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Chapter 1. Introduction




1.1. Preface

1.1 Preface

Machine learning [73, 12| is the art of designing, developing and evaluating algorithms which
are capable of evolving behaviors based on the empirical data. Machine learning algorithms
automatically improve their performance P based on some experience F at some task 7T. As
an example, consider the problem of developing a system which learns to play checkers. In this
case, the task T is to play checkers, the performance measure P is the percentage of games won
in a world tournament and F is the opportunity of play against self.

Machine learning has recently emerged as one of the key areas of artificial intelligence. One
of the primary reasons for its popularity lies in the eager wish of humans to explore and replicate
the human learning process. Machine learning can be viewed as a two-fold task, consisting of
learning the invariant and common properties of a set of samples characterizing a class, and of
deciding that a new sample is a possible member of the class by noting that it has properties
common to those of the set of samples [78].

Machine learning algorithms can be broadly categorized in three different categories: super-
vised learning in which case the learning is based on a set of labeled data (also called training
data), unsupervised learning which does not require any sort of human intervention and does
not have a training phase (it is usually used when the classes are not known in advance), and
semi-supervised learning lying in between the supervised and unsupervised settings.

Machine learning has been successfully applied in various different settings like classification
(e.g. handwritten digit recognition [63], document classification [55], face recognition [105] etc.),
clustering (k-means clustering [11], spectral clustering [115]), bio-informatics, finance, informa-
tion filtering systems that automatically learn users’ interests, detection of hazardous smokes on
industrial facilities [39] etc. It is based on learning from data and hence is closely related to the
field of data mining. Data mining deals with extracting useful patterns from raw data so as to
make it a more useful commodity.

Every machine learning algorithm works with a set of examples. Among this set, some of
the examples are used to learn the underlying characteristics of the data based on a set of
features. This subset is termed training set. In order to validate the algorithm, the trained or
learned algorithm is run on unseen examples, also known as the test set. A validation set can be
optionally employed so as to fine tune the different parameters of the algorithm.

1.2 Motivation

We consider two objects e.g. documents or images which need to be compared. In order to
do this comparison, similarity or distance can be found between these two objects. Most of
the time, default measures, i.e. Euclidean distance in the case of images and cosine similarity
for text classification, are employed which consider that the metric between different objects is
parametrized by an identity matrix. In other words, measures like Euclidean distance and cosine
similarity consider a very simple underlying geometry for the space in which the data lie. Many
works have proved that it is far better to learn the metric structure from the data rather than
assuming a simple geometric structure.

The recent popularity of Internet has led to an enormous increase in the amount of information
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Figure 1.1: OASIS: A distance metric learning algorithm to find similar images [16]

as well as the growth of research areas devoted to automated organization of this information.
An evaluation forum named Cross Language Evaluation Forum (CLEF) has been run every
year since 2000, with the aim of evaluating information retrieval systems operating on European
languages in monolingual as well as cross-language contexts. An information filtering (INFILE)
campaign has been run as a pilot track of CLEF in 2008 and 2009. The aim in INFILE was to
filter a continuous stream of documents into different predefined topics. In the case of information
filtering, cosine based thresholds could be learned based on the incoming stream of documents,
provided there is at least some sort of supervision. The Online algorithm was developed in 2008
and was the only participation for INFILE in that year. Furthermore, the batch algorithm got
the best F-score during 2009 among different participants. Learning a complete metric is a wiser
decision than learning only the thresholds, if one is working in a fully supervised setting. This
has given rise to a domain called metric learning [54, 53|. Figure B.1 shows the top five images as
ranked by OASIS [16], an image distance learning algorithm, ! on four examples of query-images
in a Google proprietary dataset. The relevant text queries for each image are written beneath
the image. The top most row shows a query-image, originally retrieved in response to the text
query dllusion. It may also be noticed that all of the five images ranked highly by OASIS are
semantically related, portraying other sorts of visual illusions. The rest of the three examples
show that OASIS was able to grab the semantics of animal photos (cats and dogs), mountains
and different food items.

'In this work, no distinction is made between the distance and the similarity.



1.3. Thesis Plan

The primary aim of metric learning is to learn a metric well adapted to the problem under
consideration. Algorithms for data classification and clustering rely heavily on the presence of a
good metric. Apart from these areas, metric learning is a very important ingredient in problems
like face recognition, visual object recognition, automated speech recognition [107], language
problems, music similarity, pose estimation, image similarity and search [59] etc. For many
metric learning algorithms, both online as well as batch learning is possible. Metric learning can
be further subdivided into two different types: distance metric learning and similarity metric
learning.

Most of the works related to metric learning concentrate on distance metric learning only
and try to learn Mahalanobis distance metric. However, in many practical situations, similarities
may be preferred over distances. This is typically the case when one is working on texts, for
which the cosine measure has been deemed more appropriate than the standard distance metrics
like the Euclidean or the Mahalanobis ones. Furthermore, several experiments show that the use
of the cosine similarity should be preferred over the Euclidean distance on several, non textual
collections as well (see e.g. [18, 72, 84, 87]). Being able to efficiently learn appropriate similarity
measures, as opposed to distances, e.g. for kNN classification, is thus of high importance for
various collections. If several works have partially addressed this problem (as for example [1,
46, 52]) for different applications, we know of no previous work which has fully addressed it in
the context of learning similarity metrics for kNN classification. This is the basic motivation
behind this work. In the first instance, an unconstrained similarity metric learning algorithm is
developed in which case the normalization is completely independent of the similarity matrix.
Proofs were developed to show that the error on unseen examples is limited and the algorithm
has good generalization properties. This is followed by the development of an algorithm based
on generalized cosine having a normalization dependent on the similarity matrix. Moreover the
unconstrained similarity learning is compared with the RELIEF family of algorithms. Although
RELIEF is basically a feature re-weighting algorithm, it has been recently proved by Sun and
Wu [102] that it is a distance metric learning algorithm which optimizes an approximation of the
0 — 1 loss. We show here that this approximation is too loose, and propose a stricter one, better
suited for classification.

1.3 Thesis Plan

e We describe in Chapter 2 the basic concepts related to Machine Learning along with the sur-
vey of various state of the art techniques for metric learning. The two main types of machine
learning, i.e. supervised and unsupervised learning, are discussed in detail. Furthermore, the
basics of online as well as batch algorithms are discussed. Some of the key distance met-
ric learning algorithms, e.g. Weinberger’s Large Margin Nearest Neighbor (LMNN) [112],
Davis’s Information Theoretic Metric Learning [28] and Shalev’s POLA [99], are discussed
and compared thoroughly. Furthermore, similarity as well as similarity based methods are
also examined. RFLIEF, a well known feature reweighting algorithm along with its mathe-
matical interpretation is also presented. Evaluation metrics and the techniques for classifiers’
comparison are finally discussed.

e In Chapter 3, we show how cosine based thresholds can be learned effectively when little or
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no supervision is present. This technique is established for a filtering task where a huge set
of documents is filtered according to user profiles. Online as well as Batch algorithms are
discussed and compared extensively. The algorithms are developed as a part of the InFile
campaign of the CLEF competition.

e Chapter 4 starts with the description of an unconstrained similarity metric learning method,
called SiLLA, where the normalization is completely independent of the learned similarity
matrix. SiLA is compared with the RELIEF algorithm for which Sun and Wu [102] have
shown that it basically learns a distance metric while optimizing a cost function approximating
the 0 — 1 loss. We show that the approximation used by RELIEF is loose, and propose a
stricter version using a cost function closer to the 0 — 1 loss. This stricter version leads to
a new, and better RELIEF based algorithm for classification. Furthermore, a generalized
cosine similarity learning algorithm (gCosLA) is developed, in which case the normalization
is dependent on the similarity matrix.

e The different similarity metric learning algorithms developed during the course of this thesis
are evaluated in Chapter 5. In order to assess whether the results are significantly different
or not, a s-test is used. We show that similarities are a more viable option as compared
to the distance metrics on many datasets. Furthermore, the unconstrained similarity metric
learning algorithm as well as the generalized cosine similarity one are compared with different
state of the art classification algorithms. The similarity learning algorithms outperform their
counterparts on some of the UCI datasets.

e Chapter 6 presents the conclusion along with the limitations of the proposed approaches and
the future perspectives.

e Finally proofs for convergence and good behavior have been provided for SiLA and gCosLA.
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2.1. Introduction

2.1 Introduction

Machine learning is basically a process by which an unknown dependency (input, output) of a
system is estimated, using a limited number of observations or examples. A typical machine
learning system is composed of three components: a generator of random input vectors denoted
by x, a system that returns an output y for a given input vector x, and the learning machine
which estimates the mapping of the system from the observed samples composed of input and
output. This scenario describes many real world problems like classification, regression (e.g.
Gaussian processes [92]), clustering etc. The generator produces random vectors x € R? having
d dimensions, drawn independently from a fixed but unknown probability density function p(x).
The system provides an output value y for every input vector x, based on the fixed but unknown
conditional density p(y|z) (probability of observing y given x). The third component of a machine
learning system is the learning machine which is capable of implementing a set of functions
f(z,w), w € Q, where Q is a set of abstract parameters used to index the set of functions. Here
the set can be any set of functions, chosen before the learning has begun. The learning machine
must select a function (from a set of functions it supports) which best approximates the system’s
response. This selection process is based on the observation of a finite number n of examples.
The training data, composed of inputs and outputs is independent and identically distributed
(ii.d.) as per the joint probability density function (pdf):

p(z,y) = p(x) p(y|r)

The training data from this distribution can be described as:

(x(i)’y(i))7 (i=1,---,n)

An instance space, X is defined as a space containing all of the instances i.e. (), 23 ... z(™),
Similarly, a label set, ) contains all of the possible labels or classes.

The quality of the learning process is measured using a loss function L(y, f(z,w)) which
represents the discrepancy between the actual output y produced by the system for a given
example x, and its approximation ' = f(z,w) by the learning machine. In general, the loss is
always non-negative, with higher values indicating a poor approximation [19]. In the rest of this
chapter, various approaches for metric learning are discussed in detail which constitutes the core
of this thesis.

After explaining a typical machine learning system, the next section discusses the funda-
mental concepts related to machine learning including a comparison between supervised and
unsupervised learning, and an insight into the differences between online and batch learning.

2.2 Machine Learning Fundamentals

Some notations are provided here, which will be used throughout the thesis. An input object
can be represented as z € R? where R is the set of real numbers and d denotes the number of
features or dimensions. As x is a vector, the features of x can be accessed by the subscripts
xi, 1 > 1 > d. The output is denoted by y. The vectors are not written in bold and the transpose

of x is represented as z'.
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Figure 2.1: A typical machine learning system using observations of the system to predict the
outputs

A fundamental hypothesis of statistical learning theory is that all of the examples are gen-
erated independently using a probability distribution P. In other words, it can be said that the
examples are i.i.d. (independent and identically distributed) as per P.

Another very important concept is that of error, also known as cost or loss. Given a prediction
function f, the loss finds the accord between the prediction f(x) and the target output y. In the
case of classification, a commonly used loss function is the 0 — 1 loss 2, which is either 0 (correct
classification) or 1 (wrong classification):

L if f(z) =y
L(f(z),y) =

0 otherwise

The error in the case of regression is the square of the difference between the actual output and
the anticipated one (target output) [81]:

With this, the risk associated with the prediction function f(z) can be calculated for all of the
examples (x, y). This loss is also known as the generalization risk and is defined as the expectation
of the loss function:

Rgen(f) = E [L (f(z),1)] = / L(f(x).y) dP(z,y)

where IP represents the probability distribution described earlier. In general, the risk Rgen(f)
cannot be computed since the probability distribution is not known to the learning algorithm.
Nevertheless, an approximation for the generalization risk can be calculated by averaging the
loss function over the training set. This approximation is termed empirical risk and is given by:

Remp(f) = + L (£(a?),4?)
=1

where n stands for the number of examples in the training set.

20 — 1 loss is also known as the leave-one-out error

10
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2.2.1 Supervised vs Unsupervised Learning

Machine learning algorithms could be broadly classified into two main categories: supervised
and unsupervised learning algorithms. Supervised learning is based on learning a function from
a set of training samples in the form of pairs. Each pair is made up of input objects (usually
vectors) and desired output values also known as target values. The function learned can have
different types of outputs: continuous values (regression) or a predicted class label for the input
object (also referred to as classification). The aim is to predict the value of the function once
the learner has encountered a sufficient number of examples (training phase) in order to classify
unseen examples (test phase). The accuracy of the learned function strongly depends on the
quality of the object representation. The input objects are, oftenly, described in the form of
feature vectors. The number of features must be chosen in a way that they can predict the
output accurately. Some of the key supervised algorithms include perceptron algorithm, support
vector machines (SVM) etc.

On the other hand, a model is fitted to observations (unlabeled examples) in the case of
unsupervised learning 3. In many real world applications, the labels are not present. The
unsupervised learning methods work without a teacher as opposed to supervised learning. It
does not have a priori output as opposed to supervised learning and helps to learn larger and
more complex models than with supervised learning. The reason is that in supervised learning,
the aim is to find the connection between two sets of data but the difficulty of the learning
task increases exponentially in the number of steps required in finding the relation between
the two data sets. On the contrary, unsupervised learning can proceed hierarchically from the
observations to more abstract levels of representation. Some examples of unsupervised algorithms
are clustering, self-organizing maps (SOM) etc.

Clustering is based on organizing the given examples into different clusters in such a way that
the similar examples are put into the same cluster while different examples appear in different
clusters. In general, clustering offers a way to know the implicit structure of the dataset.

Apart from the major categorization of the machine learning algorithms (supervised and
unsupervised), there is another way in which a machine learning algorithm could be classified:
online or batch learning.

2.2.2 Online Learning vs Batch Learning

Learning can be batch or online depending on the targeted task. Batch learning or offline
learning deals with all of the available examples in one-go. In general, the learned parameters
cannot be updated once the learning is complete. It is assumed that a probability distribution
over the product space X'x) exists, where X is an instance space while ) is a label set as
explained in section 1.1. Moreover, it is also assumed that there is access to a training set drawn
i.i.d. from this distribution. The aim is to generate an output hypothesis from the training set.
Furthermore, the batch algorithm should have the ability to generalize well beyond the training
set and accurately predict the labels for unseen test examples sampled from the distribution.

3The frontier between supervised and unsupervised learning is blurred: e.g. semi-supervised learning in which
case the classifier can be initialized based on the labeled examples which then learns without supervision on the
rest of the unlabeled examples, transductive learning etc.

11
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Examples of batch algorithms include linear discriminant analysis (a model employing stochastic
dependence between terms that relies on the covariance matrices of different categories), Rocchio
classifier etc.

Most of the Machine Learning models are designed for the batch case. However, another
type of learning is oftenly used nowadays. It is called online learning (also known as incremental
learning, instantaneous learning or on-the-fly learning) and uses the examples one-by-one to
learn the parameters for the employed algorithm. In other words, the instances are obtained in
a sequential manner. It starts building the classifier once it has examined the very first training
example. After receiving an instance, the online algorithm makes a prediction using a default
hypothesis A1, the type of which depends on the problem being treated e.g. in the case of binary
classification, it is a +ive/ — ive decision [23]. Upon making a prediction (g), the algorithm
receives a feedback in the form of correct prediction (y). Based on the true label, the algorithm
can suffer from an instantaneous loss. The cumulative loss on a sequence of rounds is the sum
of instantaneous losses suffered on each of the rounds in the sequence. The cumulative loss or
the empirical loss is the sum of hinge losses for the entire training set. The instance-label pair
together enables the online algorithm to modify its prediction mechanism and eventually helps
in making accurate predictions over the rest of the instances. An online algorithm is defined by
its default hypothesis and the update rule to define new hypothesis. In general, an example is
used only once by the online algorithm. However, the algorithm could be run more than once to
optimize its performance.

Online learning is usually simpler to implement, memory efficient and faster as compared
to the batch learning [30] and is preferred in the environments where the best model changes
gradually over the passage of time or when the storage space is limited. Apart from these
practical advantages, online algorithms often have formal guarantees in the form of worse case
bounds on their performance. Furthermore, sometimes there is a scenario e.g. text or information
filtering where the examples are provided in a sequential manner and the predictions must be
made on-the-fly.

In case, there is no loss for an online algorithm, the current hypothesis A, is left unchanged.
On the contrary, if there is some loss, two goals must be balanced:

1. Change the current hypothesis h, as it has encountered a certain loss for the current
example. However, the change must be enough so that the current error is not repeated in
the future.

2. Do not change h; too much, since h, was able to correctly classify the last encountered
example. If the current hypothesis is changed excessively, then one cannot be sure that the
new hypothesis would be able to cover the previously seen examples.

Suppose that the changes in h,; are measured by taking into account the Fuclidean distance
between the updated hypothesis A,y and the old one h;. This case, where the first goal is
enforced while the the second one is minimized, corresponds to the classical gradient descent
update rule.

In order to satisfy the two major goals (given above) of an online algorithm, a passive and
aggressive strategy is required. It should be aggressive enough to avoid the repeat of errors,

12
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while passive at the same time so that a new hypothesis classifies correctly the examples already
encountered by the algorithm.

The Passive Aggressive Family of Online Algorithms

Crammer et al. [23] have defined a family of online algorithms termed as passive aggressive
algorithms. The basic idea is the same as that of the goals mentioned earlier. However, instead
of simply ensuring that a correct classification is made with the help of rule 1, it is ensured that
the correct classification is made with a margin of at least 1. The examples are considered in
the form of instance-label pairs i.e. (z7,y") where ™ € R", y” € {+1, —1} and 7 represents the
current iteration or round. The predictions are made based on a classification function of the
form: sign(w.z) where w € R” represents the vector of weights. The aim of the algorithm is to
learn the vector of weights in an incremental fashion. The margin on the round 7 can be given
by y"(w;.27). In case the margin is positive (sign(w,.z”) = y7), it can be stated that the
algorithm has made a correct decision. However, the aim is to predict with higher confidence
and to achieve a margin of at least 1 in as many rounds as possible. Whenever the margin is less
than 1, the algorithm suffers from a hinge loss which can be given as:

0 ify"(w.2™) > 1
L (w; (27, y7)) =
1—y"(w.x™) otherwise

Hence, the loss is zero whenever the margin is greater than 1. On the contrary, the loss is equal
to the difference between 1 and the margin value if the margin is less than 1. For regression,
the choice of the margin can be defined by the user as well. It has been further shown that the
T ;2

2).

algorithms have a small cumulative square loss over the set of T' examples (D -_, IZ

The initial weight vector w; is initialized with all zeros for all of the variants of the passive
aggressive algorithm for binary classification. However, the update rule for the weight vector
differs for each of the three variants. The simplest and the strongest of the rules requires the
new weight w;41 to be the solution of the following constraint optimization problem:

1
wrp1 = arg ming, e — w ] subject to L (w; (27, 7)) = 0

which has a closed form solution:

L,
|72

Wry1 = wy + 0,y 2" where §, =

Here 6, > 0 and is a Lagrange multiplier. Moreover, w,1 is the projection of w;, onto the space
where the hinge loss on the current example is zero. Whenever the loss is zero, wr41 = w;
and the algorithm is said to be passive. However, if the loss is positive (it cannot be negative),
the algorithm aggressively forces the update w,41 to satisfy the constraint [(w,y1;(27,y7)) =0
imposed by the current example, while remaining as close as possible to w,. That is the reason
these algorithms have been termed as passive aggressive. The passive approach is for the retention
of the information gathered during the earlier iterations while the aggressive nature is useful
whenever there is a misclassification.

13
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Another related work is that of Helmbold et al. [50] who showed the relationship between
the amount of progress made at each iteration and the amount of information retained from the
previous ones. Here, the update requires w;y1 to correctly classify the current example 27 with
a high margin and in this way, the progress is made (aggressiveness). Similarly w;y; should
stay close to w; which enables the algorithm to retain the information learned from the previous
iterations (passiveness).

In order to reduce the aggressiveness of Passive Aggressive algorithms, two more update rules
have been introduced, which employ gentler updates and use a non-negative slack variable £ to
redefine the optimization problem:

1
Wry1 = arg minweRn§||w —w,||* + C¢ subject to I(w; (z7,y7)) <E N E>0

Here the objective function is directly proportional to the slack variable ¢ and C. C'is a positive
aggressiveness parameter that controls the impact of the slack term on the objective function.
More precisely, C' controls the trade off between two objectives: remaining close to the previous
weights w, and minimizing the loss on the current example. It has been shown that the larger
values of C indicate a more aggressive update. The resulting algorithm has been termed as PA-IL
This update is termed gentler as it is no longer required that the loss must be equal to zero and
in this way, the loss constraint is relaxed.

In another variation (named as PA-II), an objective function has been defined which scales
quadratically with &:

1
Wr41 = arg minweRn§Hw —w,||? + C& where Il(w;(z7,y7)) <&

The variants PA-I and PA-II have the same closed form solution as that of PA-I except the value
of 0,:

5, = min{C’, ZTHQ} (PA-T)

"
L
’ 2C

It is important to mention here that the Passive Aggressive family of algorithms learn only
a vector of weights and are not interested in learning a complete matrix.

Dredze et al. [33] have developed confidence-weighted (CW) linear classifiers which also belong
to the family of Passive Aggressive algorithms. The main characteristic of these classifiers is
that they maintain a probabilistic measure of confidence in each of the attributes. The less
confident parameters are updated more aggressively than more confident ones. In CW learning
methods (Dredze et al. [33], Crammer et al. [24]) second-order information is used to represent the
uncertainty about the linear classifier’s feature weight estimates. This second-order information
could be modeled as a Gaussian distribution over the classifier’'s weight vector. In these cases,
the mean of the weight vector is used for classification, whereas the covariance matrix is used to
modulate the learning rate over different features [67]. However, the CW learning methods use
diagonal approximations for the full covariance matrix, and hence lose the information regarding
cross-feature correlations which can help towards faster convergence. Ma et al. [67] show in which
cases it is advantageous to use a full matrix rather than using the diagonal one.

14
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Online to Batch Conversion

Sometimes, a batch algorithm must be developed that not only is computationally efficient and
easier to implement than an online algorithm but also has the good generalization properties of
batch algorithms. A simple way to develop such an algorithm is to use online to batch conversion.
Many people have described such conversion e.g. Gallant [40] has developed a Pocket algorithm
which is basically a conversion of online perceptron algorithm to a batch one. This method
retains the longest surviving hypothesis i.e. which has made the fewest number of mistakes
during the training phase.

Littlestone et al. [65] have described a cross-validation technique where the training set is
presented to the online algorithm. After running the algorithm for T rounds, a sequence of
hypothesis hg, - - - , A7 is collected where hyg is the default hypothesis. This is followed by selecting
h (the output of the batch algorithm) to be one of the 7'+ 1 hypothesis which converts the online
algorithm to a batch one.

Helmbold and Warmuth [51] have argued that rather than selecting only a single hypothesis
from the set of hypothesis, it is better to consider h to be some combination of the entire set of
hypothesis. The different hypothesis could be combined by taking a majority or by averaging. In
this way, the information retained by each and every hypothesis is used to define h and ultimately
promotes robustness and stability. Furthermore, the training data plays absolutely no role in the
process of combining different hypothesis which gives these methods the name data independent
methods.

Dekel and Singer [30] have shown that the matrices (or vectors) learned during the earlier
iterations of an online algorithm can be discarded as the online algorithm makes more mistakes
in the beginning as compared to the end (e.g. hg is determined without observing any training
example). This means that, in a sequence of p matrices learned (Ay, --- , Ap), one can rely on the
last g one and use the average over these g hypothesis (suffiz averaging conversion). One extreme
of this approach is to use all of the hypothesis while the other extreme is to retain only the last
hypothesis or matrix and is also known as last-hypothesis technique [29]. Suffiz averaging finds
the best trade off between these two extremes. However, all of the hypothesis must be stored in
memory as it finds the optimal suffix length only once the entire hypothesis sequence has been
formed. Moreover, the required memory space grows linearly with the training set size.

Dekel [29] has addressed the problem faced by the suffiz averaging technique and developed
a method called cutoff averaging. One extreme of this method is just like the simple averaging
method. However the other extreme converts this method to the longest survivor technique.
In this way, there is no need to store all of the online hypothesis in the memory unlike the
suffiz averaging method and the memory space scales with square-root of the number of training
examples in the worst case scenario. In a typical case, the required memory is much less than
that of the worst case. A cutoff parameter k is used to get the online hypothesis sequence. It
represents the minimum number of rounds during which the online algorithm must not suffer
any loss. This is followed by finding a weighted averaging of the hypothesis selected, where the
weight represents the additional number of iterations a hypothesis has survived once selected. It
may be noted that in order to find the best value of k, the entire training data must be processed.
However there is no need to store the entire sequence of hypothesis. The only requirement is to
group together the hypothesis by their survival times, and store the average hypothesis for each
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group along with the cumulative loss in each group.

2.2.3 Some Key Machine Learning Methods
Perceptron Algorithm

The perceptron algorithm was developed by Franck Rosenblatt [93]. It is a linear classifier used
for binary classification and can be regarded as the simplest form of feed-forward neural network.
It separates the objects using a linear hyperplane as shown in Figure 2.2. It is a very simple
algorithm and it has been proved by Novikoff [77]| that it converges after a finite number of
epochs (iterations) if the data is linearly separable.

Figure 2.2: A hyperplane separating the two classes

The perceptron algorithm is an online supervised algorithm and the learning takes place in
rounds or iterations. At each round, a new hypothesis is estimated based on the previous one.
The algorithm starts with a hypothesis initialized with zero w; = 0. At each step, an instance z”
is presented to the perceptron algorithm which makes a prediction ¢ using the current hypothesis
wy. This is followed by the revelation of the actual label y7. In case the actual label is different
from the predicted one, the hypothesis is updated as w;y1 = w; + y"27. On the contrary if the
actual label matches with that of the predicted one, the current hypothesis is left unchanged.
The process is repeated for all of the training examples.

Voted perceptron of Freund and Schapire

Freund and Schapire [37| have introduced a variant of the perceptron algorithm for linear
classification while attaining large margin, and have termed it as the voted-perceptron algorithm.
Weights have been added to the prediction vectors which justifies the name weighted perceptron.
Moreover, the standard perceptron algorithm (online) has also been converted to a batch one,
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followed by an in-depth discussion on the online (incremental) to batch conversion. It can also
classify instances having a relational representation (e.g. trees, graphs, or sequences). The proofs
of convergence have been provided for both the separable as well as non-separable data.

It has been further suggested that the "kernel trick" can also be applied to the voted-
perceptron algorithm [96]. The kernel trick is basically a method in which a linear classifier
is converted to a non-linear one by mapping the original observations (e.g. x and ') to a higher
dimensional space (¢(x) and ¢(2’)) and then taking their inner product. This is equivalent to
using the kernel function which is a function of two variables K (x,z’) and can be represented as
an inner product ¢(z).¢(z") for some function ¢. This implies replacing each inner product z.z’
with a kernel function computation K (x,x’). Kernel functions have also been used with support
vector machines (SVMs).

The voted perceptron algorithm, being a supervised algorithm is composed of two steps:
training and prediction. The initial prediction vector v; is set to zero just like the original
perceptron algorithm. The prediction vector is used to predict the label of the new instance
z. In the case of a wrong prediction ¢ # y, the prediction vector is updated while in the case
of correct classification, it remains unchanged. The update is similar to that of the perceptron
except the fact that the weight related with the current prediction vector i.e. w; is also updated.
The weight is increased by one in case of correct classification. However, for misclassification,
the weight related to the new prediction vector w,4; is initialized with 1. This process is then
continued with the next example and is repeated for T" epochs. Once the training is complete, a
set of prediction vectors have been generated after each and every mistake. The weights related
to the prediction vectors correspond to the number of examples they have survived until the
next wrong classification. The weighted perceptrons can then be used to classify unseen test
examples.

The Voted-Perceptron Algorithm

Training
Input: a labeled training set {(z(M,yM), ... (2™ y(™)} number of epochs T
Output: a list of weighted perceptrons {(vy,w1), -+, (vg, wk)}

Initialize: £k =1,v1 =0,w; =0
Repeat T times:
Fori=1,---,n

Compute predictions: § = sign(vy, . z?)

If g = y; then wp = wp + 1

else vgy1 = v + y(i)x(i)
w41 =1
k=k+1

Prediction

Given: the list of weighted perceptron: {(vi,w1),......, (g, wg)}, an unlabeled instance: x
Compute a predicted label ¢ as follows:

5§ = Zle wysign(v;.x); = sign(s)
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During prediction, the votes are taken from all of the weighted perceptrons. As T approaches
oo for linearly separable data, the voted perceptron converges to the original perceptron algorithm
where the prediction is made using the last prediction vector.

The online to batch conversion can be called as a voting conversion as each online hypothesis
(v1, -+ ,vg) casts a classification vote for an unseen example x; and x gets the label that receives
the highest number of votes.

Li et Long [64] have proposed an online algorithm called as ROMMA (Relaxed Online Max-
imum Margin Algorithm) for classification using a linear threshold function. The algorithm has
been compared against the perceptron algorithm and the voted perceptron algorithm of Freund
and Schapire, and it has been found that ROMMA performed better than the perceptron algo-
rithm, and an aggressive version of ROMMA performed even better than the voted perceptron.

Collins extension of voted perceptron

Michael Collins [20] has used a variant of the perceptron algorithm for the part-of-speech
tagging and base noun phrase recognition, related to the domain of Natural Language Processing.
In this work, the voted or averaged version of the perceptron algorithm has been extended,
originally introduced by Freund and Schapire. In addition, a parameter vector « (also referred
to as the weights) is also introduced, which is trained on a set of training examples. This vector is
then used for part-of-speech tagging or base noun phrase recognition. The proofs of convergence
have been provided for the separable as well as for the non-separable data. Furthermore, it has
been shown that the number of errors made by the algorithm is bounded not only on the training
examples but also on unseen examples. The algorithm proposed by Collins can be applied to
different other domains as well.

The parameter is considered to be associated with a trigram (z,y,2) as o, and the one
associated with a tag/ word pair (¢,w) as ay,,. Moreover, a sequence of words (w1, -+ ,wy,) is
represented as wyy.,) while ?[; ;) is used to describe a tag sequence (t1,--+ ,tn). The training set
is made up of n tagged sentences where the length of ith sentence is n;. This helps to write the
examples as (wflmi],tfl:ni]) where ¢ = 1,--- ,n. Furthermore, Viterb: algorithm is used in order

to find the best tagged sequence for the sentence wf which is denoted by z[1.,,]. For every

1:n,]
tag trigram (x,y, z) seen ¢; times in tz[lzn_] and ¢y times in 2[;.,,) with the condition that ¢; # ca,

the parameter associated with a trigram (x,y, z) can be expressed as:
az7yyz = axyyvz + €1 —C2

Similarly for each tag/word pair (¢, w) seen ¢; times in (wfl:m] , tflmi}) and co times in (wfl:m], 2[1iny]
(with ¢ # ¢2), a4 can be written as:

Qtqp = Qitqp + €1 — C2

)
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Input: Training examples (2, y®)
Output: Parameters «
Initialization: Set oy = 0
Algorithm:
For T iterations, 1 =1, --- ,n
Calcglate z('l) = arg mangGEN(x(i))gb(x(l)’ z).a
If (200 # y(®) then
41 = o =+ ¢(x(l)7y(l)) — ¢(x(l)7 Z(l))

where n represents the number of examples. If the highest scoring sequence under the current
model 2 is not correct (z( # y(), the parameter « is updated in a simple additive manner.
It has been shown experimentally that instead of using only the final parameter «, it is better
to use averaged parameters over 1" passes and n examples i.e. the averaged parameter v can be

written as: y
1

= Y

t=1,,T; i=1,n

The task in this algorithm is to learn a mapping from inputs (xz € X) to outputs (y € ).
The parameter vector o € R? is initialized with zero which is subsequently optimized over the
training data. The function GEN lists a set of candidates GEN (x) for an input .

Support Vector Machines

Support vector machines (SVMs) are no doubt the most popular classification algorithms these
days, mainly due to their results [26], [103]. We first discuss here the binary classification
problem. The input space is denoted by X C R¢ where the value of d is fixed. A linear classifier
is a function of R in —1,1 having the form:

f(z) = sign(b'z + bp)

where b € RY, while by € R. The sign(t) = 1 if and only if ¢ > 0, otherwise is equal to 0. It can
be noted that the classifier f(z) = b'z + b divides X into two sub-spaces: {z € X' |b'z + by < 0}
and {zr € X |b'z + by > 0}

Here, a classifier f(x) = b’z + by having zero empirical loss is considered. This means that
this classifier classifies correctly all of the examples in S. Since it is supposed that S is linearly
separable, hence there exists a scalar such that the examples (x(i), y(® which are nearest to the
hyperplane satisfy |[bfx + by| = 1. Two examples (1 and 2@ are further considered belonging
to opposite classes, such that bz + by = 1 and b'z@ + by = —1. The margin can be defined
as the distance between these two points, where the margin is calculated perpendicular to the
hyperplane. The margin (given in the figure 2.3) can also be represented by:

D@y 2

B ) T

It can be seen that in order to increase the margin, ||b|| must be decreased. This can eventually
help in order to have a hyperplane with a maximum margin.
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SVM with a hard margin: The constraints |b'x +bg| = 1 can be written as y(blx +by) = 1
for the examples which are near to the hyperplane. The overall aim thus, is to resolve the
following optimization problem:

. 1 2
min =1b
bER?, bgER 2” H

such that Vi, y® (b'z® + by) > 1

It can be observed that a quadratic optimization problem is being solved along with the linear
constraints. A work around is to solve a dual problem in the following manner:

d 1A o
max S — 5 y(’)y(ﬂ)aiajx(l) )
(o1, an)ERY =1 i=1j=1
d
such that S yWa; =0
i=1
Vi, a; > 0

An advantage of the above formulation lies in the fact that b (the solution of the initial opti-

mization problem) can be written as:

d
b=> yiaal?
i=1

where (o, -+, a;,) accounts for the optimal solution of the dual problem. One can also show
that oy > 0 if and only if y;(b'z(") + by) = 1. The maximal margin hyperplane depends only on
a subset of the examples. These examples lie exactly on the margin and are called the support
vectors. The rest of the examples can lie anywhere outside the margin. In other words, one gets
exactly a similar solution even if the training set S contains only the support vectors.

