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Résumé

La formation des structures dans I'univers demeure une des interrogations majeures
en cosmologie. La croissance des structures dans le régime linéaire, ou ’amplitude
des fluctuations est faible, est bien comprise analytiquement, mais les simulations
numériques a N-corps restent ’outil principal pour sonder le régime “non-linéaire”
ou ces fluctuations sont grandes. Nous abordons cette question d’un point de vue
différent de ceux utilisés couramment en cosmologie, celui de la physique statistique
et plus particuliérement celui de la dynamique hors-équilibre des systémes avec in-
teraction a longue portée. Nous étudions une classe particuliére de modéles 1 —d qui
présentent une évolution similaire & celle rencontrée dans les modéles 3 — d. Nous
montrons que le clustering spatial qui se développe présente des propriétés (fractales)
d’invariance d’échelles, et que des propriétés d’auto-similarité apparaissent lors de
I’évolution temporelle. D’autre part, les exposants caractérisant cette invariance
d’échelle peuvent étre expliqués par ’hypothése du “stable-clustering”. En suiv-
ant une analyse de type halos sélectionnés par un algorithme “friend-of-friend”, nous
montrons que le clustering non-linéaire de ces modéles 1—d correspond au développe-
ment d’une “hiérarchie fractale statistiquement virielisée”. Nous terminons par une
étude formalisant une classification des interactions basée sur des propriétés de con-
vergence de la force agissant sur une particule en fonction de la taille du systéme,
plutdt que sur les propriétés de convergence de I’énergie potentielle, habituellement
considérée en physique statistique des systémes avec interaction a longue portée.
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Abstract

The formation of structures in the universe is one of the major questions in cos-
mology. The growth of structure in the linear regime of low amplitude fluctuations
is well understood analytically, but N-body simulations remain the main tool to
probe the “non-linear” regime where fluctuations are large. We study this ques-
tion approaching the problem from the more general perspective to the usual one
in cosmology, that of statistical physics. Indeed, this question can be seen as a
well posed problem of out-of-equilibrium dynamics of systems with long-range in-
teraction. In this context, it is natural to develop simplified models to improve our
understanding of this system, reducing the question to fundamental aspects. We
define a class of infinite 1 — d self-gravitating systems relevant to cosmology, and
we observe strong qualitative similarities with the evolution of the analogous 3 — d
systems. We highlight that the spatial clustering which develops may have scale
invariant (fractal) properties, and that they display “self-similar” properties in their
temporal evolution. We show that the measured exponents characterizing the scale-
invariant clustering can be very well accounted for using an appropriately generalized
“stable-clustering” hypothesis. Further by means of an analysis in terms of halo se-
lected using a friend-of-friend algorithm we show that, in the corresponding spatial
range, structures are, statistically virialized. Thus the non-linear clustering in these
1 — d models corresponds to the development of a “virialized fractal hierarchy”. We
conclude with a separate study which formalizes a classification of pair-interactions
based on the convergence properties of the forces acting on particles as a function
of system size, rather than the convergence of the potential energy, as it is usual in
statistical physics of long-range-interacting systems.
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Introduction en Francais

La compréhension de la formation des structures dans 'univers demeure ’'une des
interrogations majeures en cosmologie. La distribution de matiére observée au-
jourd’hui & grande échelle dans 'univers apparait en effet trés inhomogéne et présente
une distribution trés structurée de galaxies : amas de galaxies, superamas, vide et fil-
aments. D’autre part, les observations du fond diffus cosmologique (CMB) suggérent
que 'univers présentait par le passé une distribution de matiére représentée par de
faibles fluctuations de densité autour d’une distribution homogéne. Selon I’approche
théorique du modele “standard” de la cosmologie, la matiére présente dans 'univers
est principalement constituée de Matiére Noire (“Dark Matter”) n’intéragissant es-
sentiellement que par l'interaction gravitationelle. Sur les échelles spatiales perti-
nentes pour I’étude de la formation des structures dans l'univers, 'approximation
Newtonienne de I'interaction gravitationnelle s’applique et la question se réduit alors
a la formation des structures dans un systéme de particules auto-gravitantes partant
d’une condition initiale correspondant & une répartition de matiére presque unifor-
mément distribuée.

La compréhension analytique de ce probléme reste essentiellement limitée aux
approches perturbatives linéaires des solutions des équations de type fluide (i.e. le
régime linéaire de formation des structures). L’étude du régime non-linéaire est ainsi
principalement abordée par des simulations numériques. Le degré de sophistication
et de parallélisation de ces simulations cosmologiques s’est amélioré de facon impres-
sionante ces derniéres années avec notamment l'utilisation de simulations hautement
parallélisées. En dépit de ces progrés, les simulations numériques en cosmologie
restent limitées par une résolution modeste (au maximum 2 ou 3 ordres de grandeur
en ce qui concerne les échelles spatiales du régime non-linéaire). L’absence de sup-
port analytique laisse également ouvert la question de la pertinence des résultats
dérivés de ces simulations.

Dans cette thése, nous approchons cette question d’un point de vue différent
de ceux utilisés couramment en cosmologie : celui de la physique statistique. En
effet, la formation de structures dans 'univers via 'approximation Newtonienne de
I'interaction gravitationelle peut étre simplement vue comme un probléme de dy-
namique hors-équilibre des interactions a longue portée. Dans le contexte de la
physique statistique, il est alors naturel de développer des modéles simplifiés (mod-
eles jouets) afin d’améliorer notre compréhension de ce systéme, en le réduisant
autant que possible & ses aspects fondamentaux. Les versions unidimensionnelles
de ce probléme cosmologique prsentent 'opportunité de pouvoir sonder des échelles
spatiales beaucoup plus étendues (méme pour un nombre limité de particules). De
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INTRODUCTION EN FRANCAIS

plus, ces approches sont extrémement précises, étant uniquement limitées par la
précision numérique de la machine. Cette thése présente une étude détaillée d’une
classe particuliere de modéles, ainsi que des résultats généraux sur la dynamique
hors-équilibre des systémes avec interaction a longue portée.

Les deux premiers chapitres introductifs sont consacrés a la présentation des
bases nécessaires afin de comprendre le contexte et les résultats de cette thése. Le
premier chapitre introductif présente un apercu des méthodes de la physique statis-
tique des interactions a longue portée, tandis que le second présente une introduction
a la formation des structures en cosmologie.

Dans le Chapitre 1, nous introduisons la dynamique et la thermodynamique des
systémes avec interaction a longue portée, dont la gravitation Newtonienne est un
cas particulier, en mettant en valeur les résultats importants qui ont émergés ces
derniéres années. Ces résultats ne présentent cependant pas un intérét fondamental
pour I'étude des systémes auto-gravitants en cosmologie, ces derniers faisant partie
des systémes d’extension infinie plutot que finie. Ils sont néanmoins pertinents pour
I’étude faite dans le Chapitre 6.

Le Chapitre 2 élargit les considérations faites dans le premier chapitre au cas
spécifique des systémes finis auto-gravitants, et passe en revue les bases du modéle
cosmologique “standard”, en s’intéressant plus particuliérement a la formation des
structures a grande échelle. En considérant que les systémes particulaires en cos-
mologie sont d’extension spatiale infinie, une attention toute particuliére doit étre
attachée a la définition de la force gravitationelle dans ces systémes. Nous intro-
duisons la théorie cinétique utilisée pour étudier la dynamique hors-équilibre des sys-
témes infinis auto-gravitants en cosmologie nécessaire a la dérivation de I'approche
hydrodynamique standard de ces systémes. Nous présentons ensuite I’approche per-
turbative de ces équations de type fluide, ainsi que I’analyse numérique du régime
non-linéaire de formation des structures dans I’'univers, en discutant les notions cen-
trales utilisées dans ce contexte : auto-similarité, “stable-clustering” et les modéles
des “halos”.

Dans le Chapitre 3, nous introduisons et définissons la classe des modéles jouets
unidimensionnels que nous étudions dans cette thése. Nous abordons cette question
d’un point de vue de la théorie des processus stochastiques de points, et traitons en
particulier la question de la définition de la force totale agissant sur une particule
appartenant & un systéme d’extension spatiale infinie. Nous montrons que cette
question réside en fait dans une subtilité de I’application de “I’arnaque de Jeans” en
une dimension. Nous insistons sur le fait que la force devient bien définie en une
dimension pour une classe particuliére de condition initiale, la classe des réseaux in-
finis perturbés, qui représente les processus de points pertinents dans les simulations
numériques & N-corps en cosmologie. Le texte de ce chapitre est tiré d’un article
publié¢ dans Phys. Rev. E [70].

Dans le Chapitre 4, nous présentons les résultats de notre analyse numérique
de I’évolution dynamique de ces modéles jouets. Nous montrons qu’ils présentent
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INTRODUCTION EN FRANCAIS

de forte similarités qualitatives avec les systémes tridimensionnels analogues, no-
tamment le comportement auto-similaire (i.e. un scaling dynamique) en partant de
conditions initiales pour le spectre de puissance (i.e. la transformée de Fourier de la
fonction de corrélation) en loi de puissance. Nous explorons également les aspects
particuliers de ces comportements que nous ne pouvons pas étudier aussi simplement
dans les simulations numériques tridimensionnelles & cause des difficultés numériques
rencontrées. Nous étudions en particulier la formation des structures pour une classe
particuliére de condition initiale, celle correspondant a des fluctuations de densité
dites “causales”. Nous explorons le régime fortement non-linéaire et dérivons les
exposants qui le caractérisent. Dans le cadre d’un univers en expansion, nous mon-
trons que nos résultats sont bien expliqués par un modéle basé sur I'hypothése du
“stable clustering’, analogue a celui parfois proposé en trois dimensions.

Dans le Chapitre 5, nous explorons plus en détail les propriétés des distributions
de particules produites dans les modéles définis précédemment. Nous effectuons
une analyse multifractale de ces distributions et la complétons par une approche
analogue a celle utilisée actuellement dans les simulations numériques tridimension-
nelles en cosmologie, dans lesquelles la distribution est décrite par une collection
de “halos” de taille finie. Nous concluons qu’une description en terme de structures
statistiquement virialisées est valide, précisement dans le régime fractal non-linéaire
de formation des structures. L’interprétation de nos résultats améne a penser que
dans le régime non-linéaire invariant d’échelle, la distribution peut étre vue comme
correspondant a une sorte de hiérarchie virialisée.

Le Chapitre 6 présente des résultats qui généralisent aux interactions décrois-
santes a grande distance en loi de puissance ’approche introduite dans le Chapitre
3 pour étudier la définition de la force gravitationelle en une dimension dans un sys-
téme d’extension spatiale infinie. Nous donnons ainsi une classification “dynamique”
de la portée des interactions s’appuyant sur les propriétés de convergence de la force
a grande distance. Nous expliquons également qu'une condition de convergence
plus faible est en fait suffisante pour définir la dynamique dans la limite des sys-
temes d’extension spatiale infinie. Notre conclusion centrale est que l’interaction
gravitationnelle (quelque soit la dimension spatiale) est le cas limite pour lequel la
dynamique dans la limite des sytémes infinis est bien défini. Le texte de ce chapitre
est tiré d’un article publié dans J. Stat. Phys. [68].

Nous terminons cette thése par une discussion sur les perspectives de recherche
envisagées.
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Introduction

The formation of structure in the universe is one of the major open questions in
cosmology. Indeed the distribution of visible matter at large scales in the universe
appears to be very inhomogeneous today, and presents a highly structured distribu-
tion of galaxies: cluster of galaxies, superclusters, voids and filaments. On the other
hand, it is inferred from observations of the Cosmic Microwave Background radia-
tion that the universe was in the past very close to homogeneous with tiny density
fluctuations. In the theoretical framework of the “standard” cosmological model,
it is postulated that the matter in the universe is constituted mainly by so-called
Dark Matter interacting essentially through gravity. On the spatial scales, relevant
to the formation of large structures in the universe, the Newtonian approximation
to gravity applies, and thus the problem reduces to the evolution of clustering in an
infinite self-gravitating system with close to uniform initial conditions.

Analytical understanding of this problem is limited essentially to linear pertur-
bative approaches to the solution of the fluid equations (i.e. the “linear regime”
of structure formation), and the study of the “non-linear” regime is mainly probed
through numerical investigation. The degrees of sophistication and parallelization
of the algorithms used in cosmological simulations has increased impressively in the
last decades, with the use notably of highly multithreaded clusters on both CPU
and GPU. Despite this progress, cosmological numerical simulations remain limited
by a modest resolution (at very most two or three orders of magnitude in scale for
non-linear clustering). The absence of analytical “benchmarks” also leaves open to
doubt the reliability of the results drawn from them. In this thesis, we approach
this problem from a different perspective to the usual one in cosmology, that of
statistical physics. Indeed, the formation of structures in the universe through the
usual Newtonian gravitational interaction can be seen as a well posed problem of
out-of-equilibrium dynamics of systems with long-range interaction. In the context
of statistical physics, it is natural to develop simplified models (“toy-models”) to try
to improve our understanding of this system, reducing as much as possible the ques-
tion to fundamental aspects. One dimensional versions of the cosmological problem
of gravity present the particular interest that they give the opportunity to probe a
very large range of scales (even for a number of particles which can be simulated
on a single processor). Furthermore, as we will explain, they are extremely precise,
being limited only by machine precision. In this thesis we report a detailed study
of a class of such models, as well as some more general results on out-of-equilibrium
dynamics of long-range interacting systems.



INTRODUCTION

Organization of the thesis

The first two introductory chapters of this thesis are devoted to giving some stan-
dard background which is useful for understanding the context and the results of
this thesis. The manuscript is addressed to the two communities, whose methods
and problems are relevant, cosmological and statistical physics one. The first intro-
ductory chapter gives a review of some relevant methods in statistical physics, while
the second one introduces the basics of structure formation in cosmology.

In Chapter 1 we thus give an introduction to the dynamics and thermodynamics
of systems with long-range interaction, of which the Newtonian gravitational inter-
action is an example, outlining important results which have emerged in statistical
physics in recent years. These results turn out not to be so directly relevant for our
study of self-gravitating systems, because the latter are infinite rather than finite.
They are, however, relevant background to the study we report in Chapter 6.

The second chapter extends the considerations of the previous chapter to the
specific case of self-gravitating systems, and then reviews the basics of the standard
cosmological model, focusing on the formation of large scale structures. Considering
that the systems of particles in cosmology are infinite rather than finite, particular
attention must be said to the definition of the gravitational force in these systems.
We give an introduction to the kinetic theory used to study the out-of-equilibrium
dynamics of infinite self-gravitating systems in cosmology which allows the derivation
of the usual hydrodynamic description of these systems. We then present the per-
turbative treatment of these fluid equations, and then the numerical investigations
of the non-linear regime of the formation of structures in the Universe, discussing
central notions which are used in this context: self-similarity, stable clustering and
“halo models”.

In Chapter 3 we introduce and define the class of 1 — d toy models we study in
this thesis. We address the problem of their general formulation in the context of
stochastic point process theory, in particular the question of the definition of the
total force acting on a particle belonging to an infinite system. We show that this
problem arises from a subtlety about how the so-called “Jeans’ swindle” is applied
in 1 — d. We underline that the force turns out to be well-defined in 1 — d for a
broad class of distributions, a class of perturbed infinite lattice, which are the point
processes relevant to cosmological N-body simulations. The text of this chapter is
taken from from an article published in Phys. Rev. E. [70]

In Chapter 4 we present results of a numerical investigation of the dynamical
evolution of these toy models. We show that they are physically interesting as
they present very strong qualitative similarities with the evolution of the analogous
3 — d systems, notably “self-similar” behavior (i.e. dynamical scaling) starting from
power-law initial conditions. We also explore aspects of these behaviors which one
cannot easily probe with 3—d numerical simulations due to numerical difficulties. We
study in particular structure formation for the particular class of initial condition
corresponding to “causal fluctuations”. We explore further the strongly clustered
regime and derive the exponents which characterize it. We show that our results,
for the expanding models, are well accounted for by a model based on a “stable-
clustering” hypothesis, analogous to that sometimes proposed in 3 — d.

In Chapter 5 we explore further the properties of the particle distributions pro-
duced in models we have studied in the previous chapter. We perform a multifractal
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INTRODUCTION

analysis and complete it with an approach analogous to that now used canonically
in 3 — d N-body simulations in cosmology in which the distribution is described as
a collection of finite “halos”. We reach the conclusion that a description in terms
of statistically virialized structures is valid, precisely in the regime where there is
fractal clustering. We interpret our results to mean that in the regime of non-linear
fractal clustering the distribution can be said to correspond to a kind of “virialized
hierarchy”.

Chapter 6 reports results which generalize to any pair interaction decaying as a
power-law at large separation the approach used in Chapter 3 to determine whether
the 1 — d gravitational force is defined in an infinite system. In so doing it gives a
“dynamical” classification of the range of pair interactions based on the convergence
properties of the force at large distances. It also explains that a weaker convergence
condition is in fact a sufficient one for dynamics to be defined in the infinite system
limit. Our central conclusion in this respect is that the gravitational interaction (in
any dimension) is the limiting case for which an infinite system limit for dynamics
can be meaningfully defined. The text of this chapter is taken from an article
published in J. Stat. Phys. [68].

We conclude this thesis with a brief discussion of some perspectives for further
work.
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Chapter 1

Dynamics and thermodynamics of
systems with long-range interaction:
an introduction

In this first introductory chapter we give a synthetic introduction to the dynamics
and thermodynamics of systems with long-range interaction (LRI), and outline the
differences with short-range interacting (SRI) systems. It does not contain original
material and is based principally on [15,31,43|. Systems with long-range interactions
are characterized by a pair potential which decays at large distances as a power law,
with an exponent smaller than the space dimension: examples are gravitational and
Coulomb interactions (see e.g. [31,43]). The thermodynamic and dynamical prop-
erties of such systems were poorly understood until a few years ago. Substantial
progress has been made only recently, when it was realized that the lack of additiv-
ity induced by long-range interactions does not hinder the development of a fully
consistent thermodynamics formalism. This has, as we will see in more detail in this
introductory chapter, however, important consequences: entropy is no more a con-
vex function of mascroscopic extensive parameters (energy, magnetization, etc.), and
the set of accessible macroscopic states does not form a convex region in the space of
thermodynamic parameters. This is at the origin of ensemble inequivalence, which in
turn determines curious thermodynamic properties such as negative specific heat in
the microcanonical ensemble, first discussed in the context of astrophysics [81]. On
the other hand, it has been recognized that systems with long-range interactions dis-
play universal non-equilibrium features. In particular, long-lived metastable states,
also called quasi-stationary states (QSS) may develop, in which the system remains
trapped for a long time before relaxing towards thermodynamic equilibrium.

Historically, it was with the work of Emden and Chandrasekhar [32,54], and later
Antonov, Lynden-Bell and Thirring [6,81,103], in the context of astrophysics, that
it was realized that for systems with long-range interactions the thermodynamic en-
tropy might not have a global maximum, and therefore thermodynamic equilibrium
itself could not exist. The appearance and meaning of negative temperature was
first discussed in a seminal paper by Onsager on point vortices interacting via a
long-range logarithmic potential in two-dimensions [122].

We formalize this presentation in the following with the study of the equilibrium
9
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statistical mechanics and the out-of-equilibrium dynamics of systems with LRI. We
simply search to illustrate in each case, with the use of toy models, a unifying con-
cept: the mean-field theory for statistical equilibirum study and the Viasov equation
for out-of-equilibrium dynamics.

1 Definition of long-range interactions

In this section, we give a pedagogical introduction to the theory of LRI systems. We
outline the crucial differences with SRI systems, and present the general idea with
a simple toy model: the Ising model [30]. Let us consider in Fig. 1.1 a macroscopic

A @ o © o © or B
) © @
® o
P © e
o ® o ©
(] © ©
P Q@ o
o O o

Figure 1.1: Schematic representation of a system made of two sub-systems A and
B. Particles P and P’ do not belong to the same sub-system.

system divided into two sub-systems A and B. The total energy E of the macroscopic
system is then equal to the sum of the energies of each sub-systems (E4 or Eg), plus
the interaction energy Fap between these two sub-systems, i.e. F = E4+ Epg +
E4p. When one considers a short-range interaction between the constituents of this
system, this interface energy Fsp is proportional to the surface between these two
sub-systems. For a macroscopic system, this is negligible in comparison with the
volume energy. The energy of the particle P in A is thus insensitive to whether the
particle P’ in B is present. However, this argument is not valid if the interaction is
sufficiently long-range as the interface energy is no longer negligible in comparison
with the volume energy. To illustrate this difference, we consider the Ising model:
N spins S; = £1, with i € [1, N], are fixed on a regular lattice and interact with an
interaction of infinite range and independant of the distance between the spins. We
then can write the Hamiltonian

H=-J> 5. (1.1)
i#]

If the parameter J > 0, the interaction is called ferromagnetic, if J < 0 the in-
teraction is called anti-ferromagnetic and if J = 0 the spins are non-interacting.
When all the spins are ordered in the same positive way, the total energy is simply
E = —JN(N —1). If we divide the system into two different subsystems made iden-
ticaly of N’ = N/2 spins, each subsytem, independently of the other, has a total
energy B’ = —JW. We then obtain F # 2E’. Let us note that the use of a
couplig constant J' = J/N renormalized by the number of spins, as common use for

10
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this mean-field model, gives energies of order N, i.e. the system is called extensive,
but does not solve the lack of additivity of this model.

In the following, we will consider this non-additivity criterion as the definition
of long-range interacting system: a macroscopic system would be considered
as “long-range” if we cannot write its total energy as the sum of the en-
ergies of independant macroscopic subsystems. Following this definition, a
pair-interaction decaying as a power-law with the distance as 1/r%, is long-range,
when the exponent o < d, where d is the spatial dimension.

To illustrate this proposition, we consider a “modified” Ising model which is now
not independant of the distance between the spins (the spins are nevertheless still
fixed on the lattice sites), and without short-range divergence

W sy
ity

(1.2)

where d;; represents the distance between two sites 7 and j. This system will be
“long-range”, or non-additive, if the spins far away from the site ¢ contribute in a
non-negligible way to the energy of the spin S;. This contribution is then negligible

as soon as the sum
1
> - (1.3)
j#i,N—oo
converges, for a system size going to infinity. Comparing this sum with an integral,
one clearly sees that it converges as soon as o > d where d is the space dimension.
This demonstration can be generalized to the cases where the two-body interaction
potential in 1/r®. !

This analysis include the gravitational newtonian interaction but not the Van
der Waals interaction. Let us note that this criterion does not correspond to
the terminology of critical phenomena, in which long range potential is defined
as o < D + 2 —n, where n is a critical exponent which depends on the system, but
usually small [20]. Then the designation “long-range” used in the critical phenom-
ena community has a larger meaning than the one refered to in this thesis. Our
long-range interactions are also called non-integrable interactions.

The non-additivity can generate, as we will see, unusual behaviours as the ther-
modynamics at equilibrium or out-of-equilibrium dynamical relaxation properties
are concerned. Indeed, phase separation in the usual meaning is impossible. This
calls into question the equivalence of ensembles between the canonical and the micro-
canonical ensembles. Furthermore, the dynamics is now coherent at the scale of the
whole system, and this changes the usual understanding of the relaxation towards
equilibrium. These different aspects have already been studied in detail in each
specific domain: self-gravitating system [124], bidimensional turbulence [34], and
plasma physics [53]|. As far as equilibrium statistical mechanics and its anomalies
are concerned, we can refer to the work of Hertel and Thirring [81]; the similarity
of the methods to solve these different models has been developped in the studies

'We do not consider the limit case where o = d, as in this case the presence of semi-convergent
integrals can yield particular behaviours.
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of Spohn et al. [63,109] and Kiessling et al. [93,94,144|. As far as the dynamics is
concerned, Chavanis, Sommeria and Robert [34,36] have developed the analogies be-
tween bidimensional turbulence and self-gravitating systems, considering the formal
proximity between the Euler and Vlasov equations.

2 Equilibrium statistical mechanics of long-range
interacting systems

Following the definition of LRI systems introduced previously, the thermodynamics
of these systems presents unusual behaviours in comparison with the thermodynam-
ics of SRI systems: the energy is not additive, and then many standard results of
the usual thermodynamics and statistical mechanics become inaccurate.

2.1 The mean-field Ising model

Let us consider the example of the mean-field Ising model. Its Hamiltonian is

g

H=—= > 8, (1.4)

ij=1

where S; represents the spin with value £1. The coupling constant is renormalized
by a factor depending on the number of spins in the system, N, in order to preserve
the extensivity of the system. Without this trick, the thermodynamic limit would
not exist in the usual sense, i.e. the total energy of the system would not be propor-
tional to the system size in the limit where N — co. However, even if the interaction
is renormalized to keep the system extensive, it is still non-additive; a consequence
is that it cannot separate itself into two different phases. Let us imagine a system
where the entropy S(e) is not concave (see Fig. 1.2), and let us consider an energy
eo below the tangent. For a system with short-range interaction, this curve cannot

S

el eo 82 e

Figure 1.2: Schematic representation of a non-concave entropy in the case of an
additive system: for the energy ey a phase separation occurs.

represent the entropy S(e). The reason is that, owing to additivity, the system rep-
resented by this curve is unstable in the energy interval e; < eg < e5. Entropy can
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be gained by phase separating the system into two subsystems corresponding to e;
and e, keeping the total energy fixed. The average energy and entropy densities in
the coexistence region are given by the weighted average of the corresponding den-
sities of the two coexisting systems. Thus the correct entropy curve in this region
is given by the common tangent line, resulting in an overall concave curve.

However, in systems with long-range interactions, the average energy density
of two coexisting subsystems is not given by the weighted average of the energy
density of the two subsystems. Therefore, the nonconcave curve in Fig. 1.2 could,
in principle, represent an entropy curve of a stable system, and phase separation
need not take place. This results in a negative specific heat (see e.g. [31]). Since
within the canonical ensemble specific heat is non-negative, the microcanonical and
canonical ensembles are not equivalent. The above considerations suggest that the
inequivalence of the two ensembles is particularly manifested whenever a coexistence
of two phases is found within the canonical ensemble. This inequivalence between
the microcanonical and canonical ensembles is know for years in astrophysics, but
took time to grow on the statisical physics community where people get used to
the canonical ensemble: M. Lax shed light on the inequivalence of ensemble in the
spherical model of Berlin and Kac [100], and Hertel and Thirring studied in [81]
a simple model inspired from gravity, exactly solvable in both the canonical and
microcaninical ensembles, bringing into light the negative specific heat.

The importance of the microcanonical ensemble, as well as its differences with
the canonical ensemble, has also been studied these last ten years by D. Gross, even
without any long-range interaction, in the domain of systems with few degrees of
liberty [78], as in nuclear physics for example.

Let us note that a new definition of the entropy has emerged to solve the physical
questions of the long-range interacting systems, intrinsically non-additive [147]: the
usual entropy of Gibbs, S¢ = — ). p;Inp;, for a set of probability p;, is replaced by
the Tsallis entopy that depends on a parameter ¢

1= Zipg
5,= -2k, (15)

and a new thermodynamical formalism is developped, depending on this new pa-
rameter ¢q. S, is said non-additive, as the g-entropy of the union of two independant
subsystems (in probability) is not equal to the sum of the two entropies of these
subsystems taken independently. S, becomes Si when ¢ — 1. It seems that this
entropy works to describre systems out-of-equilibrium instead of a description of
systems at equilibirum (see e.g. [31]).

In the following, we will explain the results of the mean-field approach. Indeed,
as often in statistical mechanics, the usual approach is to perform a mean-field ap-
proximation. We will use a pedagogical approach based on the use of toy models:
we start studying simple models where an analytical approach can be performed.

We must note that we only restrict the analysis to the class of lattice systems.
As far as continuous systems are concerned, i.e. systems made of particles with
translational degrees of freedom, the additivity property is still satisfied in all cases
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for which the system does not collapse if the pair-interaction V' (r) o |r|~* decays
at large distances faster than the power law 7—¢ where d is the dimension space.
Moreover, following Ruelle [136], two conditions must also be considered in the case
of continuous systems: the stability condition and the temperedness condition.

The stability condition assures that there will not be situations of collapse of the
system. The potential is said to be stable if there exists A > 0 such that

> V(ri-r)>-NA (1.6)
1<i<j<N
for each configuration (ry,...,ry). We note that for this it is necessary that V' (r) to

be bounded below for » — 0. Therefore, for the occurence of normal thermodynamic
behavior it is possible to adopt, following Ruelle [136], the following conditions on
the two-body potential: the first is the stability condition, while the second is

V(r) < Cle[™ (1.7)

whenever |r| > Ry > 0; this condition, for C' > 0 and « > d, is called temperedness.
When stability and temperedness are satisfied there are theorems that assure the
equivalence of ensembles [31].

If we consider LRI systems for which the potential decays at large distance ac-
cording to |r|~* with a < d, depending on whether it will do so considering repulsion
at large distance, or attraction at large distance, the temperedness condition or the
stability condition will be violated, respectively. In both cases, it can be shown that,
increasing the size of the systems, the total energy will increase faster than N, vio-
lating the extensivity property, and also the additivity property will not hold [136].

2.2 Inequivalence of ensembles: the BEG mean-field model

In the following, we focus our attention on a solvable model introduced originally
to study the binary mixing of He3 — He*, and which illustrates the particularities
of the thermodynamics of non-additive systems: the Blume-Emery-Griffiths (BEG)
model [26]. The canonical phase diagram of this model is well known [30], and
presents an interesting phenomenology: a line of second order phase transition and
a line of first order transition disjoined by a tricritical point. The microcanonical
approach has been studied in [30]. Here we present a brief analysis of the BEG
model in both the canonical and microcanonical ensembles (see e.g. [15] for more
details).

One defines the BEG model as a lattice where each site is occupied by a spin
S; = 0, %x1. one can write the Hamiltonian

H:Aﬁ;sf—%(isif, (1.8)

=1

where J > 0 is a ferromagnetic coupling constant, and A controls the energy differ-
ence between the magnetic states (S; = £1) and the non-magnetic state (S; = 0).
In this Hamiltonian the interaction is renormalized by 1/N to keep the system ex-
tensive. However, it does not prevent it from the non-additivity.
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The canonical solution

For small value of A/.J, the system becomes closer to the mean-field Ising model, and
undergoes a second order phase transition when 3 changes. Conversely, when T' = 0,
and 2A/J = 1, the paramagnetic phases S; = 0 for all ¢, and ferromagnetic phases
S; = 1 for all 7, are degenerated: a first order phase transition takes place between
these two fondamental states. The canonical solution is known for years [26]; the
usual method defined the partition function

Z(B,N):Zexp<—5AZS§+§—]{]<ZS¢>2>. (1.9)

S;

One uses the gaussian transformation

exp (ﬁNTsz) = \/%/_:O dv exp (;]gf ) , (1.10)

to perform the sum over all the accessible configurations:

) = \/%/;OO dv exp (_2];32> [1 + 272 cosh U}N. (1.11)

This last integral can be evaluated by the saddle point method in the limit where
N — oo. The free energy par particles is then

F(B5) = —% mvin <22—2J — In[1 4 2¢77 cosh v]) . (1.12)

The line of second order transition is then given by the expression

BJ = —JA+1 (1.13)

The tricritical point which separates this line from the firt order transition line is at
A/J =1n(4)/3, BJ = 3. The first order line transition must be obtained numerically.
We give in Fig. 1.3 the schematic representation of the canonical phase transition
diagram.

The microcanonical solution

We are now interesting in the microcanonical solution of the BEG model. We then
determine the entropy of the system for a given energy. Let us note by N,, N_,
and Ny the number of spin +1, —1, and 0 of a given microscopic configuration. We
note ¢ the quadrupole moment, and m the magnetisation per spin,

N, + N_
q = Z§ ++ : (1.14)

N_
m::NZS————a (1.15)
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Figure 1.3: Schematic representation of the canonical phase diagram of the mean-
field BEG model. For small values of A/.J there is a second order transition (dashed
line). When A/J increases a first order transition appears. This two regimes are
separated by a tricritical point (7'). For A/J > 1/2, there is no more transition.

The energy per particle, renormalized by A for convenience, can simply be written
H J 5

=—\(q¢— — ) 1.16

‘ AN( N ) (1.16)

As Ny + N, + N_ = N, the parameters ¢ and m are enough to obtain Ny, N,, and
N_. By simple combinatory, one obtains the number of microscopic configurations

for given ¢ and m:
N!

T ONLIN_IN!

Using the Stirling formula and the standard definition of the entropy, one obtains

Qq,m) (1.17)

qg+m_  g+m qg—m., gq—m
— In — In —
2 2 2 2

s(q,m) = (1-¢)In(1—¢q)—In3. (1.18)
The microcanonical entropy is then obtained by maximizing s for a constant e.
Giving the constraint ¢ = e+ km?, with & = J/2A, we obtain a variational problem
with a single variable:
S(e) = sup <s(e + ka,m)> . (1.19)
m
The microcanonical temperature is then given by Ag = 95/0e.

As in the canonical ensemble, the equation of the second order transition line
can be obtained analyticaly. This critical line stops in a tricritical point given
by k£ ~ 1.0813 and SA =~ 1.3998. This values are close to the canonical values
but different as k£ ~ 1.0820 and SA =~ 1.3995. The second order line stretches
off the microcanonical one. In the region between these two different tricritical
points, the transition is first order in canonical ensemble, but stays continuous in the
microcanonical ensemble (see Figs. 1.4). Beyond the microcanonical tricritical point,
the temperature undergoes a discontinuity at the transition of the microcanonical
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Figure 1.4: Schematic representation of the (A/J,T) phase diagrams of the BEG
model within the canonical and microcanonical ensembles (from [18]). We repre-
sent the tricritical canonical point (Ctp) and the tricritical microcanonical point
(Mtp). The bold dashed line (on the left of Ctp) illustrates that in the microcanon-
ical ensemble the continuous transition coincides with the canonical one. The line
represents the first order canonical phase transition. The bold line represents the
microcanonical first order phase transition. The area between delimited by the bold
line is not accessible.

critical energy; the two lines in Fig. 1.4 represent the temperature at each side of
the jump. All the transitions disappear at T'=0, A/J = 1/2.

The BEG mean-field model is solvable analyticaly in both the canonical and
microcanonical ensembles. The phenomenology around the tricritical point is inter-
esting as it brings to light the inequivalence of ensembles, with area with negative
specific heat and temperature discontinuities.

In the next section, we briefly present a general method to study the equilibrium
properties of systems with long-range interaction, which is necessary to solve more
complicated models.

2.3 Mean-field and large deviation theory

The mean-field approximation consists in evaluate the field on a particle, assum-
ing that all the particles are in a mean state. For LRI systems, a large number
of particles contribute to this mean-field, and the fluctuations around this mean-
field should be small with the large number theory. It is then conceivable that we
can obtain a very good approximation of the real behaviour with this mean-field
approach. Furthermore, one can show that the mean-field approximation becomes
exact in numerous models, for a large number of particles.

In this subsection we introduce, following [15] without any mathematical rigor,
the large-deviation theory, a mathematical tool essential to show the accuracy of
the mean-field approximation in many instances. It is above all a powerful tool to
obtain the equilibrium states in the microcanonical and canonical ensembles.

A rigorous approach of the large-deviation theory is given in [44]; reference [52]
gives an application of this theory to statistical physics, with a mathematical point
of view.

17



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH
LONG-RANGE INTERACTION: AN INTRODUCTION

How does large-deviation theory work?

Let us consider a sum of N random variables identicaly distributed Xj. Assuming
they follow the same probability distribution, with a null average, the empirical
average Sy is then

Sv=—> X;. (1.20)

The large number law states that Sy tends to the average value of Xy, i.e. zero in
our case, when N goes to infinity. If the assumptions of the central limit theorem
are valid, one can consider that the function P(v/ NSy = ) goes to a gaussian
distribution in x if we consider random variables with null mean. The fluctuations
of Sy are of order 1/v/N. It is also interesting to study the behavior of the tail
of the distribution: what is the probability for a fluctuation of order 17 i.e. what
is the value of P(Sy = )7 The large deviation theory is essential to answer this
question.

Let us consider an example to illustrate large deviation theory. We consider a
coin, and the random variable X, following X, = 1 for the reverse side, X; = 0 for
the head side. Combinatory simply gives

NI
P(Sy =z) = (W)Y (1.21)

which gives with the Stirling formula

1 1 1-— 1-—
InP(x) ~ —N( ;xln ;x+ Qxln 2x+1n2) (1.22)
~ —NI(z). (1.23)

One says that Sy follows a large deviation principle, with rate function I. I(z)
is the opposite of the entropy attached to a configuration with a mean value z.
One sees that the values of = such that I(z) > 0 are exponentially suppressed with
N. Moreover, to satisfy the normalization condition of the probability, one needs
I(xz) > 0, and inf I(x) = 0.

the Cramer theorem

The Cramer theorem [52] is the mathematical basis to answer to this question for
random variables X} following the same rapidly decreasing probability distribution.
Let us once more consider

N
1
Sy = NZXk, (1.24)
k=1
where P(Sy = z) follows the large deviation principle
InP(Sy =z) ~—NI(x). (1.25)

The cramer theorem allows us to compute the rate function /(z). To do this, one
defines the function
() = (M), (1.26)
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where A is a real value and (...) denotes the average value of the probability dis-
tribution of X (or of any X}, as they are identicaly distributed). The rate function
I(x) is then given by the Legendre transformation of In U:

I(x) = Sl)l\p ()\.:c —In \Il()\)> : (1.27)

This theorem is valid if the probability distribution of X, is rapidly decreasing at
infinity in order to W to be definite. This gives a general method to evaluate the
rate function, when the combinatory methods are not possible, as in the case of a
continuous probability density function.

One must note that the large deviation approach does not work for all the systems
with long-range interaction. This method consists in introducing coarse-grained vari-
ables, and this description is useful to describle structures at the scale of the system.
This method is thus useless when interesting phenomena take place at microscopic
scales. This can be the case when one considers repulsive force at long range; the
mean-field approach predicts the absence of structures at large scales, and the in-
teresting physics at small scale must be studied with a different approach.

In this first introductary section, we have presented the theory of equilibrium
statistical mechanics of LRI systems. We have illustrated an interesting result of LRI
with the BEG model: the inequivalence of ensemble. We have also introduced the
main tool to study these systems, the mean-field approach and have given comments
on the large deviation theory .

We have seen in the previous subsection that the equilibrium statistical mechan-
ics provides powerful tools which give information about the microscopic states of
LRI systems. However, it is essential to understand the relaxation properties of
these systems. It appears that the relaxation time of these systems is very long, and
increases with the number of constituents in the system as we will discuss below.

3 Out-of-equilibrium dynamics of long-range inter-
acting systems

In the introductory section on the equilibrium properties of LRI systems, we used
solvable toy models to shed light on general concepts. We will follow the same ap-
proach in this section to introduce the out-of-equilibrium dynamics of LRI systems.

3.1 Introduction

The kinetic theory proposes to study the evolution of macroscopic observables, start-
ing with microscopic equations. However, this evolution is not easy to obtain. It
is usually impossible to consider the correlations between particles coming from the
dynamics. The kinetic theory describes a system through the use of probability dis-
tribution in the N-particles phase space, fy(ri,p;,...,tn,Py,t). All the essential
information about the correlation are contained in this function. The easiest ap-
proximation consists in neglecting these correlations, and in describing the system
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with a one-particle probability distribution, f(r,p,t); The N-particles probability
distribution is then linked to the one-particle distribution function through the re-
lation

fN(rlapla -"7rNapN7t) = f(rlaplat) ce f(rNapNat) : (128)

This one-particle function evolves under the mean-field potential, and under the
collisions between the particles

of

EﬂLp.Vrf—VrV.fo:C(f), (1.29)
where V' is the potential, and C(f) represents the collisional evolution. If we neglect
the collision term, we obtain the Vlasov equation that could be seen as the dynamical
equivalent of the mean field approximation in the equilibrium analysis.

General results exist allowing to show the convergence of the particular dynamics
through the dynamics of the Vlasov equation, for a number of particles which goes to
infinity. The Braun and Hepp theorem [28] gives mathematical rigour to state this.
Let us consider a classical system of N particles, interacting through the potential,

1
By, =+ > exi—x;), (1.30)

1<i<j<N

where the potential ® is even and regular enough. Then for all time ¢, and for any
given acceptable error €, there exists an number N of particles for which the par-
ticular and Vlasov dynamics coincide until the time ¢, with a maximal error €. As
for any equilibrium study, the renormalization factor 1/N of the interaction corre-
sponds to the limit where the number of particles goes to infinity, keeping constant
the microscopic time scale of the system. This could be the physical interesting
limit. Moreover, let us note that the regularity assumption of the ® potential is
not valid for self-gravitating systems. This difficulty comes from the short distance
singularity of this interaction.

The Vlasov equation acquires from the particular dynamics the same conserved
quantities (total energy, momentum, ...). Furthermore, the consideration of a con-
tinuous description generates also an infinite number of conserved quantities, called
the Casimirs. Indeed, the Vlasov equation is a non-linear equation of advection of
the density f, which means that the quantities

I[¢] = /dr dp ¢(f(r,p,t)) , (1.31)

where ¢ is some function, are conserved. These new conserved quantities play an
important role in the particular dynamics. Furthermore, it is known that this equa-
tion has many stationary solutions. These two points then gives intuition why the
relaxation toward equilibrium of systems with LRI are very slow.

collisional relaxation and violent relaxation

If one neglects collisions between particles, i.e. the right hand side of Eq. (1.29)
C(f) =0, creating an infinite number of new conserved quantities, one could think
that the Vlasov dynamics would not relax towards a statistical equilibrium. In
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reality, the Vlasov dynamics creates rapidly a finer and finer filamentation of the
density f. Then an equilibrium distribution can appear for the density f, coarse-
grained density of the real density f. This is the idea of violent relazxation introduced
by Lynden-Bell in 1968 in astrophysics [103]. This violent relaxation plays its role
on shorter time scale than the collisional relaxation, and then gives a statistical
equilibrium different from the standars collisional equilibrium, as it contains new
conserved quantities. We will come back again to the Vlasov equation with its
illustration in the ferromagnetic Hamiltonian-Mean-Field toy model.

The result of Braun and Hepp can lead to the idea that the Vlasov equation can
play the same role as the mean-field approximation at equilibrium. In reality, the
theorem shows the convergence towards the Vlavov dynamics when N — oo, for any
bounded temporal interval. In other words, the discrete dynamics and the Vlasov
dynamics coincide over a time scale which scales with the number of particles N.

3.2 Slow relaxation to equilibrium: the ferromagnetic Hamiltonian-
Mean-Field model

To illustrate the particular behaviour of relaxation towards equilibrium in LRI sys-
tems, we consider the well known toy model: the ferromagnetic Hamiltonian-Mean-
Field (HMF) model [30]. It describes the interaction of N identical particles which
move on a circle of radius unity. We can write its hamiltonian

2
p; 1
H= E 5] ~ ¥ cos(6; — 6;), (1.32)
j

7:7-7
where the particle position 6; is between 0 and 27. The coupling constant is negative

and the system tends naturally to a magnetized state, i.e. M; = (Z eieﬂ')/N # 0.

In that case, it has been shown in [5] that the canonical and microcanonical en-
sembles were equivalent. However, for some particular initial conditions, the system
does not relax to equilibrium (see e.g. Fig. 1.5). In fact, the system relaxes towards
equilibrium, but relaxes slower as the number of particles increases. For sufficiently
large N, however, it is difficult to observe this relaxation in numerical simulations.
Fig. 1.6 illustrates this behaviour: the magnetisation stays initially close to 0, and
relaxes to its equilibrium value M; = |M;| # 0 for times that increase with the
number of particles in the system. Let us consider this evolution through the eyes
of the Vlasov equation:

e the system quickly evolves following the Vlavov dynamics, in a time scale
independant of the number of particles;

e the system stays trapped near one of the numerous stationary states of the
Vlasov equation. If the violent relaxation theory is valid, this state is the
statisical equilibrium of the Vlasov equation. In reality, it does not correspond
however exactly to this statistical equilibrium;

e the system evolves slowly under the effects of collisions. The time scale depends
now on the number of particles in the system. One can assume that the system
evolves among the numerous stationary states of the Vlasov equation;
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Figure 1.5: Representation of the (T, U) diagram (from [15]) for the ferromagnetic
HMF model. The straight line represents the canonical equilibrium state. The
vertical dashed line marks where the second order phase transition takes place. The
circular points stand for the result of the molecular numerical simulation, starting
with out-of-equilibrium initial condition and for long integration time.

e finally, the system reaches a stable stationary state of the Vlasov equation:
the collisional statistical equilibrium. This is different from the statistical
equilibrium of the Vlasov equation, as the Casimirs are not conserved through
the collisional relaxation.

The sytem could of course stay trapped in these stable stationary states for
different reasons (as it is the case for the antiferromagnetic HMF model [16,17]).
However, these states are the most natural hypothesis.

The ferromagnetic HMF model is a popular toy model to study the Vlasov
dynamics. The idea of this section is not to perform a complete analytical analysis
of the HMF model, although the simplicity of this model gives this opportunity.
In the following the approach of the Vlasov stable stationary states, and the slow
evolution towards equilibrium, amongst the stable stationary states of the vlasov
dynamics are illustrated with the results of numerical analysis (see e.g. [156] for
more details). .

The Vlasov equation

The first step of the evolution presented above corresponds to a rapid evolution,
under the effect of the Vlasov dynamics, on a time scale independant of the number
of particles in the system. To determine the stationary states of this equation for
the HMF model one considers the equation of motion

d@j . dpj
a
where M, and M, represent the real and imaginary parts of the complex magneti-

sation M;. To follow the Vlasov approach, one must consider the approximation of
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Figure 1.6: Temporal evolution of the magnetisation M (t) for a number of particles
N = 100(1000), 1000(100), 2000(8), 5000(8), 10000(8) and 20000(4) from left to
right (from [156]. We give in bracket the number of realisations used to perform
the ensemble average. The horizontal line represents the equilibrium value of the
magnetization.

the dicrete distribution

%25(9—93‘,1?—1%‘) (1.34)

j=1

with a continuous density in the one-particle phase space f(6,p,t). One can write

M,[f] = /cos(&)f(@,p,t)d@dp, M,[f] = /sin(@)f(@,p,t)dﬁdp. (1.35)

In this approximation (which becomes exact in the limit N — oo) all the particles
feel the same potential

V(O)|f] =1— M,[f]cos — M,[f]sinf. (1.36)
The Vlasov equation can be written [31]

of  of _av

N o _
ot " P9 ap

[f] o 0. (1.37)

As explained previously, the Vlasov equation conserves the energy and the momen-
tum of the system, i.e.

2 M2 M2
HIf] 2/%f(9,p, t)dbdp — % (1.38)

and
P~ [ pf6.0.00p. (1.39)
23



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH
LONG-RANGE INTERACTION: AN INTRODUCTION

and conserves an infinite number of new quantities, the so called Casimirs

Colf] = /¢<f(9,p, t))dﬁdp, (1.40)

where ¢ is a continuous function. The stationary states of the Vlasov equation,
obtained with the method of characteristics [41], are given by the density f constant
along the characteristics of the equation i.e. the level line of the energy e

: p;jtl—]\/[x[f]cosH—My[f]sinﬁ. (1.41)

Py v =

e(0.p) =3

The stationary solutions of the Vlasov equation are then given by f(6,p) = ¢ (e(@, p))

where 1) is any function. The particular case 1 = exp(—[3¢) corresponds to statistical
equilibrium.

One could expect that a large number of stationary states would prevent the
Vlasov equation to reach its statistical equilibrium, and on the other hand would
spark off the slow relaxation or the QSS observed with the particular dynamics.
It is then interesting to study the stability of these stationary states to give an
explanation of the slow relaxation towards equilibrium for a particular class of initial
conditions.

The main idea of this method for a dynamical system can be introduced as follow
(see e.g. [15] for more details): considering a conserved quantity F'[f] using conserved
quantities as energy and casimirs, any extemum fy, of F' is a stationary point of the
dynamics. Moreover, if f; is a strict maximum or minimum of F, fy is said to be
formaly stable. The different kind of stabilities can be studied in [83]. This is a
standard method in plasma physiscs which gives the opportunity to obtain results
of non-linear stability. This was used, for example, by Kandrup for self-gravitating
systems [91]. The formal fonctional quantity considered in [15] is

FLf] = Culf) — BHLf) - p / £(6,p,t)dbdp (1.42)

where 3 and p are two free parameters. The energy H, the Casimir C; and [ f =1
are quantities conserved by the dynamics. The critical points of this functional gives
the stationary states of the Vlasov equation. The stability of these stationary states
is then studied considering the second variations of this functional. Yamaguchi et
al. studied in [156] a simple criterion for stability for all the homogeneous stationary
states of the Vlasov equation and showed that the presence of these stable stationary
states would give an explanation to the slow relaxation toward equilibrium for a
certain class of initial conditions.

3.3 Convergence towards a stationary state of the Vlasov
equation

If the initial condition does not correspond to a stable stationary solution of the
Vlasov equation, it is natural to assume that the system will evolve, under the
effect of the Vlasov dynamics, towards a stable stationary solution after a rapid
evolution. This hypothesis can however only be tested with numerical simulations
(see e.g. [156,159]).
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These numerical simulations show that, after a rapid relaxation, the evolution
can be parametrized with an evolution among the stable stationary states of the
Vlasov equation; the system reaches finally the statistical equilibrium. Two main
points remain however unsolved: one the one hand, the Vlasov stationary state cho-
sen by the violent relaxation is not explained, and on the other hand, the dynamics
which governs the slow evolution among the stationary states.

0.45
0.4
0.35 |
03
025 |
0.2

PDF(0)

0.15 |
0.1 f

0.05 |

@ 0 ‘ ®) 0

Figure 1.7: Temporal evolution of the distribution f(6,t) obtained for a “water-bag”
initial condition for the velocities (from [156]). The number of particles is N = 1000
and an ensemble average over 100 realisations is performed. For U = 0.55 and
U = 0.69, we represent the distribution at time ¢ = 1 (cross), t = 10 (white square),
t = 10* (black square) and ¢t = 10° (white circle). The straight line represents the
equilibrium distribution.

The numerical study of the slow evolution has been studied in [156] for the HMF
model. We consider the results presented in Fig. 1.7 to illustrate briefly the slow con-
vergence of the angular and velocity distributions towards the statistical equilibrium
state. The initial condition of this simulation is a water-bag velocity distribution and
an homogeneous angle distribution. For U = 0.55 (left hand panel in Fig. 1.7), the
initial condition is unstable and the system undergoes a rapid evolution between
t =1 and t = 10. The system evolves then slowly towards the equilibrium state
reached for ¢ ~ 105. For U = 0.69 (right hand panel in Fig. 1.7), the initial condition
is stable. The dynamics is then very slow right from the begining and the equilib-
rium state is reached at ¢ ~ 10°. One must notice that, although the dynamics
evolves slowly, it seems that the evolution of the system is continuous. It is then
difficult to define a QSS (see e.g. [156,159]).

