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1.1. Prefa
e1.1 Prefa
eMa
hine learning [73, 12℄ is the art of designing, developing and evaluating algorithms whi
hare 
apable of evolving behaviors based on the empiri
al data. Ma
hine learning algorithmsautomati
ally improve their performan
e P based on some experien
e E at some task T . Asan example, 
onsider the problem of developing a system whi
h learns to play 
he
kers. In this
ase, the task T is to play 
he
kers, the performan
e measure P is the per
entage of games wonin a world tournament and E is the opportunity of play against self.Ma
hine learning has re
ently emerged as one of the key areas of arti�
ial intelligen
e. Oneof the primary reasons for its popularity lies in the eager wish of humans to explore and repli
atethe human learning pro
ess. Ma
hine learning 
an be viewed as a two-fold task, 
onsisting oflearning the invariant and 
ommon properties of a set of samples 
hara
terizing a 
lass, and ofde
iding that a new sample is a possible member of the 
lass by noting that it has properties
ommon to those of the set of samples [78℄.Ma
hine learning algorithms 
an be broadly 
ategorized in three di�erent 
ategories: super-vised learning in whi
h 
ase the learning is based on a set of labeled data (also 
alled trainingdata), unsupervised learning whi
h does not require any sort of human intervention and doesnot have a training phase (it is usually used when the 
lasses are not known in advan
e), andsemi-supervised learning lying in between the supervised and unsupervised settings.Ma
hine learning has been su

essfully applied in various di�erent settings like 
lassi�
ation(e.g. handwritten digit re
ognition [63℄, do
ument 
lassi�
ation [55℄, fa
e re
ognition [105℄ et
.),
lustering (k-means 
lustering [11℄, spe
tral 
lustering [115℄), bio-informati
s, �nan
e, informa-tion �ltering systems that automati
ally learn users' interests, dete
tion of hazardous smokes onindustrial fa
ilities [39℄ et
. It is based on learning from data and hen
e is 
losely related to the�eld of data mining. Data mining deals with extra
ting useful patterns from raw data so as tomake it a more useful 
ommodity.Every ma
hine learning algorithm works with a set of examples. Among this set, some ofthe examples are used to learn the underlying 
hara
teristi
s of the data based on a set offeatures. This subset is termed training set. In order to validate the algorithm, the trained orlearned algorithm is run on unseen examples, also known as the test set. A validation set 
an beoptionally employed so as to �ne tune the di�erent parameters of the algorithm.1.2 MotivationWe 
onsider two obje
ts e.g. do
uments or images whi
h need to be 
ompared. In order todo this 
omparison, similarity or distan
e 
an be found between these two obje
ts. Most ofthe time, default measures, i.e. Eu
lidean distan
e in the 
ase of images and 
osine similarityfor text 
lassi�
ation, are employed whi
h 
onsider that the metri
 between di�erent obje
ts isparametrized by an identity matrix. In other words, measures like Eu
lidean distan
e and 
osinesimilarity 
onsider a very simple underlying geometry for the spa
e in whi
h the data lie. Manyworks have proved that it is far better to learn the metri
 stru
ture from the data rather thanassuming a simple geometri
 stru
ture.The re
ent popularity of Internet has led to an enormous in
rease in the amount of information3
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Figure 1.1: OASIS: A distan
e metri
 learning algorithm to �nd similar images [16℄as well as the growth of resear
h areas devoted to automated organization of this information.An evaluation forum named Cross Language Evaluation Forum (CLEF) has been run everyyear sin
e 2000, with the aim of evaluating information retrieval systems operating on Europeanlanguages in monolingual as well as 
ross-language 
ontexts. An information �ltering (INFILE)
ampaign has been run as a pilot tra
k of CLEF in 2008 and 2009. The aim in INFILE was to�lter a 
ontinuous stream of do
uments into di�erent prede�ned topi
s. In the 
ase of information�ltering, 
osine based thresholds 
ould be learned based on the in
oming stream of do
uments,provided there is at least some sort of supervision. The Online algorithm was developed in 2008and was the only parti
ipation for INFILE in that year. Furthermore, the bat
h algorithm gotthe best F-s
ore during 2009 among di�erent parti
ipants. Learning a 
omplete metri
 is a wiserde
ision than learning only the thresholds, if one is working in a fully supervised setting. Thishas given rise to a domain 
alled metri
 learning [54, 53℄. Figure B.1 shows the top �ve images asranked by OASIS [16℄, an image distan
e learning algorithm, 1 on four examples of query-imagesin a Google proprietary dataset. The relevant text queries for ea
h image are written beneaththe image. The top most row shows a query-image, originally retrieved in response to the textquery illusion. It may also be noti
ed that all of the �ve images ranked highly by OASIS aresemanti
ally related, portraying other sorts of visual illusions. The rest of the three examplesshow that OASIS was able to grab the semanti
s of animal photos (
ats and dogs), mountainsand di�erent food items.1In this work, no distin
tion is made between the distan
e and the similarity.4



1.3. Thesis PlanThe primary aim of metri
 learning is to learn a metri
 well adapted to the problem under
onsideration. Algorithms for data 
lassi�
ation and 
lustering rely heavily on the presen
e of agood metri
. Apart from these areas, metri
 learning is a very important ingredient in problemslike fa
e re
ognition, visual obje
t re
ognition, automated spee
h re
ognition [107℄, languageproblems, musi
 similarity, pose estimation, image similarity and sear
h [59℄ et
. For manymetri
 learning algorithms, both online as well as bat
h learning is possible. Metri
 learning 
anbe further subdivided into two di�erent types: distan
e metri
 learning and similarity metri
learning.Most of the works related to metri
 learning 
on
entrate on distan
e metri
 learning onlyand try to learn Mahalanobis distan
e metri
. However, in many pra
ti
al situations, similaritiesmay be preferred over distan
es. This is typi
ally the 
ase when one is working on texts, forwhi
h the 
osine measure has been deemed more appropriate than the standard distan
e metri
slike the Eu
lidean or the Mahalanobis ones. Furthermore, several experiments show that the useof the 
osine similarity should be preferred over the Eu
lidean distan
e on several, non textual
olle
tions as well (see e.g. [18, 72, 84, 87℄). Being able to e�
iently learn appropriate similaritymeasures, as opposed to distan
es, e.g. for kNN 
lassi�
ation, is thus of high importan
e forvarious 
olle
tions. If several works have partially addressed this problem (as for example [1,46, 52℄) for di�erent appli
ations, we know of no previous work whi
h has fully addressed it inthe 
ontext of learning similarity metri
s for kNN 
lassi�
ation. This is the basi
 motivationbehind this work. In the �rst instan
e, an un
onstrained similarity metri
 learning algorithm isdeveloped in whi
h 
ase the normalization is 
ompletely independent of the similarity matrix.Proofs were developed to show that the error on unseen examples is limited and the algorithmhas good generalization properties. This is followed by the development of an algorithm basedon generalized 
osine having a normalization dependent on the similarity matrix. Moreover theun
onstrained similarity learning is 
ompared with the RELIEF family of algorithms. AlthoughRELIEF is basi
ally a feature re-weighting algorithm, it has been re
ently proved by Sun andWu [102℄ that it is a distan
e metri
 learning algorithm whi
h optimizes an approximation of the
0− 1 loss. We show here that this approximation is too loose, and propose a stri
ter one, bettersuited for 
lassi�
ation.1.3 Thesis Plan
• We des
ribe in Chapter 2 the basi
 
on
epts related to Ma
hine Learning along with the sur-vey of various state of the art te
hniques for metri
 learning. The two main types of ma
hinelearning, i.e. supervised and unsupervised learning, are dis
ussed in detail. Furthermore, thebasi
s of online as well as bat
h algorithms are dis
ussed. Some of the key distan
e met-ri
 learning algorithms, e.g. Weinberger's Large Margin Nearest Neighbor (LMNN) [112℄,Davis's Information Theoreti
 Metri
 Learning [28℄ and Shalev's POLA [99℄, are dis
ussedand 
ompared thoroughly. Furthermore, similarity as well as similarity based methods arealso examined. RELIEF, a well known feature reweighting algorithm along with its mathe-mati
al interpretation is also presented. Evaluation metri
s and the te
hniques for 
lassi�ers'
omparison are �nally dis
ussed.
• In Chapter 3, we show how 
osine based thresholds 
an be learned e�e
tively when little or5
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tionno supervision is present. This te
hnique is established for a �ltering task where a huge setof do
uments is �ltered a

ording to user pro�les. Online as well as Bat
h algorithms aredis
ussed and 
ompared extensively. The algorithms are developed as a part of the InFile
ampaign of the CLEF 
ompetition.
• Chapter 4 starts with the des
ription of an un
onstrained similarity metri
 learning method,
alled SiLA, where the normalization is 
ompletely independent of the learned similaritymatrix. SiLA is 
ompared with the RELIEF algorithm for whi
h Sun and Wu [102℄ haveshown that it basi
ally learns a distan
e metri
 while optimizing a 
ost fun
tion approximatingthe 0 − 1 loss. We show that the approximation used by RELIEF is loose, and propose astri
ter version using a 
ost fun
tion 
loser to the 0 − 1 loss. This stri
ter version leads toa new, and better RELIEF based algorithm for 
lassi�
ation. Furthermore, a generalized
osine similarity learning algorithm (gCosLA) is developed, in whi
h 
ase the normalizationis dependent on the similarity matrix.
• The di�erent similarity metri
 learning algorithms developed during the 
ourse of this thesisare evaluated in Chapter 5. In order to assess whether the results are signi�
antly di�erentor not, a s-test is used. We show that similarities are a more viable option as 
omparedto the distan
e metri
s on many datasets. Furthermore, the un
onstrained similarity metri
learning algorithm as well as the generalized 
osine similarity one are 
ompared with di�erentstate of the art 
lassi�
ation algorithms. The similarity learning algorithms outperform their
ounterparts on some of the UCI datasets.
• Chapter 6 presents the 
on
lusion along with the limitations of the proposed approa
hes andthe future perspe
tives.
• Finally proofs for 
onvergen
e and good behavior have been provided for SiLA and gCosLA.

6
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2.1. Introdu
tion2.1 Introdu
tionMa
hine learning is basi
ally a pro
ess by whi
h an unknown dependen
y (input, output) of asystem is estimated, using a limited number of observations or examples. A typi
al ma
hinelearning system is 
omposed of three 
omponents: a generator of random input ve
tors denotedby x, a system that returns an output y for a given input ve
tor x, and the learning ma
hinewhi
h estimates the mapping of the system from the observed samples 
omposed of input andoutput. This s
enario des
ribes many real world problems like 
lassi�
ation, regression (e.g.Gaussian pro
esses [92℄), 
lustering et
. The generator produ
es random ve
tors x ∈ R
d having

d dimensions, drawn independently from a �xed but unknown probability density fun
tion p(x).The system provides an output value y for every input ve
tor x, based on the �xed but unknown
onditional density p(y|x) (probability of observing y given x). The third 
omponent of a ma
hinelearning system is the learning ma
hine whi
h is 
apable of implementing a set of fun
tions
f(x, ω), ω ∈ Ω, where Ω is a set of abstra
t parameters used to index the set of fun
tions. Herethe set 
an be any set of fun
tions, 
hosen before the learning has begun. The learning ma
hinemust sele
t a fun
tion (from a set of fun
tions it supports) whi
h best approximates the system'sresponse. This sele
tion pro
ess is based on the observation of a �nite number n of examples.The training data, 
omposed of inputs and outputs is independent and identi
ally distributed(i.i.d.) as per the joint probability density fun
tion (pdf):

p(x, y) = p(x) p(y|x)The training data from this distribution 
an be des
ribed as:
(x(i), y(i)), (i = 1, · · · , n)An instan
e spa
e, X is de�ned as a spa
e 
ontaining all of the instan
es i.e. x(1), x(2), · · · , x(n).Similarly, a label set, Y 
ontains all of the possible labels or 
lasses.The quality of the learning pro
ess is measured using a loss fun
tion L(y, f(x, ω)) whi
hrepresents the dis
repan
y between the a
tual output y produ
ed by the system for a givenexample x, and its approximation y′ = f(x, ω) by the learning ma
hine. In general, the loss isalways non-negative, with higher values indi
ating a poor approximation [19℄. In the rest of this
hapter, various approa
hes for metri
 learning are dis
ussed in detail whi
h 
onstitutes the 
oreof this thesis.After explaining a typi
al ma
hine learning system, the next se
tion dis
usses the funda-mental 
on
epts related to ma
hine learning in
luding a 
omparison between supervised andunsupervised learning, and an insight into the di�eren
es between online and bat
h learning.2.2 Ma
hine Learning FundamentalsSome notations are provided here, whi
h will be used throughout the thesis. An input obje
t
an be represented as x ∈ R

d where R is the set of real numbers and d denotes the number offeatures or dimensions. As x is a ve
tor, the features of x 
an be a

essed by the subs
ripts
xi, 1 ≥ i ≥ d. The output is denoted by y. The ve
tors are not written in bold and the transposeof x is represented as xt. 9
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Figure 2.1: A typi
al ma
hine learning system using observations of the system to predi
t theoutputsA fundamental hypothesis of statisti
al learning theory is that all of the examples are gen-erated independently using a probability distribution P. In other words, it 
an be said that theexamples are i.i.d. (independent and identi
ally distributed) as per P.Another very important 
on
ept is that of error, also known as 
ost or loss. Given a predi
tionfun
tion f , the loss �nds the a

ord between the predi
tion f(x) and the target output y. In the
ase of 
lassi�
ation, a 
ommonly used loss fun
tion is the 0− 1 loss 2, whi
h is either 0 (
orre
t
lassi�
ation) or 1 (wrong 
lassi�
ation):
L(f(x), y) =







1 if f(x) = y

0 otherwiseThe error in the 
ase of regression is the square of the di�eren
e between the a
tual output andthe anti
ipated one (target output) [81℄:
L (f(x), y) = (f(x)− y)2With this, the risk asso
iated with the predi
tion fun
tion f(x) 
an be 
al
ulated for all of theexamples (x, y). This loss is also known as the generalization risk and is de�ned as the expe
tationof the loss fun
tion:

Rgen(f) = E [L (f(x), y)] =

∫

L (f(x), y) dP(x, y)where P represents the probability distribution des
ribed earlier. In general, the risk Rgen(f)
annot be 
omputed sin
e the probability distribution is not known to the learning algorithm.Nevertheless, an approximation for the generalization risk 
an be 
al
ulated by averaging theloss fun
tion over the training set. This approximation is termed empiri
al risk and is given by:
Remp(f) = 1

n

n∑

i=1

L
(

f(x(i)), y(i)
)where n stands for the number of examples in the training set.2

0− 1 loss is also known as the leave-one-out error10



2.2. Ma
hine Learning Fundamentals2.2.1 Supervised vs Unsupervised LearningMa
hine learning algorithms 
ould be broadly 
lassi�ed into two main 
ategories: supervisedand unsupervised learning algorithms. Supervised learning is based on learning a fun
tion froma set of training samples in the form of pairs. Ea
h pair is made up of input obje
ts (usuallyve
tors) and desired output values also known as target values. The fun
tion learned 
an havedi�erent types of outputs: 
ontinuous values (regression) or a predi
ted 
lass label for the inputobje
t (also referred to as 
lassi�
ation). The aim is to predi
t the value of the fun
tion on
ethe learner has en
ountered a su�
ient number of examples (training phase) in order to 
lassifyunseen examples (test phase). The a

ura
y of the learned fun
tion strongly depends on thequality of the obje
t representation. The input obje
ts are, oftenly, des
ribed in the form offeature ve
tors. The number of features must be 
hosen in a way that they 
an predi
t theoutput a

urately. Some of the key supervised algorithms in
lude per
eptron algorithm, supportve
tor ma
hines (SVM) et
.On the other hand, a model is �tted to observations (unlabeled examples) in the 
ase ofunsupervised learning 3. In many real world appli
ations, the labels are not present. Theunsupervised learning methods work without a tea
her as opposed to supervised learning. Itdoes not have a priori output as opposed to supervised learning and helps to learn larger andmore 
omplex models than with supervised learning. The reason is that in supervised learning,the aim is to �nd the 
onne
tion between two sets of data but the di�
ulty of the learningtask in
reases exponentially in the number of steps required in �nding the relation betweenthe two data sets. On the 
ontrary, unsupervised learning 
an pro
eed hierar
hi
ally from theobservations to more abstra
t levels of representation. Some examples of unsupervised algorithmsare 
lustering, self-organizing maps (SOM) et
.Clustering is based on organizing the given examples into di�erent 
lusters in su
h a way thatthe similar examples are put into the same 
luster while di�erent examples appear in di�erent
lusters. In general, 
lustering o�ers a way to know the impli
it stru
ture of the dataset.Apart from the major 
ategorization of the ma
hine learning algorithms (supervised andunsupervised), there is another way in whi
h a ma
hine learning algorithm 
ould be 
lassi�ed:online or bat
h learning.2.2.2 Online Learning vs Bat
h LearningLearning 
an be bat
h or online depending on the targeted task. Bat
h learning or o�inelearning deals with all of the available examples in one-go. In general, the learned parameters
annot be updated on
e the learning is 
omplete. It is assumed that a probability distributionover the produ
t spa
e XxY exists, where X is an instan
e spa
e while Y is a label set asexplained in se
tion 1.1. Moreover, it is also assumed that there is a

ess to a training set drawni.i.d. from this distribution. The aim is to generate an output hypothesis from the training set.Furthermore, the bat
h algorithm should have the ability to generalize well beyond the trainingset and a

urately predi
t the labels for unseen test examples sampled from the distribution.3The frontier between supervised and unsupervised learning is blurred: e.g. semi-supervised learning in whi
h
ase the 
lassi�er 
an be initialized based on the labeled examples whi
h then learns without supervision on therest of the unlabeled examples, transdu
tive learning et
. 11



Chapter 2. State of the Art Approa
hes to Metri
 LearningExamples of bat
h algorithms in
lude linear dis
riminant analysis (a model employing sto
hasti
dependen
e between terms that relies on the 
ovarian
e matri
es of di�erent 
ategories), Ro

hio
lassi�er et
.Most of the Ma
hine Learning models are designed for the bat
h 
ase. However, anothertype of learning is oftenly used nowadays. It is 
alled online learning (also known as in
rementallearning, instantaneous learning or on-the-�y learning) and uses the examples one-by-one tolearn the parameters for the employed algorithm. In other words, the instan
es are obtained ina sequential manner. It starts building the 
lassi�er on
e it has examined the very �rst trainingexample. After re
eiving an instan
e, the online algorithm makes a predi
tion using a defaulthypothesis h1, the type of whi
h depends on the problem being treated e.g. in the 
ase of binary
lassi�
ation, it is a +ive/ − ive de
ision [23℄. Upon making a predi
tion (ŷ), the algorithmre
eives a feedba
k in the form of 
orre
t predi
tion (y). Based on the true label, the algorithm
an su�er from an instantaneous loss. The 
umulative loss on a sequen
e of rounds is the sumof instantaneous losses su�ered on ea
h of the rounds in the sequen
e. The 
umulative loss orthe empiri
al loss is the sum of hinge losses for the entire training set. The instan
e-label pairtogether enables the online algorithm to modify its predi
tion me
hanism and eventually helpsin making a

urate predi
tions over the rest of the instan
es. An online algorithm is de�ned byits default hypothesis and the update rule to de�ne new hypothesis. In general, an example isused only on
e by the online algorithm. However, the algorithm 
ould be run more than on
e tooptimize its performan
e.Online learning is usually simpler to implement, memory e�
ient and faster as 
omparedto the bat
h learning [30℄ and is preferred in the environments where the best model 
hangesgradually over the passage of time or when the storage spa
e is limited. Apart from thesepra
ti
al advantages, online algorithms often have formal guarantees in the form of worse 
asebounds on their performan
e. Furthermore, sometimes there is a s
enario e.g. text or information�ltering where the examples are provided in a sequential manner and the predi
tions must bemade on-the-�y.In 
ase, there is no loss for an online algorithm, the 
urrent hypothesis hτ is left un
hanged.On the 
ontrary, if there is some loss, two goals must be balan
ed:1. Change the 
urrent hypothesis hτ as it has en
ountered a 
ertain loss for the 
urrentexample. However, the 
hange must be enough so that the 
urrent error is not repeated inthe future.2. Do not 
hange hτ too mu
h, sin
e hτ was able to 
orre
tly 
lassify the last en
ounteredexample. If the 
urrent hypothesis is 
hanged ex
essively, then one 
annot be sure that thenew hypothesis would be able to 
over the previously seen examples.Suppose that the 
hanges in hτ are measured by taking into a

ount the Eu
lidean distan
ebetween the updated hypothesis hτ+1 and the old one hτ . This 
ase, where the �rst goal isenfor
ed while the the se
ond one is minimized, 
orresponds to the 
lassi
al gradient des
entupdate rule.In order to satisfy the two major goals (given above) of an online algorithm, a passive andaggressive strategy is required. It should be aggressive enough to avoid the repeat of errors,12



2.2. Ma
hine Learning Fundamentalswhile passive at the same time so that a new hypothesis 
lassi�es 
orre
tly the examples alreadyen
ountered by the algorithm.The Passive Aggressive Family of Online AlgorithmsCrammer et al. [23℄ have de�ned a family of online algorithms termed as passive aggressivealgorithms. The basi
 idea is the same as that of the goals mentioned earlier. However, insteadof simply ensuring that a 
orre
t 
lassi�
ation is made with the help of rule 1, it is ensured thatthe 
orre
t 
lassi�
ation is made with a margin of at least 1. The examples are 
onsidered inthe form of instan
e-label pairs i.e. (xτ , yτ ) where xτ ∈ R
n, yτ ∈ {+1,−1} and τ represents the
urrent iteration or round. The predi
tions are made based on a 
lassi�
ation fun
tion of theform: sign(w . x) where w ∈ R

n represents the ve
tor of weights. The aim of the algorithm is tolearn the ve
tor of weights in an in
remental fashion. The margin on the round τ 
an be givenby yτ (wτ . x
τ ). In 
ase the margin is positive (sign(wτ . x

τ ) = yτ ), it 
an be stated that thealgorithm has made a 
orre
t de
ision. However, the aim is to predi
t with higher 
on�den
eand to a
hieve a margin of at least 1 in as many rounds as possible. Whenever the margin is lessthan 1, the algorithm su�ers from a hinge loss whi
h 
an be given as:
lτ (w; (x

τ , yτ )) =







0 if yτ (w . xτ ) ≥ 1

1− yτ (w . xτ ) otherwiseHen
e, the loss is zero whenever the margin is greater than 1. On the 
ontrary, the loss is equalto the di�eren
e between 1 and the margin value if the margin is less than 1. For regression,the 
hoi
e of the margin 
an be de�ned by the user as well. It has been further shown that thealgorithms have a small 
umulative square loss over the set of T examples (∑T
τ=1 l

2
τ ).The initial weight ve
tor w1 is initialized with all zeros for all of the variants of the passiveaggressive algorithm for binary 
lassi�
ation. However, the update rule for the weight ve
tordi�ers for ea
h of the three variants. The simplest and the strongest of the rules requires thenew weight wτ+1 to be the solution of the following 
onstraint optimization problem:

wτ+1 = arg minw∈Rn

1

2
‖w − wτ‖2 subje
t to lτ (w; (x

τ , yτ )) = 0whi
h has a 
losed form solution:
wτ+1 = wτ + δτy

τxτ where δτ =
lτ

‖xτ‖2Here δτ ≥ 0 and is a Lagrange multiplier. Moreover, wτ+1 is the proje
tion of wτ onto the spa
ewhere the hinge loss on the 
urrent example is zero. Whenever the loss is zero, wτ+1 = wτand the algorithm is said to be passive. However, if the loss is positive (it 
annot be negative),the algorithm aggressively for
es the update wτ+1 to satisfy the 
onstraint l(wτ+1; (x
τ , yτ )) = 0imposed by the 
urrent example, while remaining as 
lose as possible to wτ . That is the reasonthese algorithms have been termed as passive aggressive. The passive approa
h is for the retentionof the information gathered during the earlier iterations while the aggressive nature is usefulwhenever there is a mis
lassi�
ation. 13



Chapter 2. State of the Art Approa
hes to Metri
 LearningAnother related work is that of Helmbold et al. [50℄ who showed the relationship betweenthe amount of progress made at ea
h iteration and the amount of information retained from theprevious ones. Here, the update requires wτ+1 to 
orre
tly 
lassify the 
urrent example xτ witha high margin and in this way, the progress is made (aggressiveness). Similarly wτ+1 shouldstay 
lose to wτ whi
h enables the algorithm to retain the information learned from the previousiterations (passiveness).In order to redu
e the aggressiveness of Passive Aggressive algorithms, two more update ruleshave been introdu
ed, whi
h employ gentler updates and use a non-negative sla
k variable ξ torede�ne the optimization problem:
wτ+1 = arg minw∈Rn

1

2
‖w − wτ‖2 + Cξ subje
t to l(w; (xτ , yτ )) ≤ ξ ∧ ξ ≥ 0Here the obje
tive fun
tion is dire
tly proportional to the sla
k variable ξ and C. C is a positiveaggressiveness parameter that 
ontrols the impa
t of the sla
k term on the obje
tive fun
tion.More pre
isely, C 
ontrols the trade o� between two obje
tives: remaining 
lose to the previousweights wτ and minimizing the loss on the 
urrent example. It has been shown that the largervalues of C indi
ate a more aggressive update. The resulting algorithm has been termed as PA-I.This update is termed gentler as it is no longer required that the loss must be equal to zero andin this way, the loss 
onstraint is relaxed.In another variation (named as PA-II), an obje
tive fun
tion has been de�ned whi
h s
alesquadrati
ally with ξ:

wτ+1 = arg minw∈Rn

1

2
‖w − wτ‖2 + Cξ2 where l(w; (xτ , yτ )) ≤ ξThe variants PA-I and PA-II have the same 
losed form solution as that of PA-I ex
ept the valueof δτ :

δτ = min{C, lτ
‖xτ‖2

} (PA-I)
δτ = lτ

‖xτ‖2 + 1

2C

(PA-II)It is important to mention here that the Passive Aggressive family of algorithms learn onlya ve
tor of weights and are not interested in learning a 
omplete matrix.Dredze et al. [33℄ have developed 
on�den
e-weighted (CW) linear 
lassi�ers whi
h also belongto the family of Passive Aggressive algorithms. The main 
hara
teristi
 of these 
lassi�ers isthat they maintain a probabilisti
 measure of 
on�den
e in ea
h of the attributes. The less
on�dent parameters are updated more aggressively than more 
on�dent ones. In CW learningmethods (Dredze et al. [33℄, Crammer et al. [24℄) se
ond-order information is used to represent theun
ertainty about the linear 
lassi�er's feature weight estimates. This se
ond-order information
ould be modeled as a Gaussian distribution over the 
lassi�er's weight ve
tor. In these 
ases,the mean of the weight ve
tor is used for 
lassi�
ation, whereas the 
ovarian
e matrix is used tomodulate the learning rate over di�erent features [67℄. However, the CW learning methods usediagonal approximations for the full 
ovarian
e matrix, and hen
e lose the information regarding
ross-feature 
orrelations whi
h 
an help towards faster 
onvergen
e. Ma et al. [67℄ show in whi
h
ases it is advantageous to use a full matrix rather than using the diagonal one.14



2.2. Ma
hine Learning FundamentalsOnline to Bat
h ConversionSometimes, a bat
h algorithm must be developed that not only is 
omputationally e�
ient andeasier to implement than an online algorithm but also has the good generalization properties ofbat
h algorithms. A simple way to develop su
h an algorithm is to use online to bat
h 
onversion.Many people have des
ribed su
h 
onversion e.g. Gallant [40℄ has developed a Po
ket algorithmwhi
h is basi
ally a 
onversion of online per
eptron algorithm to a bat
h one. This methodretains the longest surviving hypothesis i.e. whi
h has made the fewest number of mistakesduring the training phase.Littlestone et al. [65℄ have des
ribed a 
ross-validation te
hnique where the training set ispresented to the online algorithm. After running the algorithm for T rounds, a sequen
e ofhypothesis h0, · · · , hT is 
olle
ted where h0 is the default hypothesis. This is followed by sele
ting
h (the output of the bat
h algorithm) to be one of the T +1 hypothesis whi
h 
onverts the onlinealgorithm to a bat
h one.Helmbold and Warmuth [51℄ have argued that rather than sele
ting only a single hypothesisfrom the set of hypothesis, it is better to 
onsider h to be some 
ombination of the entire set ofhypothesis. The di�erent hypothesis 
ould be 
ombined by taking a majority or by averaging. Inthis way, the information retained by ea
h and every hypothesis is used to de�ne h and ultimatelypromotes robustness and stability. Furthermore, the training data plays absolutely no role in thepro
ess of 
ombining di�erent hypothesis whi
h gives these methods the name data independentmethods.Dekel and Singer [30℄ have shown that the matri
es (or ve
tors) learned during the earlieriterations of an online algorithm 
an be dis
arded as the online algorithm makes more mistakesin the beginning as 
ompared to the end (e.g. h0 is determined without observing any trainingexample). This means that, in a sequen
e of p matri
es learned (A1, · · · , Ap), one 
an rely on thelast q one and use the average over these q hypothesis (su�x averaging 
onversion). One extremeof this approa
h is to use all of the hypothesis while the other extreme is to retain only the lasthypothesis or matrix and is also known as last-hypothesis te
hnique [29℄. Su�x averaging �ndsthe best trade o� between these two extremes. However, all of the hypothesis must be stored inmemory as it �nds the optimal su�x length only on
e the entire hypothesis sequen
e has beenformed. Moreover, the required memory spa
e grows linearly with the training set size.Dekel [29℄ has addressed the problem fa
ed by the su�x averaging te
hnique and developeda method 
alled 
uto� averaging. One extreme of this method is just like the simple averagingmethod. However the other extreme 
onverts this method to the longest survivor te
hnique.In this way, there is no need to store all of the online hypothesis in the memory unlike thesu�x averaging method and the memory spa
e s
ales with square-root of the number of trainingexamples in the worst 
ase s
enario. In a typi
al 
ase, the required memory is mu
h less thanthat of the worst 
ase. A 
uto� parameter k is used to get the online hypothesis sequen
e. Itrepresents the minimum number of rounds during whi
h the online algorithm must not su�erany loss. This is followed by �nding a weighted averaging of the hypothesis sele
ted, where theweight represents the additional number of iterations a hypothesis has survived on
e sele
ted. Itmay be noted that in order to �nd the best value of k, the entire training data must be pro
essed.However there is no need to store the entire sequen
e of hypothesis. The only requirement is togroup together the hypothesis by their survival times, and store the average hypothesis for ea
h15



Chapter 2. State of the Art Approa
hes to Metri
 Learninggroup along with the 
umulative loss in ea
h group.2.2.3 Some Key Ma
hine Learning MethodsPer
eptron AlgorithmThe per
eptron algorithm was developed by Fran
k Rosenblatt [93℄. It is a linear 
lassi�er usedfor binary 
lassi�
ation and 
an be regarded as the simplest form of feed-forward neural network.It separates the obje
ts using a linear hyperplane as shown in Figure 2.2. It is a very simplealgorithm and it has been proved by Noviko� [77℄ that it 
onverges after a �nite number ofepo
hs (iterations) if the data is linearly separable.

Figure 2.2: A hyperplane separating the two 
lassesThe per
eptron algorithm is an online supervised algorithm and the learning takes pla
e inrounds or iterations. At ea
h round, a new hypothesis is estimated based on the previous one.The algorithm starts with a hypothesis initialized with zero w1 = 0. At ea
h step, an instan
e xτis presented to the per
eptron algorithm whi
h makes a predi
tion ŷ using the 
urrent hypothesis
wτ . This is followed by the revelation of the a
tual label yτ . In 
ase the a
tual label is di�erentfrom the predi
ted one, the hypothesis is updated as wτ+1 = wτ + yτxτ . On the 
ontrary if thea
tual label mat
hes with that of the predi
ted one, the 
urrent hypothesis is left un
hanged.The pro
ess is repeated for all of the training examples.Voted per
eptron of Freund and S
hapireFreund and S
hapire [37℄ have introdu
ed a variant of the per
eptron algorithm for linear
lassi�
ation while attaining large margin, and have termed it as the voted-per
eptron algorithm.Weights have been added to the predi
tion ve
tors whi
h justi�es the name weighted per
eptron.Moreover, the standard per
eptron algorithm (online) has also been 
onverted to a bat
h one,16



2.2. Ma
hine Learning Fundamentalsfollowed by an in-depth dis
ussion on the online (in
remental) to bat
h 
onversion. It 
an also
lassify instan
es having a relational representation (e.g. trees, graphs, or sequen
es). The proofsof 
onvergen
e have been provided for both the separable as well as non-separable data.It has been further suggested that the "kernel tri
k" 
an also be applied to the voted-per
eptron algorithm [96℄. The kernel tri
k is basi
ally a method in whi
h a linear 
lassi�eris 
onverted to a non-linear one by mapping the original observations (e.g. x and x′) to a higherdimensional spa
e (φ(x) and φ(x′)) and then taking their inner produ
t. This is equivalent tousing the kernel fun
tion whi
h is a fun
tion of two variables K(x, x′) and 
an be represented asan inner produ
t φ(x).φ(x′) for some fun
tion φ. This implies repla
ing ea
h inner produ
t x.x′with a kernel fun
tion 
omputation K(x, x′). Kernel fun
tions have also been used with supportve
tor ma
hines (SVMs).The voted per
eptron algorithm, being a supervised algorithm is 
omposed of two steps:training and predi
tion. The initial predi
tion ve
tor v1 is set to zero just like the originalper
eptron algorithm. The predi
tion ve
tor is used to predi
t the label of the new instan
e
x. In the 
ase of a wrong predi
tion ŷ 6= y, the predi
tion ve
tor is updated while in the 
aseof 
orre
t 
lassi�
ation, it remains un
hanged. The update is similar to that of the per
eptronex
ept the fa
t that the weight related with the 
urrent predi
tion ve
tor i.e. wτ is also updated.The weight is in
reased by one in 
ase of 
orre
t 
lassi�
ation. However, for mis
lassi�
ation,the weight related to the new predi
tion ve
tor wτ+1 is initialized with 1. This pro
ess is then
ontinued with the next example and is repeated for T epo
hs. On
e the training is 
omplete, aset of predi
tion ve
tors have been generated after ea
h and every mistake. The weights relatedto the predi
tion ve
tors 
orrespond to the number of examples they have survived until thenext wrong 
lassi�
ation. The weighted per
eptrons 
an then be used to 
lassify unseen testexamples.The Voted-Per
eptron AlgorithmTrainingInput: a labeled training set {(x(1), y(1)), · · · , (x(n), y(n))}, number of epo
hs TOutput: a list of weighted per
eptrons {(v1, w1), · · · , (vk, wk)}Initialize: k = 1, v1 = 0, w1 = 0Repeat T times:For i = 1, · · · , nCompute predi
tions: ŷ = sign(vk . x

(i))If ŷ = yi then wk = wk + 1else vk+1 = vk + y(i)x(i)

wk+1 = 1

k = k + 1Predi
tionGiven: the list of weighted per
eptron: {(v1, w1), ......, (vk , wk)}, an unlabeled instan
e: xCompute a predi
ted label ŷ as follows:
s =

∑k
i=1wisign(vi.x); ŷ = sign(s) 17



Chapter 2. State of the Art Approa
hes to Metri
 LearningDuring predi
tion, the votes are taken from all of the weighted per
eptrons. As T approa
hes
∞ for linearly separable data, the voted per
eptron 
onverges to the original per
eptron algorithmwhere the predi
tion is made using the last predi
tion ve
tor.The online to bat
h 
onversion 
an be 
alled as a voting 
onversion as ea
h online hypothesis(v1, · · · , vk) 
asts a 
lassi�
ation vote for an unseen example x; and x gets the label that re
eivesthe highest number of votes.Li et Long [64℄ have proposed an online algorithm 
alled as ROMMA (Relaxed Online Max-imum Margin Algorithm) for 
lassi�
ation using a linear threshold fun
tion. The algorithm hasbeen 
ompared against the per
eptron algorithm and the voted per
eptron algorithm of Freundand S
hapire, and it has been found that ROMMA performed better than the per
eptron algo-rithm, and an aggressive version of ROMMA performed even better than the voted per
eptron.Collins extension of voted per
eptronMi
hael Collins [20℄ has used a variant of the per
eptron algorithm for the part-of-spee
htagging and base noun phrase re
ognition, related to the domain of Natural Language Pro
essing.In this work, the voted or averaged version of the per
eptron algorithm has been extended,originally introdu
ed by Freund and S
hapire. In addition, a parameter ve
tor α (also referredto as the weights) is also introdu
ed, whi
h is trained on a set of training examples. This ve
tor isthen used for part-of-spee
h tagging or base noun phrase re
ognition. The proofs of 
onvergen
ehave been provided for the separable as well as for the non-separable data. Furthermore, it hasbeen shown that the number of errors made by the algorithm is bounded not only on the trainingexamples but also on unseen examples. The algorithm proposed by Collins 
an be applied todi�erent other domains as well.The parameter is 
onsidered to be asso
iated with a trigram (x, y, z) as αx,y,z and the oneasso
iated with a tag/ word pair (t, w) as αt,w. Moreover, a sequen
e of words (w1, · · · , wn) isrepresented as w[1:n] while t[1,n] is used to des
ribe a tag sequen
e (t1, · · · , tn). The training setis made up of n tagged senten
es where the length of ith senten
e is ni. This helps to write theexamples as (wi

[1:ni]
, ti[1:ni]

) where i = 1, · · · , n. Furthermore, Viterbi algorithm is used in orderto �nd the best tagged sequen
e for the senten
e wi
[1:ni]

whi
h is denoted by z[1:ni]. For everytag trigram (x, y, z) seen c1 times in ti[1:ni]
and c2 times in z[1:ni] with the 
ondition that c1 6= c2,the parameter asso
iated with a trigram (x, y, z) 
an be expressed as:

αx,y,z = αx,y,z + c1 − c2Similarly for ea
h tag/word pair (t, w) seen c1 times in (wi
[1:ni]

, ti[1:ni]
) and c2 times in (wi

[1:ni]
, z[1:ni](with c1 6= c2), αt,w 
an be written as:

αt,w = αt,w + c1 − c218



2.2. Ma
hine Learning FundamentalsInput: Training examples (x(i), y(i))Output: Parameters αInitialization: Set α1 = 0Algorithm:For T iterations, i = 1, · · · , nCal
ulate z(i) = arg max
z∈GEN(x(i))φ(x

(i), z).αIf (z(i) 6= y(i)) then
αl+1 = αl + φ(x(i), y(i))− φ(x(i), z(i))where n represents the number of examples. If the highest s
oring sequen
e under the 
urrentmodel z(i) is not 
orre
t (z(i) 6= y(i)), the parameter α is updated in a simple additive manner.It has been shown experimentally that instead of using only the �nal parameter α, it is betterto use averaged parameters over T passes and n examples i.e. the averaged parameter γ 
an bewritten as:

γ =
∑

t=1,··· ,T ; i=1,··· ,n

αt,i

nTThe task in this algorithm is to learn a mapping from inputs (x ∈ X ) to outputs (y ∈ Y).The parameter ve
tor α ∈ R
d is initialized with zero whi
h is subsequently optimized over thetraining data. The fun
tion GEN lists a set of 
andidates GEN(x) for an input x.Support Ve
tor Ma
hinesSupport ve
tor ma
hines (SVMs) are no doubt the most popular 
lassi�
ation algorithms thesedays, mainly due to their results [26℄, [103℄. We �rst dis
uss here the binary 
lassi�
ationproblem. The input spa
e is denoted by X ⊆ R

d where the value of d is �xed. A linear 
lassi�eris a fun
tion of R in −1, 1 having the form:
f(x) = sign(btx+ b0)where b ∈ R

d, while b0 ∈ R. The sign(t) = 1 if and only if t > 0, otherwise is equal to 0. It 
anbe noted that the 
lassi�er f(x) = btx+ b divides X into two sub-spa
es: {x ∈ X | btx+ b0 < 0}and {x ∈ X | btx+ b0 > 0}Here, a 
lassi�er f(x) = btx + b0 having zero empiri
al loss is 
onsidered. This means thatthis 
lassi�er 
lassi�es 
orre
tly all of the examples in S. Sin
e it is supposed that S is linearlyseparable, hen
e there exists a s
alar su
h that the examples (x(i), y(i) whi
h are nearest to thehyperplane satisfy |btx + b0| = 1. Two examples x(1) and x(2) are further 
onsidered belongingto opposite 
lasses, su
h that btx(1) + b0 = 1 and btx(2) + b0 = −1. The margin 
an be de�nedas the distan
e between these two points, where the margin is 
al
ulated perpendi
ular to thehyperplane. The margin (given in the �gure 2.3) 
an also be represented by:
b

‖b‖(x
(1) − x(2)) =

2

‖b‖It 
an be seen that in order to in
rease the margin, ‖b‖ must be de
reased. This 
an eventuallyhelp in order to have a hyperplane with a maximum margin. 19



Chapter 2. State of the Art Approa
hes to Metri
 LearningSVM with a hard margin: The 
onstraints |btx+b0| = 1 
an be written as y(btx+b0) = 1for the examples whi
h are near to the hyperplane. The overall aim thus, is to resolve thefollowing optimization problem: min
b∈Rd, b0∈R