SVM with a soft margin: The SVM described earlier cannot deal with inseparable data
and is therefore termed as having a hard margin. In actual practice, the data is rarely separable.
One of the reasons is the presence of noise in the data. In case of non-separable data, SVM must
live with wrongly classified examples. A simple way is to introduce slack variables, in which case
a slack variable is associated with each examples. The use of slack variables allows to calculate a
loss each time an example is misclassified. The resulting algorithm is said to have a soft margin.
This also changes the aim and the new objective is to maximize the margin and minimize the
number of examples violating the constraint on the margin. In other words, the norm of b and
the overall loss associated with the slack variables is minimized. This new optimization problem

can be written as:

. 1 2 n
min =|bllc+C>
min B+ O

such that Vi, y®(b'z® +bo) > 1 — 1

where 7n; stand for the slack variables while C' is a positive real number which must be tuned.
Whenever n; is positive, this means that the margin constraint is not obeyed. The loss associated
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Figure 2.3: Maximum margin for support vector machines (SVM)

with this can be written as C'n; which can be compensated while decreasing the norm of b. In
case C' is large, even a little violation of the constraint would be costly. Hence hyperplanes
with small margins would be chosen with less number of errors. On the other hand, if C' is
small, the margin would be large and so do the number of errors. One way to tune C' is to use
cross-validation.

k Nearest Neighbor Algorithm

The k Nearest-Neighbor (kNN) algorithm [21]|, developed by Fix and Hodges [34], has been
studied by many researchers, from many different communities. In the database community,
for example, it is used to determine the instances closest to a given query point. In case-based
reasoning, pattern recognition and machine learning, the kNN rule, because of its simplicity and
good performance, is still heavily used for classification purposes e.g. image and text classifica-
tion, web site classification [62] etc. This method is categorized as a non-parametric supervised
learning algorithm and classifies instances based on the closest training examples in the feature
space. In this method, all of the training points together with their class labels are kept in
memory (hence referred to as memory-based method) and the computation is deferred until clas-
sification. Hence it is also known as a lazy method which belongs to the instance-based learning
(IBL) methods. Nearest-neighbor learning has been shown to be the algorithmic parallel of the
exemplar model of human learning [43]. Normalization of feature vectors may be required in
some cases.

During the classification phase, when a query point is given, the classification of that point is
made keeping in view the k nearest points. First of all, same features as for the training examples
are computed for the query point, which is followed by the calculation of distance/similarity to
all of the stored feature vectors. A metric is required for calculating the distance or the similarity
between the query point and the instances from the training data in order to make predictions.
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Figure 2.4: An example of a 3 nearest neighbor classification [108]

Some popular choices for the metric are the Euclidean distance and the cosine similarity. Some
people use the term metric in order to signify distance or similarity, and sometimes this term is
used to refer to distance only. However, the choice mainly depends on the problem domain. The
distances and similarities are arranged in ascending and descending order respectively. This is
followed by the selection of the the top k values in the sorted list. In the standard version, the
query point is assigned the class that appears most frequently within the k nearest examples.
Figure 2.4 shows the 3 nearest neighbors classification for an example represented by the symbol
?. This method is often successful when the decision boundary is very irregular [49]. In order to
classify a new example x, the distances di(x,x(i)), i =1, ---,k between the new example and
the k nearest neighbors are calculated. The smaller the distance, the greater is the similarity
between two examples. Furthermore, the classes for the k nearest neighbors are also found. This
is followed by assigning the new example = to the majority class g among the k nearest neighbors:

k

C(r) = argmax g Z kilki = wyg
i=1

where C'(x) represents the class of  and G is the set of all possible classes.

An important factor in this algorithm is the right choice of k& which can strongly influence
the quality of classifications assigned. The value of k can be determined from a validation set
of examples. A smaller value of k leads to large variance in predictions for a given problem.
On the other hand, larger values of k£ reduce the effect of noise on classification. Hence, k
should be chosen in such a way that the value is large enough to minimize the probability
of misclassification. Many experiments have shown that increasing the value of k£ does not
significantly degrade the performance [98].

Another important issue is breaking ties among the k nearest neighbors. A tie occurs when
two or more classes become the majority class. This can happen when k is even or odd in a
multiclass problem. In the case of a binary problem, a tie can occur only when the value of k is
even. A naive approach to break ties is to pick any random majority class, but is definitely not
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logical. Another type of a tie is the distance tie, which occurs when two or more neighbors are
at the same distance from an example. Devroye et al. [31| have described a strategy where the
ties are broken by indices i.e. if (! and 2() are equidistant from z, then 2( is declared closer
toxif i < j.

Like any smoothing parameter, there is an optimal value of k for every problem. One possible
method to find this optimal value is to use cross-validation. The simplest or the degenerate case
is when the value of £ = 1 and the algorithm is known as nearest neighbor (INN) algorithm or
sometimes as first nearest neighbor rule (FNN). It has been also shown that the FNN rule has
an asymptotic error rate that is at most twice the Bayes error rate, independent of the distance
function used.

Baoli et al. [2] have argued that having a fixed value for k results in a bias on large classes.
This is specially true when the distribution of different classes in the training set is uneven. After
finding the original k£ nearest neighbors, the probability that an example belongs to a certain class
is computed using only some top p nearest neighbors for that class, where p is extracted from k
based on the size of the class ¢,,. Generally speaking, different number of nearest neighbors are
used for different classes. In order to make the comparison between different classes reasonable,
the probabilities are derived from the proportion of the similarity sum of examples belonging to
a class to the total sum of similarities for all of the selected neighbors for that class. The decision
function can be given as follows:

> sim(di, 29 y(2V), ¢,

() €top—p—kNN(cm)

Z sim(d;, z9)

() € top—p—kNN (cm)

y(d;) = argmax,,

where top — p — kNN (¢,,) represents the top p neighbors in the original k nearest neighbors. p
can be calculated in the following manner:
B kN (cm)
max{N(c;)[j =1, N}

Here N (cp,) represents the size of the class ¢,, while max{N(c;)|j =1, ---, N} is the size of
the largest class in the training set.

The advantage of this algorithm lies in the fact that it is easier to implement and has good
accuracy but, on the other hand, as it performs all of the computations at run time, it is a
computationally intensive algorithm. Another possible approach for kNN is adding a threshold
for each class, which may be learned using a validation set of examples [119]. In this case, the
kNN method is not lazy any longer and a real training is performed. But at the same time, there
is a loss in incremental behavior.

The nearest neighbor algorithm is less appealing with limited training examples because of the
curse of dimensionality. Support vector machines have also been used along with kNN to increase
the margin between the positive and the negative examples in the weighted space in which the
classification is performed. Nock and Sebban [74]| have developed a non-linear hyperplane with
a large margin by computing the weights of the reference examples.

Another variant of kNN is the Weighted kNN [18], [79] where an ith neighbor (i = 1,--- k) is
assigned a weight w;. The test sample x is classified as the class ¢ that is assigned the maximum
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weight:

k
j = argmax ; wil ) — g
Here G represents the set of classes while [ is the indicator function having the value 0 or 1.

Distance-weighted nearest neighbor rule allows all of the training samples to cast votes where
the votes for the closest samples have greater weight than the samples further away. The intuition
behind this idea is that the nearer neighbors should provide more information than the distant
ones. The weight for a vote decreases with the increase in distance from the query point. Another
variation is the rank-weighted nearest neighbor technique, in which the closest neighbors can cast
more votes as compared to the far-off neighbors.

Bay [4] has developed a technique MFS (Multiple Feature Subsets) which combines multiple
nearest neighbor classifiers each using only a subset of features.

2.3 Metric Learning

Metric has always been a very important and decisive ingredient of many machine learning
problems. Among these, the performance of k-nearest algorithm heavily depends on whether the
metric chosen takes into account the underlying geometry of the space in which the examples
lie or not. Metric learning can be further subdivided into two different types: distance metric
learning and similarity metric learning.

2.3.1 Distance Metric Learning

Distance measures the dissimilarity in a given data set. A value of 0 indicates the examples to
be totally similar while a value of 1 means that the examples are completely distinct. There
are many different possibilities for distance functions like the Euclidean distance, the City-Block
distance, the Mahalanobis distance etc.
Definition of a Distance: The distance over a set X is defined as a function d (also known as
the distance function) such that:

d: XxX = R,

Vx,2z', 2" € R, this function needs to satisfy the following four conditions:
1. d(x,2") > 0 (also known as non-negativity)
2. d(z,2') = 0 iff z = 2/ (distinguishability)
3. d(z,2') = d(2/,z) (symmetry)
4. d(z,x') +d(2',2") < d(x,2") (triangle inequality)

The first and second conditions together produce the positive semi-definitiveness [82]. A pseudo-
metric satisfies all of the requirements for a metric, except the second one. This means that one
may have d(z,z’) = 0 for even distinct values = # 2.

Various distances are defined hereafter:
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For two examples, x(x1,x2, - ,2q) and 2’(2], x5, -+ ,2}), the Euclidean distance function
(also known as L2 norm) can be written as:

A generalization of the Euclidean distance is the Minkowski function which can be written as:

d
di(z,2') = t sz(.%'l — )t
i=1

Here w; represents the weight corresponding to the ith feature of z and z/. The Euclidean
distance can be obtained by setting ¢ to 2 and each weight, w;, to 1 in the above equation.
Setting t and all of the weights w; to 1 results in the L1 norm (also known as Manhattan or City
Block distance). It represents the distance between two points in a city road grid and examines
the absolute differences between coordinates of a pair of points:

d
di(x,2") = Z |z — |
i=1

Setting t to 0o, gives the maximum value distance or Chebyshev distance:

d
ooz, ') = i s — ]
1=
A family of metrics over a vector space X could be obtained by computing Euclidean distances
after performing a linear transformation z”” = Lx. These metrics compute square distances in

the following manner:

di (z,2") = ||L(x = 2")]3 (2.1)

where the linear transformation is parametrized by the matrix £. The equation 2.1 can also be
written in terms of a square matrix A:

A=L'L

Any matrix A created from a matrix £ in this manner is always positive, semi-definite (PSD)
(written as A = 0) which means that there are no negative eigenvalues [112]. The square distances
can also be expressed in terms of the matrix A:

B (a,2') = (x —2)' Al — ') = [}z — 2’|} (2.2)

where equation 2.2 defines the Mahalanobis distance [69]. The Mahalanobis distance [3, 10] is
used, originally, to describe the quadratic forms in Gaussian distributions where it was the inverse
of the covariance matrix used to incorporate the correlations of different feature dimensions [106].
It generalizes the Euclidean distance by admitting arbitrary linear scalings and rotations of the
feature space [28]. Choosing A to be the identity matrix, the Mahalanobis distance reduces to
the Euclidean distance. The Mahalanobis distance can either be parametrized in terms of the
matrix £ or in terms of A, which means that either a linear transformation £ is estimated or a

25



Chapter 2. State of the Art Approaches to Metric Learning

PSD matrix A. The optimization is unconstrained in the case of the first approach while in the
second approach it is mandatory to enforce the constraint that the matrix A must be positive,
semi-definite.

Moreover, in case the matrix A is diagonal, the resulting distance is called the normalized
Euclidean distance where the different axes are given different weights:

where o; is the standard deviation of x; over the sample set.

Having introduced various distance metrics, the next question is how to learn these distance
metrics in an effective manner [109]. Many state of the art metric learning algorithms are next
presented and compared in detail.

Metric learning algorithms can be broadly classified into supervised metric learning algo-
rithms and unsupervised learning algorithms (covering linear (Principal Component Analysis
(PCA) |45], Multidimensional Scaling (MDS) [22]) and nonlinear embedding methods (e.g. Lo-
cally Linear Embedding (LLE) [94]) depending on the fact whether the label or side information
has been used or not. Empirical studies have shown that, in general, supervised metric learn-
ing algorithms outperform unsupervised ones [107]. Unlike most supervised learning algorithms
where each training example has been assigned a label, a supervised distance metric learning
algorithm is generally based on two types of pairwise constraints: equivalence and inequivalence
constraints. Equivalence constraints consider those examples which belong to the same classes
where as inequivalence constraints deal with data points belonging to different classes *.

Rather than using the absolute qualitative feedback (e.g. A and B are similar or A and C are
not similar), some works like Schultz and Joachims [97] and Frome et al. [38] consider relative
qualitative examples (e.g. A is more similar to B than A is to C). A practical example of this
scenario is search-engine query logs, where the documents that are clicked can be considered to
be semantically closer than the ones that the user observed but decided not to click.

Supervised metric learning algorithms could be further categorized into global metric learning
algorithms, local metric ones or pseudo global/local ones. It is possible to formulate certain
distance metric learning problems as convex optimizations over the cone of PSD matrices.

Global Distance Metric Learning

Global metric distance learning algorithms learn the distances in a global sense where the aim
is to satisfy all of the pairwise constraints (equivalence as well as inequivalence) simultaneously.
Such algorithms try to learn metrics in such a way that all of the examples belonging to the same
classes are kept close while separating apart the examples from different classes. More oftenly,
the distance function is explicitly learned in such a way that the distance between examples
within the equivalence constraints is minimized while the distance between examples belonging
to inequivalence constraints is mazimized [113], [116], [117].

“Wang et al. [106] have termed the equivalence constraints as must-link constraints while inequivalence ones
as cannot-link constraints.
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Information Theoretic Distance Metric Learning

Davis et al. [28] have developed an Information-theoretic (Information-Theoretic Metric
Learning - ITML) approach to learn (squared) Mahalanobis distances. This method does not
require semi-definite programming and eigen-value decompositions which makes it faster and
scalable. Two types of relationships between the examples are considered: similarity and dissim-
ilarity. In this regard, two points z and 2’ are considered similar if the distance between them
is less than a certain threshold u. Similarly, these points are dissimilar if the distance between
them is greater than a sufficiently large threshold [.

The aim here is to learn the positive definite matrix A which parametrizes the Mahalanobis
distance given in the equation 2.2. An input Mahalanobis matrix Aq is also considered, which
can be determined from the training data. For Gaussian data, Ay can be initialized with the
inverse of the sample covariance. Similarly Ay can also be determined using the squared Euclidean
distance. This is followed by bringing the matrix A (also known as the output matrix) as close as
possible to the initial matrix Ag using an information theoretic approach. The set of Mahalanobis
distances are related to the set of multivariate Gaussian distributions ® with an equal mean y as
follows:

p(a; A) = Zexp(—5da(w, )

where p(z; A) is the multivariate Gaussian of the matrix A or the probability density function
(pdf), Z is a normalizing constant and A~! is the covariance matrix of the Gaussian distribution.
The greater the distance d4, the smaller the value of the probability. This helps to calculate the
distance between the two Mahalanobis distance functions parametrized by Ag and A i.e. d(Ap|A)
using the relative entropy or the Kullback-Leibler divergence (KL divergence) 6 between their
multivariate Gaussians:

(25 Ao)

AAl4) = KL((p(es o) | ooz ) = [ oa: 40) tog B2 a

Thus, the distance metric learning problem can be written as:
min KL ((p(z; Ao)l|(p(w; A))

with  da(z,2’) <u (z,2/) €S

da(z,2’)y>1 (x,2') €D

Here the aim is to minimize the KL divergence between the two Gaussians. Moreover, S rep-
resents the similar points whereas D is used to denote the dissimilar points. In order to use
Bregman projections to learn the matrix A, it has been shown that the information theoretic
objective can be described in terms of Bregman divergence. Considering the fact that the Log-
Det (logarithm-determinant) divergence (Dyq) is actually a Bregman divergence defined over the
cone of PSD matrices [60], [61]:

Dia(A, Ag) = tr(AAy"Y) — logdet(AAy ") —n

5Also known as multivariate normal distribution.
SKI divergence is also known as the information gain or information divergence.
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Furthermore, Kulis et al. [60] have shown that the KL divergence between two multivariate
Gaussian distributions can be written as the convex combination of Mahalanobis distance be-
tween mean vectors and the LogDet divergence between the covariance matrices. Considering the
means of the two Gaussians to be the same, the KL divergence can be related to the Mahalanobis

distance in the following manner:

1 1 1
KL((p(; Ao)ll(p(z; A)) = 5 Dia(4g Lah= 5 Dia(4; Ao)
Moreover, the LogDet divergence is independent of the scaling of the feature space. With this,
the distance metric learning problem can be written as a LogDet optimization problem:

i D (A A
in 1d(A, Ag)

such that tr(A(x(i) — x(j))(x(i) — x(j))t) <u (i,j) €5,
tr(A(@® — 2@) (20 — 20 (i,4) € D,

V
N~—
<
N
Y
—

The imposed constraints on the distances can be relaxed using slack variables to find an admissible
solution.

It can be concluded that by using a LogDet divergence between two matrices along with
an initial PSD matrix, all of the subsequent matrices are PSD as well and no projection is
required [60]. However, a major shortcoming of this algorithm is its quadratic dependency on
the dimensionality d.

Davis and Dhillon [27] learn low rank Mahalanobis distance metrics for high dimensional
problems.

Pseudo-distance Online Learning Algorithm (POLA)

Shalev et al. [99] learn pseudo-distances parametrized by positive semi-definite matrices along
with a scalar threshold in an online as well as batch setting. Convex optimizations over the
cone of PSD matrices for distance metric learning have also been proposed. Like many other
distance metric learning algorithms, the aim is to learn a metric that shrinks distances between
similarly labeled examples while expanding distances between examples with different labels.
The algorithm is termed as Pseudo-distance Online Learning Algorithm or POLA. Examples are
composed of an instance pair and a label which can be +1 or —1 depending on the fact that the
instances are similar or dissimilar. The algorithm is based on Mahalanobis distance dj; just like
Xing et al. [114]. However this algorithm is online and comes with theoretical error guarantees.

Using a threshold b € R, the constraints for similar and dissimilar examples could be defined

in the following manner:

V(z,2',y) :y=+1 — (d(z,2"))? <b—1,
V(,2',y) iy =—1 — (d(z,2))*2b+1,

where the maximum distance in case of similar examples is b — 1. Consequently, the distance is
at least equal to b + 1 for the dissimilar examples. These two inequalities can be combined to

form a single linear constraint:

y(b— (da(z,a"))?) > 1
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The aim here is to learn the matrix A, where A > 0 like many other distance metric learning
methods. Being an online algorithm, the algorithm receives the examples in the form of tuples
(xr, 2., y,) in a sequential manner. A distance dps(x,, 2] ) is calculated for each pair of examples
at a time step 7. In case, the square of this distance is greater than the threshold b, the current
pair is considered as dissimilar. On the contrary, it is considered as similar. Once the prediction
has been given, the true label y, is received, based on which the algorithm may suffer from a
loss:

+(A,B) = max {0, y,((da(ar,2,)? —b) + 1}

It may be noted that this loss is a modified form of the hinge loss. The goal of the online
algorithm is to reduce the cumulative loss. The matrix A and the threshold b are updated at
each step upon receiving the feedback ..

In order to define an online update rule for A and b, an orthogonal projection has been
used. Suppose there is a vector z € R? along with a closed convex set C C RP. The orthogonal
projection of x onto C' can be given as:

Pc(z) = argmin ||z — 2'||3
z'eC
In order words, the aim is to find the closest point of = in the set C. Here Pc(z) is the vector in
C' that is closest to z. Moreover, (A, b) is considered both as a matrix-scalar pair and as a vector
in R"*+! where the first n2 elements represent the matrix A where as the last element stands for
the threshold b. At each time step 7, the set C; C R™+1 can be defined as follows:

C, = {(A, b) € R™1: 1, (A,b) = o}

where C; represents a set of all those matrix-threshold pairs that attain zero loss on the current
example i.e. (x,, 2] ,y;). Moreover, it is known that A > 0 and the threshold must be greater
than or equal to 1, since the loss between two similar points would be non-zero if b < 1. This
allows to define another set C; which is the set of all admissible matrix-threshold pairs:

Ca:{(A,b) e R A -0, b21}

The update for the online algorithm consists of two projections: first onto C; and then onto
Cy. The first projection onto C, gives (A7, b;) as the matrix-threshold pair. The aim is to
keep (A, b;) as close as possible to (A-,b;), while (A;,b;) is forced to attain a zero loss on the
current example. The second projection onto C, gives (Ary1,br41) which makes sure that the
new matrix-threshold pair is admissible for deciding whether the current examples are similar or
not.

Projection onto C

In order to project (A,b) onto C;, w € R™+1 is considered to be the vector representation
of (A,b). Similarly w;, w; and w,41 represent the vectors associated with (A;,b;), (Az,bs) and
(A;41,br41) respectively. Moreover, let X, € R"*1 be the vector representation of the matrix
scalar pair (—yTvTvi,yT) where v, = x, — x/.. Tt is further known that the projection onto C;
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ensures zero loss which means that:

yT(b - d%}) >1
= yTb - de?él >1
= yb—y(x—2)A(x —2)) >1

The definition of C'; can be rewritten as:
C, = {w c RV, w.X; > 1}
The projection of w, onto C; can be given by:

PC'T (w’T) =w; + a’T‘X’T

where o, = 0 iff w.X, > 1. Otherwise o, = % Furthermore, ., can be written as:
Tll2
. — lT(AT7b’T) o lT(AT7b’T)
= =
1215 lo-[13 +1

The updates for A, as well as for b, can now be written as:
Af— = AT - y’rarv’rvf— ) bf— = bT + aryr

Projection onto Cy

After projecting (A,,b;) onto C;, (Az,bs) is projected onto C, which can be written as:

(Ar41,br41) = Pe, (A7, b7)

where A, is the projection of A onto the set of all positive semi-definite (PSD) matrices and
bry1 is the projection of b; onto the set b € R: b > 1. The projection of b; onto the aforemen-
tioned set is maximum of 1 and b;. In order to project Az onto the set of all PSD matrices, there
are two possibilities: y, = +1 or y, = —1. In case where the current examples are dissimilar, the
update would be A; = A, + a,;v,vL where a, > 0. This implies that A; = 0. Hence the projec-
tion of A; onto the set of PSD matrices is A:. In case the current examples are similar, there
is no surety that A; = 0. Since A; is symmetric, it can be rewritten in terms of its eigenvalues
and eigenvectors:

n
A;_: E )\Zuluf
i=1

where \; stands for the i’th eigenvalue while u; represents the i’th eigenvector of A;. Since the
matrix A,41 is the projection of A; onto the PSD cone, A,11 can be written in the following
manner:
A7-+1 = Z )\Zuluﬁ
i:X>0

Here it can be seen that the interest lies only in the positive eigenvalues. Moreover, using the
eigenvalue Interlacing Theorem, it is known that A» can have at most a single negative eigenvalue.
With this, the projection onto the PSD cone can be written as:

t
A7-+1 = Af— — )\nunun
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Figure 2.5: Neighbors of the instance z(): before and after training [108]

where A, represents the minimal eigenvalue of A; while w,, is its corresponding eigenvector.

Large scale classification using distance metric learning

Weinberger et al. [110], [112] have used the Mahalanobis distance for k nearest neighbor
(kNN) using semi-definite programming. A semi-definite program, also known as SDP, is a
linear program where the matrix whose elements are linear in the unknown variables must be
positive, semi-definite having no negative eigenvalues. SDPs are convex which means that the
global minimum can be computed easily.

The distance is optimized in such a way that the k nearest neighbors belonging to the same
class (also called as the target neighbors) are attracted while examples belonging to different
classes (called as the impostors) are separated by a large margin. In other words, the target
neighbors define a perimeter around an example 2@ which the differently labeled inputs should
not invade. Furthermore, the differently labeled examples that invade this perimeters are referred
to as the impostors. The overall aim is to reduce the number of impostors. This is shown in
figure 2.5. The distance is optimized with the view that the target neighbors (belonging to the
same class) are located within a smaller radius after training; while differently labeled neighbors
are located outside this radius, with a margin of at least one unit distance. This helps to maintain
alarge (finite) distance between the impostors and the perimeters established by target neighbors.
The idea is to learn a linear transformation £ where:

d(z,2") = | Lz — 2|3

In order to describe the impostors, 1) is considered to be a target neighbor of an example z(?)
with a label 4. Then z(® represents an impostor with the label y) % y(® such that:

12 —2D)3 < @ — 2|3 +1 (2:3)

The loss function is made up of two terms: the first one pulls the target neighbors closer and
reduces the distances while the second one acts to push differently labeled examples further apart
and hence increases the distances.
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The first term in the loss function penalizes large distances between an input and its target
neighbors. The sum of these squared distances can be given by:

6pull(ﬁ) = Z [£(z® — 20)))?

where z\9) is a target neighbor of (", A good thing about this approach is that it only penalizes
large distances between an input example and its target neighbors and not with all of the examples
having similar class labels.

The second term in the loss function disfavors small distances between an input and all other
examples that do not share the same class label. In order words, this terms penalizes the violators
of the equation 2.3:

epush (£) = D > (1 =y [+ [ LD — 2|2 = £ - 2O))7)4
i1

where y(*) = 1 if and only if y© = 3@ and is 0 otherwise. Moreover, the terms [z], = max(z,0)
and represents the standard hinge loss. It has been further suggested that the unit margin can
be changed if desired.

With this, the two terms (6pu11 and € can be combined to form the loss function. As

push)
the two terms have different aims: to attract the target neighbors and to repel the impostors; a

weighting parameter p € [0, 1] is used:

e(L)=(1-n) Epull(ﬁ) +h 8push(ﬁ)
The loss function defined above is not convex. In order to reduce the loss, gradient descent
algorithm could be used. However, this might result in local minima. A work around is to
rewrite the loss function as an instance of semi-definite programming.
The algorithm has been tested on different datasets e.g. Iris, Wine, Isolet etc. The Principal
Component Analysis (PCA) is used in order to reduce the number of dimensions. The results
show significant improvement as compared to kNN algorithm employing Euclidean distance on

all but the smallest data sets. The results are even comparable to the one using multi-class
SVMs [25].

Xing’s Distance Metric Learning Algorithm for Clustering

Xing et al. [114] were the people who first proposed a convex objective function. An algorithm
was presented to learn the Mahalanobis distance for clustering based on similar and dissimilar
pairs of points. Given a set of data points, the aim is to minimize the squared distance between
similar examples or points while maximizing the distances between differently labeled examples.
If two examples z and 2 are similar, (z,2’) € S where S represents all of the similar examples
(also known as equivalence constraints) just like the ITML algorithm of Davis et al [28]. Similarly
D represents the pairs which are dissimilar in case the information about the dissimilar pairs is
available. On the contrary, all of the pairs which are not in S, can be added in the D set to form
the inequivalence constraints. This can be expressed in the form of an optimization problem:

1 12
Aéang{d Z(%I/)ES lz — 2|4,
such that Z(J; )eD o — 2|4 > 1,

A=0
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(a) (b

Figure 2.6: Xing’s algorithm on 3 class data (a) Original data (b) Rescaling corresponding to
learned diagonal matrix A (c) Rescaling corresponding to full A [114]

The constraint on D makes sure that the problem is feasible and bounded and A does not
collapse the dataset into a single point in which case the distance between all similar points
would become zero. Furthermore, it has been argued that if the squared distance is used for
the dissimilar points as well, then the matrix A will always have rank 1 and the data would be
projected on a line. Both of the constraints are convex which makes the optimization problem
as conver. The algorithm is used to learn both diagonal A as well as full A. For diagonal A, the
Newton-Raphson method has been used to learn A whereby g(A) is minimized:

g A) = > le—2Ih-log| D le—2|a
(z,x")esS (z,x")eD
The first term or the distance between the similar points is reduced while the second term within
the logarithm or the distance between dis-similar examples is increased.

In case where the full matrix is learned, the Newton-Raphson method cannot be used since
it becomes way too expensive computationally. This is the reason why gradient descent is used
like Weinberger’s LMNN [112], along with the iterative projections to learn A. The resulting
problem can be given as:

mac g(A) = Spanep e
such that  f(A) =37, e |z, /|4 <1, (2.4)
A*x0

Here, the aim is slightly changed and the effort is made to mazimize the distance between dis-
similar points which belong to D whereas the original optimization problem was to minimize the
distance between the similar points. Figure 2.6 shows a 3 class data in which case the centroids
of the clusters differ only in z and y directions. As shown in figure 2.6(b), the learned diagonal
metric correctly ignores the z direction. Furthermore, in the case of full A (figure 2.6(c)), the
algorithm finds a projection of the data on a line that maintains the separation between the
clusters.

A gradient ascent step is used to optimize equation 2.4 which can be given as A = A +
aVag(A). This is followed by repeatedly projecting the A matrix onto the sets C; = {A :
> (@anes 1T — 2’| <1} and Cy = {A: A = 0}. The projection of A onto Cy can be written as:

A =argminy {||A — A% : A" € Cy}
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where ||.||p represents the Frobenius norm, a type of the entry-wise norms. A Frobenius norm of
a matrix P is the square root of the sum of the entries p;; where ¢ represents the rows whereas
j stands for the columns. For the second projection onto Cy, the diagonalization of the matrix
A is found:

A=X'AX

where A is a diagonal matrix that is composed of the eigenvalues of the matrix A (Aq, -+, Ap)
and the columns of the matrix X make up the eigenvectors for A. In order to convert A into
a positive semi-definite matrix, only the positive eigenvalues are taken into account and the
negative ones are replaced with zeros. The following formula can then be used:

A = XINX

where A’ is a diagonal matrix consisting of only positive eigenvalues.

Xing’s algorithm is batch and does not has a computationally efficient online version like that
of POLA [99]. Moreover, there are no theoretical error guarantees which means that there is no
surety that the algorithm would make a limited number of mistakes on unseen examples. It is also
implicitly assumed that the classes form a single compact connected set, which is detrimental in
the case of highly multimodal class distributions.

Maximally Collapsing Metric Learning (MCML)

Another global distance metric learning approach is developed by Globerson et al. [41] where
the aim is to collapse all of the examples belonging to the same class to a single point and push
the examples from different classes infinitely apart. The goal is to learn a Mahalanobis distance
metric. The objective function in this case is convex over the space of positive, semi-definite
matrices, which in other words mean that there is a unique minimum. The goal is to have zero
distance between the examples from the same class where as the distance between examples
pertaining to different classes should be infinite. A conditional distribution has been defined for
each of the training examples z(9) over other examples z\9) where i # j:

_— exp(—||Az® — Az0)|? Dy =
Y Zj;éi exp(—[|Az() — AzD|2" 7

0

where p;; represents the probability with which an example 2 selects another example 29) as
its neighbor and z9) share the class label with z(*). The ideal case where all the examples from
the same class are mapped to a single point and infinitely apart from the examples belonging to
different classes can be represented as:

o 1 y® =y0) (dij = 0)
PIEL 0 0 £y (de = 0)

The idea is to find a matrix A in such a way that p;; is as close as possible to p;]-. This can be
achieved by minimizing the KL divergence between the two probability distributions:

min Z K L[p; | pij]
J
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such that A is a PSD matrix. This optimization problem is convex over the space of PSD matrices
and has a unique solution like many other approaches discussed earlier: POLA [99], Weinberger
et al. [112], Xing et al. [114]. However, a disadvantage of this approach is that it assumes that
the examples in each class have a unimodal distribution.

This method is based on Neighborhood Components Analysis (NCA) by Goldberger et al. [42]
who also learn a Mahalanobis distance metric but especially for kNN classification. This algo-
rithm finds the leave-one-out error or the 0—1 loss from a stochastic variant of kNN classification.
However, the objective function is not convex unlike MCML and can suffer from the problem of
local minima.

Online Learning of Image Similarity - OASIS

Gal et al. [16] learn image (dis)similarity using an online algorithm called OASIS for Online
Learning for Scalable Image Similarity learning. OASIS learns a bi-linear distance measure and
belongs to the Passive Aggressive family of learning algorithms. The aim is to learn a pairwise
similarity function S with large margin and an efficient hinge loss based on the relative similarity
of pairs of images. It does not require the similarity measure to be PSD or even symmetric unlike
many other works e.g. Weinberger et al. [112], Xing et al. [41] etc.

In order to dig deeper into the algorithm, consider & to be a set of images, and 7;; =
r(x(i), zU )) € R be a pairwise relevance measure which shows how strongly z(® is related to (/).
Furthermore, an assumption is made that there is no full access to all the values of r. On the
other hand, it is assumed that a comparison can be made between the available relevance values
to determine which one is more relevant. Furthermore, if the relevance value is not available for
a given pair of images then its value is considered as zero. The reason is that most of the images
are not relevant to one another. The aim is to learn a Similarity function S(z(*,2()) in such a
manner that the pair having more relevant images are assigned higher scores:

S <x(z‘>,xu>+ >~ S <(x<z‘>,x<j>*) vl g0 207 e R
such that r((x(i),m(jrr) > (@, 20)7)
A parametric similarity function S having a bi-linear form is considered as follows:

S (20, 20)) = 20" 7z0)

where W € R%?. The idea is to find a function S in such a way that all of the triplets obey the
following inequality:
Sw(®, 207 > Sy (a®, 207y +1

where 1 represents the value of the safety margin. The hinge loss for a triplet can be calculated
in the following manner:

I (2@, 207 20)7) = max {0, 1— Sy (z®, 207y 4 sw(x@),x(j)*)}
The goal is to minimize the global or the cumulative loss Ly over all of the possible triplets:

Ly — > b (20, 20" 2007
(x(ﬂ) 71‘(j)+ ,x(j)7 )ER
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Passive Aggressive algorithm [23] is applied in an iterative fashion to optimize W where W is
initialized to Wy = I. At each iteration i, a triplet is selected randomly before solving the

following convex problem having a soft margin:
Wi = arg miny g[W — Wi | +C¢

such that Ly (2@, 207 207y < ¢ and € >0
The online update for W closely resembles that of PA-I and can be written as:

Wi =W;_1 + V"

where (@) )T .6)"
) lw,_, (W, 2V 2V )
7, = miny C, —= ’i ’
{ &l
. - o , T
and Vi = [xy)(x(k)* —27), gD E® ) )}

Furthermore, loss bounds have been provided for OASIS based on the one given for the passive
aggressive algorithms. This method is tested on Google proprietary data and found to be faster
even than the fast implementation of LMNN by Weinberger et al. [111]. OASIS was also tested
with symmetric as well as PSD matrices. In order to enforce symmetry, W is projected onto the
set of symmetric matrices W' in the following manner:

1
W' = sym(W) = §(Wt + W)

However, adding symmetry did not improve the results. For the PSD projection, two different
strategies were employed: projecting after every i iterations and projecting only once the training
is completed. It was found out that the best performance can be achieved by projecting into
PSD after learning.

Local Distance Metric Learning

As opposed to global distance metric learning algorithms where the aim is to optimize compact-
ness and separability in a global fashion, local distance metric learning algorithms try to optimize
local compactness and local separability. In general, most works in distance metric learning learn
global distance functions which keep all points belonging to the same class nearer while the points
pertaining to different classes are separated. In case the classes have multimodal distributions,
it becomes very difficult to satisfy the two goals (within-class compactness and between-class
separability) simultaneously as shown in figure 2.7 [118].

In local distance metric learning, the focus shifts on the local pairs where the pairs belonging
to the same mode of a class are brought nearer while the nearby pairs from different classes are
separated. Yang et al. [118]| have presented a probabilistic framework in order to learn the local
constraints.