We conclude this introductory section with the study of the time scales of the
HMF model. We have already said that the relaxation time, i.e. the lifetime of the
out-of-equilibrium states, increases with the number of particles in the system. It
is thus interesting to understand this temporal dependence to identify the different
regimes of the dynamical evolution. Astrophysics provides a very nice example to
illustrate this question: It is believed that the structure of galaxies arises from violent
relaxation while the collisional relaxation could play a role in the dynamics of the
globular clusters [34].
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As far as the HMF model is concerned, the theorem of Braun and Hepp [28] states
that the Vlasov dynamics and the particular dynamics coincide on a timescale of
order In N. One could then expect a first relaxation time ¢,,; ~ In N. Using the
HMF model with U = 0.69 and water-bag velocity distribution and homogeneous
angular distribution, Yamaguchi et al. studied in [156] the temporal evolution of
M, (t) for a number of particle N = 10%, 103, 2.10%, 5.103, 10* and 2.10* (see Fig. 1.8).
To study the timescale relaxation represented in Fig. 1.8, M (t) is approximated by

7
/ﬁ_
= o4t +
//I/SIope =1.7
3k
2 1 1 L
1 2 3 4 5

(b) log, N

Figure 1.8: Panel (a) presents the temporal evolution of the magnetization M (¢) for
different particles numbers N = 100(1000), 1000(100), 2000(8), 5000(8), 10000(8)
and 20000(4) from left to right. The number between brackets corresponds to the
number of samples. The horizontal line represents the equilibrium value of M.
Panel (b) shows the logarithmic timescale b(N) as a function of N. The dashed line
corresponds to b(N) ~ N*7. (from [156])

hyperbolic tangent [156], i.e.

M (t) =

| + tanh (a(N)(loglot - b(N)))] c(N) +d(N) (1.43)

where the parameters a(N), b(N), ¢(IN) and d(N) represent respectively the slope
at time log,,(tf) = b(N), the time scale, the semi-difference between the initial level
and the equilibrium level of M;(¢) and the initial level of Mj(t). The equilibrium
level is given by the statistical mechanics and the initial level by the fluctuation
proportional to 1/y/N. Fig. 1.8 shows that, for U = 0.69, b(N) o N7 which is
the same dependance found by Zanette et al in [159] for different initial conditions.
This exponent stays unexplained, but analytical approaches try to explain it (see

e.g. [90]).

Let us recall briefly the results presented above. We have characterized the
stationary states of the Vlasov equation and presented a method to study their
stability. It has been shown in [156] that it was possible to analyse them as maxima
of a functional constructed with conserved quantities as energy and Casimirs. For
a class of initial conditions which are not stable stationary states of the Vlasov
equation, the system rapidly relaxes towards a stable stationary state, i.e. the so
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called violent relazation. The system then evolves slowly among the stable stationary
states towards the statistical equilibrium state, the so called collisional relazation.

This introductory chapter was limited to the study of different toy models. It is
however expected that it could be generalized to any long-range interacting systems
even if the analysis of each system must be adapted to each model.

4 Conclusion

In this first introductory chapter we have given a brief overview of the physics of
long-range interacting systems: the statistical mechanics at equilibrium and the
out-of-equilibrium dynamics. We have illustrated the particular behaviours which
emerge from these systems using simple toy models: the Blume-Emery-Griffiths
model, the Ising model and the Hamiltonian-Mean-Field model which have been
used as tools in the statistical physics community to probe the physics of the LRI
systems.

In the first section of this chapter, we have underlined the inequivalence of en-
sembles between the microcanonical and the canonical ensemble in the BEG model.
We have also introduced the mean-field approach and the large-deviation theory
which is the mathematical basis to justify the relevance of this approach.

However, the knowledge of the equilibrium properties remains incomplete if we
cannot probe the physics of the relaxation towards this equilibrium. This was the
subject of the second section of this chapter. Following a kinetic theory approach,
we have introduced the Vlasov equation which can be seen as the dynamical equiv-
alent of the mean field approximation. We have seen that the Vlasov equation has
an infinite number of conserved quantities, the so-called Casimirs, which underlie
the slow relaxation towards equilibrium. We have briefly presented a method ex-
tracted from [156] which gives the opportunity to obtain the stationary states of
the Vlasov equation as well as to analyse their stability. Indeed, for a class of ini-
tial conditions which are not stable stationary states of the Vlasov equation, the
system rapidly relaxes towards a stable stationary state, and then evolves slowly
among these stationary states until it reaches the statistical equilibrium through
the collisional relaxation.
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Chapter 2

Basic results on self-gravitating
systems

We first extend the considerations of the previous chapter to the specific case of self-
gravitating systems discussing the statistical equilibrium of self-gravitating systems:
we use the mean field approximation introduced in Chapter 1 for an LRI system,
which leads to the well known isothermal sphere solution. The rest of the chapter
concerns self-gravitating systems in the context of cosmology, which are intrinsically
different to those considered in Chapter 1 because they are infinite rather than finite.
To give some background, we review the basics of the standard cosmological model,
focusing on the formation of large scale structure. The understanding of the origin
of large scale structure in the universe (cluster of galaxies, superclusters) is indeed
one of the major unsolved questions in cosmology. In the next section we give an
introduction to the kinetic theory used to study the out-of-equilibrium dynamics
of infinite self-gravitating systems in cosmology, and which allow the derivation of
the equation of an (infinite) self-gravitating fluid (i.e. a hydrodynamic description
of the system). We present the perturbation theory of these fluid equations, where
the density field is described with smooth functions, and consider non-continuous
approach in terms of discrete particles. Following [126], this latter analysis leads
to a condition on the initial fluctuation for the applicability of fluid linear theory.
We then introduce the concept of stochastic distributions and the most important
quantities that characterize them, as density fields in cosmology are usually treated
as a mean background positive density with small positive an negative stochastic
fluctuations. We conclude this introductory chapter with a section which presents
the numerical investigations of the non-linear regime of the formation of structures
in the Universe, and a discussion of central notions which are used in this context
(self-similarity, stable clustering and halo models).

1 Finite self-gravitating systems: statistical equilib-
rium and dynamical evolution

In this section we first present some aspects of the statistical mechanics of finite
self-gravitating systems. We discuss the mean-field approach, already introduced
in Chapter 1, in this particular case and discuss the resulting isothermal spheres
solution. We also introduce an important result for self-gravitating systems, the
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virial theorem.

1.1 Statistical equilibrium of self-gravitating systems

In the case that a self-gravitating system is sufficiently far from other matter in
the universe so that tidal forces due to the latter are sufficiently weak (i.e. play
a role only on a timescale much longer than the characteristic timescale for the
evolution of the system itself), one would expect to be able to treat this system
as isolated and apply a statistical mechanics treatment like that discussed for a
generic LRI in Chapter 1. One such case are astrophysical systems such as globular
clusters and galaxies, which are made of stars which, except when they are close
enough to be in contact physically, interact via the 1/r potential. Another case
where such an approach may be useful are dark matter “halos” around astrophysical
object, postulated to be constituted of (perhaps elementary) particles which interact
essentially through gravity alone.

Realistic astrophysical systems of this kind are open in the sense that particles
in these systems can escape to infinity. It is easy to see, however, that in the
microcanonical ensemble the integral defining the density of state g(FE), i.e.

9(E) = % /dq dp 5(E - H(q,p)) : (2.1)

will diverge if the range of spatial integrations is extended to infinity [124]. This
divergence is in addition to any divergence we may encounter due to the short
distance behaviour of the potential. A similar divergence of g(E) will occur even for
an ideal gas if it were not confined in a box. We are, therefore, forced to introduce
the first artificiality: one must confine the system inside a spherical box of radius
R. This assumption can be justified if one can demonstrate that the fractional rate
of evaporation of particles from the system is small.

Given such a confining volume and a suitable short distance behaviour of the
potential, one can, in principle, compute the phase volume g(FE, V') and the entropy
S(FE,V). However, these quantities behave in an unfamiliar manner for gravitating
systems. The central difficulty arises from the non-extensive nature of the energy
already introduced in Chapter 1.

There is also another well known property of gravitating systems [124]: gravi-
tating systems in virial equilibrium have negative specific heat. However, systems
described by the canonical distribution cannot have negative specific heat. No such
constraint exists for the microcanonical distribution. Therefore it is often claimed
that the microcanonical distribution is the proper distribution to use in the study
of gravitating systems [124].

Let us note that even though the canonical distribution cannot be derived from
the microcanonical distribution in the presence of long-range forces one can, purely
as a formal mathematical concept, define the partition function for such systems.
Comparing the function E(/) obtained from the microcanonical distribution with
the corresponding function obtained from the partition function one can prove that
the negative specific heat region of the microcanonical distribution is replaced by a
phase transition in the canonical distribution [124].

In the following, we shall assume that the potentialy effets due to the short
distance singularity is regularized by a soft or hard core radius. This assumption
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allows us to concentrate on the statistical aspects of the gravitating system, without
worrying about the complicating details of close encounters. Let us note that, as far
as numerical simulation are concerned, it is principally the soft core regularization
which is used as its numerical implementation is less numericaly costly.

Mean field equilibrium of gravitating systems

In the following, we study the physics of the gravitating systems in the mean field
limit introduced in Chapter 1, which ignores the granularity and correlations present
in the N-particle system.

Consider a system of N particles interacting with each other through the two-
body potential U. The entropy S of this system, in the microcanonical description,
is defined through the relation

1 A 1 3N/2
N'/d?’N d&*Np §(E - H) = N'/dng <E—§ZU(xi,:pj)> ,
i#]

(2.2)
wherein one has performed the momentum integrations and replaced (3N/2 — 1)
by 3N/2. We shall approximate this expression in the following manner. Let the
spatial volume V' be divided into M (with M << N) cells of equal size, large
enough to contain many particles but small enough for the potential to be treated
as a constant inside each cell. Instead of integrating over the particle coordinates

e =g(E) =

(1,9, ...,xy), we shall sum over the number of particles n, in the cell centred at
Zq, Where a = 1,2,..., M. Using the standard result that the integration over djVN!”C

can be replaced by

i% i L!a(N—Zna)(%)N, (2.3)

ni=1 nar=1 a
one can rewrite Eq. (2.2) as
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where

Slng] = Z)Nln<E——Zna a:a,:cbnb> ZnalnnaM/V) (2.5)

In arriving at the last expression, the Stirling approximation for the factorials is used
and the unimportant constant A is ignored. The mean field limit is now obtained
by retaining in the sum in Eq. (2.4) only the term for which the summand reaches
the maximum value, subject to the constraint on the total number. That is, one

assumes
Z eS[na] ~ eS[na,maz] , (26)
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where 1, q. is the solution to the variational problem

as
() -

with 224:1 ne = N. Imposing this constraint with a lagrange multiplier and using
expression Eq. (2.5) for S, one obtains the equation satisfied by 74 maa,

M=

1
T U(za, ) Mpmaz + 0(Ngmaex M/V) = constant (2.8)
b=1

where we have defined the temperature 7" as

13 1 -
o §N<E —3 aZﬁmU(%,%)m) =0. (2.9)

We see from Eq. (2.5) that this expression is also equal to 0S/0F; therefore, T is
indeed the correct thermodynamic temperature. We can now return back to the
continuum limit with the replacements

LM
ama:vM V= a d - . 2.10
s MJV = plo) and 3y 2.10)
In this limit the extremum solution Eq. (2.8) is given by
pla) = Aexpl-go)]  and o) = [y Uley) o), 2D

which, in the case of gravitational interactions, becomes

b(z) = —G/%. (2.12)

This equation represents the equilibrium configuration for a gravitating system in
the mean field limit. The constant § is already determined through Eq. (2.9) in
terms of the total energy of the system. The constant A has to be fixed in terms of
the total number (or mass) of the particles in the system. A more formal derivation
of the above result can be given using the functional integral representation of the
partition function. It turns out that the saddle point approximation of the functional
integral leads to the mean field description (see e.g. [124]).

An important point needs to be noted about the mean field result we have
obtained: the various manipulations tacitly assume that the expressions we are
dealing with are finite. Unfortunately, for gravitational interactions without a short
distance cutoff, the quantity e, and hence all the terms we have been handling, are
divergent. One should therefore remember that a short distance cutoff is needed to
justify the entire procedure. One shall continue to work with Eq. (2.12) because
of its mathematical convenience. The effects due to the short distance cutoff are
described in [124].

32



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS

Isothermal spheres

It can easily be shown that among all the solutions to Eq. (2.8) the spherically sym-
metric configuration maximises the entropy (see e.g. [6]). This solution represents
what is known as the gravitational isothermal sphere. The extemum condition for
the entropy is equivalent to the following differential equation for the gravitational

potential:
V26 = AnGpee Plo@) =00 (2.13)

Given the solution to this equation, all other quantities can be determined. As
we shall see, this system shows several peculiarities. It is convenient to introduce
length, mass, and energy scales by the definitions

G My

Lo = (4nGp.B)'”,  My=dmpcLy,  do=p"="77,
0

(2.14)

where p. = p(0). All other physical variables can be expressed in terms of the
dimensionless quantities

p M(r)

T
X )
Ly Pe M

In terms of y(x), the isothermal equation Eq. (2.13) becomes
1 d s ,dy —y
— (2222 = 2.16
x? dx (x da:) < (2.16)

with the boundary condition y(0) = 3/(0) = 0. Let us consider the nature of the
solutions to this equation.

By direct substitution, one sees that n = 2/x% m = 2x, y = 2In(x) satisfies
these equations. This solution, however, is singular at the origin and hence is not
physically admissible. The importance of this solution lies in the fact that other
(physically admissible) solutions tend to this solution for large values of x [124].
This asymptotic behavior of all solutions shows that the density decreases as 1/r?
for large r, implying that the mass contained inside a sphere of radius r increases as
M(r) o< r at large r. To find physically useful solutions, it is necessary to assume
that the system is enclosed in a spherical box of radius R. In what follows, it will
be assumed that the system has some cutoff radius R.

Eq. (2.16) is invariant under the transformation y — y+a, r — kx with k? = e®.
This invariance implies that, given a solution with some value of y(0), we can obtain
a solution with any other value of y(0) by simple rescaling. Therefore, only one of
the two integration constants in Eq. (2.16) is really nontrivial. Hence it must be
possible to reduce the degree of the equation from two to one by a judicious choice
of variables [124]. One such of set variables is

3 2
’UE@, u= 0T (2.17)
x m v
In terms of v and w, Eq. (2.13) becomes
u dv u—1

- - 2.18
v du u+v—3 ( )
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The boundary conditions y(0) = ¢'(0) = 0 translate into the following: v is zero at
u=3,and % = —5/3 at (3,0). The solution v(u) has to be obtained numerically:
it is plotted in Fig. 2.1 as the spiraling curve. The singular points of this differential
equation are given by the intersection of the straight lines u = 1 and u + v = 3, on
which the numerator and denominator of the right-hand side of Eq. (2.18) vanish;
that is, the singular point is at us = 1, v, = 2, corresponding to the solution
n = 2/x* m = 2x. It is obvious from the nature of the equation that the solutions
will spiral around the singular point.

Figure 2.1: Bound on RE/GM? for the isothermal sphere (from [124]).

The nature of the solution shown in Fig. 2.1 allow one to put interesting bounds
on some physical quantities, including the energy. To see this, one shall compute
the total energy E of the isothermal sphere. The potential and kinetic energies are

®GM(r)dM Mg [

U = —/ wd—dr:—@/ mnxdz (2.19)
3IM  3GM¢ 3GME [

55 ~ 3 L m(zo) > L. /0 nx-dz, (2.20)

where o = R/Lq. The total energy is therefore,

GMZ [™
E = K+U-= i dz(3nx® — 2mnzx) (2.21)
2Lo Jo
GMZ [* d GM? 3
= 2L00 /o dx%(Qn:cQ —3m) = LOO <n0:cg - §m0> ) (2.22)

where ng = n(xg) and my = m(xg). The dimensionless quantity RE/GM? is given
by
RE 1 3
NI W)

A (2.23)
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Note that the combination RE/GM? is a function of (u, v) alone. One now considers
the constraints on A\. Suppose one specifies some value for A by specifying R, F,
and M. Then such an isothermal sphere must lie on the curve

_1< 3)’ \ RE

which is a straight line through the point (1.5,0) with a slope A=*. On the other
hand, since all isothermal spheres must lie on the u — v curve, an isothermal sphere
can exist only if the line in Eq. (2.24) intersects the (u — v) curve.

For large positive A (positive E), there is just one intersection. When A = 0 (zero
energy), One still has a unique isothermal sphere. When X is negative (negative F),
the line can cut the (u — v) curve at more than one point; thus more than one
isothermal sphere can exist with a given value of A\. But as one decreases A (more
and more negative E), the line in Eq. (2.24) will slope more and more to the left;
and when A\ is smaller than a critical value A., the intersection will cease to exist.
Thus no isothermal sphere can exist if RE/GM? is below a critical value \. [124].
This fact follows immediately from the nature of the (u — v) curve and Eq. (2.24).
The value of A\, can be found from the numerical solution shown in the figure. It
turns out to be about —0.335.

The isothermal sphere has a special status as a solution to the mean-field equa-
tions. Isothermal spheres, however, cannot exist if RE/GM? < —0.335. Even when
RE/GM?* > —0.335, the isothermal solution need not be stable. The stability of
this solution can be investigated by studying the second variation of the entropy.
Such a detailes analysis shows that the following results are true [124]. Systems with
RE/GM?* < —0.335 cannot evolve into isothermal spheres. The entropy has no ex-
tremum for such systems. Systems with RE/GM? > —0.335 and p(0) > 709 p(R)
can exist in a metastable (saddle point state) isothermal-sphere configuration. Here
p(0) and p(R) denote the densities at the center and edge, respectively. The entropy
extrema exist but they are not local extrema. Systems with RE/GM? > —0.335
and p(0) < 709 p(R) can form isothermal spheres which are a local maximum of the
entropy.

1.2 Virial equilibrium

As we explained in Chapter 1, a system with an initial condition which is not a
stable equilibrium solution of the Vlasov equation knows a rapid evolution on a
timescale independent of the number of particles N in the system, the so called
violent relaxation. The system then evolves for a long time, which behaves as a
power of N, among the numerous stable stationary states of the Vlasov equation.
It is then interesting to link this evolution with the main general tool of particles
dynamics: the virial theorem. Let us note that this theorem applies to any, smooth
and non-smooth distribution of particles.

We derive below the virial relation which provides a powerful constraint on self-
gravitating systems in a macroscopicaly stationary state. Let us consider a perfect
self-gravitating system of N particles, that is without a surrounding box and with
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a perfect 1/r potential. The Hamiltonian is therefore

H(qu, py) Z

where ¢; and p; represent the position and the momentum of the i** particle respec-
tively. Introducing the moment of inertia tensor [25]:

2

Gm
g Rl (2.25)

q;

N
1, = Z M i,y (2.26)
i=1

where ¢; ,, is the ut" position component of the it particle, the second time derivative
of this expression is

N
L,=> m <q;~,,tqz~7y + i pi + 2qi,uqz~7y> . (2.27)
i=1
Using that the acceleration of a particle is given by
.. 45,14,
Gy = Gm Z | L “|3 : (2.28)
Sl —a
one obtains
juu = 2mz Gips Qi + Gm? Z " a |3 { QJ,M - inu)%’,u + Qi,u(%’w - Qi,u)
z;éj 1 t
q ql, q v — Qv
= sz%w%u Gm® Z = “_q]|3 ). (2.29)
i£j=1 t

The trace of [ v 18

3 N
I= Z l:W:2mqu Gm? Z

mu=1 i=1 i#j=1

(2.30)
|q] qQ;|

The first term is actually four times the total kinetic energy of the system while the
second is twice its total potential energy:

1.

5[ =2K+U. (2.31)
Assuming that the system is in a state such that I = 0, we have the famous relation

2K+U =0, (2.32)

which in all textbooks on astrophysics is called the virial theorem. Since the total
energy is £ = K + U, we obtain the following relation

U
EF=-K= 7 (2.33)
Let us note that the crucial assumption involved in deriving the scalar virial theorem
is that the moment of inertia I is time-independent. However, in a system with a
small number of particles, there are necessarily statistical fluctuations in I simply
due to the finite-size, and Eq. (2.32) could be expected to hold only for the time-

averaged values of K and U.
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2 Introduction to Cosmology

The basic hypothesis used to construct the standard cosmological model is given by
the Cosmological Principle. One way to state it is : “Viewed on sufficiently large
distance scales, the universe is homogeneous and isotropic”.

Homogeneity means that the universe is translationally invariant, i.e. it looks
the same from all points, and isotropy means that the universe is rotationally in-
variant, 7.e. it looks the same in all directions. For a long time, there was no clear
observational evidences for this statement. It had the status of a postulate, in the
same manner as, for example, Einstein’s Principle of Relativity. In fact, given only
2 points from which the universe appears isotropic, one can proves homogeneity
considering that our position in the universe is not special.

The Cosmological Principle, stated as above, is a strong hypothesis. There is an-
other version of it, called the conditional cosmological principle, which hypothesises
only statistical istropy and statistical homogeneity. This is a much weaker assump-
tion, which allows one to admit notably the possibility of a fractal distribution of
matter, in which the density averaged in an infinite volume is zero.

An indication to support the hypothesis of strict homogeneity and isotropy at
large scales is the fact that the model based on it describes remarkably well the
large scale dynamics of the observed universe, given by the Hubble law. Direct
evidence of the isotropy of the universe is given by that of the temperature of the
Cosmic Microwave background (CMB) radiation, which pervades the universe [127].
Indeed it took more than two decades after its discovery to detect the fluctuations
of the temperature as a function of the angle of observation, which are at a level of
about one in ten thousand [55]. However, all these observations do not constitute,
of course, a direct test of the hypothesis.

The only direct current observation which directly probes the homogeneity of
the universe is that provided by 3 —d surveys constraining the distribution of visible
matter, notably galaxy and cluster surveys. Given that current cosmological model
describes a universe in which 80% of the matter is non visible “dark matter”, this
is an incomplete test of homogeneity. However, it is plausible to suppose that the
visible matter trace the dark matter one, and therefore these kind of observations
are a good probe of homogeneity.

In Fig. 2.2 we show a slice of the largest galaxy survey to date. It is apparent that
at small scales the distributions of galaxies is very inhomogeneous, with complex
structures as cluster of galaxies and voids. However, at large scale, there is an
evidence that the distribution of galaxies reaches a definitive (non-zero) density.
This is shown in Fig. 2.3, in which the density in function of the scale is shown.
For large scales, the density presents a crossover to a constant density, i.e. to
homogeneity.

Assuming that the universe is homogeneous and isotropic at sufficiently large
scales, the large scale dynamics of the universe is described with an exactly homo-
geneous (equal density everywhere) and isotropic model: the Friedmann-Robertson-
Walker model, based on the framework of the General Theory of Relativity, proposed
by Albert Einstein, and which explains and describes gravity.
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Right oscension
5

1732 galoxies

Figure 2.2: Slices of the 2dF and SDSS surveys. Observe how at small scales (small
redshift) the galaxies are highly clustered, forming walls and filaments.

2.1 the Friedmann-Robertson-Walker universe

General relativity is a metric theory that describes gravity as the manifestation of
the curvature of spacetime. This theory, coupled to cosmological principle, implies
that the universe should either be expanding or contracting, with a geometry which
may be flat, hyperbolic or spherical. Usually the associated spatial curvature is
denoted by means of the curvature coefficient k. It has the value £k = 0 for a flat
space, k = +1 for a spherical space, and k = —1 for a negatively curved hyperbolic
space. The spacetime metric of these universes is the Robertson-Walker metric

ds? = 2dt* — a2(1) (dr2 + R? S2(r/R.) (d6” + sin® 9d¢>2)) , (2.34)
where R, is the radius of curvature, and Si(r) is the function given by

sin(z) ifk=+1,
Si(z) =< =« if k=0, (2.35)
sinh(z) ifk=—1.

The variable ¢ is the so-called cosmic time. The dimensionless scale factor a(t)
describes the expansion (or contraction) of the universe, and may be normalized
with respect to the present-day value, i.e. a(tg) = 1. The constant c is the velocity
of light and r, 6, ¢ are the spherical coordinates. Friedmann solved Einstein’s
equations for general homogeneous and isotropic universe models, and derived the
time dependence of the expansion factor. The resulting equations are known as the
Friedmann-Robertson- Walker-Lemaitre (FRW) equations:

a  AnG ( 3p

A
) +5 2.36
3 T >+3’ (2:36)

2
and

+=. (2.37)

a
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spheres of radius R

logye scaled density inside comoving

0.0 0.5 1.0 18 2.0
logio B (comoving k=1 Mpc)

Figure 2.3: Representation of the average comoving density (i.e. number counted
divided by expected from an homogeneous distribution) as function of a comoving
sphere of radius R. Observe how at log;, R ~ 1.5 the density stabilizes, which means
that observed at scales larger than this one the universe is homogeneous (from [56]).

In the FRW equations, G is Newton’s gravitational constant, p is the energy density
of the universe, p is the pressure of the various cosmic exponents, A is the cosmologi-
cal constant, and Ry is the present-day value of the curvature radius. The evolution
of the energy density p of the universe can be inferred from the energy equation
obtained by combining the FRW equations Eqs. (2.36) and (2.37). This is given by

/')+3(p+%>%:0. (2.38)

The macroscopic nature of the medium is expressed by the equation of state, p =
p(p), which for most cosmologically relevant components may be expressed as

p=wpc*. (2.39)

Here w is called the equation of state parameter. Eqgs. (2.38) and (2.39) can be
combined to give the evolution of energy density with the expansion of the universe:

p(t) o< a(t) 30+ (2.40)

2.2 Cosmic Expansion

The expansion rate of the universe is expressed in terms of the Hubble parameter,
a

H(t)=-. (2.41)
a

The present-day value of H(t), sometimes called the Hubble constant, is often parametrized
in terms of a dimensionless factor h, (h = Hy/100 km~'s Mpc), where Hj is the

Hubble constant express in units of km s'Mp c¢~'. The expansion of the universe
does not only express itself in continuously growing distances between any two ob-

jects, it also leads to the increase of the wavelengths of photons. This resulting
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cosmological redshift z of a presently observed object is given by the relation

1+z= =, (2.42)

where a(t) is the expansion factor of the universe at the time the observed light was
emitted.

2.3 Cosmic Constituents

The evolution of the universe is fully dictated by its energy density p and its curva-
ture k. The energy density of the universe is conveniently expressed in terms of the
density needed to produce a geometrically flat universe, the critical density:

(t) B 3H?
P = 8nG

(2.43)

The contribution of any component towards the energy density of the universe may
be expressed in terms of the ratio of its energy density to the critical density. This
ratio is denoted by €(t), the density parameter, and is expressed as:

p(t) _ 87Gp
Qt) = = . 2.44
The value of Q(t) at t = ¢, denoted by (2 is given by
87Gpy
Q= . 2.4

According to the “standard model” the universe contains a variety of components.
While the contributions of magnetic fields and gravitational waves may be taken to
be negligible, the most important ingredients of the universe are radiation, baryonic
matter, nonbaryonic dark matter and dark energy. The equation of state parameter
w for radiation and matter (baryonic as well as nonbaryonic) is 1/3 and 0 respec-
tively, whereas for dark energy its value is less than —1/3. If the dark energy is in
the form of a cosmological constant, then w = —1. Thus Eq. (2.40) suggests that
radiation (p, oc a™*), matter (p,, o< a=3), and dark energy (py = constant) have
evolved differently with the expansion of the universe.

As the radiation cools off as a result of the expansion of the universe, its spectrum
peaks at microwave wavelengths and is observed today in the form of the CMB with
a temperature of Ty = 2, 725K°. Since the temperature of radiation scales in inverse
proportion to the scale factor (T oc a='(t)), it must have been very high in the early
universe. The almost perfect blackbody spectrum of CMB defines the strongest
evidence for the existence of a very hot and dense phase in the early universe (see
Fig. 2.4). At very early times radiation was dynamically dominant component of
the universe. Its current density constituted only a fraction of 10~ of the total den-
sity. Baryonic matter €2, is composed mostly of composite particles made of three
quarks which participate in the strong interaction. However, it only represents a
minor cosmological component and accounts for a mere 4,4% of the energy content
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~200pK

Figure 2.4: Sky projection of the Cosmic Microwave Background measured with the
Wilkinson Microwave Anisotropy Probe (WMAP) experiment.

of the universe. Nonbaryonic dark matter {24, is a very important component for
the formation of structures in the universe. The combined contribution of matter
to the energy density is usually expressed as §2,,.

One of the most pressing problems in astrophysics is the identity of this dark
matter. While its presence is unmistakably felt through its gravitational attraction,
it has a yet escaped direct observation or detection in the laboratory. Dark matter
is pressureless and insensitive to the electromagnetic influence of radiation.

Fluctuations in the dark matter could have started growing as soon as matter
began to dominate the dynamics of the universe at around the epoch of matter-
radiation equality (p, = pm). This occurs at a scale of a(t) ~ 107%. The growth of
these fluctuations in the dark matter created the gravitational potential wells. After
the baryonic matter and radiation decoupled at the epoch of recombination, the
baryonic matter started falling into these gravitation potential wells. This process
is believed to have led to the formation of galaxies and stars. Dark matter plays a
central role in the modelling of structure formation. Indeed, without dark matter,
the epoch of galaxy formation would occur substantially later in the universe than
is observed.

The cosmological framework of the Hot Big Bang in a spatially homogeneous
and isotropic universe is so widely accepted that is is called the standard Hot Big
Bang Model. This model is supported by many observations, notably

e the relation between distance and recession velocity (Hubble law) as a conse-
quence of its metric implies that the universe has a finite age;

e the almost perfect black-body spectrum of the Cosmic Microwave Background
is evidence for an extremely hot initial phase of the universe;

e the excellent match in the observed abundances of light elements and predic-
tions from primordial nucleosynthesis;

e the evident evolution of the appearance of objects as function of their distance
from us.

41



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS

‘ Parameter ‘ Value ‘ Description
H, 70.4+ 2.4 km s~ 'Mpc~! Hubble parameter
O 0.277 £+ 0.029 Matter Density
Q 0.0459 4+ 0.0028 Baryon Density
Qp 0.723 +0.029 Dark Energy Density
e 0.94 £ 0.07 x 10~ 2°kg m=3 Critical Density
to 13.72 £0.14 Gyr Age of the Universe
o) 0.811 £0.032 Galaxy fluctuation amplitude
n 0.960 + 0.014 Spectral Index

Table 2.1: Values of cosmological parameters (from WMAP5 + SDSS [57]).

We now have evidence (see e.g. [60,61])to suggest that universe at the present
epoch is undergoing an accelerated expansion, i.e. @ > 0. This could be due to
the presence of an elusive medium called dark energy. Dark energy (€24) is the
most dominant component of our universe at the present epoch. It accounts for
approximatively 73% of cosmic energy density. The nature of Dark Energy is even
more mysterious than dark matter. All that can be said about dark energy is that
it has a negative pressure. This is apparent from Eq. (2.36) which suggests that for
a > 0, we need p < —p/3. Most observational studies agree with the Dark Energy
being equivalent to a cosmological constant although other options are still viable.

2.4 The ACDM model

The current understanding of the components of the universe is encoded in the
Lambda Cold Dark Matter (ACDM) model. In this model one attempts to ex-
plain supernova observations in terms of the accelerated expansion of the universe.
Indeed, supernovae are useful in cosmology as they represent excellent standard can-
dles across cosmological distances [60,61|. They allow the expansion history of the
universe to be measured by looking at the relationship between the distance to an
object and its redshift, which gives how fast it is receding from us. This model is
accounted remarkably well notably for the spectrum of fluctuations in temperature
observed in the Cosmic Microwave Background. In the acronym ACDM, the term
A refers to the dark energy (€25) which is believed to be the driving force behind the
accelerated expansion of the universe at the present epoch. A is assumed to have
the form of a cosmological constant (w = —1). Cold Dark Matter refers to a model
where the dark matter is explained as being cold, i.e. its velocity was non-relativistic
at an epoch when it decoupled from other constituents of the universe. This type
of dark matter is assumed to be non-baryonic, dissipationless and collisionless. The
ACDM model has several parameters from which the most important are shown in
Tab. 2.4.

2.5 The Newtonian approximation

In practice in cosmology the study of how irregularities in the matter distribution
in the universe develop is treated almost exclusively in the Newtonian limit. This
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approximation is justified by the fact that in the formation of large scale structures
one considers a regime in which

e particle velocities are typically non-relativistic (e.g. in “cold” dark matter
cosmology);

e the gravitational fields generated are “sufficiently weak”;

e the physical scale considered where “non-linear” structures form are small com-
pared to the horizon size (characterizing the scale at which constraints associ-
ated to the finiteness of the speed of light are expected to become important).

In this thesis we will consider solely the Newtonian limit.

3 Infinite self-gravitating systems in cosmology: an-
alytical results

We now review some standard methods to describe the non-equilibrium dynamical
evolution of particular self-gravitating systems in cosmology. This is a key subject
because it will permit us to justify the fluid formalism used in cosmology. We
review the basics of kinetic theory, i.e. the non-equilibrium evolution of a system
of interacting particles. To do so, we study the well known BBGKY hierarchy. We
then explain the approximations made in the derivation of a fluid theory from the
kinetic one, and introduce the perturbative methods used in both the Eulerian and
Lagrangian approach. We conclude this section with a discrete approach which helps
to classify the limits of the application of linear theory.

3.1 Non-equilibrium evolution of a self-gravitating system

It is important to underline here the crucial difference between finite (Newtonian)
systems, as discussed in the previous section, and the infinite (Newtonian) systems
we consider here, and which are those principally of relevance in the context of the
structure formation in cosmology. We consider in cosmology systems — distributions
of particles — which are of infinite extent and have a non-zero mean density. The
Newtonian force on particle i, F;, due to all the others (in a system of particles of
equal mass m), i.e.

F,=—Gm Y =) (2.46)

Ji i — x>

in such a system is badly defined due to the contribution of the mean density. The
force used in the Newtonian limit of cosmology is that obtained when the contribution
of the mean density is removed. This can be written formally in different ways:
most often this is done by writing F;, = —V ¢;, and specify that the potential ¢; is
calculated from the modified Poisson equation

Vi = 47G (p — po), (2.47)

where p(r) is the mass density field and pg is its mean value. Alternatively, it can be
written using a prescription of symmetric summation (which sets the contribution
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of the mean density to zero)

F, = —Gm lim w (2.48)

where V;(R) is the sphere of radius R centered on the particle i. As pointed out by
Kiessling [95] a more physically appealing version is

r— T
F, = -Gm iﬁ% > He—u Iri=ril (2.49)
In the cosmological context, this “subtraction” of the mean density is properly justi-
fied by the fact that the mean density sources the Hubble expansion, and the force
F’ appears in the equation of motion in “comoving coordinates”, i.e. in which par-
ticles remain fixed when they follow the Hubble expansion. Indeed the equation of
motion in these coordinates for a particle is

d2Xi

dt?

dXZ_F;
dt a3’

+2 H(t)

(2.50)

where F} is given by one of the expressions above, a(t) is the scale factor of the
model considered and H(t) = a/a is the Hubble “constant”. Formally we can define
a non-expanding (i.e. static universe) limit to these equations by setting H = 0. As,
however, there is no such static solution in a universe with non-zero mean density,
such a model does not have the physical motivation of the expanding model. The
adoption of the modified force in this case is known as the “Jeans swindle” as it was
first introduced by Jeans to treat the growth of perturbation in a static (but infinite)
universe. As discussed by Kiessling (and in Chapters 3 and 6 of this thesis) the use
of the term “swindle” is inappropriate as in fact the prescription is a mathematically
well defined regularization of the Newtonian problem.

We will consider in the rest of this section mostly this limit H = 0, as the
presence of this term is not essential to understanding the approches presented
and essential results. In treating the force term we will assume that the system
is an infinite periodic system, and take the appropriate expression for the force to
be defined. Issues concerning the well definedness of these forces (and indeed the
assumed equivalence of the different expressions above) will be ignored here, but
they will be treated in detail in Chapters 3 and 6 of this thesis.

The BBGKY hierarchy

If we have a system for which we can write a Hamiltonian, we know, by using the
Liouville theorem [73], how an ensemble of such systems evolves: if the function
f(qu;pv,t) is the density function of these systems in phase space, it satisfies

3N 3N
atf"‘z(juaquf"‘zpuapuf =0, (2-51)
ﬂ:l v=1

where we have assumed that the system contains N particles in 3N dimensions. It
is important to note that this equation is very similar to the Vlasov equation, but
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it is crucial to understand that they describe two different quantities. Eq. (2.51)
describes exactly the evolution of an ensemble f(g,,p,,t) of identical systems on
phase space (6N dimensions), while the Vlasov equation describes approximately
the evolution of the particle density f(z,v,t) in the 6 dimensional (x,v)-space for
one of these systems. What we are going to see now is that we can obtain the Vlasov
equation from Eq. (2.51). We will illustrate this for a periodic gravitating system.

Let us denote by f¥) the density in the N-particle phase space used with the
Liouville theorem, and which depends on the coordinates of the N particles. We
make also a change of variables to replace the momenta with the velocities: p, —
muv,, and write z, instead g, for the positions so that Eq. (2.51) becomes

A f™ + 3§N: 2,00, f ™) + BXN: 0,0y, fN) =0, (2.52)
p=1 v=1
or equivalently
i=1 i—1

with

FE=0m? Y Y | v = 2+ bn (2.54)

Y
x; —x; + Ln|3
nez3 ity " J ‘

where L is the period of the system. The subscript are such that x; = (z1, z2, x3),
ooy n = (T3n_2, Tan_1, 3y). A similar notation is used for the velocities.
We define now the function f(I) by

fY(zy,0,t) = /f(N)(a:ﬂ,v,,,t) Bry Poy. . Py Loy, (2.55)

that is by integrating f™) over all the particle positions and velocities except those
of the first particle. The integrals for the positions are done over the box size while
those for the velocities are done over the whole real axis. The next step is to integrate
in the same way Eq. (2.52) or Eq. (2.53). The first term becomes d;f"). For the
other terms, we note that

L L
/ 3,0y, fMNdz, = vﬂ&vu/ fMdz, (2.56)
0 0
if u # v.
L L
/ 0,0y, fNdz, = v, / Oy, fNMdz, =0, (2.57)
0 0
because of the periodicity of the box.
+o0 F +o00
/ 0,0, fN dv, = ﬁaw fMdv, (2.58)
if © # v, and finally
+oo
/ 9,0, f N dv, =0, (2.59)
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by assuming that lim,, 4. fN) = 0, which is a reasonable hypothesis even if we
consider a perfect 1/r potential, without modification at small scale. By putting all
this together, we get

1
B SV + 0.V, fO + / — RV, fO P ryd ey dPeydioy = 0. (2.60)

Let us suppose now that the function f®) is a symmetric function of the particles
numbers:

f(N)(xla'Ula .- 'al‘Na'UNat) = f(N)(:L‘O'(l)aUO'(l)a s 7xU(N)7,UU(N)7t) (261)

for any permutation o of the first IV integers. Note that this has no effect on the
dynamics of a system. We are free to choose any phase space functions in the
Liouville equation, and our choice is only motivated by the fact that it puts all the
particles on the same level. By noting that

N

T, + Ln 1
—F G = — i, 2.62
S DILICL

nez3

where F}; is the force on particle 1 due to particle 7, the symmetry of f&¥) allows
us to write the third term of Eq. (2.60) as

N -1
g /FLQ.Vvlf(N)d?’xgd?’vg e d3{ENd3’l}N . (263)
m
By defining the following function
f(2) (ZL‘l, V1, Tg, Vg, ) /f(N l‘gdgvg e dgl‘ng’UN s (264)

Eq. (2.60) becomes
N -1
Ouf ) 40,7, 0 ¢ YD) / F1 2.V, fOdz2d’v, = 0. (2.65)
m

This gives the evolution of the one particle function f(!) in function of the two
particles function f). If we had started by integrating over 3, vs, ..., Ty, VN, We
would have obtained an equation of f® in function of the three particles function

f(g) (ZL‘l, e ,Ug) = /f(N)d3I‘4d31)4 e dSZL'ng’UN . (266)

We can continue in a similar way for higher order functions and obtain a sequence
of equations of the type

9™ = F( f("“)) , (2.67)

known as the Bogoliubov- Born-Green-Kiriwood-Yvon (BBGKY) hierarchy. Without
any approximations these equations are not easier to solve than Liouville equation.
The advantage is that by choosing a judicious approximative function for one of the
@ we can reduce the number of equations and have a chance to solve them or at
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least obtain interesting informations concerning the evolution of the system studied.
Let us assume that

f(Z) (xla U1, T2, 'UZ) == f(l) (xla vl)f(l) (an 1)2) + g(l‘la U1, T2, 'UZ) (268)

and consider the last function g to be negligible. We can assume without loss of
generality that

/ fMBrdy .. dPryddoy =1. (2.69)

This allows us to see f()(z,v) as the probability density of finding a particle at (z, v)
in the ensemble of systems represented by f¥). The function f®(zy,v1,xs,vs)
is then simply the density probability to have one particle at (x;,v;) and one at
(x2,v9). Therefore g(xy, vy, xe,v7) is the two-particle correlation function as it gives
the change in the probability to find a particle at (x;,v;) when it is known that
there is another one at (x2,v;). By replacing f by Eq. (2.68) in Eq. (2.65), we
obtain

(N -1)

atf(l) + m.Vm .f(l) + V1)1 f(l) / Fl,Q-f(l) ("L‘Qa VU2, t)dgfL‘ng’Ug

(V-1

+

/ F1 9.V gdzod®vy = 0. (2.70)
In the Vlasov equation, the function f satisfies
/f(:c,v, t)d*xd*v = N . (2.71)

Multiplying Eq. (2.70) by N and writing f = N f1), we get

N -1
8tf+’01.vxlf —+ ( N )vvlf./FLQ.f(l’Q,’UQ,t)dsl’gdB’UQ
N(N —1
% /FLQ.VUlgd?’ZL'Qd?”UQ =0. (272)

By assuming that g(z1,vq, 22, v2) = 0, we find

(N-1)
Nm?

8tf + vl.Vxlf + va /FLgp(l‘Q, t)d3l‘2 =0 s (273)
where we have used the fact that the integral of f over the velocity is the mass
density p(z,t) divided by the mass of a particle. By approximating (N —1)/N =~ 1,
we have

Of +vN.f 4 FV.f=0. (2.74)

This is the Vlasov equation for our periodic system.

Two important points have to be noted concerning this demonstration to obtain
the Vlasov equation from the Liouville equation. The first one is that the function f
does not describe a particular system, but is an average over an ensemble of systems
and it gives only a probability to find a particle at a certain point. According to [47],
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Boltzmann’s point of view was that the evolution of f has to be understood as the
most probable behaviour of a member of an ensemble of systems. By choosing an
ensemble of systems with equal functions f(z,v,t), one can therefore expect that the
Vlasov equation describes relatively well the evolution of one particular system of
the ensemble as they should all behave similarly concerning macroscopic quantities.
The second point is that we have neglected the two-particle correlation function g
and approximated (N — 1)/N by 1.

From Vlasov equation to fluid equations

We have just seen that the Vlasov equation can be derived from the Liouville equa-
tion by making certain approximations. In this section we show that with further
approximations, the Vlasov equation yields the fluid equations. The method is
based on a moment integration technique of the Vlasov equation. One multiplies
this equation successively by rising powers of the velocity and integrates the result-
ing equation over the entire velocity space. The system of hydrodynamic equations
obtained consists of an infinite set for the infinitely many possible moments of the
one-particle distribution function (see e.g. [146]). In the following, we only consider
the derivation of the first two moment equations, i.e. the continuity equation and
the momentum conservation equation.

Using that m [ fdv = p(z,t), we obtain after having integrated the Vlasov equa-
tion with respect to v,

Oop+m | v.V,.fdv=0. (2.75)
R3

We have assumed that lim,,_,4. f = 0. We can find the average of one of the
components of the velocity at a point x by calculating

_ f 3f’Uid3” _m 3
v = 723 By D) /Z3 fudv. (2.76)

This allows us to write Eq. (2.75) as

Bup + Vo (p7) = 0, (2.77)

with © = (01, U9, v3). This is the so called continuity equation of fluid dynamics.
Now we multiply the Vlasov equation by v; and integrate over v:

6t/fvid3v + /viv.vxfdg’v + %F /(vivvf)d?’v =0. (2.78)

The last term can be evaluated by noting that

0y, fdv; = — | & fdv; . (2.79)
[rosti=—

Using Eq. (2.76), we get

1
Oupvi) + Y 0n, (vityp) — —Fip = 0. (2.80)
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With Eq. (2.77), the first term can be written as

6t(pz7i) = p@tﬁi — ﬁiﬁxj (pﬁj) (281)
and defining
o5 = Ti0j — Ui, (2.82)
we obtain
Y O | 9
Ov; +0.V,u; = o ;azj (pos;) - (2.83)

Setting the term containing aizj on the rhs to zero, one obtains the (pressureless)

Euler equation. In the Euler equation, this term is related to the pressure as it is
given by —(0,,p)/p. This shows that po?; can be considered as a “pressure” due to
the particle velocities.

3.2 Perturbation theory

As general solutions to the equations - Vlasov equation, fluid equation - which we
have discussed and which are supposed to approximate the evolution of gravitating
systems are not known, their study is mainly restricted to a perturbative analysis.

Jeans instability

Let us consider the Vlasov equation for a periodic system. We assume that f(x,v,t) =
fo(v). This is actually a solution of the Vlasov equation (the resulting density func-
tion is contant so that F = 0). We suppose now small perturbations:

f(x,v,t) = fo(v) + fi(x,v,t) (2.84)

with | f1(x,v,t)| << fo(v). We assume that these fluctuations do not change the
number of particles, that is

L3
N = cx | flx,v,t)d® :/ cr | fo(v)dPv = o (2.85)
CL R3 Cr R? m
According to the modified Poisson equation
V20, =4rGm | fi(x, v, t)d’v. (2.86)

R3
We have denoted the potential by ®; in order to remember that this is a perturbation
around 5 = 0. The Vlasov equation is, at linear order in the perturbations,

6tf1 + V.fo1 — Vx(bl.vvfo =0. (287)

Because of the periodicity of the system we can expand f; and ®; in Fourier series
and because of the linearity of the “linear” Vlasov equation, we look for solutions of
the type ( [25])

fix,v,t) = fi(v)expli(k.x — wt)], (2.88)
Dy (x,t) = Prexplilkx —wt)], (2.89)
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with usual k = 27n/L. Inserting this in Eq. (2.86) and Eq. (2.87), we obtain that
the following equations must be satisfied

—k? O = 47Gm | fu(v)dv, (2.90)
R3

Py k.Vyfo = fu(v)(vk —w). (2.91)

Integrating the second with respect to v, and combining the two together we obtain
a dispersion relation

ArGm k.Vfo e

1 =0. 2.92
+ k2 Jpvk—w ! (292)
Considering a Maxwellian distribution for f,
_ Po 1 v?
fo(v) = m (2ro2)32 exp(—5—3), (2.93)

where pg is the average density. The dispersion relation becomes

+o00 2 2
- 2\/27TGp0/ vexp(—v?/20 )dv _0. (2.94)
ko e kv —w
If w =0, one finds
ArG
K (w=0)= k2 = Wazpo . (2.95)

A calculation (see e.g. [25]) shows that if k% < k2%, w has to be complex in order
to satisfy the dispersion relation, and therefore the perturbations becomes unstable
as they can grow exponentially. This implies that if there are fluctuations of a size
larger than \; = 27 /k;, they will start to develop. The length A is called the Jeans
length and the instability related to this length is the Jeans instability. Qualitatively
this instability is due to the fact that if a density fluctuation is large enough, it
contains enough matter to collapse as the velocity dispersion - or temperature -
of the particles, which acts as a pressure, is not sufficiently large to counter the
gravitational force.

Linear fluid equations

We consider the set of fluid equations

Op+V(pv) =0, (2.96)
v+ (v.V)v=-Vo (2.97)
V2® = 47G(p — po) (2.98)

which gives in terms of the density contrast §(x,t) = (p(x,t) — po)/po

90 + V.[(1+0)v] =0,
v+ (vV)v=-Vo, (2.99)
V20 = 47Gpys .

We assume that the system is originally at rest v(x,¢) = 0 and that (x,t) = 0.
This satisfies the fluid equations. We suppose now that there are small density
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fluctuations such that |0(x,t)] << 1. They give rise to small fluctuations in the
potential ® and in the velocity field v. At first order in these quantities, the set of
Egs. (2.99) becomes

00+ V.v=0, (2.100)
ov=-Vo, (2.101)
V20 = 41Gpys . (2.102)

Differentiating Eq. (2.100) with respect to t, one gets
0+ V.ov=0. (2.103)
Taking the divergence of Eq. (2.101); one can use Eq. (2.102) to get
V.0v = —4nGpd . (2.104)
Putting these last two equations together, one finds
6 = 4wGpod (2.105)

whose general solution is ay exp(v/4nwGpot) + a— exp(—+/47Gpot), i.e. the sum of
the so called growing and decaying modes of perturbations. One finds in the growing

mode

d(x,t) = do(x) exp(\/4mGpot) . (2.106)
It is also important to note that if we expand the density contrast in Fourier series,
Eq. (2.106) becomes

Ok (t) = 0k (0) exp(y/4mGpot) . (2.107)

Each mode evolves independently from all the others. Let us note that in the
expanding case, Eq. (2.105) is simply modified to

47TGp0

S+2 H = -
a

5, (2.108)

whose general solution can also be written as the a sum of a growing mode 0, o a(t)
and a decaying mode 0_ oc a2 for the case that a(t) oc t/% in the EdS universe.
However, as we have already underlined above, the presence of the expansion is not
essential to understanding essential results.

