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RésuméLa formation des stru
tures dans l'univers demeure une des interrogations majeuresen 
osmologie. La 
roissan
e des stru
tures dans le régime linéaire, où l'amplitudedes �u
tuations est faible, est bien 
omprise analytiquement, mais les simulationsnumériques à N-
orps restent l'outil prin
ipal pour sonder le régime �non-linéaire�où 
es �u
tuations sont grandes. Nous abordons 
ette question d'un point de vuedi�érent de 
eux utilisés 
ouramment en 
osmologie, 
elui de la physique statistiqueet plus parti
ulièrement 
elui de la dynamique hors-équilibre des systèmes ave
 in-tera
tion à longue portée. Nous étudions une 
lasse parti
ulière de modèles 1−d quiprésentent une évolution similaire à 
elle ren
ontrée dans les modèles 3 − d. Nousmontrons que le 
lustering spatial qui se développe présente des propriétés (fra
tales)d'invarian
e d'é
helles, et que des propriétés d'auto-similarité apparaissent lors del'évolution temporelle. D'autre part, les exposants 
ara
térisant 
ette invarian
ed'é
helle peuvent être expliqués par l'hypothèse du �stable-
lustering�. En suiv-ant une analyse de type halos séle
tionnés par un algorithme �friend-of-friend�, nousmontrons que le 
lustering non-linéaire de 
es modèles 1−d 
orrespond au développe-ment d'une �hiérar
hie fra
tale statistiquement virielisée�. Nous terminons par uneétude formalisant une 
lassi�
ation des intera
tions basée sur des propriétés de 
on-vergen
e de la for
e agissant sur une parti
ule en fon
tion de la taille du système,plut�t que sur les propriétés de 
onvergen
e de l'énergie potentielle, habituellement
onsidérée en physique statistique des systèmes ave
 intera
tion à longue portée.
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Abstra
tThe formation of stru
tures in the universe is one of the major questions in 
os-mology. The growth of stru
ture in the linear regime of low amplitude �u
tuationsis well understood analyti
ally, but N-body simulations remain the main tool toprobe the �non-linear� regime where �u
tuations are large. We study this ques-tion approa
hing the problem from the more general perspe
tive to the usual onein 
osmology, that of statisti
al physi
s. Indeed, this question 
an be seen as awell posed problem of out-of-equilibrium dynami
s of systems with long-range in-tera
tion. In this 
ontext, it is natural to develop simpli�ed models to improve ourunderstanding of this system, redu
ing the question to fundamental aspe
ts. Wede�ne a 
lass of in�nite 1 − d self-gravitating systems relevant to 
osmology, andwe observe strong qualitative similarities with the evolution of the analogous 3 − dsystems. We highlight that the spatial 
lustering whi
h develops may have s
aleinvariant (fra
tal) properties, and that they display �self-similar� properties in theirtemporal evolution. We show that the measured exponents 
hara
terizing the s
ale-invariant 
lustering 
an be very well a

ounted for using an appropriately generalized�stable-
lustering� hypothesis. Further by means of an analysis in terms of halo se-le
ted using a friend-of-friend algorithm we show that, in the 
orresponding spatialrange, stru
tures are, statisti
ally virialized. Thus the non-linear 
lustering in these
1− d models 
orresponds to the development of a �virialized fra
tal hierar
hy�. We
on
lude with a separate study whi
h formalizes a 
lassi�
ation of pair-intera
tionsbased on the 
onvergen
e properties of the for
es a
ting on parti
les as a fun
tionof system size, rather than the 
onvergen
e of the potential energy, as it is usual instatisti
al physi
s of long-range-intera
ting systems.
