplex onstraints on eah target neighbor, while still retaining the idea behind kNNlassi�ation.Figure 4.2 illustrates the notion of separability being onsidered here. In �gure 4.2(a), theinput point is separated, with k = 3 assuming that the di�erene between the sum of similaritiesbetween the example under fous and its target neighbors and the sum of similarities betweenthe example under fous and the impostors is greater than the margin γ, whereas this is not thease in �gure 4.2(b). The separation does not need to take plae in the original input spae,but rather on the spae indued by the metri de�ned by A. Figure 4.2() illustrates what isbeing aimed at: moving the target points loser to the input point, while pushing away di�erentlylabeled examples (impostors). With an appropriate matrix A (whih plays the role of a similaritymetri), the target and negative neighbors of a given input point are separated, the former ones78



4.2. Unonstrained Similarity Metri Learningbeing loser to the input point than the latter ones (note however that the separation is notneessarily linear when the number of neighbors, k, onsidered is greater than 1 - in this latterase, the linear separation is not obtained in the original input spae when A 6= I). However,stritly speaking, the lassi�ation rule sustaining the above de�nitions of separation is: for anyexample x(i), ompute its k nearest neighbors in eah lass c(i) (x(i)1 , · · · , x(i)k ); assign x(i) to thelass c(i) for whih∑k
l=1 sA(x

(i), x
(i)
l ) is maximum. The goal here is to learn the similarity matrix

A of equation 4.1 with guaranteed performane bounds with respet to the above lassi�ationrule and de�nitions of separation. As desribed in Chapter 6, by doing so, the standard kNNrule an be improved.The matrix A in equation 4.1 an have many di�erent variants: it an be symmetri orasymmetri or it an be hosen to be positive semi-de�nite as well.4.2.2 An unonstrained Similarity metri Learning Algorithm - SiLAAn algorithm to learn unonstrained similarity metris of the form given by equation 4.1 ispresented here. This algorithm, alled as SiLA, is based on the voted pereptron algorithmproposed in Freund and Shapire [37℄, and used in Collins [20℄. It allows learning diagonal,symmetri or even asymmetri matries, depending on the �nal form of the similarity funtionone is interested in.The ore of SiLA is an on-line update rule whih iteratively improves the urrent estimateof the similarity matrix A. The overall goal is to move target examples loser to their inputpoint whenever the input point is loser to a set of di�erently labeled examples. A theoretialmotivation for SiLA is provided at the end of this setion.In the remainder of this setion, kNN(A, x, s) is used in order to denote the k nearest neighborsof example x in lass s with the similarity funtion given by equation 4.1. For eah example i,
T (i) will denote the set of target neighbors of x(i). The training algorithm is given below:SiLA - TrainingInput: training set ((x(1), c(1)), · · · , (x(n), c(n))) of n vetors in R

p, number of epohs M ; A1
mldenotes the element of A1 at row m and olumn lOutput: list of weighted (p × p) matries ((A1, w1), · · · , (Aq, wq))Initialization τ = 1, A1 = 0 (null matrix), w1 = 0Repeat M times (epohs)1. for i = 1, · · · , n2. B(i) = kNN(Aτ , x(i), c̄(i))3. if ∑

y∈T (i)

sA(x
(i), y)− ∑

z∈B(i)

sA(x
(i), z) ≤ 04. ∀(m, l), 1 ≤ m, l ≤ p,

Aτ+1
ml = Aτ

ml +
∑

y∈T (i)

fml(x
(i), y)− ∑

z∈B(i)

fml(x
(i), z)5. wτ+1 = 16. τ = τ + 17. else8. wτ = wτ + 1 79



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ationWhen an input example x(i) is not separated from di�erently labeled examples, the urrent Amatrix is updated by the di�erene between the oordinates of the target neighbors and thelosest di�erently labeled examples also known as the impostors represented by the set B(i) (line4 of the algorithm), whih orresponds to a standard pereptron update. When the urrentestimate of A orretly lassi�es the input example under fous, then A is left unhanged whileits orresponding weight is inreased by 1, so that the weights �nally orrespond to the numberof examples orretly lassi�ed by A over the di�erent epohs.The funtions fml allows to learn di�erent types of matries and hene di�erent types ofsimilarities:1. For a diagonal matrix, fml(x, y) =
δ(m, l)xtmylN(x, y) (with δ the Kroneker symbol),2. For a symmetri matrix, fml(x, y) =
xtmyl + xtlymN(x, y) ,3. For a square matrix (and hene, potentially, an asymmetri similarity), fml(x, y) =

xtmylN(x, y) .It an be seen that the funtion fml is independent of the similarity matrix A. The weightedmatries provided by SiLA an be used to predit the lass(es) to whih a new example should beassigned. Two basi rules for predition are onsidered: the �rst one orresponds to the standardkNN rule, whereas the seond one diretly orresponds to the notion of separation introduedearlier, and is based on the onsideration of the same number of examples in the di�erent lasses.The new example is simply assigned to the losest lass, the similarity with a lass being de�nedas the sum of the similarities between the new example and its k nearest neighbors in thatpartiular lass. The seond rule is alled symmetri kNN rule and is denoted by SkNN.In order to speed up the learning proess, all of the training as well as the test examplesare normalized before launhing the algorithm. Furthermore, the sets T (i) and B(i) are alsoomputed beforehand. Sine the set B(i) hanges over the passage of time, a ertain numberof impostors (e.g. 100) ould be found for eah of the example before the algorithm has beenlaunhed.The worst-time omplexity of SiLA is O(Mnp2) where M represent the number of iterations,
n is the number of train examples while p stands for the number of dimensions or attributes.The most ostly steps onsist of alulating the similarity sA and fml.4.2.3 Online to Bath ConversionThe ore of SiLA is an update rule that is used inrementally, for eah example. It is thus easyto extrat from the desription of SiLA a bath version of the algorithm. The way the matrieslearned are used for predition, orresponds to a transformation of an on-line algorithm to abath one, following a methodology desribed in Helmbold and Warmuth [51℄.80



4.2. Unonstrained Similarity Metri LearningSiLA - PreditionInput: new example x in R
p, list of weighted (p × p) matries ((A1, w1), · · · , (Aq, wq)); A isde�ned as: A =

q∑

l=1

wlA
lOutput: list of lasses1. Standard kNN ruleCompute the k nearest neighbors based on sA; selet the lass with the highest weight (orthe lass the more represented in the nearest neighbor set)2. Symmetri lassi�ation rule - SkNNLet T (x, s) = kNN(A, x, s); assign x to the lass for whih∑z∈T (x,s) sA(x, z) is maximal 14.The deterministi leave-one-out onversion of the training version of SiLA orresponds to theweighted sum (A =

q∑

l=1

wlA
l) used in the predition rules given above. One an �nd in Dekelet al. [30℄ a study of similar on-line to bath onversions, showing that it may be bene�ialto weigh down (or even forget) the matries (or vetors) learned in the �rst few iterationsof the on-line algorithm. That is, instead of basing the predition on the omplete sequene

((A1, w1), · · · , (Aq, wq)), base it instead on, say, the last r elements. This strategy is used in theexperiments onduted.SiLA ould be used in either a binary or multi-lass mode:1. In the binary setting, the algorithm is run separately for eah lass, where the lass underonsideration is made as 1 while the rest of the lasses are made 0.2. However, in the multi-lass mode, SiLA is run only one along with the original lass labels.In this way, multi-lass mode is muh faster than the binary mode.There is yet another method of onverting the binary mode into a multi-lass one. Thesimilarity value for eah of the test example whih predits a lass label of 1 is stored. All ofthe examples for whih a lass label of 0 is predited, are disarded sine the exat lass labelannot be determined. The similarity values are stored for eah of the di�erent lasses. In orderto determine the �nal lassi�ation, the lass having the greatest similarity is hosen.There are a ertain number of advantages in the binary version. First, it allows using thetwo predition rules given above. It also allows learning loal matries, whih are more likelyto apture the variety of the data. Finally, its appliation in predition results in a multi-labeldeision.4.2.4 Analysis of SiLAPerformane bounds for SiLA algorithm are provided in this subsetion. These bounds, and thetheorems they rely on, diretly parallel the ones provided by Freund and Shapire [37℄, and used14Nok et al. [76℄ have disussed another type of symmetri nearest neighbor rule in whih a vote is made forsome example x using the points whih ould belong to the k nearest neighbors of x, and the points for whih xould be one of the k nearest neighbors. 81



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ationin Collins [20℄. To see the parallel between this work and the above-mentioned ones, �rst notethat xtAx′N(x, x′) an be rewritten as:
xtAx′N(x, x′) = α · φ(x, x′)with: {

(α, φ(x, x′)) ∈ R
p × R

p when A is diagonal,
(α, φ(x, x′)) ∈ R

p2 × R
p2 otherwise.where α an be seen as the vetor equivalent to matrix A. Di�erent representations are possiblewith this transformation:1. The osine similarity is obtained, with this representation, by setting α to the unit vetor(αm = 1, 1 ≤ m ≤ p) and φm(x, x′) =

xtmx′m
‖x‖‖x′‖ .2. By setting φ to the tensor produt between vetors x and x′, one obtains a representationequivalent to the one with an unonstrained, square matrix A.3. By setting φ to the symmetri produt, i.e. φml(x, x

′) =
xtmx′l + xtlx

′
mN(x, x′) , one obtains arepresentation equivalent to the one with a symmetri matrix A.The theorems justifying the use of the voted pereptron algorithm an be extended to SiLA aswell, and are next presented. The justi�ation of SiLA proeeds in three steps:1. Theorem 1 justi�es the ore on-line update of SiLA in the separable ase,2. Theorem 2 provides a similar justi�ation for the non-separable ase, and3. Theorem 3 provides the justi�ation for the bath version used for predition.The proofs for Theorem 1 and 2 are given in the Appendix A.Theorem 1 (separable ase). For any training sequene S = ((x(1), c(1)), · · · , (x(n), c(n))) sepa-rable with margin γ, for one iteration (epoh) of the (on-line) update rule of SiLANumber of mistakes ≤ R2/γ2where R is a onstant suh that:

∀i,∀(z1 , · · · , zk) ∈ c̄i,

∥
∥
∥
∥
∥
∥

∑

y∈T (i)

φ(x(i), y)−
k∑

n=1

φ(x(i), zn)

∥
∥
∥
∥
∥
∥

≤ RTheorem 1 implies that, if the data is separable, then the update rule of SiLA makes a number ofmistakes bounded above by a quantity whih depends on the margin (γ) of the data (the largerthe margin, the lesser the number of mistakes made). The more general ase where the data isnot separable is overed by theorem 2, whih makes use of the measure DA,γ (or equivalently
Dα,γ with the new representation) introdued in de�nition 2.82



4.3. eSiLA - An extension of SiLATheorem 2 (non separable ase). For any training sequene S = ((x(1), c(1)), · · · , (x(n),
c(n))), for one iteration (epoh) of the (on-line) update rule of SiLANumber of mistakes ≤ minα,γ (R+Dα,γ)

2

γ2where R is a onstant suh that
∀i,∀(z1 , · · · , zk) ∈ c̄i,

∥
∥
∥
∥
∥
∥

∑

y∈T (i)

φ(x(i), y)−
k∑

n=1

φ(x(i), zn)

∥
∥
∥
∥
∥
∥

≤ R,and the min is taken over α and γ suh that ‖α‖ = 1, γ > 0.This theorem implies that, provided the data is lose to being separable, the update rule of SiLAonverges in a �nite number of steps, and has a number of mistakes bounded by a quantity whihis smaller when the separation of the data is better (as measured by D). However, the interestis not only in the onvergene of the update rule (whih orresponds to an on-line version of thealgorithm), but also on the onvergene of the bath version used for predition. The followingtheorem provides both a proof of this onvergene and shows that the bath version is able togeneralize well, i.e. behaves adequately on test (unseen) data. This theorem is based on theon-line to bath onversion studied in Helmbold et al. [51℄.Theorem 3 (generalization). Assume all examples are generated i.i.d. at random. Let E bethe expeted number of mistakes that the update rule of SiLA makes on a randomly generatedsequene of m + 1 examples. Then given m random training examples, the expeted probabilitythat the deterministi leave-one-out onversion of this algorithm makes a mistake on a randomlygenerated test instane is at most: 2E
m+ 1 .4.3 eSiLA - An extension of SiLAThe similarity given in equation 4.1 does not guarantees that the form xtAx′ orresponds to asymmetri bi-linear form, and hene a salar produt. In order to inorporate this guarantee,the similarity matrix A must be made a positive, semi-de�nite (PSD) one, whih an be ahievedby projeting A onto the set of positive, semi-de�nite matries. The resulting algorithm is anextension of SiLA and is alled eSiLA [85℄.The projetion onto the set of PSD matries an be aomplished based on the fat thatany matrix A an be represented in terms of its eigenvalues and its eigenvetors. In order toonvert the matrix At+1 into a PSD one, only its positive eigenvalues are seleted whereas thenon-negative eigenvalues are disarded. The projetion an be written as:

Ât+1 =
∑

j,λj>0

λjuju
t
jwhere λ and u represent the eigenvalues and eigenvetors of the matrix At+1. Ât+1 stands forthe matrix obtained after performing the projetion and is a PSD (and symmetri) matrix .This extension did not improve the performane of SiLA algorithm. Nevertheless, the teh-nique used for projetion was later used for RELIEF based algorithms (Setion 4.4) as well asthe generalized osine similarity learning (Setion 4.5). 83



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ation4.4 Unonstrained Similarity Metri Learning and RELIEF Algo-rithmAs the reader may have notied that learning the similarity matrix in SiLA bears resemblanewith the feature reweighting proedures. Among suh tehniques, the RELIEF family of algo-rithms has reeived a lot of attention from many di�erent ommunities in the reent years. In thissetion, unonstrained similarity metri learning is positioned with the RELIEF algorithm. It isimportant to mention that Sun and Wu [102℄ have shown that RELIEF is basially a distanemetri learning algorithm whih aims to optimize a linear utility funtion while maximizing themargin. After omparing SiLA with the RELIEF algorithm, a RELIEF-Based Similarity learn-ing algorithm (RBS) is desribed together with its striter version known as sRBS. Furthermore,the e�et of positive, semi-de�nitiveness on the RELIEF based algorithms is also disussed.4.4.1 SiLA and RELIEFIt has been shown that the RELIEF algorithm solves onvex optimization problem while maxi-mizing a margin-based objetive funtion using kNN algorithm. The weights are updated basedon the nearest hit (nearest example belonging to the lass under onsideration or sometimesreferred to as the nearest target neighbor) and the nearest miss (nearest example belonging toother lasses).RELIEF learns only a diagonal matrix in the original setting. However, Sun and Wu [102℄have extended RELIEF to learn a full distane metri matrix. They have further proved that RE-LIEF is an online algorithm and have shown that RELIEF outperforms standard kNN algorithmon many standard datasets.Let x(i) be a vetor in Rp having y(i) as the lass label with values +1,−1. Let A be a vetormeant for iteratively estimating the qualities of attributes initialized with 0. The aim is to learn
A on a set of training examples. Suppose an example x(i) is randomly seleted. This is followedby �nding the two nearest neighbors of x(i): one from the same lass (termed as the nearest hitor H) and other from the di�erent lass than that of x(i) (termed as the nearest miss or M).The update rule in ase of RELIEF doesn't depend on any ondition unlike SiLA.The RELIEF algorithm is presented next:RELIEF (k=1)Input: training set ((x(1), c(1)), · · · , (x(n), c(n))) of n vetors in R

p, number of epohs J ;Output: the vetor A of estimations of the qualities of attributesInitialization ∀m 1 ≤ m ≤ p, Am = 0Repeat J times (epohs)1. randomly selet an instane x(i)2. �nd nearest hit H and nearest miss M3. for l = 1, · · · , p4. Al = Al − di�(l, x(i),H)
J +

di�(l, x(i),M)
J84



4.4. Unonstrained Similarity Metri Learning and RELIEF Algorithmwhere J represents the number of iterations, the algorithm has been run while di� is a funtionused to �nd the di�erene between the values of an attribute l for x(i) and the nearest hit ormiss represented by H or M .4.4.2 Comparison between SiLA and RELIEFWhile omparing the two algorithms SiLA and RELIEF, it an be noted that RELIEF learns avetor of weights while SiLA learns a sequene of vetors where eah vetor has got a orrespond-ing weight whih signi�es the number of examples orretly lassi�ed while using that partiularvetor. Furthermore, the weight vetor is updated systematially in ase of RELIEF while avetor is updated for SiLA only if it has failed to orretly lassify the urrent example x(i) (i.e.
sA(x

(i), y)−sA(x
(i), z) ≤ 0). In this ase, a new vetor A is reated and its orresponding weightis initialized to 1. However, in the ase of a orret lassi�ation for SiLA, the weight assoiatedwith the urrent vetor A is inreased by 1. Moreover, the two algorithms �nd the nearest hitand the nearest miss to update the vetor A. RELIEF selets an instane randomly whereasSiLA uses the instanes in a systemati way. Another di�erene between the two algorithmsis that in ase of RELIEF, the vetor A is updated based on the di�erene (distane) while itis updated based on the similarity funtion for SiLA. This explains the fat that the impat ofnearest hit is subtrated for RELIEF while the impat for nearest miss is added to the vetor

A. For SiLA, the impat of the nearest hit is added while that of the nearest miss is subtratedfrom the urrent vetor A.The worst time omplexity of SiLA is O(Mnp2) whereas for RELIEF, it is O(Mnp) and isthus lesser than that for SiLA. Here M represents the number of iterations, p is the number offeatures while n represents the total number of instanes. Moreover, the omplexity for RELIEFis �xed for all of the senarios unlike SiLA where it depends on the number of mistakes made.SiLA tries to diretly redue the leave-one-out error also known as the 0− 1 loss. However,RELIEF uses a linear utility funtion in suh a way that the average margin is maximized.4.4.3 RELIEF-Based Similarity Learning Algorithm - RBSIn this subsetion, a RELIEF-Based Similarity learning algorithm (RBS) [90℄ is proposed whihis based on RELIEF algorithm. However, the interest, here lies in similarities instead of distaneslike SiLA. The aim, just like that of RELIEF, is to maximize the margin M(A) between thetarget neighbors (represented by y) and the impostors (given by z). The margin, for k = 1 inkNN algorithm an be written as:
M(A) =

n∑

i=1

(
sA(x

(i), y(i))− sA(x
(i), z(i))

)

=
n∑

i=1
(x(i)

t

Ay(i) − x(i)
t

Az(i)) =
n∑

i=1
x(i)

t

A(y(i) − z(i))where A is the similarity matrix. The margin is maximized subjet to the onstraint ‖A‖2F = 1.arg max
A

M(A)subjet to ‖A‖2F = 1, 85



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ationTaking the Lagrangian of the matrix A:
L(A) =

n∑

i=1

x(i)
t

A(y(i) − z(i)) + λ(1 −
p
∑

l=1

p
∑

m=1

a2lm)where λ is a Lagrangian multiplier. Taking the derivative with respet to alm and setting it tozero yields:
∂L(A)
∂alm

=
n∑

i=1
x
(i)
l (y

(i)
m − z

(i)
m )− 2λalm = 0

⇒ alm =

n∑

i=1

x
(i)
l (y(i)m − z(i)m )

2λSine the Frobenius norm of matrix A is 1:
p∑

l=1

p∑

m=1
a2lm = 1

⇒
p∑

l=1

p∑

m=1
a2lm =

p∑

l=1

p∑

m=1









n∑

i=1

x
(i)
l (y(i)m − z(i)m )

2λ









2

Now the value of 2λ an be omputed in the following manner:
2λ =

√
√
√
√

p
∑

l=1

p
∑

m=1

(
n∑

i=1

x
(i)
l (y

(i)
m − z

(i)
m )

)In ase of a diagonal matrix, m is replaed with l and 2λ beomes equal to:
2λ =

√
√
√
√

p
∑

l=1

(
n∑

i=1

x
(i)
l (y

(i)
l − z

(i)
l )

)Furthermore, the margin for k > 1 an be written as:
M(A) =

n∑

i=1

(
k∑

q=1
sA(x

(i), y(i),q)−
k∑

q=1
sA(x

(i), z(i),q)