Linear Lagrangian theory & Zeldovich approximation

In the previous section, we have considered the evolution of small perturbations
of density on a uniform distribution of matter. With the Lagrangian approach,
the function which describes the evolution of the matter is the displacement field
f(x,t) of the fluid element. In this section we are going to look at a perturbation
theory for this displacement field. This can be particularly interesting as it can
describe situations in which the density fluctuations can become very large, and
which can therefore not be described with the linear approach we have considered
in the previous section.
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As we have a vector field v(x, ) which describes the velocity of the fluid at (x,t),
we can look for integral curves of this vector field, that is the function f(x,t) such
that for any x; in the fixed space, f(xq,0) = x¢ and

df _of
dtl(xo) Ot

- v(f(xo, ), t) . (2.109)
(x0,t)
This means that for a given xg, by varying ¢, f(xy, t) traces the trajectory of a point
in the fluid which follows the flow and which is at xy when ¢t = ¢;. Let us consider
the set of Eqgs. (2.99)

The left hand side of Eq. (2.97) contains two terms: the first, 9;v, is related to
the variation of v at a fixed x while the second is related to the variation of v in the
direction of the flow at a fixed time. The sum of the two is therefore the acceleration
of a point following the flow. Indeed, if such a point is at x at time ¢, it goes to
X + v dt at time t + dt and its velocity is given by

V(x4 v di,t + dt) = v(x,t) + 0,v|xndt + (V.Vi)V|pdt + O(dt?) (2.110)

so that its acceleration is 9;v + (v.Vx)v. According to Eq. (2.97), this acceleration
is equal to g(x,t) = =V, with

Vexg=0, (2.111)
and using f, we can rewrite this equation as

d*f

= g(f(xo,t),t> , (2.112)
X0,

since, for a fixed x, f(xq,t) follows the flow. Eq. (2.96) describes mass conserva-
tion: if we consider an infinite volume dx, the variation of p d®x (the mass in an
infinitesimal volume around x) is equal to the difference between what comes in and
what goes out. If we follow the fluid, the infinitesimal volume d3x is deformed. For
instance, if it is contracted, this means that locally the density increases. This can
be expressed by the following formula

p(x0,0) d*x = p<f(x0,t),t> Jr(x0,t) d*x, (2.113)

where Jg(x,t) is the determinant, evaluated at (x,t), of the Jacobian matrix Jg =
<8f/8x) related to the transformation x — f(x,t). If we know the function f(x,t)

and its inverse, that is the function h(x,t) such that h(f(x, t)) = x, we can find
the density at any point from the density at ¢ = 0:

1
p(x, 1) = mp(h(x,t)ﬁ) . (2.114)

This is Eq. (2.96) expressed in terms of f(x,t). What remains to do now is to obtain
Egs. (2.98) and (2.111) in terms of function. From now on we assume that f has an
inverse h. Eq. (2.112) tells us that

d2f
g(x,t) =

- = 'f(h(x, t),t) . (2.115)

(h(x,t),t)
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Since we are interested in V.g and V x g, the first quantity to calculate is dg;/0z; =
gi.j- By using the last equation, we find
_ Ofi Ol

o= T O E g 2.116

where summation over repeated indices is implicit. Note that as h is the inverse of
f, the Jacobian matrix of h is related to the one of f by

oh .
Jn(x,t) = (8—}() = mad} [Jf<h(x, t),t)] : (2.117)

Here adj means the adjoint:

. 1
(adJ Jf) = 5imn €k Jem Jin s (2.118)
ij

where ¢;;;, is the permutation of Levi-Civita tensor. The divergence of g can then
be written

r 1 €irs 8(fiafrafs)
. t) = fik=—€kmn €irs Jrm Jsn = 2.119
(V-g)xt) f’kQ JfEk Cirs frm s [2 Jr O(x1, 9, T3) ( ) ( )
h(x,t),t
with .
o, frs fs) ;
PliTmads) — o E 2.120
8(.T1,£L’2,x3) €jkl fJ f,k f ) ( )
The Eq. (2.97) becomes by using Eq. (2.114)
a(fza fm .fs)
eirarzindrs) 1y gl p(x, 0) — Jx,t]. 2.121
For the rotational of g we have
(V X 8)i = €ijk Gk, (2.122)
so that, after some calculations, Eq. (2.111) becomes
[k, fr, 1) -0 (2.123)

8(',1:‘17 T2, .T3)

for i = 1,2,3. By definition we have f(x,0) = x. This implies that Je(x,0) = 1. If
v(x,0) and p(x,0) are known, the second equation gives us f(x, 0) and what remains
to do is to solve the last two equations.

In the following we are going to look a perturbation theory for the displacement
field f(x,t) of the fluid element. If we write the displacement fiel f(x,t) = x+p(x,1),
we obtain at first order in p

V.(p —47Gpop) = —4nGped(x,0) (2.124)
Vxp=0. (2.125)
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where §(x) is the density contrast. The first equation can be solved by assuming
that p = Vx. The second equation can be rewritten as

V2(¥ — 47Gpox) = —47Gpyd(x,0). (2.126)

If we consider a periodic system, one can write

4(x,0) = Z Ok exp(ik.x), (2.127)
k#40
X(x, 1) = yie(t) exp(ik x) . (2.128)
k40
Eq. (2.126) becomes
. AnG
Xk — 47Gpoxk = kf 20 (2.129)
The general solution is
Ok
Xk = Ay exp < 47TGp0t> + A_exp ( - 47?Gp0t> ~ 2 (2.130)

With the initial conditions for p, we find that

p(x,t) = |:COSh ( 47TGp0t) - 1] Z Zl;gk exp(ik.x). (2.131)
k0

We can rewrite this expression as

cosh (mt) -1
4G po

p(x, 1) = [ }g(x, 0), (2.132)

where g is the force field. This means that a fluid element, initially at x, is acceler-
ated according to

p = cosh ( 47er0t)g(X, 0). (2.133)
It is interesting to compare these result with Eq. (2.107)
Ok (t) = 0x(0) cosh ( 47?Gp0t) . (2.134)

This implies that
g(x,t) = cosh < 47er0t)g(X, 0), (2.135)

since g(x,t) can be expressed in terms of the dx. We would then expect that a fluid
element is accelerated according to

p(x,t) = g<x + p(x, 1), t) = cosh < 47er0t>g(X + p(x,1), 0) (2.136)

and for small displacement this gives Eq. (2.133).
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Writing the vector field p as the sum of a curl-free part p,, and a divergence-less
part py (i.e. pp can be written as the gradient of a scalar function, and pj as the
curl of a vector field), one finds that

cosh (\/ZFGpOt> -1
4G

sinh (\/47TGp0t>
: 0)t
\/m + pR(X7 ) 9
(2.137)

with the initial consition p(x,0) = 0. Since the gravitational force is conservative
P(x,0) = Pp(x,0). The asymptotic behavior of the solution Eq. (2.137) is

t—o00 1 [13<X7 0) ﬁD(Xv 0)

p(x,t) = p(x,0) +Pp(x,0)

X, t - e ( G t). 2.138

p< ) 2 47TGp0 \/47TGp0 P Tpo ( )
By choosing pyp(x,0) = 0 and 47rGpy P(x,0) = p(x,0), the solution is then
directly in its asymptotic regime. This is the static space version of the Zeldovich
approximation, more usually given in an expanding background.

3.3 Limit of linear theory: a non-continuous approach

For the moment, we have only considered a continuous approach to study the evo-
lution of self-gravitating systems, i.e. we have described the density field using
a smooth function. This has allowed us to obtain different result concerning this
evolution by using a perturbative approach. However, to understand the limit of
linear theory and the validity of the fluid approximation, it is interesting to follow a
non-continuous approach in terms of discrete paricles. We consider in the following
the derivation of Peebles in [126].

Let us consider again N particles of mass m in a periodic box of volume V = L3.
The density function at time ¢ is given by

p(x,t) =m Z Sp(x—x(1)), (2.139)

where x;(t) is the position of particle i at time ¢. The Fourier coefficients of the
density contrast are given by

LSV exp(—ik.x,(t)) if k#0
— N £ui=1 s
Ou(t) { 0 otherwise (2.140)

We obtain the derivatives

N
¢ 1 E ST —ik.x;
5k = N -~ <—’lk.Xi) e s (2141)
1 N
< _ . o e 2 —ik.xi
ok = N E (—ik.x; — (k%x;)%) e : (2.142)

1

.
I

Melding the equation of evolution Eq. (2.50) with H = 0 and the Laplace-Poisson
equation on obtains
. iK ek,
X; = 47Gpy Z ﬁéke s (2.143)
k#0
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Inserting this in Eq. (2.50) one obtains
o = 4rGpo + A — C, (2.144)

where A and C' represent the nonlinear part of the equation,

N
1 )
A=47Gpy > j 5k5k ¢ and C= NE (k%;)%e (2.145)

q#0,k i=1

If we can neglect during some time the last two terms on the rhs in the last line,
we are left with a linear equation identical to what we have obtained in Eq. (2.105).
This shows that the last two terms of the last line of Eq. (2.144) are due to non-
linear effects and the discrete nature of the particles. A careful analysis of these two
terms should therefore provide us interesting information on the applicability of the
linear theory.

The problem with Eq. (2.144) is that it is not closed for the Jy as it still contains
the particle velocities x;. Despite this and following [126], one can show that even if
at small scales the dynamics are non-linear, linear theory can be used at large scales.

Once gravity starts to act, some clusters can be created, where “clusters” means
virialised structures. The velocities of the particles in such objects can be very high.
This implies that the term C' in Eq. (2.145) can be very large and this could have
an important effect on the evolution of every ¢d;. This is in fact not true. Using
Eq. (2.142), we have

N
; 1
=¥ Z —ik.g(x;) — (k.%;)%] exp(—ik.x;), (2.146)

where g(x;) is the gravitational field at x;. If N, clusters are created, we can rewrite
this expression as

{ Z Z —ik.g(x;)—(k.%;)?] exp(—ik.x;)+ Z [—ik.g(x;)—(k.X;)] exp(—ik.xl-)} :

a=1i€ly i¢cluster

(2.147)
where “i € I,” means all the particles in the cluster a which contains N, particles,
and “i ¢ clusters” means all the particles which are not in a cluster. For particles
which are in a cluster we can decompose the field g(x) into two parts: g, (x)+g,(x)
where the first term is due to force of all the other particles in the same cluster while
the second is the force from the rest. If we consider one cluster, we can write its
contribution to the right hand side of Eq. (2.147) as

> [-ik.gy (xi) — ik.gy(x;) — (k)] . exp(—ik.x;) (2.148)

1€l

The part containing g, (x;) can be written as

Z[—ik.gl(xi)] exp(—ik.x;) = Z [— ik.Gm Z LX;} exp(—ik.x;) .

1€1q 1€1q jF#i€lq
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Defining X,, as the centre of mass of the cluster

1
Xy = — i 2.150
N 22X (2.150)
i€l
the last expression becomes
exp(—ik.X,) Z [ —ik.Gm Z }’37}’13] exp(—ik.y;) (2.151)
i€ln jFi€l y

where y, = x; — X,,. These vectors do not have a length longer than the cluster size
which we will denote by R. This means that for k such that |k| << 1/R we can
make the following approximation

Z[—ik.gl(xi)] exp(—ik.x;) ~ exp(—ik.X,) Z [—z’k.Gm Z u} (1—ik.y,),

.3
i€ly i€l, j#i€l, \y] yz‘
(2.152)
which can be written as
G 7 i,V 8%
T oxp(—ik Xo)kuky, Y Wi = Yin) (9 Y. ) (2.153)
2 j#i€l, ‘ y]‘

with an implicit summation over p and v. Using the results derived in section ?7?,
this becomes simply

> [—ik.g, (x;)] exp(—ik.x;) = exp(—ik.Xo) > _(k.y;)”. (2.154)

1€1q 1€1q

Inserting this expression in Eq. (2.148) and neglecting terms of order (kR)?, it comes

exp(—ik.X,) Zie]a {(kyz)2 — lik.gy(x;) + (kxz)Q] exp(—ik.yi)}
~  Nyexp(—ik.Xp) [ — ik.gy(Xa) + (k.xaﬂ . (2.155)

Then Eq. (2.147) becomes

{ZN —ik.gy(Xa) (k. X, exp(—ik Xo)+ Y [—ik.g(xi)—(k.)’ci)Q]exp(—ik.xl-)}.
i¢cluster

(2.156)
This shows that clusters can be considered as “macro-paticles” for what concerns
the evolution of dx for k much smaller than the inverse of the cluster size. Indeed
this evolution depends to a good approximation only on the motion of the centre of
mass of the clusters and not on what happens inside them. This is actually quite
in agreement with the intuition that once a cluster is created, it is seen as a big
particle when it is looked from far away. Note that this is valid if we can neglect
terms of order (kR)? in Eq. (2.156).

Let us now study the term Jx for k # 0 (as dp = 0)

1

bk = — | (p(x,t) — po) exp(—ik.x)d’x (2.157)
Vpo
1
= — p(x,t) exp(—ik.x)d*z . 2.158
T [, 0D esplikx) (2.138)
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where we have omitted the term [, exp(—ik.x)d’z = V&, with 6i the 3D Kro-
necker symbol. We can now split the box into Np small domains (Q,) os similar
size in such a way that each of them contains at least a few particles. We calculate

the centre of mass X, in all of them. If we denote by R their size, we have for
k << 1/R,

o = / (x,t) exp(—ik.x)d*z 2.159
k Vpo Z p( ) ( )
1 o
= exp(—z'k.Xa)/ p(Xo +y,t) exp(—ik.y)d®y (2.160)
Vpo o1 v+ X0 €00
1 &
~ S exp(—ik X,) / p(Xo+y.8)(1 — iky)dy  (2.161)
Vpo o1 v+ X000
1 R
= — ) exp(—ik.X,) Nym (2.162)
Vpo =
1 2
= N;Naexp(—ik.xa), (2.163)

where N, is the number of particles in the domain €2,. This means that up to terms
of order (kR)?, &y depends only on the positions of the centres of mass X, as if they
were simply particles of different masses. As before, we can draw the conclusion
that dynamics which do not change the positions of the centres of mass above a
certain scale R, as it is the case when some particles collapse, have no effects on dy
for k much smaller than the inverse of this scale. But clearly, as before, this is true
only if terms of order (kR)? are really negligible compared to the right hand side of
the last line of Eq. (2.161).

A conclusion which can be drawn from this discussion but which should be handle
with care is the following: if at t = 0, for a fixed value of k and a scale R, one has

on the one hand
Np

1 :
~ D Noexp(—ik.X,) (2.164)

as in Eq. (2.161), and on the other hand

A7 G podx + 4G po Z Z 5k5k ATy Z k.x;)% exp(—ik.x;) =~ 47Gpody , (2.165)
a#0.k

then the evolution of d, will satisfy approximatively the equation
Ok = 47 G podic , (2.166)

describing the motion of the centres of mass in the domains of size R as long as
the clusters will have a size smaller than 1/k =~ R, without being influenced by the
complicated dynamics on smaller scales. According to Eq. (2.156) these dynamics
have only negligible effects on centres of mass at a scale equal to R. For k such that
|k| < 1/R, the simple linear fluid approach should be justified and if everything hold
for all k of similar size, §(x, ) should also be described by the linear fluid theory at
scales larger then R.
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The limit value n = 4 for the exponent of the power spectrum - model for
newly forming clusters

In the following, we follow the derivation of Peebles [126] to determine the limit value
n = 4 for the exponent of the power-spectrum for the validity of linear perturbation
theory.

We are interested in a distribution where the large-scale fluctuations are sup-
pressed as much as possible, so the power spectrum will be taken to be

|61 |? o< k™ (2.167)

for small & < z ! where z, represents the interparticle distance, and n > 0. At
large scale the spectrum is similar ro random. The fluctuations are just becoming
nonlinear at scale xg, signaling the incipient formation of a new generation of clusters
on this scale. Since this generation has not yet formed, we shall suppose that the
velocity term C' in Eq. (2.144) may be neglected, and we shall estimate the size of
the gravity term A in Eq. (2.144)

k.
A = 4nGpy Y “obia, (2.168)
q#0,k q
k.
A = dnGpy Y T oadqi (2.169)
q#0,k

One then has to compare the mean of the square of A, i.e. (|A|*) with the linear
gravitational term 47Gp|dx|?. Peebles shown in [126] that (|A]?) ~ k*, whereas
|0k|?> ~ k™. Then if n < 4 the linear term is larger than A and we expect linear
amplification to be valid, while if n > 4 this will not be the case.

4 Background on Stochastic point processes

In the following we introduce the formalism used to describe density fields in cos-
mology: (infinite) statistically homogeneous and isotropic point processes which are
uniform, 7.e. have a well-defined non zero mean density.

4.1 Stochastic distributions

Let us consider a discrete random mass distribution represented by the microscopic
density function p(r). The quantity p(r)dV represents the number of particles con-
tained in the infinitesimal volume dV" around the point r. Assuming that the par-
ticles have unitary mass we can write

p(r) = Z 5(r—r;), (2.170)

where r; is the position vector of the particle ¢ of the distribution and d(r) is the
Dirac delta function. The function p(r) can be thought as a realization of a stochastic
process. It means that to any point r is associated a positive random variable p(r)
whose “extracted” value is p(r). The stochastic process is totally characterized by
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the probability density functional P[p(r)] of the density field p(r), that gives the
probability to have the particular realization p(r) of the stochastic field p(r,t). We
will limit our analysis to ordinary or regular point processes, in which taking a small
volume AV in an arbitrary point of the space, the probability to have more than
one point in this volume is of higher order of AV'.

We can compute the average value of any function of the density Flp(r)] in
function of the probability density functional:

(F) = [ Dolr) Floto)] Plotr). @.171)

where we have used a functional integral (see e.g. [71]).

We can smooth a discrete distribution to obtain a continuous one p by averaging
over small volumes AV (r;) (centered around the position r) but containing a large
amount of particles:

p(r,t) = AVl o /A e dr p(r',t). (2.172)

Note that the density for discrete distribution Eq. (2.170) is a sum of distributions
(and then non-smooth function) whereas the averaged density function defined in
Eq. (2.172) is a smooth function.

In the probability density functional P[p(r)] all the information about the stochas-
tic field is contained. In general, this information is much more than one wants
manipulate. For this reason, one focuses on the ¢-point correlation functions of the
stochastic field defined as

(Pr)prs) .. plre)) = / Dp(x) Plp(x)]p(x1)p(xs) . .. plxs) (2.173)

The quantity defined in Eq. (2.173), multiplied by [dV]*, gives the a priori probability
of finding simultaneously ¢ particles, in a volume dV about the positions ry,...,ry,
independently of the position of the remaining particles. For example, the 1-point
correlation function is simply the local density function (p(r)).

Spatial averages and ergodicity

A typical assumption in the statistical analysis of stochastic fields is the so-calles
ergodicity of the stochastic process which generates the mass field both in the con-
tinuous and discrete case. In order to clarify the meaning of ergodicity, let us take a
generic observable F' = F(p(ry, p(re,...) of the mass distribution p(r). Ergodicity
means that (F) is equal to the spatial average F' given by:

1
F = lim V/ d°rg F(p(rl +19), p(r2 +10),...), (2.174)
1%

V—oo

where V' is the integration volume and limy _,o, means that the limit of the inte-
gration is taken over all space. Finally, p(r) is almost any realization of the mass

distribution “extracted” from the probability functional P [p(r)] This property is
also referred to as the self-averaging property of the distribution. Note that if the
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average in Eq. (2.174) is extended only to a finite sub-sample V' of the whole space,
then Eq. (2.174) is only an estimator of (F) in the given sub-sample. In cosmology
one typically has only such finite volume estimators. Therefore the assumption of
ergodicity is necessary if we want to use these statistical estimators of some specific
quantities to build or verify hypotheses and theories.

The assumption of ergodicity is based on a theorem of continuous stochastic
processes: the ergodic theorem of Birkhoff-Khinchin which states that if p(r) has a
well-defined average value pg, then the volume average, in the infinite volume limit,
converges with probability one to a well-defined limit [75].

Statistically homogeneous and isotropic distributions

A stochastic process is statistically homogeneous when the probability density func-
tional P[p(r)] is invariant under spatial translations. The consequence is that the
complete (-point correlation function has the property

(p(r1)p(r2) ... p(re)) = (p(r1 +10)p(r2 +10) ... p(re + 10)) - (2.175)

It therefore does not depend on ¢ vector variables anymore but only on ¢ — 1 vector
variables. For example, the large scale structure of the universe is assumed to be
described by a stochastic density field which is statistically homogeneous, i.e. it is
assumed that there is no privileged positions in the universe (this is the Cosmological
principle).

A stochastic system is statistically isotropic if the probability density functional
is invariant under rotations, in the sense that

Plp(x)] = Plp(Rr))., (2.176)

where R is any rotation. In the case of the universe, the Cosmological principle
assumes statistical isotropy.

The working hypothesis of the current cosmological models are therefore to as-
sume statistically homogeneity and isotropy. In this case, the 1-point correlation
function does not depend on the position:

(H(x)) = po. (2.177)

We will also suppose, when the average is performed in an infinite volume, that
po > 0, what is called homogeneity or uniformity. It is distinct from the concept of
statistical homogeneity or translational invariance discusses above. Homogeneity or
uniformity means that if a local average density is performed in a finite volume, the
result does not depend on the volume. Current observations indicate homogeneity
on large scales in cosmology (see [71]).

Homogeneity and Homogeneity scale

Let us now consider the meaning of homogeneity given by Eq. (2.177) in terms of
the spatial average in a single realization of a stochastic mass distribution. The
existence of a well-defined average positive density implies that

lim =po >0, Vxq, (2.178)

Rooo [|C(R; x0) | R Xo) | / Ctre)
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where ||C(R;x¢)|| = 47 R3/3 is the volume of the sphere C(R;x) of radius R, cen-
tered on an arbitrary point xo. When Eq. (2.178) is valid, i.e. a well-defined positive
average density exists for the mass distribution, the characteristic homogeneity scale
Ao can be defined as the scale such that

1

— d*r p(r) — po| < po, YR > Ao, , VXo. 2.179
)C(R; %0) /C(R;XO) p(r) = po| < po 0 0 (2.179)

This scale gives basically the distance above which fluctuations can be considered
small with respect to the mean density p, and a perturbative approach can be
appropriate to describe the physics of the system.

Correlation Function

Using the hypothesis of homogeneity, we define the 2-point reduced correlation func-
tion as

Ca(r12) = ((p(r1) — po)(p(r2) — po)) , (2.180)

where 715 = |r; — r|. The complete 2-point correlation function can be writen as a
function of the reduced 2-point correlation function as:

{p(r1)p(ra)) = (p(r1))(p(r2)) - (2.181)

The reduced correlation function Ci5 (also called covariance function) gives the non-
trivial part of this probability. It is usual to normalize the correlation function for
density field as

02(7“12) '

§(ri2) = pe

(2.182)

The Power Spectrum

In cosmology and Statistical Physics it is very usual to characterize distribution
in Fourier space rather than in real space. In Cosmology a particular emphasis is
placed on this representation because it is mathematically much easier to modelize
theoretically the evolution of structures in Fourier space. We define the Fourier
transform (FT) of a function f(r), in a cubic volume of size L (V = L%), where d is
the spatial dimension as:

flk) = / d%r f(r)e~r (2.183)
v
The inverse transform is therefore
f(r) = % > Fk)eer, (2.184)
Kk
where the sum over the discrete k is restricted to those with components k; = QmT”

with m € Z. In the limit of infinite d-dimensional Euclidian space the direct and
inverse F'T are defined as

F10 = FTU@] = [ drpmes (2185)
f(r) = FT7Yf(k)] = (Qi)d /R dddkf(k)e*ik'”. (2.186)

62



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS

From now on, for simplicity, we will denote by p(r) both the stochastic density field
p(r) and any realization of it. We define the fluctuation of the density field ,(r) as

d,(r) = p(r) — po. (2.187)

Its Fourier transform in a volume V is
5,(k; V) = / drd,(r)e T (2.188)
1%

Because d,(r) is real, d,(k,V) = d,(—k; V), where the asterisk denotes “complex
conjugate”. We define the structure factor (SF) as

18,0 V)%

S(k) = 1

(2.189)

It is obviously a positive-definite quantity. In the thermodynamic limit, one takes
V' — oo (with constant pg). The brackets (.) in Eq. (2.189) indicate an average over
realizations. In cosmology the SF is called Power Spectrum (PS) and it is defined
as the infinite volume limit of the SF:

P = tim VI

im0 (2.190)

If we assume statistical homogeneity, it is simple to show from their respective
definitions that the 2-point correlation function and the SF are FT pairs:

S(k) = FT[Cy(r)] (2.191)
Pk) = pi FTE(r)]. (2.192)

If we assume statistical isotropy an additional average over vectors k with the same
modulus can be performed, the SF depending then only on k = |k]|.

There is an important theorem in the theory of stochastic processes related with
the PS. This is basically the Wiener-Khinchin theorem (see e.g. [71]), which states
that, given a 2-point correlation function Cy(r), it exists a statistically homogeneous
continuous stochastic stationary process with this correlation, if and only if its PS
is integrable and non-negative for all k, i.e. FT[Cy(r)] > 0. In the case of a point
distribution this condition is only necessary. A corollary of this theorem is the

property:

£(0) > (r). (2.193)
Its proof is straightforward: the correlation function £(r) is the FT of the PS
1 .
= P(k)e™rd’k . 2.194
£r) = o [ PO (2,194

Since by defintion, P(k) > 0 and || exp(ik.r)|| < 1, the inequality Eq. (2.193) is
evident.
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Mass variance

Another convenient way to characterize stochastic distributions is via the fluctua-
tions of mass in d-dimensional regions that we will denote A. The normalized mass
variance is defined as

M(A)?) — (M(A))?
o?(A) = < (2.195)
(M(A))?
The average amount of mass in the region A is
(M(A)) = | Wa(x) (p(r))d’r, (2.196)
R
where we have introduced the window function Wj(r)
1 ifreA
Walr) = { 0 otherwise (2.197)

Further, the average of the square of the mass in the same region is

(M(A)?) = / /R W () Wa(02) (1 )p(r2)) (2.198)

Using the above formulae and the defintion of correlation function Eq. (2.182) we
can write

2(A) = %//R Py dhry TV (1) Wa (£2)€ (1 — Ta]) (2.199)

where V' is the volume of the region A = [d%W,(r). Performing the FT of
Eq. (2.199) we obtain
1

2 _ d I 2
P*8) = Gy / AP (k)| W (k)2 (2.200)

where W, (k) is the FT of Wx(r). Very often the natural choice of volume A in
which to compute the fluctuations is a sphere. It is simple to find that the FT of
the window function is in three dimensions [71|

Wa(k) =

(k?l)i’)?’ (sinkR — kRcoskR) . (2.201)

Discrete versus continuous distributions

When performing numerical simulations in cosmology, evolution of continuous field
is computed evolving discrete N-body particle distributions. In this context it is
important to understand the differences between continuous and discrete distribu-
tions.

Discreteness introduces a kind of fluctuations that does not appear in continuous
distributions. For example, it is possible to construct a continuous distribution with
zero fluctuations, i.e. with Ca(r) = 0 for all r (we assume statistical homogeneity).
This is simply a distribution with constant density everywhere. In the case of discrete
distributions there is always a fluctuation introduced by discreteness: a particle is
correlated with itself, which introduces a singularity in Cj5(r). We can see that
studying the uncorrelated (discrete) Poisson distribution.
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The Poisson distribution We work for simplicity in d = 3 dimensions. We
divide the 3-dimensional real space in n = V/dV infinitesimal cells of volume dV
and we define the stochastic density field in each cell as

1 . .y
< _ ) gy with probability pdV’
plr) = { 0 with probability 1 — pdV (2.202)
The average density (the 1-point correlation function) is trivially
. n.(1/dV).podV + n.0.(1 — podV
(p(r)) = W) n L= pdV) Po - (2.203)
The 2-point correlation function is
(p(r1)p(rz)) = (p(r))* = pg (2.204)
if r; # ry and
o n.(1/dV)2.podV + n.0%.(1 — podV
((r)p(es)) = LAV 0 A= pd) _ 1o (2.205)

n av’
if ry = ry. Therefore, in the limit dV' — 0 we obtain:

Co(r12) = (p(r1)p(r2)) — p§ = pod(r1 —13) . (2.206)

The discreteness of the distribution introduces a singularity in the correlation func-
tion Ca(r) at r = 0 (and indeed for all /-point correlation functions). The density
has an infinite discontinuity around any particle with finite mass, which is mathe-
matically represented by a delta function in the correlation function. Note that this
result is general for any particle distribution and not only for a Poisson distribution.
The correlation function of a correlated particle distribution can be written therefore
as the sum of two pieces:

Cra(r) = 8(r) + 43 (). (2.207)

where d(r) is the singularity introduced by discreteness and h(r) is a smooth func-
tion.

Asymptotic behavior It is important to know the permitted asymptotic behav-
ior of the correlation function. The general condition to be a continuous stochastic
process well defined are

e The distribution is no singular with regions with infinite density, 7.e.

/n0(1 +E(r)dV < oo, (2.208)

€

where the integration is performed in any arbitrary small region e. It implies
that if we consider a power-law behavior of the correlation function at small

scales, we have
Hmé(r) ~ 7Y, a> —d. (2.209)

r—0
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e Regions at infinite distance are not correlated. Therefore

lim £(r) ~ 7%, 3 <0. (2.210)

r—00

In the case of a discrete distribution the situation is very similar. At large scales,
the correlation function remains unchanged and therefore condidition Eq. (2.210)
holds. At small scales, the divergence introduced by the discretness give rise only
to a finite contribution and the condition Eq. (2.209) has to be fulfilled now by the
smooth function A(r).

From above properties for the correlation function, it is simple to deduce the
analogous permitted asymptotic behaviour of the PS. From Eq. (2.209), for a con-
tinuous distribution, we have the condition

lim P(k) =0, (2.211)

k—o0

which implies that, if P(k — oo) ~ k7, v < 0. If, moreover, the stochastic process
has finite variance (i.e. £(0) < o0), then

lim k‘P(k) =0, (2.212)

k—00

and then v < —d. For a point-particle distribution we have the constraint

, |
lim )P(k) - %’ —0, (2.213)
ie. if ’P(k) - p%’ ~ k7 then v < 0. The small k behaviour of the PS is, from
condition Eq. (2.210),

P(k —0) ~ kK (2.214)
then § > —d.

4.2 Classification of stochastic processes

In order to derive a complete classification of stochastic processes, let us consider
Egs. (??7) and (2.201), and assume without loss of generality that P(k) = Ak" f(k),
where A > 0 and f(k) a cut-off function chosen such that (i) limy_, f(k) = 1, and
(i) limg_oo K" f(k) is finite. We also require n > —3 to have the integrability of
P(k) around k = 0. It is convenient to rescale variables putting = = kR to rewrite

94 1
- ﬁRi’H—n

Xz

/00 dz(sinz — zcosx)z" f(%). (2.215)
0

2

R
o*(R) :
By analyzing in detail this formula, we obtain (see a complete derivation in [71])
the following general relation between the large R behavior of 0?(R) and the small
k behavior of P(k):

RGt)  for -3 <n<1
o*(R)~{ R™*logR forn=1 (2.216)
R forn > 1.
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The argument used to derive Eq. (2.216) can be generalized to Euclidian spaces
of any dimension d. Therefore supposing P(k) = Ak™f(k) as above, it is possible
to proceed to the following classification for the scaling behavior of the normalized
mass-variance:

R~(dtn) for —d <n <1
o*(R) ~{ R @HD]og R forn =1 (2.217)
R~(@+) forn>1.

Therefore

e For —d < n < 0, we have “super-Poisson” mass fluctuations typical of systems
at the critical point of a second order phase transition.

e For n = 0, we have Poisson-like fluctuations, and the system can be called
substantially Poisson. This behavior is typical of many common physical sys-
tems, e.g. an homogeneous gas at thermodynamic equilibrium at sufficiently
high temperature.

e Forn > 0, we have “sub-Poisson” fluctuations, and for this reason we name this
class of systems super-homogeneous. This behaviour is typical, for example, of
lattice-like point distributions where positively correlated regions are balanced
by negatively correlated ones. Therefore the condition of P(0) = 0 corresponds
to a sort of underlying long-range order. This class of mass distributions play
an important role in Cosmology.

4.3 Causal bounds on the Power spectrum

The consideration in section 3.3 above of the evolution of discrete self-gravitating
system, which leads to the “limit” value n = 4 for the applicability of fluid linear
theory is in fact related to a much more general significance of this particular power
spectrum. This arises when one considers the constraints imposed by causality on
the power spectrum of density fluctuations which may be generated by a physical
process in an expanding universe with a finite causal “horizon” (i.e. a finite distance
up to which light can travel up to cosmic time ¢, as in standard FRW expanding
models dominated by matter or radiation).

Zeldovich concluded, using a simple heuristic derivation, that in this case, if
one assumes that the physics involved conserves mass and momentum, one obtains
that, at small k, P(k) ~ k™ with n > 4 [160]. Indeed such fluctuations can only
be correlated up to a finite distance (Lpy say), i.e. &(r) = 0 for r > Ly. By
Fourier transform theory, this implies that the PS is analytic at £ = 0. Then Taylor
expansion about k = 0 gives P(k) = P(0) + & P”(0) + O(k%). Tt can be shown
quite rigorously that P(0) = 0 follows from the condition of local mass conservation,
and heuristic arguments suggest that P”(0) = 0 follows from local “center of mass
conservation” (i.e. momentum conservation). Specific constructions (see e.g. [69])
also show the apparent generality of the result.

Assuming non-linear structure formation through self-gravity to be an example
of such a causal process (where the “horizon” is now the non-linear scale at the
given time) one immediately comes to the conclusion of section 3.3, that non-linear
clustering can create P(k — 0) ~ k*, which will overwhelm the linear amplification
if the initial large scale fluctuations have P(k — 0) ~ k™ and n > 4.
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5 The non-linear regime: numerical simulation

In the current cosmological paradigm, structures grow through the gravitational
instability of initial density fluctuations of collisionless dark matter. This occurs
in a hierarchical way, with small-scale perturbations collapsing first and large-scale
perturbations latter, i.e. the bottom-up formation scenario of the CDM model. Let
us note, however, that different models were proposed in the late 1970s and early
1980s: the hot dark matter (HDM) models [131]. HDM models of cosmological
structure formation led to a top-down formation scenario, in which superclusters of
galaxies are the first objects to form after the big bang, with galaxies and clusters
forming through a subsequent process of fragmentation. However, it was already
becoming clear from observations that galaxies are much older than superclusters,
contrary to what the HDM scenario implies, and such models were abandoned by
the mid-1980s after cosmologists realized that if galaxies had formed early enough
to agree with observations, their distribution would be much more inhomogeneous
than is the case [154].

One of the most direct manifestations of this nonlinear process is the evolution
of the power spectrum of the mass, P(k), where k is the wavenumber of a given
Fourier mode. Understanding this evolution of the power spectrum is one of the
key problems in structure formation, being directly related to the abundance and
clustering of galaxy systems as a function of mass and redshift. If the processes that
contribute to the evolution could be captured in an accurate analytic model, this
would open the way to using observations of the nonlinear mass distribution (from
large-scale galaxy clustering or weak gravitational lensing) in order to recover the
primordial spectrum of fluctuations. One such attempt at such analytic description
of clustering evolution was the “stable clustering ” hypothesis of Davis and Peebles
[126] that assumes that a nonlinear collapsed object would decouple from the global
expansion of the Universe to form an isolated system in virial equilibrium.

We provide a brief overview of the theoretical understanding of nonlinear evolu-
tion. In particular we introduce the stable clustering hypothesis and the halo model,
as these ideas are central in the study of nonlinear clustering. We also discuss the
scale-free models and their self-similarity properties.

5.1 N-body simulations
Equations of motion

Equation of motion in cosmological N-body simulations, introduced in Eq. (2.50),
can be explicitly written

%; +2 H(t) (2.218)

— 3
j#i ‘X X]‘

where the notation " implicitly excludes the (badly defined) contribution due to
the mean density, and where a(t) is the scale factor of the model considered, and
H(t) = a/a is the Hubble “constant”. For the EdS cosmology & = 0, A = 0,
a(t) o t?/3 and H* = 82C%p. The case H = 0 defines a “static universe” limit.
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Algorithms and timestep

The basic idea for numerical integration is as follows. The equation of motion
expresses the second derivative of position in terms of position, velocity and time.
Position and velocity at later times are expressed in terms of position and velocity at
earlier times using a truncated Taylor series. The key constraint in cosmological sim-
ulations is that force evaluation is very time consuming and one wishes to minimise
the number of force evaluations per time step. Mainly for this reason, cosmological
N-body simulations use the Leap-Frog method for integrating the equation of mo-
tion as it requires only one evaluation of force and the error is of order (At)3, where
At is the time step (see e.g. [59]).

The optimum value of the time step depends on the distribution of particles and
it changes as this distribution evolves. It is common to use a time step that varies
with time so that the N-body code does not use too small a time step when a smaller
value is required for conserving integrals of motion. It is possible to generalise even
further and choose a different time step for each particle as well, motivation for this
being that a few particles in a very dense regions require a small At whereas most
particles are not in such regions. There are several methods of implementing this
in N-body simulations, and main consideration is to ensure that the positions and
velocities of all particles are synchronised at frequent intervals. Using individual time
steps can speed up N-body simulations by a significant amount (see e.g. [129, 132]
and references therein).

Calculation of force

The attractive gravitational force produces, during the evolution, smaller and smaller
structures. The necessary to resolve the smallest possible scales. The combination
of this necessity to resolve small scales in large regions implies the need to use the
maximum number of particles.

The calculation of the force is the most time consuming task in N-body simu-
lations. As a result, a lot of attention has been focused on this aspect and many
algorithms and optimising schemes have been developed.

The direct calculation of the force is numerically costly - N? operations for N
particles - and even a modest 10* particles simulation needs considerable computer
resources (while the largest current simulations use more than 10'° particles). To
solve this technical problem different approximations are used, such as the (for a
review see e.g. [1]). In short, the first one smooths the particle mass on a grid to al-
low the use of FFT techniques, which speed up the computation. The P3M method
does almost the same but gains accuracy by computing directly (“Particle-Particle”)
the force from nearby particles. Tree-codes build a hierarchy between the particles
that resembles a “tree”. The gravitational force is calculated using the structure
of the tree. The force between two close particles in the tree is computed almost
exactly. The force between distant particles in the tree is computed using a whole
branch as a single effective particle, as in a multipole expansion method (for details
see [142]). Others refinements are used to improve the small scale resolution in
the simulations. One of them is to use an adaptative mesh: in regions with higher
density a mesh with more resolution is used, keeping a lower resolution in regions
with small density. Another method is the technique of “re-simulation”: a first sim-
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ulation is performed to localise regions with high density. Then, the simulation is
performed again putting more particles in the region where the particles of the final
high density regions were initially (for details, see e.g. [24,46,96, 141].

To mimic as closely as possible a truly infinite system, one uses an infinite peri-
odic system, made of 3 —d cubic cells containing /N particles. The forces on particles
are then calculated considering not only the particles situated in the original box
but also the particles of all the copies. Then if the i** particle has coordinate r;, its
copies will have coordinates r; + nL, where n is a vector with integer components.
For the gravitational interaction

*

o(ri) = i

< |rij +nL|’ (2:219)
where m; is the mass of the particles and the asterisk denotes that the sum n =0
does not include the term i = j. As we have noted in section 3.1, this expression is
badly defined, and its regularisation by subtraction of the contribution due to the
mean density is implicit. A natural way of writing the sum in an explicitly convergent
way taking this regularisation into account is to separate the potential into a short
range and long range part by intoducing a parameter-dependent damping function

f(r;a):

N - A f(rij +nl;a) 1—f(Tij+nL;(){)>
o(r;) = %;m]( il e . (2.220)
The first term on the r.h.s of Eq. (2.220) is short-range (i.e. decays rapidly) and the
second term is long-range. The procedure used in the Fwald summation method is
to compute the first term in real space and the second in Fourier space [62]. If the
parameter « is appropriately chosen, the real part converges well taking only the sum
over the closest image, and the part of the sum in Fourier part is rapidly convergent.
Of course the sum of the two terms yields the original particle distribution. We write
the potential energy then as:

¢ =o' + oy . (2.221)

Further it is convenient to separate out the zero mode in the long-range part, writing
l ! !

O = dilo + ko (2.222)

The function f(r;«) is chosen in the Ewald summation so that o) and gb,(géo are

both rapidly convergent, and with a known analytical expression for its Fourier
transform. The value of the term k& = 0 depends on how precisely the infinite
sum in Eq. (2.219) is defined. In cosmology this term is simply removed, as this
corresponds to subtracting the mean density.

5.2 Initial conditions

When one runs an N-body simulation, the first step is to generate adequate initial
conditions (IC) with the correlations specified by some theoretical model. The most
widely used method to generate such IC uses correlated displacement of particles
initially placed on a lattice. The correlations of the displacement field are determined
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to be such as to obtain a final distribution that has, approximately, the desired
correlation properties (cf. [65]).

How this can be done can be understood, up to corrections coming from dis-
crete nature of the distribution, using the Zeldovich approximation. As discussed in
section above, this gives an approximation valid (at sufficiently short time) for the
displacements of fluid elements from their initial position q

r(q,t) =q+ A(t) u(q) with u(q) = —V.®(q), (2.223)

where A(t) is simply the growth factor associated with the growing mode in linear
perturbative theory and ®(q) is the gravitational potential at the initial time created
by the density fluctuations.

Now if we consider the points on the initial grid as defining the initial positions q
of the fluid elements, we can obtain the corresponding displacements (and velocities
d— —f(t) V®(q)) by determining the gravitational potential ®(q), which can
be inferred directly from the desired power spectrum P(k) through the Poisson
equation. The latter is assumed to be a realization of a Gaussian process.

To set up IC for the N particles of a cosmological N-body simulation the proce-
dure is then in summary [50]:

e one sets up a “pre-initial” configuration (usually a lattice) of the N particles.

e given an input theoretical PS Py, (k), and fluctuations assumed Gaussian, the
corresponding displacement field in the ZA is applied to the “pre-initial” point
distribution.

In the following, we give a brief survey of basic results derived from cosmological
N-body simulations.

5.3 Self-similarity

One of the important results from numerical simulations in the context of cosmology
is that, for a power-law initial condition P(k) ~ k™, the system reaches a kind
of scaling regime, in which the temporal evolution is equivalent to a rescaling of
the spatial variables. This spatio-temporal scaling relation is referred to as self-
similarity: the 2-point correlation function £(z,t) scales as

£(z,t) = g(Rj(t)) (2.224)

where Rg(t) is a time dependent function derived from linear theory. In statistical
physics such behaviour is known as dynamical scaling, and is observed for example
in the ordering dynamics of quenched ferromagnetic systems.

Two necessary requirements for the evolution to be self-similar are usually iden-
tified

1. the background cosmological model should not possess any characteristic length
or time-scales. Thus the universe must be spatially flat, with zero cosmological
constant and a scale-free equation of state;
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2. the initial density perturbation field should have no characteristic length scale.
Its power spectrum must therefore have power law form.

There are then only two characteristic scales in the problem
e the homogeneity scale £(t) defined initially through the amplitude of the PS;

e an ultraviolet scale (cut-off in the PS at large k, provided in cosmological
simulations by the lattice spacing).

Now if the second scale is irrelevant to the dynamics and the clustering it produces
at sufficiently long times and large scales, one then necessarily must have

x

flat) = fO(Rs(t)> (2.225)
where f is any dimensionless function characterizing the clustering in real space
(i.e. the physical behavior of clustering at any scale can only be determined by its
size compared to this single characteristic length scale), where R(t) is the temporal
behavior of the scale £(t). In k-space, likewise, f(k,t) = fo(kRs(t)). Further, if
linear perturbation theory is valid, such behavior is indeed verified (and different
scales decouple, the UV cut-off being irrelevant). This allows us to determine the
function R4(t). The linear amplification gives

k? P(k,t) = A%(t) P(k,to) = (k Ra(t))" P(k Ry(t),to) (2.226)
which is satisfied for a power-law initial PS if
R, (t) = A(t)*/@+n) (2.227)
In a flat, matter-dominated universe A(t) o< t2/3 so one simply obtains
Ry(t) oc t¥/33+m) (2.228)

If it is linear theory that drives structure formation, in a hierarchical process in
which non-linear is generated through the collapse of the initial fluctuations, we
would expect such behavior always to result. Given the analysis of the range of
validity of linear theory, this means the range

—d<n<4. (2.229)

In the cosmological literature, different considerations have led various authors to
restrict this range. If one naively considers the fact that the mass fluctuations
becomes sensitive to the UV cut-off, one would limit this range to n < 1. Efstathiou
et al. [51] suggested that —d < n < —d+ 2 could be excluded (in addition to n > 1)
because of the divergence of the displacements in the Zeldovich approximation in
this case, which they thought would mean that evolution would depend in this case
on the box size. Jain and Bertschinger [84,85] argued that this would not be the
case. Numerically only the case n < 1 appear to have been studied in the literature
for an expanding universe. As n decreases it becomes more difficult to determine
whether self-similarity applies because the temporal range accessible is much shorter.
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However numerical studies [39, 85] indicate the self-similarity does indeed hold for
n=-2ind=3.

Studies of the static limit have been performed which show that self-similarity is
valid for n = 0 and n = 2 [11]. Note that in the cosmology literature self-similarity
is argued to be associated to power-law behaviour of R4(¢) which arises in “scale-
free” cosmologies like EAS — and related to the existence of scaling solutions to
the Vlasov equation in this case. The arguments given above are much general and

clearly apply also to a static model. Indeed, following [11], Eq. (2.226) gives for a

Z(t_tref)
(3+n)7—dyn

has chosen for convenience Ry(t,f) = 1.

static universe R,(t) o exp [ } if one considers the growing mode, where one

5.4 From linear theory to stable clustering

In the non-linear regime where perturbation theory fails, it was proposed that clus-
tering in the very non-linear regime might be understood by assuming that regions
of high density contrast undergo virialization and subsequently maintain a fired
proper density [126]. Denoting = a comoving distance, the correlation function for a
population of such systems would then simply evolve according to

E(w,t) oxa™?. (2.230)

This evolution was termed stable clustering. Peebles went on to show that if the
intial power spectrum was a pure power-law in k£ with spectral index n, P(k) o k",
and if 2 = 1, then under the stable clustering hypothesis, the slope of the nonlinear
correlation function would be directly related to the spectral index through the
relation
3(3+mn)
5+n
where r is a proper distance. This can be simply derived if we link the results
obtained in both comoving and physical coordinates, i.e.

E(ryt)ocr™  with = (2.231)

BE(a,t) ~ T ~ (a JQZ@))_W , (2.232)

which gives a7 ~ R (t) ~ t1/363+1) ~ q27/(3+7) " Hence, if stable clustering applies,
then nonlinear density field retains some memory of its initial configuration, and in
principle can be used to measure the primordial spectrum of fluctuations.

5.5 Halo models

We present now an approach which has its origins in papers by Neyman and Scott
[119]. They were interested in describing the spatial distribution of galaxies. They
argued that it was useful to think of the galaxy distribution as being made up of
distinct clusters with a range of sizes. Since galaxies are discrete objects, they de-
scribed how to study statistical properties of distribution of discrete points; the
description requires knowledge of the distribution of cluster sizes, the distribution
of points around the cluster center, and a description of the clustering of clusters.
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The non-linear evolution of the dark matter distribution has been studied ex-
tensively using numerical simulations of the large scale structure clustering process.
These simulations indicate that an initially smooth matter distribution evolves into
a complex network of sheets, filaments and knots. The dense knots are often called
dark matter halos. High resolution, but relatively small volume, simulations have
been used to provide detailed information about the distribution of mass in and
around such halos (i.e. the halo density profile [115,116]), whereas larger volume,
but lower resolution simulations have provided information about the abundance
and spatial distribution of halos [37,87]. Simulations such as these show that the
halo abundance, spatial distribution and internal density profiles are closely related
to the properties of the initial fluctuation field. When these halos are treated as the
analogs of Neyman and Scott’s clusters, their formalism provides a way to describe
the spatial statistics of the dark matter density field from the linear to highly non-
linear regimes.

Such a halo based description of the dark matter distribution of large scale
structure is extremely useful because, following White and Rees [155], the idea that
galaxies form within such dark matter halos has gained increasing credence. In this
picture, the physical properties of galaxies are determined by the halos in which
they form. Therefore, the statistical properties of a given galaxy population are de-
termined by the properties of the parent halo population. There are now a number
of detailed “semi-analytic” models which implement this approach [21, 38,92, 140];
they combine simple physically motivated galaxy formation recipes with the halo
population output from a numerical simulation of the clustering of the dark matter
distribution to make predictions about how the galaxy and dark matter distribu-
tions differ.

In the following, we give a brief introduction of the ingredients building the
halo model of large scale structure. The approach assumes that all the mass in the
Universe is partitioned up into distinct units, the halos. If these halos are small
compared to the typical distances between them, the statistics of the mass density
field on small scales are determined by the spatial distribution within the halos; the
precise way in which the halos themselves may be organized into large scale struc-
tures is not important. On the other hand, the details of the internal structure of the
halos cannot be important on scales larger than a typical halo; on large scales, the
important ingredient is the spatial distribution of the halos. This approximation,
in which the distribution of the mass is studied in two steps (i.e. the distribution
of mass within each halo and the spatial distribution of the halos themselves) is the
key to what has come to be called the halo model.

The halo model assumes that, in addition to thinking of the spatial statistics
in two steps, it is useful and accurate to think of the physics in two steps also. In
particular, the model assumes that the regime in which the physics is not described
by perturbation theory is confined to regions within halos, and that halos can be
adequately approximated by assuming that they are in virial equilibrium.
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The spherical collapse model

The assumption that non-linear objects formed from a spherical collapse is a simple
and useful approximation. The spherical collapse of an initially top-hat density
perturbation was first study by Gunn and Gott [79].

In the top-hat model, one starts with a region of initial, comoving Lagrangian
size Ry. Let d; denote the initial density within this region. We will suppose that
the initial fluctuations were Gaussian with an rms value on scale Ry, which was
much less than unity, i.e. |§;| << 1. This means that the mass M, within Ry is
Moy = p(1+46;) R§ ~ “TpR3 where p denotes the comoving background density.

As the Universe evolves, the size of this region changes. Let R denote the co-
moving size of the region at some later time. The density within the region is
(Ro/R)?> = (1 +6). In the spherical collapse model there is a deterministic relation
between the initial comoving Lagrangian size R, and density of an object, and its
Eulerian size R at any subsequent time. For an EdS universe, one can obtain a
parametric solution to R(z) in terms of 6:

R(z) (14+2) (1 —cosb)

Fo G2 (2:283)
nd 1 3.2/3(0 —sin §)%/3
~ (3y23(0 —sin
- Q T Emm (2.234)

where 9§y denotes the initial density J; extrapolated using linear theory to the present
time (see e.g. [126]). If §; < 0, then (1 — cos @) should be replaced with (cosh — 1)
and (6 — sin §) with (sinh 6 — 6).

In the spherical collapse model, initally overdense regions collapse: with 6 = 0
at start, they “turnaround” at # = 7w, and have collapsed completely when 6 = 2.
Eq. (2.233) shows that the size of an overdense region evolves as

Ry  6*3(0—sing)??
R(z) 2 (1—cosb)

(2.235)

At turnaround, 6 = 7, so [Ro/R(21,)]* = (37/4)% when an overdense region turns
around, the average density within it is about 5.55 times that of the background
universe.