1
2‖b‖

2su
h that ∀i, y(i)(btx(i) + b0) ≥ 1It 
an be observed that a quadrati
 optimization problem is being solved along with the linear
onstraints. A work around is to solve a dual problem in the following manner:max
(α1, ··· ,αn)∈Rd

d∑

i=1
αi − 1

2

d∑

i=1

d∑

j=1
y(i)y(j)αiαjx

(i)tx(j)su
h that d∑

i=1
y(i)αi = 0

∀i, αi ≥ 0An advantage of the above formulation lies in the fa
t that b (the solution of the initial opti-mization problem) 
an be written as:
b =

d∑

i=1

yiαix
(i)where (α1, · · · , αn) a

ounts for the optimal solution of the dual problem. One 
an also showthat αi > 0 if and only if yi(btx(i) + b0) = 1. The maximal margin hyperplane depends only ona subset of the examples. These examples lie exa
tly on the margin and are 
alled the supportve
tors. The rest of the examples 
an lie anywhere outside the margin. In other words, one getsexa
tly a similar solution even if the training set S 
ontains only the support ve
tors.SVM with a soft margin: The SVM des
ribed earlier 
annot deal with inseparable dataand is therefore termed as having a hard margin. In a
tual pra
ti
e, the data is rarely separable.One of the reasons is the presen
e of noise in the data. In 
ase of non-separable data, SVM mustlive with wrongly 
lassi�ed examples. A simple way is to introdu
e sla
k variables, in whi
h 
asea sla
k variable is asso
iated with ea
h examples. The use of sla
k variables allows to 
al
ulate aloss ea
h time an example is mis
lassi�ed. The resulting algorithm is said to have a soft margin.This also 
hanges the aim and the new obje
tive is to maximize the margin and minimize thenumber of examples violating the 
onstraint on the margin. In other words, the norm of b andthe overall loss asso
iated with the sla
k variables is minimized. This new optimization problem
an be written as: min

b∈Rd, b0∈R

1
2‖b‖

2 + C
∑n

i=1 ηisu
h that ∀i, y(i)(btx(i) + b0) ≥ 1− ηi
∀i, ηi ≥ 0where ηi stand for the sla
k variables while C is a positive real number whi
h must be tuned.Whenever ηi is positive, this means that the margin 
onstraint is not obeyed. The loss asso
iated20



2.2. Ma
hine Learning Fundamentals

Figure 2.3: Maximum margin for support ve
tor ma
hines (SVM)with this 
an be written as Cηi whi
h 
an be 
ompensated while de
reasing the norm of b. In
ase C is large, even a little violation of the 
onstraint would be 
ostly. Hen
e hyperplaneswith small margins would be 
hosen with less number of errors. On the other hand, if C issmall, the margin would be large and so do the number of errors. One way to tune C is to use
ross-validation.
k Nearest Neighbor AlgorithmThe k Nearest-Neighbor (kNN) algorithm [21℄, developed by Fix and Hodges [34℄, has beenstudied by many resear
hers, from many di�erent 
ommunities. In the database 
ommunity,for example, it is used to determine the instan
es 
losest to a given query point. In 
ase-basedreasoning, pattern re
ognition and ma
hine learning, the kNN rule, be
ause of its simpli
ity andgood performan
e, is still heavily used for 
lassi�
ation purposes e.g. image and text 
lassi�
a-tion, web site 
lassi�
ation [62℄ et
. This method is 
ategorized as a non-parametri
 supervisedlearning algorithm and 
lassi�es instan
es based on the 
losest training examples in the featurespa
e. In this method, all of the training points together with their 
lass labels are kept inmemory (hen
e referred to as memory-based method) and the 
omputation is deferred until 
las-si�
ation. Hen
e it is also known as a lazy method whi
h belongs to the instan
e-based learning(IBL) methods. Nearest-neighbor learning has been shown to be the algorithmi
 parallel of theexemplar model of human learning [43℄. Normalization of feature ve
tors may be required insome 
ases.During the 
lassi�
ation phase, when a query point is given, the 
lassi�
ation of that point ismade keeping in view the k nearest points. First of all, same features as for the training examplesare 
omputed for the query point, whi
h is followed by the 
al
ulation of distan
e/similarity toall of the stored feature ve
tors. A metri
 is required for 
al
ulating the distan
e or the similaritybetween the query point and the instan
es from the training data in order to make predi
tions.21



Chapter 2. State of the Art Approa
hes to Metri
 Learning

Figure 2.4: An example of a 3 nearest neighbor 
lassi�
ation [108℄Some popular 
hoi
es for the metri
 are the Eu
lidean distan
e and the 
osine similarity. Somepeople use the term metri
 in order to signify distan
e or similarity, and sometimes this term isused to refer to distan
e only. However, the 
hoi
e mainly depends on the problem domain. Thedistan
es and similarities are arranged in as
ending and des
ending order respe
tively. This isfollowed by the sele
tion of the the top k values in the sorted list. In the standard version, thequery point is assigned the 
lass that appears most frequently within the k nearest examples.Figure 2.4 shows the 3 nearest neighbors 
lassi�
ation for an example represented by the symbol
?. This method is often su

essful when the de
ision boundary is very irregular [49℄. In order to
lassify a new example x, the distan
es di(x, x(i)), i = 1, · · · , k between the new example andthe k nearest neighbors are 
al
ulated. The smaller the distan
e, the greater is the similaritybetween two examples. Furthermore, the 
lasses for the k nearest neighbors are also found. Thisis followed by assigning the new example x to the majority 
lass g among the k nearest neighbors:

C(x) = argmaxg∈G k∑

i=1

ki|ki = ωgwhere C(x) represents the 
lass of x and G is the set of all possible 
lasses.An important fa
tor in this algorithm is the right 
hoi
e of k whi
h 
an strongly in�uen
ethe quality of 
lassi�
ations assigned. The value of k 
an be determined from a validation setof examples. A smaller value of k leads to large varian
e in predi
tions for a given problem.On the other hand, larger values of k redu
e the e�e
t of noise on 
lassi�
ation. Hen
e, kshould be 
hosen in su
h a way that the value is large enough to minimize the probabilityof mis
lassi�
ation. Many experiments have shown that in
reasing the value of k does notsigni�
antly degrade the performan
e [98℄.Another important issue is breaking ties among the k nearest neighbors. A tie o

urs whentwo or more 
lasses be
ome the majority 
lass. This 
an happen when k is even or odd in amulti
lass problem. In the 
ase of a binary problem, a tie 
an o

ur only when the value of k iseven. A naïve approa
h to break ties is to pi
k any random majority 
lass, but is de�nitely not22



2.2. Ma
hine Learning Fundamentalslogi
al. Another type of a tie is the distan
e tie, whi
h o

urs when two or more neighbors areat the same distan
e from an example. Devroye et al. [31℄ have des
ribed a strategy where theties are broken by indi
es i.e. if x(i) and x(j) are equidistant from x, then x(i) is de
lared 
loserto x if i < j.Like any smoothing parameter, there is an optimal value of k for every problem. One possiblemethod to �nd this optimal value is to use 
ross-validation. The simplest or the degenerate 
aseis when the value of k = 1 and the algorithm is known as nearest neighbor (1NN) algorithm orsometimes as �rst nearest neighbor rule (FNN). It has been also shown that the FNN rule hasan asymptoti
 error rate that is at most twi
e the Bayes error rate, independent of the distan
efun
tion used.Baoli et al. [2℄ have argued that having a �xed value for k results in a bias on large 
lasses.This is spe
ially true when the distribution of di�erent 
lasses in the training set is uneven. After�nding the original k nearest neighbors, the probability that an example belongs to a 
ertain 
lassis 
omputed using only some top p nearest neighbors for that 
lass, where p is extra
ted from kbased on the size of the 
lass cm. Generally speaking, di�erent number of nearest neighbors areused for di�erent 
lasses. In order to make the 
omparison between di�erent 
lasses reasonable,the probabilities are derived from the proportion of the similarity sum of examples belonging toa 
lass to the total sum of similarities for all of the sele
ted neighbors for that 
lass. The de
isionfun
tion 
an be given as follows:
y(di) = argmaxm ∑

x(j) ∈ top−p−kNN(cm)

sim(di, x
(j)) y(x(j), cm)

∑

x(j) ∈ top−p−kNN(cm)

sim(di, x
(j))where top − p − kNN(cm) represents the top p neighbors in the original k nearest neighbors. p
an be 
al
ulated in the following manner:

p =
k N(cm)max{N(cj) | j = 1, · · · , Nc}Here N(cm) represents the size of the 
lass cm while max{N(cj) | j = 1, · · · , Nc} is the size ofthe largest 
lass in the training set.The advantage of this algorithm lies in the fa
t that it is easier to implement and has gooda

ura
y but, on the other hand, as it performs all of the 
omputations at run time, it is a
omputationally intensive algorithm. Another possible approa
h for kNN is adding a thresholdfor ea
h 
lass, whi
h may be learned using a validation set of examples [119℄. In this 
ase, thekNN method is not lazy any longer and a real training is performed. But at the same time, thereis a loss in in
remental behavior.The nearest neighbor algorithm is less appealing with limited training examples be
ause of the
urse of dimensionality. Support ve
tor ma
hines have also been used along with kNN to in
reasethe margin between the positive and the negative examples in the weighted spa
e in whi
h the
lassi�
ation is performed. No
k and Sebban [74℄ have developed a non-linear hyperplane witha large margin by 
omputing the weights of the referen
e examples.Another variant of kNN is the Weighted kNN [18℄, [79℄ where an ith neighbor (i = 1, · · · , k) isassigned a weight wi. The test sample x is 
lassi�ed as the 
lass ŷ that is assigned the maximum23



Chapter 2. State of the Art Approa
hes to Metri
 Learningweight:
ŷ = argmax

g∈G

k∑

i=1

wiI{y(i)=g}Here G represents the set of 
lasses while I is the indi
ator fun
tion having the value 0 or 1.Distan
e-weighted nearest neighbor rule allows all of the training samples to 
ast votes wherethe votes for the 
losest samples have greater weight than the samples further away. The intuitionbehind this idea is that the nearer neighbors should provide more information than the distantones. The weight for a vote de
reases with the in
rease in distan
e from the query point. Anothervariation is the rank-weighted nearest neighbor te
hnique, in whi
h the 
losest neighbors 
an 
astmore votes as 
ompared to the far-o� neighbors.Bay [4℄ has developed a te
hnique MFS (Multiple Feature Subsets) whi
h 
ombines multiplenearest neighbor 
lassi�ers ea
h using only a subset of features.2.3 Metri
 LearningMetri
 has always been a very important and de
isive ingredient of many ma
hine learningproblems. Among these, the performan
e of k-nearest algorithm heavily depends on whether themetri
 
hosen takes into a

ount the underlying geometry of the spa
e in whi
h the exampleslie or not. Metri
 learning 
an be further subdivided into two di�erent types: distan
e metri
learning and similarity metri
 learning.2.3.1 Distan
e Metri
 LearningDistan
e measures the dissimilarity in a given data set. A value of 0 indi
ates the examples tobe totally similar while a value of 1 means that the examples are 
ompletely distin
t. Thereare many di�erent possibilities for distan
e fun
tions like the Eu
lidean distan
e, the City-Blo
kdistan
e, the Mahalanobis distan
e et
.De�nition of a Distan
e: The distan
e over a set X is de�ned as a fun
tion d (also known asthe distan
e fun
tion) su
h that:
d : XxX ⇒ R,

∀x, x′, x′′ ∈ R, this fun
tion needs to satisfy the following four 
onditions:1. d(x, x′) ≥ 0 (also known as non-negativity)2. d(x, x′) = 0 i� x = x′ (distinguishability)3. d(x, x′) = d(x′, x) (symmetry)4. d(x, x′) + d(x′, x′′) ≤ d(x, x′′) (triangle inequality)The �rst and se
ond 
onditions together produ
e the positive semi-de�nitiveness [82℄. A pseudo-metri
 satis�es all of the requirements for a metri
, ex
ept the se
ond one. This means that onemay have d(x, x′) = 0 for even distin
t values x 6= x′.Various distan
es are de�ned hereafter:24



2.3. Metri
 LearningFor two examples, x(x1, x2, · · · , xd) and x′(x′1, x
′
2, · · · , x′d), the Eu
lidean distan
e fun
tion(also known as L2 norm) 
an be written as:

d2(x, x
′) =

√
√
√
√

d∑

i=1

(xi − x′i)
2A generalization of the Eu
lidean distan
e is the Minkowski fun
tion whi
h 
an be written as:

dt(x, x
′) = t

√
√
√
√

d∑

i=1

wi(xi − x′i)
tHere wi represents the weight 
orresponding to the ith feature of x and x′. The Eu
lideandistan
e 
an be obtained by setting t to 2 and ea
h weight, wi, to 1 in the above equation.Setting t and all of the weights wi to 1 results in the L1 norm (also known as Manhattan or CityBlo
k distan
e). It represents the distan
e between two points in a 
ity road grid and examinesthe absolute di�eren
es between 
oordinates of a pair of points:

d1(x, x
′) =

d∑

i=1

|xi − x′i|Setting t to ∞, gives the maximum value distan
e or Chebyshev distan
e:
d∞(x, x′) =

d
max
i=1

|xi − x′i|A family of metri
s over a ve
tor spa
e X 
ould be obtained by 
omputing Eu
lidean distan
esafter performing a linear transformation x′′ = Lx. These metri
s 
ompute square distan
es inthe following manner:
d2L(x, x

′) = ‖L(x− x′)‖22 (2.1)where the linear transformation is parametrized by the matrix L. The equation 2.1 
an also bewritten in terms of a square matrix A:
A = LtLAny matrix A 
reated from a matrix L in this manner is always positive, semi-de�nite (PSD)(written as A � 0) whi
h means that there are no negative eigenvalues [112℄. The square distan
es
an also be expressed in terms of the matrix A:

d2A(x, x
′) = (x− x′)tA(x− x′) = ‖x− x′‖2A (2.2)where equation 2.2 de�nes the Mahalanobis distan
e [69℄. The Mahalanobis distan
e [3, 10℄ isused, originally, to des
ribe the quadrati
 forms in Gaussian distributions where it was the inverseof the 
ovarian
e matrix used to in
orporate the 
orrelations of di�erent feature dimensions [106℄.It generalizes the Eu
lidean distan
e by admitting arbitrary linear s
alings and rotations of thefeature spa
e [28℄. Choosing A to be the identity matrix, the Mahalanobis distan
e redu
es tothe Eu
lidean distan
e. The Mahalanobis distan
e 
an either be parametrized in terms of thematrix L or in terms of A, whi
h means that either a linear transformation L is estimated or a25



Chapter 2. State of the Art Approa
hes to Metri
 LearningPSD matrix A. The optimization is un
onstrained in the 
ase of the �rst approa
h while in these
ond approa
h it is mandatory to enfor
e the 
onstraint that the matrix A must be positive,semi-de�nite.Moreover, in 
ase the matrix A is diagonal, the resulting distan
e is 
alled the normalizedEu
lidean distan
e where the di�erent axes are given di�erent weights:
dNE(x, x

′) =

√
√
√
√

d∑

i=1

(xi − x′i)
2

σ2
iwhere σi is the standard deviation of xi over the sample set.Having introdu
ed various distan
e metri
s, the next question is how to learn these distan
emetri
s in an e�e
tive manner [109℄. Many state of the art metri
 learning algorithms are nextpresented and 
ompared in detail.Metri
 learning algorithms 
an be broadly 
lassi�ed into supervised metri
 learning algo-rithms and unsupervised learning algorithms (
overing linear (Prin
ipal Component Analysis(PCA) [45℄, Multidimensional S
aling (MDS) [22℄) and nonlinear embedding methods (e.g. Lo-
ally Linear Embedding (LLE) [94℄) depending on the fa
t whether the label or side informationhas been used or not. Empiri
al studies have shown that, in general, supervised metri
 learn-ing algorithms outperform unsupervised ones [107℄. Unlike most supervised learning algorithmswhere ea
h training example has been assigned a label, a supervised distan
e metri
 learningalgorithm is generally based on two types of pairwise 
onstraints: equivalen
e and inequivalen
e
onstraints. Equivalen
e 
onstraints 
onsider those examples whi
h belong to the same 
lasseswhere as inequivalen
e 
onstraints deal with data points belonging to di�erent 
lasses 4.Rather than using the absolute qualitative feedba
k (e.g. A and B are similar or A and C arenot similar), some works like S
hultz and Joa
hims [97℄ and Frome et al. [38℄ 
onsider relativequalitative examples (e.g. A is more similar to B than A is to C). A pra
ti
al example of thiss
enario is sear
h-engine query logs, where the do
uments that are 
li
ked 
an be 
onsidered tobe semanti
ally 
loser than the ones that the user observed but de
ided not to 
li
k.Supervised metri
 learning algorithms 
ould be further 
ategorized into global metri
 learningalgorithms, lo
al metri
 ones or pseudo global/lo
al ones. It is possible to formulate 
ertaindistan
e metri
 learning problems as 
onvex optimizations over the 
one of PSD matri
es.Global Distan
e Metri
 LearningGlobal metri
 distan
e learning algorithms learn the distan
es in a global sense where the aimis to satisfy all of the pairwise 
onstraints (equivalen
e as well as inequivalen
e) simultaneously.Su
h algorithms try to learn metri
s in su
h a way that all of the examples belonging to the same
lasses are kept 
lose while separating apart the examples from di�erent 
lasses. More oftenly,the distan
e fun
tion is expli
itly learned in su
h a way that the distan
e between exampleswithin the equivalen
e 
onstraints is minimized while the distan
e between examples belongingto inequivalen
e 
onstraints is maximized [113℄, [116℄, [117℄.4Wang et al. [106℄ have termed the equivalen
e 
onstraints as must-link 
onstraints while inequivalen
e onesas 
annot-link 
onstraints.26



2.3. Metri
 LearningInformation Theoreti
 Distan
e Metri
 LearningDavis et al. [28℄ have developed an Information-theoreti
 (Information-Theoreti
 Metri
Learning - ITML) approa
h to learn (squared) Mahalanobis distan
es. This method does notrequire semi-de�nite programming and eigen-value de
ompositions whi
h makes it faster ands
alable. Two types of relationships between the examples are 
onsidered: similarity and dissim-ilarity. In this regard, two points x and x′ are 
onsidered similar if the distan
e between themis less than a 
ertain threshold u. Similarly, these points are dissimilar if the distan
e betweenthem is greater than a su�
iently large threshold l.The aim here is to learn the positive de�nite matrix A whi
h parametrizes the Mahalanobisdistan
e given in the equation 2.2. An input Mahalanobis matrix A0 is also 
onsidered, whi
h
an be determined from the training data. For Gaussian data, A0 
an be initialized with theinverse of the sample 
ovarian
e. Similarly A0 
an also be determined using the squared Eu
lideandistan
e. This is followed by bringing the matrix A (also known as the output matrix) as 
lose aspossible to the initial matrix A0 using an information theoreti
 approa
h. The set of Mahalanobisdistan
es are related to the set of multivariate Gaussian distributions 5 with an equal mean µ asfollows:
p(x;A) =

1

Z
exp(−1

2
dA(x, µ))where p(x;A) is the multivariate Gaussian of the matrix A or the probability density fun
tion(pdf), Z is a normalizing 
onstant and A−1 is the 
ovarian
e matrix of the Gaussian distribution.The greater the distan
e dA, the smaller the value of the probability. This helps to 
al
ulate thedistan
e between the two Mahalanobis distan
e fun
tions parametrized by A0 and A i.e. d(A0‖A)using the relative entropy or the Kullba
k-Leibler divergen
e (KL divergen
e) 6 between theirmultivariate Gaussians:

d(A0‖A) = KL((p(x;A0) ‖ (p(x;A)) =

∫

p(x;A0) log p(x;A0)

p(x;A)
dxThus, the distan
e metri
 learning problem 
an be written as:minA KL ((p(x;A0)‖(p(x;A))with dA(x, x

′) ≤ u (x, x′) ∈ S

dA(x, x
′) ≥ l (x, x′) ∈ DHere the aim is to minimize the KL divergen
e between the two Gaussians. Moreover, S rep-resents the similar points whereas D is used to denote the dissimilar points. In order to useBregman proje
tions to learn the matrix A, it has been shown that the information theoreti
obje
tive 
an be des
ribed in terms of Bregman divergen
e. Considering the fa
t that the Log-Det (logarithm-determinant) divergen
e (Dld) is a
tually a Bregman divergen
e de�ned over the
one of PSD matri
es [60℄, [61℄:

Dld(A,A0) = tr(AA−1
0 )− logdet(AA−1

0 )− n5Also known as multivariate normal distribution.6KL divergen
e is also known as the information gain or information divergen
e. 27



Chapter 2. State of the Art Approa
hes to Metri
 LearningFurthermore, Kulis et al. [60℄ have shown that the KL divergen
e between two multivariateGaussian distributions 
an be written as the 
onvex 
ombination of Mahalanobis distan
e be-tween mean ve
tors and the LogDet divergen
e between the 
ovarian
e matri
es. Considering themeans of the two Gaussians to be the same, the KL divergen
e 
an be related to the Mahalanobisdistan
e in the following manner:KL((p(x;A0)‖(p(x;A)) =
1

2
Dld(A

−1
0 , A−1) =

1

2
Dld(A,A0)Moreover, the LogDet divergen
e is independent of the s
aling of the feature spa
e. With this,the distan
e metri
 learning problem 
an be written as a LogDet optimization problem:minA�0

Dld(A,A0)su
h that tr(A(x(i) − x(j))(x(i) − x(j))t) ≤ u (i, j) ∈ S,

tr(A(x(i) − x(j))(x(i) − x(j))t) ≥ l (i, j) ∈ D,The imposed 
onstraints on the distan
es 
an be relaxed using sla
k variables to �nd an admissiblesolution.It 
an be 
on
luded that by using a LogDet divergen
e between two matri
es along withan initial PSD matrix, all of the subsequent matri
es are PSD as well and no proje
tion isrequired [60℄. However, a major short
oming of this algorithm is its quadrati
 dependen
y onthe dimensionality d.Davis and Dhillon [27℄ learn low rank Mahalanobis distan
e metri
s for high dimensionalproblems.Pseudo-distan
e Online Learning Algorithm (POLA)Shalev et al. [99℄ learn pseudo-distan
es parametrized by positive semi-de�nite matri
es alongwith a s
alar threshold in an online as well as bat
h setting. Convex optimizations over the
one of PSD matri
es for distan
e metri
 learning have also been proposed. Like many otherdistan
e metri
 learning algorithms, the aim is to learn a metri
 that shrinks distan
es betweensimilarly labeled examples while expanding distan
es between examples with di�erent labels.The algorithm is termed as Pseudo-distan
e Online Learning Algorithm or POLA. Examples are
omposed of an instan
e pair and a label whi
h 
an be +1 or −1 depending on the fa
t that theinstan
es are similar or dissimilar. The algorithm is based on Mahalanobis distan
e dM just likeXing et al. [114℄. However this algorithm is online and 
omes with theoreti
al error guarantees.Using a threshold b ∈ R, the 
onstraints for similar and dissimilar examples 
ould be de�nedin the following manner:
∀(x, x′, y) : y = +1 → (d(x, x′))2 ≤ b− 1,

∀(x, x′, y) : y = −1 → (d(x, x′))2 ≥ b+ 1,where the maximum distan
e in 
ase of similar examples is b− 1. Consequently, the distan
e isat least equal to b + 1 for the dissimilar examples. These two inequalities 
an be 
ombined toform a single linear 
onstraint:
y(b− (dA(x, x

′))2) ≥ 128



2.3. Metri
 LearningThe aim here is to learn the matrix A, where A � 0 like many other distan
e metri
 learningmethods. Being an online algorithm, the algorithm re
eives the examples in the form of tuples
(xτ , x

′
τ , yτ ) in a sequential manner. A distan
e dM (xτ , x

′
τ ) is 
al
ulated for ea
h pair of examplesat a time step τ . In 
ase, the square of this distan
e is greater than the threshold b, the 
urrentpair is 
onsidered as dissimilar. On the 
ontrary, it is 
onsidered as similar. On
e the predi
tionhas been given, the true label yτ is re
eived, based on whi
h the algorithm may su�er from aloss:

lτ (A, b) = max{0, yτ ((dA(xτ , x′τ ))2 − b) + 1
}It may be noted that this loss is a modi�ed form of the hinge loss. The goal of the onlinealgorithm is to redu
e the 
umulative loss. The matrix A and the threshold b are updated atea
h step upon re
eiving the feedba
k yτ .In order to de�ne an online update rule for A and b, an orthogonal proje
tion has beenused. Suppose there is a ve
tor x ∈ R

p along with a 
losed 
onvex set C ⊂ R
p. The orthogonalproje
tion of x onto C 
an be given as:

PC(x) = argmin
x′∈C

‖x− x′‖22In order words, the aim is to �nd the 
losest point of x in the set C. Here PC(x) is the ve
tor in
C that is 
losest to x. Moreover, (A, b) is 
onsidered both as a matrix-s
alar pair and as a ve
torin R

n2+1 where the �rst n2 elements represent the matrix A where as the last element stands forthe threshold b. At ea
h time step τ , the set Cτ ⊂ R
n2+1 
an be de�ned as follows:

Cτ =
{

(A, b) ∈ R
n2+1 : lτ (A, b) = 0

}where Cτ represents a set of all those matrix-threshold pairs that attain zero loss on the 
urrentexample i.e. (xτ , x
′
τ , yτ ). Moreover, it is known that A � 0 and the threshold must be greaterthan or equal to 1, sin
e the loss between two similar points would be non-zero if b < 1. Thisallows to de�ne another set Ca whi
h is the set of all admissible matrix-threshold pairs:

Ca =
{

(A, b) ∈ R
n2+1 : A � 0, b ≥ 1

}The update for the online algorithm 
onsists of two proje
tions: �rst onto Cτ and then onto
Ca. The �rst proje
tion onto Cτ gives (Aτ̂ , bτ̂ ) as the matrix-threshold pair. The aim is tokeep (Aτ̂ , bτ̂ ) as 
lose as possible to (Aτ , bτ ), while (Aτ̂ , bτ̂ ) is for
ed to attain a zero loss on the
urrent example. The se
ond proje
tion onto Ca gives (Aτ+1, bτ+1) whi
h makes sure that thenew matrix-threshold pair is admissible for de
iding whether the 
urrent examples are similar ornot.Proje
tion onto CτIn order to proje
t (A, b) onto Cτ , w ∈ R

n2+1 is 
onsidered to be the ve
tor representationof (A, b). Similarly wτ , wτ̂ and wτ+1 represent the ve
tors asso
iated with (Aτ , bτ ), (Aτ̂ , bτ̂ ) and
(Aτ+1, bτ+1) respe
tively. Moreover, let Xτ ∈ R

n2+1 be the ve
tor representation of the matrixs
alar pair (−yτvτv
t
τ , yτ ) where vτ = xτ − x′τ . It is further known that the proje
tion onto Cτ29



Chapter 2. State of the Art Approa
hes to Metri
 Learningensures zero loss whi
h means that:
yτ (b− d2A) ≥ 1

⇒ yτb− yτd
2
A ≥ 1

⇒ yτb− yτ (x− x′)A(x− x′)t) ≥ 1The de�nition of Cτ 
an be rewritten as:
Cτ =

{

w ∈ R
n2+1 : w.Xτ ≥ 1

}The proje
tion of wτ onto Cτ 
an be given by:
PCτ (wτ ) = wτ + ατXτwhere ατ = 0 i� w.Xτ ≥ 1. Otherwise ατ = 1− wτ .Xτ

‖Xτ‖22
. Furthermore, ατ 
an be written as:

ατ =
lτ (Aτ , bτ )

‖Xτ‖22
=

lτ (Aτ , bτ )

‖vτ‖42 + 1The updates for Aτ as well as for bτ 
an now be written as:
Aτ̂ = Aτ − yτατvτv

t
τ , bτ̂ = bτ + ατyτProje
tion onto CaAfter proje
ting (Aτ , bτ ) onto Cτ , (Aτ̂ , bτ̂ ) is proje
ted onto Ca whi
h 
an be written as:

(Aτ+1, bτ+1) = PCa(Aτ̂ , bτ̂ )where Aτ+1 is the proje
tion of Aτ̂ onto the set of all positive semi-de�nite (PSD) matri
es and
bτ+1 is the proje
tion of bτ̂ onto the set b ∈ R : b ≥ 1. The proje
tion of bτ̂ onto the aforemen-tioned set is maximum of 1 and bτ̂ . In order to proje
t Aτ̂ onto the set of all PSD matri
es, thereare two possibilities: yτ = +1 or yτ = −1. In 
ase where the 
urrent examples are dissimilar, theupdate would be Aτ̂ = Aτ + ατvτv

t
τ where ατ ≥ 0. This implies that Aτ̂ � 0. Hen
e the proje
-tion of Aτ̂ onto the set of PSD matri
es is Aτ̂ . In 
ase the 
urrent examples are similar, thereis no surety that Aτ̂ � 0. Sin
e Aτ̂ is symmetri
, it 
an be rewritten in terms of its eigenvaluesand eigenve
tors:

Aτ̂ =

n∑

i=1

λiuiu
t
iwhere λi stands for the i'th eigenvalue while ui represents the i'th eigenve
tor of Aτ̂ . Sin
e thematrix Aτ+1 is the proje
tion of Aτ̂ onto the PSD 
one, Aτ+1 
an be written in the followingmanner:

Aτ+1 =
∑

i : λi>0

λiuiu
t
iHere it 
an be seen that the interest lies only in the positive eigenvalues. Moreover, using theeigenvalue Interla
ing Theorem, it is known that Aτ̂ 
an have at most a single negative eigenvalue.With this, the proje
tion onto the PSD 
one 
an be written as:

Aτ+1 = Aτ̂ − λnunu
t
n30



2.3. Metri
 Learning

Figure 2.5: Neighbors of the instan
e x(i): before and after training [108℄where λn represents the minimal eigenvalue of Aτ̂ while un is its 
orresponding eigenve
tor.Large s
ale 
lassi�
ation using distan
e metri
 learningWeinberger et al. [110℄, [112℄ have used the Mahalanobis distan
e for k nearest neighbor(kNN) using semi-de�nite programming. A semi-de�nite program, also known as SDP, is alinear program where the matrix whose elements are linear in the unknown variables must bepositive, semi-de�nite having no negative eigenvalues. SDPs are 
onvex whi
h means that theglobal minimum 
an be 
omputed easily.The distan
e is optimized in su
h a way that the k nearest neighbors belonging to the same
lass (also 
alled as the target neighbors) are attra
ted while examples belonging to di�erent
lasses (
alled as the impostors) are separated by a large margin. In other words, the targetneighbors de�ne a perimeter around an example x(i), whi
h the di�erently labeled inputs shouldnot invade. Furthermore, the di�erently labeled examples that invade this perimeters are referredto as the impostors. The overall aim is to redu
e the number of impostors. This is shown in�gure 2.5. The distan
e is optimized with the view that the target neighbors (belonging to thesame 
lass) are lo
ated within a smaller radius after training; while di�erently labeled neighborsare lo
ated outside this radius, with a margin of at least one unit distan
e. This helps to maintaina large (�nite) distan
e between the impostors and the perimeters established by target neighbors.The idea is to learn a linear transformation L where:
d(x, x′) = ‖L(x− x′)‖22In order to des
ribe the impostors, x(j) is 
onsidered to be a target neighbor of an example x(i)with a label y(i). Then x(l) represents an impostor with the label y(l) 6= y(i) su
h that:

‖L(x(i) − x(l))‖22 ≤ ‖L(x(i) − x(j))‖22 + 1 (2.3)The loss fun
tion is made up of two terms: the �rst one pulls the target neighbors 
loser andredu
es the distan
es while the se
ond one a
ts to push di�erently labeled examples further apartand hen
e in
reases the distan
es. 31



Chapter 2. State of the Art Approa
hes to Metri
 LearningThe �rst term in the loss fun
tion penalizes large distan
es between an input and its targetneighbors. The sum of these squared distan
es 
an be given by:
εpull(L) =∑ ‖L(x(i) − x(j))‖2where x(j) is a target neighbor of x(i). A good thing about this approa
h is that it only penalizeslarge distan
es between an input example and its target neighbors and not with all of the exampleshaving similar 
lass labels.The se
ond term in the loss fun
tion disfavors small distan
es between an input and all otherexamples that do not share the same 
lass label. In order words, this terms penalizes the violatorsof the equation 2.3:

εpush(L) =∑
ij

∑

l

(1− y(il))[1 + ‖L(x(i) − x(j))‖2 − ‖L(x(i) − x(l))‖2]+where y(il) = 1 if and only if y(i) = y(l), and is 0 otherwise. Moreover, the terms [z]+ = max(z, 0)and represents the standard hinge loss. It has been further suggested that the unit margin 
anbe 
hanged if desired.With this, the two terms (εpull and εpush) 
an be 
ombined to form the loss fun
tion. Asthe two terms have di�erent aims: to attra
t the target neighbors and to repel the impostors; aweighting parameter µ ∈ [0, 1] is used:
ǫ(L) = (1− µ) εpull(L) + µ εpush(L)The loss fun
tion de�ned above is not 
onvex. In order to redu
e the loss, gradient des
entalgorithm 
ould be used. However, this might result in lo
al minima. A work around is torewrite the loss fun
tion as an instan
e of semi-de�nite programming.The algorithm has been tested on di�erent datasets e.g. Iris, Wine, Isolet et
. The Prin
ipalComponent Analysis (PCA) is used in order to redu
e the number of dimensions. The resultsshow signi�
ant improvement as 
ompared to kNN algorithm employing Eu
lidean distan
e onall but the smallest data sets. The results are even 
omparable to the one using multi-
lassSVMs [25℄.Xing's Distan
e Metri
 Learning Algorithm for ClusteringXing et al. [114℄ were the people who �rst proposed a 
onvex obje
tive fun
tion. An algorithmwas presented to learn the Mahalanobis distan
e for 
lustering based on similar and dissimilarpairs of points. Given a set of data points, the aim is to minimize the squared distan
e betweensimilar examples or points while maximizing the distan
es between di�erently labeled examples.If two examples x and x′ are similar, (x, x′) ∈ S where S represents all of the similar examples(also known as equivalen
e 
onstraints) just like the ITML algorithm of Davis et al [28℄. Similarly

D represents the pairs whi
h are dissimilar in 
ase the information about the dissimilar pairs isavailable. On the 
ontrary, all of the pairs whi
h are not in S, 
an be added in the D set to formthe inequivalen
e 
onstraints. This 
an be expressed in the form of an optimization problem:minA∈Rdxd

∑

(x,x′)∈S ‖x− x′‖2A,su
h that ∑

(x,x′)∈D ‖x− x′‖A ≥ 1,

A � 032
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Figure 2.6: Xing's algorithm on 3 
lass data (a) Original data (b) Res
aling 
orresponding tolearned diagonal matrix A (
) Res
aling 
orresponding to full A [114℄The 
onstraint on D makes sure that the problem is feasible and bounded and A does not
ollapse the dataset into a single point in whi
h 
ase the distan
e between all similar pointswould be
ome zero. Furthermore, it has been argued that if the squared distan
e is used forthe dissimilar points as well, then the matrix A will always have rank 1 and the data would beproje
ted on a line. Both of the 
onstraints are 
onvex whi
h makes the optimization problemas 
onvex. The algorithm is used to learn both diagonal A as well as full A. For diagonal A, theNewton-Raphson method has been used to learn A whereby g(A) is minimized:
g(A) =

∑

(x,x′)∈S

‖x− x′‖2A − log ∑

(x,x′)∈D

‖x− x′‖A



The �rst term or the distan
e between the similar points is redu
ed while the se
ond term withinthe logarithm or the distan
e between dis-similar examples is in
reased.In 
ase where the full matrix is learned, the Newton-Raphson method 
annot be used sin
eit be
omes way too expensive 
omputationally. This is the reason why gradient des
ent is usedlike Weinberger's LMNN [112℄, along with the iterative proje
tions to learn A. The resultingproblem 
an be given as: maxA g(A) =
∑

(x,x′)∈D ‖x, x′‖Asu
h that f(A) =
∑

(x,x′)∈S ‖x, x′‖2A ≤ 1,

A � 0

(2.4)Here, the aim is slightly 
hanged and the e�ort is made to maximize the distan
e between dis-similar points whi
h belong to D whereas the original optimization problem was to minimize thedistan
e between the similar points. Figure 2.6 shows a 3 
lass data in whi
h 
ase the 
entroidsof the 
lusters di�er only in x and y dire
tions. As shown in �gure 2.6(b), the learned diagonalmetri
 
orre
tly ignores the z dire
tion. Furthermore, in the 
ase of full A (�gure 2.6(
)), thealgorithm �nds a proje
tion of the data on a line that maintains the separation between the
lusters.A gradient as
ent step is used to optimize equation 2.4 whi
h 
an be given as A = A +

α∇Ag(A). This is followed by repeatedly proje
ting the A matrix onto the sets C1 = {A :
∑

(x,x′)∈S ‖x−x′‖2A ≤ 1} and C2 = {A : A � 0}. The proje
tion of A onto C1 
an be written as:
A = argminA′{‖A′ −A‖2F : A′ ∈ C1} 33



Chapter 2. State of the Art Approa
hes to Metri
 Learningwhere ‖.‖F represents the Frobenius norm, a type of the entry-wise norms. A Frobenius norm ofa matrix P is the square root of the sum of the entries pij where i represents the rows whereas
j stands for the 
olumns. For the se
ond proje
tion onto C2, the diagonalization of the matrix
A is found:

A = Xt
ΛXwhere Λ is a diagonal matrix that is 
omposed of the eigenvalues of the matrix A (λ1, · · · , λn)and the 
olumns of the matrix X make up the eigenve
tors for A. In order to 
onvert A intoa positive semi-de�nite matrix, only the positive eigenvalues are taken into a

ount and thenegative ones are repla
ed with zeros. The following formula 
an then be used:

A′ = Xt
Λ

′Xwhere Λ
′ is a diagonal matrix 
onsisting of only positive eigenvalues.Xing's algorithm is bat
h and does not has a 
omputationally e�
ient online version like thatof POLA [99℄. Moreover, there are no theoreti
al error guarantees whi
h means that there is nosurety that the algorithm would make a limited number of mistakes on unseen examples. It is alsoimpli
itly assumed that the 
lasses form a single 
ompa
t 
onne
ted set, whi
h is detrimental inthe 
ase of highly multimodal 
lass distributions.Maximally Collapsing Metri
 Learning (MCML)Another global distan
e metri
 learning approa
h is developed by Globerson et al. [41℄ wherethe aim is to 
ollapse all of the examples belonging to the same 
lass to a single point and pushthe examples from di�erent 
lasses in�nitely apart. The goal is to learn a Mahalanobis distan
emetri
. The obje
tive fun
tion in this 
ase is 
onvex over the spa
e of positive, semi-de�nitematri
es, whi
h in other words mean that there is a unique minimum. The goal is to have zerodistan
e between the examples from the same 
lass where as the distan
e between examplespertaining to di�erent 
lasses should be in�nite. A 
onditional distribution has been de�ned forea
h of the training examples x(i) over other examples x(j) where i 6= j:

pij =
exp(−‖Ax(i) −Ax(j)‖2

∑

j 6=i exp(−‖Ax(i) −Ax(j)‖2 , pii = 0where pij represents the probability with whi
h an example x(i) sele
ts another example x(j) asits neighbor and x(j) share the 
lass label with x(i). The ideal 
ase where all the examples fromthe same 
lass are mapped to a single point and in�nitely apart from the examples belonging todi�erent 
lasses 
an be represented as:
p′ij ∝

{

1 y(i) = y(j) (dij = 0)

0 y(i) 6= y(j) (d∞ = 0)The idea is to �nd a matrix A in su
h a way that pij is as 
lose as possible to p′ij . This 
an bea
hieved by minimizing the KL divergen
e between the two probability distributions:
minA

∑

j

KL[p′ij | pij]34
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 Learningsu
h that A is a PSD matrix. This optimization problem is 
onvex over the spa
e of PSD matri
esand has a unique solution like many other approa
hes dis
ussed earlier: POLA [99℄, Weinbergeret al. [112℄, Xing et al. [114℄. However, a disadvantage of this approa
h is that it assumes thatthe examples in ea
h 
lass have a unimodal distribution.This method is based on Neighborhood Components Analysis (NCA) by Goldberger et al. [42℄who also learn a Mahalanobis distan
e metri
 but espe
ially for kNN 
lassi�
ation. This algo-rithm �nds the leave-one-out error or the 0−1 loss from a sto
hasti
 variant of kNN 
lassi�
ation.However, the obje
tive fun
tion is not 
onvex unlike MCML and 
an su�er from the problem oflo
al minima.Online Learning of Image Similarity - OASISGal et al. [16℄ learn image (dis)similarity using an online algorithm 
alled OASIS for OnlineLearning for S
alable Image Similarity learning. OASIS learns a bi-linear distan
e measure andbelongs to the Passive Aggressive family of learning algorithms. The aim is to learn a pairwisesimilarity fun
tion S with large margin and an e�
ient hinge loss based on the relative similarityof pairs of images. It does not require the similarity measure to be PSD or even symmetri
 unlikemany other works e.g. Weinberger et al. [112℄, Xing et al. [41℄ et
.In order to dig deeper into the algorithm, 
onsider X to be a set of images, and rij =

r(x(i), x(j)) ∈ R be a pairwise relevan
e measure whi
h shows how strongly x(i) is related to x(j).Furthermore, an assumption is made that there is no full a

ess to all the values of r. On theother hand, it is assumed that a 
omparison 
an be made between the available relevan
e valuesto determine whi
h one is more relevant. Furthermore, if the relevan
e value is not available fora given pair of images then its value is 
onsidered as zero. The reason is that most of the imagesare not relevant to one another. The aim is to learn a Similarity fun
tion S(x(i), x(j)) in su
h amanner that the pair having more relevant images are assigned higher s
ores:
S
(

x(i), x(j)
+
)

> S
(

(x(i), x(j)
−

)

, ∀x(j), x(j)+ , x(j)− ∈ Rsu
h that r((x(i), x(j)
+
) > r((x(i), x(j)

−

)A parametri
 similarity fun
tion S having a bi-linear form is 
onsidered as follows:
SW (x(i), x(j)) ≡ x(i)

t

Wx(j)where W ∈ Rd×d. The idea is to �nd a fun
tion S in su
h a way that all of the triplets obey thefollowing inequality:
SW (x(i), x(j)

+

) > SW (x(i), x(j)
−

) + 1where 1 represents the value of the safety margin. The hinge loss for a triplet 
an be 
al
ulatedin the following manner:
lW (x(i), x(j)

+

, x(j)
−

) = max{0, 1− SW (x(i), x(j)
+

) + SW (x(i), x(j)
−

)
}The goal is to minimize the global or the 
umulative loss LW over all of the possible triplets:

LW =
∑

(x(j),x(j)+ ,x(j)−)∈R

lW (x(i), x(j)
+

, x(j)
−

) 35



Chapter 2. State of the Art Approa
hes to Metri
 LearningPassive Aggressive algorithm [23℄ is applied in an iterative fashion to optimize W where W isinitialized to W0 = I. At ea
h iteration i, a triplet is sele
ted randomly before solving thefollowing 
onvex problem having a soft margin:
Wi = arg minW 1

2‖W −Wi−1‖22 +Cξsu
h that lW (x(i), x(j)
+
, x(j)

−

) ≤ ξ and ξ ≥ 0The online update for W 
losely resembles that of PA-I and 
an be written as:
Wi = Wi−1 + τiV

iwhere
τi = min{C, lWi−1(x

(i), x(j)
+

, x(j)
−

)

‖V i‖2

}

and V i =
[

x
(i)
1 (x(k)

+ − x(j)
−

), · · · , x(i)d (x(k)
+ − x(j)

−

)
]tFurthermore, loss bounds have been provided for OASIS based on the one given for the passiveaggressive algorithms. This method is tested on Google proprietary data and found to be fastereven than the fast implementation of LMNN by Weinberger et al. [111℄. OASIS was also testedwith symmetri
 as well as PSD matri
es. In order to enfor
e symmetry, W is proje
ted onto theset of symmetri
 matri
es W ′ in the following manner:

W ′ = sym(W ) =
1

2
(W t +W )However, adding symmetry did not improve the results. For the PSD proje
tion, two di�erentstrategies were employed: proje
ting after every i iterations and proje
ting only on
e the trainingis 
ompleted. It was found out that the best performan
e 
an be a
hieved by proje
ting intoPSD after learning.Lo
al Distan
e Metri
 LearningAs opposed to global distan
e metri
 learning algorithms where the aim is to optimize 
ompa
t-ness and separability in a global fashion, lo
al distan
e metri
 learning algorithms try to optimizelo
al 
ompa
tness and lo
al separability. In general, most works in distan
e metri
 learning learnglobal distan
e fun
tions whi
h keep all points belonging to the same 
lass nearer while the pointspertaining to di�erent 
lasses are separated. In 
ase the 
lasses have multimodal distributions,it be
omes very di�
ult to satisfy the two goals (within-
lass 
ompa
tness and between-
lassseparability) simultaneously as shown in �gure 2.7 [118℄.In lo
al distan
e metri
 learning, the fo
us shifts on the lo
al pairs where the pairs belongingto the same mode of a 
lass are brought nearer while the nearby pairs from di�erent 
lasses areseparated. Yang et al. [118℄ have presented a probabilisti
 framework in order to learn the lo
al
onstraints.Using the notations de�ned for global metri
 learning algorithms, the probability of makingthe right predi
tion for a test example x (denoted by Pr(+|x)) 
an be de�ned in the following36
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Figure 2.7: Original data distribution (left) and data distribution adjusted by a global distan
efun
tion(right)manner: Pr(+|x) =

∑

x(i) ∈φS(x)

f(x, x(i))

∑

x(i) ∈φS(x)

f(x, x(i)) +
∑

x(j) ∈φD(x)

f(x, x(j))where S represents the equivalen
e 
onstraints, D stands for the inequivalen
e ones and f(x, x′)is a kernel fun
tion whi
h 
an be de�ned as:
f(x, x′) = exp(−‖x− x′‖2A)The log likelihood for S as well as for D 
an be written as:
Ll(A) =

∑

x∈T

log Pr(+|x)where T represents all of the data points present in the sets S and D. Using the maximum likeli-hood prin
iple, the lo
al distan
e problem 
an be written in terms of the following optimizationproblem: max
A∈Rdx d

Ll(A)su
h that A � 0It may be noted that when an example x(i) is relatively far from x 
ompared to other examplesin φS(x) and φD(x), the kernel value f(x, x(i)) will be smaller than the kernel values for otherexamples (sin
e the kernel value between two examples in inversely proportional to the distan
ebetween them). This explains the fa
t that the examples that are distant from ea
h other wouldhave a lesser impa
t on the obje
tive fun
tion Ll as 
ompared to the ones whi
h are 
lose to oneanother. 37



Chapter 2. State of the Art Approa
hes to Metri
 LearningAnother lo
ally adaptive distan
e metri
 learning algorithm is used in Hastie and Tibshi-rani [48℄. However, in this 
ase, the lo
ality must be spe
i�ed in advan
e whi
h is a di�
ulttask.2.3.2 Similarity Metri
 LearningSimilarity is a quantity that re�e
ts the strength of relationship between two obje
ts. It normallyhas the values in the range of either −1 to +1 or the values are normalized into 0 to 1. One ofthe widely used similarities is 
osine similarity. The 
osine similarity between term frequen
y-inverse do
ument frequen
y (tf-idf) ve
tors is used in information retrieval and text mining fordo
ument 
lassi�
ation. It has also been demonstrated to be a useful measure in gene expresspro�ling. The similarity between two examples x(x1, x2, · · · , xd) and x′(x′1, x
′
2, · · · , x′d), withangle Θ 
an be 
al
ulated utilizing 
osine fun
tion as given in the equation:sim(x, x′) = 
osΘ =

xtx′

‖x‖‖x′‖ =
x1x

′
1 + x2x

′
2 + · · · + xdx

′
d

√

x21 + x22 + · · · + x2d

√

x′21 + x′22 + · · · + x′2dThis ratio de�nes the 
osine angle between the two ve
tors where ‖.‖ represents the Eu
lideannorm of an example. Furthermore, it 
an be noted that sim(x, x′) = 1 if and only if x = x′,that means the x and x′ refer to the same example. And sim(x, x′) = 0 if and only if x ⊥ x′,that means the x and x′ share nothing in 
ommon (in 
ase of do
uments, this means that xand x′ share no words at all). With the de
rease in the angle between the ve
tors, the value of
osine approa
hes 1, meaning that the ve
tors are getting 
loser and the similarity is in
reasing.This ratio 
an be used as a similarity measure between any two ve
tors representing do
uments,queries, snippets, images or a 
ombination of these. In Ve
tor Spa
e Model (VSM), x and x′
an be repla
ed by a do
ument d(i) and a query q(j) to 
al
ulate the similarity between a query
q(j) and the list of do
uments ranked based on their similarity with the given query. A goodthing about 
osine similarity is that it is already normalized. Sin
e the examples are alreadynormalized to unit length, the 
osine similarity degenerates to the inner produ
t:sim(x, x′) = xtx′Threshold LearningYang et Liu [119℄ have proposed a variant of kNN algorithm, in whi
h a 
lass spe
i�
 threshold
b(j) is learned using a validation set of examples. Cosine similarity has been 
hosen and thismethod has been applied for text 
ategorization in order to �nd the similarity between twodo
uments. The de
ision rule for a test do
ument x with respe
t to the 
ategory c(j) 
an bewritten as:

p(x, c(j)) =
∑

d(i)∈kNN

sim(x, d(i)) p(d(i), c(j))− b(j)where sim(x, d(i)) is the 
osine similarity between a test do
ument x and a training do
ument
d(i) (one of the k nearest neighbors of do
ument x); p(d(i), c(j)) is the 
lassi�
ation for do
ument
d(i) with respe
t to 
ategory c(j) (1 if it belongs to the 
ategory or 0 otherwise). Apart fromlearning 
ategory spe
i�
 thresholds, a similarity matrix is not learned and 
osine is rather used38



2.3. Metri
 Learningin its original setting. A 
ross-
lassi�er 
omparison has also been performed between SVM, kNN,Linear Least Squares Fit (LLSF), Neural Network (NNet) and Naïve Bayes (NB) algorithms.The results show that the kNN performs better as 
ompared to LLSF, NNet and NB but isoutperformed by SVM for the mi
ro-level analysis. On the other hand, the ma
ro-level analysisindi
ate that the performan
e of SVM, kNN and LLSF are 
omparative and is better than NBand NNet approa
hes.Neural Network Based Similarity Metri
 LearningArti�
ial Neural networks (ANN) have been used both in supervised (e.g. 
lassi�
ation) as well asunsupervised settings (self-organizing maps). Diligenti et al. [32℄ have tried to learn similaritiesbased on a set of 
omparisons between pairs of examples while using multi-layer per
eptron(MLP). The key idea is to have a mapping where the similar examples are 
loser in the outputspa
e while at the same time the dissimilar examples are far apart.Mella
i et al. [72℄ as well as Maggini et al. [68℄ have learned similarities as opposed to distan
esusing neural networks. More spe
i�
ally, a feed-forward multi-layer per
eptron (MLP) has beenemployed. A MLP is a modi�
ation of the linear per
eptron with three or more layers (input,output and one or more hidden) of neurons or nodes. This te
hnique is termed as a similarityneural network (SNN) whereby a non-negative and symmetri
 fun
tion is learned.The training phase is based on dyadi
 supervisions (similar or dissimilar). The SNN is madeup of a single hidden layer with all the hidden neurons fully 
onne
ted with the input and outputlayers. Furthermore, ba
kpropagation algorithm is used to �netune the system with the followingproperties:1. The similarity (sim) or the output range is [0, 1] guaranteed by the use of sigmoidal fun
-tion,2. The similarity between two examples x(i) and x(j) is symmetri
 i.e. sim(x(i), x(j)) =

sim(x(j), x(i)),3. Similarity is not a metri
 sin
e sim(x(i), x(i)) = 1 and the triangle inequality 
annot beguaranteed.SNN was evaluated on UCI datasets [36℄ (Iris, Balan
e and Wine) using similar pairs (pairsbelonging to the same 
lass) and dissimilar ones (pairs pertaining to di�erent 
lasses). It was
ompared with Eu
lidean and Mahalanobis distan
es using the 
umulative neighbor purity indexwhi
h measures the per
entage of 
orre
t neighbors up to the k-th neighbor, averaged over theentire data set.Similarity Based Classi�
ationBernal et al. [5℄ have developed a similarity based 
lassi�
ation algorithm (SBC) in whi
h the
on
ept of maximal margin has been repla
ed, whi
h is basi
ally a binary 
on
ept, by a 
on
eptof robustness of the de
ision fun
tion that is independent of the number of 
lasses. E�e
tivelythe repla
ed 
on
ept is equivalent to the maximal margin in the binary 
ase. 39



Chapter 2. State of the Art Approa
hes to Metri
 LearningGiven a set of n 
lass-labeled training obje
ts (x(i), y(i)), i = 1, · · · , n, where y(i) representsthe 
lass of the example x(i), and for an un
lassi�ed obje
t x′, the 
lass similarity of x′ is de�nedwith respe
t to a 
lass C in the following manner:
SC(x

′) =
∑

x(k)∈C

αk sim(x(k), x′) (2.5)where sim(, ) is the similarity fun
tion and αk ≥ 0 shows the relative importan
e given to ea
h
x(k) with respe
t to 
lassi�
ation. Thus, the 
lass of x′ 
an be predi
ted using the followingfun
tion:

C(x′) = argC{max(SC(x
′))} (2.6)From equation 2.6, a stronger version 
an also be derived, whi
h requires that not only x′ is moresimilar to 
lass C than any other 
lass, but is also more similar to 
lass C than it is to the unionof any other 
olle
tion of 
lasses. The stronger rule 
an be written as:

C(x′) = argC{max(SC(x
′) >

∑

D 6=C

SD(x
′))}Moreover, in order to 
ompare this algorithm with 
lassi
al ma
hine learning ones that dealwith binary 
lassi�
ation, the 
ase of only two 
lasses A and B is also 
onsidered. Thus theequation 2.5 
an be written in another way:

SA(x
′)− SB(x

′) > 0 ⇒ C(x′) = A

SA(x
′)− SB(x

′) < 0 ⇒ C(x′) = B

SA(x
′)− SB(x

′) = 0 ⇒ C(x′) is not de�nedFor the similarity measures, Radial Basis fun
tions (RBF) and polynomial kernels have beensele
ted. RBF 
al
ulates the distan
e between two points using the formula:
s(x, x′) = exp(

‖x− y‖2
2σ2

)The similarity matrix is de�ned as:
S = [δ s(x(i), x(j))]where i, j ∈ n, δ = 1 i� C(x(i)) = C(x(j)), and δ = −1 otherwise.Some other Similarity Metri
 Learning methodsGrabowski et al. [46℄ have des
ribed a method for learning similarities on 
omplex stru
tureswhere similarity spa
es are �rst learned on elementary domains like the domain of simple at-tributes et
. This is followed by learning these spa
es on approximation spa
es, whi
h 
an be
onstru
ted from similarity spa
es. The �nal goal in this 
ase is to design similarities to be usedfor automated ontology extra
tion from ri
h, 
omplex stru
tures. Interestingly, the similaritymeasure 
onsidered is an asymmetri
 variant of the Ja

ard 
oe�
ient. However, this approa
hin general is more in
lined towards feature sele
tion than the similarity metri
 learning.40



2.4. How to use the best features for a datasetAnother interesting work is the one des
ribed by Hust [52℄, on Collaborative InformationRetrieval (CIR), where individual users 
ollaborate to improve the overall Information Retrievalsystem. Here, a variant of the 
osine similarity is learned to re-rank the do
uments.Peterson et al. [84℄ have shown that it is better to use weight-optimized 
osine similarityinstead of weighted Eu
lidean distan
e on UCI 
olle
tions like Pima, Ionosphere et
. Geneti
Algorithms are employed to improve the performan
e of kNN using weight and o�set optimiza-tions. In the 
ase of Eu
lidean distan
e, ea
h feature j of an example x(i) is transformed in thefollowing manner:
x′

(i)
j = x

(i)
j ∗ wjwhere w represents the weight ve
tor. Eu
lidean distan
e is invariant to o�set shifting.Ea
h feature is independently shifted positively or negatively for the 
osine measure, thus
hanging the angular point of referen
e and ultimately the 
lassi�
ation:

x′
(i)
j = (x

(i)
j −Oj) ∗ wjwhere O stands for the optimization ve
tor and w for the weight ve
tor.Pearson 
orrelation is also used, whi
h measures the strength of a linear relationship betweentwo feature ve
tors x(i) and x(k) in the following manner:Pearson(x(i), x(k)) = ∑d
j=1(x

(i)
j − x̄(i))(x

(k)
j − x̄(k))

(d− 1)SDx(i)SDx(j)where x̄ is the mean value of the example x whereas SDx is its standard deviation. The rangeof pearson 
orrelation is [−1,+1]. +1 indi
ates a strong positive linear relationship while −1represents strong inverse linear relationship. On the 
ontrary, the 
osine similarity is nevernegative.Furthermore, Stahl et al. [100℄ have learned lo
al similarity measures instead of global oneswhere the similarities are 
omputed between individual attributes using an evolution programwhi
h is a spe
ial form of geneti
 algorithm. There are still some other approa
hes in whi
h theterms distan
e and similarity are used in the same 
ontext (e.g. the work of Chen et al. [17℄).Mandl [70℄ use neural networks to learn a similarity matrix based on the similarity betweendo
uments and queries. Liu et al. [66℄ des
ribe an algorithm whereby a similarity metri
 is learnedin non-orthogonal spa
e su
h that the similarity of features a�e
t the similarity of obje
ts, andvi
e versa.2.4 How to use the best features for a datasetIn general, the features of a dataset are either redu
ed to a set of more meaningful ones or featurereweighting te
hniques are used. However, there are some other situations in whi
h the di�erentfeatures of a dataset have di�erent s
ales and the s
ale e�e
ts must be removed in order to usethe attributes in an e�e
tive manner.2.4.1 Dimensionality Redu
tionIn many pra
ti
al 
ases, the number of features or the dimensions must be redu
ed to improvethe performan
e of the 
lassi�er. This is parti
ularly the 
ase when many of the features are41



Chapter 2. State of the Art Approa
hes to Metri
 Learningirrelevant or redundant. In these 
ases, the aim is to redu
e the dimensionality of the ve
torspa
e from d to d′ where d′ ≪ d. This 
an be exploited to vastly redu
e the storage andsear
h time requirements for kNN algorithm. Moreover, by 
hoosing d′ = 2 or d′ = 3, one
an 
ompute low dimensional visualizations on labeled datasets using a linear proje
tion [42℄.The matrix L in equation 2.1 is 
onsidered to be non square of size d′X d. It has been furtherargued that by using this matrix L, the 
omputational load of kNN 
an be redu
ed to quite alarge extent by restri
ting the metri
s to be those of rank at most d′. Figure 2.8 shows howGoldberger's Neighborhood Component Analysis (NCA) algorithm outperforms PCA (Prin
ipalComponent Analysis) and LDA (Linear Dis
riminant Analysis) when the data is visualized in 2dimensional spa
e. There are two broad 
ategories of feature sele
tion methods: lo
al dimensionredu
tion and global dimension redu
tion. In lo
al dimension redu
tion methods, the number ofdimensions is redu
ed separately at ea
h of the query points. On the other hand, in the 
ase ofglobal methods, the original feature spa
e is 
onverted into an optimally 
hosen subspa
e withlesser number of features [49℄.Partridge and Calvo [80℄ have de�ned a fast and simple algorithm where they 
al
ulate theapproximate prin
ipal 
omponents (PCs) of a dataset before redu
ing its dimensionality.2.4.2 Feature ReweightingThe feature reweighting algorithms learn the weights of the attributes. RELIEF (originally pro-posed by Kira and Rendell [57℄) is a simple yet an e�e
tive online feature reweighting algorithm.Unlike many other heuristi
 measures for estimating quality of the attributes, the 
onditionalindependen
e of the attributes is not assumed. Sin
e its development, many people have modi-�ed and extended this algorithm (ReliefF, RReliefF, I-Relief et
.) It has been proven su

essfulin many di�erent settings. It learns a ve
tor of weights (for ea
h of the features) des
ribing theimportan
e or quality of di�erent attributes or features.It has been shown that it solves 
onvex optimization problem while maximizing a margin-based obje
tive fun
tion using k-NN algorithm. The weights are updated based on the nearesthit (nearest example belonging to the 
lass under 
onsideration or sometimes referred to as thenearest target neighbor) and the nearest miss (nearest example belonging to other 
lasses).RELIEF learns only a diagonal matrix in the original setting. However, Sun et al. [102℄ haveextended RELIEF to learn a full distan
e matrix. It has been further proved that Relief is anonline algorithm. RELIEF outperformed standard kNN algorithm on standard UCI 
olle
tionslike Banana, Spli
e, Waveform et
.Let x(i) be a ve
tor in Rd having y(i) as the 
lass label with values +1,−1. Let w be a ve
tormeant for iteratively estimating the qualities of attributes initialized with 0. The aim is to learn
w on a set of training examples. Suppose an example x(i) is randomly sele
ted. This is followedby �nding two nearest neighbors of x(i): one from the same 
lass (termed as nearest hit or H)and other from the di�erent 
lass than that of x(i) (termed as nearest miss or M). The updaterule in 
ase of Relief doesn't depend on any 
ondition and 
an be represented as:

wl = wl −
di�(l, x(i),H(x(i))

J
+

di�(l, x(i),M(x(i)))

J
(2.7)where J represents the number of iterations, the algorithm has been run while di� is a fun
tionused to �nd the di�eren
e between the values of an attribute i for x(i) and the nearest hit or miss42



2.4. How to use the best features for a dataset

Figure 2.8: Dataset visualization results for PCA, LDA and NCA applied to 
on
entri
 rings,wine, fa
es and digits (Top to bottom). The datasets are redu
ed to 2 dimensions in ea
h
ase. [42℄
43



Chapter 2. State of the Art Approa
hes to Metri
 Learningrepresented by H or M . If the instan
es x(i) and H have di�erent values for an attribute i thenthis means that it separates the two instan
es in the same 
lass whi
h is 
ertainly not desirable, sothe quality estimation wl is de
reased. Similarly if the instan
es x(i) and M have di�erent valuesfor an attribute i then this attribute separates two instan
es belonging to di�erent 
lasses whi
his desirable, so the quality estimation for i is in
reased. In the 
ase of dis
rete attributes, thevalue of di�eren
e is either 1 (the values are di�erent) or 0 (the values are the same). However,for 
ontinuous attributes, the di�eren
e is the a
tual di�eren
e normalized to the 
losed interval
[0, 1] whi
h is given by: di�(l, x, x′) = |xl − x′l|

max(l)−min(l)Furthermore, the same di� fun
tion is used to �nd the nearest hit and the nearest miss as well,where the total distan
e is the sum of di�eren
es for all of the attributes (Manhattan distan
e).The overall aim is to learn the estimation of the qualities of attributes.The 
omplexity of Relief is O(Jdn) where J is the number of iterations, d is the number offeatures, and n represents the total number of instan
es. However, the 
omplexity is �xed for allof the s
enarios.In the original setting, RELIEF 
an only deal with binary 
lass problems and 
annot workwith in
omplete data. In order to 
ope with this problem, it was extended in the form ofRELIEFF algorithm [58℄. Instead of just �nding the nearest hit and miss, it �nds k nearest hitsand the same number of nearest misses from ea
h of the di�erent 
lasses.Mathemati
al Interpretation for RELIEF algorithmSun and Wu [102℄ have provided a mathemati
al interpretation for the RELIEF algorithm. Themargin for an instan
e x(i) 
an be de�ned as:
pi = d(x(i) −M(x(i)))− d(x(i) −H(x(i)))where M(x(i)) and H(x(i)) are the nearest miss and nearest hit for x(i) respe
tively, and d(.)represents a distan
e fun
tion. d(x) =∑l |xl| is de�ned just like the one used in original RELIEFalgorithm. The margin is positive only if x(i) is nearer to the nearest hit as 
ompared to thenearest miss, or in other words, is 
lassi�ed 
orre
tly as per the 1NN rule. The aim is to s
aleea
h feature in su
h a way that the leave-one-out error ∑n

i=1 I(pi(w) < 0) is minimized, whereI(.) is the indi
ator fun
tion and pi(w) is the margin of x(i) with respe
t to w. As the indi
atorfun
tion is not di�erentiable, a linear utility fun
tion has been used so that the averaged marginin the weighted feature spa
e is maximized:arg max
w

∑n
i=1 pi(w) =

∑n
i=1

{
∑d

l=1wl

∣
∣
∣x

(i)
l −Ml(x

(i))
∣
∣
∣−
∑d

l=1wl

∣
∣
∣x

(i)
l −Hl(x

(i))
∣
∣
∣

}

,su
h that ‖w‖22 = 1, and w ≥ 0,

(2.8)where w ≥ 0 makes sure that the learned weight ve
tor indu
es a distan
e measure. Theequation 2.8 
an be simpli�ed by de�ning:
z =

n∑

i=1

(|x(i) −M(x(i))| − |x(i) −H(x(i))|44



2.4. How to use the best features for a datasetand the simpli�ed equation 
an be written as:max
w

wtz where ‖w‖22 = 1, w ≥ 0The Lagrangian of the above equation 
an be written as:
L = −wtz + λ(‖w‖22 + 1) +

d∑

l=1

θl(−wl)where both λ and θ ≥ 0 are Lagrangian multipliers. In order to show that the optimum solution
an be 
al
ulated in a 
losed form, the following steps are performed: the derivative of L is takenwith respe
t to w and is set to zero. This gives:
∂L

∂w
= −z + 2λw − θ = 0 and w =

z + θ

2λThis is followed by deriving the 
losed form solution for w. In order to prove that λ > 0, it issupposed that zi > 0. This implies that zi + θi > 0. In 
ase λ < 0, then this means that wi isnegative, whi
h 
ontradi
ts the 
onstraint w ≥ 0. Therefore, it 
an be dedu
ed that λ is alwayspositive.Di�erent 
ases for zi 
ould be further veri�ed using the Karush-Kuhn-Tu
ker 
ondition(∑i θiwi = 0):1. When zi = 0, θi = 0 and wi = 0;2. When zi > 0, zi + θi > 0 ⇒ wi > 0 ⇒ θi = 0; and3. When zi < 0, θi < 0 ⇒ wi = 0 ⇒ zi = −θiThe optimum solution 
an be 
al
ulated in a 
losed form in the following manner:
w =

(z)+

‖(z)+‖2
(2.9)where (z)+ = [max(z1, 0), · · · ,max(zd, 0)]

t. While 
omparing the above equation with that ofweight update rule for RELIEF, it 
an be noted that RELIEF is an online algorithm to solve theoptimization problem given in equation 2.8. This is true ex
ept when wi = 0 for zi ≤ 0 whi
h isnormally related to irrelevant features.In the original setting, RELIEF algorithm uses only a diagonal matrix. Sun and Wu [102℄have instead used a full distan
e matrix in whi
h 
ase the optimization problem 
an be writtenas: max
w

∑n
i=1 pi(w) =

∑n
i=1m

t
iWmi −

∑n
i=1 h

t
iWhi,su
h that ‖W‖2F = 1, and W ≥ 0,

(2.10)where mi = x(i) −M(x(i)), hi = x(i) −H(x(i)), and ‖W‖F represents the Frobenius norm of Wwhi
h 
an be written as: √
∑

i,j

w2
i,j =

√
∑

i

λ2
i 45



Chapter 2. State of the Art Approa
hes to Metri
 LearningHere λi stands for the ith eigenvalue for W . It is to be noted that equation 2.8 and 2.10 havesimilar meanings. Furthermore, W , being a distan
e fun
tion is symmetri
 and positive, semi-de�nite.The performan
e of a 
lassi�er 
an be enhan
ed using feature transformation me
hanisms.Two 
ommonly used ones are feature standardization and feature fuzzi�
ation.2.4.3 Feature StandardizationIt is a pro
ess used to remove the s
ale e�e
ts when di�erent features have di�erent measurements
ales [83℄. The raw feature values are transformed into z-s
ores using the mean and standarddeviation of feature values over all of the samples. The z-s
ore for ith sample and jth feature
an be written as:
zij =

x
(i)
j − µj

σjwhere x
(i)
j is the value for ith sample and jth feature or attribute, µj represents the average ofall x(i)j for feature j and σj stands for the standard deviation of all x(i)j over all of the inputexamples. In 
ase the feature values represent a Gaussian distribution, then the histogram forthe z-s
ores represent a normal distribution having zero mean and the varian
e of unity. On
ethe standardization has been performed, the range and s
ale of the z-s
ores would be similar.2.4.4 Feature Fuzzi�
ationThis te
hnique exploits the un
ertainty in feature values so as to in
rease the 
lassi�er perfor-man
e [83℄. The original feature values are repla
ed by a mapping into 3 fuzzy sets representinglinguisti
 membership fun
tions in order to fa
ilitate the semanti
 interpretation of ea
h fuzzyset. The fuzzi�
ation pro
ess starts by determining xmin and xmax as the minimum and max-imum values of x(i)j for feature j over all of the input samples i and q1 and q2 as the quantilevalues of x(i)j at the 33rd and 66th per
entile respe
tively. This is followed by 
omputing thefollowing averages: Avg1 = xmin+q1

2Avg2 = q1+q2
2Avg3 = q2+xmax

2The next step is to translate ea
h value of x(i)j for feature j into 3 fuzzy membership valueshaving the range [0, 1] as µlow,i,j µmed,i,j µhigh,i,j using the following relationships:
µlow,i,j =







1 x < Avg1
q2−x

q2−Avg1

Avg1 ≤ x < q2

0 x ≥ q2,46



2.5. Classi�er Comparison Te
hniques
µmed,i,j =







0 x < q1Avg2−xAvg2−q1
q1 ≤ x < Avg2

q2−x

q2−Avg2

Avg2 ≤ x < q2

0 x ≥ q2,

µhigh,i,j =







0 x < q1

x−q1Avg3−q1
q1 ≤ x < Avg3

1 x ≥ Avg3.The 
omputations for µlow,i,j, µmed,i,j and µhigh,i,j give 3 fuzzy sets or ve
tors µlow,j µmed,j µhigh,jof length n whi
h repla
e the original input feature.2.5 Classi�er Comparison Te
hniquesThe performan
e of di�erent 
lassi�ers 
an be 
ompared based on many di�erent metri
s. Themost widely used 
riterion is a

ura
y whi
h is the number of 
orre
t 
lassi�
ations to the totalnumber of 
lassi�
ations made. Some of the other 
riterions are pre
ision, whi
h is the ratioof the number of relevant obje
ts retrieved to the total number of obje
ts retrieved, and re
all,whi
h is measured as the number of relevant obje
ts retrieved, divided by the total number ofrelevant obje
ts (whether retrieved or not):pre
ision = P =
Number of relevant obje
ts (or do
uments) returnedTotal number of obje
ts (or do
uments) returnedre
all = R =

Number of relevant obje
ts (or do
uments) returnedTotal number of relevant obje
ts (or do
uments)Another standard evolution measure is the F-measure whi
h is a 
ombination of pre
ision andre
all, and depends on a parameter α. It 
an be de�ned as:F-measure = 1

α 1
P
+ (1− α) 1

RBy 
hoosing α = 0.5, same importan
e is given to pre
ision and re
all. In this 
ase, F-measurebe
omes the harmoni
 mean of the two values: P and R.2.5.1 Cross ValidationCross validation is basi
ally a model evaluation method. There are many di�erent types of 
rossvalidation te
hniques like holdout method, K fold 
ross validation, leave-one-out 
ross validationet
. 47
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Figure 2.9: Cross validation [101℄The holdout method is the simplest of all 
ross validation methods. In this method, thedata set is divided into training and test set. The algorithm is trained on the training set andthe performan
e is assessed on the test set. The bene�t of this method is that it requires mu
hless time to exe
ute. However, the evaluation is dependent on the distribution of examples intotraining set and the test set and it may have a high varian
e. In K fold 
ross validation, thedataset is presented K times to the 
lassi�er [120℄ as shown in the �gure 2.9. The training isdone on K−1
K

of the samples while the rest of 1
K

samples are used as a test set. At the end,the average error a
ross all K trials is found. One of the key advantages of this method is thatit hardly matters how the data is divided. Every example is sele
ted on
e in the test set while
K−1 times for the training set. The disadvantage of this approa
h is that the training algorithmhas to be exe
uted for K times, 
onsequently in
reasing the 
omputation 
ost by K times.Leave-one-out 
ross validation is equivalent to K fold 
ross validation with K 
hosen to beequal to n, the number of examples in the training set. This implies that the algorithm is run for
n times, ea
h time training on n − 1 examples and testing on the only example whi
h was left.In this approa
h also, the average error is found to evaluate the performan
e of the algorithm.2.5.2 Signi�
an
e TestsTwo systems or 
lassi�ers 
an be 
ompared based on signi�
an
e tests whi
h 
an be broadly
lassi�ed into two sub 
ategories: mi
ro level tests and ma
ro level tests [119℄. The mi
ro leveltests (e.g. s-test, p-test) are based on de
isions on individual do
ument/
lass pairs. On the otherhand, ma
ro level test (e.g. S-test, T-test et
.) is 
al
ulated from the performan
e s
ores forea
h 
ategory.A mi
ro sign test, s-test, 
ompares two 
lassi�ers, A and B. This test is based on the binary48



2.6. Con
lusionde
isions for all do
ument/
lass pairs. In order to explain this test, the following notation isused: n represents the total number of binary de
isions made by ea
h of the two 
lassi�ers, aimeasures the su

ess of 
lassi�er A for ith de
ision (i = 1, · · · , n). Similarly bi is used to 
al
ulatethe su

ess for 
lassi�er B. The allowed values for ai and bi are 0 or 1. Furthermore, m is used todes
ribe the number of times 
lassi�er A and 
lassi�er B have di�erent 
lassi�
ation. k des
ribesthe number of times the system A is better than system B i.e. ai is larger than bi. The nullhypothesis is k = 0.5m whi
h means that 50% of the time 
lassi�er A is better than 
lassi�erB or in other words k has a binomial distribution Bin(m, p) where p = 0.5. Consequentlythe alternate hypothesis says that k has a binomial distribution with p > 0.5. If m ≤ 12 and
k ≥ 0.5m, the one sided P value 
an be 
omputed using the binomial distribution:

P (Z ≥ k) =
m∑

i=k

(

m

i

)

∗ 0.5mHowever, if m ≤ 12 and k < 0.5m, P-value of the other extreme 
an be 
al
ulated as follows:
P (Z ≤ k) =

k∑

i=0

(

m

i

)

∗ 0.5mThe P-value shows the signi�
an
e level of the observed eviden
e against the null hypothesis(whether 
lassi�er A is better or worse than 
lassi�er B).If m is greater than 12, the P-value 
an be approximated using the normal distribution:
Z =

k − 0.5m

0.5
√
mApart from mi
ro level signi�
an
e tests, there are also some ma
ro levels tests e.g. S-test, T-testand T'-test et
. These tests evaluate the systems at a ma
ro level; using the performan
e s
oreson ea
h 
ategory as the unit measure. Furthermore, the authors have argued that the mi
rolevel tests are dominated by the performan
e of the 
lassi�ers on 
ommon 
ategories. On theother hand, the ma
ro level tests are more re�e
tive of the performan
e of the 
lassi�ers on rare
lasses.2.6 Con
lusionMa
hine learning studies the me
hanisms and methods by whi
h an entity 
onstru
ts and usesknowledge, with the aim of improving its performan
e with experien
e. Ma
hine learning al-gorithms 
an be 
lassi�ed into supervised (e.g. kNN algorithm, SVMs et
), unsupervised (e.g.
lustering) or semi-supervised learning algorithms. The supervised learning is based on learningfrom labeled examples. On the other hand, unsupervised learning algorithms work without anysort of supervision. Semi-supervised learning lies in between supervised and unsupervised learn-ing in whi
h 
ase the data 
onsists of labeled as well as unlabeled data. There is yet another wayin whi
h ma
hine learning algorithms 
an be distinguished: online vs bat
h learning. Many ofthe ma
hine learning algorithms rely heavily on the metri
 employed. Among the most 
ommonones are Eu
lidean distan
e and the 
osine similarity. However both of these do not take intoa

ount the underlying geometry of the spa
e in whi
h the data lie and hen
e are not the best49



Chapter 2. State of the Art Approa
hes to Metri
 Learningoptions. This has paved the way for a new resear
h theme known as metri
 learning. Metri
learning 
an be divided into distan
e metri
 learning and similarity metri
 learning. Most ofthe distan
e metri
 learning algorithms are based on learning Mahalanobis distan
e metri
, anextended form of the Eu
lidean distan
e e.g. Information Theoreti
 Metri
 Learning [28℄, LargeMargin Nearest Neighbor 
lassi�
ation [112℄ et
. However, people have showed that 
osine simi-larity should be preferred over the Eu
lidean distan
e on datasets whi
h are not ne
essarily textones. In order to sele
t the best features of a dataset for the learning pro
ess, various te
hniqueslike dimension redu
tion and feature reweighting te
hniques (e.g. RELIEF algorithm) 
ould beemployed. In order to evaluate an algorithm, 
ross validation te
hniques 
ould be used. Further-more, signi�
an
e tests are used in order to show that a method is signi�
antly better than its
ounterparts.
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3.1. Introdu
tion3.1 Introdu
tionIn do
ument �ltering, a stream of do
uments is �ltered as per the pro�les of various topi
s. In theabsen
e of any supervision, standard 
osine 
an be found between a do
ument d and the topi
sas cos(d, ti), before adding the do
ument to the pro�le having the greatest 
osine similarity. In
ase, there is some possibility of supervision, the standard 
osine 
an be adapted to learn someparameters related with the 
osine similarity. Apart from the similarity between do
uments andtopi
s, another possible one is between di�erent do
uments assigned to a parti
ular topi
 and
omes into a
tion only in the presen
e of some sort of supervision.In this 
hapter, a simple �ltering method is des
ribed whereby the kNN algorithm is adaptedto learn similarity thresholds. This represents the �rst step towards learning the 
omplete simi-larity metri
. The adaptive kNN algorithm is developed in the 
ontext of INFILE (INformationFILtering Evaluation) [9, 7℄ 
ampaign and is based on strong 
onstraints on the similaritiesbetween do
uments and topi
s and between di�erent do
uments within a topi
.The INFILE 
ampaign was run as a pilot tra
k of CLEF (Cross Language Evaluation Fo-rum) in 2008 and 2009. It was sponsored by the Fren
h National Resear
h Agen
y (ANR) 7 andwas 
o-organized by the CEA-LIST, ELDA and the University of Lille3-GERiiCO. It extendedthe TREC (Text REtrieval Conferen
e) 2002 �ltering tra
k and was basi
ally a 
ross-languageadaptive �ltering evaluation 
ampaign where the aim was to su

essfully separate relevant andnon-relevant do
uments with respe
t to a given pro�le, the do
ument and the pro�le beingpossibly written in di�erent languages. INFILE used 300,000 Agen
e Fran
e Presse (AFP) 
om-parable newswires 
overing the years 2004 to 2006 in three languages (100,000 for ea
h): Arabi
,English and Fren
h. It also in
luded a set of 50 topi
s in general and spe
i�
 domain (s
ien-ti�
 and te
hnologi
al information). The News arti
les written in di�erent languages were notne
essarily translation of ea
h other, and were en
oded in XML format and followed the NewsMarkup Language (NewsML) spe
i�
ations. NewsML is an XML standard designed to providea media-independent, stru
tural framework for multi-media news and is developed by Interna-tional Press Tele
ommuni
ations Coun
il 8. The 
ompetitors were asked to 
ompare ea
h topi
in a sour
e language to the do
uments in the target languages. Every possible sour
e/target lan-guage pair was allowed. The parti
ipants had the possibility of parti
ipating in the monolingual�ltering, 
ross-lingual �ltering (e.g. sour
e language is English and target language is Fren
h) ormulti-language �ltering (with a mixed set of do
uments from di�erent target languages).In this 
hapter, the parti
ipation in INFILE 2008 and 2009 is des
ribed in detail whi
h
overed only the monolingual parti
ipation using English language. The goal of the INFILE
ampaign was to �lter 100,000 do
uments into 50 topi
s (plus a 
ategory 'other'). Out of these50 topi
s, 30 were related to general news and events (e.g. national and international a�airs,sports, politi
s et
.), whereas the rest 
on
erned s
ienti�
 and te
hni
al subje
ts. A do
umentbelonged to zero, one or more topi
s; ea
h topi
 being des
ribed by a set of senten
es. The topi
sor pro�les have been 
reated by 
ompetitive intelligen
e (CI) professionals from INIST 9, ARIST7http://www.agen
e-nationale-re
her
he.fr/8http://www.newsml.org9The Fren
h Institute for S
ienti�
 and Te
hni
al Information Center, http://international.inist.fr 53



Chapter 3. Online and Bat
h Do
ument Filtering Using An Adaptive Nearest Neighbor AlgorithmNord Pas de Calais 10, Digiport 11 and OTO Resear
h 12. The pro�les were de�ned with thefollowing stru
ture:1. a unique identi�er2. a title des
ribing the topi
 (maximum 6 words)3. a senten
e-long des
ription of the topi
 (maximum 20 words)4. a narrative des
ribing whi
h do
ument should be 
onsidered as relevant and whi
h shouldbe termed as non-relevant (maximum 60 words)5. Keywords (maximum 5)6. an example of relevant text taken from a do
ument not present in the 
olle
tion (maximum120 words)Any of the possible 
ombinations of these tags were allowed for �ltering. An example of a topi
is given below:<top><num>110</num><title>The diversity in politi
s</title><des
>The pro�le relates to the diversity in politi
s, the existing provisions to ensure betterrepresentation of all so
ial strata</des
><narr>The relevant do
ument should des
ribe the problem of 
ultural ethni
 and so
ial diver-sity in poli
y, the parity, la
k of visibility of minorities in the politi
al arena, the �ght againstdis
rimination, the various means for enabling this diversity, and the main obsta
les en
oun-tered.</narr><keywords><keyword>Diversity in politi
s</keyword><keyword>Fight against dis
rimination</keyword><keyword>parity</keyword><keyword>visibility of minorities</keyword><keyword>Integration</keyword></keywords><sample>In the politi
al arena, the term diversity (or diverse) is used to des
ribe politi
alentities (neighborhoods, 
ities, nations, student bodies, et
.) with members who have identi�-able di�eren
es in their ba
kgrounds or lifestyles. The use of the term diversity may en
ompassdi�eren
es in ra
ial or ethni
 
lassi�
ations, age, gender, religion, philosophy, physi
al abilities,so
ioe
onomi
 ba
kground, sexual orientation, gender identity, intelligen
e, mental health, physi-
al health, geneti
 attributes, behavior, attra
tiveness, pla
e of origin, 
ultural values, or politi
alview as well as other identifying features. Politi
al 
reeds whi
h support the idea that diversity10Regional agen
y for strategi
 information and te
hnology, http://www.aristnpd
.org11http://www.digiport.org12http://www.otoresear
h.fr54



3.2. Do
ument Filtering using An Adaptive Nearest Neighbor Algorithmis valuable and desirable hold that re
ognizing and promoting these diverse 
ultures may aid 
om-muni
ation between people of di�erent ba
kgrounds and lifestyles, leading to greater knowledge,understanding, and pea
eful 
oexisten
e.[
itation needed℄ For example, "Respe
t for Diversity"is one of the six prin
iples of the Global Greens Charter, a manifesto subs
ribed to by Greenparties from all over the world. In 
ontrast to diversity, some politi
al 
reeds promote 
ulturalassimilation as the pro
ess to lead to these ends </sample></top>In 
omparison with INFILE 2008, where there was only an online task, an additional bat
h�ltering task was added in the year 2009. As opposed to the online task, where the serverprovides the do
uments one by one to the user, all of the do
uments are provided beforehand inthe bat
h task. This 
hapter des
ribes the parti
ipation in the online task of 2008 [14℄, and thebat
h one of 2009 [88℄.3.2 Do
ument Filtering using An Adaptive Nearest Neighbor Al-gorithmMany studies have shown that similarity measures are more appropriate for the kNN algorithmas 
ompared to the distan
e ones, when dealing with texts (see e.g. [87℄). This explains the fa
tthat the 
osine measure was 
hosen for do
ument �ltering rather than Eu
lidean distan
e.In order to �lter the do
uments into various topi
s, a similarity measure between the newdo
uments and topi
s is employed, along with a set of thresholds on this similarity that evolvesover time. The similarity between a new do
ument d, to be �ltered, and a topi
 ti 
an be givenas: sim(ti, d) = α ∗ cos(ti, d)
︸ ︷︷ ︸

s1(ti,d)