Using the notations defined for global metric learning algorithms, the probability of making
the right prediction for a test example = (denoted by Pr(+|z)) can be defined in the following
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Figure 2.7: Original data distribution (left) and data distribution adjusted by a global distance
function(right)

manner:

> fla,a)

() € gg(x)

> S+ Y faa)

() € ¢pg(x) z() € pp ()

Pr(+]a) =

where S represents the equivalence constraints, D stands for the inequivalence ones and f(x,z')
is a kernel function which can be defined as:

f(a,2') = exp(—|z — 2'|[%)

The log likelihood for S as well as for D can be written as:

Li(A) = Z log Pr(+|x)
ze€T

where T represents all of the data points present in the sets S and D. Using the maximum likeli-
hood principle, the local distance problem can be written in terms of the following optimization

problem:

Aea 1A

such that A >0

It may be noted that when an example z() is relatively far from z compared to other examples
in ¢g(z) and ¢p(x), the kernel value f(z,z") will be smaller than the kernel values for other
examples (since the kernel value between two examples in inversely proportional to the distance
between them). This explains the fact that the examples that are distant from each other would
have a lesser impact on the objective function £; as compared to the ones which are close to one
another.
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Another locally adaptive distance metric learning algorithm is used in Hastie and Tibshi-
rani [48]. However, in this case, the locality must be specified in advance which is a difficult
task.

2.3.2 Similarity Metric Learning

Similarity is a quantity that reflects the strength of relationship between two objects. It normally
has the values in the range of either —1 to +1 or the values are normalized into 0 to 1. One of
the widely used similarities is cosine similarity. The cosine similarity between term frequency-
inverse document frequency (tf-idf) vectors is used in information retrieval and text mining for
document classification. It has also been demonstrated to be a useful measure in gene express
profiling. The similarity between two examples z(z1, 29, -+ ,zq) and 2/(2], ), -, 2)), with
angle © can be calculated utilizing cosine function as given in the equation:

zla’ T1x] + x2hy + -+ + xg2l

/ p—
[ A S Iy N S

sim(z,2’) = cos® =

This ratio defines the cosine angle between the two vectors where ||.|| represents the Euclidean
norm of an example. Furthermore, it can be noted that sim(z,z’) = 1 if and only if z = a/,
that means the z and 2’ refer to the same example. And sim(z,z’) = 0 if and only if z L 2/,
that means the z and 2’ share nothing in common (in case of documents, this means that x
and 2’ share no words at all). With the decrease in the angle between the vectors, the value of
cosine approaches 1, meaning that the vectors are getting closer and the similarity is increasing.
This ratio can be used as a similarity measure between any two vectors representing documents,
queries, snippets, images or a combination of these. In Vector Space Model (VSM), z and 2’
can be replaced by a document d® and a query ¢ to calculate the similarity between a query
¢ and the list of documents ranked based on their similarity with the given query. A good
thing about cosine similarity is that it is already normalized. Since the examples are already
normalized to unit length, the cosine similarity degenerates to the inner product:

sim(x,2') = x'a’

Threshold Learning

Yang et Liu [119] have proposed a variant of kNN algorithm, in which a class specific threshold
bl9) is learned using a validation set of examples. Cosine similarity has been chosen and this
method has been applied for text categorization in order to find the similarity between two
documents. The decision rule for a test document x with respect to the category ¢\) can be
written as:
p(x,c(j)) - Z sim(x,d(i))p(d(i),c(j)) —p@)
dDekNN

where sim(z,d®) is the cosine similarity between a test document z and a training document
d® (one of the k nearest neighbors of document z); p(d¥, ¢)) is the classification for document
d® with respect to category cU) (1 if it belongs to the category or 0 otherwise). Apart from
learning category specific thresholds, a similarity matrix is not learned and cosine is rather used
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in its original setting. A cross-classifier comparison has also been performed between SVM, kNN,
Linear Least Squares Fit (LLSF), Neural Network (NNet) and Naive Bayes (NB) algorithms.
The results show that the kNN performs better as compared to LLSF, NNet and NB but is
outperformed by SVM for the micro-level analysis. On the other hand, the macro-level analysis
indicate that the performance of SVM, kNN and LLSF are comparative and is better than NB
and NNet approaches.

Neural Network Based Similarity Metric Learning

Artificial Neural networks (ANN) have been used both in supervised (e.g. classification) as well as
unsupervised settings (self-organizing maps). Diligenti et al. [32] have tried to learn similarities
based on a set of comparisons between pairs of examples while using multi-layer perceptron
(MLP). The key idea is to have a mapping where the similar examples are closer in the output
space while at the same time the dissimilar examples are far apart.

Mellaci et al. [72] as well as Maggini et al. [68] have learned similarities as opposed to distances
using neural networks. More specifically, a feed-forward multi-layer perceptron (MLP) has been
employed. A MLP is a modification of the linear perceptron with three or more layers (input,
output and one or more hidden) of neurons or nodes. This technique is termed as a similarity
neural network (SNN) whereby a non-negative and symmetric function is learned.

The training phase is based on dyadic supervisions (similar or dissimilar). The SNN is made
up of a single hidden layer with all the hidden neurons fully connected with the input and output
layers. Furthermore, backpropagation algorithm is used to finetune the system with the following
properties:

1. The similarity (sim) or the output range is [0, 1] guaranteed by the use of sigmoidal func-
tion,

2. The similarity between two examples () and zU) is symmetric i.e. sim(z®,20)) =
sim(zV), z()),

3. Similarity is not a metric since sim(z®,z(®) = 1 and the triangle inequality cannot be
guaranteed.

SNN was evaluated on UCI datasets [36] (Iris, Balance and Wine) using similar pairs (pairs
belonging to the same class) and dissimilar ones (pairs pertaining to different classes). It was
compared with Euclidean and Mahalanobis distances using the cumulative neighbor purity index
which measures the percentage of correct neighbors up to the k-th neighbor, averaged over the
entire data set.

Similarity Based Classification

Bernal et al. [5] have developed a similarity based classification algorithm (SBC) in which the
concept of maximal margin has been replaced, which is basically a binary concept, by a concept
of robustness of the decision function that is independent of the number of classes. Effectively
the replaced concept is equivalent to the maximal margin in the binary case.
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Given a set of n class-labeled training objects (), y®), i =1, ---  n, where y(*) represents
the class of the example (), and for an unclassified object 2/, the class similarity of 2’ is defined
with respect to a class C' in the following manner:

Sc(z') = Z o sim(z®) | 2 (2.5)
zkeC

where sim(, ) is the similarity function and aj > 0 shows the relative importance given to each
z®) with respect to classification. Thus, the class of 2/ can be predicted using the following
function:

C(a') = argo{max(Sc(2'))} (2.6)

From equation 2.6, a stronger version can also be derived, which requires that not only 2’ is more
similar to class C' than any other class, but is also more similar to class C than it is to the union
of any other collection of classes. The stronger rule can be written as:

C(2') = argo{max(Sc(z') > Y Sp(2))}
D#C

Moreover, in order to compare this algorithm with classical machine learning ones that deal
with binary classification, the case of only two classes A and B is also considered. Thus the
equation 2.5 can be written in another way:

Sa(z') = Sp(@') >0 =C@@)=A
Sa(z') = Sp(a') <0 =C(a)=B
Sa(z") = Sp(2') =0 = C(a’) is not defined

For the similarity measures, Radial Basis functions (RBF) and polynomial kernels have been
selected. RBF calculates the distance between two points using the formula:

lz — ylI?
5 )

s(z, x,) = exp( 252

The similarity matrix is defined as:
S =[0s(2, £0))]

where 4,5 € n, § = 1 iff C(2)) = C(z1)), and § = —1 otherwise.

Some other Similarity Metric Learning methods

Grabowski et al. [46] have described a method for learning similarities on complex structures
where similarity spaces are first learned on elementary domains like the domain of simple at-
tributes etc. This is followed by learning these spaces on approximation spaces, which can be
constructed from similarity spaces. The final goal in this case is to design similarities to be used
for automated ontology extraction from rich, complex structures. Interestingly, the similarity
measure considered is an asymmetric variant of the Jaccard coefficient. However, this approach
in general is more inclined towards feature selection than the similarity metric learning.
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Another interesting work is the one described by Hust [52], on Collaborative Information
Retrieval (CIR), where individual users collaborate to improve the overall Information Retrieval
system. Here, a variant of the cosine similarity is learned to re-rank the documents.

Peterson et al. [84] have shown that it is better to use weight-optimized cosine similarity
instead of weighted Fuclidean distance on UCI collections like Pima, lonosphere etc. Genetic
Algorithms are employed to improve the performance of kNN using weight and offset optimiza-
tions. In the case of Euclidean distance, each feature j of an example z(?) is transformed in the
following manner:

/(2)
J

= i

where w represents the weight vector. Euclidean distance is invariant to offset shifting.
Each feature is independently shifted positively or negatively for the cosine measure, thus
changing the angular point of reference and ultimately the classification:

— O]) *w]’

where O stands for the optimization vector and w for the weight vector.
Pearson correlation is also used, which measures the strength of a linear relationship between
two feature vectors () and z(*) in the following manner:

Sl — 2@l —ak)

j=1
(d—1)SD, ) SD,u

Pearson (2%, (%)) =
x (i

where Z is the mean value of the example x whereas SD, is its standard deviation. The range
of pearson correlation is [—1,+1]. +1 indicates a strong positive linear relationship while —1
represents strong inverse linear relationship. On the contrary, the cosine similarity is never
negative.

Furthermore, Stahl et al. [100] have learned local similarity measures instead of global ones
where the similarities are computed between individual attributes using an evolution program
which is a special form of genetic algorithm. There are still some other approaches in which the
terms distance and similarity are used in the same context (e.g. the work of Chen et al. [17]).

Mandl [70] use neural networks to learn a similarity matrix based on the similarity between
documents and queries. Liu et al. [66] describe an algorithm whereby a similarity metric is learned
in non-orthogonal space such that the similarity of features affect the similarity of objects, and
vice versa.

2.4 How to use the best features for a dataset

In general, the features of a dataset are either reduced to a set of more meaningful ones or feature
reweighting techniques are used. However, there are some other situations in which the different
features of a dataset have different scales and the scale effects must be removed in order to use
the attributes in an effective manner.

2.4.1 Dimensionality Reduction

In many practical cases, the number of features or the dimensions must be reduced to improve
the performance of the classifier. This is particularly the case when many of the features are
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irrelevant or redundant. In these cases, the aim is to reduce the dimensionality of the vector
space from d to d’ where d < d. This can be exploited to vastly reduce the storage and
search time requirements for kNN algorithm. Moreover, by choosing d = 2 or d’ = 3, one
can compute low dimensional visualizations on labeled datasets using a linear projection [42].
The matrix £ in equation 2.1 is considered to be non square of size d’ X d. It has been further
argued that by using this matrix £, the computational load of kNN can be reduced to quite a
large extent by restricting the metrics to be those of rank at most d’. Figure 2.8 shows how
Goldberger’s Neighborhood Component Analysis (NCA) algorithm outperforms PCA (Principal
Component Analysis) and LDA (Linear Discriminant Analysis) when the data is visualized in 2
dimensional space. There are two broad categories of feature selection methods: local dimension
reduction and global dimension reduction. In local dimension reduction methods, the number of
dimensions is reduced separately at each of the query points. On the other hand, in the case of
global methods, the original feature space is converted into an optimally chosen subspace with
lesser number of features [49].

Partridge and Calvo [80] have defined a fast and simple algorithm where they calculate the
approximate principal components (PCs) of a dataset before reducing its dimensionality.

2.4.2 Feature Reweighting

The feature reweighting algorithms learn the weights of the attributes. RELIEF (originally pro-
posed by Kira and Rendell [57]) is a simple yet an effective online feature reweighting algorithm.
Unlike many other heuristic measures for estimating quality of the attributes, the conditional
independence of the attributes is not assumed. Since its development, many people have modi-
fied and extended this algorithm (ReliefF, RReliefF, I-Relief etc.) It has been proven successful
in many different settings. It learns a vector of weights (for each of the features) describing the
importance or quality of different attributes or features.

It has been shown that it solves convex optimization problem while maximizing a margin-
based objective function using k-NN algorithm. The weights are updated based on the nearest
hit (nearest example belonging to the class under consideration or sometimes referred to as the
nearest target neighbor) and the nearest miss (nearest example belonging to other classes).

RELIEF learns only a diagonal matrix in the original setting. However, Sun et al. [102] have
extended RELIEF to learn a full distance matrix. It has been further proved that Relief is an
online algorithm. RELIEF outperformed standard £NN algorithm on standard UCI collections
like Banana, Splice, Waveform etc.

Let () be a vector in R% having y(?) as the class label with values +1, —1. Let w be a vector
meant for iteratively estimating the qualities of attributes initialized with 0. The aim is to learn
w on a set of training examples. Suppose an example z(¥) is randomly selected. This is followed
by finding two nearest neighbors of z(V: one from the same class (termed as nearest hit or H)
and other from the different class than that of (*) (termed as nearest miss or M). The update
rule in case of Relief doesn’t depend on any condition and can be represented as:
diff(1, 2@, H(z®)  diff(l, 2@, M (2®))

J + J
where J represents the number of iterations, the algorithm has been run while diff is a function

w; = wy — (27)

used to find the difference between the values of an attribute i for () and the nearest hit or miss
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Figure 2.8: Dataset visualization results for PCA, LDA and NCA applied to concentric rings,
wine, faces and digits (Top to bottom).

The datasets are reduced to 2 dimensions in each
case. [42]
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represented by H or M. If the instances () and H have different values for an attribute i then
this means that it separates the two instances in the same class which is certainly not desirable, so
the quality estimation wy is decreased. Similarly if the instances (¥ and M have different values
for an attribute ¢ then this attribute separates two instances belonging to different classes which
is desirable, so the quality estimation for i is increased. In the case of discrete attributes, the
value of difference is either 1 (the values are different) or 0 (the values are the same). However,
for continuous attributes, the difference is the actual difference normalized to the closed interval
[0, 1] which is given by:

|21 — ]

diff(l, z,2") =

maz(l) — min(l)
Furthermore, the same diff function is used to find the nearest hit and the nearest miss as well,
where the total distance is the sum of differences for all of the attributes (Manhattan distance).

The overall aim is to learn the estimation of the qualities of attributes.

The complexity of Relief is O(Jdn) where J is the number of iterations, d is the number of
features, and n represents the total number of instances. However, the complexity is fixed for all
of the scenarios.

In the original setting, RELIEF can only deal with binary class problems and cannot work
with incomplete data. In order to cope with this problem, it was extended in the form of
RELIEFF algorithm [58]. Instead of just finding the nearest hit and miss, it finds k& nearest hits
and the same number of nearest misses from each of the different classes.

Mathematical Interpretation for RELIEF algorithm

Sun and Wu [102] have provided a mathematical interpretation for the RELIEF algorithm. The
margin for an instance z(9 can be defined as:

pi = d(a® = M) ~ da) ~ Hz))

where M (z®) and H(z") are the nearest miss and nearest hit for z(?) respectively, and d(.)
represents a distance function. d(z) = )", |2;] is defined just like the one used in original RELIEF
algorithm. The margin is positive only if z(9) is nearer to the nearest hit as compared to the
nearest miss, or in other words, is classified correctly as per the 1NN rule. The aim is to scale
each feature in such a way that the leave-one-out error ) ;" ; I(p;(w) < 0) is minimized, where
I(.) is the indicator function and p;(w) is the margin of z(?) with respect to w. As the indicator
function is not differentiable, a linear utility function has been used so that the averaged margin
in the weighted feature space is maximized:

arg max } ;1 pi(w) =3 i1, {Z?:l wy ‘xl(l) - Ml@(i))‘ - Z?:l wi ‘xl(l) - Hl(x(i))‘} g
v (2.8)
such that ||w|? = 1, and w > 0,

where w > 0 makes sure that the learned weight vector induces a distance measure. The
equation 2.8 can be simplified by defining:

2= (e = M) ~ o — H()
=1
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and the simplified equation can be written as:

max w'z where ||w|3=1,w >0
w

The Lagrangian of the above equation can be written as:

d
L=-wz+A|wl3+1)+)_ 6i(-w)
=1

where both A and 6 > 0 are Lagrangian multipliers. In order to show that the optimum solution
can be calculated in a closed form, the following steps are performed: the derivative of L is taken
with respect to w and is set to zero. This gives:

oL z+0
a—w——z+2)\w—9—0 and w = N

This is followed by deriving the closed form solution for w. In order to prove that A > 0, it is
supposed that z; > 0. This implies that z; + 6; > 0. In case A < 0, then this means that w; is
negative, which contradicts the constraint w > 0. Therefore, it can be deduced that A is always

positive.
Different cases for z; could be further verified using the Karush-Kuhn-Tucker condition

(22, Oiwi = 0):
1. When z; =0, 6, = 0 and w; = 0;
2. When z; >0, z;+6, >0 = w; >0=6; =0; and
3. When 2, < 0,0, <0 = w; =0 = z = —0;

The optimum solution can be calculated in a closed form in the following manner:

+
w= % (2.9)
1(z) " l2
where (2)* = [max(z1,0), --- ,maz(zq,0)]". While comparing the above equation with that of

weight update rule for RELIEF it can be noted that RELIEF is an online algorithm to solve the
optimization problem given in equation 2.8. This is true except when w; = 0 for z; < 0 which is
normally related to irrelevant features.

In the original setting, RELIEF algorithm uses only a diagonal matrix. Sun and Wu [102]
have instead used a full distance matrix in which case the optimization problem can be written
as:

max Yoy pi(w) = 32y miWom — 370 W h,
(2.10)
such that |[W||% =1, and W > 0,

where m; = 20 — M (@), h; = 2 — H(z®), and ||W||r represents the Frobenius norm of W

which can be written as:
2 _ 2
dowii= >N
i, i
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Here \; stands for the ith eigenvalue for W. It is to be noted that equation 2.8 and 2.10 have
similar meanings. Furthermore, W, being a distance function is symmetric and positive, semi-
definite.

The performance of a classifier can be enhanced using feature transformation mechanisms.
Two commonly used ones are feature standardization and feature fuzzification.

2.4.3 Feature Standardization

It is a process used to remove the scale effects when different features have different measurement
scales [83]. The raw feature values are transformed into z-scores using the mean and standard
deviation of feature values over all of the samples. The z-score for ith sample and jth feature
can be written as:

where 2" is the value for ith sample and jth feature or attribute, u; represents the average of

.] .
all xy) for feature j and o; stands for the standard deviation of all xg.z) over all of the input
examples. In case the feature values represent a Gaussian distribution, then the histogram for
the z-scores represent a normal distribution having zero mean and the variance of unity. Once

the standardization has been performed, the range and scale of the z-scores would be similar.

2.4.4 Feature Fuzzification

This technique exploits the uncertainty in feature values so as to increase the classifier perfor-
mance [83]. The original feature values are replaced by a mapping into 3 fuzzy sets representing
linguistic membership functions in order to facilitate the semantic interpretation of each fuzzy
set. The fuzzification process starts by determining x,,;, and %4, as the minimum and max-

imum values of xg.i) for feature j over all of the input samples ¢ and ¢; and ¢ as the quantile

(@)

values of x ; at the 33rd and 66th percentile respectively. This is followed by computing the
following averages:
AVg1 — wmig‘i‘Ql
Avg2 — q1-2qu
+ max
AVg3 = $2T%maz :5

The next step is to translate each value of xgi) for feature j into 3 fuzzy membership values
having the range [0, 1] a8 fow,i,j Hmed,i,j Hhigh,i,; using the following relationships:

(1 x < Avg,;
—L=— Avgy <2 < @0
Hiow,i,j = q27AVg1
0 x> q2,
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0 T < q

AVgQ—x

o2 < A

Ao —a g < x < Avg,
Hmed,i,j = G-

m AVg2 S T < q2

0 X 2 q2,

0 T < q
Khigh,ij = Angcg_:iq{ q1 <z < Avgs

1 x > Avgs.

The computations for fjow,i j; lmed,i,j and fhigh i ; give 3 fuzzy sets or vectors fyow,j fhmed,j Khigh,j
of length n which replace the original input feature.

2.5 Classifier Comparison Techniques

The performance of different classifiers can be compared based on many different metrics. The
most widely used criterion is accuracy which is the number of correct classifications to the total
number of classifications made. Some of the other criterions are precision, which is the ratio
of the number of relevant objects retrieved to the total number of objects retrieved, and recall,
which is measured as the number of relevant objects retrieved, divided by the total number of
relevant objects (whether retrieved or not):

Number of relevant objects (or documents) returned

recision = P =
P Total number of objects (or documents) returned

Number of relevant objects (or documents) returned

l=R=
reca Total number of relevant objects (or documents)

Another standard evolution measure is the F-measure which is a combination of precision and

recall, and depends on a parameter «. It can be defined as:

1

ap+(1—a)p

F-measure =

By choosing a = 0.5, same importance is given to precision and recall. In this case, F-measure
becomes the harmonic mean of the two values: P and R.

2.5.1 Cross Validation

Cross validation is basically a model evaluation method. There are many different types of cross
validation techniques like holdout method, K fold cross validation, leave-one-out cross validation
etc.
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Figure 2.9: Cross validation [101]

The holdout method is the simplest of all cross validation methods. In this method, the
data set is divided into training and test set. The algorithm is trained on the training set and
the performance is assessed on the test set. The benefit of this method is that it requires much
less time to execute. However, the evaluation is dependent on the distribution of examples into
training set and the test set and it may have a high variance. In K fold cross validation, the
dataset is presented K times to the classifier [120] as shown in the figure 2.9. The training is
done on % of the samples while the rest of % samples are used as a test set. At the end,
the average error across all K trials is found. One of the key advantages of this method is that
it hardly matters how the data is divided. Every example is selected once in the test set while
K —1 times for the training set. The disadvantage of this approach is that the training algorithm
has to be executed for K times, consequently increasing the computation cost by K times.

Leave-one-out cross validation is equivalent to K fold cross validation with K chosen to be
equal to n, the number of examples in the training set. This implies that the algorithm is run for
n times, each time training on n — 1 examples and testing on the only example which was left.
In this approach also, the average error is found to evaluate the performance of the algorithm.

2.5.2 Significance Tests

Two systems or classifiers can be compared based on significance tests which can be broadly
classified into two sub categories: micro level tests and macro level tests [119]. The micro level
tests (e.g. s-test, p-test) are based on decisions on individual document/class pairs. On the other
hand, macro level test (e.g. S-test, T-test etc.) is calculated from the performance scores for
each category.

A micro sign test, s-test, compares two classifiers, A and B. This test is based on the binary
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decisions for all document/class pairs. In order to explain this test, the following notation is
used: n represents the total number of binary decisions made by each of the two classifiers, a;
measures the success of classifier A for ith decision (i = 1,--- ,n). Similarly b; is used to calculate
the success for classifier B. The allowed values for a; and b; are 0 or 1. Furthermore, m is used to
describe the number of times classifier A and classifier B have different classification. k describes
the number of times the system A is better than system B i.e. a; is larger than b;. The null
hypothesis is k& = 0.5m which means that 50% of the time classifier A is better than classifier
B or in other words k has a binomial distribution Bin(m,p) where p = 0.5. Consequently
the alternate hypothesis says that k& has a binomial distribution with p > 0.5. If m < 12 and
k > 0.5m, the one sided P value can be computed using the binomial distribution:

mzzm:§5<?>*um

i=k

However, if m < 12 and k£ < 0.5m, P-value of the other extreme can be calculated as follows:

k

m

P(Z <k)= M

(Z <k) }:( Z,>*o5
=0

The P-value shows the significance level of the observed evidence against the null hypothesis

(whether classifier A is better or worse than classifier B).
If m is greater than 12, the P-value can be approximated using the normal distribution:

Z_k:—0.5m
0.5¢/m

Apart from micro level significance tests, there are also some macro levels tests e.g. S-test, T-test
and T’-test etc. These tests evaluate the systems at a macro level; using the performance scores
on each category as the unit measure. Furthermore, the authors have argued that the micro
level tests are dominated by the performance of the classifiers on common categories. On the
other hand, the macro level tests are more reflective of the performance of the classifiers on rare
classes.

2.6 Conclusion

Machine learning studies the mechanisms and methods by which an entity constructs and uses
knowledge, with the aim of improving its performance with experience. Machine learning al-
gorithms can be classified into supervised (e.g. kNN algorithm, SVMs etc), unsupervised (e.g.
clustering) or semi-supervised learning algorithms. The supervised learning is based on learning
from labeled examples. On the other hand, unsupervised learning algorithms work without any
sort of supervision. Semi-supervised learning lies in between supervised and unsupervised learn-
ing in which case the data consists of labeled as well as unlabeled data. There is yet another way
in which machine learning algorithms can be distinguished: online vs batch learning. Many of
the machine learning algorithms rely heavily on the metric employed. Among the most common
ones are Euclidean distance and the cosine similarity. However both of these do not take into
account the underlying geometry of the space in which the data lie and hence are not the best
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options. This has paved the way for a new research theme known as metric learning. Metric
learning can be divided into distance metric learning and similarity metric learning. Most of
the distance metric learning algorithms are based on learning Mahalanobis distance metric, an
extended form of the Euclidean distance e.g. Information Theoretic Metric Learning [28], Large
Margin Nearest Neighbor classification [112] etc. However, people have showed that cosine simi-
larity should be preferred over the Euclidean distance on datasets which are not necessarily text
ones. In order to select the best features of a dataset for the learning process, various techniques
like dimension reduction and feature reweighting techniques (e.g. RELIEF algorithm) could be
employed. In order to evaluate an algorithm, cross validation techniques could be used. Further-
more, significance tests are used in order to show that a method is significantly better than its
counterparts.
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3.1. Introduction

3.1 Introduction

In document filtering, a stream of documents is filtered as per the profiles of various topics. In the
absence of any supervision, standard cosine can be found between a document d and the topics
as cos(d, t;), before adding the document to the profile having the greatest cosine similarity. In
case, there is some possibility of supervision, the standard cosine can be adapted to learn some
parameters related with the cosine similarity. Apart from the similarity between documents and
topics, another possible one is between different documents assigned to a particular topic and
comes into action only in the presence of some sort of supervision.

In this chapter, a simple filtering method is described whereby the KNV algorithm is adapted
to learn similarity thresholds. This represents the first step towards learning the complete simi-
larity metric. The adaptive kNN algorithm is developed in the context of INFILE (INformation
FILtering Evaluation) [9, 7] campaign and is based on strong constraints on the similarities
between documents and topics and between different documents within a topic.

The INFILE campaign was run as a pilot track of CLEF (Cross Language Evaluation Fo-
rum) in 2008 and 2009. It was sponsored by the French National Research Agency (ANR) 7 and
was co-organized by the CEA-LIST, ELDA and the University of Lille3-GERiiCO. It extended
the TREC (Text REtrieval Conference) 2002 filtering track and was basically a cross-language
adaptive filtering evaluation campaign where the aim was to successfully separate relevant and
non-relevant documents with respect to a given profile, the document and the profile being
possibly written in different languages. INFILE used 300,000 Agence France Presse (AFP) com-
parable newswires covering the years 2004 to 2006 in three languages (100,000 for each): Arabic,
English and French. It also included a set of 50 topics in general and specific domain (scien-
tific and technological information). The News articles written in different languages were not
necessarily translation of each other, and were encoded in XML format and followed the News
Markup Language (NewsML) specifications. NewsML is an XML standard designed to provide
a media-independent, structural framework for multi-media news and is developed by Interna-
tional Press Telecommunications Council #. The competitors were asked to compare each topic
in a source language to the documents in the target languages. Every possible source/target lan-
guage pair was allowed. The participants had the possibility of participating in the monolingual
filtering, cross-lingual filtering (e.g. source language is English and target language is French) or
multi-language filtering (with a mixed set of documents from different target languages).

In this chapter, the participation in INFILE 2008 and 2009 is described in detail which
covered only the monolingual participation using English language. The goal of the INFILE
campaign was to filter 100,000 documents into 50 topics (plus a category ’other’). Out of these
50 topics, 30 were related to general news and events (e.g. national and international affairs,
sports, politics etc.), whereas the rest concerned scientific and technical subjects. A document
belonged to zero, one or more topics; each topic being described by a set of sentences. The topics
or profiles have been created by competitive intelligence (CI) professionals from INIST ?, ARIST

Thttp://www.agence-nationale-recherche.fr/
8http://www.newsml.org
®The French Institute for Scientific and Technical Information Center, http://international.inist.fr

93



Chapter 3. Online and Batch Document Filtering Using An Adaptive Nearest Neighbor Algorithm

Nord Pas de Calais '°, Digiport '' and OTO Research '2. The profiles were defined with the

following structure:

1. a unique identifier
2. a title describing the topic (maximum 6 words)
3. a sentence-long description of the topic (maximum 20 words)

4. a narrative describing which document should be considered as relevant and which should

be termed as non-relevant (maximum 60 words)
5. Keywords (maximum 5)

6. an example of relevant text taken from a document not present in the collection (maximum

120 words)

Any of the possible combinations of these tags were allowed for filtering. An example of a topic

is given below:

<top>

<num>110</num>

<title>The diversity in politics</title>

< desc>The profile relates to the diversity in politics, the existing provisions to ensure better
representation of all social strata< /desc>

<narr>The relevant document should describe the problem of cultural ethnic and social diver-
sity in policy, the parity, lack of visibility of minorities in the political arena, the fight against
discrimination, the various means for enabling this diversity, and the main obstacles encoun-
tered.< /narr>

<keywords>

<keyword >Diversity in politics</keyword >

<keyword >Fight against discrimination< /keyword>

<keyword >parity < /keyword >

<keyword >visibility of minorities</keyword >

<keyword >Integration< /keyword >

< /keywords >

<sample>In the political arena, the term diversity (or diverse) is used to describe political
entities (neighborhoods, cities, nations, student bodies, etc.) with members who have identifi-
able differences in their backgrounds or lifestyles. The use of the term diversity may encompass
differences in racial or ethnic classifications, age, gender, religion, philosophy, physical abilities,
socioeconomic background, sexual orientation, gender identity, intelligence, mental health, physi-
cal health, genetic attributes, behavior, attractiveness, place of origin, cultural values, or political

view as well as other identifying features. Political creeds which support the idea that diversity

10Regional agency for strategic information and technology, http://www.aristnpdc.org
"http://www.digiport.org
http://www.otoresearch.fr
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is valuable and desirable hold that recognizing and promoting these diverse cultures may aid com-
munication between people of different backgrounds and lifestyles, leading to greater knowledge,
understanding, and peaceful coexistence.|[citation needed] For example, "Respect for Diversity"
is one of the six principles of the Global Greens Charter, a manifesto subscribed to by Green
parties from all over the world. In contrast to diversity, some political creeds promote cultural
assimilation as the process to lead to these ends < /sample>

< /top>

In comparison with INFILE 2008, where there was only an online task, an additional batch
filtering task was added in the year 2009. As opposed to the online task, where the server
provides the documents one by one to the user, all of the documents are provided beforehand in
the batch task. This chapter describes the participation in the online task of 2008 [14], and the
batch one of 2009 [88].

3.2 Document Filtering using An Adaptive Nearest Neighbor Al-
gorithm

Many studies have shown that similarity measures are more appropriate for the kNN algorithm
as compared to the distance ones, when dealing with texts (see e.g. [87]). This explains the fact
that the cosine measure was chosen for document filtering rather than Euclidean distance.

In order to filter the documents into various topics, a similarity measure between the new
documents and topics is employed, along with a set of thresholds on this similarity that evolves
over time. The similarity between a new document d, to be filtered, and a topic t; can be given

as:
sim(t;, d) = a * cos(t;, d) +(1 — @) max (g 2q ger,)cos(d, d) (3.1)
———
51(ti,d) s2(t,d)

where a € [0,1]. The similarity given in equation 3.1 is based on two similarities: one based on a
direct similarity between the new document and the topic (given by si(¢;,d)), and another one
between the new document and the set of documents already assigned to the topic (sa(t;,d)).
One might think that only the first similarity would suffice. However, this is not the case since
the topics and the documents do not share the same kind of structure and content and hence
the significance and interpretation of these two similarities is not the same.

1 '3 shows the range of cosine similarity values for all of the documents with respect

Figure 3.
to topic 1. It can be observed that most of the documents have the similarity even below 0.025.
Furthermore, it was also observed that many of the documents have zero similarity with the
topic (i.e. all of the words in the document and the topic are mutually exclusive). Similarly, the
maximum value of cosine similarity is 0.487 shared by only two documents (document no. 13460
and 72687). The average similarity value is 0.019.

Nearly the same phenomenon is observed for topic 10 as shown in figure 3.2, except the fact

that the maximum value of cosine similarity increases to 0.565 (for document number 48187) in

13The scale is different for the two figures since fewer documents have greater cosine similarity values. Hence,
as the range of cosine similarity increases, the number of documents appearing in that particular range decreases.
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Figure 3.3: Cosine similarity for 10 Nearest Neighbors for all of the Topics

this case. The average similarity also increases to 0.034.

Figure 3.3 gives the values for the cosine similarity for the 10 nearest documents for each of
the 50 topics. Most the values lie in the range 0.3—0.6. The maximum value observed is 0.813 for
42nd topic whereas the minimum value (0.170) is for topic number 27. Here, the average cosine
similarity is 0.43. It can also be observed that only a few documents have a cosine similarity less
than 0.2, and even a fewer have got cosine similarity greater than 0.7.

The second similarity helps to find the documents which are closer to documents which had
already been assigned to a topic. « is used to control the importance of the two similarities. In
the beginning, when no documents are assigned to any topic, only the similarity between a topic
and the new document, s1(¢;,d), is taken into account for computing the final similarity between
the document and the topic.

The similarity in equation 3.1 can be used for document filtering in an online or batch setting.
The two possibilities are discussed in detail.

3.2.1 Online Document Filtering

First, the online document filtering algorithms [15] based on the similarity given in equation 3.1
are described. Two thresholds were introduced for each of the topics, 6} and 62:

1. 9} allows filtering out documents in the early stages of the process (i.e. when only a few
documents have been assigned to the topic) and operates only on s1(¢;,d). It helps to build
an initial base of 10 documents per topic using the possible feedback from the server (50 in
total for the whole collection of INFILE 2008). The use of feedback limits the assignment
of non-relevant documents to the different topics. The threshold Hil is the value above
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Figure 3.4: Range of cosine similarity between topics and their 10 nearest documents
which, the value of s;1(;,d) is considered to be high enough to say that the document d is
relevant to topic t;.

2. 9? operates on the global similarity, after a certain number of documents have been assigned
to the topic. It accounts for the fact that new information has been incorporated in the
topic as explained in the algorithm.