At collapse, the average density within the region is even higher: formally,
R(z.1) = 0, so the density at collapse is infinite. In practice the region does not
collapse to vanishingly small size: it virializes at some non-zero size. The average
density within the virialized object is usually estimated as follows. Assume that
after turning around the object virializes at half the value of the turnaround radius
in physical, rather than comoving units. In the time between turnaround and col-
lapse, the background universe expands by a factor of (1 + 2)/(1 + ze) = 223,
so the virialized object is eight times denser than it was at turnaround (because
Ry = Ri/2). The background density at turnaround is (2%°)® = 4 times the
background density at z,;,.. Therefore the virialized object is

Ayir = (972/16) x 8 x 4 = 187° (2.236)
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times the density of the background at virialization.

What was the initial overdensity of such an object? Eq. (2.233) shows that if
the region is to collapse at z, the average density within it must have had a critical
value d,. given by

Ose 3, 3T
o 3(7)2/3' (2.237)

Thus a collapsed object is one in which the initial overdensity, extrapolated using
linear theory to the time of collapse, was d0,.(2). At this time, the actual overdensity
is significantly larger than the linear theory prediction. Although the formal over-
density is infinite, the virialisation argument just presented says that the object is
about 178 times denser than the background.

There is an imporant feature of the spherical collapse model which is extremely
useful. Since (1+§) = (R/Ry)?, the equations above provide a relation between the
actual overdensity ¢ and that predicted by linear theory dg, and this relation is the
same for all Ry. That is to say, it is the ratio R/ Ry which is determined by ¢;, rather
than the value of R itself. Because the mass of the object is proportional to R3, this
means that the critical density for collapse ;. is the same for all objects, whatever
their mass. In addition, the evolution of the average density within a region which
is collapsing is also independent of the mass within it.

The mass-function of the halos: the Press-Schechter formalism

Press and Schechter proposed a formalism to compute the average number of objects
that collapsed from the primordial Gaussian density field [130]. They assumed that
the dense objects seen at the present time are a direct result of the peaks in the
initial density field. These small perturbations collapsed spherically under the action
of gravity to form selfbound virialized objects.

In the primordial Gaussian field the probability that a given point lies in a region
with the density contrast ¢ greater than the critical density for collapse d. is given
by

, (2.238)

(5> 0m,) = | [1 oty

where o(Ry) is the variance of the density field smoothed on the scale Ry. The Press-
Schechter formalism assumes that this probability corresponds to the probability
that a given point has ever been part of a collapsed object of scale > R;. Then, the
comoving number density of halos of mass M at redshift z is given by

dn ]2 P be(2)
m“‘“*\ﬂw o

where o (M) is the variance corresponding to a radius R containing a mass M and
0.(2) = 62/ D(2) is the critical overdensity minearly extrapolated to the present time.
Here 60 = §.(z = 0). For an EdS universe the critical overdensity is 6° = 1.69. There
are approximations for other models and in general 6° has a weak dependence on ,,
(see e.g. [117]). Let us note, however, that Press and Schechter used an additional

76

dln M 202(M)

dlna(M)| eXp(_ 5o(2)? ) (2.239)



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS

ingredient to derive Eq. (2.239): the fraction of (dark) matter in halos above M is
multiplied by an additional factor of 2 in order to ensure that every particle ends
up as part of some halo with M > 0. This ad-hoc factor of 2 is necessary, since
otherwise only positive fluctuations of 6 would be included.

One of the limitations of the Press-Schechter formalism is that it assumes over-
dense perturbations to be perfectly spherically symmetric. In reality the situation
is more complex. Bardeen et al. ( [14]) extensively studied the statistics of peaks
in a random density field. They showed that peaks in the primordial density field
have a degree of flattening. This departure from a spherical distribution is amplified
under the action of gravity affecting the final collapse of the object.

Halo density profiles
To describe Halo density profiles, functions of the form

Ps Ps
= = 2.240
N T o L A R T T TR 77 R e
have been extensively studied as models of elliptical galaxies [23,64]. Setting («, 5) =
(1,3) and (1,2) in the expression on the left gives the Hernquist and NFW pro-
files [116], whereas («, ) = (3/2,3/2) in the expression on the right is the M99
profile [115].

The NFW and M99 profiles differ on small scales, » << r,, and whether one
provides a better description of the simulations than the other is still being hotly
debated (see e.g. [116]). Both profiles are parametrized by rs and ps, which define
a scale radius and the density at that radius, respectively. Although they appear
to provide a two-parameter fit, in practice, one finds an object of given mass m
and radius 7, in the simulations, and then finds that r, which provides the best
fit to the density run. This is because the edge of the object is its virial radius 7.,
while the combination of r; and the mass determines the characteristic density, ps,
following

m= / dr 47r® p(r) . (2.241)
0
For the NFW and M99 profiles,

2In(1 + 32
m = 4dmp,r? [ln(l +c) — ‘ ] and m = 47?/)57*3M (2.242)

1+c¢ s 3
where ¢ = ry;,./rs is known as the concentration parameter. Note that we have
explicitly assumed that the halo profile is truncated at r,;., even though formally,
the NF'W and M99 profiles extend to infinity.

There is a very extensive literature not only on the numerical characterization of
halos, but also developing theoretical models to explain these measured properties
(see e.g. [116,121,128,152]). The cups-core debate is indeed a rather subtle issue, as,
for example, it emerges from recent numerical investigations [118,143| that the mass
profile of ACDM halos deviates slightly but systematically from the form proposed
by Navarro, Frenk and White in Eq. (2.240). This implies that the mass profile of
ACDM halos are not universal: different halos cannot, in general, be rescaled to
look identical.
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Chapter 3

1 — d gravity in infinite point
distributions

The development of clustering in initially quasi-uniform infinite distributions of
point particles evolving purely under their Newtonian self-gravity has been the sub-
ject of extensive numerical study in cosmology over the last decades. However
analytical understanding, which would be very useful in trying to extend the nu-
merical results and also control their reliability, remains very limited. In attempts
to progress in this direction it is natural to look to simplified toy models which may
provide insight and qualitative understanding. Such models may also be interesting
theoretically in a purely statistical mechanics setting, and specifically in the con-
text of the investigation of out of equilibrium dynamics of systems with long-range
interactions introduced in Chapter 1.

An obvious toy model for this full 3-d problem is the analogous problem in 1-
d, i.e., the generalization to an infinite space (static or expanding) of the so-called
“sheet model”, which is formulated for finite mass distributions. In this latter model,
which has been quite extensively investigates (see, e.g., [82,110,133,134,138,148|),
particles in 1-d experience pair forces independent of their separation, like those
between parallel self-gravitating sheets in 3-d of infinite extent. Several groups of
authors [7,8,10,111-113,135,145,150,151,157] have then discussed different variants
on this model to develop the analogy with the 3-d infinite space problem. Just as for
the finite sheet model, these models have the particular interest of admitting exact
solutions between sheet crossing, which means that they can be easily solved numer-
ically to machine precision, and at modest numerical cost for quite large numbers
of particles.

In this chapter we revisit the basics of these toy models (in either static or
expanding universes), addressing the problem of their general formulation for infinite
distributions. Indeed, as we will discuss, previous discussions have required, in
their implemantation, the imposition of symmetry about a point, or finite extent
of the considered density perturbations'. Such a restriction on the class of point
processes which can be considered, and notably the requirement that statistical
translational invariance be broken, is not desirable. Indeed in the context of the
cosmological problem, this latter property of the distributions usually considered

1 This is not true of the treatments in [145,157], which start directly from the fluid limit (rather
than from a particle description). See further discussion below.
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as initial conditions for simulations is very important, because of the “cosmological
principle” which supposes that there are no preferred centres (see e.g. [71,126]).
Further the question of the extrapolation of the finite version of the model (which
is what is simulated numerically) to the infinite system limit has, as we will discuss
below, not been carefully examined. We will show that problems with the definition
of the force (as used in these previous treatments) arise from a subtlety about how
the so-called “Jeans’ swindle” is applied in one dimension. We draw here on the work
of Kiessling in [95], where it has been shown that, in 3 — d, the usual formulation of
the “Jeans’ swindle” — subtraction of a compensating negative mass background in
calculation of the potential — may be more physically formulated as a prescription
for the calculation of the force in the infinite volume limit. It turns out, as we will
see, that while in 3 — d it is sufficient to prescribe that the force on a given particle
is obtained by summing symmetrically about it (e.g. summing in spheres of radius
R with centre at the particle, and then sending R to infinity), in 1 — d this limiting
procedure needs to be further specified. More specifically the force turns out to be
defined in 1 — d for a broader class of distributions — and notably for distributions
without a centre — when the summation is performed by taking the unscreened
limit of the same sum for a screened version of the interaction, rather than as the
limit of the sum truncated to a finite symmetric“top-hat” interval.

1 From finite to infinite systems

1.1 Definitions

By gravity in one dimension we mean the pair interaction corresponding to an attrac-
tive force independent of separation, i.e., the force f(x) on a particle at coordinate
position x exerted by a particle at the origin is given by

f(x) =~y

S sgn(x 3.1
o 0 (z) , (3.1)
where ¢ is the coupling. Equivalently it is the pair interaction given by the pair
potential ¢(z) = g|z| which satisfies the 1 — d Poisson equation for a point source,
327‘2 = 2gdp(x) (where 0p is the Dirac delta function). Comparing with the 3 — d
Poisson equation shows the equivalence with the case of an infinitely thin plane
of infinite extent and surface mass density > = ¢g/27G, which explains the widely
used name “sheet model”. We will work in the one dimensional language, referring
to “particles”. For convenience we will set the mass of these particles, which will

always be equal here, to unity.

1.2 Finite system

Let us consider first the case of a finite system, consisting of a finite number N
of particles (with either open boundary conditions, or contained in a finite box).
Denoting by z; the coordinate position of the i** particle along the real axis, the
force field F'(x) (i.e. the force on a test particle) at the point x is

F(a) =g Y snai— ) =g [ dy n(y) ssnly — o) 32)

80



CHAPTER 3. 1— D GRAVITY IN INFINITE POINT DISTRIBUTIONS

where n(y) = Y. 0p(y — x;) is the microscopic number density and the integral is
over the real line?. Equivalently it may be written as

Flz) = g Na(2) = No(@)]. (3.3)

where N (x) (N-(x)) is the number of particles to the right (left) of z. The dynamics
of this model, from various initial conditions and over different times scales, has been
extensively explored in the literature (see references given above).

1.3 Infinite system limit

Let us consider now the infinite system limit, i.e., an infinite uniform distribution
of points® on the real line with some mean density ngy (e.g. a Poisson process). It is
evident that the forces acting on particles are not well defined in this limit, as the
difference between the number of particles on the right and left of a given particle
depends on how the limit is taken. Formally we can write the force field of Eq. (3.2)
as

F(x) = gno / dy sgn(y — ) +g / dy on(y) sgn(y — ) , (3.4)

where dn(y) = n(y) —no = >_,0p(y — x;) — ny represents the number density
fluctuation. While the second term would, naively, be expected to converge if the
fluctuations on(y) can decay sufficiently rapidly, the first term, due to the mean
density, is explicitly badly defined (as the integral is only semi-convergent). Precisely
the same problem arises for gravity in infinite 3 — d distributions. The solution,
known as the “Jeans swindle”, is the subtraction of the contribution due to the
mean density. As discussed by Kiessling in [95], rather than a “swindle”; this is, in
3 — d, in fact a mathematically well-defined regularisation of the physical problem,
corresponding simply to the prescription that the force be summed so that it vanishes
in the limit of exact uniformity. The simplest form of such a prescription in 3 — d
is that the force on a particle be calculated by summing symmetrically about the
particle (e.g. by summing about the considered point in spheres of radius R, and
then sending R — oo). This formulation needs no explicit use of a “background
subtraction”, since the term due to the mean density does not contribute when the
sum is performed symmetrically.
Applying the same reasoning to the 1 — d case would lead to the prescription

F(r) = g/dy on(y) sgn(y — z) . (3.5)

The question is whether this expression for the gravitational force is now well defined,
and if it is, in what class of infinite point distributions. As we will detail in the next
section of the chapter, this question may be given a precise answer, as in 3 — d,
by considering the probability density function of the force in such distributions,
described as stochastic point processes in infinite space. In the rest of this section

2We use the standard convention that sgn(0) = 0, which implies this same formula is valid for
the force on a particle of the distribution (rather than a test particle) at x.

3By “uniform” we mean that the point process has a well defined positive mean density, i.e., it
becomes homogeneous at sufficiently large scales.
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Figure 3.1: Calculation of the force using a top-hat regularisation centred on the
point considered, i.e., as defined in Eq. (3.7). In an unperturbed lattice (case a)
the force on points of the lattice vanishes. However, as shown in b) and c), when
a single point is displaced off lattice, the force becomes badly defined, oscillating
between g and zero as the size of top-hat goes to infinity.

we will simply explain the problems which arise when the infinite system limit of
expression Eq. (3.5) is taken using a simple top-hat prescription. This discussion
motivates the use of a smooth version of this prescription, which we then show
rigorously in the subsequent section to give a well defined force for a broad class of
infinite perturbed lattices.

For Eq. (3.5) to be well defined in an infinite point distribution it must give the
same answer no matter how it is calculated. Two evident top-hat prescriptions for
its calculation are the following. On the one hand it may be written as

z+L
F(z) =g lim dy n(y) sgn(y — ) (3.6)

L—oo o—1L

or, equivalently,

F(z) = g lim [N(:c, 2+ L)~ Nz - L, :1:)] , (3.7)
—00

where N (z,y) is the number of points between z and v, i.e., the force is proportional

to the difference in the number of points on the right and left of x inside a symmetric

interval centred on x, when the size of the interval is taken to infinity. On the other

hand, we can write

+L
F(z) =g lim [ dy dn(y) sen(y — =), (3.8)
—oo J_
or, equivalently,
Flz) = g im |N(z,L) = N(~L,z)| +2gnoz, (3.9)
—00

i.e., we integrate the mass density fluctuations in a top-hat centred on some arbi-
trarily chosen origin.

That these expressions are both badly defined in an infinite Poisson distribution
is easy to see: in this case the fluctuation in mass on the right of any point is
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uncorrelated with that on the left, giving a typical force proportional to the square
root of the mass in a randomly placed window of size L, which grows in proportion
to v/L (and thus diverges). Calculating the force with Eq. (3.7) it has been shown
in [65] that it is in fact not well defined either in a class of more uniform distributions
of points, randomly perturbed lattices®. Why this is so can be understood easily
by considering, as illustrated in Fig. 3.1, the calculation of the force using Eq. (3.7)
in such configurations. While on the unperturbed lattice (case a) the force on all
points of the lattice is well-defined (and vanishing, as it should be), this is no longer
true when a particle is displaced: the force on the displaced particle now oscillates
deterministically (between g in case b, and zero in case c¢) and does not converge as
L — .

For the same case, of a single particle displaced off an infinite perfect lattice, the
prescription Eq. (3.9) for the force does, however, give a well-defined result if one
chooses as origin a point of the unperturbed lattice: since the first (“particle”) term is
unchanged by the displacement of the particle, the only non-vanishing contribution
comes from the second (“background”) term, giving a finite force

F(u) = 2gngu , (3.10)

where u is the displacement of the particle from its lattice site (and we assume u
is smaller than the lattice spacing). If we consider now, however, applying random
displacements of small amplitude (compared to the interparticle spacing) to the
other particles of the lattice, the problem of the first prescription Eq. (3.7) reappears:
at any given L the first term in Eq. (3.9) picks up a stochastic fluctuation which
varies discretely between +¢g and zero, and does not converge as L — co. This will
evidently be the case for any such configuration generated by displacing particles off
a lattice, and more generally for any stochastic particle distribution in 1 — d, unless
some additional constraint is applied to make this surface contribution to the force
vanish.

The previous literature on this model employ top-hat prescriptions equivalent to
Eq. (3.9) to calculate the force, adding such a constraint. On the one hand, Aurell
et al. in [10] restrict themselves to the study of an infinite perfect lattice off which
only a finite number are initially displaced. In this case the problematic surface
fluctuation vanishes for sufficiently large L. On the other hand |7, 112,135, 150]
impose exact symmetry in the displacements about some chosen point, which is
then taken as the origin of the symmetric summation interval. A particle entering
(or leaving) at one extremity of the interval is then always compensated by one
doing the same at the other extremity.

We note that it is only in [10] that the problem of the infinite system limit
is actually considered. In the other works the authors do not discuss this limit
explicitly: they consider and study in practice a finite system, with a prescription
for the force equivalent to Eq. (3.9) where 2L is the system size, i.e., without the
explicit limit L — oo. Symmetry about the origin is imposed because this allows
one to use periodic boundary conditions. Such a finite periodic system of period
2L is equivalent to a finite system of size L with reflecting boundary conditions.

4The force is, however, shown to be well defined in this class of point distributions using the
analogous definition for any power law interaction in which the pair force decays with separation.
See [65] for details.
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The dynamics of such a system is of course always well defined, for any (finite)
initial distribution of the points in the box. This does not, however, mean that
this dynamics can be defined in the limit that the size of the system is taken to
infinity. This is the question we focus on here, as the definition of such a limit is
essential if a proper analogy is to made with the cosmological problem in 3 — d:
in this case the gravitational force is well defined in the infinite system limit, for
a class of statistically translationally invariant distributions representing the initial
conditions of cosmological models®.

The problems with the top-hat prescriptions arise, as we have seen, from non-
convergent fluctuations at the surface of a top-hat window, which will be generic in
statistically translationally invariant point processes. It is thus natural to consider
smoothing the summation window, and specifically a prescription for Eq. (3.5) such
as:

F(x)=yg lin%/dy n(y) sgn(y — z) e M=vl| (3.11)
—
or, equivalently,
— _ —plzi— x\
g}g% g sgn(z; — x)e (3.12)

where the sum runs over all particles in the (infinite) distribution. Rather than a
smoothing of the summation window, this can be interpreted more physically in
terms of the screening of the gravitational interaction, i.e., the pair force law of
Eq. (3.1) is replaced by

fulz) = —gsgn(a) e 7, (3.13)

and the gravitational force in the infinite system limit is defined as that obtained
when the screening length is taken to infinity, after the infinite system is taken®.
This treatment is borrowed from the class of infrared problems well known in quan-
tum field theory. The standard procedure of handling infrared divergences is to
apply an infrared regularization, to solve the regularized problem, and to remove
the regularization at the end of the calculation, perhaps involving a renormalization.

For the case of a single particle displaced off a perfect lattice discussed above it
is simple to calculate the force using Eq. (3.11). Denoting the lattice spacing by ¢,
and the displacement by u, we have

Flu)=g llm ngn (nl —u)e Hnt=ul, (3.14)
n;ﬁO

For |u| < ¢ the sum gives

2 sinh(pu) (Z e_‘mg). (3.15)

n>0

5Numerically one treats, of course, a periodic system, but it is an infinite periodic system, i.e.,
the force is calculated by summing over the particles in the finite box and all its (infinite) copies.
This is the so-called “replica method”, used also widely in equilibrium systems such as the one
component plasma [19]. The infinite sum is usually calculated using the Ewald sum method. To
obtain results independent of the chosen periodic box, the prescription for the force must converge
in the appropriate class of infinite point distributions.

6 Although we will not use the interparticle potential in our calculations, we note that f,(z) =

—d¢, /dx where ¢, (x) = (x).
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Figure 3.2: Schematic representation of the smooth screening of the force (or, equiv-
alently, summation window).

Expanding this in powers of 1 we obtain
F(u) = —+0(n). (3.16)

Taking the limit 1 — 0 gives Eq. (3.10), i.e., the result obtained using the top-hat
prescription Eq. (3.9). The equivalence of the two prescriptions can likewise be
shown to apply when displacements are applied to a finite number of particles on
the lattice (which leave the forces unchanged, and equal to Eq. (3.10), if there are no
crossings). Thus the only difference between the prescriptions is how they treat the
contribution from particles at arbitrarily large distances when the infinite system
limit is taken.

We will show rigorously in the next section that, for a class of infinite perturbed
lattices in which particles do not cross, the prescription Eq. (3.11) simply removes
the problematic surface contribution present in the top-hat prescriptions (without
applying any additional constraint of symmetry). This gives a force on each particle
equal to Eq. (3.10) where u is the displacement of the particle, the only difference
with respect to the case of a finite number of displaced particles being that the
origin of this displacement may be redefined by a net translation of the whole sys-
tem induced by the infinite displacements. The force felt by each particle is thus
equivalent to that exerted by an inverted harmonic oscillator about an (unstable)
equilibrium point. We note that this expression for the force is in fact what one
would expect from a naive generalization of the analagous results in 3 — d. In the
latter case it can be shown [66] that the force on a single particle displaced off an
infinite lattice by a vector u is, to linear order in |u|, simply

F(u) = 47Gpou/3 . (3.17)

This force is simply that which is inferred, by Gauss’s law, as due to a uniform
background of mass density -pg (i.e. due to the mass of such a background contained
in a sphere of radius |u]). The 1 — d result is exactly analogous, as 2ng|u| is simply
the mass inside the interval of “radius” |u|. While this result is valid, in 3—d, only at
linear order and for the case of a single displaced particles, it is exactly valid in 1 —d
in absence of particle crossings and for a broad class of displacement statistics. The
reason is simply that in 1 — d the force on a particle is unaffected by displacements
of other particles, unless the latter cross the considered particle.
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2 Forces in infinite perturbed lattices

In this section we calculate, using the definition Eq. (3.12), the gravitational force
on particles in a class of infinite perturbed lattices. To do this we describe these
point distributions as generated by a stochastic process in which the particles are
displaced”. The force on a particle (or the force field at a point in space) is then
itself a stochastic variable, taking a different value in each realization of the point
process, and the question of its definedness can be cast in terms of the existence
of the probability distribution function (PDF) of the force. We thus calculate here
the PDF of the force on a particle with a given displacement u, in the ensemble of
realizations of the displacements of the other particles. The result is that, for the
class of stochastic displacement fields in which displacements are such that particles
do not cross, this force PDF becomes simply a Dirac delta function. This gives the
anticipated result, that the only force which results is that due to the particle’s own
displacement given by Eq. (3.10), modulo an additional term describing a contri-
bution from the coherent displacement of the whole infinite lattice if the average
displacement is non-zero.

2.1 Stochastic perturbed lattices

Let us consider first an infinite 1 — d regular chain of unitary mass particles with
lattice spacing ¢ > 0, i.e., the position of the n'* particle is X,, = nf, and the
microscopic number density can be written as

nin(z) = Y dp(z —n). (3.18)

n=—oo

We now apply a stochastic displacement field {U,} to this system, in which the
displacement U, is applied to the generic n'* particle with n € Z. Let us call {u,}
the single realization of the stochastic field {U,}. The corresponding realization of
the point process thus has microscopic number density

n(zr) = Z dp(z —nl —uy,). (3.19)

n=—oo

This displacement field is completely characterized by the joint displacement PDF
P({u,}) where {u,} is the set of all particle displacements with n € Z. We will
further assume that this stochastic process is statistically translationally invariant,
i.e. P({un}) = P{unyi}) for any integer [. This implies in particular that the one
displacement PDF (for the displacement applied to a single particle) is independent
of the position of that particle, i.e., the function

pontt) = / TT dunP ()0 (1 — ) (3.20)

"For an introduction to the formalism of stochastic point processes i.e. stochastic spatial dis-
tributions of point-particles with identical mass, see, e.g., [71].
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is independent of m, i.e. p,,(u) = p(u). Moreover the joint two-displacement PDF
Grm (U, V) /H du, P({un})op(u — wm)dp(v — uy,)

depends parametrically on the lattice positions n,m only through their relative
distance (m — n).

2.2 Mean value and variance of the total force

Let us denote in general by F),(x¢) the total gravitational force, with finite screening
i, acting on the particle at xy and due to all the other particles placed at x,,:

(o —nggn — xg)e Hlan—mol (3.21)
n#0

Writing now x,, = nf+u, in Eq. (3.21), we can write the total screened force on the
particle at xg = ug in a perturbed lattice for a given realization of the displacement
field:
F(uw) =y Z sgn(nl + u, — ug)e HntHun—uol (3.22)
n#0

Note that, given the assumed statistical translational invariance of the field {U,}
the statistical properties of the force are the same for all particles in the system.
If, further, we assume now that the displacements from the lattice are such that
particles do not cross, i.e. sgn(nl +u, —ug) = sgn(n) for n # 0, this can be written
as

Fu(uo) =g» e, (3.23)
n=1
where we define for, n > 1,
Fo = fulp) = e —m0) _ gmnuo—un),

We now take the average of Eq. (3.23) over all realizations of the displacements
of all particles, except the chosen one uy, which we consider as fixed. We denote
this conditional average as (-),, while we use (-) for the unconditional average. In
order to do this we need the conditional PDF of U, to Uy, which by definition of
conditional probability is

an( )
P, (u;u — 3.24
(s u0) = p(uo) ( )
By using this function we can write
(i) = € B ug) — €0 P (— s o) (3.25)
and therefore
(F, Z [ W P (s 1ug) — e MO P (— s ug) | e H (3.26)
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where we have defined

P, (p:ug) = / du P, (u; ug)e ", (3.27)
_ s,
k! '
k=0
The latter equality is valid when all the moments <U,’j>0 of P,(u;up) are finite. Note
that, given the assumption that particles do not cross, it follows from the definition
(3.24) that g,o(u, ug) = 0 for u + n < ug respectively for n = 0. Therefore P, (u;uqg)
is always zero for some sufficiently negative uy dependent value of u if n > 0, and
likewise for sufficiently positive values if n < 0. This ensures that the integral in
Eq. (3.27) is indeed finite.
In order to study the behavior of Eq. (3.26) for p — 0, we will assume that
G (U, V) oo p(u)p(v) . (3.28)
This corresponds to the assumption that the displacement field is a well defined
stochastic field, which requires (see e.g. [71]) that the two-displacement correlations
vanish as the spatial separation diverges. We will discuss in the next section the
restriction this corresponds to on the large scale behaviour of the density pertur-
bations, which is of particular relevance when one considers the analogy to 3 — d
cosmological simulations.
Assuming Eq. (3.28) we can write

Po(u;ug) = p(u) + o (u; o)

where 7, (u; up) is a function vanishing for |n| — oo and with zero integral over u
for any n. As a consequence

P (5 u0) = p(p) + T (45 o) (3.29)

where we used the definition analogous to Eq. (3.27) for p(u) and 7, (u; uo), and the
latter vanishes for 4 — 0 and/or n — oo. If we now suppose that both (U) and
(Uy), are finite, with evidently (U,), — (U) for n — oo, we can write at lower
order:

() =1—p(U) +o(p), (3.30)
(5 10) = p({U) = (Un)o) + o(p) -

It is now simple, by substituting Eqgs. (3.29) and (3.30) into Eq. (3.26), to show that,
if ((U) = (U,),) decays in n as a negative power law or faster, we have

(F (o)) = L (Fu(uo)), = 2gm0(u0 — (1)) (3.31)

We will now show that both for uncorrelated displacements, and then more
generally for correlated displacements with decaying correlations, this average force
is in fact the exact force in every realization. We do so by simply showing that

lim [<F5(u0)>0 - <Fﬂ(u0)>§] ~0. (3.32)

u—0
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This implies that the variance of the conditional PDF of the total force F' acting
on the particle in ug vanishes, i.e., it is a Dirac delta function at the average value
given by Eq. (3.31). Compared to the simple case of a single displaced particle we
analysed above, the only effect of the (infinite number of) other displacements is to
possibly shift the centre of mass of the whole (infinite) distribution with respect to
which the displacement of the single particle is defined.

In order to show Eq. (3.32) we note first that the second conditional moment of
F may be written

1,00
(Fiwo))y = g e ™™ fun)g

= (Fu(uo))y+97 Y e " Ay (p)

n=1
1,00
+g? > et (), (3.33)
with
An(p) = () — (U)o (3.34)

and where >/ as usual indicates the sum over m and n with the exception of the
n =m terms. To prove Eq. (3.32) it is sufficient to show that the last two terms in
Eq. (3.33) go continuously to zero as p does so.

2.3 Lattice with uncorrelated displacements

We consider first the case that the displacements are uncorrelated and identically
distributed, i.e.,

P({un}) = H pluy). (3.35)

n=—oo

We refer to this as a “shuffled lattice” configuration (following [71]). In this case
conditional and unconditional averages coincide. Given the assumption that the
displacements do not make particles cross, we must have that p(u) = 0 for |u| > ¢/2,
implying that all the moments of p(u) are necessarily finite.

In this case the u,, are statistically independent and identically distributed ran-
dom variables. Given the definition Eq. (3.24), it follows that the f, also have this
property, i.e.,

<fnfm> = <fn> (fm> ) (3.36)

and thus that B, (1) = 0. Further A, (u) is independent of n and can be expressed
explicitly as

An(p) = e [p(2u) — ()] — e 20 [p(—2p) — p*(—p)]. (3.37)
89



CHAPTER 3. 1 — D GRAVITY IN INFINITE POINT DISTRIBUTIONS

Expanding this expression in p about g = 0, we find that the leading non-vanishing
term is at order u?. The desired result, Eq. (3.32), follows as

e —2ul

—2unl __ € o -1
Ze K —71_67%[—0(# ) for p—0,

n=1

where O(u!) means as usual a term of order [ in p.

2.4 Lattice with correlated displacements

We now consider the case where the displacements are non-trivially correlated. In
order to calculate A, (1) and B, (1) we need both the conditional single displace-
ment PDF P, (u; ug) and the conditional two-displacement PDF @, (w, v; ug), both
conditioned to the fixed value uy of the stochastic displacement U,. The function
Qnm(u, v;ug) is defined by the rules of conditional probability as

San(ua v, uO)

Qnm(ua v; uO) = p(uO)

where ;1 (u, v, w) is the joint three displacement PDF of having the three displace-
ments u, v, w respectively at the lattice sites n, m, (.

Let us start from the evaluation of A, (u). From its definition it is simple to
show that

(F2())g = ¥ Pu(2p;u0) + € " Py (=245 )
—2Qn —n(, — 15 uo), (3.38)

where

~ “+oo
Qnm(ﬂa v, U()) = / / du dv Qnm(u, v; u0>€f(uu+uv) .

In order to study the limit y — 0 we have to expand f’n(u; up) and Qnm(u, +p;5up)
in powers of . Assuming that at least the first two moments of the displacement
statistics are finite, we can write

2
Palpiug) = 1= Uy + 5 (U2), + o)

Qs i) = 1= (Ul & (Uay) + 15 (U2,
F(U2), £ (UnUndy) + 0122,
(3.39)

Using this result and Eqs. (3.25) and (3.38) in the definition (3.34) of A, (u), it is
simple to show that

Anp) = [ ((U2), = (U)2) (3.40)
+6_2Muo (<U3n>o - <U—n>g)
+2 ((UnU-n)g = (Un)o (U-n)o)] + o(1s*) -
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Note that for |n| — oo we have (U,), — (U), (U2), — (U?) and (U,U_,), — (U)*.

Therefore we can write
An(p) =3 12 ((UP) = (U)?) (20 + e 2mw0)

where we have used the fact that, as the coefficients of the higher order contributions
in p to A, (u) are non-diverging, they can be neglected. This is sufficient to conclude
that

[e.e]

D e An(p) = O(p), (3.41)

n=1

where O(y!) as usual means a term of order u', and therefore the sum vanishes as p
for p — 0.

Let us now move to analyze the last sum in Eq. (3.33). We study the behavior
of By, (1) as defined by Eq. (3.34). It is simple to show that

<fnfm>0 = e_iwm@nm(:ua 15 uO) + fzuuoé—n —m(_:ua — K UO)
_Qn fm<,u7 —H; uO) - anm<_:u7 5 uO)' (342)

Using this equation together with Eqgs. (3.34),(3.25) and (3.39), we can write

Bum(p) = p’[e” "0 g(n, m;uo) + € g(—n, —m; up)
—g(n, =m;ug) — g(—=n,m; uo)] + o(p?),
(3.43)

where we have called

g(n,m;ug) = <UnUm>o - <UN>0 <Um>0 )

i.e., the conditional displacement covariance matrix. Since this is a “conditional”
correlation it does not depend simply on n — m, but on both n and m in a non-
trivial way. However for both |n|,|m| — oo the conditional averages coincide with
the unconditional ones and therefore we can write

g(n,m;ug) = c(|n —m|)[1 + h(n, m;up)], (3.44)

where ¢(|n — m|) = (U,U,) — (U)? is the unconditional displacement covariance
matrix, and h(n,m;ug) — 0 for |n|,|m| — co. In order to analyze the asymptotic
behavior for small y of

I(p) = Z leiu(nij)Bnm(,u)v (3.45)

it is sufficient to study the behavior of the sum coming from the first term (or
equivalently the second) of By, (1) in Eq. (3.43) as it is the most slowly convergent
one, i.e., basically to study the following sum:

1,00

J() = e ™ g(n, m;up) .

n,m
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Since h(n, m;ug) — 0 for |n|,|m| — oo, the small u scaling behavior of J(u) is the
same if we replace g(n,m;ug) by c(|n — m|):

1,00

J(p) ~ Z et (I — m) . (3.46)

n,m

This can be also shown by the following argument: assuming that h(n,m;ug) is
bounded, say |h(n, m;ug)| < A, we can write

()] < Xam et g(n,ms u)
< (14 A) S0 et o [ — )
Therefore the convergence to zero of y? times the right-hand side of Eq. (3.46) is a
sufficient condition to have the variance of F' to vanish for y — 0.
Let us now analyze the right-hand side of Eq. (3.46). We can write

1,00
g Ie_“("+m)c(|n —ml)
1,00
. 1
_ —p(n+m) _ _ -
= E e c(ln —m|) C(O)e% — (3.47)

where ¢(0) is the single displacement variance. Note that the second term is of order

p~1 at small 4 and therefore gives rise to a term at linear order in p in Eq. (3.45).

Let us introduce the Fourier transform ¢(k) of ¢(n), defined by
T dk ’
c(n) = /7r %6(16)6”“".
Using this in the right-hand side of Eq. (3.47) we get

1,00

Z e MM e(|n — ml) (3.48)

n,m

" dk 1
= —(k :
/WQWC( )62“—0—1 — 2et cosk

The small y limit of this integral is dominated by the behavior at small k£ of the
integrand. In this limit the following approximation holds (e* + 1 — 2e# cosk) =~
(u® + k?). Let us also assume that c(n) ~ n™* at large n (with in general o > 0)®
which implies at small |k| ¢(k) ~ |k|*~! for 0 < a < 1 (with logarithmic corrections
for « = 1) and é&(k) ~ |k|? with 8 > 0 for @ > 1. Therefore the small u behavior of
Eq. (3.48) is the same as that of the simple integral

" dk (k) pe=? for0 < a <1,
/W%,u? IR { =t for a > 1. (3.49)

8The case of a decay faster than any power, e.g. exponential decay, can be included for o — ooc.
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Taking also into account the second term in Eq. (3.47), we can therefore conclude
that

1,00
/ (ntm)p pe for0<a <1,
Z Bum(p)e { o fora>1. (3.50)

This, together with the results for the first sum in Eq. (3.33), it follows that at small

i

2 pe for0<a <1,
<F5(UO)>Q - <Fu(u0)>0 ~ { L for o > 1’ (351)

i.e. it vanishes in the y — 0 limit and the PDF of the total force acting on a particle
displaced by wg from its lattice position is W (F;ug) = d[F —2g(up — (U))]. In other
words, even in the case of spatially correlated displacements, the total force acting on
a particle is a deterministic quantity equal to 2g(uo— (U)) with no fluctuations. This
value depends only on the displacement of the particle on which we are calculating
the force and not on the displacements of other particles as it does in 3 — d [66].

3 Dynamics of 1d gravitational systems

In the previous section we have shown the prescription Eq. (3.11) for the 1 — d
gravitational force to give a well defined result in a class of infinite displaced lattice
distributions. This result can be used in the construction of different toy models,
through different prescriptions for the dynamics associated to these forces. In this
section we discuss two such models, analogous to the 3 — d cases of gravitational
clustering in an infinite static or expanding universe, respectively. In the last sub-
section we discuss in detail the relation of these models to previous treatments of
such models in the literature.

As motivation let us first comment on the reason for our interest in the case of
perturbed lattices: in 3 —d cosmological N-body simulations precisely such configu-
rations are used as initial conditions. The reason is that by displacing particles from
a lattice in this way, one can represent accurately, at sufficiently large scales, low-
amplitude density perturbations about uniformity with a desired power spectrum
P(k) (for a detailed discussion see e.g. [71] or [88]). This algorithm is strictly valid
in the limit of very small relative displacements of particles, so that the assumption
that particles do not cross in our derivation is a reasonable one (although not, as we
will discuss in our conclusions, rigorously valid). The further assumption Eq. (3.28)
we have made, on the decay of correlations, corresponds, also to a reasonable re-
striction on the class of initial power spectra. Indeed it can be shown easily that it
corresponds, in d dimensions, to the assumption that P(k)/k? be integrable at k = 0.
In 3 — d this corresponds to P(k — 0) ~ k™ with n > —1, which is strictly satisfied
in typical cosmological models which are characterised by an exponent n = 1 at
asymptotically small k.

3.1 Toy models: static

The simplest such model is the conservative Newtonian dynamics associated to the
derived force law, i.e., with equation of motion
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where F; is the gravitational force on the ¢-th particle of the distribution, with
position z; at time ¢ (and dots denote derivatives with respect to t), calculated
using the prescription Eq. (3.12), i.e.,

Z; = —g lim ngn(xi — x;)e izl (3.53)

We have shown that, for the case of an infinite lattice subjected to displacements
which (i) do not make the particles cross, and (ii) satisfy Eq. (3.28), the force on
the right-hand side is simply given deterministically as proportional to the particle’s
displacement (when (U), the average displacement, is zero). Denoting then the
displacements of the i-th particle by w;, i.e. x; = ia + u;, the equation of motion is
therefore

i;(t) = 2gnou;(t) , (3.54)

i.e., simply that of an inverted harmonic oscillator. The same equation is valid in the
case that (U) # 0 if we define x; = ia+ (U) 4 u;. This equation of motion is valid, of
course, only as long as the non-crossing condition is satisfied. While it is in principle
straightforward to generalize our calculation of the force to incorporate the effects of
a finite number of crossings, it is much more convenient to make use of the following
fact, which we recalled above: particles crossings in 1 — d are equivalent, up to
exchange of particle labels, to elastic collisions between particles, in which velocities
are exchanged. This means that if we are interested in properties of the model
which do not depend on particle labels, the model of 1 — d self-gravitating particles
is equivalent to a model in which particles bounce elastically. In this case the particles
displacements from their original lattice sites are at all times such that there is no
crossing of particles, and Eq. (3.54) remains valid, except exactly at “collisions”.
The dynamics of this model is therefore equivalent to that of an infinite set of
inverted harmonic oscillators centred on the sites of a perfect lattice which bounce
elastically, exchanging velocities, when they collide. To avoid any confusion, let us
underline that these collisions are no way analogous to “2-body collisions” which
formally appear in the Boltzmann equation, and which cause relaxation towards
equilibrium. As in the finite “sheet model” the equation of motion may be integrated
exactly. Defining, for convenience, time in units of the characteristic “dynamical”
time 74, = 1/4/2gn0, the evolution between collisions is given exactly by

w;(to +t) = u;(to) cosht + v;(ty) sinht, (3.55)
Ul'<t0 + t) = ul<t0) sinht + UZ'(t()) COSht, (356)
where u;(t9) (v;(to))is the position (velocity) after the preceeding collision. The
solution of the dynamics requires simply the determination of the next crossing

time, which involves the solution of a quadratic equation (in e), followed by an
appropriate updating of the velocities of the colliding particles.

3.2 Toy models: expanding

The model we have just discussed is the 1—d analogy for the problem of gravitational
clustering in an infinite static universe, with equations of motion

J R
= —Gm j#,M (3.57)
J#ir; —

i — ;)37
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for identical particles of mass m. We use the superscript J on the sum to indicate
that the sum is calculated using the “Jeans swindle”. As we have discussed this
“swindle” in 3 — d can be implemented by summing symmetrically about the point
i either in a top-hat (i.e. sphere) or using the limiting procedure with a screening.

The equations of motion for particles in an infinite expanding 3 — d universe are
usually written in the form

J
j’c,~+2H>’<i:— N (3.58)

Ix; — X]|3 ’

where x; are the so-called comoving coordinates of the particles, H(t) = a/a is the
Hubble “constant”, and a(t) is the scale factor which is a solution of the equations

LN\ 2
8rG C
m = () = = 3.59
(&) - Smm+ (3.59)
ArG
P _ﬁp(h (3.60)

where pg is the mean mass density when a = 1, and C is a constant of integration®.

Note that these equations can be derived entirely in a Newtonian framework,
and correspond simply to a different regularisation of the infinite system limit than
that employed in the Jeans’ swindle: instead of discarding the effect of the mean
mass density, the force is regularised so that the mean density sources a homolo-
gous expansion (or contraction) of the whole system. This corresponds to taking
equations of motion

r, —T;
r; = —Gm li — I 3.61
r; nglgo‘Z P (3.61)

J#i|r <R
i.e. with the sum for the force calculated by summing symmetrically about a chosen
ortgin. Dividing the sum into a term due to the mean mass density and a term due
to fluctuations about this density, this may be written as

P 47TGP —amy ) N (3.62)

r; — r]|3 7

Neglecting the second term (i.e. taking only the force due to the mean density)
gives an equation of motion admitting solutions of the form r;(¢) = a(t)r;(o), with
a(t) satisfying Egs. (3.59) and (3.60). Changing to comoving coordinates defined
by r; = a(t)x; in Eq. (3.61) [or in Eq. (3.62)], and using Eq. (3.60), then gives
Eq. (3.58).

Note that setting a(t) = 1 in Eq. (3.58) gives exactly the static case Eq. (3.57),
i.e., the “Jeans’ swindle” in static space corresponds formally to the non-expanding
limit of an expanding FRW universe. This static solution a(t) = 1 is, however, a
solution to Eqs. (3.59) and (3.60) only if py = 0 (and C' = 0), i.e., it is not a physical
limit of the expanding case but corresponds to the different prescription, Eq. (3.57),

9C = 0 corresponds to the flat Einstein de Sitter universe, C' > 0 to a closed universe, and
C < 0 to an open universe. In the Newtonian derivation of these equations, given below, C' can be
expressed in terms of the physical particle velocities at some initial time.
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for calculating the force in the infinite volume limit. While almost all numerical
studies are of the expanding case (for a review, see e.g., [12]), a recent study [11] of
the static case for such initial conditions has shown that the evolution of clustering
is, in essential respects, qualitatively similar in both cases. This suggests that it may
be possible to understand essential qualitative features of the dynamics of structure
formation in the universe in the conceptually simpler framework in which there is
no expansion.

With the 3 — d equation of motion in the form of Eq. (3.58) it is evident how
the static 1 — d model discussed above is naturally modified to mimic the 3 — d
expanding case: one can simply replace the force term due to the infinite 3 — d
distribution [i.e. the sum on the right-hand side of Eqs. (3.58)] by that due to
the 3 — d distribution consisting of infinite sheets. The summation prescription
implementing the Jeans’ swindle for the general 3 — d case, i.e. spherical top-
hat summation, is then, as we have discussed at length above, most appropriately
replaced by the smooth prescription we have given. Thus we take the following 1 —d
equation for the positions x; of the particles (sheets):

2rGY
¥+ 2H1; = — WG lim E sgn(z; — x;)e el (3.63)
n—0 -y
j#i

where the sum extends over the infinite distribution of sheets, and we have explicitly
made the identification g = 27GY (where X is the mass per unit surface).

With initial conditions in the class of 1 — d infinite perturbed lattices for which
we have shown the sum for the force to be well defined and given by Eq. (3.10), we

then have
47TGp0

a3
where we have used that the mean comoving mass density py = Xng (i.e. physical
mass density when a = 1). As in the static case, this equation of motion remains
valid at all times if we exchange the labels of particles when they cross, so that they
bounce instead of passing through one another.

For the case of an Einstein de Sitter (EdS) universe, which corresponds to C' = 0
in Eq. (3.59), a(t) = (67Gpo)'/?t*/3 and Egs. (3.64) simplify to

ii; + 2H1; =

i+ —1i; (3.65)

3T 3t

of which the independent solutions are wu;(t) oc #*/3 and u;(t) o< t~! [which are
simply the well known growing and decaying solutions for small perturbations to a
self-gravitating fluid in an EdS universe (see, e.g., [126])]. The evolution in between
“collisions” is thus given by

o = 3636
o [g (%)2/3 - g (%)_1] ' (3.66)

Note that, from Eq. (3.66) the determination of the crossings in these models, instead
of a quadratic equation in the static model, thus involves the solution of a fifth order
equation (for t/3).
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3.3 Discussion of previous literature
Static models

A few previous studies [10,150,151] have considered static 1 —d toy models, defining
the force on the right hand side of Eq. (3.52) as the derivative of a potential, which
is the sum of the contribution from the sheets in a finite system of size L, and an
additional one due to a uniform negative background. This is exactly the “naive”
version of the Jeans swindle discussed above, and corresponds exactly to the pre-
scription Eq. (3.9) for the calulation of the force (with L finite). The authors of [10]
discuss explicitly the problems associated with taking the infinite system limit. As
a result they limit their analysis only to a case for which their prescription gives a
unique and finite result: a finite number of particles displaced off an infinite perfect
lattice, modelling a finite localized perturbation embedded in an otherwise uniform
universe. It is simple to verify that equation of motion for these displacements is
then exactly Eq. (3.54), which we have now shown to be valid for the infinite lattice
with perturbations which do not break the lattice translational invariance.

In [150,151], on the other hand, the dynamics is formulated for a system of finite
L, and the problem of the definedness of the force in the infinite system limit is
not explicitly addressed. Instead it is dealt with implicitly by assuming that the
finite system is symmetric about some point. Taking this latter point as origin of
coordinates, the top-hat prescription Eq. (3.9) for the force at coordinate position
x may then be rewritten as

F(z) = =2gN(0,z) 4+ 2gnozx , (3.67)

in which the size of the system does not explicitly appear. Labelling the particles
by their position with respect to the origin (¢ = 1...N), the force on the i-th particle

may then be written
L

i [ (5) -] s

where x; is the position of the particle. For any finite system the quantity in brackets
can be considered as the displacement u; of the particle ¢ from its “original” lattice
site [at (¢ — 1)L/N]. Thus the equation of motion for the particles is again identical
to that we have derived.

We note again that we have derived this force law without the assumption of
symmetry (and without the explicit introduction of a background). Further, and
most crucially, we have shown it to remain valid for a certain class of distributions
when the infinite volume limit is taken — perturbed lattices without crossing and
displacements of finite variance. In this respect we underline, as we have done in
Sect. 1, that while in the formulation of [150] the same equations of motion Eq. (3.54)
are valid for the particles in any finite symmetric system, this does not mean that
the infinite system limit is well defined, even with the assumed symmetry. It is
illustrative to see what “goes wrong” when the infinite system limit is taken, for
example, for the case of a Poisson distribution, i.e., when we consider a system
of size L in which we distribute N particles randomly, and the take L — oo at
fixed ng = N/V. The problem is that forces, although defined at any finite L,
by Eq. (3.68), diverge as L does. This can be seen by considering the statistics
of the displacements as a function of I — the variance diverges, violating a crucial
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Figure 3.3: The variance of the displacement u; (see text) as a function of a particle’s
ordered position z, calculated for one thousand realizations of one thousand particles
randomly placed in an interval.

assumption in our derivation — or more directly from the force written as Eq. (3.67):
the force on a particle at x, as it is proportional to the fluctuation in the number
of particles in the interval [0, z] about its average value, grows in proportion to /.
This means that the typical force on a particle not only diverges as L does, but that
in a finite system its typical value depends on the position of the particle with respect
to the boundaries. This is illustrated in Fig. 3.3, which shows the variance of the
displacement u; (as defined above as a function of i, as measured in one thousand
realizations of one thousand randomly thrown particles. In a typical realization the
force on a particle in the centre of the box is thus much larger that on a particle at the
boundaries. In practice this means that the evolution of clustering in a symmetric
finite system of initially Poisson distributed particles is, right from the initial time,
global in character, and explicitly size dependent. Such behaviour can be seen in
1 — d simulations reported in [151] from such initial conditions, which contrasts
qualitatively with the local clustering characteristic of the 1 — d (and cosmological)
simulations which we will describe in the next section.

Expanding models

We note first that Eq. (3.64) coincides exactly with that obtained in the so-called
Zeldovich approximation (see, e.g., [29,126]), when u; is replaced by a vector func-
tion u(x). This approximation describes the evolution of displacement fields u(x)
engendering small amplitude fluctuations to a self-gravitating fluid in an expanding
universe, and can be obtained rigorously by a perturbative treatment of the full fluid
equations [29] in the lagrangian formalism!?. For the case of one-dimensional per-
turbations it is well known (see [126] and references therein) that this approximation
becomes exact, up to the time when caustics form, corresponding to the crossing

10x is a lagrangian coordinate and the fluid is exactly uniform when u(x) = 0.
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of “sheets” of fluid (i.e. particles in our case). It is thus, perhaps, not surprising,
a posteriori, that we recover exactly the Zeldovich approximation for the motion
of discrete sheets up to the time they cross: as the pair force between sheets is
independent of separation, the only way a sheet can “see” that the force sourcing its
motion is discrete, rather than continuous (as in the fluid limit), is when it crosses
other sheets.

Eq. (3.64) can equally be derived [89,105] using a perturbative treatment of the
dynamics of an infinite perturbed lattice (in 3 — d) of particles. For plane wave
displacements of the particles with a wave-vector orthogonal to one of the lattice
planes, the amplitude of the displacement wave obeys exactly this equation in the
limit that the discreteness of the mass distribution in these orthogonal planes is
neglected. This latter assumption is weaker than that used in this framework to
derive the Zeldovich approximation for a general perturbation, which would require
also that the displacement be of long wavelength compared to the discreteness scale
in the direction parallel to it.

In the studies of [145,157], the authors study exactly the equations of motion
Eq. (3.64) for the displacements of sheets perturbed off a perfect lattice (as in
cosmological simulations). They adopt these equations arguing that they represent
the fluid limit for 1—d perturbations in a 3—d expanding universe. While before sheet
crossing (i.e. the formation of caustics), as discussed above, this is indeed known
to be true — these equations are just the Zeldovich approximation which is, in this
regime, exact — the extension to longer times is argued to be valid because the
“collisionless” sheets of fluid will simply pass through one another. Our derivation
of these equations shows that this in fact corresponds to the discrete particle/sheet
model. Indeed we have not taken the fluid limit in our derivation, and the equations
do not represent the fluid limit of this model. It simply happens to be the case that
in this model, before crossing, the equations correspond with those in the fluid limit,
for the physical reasons we have mentioned above. After crossing this equivalence
breaks down, and the prescription used by [157] to “analytically continue” the fluid
model beyond its regime of validity actually maps onto this discrete particle/shell
model.