+(1− α)max(d′ 6=d,d′∈ti)cos(d, d
′)

︸ ︷︷ ︸

s2(ti,d)

(3.1)where α ∈ [0,1℄. The similarity given in equation 3.1 is based on two similarities: one based on adire
t similarity between the new do
ument and the topi
 (given by s1(ti, d)), and another onebetween the new do
ument and the set of do
uments already assigned to the topi
 (s2(ti, d)).One might think that only the �rst similarity would su�
e. However, this is not the 
ase sin
ethe topi
s and the do
uments do not share the same kind of stru
ture and 
ontent and hen
ethe signi�
an
e and interpretation of these two similarities is not the same.Figure 3.1 13 shows the range of 
osine similarity values for all of the do
uments with respe
tto topi
 1. It 
an be observed that most of the do
uments have the similarity even below 0.025.Furthermore, it was also observed that many of the do
uments have zero similarity with thetopi
 (i.e. all of the words in the do
ument and the topi
 are mutually ex
lusive). Similarly, themaximum value of 
osine similarity is 0.487 shared by only two do
uments (do
ument no. 13460and 72687). The average similarity value is 0.019.Nearly the same phenomenon is observed for topi
 10 as shown in �gure 3.2, ex
ept the fa
tthat the maximum value of 
osine similarity in
reases to 0.565 (for do
ument number 48187) in13The s
ale is di�erent for the two �gures sin
e fewer do
uments have greater 
osine similarity values. Hen
e,as the range of 
osine similarity in
reases, the number of do
uments appearing in that parti
ular range de
reases.55
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Figure 3.1: Cosine similarity for the 100,000 do
uments for Topi
 1

Figure 3.2: Cosine similarity for the 100,000 do
uments for Topi
 10
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ument Filtering using An Adaptive Nearest Neighbor Algorithm

Figure 3.3: Cosine similarity for 10 Nearest Neighbors for all of the Topi
sthis 
ase. The average similarity also in
reases to 0.034.Figure 3.3 gives the values for the 
osine similarity for the 10 nearest do
uments for ea
h ofthe 50 topi
s. Most the values lie in the range 0.3−0.6. The maximum value observed is 0.813 for42nd topi
 whereas the minimum value (0.170) is for topi
 number 27. Here, the average 
osinesimilarity is 0.43. It 
an also be observed that only a few do
uments have a 
osine similarity lessthan 0.2, and even a fewer have got 
osine similarity greater than 0.7.The se
ond similarity helps to �nd the do
uments whi
h are 
loser to do
uments whi
h hadalready been assigned to a topi
. α is used to 
ontrol the importan
e of the two similarities. Inthe beginning, when no do
uments are assigned to any topi
, only the similarity between a topi
and the new do
ument, s1(ti, d), is taken into a

ount for 
omputing the �nal similarity betweenthe do
ument and the topi
.The similarity in equation 3.1 
an be used for do
ument �ltering in an online or bat
h setting.The two possibilities are dis
ussed in detail.3.2.1 Online Do
ument FilteringFirst, the online do
ument �ltering algorithms [15℄ based on the similarity given in equation 3.1are des
ribed. Two thresholds were introdu
ed for ea
h of the topi
s, θ1i and θ2i :1. θ1i allows �ltering out do
uments in the early stages of the pro
ess (i.e. when only a fewdo
uments have been assigned to the topi
) and operates only on s1(ti, d). It helps to buildan initial base of 10 do
uments per topi
 using the possible feedba
k from the server (50 intotal for the whole 
olle
tion of INFILE 2008). The use of feedba
k limits the assignmentof non-relevant do
uments to the di�erent topi
s. The threshold θ1i is the value above57
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Figure 3.4: Range of 
osine similarity between topi
s and their 10 nearest do
umentswhi
h, the value of s1(ti, d) is 
onsidered to be high enough to say that the do
ument d isrelevant to topi
 ti.2. θ2i operates on the global similarity, after a 
ertain number of do
uments have been assignedto the topi
. It a

ounts for the fa
t that new information has been in
orporated in thetopi
 as explained in the algorithm.The general algorithm for online �ltering is summarized:Online Algorithm (General)Set α to α0 and all θ1i to θ10for ea
h new do
ument dfor ea
h topi
 iConstru
tion of initial set:if ( li < NB )if (s1(ti, d) > θ1i )If feedba
k is possible: Ask for feedba
k
ti ⇐ d (only if feedba
k positive)else ti ⇐ dAssignment of remaining do
uments to topi
s:else if (sim(ti, d) > θ2i )

ti ⇐ dwhere θ2i = mind∈tisim(ti, d)where li represents the number of do
uments assigned to a topi
 i. The parameter α and thethreshold θ1i were tuned during the dry run phase whi
h ran before the a
tual 
ampaign. Twotopi
s and ten do
uments were provided during the dry run phase. The value 
hosen for α0was 0.7 while that for θ10 was 0.42. It 
an be re
alled from �gure 3.3 that the average 
osinesimilarity between the 50 topi
s and their 10 nearest neighbors is 0.43 and thus very 
lose to θ10.58



3.2. Do
ument Filtering using An Adaptive Nearest Neighbor AlgorithmOn
e the initial set of do
uments has been 
onstru
ted (maximum 10 per topi
), the algorithmworks to assign the remaining do
uments to di�erent topi
s. For ea
h topi
 i, its 
orresponding
θ2i is initialized with the 
osine similarity between the topi
 and its least similar do
ument. θ2iis updated whenever a new do
ument is added in the topi
 i.Simpli�
ation of the general online algorithmIn addition to the general version of the online algorithm, a simpli�ed version has also beeninvestigated, whi
h neither uses any feedba
k nor builds an initial set of do
uments. It does notupdate the threshold θ2i unlike the general algorithm. In this version, a threshold θ is derivedfrom θ1i and θ2i a

ording to equation 3.1, whi
h integrates the two similarities θ1i and θ2i operateupon:

θ = α ∗ θ1i + (1− α) ∗ θ2iDo
uments are then �ltered a

ording to the following, simple algorithm where the threshold θrepla
es θ2i of the online algorithm.Online Algorithm (Simpli�ed)Set α to α0Assignment of do
uments to topi
s:for ea
h new do
ument dfor ea
h topi
 iif (sim(ti, d) ≥ θ)
ti ⇐ dHere again, values for the di�erent parameters were tuned during the dry run phase. This wasfollowed by slight modi�
ations of these values in the �nal experiments.3.2.2 Bat
h Do
ument FilteringHere a bat
h algorithm [89℄ to �lter the do
uments into various pro�les/topi
s is des
ribed. Itis also based on the equation 3.1 like the online algorithm. As for the online algorithm, when nodo
uments are assigned to any topi
, only the similarity between a topi
 and the new do
ument,

s1(ti, d) is 
onsidered. This similarity is used to �nd a 
ertain number of nearest neighbors forea
h of the do
ument (10 in this 
ase) whi
h eventually helps to use the se
ond similarity. Athreshold was used for ea
h of the 50 topi
s. Feedba
k is not possible in the 
ase of bat
h �lteringsin
e the 
omplete set of do
uments is transferred to the user in one go.Bat
h AlgorithmConstru
tion of initial set:for ea
h topi
 i�nd NB nearest neighbors based on s1 = cos(ti, d)for ea
h nearest neighbor d found
ti ⇐ d 59



Chapter 3. Online and Bat
h Do
ument Filtering Using An Adaptive Nearest Neighbor AlgorithmAssignment of remaining do
uments to topi
s:Set α to α0for ea
h topi
 i

θi = mind∈tisim(ti, d)for ea
h do
ument dfor ea
h topi
 iif (sim(ti, d) ≥ θi)
ti ⇐ d

θi = min(θi,mind∈tisim(ti, d))Yang and Liu. [119℄ have des
ribed a similar method, whereby they learn 
ategory-spe
i�
thresholds based on a validation set. An example is assigned to a parti
ular 
ategory only ifits similarity with the 
ategory surpasses a 
ertain learned threshold. In 
ontrary, there is novalidation set in this 
ase to learn thresholds. Nevertheless, a simulated one is 
reated by �ndingnearest neighbors for ea
h of the 50 topi
s.3.3 Comparison between Online and Bat
h AlgorithmsA detailed 
omparison between the bat
h algorithm used in 2009 and the online algorithmsdeveloped for the online 
ampaign in 2008 is dis
ussed.The main di�eren
e between the two algorithms (bat
h and general online) lies in the mannerin whi
h the initial set of do
uments relevant to the topi
s is 
reated. In the bat
h algorithm, only10 nearest neighbors are found for ea
h topi
, with the assumption that the nearest neighborsfor a topi
 would, in general, belong to the topi
 under 
onsideration. However, for the onlinealgorithm, feedba
ks were used (limited to 50) in order to add a do
ument to a pro�le if thesimilarity between a topi
 ti and a do
ument d is greater than a 
ertain threshold (θ1). Thispro
edure is repeated until either 10 do
uments have been added to ea
h of the 50 topi
s orall of the 100,000 do
uments have been en
ountered. Hen
e it is possible that a 
ertain topi
has less than 10 do
uments after the 
onstru
tion of the initial set. On the 
ontrary, the use ofnearest neighbors in the bat
h algorithm ensures that ea
h topi
 has exa
tly 10 do
uments afterthe buildup of the initial set.Furthermore, as the online algorithm builds the initial set of do
uments based on the threshold
θ1, hen
e, it is very important that this threshold is 
hosen very 
arefully (a dry run was usedto tune the value of θ1 during the online 
ampaign in 2008). On the other hand, the bat
halgorithm does not use any threshold during the 
onstru
tion of the initial set.The se
ond phase of the two algorithms, where the remaining do
uments are assigned todi�erent topi
s, is similar ex
ept the fa
t that the threshold θi in the bat
h algorithm is updated,only if the 
urrent threshold is smaller than the previously stored one. However, the onlinealgorithm does not make use of previously stored value of the threshold θ2i . This means that thebat
h algorithm is more lenient in assigning new do
uments to topi
s as 
ompared to the onlinealgorithm.Comparing the simpli�ed online algorithm with the rest of the two, it 
an be seen that as60



3.4. Evaluation Metri
sthe simpli�ed algorithm does not build an initial set of do
uments, hen
e it 
annot use s2(ti, d)unless some do
ument has been assigned to the topi
 ti.3.4 Evaluation Metri
sThe results for the di�erent runs were evaluated based on di�erent measures, namely, pre
ision,re
all, F-measure, linear utility, anti
ipation (added in 2009) and dete
tion 
ost (see [6℄ and [7℄).The results indi
ating the asso
iation of a do
ument with a pro�le were in the form of binaryde
isions. The results for a given pro�le 
an be 
ategorized as per the 
ontingen
y table 3.1.The di�erent metri
s 
an be de�ned in the following manner:Relevant Not RelevantRetrieved a bNot Retrieved 
 dTable 3.1: Contingen
y TablePre
ision is de�ned as:
P =

a

a+ bRe
all is given by:
R =

a

a+ cF-measure, whi
h is a standard 
ombination of pre
ision and re
all, and depends on a parameter
α is de�ned as: F-measure = 1

α
1

P
+ (1− α)

1

RBy 
hoosing α = 0.5, same importan
e is given to pre
ision and re
all and the F-measurebe
omes the harmoni
 mean of the two values: P and R. This means that in order to have agood F-measure, both the pre
ision as well as the re
all must be high.Dete
tion 
ost was 
onsidered in 2008 but not in 2009 sin
e the dete
tion 
ost values were of-ten low and were not dis
riminant between di�erent parti
ipants. In order to de�ne the dete
tion
ost, two measures are 
onsidered:1. The estimated probability of missing a relevant do
ument given by Pmiss =
c

a+ c2. The estimated probability of raising a false alarm on non-relevant do
ument given by
Pfalse =

b
b+ dWith this, the dete
tion 
ost 
an be de�ned:

cdet = cmiss × Pmiss × Ptopic × cfalse × Pfalse × (1− Ptopic)where cmiss is the 
ost of a missed do
ument, cfalse is the 
ost of a false alarm while Ptopic is thea priori probability that a do
ument is relevant to a given pro�le. During the INFILE 
ampaign61



Chapter 3. Online and Bat
h Do
ument Filtering Using An Adaptive Nearest Neighbor Algorithm2008, cmiss was 
hosen to be 10, cfalse = 0.1 while the value of Ptopic was given the value 0.001based on the average ratio of relevant do
uments.Linear utility is based on two parameters: importan
e given to a relevant do
ument retrieved(w1) and the 
ost of a non-relevant do
ument retrieved (w2). Linear utility 
an be written as:
u = w1 ∗ a− w2 ∗ bFiltering by linear utility is just like �ltering by estimated probability of relevan
e. For example,with w1 = 2 and w2 = 1, it 
orresponds to the rule: retrieve if P(relevan
e) > 0.33. A problemwith linear utility is that although it is bounded positively, it is unbounded negatively (negativevalues depend on the number of relevant do
uments for a pro�le). Thus, the average over allof the pro�les would give mu
h more importan
e to the few pro�les on whi
h the system hasperformed poorly. In order to average the value, the measure is s
aled in the following manner:

un =
max( u

umax
, umin)− umin

1− uminwhere umax is the maximum value of the linear utility and umin represents the minimum valuebelow whi
h a user does not 
onsider the following do
uments for the pro�le. The values 
hosenfor INFILE 2008 and INFILE 2009 were: w1 = 1, w2 = 0.5 and umin = −0.5. The value of uminwas the same as that of TREC 2002 
ampaign.Anti
ipation measure is designed to give more importan
e to systems that 
an �nd the �rstdo
ument in a given pro�le. The interest in this measure is motivated by the fa
t that in
ompetitive intelligen
e, everyone wants to be at the 
utting edge of the domain and does notwant to miss the �rst information to be rea
tive. It is 
al
ulated by the inverse rank of the �rstrelevant do
ument dete
ted in a list of relevant do
uments, averaged on all pro�les.3.5 ExperimentsThe algorithms have been run on the INFILE English 
orpus. For all of the do
uments, stemmingwas performed using Porter's algorithm [56℄. This was followed by the removal of stop-words,XML tags skipping and the building of a do
ument ve
tor (whi
h asso
iates ea
h term withits frequen
y) using the Rainbow pa
kage [71℄. During the InFILE 
ampaign, three runs weresubmitted during Online 
ampaign of 2008 while a single run was submitted during the Bat
h
ampaign of 2009. All of the topi
s' �elds were used for the �ltering pro
ess. In the 
aseof Bat
h algorithm, 10 nearest neighbors were found for ea
h of the do
ument based on thesimilarity s1(ti, d) (between a do
ument and the topi
). These do
uments were subsequentlyused to 
ompute s2(ti, d). The experiment was divided into 4 sub-parts, ea
h sub-part being runin parallel to in
rease the e�
ien
y. However, this setting meant that the thresholds for the 50topi
s were di�erent for the di�erent sub-parts.There are 1597 do
uments relevant to one or more topi
s in the INFILE data. The averagenumber of relevant do
uments per topi
 is 31.94 whereas the standard deviation on the numberof relevant do
uments per topi
 
omes out to be 28.45. The repartition of relevant do
umentsa
ross the 50 topi
s is shown in �gure 3.5. The distribution of the relevant do
uments withrespe
t to di�erent topi
s is not uniform. On one hand, some topi
s have a very small number62



3.5. ExperimentsName Campaign Algorithm Do
. ret Do
. ret - relevantRun 1 run5G Online 08 Online (with feedba
k) 7638 601Run 2 run2G Online 08 Online (w/o feedba
k) 1311 411Run 3 runname Online 08 Online (w/o feedba
k) 546 152Run 4 IMAG_1 Bat
h 09 Bat
h (w/o feedba
k) 5513 413Table 3.2: Detail about the di�erent runs

Figure 3.5: Number of relevant do
uments for ea
h topi
 in the three languages (English, Fren
hand Arabi
)of relevant do
uments e.g. topi
 no. 108, 112, 116, 140 et
. On the other hand, some topi
s liketopi
 no. 127 and 143 have got more than 100 relevant do
uments. Apart from these two topi
s,topi
 no. 101, 118, 125-130, 136, 137, 139, 141, 143 and 145 have got equal to or more than 50relevant do
uments.The general online algorithm and its simpli�ed version developed in 2008 are 
ompared withthe bat
h algorithm of 2009. Table 3.2 des
ribes the di�erent runs along with the number ofdo
uments retrieved and the number of relevant do
uments found. Various measures 
ould be
omputed like mi
ro pre
ision, mi
ro re
all et
. from table 3.2. Run 2 has the highest mi
ropre
ision whereas Run 1 has got the highest mi
ro re
all. These values are 
omputed on theentire 
orpus.For Run 2 (run2G), θ1 was 
hosen to be 0.45 while θ2 was set to 0.8. Similarly for Run 3,the values for θ1 and θ2 were 0.4 and 0.7 respe
tively.Figure 3.6, 3.7, 3.8 and 3.9 give an insight on the number of relevant do
uments retrievedduring the di�erent runs. num_ret stands for the number of do
uments retrieved, num_rel_retdes
ribes the number of relevant do
uments retrieved while num_rel is used for the a
tual numberof relevant do
uments. It is pertinent to mention that the number of relevant do
uments is notuniformly distributed among the 100,000 do
uments. Almost one �fth (approximately 300) ofthe relevant do
uments lie in the range 90,000-100,000. Another important thing is that thes
ale is not the same for the di�erent runs. From these two �gures, no signi�
ant di�eren
e 
anbe noti
ed between Run 2 and Run 4, in terms of the number of do
uments retrieved duringthe entire pro
ess. However, Run 1 returns mu
h more do
uments between 10,000-20,000 and80,000-90,000 do
uments. Similarly Run 3 retrieves more do
uments between 10,000-40,000 and50,000-70,000 do
uments. 63
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Figure 3.6: Number of do
uments retrieved for Run 1

Figure 3.7: Number of do
uments retrieved for Run 464
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Figure 3.8: Number of do
uments retrieved for Run 2

Figure 3.9: Number of do
uments retrieved for Run 3 65
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Figure 3.10: S
ore Evolution for Run 1The evolution of di�erent measures are 
omputed at di�erent times in the pro
ess, ea
h time10,000 do
uments have been pro
essed.For Run 1 (Figure 3.10), all of the measures, ex
ept utility and pre
ision, randomly vary butremain approximately the same at the end. The 
urve at the bottom represents the dete
tion
ost for all of the runs. The evolution for di�erent measures for Run1 is as follows: Pre
ision
hanges from 0.18 in the beginning to 0.29 at the end, 0.18 vs 0.20 for Re
all, 0.24 vs 0.34 forUtility, and 0.16 vs 0.20 for F-measure.For Run 4 (Figure 3.11), the 
urve just above the one meant for dete
tion 
ost, des
ribesanti
ipation. For Run 4, all of the measures randomly vary but in
rease signi�
antly as 
omparedto the initial values (0.17 vs 0.30 for Pre
ision, 0.15 vs 0.20 for Re
all, 0.15 vs 0.25 for Utility,
0.12 to 0.19 for the F-measure, and 0.04 in the beginning vs 0.125 at the end for anti
ipation)during the 
ourse of the �ltering pro
ess.For Run2 (Figure 3.12), Pre
ision de
reases from 0.25 to 0.23 during the �ltering of 100,000do
uments, Re
all's initial and �nal values are the same (0.14), Utility in
reases from the startvalue of 0.21 to 0.31 while F-measure in
reases from 0.15 to 0.19.The di�erent measures 
hange in the following manner for Run3 (Figure 3.13): Pre
isionde
reases 0.18 to 0.08, Re
all de
reases from an already low value of 0.07 to 0.05, Utility in
reasesa little bit from the initial value of 0.21 to the �nal value of 0.25, and F-measure redu
es from
0.09 to 0.04.Table 3.3 des
ribes the ma
ro values for the di�erent runs. These values represent the averages
ore over the 
omplete set of 50 pro�les. P represents pre
ision, R represents re
all, F represents66
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Figure 3.11: S
ore Evolution for Run 4

Figure 3.12: S
ore Evolution for Run 2 67
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Figure 3.13: S
ore Evolution for Run 3
Ma
ro_P Ma
ro_R Ma
ro_F Ma
ro_LU Ma
ro_DC Anti
ipationRun 1 0.306 0.260 0.209 0.351 0.007 0.307Run 2 0.357 0.165 0.165 0.335 0.008 0.317Run 3 0.366 0.068 0.086 0.311 0.009 0.207Run 4 0.256 0.295 0.206 0.205 0.002 0.430Table 3.3: Run S
ores

68



3.5. ExperimentsF-measure, LU represents linear utility while DC represents dete
tion 
ost. The best results aregiven in bold. Run 4 has the best ma
ro re
all (0.295) as 
ompared to all of the runs. It 
an benoted that Run 1, 2 and 3 are all pre
ision-oriented sin
e the pre
ision values are 
learly mu
hbetter than the re
all values. On the other hand, Run 4 is re
all-oriented sin
e it has got abetter re
all as 
ompared to the pre
ision value. The ma
ro F-measure for the Run 1 and Run
4 are signi�
antly greater than that of Run 2 and 3. However, Run 1 surpasses Run 4 in termsof ma
ro pre
ision. The overall ma
ro dete
tion 
ost is very low in all of these runs (less than
0.01), with Run 4, being the most e
onomi
al. This is a strong point for these algorithms. Thema
ro linear utility of Run 1 is greater than that of Run 4. On 
ontrary, anti
ipation for Run 4is signi�
antly better than that for the other runs.3.5.1 An Insight into the Mi
ro s
oresAs far as the mi
ro values for di�erent topi
s are 
on
erned (Referen
e Appendix), they di�er alot from topi
 to topi
. For example, Run 1 has got a re
all of 0.857 for topi
 no. 107, 0.962 fortopi
 118, 0.845 for topi
 125 and a mi
ro re
all of 0.917 with topi
 146. Among these, topi
 120and 146 have got very less number of relevant do
uments. However, among the topi
s 
onsideredabove, only topi
 125 and 146 have got a Mi
ro F-s
ore and Mi
ro linear utility greater than
0.63.Similarly for Run 2, topi
 107, 118, 120, 125, 146 and 148 have got a Mi
ro re
all greaterthan 0.70. However only topi
 107, 125 and 148 have got a Mi
ro F-s
ore and Mi
ro linear utilitygreater than 0.635.For Run 3, only topi
 no. 146 has got a Mi
ro re
all, F-s
ore and linear utility greater than0.63.In the 
ase of Run 4, only topi
 107, 119, 120, 123, 132, 140 and 146 have got a Mi
ro re
allgreater than 0.63. All of these topi
s ex
ept topi
 no. 123 
ontain fairly small number of relevantdo
uments. As for majority of these topi
s, the Mi
ro pre
ision is quite low, the Mi
ro F-s
oreremains low as well (ex
ept topi
 no. 107 and 132) The mi
ro linear utility for Run 4 is greaterthan 0.63 for topi
 no. 107 and 132. These �gures indi
ate that a high Mi
ro F-s
ore indi
atesa high Mi
ro linear utility. Similarly, in order to have a good F-s
ore, both pre
ision as well asre
all must be good enough.It 
an be easily 
on
luded from these results, that the use of limited number of feedba
ks(only 50 i.e. one per topi
) did not help to get very good results, although it helped to in
reasedthe mi
ro re
all.3.5.2 Comparison with other approa
hesTable 3.4 shows the 
omparison between the two online algorithms employed at INFILE [8℄. Theother parti
ipant was from University of Wollongong, Dubai (UOWD). It 
an be observed thatthe best performan
e was from IMAG team while using the run run5G. It retrieved the highestnumber (601) of relevant do
uments out of a total of 1597 relevant do
uments. Consequently, itgot the highest re
all as well as the highest F-s
ore among all of the di�erent runs. The run5Gwas the most useful of all of the runs. runname got the best pre
ision s
ore whereas the highestanti
ipation was for run2G. The F-measure, pre
ision and utility for run5G is the highest among69



Chapter 3. Online and Bat
h Do
ument Filtering Using An Adaptive Nearest Neighbor Algorithmteam run year num_rel_ret Pr Re F LU AIMAG run5G 2008 601 0.31 0.26 0.21 0.35 0.31IMAG run2G 2008 411 0.36 0.17 0.17 0.34 0.32IMAG runname 2008 152 0.37 0.07 0.09 0.31 0.21UOWD base 2009 20 0.00 0.01 0.01 0.03 0.05Table 3.4: Comparison between di�erent approa
hes for Online Filteringteam run num_rel_ret Pr Re F LU AIMAG IMAG_1 413 0.26 0.30 0.21 0.21 0.43UAIC uai
_4 1267 0.09 0.66 0.13 0.054 0.73SINAI topi
s_1 940 0.02 0.50 0.04 0.00 0.57Table 3.5: Comparison between di�erent approa
hes for Bat
h Filteringall of the di�erent 
ampaigns: monolingual fren
h and 
ross-language fren
h -> english.Di�erent bat
h algorithms are 
ompared in the Table 3.5. Among the other parti
ipants wereUniversitatea Alexandru Ioan Cuza of IASI (UAIC), Romania and University of Jean (SINAI),Spain. Only the best runs for ea
h of the three teams is provided. The best run in termsof pre
ision and F-measure is IMAG_1. It has also got the highest utility among the 3 runs
onsidered. Although the re
all for uai
_4 is 0.66, yet the pre
ision is only 0.09 whi
h explainsthe reason for overall low F-s
ore. However, the best anti
ipation (0.73) is for the run uai
_4.It is evident that both the runs uai
_4 and topi
s_1 are re
all oriented sin
e the re
all valuesare mu
h greater than the ones for pre
ision.3.6 Con
lusionA simple extension of the kNN algorithm using thresholds has been presented to de�ne onlineand bat
h �ltering algorithms. The results obtained 
an be deemed en
ouraging as the ma
roF-measure in the 
ase of online algorithm as well as the bat
h one equals approximately 20%, fora 
olle
tion of 100,000 do
uments and 50 topi
s, out of whi
h only 1597 do
uments are relevant.While 
omparing the online results of 2008 with those for the bat
h 
ampaign of 2009, it 
an beseen that the bat
h algorithm has a mu
h better ma
ro re
all (almost 30% against 26% in 2008)along with a lower ma
ro dete
tion 
ost (0.002 vs 0.007) and a mu
h better anti
ipation (0.430vs 0.307). Considering the evolution of di�erent measures, it 
an be observed that the values forall of the measures in
rease, with the in
rease in the number of do
uments �ltered. The maindi�eren
e between the bat
h and online algorithms lies in the way the initial set of do
uments is
onstru
ted. In bat
h algorithm, the initial set is built from �nding the 10 nearest neighbors forea
h of the pro�le, whereas feedba
ks are used in the online algorithm to 
onstru
t the initial setof do
uments. It 
an be 
on
luded from the results that the use of a limited number of feedba
ks,in general, does not help to get very good results.Furthermore, 
omparing the online results submitted by di�erent parti
ipants, it 
an be seen70



3.6. Con
lusionthat IMAG team got the best results for all of the metri
s. Moreover, the run run5G had gotthe highest re
all and F-s
ore and was the most useful of all of the runs. For Bat
h �ltering,IMAG team got the highest pre
ision, F-s
ore and Utility among all of the submitted runs.
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4.1. Introdu
tion4.1 Introdu
tionIn Chapter 3, thresholds based on 
osine similarity were learned. However, the approa
h followedis only interesting provided only a slight supervision is available. In 
ase, 
omplete supervisionis available, it is better to learn the 
omplete metri
. An example is the 
ase of 
lassi�
ationproblems where people prefer to learn the 
omplete metri
 ([28, 99, 112℄) whi
h has proved tobe a better 
hoi
e as 
ompared to only learning the thresholds.Most works on metri
 learning for kNN 
lassi�
ation have fo
used on distan
e metri
 learning(see for example [32, 99, 112℄). However, in many pra
ti
al situations, similarities may bepreferred over distan
es. This is typi
ally the 
ase when one is working on texts, for whi
hthe 
osine measure has been deemed more appropriate than the standard distan
e metri
s likethe Eu
lidean or the Mahalanobis ones. Furthermore, several experiments show that the useof the 
osine similarity should be preferred over the Eu
lidean distan
e on several, non textual
olle
tions as well (see e.g. [18, 72, 84, 87℄). Being able to e�
iently learn appropriate similaritymeasures, as opposed to distan
es, for kNN 
lassi�
ation is thus of high importan
e for various
olle
tions. If several works have partially addressed this problem (as for example [1, 46, 52℄) fordi�erent appli
ations, no previous work is known whi
h has fully addressed it in the 
ontext oflearning similarity metri
s for kNN 
lassi�
ation.There is a wide range of options for sele
ting a similarity metri
. However, the interest herelies in the s
alar produ
t of the form xtx′ where x and x′ are two examples and t represents thetranspose.A similarity metri
 between two examples x and x′ 
an be de�ned in the following manner:
sA(x, x

′) =
xtAx′

N(x, x′)
(4.1)where A is a (p × p) similarity matrix (diagonal or not) and N(x, x′) is a normalization whi
hdepends on x and x′ (this normalization is typi
ally used to map the similarity fun
tion to aparti
ular interval, as [0, 1]). Equation 4.1 represents an un
onstrained similarity metri
 learningproblem sin
e the normalization is 
ompletely independent of the similarity matrix.A generalized 
osine similarity 
an also be de�ned from the equation 4.1 in whi
h 
ase thenormalization is dependent on the similarity matrix and the similarity matrix is positive, semi-de�nite as des
ribed in the following equation:

sA(x, x
′) =

xtAx′√
xtAx

√
x′tAx′

(4.2)Here the normalization is dependent on the similarity matrix A and A is a PSD matrix.As opposed to Passive Aggressive algorithms [23℄ whi
h use diagonal approximations for afull 
ovarian
e matrix, we are interested in learning 
omplete similarity matri
es.The next se
tion des
ribes the un
onstrained similarity metri
 learning followed by its ex-tension based on PSD matri
es in Se
tion 4.3. The un
onstrained similarity metri
 learning is
ompared with the RELIEF algorithm in Se
tion 4.4. Se
tion 4.4 also 
ontains the des
ription ofa RELIEF based similarity learning algorithm (RBS) along with a stri
ter version of RBS, 
alledsRBS. Generalized 
osine similarity learning as well as its 
omparison with the un
onstrainedsimilarity learning is provided in Se
tion 4.5. 75



Chapter 4. Similarity Metri
 Learning in Nearest Neighbor Classi�
ation4.2 Un
onstrained Similarity Metri
 LearningIn this se
tion, un
onstrained similarity metri
 learning problem based on equation 4.1 is pre-sented. Equation 4.1 generalizes several, standard similarity fun
tions. For example:1. Standard 
osine measure, widely used in text retrieval, is obtained by setting A to theidentity matrix I, and N(x, x′) to the produ
t of the L2 norms of x and x′.2. Di
e 
oe�
ient is obtained, from presen
e/absen
e ve
tors (i.e. all 
oordinates of x and x′are either 0 or 1), by setting A to 2I, and N(x, x′) to the sum of the L1 norms of x and x′.3. Similarly, the Ja

ard 
oe�
ient, again 
omputed between presen
e/absen
e ve
tors, 
or-responds to A = I and N(x, x′) = |x|+ |x′| − xtx′ (where |x| denotes the L1 norm).Furthermore, the fa
t that no 
ondition is imposed on A (apart from being square) allows to
onsider both symmetri
 as well as asymmetri
 similarity fun
tions, depending on the targetedtask. For example, Bao et al. [1℄, make use of two asymmetri
 similarity fun
tions: the RelativeFrequen
y Model, whi
h is an asymmetri
 version of the 
osine, and the In
lusion ProportionModel, whi
h is an asymmetri
 version of the Di
e 
oe�
ient, and show that these asymmetri
measures are better than their symmetri
 
ounterparts in order to retrieve partial 
opies of textdo
uments.4.2.1 Problem FormulationThe problem addressed here is to learn a similarity fun
tion of the general form given in equa-tion 4.1 from the training data, to be used in kNN 
lassi�
ation. Let (x(1), c(1)), · · · , (x(n), c(n))be a training set of n labeled examples with inputs x(i) ∈ R
p and dis
rete (but not ne
essarilybinary) 
lass labels c(i) (where c(i) represents the 
lass of the ith example). The aim is to learna (p × p) similarity matrix A that aims at optimizing the kNN 
lassi�
ation where the neigh-borhood fun
tion is given in equation 4.1. To do so, for ea
h x(i), its k target neighbors areintrodu
ed as in Weinberger et al. [112℄, whi
h are the k elements in c(i) 
losest to x(i), a

ordingto a base similarity measure. For example, one may be interested in learning a matrix A whi
hgeneralizes the 
osine similarity. In this 
ase, the k target neighbors will be de�ned a

ording tothe standard 
osine similarity, and will not 
hange during the pro
ess of learning the similaritymatrix A. The target neighbors of x(i) are denoted by: y

(i)
l , 1 ≤ l ≤ k. Furthermore, for ea
h

x(i), its k nearest neighbors in c̄(i) are found, also known as the impostors and represented as:
z
(i)
l , 1 ≤ l ≤ k.A notion of separability 
an now be formalized, 
apturing the fa
t that any example shouldbe 
loser to its k target neighbors than to any other set of k examples.De�nition 1 Let S = (x(1), c(1)), · · · , (x(n), c(n)) be a training sequen
e of n ve
tors in R

d andlet k be an integer. Let (y
(i)
1 , · · · y(i)k ) be the k target neighbors of x(i) in c(i). Lastly, let c̄(i)denote the 
omplement of c(i) in the 
ategory set. It 
an be said that S is separable with somemargin γ > 0 i� there exists a (p× p) matrix A, with ‖A‖ = 1, su
h that:

∀i, ∀(z1 , · · · , zk) ∈ c̄(i),

k∑

l=1

(sA(x(i), y(i)l )− sA(x(i), zl)) ≥ γ76
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Figure 4.1: A 
lassi�
ation s
enario along with similarity valueswhere ‖A‖ represents the Frobenius norm of the matrix A. Figure 4.1 depi
ts a s
enario wherea new obje
t (in the 
enter) has to be 
lassi�ed as a router or as a swit
h based on its similaritywith the examples of these two 
lasses. Here the examples belonging to the router 
lass, alsoknown as the target examples, 
an be represented as: y1, y2 and y3, whereas the examples fromthe swit
h 
ategory, also known as the impostors, 
an be written as: z1, z2 and z3. Furthermore,an assumption is made that the value of the threshold γ is 0.3. This sequen
e is separable sin
ethe di�eren
e of the sum of similarities between the new example and the examples belonging tothe same 
lass i.e. router and the sum of similarities between the new example and the examplesfrom the swit
h 
lass is greater than the threshold value i.e. 1.8− 1.3 = 0.5Of 
ourse, in pra
ti
e, the data is not likely to be separable in the above sense e.g. when thedi�eren
e between the sum of similarities with the same 
lass examples yl and the examples fromdi�erent 
lasses zl is less than the threshold γ. Nevertheless, a measure des
ribing how 
lose amatrix A is to separate the data with margin γ 
an be de�ned as follows:De�nition 2 Let S = (x(1), c(1)), · · · , (x(n), c(n)) be a training sequen
e of n ve
tors in R
p, let

A be a (p × p) matrix su
h that ‖A‖ = 1, and let γ > 0. The γ-related measure of example i isde�ned as:
ǫi = max(0, γ −mi)with

mi =

k∑

l=1

sA(x(i), y(i)l )−max(z1 ,··· ,zk)∈ c̄(i)

k∑

l=1

sA(x(i), zl)The overall separation measure DA,γ of S with respe
t to A and γ is de�ned as:
DA,γ =

√
√
√
√

n∑

i=1

ǫ2iIf the data is separable with margin γ a

ording to de�nition 1, then there exists A su
h that:
DA,γ = 0. Looking at the example dis
ussed earlier, one 
an note that the value of mi is77
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x

(c)Figure 4.2: In (a) the input point is separated with k = 3, whereas it is not in (b). (
) illustrates thepro
ess being aimed at: moving target points 
loser to the input point, while pushing away di�erentlylabeled examples.
1.8 − 0.8 = 1.0 where 1.8 is the sum of similarities between the new example and the targetneighbors whereas 0.8 is the maximum similarity value between the example to be 
lassi�ed andthe impostors. As γ −mi = 0.3 − 1.0 = −0.7 is less than zero, hen
e the γ-related measure ǫiand the overall separation measure DA,γ be
ome zero.If no example 
an be separated by A with margin γ, then DA,γ > 0, with the property thatthe lower the DA,γ , the higher the 
apa
ity of A to separate S with margin γ.The notion of separation being 
onsidered here is relatively loose as there is no stri
t require-ment that all target neighbors must be in the k nearest neighbors of an example. Rather, theaim is that any point be, globally, 
loser to k points from the same 
lass than to k points fromany other 
lass. This simpli�
ation, also used in Weinberger et al. [112℄, allows one to avoidsetting 
omplex 
onstraints on ea
h target neighbor, while still retaining the idea behind kNN
lassi�
ation.Figure 4.2 illustrates the notion of separability being 
onsidered here. In �gure 4.2(a), theinput point is separated, with k = 3 assuming that the di�eren
e between the sum of similaritiesbetween the example under fo
us and its target neighbors and the sum of similarities betweenthe example under fo
us and the impostors is greater than the margin γ, whereas this is not the
ase in �gure 4.2(b). The separation does not need to take pla
e in the original input spa
e,but rather on the spa
e indu
ed by the metri
 de�ned by A. Figure 4.2(
) illustrates what isbeing aimed at: moving the target points 
loser to the input point, while pushing away di�erentlylabeled examples (impostors). With an appropriate matrix A (whi
h plays the role of a similaritymetri
), the target and negative neighbors of a given input point are separated, the former ones78



4.2. Un
onstrained Similarity Metri
 Learningbeing 
loser to the input point than the latter ones (note however that the separation is notne
essarily linear when the number of neighbors, k, 
onsidered is greater than 1 - in this latter
ase, the linear separation is not obtained in the original input spa
e when A 6= I). However,stri
tly speaking, the 
lassi�
ation rule sustaining the above de�nitions of separation is: for anyexample x(i), 
ompute its k nearest neighbors in ea
h 
lass c(i) (x(i)1 , · · · , x(i)k ); assign x(i) to the
lass c(i) for whi
h∑k
l=1 sA(x

(i), x
(i)
l ) is maximum. The goal here is to learn the similarity matrix

A of equation 4.1 with guaranteed performan
e bounds with respe
t to the above 
lassi�
ationrule and de�nitions of separation. As des
ribed in Chapter 6, by doing so, the standard kNNrule 
an be improved.The matrix A in equation 4.1 
an have many di�erent variants: it 
an be symmetri
 orasymmetri
 or it 
an be 
hosen to be positive semi-de�nite as well.4.2.2 An un
onstrained Similarity metri
 Learning Algorithm - SiLAAn algorithm to learn un
onstrained similarity metri
s of the form given by equation 4.1 ispresented here. This algorithm, 
alled as SiLA, is based on the voted per
eptron algorithmproposed in Freund and S
hapire [37℄, and used in Collins [20℄. It allows learning diagonal,symmetri
 or even asymmetri
 matri
es, depending on the �nal form of the similarity fun
tionone is interested in.The 
ore of SiLA is an on-line update rule whi
h iteratively improves the 
urrent estimateof the similarity matrix A. The overall goal is to move target examples 
loser to their inputpoint whenever the input point is 
loser to a set of di�erently labeled examples. A theoreti
almotivation for SiLA is provided at the end of this se
tion.In the remainder of this se
tion, kNN(A, x, s) is used in order to denote the k nearest neighborsof example x in 
lass s with the similarity fun
tion given by equation 4.1. For ea
h example i,
T (i) will denote the set of target neighbors of x(i). The training algorithm is given below:SiLA - TrainingInput: training set ((x(1), c(1)), · · · , (x(n), c(n))) of n ve
tors in R

p, number of epo
hs M ; A1
mldenotes the element of A1 at row m and 
olumn lOutput: list of weighted (p × p) matri
es ((A1, w1), · · · , (Aq, wq))Initialization τ = 1, A1 = 0 (null matrix), w1 = 0Repeat M times (epo
hs)1. for i = 1, · · · , n2. B(i) = kNN(Aτ , x(i), c̄(i))3. if ∑

y∈T (i)

sA(x
(i), y)− ∑

z∈B(i)

sA(x
(i), z) ≤ 04. ∀(m, l), 1 ≤ m, l ≤ p,

Aτ+1
ml = Aτ

ml +
∑

y∈T (i)

fml(x
(i), y)− ∑

z∈B(i)

fml(x
(i), z)5. wτ+1 = 16. τ = τ + 17. else8. wτ = wτ + 1 79



Chapter 4. Similarity Metri
 Learning in Nearest Neighbor Classi�
ationWhen an input example x(i) is not separated from di�erently labeled examples, the 
urrent Amatrix is updated by the di�eren
e between the 
oordinates of the target neighbors and the
losest di�erently labeled examples also known as the impostors represented by the set B(i) (line4 of the algorithm), whi
h 
orresponds to a standard per
eptron update. When the 
urrentestimate of A 
orre
tly 
lassi�es the input example under fo
us, then A is left un
hanged whileits 
orresponding weight is in
reased by 1, so that the weights �nally 
orrespond to the numberof examples 
orre
tly 
lassi�ed by A over the di�erent epo
hs.The fun
tions fml allows to learn di�erent types of matri
es and hen
e di�erent types ofsimilarities:1. For a diagonal matrix, fml(x, y) =
δ(m, l)xtmylN(x, y) (with δ the Krone
ker symbol),2. For a symmetri
 matrix, fml(x, y) =
xtmyl + xtlymN(x, y) ,3. For a square matrix (and hen
e, potentially, an asymmetri
 similarity), fml(x, y) =

xtmylN(x, y) .It 
an be seen that the fun
tion fml is independent of the similarity matrix A. The weightedmatri
es provided by SiLA 
an be used to predi
t the 
lass(es) to whi
h a new example should beassigned. Two basi
 rules for predi
tion are 
onsidered: the �rst one 
orresponds to the standardkNN rule, whereas the se
ond one dire
tly 
orresponds to the notion of separation introdu
edearlier, and is based on the 
onsideration of the same number of examples in the di�erent 
lasses.The new example is simply assigned to the 
losest 
lass, the similarity with a 
lass being de�nedas the sum of the similarities between the new example and its k nearest neighbors in thatparti
ular 
lass. The se
ond rule is 
alled symmetri
 kNN rule and is denoted by SkNN.In order to speed up the learning pro
ess, all of the training as well as the test examplesare normalized before laun
hing the algorithm. Furthermore, the sets T (i) and B(i) are also
omputed beforehand. Sin
e the set B(i) 
hanges over the passage of time, a 
ertain numberof impostors (e.g. 100) 
ould be found for ea
h of the example before the algorithm has beenlaun
hed.The worst-time 
omplexity of SiLA is O(Mnp2) where M represent the number of iterations,
n is the number of train examples while p stands for the number of dimensions or attributes.The most 
ostly steps 
onsist of 
al
ulating the similarity sA and fml.4.2.3 Online to Bat
h ConversionThe 
ore of SiLA is an update rule that is used in
rementally, for ea
h example. It is thus easyto extra
t from the des
ription of SiLA a bat
h version of the algorithm. The way the matri
eslearned are used for predi
tion, 
orresponds to a transformation of an on-line algorithm to abat
h one, following a methodology des
ribed in Helmbold and Warmuth [51℄.80