The general algorithm for online filtering is summarized:

Online Algorithm (General)

Set a to a and all 6} to 6}
for each new document d
for each topic 7
Construction of initial set:
if (l; < NB)
if (Sl(ti, d) > 011)
If feedback is possible: Ask for feedback
t; < d (only if feedback positive)
elset; < d
Assignment of remaining documents to topics:
else if (sim(t;,d) > 62)
t; <= d
where 6? = min e, sim(¢;, d)

where [; represents the number of documents assigned to a topic 7. The parameter a and the
threshold 9} were tuned during the dry run phase which ran before the actual campaign. Two
topics and ten documents were provided during the dry run phase. The value chosen for «q
was 0.7 while that for 6} was 0.42. It can be recalled from figure 3.3 that the average cosine
similarity between the 50 topics and their 10 nearest neighbors is 0.43 and thus very close to 6}.
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Once the initial set of documents has been constructed (maximum 10 per topic), the algorithm
works to assign the remaining documents to different topics. For each topic ¢, its corresponding
9? is initialized with the cosine similarity between the topic and its least similar document. 922
is updated whenever a new document is added in the topic i.

Simplification of the general online algorithm

In addition to the general version of the online algorithm, a simplified version has also been
investigated, which neither uses any feedback nor builds an initial set of documents. It does not
update the threshold 67 unlike the general algorithm. In this version, a threshold 6 is derived
from 0} and 62 according to equation 3.1, which integrates the two similarities 6} and 67 operate
upon:

0=axb] +(1—a)x6?

Documents are then filtered according to the following, simple algorithm where the threshold 6
replaces 67 of the online algorithm.

Online Algorithm (Simplified)

Set a to ag
Assignment of documents to topics:
for each new document d
for each topic ¢
if (sim(¢;,d) > 0)
t; <= d

Here again, values for the different parameters were tuned during the dry run phase. This was
followed by slight modifications of these values in the final experiments.

3.2.2 Batch Document Filtering

Here a batch algorithm [89] to filter the documents into various profiles/topics is described. It
is also based on the equation 3.1 like the online algorithm. As for the online algorithm, when no
documents are assigned to any topic, only the similarity between a topic and the new document,
s1(t;,d) is considered. This similarity is used to find a certain number of nearest neighbors for
each of the document (10 in this case) which eventually helps to use the second similarity. A
threshold was used for each of the 50 topics. Feedback is not possible in the case of batch filtering
since the complete set of documents is transferred to the user in one go.

Batch Algorithm

Construction of initial set:
for each topic 7
find N B nearest neighbors based on s; = cos(t;, d)
for each nearest neighbor d found
t, &< d
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Assignment of remaining documents to topics:
Set o to g
for each topic 7

0; = minge,sim(t;, d)
for each document d

for each topic 7

t; < d
0; = min(0;, min e, sim(t;, d))

Yang and Liu. [119] have described a similar method, whereby they learn category-specific
thresholds based on a validation set. An example is assigned to a particular category only if
its similarity with the category surpasses a certain learned threshold. In contrary, there is no
validation set in this case to learn thresholds. Nevertheless, a simulated one is created by finding
nearest neighbors for each of the 50 topics.

3.3 Comparison between Online and Batch Algorithms

A detailed comparison between the batch algorithm used in 2009 and the online algorithms
developed for the online campaign in 2008 is discussed.

The main difference between the two algorithms (batch and general online) lies in the manner
in which the initial set of documents relevant to the topics is created. In the batch algorithm, only
10 nearest neighbors are found for each topic, with the assumption that the nearest neighbors
for a topic would, in general, belong to the topic under consideration. However, for the online
algorithm, feedbacks were used (limited to 50) in order to add a document to a profile if the
similarity between a topic ¢; and a document d is greater than a certain threshold (6'). This
procedure is repeated until either 10 documents have been added to each of the 50 topics or
all of the 100,000 documents have been encountered. Hence it is possible that a certain topic
has less than 10 documents after the construction of the initial set. On the contrary, the use of
nearest neighbors in the batch algorithm ensures that each topic has exactly 10 documents after
the buildup of the initial set.

Furthermore, as the online algorithm builds the initial set of documents based on the threshold
', hence, it is very important that this threshold is chosen very carefully (a dry run was used
to tune the value of #' during the online campaign in 2008). On the other hand, the batch
algorithm does not use any threshold during the construction of the initial set.

The second phase of the two algorithms, where the remaining documents are assigned to
different topics, is similar except the fact that the threshold 6; in the batch algorithm is updated,
only if the current threshold is smaller than the previously stored one. However, the online
algorithm does not make use of previously stored value of the threshold 7. This means that the
batch algorithm is more lenient in assigning new documents to topics as compared to the online
algorithm.

Comparing the simplified online algorithm with the rest of the two, it can be seen that as
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the simplified algorithm does not build an initial set of documents, hence it cannot use so(¢;,d)
unless some document has been assigned to the topic ¢;.

3.4 Evaluation Metrics

The results for the different runs were evaluated based on different measures, namely, precision,
recall, F-measure, linear utility, anticipation (added in 2009) and detection cost (see [6] and [7]).
The results indicating the association of a document with a profile were in the form of binary
decisions. The results for a given profile can be categorized as per the contingency table 3.1.
The different metrics can be defined in the following manner:

Relevant Not Relevant
Retrieved a b
Not Retrieved | ¢ d

Table 3.1: Contingency Table

Precision is defined as:

a
P =
a+b
Recall is given by:
R=-"
a+c

F-measure, which is a standard combination of precision and recall, and depends on a parameter
« is defined as:

1
F-measure = 1
- 1—a)=
op tl-ag
By choosing @ = 0.5, same importance is given to precision and recall and the F-measure

becomes the harmonic mean of the two values: P and R. This means that in order to have a
good F-measure, both the precision as well as the recall must be high.

Detection cost was considered in 2008 but not in 2009 since the detection cost values were of-
ten low and were not discriminant between different participants. In order to define the detection
cost, two measures are considered:

1. The estimated probability of missing a relevant document given by P,;ss = aL—l—c

2. The estimated probability of raising a false alarm on non-relevant document given by

Pfalse = b_}_Ld
With this, the detection cost can be defined:
Cdet = Cmiss X Pmiss X Ptopic X Cfalse X Pfalse X (1 - Ptopic)

where ¢;,;55 1 the cost of a missed document, cyqse is the cost of a false alarm while Py is the
a priori probability that a document is relevant to a given profile. During the INFILE campaign
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2008, cmiss was chosen to be 10, cfqse = 0.1 while the value of Pjyp;. was given the value 0.001
based on the average ratio of relevant documents.

Linear utility is based on two parameters: importance given to a relevant document retrieved
(w1) and the cost of a non-relevant document retrieved (ws). Linear utility can be written as:

U=wy *a— wy*b

Filtering by linear utility is just like filtering by estimated probability of relevance. For example,
with wp = 2 and wy = 1, it corresponds to the rule: retrieve if P(relevance) > 0.33. A problem
with linear utility is that although it is bounded positively, it is unbounded negatively (negative
values depend on the number of relevant documents for a profile). Thus, the average over all
of the profiles would give much more importance to the few profiles on which the system has
performed poorly. In order to average the value, the measure is scaled in the following manner:

maX(Wuax, umm) — Umin

1- Umyin

Up =

where U4, 1S the maximum value of the linear utility and w,,;, represents the minimum value
below which a user does not consider the following documents for the profile. The values chosen
for INFILE 2008 and INFILE 2009 were: wy, = 1, wy = 0.5 and ty,;, = —0.5. The value of uiy,
was the same as that of TREC 2002 campaign.

Anticipation measure is designed to give more importance to systems that can find the first
document in a given profile. The interest in this measure is motivated by the fact that in
competitive intelligence, everyone wants to be at the cutting edge of the domain and does not
want to miss the first information to be reactive. It is calculated by the inverse rank of the first
relevant document detected in a list of relevant documents, averaged on all profiles.

3.5 Experiments

The algorithms have been run on the INFILE English corpus. For all of the documents, stemming
was performed using Porter’s algorithm [56]. This was followed by the removal of stop-words,
XML tags skipping and the building of a document vector (which associates each term with
its frequency) using the Rainbow package [71]. During the InFILE campaign, three runs were
submitted during Online campaign of 2008 while a single run was submitted during the Batch
campaign of 2009. All of the topics’ fields were used for the filtering process. In the case
of Batch algorithm, 10 nearest neighbors were found for each of the document based on the
similarity s1(t;,d) (between a document and the topic). These documents were subsequently
used to compute sa(t;,d). The experiment was divided into 4 sub-parts, each sub-part being run
in parallel to increase the efficiency. However, this setting meant that the thresholds for the 50
topics were different for the different sub-parts.

There are 1597 documents relevant to one or more topics in the INFILE data. The average
number of relevant documents per topic is 31.94 whereas the standard deviation on the number
of relevant documents per topic comes out to be 28.45. The repartition of relevant documents
across the 50 topics is shown in figure 3.5. The distribution of the relevant documents with
respect to different topics is not uniform. On one hand, some topics have a very small number
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Name Campaign Algorithm Doc. ret Doc. ret - relevant
Run 1 runbG Online 08  Online (with feedback) 7638 601
Run 2 run2G Online 08  Online (w/o feedback) 1311 411
Run 3 runname Online 08 Online (w/o feedback) 546 152
Run 4 IMAG 1 Batch 09 Batch (w/o feedback) 5513 413

Table 3.2: Detail about the different runs
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Figure 3.5: Number of relevant documents for each topic in the three languages (English, French
and Arabic)

of relevant documents e.g. topic no. 108, 112, 116, 140 etc. On the other hand, some topics like
topic no. 127 and 143 have got more than 100 relevant documents. Apart from these two topics,
topic no. 101, 118, 125-130, 136, 137, 139, 141, 143 and 145 have got equal to or more than 50
relevant documents.

The general online algorithm and its simplified version developed in 2008 are compared with
the batch algorithm of 2009. Table 3.2 describes the different runs along with the number of
documents retrieved and the number of relevant documents found. Various measures could be
computed like micro precision, micro recall etc. from table 3.2. Run 2 has the highest micro
precision whereas Run 1 has got the highest micro recall. These values are computed on the
entire corpus.

For Run 2 (run2G), #' was chosen to be 0.45 while 62 was set to 0.8. Similarly for Run 3,
the values for #' and 62 were 0.4 and 0.7 respectively.

Figure 3.6, 3.7, 3.8 and 3.9 give an insight on the number of relevant documents retrieved
during the different runs. num_ ret stands for the number of documents retrieved, num_ rel ret
describes the number of relevant documents retrieved while num__ relis used for the actual number
of relevant documents. It is pertinent to mention that the number of relevant documents is not
uniformly distributed among the 100,000 documents. Almost one fifth (approximately 300) of
the relevant documents lie in the range 90,000-100,000. Another important thing is that the
scale is not the same for the different runs. From these two figures, no significant difference can
be noticed between Run 2 and Run 4, in terms of the number of documents retrieved during
the entire process. However, Run 1 returns much more documents between 10,000-20,000 and
80,000-90,000 documents. Similarly Run 3 retrieves more documents between 10,000-40,000 and
50,000-70,000 documents.
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Figure 3.6: Number of documents retrieved for Run 1
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Figure 3.7: Number of documents retrieved for Run 4
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Figure 3.8: Number of documents retrieved for Run 2
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Figure 3.9: Number of documents retrieved for Run 3
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Figure 3.10: Score Evolution for Run 1

The evolution of different measures are computed at different times in the process, each time
10,000 documents have been processed.

For Run 1 (Figure 3.10), all of the measures, except utility and precision, randomly vary but
remain approximately the same at the end. The curve at the bottom represents the detection
cost for all of the runs. The evolution for different measures for Runl is as follows: Precision
changes from 0.18 in the beginning to 0.29 at the end, 0.18 vs 0.20 for Recall, 0.24 vs 0.34 for
Utility, and 0.16 vs 0.20 for F-measure.

For Run 4 (Figure 3.11), the curve just above the one meant for detection cost, describes
anticipation. For Run 4, all of the measures randomly vary but increase significantly as compared
to the initial values (0.17 vs 0.30 for Precision, 0.15 vs 0.20 for Recall, 0.15 vs 0.25 for Utility,
0.12 to 0.19 for the F-measure, and 0.04 in the beginning vs 0.125 at the end for anticipation)
during the course of the filtering process.

For Run2 (Figure 3.12), Precision decreases from 0.25 to 0.23 during the filtering of 100,000
documents, Recall’s initial and final values are the same (0.14), Utility increases from the start
value of 0.21 to 0.31 while F-measure increases from 0.15 to 0.19.

The different measures change in the following manner for Run3 (Figure 3.13): Precision
decreases 0.18 to 0.08, Recall decreases from an already low value of 0.07 to 0.05, Utility increases
a little bit from the initial value of 0.21 to the final value of 0.25, and F-measure reduces from
0.09 to 0.04.

Table 3.3 describes the macro values for the different runs. These values represent the average
score over the complete set of 50 profiles. P represents precision, R represents recall, F' represents
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Figure 3.13: Score Evolution for Run 3
Macro P Macro R Macro F  Macro LU Macro DC Anticipation
Run 1 0.306 0.260 0.209 0.351 0.007 0.307
Run 2 0.357 0.165 0.165 0.335 0.008 0.317
Run 3 0.366 0.068 0.086 0.311 0.009 0.207
Run 4 0.256 0.295 0.206 0.205 0.002 0.430
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F-measure, LU represents linear utility while DC represents detection cost. The best results are
given in bold. Run 4 has the best macro recall (0.295) as compared to all of the runs. It can be
noted that Run 1, 2 and 3 are all precision-oriented since the precision values are clearly much
better than the recall values. On the other hand, Run 4 is recall-oriented since it has got a
better recall as compared to the precision value. The macro F-measure for the Run 1 and Run
4 are significantly greater than that of Run 2 and 3. However, Run 1 surpasses Run 4 in terms
of macro precision. The overall macro detection cost is very low in all of these runs (less than
0.01), with Run 4, being the most economical. This is a strong point for these algorithms. The
macro linear utility of Run 1 is greater than that of Run 4. On contrary, anticipation for Run 4
is significantly better than that for the other runs.

3.5.1 An Insight into the Micro scores

As far as the micro values for different topics are concerned (Reference Appendix), they differ a
lot from topic to topic. For example, Run 1 has got a recall of 0.857 for topic no. 107, 0.962 for
topic 118, 0.845 for topic 125 and a micro recall of 0.917 with topic 146. Among these, topic 120
and 146 have got very less number of relevant documents. However, among the topics considered
above, only topic 125 and 146 have got a Micro F-score and Micro linear utility greater than
0.63.

Similarly for Run 2, topic 107, 118, 120, 125, 146 and 148 have got a Micro recall greater
than 0.70. However only topic 107, 125 and 148 have got a Micro F-score and Micro linear utility
greater than 0.635.

For Run 3, only topic no. 146 has got a Micro recall, F-score and linear utility greater than
0.63.

In the case of Run 4, only topic 107, 119, 120, 123, 132, 140 and 146 have got a Micro recall
greater than 0.63. All of these topics except topic no. 123 contain fairly small number of relevant
documents. As for majority of these topics, the Micro precision is quite low, the Micro F-score
remains low as well (except topic no. 107 and 132) The micro linear utility for Run 4 is greater
than 0.63 for topic no. 107 and 132. These figures indicate that a high Micro F-score indicates
a high Micro linear utility. Similarly, in order to have a good F-score, both precision as well as
recall must be good enough.

It can be easily concluded from these results, that the use of limited number of feedbacks
(only 50 i.e. one per topic) did not help to get very good results, although it helped to increased
the micro recall.

3.5.2 Comparison with other approaches

Table 3.4 shows the comparison between the two online algorithms employed at INFILE [8]. The
other participant was from University of Wollongong, Dubai (UOWD). It can be observed that
the best performance was from IMAG team while using the run run5G. It retrieved the highest
number (601) of relevant documents out of a total of 1597 relevant documents. Consequently, it
got the highest recall as well as the highest F-score among all of the different runs. The run5G
was the most useful of all of the runs. runname got the best precision score whereas the highest
anticipation was for run2G. The F-measure, precision and utility for rundG is the highest among

69



Chapter 3. Online and Batch Document Filtering Using An Adaptive Nearest Neighbor Algorithm

team run year num_rel ret Pr Re F LU A

IMAG  run5G 2008 601 031 0.26 0.21 0.35 0.31
IMAG  run2G 2008 411 036 0.17 017 034 0.32
IMAG  runname 2008 152 0.37 0.07 0.09 031 021
UOWD  base 2009 20 0.00 0.01 0.01 0.03 0.05

Table 3.4: Comparison between different approaches for Online Filtering

team  run num_rel ret Pr Re F LU A

IMAG IMAG 1 413 0.26 0.30 0.21 0.21 0.43
UAIC  wuaic_4 1267 0.09 0.66 0.13 0.054 0.73
SINAI topics 1 940 0.02 050 0.04 0.00 0.57

Table 3.5: Comparison between different approaches for Batch Filtering

all of the different campaigns: monolingual french and cross-language french -> english.

Different batch algorithms are compared in the Table 3.5. Among the other participants were
Universitatea Alexandru Ioan Cuza of TAST (UAIC), Romania and University of Jean (SINAT),
Spain. Only the best runs for each of the three teams is provided. The best run in terms
of precision and F-measure is IMAG_ 1. It has also got the highest utility among the 3 runs
considered. Although the recall for uaic_4 is 0.66, yet the precision is only 0.09 which explains
the reason for overall low F-score. However, the best anticipation (0.73) is for the run uaic_ 4.
It is evident that both the runs uaic_4 and topics 1 are recall oriented since the recall values
are much greater than the ones for precision.

3.6 Conclusion

A simple extension of the kNN algorithm using thresholds has been presented to define online
and batch filtering algorithms. The results obtained can be deemed encouraging as the macro
F-measure in the case of online algorithm as well as the batch one equals approximately 20%, for
a collection of 100,000 documents and 50 topics, out of which only 1597 documents are relevant.
While comparing the online results of 2008 with those for the batch campaign of 2009, it can be
seen that the batch algorithm has a much better macro recall (almost 30% against 26% in 2008)
along with a lower macro detection cost (0.002 vs 0.007) and a much better anticipation (0.430
vs 0.307). Considering the evolution of different measures, it can be observed that the values for
all of the measures increase, with the increase in the number of documents filtered. The main
difference between the batch and online algorithms lies in the way the initial set of documents is
constructed. In batch algorithm, the initial set is built from finding the 10 nearest neighbors for
each of the profile, whereas feedbacks are used in the online algorithm to construct the initial set
of documents. It can be concluded from the results that the use of a limited number of feedbacks,
in general, does not help to get very good results.

Furthermore, comparing the online results submitted by different participants, it can be seen
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that IMAG team got the best results for all of the metrics. Moreover, the run run5G had got
the highest recall and F-score and was the most useful of all of the runs. For Batch filtering,
IMAG team got the highest precision, F-score and Utility among all of the submitted runs.
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4.1.  Introduction

4.1 Introduction

In Chapter 3, thresholds based on cosine similarity were learned. However, the approach followed
is only interesting provided only a slight supervision is available. In case, complete supervision
is available, it is better to learn the complete metric. An example is the case of classification
problems where people prefer to learn the complete metric ([28, 99, 112]) which has proved to
be a better choice as compared to only learning the thresholds.

Most works on metric learning for kNN classification have focused on distance metric learning
(see for example [32, 99, 112]). However, in many practical situations, similarities may be
preferred over distances. This is typically the case when one is working on texts, for which
the cosine measure has been deemed more appropriate than the standard distance metrics like
the Euclidean or the Mahalanobis ones. Furthermore, several experiments show that the use
of the cosine similarity should be preferred over the Euclidean distance on several, non textual
collections as well (see e.g. [18, 72, 84, 87]). Being able to efficiently learn appropriate similarity
measures, as opposed to distances, for kNN classification is thus of high importance for various
collections. If several works have partially addressed this problem (as for example [1, 46, 52]) for
different applications, no previous work is known which has fully addressed it in the context of
learning similarity metrics for kNN classification.

There is a wide range of options for selecting a similarity metric. However, the interest here
lies in the scalar product of the form xf2’ where z and 2’ are two examples and ¢ represents the
transpose.

A similarity metric between two examples z and 2’ can be defined in the following manner:

t A
sa(x,a’) = % (4.1)
where A is a (p X p) similarity matrix (diagonal or not) and N(z,z’) is a normalization which
depends on z and 2’ (this normalization is typically used to map the similarity function to a
particular interval, as [0, 1]). Equation 4.1 represents an unconstrained similarity metric learning
problem since the normalization is completely independent of the similarity matrix.

A generalized cosine similarity can also be defined from the equation 4.1 in which case the
normalization is dependent on the similarity matrix and the similarity matrix is positive, semi-
definite as described in the following equation:

B xt Az
vVatAxva't Ax!

Here the normalization is dependent on the similarity matrix A and A is a PSD matrix.

sa(z, z') (4.2)

As opposed to Passive Aggressive algorithms [23] which use diagonal approximations for a
full covariance matrix, we are interested in learning complete similarity matrices.

The next section describes the unconstrained similarity metric learning followed by its ex-
tension based on PSD matrices in Section 4.3. The unconstrained similarity metric learning is
compared with the RELIEF algorithm in Section 4.4. Section 4.4 also contains the description of
a RELIEF based similarity learning algorithm (RBS) along with a stricter version of RBS, called
sRBS. Generalized cosine similarity learning as well as its comparison with the unconstrained
similarity learning is provided in Section 4.5.
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4.2 Unconstrained Similarity Metric Learning

In this section, unconstrained similarity metric learning problem based on equation 4.1 is pre-
sented. Equation 4.1 generalizes several, standard similarity functions. For example:

1. Standard cosine measure, widely used in text retrieval, is obtained by setting A to the
identity matrix I, and N(z,z’) to the product of the Ly norms of z and 2.

2. Dice coefficient is obtained, from presence/absence vectors (i.e. all coordinates of x and
are either 0 or 1), by setting A to 2I, and N(z,2’) to the sum of the L; norms of x and .

3. Similarly, the Jaccard coefficient, again computed between presence/absence vectors, cor-
responds to A = I and N(z,2’) = |z| + |2| — 2’2’ (where |z| denotes the L; norm).

Furthermore, the fact that no condition is imposed on A (apart from being square) allows to
consider both symmetric as well as asymmetric similarity functions, depending on the targeted
task. For example, Bao et al. [1|, make use of two asymmetric similarity functions: the Relative
Frequency Model, which is an asymmetric version of the cosine, and the Inclusion Proportion
Model, which is an asymmetric version of the Dice coefficient, and show that these asymmetric
measures are better than their symmetric counterparts in order to retrieve partial copies of text
documents.

4.2.1 Problem Formulation

The problem addressed here is to learn a similarity function of the general form given in equa-
tion 4.1 from the training data, to be used in kNN classification. Let (z(1) M), ... (z(™ ™)
be a training set of n labeled examples with inputs (¥ € R? and discrete (but not necessarily
binary) class labels ¢ (where ¢ represents the class of the ith example). The aim is to learn
a (p x p) similarity matrix A that aims at optimizing the kNN classification where the neigh-
borhood function is given in equation 4.1. To do so, for each x| its k target neighbors are
introduced as in Weinberger et al. [112], which are the k elements in ¢ closest to z(), according
to a base similarity measure. For example, one may be interested in learning a matrix A which
generalizes the cosine similarity. In this case, the k target neighbors will be defined according to
the standard cosine similarity, and will not change during the process of learning the similarity
matrix A. The target neighbors of (9 are denoted by: yl(i), 1 <[ < k. Furthermore, for each
2@ its k nearest neighbors in ¢ are found, also known as the impostors and represented as:
AV 1<i<k.

A notion of separability can now be formalized, capturing the fact that any example should
be closer to its k target neighbors than to any other set of k examples.

Definition 1 Let S = (), cM), ... (x™ ™)) be a training sequence of n vectors in R? and
let k be an integer. Let (yY) R y,(;)) be the k target neighbors of 9 in ¢@. Lastly, let ¢®
denote the complement of ¢ in the category set. It can be said that S is separable with some
margin vy > 0 iff there exists a (p X p) matriz A, with ||A|| = 1, such that:

Vi, Wz, oz € 63 (5@, ) = sale®,2)) =y
=1
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Figure 4.1: A classification scenario along with similarity values

where || Al represents the Frobenius norm of the matrix A. Figure 4.1 depicts a scenario where
a new object (in the center) has to be classified as a router or as a switch based on its similarity
with the examples of these two classes. Here the examples belonging to the router class, also
known as the target examples, can be represented as: y1, y2 and y3, whereas the examples from
the switch category, also known as the impostors, can be written as: z1, 25 and z3. Furthermore,
an assumption is made that the value of the threshold ~ is 0.3. This sequence is separable since
the difference of the sum of similarities between the new example and the examples belonging to
the same class i.e. router and the sum of similarities between the new example and the examples
from the switch class is greater than the threshold value i.e. 1.8 — 1.3 = 0.5

Of course, in practice, the data is not likely to be separable in the above sense e.g. when the
difference between the sum of similarities with the same class examples y; and the examples from
different classes z; is less than the threshold . Nevertheless, a measure describing how close a
matrix A is to separate the data with margin v can be defined as follows:

Definition 2 Let S = (z(V,cM), ... (2™ ™) be a training sequence of n vectors in RP, let
A be a (p x p) matriz such that ||A|| = 1, and let v > 0. The y-related measure of example i is
defined as:

e; = maz(0,y — m;)
with

k k
mi =Y sa(@,y”) —maz, oo S sal@®, )
=1 =1

The overall separation measure Dy of S with respect to A and v is defined as:

If the data is separable with margin + according to definition 1, then there exists A such that:
Dy, = 0. Looking at the example discussed earlier, one can note that the value of m; is
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Example under focus

Target neighbors
~ 0
X
® - -~ Differently labeled neighbors
Q B
O o - '
A ;
@ .
@ Differently labeled neighbors
(O Target neighbors
Q
O o N _O

(b) ©

No separation: target neighbors are
moved closer to input point

Figure 4.2: In (a) the input point is separated with k& = 3, whereas it is not in (b). (c) illustrates the
process being aimed at: moving target points closer to the input point, while pushing away differently
labeled examples.

1.8 — 0.8 = 1.0 where 1.8 is the sum of similarities between the new example and the target
neighbors whereas 0.8 is the maximum similarity value between the example to be classified and
the impostors. As v —m; = 0.3 — 1.0 = —0.7 is less than zero, hence the 7-related measure ¢;
and the overall separation measure D4, become zero.

If no example can be separated by A with margin ~, then D4, > 0, with the property that
the lower the D4 -, the higher the capacity of A to separate S with margin ~.

The notion of separation being considered here is relatively loose as there is no strict require-
ment that all target neighbors must be in the £ nearest neighbors of an example. Rather, the
aim is that any point be, globally, closer to k points from the same class than to k points from
any other class. This simplification, also used in Weinberger et al. [112], allows one to avoid
setting complex constraints on each target neighbor, while still retaining the idea behind kNN
classification.

Figure 4.2 illustrates the notion of separability being considered here. In figure 4.2(a), the
input point is separated, with k = 3 assuming that the difference between the sum of similarities
between the example under focus and its target neighbors and the sum of similarities between
the example under focus and the impostors is greater than the margin v, whereas this is not the
case in figure 4.2(b). The separation does not need to take place in the original input space,
but rather on the space induced by the metric defined by A. Figure 4.2(c) illustrates what is
being aimed at: moving the target points closer to the input point, while pushing away differently
labeled examples (impostors). With an appropriate matrix A (which plays the role of a similarity
metric), the target and negative neighbors of a given input point are separated, the former ones
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4.2. Unconstrained Similarity Metric Learning

being closer to the input point than the latter ones (note however that the separation is not
necessarily linear when the number of neighbors, k, considered is greater than 1 - in this latter
case, the linear separation is not obtained in the original input space when A # I). However,
strictly speaking, the classification rule sustaining the above definitions of separation is: for any
ezample £V | compute its k nearest neighbors in each class (@) (w&i), ,xg)); assign 29 to the
class ¢ for which Zle sa(x®@, xl(l)) is mazimum. The goal here is to learn the similarity matrix
A of equation 4.1 with guaranteed performance bounds with respect to the above classification
rule and definitions of separation. As described in Chapter 6, by doing so, the standard kNN
rule can be improved.

The matrix A in equation 4.1 can have many different variants: it can be symmetric or
asymmetric or it can be chosen to be positive semi-definite as well.

4.2.2 An unconstrained Similarity metric Learning Algorithm - SiLA

An algorithm to learn unconstrained similarity metrics of the form given by equation 4.1 is
presented here. This algorithm, called as SiLA, is based on the voted perceptron algorithm
proposed in Freund and Schapire [37], and used in Collins [20]. It allows learning diagonal,
symmetric or even asymmetric matrices, depending on the final form of the similarity function
one is interested in.

The core of SiLLA is an on-line update rule which iteratively improves the current estimate
of the similarity matrix A. The overall goal is to move target examples closer to their input
point whenever the input point is closer to a set of differently labeled examples. A theoretical
motivation for SiLA is provided at the end of this section.

In the remainder of this section, kNN(A, z, s) is used in order to denote the k nearest neighbors
of example z in class s with the similarity function given by equation 4.1. For each example 1,
T'(z) will denote the set of target neighbors of 2@ The training algorithm is given below:

SiLA - Training
Input: training set ((z(), M), ... (2, ™)) of n vectors in RP, number of epochs M:; Al
denotes the element of A' at row m and column [
Output: list of weighted (p x p) matrices ((A',wy), -, (A%, w,))
Initialization 7 = 1, A! = 0 (null matrix), w; = 0
Repeat M times (epochs)
1. fori=1,---,n
2. B(i) = kNN(A7, 2 &®)
3.0 S sa(z®y) — 3 sa(z®,2) <0
yeT (i) 2€B(i)
4. ¥Y(m,1),1 <m,l <p,

AT = AT+ 5 fu(@Dy) = X fau(z®,2)

yeT (i) z€B(1)
5. Wr41 = 1
6. T=7+1
7. else

8. wr =w,; +1
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When an input example (9 is not separated from differently labeled examples, the current A
matrix is updated by the difference between the coordinates of the target neighbors and the
closest differently labeled examples also known as the impostors represented by the set B(i) (line
4 of the algorithm), which corresponds to a standard perceptron update. When the current
estimate of A correctly classifies the input example under focus, then A is left unchanged while
its corresponding weight is increased by 1, so that the weights finally correspond to the number
of examples correctly classified by A over the different epochs.

The functions f,,; allows to learn different types of matrices and hence different types of
similarities:

5(m’ l)xinyl

Nz, 1) (with § the Kronecker symbol),

1. For a diagonal matrix, f;(z,y) =

xinyl + x??/m

2. For a symmetric matrix, f;(z,y) = N(z,y)

3. For a square matrix (and hence, potentially, an asymmetric similarity), fou(z,y) = Nl&x mi
)

It can be seen that the function f,,; is independent of the similarity matrix A. The weighted
matrices provided by SiL A can be used to predict the class(es) to which a new example should be
assigned. Two basic rules for prediction are considered: the first one corresponds to the standard
kNN rule, whereas the second one directly corresponds to the notion of separation introduced
earlier, and is based on the consideration of the same number of examples in the different classes.
The new example is simply assigned to the closest class, the similarity with a class being defined
as the sum of the similarities between the new example and its k£ nearest neighbors in that
particular class. The second rule is called symmetric kNN rule and is denoted by SENN.

In order to speed up the learning process, all of the training as well as the test examples
are normalized before launching the algorithm. Furthermore, the sets T'(i) and B(i) are also
computed beforehand. Since the set B(i) changes over the passage of time, a certain number
of impostors (e.g. 100) could be found for each of the example before the algorithm has been
launched.

The worst-time complexity of SiLA is O(Mnp?) where M represent the number of iterations,
n is the number of train examples while p stands for the number of dimensions or attributes.
The most costly steps consist of calculating the similarity s4 and f;.

4.2.3 Online to Batch Conversion

The core of SiLLA is an update rule that is used incrementally, for each example. It is thus easy
to extract from the description of SiLA a batch version of the algorithm. The way the matrices
learned are used for prediction, corresponds to a transformation of an on-line algorithm to a
batch one, following a methodology described in Helmbold and Warmuth [51].
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SiLA - Prediction

Input: new example x in RP, list of weighted (p x p) matrices ((AY,w1), -+, (A9, w,)); A is
q

defined as: A = > w Al
=1

Qutput: list of classes

1. Standard kNN rule
Compute the k nearest neighbors based on s4; select the class with the highest weight (or
the class the more represented in the nearest neighbor set)

2. Symmetric classification rule - SENN

Let T'(z,s) = kNN(A, z, s); assign @ to the class for which }° .7, ) sa(, 2) is maximal 14,

The deterministic leave-one-out conversion of the training version of SiLA corresponds to the

q
weighted sum (A = > w;A') used in the prediction rules given above. One can find in Dekel
I=1
et al. [30] a study of similar on-line to batch conversions, showing that it may be beneficial

to weigh down (or even forget) the matrices (or vectors) learned in the first few iterations
of the on-line algorithm. That is, instead of basing the prediction on the complete sequence
(A wy), -+, (A%, w,)), base it instead on, say, the last 7 elements. This strategy is used in the
experiments conducted.

SiLA could be used in either a binary or multi-class mode:

1. In the binary setting, the algorithm is run separately for each class, where the class under
consideration is made as 1 while the rest of the classes are made 0.

2. However, in the multi-class mode, SiL A is run only once along with the original class labels.
In this way, multi-class mode is much faster than the binary mode.

There is yet another method of converting the binary mode into a multi-class one. The
similarity value for each of the test example which predicts a class label of 1 is stored. All of
the examples for which a class label of 0 is predicted, are discarded since the exact class label
cannot be determined. The similarity values are stored for each of the different classes. In order
to determine the final classification, the class having the greatest similarity is chosen.

There are a certain number of advantages in the binary version. First, it allows using the
two prediction rules given above. It also allows learning local matrices, which are more likely
to capture the variety of the data. Finally, its application in prediction results in a multi-label

decision.

4.2.4 Analysis of SiLA

Performance bounds for SiLL.A algorithm are provided in this subsection. These bounds, and the
theorems they rely on, directly parallel the ones provided by Freund and Schapire [37], and used

'Nock et al. [76] have discussed another type of symmetric nearest neighbor rule in which a vote is made for
some example x using the points which could belong to the k nearest neighbors of x, and the points for which =
could be one of the k nearest neighbors.
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in Collins [20]. To see the parallel between this work and the above-mentioned ones, first note

tgd
that Ax, can be rewritten as:
N(z,a")
xt A’

NErI I

with:
(o, p(z,2')) €e RP x RP when A is diagonal,
(a, ¢(z, 7)) € RP” x RP°  otherwise.

where « can be seen as the vector equivalent to matrix A. Different representations are possible
with this transformation:

1. The cosine similarity is obtained, with this representation, by setting o to the unit vector
t
T,,T
(=1, 1 <m <p) and ¢p,(z,2') = ;20
" " l[l"]
2. By setting ¢ to the tensor product between vectors z and z’, one obtains a representation

equivalent to the one with an unconstrained, square matrix A.

t toJ

X, T+ 1T .

Smol T 2lom one obtains a
N(z,z')

representation equivalent to the one with a symmetric matrix A.