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Introdu
tion en FrançaisLa 
ompréhension de la formation des stru
tures dans l'univers demeure l'une desinterrogations majeures en 
osmologie. La distribution de matière observée au-jourd'hui à grande é
helle dans l'univers apparaît en e�et très inhomogène et présenteune distribution très stru
turée de galaxies : amas de galaxies, superamas, vide et �l-aments. D'autre part, les observations du fond di�us 
osmologique (CMB) suggèrentque l'univers présentait par le passé une distribution de matière représentée par defaibles �u
tuations de densité autour d'une distribution homogène. Selon l'appro
hethéorique du modèle �standard� de la 
osmologie, la matière présente dans l'universest prin
ipalement 
onstituée de Matière Noire (�Dark Matter�) n'intéragissant es-sentiellement que par l'intera
tion gravitationelle. Sur les é
helles spatiales perti-nentes pour l'étude de la formation des stru
tures dans l'univers, l'approximationNewtonienne de l'intera
tion gravitationnelle s'applique et la question se réduit alorsà la formation des stru
tures dans un système de parti
ules auto-gravitantes partantd'une 
ondition initiale 
orrespondant à une répartition de matière presque unifor-mément distribuée.La 
ompréhension analytique de 
e problème reste essentiellement limitée auxappro
hes perturbatives linéaires des solutions des équations de type �uide (i.e. lerégime linéaire de formation des stru
tures). L'étude du régime non-linéaire est ainsiprin
ipalement abordée par des simulations numériques. Le degré de sophisti
ationet de parallélisation de 
es simulations 
osmologiques s'est amélioré de façon impres-sionante 
es dernières années ave
 notamment l'utilisation de simulations hautementparallélisées. En dépit de 
es progrès, les simulations numériques en 
osmologierestent limitées par une résolution modeste (au maximum 2 ou 3 ordres de grandeuren 
e qui 
on
erne les é
helles spatiales du régime non-linéaire). L'absen
e de sup-port analytique laisse également ouvert la question de la pertinen
e des résultatsdérivés de 
es simulations.Dans 
ette thèse, nous appro
hons 
ette question d'un point de vue di�érentde 
eux utilisés 
ouramment en 
osmologie : 
elui de la physique statistique. Ene�et, la formation de stru
tures dans l'univers via l'approximation Newtonienne del'intera
tion gravitationelle peut être simplement vue 
omme un problème de dy-namique hors-équilibre des intera
tions à longue portée. Dans le 
ontexte de laphysique statistique, il est alors naturel de développer des modèles simpli�és (mod-èles jouets) a�n d'améliorer notre 
ompréhension de 
e système, en le réduisantautant que possible à ses aspe
ts fondamentaux. Les versions unidimensionnellesde 
e problème 
osmologique pr±entent l'opportunité de pouvoir sonder des é
hellesspatiales beau
oup plus étendues (même pour un nombre limité de parti
ules). De1



INTRODUCTION EN FRANÇAISplus, 
es appro
hes sont extrêmement pré
ises, étant uniquement limitées par lapré
ision numérique de la ma
hine. Cette thèse présente une étude détaillée d'une
lasse parti
ulière de modèles, ainsi que des résultats généraux sur la dynamiquehors-équilibre des systèmes ave
 intera
tion à longue portée.Les deux premiers 
hapitres introdu
tifs sont 
onsa
rés à la présentation desbases né
essaires a�n de 
omprendre le 
ontexte et les résultats de 
ette thèse. Lepremier 
hapitre introdu
tif présente un aperçu des méthodes de la physique statis-tique des intera
tions à longue portée, tandis que le se
ond présente une introdu
tionà la formation des stru
tures en 
osmologie.Dans le Chapitre 1, nous introduisons la dynamique et la thermodynamique dessystèmes ave
 intera
tion à longue portée, dont la gravitation Newtonienne est un
as parti
ulier, en mettant en valeur les résultats importants qui ont émergés 
esdernières années. Ces résultats ne présentent 
ependant pas un intérêt fondamentalpour l'étude des systèmes auto-gravitants en 
osmologie, 
es derniers faisant partiedes systèmes d'extension in�nie plut�t que �nie. Ils sont néanmoins pertinents pourl'étude faite dans le Chapitre 6.Le Chapitre 2 élargit les 
onsidérations faites dans le premier 
hapitre au 
asspé
i�que des systèmes �nis auto-gravitants, et passe en revue les bases du modèle
osmologique �standard�, en s'intéressant plus parti
ulièrement à la formation desstru
tures à grande é
helle. En 
onsidérant que les systèmes parti
ulaires en 