The other two groups who have considered 1 — d toy models incorporating 3 — d
expansion have, as in this article, worked in a particle/sheet framework. Both the
original model, proposed in [135] and studied further in [111], and the subsequent
one proposed and studied in |7,8] and [112], derive their (different) equations of
motion by following, formally, the steps described above leading from Eq. (3.61) to
Eq. (3.58). The force on the right hand side of Eq. (3.57) is simply that due to the
sheets, calculated in the analogous manner'!, i.e.,

P = 2nGE Llim sgn(r; — 1) . (3.69)
e r;€[—L,L]

The change to comoving coordinates, when assumed also to rescale the mass in the

Tn [135] the force term is simply denoted E;, without an explicit prescription for calculating it.
It can be inferred from the description given subsequently of the numerical simulations that the
implicit summation is the symmetric top-hat centred at the spatial origin. In [7,8], on the other
hand, the top-hat regularisation is explicited.
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sheets in the orthogonal direction (so that X — 3/a?), gives

T + 2H;
2nGY | .
= = ngrolo Z sgn(x; — ;) + 2nox; |
z;€[—L,L]|
(3.70)
provided that a(t) obeys the equation

a ArG
—=——0. 3.71
a a3 o (3.71)

As above py = ¥ng is the mass density (in 3 — d) when a = 1.

The Egs. (3.70) are those adopted by [7,8,111,112,135]. The term which we have
written on the right hand side of the equation corresponds exactly to the prescription
Eq. (3.9) for the calculation of the force. It incorporates the required subtraction of
the effect of the background, so that motion in comoving coordinates is sourced only
by perturbations to uniformity. Just as in the static models of [10,150] discussed
above, which are obtained formally by setting @ = 1 in Eq. (3.70), this force is well
defined only if symmetry is assumed about the chosen origin in the point distribution.
This is indeed the assumption made in the numerical studies of [7,8,111,112,135].

The difference between the models of [111,135] and of [7,8] (studied also in [112])
arises only in what they assume about the scale factor a(t). The former authors
impose an EdS cosmology behaviour for the scale factor, a(t) o t2/3, and require
that it is a solution of Eq. (3.71). Comparing Eq. (3.71) and Eq. (3.59) we see that
it corresponds to imposing a Hubble expansion sourced by a mean density three
times the physical mass density of the sheet (or, equivalently, assuming that the
gravitational constant is not the same for the background as for the perturbations).
Refs. [7,8], on the other hand, simply impose that a(t) be the EdS expansion, with
the right normalization. This amounts to adding “by hand” a term to the derived
equation [112]. Tt corresponds effectively to simply replacing the “Jeans swindle”
3 — d force term in Eq. (3.58) by the prescription Eq. (3.9). This differs from the
“derivation” we have given above for Egs. (3.63) only in the form of the Jeans swindle
adopted. For the case that symmetry about the origin is assumed, we have the same
equations of motion. In a finite system Eq. (3.68) is valid and so the equations of
motion in their numerical simulations reduce exactly to Eqgs. (3.64).

In conclusion the equations of motion Eqs. (3.64) are exactly the same as those
used by [145,157], and by [7,8,112]. The only difference in practice between all
these studies are the initial conditions adopted and also the analysis of the resultant
clustering given. Rather than working in the cosmological time variables, the latter
authors define, a new time coordinate 7 = /2/3Int. Egs. (3.65), for the case of an
EdS universe, then take the very simple form

d*u; 1 du,
. ——— . = Uy . 372
dr? + V6 dTt Y ( )

In these variables the model is thus equivalent to an infinite set of inverted oscillators
which bounce elastically, with an additional constant damping. Because of the

100



CHAPTER 3. 1— D GRAVITY IN INFINITE POINT DISTRIBUTIONS

fifth order equation which must be solved to determine the crossings (now for the
parameter t'/3 = ¢7/V6), the model has been dubbed the “quintic” model by the
authors of [8].

The model of [111,135], on the other hand does not impose on the sheets the
physical 3 — d expansion. Following the same approach as for the quintic model
previously defined, we obtained an equation of motion

dQUZ‘ 1 dul
dau 3.73
dr? + V2 dr Y ( )

Then it simply corresponds to Eq. (3.72) with a different damping term.
we note however that, in the derivation of [135], any function a(t) satisfying
Eq. (3.71) can be adopted with the same consistency. The only way in fact in which
the derivation of the 3 — d equations can be rigorously adapted to 1 — d is by using
the 1 —d expansion law derived from Eq. (3.69) in the limit of uniformly distributed
sheets. This is
a(t) = 1+ Hot — 27Gngt*, (3.74)

where Hy = H(t = 0), i.e., free fall in a constant gravitational field of strength
47Gng. As this is very different to the 3 — d expansion law it is probably not a
variant of the toy model which is of practical interest.

4 Conclusion

We have revisited in this chapter a basic question concerning the definition of the
gravitational force in 1 —d in infinite point distributions. Previous definitions of this
quantity in the literature have required the assumption of the existence of a special
point (centre) in the distribution, i.e., explicit breaking of statistical translational
invariance which is typically a feature of the infinite distributions one instead wishes
to study. We have noted that the problem, associated with the non-converging
surface fluctuations in such distributions, may be solved by employing a definition
using a smooth screening which is sent to zero at the end of the calculation. We have
then shown explicitly that this leads to a well defined force for a specific class of
infinite perturbed lattices — those subject to perturbations of finite variance which
do not make particles cross. In this case, when the mean displacement of particles
is also assumed to vanish, the force on each particle take a unique value which is
simply proportional to its own displacement from its lattice site. We note that we
have assumed also that variance of the displacement fields is finite, which restricts to
initial density fluctuations which have a sufficiently rapidly decaying power spectrum
at small wavenumber (specifically, such that P(k —) ~ k™ where n > 1, analagous
to the same condition with n > —1 in 3 — d).

We have then discussed different dynamical toy models which incorporate this
definition of the force — the simple conservative Newtonian dynamics and one which
incorporates a damping term mimicking the effect of 3—d expansion (the quintic and
the RF models). Since the crossing of particles is equivalent, up to labels, to elastic
collisions with exchange of velocities, the configurations generated by such dynamics,
at any finite time, are always in the class of infinite perturbed lattices for which the
force is defined (provided such a configuration is the initial condition). This is the
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case because, at any finite time, collisions/crossings may only correlate particles up
to a finite distance, and the correlation properties of displacements at asymptotically
large separations therefore always obey the required conditions. The equations of
motion are then simply those of an infinite set of inverted harmonic oscillators (with
damping in the expanding case) with centres on the original lattice sites, and which
bounce elastically when they collide. In this context we have also discussed in detail
the different formulations of these models in the previous literature.
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Chapter 4

Dynamics of infinite one dimensional
self-gravitating systems:
self-similarity and its limits

In the previous chapter we have defined gravitational forces in 1 — d in an infinite
system of particles. We have shown that for a particular class of initial condi-
tions, 7.e. a class of perturbed infinite lattices, which are point processes relevant to
cosmological N-body simulations, the dynamics is that of particles in inverted har-
monic oscillator potential centred at the lattice sites, which bounce elastically when
they collide. The effect of cosmological expansion analogous to 3 — d simulations
in cosmology can be described by a simple fluid damping term. In this chapter, we
present the results of a numerical investigation of the dynamical evolution of these
toy models.

In the next section, we start by introducing the numerical simulation: integration
of the dynamics, choice of units and initial conditions. In section 2, we present results
of this 1—d numerical investigation, which shows that these toy models are physically
interesting in so far as they present very strong qualitative similarities with the
evolution of the analogous 3 — d systems. Indeed, using as initial condition the
particular class of stochastic point processes whose power spectra are simple power-
laws Py (k) o< k™ with n = 0 and 2, the 1 — d system exhibits interesting features
as the hierarchical nature of the clustering, the mechanism of linear amplification
determining the growth of the non-linearity scale, as well as “self-similar” behaviour.
We also observe a qualitative difference between static and expanding cases, like
those which can be seen in 3 — d. This is brought to light through the study of the
temporal evolution of statistical measures such as the normalized mass variance, the
correlation function and its Fourier transfrom, the power spectrum. We consider
also the qualitative behavior of the shape of the correlation function as a function
of n, the exponent of the initial power spectra, and the nature of the model (static
or expanding case), and find again similar behaviours as in 3 — d.

In the rest of the chapter, we then explore aspects of these behaviors which one
cannot easily probe with 3—d numerical simulations due to numerical difficulties. We
study in particular, in section 3, structure formation for the particular class of initial
condition corresponding to “causal fluctuations”, i.e. P, (k) oc k*. We investigate
the absence or presence of linear amplification, particularly whether self-similarity
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applies in this case and how the non-linearity scale grows.

In the last section, we explore further what can be learnt about the strongly clus-
tered regime, and in particular the exponents which characterize it. The advantage
of the 1 —d toy model is that it allows us to probe the development of self-similarity
at smaller scale. In 3 — d, in contrast, this is not possible because of the presence of
a smoothing at small scales, which limits spatial resolution. Numerical investigation
allows us to identify the lower cut-off of the self-similar regime, and to identify its
behaviour. We observe that our results, for the expanding (i.e. damping) mod-
els suggest that a “stable-clustering” hypothesis can be made, analogous to that
sometimes proposed in 3 — d. Using this hypothesis we derive a simple analytical
prediction for the exponent of the power spectrum in the self-similar regime. Excel-
lent agreement is observed with the results of the simulations for a range of n and
different values of the damping term modeling expansion.

1 Numerical simulation

In this section, we outline how our 1—d N-body simulations are performed. We start
by explaining the heap algorithm we use to integrate the dynamical equations of our
systems. We present the way we generate numerically the different initial conditions,
both for the particles positions and velocities. We define the estimators of statistical
quantities used to study the dynamical evolution of 1 — d self-gravitating systems:
correlation function, mass variance and power spectrum. We also introduce the
appropriate unit of time based on the characteristic timescales of the system. Not
only 1 — d toy model presents the interest of being “exact”, i.e. limited only by the
machine precision, but also, as we will see, gives the opportunity to probe a much
larger range of scale than in analogous 3 — d simulations.

1.1 Integration of dynamics

In the 1 — d case, we have studied in Chapter 3 that for a class of perturbed lattices
(which are the configurations used as initial conditions in cosmological simulations)
the force is given exactly as a trivial function only of the particle displacement.
Thus, to simulate numerically the evolution of a 1 — d infinite system, the step
in which the force is calculated is trivial, and does not involve any approximation
of an infinite sum as in 3 — d (see Chapter 2). The only question which arises is
how to treat the boundary conditions of the finite sub-system of this infinite system
which one can simulate. Periodic boundary conditions, i.e particles which leave the
finite interval on one side enter at the other side, are the evident simple choice, as
they have advantage of maintaining (discrete) translational invariance. We could
however, easily use other boundary conditions (e.g. simply neglecting mass loss,
or injecting mass in a stochastic manner to compensate average loss). Our results
should not depend on this choice, just as they should not depend on the size of the
periodic box.

We start with a subsystem of N particles initially distributed in a 1 — d regular
lattice, with lattice spacing ¢ > 0, i.e. the position of the n'* particles is X,, = n/,
with n € [0,(N — 1)]. We then apply a displacement field U,, to this system: the
position of the n'* particle then becomes X,, = nf + U,.
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As far as the dynamical evolution of the displacement field in the static and ex-
panding cases is concerned, whe have defined in Chapter 3 the generic expression for
the equations of motion for our 1 —d toy model between particle collisions/crossings:

d2 U; i dul
dt? dt

where

e [' = 0 corresponds to the static model, where t = t, with ¢, the static time
1

variable defined in the units of 74, = e

o ' = % corresponds to the quintic model (i.e. “EdS” like), where t = \/gln(tE/to)
is a dimensionless time variable with ¢z the expanding time variable defined in
the units of #.

o I'= % corresponds to the RF model, where ¢t = ? In(tg/ty) is a dimensionless

time variable with ¢z the expanding time variable defined in the units of .

As we consider a system of colliding particles, each particle keeps its own label 7.
The effect of the collisions is to exchange the velocities of the couple of particles
concerned. Between collisions, the solutions of these equations are given by

uS(t,) = et/ (Ui(o) ;rvi(())) 4 ot/ (Uz‘(o) ;vi(0)> )

u?(t@) _ (%)2/33(’&2(750) *gtovz(to)) n (i_(i)l (2ul(t0) —53150’1}@(750)) ’ (43)
uﬁF<te) _ <i_z)1/3 (2ul(t0) +33t0’l]2<t0)) n <i_z> —2/3 (uz<t0) —33t01)l(t0)) 7 (44)

where u?(t,), u%(t,) and uFF(t,) represent the displacement of the i** particle of
the lattice between collisions in the static, quintic and RF models. The subsequent
crossing is determined at each time, and the positions and velocities of the crossing
particles are updated accordingly. For numerical efficiency we have implemented the
optimized heap-algorithm (see e.g. [120] for a detailed study): 1—d systems have the
important characteristic that the set of positions is well-ordered. This means that
all (N —1) possible collisions between N particles can be easily enumerated and that
the neighbors of two colliding particles can be found in O(1) operations if we keep
the particles sorted by position. It is then possible to built an event-driven algorithm
to simulate a set of particles by finding the minimum of all possible collision times,
evolving all particles up to that time and repeating the procedure. At first sight this
involves O(N) operations per collision. However, in 1 — d, it is possible to update
only the states of the two colliding particles and their next collision times with their
two nearest neighbors. Also, by using a heap structure, we can find the minimum of
the set of collision times using O(log V) operations per collision.

The basic idea of a heap structure is to put the key elements in a binary tree and
ensure that they satisfy the heap condition: the value in any tree node is smaller
than the value in its “child” nodes. This does not completely order the set, but
is enough to warrant that the smallest value in the heap is at the root. Also, the

105



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONAL
SELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

heap condition can be maintained efficiently: if a node value is modified so that
the heap condition is violated, we exchange the value with its parent node (if the
value decreased) or with the smallest of its child nodes (if the value increased) and
we repeat the procedure, moving up or down the tree until the heap condition is
satisfied again, or we reach the root or leaves of the tree.

We now explain how the heap-algorithm is implemented in our N-body simula-
tion. We consider the motion of N colliding particles in 1 — d, and require that the
equations of motion for particles can be integrated in between two successive colli-
sions. We construct arrays of size N which contain the states of the particles, such
as position, velocity and acceleration, at the time of their last collision, stored in
increasing order of the spatial coordinates. An additional state variable associated
to each particle is 7;, the time it last experienced a collision.

The algorithm starts by computing the collision time of each particle with its
neighbor to the right, and the results are stored in an array of size (N — 1), which is
then turned into a heap. So that we do not need to move the whole particles state
while processing the heap, we introduce an indexing array, Particle-Heap (PH].)),
mapping the position in the heap to the rank in space of the leftmost of the two
particles (j and j + 1) involved in that collision (see Fig. 4.1). To update the list
of predicted collision times of neighbors particles, we also need the index array
inverse to Particle-Heap, which we call Heap-Particle (H P[.]). Hence for all j in the
range 1 to (N — 1), PH[HP/[j]] = j and HP[PH|j]| = j. This condition will be
preserved at all times while we update the heap. Note that the collision times are
directly present in the heap, and that the two indexing arrays then realize exactly
the functions needed to implement the algorithm.

7 2 i 1 13
Leoll t-:c:t]I "ee tr}lc'.‘ll i Leoll Leoll
| 2 k N-2  N-1l
HP[j] = k
PH[1]=7
1 2 i N-1 N
XI xz -ee x] LR ] XN-I XN
Vi Vs Vi VN1 | VN

Figure 4.1: Representation of the structure of the heap algorithm implemented in our
1 —d N-body simulation (from [120]). It represents the two arrays PH[.] and H P[.].
The first array in the figure only contains the predicted collision times ordered as
a heap, while the second contains the particle states stored in increasing order of
spatial positions. The two indexing arrays allow to move back and forth between
the two sets.
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Once the heap has been built, the minimum collision time %,,;, is at the root. The
particles involved in the first collision, j = PH|[1] and (j 4 1), are selected and their
states evolved up to time t,,;, where they are rearranged by the collision (momenta
simply exchanged in the case of elastic collision), and 7; and 7,41 are set equal to
tmin- Next the new predicted collision time between j and (j + 1) is computed and
replaces the one at the root of the tree. The root might now not fulfill the heap
condition, so the heap array is re-arranged by sifting down the root value, using at
most O(log V) operations.

The next collision times of particles j and (j + 1) with their other nearest neigh-
bor, (j — 1) and (5 + 2), respectively, also need to be re-computed (see Fig. 4.2).
To do this, particles (7 — 1) and (5 + 2) are temporarily moved forward in time
up to t,,,, where their new collision times are computed and put into the heap
at HP[j — 1] and HP[j + 1], replacing the old ones. As a consequence, the heap
has to be re-arranged two more times, again at a cost of at lost O(log N) for each
modification.

1= tmin

Il
=

. o o o

J-1 ] j#1 J+2

Figure 4.2: Intersection of the trajectories of particles 7 and 7 + 1 at time ¢ = ¢,,;,
(from [120]). The ringed intersections are the collisions/crossings that need to be
recomputed.

The heap is now again in a consistent state with the next collision time at the
root, and the whole procedure can be repeated. The evolution can be stopped
either after some fixed number of collisions Z, or when the predicted time for the
next collision becomes larger than some chosen final time 7T,,;. At the end, all
particles are moved forward in time from their own 7; to the final time which is
either T,,4 or the time of the last collision. The compexity of the algorithm is then
in the worst-case O(Zlog N) plus lower-order terms O(Z) and O(N).
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1.2 Initial conditions

As the structure of the algorithm which explains the numerical integration of the
equations of motions has been introduced, we present the classes of initial conditions
we study.

As discussed in Chapter 2, perturbed lattice initial condition allows one to pro-
duce a stochastic point process with a desired power spectrum, up to contribution
coming from the original lattice structure. As in general studies in cosmology we
will consider a class of lattices in which Pj,;(k) o< k™ , where n is a constant for
k < ky (where ky = 7 is the Nyquist frequency). Around and above ky, P(k)
becomes dominated by terms associated with the “pre-initial lattice”. Such initial
conditions are often referred to as “scale-free” in cosmology - because of the scale-free
power law behaviour - but it is important to underline that such initial condition
do contain at least two characteristic scales:

e the lattice spacing, which leads in k& space to the deviation from the power-law
behaviour at ky;

e the homogeneity scale at which the amplitude of the fluctuations are of order
one.

If the dynamics does not depend on the ultraviolet scale, such as the lattice spacing,
there is only one relevant characteristic scale in the initial conditions. If the dynamics
introduces no further scale (i.e. once the transients due to UV cut-off have gone)
one expects to find asymptotically the “self-similar” behaviour we have discussed in
Chapter 2. In 3—d it was shown, using the BBGKY hierarchy, describing the matter
in the fluid limit, that in such a specific case (EdS and power law PS) one can find
solution of this kind for the phase space density. We will consider here a range of n
that corresponds to different relevant subclasses of initial conditions:

e n = 0 corresponds to a specific class of infinite perturbed lattices for which
the variance of the displacement field is infinite (see Chapter 3). Therefore,
it leads to a divergent force, analogous to the range —3 < n < —1in 3 —d,
which is regulated therefore by the box size. However, this divergence of the
force does not prevent the dynamics of formation of structures from setting,
as it has been shown in [3] that what does really matter is the convergence of
the difference of the force between particles.

e n = 2 corresponds to a specific class of infinite perturbed lattice, the shuffled
lattice, for which the variance of the uncorrelated displacements is finite (see
Chapter 3), and which leads to a convergent force, analogous to the range
—l<n<4in3—d,

e n = 4 represents the limit of “causal process” which locally conserves mass.
This corresponds to the power generated by the “newly forming structures”
mechanism introduced by Peeble in [126] and discussed in Chapter 2.

Flat power spectrum: P, ;(k) < k° at small k

To generate the intial PS P, (k) oc kY at small k, we consider the canonical method
introduced in Chapter 2, which is based on the so-called Zeldovich approximation.

108



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONAL
SELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

The procedure is the following (see e.g. [49,137]): i) we set up a “pre-initial” config-
uration of the N particles: a simple regular lattice; ii) given an input theoretical PS
Py, (k) o< k°, the corresponding displacement field in the Zeldovich approximation is
applied to the “pre-initial” point distribution. The cosmological IC are usually taken
to be Gaussian, and the displacements are determined by generating a realization
of the gravitational potential

d(q) = Z ay cos(k.q) + by sin(k.q) , (4.5)
k
with ap = R, 7V]:,;tf(m and b, = R27”12§(k), where R; and R, are Gaussian random

numbers of mean zero and dispersion unity. We have seen in Chapter 2 that this
corresponds to generating a realization of a stochastic displacement field with PS
G(k) = Py (k)/k?* o< 1/k*. The motivation for the choice of this algorithm instead
of a simple Poissonian initial condition (i.e. particles randomly distributed in the
simulation box) consists in the fact that we can control the amplitude of the initial
condition, as it is done in 3 — d simulations.

The shuffled lattice IC: P,,;(k) < k* at small k

Following [71], we use the term SL to refer to the infinite point distribution ob-
tained by randomly perturbing a perfect lattice: each particle on the lattice, of
lattice spacing ¢, is moved randomly (“shuffled”) about its lattice site, each par-
ticle independently of all others. A particle initially at the lattice site R is thus
at z(R) = R+ u(R), where the random displacements u(R) are specified by the
factorised joint probability density function

Plu(R)] = [ plu(R)). (4.6)

The distribution is thus entirely specified by p(u), the probability density function
for the displacement of a single particle. We study evolution from SL with the
following PDF:

0 otherwise (4.7)

p(u):{ 2A ifu e [—A, Al

Each particle is therefore moved randomly in an interval of side 2A centered on
the corresponding lattice site by taking into account the periodicity of the sys-
tem. The resulting distribution is a shuffled lattice. We assume that A < ¢. The
average displacement of a particle is (u) = 0 and the variance of the shuffling
(u?) = [du u’p(u) = A%

We can now estimate the PS of a SL. Defining the Fourier transform d; of the

density contrast 6, = %O’”O as
0 if k=0
- 4,
O { % Zi\; exp(—ikz) otherwise (4.8)
we obtain X
Op = N Z exp|—ik(fn + u,)], (4.9)

n



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONAL
SELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

where n is an integer labelling the particles of the system and where u, is the
displacement of the particle on the site n. For k such that (k u,) << 1, we obtain,
by using the approximation exp(iz) ~ 1 — iz — z%/2 and (u,) = 0, that the PS is
given by

N » 1 2
P(k) = (|0x]) = 3 > exp[—itk(ny — no)|{1 - o {kun, —uny)[)}. - (4.10)

ni,n2

The independence of u,, and w,, if ny # ny implies that
<[k<un1 - un2)]2> = 2A2k2(1 - 5711,”2) ) (4'11)
with d,,, n, = 1 if ny = ny and 0 otherwise. Therefore

K2A2 1 — A2
P(k) ~ ~—— + —

Z exp[—ilk(ny — ng)]. (4.12)

ni,n2

Limiting our analysis to the leading order in the behavior for small values of k, we
obtain )
P(k) = —A?k? 4.13
(b~ % (113
when k is small. The SL configurations are therefore specified by two parameters:
the lattice constant ¢ and the shuffling parameter A. An alternative convenient
characterization would be given by ¢ and the adimensional ratio A//.

Causal power spectrum: P;,;(k) oc k* at small k

To generate the intial PS in k* at small k, we follow the argument in [2]: we start
with an arbitrary uniform spatial point-particle distribution with a known PS. We
suppose that each of these particles, called “mother” particles in [2], splits into a
“cloud” of m identical “daughter” particles, where m is a constant. Each daughter
particle is then assumed to be displaced from its mother position by a stochastic
displacement which may, or may not, be correlated with the displacement of other
particles. In other words each set of m particles initially lying at the same spatial
point “explodes” forming a “cloud” of particles around it; this procedure was called
in [2], a stochastic cloud process.

We suppose that the displacements applied to different particles belonging to the
same mother are symmetrically distributed with arbitrary pair correlations. One can
choose, for instance, these correlations in order to fix certain moments of the mass
dispersion of each cloud. To generate a k* initial condition, we apply this result
to the specific case that the mother distribution is a regular lattice, and we thus
derive, following [2], the interesting small & behaviour of the PS of the daughter
distribution.

For a mother distribution corresponding to a regular lattice, we can write the
microscopic particle density as

n(z)=>» 6(z—R), (4.14)

110



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONAL
SELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

where R is the generic lattice site. In this case, the PS of n(z) is
Sul(k) = 2mng »  6(k— H), (4.15)
H#0
where the sum is over all the vectors H of the reciprocal lattice but H = 0. Note

that this vanishes identically in the first Brillouin zone, and therefore in this region
of the k-space the following relation holds exactly:

Sp(k‘) -1+ (m o 1)2(—ik‘)l<u ; U)l B m) g(_lk)l%

=0

)2 , (4.16)

where p = mn is the microscopic particle density of the daughter particles distri-
bution, and where u and v are the displacements applied to two different particles
belonging to the same cloud. Expanding the terms (u — v)" in Eq. (4.16), we obtain

S,(k) = io <_;k)l i(—l)j (D [(m — Dud x 07 — mud X W] : (4.17)

=1 ) j=0

Making the additional assumption of statistical symmetry in the displacements,
p(u) = p(—u), all the terms with odd [ in Eq. (4.17) vanish.

Let us now analyse in detail Eq. (4.17), denoting by O, (k) its term proportional
to k™. The lowest order non-zero term is n = 2:

@@ﬁ{?+@w&ﬁ?ﬂﬁ. (4.18)

It is simple to verify that [u2 + (m — 1)u x v] > 0 always, as required from the fact
that S,(k) is a PS. This quantity, however, given our symmetry hypotheses about
the displacement distribution, is nothing other than

m 2 —
<Zuz> :m[u2—|—(m—1)uxv} : (4.19)
Consequently the condition to have an identically vanishing Oy(k) term, and there-
fore a small k PS of order greater than two, is (3", u;)? = 0, or in other words,

zm: u; =0, (4.20)
=1

with probability one. This means that the center of mass of each cloud does not
move away from the mother particle when the displacements are applied. Clearly, for
m = 1, this condition can only be trivially satisfied by applying no displacement, in
which case the daughter distribution is the original lattice distribution. For m = 2, it
can be satisfied non-trivially: choosing the displacement of a first point with the PDF
p(u), the other particle is then displaced deterministically by (—u). The method we
use in this thesis then consists in starting with a distribution of N particles on a
regular lattice of lattice spacing ¢. We divide the total set of N particles (N even)
into N/2 subsets of couple of particles. Let us denote these subsets (i, + 1) where
i =2 k+1 with k € [0; 5 —1]. We then displace particle i with the PDF p(u;) such

that e
p(ui) = { 0 otherwise. (4.21)
Its neighbours (i + 1) is then displaced deterministicaly by u;11 = —u,.
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Initial velocities

To complete information about the initial conditions, we must choose the initial
velocities. One possible choice would be to consider the system of particles at rest,
i.ev; = 0 for all i € [0, N — 1]. However, in exploring the analogy with cosmological
simulation there is another choice which is natural. This is that corresponding to
that given by the Zeldovich approximation (which becomes exact in 1 —d) discussed
in Chapter 2. This consists in the purely growing mode of the displacement field in
Egs. (4.2), (4.3) and (4.4) at early time, i.e. obtained by setting the coefficients of
the second term in these equations to zero, such that

Uf@s) — els/Tayn <M) , (4.22)
B = () ), (4.2
R e (424

where u?(t,), u®(t.) and uFF(t,) represent the displacement of the i** particle of
the lattice between collisions in the static, quintic and RF models. Its only effect
on the dynamical evolution will be to make the transient to self-similarity, which
we will discuss below, slightly shorter. We then obtain the conditions on the initial

velocity field

v (0) = ) (0), (4.25)
vP(ty) = 3%0“?(750), (4.26)
W t0) = ol (t). (127)

Whe then have, up to the first crossing/collision

up(ts) = ui(0)e’s ™, (4.28)
uP(te) = ui(to)C—Z)Q/g, (4.29)
uff(te) = u@-(to)(i—Z)Ug- (4.30)

1.3 Choice of units

We now explain our choice of units of length, mass and time for the 1 — d system.
We simply fix our unit of mass equal to the particle mass, m = 1. As unit of
length we choose the initial lattice spacing ¢ = L/N = 1, where L is the size of the
simulation box and N the total number of particles in the system. To follow the
dynamical evolution of the 1 — d toy model, we choose the unit of time considering
Eq. (4.1) and the discussion below it. Indeed, Eq. (4.1) simply incorporates the
choice of the different time units: in the static case we choose the so called dynamical
time 74, = ﬁ and in the expanding case (quintic and RF) we consider the

dimensionless time variable o = 3% In (i—f) For convenience, we fix 74,, = 1 = %,.
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Below we will compare the dynamical evolution in the static and expanding cases.
To do so it is necessary to define the relation between the different time variables
in the two cases (as there is a priori no connection between the two). An evident
possible choice of mapping is given by the very early time evolution (before first
crossing) of the displacement given by Eqs. (4.28), (4.29) and (4.30). If we choose

2 1
ts/Tayn = 3 In(t./to) and s/ Tayn = 3 In(t./to), (4.31)

in each case (quintic and RF) we map so that these early two displacements are
identical in each case. This mapping Eq. (4.31) allows us to associate to any ex-
panding simulation (corresponding to a certain value of T') a “static time variable”
t,.

In the continuum approximation, the displacements of the particles are related
to the density perturbation through the continuity equation § o« Vu. Considering
Eqgs. (4.28), (4.29) and (4.30) and the definition of the PS P(k) o (|6x|*), we simply
obtain then

Py(k,t,) = P(k,0)es/mam (4.32)
£\ 4/3
Po(k.te) = P(k.to) () (4.33)
£\ 2/3
PRF(k:,te):P(k:,to)<t—) . (4.34)
0

Considering that the PS in the static and expanding cases are initially identical,
i.e. P(k,0) = P(k,ty) we obtain the same relation as in Eq. (4.31). This means
that, with this mapping in these time variables, the linear regimes in the static and
expanding cases (quintic and RF) are identical at early time. The physical meaning
of this mapping extends however, as we will see, for beyond early time: the growth
of displacements reflects exactly that of the PS in the linearised approximation (cf.
Chapter 2). The mapping in fact relates times in different models (with identical
initial conditions) at which the PS will be identical, if linear amplification is valid.
We will see below that, as in 3 — d, linear amplification does indeed hold at all time
at sufficiently small k. The mapping of time chosen therefore relates evolved con-
figurations which remain approximately the same at the large scales where density
fluctuations are small.

In the following, we will only refer to the static time ¢, to compare the different
analysis in both the static and expanding cases. Let us note that we can derive a
generic relation between ¢ (i.e. the time variable in Eq. (4.1)) and the reference time
ts in the growing mode. We simply obtain from Eqs. (4.1) and (4.2) with 74, =1

ts=D() t, (4.35)
where D(T") = %( I+ vI?+ 4). This gives in the quintic and RF models respec-
tively

3
t=4/5t  and t=V2t,. (4.36)
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1.4 Statistical measures

In the previous chapters, we have talked about ensemble averages, that is averages
on all possible realizations of a stochastic process p(z, t). In practice, what we have is
only one or at most a few realizations of such a stochastic process. While in statistical
mechanics, ergodicity refers to equality between time average and ensemble average,
here it implies equality between space average and ensemble average. Therefore,
we have seen in Chapter 2 that if the stochastic process is ergodic, one (infinite)
realization suffices to obtain an ensemble average. Thus if we consider a quantity F'
depending on the stochastic process p(x,t) at some positions yi, ..., y,, we denote
(F) its ensemble average and F its estimator in the space average. We will use this
notation in the following.

The reduced two-point correlation &

In order to estimate the reduced two-point correlation function ¢ defined in Chapter
2, we calculate first an estimate of the conditional average density (p(z)),: we choose
randomly N, particles (centres) in the distribution resulting from one realization
of the considered stochastic process and for each of them we calculate the average
density in 1—d “spherical shells” of different radii, taking into account the periodicity.
This can be summarised by the following formula

N,

1 (&
o)y =~ > o Ni(z,02), (4.37)

=1

N. V(z,dz)

where V (z, dx) is the “volume” of the symmetric interval centered on the i particle
of a subset of N. < N particles randomly chosen among the N particles of the
system. Clearly the result is a function which does not depend on the sign of x but
only on its absolute value. An estimation of £(z,t) for z # 0 is then

- ~ p('rvt)p
é(l’,t) ~ 00

~1. (4.38)

Note that we will generally restrict ourselves to scales where |z| < L/2 in order to
avoid effects coming from the periodicity of the system. Actually if one looks at
larger scales, the estimators p(z,t), gives always a value close to py.

The power spectrum

For the power spectrum P(k,t) = P(|k|,t), we use the following quantity to estimate
it:

P(k,t)zNi S (g0, (4.39)

9 k<q<k+ok

where N, is simply the number of vector g considered in the sum. Note that to speed
up the calculation, not all the vector ¢ for a given modulus are taken into account:
at large k the density of vectors considered is smaller than at small k. Numerically
we simply use a logarithmic separation of the vector £ to represent the PS.
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The normalized mass variance

In the case of the normalized variance, we choose N, random points in the system
(i.e. mnot necessarily particles of the distribution) and calculate the mass inside
spheres centred on them: if NV;(R) is the number of particles in the sphere centred
on the point i and N(R,t) its average, i.e.

RD) = Ni Z Ni(R) . (4.40)

then
2

N i NP(R) = N(R, 1)

7L~ N(R,1)

(4.41)

2 Basic results: comparison with 3 —d

In this section, we focus our analysis on the dynamical evolution of a static and 1 —d
equivalent of an expanding “EdS” universe (i.e. quintic model), starting with initial
PS P (k) o< k° and k*. We present basic results, and underline the very strong
qualitative similarities with 3 — d.

2.1 Visual inspection

The evolution of clustering can firstly be illustrated by a visual inspection in con-
figuration space as well as in one-particle phase space (also called u-space). Shown
in Figs. 4.3, 4.4, 4.5 and 4.6 are snapshots of different initial conditions and evolved
configurations at increasing time for initial PS P, (k) o< k° and k2, in a static and
expanding (quintic) universe, for a system of N = 10° particles. The plots in the
left-hand panels show the number of particles N(7) in each lattice cell at each time,
which is proportional to the mass density in each cell. Defining the number density

contrast as
b(z) = 2L =10, (4.42)
L
where n(z) = SN dp(x — ;) is the microscopic number density and ng is the
mean microscopic density, the plots represent the evolution of §(z) + 1, where the
bar indicates an average over the unit lattice cell. In the phase space plots, in the
right-hand panels, each point represents simply one particle.

One sees clearly that, in both the static and expanding cases, the evolution
appears to proceed in a “bottom-up” manner: overdensities first develop at small
scales and subsequently at larger scales. This is typical of what is termed in 3 — d
the hierarchical formation of structures.

We note a difference between the case corresponding to an initial PS P, (k) oc k°
and the one corresponding to Py (k) k2. In the latter case, we see clearly the
appearance of voids in the simulation box whose size grows monotonically in time,
and which separate overdense regions. In the case of an initial PS P,;; (k) o k°, on
the other hand, we see that, while one can distinguish clearly overdensities which
emerge at increasing scale with time, they are not separated by voids. We will
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return in Chapter 5 to these differences in the context of a multifractal analysis of
the clustering in each case.

Furthemore, the sense in which the system is representative of the evolution of
an infinite system is manifest visually in the fact that the system does not appear
to have a preferred center - clusters form in apparently random locations without
sensitivity to the boundaries. Indeed we do not follow the evolution for longer times
than those shown precisely because the system then begins to be dominated by a
single non-linear structure. This is a regime in which we are not interested since it
is evidently strongly affected by finite size effects. The maximal time to reach this
regime depends not only on the number of particles N in the system (or size L of
the simulation box), but also on the amplitude of the displacements.
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Figure 4.3: Evolution in configuration space (left hand panels) and in one particle
phase space - p-space - (right hand panels) starting with an initial PS P;,;; oc k° for
the static model at time ¢, = 0,4,6,7,8. The unit of length is given by the initial
lattice spacing ¢ = L/N and thus L = N = 10°.

T=0 T=0
25 +10
-10
0 10° 0 10°
T=56 T=6
25 ) \ +100
! o 100
0 10° o 108
T=10 T=10
> 50 i Iy,| +800 é
] .
= I oo MLl 3
2 «h]wtr (Pt %1 Wt 5
] i IR y A
5 WMMWMMMMW kUi VR TR P
0 10% 0 10%
T=12 T=12
50 . g+5000
| I | i I ' ‘ e | Tagel g, " 'i""’w"' iq Wy,
-5000
0 10° 0
= T=14
50 = E‘- . +15000
* d?‘ P ‘}’..1- - —p:“"\‘ - o ﬂ;
~ -15000
0 x 105 0 x 10°

Figure 4.4: Evolution in configuration space (left hand panels) and in one particle
phase space - p-space - (right hand panels) starting with an initial PS P,; oc k?
for the static model at time ¢, = 0,6, 10,12, 14. The unit of length is given by the
initial lattice spacing ¢ = L/N, and thus L = N = 10°.
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Figure 4.5: Evolution in configuration space (left hand panels) and in one particle
phase space - p-space - (right hand panels) starting with an initial PS P;,; oc kY for
the expanding (quintic) model at time ¢, = 0,4,6,7,8. The unit of length is given
by the initial lattice spacing £ = L/N, and thus L = N = 10°.
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Figure 4.6: Evolution in configuration space (left hand panels) and in one particle
phase space - p-space - (right hand panels) starting with an initial PS Pj,; o k?
for the expanding (quintic) model at time ¢, = 0,6, 10,12, 14. The unit of length is
given by the initial lattice spacing ¢ = L/N, and thus L = N = 10°.
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Memory of initial conditions

It is interesting to compare visually the evolution of clustering in the two cases
(static and expanding). Note that the simulations are started for each value of n
from identical initial conditions (i.e. the same realization of the displacements). We
show in Figs. 4.7 and 4.8 the evolution of the density field, smoothed, as in previous
plots, at the scale of initial lattice spacing, for initial PS P, (k) oc k° and k2.

We see that the principal structures are formed approximately at the same spatial
locations in the two cases. That our choice of “time correspondence” Eq. (4.31) is
appropriate is, as we will see below, reflected in the fact that, if we smooth the
structures on large scale, the two configurations strongly ressemble one another.
This is indicative of the central role of the linear amplification of density fluctuation
discussed in Chapter 2, which leads to the development of structures from the “seed”
overdensities in the initial conditions. The amplitude of the density field in the
expanding case (blue representation in Figs. 4.7 and 4.8) is clearly typically higher
than that in the static case (red representation in Fig. 4.7 and 4.8). This can
be explained by the fact that in the expanding case there is simply an additional
damping term: as we will discuss in detail below, the effect of this term is that
it simply causes, in the highly clustered regions, the structures to “shrink” in size
compared to the static case. This “shrinking” is induced by the “cooling” associated
with the damping term.

80
|

density
40

r T 1
0 50000 100000

Figure 4.7: Density field (smoothed on initial lattice spacing) for the static (red)
and expanding (blue) models obtained from identical initial condition for an initial
PS Pi(k) oc kO at t, = 8.
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Figure 4.8: Density field (smoothed on initial lattice spacing) for the static (red)
and expanding (blue) models obtained from identical initial condition for an initial
PS Py (k) oc k* at time t, = 14.

We show in Fig. 4.9, a spatial zoom in the case of Pi;(k) oc k?: starting with
a subsystem of width of approximately 3.10* (in units where the size of the box
L = N = 10°) selected out from the simulation box, we perform a zoom, between
each plot, by about a factor of five, i.e. each plot shows a small part of the previous
one, the scale on the z-axis being multiplied in each case by this factor. Although
we are limited in this particular representation by the chosen resolution (we have
fixed the size of the bin in the histogram equal to the initial lattice spacing), we see
that our numerical simulation gives the opportunity to resolve non-trivial clustering
in the system over a large range of scale (in 3 — d it is typically limited to two or at
very most three orders of magnitude). At large scales, we observe that the structures
are formed at the same places in the static and expanding cases. However, when we
zoom in, we see that this correspondence is lost. This is a reflection of the fact that
the non-linear physics, which comes into play at smaller scales, wipes out memory
of the initial condition.
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Figure 4.9: Representation of the superposition of the density field in the static (red) and expanding (blue)
cases for an initial power PS P;,;;(k) o< k?. Between each pictures a “zoom” of factor 5 is applied, i.e. each
plot shows a small part of the previous one, the scale on the x-axis being multiplied in each case by this
factor. We are limited by the resolution chosen.
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2.2 Development of fluctuations in real space: hierarchical
clustering

In order to distinguish the non-linear regime of large fluctuations from the linear
regime of small fluctuations (in which the linear fluid theory introduced in Chapter
2 is expected to be valid), it is useful to consider, just as in 3 — d, the normalized
variance of particle number (or mass) in intervals, defined in Chapter 2, section 4.
The homogeneity scale, already defined in Chapter 2 , and denoted )\, marks this
cross-over from large to small fluctuations. An alternative definition of Ay is the
length-scale at which the normalized mass variance is of order unity, i.e.

o?(N\o) ~ 1, (4.43)

and o%(z) < 1 for Vo > )¢ (this definition of the homogeneity scale can however be
misleading when the average density is not a well-defined property of the system, as
in fractal particle distributions (see e.g. [71]), but is appropriate here where the mean
density is indeed non-zero and known exactly). Through the study of the normalized
mass variance we will probe in the following the validity of the linearized fluid theory
as well as the hierarchical nature of the clustering.

We start here with the analysis of the temporal evolution of o?(z). We show in
Figs. 4.10, 4.11, 4.12 and 4.13 its temporal evolution in the static and expanding
(quintic) cases, starting with initial PS P;,;(k) o< K and k2. In each case, we can
distinguish three distinct regimes: at large scales we see a simple amplification of the
initial functional behaviour. In the case of P, (k) o< k™ with n > 1, this corresponds
to o?(z) oc #72. This behaviour simply corresponds, as explained in Chapter 2,
to unnormalized mass fluctuations independent of scale, which is the most rapid
decay (proportional to the surface) possible in any spatially homogeneous point
distribution, i.e. 0%(z) o< 27%"! where d represents the dimension of the Euclidean
space (d = 1 in our model). In the case P(k) o k™ with n < 1 the large scales
behaviour simply corresponds to o?(z) oc 74", with d = 1. Thus for n = 0 we
have o?(z) oc 27 L.

At small scales, we observe in all cases 0?(x) oc z7!. This is the shot noise
behaviour intrinsic to any such distribution at small scales. The range of scales
between these two limiting behaviours is that of the non-linear clustering. We see
qualitatively that the “cross-over” to this non-linear regime from the linear regime
occurs approximately where the amplitude of the fluctuations is of order unity.

To study the validity of the linear theory and illustrate the “hierarchical” nature
of the clustering, we consider further the temporal evolution of the scale A(a,t)
defined by the relation

o <)\(a,t),t) =, (4.44)

where « is a chosen constant. Let us note that if we fix = 1, we recover the
definition for the homogeneity scale Eq. (4.43). We represent in Figs. 4.14 and 4.15
the temporal evolution of the scale A(«, t) for different values of o and for different
initial PS P;,;(k) o k% and k*. For a < 1, which corresponds to the regime of
small fluctuations, we see that the scale A(«a,t) increases in time, i.e. the scale at
which linear theory would be expected to remain valid increases. This means that,
as non-linearity develops at small-scale, homogeneity is still valid at larger scale for
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which we are still in the regime of small fluctuations. This is completely analogous
to what is observed in 3 — d simulations of hierarchical clustering, which is generic
in the evolution of 3 — d simulations starting from this kind of initial condition: the
initial small fluctuations at a given “non-linear” scale are amplified, as described by
linear theory, until the fluctuations in overdense regions collapse forming structures.

For an initial condition with a PS with n < 1 it is simple to derive the prediction
which follows from linear theory alone for the growth of the scale A(«, t) for a < 1.

Indeed, we have seen in Chapter 2 that for n < 1, o2(x,t) ~ k:dP(k:,t)’ N Thus

the linear amplification of P(k,t) discussed in Chapter 2, i.e. P(k,t) = A(g%) P(k,0)
for sufficiently small k, where A(t) may be infered in each case from the set of
Eqs. (4.32), implies

o?(z,t) = A(t) o*(z,0) (4.45)

i.e. the variance in real space is amplified linearly also. For P(k) o k", we have
o*(z,t) ~ —t, thus

o*(Ma.1).1) = a = A(t) 0*(M0,1).0) = A1) <;E;2;> - , (4.46)

which gives
Mo, t) oc A (t) = Ry(t). (4.47)

where Rg(t) is the scaling factor derived in Chapter 2 in the discussion of self-
similarity. We see in Figs. 4.14 and 4.15 that these behaviours in fact fit well the
behaviour of A(«, t) not just for n < 1 and a < 1, but they work also for n > 1 and,
at sufficiently long times, for a > 1 for both cases. This is a result of the self-similar
evolution of the system which we discuss in the following section in detail. Note
that, for n = 2, we have 02 - at large x, and thus o*(z,t) ~ R2(t)o?(z,0) ~
A(t) o*(z,0) at large x, i.e. we do not obtain the amplification of Eq. (4.46).

Let us note that the fact that in the case n = 0, for a« = 0.1 which correspond
to a scale of small fluctuations, the points at early time do not match the linear
amplification prediction (the line symbolizing R4(¢)) can be simply explained by the
fact that the mass-variance o%(z,t) is dominated at early times by large k.
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Figure 4.10: Evolution of the mass variance in the static case starting with an initial
PS Pii(k) oc K% at t, = 0,1,2,3,4,5,6,7,8. The z-axis is normalized by the box
size.
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Figure 4.11: Evolution of the mass variance in the static case starting with an initial
PS Pi(k) < k* at t, = 0,2,4,6,8,10, 12. The r-axis is normalized by the box size.
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Figure 4.12: Evolution of the mass variance in the expanding (quintic) case starting
with an initial PS P;,; (k) o< k® at t, = 0,1,2,3,4,5,6,7,8. The r-axis is normalized
by the box size.
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Figure 4.13: Evolution of the mass variance in the expanding (quintic) case starting
with an initial PS P, (k) oc k? at t, = 0,2,4,6,8,10,12. The z-axis is normalized
by the box size.
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Figure 4.14: Evolution of the scale A(«,t) defined in Eq. (4.44) starting with an

initial PS Py, (k) oc k° in the static case.
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Figure 4.15: Evolution of the scale A(«,t) defined in Eq. (4.44) starting with an

initial PS Py, (k) oc k? in the static case.
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Figure 4.16: Evolution of the scale A(«,t) defined in Eq. (4.44) starting with an

initial PS P,,;;(k) oc k% in the expanding (quintic) case.
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Figure 4.17: Evolution of the scale A(«,t) defined in Eq. (4.44) starting with an

initial PS P,,;;(k) oc k% in the expanding (quintic) case.
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2.3 Development of correlation in real space: self-similarity

We next consider the evolution of clustering in real space as characterized by the
reduced two-point correlation function, £(z), introduced in Chapter 2.

In Figs. 4.18, 4.19, 4.20 and 4.21, we show the evolution of |{(x,t)|, the absolute
value of the correlation function in a log-log plot. As expected from the study of
the temporal evolution of the normalized mass variance, we observe that starting
from &(x) < 1 everywhere, non-linear clustering (i.e. &(x) > 1) first develops
around the initial interparticle distance, and then progressively develops both at
larger and smaller scales. At any given scale the amplitude of correlation grows in
time monotonically. In particular, the scale of non-linear clustering which we can
define by £(Ayr) = 1 monotonically grows, reflecting again the hierarchical nature
of the clustering discussed in the previous sections.

Once the correlation has evolved in all cases a £ emerges in which one can in-
dentify three distinct regimes:

1. an approximately flat (constant) £(z,t) = &nq2(t) at small scale, below a scale

2. a region of strong clustering ¢ with approximately power law behaviour;

3. a region of weak clustering, £ < 1, where the clustering signal becomes very
noisy.

Let us now turn to the question of whether the evolution is self-similar. As
discussed in Chapter 2, this means that the system evolves towards a behaviour

E(z,t) = E(z/R,(1)), (4.48)

i.e. towards a dynamical scaling behaviour of the correlation function, where R(t)
is the scaling factor predicted by the linearized fluid theory. To test this we show
in Figs. 4.22, 4.23, 4.24 and 4.25 the appropriately rescaled version of the previous
figures, i.e. we represent the absolute value of the correlation function |£(z,t)| as a

function of x/Rs(t) where R4(t) = exp <2(tn77+t;f)) in 1 —d, with ¢,.; some arbitrary
time, has been introduced in Chapter 2. We observe that in all cases the curves
indeed superimpose well in a range of scale which grows monotonically in time, i.e.
the spatial range in which self-similarity is valid becomes more and more extended.
The “break” from self-similarity at small scales is clearly associated with a plateau at
these scales in the correlation function. Indeed such a plateau can only be consistent
with self-similarity if its amplitude does not evolve, which is clearly not the case. At
large scale the noise in & makes it difficult to assess whether self-similarity applies.
We will see in the next section that it does indeed apply as expected at large scales
where it reflects the validity of linear theory.

In the non-linear regime, and where self-similarity is valid, the correlation func-
tion fits to a good approximation in all cases

E(r) x a7, (4.49)

where v(n,I") depends on the index n of the initial PS and on the value of the
damping term I'. We give in Table 2.3 the values of the power index v(n, I') obtained
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intial PS | static (I' = 0) | quintic (I' = 1/v/6) | RF (I' = 1/V/2)
n=0 |[~7=0184+0.03] ~7=0204+005 |~=025+0.02
n=2 |~y=01840.03| ~=0344003 | =0.500.02

Table 4.1: power index y(n,I") of the correlation function in the self-similar regime
Zss(z) o< 77, for the different values of n and I' indicated. We consider both the
static and expanding (quintic and RF) cases. The different values of v and the
corresponding error bars are obtained with a linear interpolation. We see that the
power index v depends on the index n of the initial power spectrum and the damping

term T.

with a linear interpolation.

Note that in 3 — d similar trends are observed:

e 7 is independent of n for static model (see e.g. [11]);

e 7 increases with n in expanding (EdS) model (see e.g. [139]).