)

=
n∑

i=1

(

x(i)
t
A

k∑

q=1
(y(i),q − z(i),q)

)where y(i),q represents the qth nearest neighbor of x(i). Moreover, alm and 2λ an be written as:
alm =

n∑

i=1

x
(i)
l

k∑

q=1

(ym
(i),q − zm

(i),q)

2λ

2λ =

√
√
√
√

p∑

l=1

p∑

m=1

(
n∑

i=1
x
(i)
l

k∑

q=1
(ym (i),q − zm (i),q)

)It an be further noted that alm is inversely proportional to the Lagrangian multiplier λ.86



4.4. Unonstrained Similarity Metri Learning and RELIEF Algorithm

Figure 4.3: Margin for RBS on Iris (left) and Wine (right) datasets

Figure 4.4: Margin for RBS on Balane (left) and Heart (right) datasets

Figure 4.5: Margin for RBS on Soybean (left) and Letter (right) datasets 87



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ation

Figure 4.6: Margin for RBS on Pima (left) and Liver (right) datasets

Figure 4.7: Margin for RBS on German (left) and Glass (right) datasets

Figure 4.8: Margin for RBS on Ionosphere (left) and Yeast (right) datasets88



4.4. Unonstrained Similarity Metri Learning and RELIEF Algorithm4.4.4 Problems with RELIEF based tehniquesThe problem with the RELIEF based approahes (RELIEF and RBS) is that as one strivesto maximize the margin, it is possible that the overall margin is quite large but in reality thealgorithm has made a ertain number of mistakes (haraterized with negative margin). Thisonept was veri�ed on a number of standard UCI datasets [36℄ Iris, Wine, Balane, Heart,Soybean, Letter, Pima, Liver, German, Glass , Ionosphere and Yeast, as an be seen from �g-ures 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. It an be observed that in most of these �gures, the averagemargin remains positive despite the presene of a number of mistakes, sine the positive mar-gin is muh greater than the negative one for the majority of the examples. For example, in�gure 4.3, the values of negative margin for Iris are in between −0.10 and 0.0, whereas mostof the positive margin values are greater than 0.25. Similarly, for Wine (�gure 4.3), most ofthe negative margin values lie in the range between 0.0 and −0.002 while the positive marginvalues are mostly dispersed in the range 0 − 0.08. Therefore, despite the fat that the overallmargin is large, a lot of examples are mislassi�ed. A similar story in portrayed in �gure 4.4 forBalane, where most of the examples having negative margin values have a margin in between
−0.05 and 0.0. On the other hand, the positive margin values are dispersed between 0.0 and 0.1.The positive as well as negative margin values for Heart (see �gure 4.4), Liver (�gure 4.6) andGerman 4.7) have the same range but the number of examples having positive margin values isgreater than the ones having negative margin values.This explains the fat that the algorithms RELIEF and RBS did not perform quite well ondi�erent standard test olletions (see Chapter 6).4.4.5 A striter version: sRBSA work around to improve the performane of RELIEF based methods is to diretly use theleave-one-out error or 0− 1 loss like the original SiLA algorithm where the aim is to redue thenumber of mistakes on unseen examples. The resulting algorithm is a striter version of RELIEF-Based Similarity Learning Algorithm and is termed as sRBS. It is alled as a striter version aswe do not try to maximize the overall margin but are interested in reduing the individual errorson the unseen examples.The ost funtion for sRBS an be desribed in terms of a sigmoid funtion.

σA(x
(i)) =

1

1 + exp(βx(i)
t
A(y(i) − z(i)))As β approahes ∞, the sigmoid funtion represents the 0 − 1 loss: it approahes 0 when themargin x(i)A(y(i) − z(i)) is positive and approahes 1 in the ase where the margin is negative.Let gA(i) represents exp(βx(i)

t
A(y(i) − z(i))) while v represents y − z. The ost funtion beingonsidered here is based on the above sigmoid funtion, regularized with the Frobenius norm of

A: argmin
A

ε(A) =

n∑

i=1

σA(x
(i)) + λ‖A‖22 89



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ationTaking the derivative with respet to alm:
∂ε(A)

∂alm
= −β

n∑

i=1

x
(i)
l v

(i)
m gA(i)

(1 + gA(i))2
+ 2λalm

∀ l,m, 1 ≥ l ≥ p, 1 ≥ m ≥ p,

2λalm = −β
n∑

i=1

x
(i)
l v

(i)
m gA(i)

(1 + gA(i))2No losed form solution for this �xed point equation is already known. However, this equationan be solved with gradient desent methods. The ost funtion in the ase of gradient desentan be written as:
ε(A) =

n∑

i=1

1
1 + gA(i)

+ λ
∑

lm a2lm

=
n∑

i=1

[

1

1 + gA(i)
+ λ

n
∑

lm a2lm

]

=
n∑

i=1
Qi(A)The derivative is taken with respet to alm:

(∇Qi(A))lm =
∂Qi(A)

∂alm
=

−βx
(i)
l v

(i)
m gA(i)

(1 + gA(i))2
+

2λalm
nWith this, the update step for At

lm an be de�ned as:
At+1

lm = At
lm − αt

n

n∑

i=1

∂Qi(A
t)

∂almwhere αt stands for the learning rate and is given by: αt = 1
t
. The learning rate is inverselyproportional to the number of iterations and dereases with the inrease in the number of epohs.sRBS algorithm is next presented:sRBS - TrainingInput: training set ((x(1), c(1)), · · · , (x(n), c(n))) of n vetors in R

p, A1
lm denotes the element of

A1 at row l and olumn mOutput: Matrix AInitialization t = 1, A(1) = 1 (Unity matrix)Repeat J times (epohs)1. For all of the features l,m2. Minuslm = 03. for i = 1, · · · , n4. For all of the features l,m5. Minuslm+ =
∂Qi(A

t)
∂alm90



4.4. Unonstrained Similarity Metri Learning and RELIEF Algorithm

Figure 4.9: Margin for sRBS on Iris (left) and Wine (right) datasets

Figure 4.10: Margin for sRBS on Balane (left) and Heart (right) datasets
6. At+1

lm = At
lm − αt

n ∗Minuslm7. If ∑lm |At+1
lm −At

lm| ≤ γ8. StopDuring eah epoh, the di�erene between the new similarity matrix At+1
lm and the urrentone At

lm is omputed. If the di�erene is less than a ertain threshold (γ), the algorithm isstopped. The range of γ was between 10−3 and 10−4.Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 show the margin values for the training examples ofdi�erent UCI datasets, one the training phase of sRBS algorithm has been ompleted. These�gures an be ompared with the earlier ones for RBS algorithm to observe that the trainingphase of sRBS is more e�etive than the one for RBS e.g. for Iris (�gure 4.9), Wine (�gure 4.9),Balane (�gure 4.10), Pima (�gure 4.12), Glass (�gure 4.13), Yeast (�gure 4.14), there are onlya very few errors although a lot of examples have a margin lose to 0.0. There are no errors (noexample with a negative margin) for Soybean (�gure 4.11). Moreover, the algorithm sRBS makesa lot of mistakes for Letter as depited in �gure 4.11. 91
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Figure 4.11: Margin for sRBS on Soybean (left) and Letter (right) datasets

Figure 4.12: Margin for sRBS on Pima (left) and Liver (right) datasets

Figure 4.13: Margin for sRBS on German (left) and Glass (right) datasets92
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Figure 4.14: Margin for sRBS on Ionosphere (left) and Yeast (right) datasets4.4.6 E�et of Positive, Semi-De�nitiveness on RELIEF based algorithmsThe similarity xtAx in the ase of RELIEF based algorithms does not orrespond to a symmetribi-linear form, and hene a salar produt. The work around lies in projeting the similaritymatrix A onto the set of positive, semi-de�nite (PSD) matries just like eSiLA (see setion 4.3).A similarity matrix an be projeted by �nding an eigenvetor deomposition followed by theseletion of positive eigenvalues. A PSD matrix A is written as:
A � 0In ase, where a diagonal matrix is learned by RELIEF, positive semi-de�nitiveness an beahieved by seleting only the positive entries of the diagonal. Moreover for learning a fullmatrix with RELIEF, the projetion an be performed in the following manner:

A =
∑

j,λj>0

λjuju
t
jwhere λj and uj are the eigenvalues and eigenvetors of A.Similarly, RBS is transformed into RBS-PSD by inorporating an additional onstraint thatthe similarity matrix A must be PSD, while maximizing the margin [91℄.It is veri�ed that despite the fat that the overall margin is quite large, RBS-PSD makes anumber of mistakes haraterized with negative margin. This onept was veri�ed on a number ofstandard UCI datasets [36℄ i.e. Iris, Wine, Balane, Heart, Soybean, Letter, Pima, Liver, Glass,Ionosphere and Yeast as an be seen from �gures 4.15, 4.16, 4.17, 4.18, 4.19, 4.20. It an beobserved for all of the datasets that the average margin remains positive despite the presene ofa number of mistakes, sine the positive margin is muh greater than the negative one for themajority of the test examples. For example, the values of negative margin in the ase of Iris(see �gure 4.15) is in the range of −0.05 − 0.00 whereas there are many positive margin valuesgreater than 0.175. Similarly, for Wine (�gure 4.16), most of the negative margin values lie inthe range between −0.002 and 0 while most of the positive margin values are dispersed in therange 0 − 0.004. In ase of Balane (�gure 4.16), the negative values are seen in the range of

−0.05− 0.00 whereas the positive margin values are mostly sattered between 0 and 0.1. Whilelooking on the results for Letter (�gure 4.17), one an note that while the negative margin values93
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Figure 4.15: Margin for RBS-PSD on Iris (left) and Wine (right) datasets

Figure 4.16: Margin for RBS-PSD on Balane (left) and Heart (right) datasetslie between −0.1 and 0.0, the positive margin values are mostly seen between 0.0 and 0.15. So,despite the fat that the overall margin is large, a lot of examples are mislassi�ed as was seenearlier for the RBS algorithm. Observing the �gures for RBS and RBS-PSD, one an easily notethat there are very few di�erenes between the results for the two algorithms exept Ionospherein whih ase RBS-PSD performs better as ompared to RBS.However, for Iris, the range of negative margin values inreases whereas the range for thepositive margin values dereases for RBS-PSD as ompared to RBS. Similar phenomenon isrepeated for Letter, Liver, Glass and Yeast. This e�etively means that RBS is better than itsounterpart for these data sets as the overall margin derease in all of these ases.This explains the fat that the algorithms RELIEF and RBS-PSD did not perform quite wellon di�erent standard test olletions as an be seen in Chapter 5.One the e�et of PSD matries on RBS has been overed in detail, the next obvious questionis the e�et of PSD matries on sRBS. As seen from �gures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26 addingpositive, semi-de�nite onstraints in sRBS does not has any good e�ets exept for Ionosphere.Similarly, sRBS-PSD performs better than RBS-PSD for Iris, Wine, Balane, Soybean, Pima,Glass, Ionosphere and Yeast.94
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Figure 4.17: Margin for RBS-PSD on Soybean (left) and Letter (right) datasets

Figure 4.18: Margin for RBS-PSD on Pima (left) and Liver (right) datasets

Figure 4.19: Margin for RBS-PSD on German (left) and Glass (right) datasets 95



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ation

Figure 4.20: Margin for RBS-PSD on Ionosphere (left) and Yeast (right) datasets

Figure 4.21: Margin for sRBS-PSD on Iris (left) and Wine (right) datasets

Figure 4.22: Margin for sRBS-PSD on Balane (left) and Heart (right) datasets96
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Figure 4.23: Margin for sRBS-PSD on Soybean (left) and Letter (right) datasets

Figure 4.24: Margin for sRBS-PSD on Pima (left) and Liver (right) datasets

Figure 4.25: Margin for sRBS-PSD on German (left) and Glass (right) datasets 97
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Figure 4.26: Margin for sRBS-PSD on Ionosphere (left) and Yeast (right) datasets4.5 Generalized Cosine Similarity Metri LearningThe similarity measure given in equation 4.1 does not refers to a generalized osine similaritysine the normalization is ompletely independent of the similarity matrix. This is the motivationbehind de�ning a generalized osine similarity metri learning algorithm where the normalizationis dependent on the similarity matrix and the similarity matrix is positive, semi-de�nite (PSD). Inorder to make a similarity matrix as positive, semi-de�nite, the similarity matrix is projeted ontothe set of positive, semi-de�nite matries (PSD) inspired from the strategy given in POLA [99℄.Sine POLA onsiders the examples in the form of pairs, with eah pair being either similar(e.g. belonging to same lass) or dissimilar, and learns the distane metri based on the pairwiseonstraints (equivalene and inequivalene), the same strategy is followed in the ase of gener-alized osine similarity metri learning. Furthermore, similarity is learned in a global sense withthe aim of satisfying all of the pairwise onstraints simultaneously.4.5.1 Problem SettingThe generalized similarity between two examples x and x′ in R
p, as given in equation 4.2 isrewritten:

sA(x, x
′) =

xtAx′√
xtAx

√
x′tAx′where A ≥ 0 is a positive, semi-de�nite matrix and the normalization is dependent on A. Onean also note that by hoosing A as the identity matrix, equation 4.2 beomes the standard osinesimilarity. Other positive, semi-de�nite matries de�ne di�erent salar produts and norms, sothat equation 4.2 orresponds to a osine in a new basis of the underlying vetor spae. Beauseof this property, equation 4.2 refers to the family of Generalized Cosine Similarities [86℄.The examples onsidered here, are in the form of tuples, (x, x′, y) where eah example isomposed of the instane pair (x, x′) and a label y whih is +1 when x and x′ are similar andis -1 in the ase when they are dissimilar. When the data is separable, the margin of a sample,S, denoted by 2γ, is de�ned as the minimum separation between all pairs of similar (x1, x′1,+1)and dissimilar (x2, x′2,−1) examples:

sA(x1, x
′
1)− sA(x2, x

′
2) ≥ 2γ98



4.5. Generalized Cosine Similarity Metri Learning
Figure 4.27: Separation between similar and dissimilar examplesBy introduing a threshold b ∈ R, the above inequality an be rewritten as:

∀(x, x′, y) : y = +1 ⇒ sA(x, x
′) ≥ b+ γ

∀(x, x′, y) : y = −1 ⇒ sA(x, x
′) ≤ b− γwhere γ > 0 and −1 + γ ≤ b ≤ 1− γ. Here, γ measures the extent to whih one is on the wrongside of the threshold. The two inequalities an be ombined to form a single linear onstraint:

y(b− sA(x, x
′)) ≤ −γ (4.3)Figure 4.27 shows the similar and dissimilar example pairs separated by a margin γ. Consideringtuples of the form (xτ , x

′
τ , yτ ), at eah time step, or round τ , the loss inurred by the urrentmatrix-threshold pair (A, b) an be omputed as follows:
lτ (A, b) = max {0, yτ (b− sA(xτ , x

′
τ )) + γ}whih is a variant of the hinge loss. Our goal is thus to �nd a matrix-threshold pair (A, b) whihminimizes the overall loss. When the data is separable, there exists a matrix-threshold pair suhthat the overall loss is 0 (as inequality 4.3 holds for matrix-threshold pairs separating the data).If lτ = 0, the following inequality holds:

yτ (b− sA(xτ , x
′
τ )) + γ ≤ 0whih an be rewritten as:

yτ (sA(xτ , x
′
τ )− b) ≥ γAn online algorithm is presented next, in order to learn a matrix-threshold pair. In the�rst instane, the data is onsidered to be separable. The ase where the data is inseparable ispresented afterwards.4.5.2 gCosLA - An online generalized Cosine similarity metri Learning Al-gorithmIn the ase where the data is separable:

∃A � 0,and
∃b, −1 + γ ≤ b ≤ 1− γ 99
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Figure 4.28: Set of projetions for gCosLAsuh that the matrix-threshold pair (A, b) ompletely separates the data, i.e. has zero loss for alltime steps. Beause the matrix A should separate the data and be, at the same time, positive,semi-de�nite, one an rely on a strategy based on �rst �nding a matrix-threshold pair with zeroloss and lose to the urrent matrix-threshold pair so that the new matrix not only orretlylassi�es the new example but also the examples already onsidered so far. This is followedby projeting the obtained matrix on the set of positive, semi-de�nite matries (an approahreminisent of the one de�ned in POLA [99℄). The �rst step aims at �nding matrix-thresholdpairs with small loss, whereas the seond step ensures the fat that the obtained matrix ispositive, semi-de�nite and hene de�nes a valid generalized osine similarity.Let Cτ ⊂ R
n2+1 be the set of all matrix-threshold pairs having zero loss on the example

(xτ , x
′
τ , yτ ):

Cτ = {(A, b) ∈ R
n2+1 : lτ (A, b) = 0}

Ca an then be de�ned as the set of all admissible matrix-threshold pairs:
Ca = {(A, b) ∈ R

n2+1 : A � 0, −1 + γ ≤ b ≤ 1− γ}The update step of our algorithm is thus based on two projetions:1. First, projet the urrent matrix-threshold pair (Aτ , bτ ) on Cτ . The matrix-threshold pairthus obtained is denoted by (Aτ̂ , bτ̂ ),2. Then projet (Aτ̂ , bτ̂ ) onto Ca to get (Aτ+1, bτ+1)These two projetions, as shown in the �gure 4.28, are now reviewed:Projetion onto CτThe set of matrix-threshold pairs having zero loss on (xτ , x
′
τ , yτ ) an be rewritten as:

Cτ = {(A, b) ∈ R
n2+1 : y[

xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

− b] ≥ γ}100



4.5. Generalized Cosine Similarity Metri LearningThe following two quantities are now introdued, whih will help to de�ne a simple projetion:
R−1(xτ , x

′
τ , Aτ ) =

[min(xtτAxτ , x′tτAx′τ )]−1

R+1(xτ , x
′
τ , Aτ ) =

[max(xtτAxτ , x′tτAx′τ )]−1

R−1 is based on the minimum of the two normalization terms whereas R+1 depends on themaximum of the two normalization terms. Moreover, R−1 and R+1 an be written in a singleinequality as follows:
R+1x

t
τAx

′
τ ≤ xtτAx

′
τ

√

xtτAxτ
√

x′tτAx
′
τ

≤ R−1x
t
τAx

′
τBy subtrating b from all terms and multiplying by yτ , the above inequality beomes:

yτ (R+1x
t
τAx

′
τ − b) ≤ yτ (

xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

− b) ≤ yτ (R−1x
t
τAx

′
τ − b)whih an be rewritten as:

yτR+1x
t
τAx

′
τ − yτ b ≤ yτ

xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

− yτb ≤ yτR−1x
t
τAx

′
τ − yτ bHene, matrix-threshold pairs (A, b) suh that:

yτRyτx
t
τAx

′
τ − yτ b ≥ γ (4.4)will have zero loss on the example (xτ , x

′
τ , yτ ) where yτ = ±1 and represents either similarexamples (yτ = 1) or dissimilar ones (yτ = −1). Using the inequality 4.4, two subsets of Cτould be de�ned, on whih the urrent matrix-threshold pair an be projeted aording to thevalue of yτ :

C ′+
τ = {(A, b) ∈ R

n2+1 : R+1x
t
τAx

′
τ − b ≥ γ} if yτ = 1

C ′−
τ = {(A, b) ∈ R

n2+1 : −R−1x
t
τAx

′
τ + b ≥ γ} if yτ = −1whih an be onveniently rewritten:

C ′y
τ = {(A, b) ∈ R

n2+1 : yτRyτx
t
τAx

′
τ − yτb ≥ γ}, yτ ∈ {−1,+1}An orthogonal projetion is a projetion of a �gure on a line, plane et. in suh a way that theline joining the orresponding elements is perpendiular to the line, plane et. The orthogonalprojetion of (Aτ , bτ ) (the urrent matrix-threshold pair) on C ′yτ

τ , i.e. the losest element from
(Aτ , bτ ) in C ′yτ

τ , takes the form:






Aτ̂ = Aτ + yτa(xτx
′t
τ ), with a ∈ R

bτ̂ = bτ + yτawhere
a =

γ − yτRyτx
t
τAτx

′
τ + yτ b

Ryτ (||xτ ||2||x′τ ||2) 101



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ationProjetion onto CaIn order to desribe the projetion onto Ca, it is important to note that Aτ+1 is the projetionof Aτ̂ onto the set of all positive, semi-de�nite matries, and bτ+1 the one of bτ̂ onto the set
b ∈ R : −1 + γ ≤ b ≤ 1− γ.In order to projet Aτ̂ onto the set of all positive, semi-de�nite matries, the following de-omposition is used: Aτ̂ =

∑

j λjuju
T
j , where λj and uj are the eigenvalues and the eigenvetorsof the matrix Aτ̂ respetively. The matrix Aτ+1 is the projetion of Aτ̂ onto the set of PSDmatries (see for example [44℄). Knowing the eigenvalues and eigenvetors of Aτ̂ , Aτ+1 an bewritten in the following form:
Aτ+1 =

∑

j,λj>0

λjuju
T
jIf the matrix Aτ̂ is already symmetri, symmetri Householder redution is used to onvert itinto a tridiagonal matrix followed by QR transformation. On the ontrary, the similarity matrixis onverted to the Hessenberg form before onverting to real Shur form. These forms makeit easier to �nd the eigenvalues and the eigenvetors. Template Numerial Toolkit TNT 15 wasused to �nd the eigenvalues and eigenvetors for the projetions. Alternatively, Lanzos method(see [44℄) ould be used along with symmetri tridiagonal QR algorithm or bisetion method to�nd the eigenvalues and the eigenvetors of Aτ̂ .AlgorithmHere, an online algorithm to learn generalized osine similarities is presented. This algorithmlearn similarities of the form given in the equation 4.2 based on positive, semi-de�nite matries.This algorithm is denoted as gCosLA for generalized Cosine similarity Learning Algorithm. Theupdate rule onsists of projeting the matrix A onto the set of positive, semi-de�nite matries.For eah example (in the form of a pair), the loss is alulated based on the similarity sA. Theupdate is performed only in ase the loss is greater than zero for an example under onsideration.gCosLA - TrainingInput: training set of the form (x, x′, y), of n vetors in R

p, number of epohs M ; b representsthe thresholdOutput: list of (p × p) matries ((A1, b1), · · · , (Aq, bq))Initialization t = 1, A(1) = I (identity matrix), b = 0, γ > 0Repeat M times (epohs)for i = 1, · · · , nget triplet (xτ , x′τ ,±1) ∈ Rn ×Rn

lτ (A, b) = max {0, y(bτ − sA(xτ , x
′
τ )) + γ}if (lτ (A, b) > 0)

R+1(xτ , x
′
τ , A) =

[max ((xtτAxτ ), (x′tτAx′τ ))]−115Can be obtained from http://math.nist.gov/tnt/index.html102
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R−1(xτ , x

′
τ , A) =

[min ((xtτAxτ ), (x′tτAx′τ ))]−1

a =
γ − yτRyτ (x

t
τAτx

′
τ ) + yτb

Ryτ (||xτ ||2||x′τ ||2)
Aτ̂ = Aτ + yτa(xτx

′t
τ )

Aτ+1 =
∑

j,λj>0 λjuju
T
j (where λj and uj are the eigenvalues and eigenvetorsof matrix Aτ̂ )

bτ̂ = bτ + yτaif (bτ̂ > 0)

bτ+1 = min (bτ̂ , 1− γ)else
bτ+1 = max (bτ̂ ,−1 + γ)To alulate the worst-time omplexity of gCosLA, the omplexity of the di�erent steps of thealgorithm is onsidered. The worst-time omplexity for alulating the similarity between twoexamples is O(p2) where p represents the number of dimensions. Similarly the �rst projetiononto the set of zero-loss matries osts the same i.e. O(p2). However eigen-value deomposition,being a ostly operation, has the worst-time omplexity as O(p3). With all this, the overallworst-time omplexity for gCosLA an be written as O(M.n.p3) where M represent the numberof iterations, n is the number of train examples while p stands for the number of dimensions orattributes.The algorithm presented earlier assumes that the data is ompletely separable whih is rarelytrue in atual pratie. Here the data is onsidered to be inseparable. In this ase the lossbeomes non-zero, whih an be dealt with by introduing a new parameter γ1 whih is usedto derease the previously introdued margin γ (this a�ets only the projetion onto Cτ , theprojetion onto Ca being left unhanged). The set Cτ thus beomes:

Cτ = {(A, b) ∈ R
n2+1 : y[

xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

− b] ≥ γ − γ1}Setting β = γ − γ1 leads to:
C ′yτ
τ = {(A, b) ∈ R

n2+1 : yτRyτ (x
t
τAx

′
τ ) + yτ b ≥ β}, yτ ∈ {−1,+1}This �nally yields the modi�ed value for a:

a =
β − yτRyτ (x

t
τAτx

′
τ ) + yτ b

Ryτ (||xτ ||2||x′τ ||2)However, the rest of the algorithm remains the same.4.5.3 Online to Bath ConversionThe online algorithm, gCosLA is used for learning a set of similarity matries during the trainingphase. In order to use the similarity matries learned during the predition, gCosLA an be103



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ationeasily onverted to a bath algorithm using the approah previously adopted for SiLA. However,instead of using weighted matries as in SiLA, just the averaged sum is taken over the di�erentsimilarity matries learned during training.gCosLA - PreditionInput: new example x in R
p, list of (p × p) matries (A1, · · · , An); where A is de�ned as:

A =

∑n
l=1Al

nOutput: list of lassesFurthermore, following the approah de�ned by Dekel et al. [30℄ and used in SiLA, thematries learned during the �rst few iterations of the algorithm an be disarded sine thealgorithm is supposed to make more mistakes in the beginning as ompared to the end. In otherwords, in a sequene of n similarity matries learned (A1, · · · , An), only the last q matries ouldbe taken into aount for lassi�ation. The value of q an be determined using ross-validation.4.5.4 Analysis of gCosLAThe following theorem provides a loss bound for the algorithm gCosLA in the separable ase.It assumes the existene of a positive, semi-de�nite matrix A whih separates the data in astrit sense, as well as the existene of an upper bound on the salar produt between all basiinstane pairs. The inseparable ase is treated in exatly the same way by replaing the positivereal number γ with an arbitrary real number, not neessarily positive, β.Theorem 4. Let (x1, x′1, y1), · · · (xτ , x′τ , yτ ), · · · , (xN , x′N , yN ) be a sequene of N examples. Forany positive, semi-de�nite matrix A, let for eah τ , 1 ≤ τ ≤ N :
R−1(xτ , x

′
τ , A) =

[min ((xtτAxτ ), (x′tτAx′τ ))]−1and
R+1(xτ , x

′
τ , A) =

[max ((xtτAxτ ), (x′tτAx′τ ))]−1Assume that there exists a positive, semi-de�nite matrix A∗, a threshold b∗ and a positive realnumber γ suh that:
(R+1x

t
τA

∗x′τ − b∗) ≥ γ ∧ (b∗ −R−1x
t
τA

∗x′τ ) ≥ γUsing the notations introdued previously, let R ∈ R
+ be an upper bound suh that:

1

||xτx′tτ ||2 + 1
R2

yτ
||xτ ||42||x′τ ||42 ≤ R, yτ ∈ {−1,+1}Then the following bound holds for any M ≥ 1:

M∑

τ=1

(lτ (A, b))
2 ≤ R

(
||A∗ − I||22 + (b∗)2

)104



4.6. Comparison of SiLA and gCosLA with other state of the art algorithmsA proof of theorem 4 an be established along the same lines as the proof of the loss boundprovided for the POLA algorithm in [99℄ and is presented in the Appendix A. The only require-ment in POLA is that the data should lie in a sphere of radius R. This requirement is translatedin the ase of a generalized osine similarity by the fat that the salar produt between datapoints, normalized by its maximum or minimum values, is bounded. Introduing the maximumand minimum values leads to a striter notion of separation. It however allows one to rely onsimple projetions.As the inseparable ase an be treated in exatly the same way, by diretly replaing thepositive salar γ by β, a salar not neessarily positive, one an see that the ondition imposedis not really restritive, and leads to an algorithm with an expliit bound on the loss funtion.Furthermore, the theorem for the inseparable ase (as well as its proof) is the same as the onefor the separable ase, β being used instead of γ.4.6 Comparison of SiLA and gCosLA with other state of the artalgorithmsSiLA and gCosLA are supervised online algorithms having an e�etive online to bath onversionmehanisms like POLA [99℄. These three algorithms update the similarity or distane matrix onlyif loss > 0 and a mislassi�ation has been made. SiLA works with individual examples whereasgCosLA and POLA operate on pairs of similarly and di�erently labeled examples. Furthermore,loss bounds on the performane have been provided for all of the three algorithms. These boundsguarantee a generalization well beyond the training examples.SiLA as well as gCosLA ould be onsidered as a global similarity learning algorithms sineonly global similarity matries are learned for subsequent lassi�ation of test data. Moreover,the similarity matries are not lass dependent. Stahl et al. [100℄, on the other hand, learn loalsimilarity measures.Although SiLA is based on the voted pereptron proposed in Freund and Shapire [37℄ andused in Collins' algorithm [20℄, yet it di�ers substantially from these two algorithms. The aimhere, is to learn similarity in kNN lassi�ation, whereas it was used for binary lassi�ation witha separating hyperplane in Freund and Shapire and for the disriminative training of hiddenMarkov models in Collins's work.SiLA and gCosLA use kNN lassi�ation algorithm like LMNN [112℄ and MCML [41℄. Thebasi aim in SiLA oinide with that of LMNN: bringing target neighbors loser while pushingapart the impostors. Both of these methods an be used for binary or multiway lassi�ation.While omparing SiLA with MCML, one an see that in the later method, the target neighborsare ollapsed to a single point and the impostors are pushed in�nitely apart.SiLA does not require the similarity matrix to be positive, semi-de�nite (PSD) like ITML [28℄and OASIS [16℄, and unlike gCosLA, POLA [99℄ and the approahes of Xing et al. [114℄, Globersonet al. [41℄ and Weinberger et al. [112℄. The inlusion of PSD onstraints require additionalomputation time. Although gCosLA works with bi-linear form de�ned by PSD matries, yet itlearns a similarity metri rather than a distane one as in other metri learning approahes.Furthermore, no eigenvalue deomposition of the similarity matrix is required for SiLA justlike ITML. An important point regarding distanes is that they are related to the trae of a105



Chapter 4. Similarity Metri Learning in Nearest Neighbor Classi�ationmatrix. On the other hand, there is no relation between similarity and the trae.Comparing SiLA and gCosLA with Xing's algorithm reveals that Xing's algorithm is usedfor lustering and is bath in essene. Furthermore, it does not have a omputationally e�etiveonline version and theoretial error guarantees regarding unseen examples. However, SiLA andgCosLA are used for lassi�ation purposes, are e�etive online algorithms and have got theo-retial error guarantees. This makes sure that they make just a limited number of mistakes onunseen examples.Grabowski and Szalas [46℄ also learn a similarity measure whih is an asymmetri variant ofthe Jaard oe�ient, and is a speial ase of the similarity funtions onsidered in the ase ofSiLA. However, their goal is more along the lines of feature seletion than similarity learning.In omparison with Hust's work [52℄ on Collaborative Information Retrieval, where a variantof osine similarity is learned based on a diagonal matrix only; SiLA allows to learn diagonaland square matries.The neural network approah (SNN) of Melai et al. [72℄, to learn similarity di�ers fromSiLA owing to an always positive value of similarity. The reason is the use of sigmoidal funtion.SiLA's similarities, on the other hand, are not neessarily positive. Another di�erene is thatthe similarity is always symmetri for SNN like gCosLA.The aim in SiLA is to diretly redue the 0 − 1 loss or the leave-one-out error like NCA -Neighborhood Components Analysis [42℄. SiLA is a lassi�ation algorithm and requires ompletesupervision in the form of lass labels. However, OASIS does not require the lass labels asit learns a pairwise (dis)similarity measure. Both SiLA as well as OASIS do not require thesimilarity or distane matrix to be symmetri in nature. As disussed earlier, SiLA updates thesimilarity matrix only if the algorithm has made an error. On the other hand, OASIS is basedon systemati updates.For gCosLA, the initial similarity matrix is initialized with an identity matrix like OASIS. Thismeans that gCosLA resembles the standard osine whereas OASIS behaves like the Eulideandistane during the �rst iteration. The method of onverting a similarity matrix into a PSD oneresembles to the one followed by POLA and MCML. In this method, the (dis)similarity matrix Ais projeted onto the set of PSD matries by taking the eigenvalue deomposition of A followedby the removal of negative eigenvalues.Peterson et al. [84℄ use geneti algorithm to optimize kNN performane using osine similarity,Pearson orrelation and Eulidean distane. However, in this ase, no metri is learned unlikeSiLA, gCosLA and other metri learning algorithms.The omplexity of gCosLA algorithm (Mnp3) is higher than that of SiLA (Mnp2) beauseof the use of eigenvalue deomposition. Furthermore, the osine similarity measure used in SiLAannot be alled a generalized osine one, sine the normalization is ompletely independent ofthe similarity matrix learned. Another di�erene between SiLA and gCosLA lies in the fat thatgCosLA works with pairs of examples like POLA whih an be similar or dissimilar, while SiLAworks with individual examples.gCosLA an be onsidered as belonging to the family of passive aggressive algorithms de-sribed in Crammer et al.[23℄. It is passive when the urrent similarity matrix orretly lassi�esthe urrent example, in whih ase the urrent matrix is left unhanged. On the ontrary, ifthere is some loss for the urrent example, it aggressively fores the update to have zero loss for106



4.7. Conlusionthe urrent example.4.7 ConlusionSeveral works have proved that osine similarity, whih is mainly used while dealing with texts,should be preferred over the Eulidean distane on several, non-textual datasets as well. Thisexplains the importane of learning appropriate similarity measures apart from the distanes forkNN lassi�ation.SiLA (Similarity Learning Algorithm) is based on learning globally a similarity metri withthe help of training examples. It is based on voted pereptron developed by Freund andShapire [37℄ and used by Collins [20℄. The aim is to move the target neighbors (examplesbelonging to the same lass as that of the input example) loser while pushing apart the impos-tors (examples from other lasses). It diretly redues the leave-one-out error or the 0 − 1 lossby reduing the number of mistakes on unseen examples. The similarity matries learned duringthe training phase an be used for predition. The similarity used in the ase of SiLA does notguarantees that a symmetri bi-linear form exists. Nevertheless, the similarity matrix an beprojeted onto the set of positive, semi-de�nite (PSD) matries thus giving rise to eSiLA.RELIEF is a well known feature re-weighting algorithm. It has been reently shown thatRELIEF ould in fat be seen as a distane learning algorithm in whih a linear utility funtionwith maximum margin is optimized. A version of RELIEF for similarity learning alled RELIEF-Based Similarity (RBS) is proposed. As RELIEF and unlike SiLA, RBS does not try to optimizethe leave-one-out error, and does not perform very well in pratie. This is illustrated on manyUCI olletions. Therefore, a striter version of RBS, alled sRBS is developed whih aims atrelying on a ost funtion loser to the 0 − 1 loss. The results for sRBS show that it is a muhbetter idea of use 0-1 loss rather than its approximation. All of the RELIEF based algorithmswere extended to work with PSD matries.The normalization in SiLA is ompletely independent of the learned similarity matrix whihhinders in de�ning a truly generalized osine similarity. The approah previously used in SiLAannot be used to de�ne a generalized osine similarity. Sine generalized osine similaritiesare based on salar produts, they involve bi-linear forms de�ned by positive, semi-de�nite(PSD) matries. However, the normalization (dependent on the similarity matrix) introduedin the osine similarity prevents one from diretly re-using the algorithms previously introduedfor learning say Mahalanobis distanes, also based on PSD matries. This motivates to learna generalized osine similarity - gCosLA, where the similarity matrix is positive, semi-de�nite(PSD) and the normalization is dependent on the similarity matrix. In order to onvert a matrixinto its PSD equivalent, it is projeted onto the set of PSD matries inspired from the approahadopted in POLA (Shalev et al. [99℄). Sine POLA is based on learning the pairwise onstraintsi.e. equivalene and inequivalene in order to learn a global distane metri, gCosLA learns thesimilarity metri based on the pairwise onstraints.
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5.1. Introdution5.1 IntrodutionIn order to assess the performane of a learning algorithm, it must be tested over di�erentdatasets. The datasets must be di�erent from one another and should be able to validate analgorithm. Furthermore, the datasets should be diverse i.e. they should have di�erent number oflasses, features and examples et. Generally a dataset is divided into three distint parts (whihmeans that there should not be any overlapping): training set, validation set and test set.Training set is used exlusively for learning the di�erent parameters of the algorithm. In orderto verify whether an e�etive training has been performed or not, a validation set is formed fromthe data set whih must not ontain any of the training examples and is used to �ne tune analgorithm. Test set is required to verify the performane of the algorithm on unseen examples.Normally 80% of the instanes are used for training and validation sets whereas the rest ofthe examples (20%) are used for the test data. Furthermore 80% examples are retained in thetraining set while 20% aount for the validation set.This hapter explains the experiments onduted with di�erent similarity learning algorithmsover various datasets. Cosine similarity is ompared with the Eulidean distane. This is followedby a detailed omparison between osine, SiLA and gCosLA while using kNN as well as SkNN.All of the algorithms belonging to the RELIEF family are also thoroughly tested and omparedwith the standard kNN and SkNN rules. SiLA and gCosLA are ompared with di�erent state ofthe art algorithms in the �eld of metri learning. Similarly kNN is ompared with its symmetriversion SkNN while using the osine similarity.The next setion desribes the various datasets used for the experimental validation of thedi�erent algorithms.5.2 Desription of the datasets usedMany di�erent datasets were used in order to assess the performane of the various similaritylearning algorithms. All of the datasets exept Newsgroups are part of the UCI database [36℄),namely, Ionosphere, Iris, Wine, Balane, Soybean (Small), Glass Identi�ation, Pima IndiansDiabetes, BUPA Liver Disorders, Letter Reognition, (Statlog) German Credit Data, (Statlog)Heart, Yeast, Magi, Spambase, Magi, Sonar, Segmentation, Optdigits and Waveform. These arestandard olletions whih have been used by di�erent researh ommunities (mahine learning,pattern reognition, statistis et.). The details about the datasets are next presented as shownin Table 5.1, 5.2 and 5.3:1. The Iris Plant data set ontains 3 lasses, eah has 50 instanes where eah lass refers atype of Iris plant. Two of the three lasses are not linearly separable from eah other. Thenumber of attributes is 4. 120 examples were used for training (96 for learning and 24 forvalidation), and 30 for testing.2. The Wine Reognition data set ontains 13 attributes representing the onstituents foundin eah of the three di�erent types of wines. 143 examples were used for training (114 forlearning and 29 for validation) while 35 for testing purposes. 111
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Iris Wine Balane Ionosphere Glass Soybean Pima LiverLearn 96 114 400 221 137 30 492 220Valid. 24 29 100 56 35 8 123 56Test 30 35 125 70 42 9 153 69Class 3 3 3 2 6 4 2 2Feat. 4 13 4 34 9 35 8 6Table 5.1: Charateristis of datasets - I