4.2. Un
onstrained Similarity Metri
 LearningSiLA - Predi
tionInput: new example x in R
p, list of weighted (p × p) matri
es ((A1, w1), · · · , (Aq, wq)); A isde�ned as: A =

q∑

l=1

wlA
lOutput: list of 
lasses1. Standard kNN ruleCompute the k nearest neighbors based on sA; sele
t the 
lass with the highest weight (orthe 
lass the more represented in the nearest neighbor set)2. Symmetri
 
lassi�
ation rule - SkNNLet T (x, s) = kNN(A, x, s); assign x to the 
lass for whi
h∑z∈T (x,s) sA(x, z) is maximal 14.The deterministi
 leave-one-out 
onversion of the training version of SiLA 
orresponds to theweighted sum (A =

q∑

l=1

wlA
l) used in the predi
tion rules given above. One 
an �nd in Dekelet al. [30℄ a study of similar on-line to bat
h 
onversions, showing that it may be bene�
ialto weigh down (or even forget) the matri
es (or ve
tors) learned in the �rst few iterationsof the on-line algorithm. That is, instead of basing the predi
tion on the 
omplete sequen
e

((A1, w1), · · · , (Aq, wq)), base it instead on, say, the last r elements. This strategy is used in theexperiments 
ondu
ted.SiLA 
ould be used in either a binary or multi-
lass mode:1. In the binary setting, the algorithm is run separately for ea
h 
lass, where the 
lass under
onsideration is made as 1 while the rest of the 
lasses are made 0.2. However, in the multi-
lass mode, SiLA is run only on
e along with the original 
lass labels.In this way, multi-
lass mode is mu
h faster than the binary mode.There is yet another method of 
onverting the binary mode into a multi-
lass one. Thesimilarity value for ea
h of the test example whi
h predi
ts a 
lass label of 1 is stored. All ofthe examples for whi
h a 
lass label of 0 is predi
ted, are dis
arded sin
e the exa
t 
lass label
annot be determined. The similarity values are stored for ea
h of the di�erent 
lasses. In orderto determine the �nal 
lassi�
ation, the 
lass having the greatest similarity is 
hosen.There are a 
ertain number of advantages in the binary version. First, it allows using thetwo predi
tion rules given above. It also allows learning lo
al matri
es, whi
h are more likelyto 
apture the variety of the data. Finally, its appli
ation in predi
tion results in a multi-labelde
ision.4.2.4 Analysis of SiLAPerforman
e bounds for SiLA algorithm are provided in this subse
tion. These bounds, and thetheorems they rely on, dire
tly parallel the ones provided by Freund and S
hapire [37℄, and used14No
k et al. [76℄ have dis
ussed another type of symmetri
 nearest neighbor rule in whi
h a vote is made forsome example x using the points whi
h 
ould belong to the k nearest neighbors of x, and the points for whi
h x
ould be one of the k nearest neighbors. 81



Chapter 4. Similarity Metri
 Learning in Nearest Neighbor Classi�
ationin Collins [20℄. To see the parallel between this work and the above-mentioned ones, �rst notethat xtAx′N(x, x′) 
an be rewritten as:
xtAx′N(x, x′) = α · φ(x, x′)with: {

(α, φ(x, x′)) ∈ R
p × R

p when A is diagonal,
(α, φ(x, x′)) ∈ R

p2 × R
p2 otherwise.where α 
an be seen as the ve
tor equivalent to matrix A. Di�erent representations are possiblewith this transformation:1. The 
osine similarity is obtained, with this representation, by setting α to the unit ve
tor(αm = 1, 1 ≤ m ≤ p) and φm(x, x′) =

xtmx′m
‖x‖‖x′‖ .2. By setting φ to the tensor produ
t between ve
tors x and x′, one obtains a representationequivalent to the one with an un
onstrained, square matrix A.3. By setting φ to the symmetri
 produ
t, i.e. φml(x, x

′) =
xtmx′l + xtlx

′
mN(x, x′) , one obtains arepresentation equivalent to the one with a symmetri
 matrix A.The theorems justifying the use of the voted per
eptron algorithm 
an be extended to SiLA aswell, and are next presented. The justi�
ation of SiLA pro
eeds in three steps:1. Theorem 1 justi�es the 
ore on-line update of SiLA in the separable 
ase,2. Theorem 2 provides a similar justi�
ation for the non-separable 
ase, and3. Theorem 3 provides the justi�
ation for the bat
h version used for predi
tion.The proofs for Theorem 1 and 2 are given in the Appendix A.Theorem 1 (separable 
ase). For any training sequen
e S = ((x(1), c(1)), · · · , (x(n), c(n))) sepa-rable with margin γ, for one iteration (epo
h) of the (on-line) update rule of SiLANumber of mistakes ≤ R2/γ2where R is a 
onstant su
h that:

∀i,∀(z1 , · · · , zk) ∈ c̄i,

∥
∥
∥
∥
∥
∥

∑

y∈T (i)

φ(x(i), y)−
k∑

n=1

φ(x(i), zn)

∥
∥
∥
∥
∥
∥

≤ RTheorem 1 implies that, if the data is separable, then the update rule of SiLA makes a number ofmistakes bounded above by a quantity whi
h depends on the margin (γ) of the data (the largerthe margin, the lesser the number of mistakes made). The more general 
ase where the data isnot separable is 
overed by theorem 2, whi
h makes use of the measure DA,γ (or equivalently
Dα,γ with the new representation) introdu
ed in de�nition 2.82



4.3. eSiLA - An extension of SiLATheorem 2 (non separable 
ase). For any training sequen
e S = ((x(1), c(1)), · · · , (x(n),
c(n))), for one iteration (epo
h) of the (on-line) update rule of SiLANumber of mistakes ≤ minα,γ (R+Dα,γ)

2

γ2where R is a 
onstant su
h that
∀i,∀(z1 , · · · , zk) ∈ c̄i,

∥
∥
∥
∥
∥
∥

∑

y∈T (i)

φ(x(i), y)−
k∑

n=1

φ(x(i), zn)

∥
∥
∥
∥
∥
∥

≤ R,and the min is taken over α and γ su
h that ‖α‖ = 1, γ > 0.This theorem implies that, provided the data is 
lose to being separable, the update rule of SiLA
onverges in a �nite number of steps, and has a number of mistakes bounded by a quantity whi
his smaller when the separation of the data is better (as measured by D). However, the interestis not only in the 
onvergen
e of the update rule (whi
h 
orresponds to an on-line version of thealgorithm), but also on the 
onvergen
e of the bat
h version used for predi
tion. The followingtheorem provides both a proof of this 
onvergen
e and shows that the bat
h version is able togeneralize well, i.e. behaves adequately on test (unseen) data. This theorem is based on theon-line to bat
h 
onversion studied in Helmbold et al. [51℄.Theorem 3 (generalization). Assume all examples are generated i.i.d. at random. Let E bethe expe
ted number of mistakes that the update rule of SiLA makes on a randomly generatedsequen
e of m + 1 examples. Then given m random training examples, the expe
ted probabilitythat the deterministi
 leave-one-out 
onversion of this algorithm makes a mistake on a randomlygenerated test instan
e is at most: 2E
m+ 1 .4.3 eSiLA - An extension of SiLAThe similarity given in equation 4.1 does not guarantees that the form xtAx′ 
orresponds to asymmetri
 bi-linear form, and hen
e a s
alar produ
t. In order to in
orporate this guarantee,the similarity matrix A must be made a positive, semi-de�nite (PSD) one, whi
h 
an be a
hievedby proje
ting A onto the set of positive, semi-de�nite matri
es. The resulting algorithm is anextension of SiLA and is 
alled eSiLA [85℄.The proje
tion onto the set of PSD matri
es 
an be a

omplished based on the fa
t thatany matrix A 
an be represented in terms of its eigenvalues and its eigenve
tors. In order to
onvert the matrix At+1 into a PSD one, only its positive eigenvalues are sele
ted whereas thenon-negative eigenvalues are dis
arded. The proje
tion 
an be written as:

Ât+1 =
∑

j,λj>0

λjuju
t
jwhere λ and u represent the eigenvalues and eigenve
tors of the matrix At+1. Ât+1 stands forthe matrix obtained after performing the proje
tion and is a PSD (and symmetri
) matrix .This extension did not improve the performan
e of SiLA algorithm. Nevertheless, the te
h-nique used for proje
tion was later used for RELIEF based algorithms (Se
tion 4.4) as well asthe generalized 
osine similarity learning (Se
tion 4.5). 83



Chapter 4. Similarity Metri
 Learning in Nearest Neighbor Classi�
ation4.4 Un
onstrained Similarity Metri
 Learning and RELIEF Algo-rithmAs the reader may have noti
ed that learning the similarity matrix in SiLA bears resemblan
ewith the feature reweighting pro
edures. Among su
h te
hniques, the RELIEF family of algo-rithms has re
eived a lot of attention from many di�erent 
ommunities in the re
ent years. In thisse
tion, un
onstrained similarity metri
 learning is positioned with the RELIEF algorithm. It isimportant to mention that Sun and Wu [102℄ have shown that RELIEF is basi
ally a distan
emetri
 learning algorithm whi
h aims to optimize a linear utility fun
tion while maximizing themargin. After 
omparing SiLA with the RELIEF algorithm, a RELIEF-Based Similarity learn-ing algorithm (RBS) is des
ribed together with its stri
ter version known as sRBS. Furthermore,the e�e
t of positive, semi-de�nitiveness on the RELIEF based algorithms is also dis
ussed.4.4.1 SiLA and RELIEFIt has been shown that the RELIEF algorithm solves 
onvex optimization problem while maxi-mizing a margin-based obje
tive fun
tion using kNN algorithm. The weights are updated basedon the nearest hit (nearest example belonging to the 
lass under 
onsideration or sometimesreferred to as the nearest target neighbor) and the nearest miss (nearest example belonging toother 
lasses).RELIEF learns only a diagonal matrix in the original setting. However, Sun and Wu [102℄have extended RELIEF to learn a full distan
e metri
 matrix. They have further proved that RE-LIEF is an online algorithm and have shown that RELIEF outperforms standard kNN algorithmon many standard datasets.Let x(i) be a ve
tor in Rp having y(i) as the 
lass label with values +1,−1. Let A be a ve
tormeant for iteratively estimating the qualities of attributes initialized with 0. The aim is to learn
A on a set of training examples. Suppose an example x(i) is randomly sele
ted. This is followedby �nding the two nearest neighbors of x(i): one from the same 
lass (termed as the nearest hitor H) and other from the di�erent 
lass than that of x(i) (termed as the nearest miss or M).The update rule in 
ase of RELIEF doesn't depend on any 
ondition unlike SiLA.The RELIEF algorithm is presented next:RELIEF (k=1)Input: training set ((x(1), c(1)), · · · , (x(n), c(n))) of n ve
tors in R

p, number of epo
hs J ;Output: the ve
tor A of estimations of the qualities of attributesInitialization ∀m 1 ≤ m ≤ p, Am = 0Repeat J times (epo
hs)1. randomly sele
t an instan
e x(i)2. �nd nearest hit H and nearest miss M3. for l = 1, · · · , p4. Al = Al − di�(l, x(i),H)
J +

di�(l, x(i),M)
J84



4.4. Un
onstrained Similarity Metri
 Learning and RELIEF Algorithmwhere J represents the number of iterations, the algorithm has been run while di� is a fun
tionused to �nd the di�eren
e between the values of an attribute l for x(i) and the nearest hit ormiss represented by H or M .4.4.2 Comparison between SiLA and RELIEFWhile 
omparing the two algorithms SiLA and RELIEF, it 
an be noted that RELIEF learns ave
tor of weights while SiLA learns a sequen
e of ve
tors where ea
h ve
tor has got a 
orrespond-ing weight whi
h signi�es the number of examples 
orre
tly 
lassi�ed while using that parti
ularve
tor. Furthermore, the weight ve
tor is updated systemati
ally in 
ase of RELIEF while ave
tor is updated for SiLA only if it has failed to 
orre
tly 
lassify the 
urrent example x(i) (i.e.
sA(x

(i), y)−sA(x
(i), z) ≤ 0). In this 
ase, a new ve
tor A is 
reated and its 
orresponding weightis initialized to 1. However, in the 
ase of a 
orre
t 
lassi�
ation for SiLA, the weight asso
iatedwith the 
urrent ve
tor A is in
reased by 1. Moreover, the two algorithms �nd the nearest hitand the nearest miss to update the ve
tor A. RELIEF sele
ts an instan
e randomly whereasSiLA uses the instan
es in a systemati
 way. Another di�eren
e between the two algorithmsis that in 
ase of RELIEF, the ve
tor A is updated based on the di�eren
e (distan
e) while itis updated based on the similarity fun
tion for SiLA. This explains the fa
t that the impa
t ofnearest hit is subtra
ted for RELIEF while the impa
t for nearest miss is added to the ve
tor

A. For SiLA, the impa
t of the nearest hit is added while that of the nearest miss is subtra
tedfrom the 
urrent ve
tor A.The worst time 
omplexity of SiLA is O(Mnp2) whereas for RELIEF, it is O(Mnp) and isthus lesser than that for SiLA. Here M represents the number of iterations, p is the number offeatures while n represents the total number of instan
es. Moreover, the 
omplexity for RELIEFis �xed for all of the s
enarios unlike SiLA where it depends on the number of mistakes made.SiLA tries to dire
tly redu
e the leave-one-out error also known as the 0− 1 loss. However,RELIEF uses a linear utility fun
tion in su
h a way that the average margin is maximized.4.4.3 RELIEF-Based Similarity Learning Algorithm - RBSIn this subse
tion, a RELIEF-Based Similarity learning algorithm (RBS) [90℄ is proposed whi
his based on RELIEF algorithm. However, the interest, here lies in similarities instead of distan
eslike SiLA. The aim, just like that of RELIEF, is to maximize the margin M(A) between thetarget neighbors (represented by y) and the impostors (given by z). The margin, for k = 1 inkNN algorithm 
an be written as:
M(A) =

n∑

i=1

(
sA(x

(i), y(i))− sA(x
(i), z(i))

)

=
n∑

i=1
(x(i)

t

Ay(i) − x(i)
t

Az(i)) =
n∑

i=1
x(i)

t

A(y(i) − z(i))where A is the similarity matrix. The margin is maximized subje
t to the 
onstraint ‖A‖2F = 1.arg max
A

M(A)subje
t to ‖A‖2F = 1, 85



Chapter 4. Similarity Metri
 Learning in Nearest Neighbor Classi�
ationTaking the Lagrangian of the matrix A:
L(A) =

n∑

i=1

x(i)
t

A(y(i) − z(i)) + λ(1 −
p
∑

l=1

p
∑

m=1

a2lm)where λ is a Lagrangian multiplier. Taking the derivative with respe
t to alm and setting it tozero yields:
∂L(A)
∂alm

=
n∑

i=1
x
(i)
l (y

(i)
m − z

(i)
m )− 2λalm = 0

⇒ alm =

n∑

i=1

x
(i)
l (y(i)m − z(i)m )

2λSin
e the Frobenius norm of matrix A is 1:
p∑

l=1

p∑

m=1
a2lm = 1

⇒
p∑

l=1

p∑

m=1
a2lm =

p∑

l=1

p∑

m=1









n∑

i=1

x
(i)
l (y(i)m − z(i)m )

2λ









2

Now the value of 2λ 
an be 
omputed in the following manner:
2λ =

√
√
√
√

p
∑

l=1

p
∑

m=1

(
n∑

i=1

x
(i)
l (y

(i)
m − z

(i)
m )

)In 
ase of a diagonal matrix, m is repla
ed with l and 2λ be
omes equal to:
2λ =

√
√
√
√

p
∑

l=1

(
n∑

i=1

x
(i)
l (y

(i)
l − z

(i)
l )

)Furthermore, the margin for k > 1 
an be written as:
M(A) =

n∑

i=1

(
k∑

q=1
sA(x

(i), y(i),q)−
k∑

q=1
sA(x

(i), z(i),q)

)

=
n∑

i=1

(

x(i)
t
A

k∑

q=1
(y(i),q − z(i),q)

)where y(i),q represents the qth nearest neighbor of x(i). Moreover, alm and 2λ 
an be written as:
alm =

n∑

i=1

x
(i)
l

k∑

q=1

(ym
(i),q − zm

(i),q)

2λ

2λ =

√
√
√
√

p∑

l=1

p∑

m=1

(
n∑

i=1
x
(i)
l

k∑

q=1
(ym (i),q − zm (i),q)

)It 
an be further noted that alm is inversely proportional to the Lagrangian multiplier λ.86



4.4. Un
onstrained Similarity Metri
 Learning and RELIEF Algorithm

Figure 4.3: Margin for RBS on Iris (left) and Wine (right) datasets

Figure 4.4: Margin for RBS on Balan
e (left) and Heart (right) datasets

Figure 4.5: Margin for RBS on Soybean (left) and Letter (right) datasets 87
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 Learning in Nearest Neighbor Classi�
ation

Figure 4.6: Margin for RBS on Pima (left) and Liver (right) datasets

Figure 4.7: Margin for RBS on German (left) and Glass (right) datasets

Figure 4.8: Margin for RBS on Ionosphere (left) and Yeast (right) datasets88



4.4. Un
onstrained Similarity Metri
 Learning and RELIEF Algorithm4.4.4 Problems with RELIEF based te
hniquesThe problem with the RELIEF based approa
hes (RELIEF and RBS) is that as one strivesto maximize the margin, it is possible that the overall margin is quite large but in reality thealgorithm has made a 
ertain number of mistakes (
hara
terized with negative margin). This
on
ept was veri�ed on a number of standard UCI datasets [36℄ Iris, Wine, Balan
e, Heart,Soybean, Letter, Pima, Liver, German, Glass , Ionosphere and Yeast, as 
an be seen from �g-ures 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. It 
an be observed that in most of these �gures, the averagemargin remains positive despite the presen
e of a number of mistakes, sin
e the positive mar-gin is mu
h greater than the negative one for the majority of the examples. For example, in�gure 4.3, the values of negative margin for Iris are in between −0.10 and 0.0, whereas mostof the positive margin values are greater than 0.25. Similarly, for Wine (�gure 4.3), most ofthe negative margin values lie in the range between 0.0 and −0.002 while the positive marginvalues are mostly dispersed in the range 0 − 0.08. Therefore, despite the fa
t that the overallmargin is large, a lot of examples are mis
lassi�ed. A similar story in portrayed in �gure 4.4 forBalan
e, where most of the examples having negative margin values have a margin in between
−0.05 and 0.0. On the other hand, the positive margin values are dispersed between 0.0 and 0.1.The positive as well as negative margin values for Heart (see �gure 4.4), Liver (�gure 4.6) andGerman 4.7) have the same range but the number of examples having positive margin values isgreater than the ones having negative margin values.This explains the fa
t that the algorithms RELIEF and RBS did not perform quite well ondi�erent standard test 
olle
tions (see Chapter 6).4.4.5 A stri
ter version: sRBSA work around to improve the performan
e of RELIEF based methods is to dire
tly use theleave-one-out error or 0− 1 loss like the original SiLA algorithm where the aim is to redu
e thenumber of mistakes on unseen examples. The resulting algorithm is a stri
ter version of RELIEF-Based Similarity Learning Algorithm and is termed as sRBS. It is 
alled as a stri
ter version aswe do not try to maximize the overall margin but are interested in redu
ing the individual errorson the unseen examples.The 
ost fun
tion for sRBS 
an be des
ribed in terms of a sigmoid fun
tion.

σA(x
(i)) =

1

1 + exp(βx(i)
t
A(y(i) − z(i)))As β approa
hes ∞, the sigmoid fun
tion represents the 0 − 1 loss: it approa
hes 0 when themargin x(i)A(y(i) − z(i)) is positive and approa
hes 1 in the 
ase where the margin is negative.Let gA(i) represents exp(βx(i)

t
A(y(i) − z(i))) while v represents y − z. The 
ost fun
tion being
onsidered here is based on the above sigmoid fun
tion, regularized with the Frobenius norm of

A: argmin
A

ε(A) =

n∑

i=1

σA(x
(i)) + λ‖A‖22 89



Chapter 4. Similarity Metri
 Learning in Nearest Neighbor Classi�
ationTaking the derivative with respe
t to alm:
∂ε(A)

∂alm
= −β

n∑

i=1

x
(i)
l v

(i)
m gA(i)

(1 + gA(i))2
+ 2λalm

∀ l,m, 1 ≥ l ≥ p, 1 ≥ m ≥ p,

2λalm = −β
n∑

i=1

x
(i)
l v

(i)
m gA(i)

(1 + gA(i))2No 
losed form solution for this �xed point equation is already known. However, this equation
an be solved with gradient des
ent methods. The 
ost fun
tion in the 
ase of gradient des
ent
an be written as:
ε(A) =

n∑

i=1

1
1 + gA(i)

+ λ
∑

lm a2lm

=
n∑

i=1

[

1

1 + gA(i)
+ λ

n
∑

lm a2lm

]

=
n∑

i=1
Qi(A)The derivative is taken with respe
t to alm:

(∇Qi(A))lm =
∂Qi(A)

∂alm
=

−βx
(i)
l v

(i)
m gA(i)

(1 + gA(i))2
+

2λalm
nWith this, the update step for At

lm 
an be de�ned as:
At+1

lm = At
lm − αt

n

n∑

i=1

∂Qi(A
t)

∂almwhere αt stands for the learning rate and is given by: αt = 1
t
. The learning rate is inverselyproportional to the number of iterations and de
reases with the in
rease in the number of epo
hs.sRBS algorithm is next presented:sRBS - TrainingInput: training set ((x(1), c(1)), · · · , (x(n), c(n))) of n ve
tors in R

p, A1
lm denotes the element of

A1 at row l and 
olumn mOutput: Matrix AInitialization t = 1, A(1) = 1 (Unity matrix)Repeat J times (epo
hs)1. For all of the features l,m2. Minuslm = 03. for i = 1, · · · , n4. For all of the features l,m5. Minuslm+ =
∂Qi(A

t)
∂alm90
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 Learning and RELIEF Algorithm

Figure 4.9: Margin for sRBS on Iris (left) and Wine (right) datasets

Figure 4.10: Margin for sRBS on Balan
e (left) and Heart (right) datasets
6. At+1

lm = At
lm − αt

n ∗Minuslm7. If ∑lm |At+1
lm −At

lm| ≤ γ8. StopDuring ea
h epo
h, the di�eren
e between the new similarity matrix At+1
lm and the 
urrentone At

lm is 
omputed. If the di�eren
e is less than a 
ertain threshold (γ), the algorithm isstopped. The range of γ was between 10−3 and 10−4.Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 show the margin values for the training examples ofdi�erent UCI datasets, on
e the training phase of sRBS algorithm has been 
ompleted. These�gures 
an be 
ompared with the earlier ones for RBS algorithm to observe that the trainingphase of sRBS is more e�e
tive than the one for RBS e.g. for Iris (�gure 4.9), Wine (�gure 4.9),Balan
e (�gure 4.10), Pima (�gure 4.12), Glass (�gure 4.13), Yeast (�gure 4.14), there are onlya very few errors although a lot of examples have a margin 
lose to 0.0. There are no errors (noexample with a negative margin) for Soybean (�gure 4.11). Moreover, the algorithm sRBS makesa lot of mistakes for Letter as depi
ted in �gure 4.11. 91
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ation

Figure 4.11: Margin for sRBS on Soybean (left) and Letter (right) datasets

Figure 4.12: Margin for sRBS on Pima (left) and Liver (right) datasets

Figure 4.13: Margin for sRBS on German (left) and Glass (right) datasets92
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onstrained Similarity Metri
 Learning and RELIEF Algorithm

Figure 4.14: Margin for sRBS on Ionosphere (left) and Yeast (right) datasets4.4.6 E�e
t of Positive, Semi-De�nitiveness on RELIEF based algorithmsThe similarity xtAx in the 
ase of RELIEF based algorithms does not 
orrespond to a symmetri
bi-linear form, and hen
e a s
alar produ
t. The work around lies in proje
ting the similaritymatrix A onto the set of positive, semi-de�nite (PSD) matri
es just like eSiLA (see se
tion 4.3).A similarity matrix 
an be proje
ted by �nding an eigenve
tor de
omposition followed by thesele
tion of positive eigenvalues. A PSD matrix A is written as:
A � 0In 
ase, where a diagonal matrix is learned by RELIEF, positive semi-de�nitiveness 
an bea
hieved by sele
ting only the positive entries of the diagonal. Moreover for learning a fullmatrix with RELIEF, the proje
tion 
an be performed in the following manner:

A =
∑

j,λj>0

λjuju
t
jwhere λj and uj are the eigenvalues and eigenve
tors of A.Similarly, RBS is transformed into RBS-PSD by in
orporating an additional 
onstraint thatthe similarity matrix A must be PSD, while maximizing the margin [91℄.It is veri�ed that despite the fa
t that the overall margin is quite large, RBS-PSD makes anumber of mistakes 
hara
terized with negative margin. This 
on
ept was veri�ed on a number ofstandard UCI datasets [36℄ i.e. Iris, Wine, Balan
e, Heart, Soybean, Letter, Pima, Liver, Glass,Ionosphere and Yeast as 
an be seen from �gures 4.15, 4.16, 4.17, 4.18, 4.19, 4.20. It 
an beobserved for all of the datasets that the average margin remains positive despite the presen
e ofa number of mistakes, sin
e the positive margin is mu
h greater than the negative one for themajority of the test examples. For example, the values of negative margin in the 
ase of Iris(see �gure 4.15) is in the range of −0.05 − 0.00 whereas there are many positive margin valuesgreater than 0.175. Similarly, for Wine (�gure 4.16), most of the negative margin values lie inthe range between −0.002 and 0 while most of the positive margin values are dispersed in therange 0 − 0.004. In 
ase of Balan
e (�gure 4.16), the negative values are seen in the range of

−0.05− 0.00 whereas the positive margin values are mostly s
attered between 0 and 0.1. Whilelooking on the results for Letter (�gure 4.17), one 
an note that while the negative margin values93



Chapter 4. Similarity Metri
 Learning in Nearest Neighbor Classi�
ation

Figure 4.15: Margin for RBS-PSD on Iris (left) and Wine (right) datasets

Figure 4.16: Margin for RBS-PSD on Balan
e (left) and Heart (right) datasetslie between −0.1 and 0.0, the positive margin values are mostly seen between 0.0 and 0.15. So,despite the fa
t that the overall margin is large, a lot of examples are mis
lassi�ed as was seenearlier for the RBS algorithm. Observing the �gures for RBS and RBS-PSD, one 
an easily notethat there are very few di�eren
es between the results for the two algorithms ex
ept Ionospherein whi
h 
ase RBS-PSD performs better as 
ompared to RBS.However, for Iris, the range of negative margin values in
reases whereas the range for thepositive margin values de
reases for RBS-PSD as 
ompared to RBS. Similar phenomenon isrepeated for Letter, Liver, Glass and Yeast. This e�e
tively means that RBS is better than its
ounterpart for these data sets as the overall margin de
rease in all of these 
ases.This explains the fa
t that the algorithms RELIEF and RBS-PSD did not perform quite wellon di�erent standard test 
olle
tions as 
an be seen in Chapter 5.On
e the e�e
t of PSD matri
es on RBS has been 
overed in detail, the next obvious questionis the e�e
t of PSD matri
es on sRBS. As seen from �gures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26 addingpositive, semi-de�nite 
onstraints in sRBS does not has any good e�e
ts ex
ept for Ionosphere.Similarly, sRBS-PSD performs better than RBS-PSD for Iris, Wine, Balan
e, Soybean, Pima,Glass, Ionosphere and Yeast.94
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Figure 4.17: Margin for RBS-PSD on Soybean (left) and Letter (right) datasets

Figure 4.18: Margin for RBS-PSD on Pima (left) and Liver (right) datasets

Figure 4.19: Margin for RBS-PSD on German (left) and Glass (right) datasets 95
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Figure 4.20: Margin for RBS-PSD on Ionosphere (left) and Yeast (right) datasets

Figure 4.21: Margin for sRBS-PSD on Iris (left) and Wine (right) datasets

Figure 4.22: Margin for sRBS-PSD on Balan
e (left) and Heart (right) datasets96
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Figure 4.23: Margin for sRBS-PSD on Soybean (left) and Letter (right) datasets

Figure 4.24: Margin for sRBS-PSD on Pima (left) and Liver (right) datasets

Figure 4.25: Margin for sRBS-PSD on German (left) and Glass (right) datasets 97
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Figure 4.26: Margin for sRBS-PSD on Ionosphere (left) and Yeast (right) datasets4.5 Generalized Cosine Similarity Metri
 LearningThe similarity measure given in equation 4.1 does not refers to a generalized 
osine similaritysin
e the normalization is 
ompletely independent of the similarity matrix. This is the motivationbehind de�ning a generalized 
osine similarity metri
 learning algorithm where the normalizationis dependent on the similarity matrix and the similarity matrix is positive, semi-de�nite (PSD). Inorder to make a similarity matrix as positive, semi-de�nite, the similarity matrix is proje
ted ontothe set of positive, semi-de�nite matri
es (PSD) inspired from the strategy given in POLA [99℄.Sin
e POLA 
onsiders the examples in the form of pairs, with ea
h pair being either similar(e.g. belonging to same 
lass) or dissimilar, and learns the distan
e metri
 based on the pairwise
onstraints (equivalen
e and inequivalen
e), the same strategy is followed in the 
ase of gener-alized 
osine similarity metri
 learning. Furthermore, similarity is learned in a global sense withthe aim of satisfying all of the pairwise 
onstraints simultaneously.4.5.1 Problem SettingThe generalized similarity between two examples x and x′ in R
p, as given in equation 4.2 isrewritten:

sA(x, x
′) =

xtAx′√
xtAx

√
x′tAx′where A ≥ 0 is a positive, semi-de�nite matrix and the normalization is dependent on A. One
an also note that by 
hoosing A as the identity matrix, equation 4.2 be
omes the standard 
osinesimilarity. Other positive, semi-de�nite matri
es de�ne di�erent s
alar produ
ts and norms, sothat equation 4.2 
orresponds to a 
osine in a new basis of the underlying ve
tor spa
e. Be
auseof this property, equation 4.2 refers to the family of Generalized Cosine Similarities [86℄.The examples 
onsidered here, are in the form of tuples, (x, x′, y) where ea
h example is
omposed of the instan
e pair (x, x′) and a label y whi
h is +1 when x and x′ are similar andis -1 in the 
ase when they are dissimilar. When the data is separable, the margin of a sample,S, denoted by 2γ, is de�ned as the minimum separation between all pairs of similar (x1, x′1,+1)and dissimilar (x2, x′2,−1) examples:

sA(x1, x
′
1)− sA(x2, x

′
2) ≥ 2γ98
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 Learning
Figure 4.27: Separation between similar and dissimilar examplesBy introdu
ing a threshold b ∈ R, the above inequality 
an be rewritten as:

∀(x, x′, y) : y = +1 ⇒ sA(x, x
′) ≥ b+ γ

∀(x, x′, y) : y = −1 ⇒ sA(x, x
′) ≤ b− γwhere γ > 0 and −1 + γ ≤ b ≤ 1− γ. Here, γ measures the extent to whi
h one is on the wrongside of the threshold. The two inequalities 
an be 
ombined to form a single linear 
onstraint:

y(b− sA(x, x
′)) ≤ −γ (4.3)Figure 4.27 shows the similar and dissimilar example pairs separated by a margin γ. Consideringtuples of the form (xτ , x

′
τ , yτ ), at ea
h time step, or round τ , the loss in
urred by the 
urrentmatrix-threshold pair (A, b) 
an be 
omputed as follows:
lτ (A, b) = max {0, yτ (b− sA(xτ , x

′
τ )) + γ}whi
h is a variant of the hinge loss. Our goal is thus to �nd a matrix-threshold pair (A, b) whi
hminimizes the overall loss. When the data is separable, there exists a matrix-threshold pair su
hthat the overall loss is 0 (as inequality 4.3 holds for matrix-threshold pairs separating the data).If lτ = 0, the following inequality holds:

yτ (b− sA(xτ , x
′
τ )) + γ ≤ 0whi
h 
an be rewritten as:

yτ (sA(xτ , x
′
τ )− b) ≥ γAn online algorithm is presented next, in order to learn a matrix-threshold pair. In the�rst instan
e, the data is 
onsidered to be separable. The 
ase where the data is inseparable ispresented afterwards.4.5.2 gCosLA - An online generalized Cosine similarity metri
 Learning Al-gorithmIn the 
ase where the data is separable:

∃A � 0,and
∃b, −1 + γ ≤ b ≤ 1− γ 99
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Figure 4.28: Set of proje
tions for gCosLAsu
h that the matrix-threshold pair (A, b) 
ompletely separates the data, i.e. has zero loss for alltime steps. Be
ause the matrix A should separate the data and be, at the same time, positive,semi-de�nite, one 
an rely on a strategy based on �rst �nding a matrix-threshold pair with zeroloss and 
lose to the 
urrent matrix-threshold pair so that the new matrix not only 
orre
tly
lassi�es the new example but also the examples already 
onsidered so far. This is followedby proje
ting the obtained matrix on the set of positive, semi-de�nite matri
es (an approa
hreminis
ent of the one de�ned in POLA [99℄). The �rst step aims at �nding matrix-thresholdpairs with small loss, whereas the se
ond step ensures the fa
t that the obtained matrix ispositive, semi-de�nite and hen
e de�nes a valid generalized 
osine similarity.Let Cτ ⊂ R
n2+1 be the set of all matrix-threshold pairs having zero loss on the example

(xτ , x
′
τ , yτ ):

Cτ = {(A, b) ∈ R
n2+1 : lτ (A, b) = 0}

Ca 
an then be de�ned as the set of all admissible matrix-threshold pairs:
Ca = {(A, b) ∈ R

n2+1 : A � 0, −1 + γ ≤ b ≤ 1− γ}The update step of our algorithm is thus based on two proje
tions:1. First, proje
t the 
urrent matrix-threshold pair (Aτ , bτ ) on Cτ . The matrix-threshold pairthus obtained is denoted by (Aτ̂ , bτ̂ ),2. Then proje
t (Aτ̂ , bτ̂ ) onto Ca to get (Aτ+1, bτ+1)These two proje
tions, as shown in the �gure 4.28, are now reviewed:Proje
tion onto CτThe set of matrix-threshold pairs having zero loss on (xτ , x
′
τ , yτ ) 
an be rewritten as:

Cτ = {(A, b) ∈ R
n2+1 : y[

xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

− b] ≥ γ}100



4.5. Generalized Cosine Similarity Metri
 LearningThe following two quantities are now introdu
ed, whi
h will help to de�ne a simple proje
tion:
R−1(xτ , x

′
τ , Aτ ) =

[min(xtτAxτ , x′tτAx′τ )]−1

R+1(xτ , x
′
τ , Aτ ) =

[max(xtτAxτ , x′tτAx′τ )]−1

R−1 is based on the minimum of the two normalization terms whereas R+1 depends on themaximum of the two normalization terms. Moreover, R−1 and R+1 
an be written in a singleinequality as follows:
R+1x

t
τAx

′
τ ≤ xtτAx

′
τ

√

xtτAxτ
√

x′tτAx
′
τ

≤ R−1x
t
τAx

′
τBy subtra
ting b from all terms and multiplying by yτ , the above inequality be
omes:

yτ (R+1x
t
τAx

′
τ − b) ≤ yτ (

xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

− b) ≤ yτ (R−1x
t
τAx

′
τ − b)whi
h 
an be rewritten as:

yτR+1x
t
τAx

′
τ − yτ b ≤ yτ

xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

− yτb ≤ yτR−1x
t
τAx

′
τ − yτ bHen
e, matrix-threshold pairs (A, b) su
h that:

yτRyτx
t
τAx

′
τ − yτ b ≥ γ (4.4)will have zero loss on the example (xτ , x

′
τ , yτ ) where yτ = ±1 and represents either similarexamples (yτ = 1) or dissimilar ones (yτ = −1). Using the inequality 4.4, two subsets of Cτ
ould be de�ned, on whi
h the 
urrent matrix-threshold pair 
an be proje
ted a

ording to thevalue of yτ :

C ′+
τ = {(A, b) ∈ R

n2+1 : R+1x
t
τAx

′
τ − b ≥ γ} if yτ = 1

C ′−
τ = {(A, b) ∈ R

n2+1 : −R−1x
t
τAx

′
τ + b ≥ γ} if yτ = −1whi
h 
an be 
onveniently rewritten:

C ′y
τ = {(A, b) ∈ R

n2+1 : yτRyτx
t
τAx

′
τ − yτb ≥ γ}, yτ ∈ {−1,+1}An orthogonal proje
tion is a proje
tion of a �gure on a line, plane et
. in su
h a way that theline joining the 
orresponding elements is perpendi
ular to the line, plane et
. The orthogonalproje
tion of (Aτ , bτ ) (the 
urrent matrix-threshold pair) on C ′yτ

τ , i.e. the 
losest element from
(Aτ , bτ ) in C ′yτ

τ , takes the form:






Aτ̂ = Aτ + yτa(xτx
′t
τ ), with a ∈ R

bτ̂ = bτ + yτawhere
a =

γ − yτRyτx
t
τAτx

′
τ + yτ b

Ryτ (||xτ ||2||x′τ ||2) 101
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ationProje
tion onto CaIn order to des
ribe the proje
tion onto Ca, it is important to note that Aτ+1 is the proje
tionof Aτ̂ onto the set of all positive, semi-de�nite matri
es, and bτ+1 the one of bτ̂ onto the set
b ∈ R : −1 + γ ≤ b ≤ 1− γ.In order to proje
t Aτ̂ onto the set of all positive, semi-de�nite matri
es, the following de-
omposition is used: Aτ̂ =

∑

j λjuju
T
j , where λj and uj are the eigenvalues and the eigenve
torsof the matrix Aτ̂ respe
tively. The matrix Aτ+1 is the proje
tion of Aτ̂ onto the set of PSDmatri
es (see for example [44℄). Knowing the eigenvalues and eigenve
tors of Aτ̂ , Aτ+1 
an bewritten in the following form:
Aτ+1 =

∑

j,λj>0

λjuju
T
jIf the matrix Aτ̂ is already symmetri
, symmetri
 Householder redu
tion is used to 
onvert itinto a tridiagonal matrix followed by QR transformation. On the 
ontrary, the similarity matrixis 
onverted to the Hessenberg form before 
onverting to real S
hur form. These forms makeit easier to �nd the eigenvalues and the eigenve
tors. Template Numeri
al Toolkit TNT 15 wasused to �nd the eigenvalues and eigenve
tors for the proje
tions. Alternatively, Lan
zos method(see [44℄) 
ould be used along with symmetri
 tridiagonal QR algorithm or bise
tion method to�nd the eigenvalues and the eigenve
tors of Aτ̂ .AlgorithmHere, an online algorithm to learn generalized 
osine similarities is presented. This algorithmlearn similarities of the form given in the equation 4.2 based on positive, semi-de�nite matri
es.This algorithm is denoted as gCosLA for generalized Cosine similarity Learning Algorithm. Theupdate rule 
onsists of proje
ting the matrix A onto the set of positive, semi-de�nite matri
es.For ea
h example (in the form of a pair), the loss is 
al
ulated based on the similarity sA. Theupdate is performed only in 
ase the loss is greater than zero for an example under 
onsideration.gCosLA - TrainingInput: training set of the form (x, x′, y), of n ve
tors in R

p, number of epo
hs M ; b representsthe thresholdOutput: list of (p × p) matri
es ((A1, b1), · · · , (Aq, bq))Initialization t = 1, A(1) = I (identity matrix), b = 0, γ > 0Repeat M times (epo
hs)for i = 1, · · · , nget triplet (xτ , x′τ ,±1) ∈ Rn ×Rn

lτ (A, b) = max {0, y(bτ − sA(xτ , x
′
τ )) + γ}if (lτ (A, b) > 0)

R+1(xτ , x
′
τ , A) =

[max ((xtτAxτ ), (x′tτAx′τ ))]−115Can be obtained from http://math.nist.gov/tnt/index.html102
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 Learning
R−1(xτ , x

′
τ , A) =

[min ((xtτAxτ ), (x′tτAx′τ ))]−1

a =
γ − yτRyτ (x

t
τAτx

′
τ ) + yτb

Ryτ (||xτ ||2||x′τ ||2)
Aτ̂ = Aτ + yτa(xτx

′t
τ )