os-mologie sont d'extension spatiale in�nie, une attention toute parti
ulière doit êtreatta
hée à la dé�nition de la for
e gravitationelle dans 
es systèmes. Nous intro-duisons la théorie 
inétique utilisée pour étudier la dynamique hors-équilibre des sys-tèmes in�nis auto-gravitants en 
osmologie né
essaire à la dérivation de l'appro
hehydrodynamique standard de 
es systèmes. Nous présentons ensuite l'appro
he per-turbative de 
es équations de type �uide, ainsi que l'analyse numérique du régimenon-linéaire de formation des stru
tures dans l'univers, en dis
utant les notions 
en-trales utilisées dans 
e 
ontexte : auto-similarité, �stable-
lustering� et les modèlesdes �halos�.Dans le Chapitre 3, nous introduisons et dé�nissons la 
lasse des modèles jouetsunidimensionnels que nous étudions dans 
ette thèse. Nous abordons 
ette questiond'un point de vue de la théorie des pro
essus sto
hastiques de points, et traitons enparti
ulier la question de la dé�nition de la for
e totale agissant sur une parti
uleappartenant à un système d'extension spatiale in�nie. Nous montrons que 
ettequestion réside en fait dans une subtilité de l'appli
ation de �l'arnaque de Jeans� enune dimension. Nous insistons sur le fait que la for
e devient bien dé�nie en unedimension pour une 
lasse parti
ulière de 
ondition initiale, la 
lasse des réseaux in-�nis perturbés, qui représente les pro
essus de points pertinents dans les simulationsnumériques à N-
orps en 
osmologie. Le texte de 
e 
hapitre est tiré d'un arti
lepublié dans Phys. Rev. E [70℄.Dans le Chapitre 4, nous présentons les résultats de notre analyse numériquede l'évolution dynamique de 
es modèles jouets. Nous montrons qu'ils présentent2



INTRODUCTION EN FRANÇAISde forte similarités qualitatives ave
 les systèmes tridimensionnels analogues, no-tamment le 
omportement auto-similaire (i.e. un s
aling dynamique) en partant de
onditions initiales pour le spe
tre de puissan
e (i.e. la transformée de Fourier de lafon
tion de 
orrélation) en loi de puissan
e. Nous explorons également les aspe
tsparti
uliers de 
es 
omportements que nous ne pouvons pas étudier aussi simplementdans les simulations numériques tridimensionnelles à 
ause des di�
ultés numériquesren
ontrées. Nous étudions en parti
ulier la formation des stru
tures pour une 
lasseparti
ulière de 
ondition initiale, 
elle 
orrespondant à des �u
tuations de densitédites �
ausales�. Nous explorons le régime fortement non-linéaire et dérivons lesexposants qui le 
ara
térisent. Dans le 
adre d'un univers en expansion, nous mon-trons que nos résultats sont bien expliqués par un modèle basé sur l'hypothèse du�stable 
lustering�, analogue à 
elui parfois proposé en trois dimensions.Dans le Chapitre 5, nous explorons plus en détail les propriétés des distributionsde parti
ules produites dans les modèles dé�nis pré
édemment. Nous e�e
tuonsune analyse multifra
tale de 
es distributions et la 
omplétons par une appro
heanalogue à 
elle utilisée a
tuellement dans les simulations numériques tridimension-nelles en 
osmologie, dans lesquelles la distribution est dé
rite par une 
olle
tionde �halos� de taille �nie. Nous 
on
luons qu'une des
ription en terme de stru
turesstatistiquement virialisées est valide, pré
isement dans le régime fra
tal non-linéairede formation des stru
tures. L'interprétation de nos résultats amène à penser quedans le régime non-linéaire invariant d'é
helle, la distribution peut être vue 
omme
orrespondant à une sorte de hiérar
hie virialisée.Le Chapitre 6 présente des résultats qui généralisent aux intera
tions dé
rois-santes à grande distan
e en loi de puissan
e l'appro
he introduite dans le Chapitre3 pour étudier la dé�nition de la for
e gravitationelle en une dimension dans un sys-tème d'extension spatiale in�nie. Nous donnons ainsi une 
lassi�
ation �dynamique�de la portée des intera
tions s'appuyant sur les propriétés de 
onvergen
e de la for
eà grande distan
e. Nous expliquons également qu'une 
ondition de 
onvergen
eplus faible est en fait su�sante pour dé�nir la dynamique dans la limite des sys-tèmes d'extension spatiale in�nie. Notre 
on
lusion 
entrale est que l'intera
tiongravitationnelle (quelque soit la dimension spatiale) est le 
as limite pour lequel ladynamique dans la limite des sytèmes in�nis est bien dé�ni. Le texte de 
e 
hapitreest tiré d'un arti
le publié dans J. Stat. Phys. [68℄.Nous terminons 
ette thèse par une dis
ussion sur les perspe
tives de re
her
heenvisagées.