Letter German Yeast Heart Magi Spambase Musk-1 NewsLearn 12800 640 950 172 12172 2944 304 1824Valid. 3200 160 238 44 3044 737 77 457Test 4000 200 296 54 3804 920 95 2280Class 26 2 10 2 2 2 2 20Feat. 16 20 8 13 10 57 168 200 16Table 5.2: Charateristis of datasets - II
Sonar Segmentation Optdigits WaveformLearn 133 134 2447 3200Valid. 34 34 612 800Test 41 42 764 1000Class 2 7 10 3Feat. 60 19 64 21Table 5.3: Charateristis of datasets - III
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5.2. Desription of the datasets used3. The Balane Sale data set ontains 3 lasses along with 4 attributes. 500 examples wereused for training and 125 for test. Among the training examples, 400 were hosen forlearning while 100 were used for validation.4. Ionosphere is a binary lassi�ation data set where the aim is to lassify radar returns fromthe ionosphere. 281 examples were onsidered for training (80% or 221 for learning andthe rest, 56 for validation) whereas 70 for test along with 34 features.5. The Glass Identi�ation dataset ontains 6 types of glasses based on di�erent oxide ontent.The motivation for this dataset is that the glass left at the sene of the rime an be usedas evidene afterward. This dataset has 9 features (the �rst one is just the identi�ationnumber and has been omitted). 172 examples were used for training (137 for learning while35 for validation) and 42 for testing.6. Soybean (Small) is a subset of the original soybean dataset. It ontain 35 features. 38examples were used for training purpose while 9 for testing. Among the training examples,30 were hosen for learning purpose while 8 for validation. The number of lasses is 4.7. Pima Indians Diabetes dataset, also known as Pima dataset, is also a binary lassi�ationproblem and onsists of data from diabetes patients from Pima Indian heritage. The aim isto identify the patients who test positive for diabetes. 615 examples were used for trainingpurpose (492 for learning and 123 for validation) while 153 for testing.8. BUPA Liver Disorders dataset, sometimes referred as Liver dataset, is also a medialdataset where 276 examples were onsidered for training (220 for learning and 56 for val-idation) and 69 for testing. The task is to identify the presene of a liver disorder, basedon 6 attributes where the �rst 5 refer to blood tests onsidered sensitive to liver disorderswhih an develop from exessive alohol onsumption.9. The aim in Letter Reognition data set is to reognize the English language apital lettersout of 26 possibilities (A-Z). The images of the letters are based on 20 fonts whih makes20000 examples in total. The attributes are omposed of statistial moments and edgeounts. 12800 examples were used for learning, 4800 for validation and 4000 for testing.10. (Statlog) German Credit data set ontains 800 examples for training (640 for learningwhereas 160 for validation) while 200 aount for the test set. The aim is to lassify austomer has good or bad redit risk.11. The target in Yeast dataset is to �nd the loalization site of protein. It is omposed of1188 examples for training (950 for learning and 238 for validation) and 296 for testing.The number of features is 8.12. (Statlog) Heart is a heart disease data set onsisting of 216 training examples (172 forlearning while 44 for validation) and 54 test ones. The aim is to detet the presene orabsene of heart disease in patients using 13 features.13. Magi dataset is a binary dataset having only two lasses and 10 features. It was generatedby Monte Carlo method to simulate registration of high energy gamma partiles in an113



Chapter 5. Experiments and Resultsatmospheri Cherenkov telesope. It is made up of 19020 examples of whih 12172 makeup the training set, 3044 aount for the validation set and 3804 are plaed in the test set.14. Spambase is also a binary lassi�ation dataset having a simple aim: lassify an email asspam or otherwise. It has 2944 instanes as training, 737 for validation and 920 for testingpurposes. The number of attributes is 57.15. In Musk-1 dataset, an algorithm has to predit whether new moleules will be musks ornon-musks. It ontains 304 training examples, 77 validation ones while 95 instanes areused for testing purpose. The 166 features depend upon the exat shape or onformationof the moleule.16. The 20-newsgroups data set is omposed of posted artiles from 20 newsgroups and ap-proximately ontains 20,000 douments. The 18828 version was used in whih the ross-postings have been removed and inludes only the "From" and "Subjet" headers. theRainbow pakage [71℄ was used to tokenize the data set where eah doument was formedof the weighted word-ounts of the 20,000 most ommon words. This was followed by per-forming singular value deomposition using SVDlib 17 whih redued the original 20,000dimensions to 200. Many of the resulting douments did not ontain any of the 200 seletedwords. The empty douments ontaining none of the 200 words were subsequently removedreduing the number of douments to 4561. Out of 4561 douments, 2281 douments wereused for training and validation, while 2280 douments were used in the testing phase.17. The aim in Sonar dataset is to separate the sonar signals bouned o� a metal ylinder(mine) and those bouned o� a roughly ylindrial rok. There are 111 signals whih werebouned o� a metal ylinder at various angles and under various onditions. Similarly 97patterns were obtained from roks under similar onditions. Eah pattern is a set of 60numbers (features) in the range of 0.0 to 1.0. Out of 208 signals, 133 are used for trainingwhile 34 for validation. Finally 41 signals are used for testing.18. (Statlog) Image Segmentation is an image dataset onsisting of randomly drawn imagesfrom a database of 7 outdoor images. The images are further hand-segmented to reatea lassi�ation for every pixel. Here, only the training set ontaining 210 images is usedfor lassi�ation purposes. 134 images were used for training, 34 for validation whereas 42were used for testing purposes. Eah image is onsisted of 19 features.19. An optial reognition dataset, alled Optdigits is also used to evaluate di�erent algorithms.The aim in this dataset is the optial reognition of handwritten haraters (0-9). Onlythe training set ontaining 3823 instanes is used. Furthermore, 2447 instanes are usedfor training while 612 are retained for validation. Similarly 764 instanes ompose the testset. The number of features is 64.20. Another UCI dataset used for validating di�erent algorithms is the Waveform databasegenerator (Version 1) dataset. This dataset ontains 3 lasses of waves equally distributedamong 5000 instanes. There are 21 features in total, all of whih inlude noise. 3200instanes were used for training, 800 for validation and 1000 for testing.17Can be obtained from http://tedlab.mit.edu/ dr/svdlib/114



5.3. Methodology used for the experiments

Figure 5.1: Double ross validation [35℄ algorithm5.3 Methodology used for the experimentsThis setion desribes how the datasets were used for di�erent similarity learning algorithmsi.e. SiLA, eSiLA, RBS, sRBS, RBS-PSD, sRBS-PSD, gCosLA. 20 perent of the data was usedfor testing purpose for eah of the dataset. Of the remaining data, 80 perent was used fortraining whereas 20 perent for the validation sets for all of the algorithms. 5-fold double ross-validation [35℄ was used to learn the matrix sequene (A1, A2, · · · , Aq) for all of the datasets.The double ross-validation algorithm is shown in �gure 5.1. In the tehnique of double ross-validation, the dataset is splitted into V sub-samples or folds (in this ase 5). One sample isseleted as a test sample. The remaining samples, omposed of training and validation exam-ples, are onsidered as the samples used for learning purposes. Based on this distribution, thealgorithm is run multiple times with di�erent parameter values (e.g. di�erent value of k nearestneighbors) thus giving a set of auraies over the test sample. This helps to determine the bestmodel having the best parameter values for the urrent fold, based on the largest auray value.This is followed by onsidering another sample as a test one (di�erent from the �rst one)taken from the V samples. Moreover, the rest of the samples are onsidered as learning samples.Di�erent parameter values are tested just like the �rst fold so as to determine the best one. Inthe end, the V auraies are averaged to �nd the global auray.In the ase of kNN-os, SkNN-os and kNN-eulidean only the best value of k was determinedusing the method of double ross-validation. The best value of k was hosen from the possiblevalues of 1 and 3.It may be further realled that in a sequene of hypothesis, the last q elements may be moreinteresting than the earlier ones. Based on this fat, the validation set was used for SiLA todetermine the value of k (nearest neighbors), optimum number of epohs and the best value of
q. However, in the ase of gCosLA, the validation set was used to determine the aforementionedparameters learned for SiLA as well as the best value of the threshold β. It was observed thatfor eah dataset, the best value of β is usually di�erent for eah lass and eah fold.In order to reate pairs of examples for gCosLA, 5 nearest neighbors were found for eah ofthe example from the lass it belongs. Additionally, the same number of nearest neighbors from115



Chapter 5. Experiments and Resultsdi�erent lasses was also found. Thus the total number of pairs of examples for eah datasetbeame 10N where N represents the number of examples in a dataset.For RELIEF and RBS, a single weight vetor was learned whereas for sRBS, a sequene ofmatries (A1, A2, · · · , Aq) is learned. Double ross-validation is used to �nd the best value of kfor RELIEF and RBS algorithms. On the other hand, for sRBS, the values of k, λ and β aredetermined. The approahes followed in the ase of methods involving PSD matries i.e. eSiLA,RELIEF-PSD, RBS-PSD and sRBS-PSD are the same as the ones used for their ounterpartswithout PSD matries.5.3.1 Predition RulesTwo predition rules were used for all of the experiments. The �rst one is the standard kNN rulewhere the lassi�ation is based on the k nearest neighbors while the seond one is SkNN ('S'means symmetri), whih is based on the di�erene of similarity between k nearest neighborsfrom the same lass and k from other lasses18. Combined with the similarity learning algorithms,these predition rules provide four di�erent possibilities for omparison:1. Standard kNN rule with the osine similarity by replaing A matrix with the Identitymatrix. This rule is referred to as kNN-os,2. Standard kNN rule with the similarity learned with the similarity learning algorithms. Thismethod is termed as kNN-A,3. The symmetri predition rule with the osine similarity having A = I, whih is alledSkNN-os,4. The symmetri predition rule with the similarity learned with the similarity learningalgorithms. This method appears as SkNN-A.Unless otherwise stated, a binary version of the algorithms was used, in whih a sequene ofmatries is learned for eah lass (one vs others), and the quality of a given method was assessedwith its average auray (i.e. the auray averaged over the di�erent lasses).In addition, the standard deviation was omputed on all of the olletions for all of thealgorithms. The results were evaluated for statistial signi�ane i.e. whether one method issigni�antly better than the other one or not. In ase the P-value is less than or equal to 0.01,this means that the di�erene is muh more signi�ant and is denoted by ≪ or ≫. A lower levelof signi�ane ours when the P-value lies in between 0.01 and 0.05, in whih ase is denotedby < or >. In ase, the P-value is greater than 0.05, the results are onsidered equivalent andare denoted by =.5.4 Cosine similarity vs Eulidean distane in kNN lassi�ationEven though kNN has been traditionally used, on the olletions earlier seen, with the Eulideandistane (or with a Mahalanobis distane learned from the data, as in [28, 112℄), it is shown here18One an �nd in Nok [75℄ a di�erent version of a symmetri kNN rule in whih one onsiders not only the knearest neighbors of a given example x, but also the points for whih x is a nearest neighbor.116



5.4. Cosine similarity vs Eulidean distane in kNN lassi�ationkNN-osine kNN-EulideanSoybean 1.0 ± 0.0 1.0 ± 0.0Iris 0.987 ± 0.025 0.973 ± 0.029Letter 0.997 ± 0.002 0.997 ± 0.002Balane 0.954 ± 0.021 ≫ 0.879 ± 0.028Wine 0.865 ± 0.050 ≫ 0.819 ± 0.096Ionosphere 0.871 ± 0.019 0.854 ± 0.035Glass 0.899 ± 0.085 0.890 ± 0.099Pima 0.630 ± 0.041 0.698 ± 0.024 ≫Liver 0.620 ± 0.064 0.620 ± 0.043German 0.594 ± 0.040 0.615 ± 0.047Heart 0.670 ± 0.020 0.656 ± 0.056Yeast 0.911 ± 0.108 0.912 ± 0.108Spambase 0.858 ± 0.009 0.816 ± 0.007Musk-1 0.844 ± 0.028 0.848 ± 0.018Table 5.4: Comparison between osine similarity and Eulidean distane based on s-testthat the osine should be preferred to the Eulidean distane on many of these olletions.The utility of the osine similarity on text data has been reognized now for many years.However, on most non-textual olletions, the majority of researhers rely on the Eulideandistane. In order to assess the validity of using the osine similarity on non-textual olletions,two standard kNN rules are used, one with the osine similarity, the other one with the Eulideandistane, on the UCI olletions. Table 5.4 summarizes the auray obtained with kNN-osineand kNN-Eulidean along with their respetive standard deviations. The �rst olumn gives theaverage auray obtained while using a binary version of the osine-based kNN lassi�er, whereasthe seond one orresponds to the Eulidean distane-based kNN lassi�er. The best results arerepresented in bold.As one an note, the osine similarity yields results whih are either better or the same asthat for Eulidean distane for most of the data sets. Even though the results are on par with theGlass, Soybean, Liver and Letter data sets, the di�erene is important on Wine (better by 4.6%),Balane (better by 7.5%) and Spambase (better by 4.2%) olletions. For Pima, the Eulideandistane gives better result as ompared with the osine measure (gain of 6.8%). Miro signtest (s-test), earlier used by [119℄, was performed to assess the statistial signi�ane of theseresults. It an be observed that osine is statistially muh better (shown by `≫`) than Eulideandistane on Wine and Balane. However the di�erene between osine and Eulidean distane isnot statistially signi�ant on Ionosphere and the other data sets. Similarly Eulidean distanewas muh better than osine on Pima data set.Figure 5.2 depits the omparison between osine and Eulidean distane with kNN algorithm.The standard deviations an also be viewed in the �gure.These results justify the use of the osine similarity, instead of the Eulidean distane, onsome of these olletions e.g. Balane and Wine. 117
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Figure 5.2: kNN-os vs kNN-Eulidean on various datasets5.5 Comparison between osine, SiLA and gCosLAIn this setion, osine similarity is ompared with SiLA and gCosLA on various datasets. Theomparison is made both between the simple kNN rule as well as its symmetri version SkNN.Moreover, SiLA is also ompared with gCosLA. This is followed by a omparison between kNN-Aand SkNN-A for gCosLA in order to see the signi�ane of devising a symmetri version of kNN.Furthermore, kNN-Eulidean is ompared with kNN-A of gCosLA to asertain the importaneof learning a similarity metri instead of using a distane one.5.5.1 Performane of kNN-os as ompared to SiLA and gCosLAThe omparison of SiLA and gCosLA algorithms with osine while using the kNN predition ruleis given in Table 5.5. Figure 5.3 and 5.4 give a graphial and an easier to follow desription ofthe omparison of kNN-os with SiLA and gCosLA respetively.It an be observed that SiLA performs signi�antly better than osine (kNN-os), as on�rmedby the statistial signi�ane test s-test (shown by the sign ≫ or >) for Balane (auray betterby 2.5%), Ionosphere (better by 4.0%), Pima (better by 1.8%) and German (gain by 5.2%).Similarly gCosLA performs signi�antly better than osine on Balane (gain of 2.7% in termsof auray), Wine (gain of 5.3%), Liver (better by 3.8%), German (improvement by 14.3%)and Heart (gain of 6.7%). The performane of all of the methods is omparable for Iris, Glassand Yeast. However for Soybean, kNN-os is signi�antly better than kNN-A for the algorithm118



5.5. Comparison between osine, SiLA and gCosLAkNN-os kNN-A (SiLA) kNN-A (gCosLA)Soybean 1.0 ± 0.0 1.0 ± 0.0 0.972 ± 0.061 (<)Iris 0.987 ± 0.025 0.978 ± 0.030 0.987 ± 0.025Letter 0.997 ± 0.002 0.962 ± 0.003 0.995 ± 0.003Balane 0.954 ± 0.021 0.979 ± 0.012 ≫ 0.981 ± 0.008 ≫Wine 0.865 ± 0.050 0.884 ± 0.062 0.918 ± 0.064 ≫Ionosphere 0.871 ± 0.019 0.911 ± 0.031 ≫ 0.880 ± 0.039Glass 0.899 ± 0.085 0.892 ± 0.094 0.893 ± 0.097Pima 0.630 ± 0.041 0.648 ± 0.025 > 0.624 ± 0.051Liver 0.620 ± 0.064 0.609 ± 0.040 0.658 ± 0.070 >German 0.594 ± 0.040 0.646 ± 0.046 ≫ 0.737 ± 0.042 ≫Heart 0.670 ± 0.038 0.659 ± 0.020 0.737 ± 0.062 ≫Yeast 0.911 ± 0.108 0.905 ± 0.114 0.909 ± 0.112Table 5.5: Classi�ation auray of osine, SiLA and gCosLA using kNN

Figure 5.3: kNN-os vs kNN-A (SiLA) on various datasets 119
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Figure 5.4: kNN-os vs kNN-A (gCosLA) on various datasetsgCosLA. These results do not help to deide whih one of SiLA and gCosLA is a signi�antlybetter similarity metri learning algorithm as ompared to the standard osine similarity. Thereason is that there are many datasets on whih only one of the similarity learning algorithms issigni�antly better than osine i.e. Wine, Ionosphere, Pima, Liver and Heart.5.5.2 Performane of SkNN-os as ompared to SiLA and gCosLAThe symmetri ounterpart of kNN, i.e. SkNN was also used to ompare osine with SiLA andgCosLA as shown in the table 5.6. Table 5.6 also gives the statistial signi�ane of the resultsfor SiLA and gCosLA on the basis of SkNN method.It an be observed that SiLA performs signi�antly better than osine for Balane (better by1.1%), Wine (gain of 2.6%), Ionosphere (4.6%), Pima (2.0%) and German (gain by 4.7%).Similarly gCosLA performs signi�antly better than osine as on�rmed by the statistialsigni�ane test s-test (shown by the sign ≫ or >) on Balane (1.2% ), Wine (gain of 5.9%) andGerman (better by 10.9%). The performane of all the methods is omparable for Soybean, Iris,Glass and Liver. It should be noted that although osine and SiLA are better than gCosLA onSoybean by 2.8%, yet the improvement is not signi�ant enough.Moreover, SkNN-os performs signi�antly muh better than SkNN-A on the datasets Heartand Yeast for SiLA.Figure 5.5 and 5.6 ompare the performane of osine similarity with SiLA and gCosLArespetively while using SkNN deision rule. The standard deviations are also depited in thesetwo �gures.120



5.5. Comparison between osine, SiLA and gCosLASkNN-os SkNN-A (SiLA) SkNN-A (gCosLA)Soybean 0.989 ± 0.034 0.989 ± 0.034 0.961 ± 0.075Iris 0.987 ± 0.025 0.980 ± 0.025 0.984 ± 0.025Letter 0.997 ± 0.002 0.962 ± 0.003 0.994 ± 0.003Balane 0.969 ± 0.013 0.980 ± 0.012 ≫ 0.981 ± 0.009 ≫Wine 0.867 ± 0.055 0.893 ± 0.062 > 0.926 ± 0.055 ≫Ionosphere 0.860 ± 0.024 0.906 ± 0.035 ≫ 0.883 ± 0.032Glass 0.898 ± 0.081 0.895 ± 0.085 0.897 ± 0.085Pima 0.643 ± 0.030 0.663 ± 0.028 ≫ 0.643 ± 0.031Liver 0.638 ± 0.060 0.600 ± 0.046 0.652 ± 0.068German 0.620 ± 0.030 0.667 ± 0.040 ≫ 0.729 ± 0.037 ≫Heart 0.711 ± 0.036 0.674 ± 0.047 ≪ 0.717 ± 0.061Yeast 0.917 ± 0.103 0.910 ± 0.106 ≪ 0.912 ± 0.112Table 5.6: Classi�ation auray with osine, SiLA and gCosLA using SkNN

Figure 5.5: SkNN-os vs SkNN-A (SiLA) on various datasets 121
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Figure 5.6: SkNN-os vs SkNN-A (gCosLA) on various datasetskNN-os kNN-A (SiLA) SkNN-os SkNN-A (SiLA)News 0.929 0.947 0.907 0.902Table 5.7: Comparison between osine and SiLA for News5.5.3 Cosine and SiLA on News datasetThe osine similarity is also ompared with SiLA on News dataset. Only 1 fold is used for thisdataset due to its large size. The is the reason no standard deviation is mentioned in table 5.7.SiLA performs better than osine similarity while using kNN rule (auray better by 1.8%).On the other hand, SkNN-os performs slightly better than SkNN-A (improvement of 0.5%).gCosLA was not tested on this dataset sine it ontains a large number of attributes (200) andthe omplexity of gCosLA is ubi in terms of the number of dimensions.5.5.4 Comparison between SiLA and gCosLATable 5.8 ompares the statistial signi�ane of the results for SiLA and gCosLA on the basisof kNN-A method. The performane of gCosLA is signi�antly better than that of SiLA onWine (91.8% vs 88.4%), German (73.7% vs 64.6%), Heart (73.7% vs 65.9%) and Letter (99.5%vs 96.2%) data sets. Similarly gCosLA performs slightly better than SiLA on Liver (65.8% vs60.9%).On the other hand, the algorithm SiLA performs slightly better (shown by the symbol >)122