Aτ+1 =
∑

j,λj>0 λjuju
T
j (where λj and uj are the eigenvalues and eigenve
torsof matrix Aτ̂ )

bτ̂ = bτ + yτaif (bτ̂ > 0)

bτ+1 = min (bτ̂ , 1− γ)else
bτ+1 = max (bτ̂ ,−1 + γ)To 
al
ulate the worst-time 
omplexity of gCosLA, the 
omplexity of the di�erent steps of thealgorithm is 
onsidered. The worst-time 
omplexity for 
al
ulating the similarity between twoexamples is O(p2) where p represents the number of dimensions. Similarly the �rst proje
tiononto the set of zero-loss matri
es 
osts the same i.e. O(p2). However eigen-value de
omposition,being a 
ostly operation, has the worst-time 
omplexity as O(p3). With all this, the overallworst-time 
omplexity for gCosLA 
an be written as O(M.n.p3) where M represent the numberof iterations, n is the number of train examples while p stands for the number of dimensions orattributes.The algorithm presented earlier assumes that the data is 
ompletely separable whi
h is rarelytrue in a
tual pra
ti
e. Here the data is 
onsidered to be inseparable. In this 
ase the lossbe
omes non-zero, whi
h 
an be dealt with by introdu
ing a new parameter γ1 whi
h is usedto de
rease the previously introdu
ed margin γ (this a�e
ts only the proje
tion onto Cτ , theproje
tion onto Ca being left un
hanged). The set Cτ thus be
omes:

Cτ = {(A, b) ∈ R
n2+1 : y[

xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

− b] ≥ γ − γ1}Setting β = γ − γ1 leads to:
C ′yτ
τ = {(A, b) ∈ R

n2+1 : yτRyτ (x
t
τAx

′
τ ) + yτ b ≥ β}, yτ ∈ {−1,+1}This �nally yields the modi�ed value for a:

a =
β − yτRyτ (x

t
τAτx

′
τ ) + yτ b

Ryτ (||xτ ||2||x′τ ||2)However, the rest of the algorithm remains the same.4.5.3 Online to Bat
h ConversionThe online algorithm, gCosLA is used for learning a set of similarity matri
es during the trainingphase. In order to use the similarity matri
es learned during the predi
tion, gCosLA 
an be103
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ationeasily 
onverted to a bat
h algorithm using the approa
h previously adopted for SiLA. However,instead of using weighted matri
es as in SiLA, just the averaged sum is taken over the di�erentsimilarity matri
es learned during training.gCosLA - Predi
tionInput: new example x in R
p, list of (p × p) matri
es (A1, · · · , An); where A is de�ned as:

A =

∑n
l=1Al

nOutput: list of 
lassesFurthermore, following the approa
h de�ned by Dekel et al. [30℄ and used in SiLA, thematri
es learned during the �rst few iterations of the algorithm 
an be dis
arded sin
e thealgorithm is supposed to make more mistakes in the beginning as 
ompared to the end. In otherwords, in a sequen
e of n similarity matri
es learned (A1, · · · , An), only the last q matri
es 
ouldbe taken into a

ount for 
lassi�
ation. The value of q 
an be determined using 
ross-validation.4.5.4 Analysis of gCosLAThe following theorem provides a loss bound for the algorithm gCosLA in the separable 
ase.It assumes the existen
e of a positive, semi-de�nite matrix A whi
h separates the data in astri
t sense, as well as the existen
e of an upper bound on the s
alar produ
t between all basi
instan
e pairs. The inseparable 
ase is treated in exa
tly the same way by repla
ing the positivereal number γ with an arbitrary real number, not ne
essarily positive, β.Theorem 4. Let (x1, x′1, y1), · · · (xτ , x′τ , yτ ), · · · , (xN , x′N , yN ) be a sequen
e of N examples. Forany positive, semi-de�nite matrix A, let for ea
h τ , 1 ≤ τ ≤ N :
R−1(xτ , x

′
τ , A) =

[min ((xtτAxτ ), (x′tτAx′τ ))]−1and
R+1(xτ , x

′
τ , A) =

[max ((xtτAxτ ), (x′tτAx′τ ))]−1Assume that there exists a positive, semi-de�nite matrix A∗, a threshold b∗ and a positive realnumber γ su
h that:
(R+1x

t
τA

∗x′τ − b∗) ≥ γ ∧ (b∗ −R−1x
t
τA

∗x′τ ) ≥ γUsing the notations introdu
ed previously, let R ∈ R
+ be an upper bound su
h that:

1

||xτx′tτ ||2 + 1
R2

yτ
||xτ ||42||x′τ ||42 ≤ R, yτ ∈ {−1,+1}Then the following bound holds for any M ≥ 1:

M∑

τ=1

(lτ (A, b))
2 ≤ R

(
||A∗ − I||22 + (b∗)2

)104



4.6. Comparison of SiLA and gCosLA with other state of the art algorithmsA proof of theorem 4 
an be established along the same lines as the proof of the loss boundprovided for the POLA algorithm in [99℄ and is presented in the Appendix A. The only require-ment in POLA is that the data should lie in a sphere of radius R. This requirement is translatedin the 
ase of a generalized 
osine similarity by the fa
t that the s
alar produ
t between datapoints, normalized by its maximum or minimum values, is bounded. Introdu
ing the maximumand minimum values leads to a stri
ter notion of separation. It however allows one to rely onsimple proje
tions.As the inseparable 
ase 
an be treated in exa
tly the same way, by dire
tly repla
ing thepositive s
alar γ by β, a s
alar not ne
essarily positive, one 
an see that the 
ondition imposedis not really restri
tive, and leads to an algorithm with an expli
it bound on the loss fun
tion.Furthermore, the theorem for the inseparable 
ase (as well as its proof) is the same as the onefor the separable 
ase, β being used instead of γ.4.6 Comparison of SiLA and gCosLA with other state of the artalgorithmsSiLA and gCosLA are supervised online algorithms having an e�e
tive online to bat
h 
onversionme
hanisms like POLA [99℄. These three algorithms update the similarity or distan
e matrix onlyif loss > 0 and a mis
lassi�
ation has been made. SiLA works with individual examples whereasgCosLA and POLA operate on pairs of similarly and di�erently labeled examples. Furthermore,loss bounds on the performan
e have been provided for all of the three algorithms. These boundsguarantee a generalization well beyond the training examples.SiLA as well as gCosLA 
ould be 
onsidered as a global similarity learning algorithms sin
eonly global similarity matri
es are learned for subsequent 
lassi�
ation of test data. Moreover,the similarity matri
es are not 
lass dependent. Stahl et al. [100℄, on the other hand, learn lo
alsimilarity measures.Although SiLA is based on the voted per
eptron proposed in Freund and S
hapire [37℄ andused in Collins' algorithm [20℄, yet it di�ers substantially from these two algorithms. The aimhere, is to learn similarity in kNN 
lassi�
ation, whereas it was used for binary 
lassi�
ation witha separating hyperplane in Freund and S
hapire and for the dis
riminative training of hiddenMarkov models in Collins's work.SiLA and gCosLA use kNN 
lassi�
ation algorithm like LMNN [112℄ and MCML [41℄. Thebasi
 aim in SiLA 
oin
ide with that of LMNN: bringing target neighbors 
loser while pushingapart the impostors. Both of these methods 
an be used for binary or multiway 
lassi�
ation.While 
omparing SiLA with MCML, one 
an see that in the later method, the target neighborsare 
ollapsed to a single point and the impostors are pushed in�nitely apart.SiLA does not require the similarity matrix to be positive, semi-de�nite (PSD) like ITML [28℄and OASIS [16℄, and unlike gCosLA, POLA [99℄ and the approa
hes of Xing et al. [114℄, Globersonet al. [41℄ and Weinberger et al. [112℄. The in
lusion of PSD 
onstraints require additional
omputation time. Although gCosLA works with bi-linear form de�ned by PSD matri
es, yet itlearns a similarity metri
 rather than a distan
e one as in other metri
 learning approa
hes.Furthermore, no eigenvalue de
omposition of the similarity matrix is required for SiLA justlike ITML. An important point regarding distan
es is that they are related to the tra
e of a105
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ationmatrix. On the other hand, there is no relation between similarity and the tra
e.Comparing SiLA and gCosLA with Xing's algorithm reveals that Xing's algorithm is usedfor 
lustering and is bat
h in essen
e. Furthermore, it does not have a 
omputationally e�e
tiveonline version and theoreti
al error guarantees regarding unseen examples. However, SiLA andgCosLA are used for 
lassi�
ation purposes, are e�e
tive online algorithms and have got theo-reti
al error guarantees. This makes sure that they make just a limited number of mistakes onunseen examples.Grabowski and Szalas [46℄ also learn a similarity measure whi
h is an asymmetri
 variant ofthe Ja

ard 
oe�
ient, and is a spe
ial 
ase of the similarity fun
tions 
onsidered in the 
ase ofSiLA. However, their goal is more along the lines of feature sele
tion than similarity learning.In 
omparison with Hust's work [52℄ on Collaborative Information Retrieval, where a variantof 
osine similarity is learned based on a diagonal matrix only; SiLA allows to learn diagonaland square matri
es.The neural network approa
h (SNN) of Mela

i et al. [72℄, to learn similarity di�ers fromSiLA owing to an always positive value of similarity. The reason is the use of sigmoidal fun
tion.SiLA's similarities, on the other hand, are not ne
essarily positive. Another di�eren
e is thatthe similarity is always symmetri
 for SNN like gCosLA.The aim in SiLA is to dire
tly redu
e the 0 − 1 loss or the leave-one-out error like NCA -Neighborhood Components Analysis [42℄. SiLA is a 
lassi�
ation algorithm and requires 
ompletesupervision in the form of 
lass labels. However, OASIS does not require the 
lass labels asit learns a pairwise (dis)similarity measure. Both SiLA as well as OASIS do not require thesimilarity or distan
e matrix to be symmetri
 in nature. As dis
ussed earlier, SiLA updates thesimilarity matrix only if the algorithm has made an error. On the other hand, OASIS is basedon systemati
 updates.For gCosLA, the initial similarity matrix is initialized with an identity matrix like OASIS. Thismeans that gCosLA resembles the standard 
osine whereas OASIS behaves like the Eu
lideandistan
e during the �rst iteration. The method of 
onverting a similarity matrix into a PSD oneresembles to the one followed by POLA and MCML. In this method, the (dis)similarity matrix Ais proje
ted onto the set of PSD matri
es by taking the eigenvalue de
omposition of A followedby the removal of negative eigenvalues.Peterson et al. [84℄ use geneti
 algorithm to optimize kNN performan
e using 
osine similarity,Pearson 
orrelation and Eu
lidean distan
e. However, in this 
ase, no metri
 is learned unlikeSiLA, gCosLA and other metri
 learning algorithms.The 
omplexity of gCosLA algorithm (Mnp3) is higher than that of SiLA (Mnp2) be
auseof the use of eigenvalue de
omposition. Furthermore, the 
osine similarity measure used in SiLA
annot be 
alled a generalized 
osine one, sin
e the normalization is 
ompletely independent ofthe similarity matrix learned. Another di�eren
e between SiLA and gCosLA lies in the fa
t thatgCosLA works with pairs of examples like POLA whi
h 
an be similar or dissimilar, while SiLAworks with individual examples.gCosLA 
an be 
onsidered as belonging to the family of passive aggressive algorithms de-s
ribed in Crammer et al.[23℄. It is passive when the 
urrent similarity matrix 
orre
tly 
lassi�esthe 
urrent example, in whi
h 
ase the 
urrent matrix is left un
hanged. On the 
ontrary, ifthere is some loss for the 
urrent example, it aggressively for
es the update to have zero loss for106



4.7. Con
lusionthe 
urrent example.4.7 Con
lusionSeveral works have proved that 
osine similarity, whi
h is mainly used while dealing with texts,should be preferred over the Eu
lidean distan
e on several, non-textual datasets as well. Thisexplains the importan
e of learning appropriate similarity measures apart from the distan
es forkNN 
lassi�
ation.SiLA (Similarity Learning Algorithm) is based on learning globally a similarity metri
 withthe help of training examples. It is based on voted per
eptron developed by Freund andS
hapire [37℄ and used by Collins [20℄. The aim is to move the target neighbors (examplesbelonging to the same 
lass as that of the input example) 
loser while pushing apart the impos-tors (examples from other 
lasses). It dire
tly redu
es the leave-one-out error or the 0 − 1 lossby redu
ing the number of mistakes on unseen examples. The similarity matri
es learned duringthe training phase 
an be used for predi
tion. The similarity used in the 
ase of SiLA does notguarantees that a symmetri
 bi-linear form exists. Nevertheless, the similarity matrix 
an beproje
ted onto the set of positive, semi-de�nite (PSD) matri
es thus giving rise to eSiLA.RELIEF is a well known feature re-weighting algorithm. It has been re
ently shown thatRELIEF 
ould in fa
t be seen as a distan
e learning algorithm in whi
h a linear utility fun
tionwith maximum margin is optimized. A version of RELIEF for similarity learning 
alled RELIEF-Based Similarity (RBS) is proposed. As RELIEF and unlike SiLA, RBS does not try to optimizethe leave-one-out error, and does not perform very well in pra
ti
e. This is illustrated on manyUCI 
olle
tions. Therefore, a stri
ter version of RBS, 
alled sRBS is developed whi
h aims atrelying on a 
ost fun
tion 
loser to the 0 − 1 loss. The results for sRBS show that it is a mu
hbetter idea of use 0-1 loss rather than its approximation. All of the RELIEF based algorithmswere extended to work with PSD matri
es.The normalization in SiLA is 
ompletely independent of the learned similarity matrix whi
hhinders in de�ning a truly generalized 
osine similarity. The approa
h previously used in SiLA
annot be used to de�ne a generalized 
osine similarity. Sin
e generalized 
osine similaritiesare based on s
alar produ
ts, they involve bi-linear forms de�ned by positive, semi-de�nite(PSD) matri
es. However, the normalization (dependent on the similarity matrix) introdu
edin the 
osine similarity prevents one from dire
tly re-using the algorithms previously introdu
edfor learning say Mahalanobis distan
es, also based on PSD matri
es. This motivates to learna generalized 
osine similarity - gCosLA, where the similarity matrix is positive, semi-de�nite(PSD) and the normalization is dependent on the similarity matrix. In order to 
onvert a matrixinto its PSD equivalent, it is proje
ted onto the set of PSD matri
es inspired from the approa
hadopted in POLA (Shalev et al. [99℄). Sin
e POLA is based on learning the pairwise 
onstraintsi.e. equivalen
e and inequivalen
e in order to learn a global distan
e metri
, gCosLA learns thesimilarity metri
 based on the pairwise 
onstraints.
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5.1. Introdu
tion5.1 Introdu
tionIn order to assess the performan
e of a learning algorithm, it must be tested over di�erentdatasets. The datasets must be di�erent from one another and should be able to validate analgorithm. Furthermore, the datasets should be diverse i.e. they should have di�erent number of
lasses, features and examples et
. Generally a dataset is divided into three distin
t parts (whi
hmeans that there should not be any overlapping): training set, validation set and test set.Training set is used ex
lusively for learning the di�erent parameters of the algorithm. In orderto verify whether an e�e
tive training has been performed or not, a validation set is formed fromthe data set whi
h must not 
ontain any of the training examples and is used to �ne tune analgorithm. Test set is required to verify the performan
e of the algorithm on unseen examples.Normally 80% of the instan
es are used for training and validation sets whereas the rest ofthe examples (20%) are used for the test data. Furthermore 80% examples are retained in thetraining set while 20% a

ount for the validation set.This 
hapter explains the experiments 
ondu
ted with di�erent similarity learning algorithmsover various datasets. Cosine similarity is 
ompared with the Eu
lidean distan
e. This is followedby a detailed 
omparison between 
osine, SiLA and gCosLA while using kNN as well as SkNN.All of the algorithms belonging to the RELIEF family are also thoroughly tested and 
omparedwith the standard kNN and SkNN rules. SiLA and gCosLA are 
ompared with di�erent state ofthe art algorithms in the �eld of metri
 learning. Similarly kNN is 
ompared with its symmetri
version SkNN while using the 
osine similarity.The next se
tion des
ribes the various datasets used for the experimental validation of thedi�erent algorithms.5.2 Des
ription of the datasets usedMany di�erent datasets were used in order to assess the performan
e of the various similaritylearning algorithms. All of the datasets ex
ept Newsgroups are part of the UCI database [36℄),namely, Ionosphere, Iris, Wine, Balan
e, Soybean (Small), Glass Identi�
ation, Pima IndiansDiabetes, BUPA Liver Disorders, Letter Re
ognition, (Statlog) German Credit Data, (Statlog)Heart, Yeast, Magi
, Spambase, Magi
, Sonar, Segmentation, Optdigits and Waveform. These arestandard 
olle
tions whi
h have been used by di�erent resear
h 
ommunities (ma
hine learning,pattern re
ognition, statisti
s et
.). The details about the datasets are next presented as shownin Table 5.1, 5.2 and 5.3:1. The Iris Plant data set 
ontains 3 
lasses, ea
h has 50 instan
es where ea
h 
lass refers atype of Iris plant. Two of the three 
lasses are not linearly separable from ea
h other. Thenumber of attributes is 4. 120 examples were used for training (96 for learning and 24 forvalidation), and 30 for testing.2. The Wine Re
ognition data set 
ontains 13 attributes representing the 
onstituents foundin ea
h of the three di�erent types of wines. 143 examples were used for training (114 forlearning and 29 for validation) while 35 for testing purposes. 111
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Iris Wine Balan
e Ionosphere Glass Soybean Pima LiverLearn 96 114 400 221 137 30 492 220Valid. 24 29 100 56 35 8 123 56Test 30 35 125 70 42 9 153 69Class 3 3 3 2 6 4 2 2Feat. 4 13 4 34 9 35 8 6Table 5.1: Chara
teristi
s of datasets - I

Letter German Yeast Heart Magi
 Spambase Musk-1 NewsLearn 12800 640 950 172 12172 2944 304 1824Valid. 3200 160 238 44 3044 737 77 457Test 4000 200 296 54 3804 920 95 2280Class 26 2 10 2 2 2 2 20Feat. 16 20 8 13 10 57 168 200 16Table 5.2: Chara
teristi
s of datasets - II
Sonar Segmentation Optdigits WaveformLearn 133 134 2447 3200Valid. 34 34 612 800Test 41 42 764 1000Class 2 7 10 3Feat. 60 19 64 21Table 5.3: Chara
teristi
s of datasets - III
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5.2. Des
ription of the datasets used3. The Balan
e S
ale data set 
ontains 3 
lasses along with 4 attributes. 500 examples wereused for training and 125 for test. Among the training examples, 400 were 
hosen forlearning while 100 were used for validation.4. Ionosphere is a binary 
lassi�
ation data set where the aim is to 
lassify radar returns fromthe ionosphere. 281 examples were 
onsidered for training (80% or 221 for learning andthe rest, 56 for validation) whereas 70 for test along with 34 features.5. The Glass Identi�
ation dataset 
ontains 6 types of glasses based on di�erent oxide 
ontent.The motivation for this dataset is that the glass left at the s
ene of the 
rime 
an be usedas eviden
e afterward. This dataset has 9 features (the �rst one is just the identi�
ationnumber and has been omitted). 172 examples were used for training (137 for learning while35 for validation) and 42 for testing.6. Soybean (Small) is a subset of the original soybean dataset. It 
ontain 35 features. 38examples were used for training purpose while 9 for testing. Among the training examples,30 were 
hosen for learning purpose while 8 for validation. The number of 
lasses is 4.7. Pima Indians Diabetes dataset, also known as Pima dataset, is also a binary 
lassi�
ationproblem and 
onsists of data from diabetes patients from Pima Indian heritage. The aim isto identify the patients who test positive for diabetes. 615 examples were used for trainingpurpose (492 for learning and 123 for validation) while 153 for testing.8. BUPA Liver Disorders dataset, sometimes referred as Liver dataset, is also a medi
aldataset where 276 examples were 
onsidered for training (220 for learning and 56 for val-idation) and 69 for testing. The task is to identify the presen
e of a liver disorder, basedon 6 attributes where the �rst 5 refer to blood tests 
onsidered sensitive to liver disorderswhi
h 
an develop from ex
essive al
ohol 
onsumption.9. The aim in Letter Re
ognition data set is to re
ognize the English language 
apital lettersout of 26 possibilities (A-Z). The images of the letters are based on 20 fonts whi
h makes20000 examples in total. The attributes are 
omposed of statisti
al moments and edge
ounts. 12800 examples were used for learning, 4800 for validation and 4000 for testing.10. (Statlog) German Credit data set 
ontains 800 examples for training (640 for learningwhereas 160 for validation) while 200 a

ount for the test set. The aim is to 
lassify a
ustomer has good or bad 
redit risk.11. The target in Yeast dataset is to �nd the lo
alization site of protein. It is 
omposed of1188 examples for training (950 for learning and 238 for validation) and 296 for testing.The number of features is 8.12. (Statlog) Heart is a heart disease data set 
onsisting of 216 training examples (172 forlearning while 44 for validation) and 54 test ones. The aim is to dete
t the presen
e orabsen
e of heart disease in patients using 13 features.13. Magi
 dataset is a binary dataset having only two 
lasses and 10 features. It was generatedby Monte Carlo method to simulate registration of high energy gamma parti
les in an113
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 Cherenkov teles
ope. It is made up of 19020 examples of whi
h 12172 makeup the training set, 3044 a

ount for the validation set and 3804 are pla
ed in the test set.14. Spambase is also a binary 
lassi�
ation dataset having a simple aim: 
lassify an email asspam or otherwise. It has 2944 instan
es as training, 737 for validation and 920 for testingpurposes. The number of attributes is 57.15. In Musk-1 dataset, an algorithm has to predi
t whether new mole
ules will be musks ornon-musks. It 
ontains 304 training examples, 77 validation ones while 95 instan
es areused for testing purpose. The 166 features depend upon the exa
t shape or 
onformationof the mole
ule.16. The 20-newsgroups data set is 
omposed of posted arti
les from 20 newsgroups and ap-proximately 
ontains 20,000 do
uments. The 18828 version was used in whi
h the 
ross-postings have been removed and in
ludes only the "From" and "Subje
t" headers. theRainbow pa
kage [71℄ was used to tokenize the data set where ea
h do
ument was formedof the weighted word-
ounts of the 20,000 most 
ommon words. This was followed by per-forming singular value de
omposition using SVDlib
 17 whi
h redu
ed the original 20,000dimensions to 200. Many of the resulting do
uments did not 
ontain any of the 200 sele
tedwords. The empty do
uments 
ontaining none of the 200 words were subsequently removedredu
ing the number of do
uments to 4561. Out of 4561 do
uments, 2281 do
uments wereused for training and validation, while 2280 do
uments were used in the testing phase.17. The aim in Sonar dataset is to separate the sonar signals boun
ed o� a metal 
ylinder(mine) and those boun
ed o� a roughly 
ylindri
al ro
k. There are 111 signals whi
h wereboun
ed o� a metal 
ylinder at various angles and under various 
onditions. Similarly 97patterns were obtained from ro
ks under similar 
onditions. Ea
h pattern is a set of 60numbers (features) in the range of 0.0 to 1.0. Out of 208 signals, 133 are used for trainingwhile 34 for validation. Finally 41 signals are used for testing.18. (Statlog) Image Segmentation is an image dataset 
onsisting of randomly drawn imagesfrom a database of 7 outdoor images. The images are further hand-segmented to 
reatea 
lassi�
ation for every pixel. Here, only the training set 
ontaining 210 images is usedfor 
lassi�
ation purposes. 134 images were used for training, 34 for validation whereas 42were used for testing purposes. Ea
h image is 
onsisted of 19 features.19. An opti
al re
ognition dataset, 
alled Optdigits is also used to evaluate di�erent algorithms.The aim in this dataset is the opti
al re
ognition of handwritten 
hara
ters (0-9). Onlythe training set 
ontaining 3823 instan
es is used. Furthermore, 2447 instan
es are usedfor training while 612 are retained for validation. Similarly 764 instan
es 
ompose the testset. The number of features is 64.20. Another UCI dataset used for validating di�erent algorithms is the Waveform databasegenerator (Version 1) dataset. This dataset 
ontains 3 
lasses of waves equally distributedamong 5000 instan
es. There are 21 features in total, all of whi
h in
lude noise. 3200instan
es were used for training, 800 for validation and 1000 for testing.17Can be obtained from http://tedlab.mit.edu/ dr/svdlib
/114



5.3. Methodology used for the experiments

Figure 5.1: Double 
ross validation [35℄ algorithm5.3 Methodology used for the experimentsThis se
tion des
ribes how the datasets were used for di�erent similarity learning algorithmsi.e. SiLA, eSiLA, RBS, sRBS, RBS-PSD, sRBS-PSD, gCosLA. 20 per
ent of the data was usedfor testing purpose for ea
h of the dataset. Of the remaining data, 80 per
ent was used fortraining whereas 20 per
ent for the validation sets for all of the algorithms. 5-fold double 
ross-validation [35℄ was used to learn the matrix sequen
e (A1, A2, · · · , Aq) for all of the datasets.The double 
ross-validation algorithm is shown in �gure 5.1. In the te
hnique of double 
ross-validation, the dataset is splitted into V sub-samples or folds (in this 
ase 5). One sample issele
ted as a test sample. The remaining samples, 
omposed of training and validation exam-ples, are 
onsidered as the samples used for learning purposes. Based on this distribution, thealgorithm is run multiple times with di�erent parameter values (e.g. di�erent value of k nearestneighbors) thus giving a set of a

ura
ies over the test sample. This helps to determine the bestmodel having the best parameter values for the 
urrent fold, based on the largest a

ura
y value.This is followed by 
onsidering another sample as a test one (di�erent from the �rst one)taken from the V samples. Moreover, the rest of the samples are 
onsidered as learning samples.Di�erent parameter values are tested just like the �rst fold so as to determine the best one. Inthe end, the V a

ura
ies are averaged to �nd the global a

ura
y.In the 
ase of kNN-
os, SkNN-
os and kNN-eu
lidean only the best value of k was determinedusing the method of double 
ross-validation. The best value of k was 
hosen from the possiblevalues of 1 and 3.It may be further re
alled that in a sequen
e of hypothesis, the last q elements may be moreinteresting than the earlier ones. Based on this fa
t, the validation set was used for SiLA todetermine the value of k (nearest neighbors), optimum number of epo
hs and the best value of
q. However, in the 
ase of gCosLA, the validation set was used to determine the aforementionedparameters learned for SiLA as well as the best value of the threshold β. It was observed thatfor ea
h dataset, the best value of β is usually di�erent for ea
h 
lass and ea
h fold.In order to 
reate pairs of examples for gCosLA, 5 nearest neighbors were found for ea
h ofthe example from the 
lass it belongs. Additionally, the same number of nearest neighbors from115



Chapter 5. Experiments and Resultsdi�erent 
lasses was also found. Thus the total number of pairs of examples for ea
h datasetbe
ame 10N where N represents the number of examples in a dataset.For RELIEF and RBS, a single weight ve
tor was learned whereas for sRBS, a sequen
e ofmatri
es (A1, A2, · · · , Aq) is learned. Double 
ross-validation is used to �nd the best value of kfor RELIEF and RBS algorithms. On the other hand, for sRBS, the values of k, λ and β aredetermined. The approa
hes followed in the 
ase of methods involving PSD matri
es i.e. eSiLA,RELIEF-PSD, RBS-PSD and sRBS-PSD are the same as the ones used for their 
ounterpartswithout PSD matri
es.5.3.1 Predi
tion RulesTwo predi
tion rules were used for all of the experiments. The �rst one is the standard kNN rulewhere the 
lassi�
ation is based on the k nearest neighbors while the se
ond one is SkNN ('S'means symmetri
), whi
h is based on the di�eren
e of similarity between k nearest neighborsfrom the same 
lass and k from other 
lasses18. Combined with the similarity learning algorithms,these predi
tion rules provide four di�erent possibilities for 
omparison:1. Standard kNN rule with the 
osine similarity by repla
ing A matrix with the Identitymatrix. This rule is referred to as kNN-
os,2. Standard kNN rule with the similarity learned with the similarity learning algorithms. Thismethod is termed as kNN-A,3. The symmetri
 predi
tion rule with the 
osine similarity having A = I, whi
h is 
alledSkNN-
os,4. The symmetri
 predi
tion rule with the similarity learned with the similarity learningalgorithms. This method appears as SkNN-A.Unless otherwise stated, a binary version of the algorithms was used, in whi
h a sequen
e ofmatri
es is learned for ea
h 
lass (one vs others), and the quality of a given method was assessedwith its average a

ura
y (i.e. the a

ura
y averaged over the di�erent 
lasses).In addition, the standard deviation was 
omputed on all of the 
olle
tions for all of thealgorithms. The results were evaluated for statisti
al signi�
an
e i.e. whether one method issigni�
antly better than the other one or not. In 
ase the P-value is less than or equal to 0.01,this means that the di�eren
e is mu
h more signi�
ant and is denoted by ≪ or ≫. A lower levelof signi�
an
e o

urs when the P-value lies in between 0.01 and 0.05, in whi
h 
ase is denotedby < or >. In 
ase, the P-value is greater than 0.05, the results are 
onsidered equivalent andare denoted by =.5.4 Cosine similarity vs Eu
lidean distan
e in kNN 
lassi�
ationEven though kNN has been traditionally used, on the 
olle
tions earlier seen, with the Eu
lideandistan
e (or with a Mahalanobis distan
e learned from the data, as in [28, 112℄), it is shown here18One 
an �nd in No
k [75℄ a di�erent version of a symmetri
 kNN rule in whi
h one 
onsiders not only the knearest neighbors of a given example x, but also the points for whi
h x is a nearest neighbor.116



5.4. Cosine similarity vs Eu
lidean distan
e in kNN 
lassi�
ationkNN-
osine kNN-Eu
lideanSoybean 1.0 ± 0.0 1.0 ± 0.0Iris 0.987 ± 0.025 0.973 ± 0.029Letter 0.997 ± 0.002 0.997 ± 0.002Balan
e 0.954 ± 0.021 ≫ 0.879 ± 0.028Wine 0.865 ± 0.050 ≫ 0.819 ± 0.096Ionosphere 0.871 ± 0.019 0.854 ± 0.035Glass 0.899 ± 0.085 0.890 ± 0.099Pima 0.630 ± 0.041 0.698 ± 0.024 ≫Liver 0.620 ± 0.064 0.620 ± 0.043German 0.594 ± 0.040 0.615 ± 0.047Heart 0.670 ± 0.020 0.656 ± 0.056Yeast 0.911 ± 0.108 0.912 ± 0.108Spambase 0.858 ± 0.009 0.816 ± 0.007Musk-1 0.844 ± 0.028 0.848 ± 0.018Table 5.4: Comparison between 
osine similarity and Eu
lidean distan
e based on s-testthat the 
osine should be preferred to the Eu
lidean distan
e on many of these 
olle
tions.The utility of the 
osine similarity on text data has been re
ognized now for many years.However, on most non-textual 
olle
tions, the majority of resear
hers rely on the Eu
lideandistan
e. In order to assess the validity of using the 
osine similarity on non-textual 
olle
tions,two standard kNN rules are used, one with the 
osine similarity, the other one with the Eu
lideandistan
e, on the UCI 
olle
tions. Table 5.4 summarizes the a

ura
y obtained with kNN-
osineand kNN-Eu
lidean along with their respe
tive standard deviations. The �rst 
olumn gives theaverage a

ura
y obtained while using a binary version of the 
osine-based kNN 
lassi�er, whereasthe se
ond one 
orresponds to the Eu
lidean distan
e-based kNN 
lassi�er. The best results arerepresented in bold.As one 
an note, the 
osine similarity yields results whi
h are either better or the same asthat for Eu
lidean distan
e for most of the data sets. Even though the results are on par with theGlass, Soybean, Liver and Letter data sets, the di�eren
e is important on Wine (better by 4.6%),Balan
e (better by 7.5%) and Spambase (better by 4.2%) 
olle
tions. For Pima, the Eu
lideandistan
e gives better result as 
ompared with the 
osine measure (gain of 6.8%). Mi
ro signtest (s-test), earlier used by [119℄, was performed to assess the statisti
al signi�
an
e of theseresults. It 
an be observed that 
osine is statisti
ally mu
h better (shown by `≫`) than Eu
lideandistan
e on Wine and Balan
e. However the di�eren
e between 
osine and Eu
lidean distan
e isnot statisti
ally signi�
ant on Ionosphere and the other data sets. Similarly Eu
lidean distan
ewas mu
h better than 
osine on Pima data set.Figure 5.2 depi
ts the 
omparison between 
osine and Eu
lidean distan
e with kNN algorithm.The standard deviations 
an also be viewed in the �gure.These results justify the use of the 
osine similarity, instead of the Eu
lidean distan
e, onsome of these 
olle
tions e.g. Balan
e and Wine. 117
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Figure 5.2: kNN-
os vs kNN-Eu
lidean on various datasets5.5 Comparison between 
osine, SiLA and gCosLAIn this se
tion, 
osine similarity is 
ompared with SiLA and gCosLA on various datasets. The
omparison is made both between the simple kNN rule as well as its symmetri
 version SkNN.Moreover, SiLA is also 
ompared with gCosLA. This is followed by a 
omparison between kNN-Aand SkNN-A for gCosLA in order to see the signi�
an
e of devising a symmetri
 version of kNN.Furthermore, kNN-Eu
lidean is 
ompared with kNN-A of gCosLA to as
ertain the importan
eof learning a similarity metri
 instead of using a distan
e one.5.5.1 Performan
e of kNN-
os as 
ompared to SiLA and gCosLAThe 
omparison of SiLA and gCosLA algorithms with 
osine while using the kNN predi
tion ruleis given in Table 5.5. Figure 5.3 and 5.4 give a graphi
al and an easier to follow des
ription ofthe 
omparison of kNN-
os with SiLA and gCosLA respe
tively.It 
an be observed that SiLA performs signi�
antly better than 
osine (kNN-
os), as 
on�rmedby the statisti
al signi�
an
e test s-test (shown by the sign ≫ or >) for Balan
e (a

ura
y betterby 2.5%), Ionosphere (better by 4.0%), Pima (better by 1.8%) and German (gain by 5.2%).Similarly gCosLA performs signi�
antly better than 
osine on Balan
e (gain of 2.7% in termsof a

ura
y), Wine (gain of 5.3%), Liver (better by 3.8%), German (improvement by 14.3%)and Heart (gain of 6.7%). The performan
e of all of the methods is 
omparable for Iris, Glassand Yeast. However for Soybean, kNN-
os is signi�
antly better than kNN-A for the algorithm118



5.5. Comparison between 
osine, SiLA and gCosLAkNN-
os kNN-A (SiLA) kNN-A (gCosLA)Soybean 1.0 ± 0.0 1.0 ± 0.0 0.972 ± 0.061 (<)Iris 0.987 ± 0.025 0.978 ± 0.030 0.987 ± 0.025Letter 0.997 ± 0.002 0.962 ± 0.003 0.995 ± 0.003Balan
e 0.954 ± 0.021 0.979 ± 0.012 ≫ 0.981 ± 0.008 ≫Wine 0.865 ± 0.050 0.884 ± 0.062 0.918 ± 0.064 ≫Ionosphere 0.871 ± 0.019 0.911 ± 0.031 ≫ 0.880 ± 0.039Glass 0.899 ± 0.085 0.892 ± 0.094 0.893 ± 0.097Pima 0.630 ± 0.041 0.648 ± 0.025 > 0.624 ± 0.051Liver 0.620 ± 0.064 0.609 ± 0.040 0.658 ± 0.070 >German 0.594 ± 0.040 0.646 ± 0.046 ≫ 0.737 ± 0.042 ≫Heart 0.670 ± 0.038 0.659 ± 0.020 0.737 ± 0.062 ≫Yeast 0.911 ± 0.108 0.905 ± 0.114 0.909 ± 0.112Table 5.5: Classi�
ation a

ura
y of 
osine, SiLA and gCosLA using kNN

Figure 5.3: kNN-
os vs kNN-A (SiLA) on various datasets 119
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Figure 5.4: kNN-
os vs kNN-A (gCosLA) on various datasetsgCosLA. These results do not help to de
ide whi
h one of SiLA and gCosLA is a signi�
antlybetter similarity metri
 learning algorithm as 
ompared to the standard 
osine similarity. Thereason is that there are many datasets on whi
h only one of the similarity learning algorithms issigni�
antly better than 
osine i.e. Wine, Ionosphere, Pima, Liver and Heart.5.5.2 Performan
e of SkNN-
os as 
ompared to SiLA and gCosLAThe symmetri
 
ounterpart of kNN, i.e. SkNN was also used to 
ompare 
osine with SiLA andgCosLA as shown in the table 5.6. Table 5.6 also gives the statisti
al signi�
an
e of the resultsfor SiLA and gCosLA on the basis of SkNN method.It 
an be observed that SiLA performs signi�
antly better than 
osine for Balan
e (better by1.1%), Wine (gain of 2.6%), Ionosphere (4.6%), Pima (2.0%) and German (gain by 4.7%).Similarly gCosLA performs signi�
antly better than 
osine as 
on�rmed by the statisti
alsigni�
an
e test s-test (shown by the sign ≫ or >) on Balan
e (1.2% ), Wine (gain of 5.9%) andGerman (better by 10.9%). The performan
e of all the methods is 
omparable for Soybean, Iris,Glass and Liver. It should be noted that although 
osine and SiLA are better than gCosLA onSoybean by 2.8%, yet the improvement is not signi�
ant enough.Moreover, SkNN-
os performs signi�
antly mu
h better than SkNN-A on the datasets Heartand Yeast for SiLA.Figure 5.5 and 5.6 
ompare the performan
e of 
osine similarity with SiLA and gCosLArespe
tively while using SkNN de
ision rule. The standard deviations are also depi
ted in thesetwo �gures.120



5.5. Comparison between 
osine, SiLA and gCosLASkNN-
os SkNN-A (SiLA) SkNN-A (gCosLA)Soybean 0.989 ± 0.034 0.989 ± 0.034 0.961 ± 0.075Iris 0.987 ± 0.025 0.980 ± 0.025 0.984 ± 0.025Letter 0.997 ± 0.002 0.962 ± 0.003 0.994 ± 0.003Balan
e 0.969 ± 0.013 0.980 ± 0.012 ≫ 0.981 ± 0.009 ≫Wine 0.867 ± 0.055 0.893 ± 0.062 > 0.926 ± 0.055 ≫Ionosphere 0.860 ± 0.024 0.906 ± 0.035 ≫ 0.883 ± 0.032Glass 0.898 ± 0.081 0.895 ± 0.085 0.897 ± 0.085Pima 0.643 ± 0.030 0.663 ± 0.028 ≫ 0.643 ± 0.031Liver 0.638 ± 0.060 0.600 ± 0.046 0.652 ± 0.068German 0.620 ± 0.030 0.667 ± 0.040 ≫ 0.729 ± 0.037 ≫Heart 0.711 ± 0.036 0.674 ± 0.047 ≪ 0.717 ± 0.061Yeast 0.917 ± 0.103 0.910 ± 0.106 ≪ 0.912 ± 0.112Table 5.6: Classi�
ation a

ura
y with 
osine, SiLA and gCosLA using SkNN

Figure 5.5: SkNN-
os vs SkNN-A (SiLA) on various datasets 121
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Figure 5.6: SkNN-
os vs SkNN-A (gCosLA) on various datasetskNN-
os kNN-A (SiLA) SkNN-
os SkNN-A (SiLA)News 0.929 0.947 0.907 0.902Table 5.7: Comparison between 
osine and SiLA for News5.5.3 Cosine and SiLA on News datasetThe 
osine similarity is also 
ompared with SiLA on News dataset. Only 1 fold is used for thisdataset due to its large size. The is the reason no standard deviation is mentioned in table 5.7.SiLA performs better than 
osine similarity while using kNN rule (a

ura
y better by 1.8%).On the other hand, SkNN-
os performs slightly better than SkNN-A (improvement of 0.5%).gCosLA was not tested on this dataset sin
e it 
ontains a large number of attributes (200) andthe 
omplexity of gCosLA is 
ubi
 in terms of the number of dimensions.5.5.4 Comparison between SiLA and gCosLATable 5.8 
ompares the statisti
al signi�
an
e of the results for SiLA and gCosLA on the basisof kNN-A method. The performan
e of gCosLA is signi�
antly better than that of SiLA onWine (91.8% vs 88.4%), German (73.7% vs 64.6%), Heart (73.7% vs 65.9%) and Letter (99.5%vs 96.2%) data sets. Similarly gCosLA performs slightly better than SiLA on Liver (65.8% vs60.9%).On the other hand, the algorithm SiLA performs slightly better (shown by the symbol >)122



5.5. Comparison between 
osine, SiLA and gCosLAkNN-A (SiLA) / kNN-A (gCosLA)Soybean >Iris =Letter =Balan
e =Wine ≪Ionosphere =Glass =Pima >Liver <German ≪Heart ≪Yeast =Table 5.8: Comparison between SiLA and gCosLA for kNN-A based on s-testas 
ompared to gCosLA on the datasets Soybean (100% vs 97.2%) and Pima (64.8% vs 62.4%).Nevertheless, gCosLA 
onverged faster as 
ompared with SiLA for all of these datasets as shownin �gure 5.7 forWine dataset in whi
h 
ase SiLA required more than 14,000 iterations in order to
onverge whereas gCosLA 
onverged in less than 200 iterations for di�erent value of k (k = 1, 3).Similarly, SiLA and gCosLA are also 
ompared based on SkNN-A de
ision rule as shownin table 5.9. The statisti
al signi�
an
e of the results is mentioned where = means that thedi�eren
e is insigni�
ant. The performan
e of gCosLA is signi�
antly better than that of SiLAonWine (92.6% vs 89.3%), German (72.9% vs 66.7%) and Letter (99.5% vs 96.2%) data sets withSkNN-A. Moreover, gCosLA performs slightly mu
h better than SiLA for Liver (65.2% vs 60.0%)and Heart (71.7% vs 67.4%). On the other hand, SiLA was unable to perform signi�
antly betterthan its 
ounterpart on any of the 12 datasets. Nevertheless, gCosLA 
onverged faster than SiLAwhile using SkNN as was earlier seen for kNN for all of these datasets.5.5.5 Comparison between kNN-Eu
lidean and kNN-A (gCosLA)Furthermore, the Eu
lidean distan
e is 
ompared with the algorithm gCosLA while using kNNmethod in table 5.10. gCosLA outperforms the Eu
lidean distan
e signi�
antly on many datasets(Balan
e, Wine, German and Heart). Moreover, gCosLA performs slightly better than the Eu-
lidean distan
e on Iris, Ionosphere and Liver.Similarly Eu
lidean distan
e proves to be signi�
antly better than gCosLA for Soybean, whileslightly better on Pima. Comparing table 5.4 and 5.10 it 
an be observed that the results afterlearning a similarity matrix are signi�
antly better as 
ompared to the ones using Eu
lideandistan
e. 123
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Figure 5.7: Comparison between gCosLA and SiLA in terms of rapidity for Wine
SkNN-A (SiLA) / SkNN-A (gCosLA)Soybean =Iris =Letter =Balan
e =Wine ≪Ionosphere =Glass =Pima =Liver <German ≪Heart <Yeast =Table 5.9: Comparison between SiLA and gCosLA with SkNN-A based on s-test