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Introdu
tion
The formation of stru
ture in the universe is one of the major open questions in
osmology. Indeed the distribution of visible matter at large s
ales in the universeappears to be very inhomogeneous today, and presents a highly stru
tured distribu-tion of galaxies: 
luster of galaxies, super
lusters, voids and �laments. On the otherhand, it is inferred from observations of the Cosmi
 Mi
rowave Ba
kground radia-tion that the universe was in the past very 
lose to homogeneous with tiny density�u
tuations. In the theoreti
al framework of the �standard� 
osmologi
al model,it is postulated that the matter in the universe is 
onstituted mainly by so-
alledDark Matter intera
ting essentially through gravity. On the spatial s
ales, relevantto the formation of large stru
tures in the universe, the Newtonian approximationto gravity applies, and thus the problem redu
es to the evolution of 
lustering in anin�nite self-gravitating system with 
lose to uniform initial 
onditions.Analyti
al understanding of this problem is limited essentially to linear pertur-bative approa
hes to the solution of the �uid equations (i.e. the �linear regime�of stru
ture formation), and the study of the �non-linear� regime is mainly probedthrough numeri
al investigation. The degrees of sophisti
ation and parallelizationof the algorithms used in 
osmologi
al simulations has in
reased impressively in thelast de
ades, with the use notably of highly multithreaded 
lusters on both CPUand GPU. Despite this progress, 
osmologi
al numeri
al simulations remain limitedby a modest resolution (at very most two or three orders of magnitude in s
ale fornon-linear 
lustering). The absen
e of analyti
al �ben
hmarks� also leaves open todoubt the reliability of the results drawn from them. In this thesis, we approa
hthis problem from a di�erent perspe
tive to the usual one in 
osmology, that ofstatisti
al physi
s. Indeed, the formation of stru
tures in the universe through theusual Newtonian gravitational intera
tion 
an be seen as a well posed problem ofout-of-equilibrium dynami
s of systems with long-range intera
tion. In the 
ontextof statisti
al physi
s, it is natural to develop simpli�ed models (�toy-models�) to tryto improve our understanding of this system, redu
ing as mu
h as possible the ques-tion to fundamental aspe
ts. One dimensional versions of the 
osmologi
al problemof gravity present the parti
ular interest that they give the opportunity to probe avery large range of s
ales (even for a number of parti
les whi
h 
an be simulatedon a single pro
essor). Furthermore, as we will explain, they are extremely pre
ise,being limited only by ma
hine pre
ision. In this thesis we report a detailed studyof a 
lass of su
h models, as well as some more general results on out-of-equilibriumdynami
s of long-range intera
ting systems. 5



INTRODUCTIONOrganization of the thesisThe �rst two introdu
tory 
hapters of this thesis are devoted to giving some stan-dard ba
kground whi
h is useful for understanding the 
ontext and the results ofthis thesis. The manus
ript is addressed to the two 
ommunities, whose methodsand problems are relevant, 
osmologi
al and statisti
al physi
s one. The �rst intro-du
tory 
hapter gives a review of some relevant methods in statisti
al physi
s, whilethe se
ond one introdu
es the basi
s of stru
ture formation in 
osmology.In Chapter 1 we thus give an introdu
tion to the dynami
s and thermodynami
sof systems with long-range intera
tion, of whi
h the Newtonian gravitational inter-a
tion is an example, outlining important results whi
h have emerged in statisti
alphysi
s in re
ent years. These results turn out not to be so dire
tly relevant for ourstudy of self-gravitating systems, be
ause the latter are in�nite rather than �nite.They are, however, relevant ba
kground to the study we report in Chapter 6.The se
ond 
hapter extends the 
onsiderations of the previous 
hapter to thespe
i�
 
ase of self-gravitating systems, and then reviews the basi