5.5. Comparison between osine, SiLA and gCosLAkNN-A (SiLA) / kNN-A (gCosLA)Soybean >Iris =Letter =Balane =Wine ≪Ionosphere =Glass =Pima >Liver <German ≪Heart ≪Yeast =Table 5.8: Comparison between SiLA and gCosLA for kNN-A based on s-testas ompared to gCosLA on the datasets Soybean (100% vs 97.2%) and Pima (64.8% vs 62.4%).Nevertheless, gCosLA onverged faster as ompared with SiLA for all of these datasets as shownin �gure 5.7 forWine dataset in whih ase SiLA required more than 14,000 iterations in order toonverge whereas gCosLA onverged in less than 200 iterations for di�erent value of k (k = 1, 3).Similarly, SiLA and gCosLA are also ompared based on SkNN-A deision rule as shownin table 5.9. The statistial signi�ane of the results is mentioned where = means that thedi�erene is insigni�ant. The performane of gCosLA is signi�antly better than that of SiLAonWine (92.6% vs 89.3%), German (72.9% vs 66.7%) and Letter (99.5% vs 96.2%) data sets withSkNN-A. Moreover, gCosLA performs slightly muh better than SiLA for Liver (65.2% vs 60.0%)and Heart (71.7% vs 67.4%). On the other hand, SiLA was unable to perform signi�antly betterthan its ounterpart on any of the 12 datasets. Nevertheless, gCosLA onverged faster than SiLAwhile using SkNN as was earlier seen for kNN for all of these datasets.5.5.5 Comparison between kNN-Eulidean and kNN-A (gCosLA)Furthermore, the Eulidean distane is ompared with the algorithm gCosLA while using kNNmethod in table 5.10. gCosLA outperforms the Eulidean distane signi�antly on many datasets(Balane, Wine, German and Heart). Moreover, gCosLA performs slightly better than the Eu-lidean distane on Iris, Ionosphere and Liver.Similarly Eulidean distane proves to be signi�antly better than gCosLA for Soybean, whileslightly better on Pima. Comparing table 5.4 and 5.10 it an be observed that the results afterlearning a similarity matrix are signi�antly better as ompared to the ones using Eulideandistane. 123
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Figure 5.7: Comparison between gCosLA and SiLA in terms of rapidity for Wine
SkNN-A (SiLA) / SkNN-A (gCosLA)Soybean =Iris =Letter =Balane =Wine ≪Ionosphere =Glass =Pima =Liver <German ≪Heart <Yeast =Table 5.9: Comparison between SiLA and gCosLA with SkNN-A based on s-test
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5.6. RELIEF family of algorithmskNN-Eulidean / kNN-A (gCosLA)Soybean >Iris <Letter =Balane ≪Wine ≪Ionosphere <Glass =Pima ≫Liver <German ≪Heart ≪Yeast =Table 5.10: Comparison between kNN-Eulidean and kNN-A (gCosLA) based on s-test5.6 RELIEF family of algorithmsThough basially a feature reweighting algorithm, RELIEF has reently been shown as belongingto the distane metri learning family by Sun and Wu [102℄. In this setion, the performaneof RELIEF is ompared with the osine similarity while using kNN as well as SkNN deisionrules. Furthermore, the two RELIEF based similarity learning algorithms i.e. RBS and sRBSare ompared with the RELIEF algorithm using kNN and SkNN. The e�et of positive, semi-de�nitiveness on the RELIEF based algorithms is also disussed.
5.6.1 Performane of osine similarity as ompared to RELIEFThe osine similarity is ompared with the RELIEF algorithm on the basis of both kNN as wellas SkNN deision rules. Table 5.11 ompares the kNN-os with kNN-A for RELIEF algorithm.It an be observed easily that, in general, kNN-os outperforms its ounterpart on the basis ofs-test. kNN-os is signi�antly muh better (shown by the sign ≫) than kNN-A for RELIEF onSoybean, Iris, Balane, Wine, Ionosphere, Glass, Heart and Yeast. Similarly kNN-os is slightlybetter (shown by >) than RELIEF on Pima and Liver. There are only two datasets where thetwo algorithms perform equally well (shown by = sign): Letter and German as shown in the�gure 5.8.SkNN-os is also ompared with RELIEF as shown in the table 5.12 and �gure 5.9. LikekNN-os, SkNN-os performs signi�antly better than SkNN-A for RELIEF on all of the datasetsexept Letter. 125
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Figure 5.8: Comparison between kNN-os and RELIEF
kNN-os / kNN-A (RELIEF)Soybean ≫Iris ≫Letter =Balane ≫Wine ≫Ionosphere ≫Glass ≫Pima >Liver >German =Heart ≫Yeast ≫Table 5.11: Comparison between kNN-os and kNN-A (RELIEF) based on s-test
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5.6. RELIEF family of algorithmsSkNN-os / SkNN-A (RELIEF)Soybean ≫Iris ≫Letter =Balane ≫Wine ≫Ionosphere ≫Glass ≫Pima ≫Liver ≫German ≫Heart ≫Yeast ≫Table 5.12: Comparison between SkNN-os and SkNN-A (RELIEF) based on s-test

Figure 5.9: Cosine vs RELIEF with SkNN on various datasets 127



Chapter 5. Experiments and ResultskNN-A (RELIEF) kNN-A (RBS) kNN-A (sRBS)Soybean 0.711 ± 0.211 0.750 ± 0.197 > 1.0 ± 0.0 ≫Iris 0.667 ± 0.059 0.667 ± 0.059 0.987 ± 0.025 ≫Balane 0.681 ± 0.662 0.670 ± 0.171 0.959 ± 0.016 ≫Ionosphere 0.799 ± 0.062 0.826 ± 0.035 0.866 ± 0.015 ≫Heart 0.556 ± 0.048 0.437 ± 0.064 ≪ 0.696 ± 0.046 ≫Yeast 0.900 ± 0.112 0.900 ± 0.112 0.905 ± 0.113German 0.598 ± 0.068 0.631 ± 0.020 ≫ 0.609 ± 0.016Liver 0.574 ± 0.047 0.580 ± 0.042 0.583 ± 0.015Pima 0.598 ± 0.118 0.583 ± 0.140 0.651 ± 0.034 ≫Glass 0.815 ± 0.177 0.821 ± 0.165 0.886 ± 0.093 ≫Letter 0.961 ± 0.003 0.961 ± 0.005 0.997 ± 0.002Wine 0.596 ± 0.188 0.630 ± 0.165 0.834 ± 0.077 ≫Table 5.13: Comparison between di�erent RELIEF based algorithms while using kNN-A method basedon s-test

Figure 5.10: kNN-os vs kNN-sRBS on various datasets128



5.6. RELIEF family of algorithmsSkNN-A (RELIEF) SkNN-A (RBS) SkNN-A (sRBS)Soybean 0.756 ± 0.199 0.750 ± 0.197 0.989 ± 0.034 ≫Iris 0.673 ± 0.064 0.667 ± 0.059 0.987 ± 0.025 ≫Balane 0.662 ± 0.200 0.672 ± 0.173 0.967 ± 0.010 ≫Ionosphere 0.681 ± 0.201 0.834 ± 0.031 ≫ 0.871 ± 0.021 ≫Heart 0.526 ± 0.085 0.430 ± 0.057 ≪ 0.685 ± 0.069 ≫Yeast 0.900 ± 0.113 0.900 ± 0.112 0.908 ± 0.110German 0.493 ± 0.115 0.632 ± 0.021 ≫ 0.598 ± 0.038 ≫Liver 0.539 ± 0.078 0.580 ± 0.042 ≫ 0.588 ± 0.021 >Pima 0.585 ± 0.125 0.583 ± 0.140 0.665 ± 0.044 ≫Glass 0.833 ± 0.140 0.816 ± 0.171 ≪ 0.884 ± 0.084 ≫Letter 0.957 ± 0.047 0.961 ± 0.005 0.997 ± 0.002Wine 0.575 ± 0.198 0.634 ± 0.168 ≫ 0.840 ± 0.064 ≫Table 5.14: Comparison between di�erent RELIEF based algorithms while using SkNN-A based ons-test5.6.2 Comparison between di�erent RELIEF algorithms based on kNN dei-sion ruleWhile omparing RELIEF with its similarity based variant (RBS) based on the simple kNNlassi�ation rule, it is evident that the later performs signi�antly muh better only on Germanand slightly better on Soybean as shown in table 5.13. However RELIEF outperforms RBS forHeart while using kNN.It an be further veri�ed from table 5.13 that the algorithm sRBS performs signi�antlymuh better (≫) than the RELIEF algorithm for eight out of twelve datasets i.e. Soybean, Iris,Balane, Ionosphere, Heart, Pima, Glass and Wine.5.6.3 Comparison between di�erent RELIEF algorithms based on SkNN dei-sion ruleWhile omparing RELIEF with its similarity based variant (RBS) based on the SkNN-A rule,it an be seen from table 5.14 that the later performs signi�antly muh better on Ionosphere,German, Liver and Wine olletions. On the other hand, RELIEF performs signi�antly muhbetter than RBS on Heart and Glass.It an further observed that sRBS performed signi�antly muh better than RELIEF on 9datasets out of a total of 12 i.e. Soybean, Iris, Balane, Ionosphere, Heart, German, Pima, Glassand Wine. On Liver, sRBS performed slightly better than the RELIEF algorithm. Moreover,the omparison between osine and sRBS for SkNN is shown in �gure 5.11. 129
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Figure 5.11: Cosine vs sRBS with SkNN rule on various datasets5.6.4 Performane of sRBS as ompared to RBSFurthemore, the two RELIEF based similarity learning algorithms i.e. RBS and sRBS are om-pared using both kNN as well as SkNN as shown in table 5.15. On most of the datasets, thealgorithm sRBS outperforms RBS for both kNN and SkNN. sRBS performs signi�antly muhbetter (as shown by ≪) than its ounterpart on the following datasets: Soybean, Iris, Balane,Ionosphere, Heart, Pima, Glass and Wine for the two lassi�ation rules (kNN and SkNN). Onthe other hand, RBS was able to perform slighty better than its striter version sRBS on Germanwhile using the kNN rule. Similarly RBS performs signi�antly muh better than sRBS on onlyone dataset i.e. German while using the SkNN lassi�ation rule. The performane of RBS andsRBS is equivalent for Yeast, Liver and Letter.5.6.5 E�et of positive, semi-de�nitiveness on RELIEF based algorithmsIn this subsetion, the e�et of learning PSD matries is investigated for the RELIEF basedalgorithms.RELIEF based approahes and positive, semi-de�nite matries with kNN lassi�ationruleIn table 5.16, RELIEF-PSD is ompared with RELIEF-Based Similarity learning algorithm RBS-PSD and its striter version (sRBS-PSD) while using the kNN lassi�ation rule. It an be seen130



5.6. RELIEF family of algorithmskNN-A (RBS) / kNN-A (sRBS) SkNN-A (RBS) / SkNN-A (sRBS)Soybean ≪ ≪Iris ≪ ≪Balane ≪ ≪Ionosphere ≪ ≪Heart ≪ ≪Yeast = =German > ≫Liver = =Pima ≪ ≪Glass ≪ ≪Letter = =Wine ≪ ≪Table 5.15: Comparison between RBS and sRBS based on s-test
kNN-A (RELIEF-PSD) kNN-A (RBS-PSD) kNN-A (sRBS-PSD)Soybean 0.739 ± 0.192 0.733 ± 0.220 1.0 ± 0.0 ≫Iris 0.664 ± 0.058 0.667 ± 0.059 0.987 ± 0.025 ≫Balane 0.665 ± 0.193 0.670 ± 0.171 0.959 ± 0.016 ≫Ionosphere 0.839 ± 0.055 0.826 ± 0.035 0.880 ± 0.015 >Heart 0.556 ± 0.048 0.437 ± 0.036 ≪ 0.693 ± 0.047 ≫Yeast 0.893 ± 0.132 0.900 ± 0.112 ≫ 0.911 ± 0.109 ≫German 0.637 ± 0.017 0.624 ± 0.015 < 0.609 ± 0.016 <Liver 0.574 ± 0.034 0.580 ± 0.042 0.606 ± 0.034Pima 0.593 ± 0.077 0.661 ± 0.024 ≫ 0.651 ± 0.034 ≫Glass 0.819 ± 0.164 0.835 ± 0.138 > 0.886 ± 0.093 ≫Letter 0.961 ± 0.005 0.961 ± 0.005 0.997 ± 0.002Wine 0.608 ± 0.185 0.630 ± 0.165 0.834 ± 0.077 ≫Magi 0.516 ± 0.085 0.360 ± 0.007 0.767 ± 0.009Spambase 0.618 ± 0.031 0.611 ± 0.020 ≪ 0.855 ± 0.009 ≫Musk-1 0.698 ± 0.055 0.851 ± 0.033 ≫ 0.838 ± 0.024 ≫Table 5.16: Comparison between di�erent RELIEF based algorithms using kNN-A and PSD matries

131



Chapter 5. Experiments and ResultskNN-A (RELIEF) / kNN-A (RELIEF-PSD)Soybean =Iris =Balane =Ionosphere <Heart =Yeast ≫German ≪Liver =Pima =Glass =Letter =Wine =Table 5.17: Comparison between RELIEF and RELIEF-PSD based on s-test using kNNthat sRBS-PSD performs muh better than the other two algorithms on majority of the datasets. sRBS-PSD is statistially muh better (as shown by the symbol ≫) than RELIEF-PSDfor the following 10 datasets: Soybean, Iris, Balane, Heart, Yeast, Pima, Glass, Wine, Spambaseand Musk-1. Similarly for Ionosphere, sRBS-PSD is slightly better than the RELIEF-PSDalgorithm. On the other hand, RELIEF-PSD performs slightly better (<) than sRBS-PSD forGerman dataset.Moreover, while omparing RBS-PSD with RELIEF-PSD, it an be observed that the formerperforms signi�antly better than the later for Yeast, Pima and Musk-1, and slightly better forGlass dataset. On the other hand, RELIEF-PSD was able to perform signi�antly better thanRBS-PSD for Heart and Spambase, while slightly better for German.While omparing RELIEF (with no PSD matries) with RELIEF-PSD algorithm (table 5.17),it an be observed that RELIEF-PSD performs signi�antly better than RELIEF on German andslightly better on Ionosphere. On the other hand, RELIEF was able to outlass its ounterpart forYeast. However, for rest of the datasets the performane of these two algorithms was omparable.RELIEF based approahes and positive, semi-de�nite matries with SkNN lassi�a-tion ruleTable 5.18 ompares di�erent RELIEF based algorithms based on SkNN deision rule whileusing PSD matries. It an be observed that sRBS-PSD performs muh better than the othertwo algorithms on majority of the data sets as seen earlier while using the kNN rule . sRBS-PSDis statistially muh better (as shown by the symbol ≫) than RELIEF-PSD for the following10 datasets (out of 15): Soybean, Iris, Balane, Heart, Yeast, Liver, Glass, Wine, Spambase andMusk-1. RELIEF-PSD performs slightly better (<) than sRBS-PSD for only one dataset i.e.German.Similarly, RBS-PSD outperforms RELIEF-PSD for 6 datasets (Iris, Yeast, Liver, Glass,Spambase and Musk-1) while the reverse is true for the following 3 datasets: Balane, Iono-132



5.7. How SiLA and gCosLA perform as ompared to the state of the art approahesSkNN-A (RELIEF-PSD) SkNN-A (RBS-PSD) SkNN-A (sRBS-PSD)Soybean 0.783 ± 0.163 0.733 ± 0.220 0.983 ± 0.041 ≫Iris 0.571 ± 0.164 0.667 ± 0.059 ≫ 0.987 ± 0.025 ≫Balane 0.708 ± 0.175 0.672 ± 0.173 ≪ 0.967 ± 0.010 ≫Ionosphere 0.886 ± 0.028 0.834 ± 0.031 ≪ 0.889 ± 0.011Heart 0.533 ± 0.067 0.437 ± 0.036 ≪ 0.685 ± 0.069 ≫Yeast 0.897 ± 0.122 0.900 ± 0.112 ≫ 0.914 ± 0.106 ≫German 0.625 ± 0.035 0.624 ± 0.015 0.598 ± 0.038 <Liver 0.528 ± 0.085 0.580 ± 0.042 ≫ 0.609 ± 0.035 ≫Pima 0.659 ± 0.027 0.658 ± 0.030 0.665 ± 0.044Glass 0.768 ± 0.235 0.835 ± 0.138 ≫ 0.884 ± 0.084 ≫Letter 0.961 ± 0.008 0.961 ± 0.004 0.997 ± 0.002Wine 0.606 ± 0.177 0.634 ± 0.168 0.840 ± 0.064 ≫Magi 0.539 ± 0.109 0.360 ± 0.007 0.777 ± 0.009Spambase 0.583 ± 0.075 0.611 ± 0.020 ≫ 0.857 ± 0.010 ≫Musk-1 0.712 ± 0.037 0.857 ± 0.029 ≫ 0.842 ± 0.010 ≫Table 5.18: Comparison between di�erent RELIEF based algorithms using SkNN-A and PSD matriessphere and Heart.Table 5.19 ompares the e�et of using PSD matries with the RELIEF algorithm while usingthe SkNN deision rule. It an be observed that RELIEF-PSD performs signi�antly better thanRELIEF on Balane, Ionosphere, German and Pima. On the other hand, RELIEF was able tooutlass its ounterpart for Iris, Yeast and Glass. The performane of these two algorithms wasomparable for the remaining olletions.Performane of sRBS-PSD as ompared to RBS-PSDTable 5.20 ompares statistially the results obtained while using RBS-PSD and sRBS-PSDalgorithms. The later outperforms the former for the following 7 datasets (out of 13 onsideredfor omparison): Soybean, Iris, Balane, Ionosphere, Heart, Glass and Wine with both kNN aswell as SkNN. RBS-PSD performs slightly better than its ounterpart for German while using theSkNN rule. However, for the rest of the datasets, the two algorithms' performane is omparable.5.7 How SiLA and gCosLA perform as ompared to the state ofthe art approahesIn this setion, SiLA and gCosLA are ompared with di�erent state of the art methods in metrilearning. A detailed omparison between SiLA and gCosLA and several state of the art ones is133



Chapter 5. Experiments and Results
SkNN-A (RELIEF) / SkNN-A (RELIEF-PSD)Soybean =Iris ≫Balane ≪Ionosphere ≪Heart =Yeast ≫German ≪Liver =Pima ≪Glass ≫Letter =Wine =Table 5.19: Comparison between RELIEF and RELIEF-PSD based on s-test using SkNN

kNN-A (RBS-PSD) / (sRBS-PSD) SkNN-A (RBS-PSD) / (sRBS-PSD)Soybean ≪ ≪Iris ≪ ≪Balane ≪ ≪Ionosphere ≪ ≪Heart ≪ ≪Yeast = =German = >Liver = =Pima = =Glass ≪ ≪Letter = =Wine ≪ ≪Musk-1 = =Table 5.20: Comparison between RBS-PSD and sRBS-PSD based on s-test
134