A striking difference between the static and expanding cases is that z,,;, decreases
very significantly in the expanding case, while it remains roughly constant in the
static case. We will come back to study more carefully these behaviours in section

4 below.
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Figure 4.18: Evolution in time of the reduced 2-point correlation function starting
with an initial PS Py, (k) o< kO in the static model. The z-axis is normalized by the
box size.
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Figure 4.19: Evolution in time of the reduced 2-point correlation function starting
with an initial PS P, (k) o< k? in a static universe. The z-axis is normalized by the
box size.

130



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONAL
SELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

Figure 4.20: Evolution in time of the reduced 2-point correlation function starting
with an initial PS P, (k) oc k% in an expanding (quintic) universe. The z-axis is
normalized by the box size.
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Figure 4.21: Evolution in time of the reduced 2-point correlation function starting
with an initial PS Pj,;;(k) oc k% in an expanding (quintic) universe. The z-axis is
normalized by the box size.
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Figure 4.22: Evolution in time of the correlation function as a function of z/R(?)
starting with an initial PS P, (k) o k° in a static universe. The z-axis is normalized
by the box size.
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Figure 4.23: Evolution in time of the correlation function as a function of z/R(?)
starting with an initial PS Pj,;;(k) o< k? in a static universe. The z-axis is normalized

by the box size.
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Figure 4.24: Evolution in time of the correlation function as a function of z/R(?)
starting with an initial PS Pj,;(k) oc k° in an expanding (quintic) universe. The
x-axis is normalized by the box size.
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Figure 4.25: Evolution in time of the correlation function as a function of z/R(?)
starting with an initial PS P(k) o< k? in an expanding (quintic) universe. The z-axis
is normalized by the box size.
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2.4 Development of correlations in reciprocal space

We next analyse the evolution of correlation as characterized by the PS for the same
cases.

Shown in Figs. 4.27, 4.28, 4.29 and 4.30 are the evolution of the PS in each of
the same four cases above. We observe in each case that

e at small k, there is a simple amplification of the initial fluctuation which has
indeed the appropriate simple power law form. This amplification corresponds
to the behaviour expected from the linearized treatment of the equation for a
self-gravitating fluid, 7.e. the linear amplification. This can be simply written
in the growing mode

P(k,t) = P(k,0) exp(2ts), (4.50)
where the relation is written in the reference time units %,;

e the range in which the initial PS shape is maintained, 7.e. over which simple
amplification is observed, becomes more reduced as time progresses. This
simple amplification, indeed, is observed in a range of k < kyp(t), where
knr(t) is a wave number which decreases as a function of time. The monotonic
decrease of kyp(t) just reflects the hierarchical nature of the clustering. This
is precisely the qualitative behavior one would anticipate as linear theory is
expected to hold only above a scale which, in real space, because of clustering,
increases with time;

e at all times, the PS converges at large wave-numbers (k > ky, where ky = 7

is the Nyquist frequency) to the asymptotic value 1/ng. This is simply a re-

flection of the necessary presence of shot noise fluctuations at small scales due
to the particle nature of the distribution.

The effect of expansion (i.e. the damping term in the equation of motion
Eq. (4.1)) is illustrated more clearly in Fig. 4.26. It shows, at ¢, = 8, the PS in
the static and expanding (quintic and RF) models starting with identical initial
conditions (i.e. the same realization of the displacements). We clearly see that the
linear regimes are superposed as expected with the growing mode. This also reflects
the effect of the damping term in the expanding cases. In the intermediate range of
k, i.e. knp(t) < k < ky, the evolution is quite different than that given by linear
theory. This is the regime of nonlinear clustering in which the density fluctuations
are large in amplitude.

Let us now examine how the self-similarity discussed in previous section manifests
itself in the behaviour of the PS. In 1 — d this corresponds to the relation

k P(k,t) =k Ry(t) x P(k Ry, tres) | (4.51)

where R,(t) is the time dependent rescaling of length, normalized by at some arbi-
trary time ¢,.5. As explained previously in Chapter 2, the small k£ behaviour of the
PS taken together with the fact that it is amplified at small k£ as given by linear
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10°

Figure 4.26: Illustration of effect of the damping term on the evolution of the scale
Kmaz. We choose for comparaison the evolved configuration of the static (I' = 0),
the quintic (I' = 1/4/6) and the RF (I' = 1/4/2) models at time ¢, = 8. We clearly
see that the linear regimes are superposed as expected with the growing mode, and
that the scale k4, increases when the parameter I' (i.e. the damping) increases.

theory then imply that the self-similar scaling will be characterized in 1 — d by the
function

Rs(t) = exp ( 2 M) : (4.52)
n+1 74n

To assess the validity of this in our system, we show in Figs. 4.31, 4.32, 4.33 and 4.34
the temporal evolution of k£ x P(k,t) as a function of the dimensionless parameter
k x Rs(t), and taking ¢,.; = 0. At small k, we see that right from the initial time the
self-similarity is indeed followed (as the rescaled curves are always superimposed at
these scales). This is simply a check on the result validity of linear theory in this
regime for an index n < 4, as anticipated above. As time progresses we see the
range of k£ in which the curves are superimposed increases, extending further with
time into the non-linear regime. This is precisely what is observed in the analogous
3-d simulations. Note that the behavior at asymptotically large k is constrained
to be proportional to k/ng at all times, corresponding to the shot noise present in
all particle distributions with average density ny and which, by definition, does not
evolve in time (and therefore cannot manifest self-similarity).

We must however notice that in the study of the temporal evolution of the PS, the
behavior at asymptotically large k (proportional to 1/ng) is different from the result
that we might expect naively from the study of the correlation function. Indeed, we
found that the correlation function reaches at small scales a plateau whose amplitude
would correspond to an asymptotically large k& behavior of the PS proportional to
1/npiat << 1/ng. This difference can be explained by the fact that the PS contains
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intial PS static quintic RF
n=0 |=002£001|5=014+0.02 | 5=0.25+0.02
n=2 | =001+001]8=035£0.02| 5 =0.5040.02

Table 4.2: power index 3(n,T') of k x P(k) < k” in the self-similar regime, when
n the index of the initial PS is n = 0 and n = 2, and ' the damping term. We
consider both the static and expanding (quintic and RF) cases. The different values
of 5 and the corresponding error bars are obtained with a linear interpolation. We
see the dependance of #in n and I' as observed in the correlation function.

a term proportional to 1/ng which “drowns” the signal at small scales which we can
discern in the correlation function.
Defining the parameter § through the power-law relation

kx P(k) o< kP (4.53)

in the self-similar regime for the static and expanding models, we can extract from
Figs. 4.31, 4.32, 4.33 and 4.34 the different values measured for this power index.
The results are presented in table 2.4. We show in the non-linear regime, in the static
and expanding models, that just as for the correlation function, the exponents 3 do
not depend on n in the static case, but do show such a dependence in the expanding
cases.

As the PS is the Fourier transform of the correlation function (cf. Chapter 2),
we expect the power indexis 3(n,I") and (n, "), for a pure power law, to be equal.
It is then interesting to compare the results presented in Table 2.3 and Table 2.4.
We see that the values of the two different exponents are in agreement within the
standard numerical error in the expanding (quintic and RF) cases. In the static
case, however, we see that § and v do not tally. We note that this difference is not
limited to the 1 — d study, as the same disagreement is also observed in 3 — d [11]
in which case P(k) o< k=2 and £(r) o< %2 in the self-similar regime.
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Figure 4.27: Evolution in time of the PS starting with an initial PS P, (k) oc k% in
the static case.
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Figure 4.28: Evolution in time of the PS starting with an initial PS P, (k) oc k% in
the static case.
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Figure 4.29: Evolution in time of the PS starting with an initial PS P, (k) oc &% in
the expanding (quintic) case.
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Figure 4.30: Evolution in time of the PS starting with an initial PS P,;;(k) o< k? in
the expanding (quintic) case.
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Figure 4.31: Evolution of k x P(k,t) as a function of k x R,(t) where R4(t) is given
in Eq.4.52 starting with an initial PS P,;;(k) o< k% in the static case.
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Figure 4.32: Evolution of k x P(k,t) as a function of k x R,(t) where R(t) is given
in Eq.4.52 starting with an initial PS P,;;(k) o< k% in the static case.
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Figure 4.33: Evolution of k x P(k,t) as a function of k x R,(t) where R4(t) is given
in Eq.4.52 starting with an initial PS P,;;(k) o< k¥ in the expanding (quintic) case.
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Figure 4.34: Evolution of k x P(k,t) as a function of k x R,(t) where R4(t) is given
in Eq.4.52 starting with an initial PS P,,;(k) oc k% and k2 in the expanding (quintic)

case.
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Summary of comparison with 3 —d

As far as the expanding (EdS) case is concerned in 3 — d, self-similarity is expected
to be valid, as explained in Chapter 2, in a range of n, the index of the initial PS,
such that —3 < n < 4. While there has been considerable discussion of the case
—3 < n < —1 in the literature, with different conclusions about the observed degree
of self-similarity (see e.g. [51] and [139]), the case n > 1 has remained open. The
reason why the case n > 1 has not been studied numerically appears to be twofold:

e firstly, it is not of direct interest to “real” cosmological models which describe
PS with exponents in the range —3 < n < —1;

e secondly, such initial conditions are considered “hard to simulate” (see e.g.
[139]).

In the static case, a qualitative similarity seems to emerge from the 1 —d and 3 —d
N-body simulations: self-similarity is observed in 3—d even for n > 1 (n = 2 in [11]),
and the slope of the PS in the self-similar regime appears to be independant of the
initial spectrum.

In the expanding case, our 1 — d results show the same tendency as the result
observed in 3 — d (see e.g. [139]): the slope of the PS in the self-similar regime
shows dependence on the initial spectrum. When the index of the initial spectrum
increases, the slope of the PS in the self-similar regime increases also.

3 Evolution from causal density seeds

We now consider the case where the initial PS is Py (k) oc k*. We treat this
case separatly because, as discussed in Chapter 2, it corresponds to the power-law
behaviour at which one expects linear theory, which we have seen is the “driving
force” of the dynamics in the cases above, to break down. One thus expects a
qualitative different mechanism for the formation of structures. As explained also in
Chapter 2, this corresponds to the so-called “causal seeds”, i.e. density perturbations
at large scale, which could be produced by some small scale physics obeying simply
to conservation of mass and momentum. It has not been studied in 3 — d, the
principal reason being probably the considerable numerical accuracy needed: any
spatially uncorrelated random error introduces a k2 contribution to the PS which
can become dominant at small k. We follow the same approach as in the case k°
and k2, starting with visual inspection.

3.1 Visual inspection

In Figs. 4.36 and 4.37, the plots in the left-hand panels again show the number of
particles N(i) in each lattice cell at each time, which is proportional to the mass
density in each cell. In the phase space plots, in the right-hand panels, each point
represents simply one particle.

One sees clearly that, as in the case whith initial PS P,,;; o k° and k2, in both
the static and expanding cases, the evolution appears again to proceed in a “bottom-
up” manner. As before, the system is representative of the evolution of an infinite
system: it does not appear to have a preferred center - clusters form in apparently
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random locations without sensitivity to the boundaries.
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|
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Figure 4.35: Superposition of the cases static (red) and expanding (blue) for an
initial PS Py, (k) o k%, at time ts = 22. In both cases, the initial displacement
configurations are exactly the same.

The system shows however a qualitative difference compared to the previous
analysis. We compare qualitatively in Fig. 4.35 the evolved configurations in the
static and expanding cases. As in the previous plot, the figure shows the density
distribution smoothed on initial lattice spacing. The simulations are started with
exactly the same density perturbation and Py, (k) k*. We see that the correlation
between the location of the structures is, contrary to n = 0 and n = 2, not so strong
at all. In the former cases the strong correlation was explained to be the result of
the validity of linear theory at large scales: the structures at large scales are the
amplified seed fluctuations. The fact that this is not the case when n = 4 is then
not surprising; indeed this case is precisely expected to be very different because
linear amplification is no longer valid.
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Figure 4.36: Evolution in the configuration space and in the one particle phase space
(u-space) of our one-dimensional toy model, starting with an initial PS Py, (k) o< k*
in a static case at time t, = 0,12, 14, 18, 22. The unit of length is given by the initial
lattice spacing ¢ = L/N with L = N = 10°.
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Figure 4.37: Evolution in the configuration space and in the one particle phase space
(p-space) of our one-dimensional toy model, starting with an initial PS Py, (k) o< k*
in an expanding case at time t; = 0,12, 14, 18, 22. The unit of length is given by the
initial lattice spacing £ = L/N with L = N = 10°.
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3.2 The power spectrum

We now study the PS as the qualitative differences anticipated are most evident in
k space. Shown in Figs. 4.39 and 4.40 are the temporal evolution of the PS in both
the static and expanding (quintic) cases.

We note that at small wave-numbers the PS shows a temporal amplification in
k*. The regime in which this temporal amplification is valid decreases with time and
is observed in a range k < kyp(t), where kx(t) is a wave number which decreases
as a function of time. At all times, the PS still converges at large wave-numbers to
the asymptotic value 1/ny. However, this amplification is not the one predicted by

g((:é))] at small k. In

dashed line is plotted for comparaison the behaviour expected naively from linear
theory, i.e. A(t) = R !(¢) with n = 4. As anticipated we see that the linear theory
is not followed as the points are not superimposed with the linear prediction. We
will come back to this result in the following with the study of self-similarity.

linear theory. This is illustrated in Fig. 4.38 where we plot [
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Figure 4.38: Temporal evolution of for k = 1073, i.e. in the regime where a

P(k,0)
simple amplification is observed, in the static (left panel) and expanding (quintic)
models (right panel). We also represent the function A(t) = R"1(¢) with n = 4,
where R4(t) is the scaling factor predicted naively by the linearized fluid theory for

n = 4.

We observe the same difference between the static and the expanding cases as
in the case k° and k?: the scale k., at which the PS reaches its asymptotic value
1/ng stays approximatly constant in the static case, while it translates to the right
in the expanding case.

As in the previous section, to assess whether self-similarity applies, we show
in Figs. 4.41 and 4.42 the temporal evolution of k x P(k,t) as a function of the
dimensionless parameter k x R4(t), where Ry(t) is the scaling factor predicted by
linear theory for n = 4, and taking t,.r = 0.

In both the static and the expanding cases, we see that right from the initial
time the self-similarity is not followed at small k& (as the rescaled curves are never
superimposed). This is representative of the non-validity of the linear amplification
in the particular case k%, as expected in Chapter 2. However, as time progresses,
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we see a non-linear range of k in which the curves are superimposed and where this
range of k increases with time: this means that as non-linearity develops in this limit
case, we recover the self-similarity in the non-linear range with the scaling factor
R4 (t) predicted by linear theory.

Defining the parameter 5 as in Eq. (4.53) in the self-similar regime for the static
and expanding models, we can extract from Figs. 4.41 and 4.42, using linear interpo-
lation, the different values measured for this power index. We obtain § = 0.4340.01
and § = 0.62=+0.01 in the quintic and RF models and § = 0.01 4 0.02 in the static
case.
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Figure 4.39: Temporal evolution of the PS starting with an initial PS P, (k) oc k*
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for the static model at time t, = 0, 2,4, 6,8, 10,12, 14, 16, 18, 20, 22.
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Figure 4.40: Temporal evolution of the PS starting with an initial PS P (k) oc k%
for the expanding (quintic) model at time ¢, = 0,2,4, 6,8, 10,12, 14,16, 18, 20, 22.
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Figure 4.41: Temporal evolution of k x P(k,t) as a function of k x R,(t) where Rg(t)
is given in Eq. (4.52), starting with an initial PS P, (k) o< k* for the static model
at time t, = 0,4, 8,12, 16, 20.
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Figure 4.42: Temporal evolution of k x P(k,t) as a function of k x R,(t) where R(t)
is given in Eq. (4.52), starting with an initial PS P,;;(k) oc k* for the expanding
(quintic) model at time ¢, = 0,4, 8,12, 16, 20.
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3.3 Correlation function

In Figs. 4.43 and 4.44 we show the temporal evolution of the absolute value |£(z)] in
a log-log plot just as in the case n < 4. We observe a qualitative similar behaviour
as previously obtained for n < 4: starting from £(z) < 1 everywhere, non-linear
correlations develop first at scales smaller than the intial inter-particle distance, and
after few dynamical times the clustering develops at smaller scales.

From Figs. 4.45 and 4.46 it appears that once significant non-linear correlations
are formed, the evolution of the correlation function £(z) can be described, ap-
proximately, by the same simple translation in time described in Eq. (4.48). Let
us note, however, that in Fig. 4.45 the different curves do not perfectly superpose
themselves. This is not surprising as we expect from our study of the PS above that
self-similarity does not apply at large x. Then, as the reduced 2-point correlation
function is simply the FT of the PS, the correlation function in the static model
(where the non-linear regime is less developped than in the expanding model) is
dominated by large x.

Starting with an initial PS P, (k) o< k*, we measure the values of the exponent,
v = 0.15 £ 0.05 in the static model, v = 0.46 4+ 0.03 in the quintic model and
v = 0.63 = 0.01 in the RF model, using a linear interpolation. We notice again
that the rescaled correlation functions are superimposed above a scale x,,;, where a
“plateau” of amplitude &,,,, is reached and shows the same qualitative behaviour as
observed for n < 4.

As we did previously in the case where the initial PS P;,;; oc k° and k2, we can
compare the power index [ and 7. We see that they are in agreement within the
standard numerical error in the expanding cases (quintic and RF). However, as in
the case k” and k2, they do not agree again in the static case.
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Figure 4.43: Temporal evolution of the correlation function, starting with an initial

PS P,,i:(k) oc k* for the static model at time ¢, = 0, 6, 10, 14, 18, 22.
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Figure 4.44: Temporal evolution of the correlation function, starting with an initial
PS P,,i:(k) oc k* for the expanding (quintic) model at time ¢, = 0,6, 10, 14,18, 22.
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Figure 4.45: Temporal evolution of the correlation function as a function of
r/R,(t), starting with an initial PS Py, (k) oc k* for the static model at time
ts =16,17,18,19, 20, 21, 22.
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Figure 4.46: Temporal evolution of the correlation function as a function of z/Rs(?),
starting with an initial PS P, (k) oc k* for the expanding (quintic) model at time
t, = 16,17,18, 19, 20,21, 22.
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3.4 Normalized mass variance

We show in Figs. 4.47 and 4.48 the temporal evolution of o?(x). Its qualitative
behaviour is very similar to that observed in the case n = 0 and n = 2: at large
scales we see a temporal amplification of the initial functional behaviour, which
corresponds to o?(x) o< 272, As we explained in Chapter 2, this behaviour simply
corresponds to mass fluctuations independent of scale, which is the most rapid decay
possible in any spatially homogeneous point distribution.

At small scales, we observe o%(z) oc 7! which is the shot noise behaviour intrin-
sic to any such distribution at small scales. The range of scales between these two
limiting behaviours is still that of the non-linear clustering. Note that the amplifi-
cation of the variance at large separation seen in Figs. 4.47 and 4.48 is not a result
of linear amplification, just as discussed for the case n = 2 in section above. Indeed,
as for n = 2, 0? ~ %, so that self-similarity implies 0 ~ Ry(t) = A(t)o?(x,0).

To probe in real space the self-similar behaviour we consider in Figs. 4.49 and
4.50 the temporal evolution of the scale A(«,t) defined in Eq. (4.44).

We see in Figs. 4.49 and 4.50 that, in both the static and expanding cases, despite
the absence of linear amplification of PS, self-similarity seems to emerges with the
behaviour that this would predict. Indeed, considering an initial PS P,,;; o< k™ with

n < 1, we have seen in Chapter 2 that o%(z) o k P(l{;)) _- Then linear ampli-

fication of the PS implies consequently linear amplification of the normalized mass
variance. However, for n > 1, which corresponds to the case where Pj,;(k) o k4,
the relation between the PS and the normalized mass variance is different. Follow-
ing the argument developped in [11], the integral in Eq. (2.200) in Chapter 2 with
P(k) o< k™ with n > 1 diverges at all k, and an ultraviolet cut-off is required to
regulate it. The authors of [11] have shown that this cut-off is clearly in the range
in which the amplification in k space is non-linear. Thus the evolution of this quan-
tity, even at very large scales, is determined by modes in k space which are in the
non-linear regime.

Furthermore, as in the case k° and k2, we see that in both the static and the
expanding cases, we see that self-similarity propagates in time to non-linear ranges,
as expected from the analysis of the PS.
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Figure 4.47: Evolution of the mass variance starting with an initial PS P, (k) oc k*
for the static model at time t = 0, 2,6, 10, 14, 18 and 22.
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Figure 4.48: Evolution of the mass variance starting with an initial PS P (k) oc k%
for the expanding (quintic) model at time ¢ = 0, 2,6, 10, 14, 18 and 22.
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Figure 4.49: Temporal evolution of the scale A(«,t) defined in Eq. (4.44) starting
with an initial PS P, (k) oc k* for the static model.
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Figure 4.50: Temporal evolution of the scale A\(«,t) defined in Eq. (4.44) starting
with an initial PS Pj,;; (k) oc k* for the expanding (quintic) model.
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4 Development of the range of self-similarity and
characteristic exponents

As we have already emphasized in section 1, one of the particularly interesting
features of the 1 — d self-gravitating model is the absence of smoothing at small
scales analogous to that used in 3 — d simulations. This means that we can study
fully the development of clustering at small scales unimpeded by such a cut-off.
We have already seen that the results above allow us to identify a lower-cut-off to
self-similarity which we denoted x,,;,, and the existence of a regime below this scale
where there is non-trivial clustering. We first study numerically the evolution of this
scale x,,;, and of the corresponding approximate plateau &,,... In the expanding
case we observe that there is a simple relation between them, with &,,,, a:;ﬁn.
Noting that this suggests the validity of a “stable clustering” hypothesis for the
evolution at small scales, like that in 3 — d which we discussed in Chapter 2, we
determine precisely what the prediction of this hypothesis is in our 1 — d models.
This leads us to an analytic prediction for the exponent characterizing non-linear
(and self-similar) clustering as a function of n and I'. We compare then the exponents
measured numerically with this prediction, finding good agreement.

4.1 Evolution of the spatial extent of non-linear SS clustering

We have seen in the previous section that the evolution of the lower cutoff to self-
similarity in configuration space (Z,,,) is different in the static and the expanding
cases: while in both cases the correlation function appears to reach a plateau with
an amplitude which grows in time, the scale x,,;,, remains approximately constant
in the static case but decreases monotonically in the expanding case. Let us focus
in the following on the expanding case. We will come back to the study of the static
case at the end of this section.

We show in Fig.4.52 the evolution of x,,;, and ., as a function of the reference
time ¢, for the quintic model and an initial condition Pj,;(k) o k*. Fig. 4.51
illustrates the method we use to extract this information: we consider the same
“collapse plot” used to test for self-similarity of £(x,t) in the previous section in which
we rescale the z-axis by the time-dependent factor R,(t). We thus locate simply the
temporal evolution of the scale marking the departure from the self-similar regime
(represented in Fig 4.51 by the small arrows) z,,;,, and then determine also the
amplitude of the corresponding plateau &,,,, in the correlation function at each
time.

The semi-log representation of Fig. 4.52 shows an exponential decrease of x,,;,
and an exponential increase of &,,... We observe that the result approximately
satisfies the relation

Tmin X ér?ulz:r X eXp<_€tS) ) (454)

where we measure the parameter ¢ = 0.33 £ 0.03 in the quintic model (I' = 1//6)
and € = 0.66 £ 0.03 in the RF model (I' = 1/4/2), whatever is the value of n (n = 0,
2 and 4). Thus, the parameter € appears not to depend on the power index of the
initial PS, but only on the value of the damping term I'.
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Figure 4.51: Determination of the temporal evolution of the non-linear scale z,,;,
(and the amplitude of the corresponding plateau &,,,,) in the quintic model with an
initial condition P, (k) oc k*. We use a “collapse plot” of |£(z,t)]: for each time, we
rescale the z-axis by the time-dependent factor R4(t) to superimpose all the curve
as closely as possible. We then locate simply by arrows the temporal evolution of
the departure from the self-similar regime.

The simple relation between x,,;, and &,,., and the independence of n suggest
that this result might be related to the so-called “stable clustering” hypothesis pro-
posed sometimes in 3 — d for the strongly clustered regime and discussed in Chap-
ter 2 [126]: in this case one envisages that, in the strongly non-linear regime, the
distribution at small scales remains frozen (i.e. “stable”) in physical coordinates,
which are related to the comoving coordinates of the simulation by a simple rescal-
ing (rpnys = a(t) Xcom) as discussed in Chapter 2. Thus in comoving coordinates,
the conditional density (i.e. the mean density in a region r about a given point)
scales as a®(t). In comoving coordinates the mean density is fixed so one obtains
also &(z) o< a®(t). If we now suppose here that z,,, also remains fixed in physical
coordinates, we have z,,;, o< 1/a and &4, < 1/23 .

If we adopt this argument naively to 1 — d we would obtain &4, < 1/Zmn, i.€.
Tmin, Which is a characteristic scale of the clustering (breaking scale invariance),
is constant in comoving coordinates. To do so, however, we must clarify what we
mean by “stable clustering” in our 1 — d models, because in deriving these models,
we never made use of a transformation between physical and comoving coordinates
as in 3 — d.

“Stable clustering” can indeed be given meaning without reference to physi-
cal /comoving coordinates in 1 — d through the following formulation: it is the be-
haviour expected by supposing that the clustering evolves as if it were that of a
distribution made of isolated virialized systems. In the following section we consider
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Figure 4.52: Evolution of the non-linear scale x,,;, and the amplitude of the plateau
&mae in the quintic model with an initial condition P, (k) oc k?

what this behaviour is.

4.2 Stable clustering in one dimension

The meaning of an “isolated” subsystem in 1 — d is much more exactly defined than
in 3 —d (where it means tidal forces due to far away matter may be neglected): if the
particles of a given subsystem do not cross (or collide) with other particles, their
evolution is indeed completely independent of the rest of the system. If this isolation
is maintained for a sufficient time, one would expect the subsystem to equilibrate
(just as any LRI systems) and virialize.

Equations of motion for an isolated subsystem

To see what exactly this implies it is convenient to transform our equation back to
the labelling in which particles cross rather than bounce: to derive analogy of the
usual virial relation ,discussed in Chapter 2, we need a potential which is stricly
a power law, which is only the case at all times in the labelling in which particles
cross. In the colliding labelling we have seen in section 1 that we simply have, by
appropriate choice of time variable

dt? dt

= u;, (4.55)
where ¢ = 1...M (< N). The assumption of isolation means we can decouple
these M equations from the other N — M particles in the system (with N — 00).
Let us now transform these equations back to the “crossing labelling”. At some
initial time ¢ = 0, both labellings coincide; at ¢ > 0 we show in Fig. 4.53 the
two labellings which now differ. To illustrate the difference of labelling between a
system S.,,ss Of particles crossing and a system S, of particles colliding, we denote
by a; = ag + if the original position of the i** particle in S,,; on a regular lattice,
where ag represents an arbitrary origin of the z-axis and ¢ = 1/ng is the lattice
spacing. We then write z; the position of the particle ¢ in S.o; , .6. x; < Ti11 V2
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Figure 4.53: Correpondance between a) S.o; and b) Seposs

and x; the position of the “same” particle expressed in the different labelling S.;.oss.
In Fig. 4.53 is illustrated the simple correpondance between S.,; and Si..ss. We
then have the relation i = I + AN; where ANy is the difference between the number
of particles crossed by particle I from the left in the time interval and the number
of particles which have crossed the particle I from the right in the same interval.
Since we clearly have

AN, — (Nf(t);NF(t)> _ (NF(O);NF(O)» (4.56)

where N;~(t) (respectively Nj (t)) represents the number of particles on the left
(respectively on the right) of the particle I at time ¢, we can rewrite the force on
the particle as

F,=1F = U; = Ty — A = Ty — A = T — AT+ AN,

e [(Nf(t)—N?(t)> B (NF(O)—NF(O))] (. (457)

2 2

Denoting by xcy = ﬁ > 71—y as 1 the position of the center of mass of the system,

and noting that -; >, <w) = 0 we obtain

d? d N7 (t) — N (t
ﬁ(ﬂﬁ — xom) + Fa(l'l —2om) = ( r )2 - Il )> + (zr —xom) . (4.58)
0
The gravitational contribution thus divides into two terms: fg.q = <N1> (t) —

N5 (t)) /2 ng just as in the finite 1 — d system; the only effect of the inifinite system

is thus the appearance of the background with fy.cx = (7 —zcnr)(t). We also denote
the damping term by fr = F%(xl —Tom)-

Evolution of an isolated overdensity

Let us consider now an overdense isolated subsystem, i.e. LM = ng >> ng (where

L, is the spatial extent of the subsystem of M particles). It is simple to see that in
this case, assuming I' ~ 1, one expects the evolution to be characterized by quite
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different time scales associated with the terms fy,40, fr and fyoer. For fgrq, the char-
acteristic time scale can be expected to be 74,4, ~ \/% ~ /™ << 1. One then

has to compare it with the timescales associated to fr, i.e. o ~ % ~ 1 and fpeer
i.e. Tk ~ 1. The timescale associated with the gravitational term is thus much
shorter than that associated with the damping (expansion) and the background.

Now Eq. (4.58) without fyuer and fy.q, is simply the equation of motion of M
particles of a finite 1 — d self-gravitating system, which are known to evolve to a
virialized QSS on the timescale 7,4, [90,158]. We would then expect to be able to
treat the full system in an adiabatic approximation, in which we assume that the
damping (and background) term causes the system to evolve while remaining viri-
alized at all times. Let us neglect for the moment the background term. Given that
the term fg.4, is a conservative force, we can then define the associated mechanical
energy I/ = K + U, where K and U are respectively the kinetic and the potential
energies, and write for the full system,

dE dr
@ =%
Considering now the adiabatic approximation discussed above, i.e. assuming that
the system is alway virialized, we have (F) = (K) + (U) = 3 (K) since we have the
virial relation 2 (K) 4+ (U) = 0. We can approximate Eq. (4.59)
d(K)
dt

which gives in the appropriate choice of time variable

)2 — 9rK. (4.59)

3 = —2I'(K) (4.60)

2 2
(K) exp(—gFt) and (U) exp(—gFt) . (4.61)
By simple dimensional analysis we infer that
2 2
(V) o eXp(—gl“t) and (Lg) exp(—gl“t) : (4.62)

i.e. the effect of the damping is simply to rescale the whole system slowly in space
and velocity. Thus our 1 —d models behave as if there is an “effective” physical coor-

dinate related to the comoving one through the relation x,,s = exp ( — %Ft) Teom-

Let us compare the result obtained in Eq. (4.61) with those given through the
study of the dynamical evolution of z,,;,. Using the relations derived in section 1.3
which introduces the relation between the appropriate time variable and the static
time t, we obtain

(L) ocexp(~2)  and (L) exp(—%ts) (4.63)

in the quintic and RF models respectively. This is in agreement within the numerical
errors with the values of the parameter ¢, defined in Eq. (4.54), given above, and also
with the exponent measured by Aurell et al. in [9] directly for an isolated structure.
We have then identified the behaviour expected of a finite virialized structure with
that observed to fit z,,;,,. We thus make the hypothesis that, up to this scale, the
distribution is well described as a set of virialized independent clusters (of size X, )-
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Numerical simulation of an isolated subsystem

It is straightforward to test numerically the accuracy of this prediction for the be-
haviour of an isolated subsystem: we simply evolve the same infinite system we have
been considering, but now for an initial condition containing only a single localized
overdensity. More specifically we consider N = 10° particles initially distributed
in a region of size L. = 10® in a box of size L = 107, i.e. ny = & = 107" and
Ne = Lﬂc = 1 so that it corresponds to an overdensity of magnitude n./ny = 10%.
This initial condition make the background term, as well as the damping term, neg-
ligible in comparison with the gravitational term (fpaer/forav < 107 in both the
static and the expanding cases). It also clearly separates the timescale 7 and 7,4,
as T/ Tyrav ~ 10°T". To complete the numerical description of our system it is con-
venient to use different time units to those previously considered. We then define a

finite dynamical time unit
1

gne

where g = 1/2 ng, which is the characteristic time for the finite overdensities’ evo-
lution under the mean field force. It is interesting to compare this time with the
infinite dynamical time 7,4,,, we defined for the reference time we used in our analysis

above, i.e.
Tt =\ 220 ~ 10 7 (4.65)

For convenience in the simulation we choose our coordinate system such that the
centre of mass of the system is at rest (i.e. after distributing the particles in our
initial condition we add a spatial translation and a constant velocity to all particles
to satisfy this condition).

finite
tdyn

: (4.64)

Temporal evolution of the dynamical observables

For the initial condition just described, we study the evolution of different observ-

ables: the kinetic energy K, the potential energy U, the virial ratio V = 2& and a
(zv)

U
parameter ¢ = oy T 1 introduced in [90]. In a typical quasi-stationary state this
parameter is constant and different from zero.

In Figs. 4.55 and 4.56 are represented the evolution of the virial ratio and the
parameter ¢ as a function of time in both the static and the expanding cases. We
clearly see two stages in the macroscopic evolution (cf. Chapter 1): a first stage
of violent relaxation during which all quantities fluctuate strongly before settling
down to behaviours which appear to fluctuate about a well defined average, and
specifically about unity for the virial ratio and about a value different from zero for
the parameter ¢. This last parameter is clearly non-zero on much longer time scales
than that characterizing the virialization and indicating a dynamical equilibrium
which is not the thermodynamic equilibrium of this model (cf. [90]).

In Fig. 4.54 we see that the kinetic and the potential energies of the static model
reach a value independent of time, which is illustrated in the phase space evolution by
a virialized structure of constant size. A different behaviour is observed in Fig. 4.54
for the expanding (quintic) model: kinetic and potential energies decreases in time
as exp(—Tfinite/3) o exp(—ts/3). This is in agreement with our derivation of (v?)
and (L) in Eq. (4.62) above and with the values of the parameter e.
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Figure 4.54: Evolution of the kinetic and the potential energy in the static and expanding (quintic)
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Figure 4.55: Evolution of the virial ratio in the static and expanding (quintic) cases as a function of
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Figure 4.56: Evolution of the intrication parameter in the static and expanding (quintic) cases as a
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4.3 Prediction of exponents of power-law clustering (expand-
ing case)

We derive now the exponent predicted by this “stable clustering” hypothesis. As-
suming the power-law behaviour gg(z) o< 27 (which corresponds to a PS Psg(k) o
k=1 with 3 = ) for the reduced 2-point correlation function in the non-linear self-
similar regime, we focus on the study of the evolution of the scales x,,;,, marking
the break from power-law behaviour at small scales. The evolution of xx, is given
by the self-similar behaviour zy7,(t) < Rs(t) and {y(t) &~ 1. Through the hypoth-
esis that clustering up to the scale z,,;, is produced essentialy by isolated virialized
structures, we have shown that @, (t) o &L, (t) o exp(—2T¢).

Assuming that xn; = 2., at the initial time, it is then possible to determine
the value of the exponent v (and consequently ) through the relation

In(§maa () — In(Enr(t))
) =— : 4.66
7 1) <1n(:pmm(t)) ) (4.66)
which gives the general expression
31/D(I)
(. T) = 57 (4.67)
2T/D(T) + 2
since R,(t) ~ (etS)Q/(Hn) ~ (eP™ t)2/(1+n) and z,,, ~ e 30t ~ &1 . We simply
obtain in the quintic and RF models respectively
n+1 n+1
W VB = and oy 1/vE) = S (4.65)

We see in Tab. 4.3 that this result agrees with the numerical prediction of 5 and ~.
This shows that we can explain very well the exponent characterizing clustering for
the expanding case.

intial PS | Quintic RF Quintic (simulation) | RF (simulation)
n=0 | v=1/7 |7 =1/4| ~=014+002 | v=0.25=0.2
n=2 | v=1/3 |7y=1/2| ~7=035+002 | v=0.50=%0.02
n=4 |~v=5/11]|7=5/8| ~=043+001 | v=0.62=0.01

Table 4.3: Theoretical and numerical values of the parameter v(n, ), the exponent
of the power-law behaviour of the reduced 2-point correlation function in the self-
similar regime. We consider the expanding (quintic and RF) models. We see that
theoretical results and numerical measures are in agreement within the standard
numerical error.

4.4 Exponent of the power-law clustering in the static limit

Let us now return to the analysis of the static model and underline its difference
with the expanding one. We expect from our analysis that in the static model, the
absence of damping (I' = 0 in Eq. (4.1)) prevents the system from shrinking. Then
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the size of the smaller structures should remain unchanged. This is what is observed
in the analysis of the correlation function in section 2.3 where the scale x,,;, stays
roughly fixed during the dynamical evolution of the system. However, the amplitude
of the plateau, &4z, increases. Thus Eq. (4.54) is not followed in the static limit.
If we compare the increase of the amplitude &,,,, in the static and expanding cases,
we see that this amplitude increases by a factor of less than 10 in the static case,
while it increases by a factor of more than 100 in the expanding case. This suggests
that the increase of &,,,, in the static limit would be due to a “second order” effect,
compared of Eq. (4.54), which is negligible in the expanding cases (for sufficiently
large I'). Considering our numerical result for the exponent ~ in Tab. 2.3, we could
postulate a generalization of Eq. (4.67). Given that in the static limit the observed
~ is independent of n, one might suppose a generalization to

T/DT) +v 25
2T/D(T) + 2

n+1

v(n,T) = (4.69)

where v is simply the n-independent exponent measured for the static case in
Tab. 2.3, i.e. v = 7(n,0) = 0.18 £ 0.03. Such an ansatz would correspond to
an amplification of &,,., (additional to stable clustering) proportional to R,(t), i.e.
Emaz ~ €37 1 Ry(t)7©).

5 Conclusion

In this chapter, we have presented the results of the numerical investigation of the
dynamical evolution of 1 — d self-gravitating toy models, starting with a class of
initial conditions analogous to those studied in cosmology: lattices perturbed to
produce an initial PS P;,;;(k) o< k™ at small k. We found that, when the index n
of the initial PS is equal to 0 and 2, there are very strong qualitative similarities
between the evolution of the 1 —d and 3 — d systems. We have observed specifically
the hierarchical nature of the clustering and brought to light the mechanism of
linear amplification determining the growth of non-linearity scale. Moreover, we
have shown that “self-similarity” is indeed observed in 1 — d system in both the
static and expanding (quintic and RF) cases just as in 3 — d.

An interesting result is that qualitative differences can be identified between the
static and expanding cases. The shape of the correlation function (or the power spec-
trum) has appeared to be a function of the index n of the initial PS in the expanding
case, and is independent of this index in the static case. Moreover the value of the
damping term I', whose different values correspond to different expanding model
(' =1/4/6 and I = 1/4/2 represent the quintic and RF models respectively), has
an influence on the shape of the correlation function or the power spectrum, and
then on the exponent of these two statistical measures in the self-similar regime.
This again coincides with 3 — d results.

The 1 — d self-gravitating model has also given us the opportunity to investigate
easily structure formation in the limit of “causal fluctuations”, i.e. P(k) o k* at
small k, a numerically difficult case which has not been explored in 3 — d. We
have shown that, differently to the case where P(k) o< k° or k% at small k, the
amplification of the PS at small £ is not the one we could expect from a naive linear
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theory. However, despite the non-validity of the linear amplification of the small
k PS, the non-linear structure formation does show asymptotically a self-similar
evolution.

The 1 — d toy model allowed us to probe the development of self-similarity at
smaller scales and its range of validity. Such a study is impossible in 3 —d due to the
presence of smoothing at small scale. This investigation allowed us to identify the
lower cut-off z,,;, marking the end of the self-similar regime at small scale. We have
shown that this cut-off was explained naturally by a “stable clustering” hypothesis
and we have shown that the exponent observed is in fact that expected for this case.
Then as we know the temporal behaviour of the lower and upper cut-off, we can
then determine the exponent in self-similar regime in terms of the index n of the
initial PS and the damping term T'.

We must however discuss the comparaison we made with 3 — d stable clustering:
in 1 —d model, we envisage virialization only as valid up to the scale x,,;,, i.e. only
smallest virialized structures can be supposed to be stable (at the same scale where
the self-similarity break down, and not in the self-similar regime itself). This will
be explored further in the next chapter. We will see that we can in fact consider, in
a statistical sense, the structures in the self-similar regime to be virialized, but the
stable clustering does not apply because they are not isolated.
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Chapter 5

Dynamics of infinite one dimensional
self-gravitating systems: scale
invariance, halos and virialization

In this chapter we explore and characterize further the properties of the particle
distributions produced in the 1 — d self-gravitating models we have studied in the
previous chapter. In particular we focus our analysis on two distinct approaches.

We start with a classical fractal analysis which is useful in particular to answer
the following question: does the power-law behaviour observed in the correlation
function correspond to a fractal-type distribution in this range of scales? In agree-
ment with previous work of Miller et al. [112-114] we find that the answer is in the
positive, and we extend some of the results which they have reported notably to the
case where the initial power spectrum Pj,;; (k) oc k* at small k.

In a second approach, we perform an analysis analogous to that now used canoni-
cally in 3—d N-body simulations in cosmology in which the distribution is described
as a collection of finite “halos”. As discussed in the introductory chapter 2, these are
envisaged to be smooth virialized structures with properties given by a few param-
eters. Such a description, as it clearly does not correspond to a distribution with
scale invariant properties, is at odds with the fractal description which emerges from
the first part of this chapter. We will see that a description in terms of approxi-
mately wvirialized substructures may nevertheless be valid, precisely in the regime
where there is fractal clustering. The substructures are, however, not smooth struc-
tures with a characteristic size; they must be defined as a function of an arbitrarily
chosen scale. We interpret our results to mean that in the regime of non-linear
fractal clustering the distribution can be said to correspond to a kind of “virialized
hierarchy”.

1 Tools for fractal analysis

Fractals have been invoked to describe many physical phenomena which exhibit self-
similarity (see e.g. [123]). Fractal geometry deals with the objects which are highly
irregular and cannot be handled by the tools of differential geometry. A geometric
object can in general be described in terms of its topological dimension which is
an integer that defines the number of coordinates needed to specify the geometric
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object. Loosely speaking a fractal is a shape that tends to have a scaling property,
implying that the degree of its irregularity and/or fragmentation is identical at all
scales. A single definition of fractal would be restrictive and it would be best to
consider fractals as a collection of techniques and methods applicable in the study
of the irregular, broken and self-similar geometrical patterns [104]. It seems best to
regard a fractal as a set that has properties such as those described below: when
we refer to a set as a fractal, we will typically keep in mind that this set has a fine
structure, i.e. one has to look for detail on all accessible scales. It is too irregular
to be described in traditional geometrical language, both locally and globally. This
set which we call a fractal, often has some form of self-similarity, approximate or
statistical. Although the concept of non differentiable geometry has been subse-
quently used in many physical and mathematical application, the concept of fractal
object has been explicitly introduced and formalized by Mandelbrot (see e.g. [104]).
A given fractal shape can be characterized by more than one definition of fractal
dimension, and they do not necessarily need to coincide with each other. There-
fore, an important aspect of studying a fractal structure (once it is characterized as
self-similar in some way) is the choice of a definition for fractal dimension that best
applies to, or is derived from, the case in study.

The approach we use in the following is a multifractal analysis of our simulated
distribution of points [80]. A multifractal is an extension of the concept of fractal. It
includes the possibility that the self-similar behaviour of particle distributions may
be different in different density environments.

1.1 The Hausdorff Dimension

One of the most basic aspects of a set is its dimension which gives a quantitative
characterization of its geometrical structure. An important step in the understand-
ing of fractal dimensions is the Hausdorff dimension [104]. It can take non-integer
values and was found to coincide with many other definitions. Hausdorff used the
idea of defining measures using covers of point sets. To define the Hausdorff di-
mension of a subset S C RP, let us consider a covering of the set by p-dimensional
neighborhoods, the i of which has a linear size ¢;. The Hausdorff dimension Dy
is the critical dimension which the Hausdorff measure Hy(€) passes from zero to an
infinite value:

Hy(e) :ianef% { 20 ﬁ:;{izgg (5.1)
7
and where the infimum extends over all the possible coverings subject to the con-
straint that any ¢; < e.

The definition proposed by Mandelbrot for a fractal [104] is “A fractal is a set
for which the Hausdorff dimension strictly exceeds the topological dimension”. The
topological dimension can be simply defined as the number of independent directions
in which one can move around a given point of the set. Smooth idealized forms like a
plane and a cube, where the topological dimension equals the Hausdorff dimension,
are non-fractal and are commonly called homogeneous or compact. Whenever a set
has a non-integer Hausdorff dimension it is a fractal. This is sufficient but not a
necessary condition [71].
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The Hausdorff dimension defined so far provides a definition of fractal dimension
for deterministic fractals, i.e. classical fractal sets in a mathematical idealized way.
Although some of these classical fractals can be used to model physical structures,
what is necessary is to discuss structures that are statistically self-similar, which
are encountered in natural phenomena. The first tool to extract information is the
boz-counting dimension, also called the capacity of the set. It provides a relatively
simple and appealing way of assigning a dimension to a set in such a way that certain
kinds of sets are assigned a dimension which is not an integer.

1.2 Box Counting Dimension

In this approach the irregular distribution of particles is covered with a set of cells of
size l.o;, and the number of cells are counted which contain part of the fractal. This
size (. is varied over a range, and the resulting number of cells required to cover
the distribution of points gives the number N ({..;). Obviously N ({.;) will increase
as the size (. decreases. If we proceed this way and find N (l.;) for smaller values
of leey, we are able to plot a graph of N({..;) versus £, for different grid sizes. If
asymptotically in the limit of small /..; we reach the relation

N(Ecell) X f b

cell »

(5.2)

we can define the fractal dimension D. To accomplish the determination of this
fractal dimension we find the slope of In (N(Ece”)) plotted as a function of In(Z.ey).
We then get the expression for the box-counting dimension

1I1 (N(fcell ))

D= T (/o)

(5.3)

If the limit does not exist then one must talk about the upper box-counting dimension
and the lower box-counting dimension which correspond to the upper limit and
lower limit respectively in the expression above. In other words, the box-counting
dimension is strictly defined only if the upper and lower box-counting dimension are
equal. The box counting dimension Dy, is, in essence, a scaling rule comparing how
a pattern’s detail changes with the scale at which it is considered. It is the most
commonly used method of calculating dimensions. Its advantage lies in the easy and
automatic computability provided by the method, as it is straightforward to count
cells and maintain statistics allowing dimension calculation.

Note that the box-counting dimension deals only with the number of required
coverings. This definition has no regard to the number of points contained inside
each of the covering cells. In this sense, such a dimension depends on the “shape”
of the distribution. In this way they provide a purely geometrical description, while
no information is given about the clumpiness, as by correlation functions, discussed
in Chapter 2, do.

In order to extend the description in terms of fractal dimensions, so as to in-
clude the clustering properties of a distribution, we need to introduce a probability
measure, so that adequate information about the clustering of the distribution is
available.
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1.3 Generalized dimension

The definition of fractal dimension just introduced represents a particular case of a
continuous sequence of scaling indices, known as the multifractal spectrum of gen-
eralized dimensions [80]. To define it, let us partition each space into cells of length
leen- At each time of observation in the simulation, a measure p;(t) = N;(t)/Nr is
assigned to cell i, where N;(t) is the population of cell i, i.e. the number of particles
in the cell, at time ¢t and N7 is the total number of particles in the simulation. We
thus define the sum over all occupied cells, 7.e. the effective partition function

cqzzu;f:Z(ﬁ;) . (5.4)

)

If in some range of /. the quantity C, has a scaling behaviour

Cy o 07119 (5.5)
with a coefficient depending possibly on ¢ but not on /.y, its exponent 7(q) is
defined as the constant value, in this range, of

7(¢) = lim n Gy (5.6)

Leen—0 ]-n Ecell .

The generalized dimension of order ¢, named also the Reny: dimension, is defined
as

D = 7(q) 1 lim InC,

= = 5.7
! q— 1 q— 1 teeu—0 In Ecell’ ( )

and appears as a generalization of the Hausdorff dimension. The boz-counting di-
mension Dy is simply obtained putting ¢ = 0 in Eq. (5.7) and is called D.

To take into account the different natural measures of the cells it is usual to
introduce notably the quantities D;, obtained by taking properly the limit ¢ — 1,
and Dy. D is called the information dimension since it is related to the information
entropy of the measure, i.e. it is related to the rate of information loss as the
resolution scale increases [71]. It gives the fractal dimension of the points on which
the measure is mostly concentrated. D, is the correlation dimension, originally
introduced by Grassberger and Procaccia (see e.g. [77]), and gives an important
characterization of the scale-invariant properties of a fractal set. The correlation
dimension can be easily related to the measured power-law shape of the 2-point
correlation function defined in Chapter 2. As a complete statistical description of
a given point distribution requires the knowledge of correlations or moments of any
order, a complete characterization of the scaling properties of a fractal set should
require the introduction of the hierarchy of scaling indices. Thus, as g increases above
0, the D, provide information on the geometry of cells with higher population. It is
well established that, for an homogeneous fractal, all of the generalized dimension are
equal, while for an inhomogeneous fractal it is a decreasing function of its argument,
i.e. the existence of several values for D, as a function of ¢ in a given range of (..,
reveals different scaling behaviours for cells of the same size lying in dense or in
underdense regions (see e.g. [123]).
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In practice, it is not possible to take the limit /.;; — 0 with a finite sample.
Instead, one looks for a scaling relation over a substantial range of In(l..;) with the
hope that a linear relation between In C, and In(¢.;) occurs, suggesting power law
dependence of C; on ;. Then, in the most favorable case, the slope of the linear
region should provide the correct power and, after dividing by ¢ — 1, the generalized
dimension D,. Following [107], if scaling can be found, either from experiment or
computation, over three decades of {..; then we typically infer that there is a good
evidence of fractal structure.

1.4 Relation to 2-point analysis

Part of our goal is to illustrate how the fractal analysis can be related to the study of
the clustering properties of the distribution of points through statistical tools such
as the reduced correlation function. In our study of the scale-invariant properties of
the fractal set, we followed the temporal evolution of the correlation dimension Ds.
As this can be related to the measured power-law shape of the 2-point correlation
function, it is interesting to compare the values obtained for Dy with the exponents
B and v defined in chapter 4 generated by the PS and the correlation function
respectively of the self-similar regime, i.e. P(k) oc k71 and £(x) oc 277, It is easy
to show this relation. Let us consider the probability C;(r) of finding n;(< r) points
out of the N points of a set within a distance r from x;,

Ci(r) = %jg:l@O — |z — ZL‘j|> = n}ifr) : (5.8)

where ©(x) represents the well-known Heaviside step function. We then introduce
the correlation integral

Cr) = 3 Jim >~ Ci(r). (5.9)

whose scaling in the limit » — 0 defines the correlation dimension, D, according
to C(r) oc rP2. Following the definition of the 2-point correlation function given
in [71], it is easy to see that it can be related to the correlation integral according
to

O@r) = / dr(l + g(r)) . (5.10)

0
As the correlation function behaves as a power-law £(x) o =7 we obtain the relation,
Dy=1-7=48, (5.11)

where the second equality simply comes from the fact that the PS is the Fourier
transform of the correlation function.