3. By setting ¢ to the symmetric product, i.e. ¢py(x,2’) =

The theorems justifying the use of the voted perceptron algorithm can be extended to SiLA as
well, and are next presented. The justification of SiLA proceeds in three steps:

1. Theorem 1 justifies the core on-line update of SiLA in the separable case,
2. Theorem 2 provides a similar justification for the non-separable case, and
3. Theorem 3 provides the justification for the batch version used for prediction.

The proofs for Theorem 1 and 2 are given in the Appendix A.

Theorem 1 (separable case). For any training sequence S = (™), M), ... | (z(™ M) sepa-
rable with margin 7, for one iteration (epoch) of the (on-line) update rule of SiLA

Number of mistakes < R?/~?

where R 1s a constant such that:

k

Vi,V(Zl )y T 7Zk) S Eia Z ¢(x(l)7y) - Z ¢(.’E(2)7 Zn) S R

yeT (1) n=1

Theorem 1 implies that, if the data is separable, then the update rule of SiLA makes a number of
mistakes bounded above by a quantity which depends on the margin () of the data (the larger
the margin, the lesser the number of mistakes made). The more general case where the data is
not separable is covered by theorem 2, which makes use of the measure Dy, (or equivalently
D, with the new representation) introduced in definition 2.
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Theorem 2 (non separable case). For any training sequence S = (™), M), ... (2,
™)), for one iteration (epoch) of the (on-line) update rule of SiLA

(R+ lz)ow)2

Number of mistakes < ming,
v

where R 1s a constant such that

k

\v/i’\v/(zl P azk) € Ei’ Z ¢('I(Z)’y) - ZQS(x(Z)?ZTL) < R?

y€T(4) n=1

and the min is taken over « and ~y such that ||af| = 1,7 > 0.

This theorem implies that, provided the data is close to being separable, the update rule of SiLLA
converges in a finite number of steps, and has a number of mistakes bounded by a quantity which
is smaller when the separation of the data is better (as measured by D). However, the interest
is not only in the convergence of the update rule (which corresponds to an on-line version of the
algorithm), but also on the convergence of the batch version used for prediction. The following
theorem provides both a proof of this convergence and shows that the batch version is able to
generalize well, i.e. behaves adequately on test (unseen) data. This theorem is based on the
on-line to batch conversion studied in Helmbold et al. [51].

Theorem 3 (generalization). Assume all ezamples are generated i.i.d. at random. Let E be
the expected number of mistakes that the update rule of SiLA makes on a randomly generated
sequence of m + 1 examples. Then given m random training examples, the expected probability

that the deterministic leave-one-out conversion of this algorithm makes a mistake on a randomly
2F

generated test instance is at most: miT

4.3 eSiLA - An extension of SiLA

The similarity given in equation 4.1 does not guarantees that the form 2'Az’ corresponds to a
symmetric bi-linear form, and hence a scalar product. In order to incorporate this guarantee,
the similarity matrix A must be made a positive, semi-definite (PSD) one, which can be achieved
by projecting A onto the set of positive, semi-definite matrices. The resulting algorithm is an
extension of SiLA and is called eSiLA [85].

The projection onto the set of PSD matrices can be accomplished based on the fact that
any matrix A can be represented in terms of its eigenvalues and its eigenvectors. In order to
convert the matrix A1 into a PSD one, only its positive eigenvalues are selected whereas the
non-negative eigenvalues are discarded. The projection can be written as:

At+l ot
A = E )\]ujuj

j,)\j>0

where A and u represent the eigenvalues and eigenvectors of the matrix A1, A1 stands for
the matrix obtained after performing the projection and is a PSD (and symmetric) matrix .

This extension did not improve the performance of SiLA algorithm. Nevertheless, the tech-
nique used for projection was later used for RELIEF based algorithms (Section 4.4) as well as
the generalized cosine similarity learning (Section 4.5).
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4.4 Unconstrained Similarity Metric Learning and RELIEF Algo-
rithm

As the reader may have noticed that learning the similarity matrix in SiLA bears resemblance
with the feature reweighting procedures. Among such techniques, the RELIEF family of algo-
rithms has received a lot of attention from many different communities in the recent years. In this
section, unconstrained similarity metric learning is positioned with the RELIEF algorithm. It is
important to mention that Sun and Wu [102] have shown that RELIEF is basically a distance
metric learning algorithm which aims to optimize a linear utility function while maximizing the
margin. After comparing SiLA with the RELIEF algorithm, a RELIEF-Based Similarity learn-
ing algorithm (RBS) is described together with its stricter version known as sRBS. Furthermore,
the effect of positive, semi-definitiveness on the RELIEF based algorithms is also discussed.

4.4.1 SiLA and RELIEF

It has been shown that the RELIEF algorithm solves convex optimization problem while maxi-
mizing a margin-based objective function using kNN algorithm. The weights are updated based
on the nearest hit (nearest example belonging to the class under consideration or sometimes
referred to as the nearest target neighbor) and the nearest miss (nearest example belonging to
other classes).

RELIEF learns only a diagonal matrix in the original setting. However, Sun and Wu [102]
have extended RELIEF to learn a full distance metric matrix. They have further proved that RE-
LIEF is an online algorithm and have shown that RELIEF outperforms standard kNN algorithm
on many standard datasets.

Let () be a vector in RP having y() as the class label with values +1, —1. Let A be a vector
meant for iteratively estimating the qualities of attributes initialized with 0. The aim is to learn
A on a set of training examples. Suppose an example z(?) is randomly selected. This is followed
by finding the two nearest neighbors of z(): one from the same class (termed as the nearest hit
or H) and other from the different class than that of (¥ (termed as the nearest miss or M).
The update rule in case of RELIEF doesn’t depend on any condition unlike SiLA.

The RELIEF algorithm is presented next:

RELIEF (k=1)
Input: training set ((z(M, M) ... (2™ ™)) of n vectors in RP, number of epochs .J;
Output: the vector A of estimations of the qualities of attributes
Initialization Vm 1 <m <p, A,, =0
Repeat J times (epochs)
1. randomly select an instance z(?)
2. find nearest hit H and nearest miss M
3. forl=1,---,p

i (@) . (i)
4. Al:Al_dlﬁ‘(Z,? ;H) +dlff(l,,??] ’M)
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where J represents the number of iterations, the algorithm has been run while diff is a function
used to find the difference between the values of an attribute ! for (¥ and the nearest hit or
miss represented by H or M.

4.4.2 Comparison between SiLLA and RELIEF

While comparing the two algorithms SiLA and RELIEF, it can be noted that RELIEF learns a
vector of weights while SiLA learns a sequence of vectors where each vector has got a correspond-
ing weight which signifies the number of examples correctly classified while using that particular
vector. Furthermore, the weight vector is updated systematically in case of RELIEF while a
vector is updated for SiLA only if it has failed to correctly classify the current example z() (i.e.
sa(z®, y)—s4(z®, 2) <0). In this case, a new vector A is created and its corresponding weight
is initialized to 1. However, in the case of a correct classification for SiLLA, the weight associated
with the current vector A is increased by 1. Moreover, the two algorithms find the nearest hit
and the nearest miss to update the vector A. RELIEF selects an instance randomly whereas
SiL A uses the instances in a systematic way. Another difference between the two algorithms
is that in case of RELIEF, the vector A is updated based on the difference (distance) while it
is updated based on the similarity function for SiLA. This explains the fact that the impact of
nearest hit is subtracted for RELIEF while the impact for nearest miss is added to the vector
A. For SiL A, the impact of the nearest hit is added while that of the nearest miss is subtracted
from the current vector A.

The worst time complexity of SiLA is O(Mnp?) whereas for RELIEF, it is O(Mnp) and is
thus lesser than that for SiLA. Here M represents the number of iterations, p is the number of
features while n represents the total number of instances. Moreover, the complexity for RELIEF
is fixed for all of the scenarios unlike SiLA where it depends on the number of mistakes made.

SiLA tries to directly reduce the leave-one-out error also known as the 0 — 1 loss. However,
RELIEF uses a linear utility function in such a way that the average margin is maximized.

4.4.3 RELIEF-Based Similarity Learning Algorithm - RBS

In this subsection, a RELIEF-Based Similarity learning algorithm (RBS) [90] is proposed which
is based on RELIEF algorithm. However, the interest, here lies in similarities instead of distances
like SiLA. The aim, just like that of RELIEF, is to maximize the margin M(A) between the
target neighbors (represented by y) and the impostors (given by z). The margin, for £ = 1 in
kNN algorithm can be written as:

-

M(A) = (SA(x(Z)ay(l)) - SA(x(i)a Z(Z)))

=1

(2@ Ay® — 20" 420y = 35 20 A(yD — 5
i=1 =1

M=

where A is the similarity matrix. The margin is maximized subject to the constraint || A[% = 1.

Arg max M(A)
subject to [|A[|% =1,
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Taking the Lagrangian of the matrix A:

S LRULERURSYES 3p ot

=1 m=1
where ) is a Lagrangian multlpher. Taking the derivative with respect to ay, and setting it to
zero yields:

O0L(A oG, i
aa(lm) = Z; xl( )(yﬁn) - z,(n)) —2Xay, =0
Z xzz 7(73 ) )
= Aim = o\

Since the Frobenius norm of matrix A is 1:

Z zalm

> o Wl — =)
p P 9 p P =1
= X Y, =2 % o)

I=1m=1 I=1m=1

Now the value of 2A can be computed in the following manner:

- zz(zx/ o - zm)

I=1m=1

In case of a diagonal matrix, m is replaced with [ and 2\ becomes equal to:

- 35 (St )

=1 \i=1

Furthermore, the margin for k > 1 can be written as:

n

M) =3 (il sz 400 — 3° SA(x(n,Z(z),q))

q=1

i ( >fAZ(y(z>q _ Z(z)q)>

where y(9:¢ represents the gth nearest neighbor of z(9). Moreover, a;,, and 2\ can be written as:

n k
S 03 (g @1 — 5, D)
=1 g=1

m = )

=1m=1

n Nk
It can be further noted that a;,, is inversely proportional to the Lagrangian multiplier \.
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Figure 4.4: Margin for RBS on Balance (left) and Heart (right) datasets
0.6 . . r - ;
" /Soybean5cv/soybean-small.data_train.margin.2.0.3.1"  +
+ + )
0.5 - + sty A P i
+ +
0.4 4 4
+
03, + . 7 = B
+ + E
02 * * 1 = ]
01 —
+ -
0r + * =
+ + -
-0.1 1 1 1 L L
0 5 10 15 20 25 30 0 2000 4000 6000 8000 10000 12000 1400C
Examples Examples

Figure 4.5:

Margin for RBS on Soybean (left) and Letter (right) datasets
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Figure 4.6: Margin for RBS on Pima (left) and Liver (right) datasets
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Figure 4.7: Margin for RBS on German (left) and Glass (right) datasets
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Figure 4.8: Margin for RBS on lonosphere (left) and

Yeast (right) datasets



4.4. Unconstrained Similarity Metric Learning and RELIEF Algorithm

4.4.4 Problems with RELIEF based techniques

The problem with the RELIEF based approaches (RELIEF and RBS) is that as one strives
to maximize the margin, it is possible that the overall margin is quite large but in reality the
algorithm has made a certain number of mistakes (characterized with negative margin). This
concept was verified on a number of standard UCI datasets [36] Iris, Wine, Balance, Heart,
Soybean, Letter, Pima, Liver, German, Glass , Ionosphere and Yeast, as can be seen from fig-
ures 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. Tt can be observed that in most of these figures, the average
margin remains positive despite the presence of a number of mistakes, since the positive mar-
gin is much greater than the negative one for the majority of the examples. For example, in
figure 4.3, the values of negative margin for Iris are in between —0.10 and 0.0, whereas most
of the positive margin values are greater than 0.25. Similarly, for Wine (figure 4.3), most of
the negative margin values lie in the range between 0.0 and —0.002 while the positive margin
values are mostly dispersed in the range 0 — 0.08. Therefore, despite the fact that the overall
margin is large, a lot of examples are misclassified. A similar story in portrayed in figure 4.4 for
Balance, where most of the examples having negative margin values have a margin in between
—0.05 and 0.0. On the other hand, the positive margin values are dispersed between 0.0 and 0.1.
The positive as well as negative margin values for Heart (see figure 4.4), Liver (figure 4.6) and
German 4.7) have the same range but the number of examples having positive margin values is
greater than the ones having negative margin values.

This explains the fact that the algorithms RELIEF and RBS did not perform quite well on
different standard test collections (see Chapter 6).

4.4.5 A stricter version: sRBS

A work around to improve the performance of RELIEF based methods is to directly use the
leave-one-out error or 0 — 1 loss like the original SiLA algorithm where the aim is to reduce the
number of mistakes on unseen examples. The resulting algorithm is a stricter version of RELIEF-
Based Similarity Learning Algorithm and is termed as sRBS. It is called as a stricter version as
we do not try to maximize the overall margin but are interested in reducing the individual errors
on the unseen examples.

The cost function for sRBS can be described in terms of a sigmoid function.

1

)y —
A = T (B A — )

As B approaches oo, the sigmoid function represents the 0 — 1 loss: it approaches 0 when the
margin x(i)A(y(i) — z(i)) is positive and approaches 1 in the case where the margin is negative.
Let g4(i) represents exp(ﬁx(i)tA(y(i) — 2())) while v represents 3 — z. The cost function being
considered here is based on the above sigmoid function, regularized with the Frobenius norm of

A:

n

- _ (0 2
argmf{ne(A) ZJA($ ) + Al Al

=1
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Taking the derivative with respect to aj,:

O0e(A) B Z xl( )vﬁn)gA( /)

daym (1 + ga(i)?

+ 2\apm

Vim,1>1>p1>m2>p,

B ﬂ:l Vol g4 (i)
“Aim = ﬁz (1+ga(i))?

No closed form solution for this fixed point equation is already known. However, this equation
can be solved with gradient descent methods. The cost function in the case of gradient descent
can be written as:

= 1 A 2
> EN0) + 7 2tm Yim

i=1

I

-
I
A

Qi(A)

The derivative is taken with respect to ajp,:

. L 0QiA) o ga(i)  2ham
(VQi(A))im = o~ (oo T om

With this, the update step for A} can be defined as:

A;erl A - Z 8Ql( )

a
i—1 daim

where o! stands for the learning rate and is given by: of = % The learning rate is inversely

proportional to the number of iterations and decreases with the increase in the number of epochs.
sRBS algorithm is next presented:

sRBS - Training
Input: training set ((z(M),cV),.-- (2™ ™)) of n vectors in RP, A} denotes the element of
A' at row | and column m
QOutput: Matrix A
Initialization ¢t = 1, A() = 1 (Unity matrix)
Repeat J times (epochs)
1. For all of the features I, m
2. Minusy,,, =0

3. fori=1,---,n
4. For all of the features [, m
At
5. Minus;,, + = %EA)
m
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Figure 4.9: Margin for sRBS on Iris (left) and Wine (right) datasets
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Figure 4.10: Margin for sRBS on Balance (left) and Heart (right) datasets

t

6. Af:;l = Al — % « Minus;,,
t+1

I Y AL — ALl <

m
8. Stop

During each epoch, the difference between the new similarity matrix Af:gl and the current
one Al is computed. If the difference is less than a certain threshold (v), the algorithm is

stopped. The range of v was between 1072 and 107%.

Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 show the margin values for the training examples of
different UCI datasets, once the training phase of sRBS algorithm has been completed. These
figures can be compared with the earlier ones for RBS algorithm to observe that the training
phase of sRBS is more effective than the one for RBS e.g. for Iris (figure 4.9), Wine (figure 4.9),
Balance (figure 4.10), Pima (figure 4.12), Glass (figure 4.13), Yeast (figure 4.14), there are only
a very few errors although a lot of examples have a margin close to 0.0. There are no errors (no
example with a negative margin) for Soybean (figure 4.11). Moreover, the algorithm sRBS makes
a lot of mistakes for Letter as depicted in figure 4.11.
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Figure 4.11: Margin for sRBS on Soybean (left) and Letter (right) datasets
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Figure 4.12: Margin for sRBS on Pima (left) and Liver (right) datasets
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Figure 4.13:

Margin for sRBS on German (left) and Glass (right) datasets
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Figure 4.14: Margin for sRBS on lonosphere (left) and Yeast (right) datasets

4.4.6 Effect of Positive, Semi-Definitiveness on RELIEF based algorithms

The similarity z' Az in the case of RELIEF based algorithms does not correspond to a symmetric
bi-linear form, and hence a scalar product. The work around lies in projecting the similarity
matrix A onto the set of positive, semi-definite (PSD) matrices just like eSiLA (see section 4.3).
A similarity matrix can be projected by finding an eigenvector decomposition followed by the
selection of positive eigenvalues. A PSD matrix A is written as:

Ax0

In case, where a diagonal matrix is learned by RELIEF, positive semi-definitiveness can be
achieved by selecting only the positive entries of the diagonal. Moreover for learning a full
matrix with RELIEF, the projection can be performed in the following manner:

_ P 4
A= E )\]u]uj
J,2;>0

where \; and u; are the eigenvalues and eigenvectors of A.

Similarly, RBS is transformed into RBS-PSD by incorporating an additional constraint that
the similarity matrix A must be PSD, while maximizing the margin [91].

It is verified that despite the fact that the overall margin is quite large, RBS-PSD makes a
number of mistakes characterized with negative margin. This concept was verified on a number of
standard UCI datasets [36] i.e. Iris, Wine, Balance, Heart, Soybean, Letter, Pima, Liver, Glass,
Tonosphere and Yeast as can be seen from figures 4.15, 4.16, 4.17, 4.18, 4.19, 4.20. It can be
observed for all of the datasets that the average margin remains positive despite the presence of
a number of mistakes, since the positive margin is much greater than the negative one for the
majority of the test examples. For example, the values of negative margin in the case of Iris
(see figure 4.15) is in the range of —0.05 — 0.00 whereas there are many positive margin values
greater than 0.175. Similarly, for Wine (figure 4.16), most of the negative margin values lie in
the range between —0.002 and 0 while most of the positive margin values are dispersed in the
range 0 — 0.004. In case of Balance (figure 4.16), the negative values are seen in the range of
—0.05 — 0.00 whereas the positive margin values are mostly scattered between 0 and 0.1. While
looking on the results for Letter (figure 4.17), one can note that while the negative margin values
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Figure 4.15: Margin for RBS-PSD on Iris (left) and Wine (right) datasets
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Figure 4.16: Margin for RBS-PSD on Balance (left) and Heart (right) datasets

lie between —0.1 and 0.0, the positive margin values are mostly seen between 0.0 and 0.15. So,
despite the fact that the overall margin is large, a lot of examples are misclassified as was seen
earlier for the RBS algorithm. Observing the figures for RBS and RBS-PSD, one can easily note
that there are very few differences between the results for the two algorithms except lonosphere
in which case RBS-PSD performs better as compared to RBS.

However, for Iris, the range of negative margin values increases whereas the range for the
positive margin values decreases for RBS-PSD as compared to RBS. Similar phenomenon is
repeated for Letter, Liver, Glass and Yeast. This effectively means that RBS is better than its
counterpart for these data sets as the overall margin decrease in all of these cases.

This explains the fact that the algorithms RELIEF and RBS-PSD did not perform quite well
on different standard test collections as can be seen in Chapter 5.

Once the effect of PSD matrices on RBS has been covered in detail, the next obvious question
is the effect of PSD matrices on sRBS. As seen from figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26 adding
positive, semi-definite constraints in sRBS does not has any good effects except for lonosphere.
Similarly, sRBS-PSD performs better than RBS-PSD for Iris, Wine, Balance, Soybean, Pima,
Glass, Ionosphere and Yeast.
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Figure 4.17: Margin for RBS-PSD on Soybean (left) and Letter (right) datasets
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Figure 4.18: Margin for RBS-PSD on Pima (left) and Liver (right) datasets
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Figure 4.19:

Margin for RBS-PSD on German (left) and Glass (right) datasets
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Figure 4.20: Margin for RBS-PSD on Ionosphere (left) and Yeast (right) datasets
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Figure 4.21: Margin for sRBS-PSD on Iris (left) and Wine (right) datasets
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Figure 4.22: Margin for sRBS-PSD on Balance (left) and Heart (right) datasets
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Figure 4.23: Margin for sRBS-PSD on Soybean (left) and Letter (right) datasets
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Figure 4.24: Margin for sRBS-PSD on Pima (left) and Liver (right) datasets
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Figure 4.25: Margin for sRBS-PSD on German (left) and Glass (right) datasets
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Figure 4.26: Margin for sRBS-PSD on Ionosphere (left) and Yeast (right) datasets

4.5 Generalized Cosine Similarity Metric Learning

The similarity measure given in equation 4.1 does not refers to a generalized cosine similarity
since the normalization is completely independent of the similarity matrix. This is the motivation
behind defining a generalized cosine similarity metric learning algorithm where the normalization
is dependent on the similarity matrix and the similarity matrix is positive, semi-definite (PSD). In
order to make a similarity matrix as positive, semi-definite, the similarity matrix is projected onto
the set of positive, semi-definite matrices (PSD) inspired from the strategy given in POLA [99].

Since POLA considers the examples in the form of pairs, with each pair being either similar
(e.g. belonging to same class) or dissimilar, and learns the distance metric based on the pairwise
constraints (equivalence and inequivalence), the same strategy is followed in the case of gener-
alized cosine similarity metric learning. Furthermore, similarity is learned in a global sense with
the aim of satisfying all of the pairwise constraints simultaneously.

4.5.1 Problem Setting

The generalized similarity between two examples x and 2’ in RP, as given in equation 4.2 is

rewritten:
xt Az’

/
sa(z@) = VatAxva't Ax’!
where A > 0 is a positive, semi-definite matrix and the normalization is dependent on A. One
can also note that by choosing A as the identity matrix, equation 4.2 becomes the standard cosine
similarity. Other positive, semi-definite matrices define different scalar products and norms, so
that equation 4.2 corresponds to a cosine in a new basis of the underlying vector space. Because
of this property, equation 4.2 refers to the family of Generalized Cosine Similarities [86].

The examples considered here, are in the form of tuples, (x,2’,y) where each example is
composed of the instance pair (z,2') and a label y which is +1 when z and 2’ are similar and
is -1 in the case when they are dissimilar. When the data is separable, the margin of a sample,
S, denoted by 27, is defined as the minimum separation between all pairs of similar (z1, 2], +1)
and dissimilar (w9, 25, —1) examples:

sa(w1,77) — sa(w2, v3) > 2y
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Figure 4.27: Separation between similar and dissimilar examples

By introducing a threshold b € R, the above inequality can be rewritten as:

V(z,2',y) 1y =—+1= sa(z,2') > b+~
V(e a',y) ry = —1= sa(e,2') < b—7

where v > 0 and —1 4+~ < b < 1—~. Here, v measures the extent to which one is on the wrong
side of the threshold. The two inequalities can be combined to form a single linear constraint:

y(b—sa(za)) < — (4.3)

Figure 4.27 shows the similar and dissimilar example pairs separated by a margin . Considering
tuples of the form (z.,2.,y;), at each time step, or round 7, the loss incurred by the current
matrix-threshold pair (A,b) can be computed as follows:

- (A,b) = max {0, y- (b — sa(zr,2})) + 7}

which is a variant of the hinge loss. Our goal is thus to find a matrix-threshold pair (A,b) which
minimizes the overall loss. When the data is separable, there exists a matrix-threshold pair such
that the overall loss is 0 (as inequality 4.3 holds for matrix-threshold pairs separating the data).
If [ = 0, the following inequality holds:

yr(b—sa(zr,2l))+v <0

which can be rewritten as:
yT(SA(xT7x;') —b) > v

An online algorithm is presented next, in order to learn a matrix-threshold pair. In the
first instance, the data is considered to be separable. The case where the data is inseparable is
presented afterwards.

4.5.2 gCosLA - An online generalized Cosine similarity metric Learning Al-
gorithm

In the case where the data is separable:
JA > 0,

and
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Figure 4.28: Set of projections for gCosLA

such that the matrix-threshold pair (A, b) completely separates the data, i.e. has zero loss for all
time steps. Because the matrix A should separate the data and be, at the same time, positive,
semi-definite, one can rely on a strategy based on first finding a matrix-threshold pair with zero
loss and close to the current matrix-threshold pair so that the new matrix not only correctly
classifies the new example but also the examples already considered so far. This is followed
by projecting the obtained matrix on the set of positive, semi-definite matrices (an approach
reminiscent of the one defined in POLA [99]). The first step aims at finding matrix-threshold
pairs with small loss, whereas the second step ensures the fact that the obtained matrix is
positive, semi-definite and hence defines a valid generalized cosine similarity.

Let C, C R™*! be the set of all matrix-threshold pairs having zero loss on the example
(.%'7—, .%';_, yT):

Cr = {(4,b) e R ¢ [ (A,b) =0}

C, can then be defined as the set of all admissible matrix-threshold pairs:
Co={(Ab) RV :A=0, —14+y<b<1—7}
The update step of our algorithm is thus based on two projections:

1. First, project the current matrix-threshold pair (A;,b;) on C;. The matrix-threshold pair
thus obtained is denoted by (Az, bs),

2. Then project (Az,bz) onto Cy to get (Arq1,br41)

These two projections, as shown in the figure 4.28, are now reviewed:

Projection onto C-

The set of matrix-threshold pairs having zero loss on (2,2, y,) can be rewritten as:

C, = {(A,b) € R™ 27 Az

. y[\/xtTAxT\/xﬁAx’T ERERY
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The following two quantities are now introduced, which will help to define a simple projection:
R_y(z.,2  A;) = [min(xtTAxT, foﬂ:'T)]fl

Rii(zr, 2L, Ar) = [max(2t Az, ﬂ:'TtAx'T)]fl

R_1 is based on the minimum of the two normalization terms whereas Ry; depends on the
maximum of the two normalization terms. Moreover, R_; and Ry; can be written in a single
inequality as follows:

Ryxt Az, < \/xﬁjjfjiﬁflx; < R_jat Azl
By subtracting b from all terms and multiplying by ., the above inequality becomes:
(Rt Az —b) < ol j? =~ < pelRaaar e )
which can be rewritten as:
zt Azl

yTR+1x$.Ax;_ — y:b b < yTR_lthAx'T —y;b

< —
= Vat Az, /2t Azl o
Hence, matrix-threshold pairs (A, b) such that:

yr R, xt Azl —y b >~y (4.4)

yr Ly
will have zero loss on the example (z.,2.,y,) where y, = 41 and represents either similar
examples (y, = 1) or dissimilar ones (y, = —1). Using the inequality 4.4, two subsets of C.
could be defined, on which the current matrix-threshold pair can be projected according to the
value of y;:

O ={(A0) e R™ M Ryal Adl —b >} ify, =1

Cr ={(A0) R s —Ryal Aal +b> 7} ifyr = -1

which can be conveniently rewritten:

C¥ ={(Ab) € Ry R, ot Azl —y:b > 4}, yr € {—1,+1}

YT

An orthogonal projection is a projection of a figure on a line, plane etc. in such a way that the
line joining the corresponding elements is perpendicular to the line, plane etc. The orthogonal
projection of (A;,b;) (the current matrix-threshold pair) on Cy¥7, i.e. the closest element from
(A;,by) in C¥7, takes the form:

Ar = A +yra(z,2l), witha e R

T

bf— = brt+uyra

where . ,
— Y yTRy.,—xq—ATxr + ?/rb

Ry, (|| *ll27]%)
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Projection onto C,

In order to describe the projection onto Cy, it is important to note that A,y is the projection
of A; onto the set of all positive, semi-definite matrices, and b,41 the one of b; onto the set
beR: =14+7y<b<1—1.

In order to project A: onto the set of all positive, semi-definite matrices, the following de-
composition is used: A; =) j )\juju;‘-r, where )\; and u; are the eigenvalues and the eigenvectors
of the matrix A; respectively. The matrix A, is the projection of A; onto the set of PSD
matrices (see for example [44]). Knowing the eigenvalues and eigenvectors of A:, A.y; can be
written in the following form:

AT+1 == Z )\j’u]'u;1
7,A;>0

If the matrix A; is already symmetric, symmetric Householder reduction is used to convert it
into a tridiagonal matrix followed by QR transformation. On the contrary, the similarity matrix
is converted to the Hessenberg form before converting to real Schur form. These forms make
it easier to find the eigenvalues and the eigenvectors. Template Numerical Toolkit TNT ' was
used to find the eigenvalues and eigenvectors for the projections. Alternatively, Lanczos method
(see [44]) could be used along with symmetric tridiagonal QR algorithm or bisection method to
find the eigenvalues and the eigenvectors of As.

Algorithm

Here, an online algorithm to learn generalized cosine similarities is presented. This algorithm
learn similarities of the form given in the equation 4.2 based on positive, semi-definite matrices.
This algorithm is denoted as gCosLA for generalized Cosine similarity Learning Algorithm. The
update rule consists of projecting the matrix A onto the set of positive, semi-definite matrices.
For each example (in the form of a pair), the loss is calculated based on the similarity s4. The
update is performed only in case the loss is greater than zero for an example under consideration.

gCosLA - Training
Input: training set of the form (z,2’,y), of n vectors in RP, number of epochs M; b represents
the threshold
Output: list of (p x p) matrices ((A1,b1), -, (Aq,bq))
Initialization ¢t = 1, A() = I (identity matrix), b= 0, v > 0
Repeat M times (epochs)
fori=1,---,n
get triplet (z,, 2/ ,+1) € R" x R"
I-(A,b) = max {0,y(b; — sa(wr,27)) +7}
if (I:(A,b) > 0)

Ria(wr, 2, A) = [max (2t Az,), (2 Axl))]

'5Can be obtained from http://math.nist.gov/tnt/index.html

102



4.5. Generalized Cosine Similarity Metric Learning

R_i(z;, 2, A) = [min ((2} Az,), (wﬁAw’T))]fl
_ v ye Ry, (L Arar) +yrb

Ry, (|l |[*[l7 1)
Az = A; + yra(z 2)

a

Ari=32; ;>0 )\juju;‘r (where A; and u; are the eigenvalues and eigenvectors
of matrix A;)
b; = b +yra
if (bz > 0)
br41 = min (bz,1 — )
else

byt = max (br, —147)

To calculate the worst-time complexity of gCosL A, the complexity of the different steps of the

algorithm is considered. The worst-time complexity for calculating the similarity between two
examples is O(p?) where p represents the number of dimensions. Similarly the first projection
onto the set of zero-loss matrices costs the same i.e. O(p?). However eigen-value decomposition,
being a costly operation, has the worst-time complexity as O(p3). With all this, the overall
worst-time complexity for gCosLA can be written as O(M.n.p?) where M represent the number
of iterations, n is the number of train examples while p stands for the number of dimensions or
attributes.
The algorithm presented earlier assumes that the data is completely separable which is rarely
true in actual practice. Here the data is considered to be inseparable. In this case the loss
becomes non-zero, which can be dealt with by introducing a new parameter ~; which is used
to decrease the previously introduced margin + (this affects only the projection onto C., the
projection onto C, being left unchanged). The set C; thus becomes:

top
x Az

t Ay

Vot Az /2!t Al

Cr = {(4,b) e R 1y —b >~y -}

Setting 5 = v — =1 leads to:
O = {(A,b) e RV Ty Ry (2L Aal) +y,b > BY, yr € {~1,+1)

This finally yields the modified value for a:

_ B—yRy, (zh Aral) + yrb
Ry, ([[a+]]?[|27]%)

However, the rest of the algorithm remains the same.

4.5.3 Online to Batch Conversion

The online algorithm, gCosLA is used for learning a set of similarity matrices during the training
phase. In order to use the similarity matrices learned during the prediction, gCosLA can be
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easily converted to a batch algorithm using the approach previously adopted for SiLA. However,
instead of using weighted matrices as in SiLA, just the averaged sum is taken over the different
similarity matrices learned during training.

gCosLA - Prediction
Input: new example x in RP, list of (p x p) matrices (Ay,--- , A, ); where A is defined as:

A= Zln=1 Al
n

Output: list of classes

Furthermore, following the approach defined by Dekel et al. [30] and used in SiLA, the
matrices learned during the first few iterations of the algorithm can be discarded since the
algorithm is supposed to make more mistakes in the beginning as compared to the end. In other
words, in a sequence of n similarity matrices learned (Ay, --- , A;,), only the last ¢ matrices could
be taken into account for classification. The value of g can be determined using cross-validation.

4.5.4 Analysis of gCosLA

The following theorem provides a loss bound for the algorithm gCosLA in the separable case.
It assumes the existence of a positive, semi-definite matrix A which separates the data in a
strict sense, as well as the existence of an upper bound on the scalar product between all basic
instance pairs. The inseparable case is treated in exactly the same way by replacing the positive
real number v with an arbitrary real number, not necessarily positive, 3.

Theorem 4. Let (z1,24,v1), - (r,20,y:), -+, (xn, 2y, yn) be a sequence of N exzamples. For
any positive, semi-definite matriz A, let for each 7, 1 <7 < N:

R_y(zr 2L, A) = [min((aL Az,), (2 Ax)))] -

and
Ry (wr, 2, A) = [maz ((a! Az,), (2 Ax}))]

Assume that there exists a positive, semi-definite matriz A*, a threshold b* and a positive real
number v such that:

(Ruazi Ay = b") =y A (0" = RoqaiA'ar) >
Using the notations introduced previously, let R € R™ be an upper bound such that:

1
WRM%TH‘%WTH% < R,y €{-1,+1}

Then the following bound holds for any M > 1:

M

D ((A,0) < R(|IA" 1|3+ (b))

T=1
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A proof of theorem 4 can be established along the same lines as the proof of the loss bound
provided for the POLA algorithm in [99] and is presented in the Appendix A. The only require-
ment in POLA is that the data should lie in a sphere of radius R. This requirement is translated
in the case of a generalized cosine similarity by the fact that the scalar product between data
points, normalized by its maximum or minimum values, is bounded. Introducing the maximum
and minimum values leads to a stricter notion of separation. It however allows one to rely on
simple projections.

As the inseparable case can be treated in exactly the same way, by directly replacing the
positive scalar v by (3, a scalar not necessarily positive, one can see that the condition imposed
is not really restrictive, and leads to an algorithm with an explicit bound on the loss function.
Furthermore, the theorem for the inseparable case (as well as its proof) is the same as the one
for the separable case, 5 being used instead of ~.

4.6 Comparison of SiLA and gCosLA with other state of the art
algorithms

SiLA and gCosLA are supervised online algorithms having an effective online to batch conversion
mechanisms like POLA [99]. These three algorithms update the similarity or distance matrix only
if loss > 0 and a misclassification has been made. SiL.A works with individual examples whereas
gCosLA and POLA operate on pairs of similarly and differently labeled examples. Furthermore,
loss bounds on the performance have been provided for all of the three algorithms. These bounds
guarantee a generalization well beyond the training examples.