5.7. How SiLA and gCosLA perform as ompared to the state of the art approahesgCosLA SiLA SNN MCML LMNN ITML Multilass SVMBalane 0.976 0.952 0.879 0.925 0.916 0.920 0.922Wine 0.857 0.806 0.951 0.837 0.974 0.974 0.801Iris 0.967 0.967 0.934 0.967 0.953 0.961 0.956Table 5.21: Di�erent similarity and metri learning algorithms on UCI datasetsgive in Table 5.21. The �rst one ([72℄) learns similarity whereas the next three ( [28, 41, 112℄) areinterested in learning distanes with kNN algorithm. The algorithms are: Similarity Learningwith Neural Network SNN, Information Theoreti Metri Learning ITML, Maximally CollapsingMetri Learning MCML, Large Margin Nearest Neighbor LMNN and a multilass version ofSVMs [25℄. To ompare the methods based on SiLA and gCosLA with di�erent approahes, amultilass version for both of these algorithms was used followed by the alulation of the globalauray. Furthermore, only the standard kNN approah (kNN-A) and not the symmetri one(SkNN-A) was used in order to have a fair omparison.The methods are ompared on three UCI datasets (Iris, Balane and Wine) ommon to allof the previous approahes.Comparing gCosLA with SiLA, it an be observed that for Balane and Wine, gCosLA notonly outperformed SiLA but it onverged very rapidly (in terms of number of iterations andtime) also. The performane for gCosLA is on a par with that of SiLA on Iris but nevertheless,gCosLA is faster as was seen for the binary version of these two algorithms.While omparing SiLA and gCosLA with SNN, it an be noted that the algorithms SiLAand gCosLA outperformed SNN for Balane and Iris. However for Wine, SNN has got a muhbetter performane as ompared with SiLA and gCosLA. The primary reason is that SNN wasable to down-weigh an in�uential attribute for Wine whereas SiLA and gCosLA were unable todo so, sine they do not perform feature seletion while SNN does so.SiLA and gCosLA performed muh better than MCML for Balane whereas the three algo-rithms got the same auray for Iris. SiLA and gCosLA also outperformed LMNN and ITMLon two out of three data sets, namely Balane and Iris. However, LMNN and ITML performedbetter on Wine beause they were able to down-weigh an in�uential attribute just like SNN.In omparison with Multilass SVM, gCosLA performed muh better for all of the threeolletions whereas SiLA was better for Balane and Iris.gCosLA and SiLA are further ompared with many other state of the art approahes likeXing's algorithm [114℄, KRCA (Kernal Relevant Component Analysis) [104℄, IGML (Linear In-formation Geometri Approah for Metri Learning), KIGML (Kernel Information GeometriApproah for Metri Learning), Eulidean distane and Mahalanobis distane. The results fordistane learning methods are opied from Wang and Jin [107℄ whereas we report the results forosine similarity and our similarity metri learning approahes i.e. SiLA and gCosLA. Moreover,Wang and Jin have have found that the best value of k is 4. However, in our ase, we �nd thevalue of k using double ross-validation. Table 5.22 and 5.23 give the results where the best onesare written in bold. Similarly the ranking for di�erent algorithms is given in table 5.24 where 1represents the best algorithm whereas 10 stands for the worst. 135



Chapter 5. Experiments and ResultsIt an be observed that for olletions like Iris, Soybean, Ionosphere, Sonar and Glass, forwhih the osine measure performs better than the Eulidean distane, the osine based methodsi.e. Cosine, SiLA and gCosLA outlass the distane based ones. This means that for theseolletions, it is better to use similarity based methods rather than learning distane metris.The standard osine measure has got the highest auray for Iris and Soybean while it is rankedseond for Sonar as well as Glass datasets. Similarly SiLA got the �rst position for Soybean andIonosphere whereas it got the third rank for Sonar, Glass and Optdigits. gCosLA got the thirdrank for Iris and Sonar.Eul Mahal Xing LMNN ITMLIris 5.0 ± 2.9 10.8 ± 3.3 3.5 ± 1.9 4.5 ± 2.1 4.3 ± 2.7Soy 6.0 ± 5.1 2.8 ± 3.2 1.1 ± 2.2 2.2 ± 2.1 0.7 ± 1.0Iono 17.8 ± 1.6 18.4 ± 2.0 10.3 ± 1.3 15.0 ± 1.9 11.1 ± 2.6Sonar 28.9 ± 4.2 28.9 ± 3.8 28.9 ± 4.2 20.3 ± 4.4 28.3 ± 6.3Glass 35.5 ± 3.5 34.9 ± 3.2 41.7 ± 4.9 34.9 ± 3.2 36.2 ± 3.4Opt 2.1 ± 0.3 5.9 ± 0.5 12.3 ± 0.9 1.6 ± 0.3 2.1 ± 0.3Wine 29.6 ± 3.6 7.5 ± 2.2 10.8 ± 4.6 4.1 ± 1.8 7.7 ± 3.0Seg 23.6 ± 3.1 16.9 ± 3.6 23.2 ± 3.4 14.7 ± 1.9 16.6 ± 5.0Wave 19.5 ± 0.6 36.1 ± 0.8 17.0 ± 0.8 19.1 ± 0.7 19.7 ± 0.7Pima 28.0 ± 1.8 27.8 ± 2.0 27.9 ± 1.7 27.1 ± 1.7 27.8 ± 1.7Table 5.22: Comparison of SiLA and gCosLA with many state of the art approahes - IKRCA IGML KIGML Cosine gCosLA SiLAIris 4.1 ± 1.6 2.7 ± 1.7 3.9 ± 2.8 2.0 ± 3.0 3.3 ± 3.3 3.3 ± 3.3Soy 0.1 ± 0.8 1.8 ± 2.1 0.4 ± 1.3 1.0 ± 0.0 8.9 ± 9.3 1.0 ± 0.0Iono 17.2 ± 1.6 16.6 ± 1.8 14.2 ± 1.6 12.9 ± 2.0 13.4 ± 2.6 8.9 ± 3.3Sonar 26.5 ± 4.6 28.1 ± 4.5 14.6 ± 4.0 18.5 ± 5.1 20.0 ± 4.01 20.0 ± 9.0Glass 36.9 ± 2.7 35.8 ± 2.3 33.3 ± 3.1 33.8 ± 8.5 36.2 ± 4.9 34.8 ± 8.4Opt 2.1 ± 0.3 3.2 ± 0.3 1.4 ± 0.2 2.1 ± 0.3 2.5 ± 0.6 2.0 ± 0.3Wine 4.6 ± 1.5 5.0 ± 1.6 6.1 ± 1.9 21.1 ± 5.2 14.3 ± 7.0 19.4 ± 8.9Seg 15.0 ± 2.7 12.9 ± 3.4 12.4 ± 3.5 30.5 ± 9.9 24.3 ± 6.16 26.2 ± 12.5Wave 20.1 ± 0.7 30.6 ± 0.7 21.1 ± 0.6 20.2 ± 1.2 20.2 ± 1.2 20.7 ± 1.1Pima 27.8 ± 1.6 27.6 ± 1.9 27.8 ± 2.0 37.0 ± 4.4 38.2 ± 5.1 35.3 ± 1.8Table 5.23: Comparison of SiLA and gCosLA with many state of the art approahes - IIFurthermore, it is better to use algorithms based on distane metris for olletions on whihthe Eulidean distane performs muh better than the standard osine i.e. Segmentation, Wave-form and Pima. This suggests that the deision to use either the similarity or distane metrilearning ould be based on the relative performane of the osine similarity and the Eulideandistane.136



5.8. Comparison between kNN-os and SkNN-os1 2 3 4 5 6 7 8 9 10 11Iri C IG g, S X KI KR IT L E MSoy C, S KR KI IT X IG L M E gIon S X IT C g KI L IG KR E MSon KI C g, S L KR IG IT M, E, XGla KI C S L, M E IG IT, g KR XOpt KI L S C, E, IT, KR g IG M XWin L KR IG KI M IT X g S C ESeg KI IG L KR IT M X E g S CWav X L E IT KR C, g S KI IG MPim L IG KR, IT, KI, M X E S C gTable 5.24: Ranking of di�erent algorithms on UCI datasetsAlthough for Wine dataset, similarity learning algorithms perform better than the Eulideandistane, yet they are not ranked in the top algorithms beause of the presene of an in�uentialattribute. Algorithms like LMNN and KRCA were able to downweigh this in�uential attributeas opposed to the similarity learning ones.On this set of olletions, it an be observed that the similarity learning approahes (SiLAand gCosLA) have di�ulties to outlass the standard osine measure, unlike what we observedon other olletions (table 5.5). We know of no way of assessing in advane whether similaritymetri learning should be preferred over the standard osine on a partiular olletion, and thisshould be investigated in the future.5.8 Comparison between kNN-os and SkNN-osTable 5.25 ompares the performane of kNN and SkNN on various datasets with the osinemeasure. s-test was used to �nd the statistial signifane of the results. SkNN performed signi�-antly muh better (≫) than kNN on Balane, German, Heart and Yeast datasets while slightlybetter (>) on Pima dataset. On the other hand, kNN was able to perform signi�antly better(≫) than its symmetri variant only on one of the datasets i.e. Ionosphere.Although the auray for SkNN on Liver was 63.8% against 62.0% while using the standardkNN, the results were not signi�ant enough. These results show that it is muh better, ingeneral, to use the symmetri version of kNN rather than the original kNN lassi�ation rule.Figure 5.12 desribes the performane of kNN-os and SkNN-os on di�erent datasets. Thepreision as well as standard deviation is shown in the �gure.5.9 ConlusionMost of the works involving metri learning have restrited themselves to learning distane met-ris. However we showed that osine similarity should be preferred over the Eulidean distaneon non-textual data olletions apart from the usual textual ones. A statistial test, s-test was137



Chapter 5. Experiments and ResultskNN-os SkNN-osSoybean 1.0 ± 0.0 0.989 ± 0.034Iris 0.987 ± 0.025 0.987 ± 0.025Letter 0.997 ± 0.002 0.997 ± 0.002Balane 0.954 ± 0.021 0.969 ± 0.013 ≫Wine 0.865 ± 0.050 0.867 ± 0.055Ionosphere 0.871 ± 0.019 > 0.860 ± 0.024Glass 0.899 ± 0.085 0.898 ± 0.081Pima 0.630 ± 0.041 0.643 ± 0.030 >Liver 0.620 ± 0.064 0.638 ± 0.060German 0.594 ± 0.040 0.620 ± 0.030 ≫Heart 0.670 ± 0.020 0.711 ± 0.036 ≫Yeast 0.911 ± 0.108 0.917 ± 0.103 ≫Spambase 0.858 ± 0.009Musk-1 0.844 ± 0.028Table 5.25: Comparison between kNN-os and SkNN-os on s-test

Figure 5.12: kNN-os vs SkNN-os on various datasets138



5.9. Conlusionperformed to assess whether the results are signi�anly di�erent or not. Furthermore, doubleross-validation tehnique was employed in order to determine the di�erent parameters of variousalgorithms. The osine similarity outperformed the Eulidean distane on some of the olletionslike Iris, Balane, Wine, Ionosphere and Spambase using binary lassi�ation. The unontrainedsimilarity learning algorithm, SiLA as well as the generlized Cosine similarity Learning AlgorithmgCosLA were ompared with the standard osine using both the kNN as well as SkNN rules. Onmany of the data sets, the algorithms learning a similarity metri performed signi�antly betterthan the standard osine similarity. Moreover, gCosLA performed better than SiLA on many ofthe data sets.While omparing the RELIEF family of algorithms, we found that the striter version ofRELIEF-Based Similarity algorithm (sRBS performed signi�antly muh better than its oun-terparts on most of the datasets using the two lassi�ation rules: kNN-A as well as SkNN-A.This proved that it is far better to use the O-1 loss funtion rather than its approximation aswas done in the ase of RELIEF and RBS. Moreover, the performane of RELIEF algorithmimproved with the use of positive, semi-de�nite matries.gCosLA and SiLA were also ompared with many state of the art approahes in metrilearning like Xing's algorithm [114℄, Large Margin Nearest Neighbor lass�ation (LMNN) [112℄,Information Theoreti Metri Learning (ITML) [28℄, Maximally Collapsing Metri Learning al-gorithm (MCML) [41℄, Similarity Learning with Neural Networks (SNN), Kernel Relevant Com-ponent Analysis (KRCA) [104℄, Linear Information Geometri approah for Metri Learning(IGML) [107℄, Kernel Information Geometri approah for Metri Learning (KIGML) [107℄. Itwas observed that for olletions like Iris, Soybean, Ionosphere, Glass and Sonar, on whih osineperforms better than the Eulidean distane, similarity metri learning algorithms outperformthe distane metri learning ones. On the other hand, it is better to use distane metri learn-ing algorithms on olletions like Segmentation, Waveform and Pima for whih the Eulideandistane proves to be a better option than the standard osine. Although the similarity basedmethods perform better than the Eulidean distane for Wine, yet they do not rank among thetop algorithms beause of the presene of an in�uential attribute. Algorithms like LMNN andKRCA were able to redue the in�uene of this attribute as opposed to the similarity learningones.
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6.1. Main ontributionsMahine learning is the study of omputer algorithms that improve their performane automati-ally by experiene. As di�erent data types exhibit di�erent properties, it an be useful to learnthe geometry underlying the data to be proessed. Indeed, many reent works, e.g. Weinbergeret al. [112℄, Jain et al. [53℄ et., have shown that learning a metri, based on the geometry ofthe spae ontaining the data, is often a better idea than assuming the presene of a simplegeometri struture. However, most of the works in the �eld of metri learning work only withdistane metri learning and do not onsider similarities e.g. Goldberger et al. [42℄, Xing etal. [114℄, Davis et al. [28℄, Globerson et al. [41℄. Traditionally the osine measure has been shownto perform well for the textual datasets [95℄. However some reent works like Qamar et al. [87℄,Peterson et al. [84℄ have shown that osine similarity should also be preferred over the distaneson non-textual data olletions.6.1 Main ontributionsWe have foussed here on learning (omplete) similarities from data to be used in kNN lassi�-ation, onsidering di�erent senarios, some relying on few labelled data, others making use ofdata sets fully annotated. In situations where only a small amount of annotation is available, onean not learn omplex strutures, and we limited ourselves to learning a few meta-parametersontrolling osine-based similarities. This work was appropriately deployed in the ontext of theINFILE traks, during the evaluation ampaigns CLEF 2008 and CLEF 2009. In situations withmore annotation, we have onsidered two possible generalizations of existing, well-establishedsimilarity measures. These two generalizations mainly di�er in the onstraints they rely on. The�rst one imposes almost no onstraint on the transformation to be used; in partiular, the nor-malizations onsidered do not depend on the metri learned, whih makes the learning proesseasier. The seond however imposes strong onstraints on the metri learned, in partiular thatit should orrespond to a true osine measure in an embedded spae. As suh, it should relyon semi-de�nite matries, with a normalization whih does depend on the metri learned. Ifthe �rst generalization was based on the pereptron algorithm family, the seond one requires adi�erent approah. In both ases, we have provided theoretial proofs of the orret behavior ofour algorithms.Learning a metri implies to model dependenies between features, and weigh them orretly.This objetive is shared by feature re-weighting proedures, and several reent works have em-phasized the links between suh proedures (as RELIEF) and supervised learning of metris. Wehave studied here this link in detail, and have shown that the objetive funtion approximated inthe RELIEF family was not optimal. We have then throughly evaluated our algorithms, tryingto assess when they provided a signi�ant improvement in the results. We have furthermoreompared their performane with alternative approahes. It is always di�ult to ompare twoapproahes whih are very di�erent in nature. We believe that the omparison we have per-formed indiates that similarity learning methods, and the algorithms we have proposed for this,are valuable mahine learning tools whih an omplement existing distane metri learning ones.We now provide a summary of the main ontributions of our work.1. A thorough study of metri learning algorithms inluding the distane metri learningalgorithms as well as the similarity metri learning ones is performed. 143



Chapter 6. Conlusion and Perspetives2. An information �ltering tehnique is developed whih an be used to learn osine basedategory spei� thresholds, provided some sort of supervision is present. Online and Bathalgorithms were developed for the information �ltering proess. Both methods were able toget the best F-sore during INFILE trak of CLEF ampaign in the years 2008 and 2009.3. Cosine similarity was shown to perform better than the Eulidean distane on manydatasets.4. An unonstrained similarity metri learning algorithm alled SiLA was developed to learnthe similarity metris for kNN lassi�ation. The normalization in SiLA is totally inde-pendent of the similarity matrix whih helps to learn di�erent types of similarity funtionsbased on diagonal, symmetri or asymmetri matries. The onvergene and the general-ization properties were established and the proofs have been provided. A statistial test,s-test, was used to statistially analyze all of the results.5. The links between RELIEF and SiLA were studied. This was followed by the developmentof a RELIEF Based Similarity (RBS) learning algorithm. However it turned out that RBSdid not perform well in pratie. The main reason is that RBS tries to optimize a ostfuntion approximating the 0 − 1 loss on the footsteps of RELIEF. We showed that thisapproximation is loose, and proposed a striter version of RBS, alled sRBS, based on aost funtion loser to the 0 − 1 loss. sRBS performed signi�antly better than the otherRELIEF based algorithms indiating in partiular that the 0−1 loss is a more appropriateost funtion that the one impliitly used by RELIEF.6. Lastly, an algorithm based on the generalized osine similarity was developed. The algo-rithm is named gCosLA for Generalized Cosine similarity metri Learning Algorithm. Thenormalization in the ase of gCosLA was dependent on the similarity matrix and the sim-ilarity matrix belonged to the lass of positive, semi-de�nite matries. The results showedthat gCosLA was signi�antly better than SiLA on many of the olletions onsidered.7. SiLA and gCosLA were ompared with many state of the art metri learning algorithmsand were found to be performing very well in situations where similarities are useful. Assuh, they onstitute new mahine learning tools whih an adequately omplement existingdistane metri learning algorithms.Having reviewed the main ontributions of our thesis, we now turn to the limitations of our work,and the perspetives it opens.6.2 Limitations and PerspetivesAs with any mahine learning algorithm, the similarity learning algorithms have their own lim-itations. The proess of threshold learning does not perform like the metri learning one as itdoes not take into aount the geometry of the spae ontaining the data. Although SiLA wasused with a large dataset of Newsgroup, yet it remains to be shown how it an work with massivedatasets. The omplexity of SiLA is quadrati in the number of dimensions. Though a verypromising algorithm, gCosLA is a bit slow owing to its ubi omplexity in terms of the number144



6.2. Limitations and Perspetivesof dimensions. This is the reason why gCosLA took a lot of time with the Newsgroup dataset. AsgCosLA learns positive, semi-de�nite (PSD) matries using eigenvalue deomposition, its om-plexity an be redued using eigenvalue approximation methods e.g. Lanzos algorithm and itsspeialized variants, but this has to be investigated more throughly. There is yet another wayin whih the omplexity of gCosLA ould be redued, using the fat that any PSD matrix Mould be deomposed into U tU where U is a matrix of lower rank. In this ase, the onstraintson semi-de�niteness need not be enfored, whih leads to a faster algorithm (suh a trik isemployed for example in [47℄ in the ontext of distane learning). However, even though faster,the problem of learning U is not neessarily easier, beause of loal optima. It is thus not learwhether this strategy would be bene�ial to gCosLA, and further investigation is neessary here.Related to speed issues, but with additional impliations, is the lak of ontrol of the aggres-siveness of the update rules underlying the algorithms we have presented (in partiular SiLA).One of the strengths of the Passive-Aggressive family is preisely suh a ontrol, whih ould beadded in our ase as well. This being said, tuning meta-parameters is not always an easy task,and may lead to additional omputation. One an nevertheless hope that a valid solution wouldbe attained faster, and thus requiring less updates and leading to an overall faster learning pro-ess. Beause of the potential pratial and theoretial impliations they an have, we believeit would be worth to investigate in a near future the use of aggressiveness parameters in ouralgorithms.Another limitation of our work lies in the fat that only global similarity metris were learned(by resorting to binary lassi�ation and the standard one-vs-the-rest rule, several matries arein fat learned to solve a multi-lass ategorization problem; however, all the matries are globalin the sense that they are not adapted to spei� regions of the spae). Another possibility isto learn di�erent loal similarity metris in di�erent parts of the input spae as is the ase forMulti-Metri LMNN algorithm [112℄. One possibility with the approah we have followed wouldbe to onsider neighborhood regions around eah point and all the examples they ontain, andthen learn matries for eah suh regions. The lassi�ation of a data point would then involveonly the regions whih yield the neighborhood of the point. If this approah seems simple andpromising, it would ertainly involve more omputation than the urrent ones. They thus allfor simpler and faster versions of the algorithms we have presented.Lastly, another perspetive we would like to explore is the use of SiLA algorithm in a di�erentontext, namely the one of Information Retrieval (IR), as this domain heavily relies on theosine similarity measure, whih ould be learned from existing relevane judgements. In IR, thesimilarity is alulated between a query q and a doument d. A possible appliation of SiLA inthis ase ould go along the following lines: the query q ould replae x(i), repeated N1 (numberof retrieved douments judged relevant by the user) times; the target neighbor y ould then behosen arbitrarily, or aording to the standard osine similarity measure, from the set of relevantdouments, whereas z would represent the losest non-relevant douments. As mentioned above,the matrix A ould be learned using existing relevane judgements, or potentially user feedbak.We plan on investigating these di�erent possibilities in the near future.
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Appendix AProofs for Theorems for SiLA andgCosLAThis Appendix gives the proof of theorems 1 and 2 for SiLA and theorem 1 for gCosLA. Theorem 1for SiLA is based on Blok [13℄ and Noviko� [77℄ and was used in Freund and Shapire [37℄.Similarly, the proof for theorem 2 of SiLA parallel the one provided in Collins [20℄ adapted fromFreund and Shapire [37℄.A.1 Theorem 1 - SiLA (separable ase)For any training sequene S = ((x(1), c(1)), · · · , (x(n), c(n))) separable with margin γ, for oneiteration (epoh) of the (on-line) update rule of SiLANumber of mistakes ≤ R2/γ2where R is a onstant suh that:
∀i, ∀(z1 , · · · , zk) ∈ c̄i, ‖

∑

y∈T (i)

φ(x(i), y)−
k∑

n=1

φ(x(i), zn)‖ ≤ RProof: Let αk be the weight vetor before the k'th mistake is made. It follows that α1 = 0(sine initial weights are zero). Suppose that the k'th mistake is made at the i'th example. Let
B(i) represent the k nearest neighbors from the lass c̄(i):

B(i) = kNN(A(t), x(i), c̄(i))The update for the SiLA algorithm an be written in the vetor notation in the following manner:
αk+1 = αk +

∑

y∈T (i)

φ(x(i), y)−
∑

z∈B(i)

φ(x(i), z)This is followed by taking the inner produt of both sides with the vetor U :
U.αk+1 = U.αk +U.