2 Fractal analysis of evolved self-gravitating distri-
butions

We now apply the tools described in the previous section to analyse the clustering in
real space which emerges in the toy models we have studied in the previous chapter.
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We explore the same range of initial conditions as in the previous chapter (i.e. initial
PS with P, (k) oc k™ at small k for n = 0, 2 and 4) and the same range of models
(static, quintic and RF), and analyse exactly the same simulations with N = 10°
particles. We also compare our results with those reported previously by Miller et
al [112-114]. All our results apply to the same simulations with N = 10° particles
reported in the previous chapter.

If it exists, a scaling range of . is defined as the interval on which plots of In C;
versus In(¢.;) are linear. For the special case of ¢ = 1 we plot — > u; In p; versus
In(4.e) to obtain the information dimension. If a scaling range can be found, D, is
obtained by taking the appropriate derivative. To probe the multifractal property,
we limit our analysis to the generalized dimension D, for ¢ = 0, 1, 2 and 10. This
latter large value of ¢ has been chosen arbitrarly to probe for the multifractality of
the distributions.

2.1 Algorithm

To perform the numerical fractal analysis, we simply follow the recipe introduced
in section 1.3, i.e. we partition the configuration space into cells of length /.. (at
a given time of observation). For each length of cell l.;, we assigned a measure
wi(t) = N;(t)/Nr to cell i, where N;(t) is the population of cell i and Np is the
total number of particles in the simulation. We thus perform the sum over all

q
occupied cells, i.e. the effective partition function Cy = Y. uf = >, ( g;) defined

previously.

We start with a single cell whose size is the same as the box size. We then
decrease the size (. of the cell, increasing the number of cells N,.; in the box, and
satisfying the relation L = N, X L.o, where L is the total size of the simulation
box. We simply decrease the size of the cell by a factor 2, i.e. the number of cells
in covering the configuration space is N o = 2", where n is an integer which counts
the number of iterations. As we will discuss immediately below, the distribution
itself defines a lower cutoff to the value £..; we should consider in any case.

2.2 Temporal evolution of the generalized dimensions

We are interested in the temporal evolution of the generalized dimension in the

configuration space. In Figs. 5.1 and 5.2 we consider the correlation dimension Dy,

starting with an initial PS P, (k) o< k? in the static and expanding (quintic) cases.
As time progresses three different regimes can be clearly distinguished:

e for very small /.., below a scale we indicate in Figs. 5.1 and 5.2 as {y,,,, we
have a trivial scaling behavior indicative of the so-called sparseness limit, i.e.
Leoy s sufficiently small so that no box contains more than one point. Below
the scale denoted by (s, in Figs. 5.1 and 5.2, N;(t) = 0 or 1 and the number
of occupied boxes is equal to the total number of particles Nt in the system.
Thus C, = Z@]\g (NiT)q. The slope of q_% In C, versus In(Z..;) is then zero;

e for the largest value of /., above the scale £,,;; in Figs. 5.1 and 5.2, we
have a trivial scaling behavior indicative of the large scale uniformity of the
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Figure 5.1: Temporal evolution of q%l In(C(q, leey)) versus In(£.e;) in configuration

space for the static model for ¢ = 2, and starting with an initial PS P;,; (k) oc k2.

distribution. Above ly,;r, Ni(t) =~ KNT” and the number of occupied cells is
1

simply equal to the number of cells N.y = L/ley. The slope of q—lln C,

versus In(l.y) is then equal to unity;

e intermediate between these two regions, between the scales ¢,,;, and £,,,., we
have a scaling behavior which corresponds to the range where non-trivial non-
linear clustering develops, and in which we focus our multifractal analysis:
the slope of q%l In C,, versus In(..;) then takes an intermediate value between
zero and one in the range (i < leen < lmae (see Figs. 5.1 and 5.2). The
emergence of a scaling regime would indicate a fractal behaviour of the non-
linear clustering. We expect that this range to correspond to the range of
scale invariant clustering indicated by the analysis of the 2-point correlation

function.

We note that there are also two distinct transient regimes between these three
different scaling regions. Firstly, there is a range of /. between the sparseness
limit and the self-similar regime, i.e {sp0r < Loy < Liin, Which would correspond
in the 2-point correlation analysis in Chapter 4 to the clustering signal present at
scales below those of the scaling regime, and where the correlation function is flat.
The second transient regime corresponds to a range of /..; between the self-similar
regime and the scale of uniformity, i.e. €00 < leet < lyniy, and would correspond

to the “quasi-linear” regime where the amplitude of the relative density fluctuations
is of order unity or a little larger (see e.g. [22]).

A qualitative inspection shows that the observed size of each scaling range defined
previously depends on the elapsed time into the simulation, as ¢,,;, and £,,,, evolve
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Figure 5.2: Temporal evolution of q%l In (C(g, £)) versus In(¢) in configuration space
for the quintic model for ¢ = 2, and starting with an initial PS P;,; (k) oc k2.

in time. This evolution, however, is different in the static and expanding cases:
the scale ¢,,;, clearly decreases in time in the expanding case, whereas it stays
approximately constant in the static case. Basing our investigation on the 2-point
analysis of Chapter 4, we expect the scale ¢,,,, to correspond to the scale of non-
linearity, above which one crosses over to a uniform distribution, and the scale £,,;,
to match with the lower cut-off to self-similarity, x,,;,, introduced in Chapter 4.

Shown in Fig. 5.4 and 5.3 are the evolution of the scales ¢,,;, and /,,,, for the
initial PS P,,;;(k) oc k? in the static and expanding (quintic) cases, defined with the
use of a linear regression of the correlation dimension in the self-similar range. As
anticipated, these behaviors are precisely those we have observed in the previous
chapter for the scale of self-similarity, £,,;, o exp(—%Ft) in the expanding case, and
for the scale of non-linearity, ¢,,,. o< Rs(t) in both the static and expanding cases,
which follows the behavior predicted from linear theory.

2.3 Dependence of exponents on initial conditions and model

We focus now our analysis on the numerical assessment of the different fractal dimen-
sions D, in the range where clustering is non-linear and self-similar. To guarantee
that the fractal structure is fully developed, we consider the most evolved configu-
rations in time in which the range of non-linear clustering is greatest. We will see
that it is possible to find good scaling over more than three decades in /...
Following the definition of the generalized dimension in Eq. (1.3), we give first in
Tab. 5.1 the different values of D, in the self-similar regime, obtained with the use
of a linear regression, and for different initial PS Py,;;(k) oc k? and k* in the static
and expanding (quintic and RF) cases. We discuss separately the case where the

172



In[ 1yin® 1

0.5

-05

-15 +

-25

CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONAL
SELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS AND
VIRIALIZATION

[

IN[ | ax(® ]

6 5 10 12 4 6 6 10 12
t t
Figure 5.3: Evolution of the scales ¢,,;, and ¢,,,, in the static case for an initial PS
P o< k?. We define these scales with the use of a linear regression of the reduced
correlation dimension in the self-similar regime. We observe that ¢,,;, stays slighty
constant whereas (,,,, < Rs(t). The error bars represent the uncertainty of the
linear regression.

initial PS Py, (k) o< k? in Tab. 5.2 for the same models. We restrict our analysis to
the dimensions D, with ¢ = 0, 1, 2 and 10. The higher value of ¢ has been chosen
to shed light on the potential multifractal behaviour of the system. Inspecting the
results in Tab. 5.1 we draw the following conclusions:

e the results for the correlation dimension D, are in agreement, within the stan-
dard numerical error, with the exponents derived in the previous chapter (see
Tabs. 2.3 and results in Chapter 4 section 3.3) from the 2-point correlation
analysis, as given by Eq. (5.11);

e the systems are definitely fractal as the box-counting dimension Dy is different
from unity. Moreover, all results for the generalized dimensions D, are consis-
tent with the constraint which applies to fractal behavior, i.e. D, > D,, for

g1 < qo;

e a clear difference between static and expanding cases is evident: in the latter
cases there is a significant variation of the exponent (i.e. non-trivial spectrum
of multi-fractal exponents) while in the static case the results appear consistent
with the hypothesis of a homogeneous fractal;

e further in the static case the exponents depend very weakly, if at all, on the
initial condition (i.e. on the exponent n of the initial PS); in the expanding
cases, all measured exponents show the same trend with the exponent n as
shown by Ds, i.e. greater is n, smaller is the exponent.

We note that these results are partly in agreement with the investigation of
Miller et al. in [113,114] where a multifractal analysis has been performed in both
the configuration space and the phase space. We clearly obtain the same qualitative
behaviour for the generalized dimension in the expanding cases, as a multifractal

173



I in(®)]

15 b

25

-35

-45 |

CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONAL
SELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS AND
VIRIALIZATION

N[ 1mex(®) ]
IN

4 6 8 10 12 4 6 8 10

t t

Figure 5.4: Evolution of the scales ¢,,;, and ¢,,,, in the quintic case for an initial PS
Pyit(k) oc k%. We define these scales with the use of a linear regression of the reduced
correlation dimension in the self-similar regime. We observe that £,,;, exp(—%Ft)
with I' = 1/v/6, and £,,0, o R(t). The error bars represent the uncertainty of the
linear regression.

behavior is observed. However, we do not reach the same conclusion as in [113] as
far as the static case is concerned: As our numerical investigation shows that the
systems are in agreement, within the numerical error, with a mono-fractal behavior,
i.e. D, remains aproximately constant for ¢ € [0,10], Miller et al. claim that the
behavior of D, in the static case is qualitatively similar to the expanding (quintic)
case, but with less robust scaling ranges.

Furthermore, considering the measure of the correlation dimension Dy in [114]
for an initial condition which corresponds to the choice of an initial PS P, (k) o< k?
at small k, we can compare quantitatively our results with those obtained by Miller
et al. We see that they are in agreement within our numerical error in both the
quintic and RF models. We obtain the same dependence on the initial condition,
i.e. on the index of the initial PS. We now return to the case where the initial PS

intial PS Dy D, D, Dsy
static k* 0.87+0.03 | 0.88£0.02 | 0.83£0.04 | 0.84 = 0.03
K 0.89£0.03 | 0.87+£0.03 | 0.85£0.02 | 0.86 = 0.03
quintic k* 0.64 £0.02 | 0.65+0.02 | 0.64 £0.02 | 0.59 £ 0.03
K 0.56 £0.02 | 0.56 £0.02 | 0.53 £0.02 | 0.46 = 0.04
RF k? 0.49£0.02 | 0.50+0.02 | 0.49£0.01 | 0.45£0.01
K 0.39£0.03 | 0.38+£0.02 | 0.37£0.01 | 0.32 £ 0.02

Table 5.1: Generalized dimension D, for ¢ = 0, 1, 2 and 10 in the static, quintic and
RF cases (i.e. I' =0, 1/v/6 and 1/v/2). We analyse the different initial condition
characterized with different initial PS P;,;; oc k% and k*.

Piiw o< kY for the same three different models. We give in Tab. 5.2 the different
values of D, for the same values of ¢ as above. A difference emerges compared to
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the case Py, (k) k% and k*. While in an inhomogeneous fractal the generalized
dimension D, is a decreasing function of its argument, we see that in the three
different models (static, quintic and RF) Dy is smaller than D;. This puzzling result
can be explained by the fact that such a distribution (i.e. initial spectrum n = 0) is
not as strongly clustered as the others, i.e. not all the particles are concentrated in
the overdense regions. This was already noted in our visual inspection in Figs. 4.3
and 4.5 in Chapter 4. Then undersampling effects lead to lowering of the box-
counting dimension. This paradoxical result was already discussed by Borgani in its
study of the multifractal behaviour of 3 — d hierarchical density distributions [27]
and Dubrulle et al. in their multifractal analysis of 3 — d galaxy catalogs with box-
counting methods [48|. This illustrates that the box-counting method should be
used with caution when analyzing discrete sets like galaxy distributions.

k’o DQ D1 D2 D10
static | 0.71£0.04 | 0.85+£0.02 | 0.84 £0.02 | 0.82 £ 0.06
quintic | 0.62£0.02 | 0.79 £0.02 | 0.80 £0.02 | 0.72 £ 0.03

RF 0.48£0.02 | 0.69£0.02 | 0.71 £0.02 | 0.61 £ 0.04

Table 5.2: Generalized dimension D, for ¢ = 0, 1, 2 and 10 in the static, quintic
and RF cases (i.e. I' = 0, 1/4/6 and 1/4/2). We analyse the initial condition with
PS Pyit(k) oc k°.
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3 Halos and virialization

In this section, we explore the possibility of describing the clustered distributions
obtained in the toy models we have studied as a collection of “halos”, i.e. as a collec-
tion of approximately independent virialized structures. As discussed in Chapter 2,
it is now standard to use such a description to characterize the structures obtained
in cosmological simulations in 3 — d. As we noted in the introduction, the fractality
we have found in these models in the preceeding sections would seem to be clearly
at odds with such a description: these halos are considered to have smooth density
profiles and clearly do not have scale invariant properties.

In the following, we first introduce and employ a simple “Friend-of-Friend” (FoF)
algorithm which allows one to select out a set of (candidate) halos in a manner wholly
analogous to how it is done in 3 — d simulations. We analyse the properties of the
selected halos and the degree to which their statistical properties reflect or not the
scale invariance (in a certain range of scales) of the distribution. We then turn to the
question of whether these halos, or at least a certain appropriately selected subclass
of them, may actually be considered as roughly independent objects dynamically.
This in practice is probed by testing whether they show a tendency to be virialized.
This leads us then to analyze in detail the distribution of the measured virial ratios,
testing whether, for halos selected with characteristic sizes in the range of scale-
invariant clustering, there is evidence for a stable PDF of the virial ratio peaked
about unity.

3.1 Halo selection: The Friend-of-Friend algorithm

To define candidate “halos”, we follow the simplest method which consists in a
structure-finding algorithm called the FoF-algorithm (see e.g. [58,74,108]). As illus-
trated in Fiig. 5.5, this purely geometrical method consists in introducing an arbitrary
linking length ¢,¢ that represents the distance below which two neighboring parti-
cles belong to the same FoF-group. The collection of linked particles forms a group,

d < Ifof
— 0000 00 00 000 @ 00
d>1 d>1, d>1,,

Figure 5.5: 1 — d schematic representation of the FoF-algorithm: if and only if
the distance d between two particles is less than the linking length ¢;,; these two
particles are grouped together in the same FoF-halo (dashed line).

which we refer to an “FoF-halo”. In the following we discard isolated particles.

One way of describing what the algorithm does is that it simply selects out
regions in which the density, smoothed on scale of local interparticle distance, is
greater than a threshold density given by 1/¢;,r. Note that since the mean density
is simply 1/¢, where ¢ is the initial lattice spacing, if {7,y < ¢ we select out regions
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which are necessarily overdensities. Equivalently, the algorithm can be thought in
1 — d as simply breaking the distribution into finite pieces by “cutting” it at any
empty regions (i.e. voids) greater than (g,;.

In relation to the physical motivation - which is to try to define finite subsystems
which have some dynamical independence - the limitation of the algorithm is that
it picks out such subsystems in an extremely elementary way, without using any
dynamical criterion notably. If there are such subsystems or finite structures, the
algorithm will, for example, clearly put two of them together which “happen to be”
closeby at the time considered. In the context of cosmology this has led to the
development of various alternative algorithms (see e.g. [101,102]).

A crucial feature of the algorithm is, evidently, that it includes one free parame-
ter, {4of, and the candidate “halos” one picks out depend on it. In 3 —d cosmological
simulations a single value of this is chosen by hand, corresponding to a threshold in
the density a few times the mean density, the idea being to select out all groups of
particles which have undergone together non-linear evolution !.

Here we will study carefully the dependence of the halos on this free parameter
lsofr. In particular we will examine whether a choice of /;,; a little smaller than
¢, as used in cosmological simulations, has any physical justification or meaning.
This latter point essentially concerns the question of whether there is a particular
choice of ¢;,; which selects out structures which are (typically) virialized. Such
virialization is what indicates that they are of dynamical significance considered on
their own (because virialization is one of the distinguishing characteristics of finite
isolated structures).

In the rest of the section we consider first the basic properties of the structures
selected out by the FoF-algorithm, specifically

e the distribution of their size L., i.e. their spatial extent;
e the distribution of their mean densities n.;

e the distribution of the number of points they contain (known as their mass
function in the cosmological context).

Provided ¢y, is significantly smaller than the size of the system, such distributions
may be assumed to be sampled from some underlying PDF which contains inevitably
a certain kind of information about the distribution in the infinite system limit. The
question which interests us is how these PDF depend on the single parameter £;,;. In
general we would expect them to depend on how /;,; compares with the characteris-
tic scales in the system. In the case of scale-invariant clustering in the distribution,
which we have found appears to be the case of those considered here, one might ex-
pect appropriate properties of the FoF-halos to be independent of £¢,¢. If this is the
case such an analysis is a suitable instrument for revealing scale-invariant properties.

'In other variants of the algorithm employed in cosmology at least one parameter, or often
several such parameters must be introduced, and thay are ascribed essentially ad-hoc values given
similar kinds of physical motivation.
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We present here only results for a single chosen case: initial conditions with PS
in k* (“causal fluctuations”) evolved up to t, = 22, in the quintic model. We choose
this case because it is one of those where the range of scales over which both non-
linear clustering and, in particular, scale-invariant clustering is greatest. In Fig. 5.6
is recalled the reduced 2-point correlation function as it develops in time in this
case up to the final time at which we analyse it here. For what follows it will be
important to have present the scales characterising the clustering at the final time:
as addressed in Chapter 4, the scale-invariant power-law clustering regime stretches
in this case over approximately five orders of magnitude, i.e. between the scales
Tonin ~ 10730 ~ 1078 and 2,0, ~ 102¢ ~ 1073 where ¢ is the initial lattice spacing.
In the following, we will use the normalized parameter A = ¢;,;/¢ in studying the
behaviors of the different observables. In this variable the region of scale invariance
then corresponds to A = 1072 to 10%2. In our analysis, we do not consider values of
A > 10 as in this case, the number of FoF-halos is too small to give a significant
statistics.

1€ (x/L,t) |
—
o

10
otk EIY
t o= 10 e
1072 Lt = 14
t = 18 ———-
10*3 t:\22 7777\” I
107% 107 107® 1077 -

Figure 5.6: Evolution of the absolute value of the reduced 2-point correlation func-
tion |£(z, )| in the quintic case, starting with an initial PS P, (k) o< k*. Considering
the evolved time t; = 22, we see that the self-similar regime is well developed.

Just as in the fractal analysis of the previous section using box counting, we note
at the outset that we expect to see limiting behaviours of the PDF of FoF-halos for
very large or small values of £,¢:

e when (s, becomes sufficiently small, the probability of having more than
two particles becomes negligible and one has essentially just pairs of nearest-
neighbor particles;

e when /s, becomes comparable to the scale of non-linearity, we will link to-
gether the whole system and the result would be trivial.

We will show here only results up to £,y = 10 ¢ because the number of FoF-halos
becomes so small that the measures of the PDF we consider become too noisy.
Indeed, at €7, = 10% ¢ there are only a couple of FoF-halos.
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Figure 5.7: Distribution (normalized to unity) of the size L, of the FoF-halos ex-
tracted from the simulation box for different values of the parameter A = {4,/ in a
semi-log representation. These results are for the case of an initial PS Py, (k) = k*
evolved at t; = 22. The value of the parameter A decreases from left to right
and from top to bottom. The red, blue, green, yellow, magenta an orange plots
correspond respectively to a value of A = 10, 1, 101, 1072, 1073 and 10~*.

In Fig. 5.7 is shown the PDF of the size L; of the FoF-halos, renormalized by
the parameter A. For {;,; between ¢ and 10~2 ¢ we observe a reasonably stable form
with a peak somewhere between A and 10A. As we go towards smaller A we see
a sharper peak appear, which also shifts to smaller A. That this latter behaviour
is indicative of the sparseness limit will become clearer below. We note that these
plots also suggest that the properties of FoF-halos are not a very “clean” way to
single out scale-invariant properties: the algorithm is not a simple coarse-graining
which breaks the system into subsystems of a single size, but rather it selects out
sub-systems with quite a broad range of sizes. Given that scale invariance applies
in a limited range of scale (between 4 and 5 orders of magnitude in this case), this
means in practice that even when the FoF-algorithm picks out mostly structures
with a size in this range, it also includes some structures which fall outside the
range. In Fig. 5.7 we see that at only A = 1 does the full range of sizes fall within
the range of scale invariance. At A = 0.1 we already have a significant “pollution”
by structures of size less than 1072 ¢ = z,,:,.

Shown in Fig. 5.8 is the measured distribution of the density of the FoF-halos.
The qualitative behaviours are quite similar to in the previous plots: in the range
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Figure 5.8: Distribution (normalized to unity) of the local density n, = N /Ly of
the FoF-halos extracted from the simulation box for different values of the parameter
A in a semi-log representation. The color code is the same as in previous figure.

A € [1072,10] there is a roughly stable form which becomes modified at the two
smaller A (to an almost strictly monotonically decreasing form). As we noted above,
the FoF-algorithm singles out regions in which the density is strictly larger than a
threshold equal to 2/¢,s. As can be seen in the plots this strict lower limit (imposed
again by the sparseness) begins to play a role for A = 1072, and at A = 1073 clearly
defines the sharp cut-off which has appeared. The FoF-algorithm is then selecting
out single structures with density around and sligtly larger than 1, = 2/¢;.s.

The histogram of the number N, of particles in the FoF-halos is shown in Fig. 5.9.
These plots show much more clearly how the effect of sparseness (i.e. the existence
of a lower cut-off in the scale invariance) already “pollutes” the statistics of the
FoF-halos when (s, >> x,,,,: we see already at A = 1 a significant number of
halo with only a few particles. For the two smallest values the 2 particles FoF-halos
completely dominate, and clearly the properties we saw in the previous two figures
at these values were indeed, as supposed, indicative of the sparseness limit. Indeed
we can infer that the plot for A = 10~* in Fig. 5.7 is essentialy just the distribution
of nearest-neighbours distances in the distribution with the sharp cut arising from
the upper cut-off at Lj, = (..

In summary, the FoF-algorithm picks out FoF-halos of which the statistical prop-
erties carry information about the scale invariance in the distributions, but in a very
limited range as the algorithm mixes quite strongly a range of scales.

180



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONAL
SELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS AND

A=10 A=1 A=10"
s
8
g
o s
g 2
2
£ £ c 8
4 € 2
2 E 2 3
z B g 8
T I [
0 i1 °
g
]
° ° °
T T T 1 — T T T T !
500 1000 1500 2000 o 100 200 300 400 500 600 700 50 100 150 200
Np Ny Nn
A=107? A=10"° A=10"
8
&7 s g
8 g -
2 2
N 8
8
s
E 8 8
g g
< g
s
e 84 £ g £
s & s 8 o
g g = g 8]
g g g 2 g
R T 8 T
g
g
s
s g
] M g g
g
o - =3 o 4
T T T T ! r T T T ! T T T T !
10 20 30 40 50 0 5 10 15 20 1 2 3 4 5
Nn Nn Nn

Figure 5.9: Histogram of the mass function, 7.e. the histogram of the number of
particles in the FoF-halos extracted from the simulation box, for different values of
the parameter A. The color code is the same as in previous figures.
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Figure 5.10: Histogram of the mass function as in Fig. 5.9 using an arbitrary cut on

the minimal number of particles in the FoF-halos, i.e. N, > 10.
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3.2 Testing for virialization of halos

In this section, we consider whether the concept of virialization, which applies
strictly to isolated finite systems, is of relevance to the “halos” selected out by the
FoF-algorithm, whose basic characteristics we have just discussed. In particular we
wish to see whether there is a particular value, or range of values, of £;,; for which
the algorithm appears to pick out, typically, sub-systems which are virialized.

Virialization of isolated subsystems

The question we first answer is what virial relation applies to a finite isolated sub-
sytem in our system. To do so we recall explicitly the equations of motion of such a
subsystem. We recall that isolated means that particles in subsystem do not cross
other particles outside it. We then have

d? d N7 (t) — N=(t
ﬁ(xi_$CM)+PE($i_$CM) = — ®) iU,

2710 + (I‘Z — xC’M) s (512)

where zc)s represents in both cases the position of the center of mass of the sub-
system. N=(t) (respectively N;(t)) represents the number of particles on the left
(respectively on the right) of the particle i at time t. We have seen that the rhs
can be divided into two distinct contributions. The first one represents the finite
gravitational force contibution from particles belonging to the subsystem, fg.4,, and
the second one stands for the background contribution fy,.x.

If such a finite isolated subsystem reaches a dynamical equilibrium on a timescale
much shorter than the expansion timescale (~ I'"!), we expect it to be virialized.
Following Chapter 2, the usual virial relation can be generalized in this case to
include the contribution from the background, i.e. the term fy,.x, and becomes

Ne¢ 1 Ne¢ Ne¢
2Z§vz2+le : ;r(w_’_in : flfack:O7 (513)
=1 =1 =1

where v; and x; are the velocity and the position of the i* particle with respect to
the velocity and position of the center of mass (voy and zeys) of the subsystem.
This relation is strictly valid if the system is in a steady state, so that the second
derivative of the moment of inertia I cancels, i.e. % = 0. Since % ~ ]X—SLL
the background term is negligible in the virial relation if Z—g >> 1, i.e. if the mean
density of the subsystem is much greater than the global mean density. As discussed
in Chapter 4, this is precisely the same assumption in fact which allows one to neglect
the damping term, and assume virialization.
Thus we can expect the “usual” virial relation for a finite isolated 1 — d self-
gravitating system, i.e.
2K -U =0, (5.14)
to hold if the subsystem may be considered as isolated and is significantly overdense
(i.e. np/ng >> 1). For the FoF-halos, we note that n,/ng > (/{;,;y = 1 by

construction (since L, > Ny, g,r). Thus for A << 1 our FoF-halos are necessarily
overdense, while for A > 1 they are not. Then we will apply for A > 1 a cut on our
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candidate virialized FoF-halos to select only those with Z—g > 1. Fig. 5.8 shows that
this cut is of marginal relevance.

We note that the crucial assumption involved in deriving the scalar virial theorem
is that the moment of inertia [ is time-independent. However, in a system with a
small number of particles, there are necessarily statistical fluctuations in I simply
due to the finite-size, and Eqgs. (5.13) and (5.14) could be expected to hold only for
time-averaged values of K and U. Let us summarize the steps of our analysis:

e we find and extract the FoF-Halos in our simulation box for a given (4,
e we discard FoF-halos with n; < ng;
e we calculate the position and velocity of the center of mass of each FoF-halo;

e we measure the virial ratio V' = 2K /U of each FoF-halo measuring velocities
with respect to its center of mass.

As in the previous section we consider here results only for the case of the quintic
model with an initial PS Py, (k) o< k% evolved to t, = 22.

Spatial distribution of the virial ratio

In Fig. 5.11 is plotted the virial ratio of each of the FoF-halos at the position of
its center of mass for a given A = {;,7/¢ = 1072 in two separate regions of the full
system.
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Figure 5.11: Measure of the virial ratio as a function of the center of mass of the FoF-
halos for two different samples extracted from the simulation box at time t;, = 22
and A = 1072,

The signal appears highly disorganized and unpredictable in its detailed behavior,
and presents structures on all scales. These two different samples of about the same
extend in space are taken around two different positions in the simulation box. We
see that the general aspect is the same in the two samples but all the details are
different and could not have been predicted from looking at a single sample.

We show in Fig. 5.12 the histogram of the virial ratio for these same regions.
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Figure 5.12: Distribution (normalized to unity) of the virial ratio of FoF-halos for
the two regions shown in Fig. 5.11 measured for A = 1072

The two histograms in Fig. 5.12 resemble one another very strongly. This pro-
vides clear evidence that, although the detailed properties of the signal appear not
to be predictable, its statistical properties are self-averaging, i.e. the distribution
of the virial ratio in samples of the size considered does appear to converge well to
a sample-independent statistical quantity. This observation suggests that a proba-
bilistic approach to the question of virialization of the halos can indeed be used. It
is this approach which we now use.

Probability distribution of the virial ratio

In the following we thus study the behaviour of the distribution of the virial ratios
of the FoF-halos selected with the FoF-algorithm, as a function of £;.

In Fig. 5.13 is shown the measured distribution of the virial ratio for different
values of the parameter A. The overall qualitative appearance of these plots is quite
similar to Figs. 5.7 and 5.8 in the previous section: there appears to be a roughly
stable shape in the range A € [1072, 1] which is strongly modified at A = 1073. In this
first range, the distribution presents a non-symmetric behaviour with a maximum
virial ratio V4, in the range [0,2], and a tail on the right of the distribution at
large virial ratio. This tail becomes more and more predominant as the value of A
decreases. At smaller A we see that the main contribution to the distribution of
the virial ratio comes from large values of it and that structures with virial ratio in
the range [0, 2] are not present. We note further that the increasing importance of
the contribution of virial ratios much larger than unity as A decreases is coherent
physically with the hypothesis that, at the scale x,,;,, marking the lower cut-off
to self-similarity, one has a transition to approximately smooth virialized clusters
exactly as envisaged in the stable clustering hypothesis: subsystems of such clusters
will simply, because of the super-extensivity of potential energy, be expected to have
large virial ratios.

We thus posit that the existence of this apparently stable PDF roughly centered
on unity means we can say that the halos in the range of scales corresponding to
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Figure 5.13: Distribution (normalized to unity) of the virial ratio V' for different
values of the parameter A. The color code is the same as in previous figures.

scale invariance are typically virialized. In other words we posit that the observed
scale invariant clustering can, in a statistical sense, be associated to virialization in
this range of scale.

To probe further whether this is a well justified interpretation, we examine now
whether there are the physically expected correlations of virialization with param-
eters characterizing the halos. We consider in particular the size of the halos and
the distance to the nearest halo, i.e. the distance between two particles at the
extremities of two different halos.

We start with a qualitative inspection of Fig. 5.14 and 5.15, which show the
dependence of the fraction of FoF-halos with a virial ratio V' < 2 (blue curve) and
V' > 2 (red curve) as a function of the size Lj, of these structures, and then as the
nearest halo distance d,,;, for different values of the parameter A.

The plots show more quantitatively than above that there is a clear tendency to
virialization for a range of £,y down to A = 107% there is apparently a correlation
between such virialization and the two chosen parameters, i.e. the size of the halos
and the distance to the next halo. For what concerns the size, it is in each case the
halos in a range around /4, which most clearly show the tendency to virialization.
The high values of the virial ratio do indeed appear to come from the extremes of
halos much larger and much smaller than f,;. This is consistent with the inter-
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Figure 5.14: Fraction of FoF-halos with a virial ratio V' < 2 (blue curve) and V' > 2
(red curve) as a function of the size L; of the FoF-halos for different values of A.
The fraction is the number of halos with a given range of virial ratio (V' < 2 or
V' > 2) divided by the total number of halos selected out by the FoF-algorithm at
the given linking-length. The color code is the same as in previous figures.

pretation that these are, in both cases, in fact sub-structures of larger halos. For
what concerns the nearest-halo distance we also observe the expected correlation.
Roughly if a halo is separated spatially we would expect it to be isolated to a better
approximation, ¢.e. that it has not interacted with the rest of the system for a longer

time, and thus that it would be better virialized.
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Figure 5.15: Fraction of FoF-halos with a virial ratio V' < 2 (blue curve) and V' > 2
(red curve) as a function of the nearest-halo distance d,, for different values of A.
The proportion is defined as the number of halos with a given range of virial ratio
(V < 2or V > 2) divided by the total number of halos selected out by the FoF-
algorithm and at the given linking-length. The color code is the same as in previous
figures.
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To test more quantitatively these conclusions drawn from visual analysis of these
plots we perform a statistical hypothesis test, Pearson’s chi-square test [40]. We
divide our set of selected FoF-halos (for a given value of the parameter A) into
the two distinct populations, one with V' < 2 and the second one with V' > 2.
We then consider two distinct classes, one with size L, > A and the second one
with L, < A. Likewise we consider two other distinct classes, one with nearest-halo
separation d,,. > 2A and d,,. < 2A. Pearson’s chi-square test tests the null hypothesis
stating that the occurence of these two populations is statistically independent. An
observation O;; is the number of halos in the population “s” and for class “j”. Each
observation is allocated to one cell of a two-dimensional array of cells (called a table).
If there are r rows and ¢ columns in the table, the theoretical frequency for a cell,
given the hypothesis of independence is

B, = Zizl O Z;:l Okj (5.15)

where N, is the total number of FoF-halos in our sample, and fitting the model of
independence reduces the number of degrees of freedom by ¢ =+ ¢ — 1. The value
of the test-statistic is ,

r c (OU _ Ez)

X2:ZZ E;;

i=1 j=1

(5.16)

The distribution of this statistic is a x? distribution with (r — 1) x (¢ — 1) degrees
of freedom (i.e. the number of cells (r x ¢) minus the reduction in degrees of free-
dom ¢). To extract quantitative information, we report in Tables 5.3 and 5.4 the
p-values of this test. In statistical hypothesis testing, the p-value is the probability
of obtaining a test statisitc at least as extreme as the one that was actually ob-
served, assuming that the null hypothesis is “true”. In our particular case, the null
hypothesis consists in assuming that the two distinct populations are independent,
and that the deviation between the observation and the theoretical expectation is a
coincidence. The lower the p-value, the less likely the result is if the null hypothesis
is true, and consequently the more “significant” the result is, in the sense of sta-
tistical significance. One often accepts the alternative hypothesis (i.e. rejection of
the null hypothesis) if the p-value is less than 0.05 corresponding to a 5% chance
of rejecting the null hypothesis when it is true [40]. The p-value for the x? test is
Prob(x? > X?), the probability of observing a value at least as extreme as the test
statistic for a x? distribution with (r — 1) x (¢ — 1) degrees of freedom.

A 10 1 0.1 0.01 | 0.001 | 0.0001
p-value || 0.004 | 107 | 107 | 1076 | 0.002 | 0.6

Table 5.3: Result of Pearson’s chi square test for the two distinct populations (V' < 2
and V' > 2) and with two distinct classes (L. < [ and L. > [). In the range of
scale-invariant clustering, the p-value is small enough to reject the null hypothesis.
However, for small values of A, this tendency disappears as we see that the p-value
clearly excludes the rejection of the null hypothesis.
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The results obtained in Tab. 5.3 show that, in the range of scale-invariant clus-
tering, the p-value is small enough to reject the null hypothesis. This means that
the fact that the FoF-halos with L, < A mainly contribute to V' < 2 is not a co-
incidence. However, for small values of A, i.e. outside the range of scale-invariant
clustering, represented here by A = 1074, this tendency disappears as we see that
the p-value clearly excludes the rejection of the null hypothesis.

A 10 | 1 0.1 | 0.01 | 0.001 | 0.0001
p-value || 0.5 0.2 [ 0.01 [ 1076 [ 1071¢ | 0.6

Table 5.4: Result of Pearson’s chi square test for the two distinct populations (V' < 2
and V' > 2) and with two distinct classes (d,;, > 2 A and d,,. < 2 1). In the
range of scale invariant clustering, the p-values show the tendency to reject the null
hypothesis. However, this result is not clear for the values of the parameter A = 10
and 1.

The results obtained in Tab. 5.4 show the tendency to reject the null hypothesis
in the range of scale invariant clustering, i.e. the fact that the FoF-halos with near-
est halo separation d,,;, > 2 x A mainly contribute to V' < 2 is not a coincidence.
However, this result is not clear for the values of the parameter A = 10 and 1.
Analysing Fig. 5.15 we see that the departure from the expected result would be
justified by the fact that structures with V' > 2 are too under-represented in the
system. This result would be explained by the tendency of spatially isolated struc-
tures to dynamically evolve enough in time to reach statistically a virial equilibrium.

We show next in Fig. 5.16 the impact of making a cut on the size of the halos L,
and on the nearest-halo distance d,,;,, i.e. we exclude from our halos at any A those
with L;, > A and d,; < 2A, on the distribution of the virial ratio. In comparaison
with Fig. 5.13, we see that the contribution to the tail of the measured distribution
has noticeably reduced, leading to a stronger reproducibility of the signal.
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Figure 5.16: Distribution (normalized to unity) of the virial ratio for different values
of the parameter A, i.e. as in Fig. 5.13, but now with two additional cuts applied:
we exclude from our halos at any A those with L, > A and d,, < 2A. The color
code is the same as in previous figures.
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Information about the reproducibility of the signal can also be extracted from
the cumulative distribution function (CDF) of the different distributions obtained
for the different values of the linking-length.

We show in Figs. 5.17 and 5.18 the CDF of the virial ratio of the FoF-halos for
decreasing values of the parameter A with and without the same cut used above.
Above the scale x,,;, marking the lower cut-off to the self-similar regime, we see
reproducibility of the statistical signal. This is illustrated by the red, blue and
green CDF. Below the scale x,,,,, the shape of the CDF changes dramatically;
this variation characterizes well the end of the self-similar regime. This qualitative
inspection illustrates the improvement of the reproducibility of the signal when we
consider these cuts on the size of the structures and the one on the nearest-halo
separation.
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Figure 5.17: Cumulative distribution function of the virial ratio for different values of
A. The color code is the same as in previous figures. We see a strongly reproducible
signal. The orange curve shows that the behaviour of the CDF changes dramaticaly
when l¢or < Tpin.
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Figure 5.18: Cumulative distribution function of the virial ratio for different values
of A. We consider the statistical cuts on the size of the halos and the nearest-halo
separation discussed in the text. The color code is the same as in previous figures.
We still see a strongly reproducible signal.
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3.3 Statistical tests for stability of the probability distibution
of the virial ratio in scale-invariant regime

The Kolmogorov-Smirnov test as a quantitative study of reproducibility

To more quantitatively characterize the reproducibility of the probability distribu-
tion of the virial ratio, we consider finally a statistical test of the different probability
density function. We use the Kolmogorov-Smirnov (K-S) test that is a form of min-
imum distance estimation used as a nonparametric test to compare two samples.
The K-S test is the one of the most useful and general nonparametric methods for
comparing two samples, as it is sensitive to differences in both location and shape
of the empirical cumulative distribution functions of the two samples [40]. The K-S
statistic quantifies a distance between the empirical distribution functions of the two
samples. The null distribution of this statistic is calculated under the null hypothesis
that the samples are drawn from the same distribution.

To perform this test, we define the K-S statistic D, ,, = sup, |F,(x) — F,,(2)]
where n and m represent the number of data in the two samples, and where F,,(x)
and F,,(x) are the cumulative distribution functions obtained with the 2 samples.
The null hypothesis is rejected at level « if

nm

Dym > Do, (5.17)
n-—+m

where D,, is a chosen critical value of the test statistic such that Prob(D,, ,, < D,) =
1 — a. This two-samples test checks whether the two data samples come from the
same distribution. This does not specify what the common distribution is.

We then consider the p-value of this test to extract quantitative information
about the reproducibility of the pdf of the virial ratio. Generally, one rejects the
null hypothesis if the p-value is smaller than or equal to the significance level, often
represented by the Greek letter o. If the level is 0.05, then results that are only 5%
likely or less, given that the null hypothesis is true, are deemed extraordinary.

A 1 0.1 | 0.01 | 0.001
10 [0.26 | 0.23 | 0.04 | 10710

1 0.70 | 0.03 | 107'°
0.1 1076 10716
0.01 10716

Table 5.5: Result of the Kolmogorov-Smirnov-2-samples test between the different
measured distribution of V. Each case in the table corresponds to the p-value of
the KS-test between the two samples obtained with the values of the parameter A
corresponding to the fisrt raw and the first column.

We perform the K-S test for the different distribution functions and bring to-
gether the different p-values in Table 5.5. We see that the p-values in the fifth
column, corresponding to the K-S test between samples obtained with A = 1073
and the smaller ones, is extremely small; we can thus reject the null hypothesis with
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more than 99% of confidence, i.e. the samples do not come from the same distribu-
tion. In the second and the third column, the p-value is very large, and do not allow
us to reject the null hypothesis, i.e. we cannot conclude that the different samples
obtained with A = 10, 1, and 107! come from different distributions. The fourth
column, corresponding to the KS-test between the sample obtained with A = 1072
and the other ones, is a limit case where we cannot reject the null hypothesis or
accept it with enough confidence. This result is in agreement with the fact that the
end of the regime of scale invariant clustering is roughly located at a scale between
107% and 1078,

Furthermore, this quantitative inspection illustrates that the signal looks repro-
ducible in the regime of scale-invariant clustering, but shows above all the end of this
reproducibility at the end of the regime of scale invariant clustering. It is interesting
to go a little further into detail and to study the impact of the cuts on size of the
structures and on the nearest-halo separation discussed above on the K-S test and
the p-values which follow.

Condition on the size of the structures

We have qualitatively seen previously that the FoF-halos selected out from the
simulation box with L, < A mainly contributed to V' < 2. We perform the K-S

A 1 0.1 | 0.01 | 0.001
10 [ 0.27 | 0.23 | 0.04 | 10710

1 0.70 | 0.03 | 10716
0.1 107° | 1016
0.01 10716

Table 5.6: Result of the Kolmogorov-Smirnov-2-samples test between the different
measured distribution of V' obtained with the cut on the size of the halos. Each
case in the table corresponds to the p-value of the KS-test between the two samples
obtained with the values of the parameter A corresponding to the fisrt raw and the
first column.

test and bring together the different p-values in Tab. 3.3. Without changing the
conclusion we made previously about the rejection of the null hypothesis, we see
that the results presented in Tab. 3.3 do not present significant difference with the
results refered in Tab. 5.5. The cut on the size L; of the FoF-halos is thus not
statistically relevant for this test.

Condition on the nearest-halos separation

We have seen that, given a linking-length, we obtain that two different FoF-halos
are inevitably separated with a distance fg,, > {;,;. Due to the arbitrary choice
of {405, it is interesting to analyse the impact of the cut on the nearest-neighbours
separation on the reproducibility of the measured distribution of the virial ratio.
We consider structures with a nearest-neighour at distance d,;, > 2A. Following
the same quantitative approach as previously, the p-values obtained with the K-S
test are bring together in Table 3.3. We see that if we consider the fifth column,
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A 1 0.1 | 0.01 | 0.001
10 [0.97 | 0.14 | 027 | 107

1 0.68 | 0.84 | 1072
0.1 0.46 | 1074
0.01 1078

Table 5.7: Result of the Kolmogorov-Smirnov-2-samples test between the different
measured distribution of V' obtained with the cut on the nearest-halo distribution.
Each case in the table corresponds to the p-value of the KS-test between the two
samples obtained with the values of the parameter A corresponfing to the fisrt raw
and the first column.

the p-value is always small and we can reject the null hypothesis. This simply
means that the sample corresponding to A < 1072 does not correspond to the same
distribution than the ones correponding to larger value of the linking-length. As
far as the other columns are concerned, we clearly see a significant difference with
the results presented in Tab. 5.5 and Tab. 3.3. The conclusion is still the same as
the obtained p-values do not still allow us to reject the null hypothesis, i.e. we
cannot conclude that the different samples obtained with A = 10, 1, 107!, and 1072
come from different distributions, but this statistical cut significantly improves the
non-rejection of the null hypothesis.

This result shows that the nearest-halo separation has a significant impact on
the reproducibility of the distribution of the virial ratio. Its effect is to reduce the
contribution of the tail to the measured distribution of the virial ratio, and thus to
improve the statistical reproducibility of the signal.

4 Conclusion

In the first section of this chapter we saw that there is indeed very clear evidence
for scale-invariance in the non-linear clustering that develops in the class of toy
models we have considered. We used a multi-fractal analysis to measure the spec-
trum of fractal exponents and studied their dependence on the model and initial
conditions. In the static model the results are quite consistent with a simple ho-
mogeneous fractal, while in the expanding cases there is a significant multi-fractality.

In the second part of our analysis we explored the applicability of a description
of the clustering like that used canonically in cosmological simulations, that in terms
of “halos”. We used the simplest kind of “Friends of Friends” algorithm, which has
one free parameter, the linking-length (¢,;. We described some of the statistical
properties of the selected halos as a function of 4,¢, and then focussed on the ques-
tion of whether these selected halos are, typically, virialized. Such virialization is
an indicator of the degree to which they behave as independent sub-systems, whose
elements interact essentially only with one another on a time scale sufficient to es-
tablish a kind of equilibrium. We found that there is indeed evidence that, when
Utor is in the range where it effectively picks out structures on length scales where
the clustering is scale-invariant, the PDF of the halos virial ratio is peaked about
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unity. We observed also that the tail of the distribution at large virial ratio could
be associated with halos larger or smaller than the typical size, and thus result from
the fact that the algorithm does not strictly pick out a single scale.

This leads us to conclude that in the regime of scale-invariant clustering the
distribution can be described as a “virialized hierarchy”. By this we mean that the
distribution in space, when appropriately analyzed at any scale, can be considered
as a collection of approximately virialized sub-systems. These “halos”, however, are
not smooth objects of a single characteristic size as assumed in the 3—d cosmological
setting. Only at the very small scale at which self-similarity and scale-invariance
break down (i.e. the scale x,,;, defined in Chapter 4) is there evidence for roughly
smooth virialized structures. Further, we have reported here only results for the
case of an initial PS with n = 4, and it shoulb be verified that the same conclusions
apply to other cases, and also to the static limit. More specifically, it would be
interesting to see whether it is possible to relate the evolution of the scale z,,;, and
the associated correlation amplitude &,,,, in cases where stable clustering does not
apply to “merging” of halo type structures.

This analysis could be developed on various points. For example we have anal-
ysed the distribution at just one time, while it could clearly be instructive to study
the evolution of the “halos” in time to more directly probe the extent to which they
can be considered to evolve as independent sub-systems. It would be interesting
also to study alternative algorithms for halo selection analogous to ones other than
the FOF-algorithm which have been developed in cosmology, and to verify that the
conclusions we have come to here do not depend on the specific FoF-algorithm we
have used.
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Chapter 6

A dynamical classification of the
range of pair interactions

In this chapter, we report results which generalize to any pair interaction decaying
as a power-law at large separation the approach used in Chapter 3 to determine
whether the 1 — d gravitational force is defined in an infinite system. This is an
interesting question as the Newtonian gravitation is clearly a particular long-range
interaction, for which linear amplification emerges from linear fluid theory.

In so doing, we formalize and describe a simple classification of pair interactions
which is different to the usual thermodynamic one,discussed in Chapter 1, applied
to determine equilibrium properties (see e.g. [31,42,136]), and which we believe
should be very relevant in understanding aspects of the out of equilibrium dynamics
of these systems. Instead of considering the convergence properties of potential
energy in the usual thermodynamic limit, we consider therefore those of the force
in the same limit. Thus, while in the former case one considers (see e.g. [136]) the
mathematical properties of essential functions describing systems at equilibrium in
the limit N — oo, V — oo at fixed particle density ng = N/V, we will consider the
behavior of functions characterising the forces in this same limit. More specifically
we consider, following an approach introduced by Chandrasekhar for the case of
gravity [33,71], the definedness of the probability distribution function (PDF) of
the force field in statistically homogeneous infinite particle distributions. To avoid
any confusion we will refer to the usual thermodynamic limit in this context simply
as the infinite system limit. Indeed the existence or non-existence of the quantities
we are studying in this limit has no direct relation here to the determination of
properties at thermal equilibrium. Further, in the context of the literature on long-
range interactions the term “thermodynamic limit" is now widely associated with
the generalized such limit taken so that relevant macroscopic quantities become
independent of N and V' (for a discussion see e.g. [13]).

We also discuss a further (and different) classification which can be given of the
range of pair interactions based on dynamical considerations. This arises when one
addresses the question of whether dynamics under a given pair interaction may be
defined in infinite systems, i.e., in a manner analogous to that in which it is defined
for self-gravitating masses in an infinite universe.

In this chapter we consider the general analyticity properties of the PDF of the
total force at an arbitrary spatial point in such a particle distribution. We show
that, for any pair force which is bounded, this PDF in the infinite volume limit is
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either well defined and rapidly decreasing, or else vanishes pointwise. This means
that it suffices for almost all cases of interest to show that some chosen moment of
the PDF converges to a finite value in this limit (or diverges) in order to establish
that the whole PDF itself is well-defined (or ill defined). We then give a general
and formal expression for the variance of the total force PDF in a generic infinite
uniform stochastic process in terms of the pair force and the two-point correlation
properties of the SPP. From this we then deduce our principal result that the force
PDF exists strictly in the infinite system limit if and only if the pair force is abso-
lutely integrable at large separations, while it can be defined only in a weaker sense,
introducing a regularization, when the pair force is not absolutely integrable. We
discuss the physical relevance of the use of such a regularization, which is just a gen-
eralization of the so-called “Jeans swindle" used to define the dynamics of (classical
non-relativistic) self-gravitating particles in an infinite universe. By analyzing the
evolution of density perturbations in an infinite system, we show that the physical
relevance of such a regularization of the forces requires also a constraint on the be-
havior of the PDF of total force differences as a function of system size. The text
of this chapter is taken from an article published in J. Stat. Phys. [68].

1 The force PDF in uniform stochastic point pro-
cesses: general results

We first recall the definitions of some basic quantities used in the statistical charac-
terization of a stochastic point process and define the total force PDF (see e.g. [71]
for a detailed discussion). We then derive some results on the analyticity properties
of the latter quantity which we will exploit in deriving our central results in the next
section.

1.1 Stochastic point processes

In order to study the properties of the force field in the infinite system limit given
by N — oo, V — oo with fixed average density ny > 0 for a large scale uniform
and spatially homogeneous particle system, we generalize the approach introduced
by Chandrasekhar in [33] for the total gravitational field in a homogeneous Poisson
particle distribution to more general cases and spatial dimensions. To do so we need
to characterize statistically point-particle distributions in this limit, and we do this
using the language of stochastic point processes (SPP). The microscopic number
density of a single realization of the process is

n(x) = Z 6 (x —x;) (6.1)

where § is the d-dimensional Dirac delta function, x; is the position of the i*" system
particle and the sum runs over all the particles of the system. We will limit our
discussion to particle distributions in a euclidean d—dimensional space which are
(i) statistically translationally invariant (i.e. spatially homogeneous or stationary)
and (ii) large scale uniform in the infinite volume limit. Property (i) means that
the statistical properties around a given spatial point of the particle distribution do
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not depend on the location of the point. In other words the statistical weights of
two realizations of the point process, of which one is the rigidly translated version of
the other, are the same and do not depend on the translation vector. In particular
this implies that the ensemble average (i.e. average over the realizations of the
SPP) (n(x)) of the microscopic number density takes a constant value ng > 0
independent of x. Moreover the two-point correlation function of the microscopic
density (n(x)n(x’)) depends only on the vector distance x — x’. Feature (ii) means
that the average particle number fluctuation N (R) = ((N?(R)) — (N(R))*)"/? in a
sphere of radius R increases slower with R than the average number (N(R)),V(R)
with R, where V(R) oc R? is the volume of the d—dimensional sphere.