SiLA as well as gCosLA could be considered as a global similarity learning algorithms since
only global similarity matrices are learned for subsequent classification of test data. Moreover,
the similarity matrices are not class dependent. Stahl et al. [100], on the other hand, learn local
similarity measures.

Although SiLA is based on the voted perceptron proposed in Freund and Schapire [37] and
used in Collins’ algorithm [20], yet it differs substantially from these two algorithms. The aim
here, is to learn similarity in kNN classification, whereas it was used for binary classification with
a separating hyperplane in Freund and Schapire and for the discriminative training of hidden
Markov models in Collins’s work.

SiLA and gCosLA use kNN classification algorithm like LMNN [112] and MCML [41]. The
basic aim in SiLA coincide with that of LMNN: bringing target neighbors closer while pushing
apart the impostors. Both of these methods can be used for binary or multiway classification.
While comparing SiLA with MCML, one can see that in the later method, the target neighbors
are collapsed to a single point and the impostors are pushed infinitely apart.

SiL A does not require the similarity matrix to be positive, semi-definite (PSD) like ITML [28]
and OASIS[16], and unlike gCosLA, POLA [99] and the approaches of Xing et al. [114], Globerson
et al. [41] and Weinberger et al. [112]. The inclusion of PSD constraints require additional
computation time. Although gCosLA works with bi-linear form defined by PSD matrices, yet it
learns a similarity metric rather than a distance one as in other metric learning approaches.

Furthermore, no eigenvalue decomposition of the similarity matrix is required for SiLA just
like ITML. An important point regarding distances is that they are related to the trace of a
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matrix. On the other hand, there is no relation between similarity and the trace.

Comparing SiLA and gCosLA with Xing’s algorithm reveals that Xing’s algorithm is used
for clustering and is batch in essence. Furthermore, it does not have a computationally effective
online version and theoretical error guarantees regarding unseen examples. However, SiLA and
gCosL A are used for classification purposes, are effective online algorithms and have got theo-
retical error guarantees. This makes sure that they make just a limited number of mistakes on
unseen examples.

Grabowski and Szalas [46] also learn a similarity measure which is an asymmetric variant of
the Jaccard coefficient, and is a special case of the similarity functions considered in the case of
SiLA. However, their goal is more along the lines of feature selection than similarity learning.

In comparison with Hust’s work [52] on Collaborative Information Retrieval, where a variant
of cosine similarity is learned based on a diagonal matrix only; SiLA allows to learn diagonal
and square matrices.

The neural network approach (SNN) of Melacci et al. [72], to learn similarity differs from
SiL A owing to an always positive value of similarity. The reason is the use of sigmoidal function.
SiLA’s similarities, on the other hand, are not necessarily positive. Another difference is that
the similarity is always symmetric for SNN like gCosLA.

The aim in SiLA is to directly reduce the 0 — 1 loss or the leave-one-out error like NCA -
Neighborhood Components Analysis [42]|. SiLA is a classification algorithm and requires complete
supervision in the form of class labels. However, OASIS does not require the class labels as
it learns a pairwise (dis)similarity measure. Both SiLA as well as OASIS do not require the
similarity or distance matrix to be symmetric in nature. As discussed earlier, SiLA updates the
similarity matrix only if the algorithm has made an error. On the other hand, OASIS is based
on systematic updates.

For gCosL A, the initial similarity matrix is initialized with an identity matrix like OASIS. This
means that gCosLA resembles the standard cosine whereas OASIS behaves like the Euclidean
distance during the first iteration. The method of converting a similarity matrix into a PSD one
resembles to the one followed by POLA and MCML. In this method, the (dis)similarity matrix A
is projected onto the set of PSD matrices by taking the eigenvalue decomposition of A followed
by the removal of negative eigenvalues.

Peterson et al. [84] use genetic algorithm to optimize kNN performance using cosine similarity,
Pearson correlation and Euclidean distance. However, in this case, no metric is learned unlike
SiLA, gCosLA and other metric learning algorithms.

The complexity of gCosLA algorithm (Mnp?) is higher than that of SiLA (Mnp?) because
of the use of eigenvalue decomposition. Furthermore, the cosine similarity measure used in SiLA
cannot be called a generalized cosine one, since the normalization is completely independent of
the similarity matrix learned. Another difference between SiLA and gCosLA lies in the fact that
gCosL A works with pairs of examples like POLA which can be similar or dissimilar, while SiLLA
works with individual examples.

gCosLA can be considered as belonging to the family of passive aggressive algorithms de-
scribed in Crammer et al.[23]. It is passive when the current similarity matrix correctly classifies
the current example, in which case the current matrix is left unchanged. On the contrary, if
there is some [oss for the current example, it aggressively forces the update to have zero loss for

106



4.7.  Conclusion

the current example.

4.7 Conclusion

Several works have proved that cosine similarity, which is mainly used while dealing with texts,
should be preferred over the Fuclidean distance on several, non-textual datasets as well. This
explains the importance of learning appropriate similarity measures apart from the distances for
kNN classification.

SiLA (Similarity Learning Algorithm) is based on learning globally a similarity metric with
the help of training examples. It is based on voted perceptron developed by Freund and
Schapire [37] and used by Collins [20]. The aim is to move the farget neighbors (examples
belonging to the same class as that of the input example) closer while pushing apart the impos-
tors (examples from other classes). It directly reduces the leave-one-out error or the 0 — 1 loss
by reducing the number of mistakes on unseen examples. The similarity matrices learned during
the training phase can be used for prediction. The similarity used in the case of SiLA does not
guarantees that a symmetric bi-linear form exists. Nevertheless, the similarity matrix can be
projected onto the set of positive, semi-definite (PSD) matrices thus giving rise to eSiLA.

RELIEF is a well known feature re-weighting algorithm. It has been recently shown that
RELIEF could in fact be seen as a distance learning algorithm in which a linear utility function
with maximum margin is optimized. A version of RELIEF for similarity learning called RELIEF-
Based Similarity (RBS) is proposed. As RELIEF and unlike SiLA, RBS does not try to optimize
the leave-one-out error, and does not perform very well in practice. This is illustrated on many
UCT collections. Therefore, a stricter version of RBS, called sRBS is developed which aims at
relying on a cost function closer to the 0 — 1 loss. The results for sRBS show that it is a much
better idea of use 0-1 loss rather than its approximation. All of the RELIEF based algorithms
were extended to work with PSD matrices.

The normalization in SiL A is completely independent of the learned similarity matrix which
hinders in defining a truly generalized cosine similarity. The approach previously used in SiLL.A
cannot be used to define a generalized cosine similarity. Since generalized cosine similarities
are based on scalar products, they involve bi-linear forms defined by positive, semi-definite
(PSD) matrices. However, the normalization (dependent on the similarity matrix) introduced
in the cosine similarity prevents one from directly re-using the algorithms previously introduced
for learning say Mahalanobis distances, also based on PSD matrices. This motivates to learn
a generalized cosine similarity - gCosL A, where the similarity matrix is positive, semi-definite
(PSD) and the normalization is dependent on the similarity matrix. In order to convert a matrix
into its PSD equivalent, it is projected onto the set of PSD matrices inspired from the approach
adopted in POLA (Shalev et al. [99]). Since POLA is based on learning the pairwise constraints
i.e. equivalence and inequivalence in order to learn a global distance metric, gCosLA learns the
similarity metric based on the pairwise constraints.
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5.1. Introduction

5.1 Introduction

In order to assess the performance of a learning algorithm, it must be tested over different
datasets. The datasets must be different from one another and should be able to validate an
algorithm. Furthermore, the datasets should be diverse i.e. they should have different number of
classes, features and examples etc. Generally a dataset is divided into three distinct parts (which
means that there should not be any overlapping): training set, validation set and test set.

Training set is used exclusively for learning the different parameters of the algorithm. In order
to verify whether an effective training has been performed or not, a validation set is formed from
the data set which must not contain any of the training examples and is used to fine tune an
algorithm. Test set is required to verify the performance of the algorithm on unseen examples.
Normally 80% of the instances are used for training and validation sets whereas the rest of
the examples (20%) are used for the test data. Furthermore 80% examples are retained in the
training set while 20% account for the validation set.

This chapter explains the experiments conducted with different similarity learning algorithms
over various datasets. Cosine similarity is compared with the Fuclidean distance. This is followed
by a detailed comparison between cosine, SiLLA and gCosLA while using kNN as well as SENN.
All of the algorithms belonging to the RELIEF family are also thoroughly tested and compared
with the standard kNN and SENN rules. SiLA and gCosLA are compared with different state of
the art algorithms in the field of metric learning. Similarly kNN is compared with its symmetric
version SENN while using the cosine similarity.

The next section describes the various datasets used for the experimental validation of the
different algorithms.

5.2 Description of the datasets used

Many different datasets were used in order to assess the performance of the various similarity
learning algorithms. All of the datasets except Newsgroups are part of the UCI database [36]),
namely, Tonosphere, Iris, Wine, Balance, Soybean (Small), Glass Identification, Pima Indians
Diabetes, BUPA Liver Disorders, Letter Recognition, (Statlog) German Credit Data, (Statlog)
Heart, Yeast, Magic, Spambase, Magic, Sonar, Segmentation, Optdigits and Waveform. These are
standard collections which have been used by different research communities (machine learning,
pattern recognition, statistics etc.). The details about the datasets are next presented as shown
in Table 5.1, 5.2 and 5.3:

1. The Iris Plant data set contains 3 classes, each has 50 instances where each class refers a
type of Iris plant. Two of the three classes are not linearly separable from each other. The
number of attributes is 4. 120 examples were used for training (96 for learning and 24 for
validation), and 30 for testing.

2. The Wine Recognition data set contains 13 attributes representing the constituents found
in each of the three different types of wines. 143 examples were used for training (114 for
learning and 29 for validation) while 35 for testing purposes.

111



Chapter 5. FEzxperiments and Results

Iris Wine Balance Ionosphere Glass Soybean Pima Liver
Learn 96 114 400 221 137 30 492 220
Valid. 24 29 100 56 35 8 123 56
Test 30 35 125 70 42 9 153 69
Class 3 3 3 2 6 4 2 2
Feat. 4 13 4 34 9 35 8 6
Table 5.1: Characteristics of datasets - I
Letter German Yeast Heart Magic Spambase Musk-1 News
Learn 12800 640 950 172 12172 2944 304 1824
Valid. 3200 160 238 44 3044 737 7 457
Test 4000 200 296 54 3804 920 95 2280
Class 26 2 10 2 2 2 2 20
Feat. 16 20 8 13 10 57 168 200 16

Table 5.2: Characteristics of datasets - II

Sonar Segmentation Optdigits Waveform

Learn 133 134 2447 3200
Valid. 34 34 612 800
Test 41 42 764 1000
Class 2 7 10 3
Feat. 60 19 64 21

Table 5.3: Characteristics of datasets - III
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5.2. Description of the datasets used

10.

11.

12.

13.

. The Balance Scale data set contains 3 classes along with 4 attributes. 500 examples were

used for training and 125 for test. Among the training examples, 400 were chosen for
learning while 100 were used for validation.

. Tonosphere is a binary classification data set where the aim is to classify radar returns from

the ionosphere. 281 examples were considered for training (80% or 221 for learning and
the rest, 56 for validation) whereas 70 for test along with 34 features.

. The Glass Identification dataset contains 6 types of glasses based on different oxide content.

The motivation for this dataset is that the glass left at the scene of the crime can be used
as evidence afterward. This dataset has 9 features (the first one is just the identification
number and has been omitted). 172 examples were used for training (137 for learning while
35 for validation) and 42 for testing.

. Soybean (Small) is a subset of the original soybean dataset. It contain 35 features. 38

examples were used for training purpose while 9 for testing. Among the training examples,
30 were chosen for learning purpose while 8 for validation. The number of classes is 4.

Pima Indians Diabetes dataset, also known as Pima dataset, is also a binary classification
problem and consists of data from diabetes patients from Pima Indian heritage. The aim is
to identify the patients who test positive for diabetes. 615 examples were used for training
purpose (492 for learning and 123 for validation) while 153 for testing.

. BUPA Liver Disorders dataset, sometimes referred as Liver dataset, is also a medical

dataset where 276 examples were considered for training (220 for learning and 56 for val-
idation) and 69 for testing. The task is to identify the presence of a liver disorder, based
on 6 attributes where the first 5 refer to blood tests considered sensitive to liver disorders
which can develop from excessive alcohol consumption.

. The aim in Letter Recognition data set is to recognize the English language capital letters

out of 26 possibilities (A-Z). The images of the letters are based on 20 fonts which makes
20000 examples in total. The attributes are composed of statistical moments and edge
counts. 12800 examples were used for learning, 4800 for validation and 4000 for testing.

(Statlog) German Credit data set contains 800 examples for training (640 for learning
whereas 160 for validation) while 200 account for the test set. The aim is to classify a
customer has good or bad credit risk.

The target in Yeast dataset is to find the localization site of protein. It is composed of
1188 examples for training (950 for learning and 238 for validation) and 296 for testing.
The number of features is 8.

(Statlog) Heart is a heart disease data set consisting of 216 training examples (172 for
learning while 44 for validation) and 54 test ones. The aim is to detect the presence or
absence of heart disease in patients using 13 features.

Maygic dataset is a binary dataset having only two classes and 10 features. It was generated
by Monte Carlo method to simulate registration of high energy gamma particles in an
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14.

15.

16.

17.

18.

19.

20.

atmospheric Cherenkov telescope. It is made up of 19020 examples of which 12172 make
up the training set, 3044 account for the validation set and 3804 are placed in the test set.

Spambase is also a binary classification dataset having a simple aim: classify an email as
spam or otherwise. It has 2944 instances as training, 737 for validation and 920 for testing
purposes. The number of attributes is 57.

In Musk-1 dataset, an algorithm has to predict whether new molecules will be musks or
non-musks. It contains 304 training examples, 77 validation ones while 95 instances are
used for testing purpose. The 166 features depend upon the exact shape or conformation
of the molecule.

The 20-newsgroups data set is composed of posted articles from 20 newsgroups and ap-
proximately contains 20,000 documents. The 18828 version was used in which the cross-
postings have been removed and includes only the "From" and "Subject" headers. the
Rainbow package [71] was used to tokenize the data set where each document was formed
of the weighted word-counts of the 20,000 most common words. This was followed by per-
forming singular value decomposition using SVDlibc 7 which reduced the original 20,000
dimensions to 200. Many of the resulting documents did not contain any of the 200 selected
words. The empty documents containing none of the 200 words were subsequently removed
reducing the number of documents to 4561. Out of 4561 documents, 2281 documents were
used for training and validation, while 2280 documents were used in the testing phase.

The aim in Sonar dataset is to separate the sonar signals bounced off a metal cylinder
(mine) and those bounced off a roughly cylindrical rock. There are 111 signals which were
bounced off a metal cylinder at various angles and under various conditions. Similarly 97
patterns were obtained from rocks under similar conditions. Each pattern is a set of 60
numbers (features) in the range of 0.0 to 1.0. Out of 208 signals, 133 are used for training
while 34 for validation. Finally 41 signals are used for testing.

(Statlog) Image Segmentation is an image dataset consisting of randomly drawn images
from a database of 7 outdoor images. The images are further hand-segmented to create
a classification for every pixel. Here, only the training set containing 210 images is used
for classification purposes. 134 images were used for training, 34 for validation whereas 42
were used for testing purposes. Each image is consisted of 19 features.

An optical recognition dataset, called Optdigits is also used to evaluate different algorithms.
The aim in this dataset is the optical recognition of handwritten characters (0-9). Only
the training set containing 3823 instances is used. Furthermore, 2447 instances are used
for training while 612 are retained for validation. Similarly 764 instances compose the test
set. The number of features is 64.

Another UCI dataset used for validating different algorithms is the Waveform database
generator (Version 1) dataset. This dataset contains 3 classes of waves equally distributed
among 5000 instances. There are 21 features in total, all of which include noise. 3200
instances were used for training, 800 for validation and 1000 for testing.

'"Can be obtained from http://tedlab.mit.edu/ dr/svdlibc/
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5.8. Methodology used for the experiments

B Random split the sample S in V sub-samples S(1) . §(V)
B Forv=1,....V, do:

% Merge V — 1 subsamples into S~ = § — §(*)
)

or each candidate model m € M, compute the diserimination rule #;; ' and selec e
* Fi h didat del M, pute the d t le 65 ° d select th

best model regarding the cross-validated error-rate :

m} = argmin CV,(~?
meM

% Evaluate the error rate t,, of m;, on the test sample Ssw)

B Average the V error rates #1,...,ty

Figure 5.1: Double cross validation [35] algorithm

5.3 Methodology used for the experiments

This section describes how the datasets were used for different similarity learning algorithms
ie. SiLA, eSiLA, RBS, sRBS, RBS-PSD, sRBS-PSD, gCosLA. 20 percent of the data was used
for testing purpose for each of the dataset. Of the remaining data, 80 percent was used for
training whereas 20 percent for the validation sets for all of the algorithms. 5-fold double cross-
validation [35] was used to learn the matrix sequence (Ay, Ag, ---, A,) for all of the datasets.
The double cross-validation algorithm is shown in figure 5.1. In the technique of double cross-
validation, the dataset is splitted into V' sub-samples or folds (in this case 5). One sample is
selected as a test sample. The remaining samples, composed of training and validation exam-
ples, are considered as the samples used for learning purposes. Based on this distribution, the
algorithm is run multiple times with different parameter values (e.g. different value of k nearest
neighbors) thus giving a set of accuracies over the test sample. This helps to determine the best
model having the best parameter values for the current fold, based on the largest accuracy value.

This is followed by considering another sample as a test one (different from the first one)
taken from the V' samples. Moreover, the rest of the samples are considered as learning samples.
Different parameter values are tested just like the first fold so as to determine the best one. In
the end, the V' accuracies are averaged to find the global accuracy.

In the case of kNN-cos, SkNN-cos and kNN-euclidean only the best value of k£ was determined
using the method of double cross-validation. The best value of k was chosen from the possible
values of 1 and 3.

It may be further recalled that in a sequence of hypothesis, the last ¢ elements may be more
interesting than the earlier ones. Based on this fact, the validation set was used for SiLA to
determine the value of k (nearest neighbors), optimum number of epochs and the best value of
q.

However, in the case of gCosLA, the validation set was used to determine the aforementioned
parameters learned for SiLA as well as the best value of the threshold §. It was observed that
for each dataset, the best value of 5 is usually different for each class and each fold.

In order to create pairs of examples for gCosLA, 5 nearest neighbors were found for each of
the example from the class it belongs. Additionally, the same number of nearest neighbors from
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different classes was also found. Thus the total number of pairs of examples for each dataset
became 10N where N represents the number of examples in a dataset.

For RELIEF and RBS, a single weight vector was learned whereas for sRBS, a sequence of
matrices (A;, A, -+, A,) is learned. Double cross-validation is used to find the best value of k
for RELIEF and RBS algorithms. On the other hand, for sRBS, the values of k, A and [ are
determined. The approaches followed in the case of methods involving PSD matrices i.e. eSiLA,
RELIEF-PSD, RBS-PSD and sRBS-PSD are the same as the ones used for their counterparts
without PSD matrices.

5.3.1 Prediction Rules

Two prediction rules were used for all of the experiments. The first one is the standard NN rule
where the classification is based on the k nearest neighbors while the second one is SENN (S’
means symmetric), which is based on the difference of similarity between k nearest neighbors
from the same class and k from other classes'®. Combined with the similarity learning algorithms,
these prediction rules provide four different possibilities for comparison:

1. Standard kNN rule with the cosine similarity by replacing A matrix with the Identity
matrix. This rule is referred to as kNN-cos,

2. Standard kNN rule with the similarity learned with the similarity learning algorithms. This
method is termed as kNN-A,

3. The symmetric prediction rule with the cosine similarity having A = I, which is called
SENN-cos,

4. The symmetric prediction rule with the similarity learned with the similarity learning
algorithms. This method appears as SENN-A.

Unless otherwise stated, a binary version of the algorithms was used, in which a sequence of
matrices is learned for each class (one vs others), and the quality of a given method was assessed
with its average accuracy (i.e. the accuracy averaged over the different classes).

In addition, the standard deviation was computed on all of the collections for all of the
algorithms. The results were evaluated for statistical significance i.e. whether one method is
significantly better than the other one or not. In case the P-value is less than or equal to 0.01,
this means that the difference is much more significant and is denoted by < or >. A lower level
of significance occurs when the P-value lies in between 0.01 and 0.05, in which case is denoted
by < or >. In case, the P-value is greater than 0.05, the results are considered equivalent and
are denoted by =.

5.4 Cosine similarity vs Euclidean distance in kNN classification

Even though £NN has been traditionally used, on the collections earlier seen, with the Euclidean
distance (or with a Mahalanobis distance learned from the data, as in |28, 112]), it is shown here

'%0One can find in Nock [75] a different version of a symmetric kNN rule in which one considers not only the &
nearest neighbors of a given example z, but also the points for which x is a nearest neighbor.
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5.4. Cosine similarity vs Euclidean distance in kNN classification

kNN-cosine kNN-Euclidean
Soybean 1.0 £ 0.0 1.0 £ 0.0
Iris 0.987 + 0.025 0.973 £ 0.029
Letter 0.997 + 0.002 0.997 + 0.002
Balance 0.954 4+ 0.021 > 0.879 £ 0.028
Wine 0.865 4+ 0.050 > 0.819 £ 0.096
Tonosphere 0.871 4+ 0.019 0.854 4+ 0.035
Glass 0.899 + 0.085 0.890 £ 0.099
Pima 0.630 + 0.041 0.698 + 0.024 >
Liver 0.620 + 0.064 0.620 + 0.043
German 0.594 + 0.040 0.615 + 0.047
Heart 0.670 £+ 0.020 0.656 £ 0.056
Yeast 0.911 + 0.108 0.912 + 0.108
Spambase  0.858 + 0.009 0.816 &+ 0.007
Musk-1 0.844 + 0.028 0.848 + 0.018

Table 5.4: Comparison between cosine similarity and Euclidean distance based on s-test

that the cosine should be preferred to the Euclidean distance on many of these collections.

The utility of the cosine similarity on text data has been recognized now for many years.
However, on most non-textual collections, the majority of researchers rely on the Euclidean
distance. In order to assess the validity of using the cosine similarity on non-textual collections,
two standard kNN rules are used, one with the cosine similarity, the other one with the Euclidean
distance, on the UCI collections. Table 5.4 summarizes the accuracy obtained with kNN-cosine
and ENN-Euclidean along with their respective standard deviations. The first column gives the
average accuracy obtained while using a binary version of the cosine-based kNN classifier, whereas
the second one corresponds to the Euclidean distance-based ENN classifier. The best results are
represented in bold.

As one can note, the cosine similarity yields results which are either better or the same as
that for Euclidean distance for most of the data sets. Even though the results are on par with the
Glass, Soybean, Liver and Letter data sets, the difference is important on Wine (better by 4.6%),
Balance (better by 7.5%) and Spambase (better by 4.2%) collections. For Pima, the Euclidean
distance gives better result as compared with the cosine measure (gain of 6.8%). Micro sign
test (s-test), earlier used by [119], was performed to assess the statistical significance of these
results. It can be observed that cosine is statistically much better (shown by ‘>¢) than Euclidean
distance on Wine and Balance. However the difference between cosine and Euclidean distance is
not statistically significant on Tonosphere and the other data sets. Similarly Euclidean distance
was much better than cosine on Pima data set.

Figure 5.2 depicts the comparison between cosine and Euclidean distance with kNN algorithm.
The standard deviations can also be viewed in the figure.

These results justify the use of the cosine similarity, instead of the Euclidean distance, on
some of these collections e.g. Balance and Wine.
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Figure 5.2: kNN-cos vs kNN-Euclidean on various datasets

5.5 Comparison between cosine, SiLA and ¢CosLA

In this section, cosine similarity is compared with SiLA and gCosLA on various datasets. The
comparison is made both between the simple kNN rule as well as its symmetric version SkNN.
Moreover, SiL A is also compared with gCosLA. This is followed by a comparison between kNN-A
and SENN-A for gCosLA in order to see the significance of devising a symmetric version of kNN.
Furthermore, kNN-FEuclidean is compared with kNN-A of gCosLA to ascertain the importance
of learning a similarity metric instead of using a distance one.

5.5.1 Performance of KNN-cos as compared to SiLA and gCosLA

The comparison of SiLLA and gCosLA algorithms with cosine while using the kNN prediction rule
is given in Table 5.5. Figure 5.3 and 5.4 give a graphical and an easier to follow description of
the comparison of kNN-cos with SiLA and gCosLA respectively.

It can be observed that SiLA performs significantly better than cosine (kNN-cos), as confirmed
by the statistical significance test s-test (shown by the sign > or >) for Balance (accuracy better
by 2.5%), Ionosphere (better by 4.0%), Pima (better by 1.8%) and German (gain by 5.2%).

Similarly gCosLA performs significantly better than cosine on Balance (gain of 2.7% in terms
of accuracy), Wine (gain of 5.3%), Liver (better by 3.8%), German (improvement by 14.3%)
and Heart (gain of 6.7%). The performance of all of the methods is comparable for Iris, Glass
and Yeast. However for Soybean, kNN-cos is significantly better than kNN-A for the algorithm
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5.5. Comparison between cosine, SiLA and gCosLA

Accuracy

kNN-cos kNN-A (SiLA) kNN-A (gCosLA)
Soybean 1.0 £ 0.0 1.0 £ 0.0 0.972 + 0.061 (<)
Iris 0.987 £ 0.025 0.978 £+ 0.030 0.987 £+ 0.025
Letter 0.997 + 0.002 0.962 + 0.003 0.995 + 0.003
Balance 0.954 £ 0.021  0.979 £ 0.012 >  0.981 + 0.008 >
Wine 0.865 + 0.050  0.884 4+ 0.062 0.918 + 0.064 >
Tonosphere 0.871 4+ 0.019  0.911 £ 0.031 > 0.880 4 0.039
Glass 0.899 4+ 0.085 0.892 4+ 0.094 0.893 + 0.097
Pima 0.630 = 0.041  0.648 £+ 0.025 > 0.624 + 0.051
Liver 0.620 + 0.064  0.609 4 0.040 0.658 + 0.070 >
German 0.594 £ 0.040 0.646 £ 0.046 >  0.737 £ 0.042 >
Heart 0.670 = 0.038  0.659 £ 0.020 0.737 £ 0.062 >
Yeast 0.911 £+ 0.108 0.905 + 0.114 0.909 + 0.112

Table 5.5: Classification accuracy of cosine, SiLA and gCosLA using kNN
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Figure 5.3: kNN-cos vs kNN-A (SiLA) on various datasets
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Figure 5.4: kNN-cos vs kNN-A (gCosLA) on various datasets

gCosLA. These results do not help to decide which one of SiLA and gCosLA is a significantly
better similarity metric learning algorithm as compared to the standard cosine similarity. The
reason is that there are many datasets on which only one of the similarity learning algorithms is
significantly better than cosine i.e. Wine, Ionosphere, Pima, Liver and Heart.

5.5.2 Performance of SkNN-cos as compared to SiLA and gCosLA

The symmetric counterpart of kNN, i.e. SENN was also used to compare cosine with SiLA and
gCosLA as shown in the table 5.6. Table 5.6 also gives the statistical significance of the results
for SiLA and gCosLA on the basis of SENN method.

It can be observed that SiLA performs significantly better than cosine for Balance (better by
1.1%), Wine (gain of 2.6%), Tonosphere (4.6%), Pima (2.0%) and German (gain by 4.7%).

Similarly ¢CosLA performs significantly better than cosine as confirmed by the statistical
significance test s-test (shown by the sign > or >) on Balance (1.2% ), Wine (gain of 5.9%) and
German (better by 10.9%). The performance of all the methods is comparable for Soybean, Iris,
Glass and Liver. It should be noted that although cosine and SiLA are better than ¢CosLA on
Soybean by 2.8%, yet the improvement is not significant enough.

Moreover, SkNN-cos performs significantly much better than SENN-A on the datasets Heart
and Yeast for SiLA.

Figure 5.5 and 5.6 compare the performance of cosine similarity with SiLA and gCosLA
respectively while using SENN decision rule. The standard deviations are also depicted in these
two figures.
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Accuracy

SENN-cos SENN-A (SiLA) SENN-A (gCosLA)
Soybean 0.989 + 0.034 0.989 + 0.034 0.961 + 0.075
Iris 0.987 £ 0.025 0.980 £ 0.025 0.984 + 0.025
Letter 0.997 + 0.002 0.962 + 0.003 0.994 + 0.003
Balance 0.969 + 0.013  0.980 £ 0.012 >  0.981 £ 0.009 >
Wine 0.867 = 0.055  0.893 £ 0.062 >  0.926 £ 0.055 >
Tonosphere 0.860 + 0.024  0.906 £ 0.035 > 0.883 + 0.032
Glass 0.898 £ 0.081 0.895 + 0.085 0.897 + 0.085
Pima 0.643 = 0.030 0.663 £ 0.028 > 0.643 4+ 0.031
Liver 0.638 + 0.060  0.600 £ 0.046 0.652 £ 0.068
German 0.620 £ 0.030  0.667 £ 0.040 >  0.729 £ 0.037 >
Heart 0.711 £ 0.036 0.674 £ 0.047 <  0.717 £ 0.061
Yeast 0.917 £+ 0.103 0.910 £ 0.106 <  0.912 + 0.112

Table 5.6: Classification accuracy with cosine, SiLA and gCosLA using SkNN
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Figure 5.5: SENN-cos vs SENN-A (SiLA) on various datasets
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Figure 5.6: SENN-cos vs SENN-A (gCosLA) on various datasets

kENN-cos kNN-A (SiLA) SkNN-cos SENN-A (SiLA)
News 0.929 0.947 0.907 0.902

Table 5.7: Comparison between cosine and SiLA for News

5.5.3 Cosine and SiLA on News dataset

The cosine similarity is also compared with SiLA on News dataset. Only 1 fold is used for this
dataset due to its large size. The is the reason no standard deviation is mentioned in table 5.7.
SiLA performs better than cosine similarity while using kNN rule (accuracy better by 1.8%).
On the other hand, SkNN-cos performs slightly better than SENN-A (improvement of 0.5%).
gCosLA was not tested on this dataset since it contains a large number of attributes (200) and
the complexity of gCosLA is cubic in terms of the number of dimensions.

5.5.4 Comparison between SiLA and gCosLA

Table 5.8 compares the statistical significance of the results for SiLA and gCosLA on the basis
of kNN-A method. The performance of gCosLA is significantly better than that of SiLA on
Wine (91.8% vs 88.4%), German (73.7% vs 64.6%), Heart (73.7% vs 65.9%) and Letter (99.5%
vs 96.2%) data sets. Similarly gCosLA performs slightly better than SiLA on Liver (65.8% vs
60.9%).

On the other hand, the algorithm SiLLA performs slightly better (shown by the symbol >)
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5.5. Comparison between cosine, SiLA and gCosLA

kNN-A (SiLA) / kNN-A (gCosLA)

Soybean >
Iris =
Letter =
Balance =
Wine <
Tonosphere =
Glass =
Pima >
Liver <
German <
Heart <
Yeast =

Table 5.8: Comparison between SiLA and gCosLA for kNN-A based on s-test

as compared to gCosLA on the datasets Soybean (100% vs 97.2%) and Pima (64.8% vs 62.4%).
Nevertheless, gCosLA converged faster as compared with SiLA for all of these datasets as shown
in figure 5.7 for Wine dataset in which case SiLA required more than 14,000 iterations in order to
converge whereas gCosLA converged in less than 200 iterations for different value of k (k = 1, 3).

Similarly, SiLA and gCosLA are also compared based on SENN-A decision rule as shown
in table 5.9. The statistical significance of the results is mentioned where = means that the
difference is insignificant. The performance of gCosLA is significantly better than that of SiLA
on Wine (92.6% vs 89.3%), German (72.9% vs 66.7%) and Letter (99.5% vs 96.2%) data sets with
SkNN-A. Moreover, gCosLA performs slightly much better than SiLA for Liver (65.2% vs 60.0%)
and Heart (71.7% vs 67.4%). On the other hand, SiL.A was unable to perform significantly better
than its counterpart on any of the 12 datasets. Nevertheless, gCosL A converged faster than SiLA
while using SENN as was earlier seen for kNN for all of these datasets.

5.5.5 Comparison between tNN-Euclidean and kNN-A (gCosLA)

Furthermore, the Euclidean distance is compared with the algorithm ¢gCosLA while using kNN
method in table 5.10. gCosLA outperforms the Euclidean distance significantly on many datasets
(Balance, Wine, German and Heart). Moreover, gCosLA performs slightly better than the Eu-
clidean distance on Iris, Tonosphere and Liver.

Similarly Euclidean distance proves to be significantly better than gCosLA for Soybean, while
slightly better on Pima. Comparing table 5.4 and 5.10 it can be observed that the results after
learning a similarity matrix are significantly better as compared to the ones using Euclidean
distance.
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Figure 5.7: Comparison between gCosLA and SiLA in terms of rapidity for Wine

SkNN-A (SiLA) / SkKNN-A (gCosLA)

Soybean

Iris
Letter =
Balance

Wine <
Tonosphere

Glass =
Pima

Liver <
German <
Heart <
Yeast =

Table 5.9: Comparison between SiLA and gCosLA with SkNN-A based on s-test
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kNN-Euclidean / kNN-A (gCosLA)

Soybean >
Iris <
Letter =
Balance <
Wine <
Tonosphere <
Glass =
Pima >
Liver <
German <
Heart <
Yeast =

Table 5.10: Comparison between kNN-Euclidean and kNN-A (gCosLA) based on s-test

5.6 RELIEF family of algorithms

Though basically a feature reweighting algorithm, RELIEF has recently been shown as belonging
to the distance metric learning family by Sun and Wu [102]. In this section, the performance
of RELIEF is compared with the cosine similarity while using kNN as well as SENN decision
rules. Furthermore, the two RELIEF based similarity learning algorithms i.e. RBS and sRBS
are compared with the RELIEF algorithm using kNN and SENN. The effect of positive, semi-
definitiveness on the RELIEF based algorithms is also discussed.

5.6.1 Performance of cosine similarity as compared to RELIEF

The cosine similarity is compared with the RELIEF algorithm on the basis of both kNN as well
as SENN decision rules. Table 5.11 compares the kNN-cos with kNN-A for RELIEF algorithm.
It can be observed easily that, in general, KNN-cos outperforms its counterpart on the basis of
s-test. ENN-cos is significantly much better (shown by the sign >) than kNN-A for RELIEF on
Soybean, Iris, Balance, Wine, lonosphere, Glass, Heart and Yeast. Similarly kNN-cos is slightly
better (shown by >) than RELIEF on Pima and Liver. There are only two datasets where the
two algorithms perform equally well (shown by = sign): Letter and German as shown in the
figure 5.8.