∑

y∈T (i) φ(x
(i), y)−U.

∑

z∈B(i) φ(x
(i), z)

≥ U.αk + γ 147



Appendix A. Proofs for Theorems for SiLA and gCosLAwhere the inequality follows from de�nition 1 of SiLA. As α1 = 0, and hene U.α1 = 0, it followsby indution on k that ∀k U.αk+1 ≥ kγ. Sine U.αk+1 ≤ ‖U‖‖αk+1‖, it follows that:
‖αk+1‖ ≥ kγ (A.1)whih gives the lower bound for ‖αk+1‖.The upper bound for ‖αk+1‖2 an now be derived in the following manner:

‖αk+1‖2 = ‖αk‖2 + ‖∑y∈T (i) φ(x
(i), y)−∑z∈B(i) φ(x

(i), z)‖2

+2αk.(
∑

y∈T (i) φ(x
(i), y)−∑z∈B(i) φ(x

(i), z))

≤ ‖αk‖2 +R2where the inequality follows as ‖
∑

y∈T (i) φ(x
(i), y) −

∑

z∈B(i) φ(x
(i), z)‖ ≤ R2 by assumption,and αk.(

∑

y∈T (i) φ(x
(i), y) −∑z∈B(i) φ(x

(i), z)) ≤ 0 sine z is the highest soring andidate for
xi under the parameters αk (as it is the losest example from all of the lasses other than c(i)).It follows by indution that:

‖αk+1‖2 ≤ kR2 (A.2)whih represents the upper bound for ‖αk+1‖2.The inequalities for the lower bound A.1 and the upper bound A.2 an be ombined to ompletethe proof:
∀k k2γ2 ≤ ‖αk+1‖2 ≤ kR2 =⇒ k ≤ R2

γ2A.2 Theorem 2 - SiLA (non separable ase)For any training sequene S = ((x(1), c(1)), · · · , (x(n), c(n))) separable with margin γ, for oneiteration (epoh) of the (on-line) update rule of SiLANumber of mistakes ≤ minα,γ (R+Dα,γ)2

γ2where R is a onstant suh that:
∀i,∀(z1 , · · · , zk) ∈ c̄i, ‖

∑

y∈T (i)

φ(x(i), y)−
k∑

n=1

φ(x(i), zn)‖ ≤ R,and the min is taken over α and γ suh that ‖α‖ = 1, γ > 0.Proof: In order to prove Theorem 2, the representation φ(x, y) ∈ R
d is modi�ed to φ(x, y) ∈

R
d+n in the following manner:For i = 1, · · · , d de�ne φi(x, y) = φi(x, y). For j = 1, · · · , n de�ne φd+j(x, y) = ∆ if

(x, y) = (xj, yj), 0 otherwise, where ∆ is a parameter and is greater than 0. Similarly, onsider a
U, γ pair, and orresponding values for ǫi as de�ned above. Consequently a modi�ed parametervetor U ∈ R

d+n an be de�ned along with Ui = Ui for i = 1, · · · , d and Ud+j =
ǫj
∆ for

j = 1, · · · , n. Under these onditions, it an be veri�ed that:148



A.3. Theorem 4 - gCosLA1.
∀i, ∀(z1, · · · , zk) ∈ ci U.

∑

y∈T (i)

φ(x(i), y)−U.
∑

z∈B(i)

φ(x(i), z) ≥ γ2.
∀i, ∀(z1, · · · , zk) ∈ ci ‖

∑

y∈T (i)

φ(x(i), y)−
∑

z∈B(i)

φ(x(i), z)‖2 ≤ R2 +∆23.
‖U‖2 = ‖U‖2 +

∑

i

ǫ2i
∆2

= 1 +
D2

U,γ

∆2It an be observed that the vetor U

‖U‖
is able to separate the data with the margin γ

√

1+
D2

U,γ

∆2

.From Theorem 1, it an be onluded that the �rst pass of the algorithm SiLA with representation
φ makes kmax(∆) = 1

γ2 (R
2+∆2)(1+

D2
U,γ

∆2 ) mistakes in the worst ase. However, it an be furthernotied that the �rst pass of the original algorihtm SiLA with representation φ is similar to the�rst pass of SiLA along with the new representation φ, sine the parameter weights for theadditional features φd+j for j = 1, · · · , n eah a�et a single example of training data, anddo not a�et the lassi�ation phase of the test data. Thus the original algorithm SiLA alsomakes kmax(∆) mistakes in the worst ase senario during the �rst pass over the training set ofexamples. Finally, kmax(∆) an be minimized with respet to ∆, thus giving ∆ =
√

RDU,γ andhene kmax(
√

RDU,γ) =
(R2+D2

U,γ)

γ2 , implying the bound in the theorem.A.3 Theorem 4 - gCosLALet (x1, x′1, y1), · · · (xτ , x′τ , yτ ), · · · , (xN , x′N , yN ) be a sequene of N examples. For any positive,semi-de�nite matrix A, let for eah τ , 1 ≤ τ ≤ N :
R−1(xτ , x

′
τ , A) = [min((xtτAxτ ), (x

′t
τAx

′
τ ))]

−1and
R+1(xτ , x

′
τ , A) = [max((xtτAxτ ), (x

′t
τAx

′
τ ))]

−1Assume that there exists a positive, semi-de�nite matrix A∗, a threshold b∗ and a positive realnumber γ suh that:
(R+1x

t
τA

∗x′τ − b∗) ≥ γ ∧ (b∗ −R−1x
t
τA

∗x′τ ) ≥ γUsing the notations introdued previously, let R ∈ R
+ be an upper bound suh that:

1

‖xτx′tτ ‖2 + 1
R2

yτ ‖xτ‖42‖x′τ‖42 ≤ R, yτ ∈ {−1,+1}Then the following bound holds for any M ≥ 1:
M∑

τ=1

(lτ (A, b))
2 ≤ R

(
‖A∗ − I‖22 + (b∗)2

) 149



Appendix A. Proofs for Theorems for SiLA and gCosLAProof:Let ∆τ = ‖(Aτ , bτ )− (A∗, b∗)‖22 − ‖(Aτ+1, bτ+1)− (A∗, b∗)‖22. Then:
T∑

τ=1

∆τ = ‖(A1, b1)− (A∗, b∗)‖22 − ‖(Aτ+1, bτ+1)− (A∗, b∗)‖22 (A.3)
≤ ‖(A1, b1)− (A∗, b∗)‖22 (A.4)and

∆τ =

(

‖(Aτ , bτ )− (A∗, b∗)‖22 − ‖(Âτ , b̂τ )− (A∗, b∗)‖22

) (A.5)
+

(

‖(Âτ , b̂τ )− (A∗, b∗)‖22 − ‖(Aτ+1, bτ+1)− (A∗, b∗)‖22)
) (A.6)By assumption, (A∗, b∗) ∈ C ′yτ

τ and (Âτ , b̂τ ) ∈ C ′yτ
τ . (Âτ , b̂τ ) is the projetion of (Aτ , bτ ) on

C ′yτ
τ . So, using equation A.6, ∆τ an be written as:

∆τ ≥ ‖(Aτ , bτ )− (Âτ , b̂τ )‖22 +
(

‖(Âτ , b̂τ )− (A∗, b∗)‖22 − ‖(Aτ+1, bτ+1)− (A∗, b∗)‖22

)Furthermore, and again by assumption, (A∗, b∗) ∈ Ca and (Aτ+1, bτ+1) ∈ Ca. So, one againusing equation A.6, ∆τ an be expressed as:
∆τ ≥ ‖(Aτ , bτ )− (Âτ , b̂τ )‖22 + ‖(Âτ , b̂τ )− (Aτ+1, bτ+1)‖22 ≥ ‖(Aτ , bτ )− (Âτ , b̂τ )‖22By de�nition:

lτ (A, b) = max{0, yτ (b− xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

) + γ},and
Âτ = Aτ + yτa(xτ , x

′t
τ ) , a =

γ − yτRyτ (x
t
τAτx

′
τ ) + yτ b

Ryτ (‖xτ‖2‖x′τ‖2)In ase yτ = +1, Âτ = Aτ + ya(xτ , x
′t
τ ) , b̂τ = bτ + a Thus, a an be rewritten as: a =
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, ‖(Aτ , bτ )− (Âτ , b̂τ )‖22 = a2(‖xτx′tτ ‖22 + 1)But it is already known that:

R+1x
t
τAτx

′
τ ≤ xtτAτx

′
τ

√

xtτAτxτ
√

x′tτAτx′τSo:
γ −R+1x

t
τAτx

′
τ + bτ ≥ lτ (Aτ , bτ )150



A.3. Theorem 4 - gCosLAHene:
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Appendix A. Proofs for Theorems for SiLA and gCosLA
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Appendix BFrenh TranslationL'apprentissage automatique est l'art du oneption, développement et l'evaluation des algor-tithmes qui sont apables d'évoluer leurs omportements en se basant sur des données empiriques.Les algorithmes d'apprentissage automatique améliorent automatiquement leurs performanes Pmeusuré à travers d'une expériene E sur une tâhe T . Par exemple, on peut onsidérer leproblème de la oneption d'un système qui apprend à jouer aux dames. Dans e as, la tâhe
T est de jouer aux dames, la mesure du performane P est le pourentage de jeux gagnés dansun tournoi mondial et E est l'oasion de jouer ontre soi-même.L'apprentissage automatique a réemment émergé omme l'un des domaines lés de l'intelligenearti�ielle. L'une des prinipales raisons de sa popularité réside dans le désir passionné del'homme à explorer et à reproduire le proessus de l'apprentissage humain. L'apprentissage au-tomatique peut être onsidéré omme une double tâhes d'une part onsistant à apprendre lespropriétés invariantes et ommunes d'un ensemble d'éhantillons qui aratérisent une lasse, etd'autre part de déider qu'un nouvel éhantillon est un membre possible de la lasse en véri�ants'il a des propriétés ommunes à eux de l'ensemble d'éhantillons appris.Les algorithmes d'apprentissage automatique peuvent être lassés dans trois atégories dif-férentes : l'apprentissage supervisé dans la quelle l'apprentissage est basé sur un ensemble dedonnées étiquetées, l'apprentissage non-supervisé, qui ne néessite auun type d'intervention hu-maine et ne passe une phase d'apprentissage (il est généralement utilisé lorsque les lasses ne sontpas onnues à l'avane), et l'apprentissage semi-supervisé qui est entre les approhes superviséeset non-supervisées.L'apprentissage automatique a été utilisé dans divers milieux di�érents tels que la lassi�a-tion (par exemple la reonnaissane des hi�res manusrits [63℄, lassi�ation des douments [55℄,reonnaissane des visages [105℄ et.), de lustering (k-means lustering [11℄, la lassi�ationspetrale [115℄), le bio-informatique, la �nane, les systèmes de �ltrage de l'information qui ap-prennent automatiquement les intérêts des utilisateurs, détetion des fumées dangereuses sur desinstallations industrielles [39℄ et. Il est basée sur l'apprentissage à partir des données, et donétroitement liée au domaine de la fouilles de données. Ce domaine se base sur l'extration desmodèles utiles à partir des données brutes pour les rendre plus utiles.Chaque algorithme d'apprentissage automatique travaille ave un ensemble d'exemples. Dnaset ensemble, quelques exemples sont utilisés pour apprendre les aratéristiques sous-jaentes desdonnées à partir d'un ensemble de traits. Ce sous-ensemble est appelé ensemble d'apprentissage.153



Appendix B. Frenh TranslationA�n de valider un algorithme, il est exéuté sur des nouveaux exemples onstituent un ensemblede test. Un ensemble de validation peut éventuellement être utilisé pour optimiser les di�érentsparamètres de l'algorithme.B.1 MotivationConsidérons deux objets à omparer, par exemple deux douments ou des images. A�n de faireette omparaison, une similarité ou une distane peut être alulée entre es deux objets. Laplupart du temps, des mesures par défaut sont utilisée, 'est à dire la distane eulidienne dansle as des images et la similarité osinus pour la lassi�ation de texte. Ces mesures par défautonsidèrent que la métrique entre les di�érents objets est paramétré par une matrie d'identité.En d'autres termes, des mesures omme la distane eulidienne et la similarité osinus onsidèrentune géométrie très simple de l'espae dans laquelle les données se trouvent. De nombreux travauxont démontré qu'il est beauoup mieux d'apprendre la struture métrique à partir des donnéesplut�t que de supposer une struture géométrique très simple omme la distane eulidienne oula similarité osinus.La réente popularité d'Internet a onduit à une énorme augmentation de la quantité d'informations,et à un élargissement de domaines de reherhe onsaré à l'organisation automatique de es infor-mations. Depuis 2000, un forum d'évaluation nommé Cross Language Evaluation Forum (CLEF)est organisé haque année. Le but est d'évaluer les systèmes de reherhe d'information utilisantles langues européennes dans les ontextes monolingues ainsi qu'inter-langues. Une ampagnepour le �ltrage des informations (INFILE) a été menée omme une piste pilote du CLEF en 2008et 2009. L'objetif du INFILE était de �ltrer un �ux ontinu de douments de di�érents thèmesprédé�nis. Dans le as du �ltrage de l'information, les seuils basés sur le osinus pourraient êtreappris sur la base des �ux entrant de douments, à ondition q'une sorte de supervision existe.L'algorithme en ligne a été développé en 2008 et a été la seule partiipation pour INFILE etteannée. En outre, l'algorithme d'apprentissage par lot a obtenu la meilleur valeur F en 2009 entreles di�érents partiipants. Apprendre une métrique omplète est mieux qu'apprendre seulementles seuils. Si on travaille dans un adre entièrement supervisé. Cela a donné lieu à un domaineappelé apprentissage des métriques [54, 53℄. Figure ?? indique les inq premières images lasséespar OASIS [16℄ (un algorithme d'apprentissage des distanes sur les images 19) sur quatre exem-ples de requêtes-images dans un ensemble de données de Google. Les requêtes texte pertinentspour haque image sont notées sous l'image. La ligne la plus haute montre une requête-image,retrouvé à l'origine omme réponse à la requête textuelle illusion. Nous remarquons que tousles inq images hautement lassées par OASIS sont sémantiquement liées, représentant d'autrestypes d'illusions visuelles. Les autre trois exemples montrent que OASIS a pu s'aroher àla sémantique des photos d'animaux (hiens et hats), les montagnes et les di�érents produitsalimentaires.L'objetif prinipal de l'apprentissage métriques est d'apprendre une métrique adaptée auproblème onsideré. Les algorithmes de la lassi�ation et le regroupement des données dépen-dent fortement de la présene d'une bonne mesure. En dehors de es domaines, l'apprentissagede la métrique est un élément très important dans les problèmes omme la reonnaissane des19Dans e travail, auune distintion n'est faite entre la distane et la similarité.154



B.1. Motivation

Figure B.1: OASIS: Un algorithme d'apprentissage de la métrique de la distane pour trouverles images similaires [16℄
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Appendix B. Frenh Translationvisages, reonnaissane d'objets visuels, la reonnaissane automatique de la parole [107℄, prob-lèmes de langue, la similarité de la musique, estimation de la pose, la similarité et la reherhed'image [59℄ et. Pour beauoup d'algorithmes d'apprentissage de métrique, quelque soit en ligneou par lots, l'apprentissage métrique peut être divisé en deux types di�érents: l'apprentissage dela distane et l'apprentissage du similarité.La plupart des travaux relatifs à l'apprentissage se onentrent uniquement sur l'apprentissagede la distane et essayent d'apprendre la métrique de la distane de Mahalanobis. Toutefois,dans de nombreuses situations pratiques, des similarité peuvent être préférés sur de longuesdistanes. C'est typiquement le as quand on travaille sur des textes, pour lesquels la mesuredu osinus a été jugé plus approprié que la mesure standard omme la distane eulidienne ouelle de Mahalanobis. En outre, plusieurs expérienes montrent que l'utilisation de la similaritéosinus doit être préféré à la distane eulidienne sur plusieurs olletions non textuelles (voirpar exemple [18, 72, 84, 87℄). Le fait de pouvoir apprendre de manière e�ae des mesures desimilarité appropriées, par opposition aux distanes, par exemple la lassi�ation k plus prohesvoisins kPPV, à une grande importane pour di�érentes olletions. Si plusieurs travaux ontpartiellement résolu e problème (omme par exemple [1, 46, 52℄) pour di�érentes appliations,nous ne onnaissons auun travail antérieur qui a pleinement traitée le as de l'apprentissagedes métriques de similarité pour la lassi�ation kPPV. C'est la motivation prinipale de etravail. Dans une premierè étape, un algorithme d'apprentissage d'une métrique de similaritésans ontrainte est développé. Dans e as, la normalisation est omplètement indépendantede la matrie de similarité. Les preuves montrent que l'erreur sur des exemples invisible estlimitée, et que l'algorithme a des bonnes propriétés de généralisation. Ensuite, nous avonsdéveloppé un algorithme basé sur le osinus généralisé ayant une normalisation dépendant dela matrie de similarité. En outre, l'apprentissage de similarité sans ontrainte est omparé àla famille d'algorithmes RELIEF. Bien que RELIEF est fondamentalement un algorithme dere-pondération, il a été prouvé réemment par Sun et Wu [102℄ qu'il s'agit d'un algorithmed'apprentissage de métrique de distane qui permet d'optimiser une approximation de la perte
0 − 1. Nous montrons ii que ette approximation est trop permissive, et nous proposons unautre approximation strite et mieux adaptée à la lassi�ation.B.2 Plan de la thèse
• Nous dérivons dans le hapitre 2, les notions de base liées à l'apprentissage automatique etnous passons en revue sur des diverses tehniques de l'etat de l'art pour l'apprentissage desmétriques. Les deux prinipaux types de apprentissage automatique, (supervisé ou non super-visé) sont examinés en détail. De plus, nous montrons que les bases de l'apprentissage en ligneet par lots. Certaines des prinipaux algorithmes d'apprentissage de métrique de distane,par exemple la lassi�ation par les plus prohe voisins ave une grande marge du Weinbergeret al. (LMNN) [112℄, théorie de l'information et apprentissage de métrique [28℄ et POLA [99℄,sont disutés et omparés à fond. En outre, la similarité ainsi que la similarité des méth-odes fondées sont également examinés. RELIEF, un algorithme de pondération des attributsbien onnue ave son interprétation mathématique est également présenté. Les paramètresd'évaluation et les tehniques de omparaison des lassi�eurs sont �nalement disutés.156