124



5.6. RELIEF family of algorithmskNN-Eu
lidean / kNN-A (gCosLA)Soybean >Iris <Letter =Balan
e ≪Wine ≪Ionosphere <Glass =Pima ≫Liver <German ≪Heart ≪Yeast =Table 5.10: Comparison between kNN-Eu
lidean and kNN-A (gCosLA) based on s-test5.6 RELIEF family of algorithmsThough basi
ally a feature reweighting algorithm, RELIEF has re
ently been shown as belongingto the distan
e metri
 learning family by Sun and Wu [102℄. In this se
tion, the performan
eof RELIEF is 
ompared with the 
osine similarity while using kNN as well as SkNN de
isionrules. Furthermore, the two RELIEF based similarity learning algorithms i.e. RBS and sRBSare 
ompared with the RELIEF algorithm using kNN and SkNN. The e�e
t of positive, semi-de�nitiveness on the RELIEF based algorithms is also dis
ussed.
5.6.1 Performan
e of 
osine similarity as 
ompared to RELIEFThe 
osine similarity is 
ompared with the RELIEF algorithm on the basis of both kNN as wellas SkNN de
ision rules. Table 5.11 
ompares the kNN-
os with kNN-A for RELIEF algorithm.It 
an be observed easily that, in general, kNN-
os outperforms its 
ounterpart on the basis ofs-test. kNN-
os is signi�
antly mu
h better (shown by the sign ≫) than kNN-A for RELIEF onSoybean, Iris, Balan
e, Wine, Ionosphere, Glass, Heart and Yeast. Similarly kNN-
os is slightlybetter (shown by >) than RELIEF on Pima and Liver. There are only two datasets where thetwo algorithms perform equally well (shown by = sign): Letter and German as shown in the�gure 5.8.SkNN-
os is also 
ompared with RELIEF as shown in the table 5.12 and �gure 5.9. LikekNN-
os, SkNN-
os performs signi�
antly better than SkNN-A for RELIEF on all of the datasetsex
ept Letter. 125



Chapter 5. Experiments and Results

Figure 5.8: Comparison between kNN-
os and RELIEF
kNN-
os / kNN-A (RELIEF)Soybean ≫Iris ≫Letter =Balan
e ≫Wine ≫Ionosphere ≫Glass ≫Pima >Liver >German =Heart ≫Yeast ≫Table 5.11: Comparison between kNN-
os and kNN-A (RELIEF) based on s-test
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5.6. RELIEF family of algorithmsSkNN-
os / SkNN-A (RELIEF)Soybean ≫Iris ≫Letter =Balan
e ≫Wine ≫Ionosphere ≫Glass ≫Pima ≫Liver ≫German ≫Heart ≫Yeast ≫Table 5.12: Comparison between SkNN-
os and SkNN-A (RELIEF) based on s-test

Figure 5.9: Cosine vs RELIEF with SkNN on various datasets 127



Chapter 5. Experiments and ResultskNN-A (RELIEF) kNN-A (RBS) kNN-A (sRBS)Soybean 0.711 ± 0.211 0.750 ± 0.197 > 1.0 ± 0.0 ≫Iris 0.667 ± 0.059 0.667 ± 0.059 0.987 ± 0.025 ≫Balan
e 0.681 ± 0.662 0.670 ± 0.171 0.959 ± 0.016 ≫Ionosphere 0.799 ± 0.062 0.826 ± 0.035 0.866 ± 0.015 ≫Heart 0.556 ± 0.048 0.437 ± 0.064 ≪ 0.696 ± 0.046 ≫Yeast 0.900 ± 0.112 0.900 ± 0.112 0.905 ± 0.113German 0.598 ± 0.068 0.631 ± 0.020 ≫ 0.609 ± 0.016Liver 0.574 ± 0.047 0.580 ± 0.042 0.583 ± 0.015Pima 0.598 ± 0.118 0.583 ± 0.140 0.651 ± 0.034 ≫Glass 0.815 ± 0.177 0.821 ± 0.165 0.886 ± 0.093 ≫Letter 0.961 ± 0.003 0.961 ± 0.005 0.997 ± 0.002Wine 0.596 ± 0.188 0.630 ± 0.165 0.834 ± 0.077 ≫Table 5.13: Comparison between di�erent RELIEF based algorithms while using kNN-A method basedon s-test

Figure 5.10: kNN-
os vs kNN-sRBS on various datasets128



5.6. RELIEF family of algorithmsSkNN-A (RELIEF) SkNN-A (RBS) SkNN-A (sRBS)Soybean 0.756 ± 0.199 0.750 ± 0.197 0.989 ± 0.034 ≫Iris 0.673 ± 0.064 0.667 ± 0.059 0.987 ± 0.025 ≫Balan
e 0.662 ± 0.200 0.672 ± 0.173 0.967 ± 0.010 ≫Ionosphere 0.681 ± 0.201 0.834 ± 0.031 ≫ 0.871 ± 0.021 ≫Heart 0.526 ± 0.085 0.430 ± 0.057 ≪ 0.685 ± 0.069 ≫Yeast 0.900 ± 0.113 0.900 ± 0.112 0.908 ± 0.110German 0.493 ± 0.115 0.632 ± 0.021 ≫ 0.598 ± 0.038 ≫Liver 0.539 ± 0.078 0.580 ± 0.042 ≫ 0.588 ± 0.021 >Pima 0.585 ± 0.125 0.583 ± 0.140 0.665 ± 0.044 ≫Glass 0.833 ± 0.140 0.816 ± 0.171 ≪ 0.884 ± 0.084 ≫Letter 0.957 ± 0.047 0.961 ± 0.005 0.997 ± 0.002Wine 0.575 ± 0.198 0.634 ± 0.168 ≫ 0.840 ± 0.064 ≫Table 5.14: Comparison between di�erent RELIEF based algorithms while using SkNN-A based ons-test5.6.2 Comparison between di�erent RELIEF algorithms based on kNN de
i-sion ruleWhile 
omparing RELIEF with its similarity based variant (RBS) based on the simple kNN
lassi�
ation rule, it is evident that the later performs signi�
antly mu
h better only on Germanand slightly better on Soybean as shown in table 5.13. However RELIEF outperforms RBS forHeart while using kNN.It 
an be further veri�ed from table 5.13 that the algorithm sRBS performs signi�
antlymu
h better (≫) than the RELIEF algorithm for eight out of twelve datasets i.e. Soybean, Iris,Balan
e, Ionosphere, Heart, Pima, Glass and Wine.5.6.3 Comparison between di�erent RELIEF algorithms based on SkNN de
i-sion ruleWhile 
omparing RELIEF with its similarity based variant (RBS) based on the SkNN-A rule,it 
an be seen from table 5.14 that the later performs signi�
antly mu
h better on Ionosphere,German, Liver and Wine 
olle
tions. On the other hand, RELIEF performs signi�
antly mu
hbetter than RBS on Heart and Glass.It 
an further observed that sRBS performed signi�
antly mu
h better than RELIEF on 9datasets out of a total of 12 i.e. Soybean, Iris, Balan
e, Ionosphere, Heart, German, Pima, Glassand Wine. On Liver, sRBS performed slightly better than the RELIEF algorithm. Moreover,the 
omparison between 
osine and sRBS for SkNN is shown in �gure 5.11. 129
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Figure 5.11: Cosine vs sRBS with SkNN rule on various datasets5.6.4 Performan
e of sRBS as 
ompared to RBSFurthemore, the two RELIEF based similarity learning algorithms i.e. RBS and sRBS are 
om-pared using both kNN as well as SkNN as shown in table 5.15. On most of the datasets, thealgorithm sRBS outperforms RBS for both kNN and SkNN. sRBS performs signi�
antly mu
hbetter (as shown by ≪) than its 
ounterpart on the following datasets: Soybean, Iris, Balan
e,Ionosphere, Heart, Pima, Glass and Wine for the two 
lassi�
ation rules (kNN and SkNN). Onthe other hand, RBS was able to perform slighty better than its stri
ter version sRBS on Germanwhile using the kNN rule. Similarly RBS performs signi�
antly mu
h better than sRBS on onlyone dataset i.e. German while using the SkNN 
lassi�
ation rule. The performan
e of RBS andsRBS is equivalent for Yeast, Liver and Letter.5.6.5 E�e
t of positive, semi-de�nitiveness on RELIEF based algorithmsIn this subse
tion, the e�e
t of learning PSD matri
es is investigated for the RELIEF basedalgorithms.RELIEF based approa
hes and positive, semi-de�nite matri
es with kNN 
lassi�
ationruleIn table 5.16, RELIEF-PSD is 
ompared with RELIEF-Based Similarity learning algorithm RBS-PSD and its stri
ter version (sRBS-PSD) while using the kNN 
lassi�
ation rule. It 
an be seen130



5.6. RELIEF family of algorithmskNN-A (RBS) / kNN-A (sRBS) SkNN-A (RBS) / SkNN-A (sRBS)Soybean ≪ ≪Iris ≪ ≪Balan
e ≪ ≪Ionosphere ≪ ≪Heart ≪ ≪Yeast = =German > ≫Liver = =Pima ≪ ≪Glass ≪ ≪Letter = =Wine ≪ ≪Table 5.15: Comparison between RBS and sRBS based on s-test
kNN-A (RELIEF-PSD) kNN-A (RBS-PSD) kNN-A (sRBS-PSD)Soybean 0.739 ± 0.192 0.733 ± 0.220 1.0 ± 0.0 ≫Iris 0.664 ± 0.058 0.667 ± 0.059 0.987 ± 0.025 ≫Balan
e 0.665 ± 0.193 0.670 ± 0.171 0.959 ± 0.016 ≫Ionosphere 0.839 ± 0.055 0.826 ± 0.035 0.880 ± 0.015 >Heart 0.556 ± 0.048 0.437 ± 0.036 ≪ 0.693 ± 0.047 ≫Yeast 0.893 ± 0.132 0.900 ± 0.112 ≫ 0.911 ± 0.109 ≫German 0.637 ± 0.017 0.624 ± 0.015 < 0.609 ± 0.016 <Liver 0.574 ± 0.034 0.580 ± 0.042 0.606 ± 0.034Pima 0.593 ± 0.077 0.661 ± 0.024 ≫ 0.651 ± 0.034 ≫Glass 0.819 ± 0.164 0.835 ± 0.138 > 0.886 ± 0.093 ≫Letter 0.961 ± 0.005 0.961 ± 0.005 0.997 ± 0.002Wine 0.608 ± 0.185 0.630 ± 0.165 0.834 ± 0.077 ≫Magi
 0.516 ± 0.085 0.360 ± 0.007 0.767 ± 0.009Spambase 0.618 ± 0.031 0.611 ± 0.020 ≪ 0.855 ± 0.009 ≫Musk-1 0.698 ± 0.055 0.851 ± 0.033 ≫ 0.838 ± 0.024 ≫Table 5.16: Comparison between di�erent RELIEF based algorithms using kNN-A and PSD matri
es
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Chapter 5. Experiments and ResultskNN-A (RELIEF) / kNN-A (RELIEF-PSD)Soybean =Iris =Balan
e =Ionosphere <Heart =Yeast ≫German ≪Liver =Pima =Glass =Letter =Wine =Table 5.17: Comparison between RELIEF and RELIEF-PSD based on s-test using kNNthat sRBS-PSD performs mu
h better than the other two algorithms on majority of the datasets. sRBS-PSD is statisti
ally mu
h better (as shown by the symbol ≫) than RELIEF-PSDfor the following 10 datasets: Soybean, Iris, Balan
e, Heart, Yeast, Pima, Glass, Wine, Spambaseand Musk-1. Similarly for Ionosphere, sRBS-PSD is slightly better than the RELIEF-PSDalgorithm. On the other hand, RELIEF-PSD performs slightly better (<) than sRBS-PSD forGerman dataset.Moreover, while 
omparing RBS-PSD with RELIEF-PSD, it 
an be observed that the formerperforms signi�
antly better than the later for Yeast, Pima and Musk-1, and slightly better forGlass dataset. On the other hand, RELIEF-PSD was able to perform signi�
antly better thanRBS-PSD for Heart and Spambase, while slightly better for German.While 
omparing RELIEF (with no PSD matri
es) with RELIEF-PSD algorithm (table 5.17),it 
an be observed that RELIEF-PSD performs signi�
antly better than RELIEF on German andslightly better on Ionosphere. On the other hand, RELIEF was able to out
lass its 
ounterpart forYeast. However, for rest of the datasets the performan
e of these two algorithms was 
omparable.RELIEF based approa
hes and positive, semi-de�nite matri
es with SkNN 
lassi�
a-tion ruleTable 5.18 
ompares di�erent RELIEF based algorithms based on SkNN de
ision rule whileusing PSD matri
es. It 
an be observed that sRBS-PSD performs mu
h better than the othertwo algorithms on majority of the data sets as seen earlier while using the kNN rule . sRBS-PSDis statisti
ally mu
h better (as shown by the symbol ≫) than RELIEF-PSD for the following10 datasets (out of 15): Soybean, Iris, Balan
e, Heart, Yeast, Liver, Glass, Wine, Spambase andMusk-1. RELIEF-PSD performs slightly better (<) than sRBS-PSD for only one dataset i.e.German.Similarly, RBS-PSD outperforms RELIEF-PSD for 6 datasets (Iris, Yeast, Liver, Glass,Spambase and Musk-1) while the reverse is true for the following 3 datasets: Balan
e, Iono-132



5.7. How SiLA and gCosLA perform as 
ompared to the state of the art approa
hesSkNN-A (RELIEF-PSD) SkNN-A (RBS-PSD) SkNN-A (sRBS-PSD)Soybean 0.783 ± 0.163 0.733 ± 0.220 0.983 ± 0.041 ≫Iris 0.571 ± 0.164 0.667 ± 0.059 ≫ 0.987 ± 0.025 ≫Balan
e 0.708 ± 0.175 0.672 ± 0.173 ≪ 0.967 ± 0.010 ≫Ionosphere 0.886 ± 0.028 0.834 ± 0.031 ≪ 0.889 ± 0.011Heart 0.533 ± 0.067 0.437 ± 0.036 ≪ 0.685 ± 0.069 ≫Yeast 0.897 ± 0.122 0.900 ± 0.112 ≫ 0.914 ± 0.106 ≫German 0.625 ± 0.035 0.624 ± 0.015 0.598 ± 0.038 <Liver 0.528 ± 0.085 0.580 ± 0.042 ≫ 0.609 ± 0.035 ≫Pima 0.659 ± 0.027 0.658 ± 0.030 0.665 ± 0.044Glass 0.768 ± 0.235 0.835 ± 0.138 ≫ 0.884 ± 0.084 ≫Letter 0.961 ± 0.008 0.961 ± 0.004 0.997 ± 0.002Wine 0.606 ± 0.177 0.634 ± 0.168 0.840 ± 0.064 ≫Magi
 0.539 ± 0.109 0.360 ± 0.007 0.777 ± 0.009Spambase 0.583 ± 0.075 0.611 ± 0.020 ≫ 0.857 ± 0.010 ≫Musk-1 0.712 ± 0.037 0.857 ± 0.029 ≫ 0.842 ± 0.010 ≫Table 5.18: Comparison between di�erent RELIEF based algorithms using SkNN-A and PSD matri
essphere and Heart.Table 5.19 
ompares the e�e
t of using PSD matri
es with the RELIEF algorithm while usingthe SkNN de
ision rule. It 
an be observed that RELIEF-PSD performs signi�
antly better thanRELIEF on Balan
e, Ionosphere, German and Pima. On the other hand, RELIEF was able toout
lass its 
ounterpart for Iris, Yeast and Glass. The performan
e of these two algorithms was
omparable for the remaining 
olle
tions.Performan
e of sRBS-PSD as 
ompared to RBS-PSDTable 5.20 
ompares statisti
ally the results obtained while using RBS-PSD and sRBS-PSDalgorithms. The later outperforms the former for the following 7 datasets (out of 13 
onsideredfor 
omparison): Soybean, Iris, Balan
e, Ionosphere, Heart, Glass and Wine with both kNN aswell as SkNN. RBS-PSD performs slightly better than its 
ounterpart for German while using theSkNN rule. However, for the rest of the datasets, the two algorithms' performan
e is 
omparable.5.7 How SiLA and gCosLA perform as 
ompared to the state ofthe art approa
hesIn this se
tion, SiLA and gCosLA are 
ompared with di�erent state of the art methods in metri
learning. A detailed 
omparison between SiLA and gCosLA and several state of the art ones is133



Chapter 5. Experiments and Results
SkNN-A (RELIEF) / SkNN-A (RELIEF-PSD)Soybean =Iris ≫Balan
e ≪Ionosphere ≪Heart =Yeast ≫German ≪Liver =Pima ≪Glass ≫Letter =Wine =Table 5.19: Comparison between RELIEF and RELIEF-PSD based on s-test using SkNN

kNN-A (RBS-PSD) / (sRBS-PSD) SkNN-A (RBS-PSD) / (sRBS-PSD)Soybean ≪ ≪Iris ≪ ≪Balan
e ≪ ≪Ionosphere ≪ ≪Heart ≪ ≪Yeast = =German = >Liver = =Pima = =Glass ≪ ≪Letter = =Wine ≪ ≪Musk-1 = =Table 5.20: Comparison between RBS-PSD and sRBS-PSD based on s-test
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5.7. How SiLA and gCosLA perform as 
ompared to the state of the art approa
hesgCosLA SiLA SNN MCML LMNN ITML Multi
lass SVMBalan
e 0.976 0.952 0.879 0.925 0.916 0.920 0.922Wine 0.857 0.806 0.951 0.837 0.974 0.974 0.801Iris 0.967 0.967 0.934 0.967 0.953 0.961 0.956Table 5.21: Di�erent similarity and metri
 learning algorithms on UCI datasetsgive in Table 5.21. The �rst one ([72℄) learns similarity whereas the next three ( [28, 41, 112℄) areinterested in learning distan
es with kNN algorithm. The algorithms are: Similarity Learningwith Neural Network SNN, Information Theoreti
 Metri
 Learning ITML, Maximally CollapsingMetri
 Learning MCML, Large Margin Nearest Neighbor LMNN and a multi
lass version ofSVMs [25℄. To 
ompare the methods based on SiLA and gCosLA with di�erent approa
hes, amulti
lass version for both of these algorithms was used followed by the 
al
ulation of the globala

ura
y. Furthermore, only the standard kNN approa
h (kNN-A) and not the symmetri
 one(SkNN-A) was used in order to have a fair 
omparison.The methods are 
ompared on three UCI datasets (Iris, Balan
e and Wine) 
ommon to allof the previous approa
hes.Comparing gCosLA with SiLA, it 
an be observed that for Balan
e and Wine, gCosLA notonly outperformed SiLA but it 
onverged very rapidly (in terms of number of iterations andtime) also. The performan
e for gCosLA is on a par with that of SiLA on Iris but nevertheless,gCosLA is faster as was seen for the binary version of these two algorithms.While 
omparing SiLA and gCosLA with SNN, it 
an be noted that the algorithms SiLAand gCosLA outperformed SNN for Balan
e and Iris. However for Wine, SNN has got a mu
hbetter performan
e as 
ompared with SiLA and gCosLA. The primary reason is that SNN wasable to down-weigh an in�uential attribute for Wine whereas SiLA and gCosLA were unable todo so, sin
e they do not perform feature sele
tion while SNN does so.SiLA and gCosLA performed mu
h better than MCML for Balan
e whereas the three algo-rithms got the same a

ura
y for Iris. SiLA and gCosLA also outperformed LMNN and ITMLon two out of three data sets, namely Balan
e and Iris. However, LMNN and ITML performedbetter on Wine be
ause they were able to down-weigh an in�uential attribute just like SNN.In 
omparison with Multi
lass SVM, gCosLA performed mu
h better for all of the three
olle
tions whereas SiLA was better for Balan
e and Iris.gCosLA and SiLA are further 
ompared with many other state of the art approa
hes likeXing's algorithm [114℄, KRCA (Kernal Relevant Component Analysis) [104℄, IGML (Linear In-formation Geometri
 Approa
h for Metri
 Learning), KIGML (Kernel Information Geometri
Approa
h for Metri
 Learning), Eu
lidean distan
e and Mahalanobis distan
e. The results fordistan
e learning methods are 
opied from Wang and Jin [107℄ whereas we report the results for
osine similarity and our similarity metri
 learning approa
hes i.e. SiLA and gCosLA. Moreover,Wang and Jin have have found that the best value of k is 4. However, in our 
ase, we �nd thevalue of k using double 
ross-validation. Table 5.22 and 5.23 give the results where the best onesare written in bold. Similarly the ranking for di�erent algorithms is given in table 5.24 where 1represents the best algorithm whereas 10 stands for the worst. 135



Chapter 5. Experiments and ResultsIt 
an be observed that for 
olle
tions like Iris, Soybean, Ionosphere, Sonar and Glass, forwhi
h the 
osine measure performs better than the Eu
lidean distan
e, the 
osine based methodsi.e. Cosine, SiLA and gCosLA out
lass the distan
e based ones. This means that for these
olle
tions, it is better to use similarity based methods rather than learning distan
e metri
s.The standard 
osine measure has got the highest a

ura
y for Iris and Soybean while it is rankedse
ond for Sonar as well as Glass datasets. Similarly SiLA got the �rst position for Soybean andIonosphere whereas it got the third rank for Sonar, Glass and Optdigits. gCosLA got the thirdrank for Iris and Sonar.Eu
l Mahal Xing LMNN ITMLIris 5.0 ± 2.9 10.8 ± 3.3 3.5 ± 1.9 4.5 ± 2.1 4.3 ± 2.7Soy 6.0 ± 5.1 2.8 ± 3.2 1.1 ± 2.2 2.2 ± 2.1 0.7 ± 1.0Iono 17.8 ± 1.6 18.4 ± 2.0 10.3 ± 1.3 15.0 ± 1.9 11.1 ± 2.6Sonar 28.9 ± 4.2 28.9 ± 3.8 28.9 ± 4.2 20.3 ± 4.4 28.3 ± 6.3Glass 35.5 ± 3.5 34.9 ± 3.2 41.7 ± 4.9 34.9 ± 3.2 36.2 ± 3.4Opt 2.1 ± 0.3 5.9 ± 0.5 12.3 ± 0.9 1.6 ± 0.3 2.1 ± 0.3Wine 29.6 ± 3.6 7.5 ± 2.2 10.8 ± 4.6 4.1 ± 1.8 7.7 ± 3.0Seg 23.6 ± 3.1 16.9 ± 3.6 23.2 ± 3.4 14.7 ± 1.9 16.6 ± 5.0Wave 19.5 ± 0.6 36.1 ± 0.8 17.0 ± 0.8 19.1 ± 0.7 19.7 ± 0.7Pima 28.0 ± 1.8 27.8 ± 2.0 27.9 ± 1.7 27.1 ± 1.7 27.8 ± 1.7Table 5.22: Comparison of SiLA and gCosLA with many state of the art approa
hes - IKRCA IGML KIGML Cosine gCosLA SiLAIris 4.1 ± 1.6 2.7 ± 1.7 3.9 ± 2.8 2.0 ± 3.0 3.3 ± 3.3 3.3 ± 3.3Soy 0.1 ± 0.8 1.8 ± 2.1 0.4 ± 1.3 1.0 ± 0.0 8.9 ± 9.3 1.0 ± 0.0Iono 17.2 ± 1.6 16.6 ± 1.8 14.2 ± 1.6 12.9 ± 2.0 13.4 ± 2.6 8.9 ± 3.3Sonar 26.5 ± 4.6 28.1 ± 4.5 14.6 ± 4.0 18.5 ± 5.1 20.0 ± 4.01 20.0 ± 9.0Glass 36.9 ± 2.7 35.8 ± 2.3 33.3 ± 3.1 33.8 ± 8.5 36.2 ± 4.9 34.8 ± 8.4Opt 2.1 ± 0.3 3.2 ± 0.3 1.4 ± 0.2 2.1 ± 0.3 2.5 ± 0.6 2.0 ± 0.3Wine 4.6 ± 1.5 5.0 ± 1.6 6.1 ± 1.9 21.1 ± 5.2 14.3 ± 7.0 19.4 ± 8.9Seg 15.0 ± 2.7 12.9 ± 3.4 12.4 ± 3.5 30.5 ± 9.9 24.3 ± 6.16 26.2 ± 12.5Wave 20.1 ± 0.7 30.6 ± 0.7 21.1 ± 0.6 20.2 ± 1.2 20.2 ± 1.2 20.7 ± 1.1Pima 27.8 ± 1.6 27.6 ± 1.9 27.8 ± 2.0 37.0 ± 4.4 38.2 ± 5.1 35.3 ± 1.8Table 5.23: Comparison of SiLA and gCosLA with many state of the art approa
hes - IIFurthermore, it is better to use algorithms based on distan
e metri
s for 
olle
tions on whi
hthe Eu
lidean distan
e performs mu
h better than the standard 
osine i.e. Segmentation, Wave-form and Pima. This suggests that the de
ision to use either the similarity or distan
e metri
learning 
ould be based on the relative performan
e of the 
osine similarity and the Eu
lideandistan
e.136



5.8. Comparison between kNN-
os and SkNN-
os1 2 3 4 5 6 7 8 9 10 11Iri C IG g, S X KI KR IT L E MSoy C, S KR KI IT X IG L M E gIon S X IT C g KI L IG KR E MSon KI C g, S L KR IG IT M, E, XGla KI C S L, M E IG IT, g KR XOpt KI L S C, E, IT, KR g IG M XWin L KR IG KI M IT X g S C ESeg KI IG L KR IT M X E g S CWav X L E IT KR C, g S KI IG MPim L IG KR, IT, KI, M X E S C gTable 5.24: Ranking of di�erent algorithms on UCI datasetsAlthough for Wine dataset, similarity learning algorithms perform better than the Eu
lideandistan
e, yet they are not ranked in the top algorithms be
ause of the presen
e of an in�uentialattribute. Algorithms like LMNN and KRCA were able to downweigh this in�uential attributeas opposed to the similarity learning ones.On this set of 
olle
tions, it 
an be observed that the similarity learning approa
hes (SiLAand gCosLA) have di�
ulties to out
lass the standard 
osine measure, unlike what we observedon other 
olle
tions (table 5.5). We know of no way of assessing in advan
e whether similaritymetri
 learning should be preferred over the standard 
osine on a parti
ular 
olle
tion, and thisshould be investigated in the future.5.8 Comparison between kNN-
os and SkNN-
osTable 5.25 
ompares the performan
e of kNN and SkNN on various datasets with the 
osinemeasure. s-test was used to �nd the statisti
al signifan
e of the results. SkNN performed signi�-
antly mu
h better (≫) than kNN on Balan
e, German, Heart and Yeast datasets while slightlybetter (>) on Pima dataset. On the other hand, kNN was able to perform signi�
antly better(≫) than its symmetri
 variant only on one of the datasets i.e. Ionosphere.Although the a

ura
y for SkNN on Liver was 63.8% against 62.0% while using the standardkNN, the results were not signi�
ant enough. These results show that it is mu
h better, ingeneral, to use the symmetri
 version of kNN rather than the original kNN 
lassi�
ation rule.Figure 5.12 des
ribes the performan
e of kNN-
os and SkNN-
os on di�erent datasets. Thepre
ision as well as standard deviation is shown in the �gure.5.9 Con
lusionMost of the works involving metri
 learning have restri
ted themselves to learning distan
e met-ri
s. However we showed that 
osine similarity should be preferred over the Eu
lidean distan
eon non-textual data 
olle
tions apart from the usual textual ones. A statisti
al test, s-test was137



Chapter 5. Experiments and ResultskNN-
os SkNN-
osSoybean 1.0 ± 0.0 0.989 ± 0.034Iris 0.987 ± 0.025 0.987 ± 0.025Letter 0.997 ± 0.002 0.997 ± 0.002Balan
e 0.954 ± 0.021 0.969 ± 0.013 ≫Wine 0.865 ± 0.050 0.867 ± 0.055Ionosphere 0.871 ± 0.019 > 0.860 ± 0.024Glass 0.899 ± 0.085 0.898 ± 0.081Pima 0.630 ± 0.041 0.643 ± 0.030 >Liver 0.620 ± 0.064 0.638 ± 0.060German 0.594 ± 0.040 0.620 ± 0.030 ≫Heart 0.670 ± 0.020 0.711 ± 0.036 ≫Yeast 0.911 ± 0.108 0.917 ± 0.103 ≫Spambase 0.858 ± 0.009Musk-1 0.844 ± 0.028Table 5.25: Comparison between kNN-
os and SkNN-
os on s-test

Figure 5.12: kNN-
os vs SkNN-
os on various datasets138



5.9. Con
lusionperformed to assess whether the results are signi�
anly di�erent or not. Furthermore, double
ross-validation te
hnique was employed in order to determine the di�erent parameters of variousalgorithms. The 
osine similarity outperformed the Eu
lidean distan
e on some of the 
olle
tionslike Iris, Balan
e, Wine, Ionosphere and Spambase using binary 
lassi�
ation. The un
ontrainedsimilarity learning algorithm, SiLA as well as the generlized Cosine similarity Learning AlgorithmgCosLA were 
ompared with the standard 
osine using both the kNN as well as SkNN rules. Onmany of the data sets, the algorithms learning a similarity metri
 performed signi�
antly betterthan the standard 
osine similarity. Moreover, gCosLA performed better than SiLA on many ofthe data sets.While 
omparing the RELIEF family of algorithms, we found that the stri
ter version ofRELIEF-Based Similarity algorithm (sRBS performed signi�
antly mu
h better than its 
oun-terparts on most of the datasets using the two 
lassi�
ation rules: kNN-A as well as SkNN-A.This proved that it is far better to use the O-1 loss fun
tion rather than its approximation aswas done in the 
ase of RELIEF and RBS. Moreover, the performan
e of RELIEF algorithmimproved with the use of positive, semi-de�nite matri
es.gCosLA and SiLA were also 
ompared with many state of the art approa
hes in metri
learning like Xing's algorithm [114℄, Large Margin Nearest Neighbor 
lass�
ation (LMNN) [112℄,Information Theoreti
 Metri
 Learning (ITML) [28℄, Maximally Collapsing Metri
 Learning al-gorithm (MCML) [41℄, Similarity Learning with Neural Networks (SNN), Kernel Relevant Com-ponent Analysis (KRCA) [104℄, Linear Information Geometri
 approa
h for Metri
 Learning(IGML) [107℄, Kernel Information Geometri
 approa
h for Metri
 Learning (KIGML) [107℄. Itwas observed that for 
olle
tions like Iris, Soybean, Ionosphere, Glass and Sonar, on whi
h 
osineperforms better than the Eu
lidean distan
e, similarity metri
 learning algorithms outperformthe distan
e metri
 learning ones. On the other hand, it is better to use distan
e metri
 learn-ing algorithms on 
olle
tions like Segmentation, Waveform and Pima for whi
h the Eu
lideandistan
e proves to be a better option than the standard 
osine. Although the similarity basedmethods perform better than the Eu
lidean distan
e for Wine, yet they do not rank among thetop algorithms be
ause of the presen
e of an in�uential attribute. Algorithms like LMNN andKRCA were able to redu
e the in�uen
e of this attribute as opposed to the similarity learningones.
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6.1. Main 
ontributionsMa
hine learning is the study of 
omputer algorithms that improve their performan
e automati-
ally by experien
e. As di�erent data types exhibit di�erent properties, it 
an be useful to learnthe geometry underlying the data to be pro
essed. Indeed, many re
ent works, e.g. Weinbergeret al. [112℄, Jain et al. [53℄ et
., have shown that learning a metri
, based on the geometry ofthe spa
e 
ontaining the data, is often a better idea than assuming the presen
e of a simplegeometri
 stru
ture. However, most of the works in the �eld of metri
 learning work only withdistan
e metri
 learning and do not 
onsider similarities e.g. Goldberger et al. [42℄, Xing etal. [114℄, Davis et al. [28℄, Globerson et al. [41℄. Traditionally the 
osine measure has been shownto perform well for the textual datasets [95℄. However some re
ent works like Qamar et al. [87℄,Peterson et al. [84℄ have shown that 
osine similarity should also be preferred over the distan
eson non-textual data 
olle
tions.6.1 Main 
ontributionsWe have fo
ussed here on learning (
omplete) similarities from data to be used in kNN 
lassi�-
ation, 
onsidering di�erent s
enarios, some relying on few labelled data, others making use ofdata sets fully annotated. In situations where only a small amount of annotation is available, one
an not learn 
omplex stru
tures, and we limited ourselves to learning a few meta-parameters
ontrolling 
osine-based similarities. This work was appropriately deployed in the 
ontext of theINFILE tra
ks, during the evaluation 
ampaigns CLEF 2008 and CLEF 2009. In situations withmore annotation, we have 
onsidered two possible generalizations of existing, well-establishedsimilarity measures. These two generalizations mainly di�er in the 
onstraints they rely on. The�rst one imposes almost no 
onstraint on the transformation to be used; in parti
ular, the nor-malizations 
onsidered do not depend on the metri
 learned, whi
h makes the learning pro
esseasier. The se
ond however imposes strong 
onstraints on the metri
 learned, in parti
ular thatit should 
orrespond to a true 
osine measure in an embedded spa
e. As su
h, it should relyon semi-de�nite matri
es, with a normalization whi
h does depend on the metri
 learned. Ifthe �rst generalization was based on the per
eptron algorithm family, the se
ond one requires adi�erent approa
h. In both 
ases, we have provided theoreti
al proofs of the 
orre
t behavior ofour algorithms.Learning a metri
 implies to model dependen
ies between features, and weigh them 
orre
tly.This obje
tive is shared by feature re-weighting pro
edures, and several re
ent works have em-phasized the links between su
h pro
edures (as RELIEF) and supervised learning of metri
s. Wehave studied here this link in detail, and have shown that the obje
tive fun
tion approximated inthe RELIEF family was not optimal. We have then throughly evaluated our algorithms, tryingto assess when they provided a signi�
ant improvement in the results. We have furthermore
ompared their performan
e with alternative approa
hes. It is always di�
ult to 
ompare twoapproa
hes whi
h are very di�erent in nature. We believe that the 
omparison we have per-formed indi
ates that similarity learning methods, and the algorithms we have proposed for this,are valuable ma
hine learning tools whi
h 
an 
omplement existing distan
e metri
 learning ones.We now provide a summary of the main 
ontributions of our work.1. A thorough study of metri
 learning algorithms in
luding the distan
e metri
 learningalgorithms as well as the similarity metri
 learning ones is performed. 143



Chapter 6. Con
lusion and Perspe
tives2. An information �ltering te
hnique is developed whi
h 
an be used to learn 
osine based
ategory spe
i�
 thresholds, provided some sort of supervision is present. Online and Bat
halgorithms were developed for the information �ltering pro
ess. Both methods were able toget the best F-s
ore during INFILE tra
k of CLEF 
ampaign in the years 2008 and 2009.3. Cosine similarity was shown to perform better than the Eu
lidean distan
e on manydatasets.4. An un
onstrained similarity metri
 learning algorithm 
alled SiLA was developed to learnthe similarity metri
s for kNN 
lassi�
ation. The normalization in SiLA is totally inde-pendent of the similarity matrix whi
h helps to learn di�erent types of similarity fun
tionsbased on diagonal, symmetri
 or asymmetri
 matri
es. The 
onvergen
e and the general-ization properties were established and the proofs have been provided. A statisti
al test,s-test, was used to statisti
ally analyze all of the results.5. The links between RELIEF and SiLA were studied. This was followed by the developmentof a RELIEF Based Similarity (RBS) learning algorithm. However it turned out that RBSdid not perform well in pra
ti
e. The main reason is that RBS tries to optimize a 
ostfun
tion approximating the 0 − 1 loss on the footsteps of RELIEF. We showed that thisapproximation is loose, and proposed a stri
ter version of RBS, 
alled sRBS, based on a
ost fun
tion 
loser to the 0 − 1 loss. sRBS performed signi�
antly better than the otherRELIEF based algorithms indi
ating in parti
ular that the 0−1 loss is a more appropriate
ost fun
tion that the one impli
itly used by RELIEF.6. Lastly, an algorithm based on the generalized 
osine similarity was developed. The algo-rithm is named gCosLA for Generalized Cosine similarity metri
 Learning Algorithm. Thenormalization in the 
ase of gCosLA was dependent on the similarity matrix and the sim-ilarity matrix belonged to the 
lass of positive, semi-de�nite matri
es. The results showedthat gCosLA was signi�
antly better than SiLA on many of the 
olle
tions 
onsidered.7. SiLA and gCosLA were 
ompared with many state of the art metri
 learning algorithmsand were found to be performing very well in situations where similarities are useful. Assu
h, they 
onstitute new ma
hine learning tools whi
h 
an adequately 
omplement existingdistan
e metri
 learning algorithms.Having reviewed the main 
ontributions of our thesis, we now turn to the limitations of our work,and the perspe
tives it opens.6.2 Limitations and Perspe
tivesAs with any ma
hine learning algorithm, the similarity learning algorithms have their own lim-itations. The pro
ess of threshold learning does not perform like the metri
 learning one as itdoes not take into a

ount the geometry of the spa
e 
ontaining the data. Although SiLA wasused with a large dataset of Newsgroup, yet it remains to be shown how it 
an work with massivedatasets. The 
omplexity of SiLA is quadrati
 in the number of dimensions. Though a verypromising algorithm, gCosLA is a bit slow owing to its 
ubi
 
omplexity in terms of the number144



6.2. Limitations and Perspe
tivesof dimensions. This is the reason why gCosLA took a lot of time with the Newsgroup dataset. AsgCosLA learns positive, semi-de�nite (PSD) matri
es using eigenvalue de
omposition, its 
om-plexity 
an be redu
ed using eigenvalue approximation methods e.g. Lan
zos algorithm and itsspe
ialized variants, but this has to be investigated more throughly. There is yet another wayin whi
h the 
omplexity of gCosLA 
ould be redu
ed, using the fa
t that any PSD matrix M
ould be de
omposed into U tU where U is a matrix of lower rank. In this 
ase, the 
onstraintson semi-de�niteness need not be enfor
ed, whi
h leads to a faster algorithm (su
h a tri
k isemployed for example in [47℄ in the 
ontext of distan
e learning). However, even though faster,the problem of learning U is not ne
essarily easier, be
ause of lo
al optima. It is thus not 
learwhether this strategy would be bene�
ial to gCosLA, and further investigation is ne
essary here.Related to speed issues, but with additional impli
ations, is the la
k of 
ontrol of the aggres-siveness of the update rules underlying the algorithms we have presented (in parti
ular SiLA).One of the strengths of the Passive-Aggressive family is pre
isely su
h a 
ontrol, whi
h 
ould beadded in our 
ase as well. This being said, tuning meta-parameters is not always an easy task,and may lead to additional 
omputation. One 
an nevertheless hope that a valid solution wouldbe attained faster, and thus requiring less updates and leading to an overall faster learning pro-
ess. Be
ause of the potential pra
ti
al and theoreti
al impli
ations they 
an have, we believeit would be worth to investigate in a near future the use of aggressiveness parameters in ouralgorithms.Another limitation of our work lies in the fa
t that only global similarity metri
s were learned(by resorting to binary 
lassi�
ation and the standard one-vs-the-rest rule, several matri
es arein fa
t learned to solve a multi-
lass 
ategorization problem; however, all the matri
es are globalin the sense that they are not adapted to spe
i�
 regions of the spa
e). Another possibility isto learn di�erent lo
al similarity metri
s in di�erent parts of the input spa
e as is the 
ase forMulti-Metri
 LMNN algorithm [112℄. One possibility with the approa
h we have followed wouldbe to 
onsider neighborhood regions around ea
h point and all the examples they 
ontain, andthen learn matri
es for ea
h su
h regions. The 
lassi�
ation of a data point would then involveonly the regions whi
h yield the neighborhood of the point. If this approa
h seems simple andpromising, it would 
ertainly involve more 
omputation than the 
urrent ones. They thus 
allfor simpler and faster versions of the algorithms we have presented.Lastly, another perspe
tive we would like to explore is the use of SiLA algorithm in a di�erent
ontext, namely the one of Information Retrieval (IR), as this domain heavily relies on the
osine similarity measure, whi
h 
ould be learned from existing relevan
e judgements. In IR, thesimilarity is 
al
ulated between a query q and a do
ument d. A possible appli
ation of SiLA inthis 
ase 
ould go along the following lines: the query q 
ould repla
e x(i), repeated N1 (numberof retrieved do
uments judged relevant by the user) times; the target neighbor y 
ould then be
hosen arbitrarily, or a

ording to the standard 
osine similarity measure, from the set of relevantdo
uments, whereas z would represent the 
losest non-relevant do
uments. As mentioned above,the matrix A 
ould be learned using existing relevan
e judgements, or potentially user feedba
k.We plan on investigating these di�erent possibilities in the near future.
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Appendix AProofs for Theorems for SiLA andgCosLAThis Appendix gives the proof of theorems 1 and 2 for SiLA and theorem 1 for gCosLA. Theorem 1for SiLA is based on Blo
k [13℄ and Noviko� [77℄ and was used in Freund and S
hapire [37℄.Similarly, the proof for theorem 2 of SiLA parallel the one provided in Collins [20℄ adapted fromFreund and S
hapire [37℄.A.1 Theorem 1 - SiLA (separable 
ase)For any training sequen
e S = ((x(1), c(1)), · · · , (x(n), c(n))) separable with margin γ, for oneiteration (epo
h) of the (on-line) update rule of SiLANumber of mistakes ≤ R2/γ2where R is a 
onstant su
h that:
∀i, ∀(z1 , · · · , zk) ∈ c̄i, ‖

∑

y∈T (i)

φ(x(i), y)−
k∑

n=1

φ(x(i), zn)‖ ≤ RProof: Let αk be the weight ve
tor before the k'th mistake is made. It follows that α1 = 0(sin
e initial weights are zero). Suppose that the k'th mistake is made at the i'th example. Let
B(i) represent the k nearest neighbors from the 
lass c̄(i):

B(i) = kNN(A(t), x(i), c̄(i))The update for the SiLA algorithm 
an be written in the ve
tor notation in the following manner:
αk+1 = αk +

∑

y∈T (i)

φ(x(i), y)−
∑

z∈B(i)

φ(x(i), z)This is followed by taking the inner produ
t of both sides with the ve
tor U :
U.αk+1 = U.αk +U.