SkNN-cos is also compared with RELIEF as shown in the table 5.12 and figure 5.9. Like
kNN-cos, SENN-cos performs significantly better than SENN-A for RELIEF on all of the datasets
except Letter.
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Figure 5.8: Comparison between kNN-cos and RELIEF

kNN-cos / kNN-A (RELIEF)

Soybean
Iris
Letter
Balance
Wine
Ionosphere
Glass
Pima
Liver
German
Heart
Yeast

Table 5.11: Comparison between kNN-cos and kNN-A (RELIEF) based on s-test




5.6. RELIEF family of algorithms

Accuracy

SkNN-cos / SkNN-A (RELIEF)

Soybean
Iris
Letter
Balance
Wine
Ionosphere
Glass
Pima
Liver
German
Heart
Yeast

>
>

>
>
>
>
>
>
>
>
>

Table 5.12: Comparison between SkNN-cos and SENN-A (RELIEF) based on s-test
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Figure 5.9: Cosine vs RELIEF with SENN on various datasets
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KNN-A (RELIEF) kNN-A (RBS)  kNN-A (sRBS)
Soybean  0.711 =+ 0.211 0.750 &+ 0.197 > 1.0 £ 0.0 >
Iris 0.667 & 0.059 0.667 = 0.059  0.987 + 0.025 >
Balance  0.681 + 0.662 0.670 + 0.171  0.959 + 0.016 >
Tonosphere  0.799 + 0.062 0.826 + 0.035  0.866 + 0.015 >
Heart 0.556 & 0.048 0.437 + 0.064 < 0.696 + 0.046 >
Yeast 0.900 + 0.112 0.900 + 0.112  0.905 + 0.113
German  0.598 & 0.068 0.631 & 0.020 > 0.609 + 0.016
Liver 0.574 + 0.047 0.580 & 0.042  0.583 % 0.015
Pima 0.598 + 0.118 0.583 + 0.140  0.651 + 0.034 >
Glass 0.815 & 0.177 0.821 £ 0.165  0.886 + 0.093 >
Letter 0.961 + 0.003 0.961 + 0.005  0.997 + 0.002
Wine 0.596 + 0.188 0.630 + 0.165  0.834 + 0.077 >

Table 5.13: Comparison between different RELIEF based algorithms while using ANN-A method based

on s-test

Accuracy

128

0.9

0.8

0.7

0.6

—— kNN-cos ——
KMNMN-A T

Y & ) G A
O, T S T B T, W, T
A % . e A %19 &,
% é&,@
Data sets

Figure 5.10: kNN-cos vs kNN-sRBS on various datasets



5.6. RELIEF family of algorithms
SkNN-A (RELIEF) SkNN-A (RBS) SkNN-A (sRBS)

Soybean 0.756 + 0.199 0.750 £ 0.197 0.989 £ 0.034 >
Iris 0.673 £+ 0.064 0.667 £ 0.059 0.987 + 0.025 >
Balance 0.662 + 0.200 0.672 £ 0.173 0.967 + 0.010 >
Tonosphere 0.681 + 0.201 0.834 £ 0.031 > 0.871 £+ 0.021 >
Heart 0.526 + 0.085 0.430 + 0.057 <« 0.685 + 0.069 >
Yeast 0.900 + 0.113 0.900 + 0.112 0.908 + 0.110

German 0.493 + 0.115 0.632 + 0.021 > 0.598 £+ 0.038 >
Liver 0.539 4+ 0.078 0.580 £ 0.042 >  0.588 + 0.021 >
Pima 0.585 + 0.125 0.583 + 0.140 0.665 + 0.044 >
Glass 0.833 + 0.140 0.816 £ 0.171 <  0.884 £ 0.084 >
Letter 0.957 £ 0.047 0.961 + 0.005 0.997 + 0.002

Wine 0.575 + 0.198 0.634 £ 0.168 >  0.840 £ 0.064 >

Table 5.14: Comparison between different RELIEF based algorithms while using SENN-A based on

s-test,

5.6.2 Comparison between different RELIEF algorithms based on ENN deci-
sion rule

While comparing RELIEF with its similarity based variant (RBS) based on the simple kNN
classification rule, it is evident that the later performs significantly much better only on German
and slightly better on Soybean as shown in table 5.13. However RELIEF outperforms RBS for
Heart while using kNN.

It can be further verified from table 5.13 that the algorithm sRBS performs significantly
much better (>>) than the RELIEF algorithm for eight out of twelve datasets i.e. Soybean, Iris,
Balance, Ionosphere, Heart, Pima, Glass and Wine.

5.6.3 Comparison between different RELIEF algorithms based on SkNN deci-
sion rule

While comparing RELIEF with its similarity based variant (RBS) based on the SENN-A rule,
it can be seen from table 5.14 that the later performs significantly much better on ITonosphere,
German, Liver and Wine collections. On the other hand, RELIEF performs significantly much
better than RBS on Heart and Glass.

It can further observed that sRBS performed significantly much better than RELIEF on 9
datasets out of a total of 12 i.e. Soybean, Iris, Balance, lonosphere, Heart, German, Pima, Glass
and Wine. On Liver, sRBS performed slightly better than the RELIEF algorithm. Moreover,
the comparison between cosine and sRBS for SENN is shown in figure 5.11.
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Figure 5.11: Cosine vs sRBS with SENN rule on various datasets

5.6.4 Performance of sRBS as compared to RBS

Furthemore, the two RELIEF based similarity learning algorithms i.e. RBS and sRBS are com-
pared using both ENN as well as SENN as shown in table 5.15. On most of the datasets, the
algorithm sRBS outperforms RBS for both kNN and SkNN. sRBS performs significantly much
better (as shown by <) than its counterpart on the following datasets: Soybean, Iris, Balance,
Ionosphere, Heart, Pima, Glass and Wine for the two classification rules (kNN and SkNN). On
the other hand, RBS was able to perform slighty better than its stricter version sRBS on German
while using the kNN rule. Similarly RBS performs significantly much better than sRBS on only
one dataset i.e. German while using the SENN classification rule. The performance of RBS and
sRBS is equivalent for Yeast, Liver and Letter.

5.6.5 Effect of positive, semi-definitiveness on RELIEF based algorithms

In this subsection, the effect of learning PSD matrices is investigated for the RELIEF based
algorithms.

RELIEF based approaches and positive, semi-definite matrices with kNN classification

rule

In table 5.16, RELIEF-PSD is compared with RELIEF-Based Similarity learning algorithm RBS-
PSD and its stricter version (sRBS-PSD) while using the kNN classification rule. It can be seen
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KNN-A (RBS) / kNN-A (sRBS) | SKNN-A (RBS) / SkKNN-A (sRBS)

Soybean < <
Iris < <
Balance < <
Tonosphere < <
Heart < <
Yeast = =
German > >
Liver = =
Pima < <
Glass < <
Letter - =
Wine < <

Table 5.15: Comparison between RBS and sRBS based on s-test

kNN-A (RELIEF-PSD) kNN-A (RBS-PSD) kNN-A (sRBS-PSD)

Soybean 0.739 + 0.192 0.733 £ 0.220 1.0 £0.0>
Iris 0.664 + 0.058 0.667 £ 0.059 0.987 4+ 0.025 >
Balance 0.665 + 0.193 0.670 £ 0.171 0.959 + 0.016 >
Ionosphere  0.839 + 0.055 0.826 + 0.035 0.880 + 0.015 >
Heart 0.556 £ 0.048 0.437 £ 0.036 < 0.693 + 0.047 >
Yeast 0.893 + 0.132 0.900 £ 0.112 > 0.911 + 0.109 >
German 0.637 + 0.017 0.624 £ 0.015 < 0.609 £ 0.016 <
Liver 0.574 + 0.034 0.580 + 0.042 0.606 + 0.034
Pima 0.593 £+ 0.077 0.661 + 0.024 > 0.651 £ 0.034 >
Glass 0.819 + 0.164 0.835 £ 0.138 > 0.886 + 0.093 >
Letter 0.961 £ 0.005 0.961 + 0.005 0.997 + 0.002
Wine 0.608 £ 0.185 0.630 £ 0.165 0.834 + 0.077 >
Magic 0.516 + 0.085 0.360 + 0.007 0.767 + 0.009
Spambase  0.618 + 0.031 0.611 £ 0.020 < 0.855 £ 0.009 >
Musk-1 0.698 + 0.055 0.851 + 0.033 > 0.838 £ 0.024 >

Table 5.16: Comparison between different RELIEF based algorithms using kNN-A and PSD matrices
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kNN-A (RELIEF) / kNN-A (RELIEF-PSD)

Soybean

Iris
Balance =

A

Tonosphere
Heart =
Yeast >
German <
Liver =
Pima =
Glass =
Letter =
Wine

Table 5.17: Comparison between RELIEF and RELIEF-PSD based on s-test using kNN

that sRBS-PSD performs much better than the other two algorithms on majority of the data
sets. sRBS-PSD is statistically much better (as shown by the symbol >) than RELIEF-PSD
for the following 10 datasets: Soybean, Iris, Balance, Heart, Yeast, Pima, Glass, Wine, Spambase
and Musk-1. Similarly for lonosphere, sRBS-PSD is slightly better than the RELIEF-PSD
algorithm. On the other hand, RELIEF-PSD performs slightly better (<) than sRBS-PSD for
German dataset.

Moreover, while comparing RBS-PSD with RELIEF-PSD, it can be observed that the former
performs significantly better than the later for Yeast, Pima and Musk-1, and slightly better for
Glass dataset. On the other hand, RELIEF-PSD was able to perform significantly better than
RBS-PSD for Heart and Spambase, while slightly better for German.

While comparing RELIEF (with no PSD matrices) with RELIEF-PSD algorithm (table 5.17),
it can be observed that RELIEF-PSD performs significantly better than RELIEF on German and
slightly better on Tonosphere. On the other hand, RELIEF was able to outclass its counterpart for
Yeast. However, for rest of the datasets the performance of these two algorithms was comparable.

RELIEF based approaches and positive, semi-definite matrices with SENN classifica-
tion rule

Table 5.18 compares different RELIEF based algorithms based on SENN decision rule while
using PSD matrices. It can be observed that sRBS-PSD performs much better than the other
two algorithms on majority of the data sets as seen earlier while using the kNN rule . sRBS-PSD
is statistically much better (as shown by the symbol >) than RELIEF-PSD for the following
10 datasets (out of 15): Soybean, Iris, Balance, Heart, Yeast, Liver, Glass, Wine, Spambase and
Musk-1. RELIEF-PSD performs slightly better (<) than sRBS-PSD for only one dataset i.e.
German.

Similarly, RBS-PSD outperforms RELIEF-PSD for 6 datasets (Iris, Yeast, Liver, Glass,
Spambase and Musk-1) while the reverse is true for the following 3 datasets: Balance, ITono-
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SKNN-A (RELIEF-PSD)

SKNN-A (RBS-PSD)

SKNN-A (sRBS-PSD)

Soybean 0.783 + 0.163 0.733 £ 0.220 0.983 + 0.041 >
Iris 0.571 + 0.164 0.667 £ 0.059 > 0.987 + 0.025 >
Balance 0.708 £ 0.175 0.672 £ 0.173 K 0.967 + 0.010 >
Tonosphere 0.886 + 0.028 0.834 + 0.031 < 0.889 + 0.011
Heart 0.533 £ 0.067 0.437 £ 0.036 < 0.685 + 0.069 >
Yeast 0.897 + 0.122 0.900 £ 0.112 > 0.914 + 0.106 >
German 0.625 + 0.035 0.624 + 0.015 0.598 + 0.038 <
Liver 0.528 £ 0.085 0.580 £ 0.042 > 0.609 + 0.035 >
Pima 0.659 £ 0.027 0.658 + 0.030 0.665 + 0.044
Glass 0.768 £ 0.235 0.835 + 0.138 > 0.884 + 0.084 >
Letter 0.961 £ 0.008 0.961 + 0.004 0.997 + 0.002
Wine 0.606 £ 0.177 0.634 £ 0.168 0.840 + 0.064 >
Magic 0.539 £+ 0.109 0.360 £+ 0.007 0.777 + 0.009
Spambase  0.583 + 0.075 0.611 £ 0.020 > 0.857 + 0.010 >
Musk-1 0.712 + 0.037 0.857 + 0.029 > 0.842 + 0.010 >

Table 5.18: Comparison between different RELIEF based algorithms using SkNN-A and PSD matrices

sphere and Heart.

Table 5.19 compares the effect of using PSD matrices with the RELIEF algorithm while using
the SENN decision rule. It can be observed that RELIEF-PSD performs significantly better than
RELIEF on Balance, Ionosphere, German and Pima. On the other hand, RELIEF was able to
outclass its counterpart for Iris, Yeast and Glass. The performance of these two algorithms was
comparable for the remaining collections.

Performance of sRBS-PSD as compared to RBS-PSD

Table 5.20 compares statistically the results obtained while using RBS-PSD and sRBS-PSD
algorithms. The later outperforms the former for the following 7 datasets (out of 13 considered
for comparison): Soybean, Iris, Balance, Tonosphere, Heart, Glass and Wine with both kNN as
well as SENN. RBS-PSD performs slightly better than its counterpart for German while using the
SENN rule. However, for the rest of the datasets, the two algorithms’ performance is comparable.

5.7 How SiLA and ¢CosLA perform as compared to the state of
the art approaches

In this section, SiLA and gCosL A are compared with different state of the art methods in metric
learning. A detailed comparison between SiLA and gCosLA and several state of the art ones is
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SkNN-A (RELIEF) / SKNN-A (RELIEF-PSD)

Soybean =
Iris >
Balance <
Ionosphere <
Heart =
Yeast >
German <
Liver =
Pima <
Glass >
Letter

Wine

Table 5.19: Comparison between RELIEF and RELIEF-PSD based on s-test using SkKNN

kNN-A (RBS-PSD) / (sRBS-PSD) | SkNN-A (RBS-PSD) / (sRBS-PSD)

Soybean < <
Iris < <
Balance < <
Tonosphere < <
Heart < <
Yeast = =
German = >
Liver = =
Pima = =
Glass < <
Letter = =
Wine < <
Musk-1 = =

Table 5.20: Comparison between RBS-PSD and sRBS-PSD based on s-test
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gCosLA  SiLA SNN MCML LMNN ITML Multiclass SVM

Balance 0.976  0.952 0.879  0.925 0.916  0.920 0.922
Wine 0.857 0.806 0951 0.837 0.974 0.974 0.801
Iris 0.967 0.967 00934 0.967 0.953 0.961 0.956

Table 5.21: Different similarity and metric learning algorithms on UCI datasets

give in Table 5.21. The first one (|72]) learns similarity whereas the next three ( |28, 41, 112]) are
interested in learning distances with kNN algorithm. The algorithms are: Similarity Learning
with Neural Network SNN, Information Theoretic Metric Learning ITML, Maximally Collapsing
Metric Learning MCML, Large Margin Nearest Neighbor LMNN and a multiclass version of
SVMs [25]. To compare the methods based on SiLA and gCosLA with different approaches, a
multiclass version for both of these algorithms was used followed by the calculation of the global
accuracy. Furthermore, only the standard kNN approach (kNN-A) and not the symmetric one
(SENN-A) was used in order to have a fair comparison.

The methods are compared on three UCI datasets (Iris, Balance and Wine) common to all
of the previous approaches.

Comparing gCosLA with SiL A, it can be observed that for Balance and Wine, gCosLA not
only outperformed SiLA but it converged very rapidly (in terms of number of iterations and
time) also. The performance for gCosLA is on a par with that of SiLA on Iris but nevertheless,
gCosL A is faster as was seen for the binary version of these two algorithms.

While comparing SiLA and gCosLA with SNN, it can be noted that the algorithms SiLLA
and gCosLA outperformed SNN for Balance and Iris. However for Wine, SNN has got a much
better performance as compared with SiLA and gCosLA. The primary reason is that SNN was
able to down-weigh an influential attribute for Wine whereas SiLA and gCosLA were unable to
do so, since they do not perform feature selection while SNN does so.

SiLA and gCosLA performed much better than MCML for Balance whereas the three algo-
rithms got the same accuracy for Iris. SiLA and gCosLA also outperformed LMNN and ITML
on two out of three data sets, namely Balance and Iris. However, LMNN and ITML performed
better on Wine because they were able to down-weigh an influential attribute just like SNN.

In comparison with Multiclass SVM, gCosLA performed much better for all of the three
collections whereas SiLA was better for Balance and Iris.

gCosLA and SiLA are further compared with many other state of the art approaches like
Xing’s algorithm [114], KRCA (Kernal Relevant Component Analysis) [104], IGML (Linear In-
formation Geometric Approach for Metric Learning), KIGML (Kernel Information Geometric
Approach for Metric Learning), Euclidean distance and Mahalanobis distance. The results for
distance learning methods are copied from Wang and Jin [107] whereas we report the results for
cosine similarity and our similarity metric learning approaches i.e. SiLA and gCosLA. Moreover,
Wang and Jin have have found that the best value of k is 4. However, in our case, we find the
value of k using double cross-validation. Table 5.22 and 5.23 give the results where the best ones
are written in bold. Similarly the ranking for different algorithms is given in table 5.24 where 1
represents the best algorithm whereas 10 stands for the worst.
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It can be observed that for collections like Iris, Soybean, lonosphere, Sonar and Glass, for
which the cosine measure performs better than the Euclidean distance, the cosine based methods
i.e. Cosine, SiLA and gCosLA outclass the distance based ones. This means that for these
collections, it is better to use similarity based methods rather than learning distance metrics.
The standard cosine measure has got the highest accuracy for Iris and Soybean while it is ranked
second for Sonar as well as Glass datasets. Similarly SiLA got the first position for Soybean and
Tonosphere whereas it got the third rank for Sonar, Glass and Optdigits. gCosLA got the third

rank for Iris and Sonar.

Eucl Mahal Xing LMNN ITML
Iris 5.0+29 108+£33 35+19 45 £ 2.1 4.3 £2.7
Soy 6.0+51 28+£32 1.1+22 22+21 0.7+ 1.0
Iono 178 +16 184 +20 103+ 1.3 150+19 11.1 +2.6
Sonar 289 +4.2 289 +38 289+42 203+44 283+6.3
Glass 355 +35 3494+32 41.7+49 349+32 362+34
Opt 21+03 59+05 123+£09 1.6=+0.3 21+03
Wine 296 +36 75£22 108+46 4.1+1.8 7.7+30
Seg 236 £3.1 169+£36 232+£34 147+19 16.6 5.0
Wave 195+ 0.6 36.1 +0.8 17.0+ 0.8 19.1 £0.7 19.7 £0.7
Pima 28.0+1.8 278+£20 27917 271 +1.7 278 1.7

Table 5.22: Comparison of SiLA and gCosLA with many state of the art approaches - I

KRCA IGML KIGML Cosine gCosLA SiLA

Iris 41+16 27+17 39428 20+3.0 33+£33 3.3 + 3.3
Soy 0.1 £0.8 1.8 £2.1 04+1.3 1.0 £ 0.0 89+93 1.0 £ 0.0
Tono 172416 166 +1.8 142+ 1.6 129 +£2.0 134+26 8.9+ 3.3
Sonar 26.5 £4.6 28.1 +£45 14.6 £ 4.0 | 185+ 5.1 20.0 +4.01 20.0 4+ 9.0
Glass 369 +27 358 +£23 33.3+3.1|338+£85 362+49 348 +84
Opt 21+£03 32403 144+0.2 |21+03 25+06 20+£0.3
Wine 46+15 50+16 61+19 211 £52 143+70 194 +8.9
Seg 15.0+27 129+34 124 +£3.5|305+99 243+6.16 26.2+ 125
Wave 20.1 £0.7 306 07 21.1+£06 |202+12 202+12 20.7+1.1
Pima 278 +16 276+ 19 278+ 20 37.0 +44 382+ 5.1 35.3 £ 1.8

Table 5.23: Comparison of SiLA and gCosLA with many state of the art approaches - IT

Furthermore, it is better to use algorithms based on distance metrics for collections on which
the Euclidean distance performs much better than the standard cosine i.e. Segmentation, Wave-
form and Pima. This suggests that the decision to use either the similarity or distance metric
learning could be based on the relative performance of the cosine similarity and the Euclidean
distance.
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5.8. Comparison between kNN-cos and SkNN-cos

1 2 3 4 5 6 7 8 9 10 11
i C IG g8 X KI KR IT L E M
Soy C,S KR KI IT X IG L M E ¢
Ton S X IT C ¢ KI L G KR E M
Son KI C g8 L KR IG IT MEX

Ga KI C S L, M E IG IT,g KR X

Opt KI L S C,E,IT,KR ¢ IG M X

Win L KR IG KI M IT X g C E
Seg KI IG L KR IT M X E g S C
Wav X L E IT KR C,g S KI IG M
Pim L IG KR, IT,KLM X E S C g

Table 5.24: Ranking of different algorithms on UCI datasets

Although for Wine dataset, similarity learning algorithms perform better than the Euclidean
distance, yet they are not ranked in the top algorithms because of the presence of an influential
attribute. Algorithms like LMNN and KRCA were able to downweigh this influential attribute
as opposed to the similarity learning ones.

On this set of collections, it can be observed that the similarity learning approaches (SiLA
and gCosLA) have difficulties to outclass the standard cosine measure, unlike what we observed
on other collections (table 5.5). We know of no way of assessing in advance whether similarity
metric learning should be preferred over the standard cosine on a particular collection, and this
should be investigated in the future.

5.8 Comparison between kNN-cos and SkNN-cos

Table 5.25 compares the performance of kNN and SENN on various datasets with the cosine
measure. s-test was used to find the statistical signifance of the results. SENN performed signifi-
cantly much better (>) than kNN on Balance, German, Heart and Yeast datasets while slightly
better (>) on Pima dataset. On the other hand, kNN was able to perform significantly better
(>) than its symmetric variant only on one of the datasets i.e. ITonosphere.

Although the accuracy for SENN on Liver was 63.8% against 62.0% while using the standard
kNN, the results were not significant enough. These results show that it is much better, in
general, to use the symmetric version of kNN rather than the original kNN classification rule.

Figure 5.12 describes the performance of kNN-cos and SkNN-cos on different datasets. The
precision as well as standard deviation is shown in the figure.

5.9 Conclusion

Most of the works involving metric learning have restricted themselves to learning distance met-
rics. However we showed that cosine similarity should be preferred over the Euclidean distance
on non-textual data collections apart from the usual textual ones. A statistical test, s-test was
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kNN-cos SENN-cos

Soybean 1.0 £ 0.0 0.989 + 0.034
Iris 0.987 £+ 0.025 0.987 + 0.025
Letter 0.997 £+ 0.002 0.997 + 0.002
Balance 0.954 4+ 0.021 0.969 + 0.013 >
Wine 0.865 £ 0.050 0.867 + 0.055
Tonosphere 0.871 + 0.019 > 0.860 + 0.024
Glass 0.899 + 0.085 0.898 + 0.081
Pima, 0.630 4 0.041 0.643 + 0.030 >
Liver 0.620 £ 0.064 0.638 + 0.060
German 0.594 £ 0.040 0.620 + 0.030 >
Heart 0.670 £+ 0.020 0.711 + 0.036 >
Yeast 0.911 £+ 0.108 0.917 + 0.103 >
Spambase  0.858 4+ 0.009

Musk-1 0.844 + 0.028

Table 5.25: Comparison between kNN-cos and SENN-cos on s-test

0.9

0.8

Accuracy

0.7

0.6

kNN-cos
SkNMN-cos
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Figure 5.12: kENN-cos vs SkENN-cos on various datasets
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5.9. Conclusion

performed to assess whether the results are significanly different or not. Furthermore, double
cross-validation technique was employed in order to determine the different parameters of various
algorithms. The cosine similarity outperformed the Euclidean distance on some of the collections
like Iris, Balance, Wine, Ionosphere and Spambase using binary classification. The uncontrained
similarity learning algorithm, SiL A as well as the generlized Cosine similarity Learning Algorithm
gCosL A were compared with the standard cosine using both the kNN as well as SENN rules. On
many of the data sets, the algorithms learning a similarity metric performed significantly better
than the standard cosine similarity. Moreover, gCosL A performed better than SiLA on many of
the data sets.

While comparing the RELIEF family of algorithms, we found that the stricter version of
RELIEF-Based Similarity algorithm (sRBS performed significantly much better than its coun-
terparts on most of the datasets using the two classification rules: kNN-A as well as SkENN-A.
This proved that it is far better to use the O-1 loss function rather than its approximation as
was done in the case of RELIEF and RBS. Moreover, the performance of RELIEF algorithm
improved with the use of positive, semi-definite matrices.

gCosLA and SiLLA were also compared with many state of the art approaches in metric
learning like Xing’s algorithm [114], Large Margin Nearest Neighbor classfication (LMNN) [112],
Information Theoretic Metric Learning (ITML) [28], Maximally Collapsing Metric Learning al-
gorithm (MCML) [41], Similarity Learning with Neural Networks (SNN), Kernel Relevant Com-
ponent Analysis (KRCA) [104], Linear Information Geometric approach for Metric Learning
(IGML) [107], Kernel Information Geometric approach for Metric Learning (KIGML) [107]. It
was observed that for collections like Iris, Soybean, Ionosphere, Glass and Sonar, on which cosine
performs better than the Euclidean distance, similarity metric learning algorithms outperform
the distance metric learning ones. On the other hand, it is better to use distance metric learn-
ing algorithms on collections like Segmentation, Waveform and Pima for which the Euclidean
distance proves to be a better option than the standard cosine. Although the similarity based
methods perform better than the Euclidean distance for Wine, yet they do not rank among the
top algorithms because of the presence of an influential attribute. Algorithms like LMNN and
KRCA were able to reduce the influence of this attribute as opposed to the similarity learning
ones.
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6.1. Main contributions

Machine learning is the study of computer algorithms that improve their performance automati-
cally by experience. As different data types exhibit different properties, it can be useful to learn
the geometry underlying the data to be processed. Indeed, many recent works, e.g. Weinberger
et al. [112], Jain et al. [53] etc., have shown that learning a metric, based on the geometry of
the space containing the data, is often a better idea than assuming the presence of a simple
geometric structure. However, most of the works in the field of metric learning work only with
distance metric learning and do not consider similarities e.g. Goldberger et al. [42], Xing et
al. [114], Davis et al. [28], Globerson et al. [41]. Traditionally the cosine measure has been shown
to perform well for the textual datasets [95]. However some recent works like Qamar et al. [87],
Peterson et al. [84]| have shown that cosine similarity should also be preferred over the distances
on non-textual data collections.

6.1 Main contributions

We have focussed here on learning (complete) similarities from data to be used in kNN classifi-
cation, considering different scenarios, some relying on few labelled data, others making use of
data sets fully annotated. In situations where only a small amount of annotation is available, one
can not learn complex structures, and we limited ourselves to learning a few meta-parameters
controlling cosine-based similarities. This work was appropriately deployed in the context of the
INFILE tracks, during the evaluation campaigns CLEF 2008 and CLEF 2009. In situations with
more annotation, we have considered two possible generalizations of existing, well-established
similarity measures. These two generalizations mainly differ in the constraints they rely on. The
first one imposes almost no constraint on the transformation to be used; in particular, the nor-
malizations considered do not depend on the metric learned, which makes the learning process
easier. The second however imposes strong constraints on the metric learned, in particular that
it should correspond to a true cosine measure in an embedded space. As such, it should rely
on semi-definite matrices, with a normalization which does depend on the metric learned. If
the first generalization was based on the perceptron algorithm family, the second one requires a
different approach. In both cases, we have provided theoretical proofs of the correct behavior of
our algorithms.

Learning a metric implies to model dependencies between features, and weigh them correctly.
This objective is shared by feature re-weighting procedures, and several recent works have em-
phasized the links between such procedures (as RELIEF) and supervised learning of metrics. We
have studied here this link in detail, and have shown that the objective function approximated in
the RELIEF family was not optimal. We have then throughly evaluated our algorithms, trying
to assess when they provided a significant improvement in the results. We have furthermore
compared their performance with alternative approaches. It is always difficult to compare two
approaches which are very different in nature. We believe that the comparison we have per-
formed indicates that similarity learning methods, and the algorithms we have proposed for this,
are valuable machine learning tools which can complement existing distance metric learning ones.
We now provide a summary of the main contributions of our work.

1. A thorough study of metric learning algorithms including the distance metric learning
algorithms as well as the similarity metric learning ones is performed.
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2. An information filtering technique is developed which can be used to learn cosine based
category specific thresholds, provided some sort of supervision is present. Online and Batch
algorithms were developed for the information filtering process. Both methods were able to
get the best F-score during INFILE track of CLEF campaign in the years 2008 and 2009.

3. Cosine similarity was shown to perform better than the Euclidean distance on many
datasets.

4. An unconstrained similarity metric learning algorithm called SiLA was developed to learn
the similarity metrics for kNN classification. The normalization in SiLA is totally inde-
pendent of the similarity matrix which helps to learn different types of similarity functions
based on diagonal, symmetric or asymmetric matrices. The convergence and the general-
ization properties were established and the proofs have been provided. A statistical test,
s-test, was used to statistically analyze all of the results.

5. The links between RELIEF and SiLLA were studied. This was followed by the development
of a RELIEF Based Similarity (RBS) learning algorithm. However it turned out that RBS
did not perform well in practice. The main reason is that RBS tries to optimize a cost
function approximating the 0 — 1 loss on the footsteps of RELIEF. We showed that this
approximation is loose, and proposed a stricter version of RBS, called sRBS, based on a
cost function closer to the 0 — 1 loss. sRBS performed significantly better than the other
RELIFEF based algorithms indicating in particular that the 0 — 1 loss is a more appropriate
cost function that the one implicitly used by RELIEF.

6. Lastly, an algorithm based on the generalized cosine similarity was developed. The algo-
rithm is named gCosL A for Generalized Cosine similarity metric Learning Algorithm. The
normalization in the case of gCosLA was dependent on the similarity matrix and the sim-
ilarity matrix belonged to the class of positive, semi-definite matrices. The results showed
that gCosLA was significantly better than SiLA on many of the collections considered.

7. SiLA and gCosLA were compared with many state of the art metric learning algorithms
and were found to be performing very well in situations where similarities are useful. As
such, they constitute new machine learning tools which can adequately complement existing
distance metric learning algorithms.

Having reviewed the main contributions of our thesis, we now turn to the limitations of our work,

and the perspectives it opens.

6.2 Limitations and Perspectives

As with any machine learning algorithm, the similarity learning algorithms have their own lim-
itations. The process of threshold learning does not perform like the metric learning one as it
does not take into account the geometry of the space containing the data. Although SiLA was
used with a large dataset of Newsgroup, yet it remains to be shown how it can work with massive
datasets. The complexity of SiLA is quadratic in the number of dimensions. Though a very
promising algorithm, gCosLA is a bit slow owing to its cubic complexity in terms of the number
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of dimensions. This is the reason why gCosLA took a lot of time with the Newsgroup dataset. As
gCosLA learns positive, semi-definite (PSD) matrices using eigenvalue decomposition, its com-
plexity can be reduced using eigenvalue approximation methods e.g. Lanczos algorithm and its
specialized variants, but this has to be investigated more throughly. There is yet another way
in which the complexity of gCosLA could be reduced, using the fact that any PSD matrix M
could be decomposed into U'U where U is a matrix of lower rank. In this case, the constraints
on semi-definiteness need not be enforced, which leads to a faster algorithm (such a trick is
employed for example in [47] in the context of distance learning). However, even though faster,
the problem of learning U is not necessarily easier, because of local optima. It is thus not clear
whether this strategy would be beneficial to gCosL A, and further investigation is necessary here.

Related to speed issues, but with additional implications, is the lack of control of the aggres-
siveness of the update rules underlying the algorithms we have presented (in particular SiLA).
One of the strengths of the Passive-Aggressive family is precisely such a control, which could be
added in our case as well. This being said, tuning meta-parameters is not always an easy task,
and may lead to additional computation. One can nevertheless hope that a valid solution would
be attained faster, and thus requiring less updates and leading to an overall faster learning pro-
cess. Because of the potential practical and theoretical implications they can have, we believe
it would be worth to investigate in a near future the use of aggressiveness parameters in our
algorithms.

Another limitation of our work lies in the fact that only global similarity metrics were learned
(by resorting to binary classification and the standard one-vs-the-rest rule, several matrices are
in fact learned to solve a multi-class categorization problem; however, all the matrices are global
in the sense that they are not adapted to specific regions of the space). Another possibility is
to learn different local similarity metrics in different parts of the input space as is the case for
Multi-Metric LMNN algorithm [112]. One possibility with the approach we have followed would
be to consider neighborhood regions around each point and all the examples they contain, and
then learn matrices for each such regions. The classification of a data point would then involve
only the regions which yield the neighborhood of the point. If this approach seems simple and
promising, it would certainly involve more computation than the current ones. They thus call
for simpler and faster versions of the algorithms we have presented.

Lastly, another perspective we would like to explore is the use of SiL A algorithm in a different
context, namely the one of Information Retrieval (IR), as this domain heavily relies on the
cosine similarity measure, which could be learned from existing relevance judgements. In IR, the
similarity is calculated between a query ¢ and a document d. A possible application of SiLA in
this case could go along the following lines: the query ¢ could replace z(®, repeated N1 (number
of retrieved documents judged relevant by the user) times; the target neighbor y could then be
chosen arbitrarily, or according to the standard cosine similarity measure, from the set of relevant
documents, whereas z would represent the closest non-relevant documents. As mentioned above,
the matrix A could be learned using existing relevance judgements, or potentially user feedback.
We plan on investigating these different possibilities in the near future.
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Appendix A

Proofs for Theorems for Si:LA and
gCosLA

This Appendix gives the proof of theorems 1 and 2 for SiLLA and theorem 1 for gCosLA. Theorem 1
for SiLA is based on Block [13] and Novikoff [77] and was used in Freund and Schapire [37].
Similarly, the proof for theorem 2 of SiL A parallel the one provided in Collins [20] adapted from
Freund and Schapire [37].