B.3. Conlusion
• Dans le hapitre 3, nous montrons omment on peut apprendre e�aement des seuils baséssur le osinus lorsqu'on a très peu ou pas du tout de supervision. Cette tehnique est établipour une tâhe de �ltrage, où un ensemble de douments est �ltrée en fontion des pro�ls util-isateurs. Les algorithmes en ligne ainsi que par lots sont disutés et une omparaison poussée.Les algorithmes sont développés dans le adre de la ampagne InFile de la ompétition CLEF.
• Chapitre 4 ommene par la desription d'une similarité ontrainte métriques méthode d'apprentissage,appelé SILA, où la normalisation est omplètement indépendant de la similarité appris ma-trie. SILA est omparée à l'algorithme du RELIEF pour lequel Sun et Wu [102℄ ont montréqu'il apprend essentiellement une mesure de distane tout en optimisant une fontion de oûtse rapprohant de la perte 0− 1. Nous montrons que l'approximation utilisée par it RELIEFest lâhe, et nous proposons une version plus strite en utilisant une fontion de oût plusprohe de la perte 0−1. Cette version plus strite onduit à une nouvelle et meilleure RELIEFalgorithme basé pour les similarités.En outre, un algorithme d'apprentissage de similarité du type osinus généralisé (gCosLA) estélaboré, dans e as, la normalisation dépend de la matrie de similarité.
• Les di�érentes algorithmes d'apprentissage des métrique de similarité réalisé au ours deette thèse sont évalués au hapitre 5. A�n d'évaluer si les résultats sont signi�ativementdi�érentes ou non, un s-test est utilisé. Nous montrons que la similarité est une optionmeuilleure par rapport à la métrique de distane sur des données nombreuses. De plus, lesalgorithmes d'apprentissage des métrique de similarité sans ontraintes, ainsi que eux de sim-ilarité généralisé sont omparés ave des autres algorithmes de lassi�ation. Les algorithmesd'apprentissage de similarité sont plus performants que leurs homologues sur ertaines basesde données UCI.
• Chapitre 6 présente la onlusion ave les limitations des approhes proposées et les perspe-tives d'avenir.
• En�n des preuves de onvergene et de bonne omportement ont été fournies pour SILA etgCosLA.B.3 ConlusionApprentissage automatique onern l'etude des algorithmes qui ameliore leurs performanes au-tomatiquement. Comme les di�érentes bases de données ont les proprieté di�érentes, don 'estutile d'apprendre la sous géometrie des données sous onsidération. Beauoup des travaux réentsomme Weinberger et al. [112℄, Jain et al. [53℄ et. ont montrésApprentissage automatique onern l'étude des algorithmes qui améliorent leurs performanesautomatiquement par l'expériene. Comme les di�érentes bases de données ont les propriétédi�érentes, il peut être utile d'apprendre la sous géométrie sous-jaente des données à traiter.En e�et, de nombreux travaux réents, par exemple, Weinberger et al. [112℄, Jain et al. [53℄ et,ont montré que l'apprentissage d'une métrique, basée sur la géométrie de l'espae ontenant lesdonnées, est souvent une meilleure idée que de supposer l' présene d'une struture géométriquesimple. Cependant, la plupart des travaux dans le domaine du travail d'apprentissage métriques157



Appendix B. Frenh Translationseulement à l'apprentissage métrique de distane et ne pas tenir ompte des similitudes, parexemple Goldberger et al. Cite Goldberger, Xing et al. Cite xing, Davis et al. Cite davis,Globerson et al. Cite Globerson. Traditionnellement, la mesure du osinus a été démontréque de bons résultats pour les ensembles de données textuelles ite salton. Toutefois, ertainstravaux réents omme Qamar et al. [87℄, Peterson et al. [84℄ ont montré que similarité osinusdevrait également être préféré sur les distanes sur les olletions de données non textuelles.B.4 Les prinipales ontributionsNous nous sommes onentrés ii sur l'apprentissage (omplète) des similarité à partir des donnéesà utiliser dans kNN lassement, ompte tenu de di�érents sénarios, dont ertains en s'appuyantsur quelques données étiquetées, d'autres en utilisant des ensembles de données entièrementannoté. Dans les situations où seule une petite quantité d'annotation est disponible, on nepeut apprendre des strutures omplexes, et nous nous sommes limités à l'apprentissage dequelques méta-paramètres de ontr�le à base de similarité du type osinus. Ce travail a étéà bon esient dans le ontexte des pistes INFILE, pendant les ampagnes d'évaluation CLEF2008 et CLEF 2009. Dans les situations ave plus d'annotation, nous avons examiné deuxgénéralisations possibles de l'existant, bien établi mesures de similarité. Ces deux généralisationsse distinguent prinipalement par les ontraintes dont ils dépendent. La première impose presqueauune ontrainte sur la transformation à utiliser, en partiulier, les normalisations onsidéréene dépendent pas de la métrique appris, e qui rend le proessus d'apprentissage plus faile. Leseond impose ependant des ontraintes fortes sur la métrique appris, en partiulier, qu'il doitorrespondre à une mesure du osinus vrai dans un espae intégré. En tant que tel, il devraits'appuyer sur des matries semi-dé�nies positifs, ave une normalisation qui ne dépendent de lamétrique appris. Si la première généralisation a été basé sur la famille pereptron, la seondenéessite une approhe di�érente. Dans les deux as, nous avons fourni des preuves théoriquesdu omportement orret de nos algorithmes.L'apprentissage d'une métrique implique de modéliser les dépendanes entre les fontions, etpeser orretement. Cet objetif est partagé par des proédures de re-pondération aratéris-tique, et plusieurs travaux réents ont souligné les liens entre es proédures (omme RELIEF) etapprentissage supervisé de paramètres. Nous avons étudié e lien ii en détail, et ont montré quela fontion objetif approhée dans le RELIEF famille n'a pas été optimale. Nous avons ensuitesoigneusement évalué nos algorithmes, d'essayer d'évaluer quand ils apportent une améliorationsigni�ative dans les résultats. Nous avons en outre omparé leurs performanes ave d'autresapprohes. Il est toujours di�ile de omparer les deux approhes qui sont de nature très dif-férente. Nous royons que la omparaison que nous avons e�etuée indique que les méthodesd'apprentissage similarité, et les algorithmes que nous avons proposé à et e�et, sont de préieuxoutils automatique Apprentissage qui peuvent ompléter les distanes métriques eux apprentis-sage. Nous allons maintenant présenter un résumé des prinipales ontributions de notre travail.1. Une étude approfondie de la métrique des algorithmes d'apprentissage, y ompris la dis-tane métrique algorithmes d'apprentissage ainsi que la similarité métriques eux d'apprentissageest e�etué.158



B.4. Les prinipales ontributions2. Un �ltrage de l'information tehnique est développé qui peut être utilisé pour apprendreosinus seuils atégorie, en fontion partiulière, pour autant une sorte de ontr�le estprésent. algorithmes en ligne et de lots ont été mis au point pour le �ltrage d'informationproessus. Les deux méthodes ont été en mesure d'obtenir le meilleur sore lors de F-titrede la ampagne CLEF INFILE dans les années 2008 et 2009.3. Cosinus similarité a été démontré de meilleures performanes que la distane eulidiennesur les nombreux ensembles de données.4. Un algorithme de similarité ontrainte métriques d'apprentissage appelé SILA a été développépour apprendre les mesures de similarité pour kPPV lassi�ation. La normalisation dansSILA est totalement indépendant de la similarité matrie qui permet d'apprendre les dif-férents types de fontions similarité basée sur des matries diagonales, symétrique ouasymétrique. La onvergene et la généralisation des propriétés ont été établies et lespreuves ont été fournies. Un test statistique, s-test, a été utilisé pour analyser statistique-ment l'ensemble des résultats.5. Les liens entre RELIEF et SILA ont été étudiés. Elle a été suivie par le développementd'un RELIEF similarité base (RBS) algorithme d'apprentissage. Cependant il s'est avéréque RBS n'a pas bien fontionné dans la pratique. La raison prinipale est que RBS essaied'optimiser une fontion de oût se rapprohant de la perte de 0 − 1 sur les traes deRELIEF. Nous avons montré que ette approximation est lâhe, et a proposé une versionplus strite de RBS, appelé sRBS, basé sur une fontion de oût plus prohe de la perte 0−1.sRBS obtenu des résultats signi�ativement meilleurs que les autres RELIEF algorithmesbasés en indiquant en partiulier que la perte de 0−1 est une fontion de oût plus appropriéque elui utilisé impliitement par RELIEF.6. En�n, un algorithme basé sur la similarité osinus généralisé a été développé. L'algorithmeest appelé gCosLA pour généralisé Cosinus similarité métriques algorithme d'apprentissage.La normalisation dans le as de gCosLA était dépendante de la matrie de similarité et de lasimilarité matrie appartenaient à la lasse de positif, matries semi-dé�nies. Les résultatsont montré que gCosLA était signi�ativement meilleure que SILA sur de nombreusesolletions en onsidération.7. SILA et gCosLA ont été omparés à de nombreux Etats de l'art métrique des algorithmesd'apprentissage et se sont révélés être de très bons résultats dans des situations où les sim-ilaritées sont utiles. Comme tels, ils onstituent de nouveaux outils automatique Appren-tissage qui peut ompléter de fa��on adéquate à distane existant métriques algorithmesd'apprentissage.Après avoir examiné les prinipales ontributions de notre thèse, nous nous tournons vers leslimites de notre travail, et les perspetives qu'il ouvre. 159



Appendix B. Frenh TranslationB.5 Limites et perspetivesComme ave n'importe quel algorithme automatique Apprentissage, les algorithmes d'apprentissagesimilarité ont leurs propres limites. Le proessus d'apprentissage seuil ne fontionne pas ommela métrique d'apprentissage ar il ne tient pas ompte de la géométrie de l'espae ontenant lesdonnées. Bien que SILA a été utilisé ave une grande base de données de Newsgroup, mais ilreste à montrer omment on peut travailler ave des ensembles de données des grandes dimen-sions. La omplexité de SILA est quadratique dans le nombre de dimensions. Bien que d'unalgorithme très prometteur, gCosLA est un peu lent en raison de sa omplexité ubique en ter-mes de nombre de dimensions. C'est la raison pour laquelle gCosLA a fallu beauoup de tempsave le base de donnée Newsgroup. Comme gCosLA apprend une matries positive, semi-dé�nie(PSD) en utilisant des matries de déomposition en valeurs propres, sa omplexité peut êtreréduite en utilisant des méthodes d'approximation des valeurs propres par exemple algorithmede Lanzos et ses variantes spéialisées, mais e doit être étudiée plus à fond. Il y a enoreune autre manière dans laquelle la omplexité de gCosLA pourrait être réduit, en utilisant lefait que toute matrie M PSD peut être déomposée en U tU où U est une matrie de ranginférieur. Dans e as, les ontraintes sur les semi-dé�nie ne doivent pas être appliquées, e quionduit à un algorithme plus rapide (par exemple, une astue est utilisée par exemple dans [47℄dans le ontexte de l'apprentissage à distane). Cependant, même si plus rapide, le problèmede l'apprentissage U n'est pas néessairement plus faile, pare que des optima loaux. Il n'estdon pas lair si ette stratégie serait béné�que pour gCosLA, et une enquête plus approfondieest néessaire ii.Relatif à la vitesse de questions, mais ave des impliations supplémentaires, est le manque deontr�le de la agressivité des règles sous-jaentes à jour les algorithmes que nous avons présenté(en partiulier SILA). Un des points forts de la famille passif-agressif, 'est préisément un telontr�le, e qui pourrait être ajouté dans notre as aussi. Cei étant dit, le réglage des méta-paramètres n'est pas toujours une tâhe faile, et peut onduire à des aluls supplémentaires. Onpeut ependant espérer qu'une solution valable serait atteint plus rapidement, et don néessitantmoins de mises à jour et onduisant à un ensemble plus vite le proessus d'apprentissage. Enraison des onséquenes possibles théoriques et pratiques qu'ils peuvent avoir, nous pensons qu'ilserait intéressant d'étudier dans un prohe avenir l'utilisation de paramètres d'agressivité dansnos algorithmes.Une autre limitation de notre travail réside dans le fait que les mesures de similarité quemondiale ont été tirés (par le reours à la lassi�ation binaire et la règle standard d'un ontre-la-reste, plusieurs matries sont en fait appris à résoudre un problème de atégorisation multi-lasse, mais , toutes les matries sont globales dans le sens où ils ne sont pas adaptés à desrégions spéi�ques de l'espae). Une autre possibilité est d'apprendre di�érents paramètressimilarité loales dans di�érentes parties de l'espae d'entrée omme 'est le as pour les multi-métrique LMNN algorithme de [112℄. Une possibilité à l'approhe que nous avons suivie serait deonsidérer les régions de voisinage autour de haque point et tous les exemples qu'ils ontiennent,puis apprendre matries pour haque de es régions. La lassi�ation d'un point de donnéesimpliquerait alors que les régions qui produisent le voisinage du point. Si ette approhe semblesimple et prometteuse, il serait ertes plus de alul que elles atuelles. Elles appellent lesversions simple et plus rapide des algorithmes, nous avons présenté.160



B.5. Limites et perspetivesEn�n, une autre perspetive, nous aimerions explorer est l'utilisation de SILA algorithme dansun ontexte di�érent, à savoir elle de l'information (RI), que e domaine s'appuie fortement surla mesure similarité osinus, qui pourraient être tirés de existantes des jugements de pertinene.Dans Reherhe d'Information, la similarité est alulée entre une requête q et un doumentde d. Une appliation possible de SILA dans e as, pourrait aller dans le sens suivant: larequête q pourrait remplaer x(i), N1 répétées (nombre de douments extraits jugés pertinentspar l'utilisateur ) fois, le prohain objetif de y pourrait alors être hoisi arbitrairement, ouselon la mesure similarité osinus standard, de l'ensemble des douments pertinents, alors que zreprésenterait le plus prohe douments non pertinents. Comme mentionné i-dessus, la matrie
A pourraient être tirés à l'aide des jugements de pertinene existants, ou les ommentaires desutilisateurs potentiellement. Nous avons l'intention d'enquêter sur es di�érentes possibilitésdans un avenir prohe.
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RésuméLes performanes des algorithmes d'apprentissage automatique dépendent de la métrique utiliséepour omparer deux objets, et beauoup de travaux ont montré qu'il était préférable d'apprendreune métrique à partir des données plut�t que se reposer sur une métrique simple fondée sur lamatrie identité. Ces résultats ont fourni la base au domaine maintenant quali�é d'apprentissagede métrique. Toutefois, dans e domaine, la très grande majorité des développements onernel'apprentissage de distanes. Toutefois, dans ertaines situations, il est préférable d'utiliser dessimilarités (par exemple le osinus) que des distanes. Il est don important, dans es situations,d'apprendre orretement les métriques à la base des mesures de similarité. Il n'existe pas ànotre onnaissane de travaux omplets sur le sujet, et 'est une des motivations de ette thèse.Dans le as des systèmes de �ltrage d'information où le but est d'a�eter un �ot de doumentsà un ou plusieurs thèmes prédé�nis et où peu d'information de supervision est disponible, desseuils peuvent être appris pour améliorer les mesures de similarité standard telles que le osinus.L'apprentissage de tels seuils représente le premier pas vers un apprentissage omplet des mesuresde similarité. Nous avons utilisé ette stratégie au ours des ampagnes CLEF INFILE 2008et 2009, en proposant des versions en ligne et bath de nos algorithmes. Cependant, dans leas où l'on dispose de su�samment d'information de supervision, omme en atégorisation, ilest préférable d'apprendre des métriques omplètes, et pas seulement des seuils. Nous avonsdéveloppé plusieurs algorithmes qui visent à e but dans le adre de la atégorisation à base dek plus prohes voisins.Nous avons tout d'abord développé un algorithme, SiLA, qui permet d'apprendre des sim-ilarités non ontraintes ('est-à-dire que la mesure peut être symétrique ou non). SiLA estune extension du pereptron par vote et permet d'apprendre des similarités qui généralisent leosinus, ou les oe�ients de Die ou de Jaard. Nous avons ensuite omparé SiLA ave RE-LIEF, un algorithme standard de re-pondération d'attributs, dont le but n'est pas sans lien avel'apprentissage de métrique. En e�et, il a réemment été suggéré par Sun et Wu que RELIEFpouvait être onsidéré omme un algorithme d'apprentissage de métrique ave pour fontion ob-jetif une approximation de la fontion de perte 0-1. Nous montrons ii que ette approximationest relativement mauvaise et peut être avantageusement remplaée par une autre, qui onduit àun algorithme dont les performanes sont meilleurs. Nous nous sommes en�n intéressés à uneextension direte du osinus, extension dé�nie omme la forme normalisée d'un produit salairedans un espae projeté. Ce travail a donné lieu à l'algorithme gCosLA.Nous avons testé tous nos algorithmes sur plusieurs bases de données. Un test statistique, le s-test, est utilisé pour déterminer si les di�érenes entre résultats sont signi�atives ou non. gCosLAest l'algorithme qui a fourni les meilleurs résultats. De plus, SiLA et gCosLA se omparentavantageusement à plusieurs algorithmes standard, e qui illustre leur bien fondé.Mots-lés: Apprentissage de similarité, osinus généralisé, k plus prohes voisins, �ltraged'information, apprentissage automatique, fouille de données



AbstratAlmost all mahine learning problems depend heavily on the metri used. Many workshave proved that it is a far better approah to learn the metri struture from the data ratherthan assuming a simple geometry based on the identity matrix. This has paved the way for anew researh theme alled metri learning. Most of the works in this domain have based theirapproahes on distane learning only. However some other works have shown that similarityshould be preferred over distane metris while dealing with textual datasets as well as withnon-textual ones. Being able to e�iently learn appropriate similarity measures, as opposedto distanes, is thus of high importane for various olletions. If several works have partiallyaddressed this problem for di�erent appliations, no previous work is known whih has fullyaddressed it in the ontext of learning similarity metris for kNN lassi�ation. This is exatlythe fous of the urrent study.In the ase of information �ltering systems where the aim is to �lter an inoming stream ofdouments into a set of prede�ned topis with little supervision, osine based ategory spei�thresholds an be learned. Learning suh thresholds an be seen as a �rst step towards learninga omplete similarity measure. This strategy was used to develop Online and Bath algorithmsfor information �ltering during the INFILE (Information Filtering) trak of the CLEF (CrossLanguage Evaluation Forum) ampaign during the years 2008 and 2009. However, providedenough supervised information is available, as is the ase in lassi�ation settings, it is usuallybene�ial to learn a omplete metri as opposed to learning thresholds. To this end, we developednumerous algorithms for learning omplete similarity metris for kNN lassi�ation.An unonstrained similarity learning algorithm alled SiLA is developed in whih ase thenormalization is independent of the similarity matrix. SiLA enompasses, among others, thestandard osine measure, as well as the Die and Jaard oe�ients. SiLA is an extension ofthe voted pereptron algorithm and allows to learn di�erent types of similarity funtions (basedon diagonal, symmetri or asymmetri matries). We then ompare SiLA with RELIEF, a wellknown feature re-weighting algorithm. It has reently been suggested by Sun and Wu thatRELIEF an be seen as a distane metri learning algorithm optimizing a ost funtion whih isan approximation of the 0−1 loss. We show here that this approximation is loose, and propose astriter version loser to the the 0−1 loss, leading to a new, and better, RELIEF-based algorithmfor lassi�ation. We then fous on a diret extension of the osine similarity measure, de�ned asa normalized salar produt in a projeted spae. The assoiated algorithm is alled generalizedCosine simiLarity Algorithm (gCosLA).All of the algorithms are tested on many di�erent datasets. A statistial test, the s-test, isemployed to assess whether the results are signi�antly di�erent. gCosLA performed statistiallymuh better than SiLA on many of the datasets. Furthermore, SiLA and gCosLA were omparedwith many state of the art algorithms, illustrating their well-foundedness.Keywords: Similarity metri learning, generalized osine similarity, kNN lassi�ation, infor-mation �ltering, metri learning, mahine learning, data mining