∑

y∈T (i) φ(x
(i), y)−U.

∑

z∈B(i) φ(x
(i), z)

≥ U.αk + γ 147



Appendix A. Proofs for Theorems for SiLA and gCosLAwhere the inequality follows from de�nition 1 of SiLA. As α1 = 0, and hen
e U.α1 = 0, it followsby indu
tion on k that ∀k U.αk+1 ≥ kγ. Sin
e U.αk+1 ≤ ‖U‖‖αk+1‖, it follows that:
‖αk+1‖ ≥ kγ (A.1)whi
h gives the lower bound for ‖αk+1‖.The upper bound for ‖αk+1‖2 
an now be derived in the following manner:

‖αk+1‖2 = ‖αk‖2 + ‖∑y∈T (i) φ(x
(i), y)−∑z∈B(i) φ(x

(i), z)‖2

+2αk.(
∑

y∈T (i) φ(x
(i), y)−∑z∈B(i) φ(x

(i), z))

≤ ‖αk‖2 +R2where the inequality follows as ‖
∑

y∈T (i) φ(x
(i), y) −

∑

z∈B(i) φ(x
(i), z)‖ ≤ R2 by assumption,and αk.(

∑

y∈T (i) φ(x
(i), y) −∑z∈B(i) φ(x

(i), z)) ≤ 0 sin
e z is the highest s
oring 
andidate for
xi under the parameters αk (as it is the 
losest example from all of the 
lasses other than c(i)).It follows by indu
tion that:

‖αk+1‖2 ≤ kR2 (A.2)whi
h represents the upper bound for ‖αk+1‖2.The inequalities for the lower bound A.1 and the upper bound A.2 
an be 
ombined to 
ompletethe proof:
∀k k2γ2 ≤ ‖αk+1‖2 ≤ kR2 =⇒ k ≤ R2

γ2A.2 Theorem 2 - SiLA (non separable 
ase)For any training sequen
e S = ((x(1), c(1)), · · · , (x(n), c(n))) separable with margin γ, for oneiteration (epo
h) of the (on-line) update rule of SiLANumber of mistakes ≤ minα,γ (R+Dα,γ)2

γ2where R is a 
onstant su
h that:
∀i,∀(z1 , · · · , zk) ∈ c̄i, ‖

∑

y∈T (i)

φ(x(i), y)−
k∑

n=1

φ(x(i), zn)‖ ≤ R,and the min is taken over α and γ su
h that ‖α‖ = 1, γ > 0.Proof: In order to prove Theorem 2, the representation φ(x, y) ∈ R
d is modi�ed to φ(x, y) ∈

R
d+n in the following manner:For i = 1, · · · , d de�ne φi(x, y) = φi(x, y). For j = 1, · · · , n de�ne φd+j(x, y) = ∆ if

(x, y) = (xj, yj), 0 otherwise, where ∆ is a parameter and is greater than 0. Similarly, 
onsider a
U, γ pair, and 
orresponding values for ǫi as de�ned above. Consequently a modi�ed parameterve
tor U ∈ R

d+n 
an be de�ned along with Ui = Ui for i = 1, · · · , d and Ud+j =
ǫj
∆ for

j = 1, · · · , n. Under these 
onditions, it 
an be veri�ed that:148



A.3. Theorem 4 - gCosLA1.
∀i, ∀(z1, · · · , zk) ∈ ci U.

∑

y∈T (i)

φ(x(i), y)−U.
∑

z∈B(i)

φ(x(i), z) ≥ γ2.
∀i, ∀(z1, · · · , zk) ∈ ci ‖

∑

y∈T (i)

φ(x(i), y)−
∑

z∈B(i)

φ(x(i), z)‖2 ≤ R2 +∆23.
‖U‖2 = ‖U‖2 +

∑

i

ǫ2i
∆2

= 1 +
D2

U,γ

∆2It 
an be observed that the ve
tor U

‖U‖
is able to separate the data with the margin γ

√

1+
D2

U,γ

∆2

.From Theorem 1, it 
an be 
on
luded that the �rst pass of the algorithm SiLA with representation
φ makes kmax(∆) = 1

γ2 (R
2+∆2)(1+

D2
U,γ

∆2 ) mistakes in the worst 
ase. However, it 
an be furthernoti
ed that the �rst pass of the original algorihtm SiLA with representation φ is similar to the�rst pass of SiLA along with the new representation φ, sin
e the parameter weights for theadditional features φd+j for j = 1, · · · , n ea
h a�e
t a single example of training data, anddo not a�e
t the 
lassi�
ation phase of the test data. Thus the original algorithm SiLA alsomakes kmax(∆) mistakes in the worst 
ase s
enario during the �rst pass over the training set ofexamples. Finally, kmax(∆) 
an be minimized with respe
t to ∆, thus giving ∆ =
√

RDU,γ andhen
e kmax(
√

RDU,γ) =
(R2+D2

U,γ)

γ2 , implying the bound in the theorem.A.3 Theorem 4 - gCosLALet (x1, x′1, y1), · · · (xτ , x′τ , yτ ), · · · , (xN , x′N , yN ) be a sequen
e of N examples. For any positive,semi-de�nite matrix A, let for ea
h τ , 1 ≤ τ ≤ N :
R−1(xτ , x

′
τ , A) = [min((xtτAxτ ), (x

′t
τAx

′
τ ))]

−1and
R+1(xτ , x

′
τ , A) = [max((xtτAxτ ), (x

′t
τAx

′
τ ))]

−1Assume that there exists a positive, semi-de�nite matrix A∗, a threshold b∗ and a positive realnumber γ su
h that:
(R+1x

t
τA

∗x′τ − b∗) ≥ γ ∧ (b∗ −R−1x
t
τA

∗x′τ ) ≥ γUsing the notations introdu
ed previously, let R ∈ R
+ be an upper bound su
h that:

1

‖xτx′tτ ‖2 + 1
R2

yτ ‖xτ‖42‖x′τ‖42 ≤ R, yτ ∈ {−1,+1}Then the following bound holds for any M ≥ 1:
M∑

τ=1

(lτ (A, b))
2 ≤ R

(
‖A∗ − I‖22 + (b∗)2

) 149



Appendix A. Proofs for Theorems for SiLA and gCosLAProof:Let ∆τ = ‖(Aτ , bτ )− (A∗, b∗)‖22 − ‖(Aτ+1, bτ+1)− (A∗, b∗)‖22. Then:
T∑

τ=1

∆τ = ‖(A1, b1)− (A∗, b∗)‖22 − ‖(Aτ+1, bτ+1)− (A∗, b∗)‖22 (A.3)
≤ ‖(A1, b1)− (A∗, b∗)‖22 (A.4)and

∆τ =

(

‖(Aτ , bτ )− (A∗, b∗)‖22 − ‖(Âτ , b̂τ )− (A∗, b∗)‖22

) (A.5)
+

(

‖(Âτ , b̂τ )− (A∗, b∗)‖22 − ‖(Aτ+1, bτ+1)− (A∗, b∗)‖22)
) (A.6)By assumption, (A∗, b∗) ∈ C ′yτ

τ and (Âτ , b̂τ ) ∈ C ′yτ
τ . (Âτ , b̂τ ) is the proje
tion of (Aτ , bτ ) on

C ′yτ
τ . So, using equation A.6, ∆τ 
an be written as:

∆τ ≥ ‖(Aτ , bτ )− (Âτ , b̂τ )‖22 +
(

‖(Âτ , b̂τ )− (A∗, b∗)‖22 − ‖(Aτ+1, bτ+1)− (A∗, b∗)‖22

)Furthermore, and again by assumption, (A∗, b∗) ∈ Ca and (Aτ+1, bτ+1) ∈ Ca. So, one againusing equation A.6, ∆τ 
an be expressed as:
∆τ ≥ ‖(Aτ , bτ )− (Âτ , b̂τ )‖22 + ‖(Âτ , b̂τ )− (Aτ+1, bτ+1)‖22 ≥ ‖(Aτ , bτ )− (Âτ , b̂τ )‖22By de�nition:

lτ (A, b) = max{0, yτ (b− xtτAx
′
τ

√

xtτAxτ
√

x′tτAx
′
τ

) + γ},and
Âτ = Aτ + yτa(xτ , x

′t
τ ) , a =

γ − yτRyτ (x
t
τAτx

′
τ ) + yτ b

Ryτ (‖xτ‖2‖x′τ‖2)In 
ase yτ = +1, Âτ = Aτ + ya(xτ , x
′t
τ ) , b̂τ = bτ + a Thus, a 
an be rewritten as: a =

γ−R+1(xt
τAτx

′

τ )+b

R+1(‖xτ‖2‖x′

τ‖
2) and:

lτ (Aτ , bτ ) = γ + bτ −
xtτAτx

′
τ

√

xtτAτxτ
√

x′tτAτx′τ
, ‖(Aτ , bτ )− (Âτ , b̂τ )‖22 = a2(‖xτx′tτ ‖22 + 1)But it is already known that:

R+1x
t
τAτx

′
τ ≤ xtτAτx

′
τ

√

xtτAτxτ
√

x′tτAτx′τSo:
γ −R+1x

t
τAτx

′
τ + bτ ≥ lτ (Aτ , bτ )150



A.3. Theorem 4 - gCosLAHen
e:
‖(Aτ , bτ )− (Âτ , b̂τ )‖22 ≥ (lτ (Aτ , bτ ))

2

(R+1‖xτ‖22‖x′τ‖22)2
(‖xτx′tτ ‖22 + 1)and

‖(Aτ , bτ )− (Âτ , b̂τ )‖22 ≥ (lτ (Aτ , bτ ))
2

(R2
+1‖xτ‖42‖x′τ‖42)2

(‖xτx′tτ ‖22 + 1)As R2
+1‖xτ‖42‖x

′

τ‖
4
2

‖xτx′t
τ ‖+1 ≤ R, 
ombining the above results leads to the desired bound for yτ = +1. The
ase yτ = −1 is treated in a similar way.
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Appendix BFren
h TranslationB.1 Introdu
tionLes algorithmes d'apprentissage automatique améliorent automatiquement leur performan
e Pmesurée à travers une expérien
e E sur une tâ
he T . Par exemple, on peut 
onsidérer le problèmede la 
on
eption d'un système qui apprend à jouer aux dames. Dans 
e 
as, la tâ
he T est dejouer aux dames, la mesure de performan
e P est le pour
entage de jeux gagnés dans un tournoimondial et E est l'o

asion de jouer 
ontre soi-même.L'apprentissage automatique a ré
emment émergé 
omme l'un des domaines 
lés de l'intellig-en
e arti�
ielle. L'une des prin
ipales raisons de sa popularité réside dans le désir passionnéde l'homme à explorer et à reproduire le pro
essus de l'apprentissage humain. L'apprentissageautomatique peut être 
onsidéré 
omme une double tâ
he; 
onsistant d'une part à apprendre lespropriétés invariantes et 
ommunes d'un ensemble d'é
hantillons qui 
ara
térisent une 
lasse, etd'autre part de dé
ider qu'un nouvel é
hantillon est un membre possible de la 
lasse en véri�ants'il a des propriétés 
ommunes à 
elleapprises de l'ensemble d'é
hantillons.Les algorithmes d'apprentissage automatique peuvent être 
lassés dans trois 
atégories dif-férentes : l'apprentissage supervisé où l'apprentissage est basé sur un ensemble de données éti-quetées, l'apprentissage non-supervisé, qui ne né
essite au
un type d'intervention humaine (ilest généralement utilisé lorsque les 
lasses ne sont pas 
onnues à l'avan
e), et l'apprentissagesemi-supervisé qui se situe entre les appro
hes supervisées et non-supervisées.L'apprentissage automatique a été utilisé dans divers milieux di�érents tels que la 
lassi�
a-tion (par exemple la re
onnaissan
e des 
hi�res manus
rits [63℄, 
lassi�
ation des do
uments [55℄,re
onnaissan
e des visages [105℄ et
.), le 
lustering (k-means 
lustering [11℄, la 
lassi�
ation spe
-trale [115℄), le bio-informatique, la �nan
e, les systèmes de �ltrage de l'information qui appren-nent automatiquement les intérêts des utilisateurs, la déte
tion des fumées dangereuses sur desinstallations industrielles [39℄ et
. Il est basée sur l'apprentissage à partir des données, et don
étroitement liée au domaine de la fouilles de données. Ce domaine se base sur l'extra
tion desmodèles utiles à partir des données brutes.Chaque algorithme d'apprentissage automatique travaille ave
 un ensemble d'exemples. Dnas
et ensemble, quelques exemples sont utilisés pour apprendre les 
ara
téristiques sous-ja
entes desdonnées à partir d'un ensemble de traits. Ce sous-ensemble est appelé ensemble d'apprentissage.A�n de valider un algorithme, il est exé
uté sur des nouveaux exemples 
onstituant un ensemble153



Appendix B. Fren
h Translationde test. Un ensemble de validation peut éventuellement être utilisé pour optimiser les di�érentsparamètres de l'algorithme.B.1.1 MotivationConsidérons deux objets à 
omparer, par exemple deux do
uments ou des images. A�n de faire
ette 
omparaison, une similarité ou une distan
e peut être 
al
ulée entre 
es deux objets. Laplupart du temps, des mesures par défaut sont utilisées, 
'est-à-dire la distan
e eu
lidienne dansle 
as des images et la similarité 
osinus pour la 
lassi�
ation de texte. Ces mesures par défaut
onsidèrent que la métrique entre les di�érents objets est paramétrée par une matri
e d'identité.En d'autres termes, des mesures 
omme la distan
e eu
lidienne et la similarité 
osinus 
onsidèrentune géométrie très simple de l'espa
e dans lequel les données se trouvent. De nombreux travauxont démontré qu'il est beau
oup mieux d'apprendre une métrique à partir des données plut�tque de supposer une métrique simple 
omme la distan
e eu
lidienne ou la similarité 
osinus.La ré
ente popularité d'Internet a 
onduit à une énorme augmentation de la quantité d'inform-ations, et à un élargissement des domaines de re
her
he 
onsa
rés à l'organisation automatique de
es informations. Depuis 2000, un forum d'évaluation nommé Cross Language Evaluation Forum(CLEF) est organisé 
haque année. Le but est d'évaluer les systèmes de re
her
he d'informationutilisant les langues européennes dans les 
ontextes monolingues ainsi qu'inter-langues. Une
ampagne pour le �ltrage des informations (INFILE) a été menée 
omme une piste pilote deCLEF en 2008 et 2009. L'obje
tif d'INFILE était de �ltrer un �ux 
ontinu de do
uments dedi�érents thèmes prédé�nis. Dans le 
as du �ltrage de l'information, les seuils basés sur le 
os-inus pourraient être appris sur la base des �ux entrant de do
uments, à 
ondition q'une sortede supervision existe. C'est le domaine de l'apprentissage de métriques [53, 54℄. La �gure B.1indique les 
inq premières images 
lassées par OASIS [16℄ (un algorithme d'apprentissage desdistan
es sur les images 19) sur quatre exemples de requêtes-images dans un ensemble de don-nées de Google. Les requêtes texte pertinentes pour 
haque image sont notées sous l'image. Laligne la plus haute montre une requête-image, retrouvé à l'origine 
omme réponse à la requêtetextuelle illusion. Nous remarquons que tous les 
inq images hautement 
lassées par OASIS sontsémantiquement liées, représentant d'autres types d'illusions visuelles. Les trois autres exemplesmontrent que OASIS a pu 
apturer la sémantique des photos d'animaux (
hiens et 
hats), desmontagnes et des di�érents produits alimentaires.L'obje
tif prin
ipal de l'apprentissage de métriques est d'apprendre une métrique adaptée auproblème 
onsideré. Les algorithmes de 
lassi�
ation et le regroupement de données dépendentfortement de la présen
e d'une bonne mesure. En dehors de 
es domaines, l'apprentissage demétriques est un élément très important dans les problèmes 
omme la re
onnaissan
e des visages,la re
onnaissan
e d'objets visuels, la re
onnaissan
e automatique de la parole [107℄, la similaritéde la musique, l'estimation de la pose, la similarité et la re
her
he d'images [59℄ et
. Beau
oupd'algorithmes d'apprentissage de métriques se divisent en deux types di�érents: apprentissagede distan
e et apprentissage de similarité.La plupart des travaux relatifs à l'apprentissage se 
on
entrent uniquement sur l'apprentissagede distan
e et essayent d'apprendre la métrique sous-ja
ente à la distan
e de Mahalanobis. Toute-19Dans 
e travail, au
une distin
tion n'est faite entre la distan
e et la similarité.154



B.1. Introdu
tion

Figure B.1: OASIS: Un algorithme d'apprentissage de la métrique de la distan
e pour trouverles images similaires [16℄
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Appendix B. Fren
h Translationfois, dans de nombreuses situations pratiques, il est préférable d'utiliser des similarités et nondes distan
es. C'est typiquement le 
as quand on travaille sur des textes, pour lesquels la mesuredu 
osinus a été jugée plus appropriée que la distan
e eu
lidienne ou 
elle de Mahalanobis. Enoutre, plusieurs expérien
es montrent que l'utilisation de la similarité 
osinus doit être préférée àla distan
e eu
lidienne sur plusieurs 
olle
tions non textuelles (voir par exemple [18, 72, 84, 87℄).Le fait de pouvoir apprendre de manière e�
a
e des mesures de similarité appropriées, par op-position aux distan
es, par exemple dans le 
adre de la 
lassi�
ation à k plus pro
hes voisinskPPV, à une grande importan
e pour di�érentes 
olle
tions. Si plusieurs travaux ont partielle-ment résolu 
e problème (
omme par exemple [1, 46, 52℄) pour di�érentes appli
ations, nous ne
onnaissons au
un travail antérieur qui a pleinement traité le 
as de l'apprentissage des métriquesde similarité pour la 
lassi�
ation kPPV. C'est la motivation prin
ipale de 
e travail. Dans unepremière étape, un algorithme d'apprentissage d'une métrique de similarité sans 
ontrainte estdéveloppé. Dans 
e 
as, la normalisation est 
omplètement indépendante de la matri
e de simi-larité. Les preuves montrent que l'erreur de généralisation est limitée, et don
 que l'algorithmea des bonnes propriétés de généralisation. Ensuite, nous avons développé un algorithme basésur le 
osinus généralisé ayant une normalisation dépendant de la matri
e de similarité. Enoutre, l'apprentissage de similarité sans 
ontrainte est 
omparée à la famille d'algorithmes RE-LIEF. Bien que RELIEF soit fondamentalement un algorithme de re-pondération, il a été prouvéré
emment par Sun et Wu [102℄ qu'il s'agit d'un algorithme d'apprentissage de métrique de dis-tan
e qui permet d'optimiser une approximation de la perte 0-1. Nous montrons i
i que 
etteapproximation est trop permissive, et nous proposons un autre approximation stri
te et mieuxadaptée à la 
lassi�
ation.B.1.2 Plan de la thèse
• Nous dé
rivons dans le 
hapitre 2 les notions de base liées à l'apprentissage automatique etnous passons en revue diverses te
hniques de l'état de l'art pour l'apprentissage des métriques.Les deux prin
ipaux types d'apprentissage automatique (supervisé ou non supervisé) sontexaminés en détail. De plus, nous introduisons les bases de l'apprentissage en ligne et par lots.Certains des prin
ipaux algorithmes d'apprentissage de distan
e, par exemple la 
lassi�
ationpar les plus pro
hes voisins ave
 une vaste marge [112℄, 
omme les appro
hes fondées sur lathéorie de l'information [28℄ et POLA [99℄, sont dis
utés et 
omparés. RELIEF, un algorithmede pondération des attributs, est également présenté ave
 son interprétation mathématique.Les paramètres d'évaluation et les te
hniques de 
omparaison des 
lassi�eurs sont �nalementdis
utés.
• Dans le 
hapitre 3, nous montrons 
omment on peut apprendre e�
a
ement des seuils baséssur le 
osinus lorsqu'on a très peu ou pas du tout de supervision. Cette te
hnique est établiepour une tâ
he de �ltrage, où un ensemble de do
uments est �ltré en fon
tion des pro�lsutilisateurs. Les algorithmes en ligne ainsi que par lots sont dis
utés et une 
omparaisonpoussée est menée. Les algorithmes sont développés dans le 
adre de la 
ampagne INFILE dela 
ompétition CLEF.
• Le 
hapitre 4 
ommen
e par la des
ription d'une méthode d'apprentissage de similarité, ap-pelée SILA, où la normalisation est indépendante de la similarité apprise. SILA est 
omparé156



B.2. Con
lusionà l'algorithme RELIEF pour lequel Sun et Wu [102℄ ont montré qu'il apprend essentiellementune mesure de distan
e, tout en optimisant une fon
tion de 
oût se rappro
hant de la perte0-1. Nous montrons que l'approximation utilisée par RELIEF est lâ
he, et nous proposonsune version plus stri
te en utilisant une fon
tion de 
oût plus pro
he de la perte 0-1. Cetteversion plus stri
te 
onduit à une nouvelle et meilleure version de RELIEF.En outre, un algorithme d'apprentissage de similarité du type 
osinus généralisé (gCosLA) estélaboré, dans 
e 
as, la normalisation dépend de la matri
e de similarité.
• Les di�érentes algorithmes d'apprentissage de similarité développés au 
ours de 
ette thèsesont évalués au 
hapitre 5. A�n d'évaluer si les résultats sont signi�
ativement di�érentsou non, un s-test est utilisé. Nous montrons que la similarité est une alternative meilleureque la distan
e sur di�érents jeux de données. De plus, les algorithmes d'apprentissage desimilarité sans 
ontraintes, ainsi que 
eux de similarité généralisée sont 
omparés ave
 desautres algorithmes de 
lassi�
ation. Les algorithmes d'apprentissage de similarité sont plusperformants que leurs homologues sur 
ertaines bases de données UCI.
• Le 
hapitre 6 
on
lut 
ette thèse ave
 les limitations des appro
hes proposées et les perspe
-tives d'avenir.
• En�n, les preuves de 
onvergen
e, et de bon 
omportement pour SILA et gCosLA sont fourniesdans l'annex A.B.2 Con
lusionL'apprentissage automatique 
on
erne l'étude des algorithmes 
apables d'améliorer automatique-ment leurs performan
es par l'expérien
e. Les di�érentes bases de données ayant des propriétésdi�érentes, il peut être utile d'apprendre la géométrie sous-ja
ente des données à traiter. Ene�et, ré
emment, de nombreux travaux tels que Weinberger et al. [112℄, Jain et al. [53℄, ontmontré que l'apprentissage d'une métrique, basée sur la géométrie de l'espa
e 
ontenant les don-nées, est souvent une meilleure idée que de supposer la présen
e d'une stru
ture géométriquesimple. Cependant, la plupart des travaux dans le domaine de l'apprentissage de métriques ne
onsidèrent que l'apprentissage de distan
es et ne s'intéressent pas aux similarités, entre autresGoldberger et al. [42℄, Xing et al. [114℄, Davis et al. [28℄, Globerson et al. [41℄. Traditionnelle-ment, la mesure de similarité du 
osinus a montré de bons résultats pour les jeux de donnéestextuelles [95℄. De plus, 
ertains travaux ré
ents 
omme Qamar et al. [87℄, Peterson et al. [84℄ont montré que la similarité du 
osinus devrait également être préférée aux mesures de distan
esur les jeux de données non textuels.B.2.1 Les prin
ipales 
ontributionsNous nous sommes 
on
entrés i
i sur l'apprentissage de similarités (
omplètes) à partir de don-nées en vue d'une tâ
he de 
lassi�
ation par k plus pro
hes voisins (kNN). Nous 
onsidéronsdi�érents s
énarios, 
ertains s'appuyant sur peu de données étiquetées, d'autres utilisant desensembles de données entièrement annotés. Dans les situations où seule une petite quantitéd'annotations est disponible, on ne peut pas apprendre des stru
tures 
omplexes, et nous nous157



Appendix B. Fren
h Translationsommes limités à l'apprentissage de quelques méta-paramètres de 
ontr�le à base de similaritésbasées sur le 
osinus. Ces travaux ont été judi
ieusement utilisé dans le 
ontexte des pistes IN-FILE, pendant les 
ampagnes d'évaluation CLEF 2008 et CLEF 2009. Dans les situations ave
plus d'annotations, nous avons examiné deux généralisations possibles des mesures de similar-ités existantes. Ces deux généralisations se distinguent prin
ipalement par les 
ontraintes surlesquelles elles reposent. La première n'impose presque au
une 
ontrainte sur la transformationà utiliser, en parti
ulier, les normalisations 
onsidérées ne dépendent pas de la métrique apprise,
e qui rend le pro
essus d'apprentissage plus simple. La se
onde, quant à elle, impose de fortes
ontraintes sur la métrique apprise, en parti
ulier, elle doit 
orrespondre à une mesure de 
osinusdans un espa
e intégré. Ainsi, elle doit s'appuyer sur des matri
es semi-dé�nies positives, ave
une normalisation dépendante de la métrique apprise. Si la première généralisation a été baséesur la famille du per
eptron, la se
onde né
essite une appro
he di�érente. Dans les deux 
as,nous avons fourni des preuves théoriques du 
omportement 
orre
t de nos algorithmes.L'apprentissage d'une métrique implique de modéliser les dépendan
es entre les 
ara
téris-tiques, et de les pondérer 
onvenablement. Cet obje
tif est réalisé par des pro
édures de re-pondération des 
ara
téristiques, et plusieurs travaux ré
ents ont souligné les liens entre 
espro
édures (
omme RELIEF) et l'apprentissage supervisé de métriques. Nous avons étudié 
elien i
i en détail, et nous avons montré que la fon
tion obje
tif appro
hée par la famille de pro
é-dures RELIEF n'est pas optimale. Nous avons ensuite soigneusement évalué nos algorithmes,essayant d'évaluer les 
as où ils apportent une amélioration signi�
ative dans les résultats. Deplus, nous avons 
omparé leurs performan
es ave
 
elles d'autres appro
hes. Il est toujoursdi�
ile de 
omparer deux appro
hes qui sont de nature très di�érente. Nous 
royons que la 
om-paraison que nous avons e�e
tuée indique que les méthodes d'apprentissage de similarités, ainsique les algorithmes que nous avons proposés à 
et e�et, sont de pré
ieux outils d'apprentissageautomatique, pouvant 
ompléter les outils d'apprentissage de distan
es. Nous allons maintenantprésenter un résumé des prin
ipales 
ontributions de notre travail.1. Une étude approfondie des algorithmes d'apprentissage de métriques, y 
ompris des algo-rithmes d'apprentissage de distan
es et de similarité est e�e
tuée.2. Une méthode de �ltrage de l'information 
apable d'apprendre des seuils spé
i�ques pour les
atégories basés sur la mesure du 
osinus, tant qu'une forme de supervision est présente, aété développée. Des algorithmes o�ine et online ont été mis au point pour le pro
essus de�ltrage d'information. Les deux méthodes ont été en mesure d'obtenir le meilleur F-s
orede la 
ampagne CLEF INFILE des années 2008 et 2009.3. Nous avons montré que la similarité du 
osinus donnait de meilleurs résultats que la distan
eeu
lidienne sur de nombreux jeux de données.4. Un algorithme d'apprentissage de similarité non-
ontraintes appelé SILA a été développépour apprendre les mesures de similarité pour la tâ
he de 
lassi�
ation par k plus pro
hesvoisins. La normalisation, dans SILA, est totalement indépendante de la matri
e de sim-ilarité, 
e qui permet d'apprendre di�érents types de fon
tions de similarité basées surdes matri
es diagonales, symétriques ou asymétriques. Des preuves de 
onvergen
e et de158



B.2. Con
lusiongénéralisation des algorithmes développés ont de plus été fournies. Un test statistique, les-test, a été utilisé pour analyser statistiquement l'ensemble des résultats.5. Les liens entre RELIEF et SILA ont été étudiés. Nous avons ensuite développé un algo-rithme d'apprentissage (RBS) basé sur RELIEF. Cependant il s'est avéré que RBS n'a pasdonné de résultats satisfaisants. La raison prin
ipale est que RBS essaie d'optimiser unefon
tion de 
oût se rappro
hant de la perte 0-1 à la manière de RELIEF. Nous avons mon-tré que 
ette approximation est impré
ise, et nous avons proposé une version plus stri
tede RBS, appelée sRBS, basée sur une fon
tion de 
oût plus pro
he de la perte 0-1. sRBSa obtenu des résultats signi�
ativement meilleurs que les autres algorithmes basés sur RE-LIEF, 
on�rmant en parti
ulier que la perte 0-1 est une fon
tion de 
oût plus appropriéeque 
elle utilisée impli
itement par RELIEF.6. Finalement, un algorithme basé sur la similarité de 
osinus généralisée a été développé.La normalisation dans le 
as de gCosLA était dépendante de la matri
e de similarité et
elle-
i appartenait à la 
lasse des matri
es semi-dé�nies positives. Les résultats ont montréque gCosLA était signi�
ativement meilleure que SILA sur de nombreuses 
olle
tions dedonnées 
onsidérées.7. SILA et gCosLA ont été 
omparés à de nombreux algorithmes d'apprentissage de métriquesde l'état de l'art et ont montré de très bons résultats dans les situations où les similaritéssont utiles. Comme tels, ils 
onstituent de nouveaux outils d'apprentissage automatique,pouvant judi
ieusement 
ompléter les algorithmes d'apprentissage de métriques existants.Après avoir examiné les prin
ipales 
ontributions de notre thèse, nous nous tournons vers leslimites de notre travail, et les perspe
tives qu'il ouvre.B.2.2 Limites et perspe
tivesComme ave
 n'importe quel algorithme d'apprentissage automatique, les algorithmes d'apprentis-sage de similarité ont leurs propres limites. Le pro
essus d'apprentissage de seuils ne fon
tionnepas 
omme 
elui d'apprentissage de métriques 
ar il ne tient pas 
ompte de la géométrie del'espa
e 
ontenant les données. Bien que SILA ait été utilisé ave
 une grande base de données deNewsgroup, il reste à montrer 
omment il pourrait être adapter à des jeux de données de grandedimension. La 
omplexité de SILA est quadratique dans le nombre de dimensions. Bien que trèsprometteur, gCosLA est un peu lent en raison de sa 
omplexité 
ubique en terme du nombrede dimensions. Comme gCosLA apprend une matri
e semi-dé�nie positive (PSD) en utilisantla dé
omposition de la matri
e en valeurs propres, sa 
omplexité peut être réduite en utilisantdes méthodes d'approximation des valeurs propres. Par exemple, l'algorithme de Lan
zos et sesvariantes spé
ialisées devraient être étudiés. Il y a également une autre manière envisageablepour réduire la 
omplexité de gCosLA, en utilisant le fait que toute matri
e M semi-dé�niepositive peut être dé
omposée en U tU , où U est une matri
e de rang inférieur. Dans 
e 
as,la 
ontrainte que la matri
e soit semi-dé�nie n'a plus besoin d'être véri�ée, 
onduisant à unalgorithme plus rapide (
ette astu
e est déjà utilisée dans [47℄ dans le 
ontexte de l'apprentissagede distan
es). Cependant, bien que plus rapide, le problème de l'apprentissage de U n'est pas159



Appendix B. Fren
h Translationné
essairement plus simple, en raison des optimum lo
aux. Il n'est don
 pas 
lair si 
ette stratégieserait béné�que pour gCosLA, et une étude plus approfondie est né
essaire i
i.Relatif à la question de la vitesse d'exé
ution, mais ave
 des impli
ations supplémentaires, estle manque de 
ontr�le de l'agressivité des règles sous-ja
entes de mise à jour des algorithmes quenous avons présenté (en parti
ulier SILA). Un des points forts de la famille passif-agressif résidejustement dans un tel 
ontr�le qui pourrait être ajouté dans notre 
as aussi. Ce
i étant dit, leréglage des méta-paramètres n'est pas toujours une tâ
he fa
ile, et peut 
onduire à des 
al
ulssupplémentaires. On peut 
ependant espérer qu'une solution valable serait atteinte plus rapide-ment, et don
 né
essitant moins de mises à jour et 
onduisant à un pro
essus d'apprentissageglobalement plus rapide. En raison des 
onséquen
es possibles théoriques et pratiques qu'ils pour-raient avoir, nous pensons qu'il serait intéressant d'étudier dans un pro
he avenir l'utilisation deparamètres d'agressivité dans nos algorithmes.Une autre limitation de notre travail réside dans le fait qu'une seule matri
e de similaritéest apprise (en re
ourant à la 
lassi�
ation binaire et à la règle standard d'un 
ontre-le-reste,plusieurs matri
es sont en pratique apprises pour résoudre un problème de 
atégorisation multi-
lasses ; mais toutes les matri
es sont globales dans le sens où elles ne sont pas adaptées à desrégions spé
i�ques de l'espa
e). Une autre possibilité est d'apprendre di�érentes mesures de sim-ilarités lo
ales dans di�érentes parties de l'espa
e d'entrée 
omme 
'est le 
as pour l'algorithmede Multi-Metri
 LMNN [112℄. Une possibilité ave
 l'appro
he que nous avons suivie serait de
onsidérer les régions de voisinage autour de 
haque point et tous les exemples qu'elles 
onti-ennent, puis d'apprendre les matri
es pour 
ha
une de 
es régions. La 
lassi�
ation d'un pointimpliquerait alors uniquement les régions 
ontenant le point. Si 
ette appro
he semble simpleet prometteuse, elle impliquerait plus de 
al
ul. Il faudrait don
 développer des versions plusrapides des algorithmes que nous avons présentés.En�n, une autre perspe
tive que nous aimerions explorer est l'utilisation de l'algorithme SILAdans un 
ontexte di�érent, à savoir 
elui de la re
her
he d'information (RI), 
ar 
e domaines'appuie fortement sur la mesure du 
osinus. Dans la re
her
he d'information, la similarité est
al
ulée entre une requête q et un do
ument d. Une appli
ation possible de SILA dans 
e 
as,pourrait aller dans le sens suivant : la requête q pourrait rempla
er x(i), répétée N1 (nombrede do
uments ré
upérés et jugés pertinents par l'utilisateur) fois ; le voisin obje
tif y pourraitalors être 
hoisi arbitrairement, ou selon la mesure similarité 
osinus standard, parmi l'ensembledes do
uments pertinents, alors que z représenterait le plus pro
he do
ument non pertinent.Comme mentionné 
i-dessus, la matri
e A pourraient être apprise à l'aide des jugements depertinen
e existants, ou par les 
ommentaires des utilisateurs. Nous avons l'intention d'étudier
es di�érentes possibilités dans un avenir pro
he.
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RésuméLes performan
es des algorithmes d'apprentissage automatique dépendent de la métrique utiliséepour 
omparer deux objets, et beau
oup de travaux ont montré qu'il était préférable d'apprendreune métrique à partir des données plut�t que se reposer sur une métrique simple fondée sur lamatri
e identité. Ces résultats ont fourni la base au domaine maintenant quali�é d'apprentissagede métrique. Toutefois, dans 
e domaine, la très grande majorité des développements 
on
ernel'apprentissage de distan
es. Toutefois, dans 
ertaines situations, il est préférable d'utiliser dessimilarités (par exemple le 
osinus) que des distan
es. Il est don
 important, dans 
es situations,d'apprendre 
orre
tement les métriques à la base des mesures de similarité. Il n'existe pas ànotre 
onnaissan
e de travaux 
omplets sur le sujet, et 
'est une des motivations de 
ette thèse.Dans le 
as des systèmes de �ltrage d'information où le but est d'a�e
ter un �ot de do
umentsà un ou plusieurs thèmes prédé�nis et où peu d'information de supervision est disponible, desseuils peuvent être appris pour améliorer les mesures de similarité standard telles que le 
osinus.L'apprentissage de tels seuils représente le premier pas vers un apprentissage 
omplet des mesuresde similarité. Nous avons utilisé 
ette stratégie au 
ours des 
ampagnes CLEF INFILE 2008et 2009, en proposant des versions en ligne et bat
h de nos algorithmes. Cependant, dans le
as où l'on dispose de su�samment d'information de supervision, 
omme en 
atégorisation, ilest préférable d'apprendre des métriques 
omplètes, et pas seulement des seuils. Nous avonsdéveloppé plusieurs algorithmes qui visent à 
e but dans le 
adre de la 
atégorisation à base dek plus pro
hes voisins.Nous avons tout d'abord développé un algorithme, SiLA, qui permet d'apprendre des sim-ilarités non 
ontraintes (
'est-à-dire que la mesure peut être symétrique ou non). SiLA estune extension du per
eptron par vote et permet d'apprendre des similarités qui généralisent le
osinus, ou les 
oe�
ients de Di
e ou de Ja

ard. Nous avons ensuite 
omparé SiLA ave
 RE-LIEF, un algorithme standard de re-pondération d'attributs, dont le but n'est pas sans lien ave
l'apprentissage de métrique. En e�et, il a ré
emment été suggéré par Sun et Wu que RELIEFpouvait être 
onsidéré 
omme un algorithme d'apprentissage de métrique ave
 pour fon
tion ob-je
tif une approximation de la fon
tion de perte 0-1. Nous montrons i
i que 
ette approximationest relativement mauvaise et peut être avantageusement rempla
ée par une autre, qui 
onduit àun algorithme dont les performan
es sont meilleurs. Nous nous sommes en�n intéressés à uneextension dire
te du 
osinus, extension dé�nie 
omme la forme normalisée d'un produit s
alairedans un espa
e projeté. Ce travail a donné lieu à l'algorithme gCosLA.Nous avons testé tous nos algorithmes sur plusieurs bases de données. Un test statistique, le s-test, est utilisé pour déterminer si les di�éren
es entre résultats sont signi�
atives ou non. gCosLAest l'algorithme qui a fourni les meilleurs résultats. De plus, SiLA et gCosLA se 
omparentavantageusement à plusieurs algorithmes standard, 
e qui illustre leur bien fondé.Mots-
lés: Apprentissage de similarité, 
osinus généralisé, k plus pro
hes voisins, �ltraged'information, apprentissage automatique, fouille de données





Abstra
tAlmost all ma
hine learning problems depend heavily on the metri
 used. Many workshave proved that it is a far better approa
h to learn the metri
 stru
ture from the data ratherthan assuming a simple geometry based on the identity matrix. This has paved the way for anew resear
h theme 
alled metri
 learning. Most of the works in this domain have based theirapproa
hes on distan
e learning only. However some other works have shown that similarityshould be preferred over distan
e metri
s while dealing with textual datasets as well as withnon-textual ones. Being able to e�
iently learn appropriate similarity measures, as opposedto distan
es, is thus of high importan
e for various 
olle
tions. If several works have partiallyaddressed this problem for di�erent appli
ations, no previous work is known whi
h has fullyaddressed it in the 
ontext of learning similarity metri
s for kNN 
lassi�
ation. This is exa
tlythe fo
us of the 
urrent study.In the 
ase of information �ltering systems where the aim is to �lter an in
oming stream ofdo
uments into a set of prede�ned topi
s with little supervision, 
osine based 
ategory spe
i�
thresholds 
an be learned. Learning su
h thresholds 
an be seen as a �rst step towards learninga 
omplete similarity measure. This strategy was used to develop Online and Bat
h algorithmsfor information �ltering during the INFILE (Information Filtering) tra
k of the CLEF (CrossLanguage Evaluation Forum) 
ampaign during the years 2008 and 2009. However, providedenough supervised information is available, as is the 
ase in 
lassi�
ation settings, it is usuallybene�
ial to learn a 
omplete metri
 as opposed to learning thresholds. To this end, we developednumerous algorithms for learning 
omplete similarity metri
s for kNN 
lassi�
ation.An un
onstrained similarity learning algorithm 
alled SiLA is developed in whi
h 
ase thenormalization is independent of the similarity matrix. SiLA en
ompasses, among others, thestandard 
osine measure, as well as the Di
e and Ja

ard 
oe�
ients. SiLA is an extension ofthe voted per
eptron algorithm and allows to learn di�erent types of similarity fun
tions (basedon diagonal, symmetri
 or asymmetri
 matri
es). We then 
ompare SiLA with RELIEF, a wellknown feature re-weighting algorithm. It has re
ently been suggested by Sun and Wu thatRELIEF 
an be seen as a distan
e metri
 learning algorithm optimizing a 
ost fun
tion whi
h isan approximation of the 0−1 loss. We show here that this approximation is loose, and propose astri
ter version 
loser to the the 0−1 loss, leading to a new, and better, RELIEF-based algorithmfor 
lassi�
ation. We then fo
us on a dire
t extension of the 
osine similarity measure, de�ned asa normalized s
alar produ
t in a proje
ted spa
e. The asso
iated algorithm is 
alled generalizedCosine simiLarity Algorithm (gCosLA).All of the algorithms are tested on many di�erent datasets. A statisti
al test, the s-test, isemployed to assess whether the results are signi�
antly di�erent. gCosLA performed statisti
allymu
h better than SiLA on many of the datasets. Furthermore, SiLA and gCosLA were 
omparedwith many state of the art algorithms, illustrating their well-foundedness.Keywords: Similarity metri
 learning, generalized 
osine similarity, kNN 
lassi�
ation, infor-mation �ltering, metri
 learning, ma
hine learning, data mining