A.1 Theorem 1 - SiLA (separable case)
For any training sequence S = ((ac(l),c(l)),--- , (x("),c("))) separable with margin -, for one
iteration (epoch) of the (on-line) update rule of SiLA

Number of mistakes < R?/~?

where R 1s a constant such that:

k

Via V(Zl,'-- ,Zk) € éia ” Z ¢(x(l)7y) - Z(ﬁ(w(”azn)” < R

yeT (1) n=1

Proof: Let o be the weight vector before the k’th mistake is made. It follows that a' = 0
(since initial weights are zero). Suppose that the k’th mistake is made at the i’th example. Let
B(i) represent the k nearest neighbors from the class &®):

B(i) = kNN(A® 20 &0)
The update for the SiLA algorithm can be written in the vector notation in the following manner:
oMt =af+ Y oaWy) = D o,z
yeT(3) 2€B(i)
This is followed by taking the inner product of both sides with the vector U :

Uortt = Ul +U. dyeT(i) o(z,y) — U. > 2eB() P(z), 2)
> U.dF+4
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where the inequality follows from definition 1 of SiLA. As o' = 0, and hence U.a! = 0, it follows
by induction on k that Yk U.a**1 > ky. Since U.a**! < ||U||||o* |, it follows that:

l* ] > ky (A1)

which gives the lower bound for ||a®*1].

k+1||2

The upper bound for ||« can now be derived in the following manner:

2 i @ 2
la 2 = ot I + 1| Syerq @ 9) = Yaepp o, 2)]

+2O‘k-(zyeT(i) ¢($(i),?/) - ZzeB(i) ¢('I(i)a z))
< lof|* + r?

where the inequality follows as || 22, cr;) P(zD,y) — > 2eB() P(zD, 2)| < R? by assumption,
and ak.(zyeT(i) Pz, y) — > 2eB() $(z?, z)) < 0 since z is the highest scoring candidate for
x; under the parameters o (as it is the closest example from all of the classes other than ().
It follows by induction that:

la" T2 < kR? (A.2)
which represents the upper bound for ||o+1 |2
The inequalities for the lower bound A.1 and the upper bound A.2 can be combined to complete

the proof:
2

VE k242 < |o**H2 <kR? — k< R—2 O
Y

A.2 Theorem 2 - SiLA (non separable case)

For any training sequence S = ((z) M), ... | (™ ™)) separable with margin ~, for one
iteration (epoch) of the (on-line) update rule of SiLA

(B+Da 5)?

Number of mistakes < ming, =

where R 1s a constant such that:

k

yeT (i) n=1
and the min is taken over o and ~y such that ||af| = 1,7 > 0.

Proof: In order to prove Theorem 2, the representation ¢(z,y) € R? is modified to o(z,y) €
R in the following manner:

For i = 1,---,d define ¢;(z,y) = ¢i(x,y). For j = 1,---,n define ¢qyj(x,y) = A if
(z,y) = (xj,y;), 0 otherwise, where A is a parameter and is greater than 0. Similarly, consider a
U, ~ pair, and corresponding values for ¢; as defined above. Consequently a modified parameter
vector U € R¥™ can be defined along with U; = U; for i = 1,--- ,d and ﬁdﬂ = % for
j=1,---,n. Under these conditions, it can be verified that:
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1.
Vi, V(z1,- o) €2 U Y ¢aW,y) =T Y g, 2) >4
yeT (i) 2€B(5)
2.
Via \V/(Zl, e ’Zk) € Ei H Z ¢(x(l)ay) - Z ¢(x(2)’z)||2 < R2 + A2
y€T(4) z€B(1)
3. ) 2
77 € U,
[T = V)2 + 3 25 = 1+ 5
It can be observed that the vector % is able to separate the data with the margin #.
1+ 5
From Theorem 1, it can be concluded that the first pass of the algorithm SiL A with representation

— 2
¢ makes kpaz(A) = % (RZ+A?)(1+ DAUQ’”) mistakes in the worst case. However, it can be further

noticed that the first pass of the original algorihtm SiLA with representation ¢ is similar to the

first pass of SiLA along with the new representation ¢, since the parameter weights for the
additional features ¢, 4; for j = 1,---,n each affect a single example of fraining data, and
do not affect the classification phase of the test data. Thus the original algorithm SiLA also
makes kpq.(A) mistakes in the worst case scenario during the first pass over the training set of
examples. Finally, kpqz(A) can be minimized with respect to A, thus giving A = \/RDy,, and

2 2
hence ke (/RDyy) = (RJ;#”), implying the bound in the theorem. O

A.3 Theorem 4 - gCosLA

Let (z1,2%,01), - (s, 2, y7), -+, (zn, 2y, yn) be a sequence of N examples. For any positive,
semi-definite matriz A, let for each 7, 1 <7 < N:

R (w72, A4) = [min((at A, ), («/ Aa,))]
and
Rt (0r, ), A) = [maz((at Az,), (@ Aa',))] "

Assume that there exists a positive, semi-definite matriz A*, a threshold b* and a positive real
number v such that:

(Ry1at A*2l —b*) > v A (b* — R_qzb A*al) > v
Using the notations introduced previously, let R € R™ be an upper bound such that:

1
[z 2|2 + 1R32/T”QUTH§H$/T”§ <R, yr € {-1,+1}
TYT

Then the following bound holds for any M > 1:

M

> (1-(A,0)* < R (A"~ 1|3 + ("))

T=1
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Proof:
Let A, = [[(Ar,br) = (A 03 = | (Arsr,bran) — (A%, 5% 3. Then:

T

A = [(A1by) — (A% 59)]3 = [[(Arsr, brga) — (A% 093 (A.3)

T=1

< |[(A1,by) — (A% 093 (A.4)

and

Ay = (H(Awbr) — (A", 093 = I(Ar,br) — (A*,b*)H%) (A.5)

+<H(Ar73 ) = (A5 63 = (A1, br1) = (A*,b*)\\%)) (A.6)
By assumption, (A*,0*) € C¥" and (A,,b;) € C¥. (A,,b,) is the projection of (A,,b,) on
C¥. So, using equation A.6, A, can be written as:

Ar > [[(Ar,br) = (A7, br)[13 + (II(AT,?) ) = (A% 6713 = | (Ari1,brp1) — (A*,b*)H%)

Furthermore, and again by assumption, (A*,0*) € C, and (A;41,b;41) € C,. So, one again
using equation A.6, A, can be expressed as:

Ar > H(AT,bT) - (ATJ;T)H% + ”(ATJ;T) - (AT-HabT—I—l)H% > H(AT,bT) - (ATJ;T)H%

By definition:
xt Azl

I-(A,b) = max{0,y, (b —
(4.6) {05 Vrt Az, /2t Azl

)+t

and
v — yr Ry, (27 A7) + yrb

Ry, (||l [?)

A _A +y7‘ (1'7-, g)aa:

In case y, = +1, A, = A + ya(z,,xt) | BT = b; + a Thus, a can be rewritten as: a =
Y=Rii(afAral)+b

T (e Plar?y. 20
xL A x! A
lTAT7bT =7 +0b; — S s ATabT - AT’bT 22@2 $T$¢2+1
(Arsbe) =7+ be = e ZE e (Arb) = (A bl = (a3 + 1)
But it is already known that:
tA /
Ryjat Al Ir

r= ab Arxo /2t Aral
i i

So:
Y- R+1xiATx'/r +br > lT(AT7 b’T‘)
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Hence:
(- (A, br))?

(Ryaflzr 3] 13)?

I(Ar,by) — (Ar, b0)|2 > (23 + 1)

and
(ZT(AT, bT))2

ATabT - AT,BT 22
L VN P I FA )

(lz-a]|3 +1)

A RA | [|lzr 13012 113
ler 2t +1
case = —1 is treated in a similar way. O
T
Y

< R, combining the above results leads to the desired bound for y, = +1. The
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Appendix B

French Translation

B.1 Introduction

Les algorithmes d’apprentissage automatique améliorent automatiquement leur performance P
mesurée a travers une expérience F sur une tache T'. Par exemple, on peut considérer le probléme
de la conception d’un systéme qui apprend a jouer aux dames. Dans ce cas, la tache T est de
jouer aux dames, la mesure de performance P est le pourcentage de jeux gagnés dans un tournoi
mondial et E est I'occasion de jouer contre soi-méme.

L’apprentissage automatique a récemment émergé comme 'un des domaines clés de l'intellig-
ence artificielle. L’une des principales raisons de sa popularité réside dans le désir passionné
de 'homme & explorer et & reproduire le processus de 'apprentissage humain. L’apprentissage
automatique peut étre considéré comme une double tache; consistant d’une part & apprendre les
propriétés invariantes et communes d’un ensemble d’échantillons qui caractérisent une classe, et
d’autre part de décider qu’un nouvel échantillon est un membre possible de la classe en vérifiant
il a des propriétés communes a celleapprises de ’ensemble d’échantillons.

Les algorithmes d’apprentissage automatique peuvent étre classés dans trois catégories dif-
férentes : ’apprentissage supervisé ou 'apprentissage est basé sur un ensemble de données éti-
quetées, P’apprentissage non-supervisé, qui ne nécessite aucun type d’intervention humaine (il
est généralement utilisé lorsque les classes ne sont pas connues a ’avance), et 'apprentissage
semi-supervisé qui se situe entre les approches supervisées et non-supervisées.

L’apprentissage automatique a été utilisé dans divers milieux différents tels que la classifica-
tion (par exemple la reconnaissance des chiffres manuscrits [63], classification des documents [55],
reconnaissance des visages [105] etc.), le clustering (k-means clustering [11], la classification spec-
trale [115]), le bio-informatique, la finance, les systémes de filtrage de I'information qui appren-
nent automatiquement les intéréts des utilisateurs, la détection des fumées dangereuses sur des
installations industrielles [39] etc. Il est basée sur I'apprentissage & partir des données, et donc
étroitement liée au domaine de la fouilles de données. Ce domaine se base sur I'extraction des
modeéles utiles & partir des données brutes.

Chaque algorithme d’apprentissage automatique travaille avec un ensemble d’exemples. Dnas
cet ensemble, quelques exemples sont utilisés pour apprendre les caractéristiques sous-jacentes des
données a partir d’'un ensemble de traits. Ce sous-ensemble est appelé ensemble d’apprentissage.
Afin de valider un algorithme, il est exécuté sur des nouveaux exemples constituant un ensemble
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de test. Un ensemble de validation peut éventuellement étre utilisé pour optimiser les différents
paramétres de l’algorithme.

B.1.1 Motivation

Considérons deux objets & comparer, par exemple deux documents ou des images. Afin de faire
cette comparaison, une similarité ou une distance peut étre calculée entre ces deux objets. La
plupart du temps, des mesures par défaut sont utilisées, c’est-a-dire la distance euclidienne dans
le cas des images et la similarité cosinus pour la classification de texte. Ces mesures par défaut
considérent que la métrique entre les différents objets est paramétrée par une matrice d’identité.
En d’autres termes, des mesures comme la distance euclidienne et la similarité cosinus considérent
une géométrie trés simple de 'espace dans lequel les données se trouvent. De nombreux travaux
ont démontré qu’il est beaucoup mieux d’apprendre une métrique a partir des données plutot
que de supposer une métrique simple comme la distance euclidienne ou la similarité cosinus.

Larécente popularité d’Internet a conduit & une énorme augmentation de la quantité d’inform-
ations, et & un élargissement des domaines de recherche consacrés a ’organisation automatique de
ces informations. Depuis 2000, un forum d’évaluation nommé Cross Language Evaluation Forum
(CLEF) est organisé chaque année. Le but est d’évaluer les systémes de recherche d’information
utilisant les langues européennes dans les contextes monolingues ainsi qu’inter-langues. Une
campagne pour le filtrage des informations (INFILE) a été menée comme une piste pilote de
CLEF en 2008 et 2009. L’objectif I’INFILE était de filtrer un flux continu de documents de
différents thémes prédéfinis. Dans le cas du filtrage de l'information, les seuils basés sur le cos-
inus pourraient étre appris sur la base des flux entrant de documents, & condition q'une sorte
de supervision existe. C’est le domaine de 'apprentissage de métriques [53, 54]. La figure B.1
indique les cing premiéres images classées par OASIS [16] (un algorithme d’apprentissage des
distances sur les images '?) sur quatre exemples de requétes-images dans un ensemble de don-
nées de Google. Les requétes texte pertinentes pour chaque image sont notées sous 'image. La
ligne la plus haute montre une requéte-image, retrouvé a l'origine comme réponse a la requéte
textuelle illusion. Nous remarquons que tous les cinq images hautement classées par OASIS sont
sémantiquement liées, représentant d’autres types d’illusions visuelles. Les trois autres exemples
montrent que OASIS a pu capturer la sémantique des photos d’animaux (chiens et chats), des
montagnes et des différents produits alimentaires.

L’objectif principal de I'apprentissage de métriques est d’apprendre une métrique adaptée au
probléme consideré. Les algorithmes de classification et le regroupement de données dépendent
fortement de la présence d’une bonne mesure. En dehors de ces domaines, 'apprentissage de
métriques est un élément trés important dans les problémes comme la reconnaissance des visages,
la reconnaissance d’objets visuels, la reconnaissance automatique de la parole [107], la similarité
de la musique, l’estimation de la pose, la similarité et la recherche d’images [59] etc. Beaucoup
d’algorithmes d’apprentissage de métriques se divisent en deux types différents: apprentissage
de distance et apprentissage de similarité.

La plupart des travaux relatifs a ’apprentissage se concentrent uniquement sur ’apprentissage
de distance et essayent d’apprendre la métrique sous-jacente a la distance de Mahalanobis. Toute-

9Dans ce travail, aucune distinction n’est faite entre la distance et la similarité.
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Query image

Top 5 relevant images retrieved by OASIS

Iuslon. eyelustm.
opfical usion

scoftish fold

swiss alps

Hlusion, eye tricks

humor cat cubs tigers funny stuff, dog cartoon Puppies

circles, moving pictures

ipanin, bread garic,
gril chease

food fish, fried fish

Figure B.1: OASIS: Un algorithme d’apprentissage de la métrique de la distance pour trouver

les images similaires [16]
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fois, dans de nombreuses situations pratiques, il est préférable d’utiliser des similarités et non
des distances. C’est typiquement le cas quand on travaille sur des textes, pour lesquels la mesure
du cosinus a été jugée plus appropriée que la distance euclidienne ou celle de Mahalanobis. En
outre, plusieurs expériences montrent que 'utilisation de la similarité cosinus doit étre préférée a
la distance euclidienne sur plusieurs collections non textuelles (voir par exemple [18, 72, 84, 87]).
Le fait de pouvoir apprendre de maniére efficace des mesures de similarité appropriées, par op-
position aux distances, par exemple dans le cadre de la classification & k plus proches voisins
kPPV, & une grande importance pour différentes collections. Si plusieurs travaux ont partielle-
ment résolu ce probléme (comme par exemple [1, 46, 52]) pour différentes applications, nous ne
connaissons aucun travail antérieur qui a pleinement traité le cas de ’apprentissage des métriques
de similarité pour la classification kPPV. C’est la motivation principale de ce travail. Dans une
premiére étape, un algorithme d’apprentissage d’'une métrique de similarité sans contrainte est
développé. Dans ce cas, la normalisation est complétement indépendante de la matrice de simi-
larité. Les preuves montrent que ’erreur de généralisation est limitée, et donc que ’algorithme
a des bonnes propriétés de généralisation. Ensuite, nous avons développé un algorithme basé
sur le cosinus généralisé ayant une normalisation dépendant de la matrice de similarité. FEn
outre, 'apprentissage de similarité sans contrainte est comparée & la famille d’algorithmes RFE-
LIEF. Bien que RELIEF soit fondamentalement un algorithme de re-pondération, il a été prouvé
récemment par Sun et Wu [102] qu'’il s’agit d’un algorithme d’apprentissage de métrique de dis-
tance qui permet d’optimiser une approximation de la perte 0-1. Nous montrons ici que cette
approximation est trop permissive, et nous proposons un autre approximation stricte et mieux
adaptée a la classification.

B.1.2 Plan de la thése

e Nous décrivons dans le chapitre 2 les notions de base liées a I'apprentissage automatique et
nous passons en revue diverses techniques de ’état de I’art pour ’apprentissage des métriques.
Les deux principaux types d’apprentissage automatique (supervisé ou non supervisé) sont
examinés en détail. De plus, nous introduisons les bases de I'apprentissage en ligne et par lots.
Certains des principaux algorithmes d’apprentissage de distance, par exemple la classification
par les plus proches voisins avec une vaste marge [112]|, comme les approches fondées sur la
théorie de I'information [28] et POLA [99], sont discutés et comparés. RELIEF, un algorithme
de pondération des attributs, est également présenté avec son interprétation mathématique.
Les paramétres d’évaluation et les techniques de comparaison des classifieurs sont finalement
discutés.

e Dans le chapitre 3, nous montrons comment on peut apprendre efficacement des seuils basés
sur le cosinus lorsqu’on a trés peu ou pas du tout de supervision. Cette technique est établie
pour une tache de filtrage, ot un ensemble de documents est filtré en fonction des profils
utilisateurs. Les algorithmes en ligne ainsi que par lots sont discutés et une comparaison
poussée est menée. Les algorithmes sont développés dans le cadre de la campagne INFILE de
la compétition CLEF.

e Le chapitre 4 commence par la description d’'une méthode d’apprentissage de similarité, ap-
pelée SILA, o la normalisation est indépendante de la similarité apprise. SILA est comparé
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a lalgorithme RELIEF pour lequel Sun et Wu [102] ont montré qu'’il apprend essentiellement
une mesure de distance, tout en optimisant une fonction de cotit se rapprochant de la perte
0-1. Nous montrons que ’approximation utilisée par RELIEF est lache, et nous proposons
une version plus stricte en utilisant une fonction de cotit plus proche de la perte 0-1. Cette
version plus stricte conduit & une nouvelle et meilleure version de RELIEF.

En outre, un algorithme d’apprentissage de similarité du type cosinus généralisé (gCosLA) est
élaboré, dans ce cas, la normalisation dépend de la matrice de similarité.

e Les différentes algorithmes d’apprentissage de similarité développés au cours de cette thése
sont évalués au chapitre 5. Afin d’évaluer si les résultats sont significativement différents
ou non, un s-test est utilise. Nous montrons que la similarité est une alternative meilleure
que la distance sur différents jeux de données. De plus, les algorithmes d’apprentissage de
similarité sans contraintes, ainsi que ceux de similarité généralisée sont comparés avec des
autres algorithmes de classification. Les algorithmes d’apprentissage de similarité sont plus
performants que leurs homologues sur certaines bases de données UCI

e Le chapitre 6 conclut cette thése avec les limitations des approches proposées et les perspec-
tives d’avenir.

e Enfin, les preuves de convergence, et de bon comportement pour SILA et gCosL A sont fournies
dans I'annex A.

B.2 Conclusion

L’apprentissage automatique concerne ’étude des algorithmes capables d’améliorer automatique-
ment leurs performances par I’expérience. Les différentes bases de données ayant des propriétés
différentes, il peut étre utile d’apprendre la géomeétrie sous-jacente des données & traiter. En
effet, récemment, de nombreux travaux tels que Weinberger et al. [112], Jain et al. [53], ont
montré que 'apprentissage d’une métrique, basée sur la géométrie de ’espace contenant les don-
nées, est souvent une meilleure idée que de supposer la présence d’'une structure géométrique
simple. Cependant, la plupart des travaux dans le domaine de ’apprentissage de métriques ne
considérent que 'apprentissage de distances et ne s’intéressent pas aux similarités, entre autres
Goldberger et al. [42], Xing et al. [114], Davis et al. [28], Globerson et al. [41]. Traditionnelle-
ment, la mesure de similarité du cosinus a montré de bons résultats pour les jeux de données
textuelles [95]. De plus, certains travaux récents comme Qamar et al. [87], Peterson et al. [84]
ont montré que la similarité du cosinus devrait également étre préférée aux mesures de distance
sur les jeux de données non textuels.

B.2.1 Les principales contributions

Nous nous sommes concentrés ici sur apprentissage de similarités (complétes) & partir de don-
nées en vue d'une tache de classification par k plus proches voisins (kKNN). Nous considérons
différents scénarios, certains s’appuyant sur peu de données étiquetées, d’autres utilisant des
ensembles de données entiérement annotés. Dans les situations ou seule une petite quantité

d’annotations est disponible, on ne peut pas apprendre des structures complexes, et nous nous
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sommes limités & I’apprentissage de quelques méta-parametres de controle & base de similarités
basées sur le cosinus. Ces travaux ont été judicieusement utilisé dans le contexte des pistes IN-
FILE, pendant les campagnes d’évaluation CLEF 2008 et CLEF 2009. Dans les situations avec
plus d’annotations, nous avons examiné deux généralisations possibles des mesures de similar-
ités existantes. Ces deux généralisations se distinguent principalement par les contraintes sur
lesquelles elles reposent. La premiére n’impose presque aucune contrainte sur la transformation
a utiliser, en particulier, les normalisations considérées ne dépendent pas de la métrique apprise,
ce qui rend le processus d’apprentissage plus simple. La seconde, quant & elle, impose de fortes
contraintes sur la métrique apprise, en particulier, elle doit correspondre & une mesure de cosinus
dans un espace intégré. Ainsi, elle doit s’appuyer sur des matrices semi-définies positives, avec
une normalisation dépendante de la métrique apprise. Si la premiére généralisation a été basée
sur la famille du perceptron, la seconde nécessite une approche différente. Dans les deux cas,
nous avons fourni des preuves théoriques du comportement correct de nos algorithmes.
L’apprentissage d’'une métrique implique de modéliser les dépendances entre les caractéris-
tiques, et de les pondérer convenablement. Cet objectif est réalisé par des procédures de re-
pondération des caractéristiques, et plusieurs travaux récents ont souligné les liens entre ces
procédures (comme RELIEF) et 'apprentissage supervisé de métriques. Nous avons étudié ce
lien ici en détail, et nous avons montré que la fonction objectif approchée par la famille de procé-
dures RELIEF n’est pas optimale. Nous avons ensuite soigneusement évalué nos algorithmes,
essayant d’évaluer les cas ou ils apportent une amélioration significative dans les résultats. De
plus, nous avons comparé leurs performances avec celles d’autres approches. Il est toujours
difficile de comparer deux approches qui sont de nature trés différente. Nous croyons que la com-
paraison que nous avons effectuée indique que les méthodes d’apprentissage de similarités, ainsi
que les algorithmes que nous avons proposés a cet effet, sont de précieux outils d’apprentissage
automatique, pouvant compléter les outils d’apprentissage de distances. Nous allons maintenant

présenter un résumé des principales contributions de notre travail.

1. Une étude approfondie des algorithmes d’apprentissage de métriques, y compris des algo-
rithmes d’apprentissage de distances et de similarité est effectuée.

2. Une méthode de filtrage de I'information capable d’apprendre des seuils spécifiques pour les
catégories basés sur la mesure du cosinus, tant qu’une forme de supervision est présente, a

été développée. Des algorithmes offline et online ont été mis au point pour le processus de
filtrage d’information. Les deux méthodes ont été en mesure d’obtenir le meilleur F-score
de la campagne CLEF INFILE des années 2008 et 2009.

3. Nous avons montré que la similarité du cosinus donnait de meilleurs résultats que la distance

euclidienne sur de nombreux jeux de données.

4. Un algorithme d’apprentissage de similarité non-contraintes appelé SILA a été développé
pour apprendre les mesures de similarité pour la tache de classification par k plus proches
voisins. La normalisation, dans SILA, est totalement indépendante de la matrice de sim-
ilarité, ce qui permet d’apprendre différents types de fonctions de similarité basées sur
des matrices diagonales, symétriques ou asymétriques. Des preuves de convergence et de
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généralisation des algorithmes développés ont de plus été fournies. Un test statistique, le
s-test, a été utilisé pour analyser statistiquement ’ensemble des résultats.

5. Les liens entre RELIEF et SILA ont été étudiés. Nous avons ensuite développé un algo-
rithme d’apprentissage (RBS) basé sur RELIEF. Cependant il s’est avéré que RBS n’a pas
donné de résultats satisfaisants. La raison principale est que RBS essaie d’optimiser une
fonction de coiit se rapprochant de la perte 0-1 & la maniére de RELIEF. Nous avons mon-
tré que cette approximation est imprécise, et nous avons proposé une version plus stricte
de RBS, appelée sRBS, basée sur une fonction de cotit plus proche de la perte 0-1. sRBS
a obtenu des résultats significativement meilleurs que les autres algorithmes basés sur RE-
LIEF, confirmant en particulier que la perte 0-1 est une fonction de cotit plus appropriée
que celle utilisée implicitement par RELIEF.

6. Finalement, un algorithme basé sur la similarité de cosinus généralisée a été développé.
La normalisation dans le cas de gCosLA était dépendante de la matrice de similarité et
celle-ci appartenait & la classe des matrices semi-définies positives. Les résultats ont montré
que gCosLA était significativement meilleure que SILA sur de nombreuses collections de
données considérées.

7. SILA et gCosLA ont été comparés & de nombreux algorithmes d’apprentissage de métriques
de I’état de I’art et ont montré de trés bons résultats dans les situations ot les similarités
sont utiles. Comme tels, ils constituent de nouveaux outils d’apprentissage automatique,
pouvant judicieusement compléter les algorithmes d’apprentissage de métriques existants.

Apreés avoir examiné les principales contributions de notre thése, nous nous tournons vers les
limites de notre travail, et les perspectives qu’il ouvre.

B.2.2 Limites et perspectives

Comme avec n’importe quel algorithme d’apprentissage automatique, les algorithmes d’apprentis-
sage de similarité ont leurs propres limites. Le processus d’apprentissage de seuils ne fonctionne
pas comme celui d’apprentissage de métriques car il ne tient pas compte de la géométrie de
Pespace contenant les données. Bien que SILA ait été utilisé avec une grande base de données de
Newsgroup, il reste & montrer comment il pourrait étre adapter & des jeux de données de grande
dimension. La complexité de SILA est quadratique dans le nombre de dimensions. Bien que trés
prometteur, gCosLA est un peu lent en raison de sa complexité cubique en terme du nombre
de dimensions. Comme gCosLA apprend une matrice semi-définie positive (PSD) en utilisant
la décomposition de la matrice en valeurs propres, sa complexité peut étre réduite en utilisant
des méthodes d’approximation des valeurs propres. Par exemple, 'algorithme de Lanczos et ses
variantes spécialisées devraient étre étudiés. Il y a également une autre maniére envisageable
pour réduire la complexité de gCosLA, en utilisant le fait que toute matrice M semi-définie
positive peut étre décomposée en U'U, ot U est une matrice de rang inférieur. Dans ce cas,
la contrainte que la matrice soit semi-définie n’a plus besoin d’étre vérifiée, conduisant & un
algorithme plus rapide (cette astuce est déja utilisée dans [47] dans le contexte de 'apprentissage
de distances). Cependant, bien que plus rapide, le probléeme de 'apprentissage de U n’est pas
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nécessairement plus simple, en raison des optimum locaux. Il n’est donc pas clair si cette stratégie
serait bénéfique pour gCosLA, et une étude plus approfondie est nécessaire ici.

Relatif a la question de la vitesse d’exécution, mais avec des implications supplémentaires, est
le manque de controle de I’agressivité des régles sous-jacentes de mise a jour des algorithmes que
nous avons présenté (en particulier SILA). Un des points forts de la famille passif-agressif réside
justement dans un tel controle qui pourrait étre ajouté dans notre cas aussi. Ceci étant dit, le
réglage des méta-parameétres n’est pas toujours une tache facile, et peut conduire & des calculs
supplémentaires. On peut cependant espérer qu'une solution valable serait atteinte plus rapide-
ment, et donc nécessitant moins de mises a jour et conduisant & un processus d’apprentissage
globalement plus rapide. En raison des conséquences possibles théoriques et pratiques qu’ils pour-
raient avoir, nous pensons qu’il serait intéressant d’étudier dans un proche avenir 'utilisation de
paramétres d’agressivité dans nos algorithmes.

Une autre limitation de notre travail réside dans le fait qu'une seule matrice de similarité
est apprise (en recourant a la classification binaire et & la régle standard d’un contre-le-reste,
plusieurs matrices sont en pratique apprises pour résoudre un probléme de catégorisation multi-
classes ; mais toutes les matrices sont globales dans le sens ot elles ne sont pas adaptées & des
régions spécifiques de I’espace). Une autre possibilité est d’apprendre différentes mesures de sim-
ilarités locales dans différentes parties de I'espace d’entrée comme c’est le cas pour ’algorithme
de Multi-Metric LMNN [112]. Une possibilité avec I’approche que nous avons suivie serait de
considérer les régions de voisinage autour de chaque point et tous les exemples qu’elles conti-
ennent, puis d’apprendre les matrices pour chacune de ces régions. La classification d’un point
impliquerait alors uniquement les régions contenant le point. Si cette approche semble simple
et prometteuse, elle impliquerait plus de calcul. Il faudrait donc développer des versions plus
rapides des algorithmes que nous avons présentés.

Enfin, une autre perspective que nous aimerions explorer est ['utilisation de I’algorithme SILA
dans un contexte différent, & savoir celui de la recherche d’information (RI), car ce domaine
s’appuie fortement sur la mesure du cosinus. Dans la recherche d’information, la similarité est
calculée entre une requéte ¢ et un document d. Une application possible de SILA dans ce cas,
pourrait aller dans le sens suivant : la requéte ¢ pourrait remplacer (), répétée N1 (nombre
de documents récupérés et jugés pertinents par 'utilisateur) fois ; le voisin objectif y pourrait
alors étre choisi arbitrairement, ou selon la mesure similarité cosinus standard, parmi I’ensemble
des documents pertinents, alors que z représenterait le plus proche document non pertinent.
Comme mentionné ci-dessus, la matrice A pourraient étre apprise a l'aide des jugements de
pertinence existants, ou par les commentaires des utilisateurs. Nous avons l'intention d’étudier
ces différentes possibilités dans un avenir proche.
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Résumé

Les performances des algorithmes d’apprentissage automatique dépendent de la métrique utilisée
pour comparer deux objets, et beaucoup de travaux ont montré qu’il était préférable d’apprendre
une métrique & partir des données plutot que se reposer sur une métrique simple fondée sur la
matrice identité. Ces résultats ont fourni la base au domaine maintenant qualifié d’apprentissage
de métrique. Toutefois, dans ce domaine, la trés grande majorité des développements concerne
I’apprentissage de distances. Toutefois, dans certaines situations, il est préférable d’utiliser des
similarités (par exemple le cosinus) que des distances. Il est donc important, dans ces situations,
d’apprendre correctement les métriques a la base des mesures de similarité. Il n’existe pas a
notre connaissance de travaux complets sur le sujet, et c’est une des motivations de cette these.

Dans le cas des systémes de filtrage d’information ot le but est d’affecter un flot de documents
a un ou plusieurs thémes prédéfinis et ot peu d’information de supervision est disponible, des
seuils peuvent étre appris pour améliorer les mesures de similarité standard telles que le cosinus.
L’apprentissage de tels seuils représente le premier pas vers un apprentissage complet des mesures
de similarité. Nous avons utilisé cette stratégie au cours des campagnes CLEF INFILE 2008
et 2009, en proposant des versions en ligne et batch de nos algorithmes. Cependant, dans le
cas otl ’on dispose de suffisamment d’information de supervision, comme en catégorisation, il
est préférable d’apprendre des métriques complétes, et pas seulement des seuils. Nous avons
développé plusieurs algorithmes qui visent a ce but dans le cadre de la catégorisation & base de
k plus proches voisins.

Nous avons tout d’abord développé un algorithme, SiLLA, qui permet d’apprendre des sim-
ilarités non contraintes (c’est-a-dire que la mesure peut étre symétrique ou non). SiLA est
une extension du perceptron par vote et permet d’apprendre des similarités qui généralisent le
cosinus, ou les coefficients de Dice ou de Jaccard. Nous avons ensuite comparé SiLA avec RE-
LIEF, un algorithme standard de re-pondération d’attributs, dont le but n’est pas sans lien avec
I’apprentissage de métrique. En effet, il a récemment été suggéré par Sun et Wu que RELIEF
pouvait étre considéré comme un algorithme d’apprentissage de métrique avec pour fonction ob-
jectif une approximation de la fonction de perte 0-1. Nous montrons ici que cette approximation
est relativement mauvaise et peut étre avantageusement remplacée par une autre, qui conduit a
un algorithme dont les performances sont meilleurs. Nous nous sommes enfin intéressés a une
extension directe du cosinus, extension définie comme la forme normalisée d’un produit scalaire
dans un espace projeté. Ce travail a donné lieu & algorithme gCosLA.

Nous avons testé tous nos algorithmes sur plusieurs bases de données. Un test statistique, le s-
test, est utilisé pour déterminer si les différences entre résultats sont significatives ou non. gCosLA
est ’algorithme qui a fourni les meilleurs résultats. De plus, SiLA et gCosLA se comparent
avantageusement a plusieurs algorithmes standard, ce qui illustre leur bien fondé.

Mots-clés: Apprentissage de similarité, cosinus généralisé, k plus proches voisins, filtrage
d’information, apprentissage automatique, fouille de données






Abstract

Almost all machine learning problems depend heavily on the metric used. Many works
have proved that it is a far better approach to learn the metric structure from the data rather
than assuming a simple geometry based on the identity matrix. This has paved the way for a
new research theme called metric learning. Most of the works in this domain have based their
approaches on distance learning only. However some other works have shown that similarity
should be preferred over distance metrics while dealing with textual datasets as well as with
non-textual ones. Being able to efficiently learn appropriate similarity measures, as opposed
to distances, is thus of high importance for various collections. If several works have partially
addressed this problem for different applications, no previous work is known which has fully
addressed it in the context of learning similarity metrics for kNN classification. This is exactly
the focus of the current study.

In the case of information filtering systems where the aim is to filter an incoming stream of
documents into a set of predefined topics with little supervision, cosine based category specific
thresholds can be learned. Learning such thresholds can be seen as a first step towards learning
a complete similarity measure. This strategy was used to develop Online and Batch algorithms
for information filtering during the INFILE (Information Filtering) track of the CLEF (Cross
Language Evaluation Forum) campaign during the years 2008 and 2009. However, provided
enough supervised information is available, as is the case in classification settings, it is usually
beneficial to learn a complete metric as opposed to learning thresholds. To this end, we developed
numerous algorithms for learning complete similarity metrics for kNN classification.

An unconstrained similarity learning algorithm called SiLA is developed in which case the
normalization is independent of the similarity matrix. SiLA encompasses, among others, the
standard cosine measure, as well as the Dice and Jaccard coefficients. SiLA is an extension of
the voted perceptron algorithm and allows to learn different types of similarity functions (based
on diagonal, symmetric or asymmetric matrices). We then compare SiLA with RELIEF, a well
known feature re-weighting algorithm. It has recently been suggested by Sun and Wu that
RELIEF can be seen as a distance metric learning algorithm optimizing a cost function which is
an approximation of the 0 — 1 loss. We show here that this approximation is loose, and propose a
stricter version closer to the the 0—1 loss, leading to a new, and better, RELIEF-based algorithm
for classification. We then focus on a direct extension of the cosine similarity measure, defined as
a normalized scalar product in a projected space. The associated algorithm is called generalized
Cosine simiLarity Algorithm (gCosLA).

All of the algorithms are tested on many different datasets. A statistical test, the s-test, is
employed to assess whether the results are significantly different. gCosL A performed statistically
much better than SiLA on many of the datasets. Furthermore, SiLLA and gCosL A were compared
with many state of the art algorithms, illustrating their well-foundedness.

Keywords: Similarity metric learning, generalized cosine similarity, kNN classification, infor-
mation filtering, metric learning, machine learning, data mining