Let us start by considering a generic realization of the particle distribution in a
finite volume V' and let the total number of particles of the given realization be N.
The particle positions x; are fully characterized statistically by the joint probability
density function (PDF) Py ({x;}) conditional to having N particles in the realization
({x;} indicates the set of positions of all system particles in the given realization). As
a simple, but paradigmatic example we can think of the homogeneous d—dimensional
Poisson point process. In this case Py({x;}) = V™" simply and independently of
the value of ng. Given a function X ({x;}) of the NV particle positions in the volume
V' its average, conditional to the value of N, can be written as

(X)y = / [ﬁm

where the position of each particle is integrated in the volume V. In order to evaluate
the unconditional average of the property X, for which all possible outcomes of the
value N are considered, one would need the probability ¢y of having N particles in
the volume V', which permits to write:

Prn({xi}) X ({x:}) ,

(X)=> an(X)x, (6.2)

in a strict analogy with the grand canonical ensemble average in equilibrium sta-
tistical mechanics. However, since we are restricting the discussion to large scale
uniform particle distributions, for which §N(R)/ (N (R)) vanishes for asymptotically
large R, we expect that the larger the volume V' the narrower will be the peak around
N = (N(V)) = ngV in which the measure gy will be concentrated (for simplicity
we have indicated with V' both the region and its size). Asymptotically we expect
that only the term of index NoV will contribute to the sum in Eq. (6.2), i.e., for
sufficiently large V' we can write:

(X) = (X)nov -

In other words we can consider that for sufficiently large V' the conditional PDF
Pnov({x;}) characterizes completely the statistical properties of the particle distri-
bution in the finite volume V' and use this to evaluate in the following subsection
the statistical properties of the total force. This is exactly what has been done, for
instance, by Chandrasekhar in [33] to calculate the total gravitational force PDF in
the Poissonian case.
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In Appendix A we recall some of the basic definitions and properties of the
statistical characterizations of uniform SPP. We will use below notably two essential
properties of S(k), the structure factor (SF), which follow from its definition:

lim k*S(k) =0, (6.3)
k—0
i.e, the SF is an integrable function of k at £ = 0, and
lim S(k)=1. (6.4)
k—o00

1.2 General expression for the force PDF

Let us consider now that the particles in any realization of the SPP interact through a
pair force f(x), i.e., f(x) is the force exerted by a particle on another one at vectorial
separation x. Further we will assume that the pair force is central, i.e.,

f(x) =xf(z), (6.5)
where x = x/x, and bounded, i.e.,
3 fo<oo, fx)]=f(x) < fo Vx (6.6)

These assumptions simplify our calculations considerably, but do not limit our aim
which is to establish the relation solely between the statistical properties of the
force field and the behavior of the pair interaction at large distances. Note that the
second assumption means that, in cases such as the gravitational or the Coulomb
interaction, the divergence at zero separation is assumed appropriately regularized.
We will briefly describe in our conclusions below how our results could be generalized
to include such singularities.

Let us assume for the moment that the system volume V' is finite. As shown
above, if V' is sufficiently large, one can consider that the number of particles in
this volume is deterministically NoV. We will deal with the important problem of
the infinite volume limit defined by N,V — oo with N/V — ng > 0 in the next
subsection, by studying directly the limit V' — oo with fixed NyV. The total force
field F(x) at a point x, i.e., the force on a test particle placed at a point x, may
thus be written

N

X — XZ

F(x) =) f(x—x;) Z T x) flx—xi). (6.7)
i=1 !

The force field F(x) may be considered as a stochastic variable with respect to the

SPP. Choosing arbitrarily the origin as the point where the total force is evaluated,

the PDF of this force is formally defined by!

Py (F /[Hdd@] Pr({x;})0 F+foZ],

'We consider here the unconditional force PDF, i.e., the force is that at an arbitrary spatial
point, rather than that on a point occupied by a particle which belongs to the particle distribution.
It is the latter case, of the conditional force PDF, which is often considered in calculations of this
kind (see e.g. [65,66,153]). The distinction is not important here as the constraints we derive, which
depend on the large scale correlation properties of the particle distribution, would be expected to
be the same in both cases.
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where we have used, as assumed, that f(—x;) = —f(x;). Using the identity

) = g [ e (639

this can be rewritten as

Pu(F) = (Qi)d / g o /V [H i, <>] Pr({xi})

The integral over the spatial coordinates in the above equation defines the charac-
teristic function of the total field F

N
Pxla) = [ |T[d%i et
vV Li=1

Pn(F) =

Prn({xi}), (6.9)

so that
1

y /ddq e ¥ Py(q).

The integral over spatial configurations in Eq. (6.9) can be conveniently rewritten as
an integral over the possible values of the pair forces due to each of the i =1,..., N
particles:

pN(Q)E/ [Hddfieiq'ﬂ] An({fi}), (6.10)

on({f}) / H A’z

is the joint PDF for the pair forces f;. Note that, since F is the sum of the variables
{f;} its characteristic function Py(q) can be given as

FN)N(‘]) = QN({% =q}) (6.12)

where Qn({q;}) is the Nd—dimensional FT of the joint pair forces PDF Qy ({f;}),
ie.,

where
N

Py {Xz})H [fi — £(x)] (6.11)

i=1

wah = | [Hddfe’% ] On({£}). (6.13)

1.3 Analyticity properties of the force PDF

From the fact that the pair force is bounded it follows that Qy({f;}) has a compact
support, and, since it is absolutely integrable (by definition), FT theory (see e.g.
[98]) implies that its characteristic function Qn({q;}) is an analytic function of the
variables {q;}. Consequently Py(q) is an analytic function of q. Again from FT
theory one has therefore that Py (F) is a rapidly decreasing function of F:

lim F*Py(F) =0, VYa > 0.

F—oo

201



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIR
INTERACTIONS

Thus Py (F) is a well-defined function of which all moments finite, i.e., 0 < (|F|") <
+oo for any n > 0.

Let us now consider what happens when we take the limit V — oo with NgV'. On
one hand the joint PDF Qx({f;}) remains non-negative and absolutely integrable at
all increasing V. On the other hand the support of this function remains compact
with a diameter unaffected by the values of V', but fixed only by fy. Therefore
we expect that the FT theorem keeps its validity also in the infinite system limit
resulting in an analytical

P(q) = lim Py(q).
N/V,

Therefore we will have that

P(F) = lim Py (F)
NoV
satisfies
lim F*P(F) =0, Ya > 0.
F—o0
There are then only two possibilities for the behavior of Py(q) in the infinite system
limit;:

1. Tt converges to an absolutely integrable function which is not identically zero
everywhere, giving a P(F) which is normalizable and non-negative on its sup-
port. Further all the integer moments of |F| are positive and finite.

2. It converges to zero everywhere, giving P(F) = 0. More specifically Py (F)
with NyV converges point-wise to the null function: it becomes broader and
broader with increasing N (and V'), but with an amplitude which decreases
correspondingly and eventually goes to zero in the limit.

This latter case is analogous to the case of the sum of identically distributed
uncorrelated random variables: if this sum is not normalized with the appropriate
power of the number N of such variables, the PDF of the sum vanishes point-wise
in a similar way in the limit N — oco.

In summary it follows from these considerations of the analyticity properties of
Py(q) at increasing V that the case of a well defined, but fat tailed P(F), can be
excluded: in the infinite system limit the force PDF, if defined, is expected to be a
normalizable and rapidly decreasing function.

2 Large distance behavior of pair interactions and
the force PDF

In this section we use the result derived in the previous section to infer the main
result of this paper: the relation between the large scale behavior of the pair inter-
action and the force PDF in the infinite system limit. We thus consider, as above,
a central and bounded pair force such that

fx) =~

g for v — o0, (6.14)
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or, equivalently, a pair interaction corresponding to a two-body potential V(z) =~
g/(yx7) at large x for v # 0 (and from V(z) ~ —glnx for v = 0). Since the pair
force is bounded, we have v > —1.

Given the final result derived in the previous section, it follows that, to determine
whether the force PDF exists, it is sufficient to analyze a single even moment of this
PDEF': because the PDF, when it exists, is rapidly decreasing, any such moment is
necessarily finite and non-zero in this case, and diverges instead when the PDF does
not exist. We choose to analyze the behavior of the second moment, (F), which
is equal to the variance of the PDF since the first moment (F) is zero (see below).
We choose this moment because, as we will now see, it can be expressed solely in
terms of the FT of f(x) and of the SF of the microscopic density of the particle
distribution. From these expressions we can then infer easily our result.

2.1 Variance of the force in infinite system limit

The formal expression of the total force acting on a test particle (i.e. the force field)
at x in the infinite system limit may be written

/

F(x) = /d 7' —— X,‘f(\x —x'|)n(x') (6.15)

|x

where the integral is over the infinite space and n(x), given in Eq. (6.1), is the
density field in a realization of the general class of uniform SPP we have discussed
with positive mean density ng.

It is simple to show, using Eq. (6.15) and the definition of the SF that formally

(F?) =

1 -
d'k|£(k)|*S (k 6.16
ot | HEGRRS(E) (6.16)
where f'gk) is the (d-dimensional) FT of Xf(z). It is straightforward to show that
f(k) = kf(k), where the explicit expression for f(k) is given in the appendix®. We
can thus write

) = G [ EHARPSH) (6.17)
1

- 24-17:4/2T(d/2) /OOO dk K4 f(R)2S(k),

where I'(x) is the usual Euler Gamma function.

2.2 Force PDF for an integrable pair force

Let us now consider the integrability of the integrand in Eq. (6.17). We start with
the case in which f(z) is not only bounded but integrable in RY, i.e., with v > d —1.
Given these properties, it is straightforward to verify, using the conditions (6.3)
and (6.4) on S(k) and standard FT theorems, that the function |f(k)|2S(k) is also
integrable in R%. The variance is therefore finite, from which it follows that the PDF
exists, and furthermore that all its moments are finite.

2Note that only in d = 1 does f(k) coincide with the direct FT of f(z).
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2.3 Force PDF for a non-integrable pair forces

For a pair force which is absolutely non-integrable, i.e., v < d — 1, the FT f(k) of
f(x) in Eq. (6.17) is defined only in the sense of distributions, i.e., the integrals over
all space of f(x) must be defined by a symmetric limiting procedure. Physically
this means that the expression Eq. (6.15) for the force on a particle in infinite space
must be calculated as

F(x) = lim lim /

pu—0t V—o0

- X’| f(lx = x|)e *>In(x")d%’ (6.18)

where the two limits do not commute. In other words, F(x) is defined as the
zero screening limit of a screened version of the simple power law interaction in an
infinite system. The expression Eq. (6.17) is then meaningful when f(k) is taken to
be defined in the analogous manner with the two limits g — 0" of the screening and
V — oo (i.e. with the minimal non-zero mode k ~ 1/V — 07) taken in the same
order as indicated in Eq. (6.18).

Let us consider then again, for the case v < d — 1, the integrability of the
integrand in Eq. (6.17). To do so we need to examine in detail the small k£ behavior
of f(k) It is shown in the appendix that, as one would expect from a simple
dimensional analysis, for f(r — oo) ~ 1/r7* we have f(k — 0) ~ k=471 in any
d, for the case of a pair force which is not absolutely integrable, and bounded, i.e.,
—1 < v <d—1. It follows then from Eq. (6.17) that the variance is finite for a given
~ only for a sub-class of uniform point processes, specifically those which satisfy

lim k=72 5(k) =0, (6.19)
k—0
i.e., for S(k — 0) ~ k™ with
n>d—2y—2=—-d+2(d-1-7). (6.20)

For uniform point processes violating this condition, i.e., with S(k — 0) ~ k™ and
—d <n < —d+2(d—~—1), the variance diverges. It follows from the results on
the PDF of F presented in the previous section that the total force itself F(x) is
then badly defined in the infinite system limit.

These results of Sec. 2.2 and Sec. 2.3 combined are the central ones in this paper,
anticipated in the introduction.

Firstly, when pair forces are absolutely integrable at large separations, the total
force PDF is well defined in the infinite system limit, while for pair forces which are
not absolutely integrable this quantity is ill defined. This has the simple physical
meaning anticipated in the introduction: when this PDF is well defined, the force
on a typical particle takes its dominant contribution from particles in a finite region
around it; when instead the PDF is ill defined far-away contributions to the total
force dominate, diverging with the size of the system. Thus absolutely integrable
pair forces with v > d — 1 are, in this precise sense, “short-range", while they are
“long-range" when v < d — 1. To avoid confusion with the usual classification of
the range of interactions based on the integrability properties of the interaction
potential, we will adopt the nomenclature that interactions in the case v > d —1 are
dynamically short-range, while for v < d — 1 they are dynamically long-range. Thus
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an interaction with d —1 < v < d can be described as thermodynamically long-range
but dynamically short-range.

Secondly the results in Sec. 2.3 detail how, for v < d — 1, the force PDF in the
infinite system limit may be defined provided an additional prescription is given for
the calculation of the force. In the next section we explain the physical meaning
and relevance of this result.

3 Definedness of dynamics in an infinite uniform
system

The regularization Eq. (6.18) is simply the generalization to a generic pair force
with v < d —1 of one which is used for the case of Newtonian gravity, often referred
to as the “Jeans swindle” (see e.g. [25]). It was indeed originally introduced by
Jeans [86] in his treatment of self-gravitating matter in an infinite universe. However,
as explained by Kiessling in [95], its denomination as a “swindle” is very misleading,
as it can be formulated in a mathematically rigorous and physically meaningful
manner, precisely as in Eq. (6.18).

The prescription Eq. (6.18) simply makes the force on a particle defined by
setting to zero the ill defined contribution due to the non-zero mean density:

(F(x)) = lim no/‘ f(|x = x|)e rxxlgds’ =0, (6.21)

u—0t

The force on a particle can thus be written as

— 13 x—x N o mlx—X| N gd, ./
F(x) = Hlirgh/ - X,‘f(\x x'|)e on(x")dx", (6.22)

where dn(x’) = n(x’) — ng is the density fluctuation field. It is straightforward
to show that the derived constraint (6.20) corresponds simply to that which can be
anticipated by a naive analysis of the convergence of the integral Eq. (6.22): treating
on(x') as a deterministic function (rather than a stochastic field) one can require it
to decay at large |x/| with a sufficiently large exponent in order to give integrability;
taking the FT to infer the behavior of |dn(k)|? one obtains the condition (6.20).

The relevance of the results we have derived for the force PDF in the infinite
system limit using this regularization arises thus, as it does in the case of Newtonian
gravity, when one addresses the following question: is it possible to define consis-
tently dynamics under a given pair interaction in an infinite system which is uniform
at large scales? As we now discuss, generalizing considerations given in [3] for the
specific case of gravity in d = 1, the answer to this question is in fact phrased in
terms of the definedness of the PDF of force differences rather than that of forces.
This leads then to our second classification of pair interactions.

3.1 Evolution of fluctuations and definedness of PDF

Let us consider first an infinite particle distribution which is such that the total force
PDF is defined at some given time, i.e., for v > d — 1 we may consider any uniform
SSP, while for v < d — 1 we may consider (employing the regularization discussed)
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only the class of SSP with fluctuations at large scales obeying the condition (6.20)
at this time. The forces on particles at this initial time are then well defined. This
will only remain true, however, after a finite time interval, if the evolved distribution
continues to obey the same condition (6.20). Let us determine when this is the case
or not.

In order to do so, it suffices to consider the evolution of the density fluctuations,
and specifically of the SF at small k, due to the action of this force field. Given that
we are interested in the long-wavelength modes of the density field, we can apply the
differential form of the continuity equation for the mass (and thus number) density
between an initial time ¢ = 0 and a time ¢ = Jt:

—

n(x,o0t) —n(x,0) = V[n(x, 0)u(x,0)] (6.23)

where u(x, 0) is the infinitesimal displacement field. Subtracting the mean density
no from both sides, and linearizing in on(x,dt) = [n(x,0t) — no] and u(x,0), we
obtain, on taking the FT,

on(k, 6t) = on(k,0) +ingk - u(k,0). (6.24)
Taking the square modulus of both sides, in the same approximation we get

lon(k, 0t)|> — |on(k,0))* = (6.25)
n2k?a(k)[? + 2knoIm[on(k, 0)u*(k, 0)] .

If the displacements are generated solely by the forces acting (i.e. assuming velocities
are initially zero), we have that

1
u(x,0) = 5F(x, 0)ot? (6.26)
and thus, that [t(k)|? oc |[F(k)|?. The latter quantity is given, using Eq. (6.16), by
[F(K)[* = |f(k)[PS (k). (6.27)

In the analysis in the previous section we used the result that at small £, f(k) ~
k=4t Thus |a(k)]? ~ k*™*", where m = —d+~+1, if S(k) ~ k™. It then
follows, from Eq. (6.25), that the small k& behavior of the time-evolved SF is given
by

Ssi(k — 0) ~ k™ 4 glmtn g g2amtn, (6.28)

It can be inferred that the leading small & behavior of the SF is unchanged if and
only if m+1 > 0, i.e., v > d — 2. Gravity (y = d — 2) in the marginal case is
which the long wavelength contribution to the SF generated by the evolution has
the same exponent as the initial SF: this is the well known phenomenon of linear
amplification of initial density perturbations (see e.g. |25, 126]) which applies® in
infinite self-gravitating systems (derived originally by Jeans).

3The result does not apply, however, when n > 4 [126]; the reason is that fluctuations with
S(k — 0) ~ k* arise generically from any rearrangement of matter due to dynamics which con-
serves mass and momentum locally. These effects are neglected implicitly above when we use the
continuum approximation to the density fluctuation field.
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If, on the other hand, v < d — 2 (i.e. the interaction is “more long-range” than
gravity in d dimensions) the exponent of the small k£ behavior is reduced from n to
n —2(d —2 — ). Given that our result is for an infinitesimal time §¢, this indicates
in fact a pathological behavior: in any finite time interval the exponent n should
become, apparently, arbitrarily large and negative, while, as shown in Sect. 1, the
constraint n > —d is imposed by the assumed large scale uniformity of the SPP. In
other words this result means that, in the infinite system limit, when v < d — 2,
the condition of large scale uniformity is violated immediately by the dynamical
evolution. The reason is simply that in this case the rate of growth of a perturbation
at a given scale increases with the scale. Indeed this is the essential content of the
analysis given just above: through the continuity equation, the perturbation to the
density field is proportional to the gradient of the displacement field, which in turn
is simply proportional to the gradient of the force. As we now detail more explicitly
, when v < d — 2, this quantity diverges with the size of the system.

3.2 PDF of force differences

Let us consider now the behavior of the PDF of the difference of the forces between
two spatial points separated by a fixed vector distance a:

AF(x;x+a) =F(x) — F(x+a). (6.29)

If this quantity is well defined in the infinite system limit, its PDF P(AF;a) will
be independent of x and will have a parametric dependece only on a = |a| because
of the assumed statistical translational and rotational invariance of the particle
distribution.

The analysis of the properties of P(AF; a) in the infinite volume limit is formally
exactly the same as that given above for the total force F', with the only replacement
of the pair force in Eq. (6.14) by the pair force difference:

Af(x,x+a) =f(x) — f(x+ a), (6.30)

i.e., the difference of the pair forces on two points located at x and x + a due to
a point at the origin. Assuming again the possible small scale singularities in this
pair force difference to be suitably regulated, our previous analysis carries through,
the only significant change being that, as x — oo,

Af(x,x +a) ~ax/z7?. (6.31)
Proceeding in exactly the same manner to analyse P(AF;a), we find that

e For v > d — 2, i.e., if the gradient of the pair force at fized a is an absolutely
integrable function of x at large separations, the PDF P(AF'; a) is well defined
in the infinite system limit, and is a rapidly decreasing function of its argument
for any SPP. This is true without any regularization.

e For v < d—2, on the other hand, a well defined PDF may be obtained only by
using the regularization like that introduced above in Eq. (6.18). Therefore the
PDF of the force differences then remains well defined, i.e., the force difference
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AF(x;a) remains finite at all x, only in a sub-class of SPP defined by the
constraint

n>d—2y—4=—-d+2(d—2—7~). (6.32)

For the case of gravity v = d — 2 this coincides with the full class of uniform
SPP, while for any smaller , it restricts to a sub-class of the latter.

3.3 Conditions for definedness of dynamics in an infinite sys-
tem

Our analysis in Sec. 3.1 of the evolution of density perturbations under the effect
of the mutual pair forces gave the sufficient condition v > d — 2 for the consistency
of the dynamics in the infinite system limit, but with the assumption that the total
force PDF was itself defined. This means that, in the range d —2 <y < d — 1, the
result derived applies only to the sub-class of infinite uniform particle distributions
in which the large scale fluctuations obey the condition (6.20). It is straightforward
to verify, however, that the analysis and conclusions of Sec. 3.1 can be generalized
to cover all uniform SPP for v > d — 2. In line with the discussion given above,
the analysis requires in fact only assumptions about the behavior of the gradient
of the forces, rather the forces themselves. More specifically, the only equation
which explicitly contains the force, Eq. (6.26), is a purely formal step which can be
modified to include the possibility that the force diverges with system size. Indeed
if the force — at a given point — includes such a divergence it is sufficient that this
divergence cancels out when we calculate the difference between this force and that
at a neighboring point. Physically this means simply that, as discussed above, when
we consider the relative motions of particles, it is sufficient to consider relative forces.
Further, as we are considering the limit of an infinite system in which there is no
preferred point (i.e. statistical homogeneity holds), only relative motions of points
has physical significance, and therefore only the spatial variation of the forces can
have physical meaning. These latter statements can be viewed as a kind of corollary
to Mach’s principle: if the mass distribution of the universe is, as it is in the case we
consider, such that there is no preferred point in space (and, specifically, no center
of mass) inertial frames which give absolute meaning to forces (rather than tidal
forces) cannot be defined.

In summary our conclusion is that the necessary and sufficient condition for
dynamics to be defined in the infinite system limit — in analogy to how it is defined
for Newtonian self-gravitating particles in a infinite universe of constant density —
is that the gradient of the pair force be absolutely integrable at large separations.
Gravity is the marginal (logarithmically divergent) case in which such a dynamics
can be defined, but only by using a prescription such as Eq. (6.18). Further these
conditions on the range of pair forces can be expressed simply as one on the existence
of the PDF of force differences of points as finite separations in the infinite system
limit.
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4 Discussion and conclusions

In conclusion we make some brief remarks on how the results derived here relate to
previous work in the literature on force PDFs. In this context we also discuss the
important assumption we made throughout the article, that the pair force consid-
ered was bounded. Finally we return briefly to the question of the relevance of the
classification dividing interactions according to the integrability properties of the
pair force, concerning which we have reported initial results elsewhere [67].

The first and most known calculation of the force PDF is that of Chandrasekhar
[33], who evaluated it for the gravitational pair interaction in an infinite homoge-
neous Poisson particle distribution (in d = 3). This results in the so-called Holtzmark
distribution, a probability distribution belonging to the Levy class (i.e. power law
tailed with a diverging second moment) with P(F) ~ F~%2 at large F. Accord-
ing to our results here, a well defined PDF may be obtained for such a force law,
which is not absolutely integrable at large separations, only by using a prescrip-
tion for the calculation of the force in the infinite system limit. In his calculation
Chandrasekhar indeed obtains the force on a point by summing the contributions
from mass in spheres of radius R centered on the point considered, and then taking
R — oo (with ng fixed). This prescription is a slight variant of the one we have em-
ployed (following Kiessling [95]): instead of the smooth exponential screening of the
interaction, it uses a “spherical top-hat" screening so that the force may be written
formally as in Eq. (6.18) with the replacement of e=#*~*'I by a Heaviside function
O(u™t — |x — x/|). Tt is straightforward to verify that the result of Chandrasekhar
is unchanged if the smooth prescription Eq. (6.18) is used instead. As the Poisson
distribution corresponds to an SF S(k — 0) ~ k™ with n = 0, the general condition
(6.20) for the existence of the PDF we have derived, which gives n > —1 for gravity
in d = 3, is indeed satisfied. The fact that the PDF is power-law tailed (and thus
not rapidly decreasing) arises from the fact that the calculation of Chandrasekhar
does not, as done here, assume that the singularity in the gravitational interaction
is regularized. Indeed it is simple to show explicitly [71] that this power law tail
arises from the divergence in the pair force at zero separation. This can be done
by considering the contribution to the total force on a system particle due to its
nearest neighbor particle, which turns out to have a power law tail identical, both
in exponent and amplitude, to that of the full P(F).

Our analysis shows that it is true in general that well defined, but power-law
tailed force PDFs, can arise only when there are singularities in the pair force: for a
bounded force we have seen that the PDF is necessarily rapidly decreasing when it
exists. More specifically, returning to the analysis of Sec. 1.3, it is straightforward to
see that the crucial property we used of Qn ({f;}), that it have compact support, is no
longer valid when the pair force has singularities. The analyticity properties which
lead to a rapidly decreasing PDF may then not be inferred. We note that this is true
at finite IV, and has nothing to do with the infinite volume limit, i.e., the appearance
of the associated power-law tail arises from the possibility of having a single particle
which give an unbounded contribution rather than from the combination of the
contribution of many particles which then diverges in the infinite system limit. The
exponent in such a power-law tail will depend on the nature of the divergence at
small separation. More specifically, for a central pair force as considered above and
now with a singularity f(z — 0) ~ 1/2% a simple generalization of the analysis
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for the case of gravity (see |?]|) of the leading contribution to the total force coming
from the nearest neighbor particle leads to the conclusion that P(F — oo) ~ F~4=4
(where F' = |F|). This implies that the variance diverges (i.e. the PDF becomes
fat-tailed) for a > d/2.

Force PDFs have been calculated in various other specific cases. Wesenberg
and Molmer [153| derived that of forces exerted by randomly distributed dipoles
in d = 3, corresponding to a pair force with v = 2. According to our results
this is the marginal case in which a summation prescription is required for the
force, and indeed a prescription using spheres, like that used by Chandrasekhar for
gravity, is employed. We note that [153] focusses on the power-law tails associated
with the singularity at zero separation of the force, which lead in this case (as
can be inferred from the result summarized above) to the divergence of the first
moment of the force PDF. One of us (AG) has given results previously [65] for
the PDF for a generic power-law interaction in d = 1 for v > —1 in our notation
above. The conditional force PDF is then derived for the case of an infinite “shuffled
lattice” of particles, i.e., particles initially on an infinite lattice and then subjected
to uncorrelated displacements of finite variance, and using again, as Chandrasekhar,
a “spherical top-hat" prescription for the force summation (for v < 0, when the pair
force is not absolutely integrable). It is simple to show [71] that such a distribution
has an SF with n = 2 at small k, and thus the existence of the force PDF in these
cases is again in line with the constraint (6.20) derived. Power-law tails are again
observed in these cases, and their exponents related explicitly to the singularity in
the assumed power-law force at zero separation.

The calculation of Chandrasekhar has been generalized in [66] to the case of
particles on an infinite shuffled lattice. This leads again, in line with condition
(6.20), to a well defined PDF, again with or without power-law tails according
to whether the singularities in the pair force are included or not. Chavanis [35]
considers, on the other hand, the generalization of Chandrasekhar calculation (for
the PDF of gravitational forces in a Poisson distribution) to d = 2 and d = 1. The
condition (6.20 for gravity (v = d — 2) gives n > —d + 2, which implies that the
force PDF is not defined in the infinite system limit we have considered for d < 2,
and indeed in [35] well defined PDFs are obtained in d = 2 and d = 1 by using a
different limiting procedure involving in each case an appropriate rescaling of the
coupling with N. The physical meaning of such a procedure is discussed in [?], which
considers in detail the calculation of the force PDF for gravity in d = 1 in a Poisson
distribution (as in [35]). An exact calculation of the force PDF of the screened
gravitational force in the infinite system limit is given, which allows one to see in
this case exactly how the general result given here is verified in this specific case:
all moments of the PDF diverge simultaneously as the screening length is taken
to infinity, giving a PDF which converges point-wise to zero. The force PDF for
gravity in d = 1 for a class of infinite particle distributions generated by perturbing
a lattice has been derived recently in [70]. It is straightforward to show that one of
the conditions imposed on the perturbations to obtain the PDF, that the variance
of the perturbations be finite, corresponds in fact to the condition n > 1 which
coincides precisely with the more general condition (6.20) derived here. Unlike in
the other specific cases just discussed, it turns out that in this case (gravity in d = 1)
it is in fact necessary to use the smooth prescription Eq. (6.18). As explained in
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detail in [70], the top-hat prescription does not give a well defined result in this
case, because surface contributions to the force which do not decay with distance in
this case are not regulated by it. We underline that the general result given in the
present article are for this specific prescription Eq. (6.18). Further analysis would be
required to derive the general conditions in which a top-hat prescription also gives
the same (and well-defined) PDF.

Finally let us comment on why we anticipate the classification of pair interactions
according to their “dynamical range”, formalized here using the force PDF, should
be a useful and relevant one physically in the study of systems with long-range
interactions. The reason is that this classification reflects, as we have explained,
the relative importance of the mean field contribution to the force on a particle,
due to the bulk, compared with that due to nearby particles. Now it is precisely
the domination by the former which is understood to give the regime of collisionless
dynamics which is expected to lead to the formation of QSS states, which are usually
interpreted to be stationary states of the Vlasov equations describing such a regime
of the dynamics (see e.g. [13]). In a recent article [67] a numerical and analytical
study has been reported which provides strong evidence for the following result,
very much in line with this naive expectation: systems of particles interacting by
attractive power law pair interactions like those considered here can always give
rise to QSS; however when the pair force is dynamically short-range their existence
requires the presence of a sufficiently large soft core, while in the dynamically long-
range case QSS can occur independently of the core, whether hard or soft, provided
it is sufficiently small. In other words only in the case of a pair force which is
“dynamically long-range" can the occurrence of QSS be considered to be the result
only of the long distance behavior of the interaction alone. This finding is very
consistent with what could be anticipated from the preceding (naive) argument: the
effect of a “soft core” is precisely to reduce the contribution to the force due to nearby
particles, which would otherwise dominate over the mean field force in the case of
a pair force which is absolutely integrable at large distances. Indeed the meaning
of “sufficiently large” specified in [67] is that the size of the soft core must increase
in an appropriate manner with the size of the system as the limit N — oo is taken,
while we have always implicitly assumed it to be fixed in units of the interparticle
distance here.
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Conclusion and perspectives

In Chapters 3, 4 and 5 of this thesis, we have presented a simplified 1 — d toy model
to study the temporal evolution of infinite self-gravitating systems, considering a
class of initial conditions analogous to those canonically studied in cosmology. In
so doing, we have revisited a basic question concerning the definition of the gravi-
tational force in 1 — d infinite point distributions. We then have discussed different
dynamical toy models which incorporate this definition of the force — the simple
conservative Newtonian dynamics and one which incorporates a damping term mim-
icking the effect of 3 — d expansion.

We then have presented in Chapter 4 the results of numerical investigations of
the dynamical evolution of 1 — d self-gravitating toy models, starting with a class
of initial conditions analogous to those studied in cosmology: lattices perturbed to
produce an initial power spectrum in a simple power-law form, i.e. Pj,;(k) oc k™ at
small k. We have observed very strong qualitative similarities between the evolution
of 1 —d and 3 — d systems when the exponent of the initial power spectrum was
equal to 0 and 2. We have observed specifically the hierarchical nature of the
clustering, and brought to light the mechanism of linear amplification determining
the growth of non-linearity scale. Moreover, we have shown that “self-similarity”
is indeed observed in 1 — d system in both the static and expanding cases just as
in 3 — d. We have shown, however, that qualitative differences can be identified
between the static and expanding cases. The shape of the correlation function has
appeared to be a function of the exponent n of the initial power spectrum and of the
damping term I' in the expanding case, and to be independent of this exponent in
the static limit (I' = 0). This result again coincides with 3 —d numerical simulation.

The 1 — d self-gravitating model has also given us the opportunity to investigate
easily structure formation in the limit of “causal fluctuations”, i.e. P(k) o k* at
small k. We have shown that, differently to the case where P(k) oc k° or k% at
small k, the evolution of the PS at small k is not, as expected, the one predicted
from linear theory. However, despite the non-validity of the linear amplification
of the small & PS, the non-linear structure formation does show asymptotically a
self-similar evolution.

Due to the absence of smoothing at small scale (which is impossible in 3 — d N-
body simulations), our 1 — d model allowed us to identify the lower cut-off marking
the end of the self-similar regime at small-scale, x,,;, say. We have shown that this
cut-off was explained naturally by a “stable-clustering” hypothesis, a result which
allowed us to determine the exponent in the self-similar regime in terms of the expo-
nent n of the initial power spectrum and the damping term I'. The stable clustering
hypothesis we have described, however, is actually subtly different from the original
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one introduced by Peebles in 3 — d in an EdS universe [126]: we assumed only the
stable clustering applies below the scale x,,;, marking the lower cut-off, and not
necessarily to the strongly non-linear regime as a whole. Thus we assumed, in our
derivation of the exponent characterizing the self-similar regime, only that stable
clustering applies at an ultraviolet scale fixed by the resolution of the simulation
(or, physically, by the scale at which the very first structures form).

We have then explored and characterized further in Chapter 5 the scale-invariant
properties of the particle distribitions produced in these 1 — d self-gravitating mod-
els. We used a multifractal analysis to measure the spectrum of fractal exponents
and studied their dependence on the model and initial conditions. We concluded
that, in the static model the results are quite consistent with a simple homogeneous
fractal, while in the expanding cases there is significant multi-fractality. Further-
more, we have explored the applicability of a description of the clustering like that
used canonically in cosmological simulations, that in terms of “halos”. We used the
simplest kind of “Friend-of-Friend” algorithm and focussed on the question whether
these selected halos are, typically, virialized. The study of the virial ratios we have
presented indicated that such halos can be considered as entities with a dynamical
relevance, as they show a clear tendency to have a virial ratio of order unity (which
is the behaviour of an isolated structure). It emerged from this analysis that one
can effectively decompose the distribution of particles into a collection of structures
which are, statistically, virialized. The “statistical virialization” we have observed
using the halo analysis applies across the range of the scale-invariant clustering.
Thus the strongly non-linear clustering in these models is accurately described as a
virialized fractal structure, very much in line with the “clustering hierarchy” which
Peebles originally envisaged qualitatively as associated with stable clustering [126].
If transposed to 3 — d these results would imply, notably, that cold-dark matter
halos (or even subhalos) are 1) not well modeled as smooth objects, and 2) that the
supposed “universality” of their profiles is, like apparent smoothness, an artefact of
poor numerical resolution. There are, however, clearly two possible conclusions one
can draw from this analysis:

e A) These 1 — d models produce non-linear clustering which is qualitatively
different in its nature to that in 3 — d, or

e B) The spatial resolution in 3 — d simulations up to now has been too limited
to reveal the nature of clustering in cold dark matter cosmologies, which is
correctly reflected (qualitatively) in the 1 — d simulations.

We believe that, despite the impressive computational size and sophistication of
3 — d cosmological simulations, conclusion B may well be the correct one. The very
largest modern studies in a cosmological volume acces roughly two decades in scale
in the non-linear regime while reference studies in the literature of power law initial
conditions in EdS cosmology [51,139] measure the crucial power-law behaviour in
the correlation function over at most one decade. If we were to perform our 1 — d
simulations at comparable resolution to large cosmological simulations like Smith et
al. [139], we would certainly have a great difficulty in establishing the scale invariant
nature of the strongly non-linear clustering arising from power law initial condi-
tions. Although halos defined exactly as in three dimensions might look clumpy, an
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approximately smooth profile could be determined for them if they were averaged
(as they can be in three dimensions when spherical symmetry is assumed). Higher
resolution 3D simulations of smaller regions have shown over the last decade that
there is in fact much more substructure inside halos than was originally anticipated
(see, e.g., [45,76,115]), and some very recent work [161] even comes to the conclusion
that halos are indeed, intrinsically grainy rather than smooth. Previous analyses by
other authors (see, e.g., [72,149]) have also argued for similar conclusions based on
the analysis of 3D simulations.

Let us consider nevertheless one possible consideration in favour of (the more
conservative) conclusion A. In the expanding (i.e. damped) 1D models, the stable
clustering prediction fits the measured exponents extremely well. Early 3D stud-
ies for EdS cosmologies (e.g. [51]) measured exponents roughly consistent with the
stable clustering prediction, but later studies (e.g. [139]) have found significant dis-
agreement. This disagreement is attributed to physical mechanisms which cause the
fundamental assumption of stability to be violated — by the evident fact that there
are interactions between “halos", which can even lead to their merging into single
structures. We have noted that in one dimension tidal forces vanish, and structures
can interact only when they actually physically cross one another. While merging
may occur, it may be that it is a less efficient process than in three dimensions.
Thus the excellent agreement in the 1D models compared to EAS may perhaps be
attributed to the fact that these models probably represent poorly the role of such
physical effects. The essential question, however, is not whether these effects play a
role and can lead to deviations from stable clustering, but whether such effects can
qualitatively change the nature of clustering, destroying scale invariance by smooth-
ing out the distribution on a scale related to the upper cut-off to scale invariance.
Our study of the case I' = 0 suggests that the answer is negative. The prediction
of stable clustering does not work in this case, and like in three dimensions, one
obtains a small value of the exponent which does not sensibly depend on n. The
physical reasons why the exponent is close to, but different to, the stable clustering
prediction are a priori the ones just cited. Further, as we have mentioned, the lower
cut-off x,,;, remains constant as in the stable clustering hypothesis, of order the
initial lattice spacing (and unrelated to the upper cut-off).

These results on 1D models suggest directions for 3D investigations which might
establish definitively the correctness of conclusion B. We note, for example, that
the 1D models lead one to expect that the exponents derived phenomenologically to
characterize the highly non-linear density field inside smoothed halos (i.e. the “inner
slope" of halos) should be closely related to the exponent v determined from the
correlation function. Indeed — in the approximation of a simple fractal behavior
in the strongly non-linear regime, which the spectrum of multi-fractal exponents
measured in [114] suggests should be quite good — the mean density about the
centre of such halos will decrease just as about any random point, i.e., with the same
exponent . Despite the contradiction with the widely claimed “universality" of such
exponents in halos profiles, such a hypothesis cannot currently be ruled out, as the
determination of such exponents is beset by numerical difficulties (arising again from
the limited resolution of numerical simulations). In a study of halo profiles obtained
from power law initial conditions Knollmann et al. [97] show explicitly that the
results for the halo exponents depend greatly on what numerical fitting procedure
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is adopted. While one procedure gives “universality" (i.e. exponents independent
of n), a different one favors clearly steepening inner profiles for larger n. Indeed
we note that the numerical values for the inner slopes obtained by Knollman et
al. [97] are, for the larger n investigated, in quite good agreement with the exponent
predicted by stable clustering.

Our considerations here are strictly relevant only to dissipationless cold dark
matter simulations. If the initial conditions are “warm" or “hot", or if other non-
gravitational interactions are turned on, the associated physical effects will lead tend
to smooth out the matter distribution up to some scale (and thus destroy the scale
invariance up to this scale). Nevertheless, if the conclusion B is correct even for this
idealized case, it is likely to have very important observational implications rele-
vant to testing standard cosmological models — intrinsically clumpy or grainy halos
lead, for example, to very different predictions for dark matter annihilation (see,
e.g. [4,76])). At larger scales the possible link to the striking power-law behavior
which characterizes galaxy correlations over several decades (see, e.g., [99,106,125])
— which was the motivation for original work on stable clustering [125] and is
naturally interpreted as indicative of underlying scale invariance in the matter dis-
tribution (see, e.g. [72,99]) — is intriguings.

In the last Chapter 6 of this thesis, we have reported results which generalize
to any pair interaction decaying as a power-law at large separation the approach
used in Chapter 3 to determine whether the 1 — d gravitational force is defined
in an infinite system. This is an interesting question as the gravitational force is
clearly a particular long-range interaction, for which linear amplification emerges
from linear fluid theory. We have formalized and described a simple classification
of pair interactions which is different to the usual thermodynamic one applied to
determine equilibrium properties, and which we believe should be very relevant in
understanding aspects of the out of equilibrium dynamics of these systems. Instead
of considering the convergence properties of potential energy in the usual thermody-
namic limit, we have considered therefore those of the force in the same limit. Thus,
while in the former case one considers (see e.g. [136]) the mathematical properties of
essential functions describing systems at equilibrium in the limit N — oo, V — o0
at fixed particle density no = N/V, we have considered the behavior of functions
characterising the forces in this same limit. More specifically we have considered the
definedness of the probability distribution function (PDF) of the force field in statis-
tically homogeneous infinite particle distributions. We have also discussed a further
(and different) classification which can be given of the range of pair interactions
based on dynamical considerations. This arises when one addresses the question of
whether dynamics under a given pair interaction may be defined in infinite systems,
i.e., in a manner analogous to that in which it is defined for self-gravitating masses
in an infinite universe. We have then deduced our principal result that the force
PDF exists strictly in the infinite system limit if and only if the pair force is abso-
lutely integrable at large separations, while it can be defined only in a weaker sense,
introducing a regularization, when the pair force is not absolutely integrable. We
have discussed the physical relevance of the use of such a regularization, which is
just a generalization of the so-called “Jeans swindle" used to define the dynamics of
(classical non-relativistic) self-gravitating particles in an infinite universe. By ana-
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lyzing the evolution of density perturbations in an infinite system, we have shown
that the physical relevance of such a regularization of the forces requires also a con-
straint on the behavior of the PDF of total force differences as a function of system
size. We expect that this classification reflects, as we have explained, the relative
importance of the mean field contribution to the force on a particle, due to the bulk,
compared with that due to nearby particles. Now it is precisely the domination by
the former which is understood to give the regime of collisionless dynamics which is
expected to lead to the formation of QSS states, which are usually interpreted to be
stationary states of the Vlasov equations describing such a regime of the dynamics
(see e.g. [13]).

Work in progress will use the power of 1 — d models, which is their simple imple-
mentation in numerical studies, to study the impact of the range of the interaction
and of the presence of a regularization (hard or soft core) at small scale on the
dynamics which is expected to lead to the formation of QSS states. We will use an
exact N-particles code, optimized to run using Graphical Processing units (GPU)
programming. This simplified approach will give us the opportunity to follow the
dynamical evolution of the systems directly in the one-particle phase-space, analysis
which is impossible in three dimensions.
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Appendix A

One and two point properties of
uniform SPP

In this appendix we give the general one and two-point statistical characterization
of a SPP which is uniform on large scales.

The description of the correlation properties of a generic uniform SPP is given by
the n-point correlation functions of the density field. For our considerations it will
turn out to be sufficient to consider only the two-point properties, and more specif-
ically it will be most convenient to characterize them in reciprocal space through
the structure factor (SF) (or power spectrum). This is defined by

(Ion(ic V)

S(k) = Vlgréo = (A.1)
where
on(k; V) = /Vdd:c e *[n(x) — ng] . (A.2)

With these normalisations the SF of an uncorrelated Poisson process is S(k) = 1.
For a statistically isotropic point process S(k) = S(k), where £ = |k|. We recall
here that S(k) is the Fourier transform (FT) of the connected two point density
correlation function:

S(k) = / d?r e7**C(x)

where
(n(xo +x)n(x0)) — nj
o

C(x) = = §(x) + noh(x) .

In the last expression we have explicitly separated in the correlation function C'(x)
the shot noise term §(x), present in all SPP and due to the “granularity” of the
particle distribution, from the “off-diagonal” term ngh(x) which gives the actual
spatial correlations between different particles.

In the paper we study the convergence properties of forces at large distances and
are thus mainly interested in the properties of the SF at small k. In this respect we
will use the following limit on the SF' which follows from the assumed uniformity of
the SPP:

lim k*S(k) =0,

k—0
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i.e, the SF is an integrable function of k at k£ = 0. This constraint simply translates in
reciprocal space the requirement from uniformity on the decay of relative fluctuations
of the number of particles contained in a volume V about the mean at large V:

ST
Given that (N(V')) o V, the root mean square fluctuation of particle number N in a
volume V' must diverge slower than the volume V itself in order that this condition
be fulfilled. (This is equivalent to saying that C'(x) must vanish at large z).
We use likewise in the paper only one constraint on the large k& behavior of the
SF, which is valid for any uniform SPP (see e.g. [?]) and coincides with the shot
noise term in the correlation function C'(x):

lim S(k) =1.

k—o0
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Appendix B
Small k behavior of f(k)

We are interested in the small k& behavior of the Fourier transform f(k) of the pair
force in d dimensions in the case where the pair force f(x) = xf(z), where x = L

is non-integrable but converges to zero at x — oo, i.e., f(r) ~ 270V at large x
with —1 <~ <d—1.

We first show that for a function f(x) = xf(z), its Fourier transform, f(k) =
FT[f(x)](k), can be written f(k) = k (k) where ¢ (k) is a function depending only
Pk

on the modulus of k and k = P In order to obtain this result, we start by writing

f(k) = / d'z f(x)e H** = / diz % f(z)e ™

where this integral is defined in the sense of functions or distributions according to
the integrability of f(x).

In the following we denote by (&1, €2, ..., &,) the cartesian vector basis in d-dimension
and we define (r,0y,6s,...,0,_1) the hyper-spherical coordinates of x. Considering
k = k é; and denoting for simplicity # = #,, we can write

Af(k) _ /dde‘ }Acf(l,)e—ikxcosﬁ :

where
d—1

dix = ( H sinj(ed_j)dﬁd_j) z
=0

Projecting f(k) on the cartesian basis, it is easy to see that the only non-vanishing

term is &;.f(k) which gives
é1.f(k) = Co,_, / e
0
X /7r df sin™%(0) cos O f (x)e oot
0
where Cp,,, is a constant term coming from the integration over all the hyper-

spherical coordinates 6; with i # 1. We thus can write f(k) = k (k) where (k) is
a function depending only on the modulus of k.
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We now focus our attention on the small k& behavior of the term
/ dx$d—1f(r)e—ikxc059 ’ (B].)
0

where the function f(x) is non-integrable but converges to zero at x — oo, i.e.,
f(x) ~ 2=0FD at large  with —1 < v < d — 1, and thus can be written f(z) =
z~0*) 4 h(z) with h(x) a smooth function, integrable at # = 0 and such that
27 h(z) — 0 for z — .

Defining explicitly eq.(B.1) in the sense of distributions, the small k& behavior is
determined by this leading divergence at x — oo,

o0

d-1€ " ikwcoso
lim dx z¢ "t ——=e "FSY (B.2)
:U'HO 0 l"Y“l‘l

where the parameter p > 0. We define o« = d — v — 2 which satisfies -1 < a <d—-1
and rewrite eq. (B.2)

[oe)
lim dx x%e
u—0 0

—(ik cos 0+p)x

This can be easily calculated with Laplace’s transform and gives

/OO dx xaef(ikcoseJr,u)x — F(OZ + 1)
0 (pu+ ik cos @)t

We can conclude that

o0

d-1€ " ikzcoso
lim daxz® ——e TS

= i~ @D cos @V (o + 1)k~ @D ~ gr—d+L
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RESUME

La formation des structures dans 'univers demeure une des interrogations majeures en cos-
mologie. La croissance des structures dans le régime linéaire, ou 'amplitude des fluctuations est
faible, est bien comprise analytiquement, mais les simulations numériques a N-corps restent I’outil
principal pour sonder le régime “non-linéaire” ou ces fluctuations sont grandes. Nous abordons cette
question d’un point de vue différent de ceux utilisés couramment en cosmologie, celui de la physique
statistique et plus particuliérement celui de la dynamique hors-équilibre des systémes avec inter-
action & longue portée. Nous étudions une classe particuliére de modéles 1 — d qui présentent une
évolution similaire a celle rencontrée dans les modéles 3 — d. Nous montrons que le clustering spa-
tial qui se développe présente des propriétés (fractales) d’invariance d’échelles, et que des propriétés
d’auto-similarité apparaissent lors de 1’évolution temporelle. D’autre part, les exposants carac-
térisant cette invariance d’échelle peuvent étre expliqués par 'hypothése du “stable-clustering”. En
suivant une analyse de type halos sélectionnés par un algorithme “friend-of-friend”, nous montrons
que le clustering non-linéaire de ces modéles 1 — d correspond au développement d’une “hiérarchie
fractale statistiquement virielisée”. Nous terminons par une étude formalisant une classification
des interactions basée sur des propriétés de convergence de la force agissant sur une particule en
fonction de la taille du systéme, plutot que sur les propriétés de convergence de I’énergie potentielle,
habituellement considérée en physique statistique des systémes avec interaction & longue portée.

MOT-CLEFS
Formation de structures, Interactions longue portée, Simulations N-corps

ABSTRACT

The formation of structures in the universe is one of the major questions in cosmology. The
growth of structure in the linear regime of low amplitude fluctuations is well understood analytically,
but N-body simulations remain the main tool to probe the “non-linear” regime where fluctuations
are large. We study this question approaching the problem from the more general perspective to the
usual one in cosmology, that of statistical physics. Indeed, this question can be seen as a well posed
problem of out-of-equilibrium dynamics of systems with long-range interaction. In this context, it
is natural to develop simplified models to improve our understanding of this system, reducing the
question to fundamental aspects. We define a class of infinite 1 — d self-gravitating systems relevant
to cosmology, and we observe strong qualitative similarities with the evolution of the analogous
3 — d systems. We highlight that the spatial clustering which develops may have scale invariant
(fractal) properties, and that they display “self-similar” properties in their temporal evolution. We
show that the measured exponents characterizing the scale-invariant clustering can be very well
accounted for using an appropriately generalized “stable-clustering” hypothesis. Further by means
of an analysis in terms of halo selected using a friend-of-friend algorithm we show that, in the cor-
responding spatial range, structures are, statistically virialized. Thus the non-linear clustering in
these 1 — d models corresponds to the development of a “virialized fractal hierarchy”. We conclude
with a separate study which formalizes a classification of pair-interactions based on the convergence
properties of the forces acting on particles as a function of system size, rather than the convergence
of the potential energy, as it is usual in statistical physics of long-range-interacting systems.

KEYWORDS
Cosmological structure formation, Long range interactions, N-body simulations