s of the standard
osmologi
al model, fo
using on the formation of large s
ale stru
tures. Consideringthat the systems of parti
les in 
osmology are in�nite rather than �nite, parti
ularattention must be said to the de�nition of the gravitational for
e in these systems.We give an introdu
tion to the kineti
 theory used to study the out-of-equilibriumdynami
s of in�nite self-gravitating systems in 
osmology whi
h allows the derivationof the usual hydrodynami
 des
ription of these systems. We then present the per-turbative treatment of these �uid equations, and then the numeri
al investigationsof the non-linear regime of the formation of stru
tures in the Universe, dis
ussing
entral notions whi
h are used in this 
ontext: self-similarity, stable 
lustering and�halo models�.In Chapter 3 we introdu
e and de�ne the 
lass of 1 − d toy models we study inthis thesis. We address the problem of their general formulation in the 
ontext ofsto
hasti
 point pro
ess theory, in parti
ular the question of the de�nition of thetotal for
e a
ting on a parti
le belonging to an in�nite system. We show that thisproblem arises from a subtlety about how the so-
alled �Jeans' swindle� is appliedin 1 − d. We underline that the for
e turns out to be well-de�ned in 1 − d for abroad 
lass of distributions, a 
lass of perturbed in�nite latti
e, whi
h are the pointpro
esses relevant to 
osmologi
al N-body simulations. The text of this 
hapter istaken from from an arti
le published in Phys. Rev. E. [70℄In Chapter 4 we present results of a numeri
al investigation of the dynami
alevolution of these toy models. We show that they are physi
ally interesting asthey present very strong qualitative similarities with the evolution of the analogous
3− d systems, notably �self-similar� behavior (i.e. dynami
al s
aling) starting frompower-law initial 
onditions. We also explore aspe
ts of these behaviors whi
h one
annot easily probe with 3−d numeri
al simulations due to numeri
al di�
ulties. Westudy in parti
ular stru
ture formation for the parti
ular 
lass of initial 
ondition
orresponding to �
ausal �u
tuations�. We explore further the strongly 
lusteredregime and derive the exponents whi
h 
hara
terize it. We show that our results,for the expanding models, are well a

ounted for by a model based on a �stable-
lustering� hypothesis, analogous to that sometimes proposed in 3− d.In Chapter 5 we explore further the properties of the parti
le distributions pro-du
ed in models we have studied in the previous 
hapter. We perform a multifra
tal6



INTRODUCTIONanalysis and 
omplete it with an approa
h analogous to that now used 
anoni
allyin 3− d N-body simulations in 
osmology in whi
h the distribution is des
ribed asa 
olle
tion of �nite �halos�. We rea
h the 
on
lusion that a des
ription in termsof statisti
ally virialized stru
tures is valid, pre
isely in the regime where there isfra
tal 
lustering. We interpret our results to mean that in the regime of non-linearfra
tal 
lustering the distribution 
an be said to 
orrespond to a kind of �virializedhierar
hy�.Chapter 6 reports results whi
h generalize to any pair intera
tion de
aying as apower-law at large separation the approa
h used in Chapter 3 to determine whetherthe 1 − d gravitational for
e is de�ned in an in�nite system. In so doing it gives a�dynami
al� 
lassi�
ation of the range of pair intera
tions based on the 
onvergen
eproperties of the for
e at large distan
es. It also explains that a weaker 
onvergen
e
ondition is in fa
t a su�
ient one for dynami
s to be de�ned in the in�nite systemlimit. Our 
entral 
on
lusion in this respe
t is that the gravitational intera
tion (inany dimension) is the limiting 
ase for whi
h an in�nite system limit for dynami
s
an be meaningfully de�ned. The text of this 
hapter is taken from an arti
lepublished in J. Stat. Phys. [68℄.We 
on
lude this thesis with a brief dis
ussion of some perspe
tives for furtherwork.

7
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Chapter 1Dynami
s and thermodynami
s ofsystems with long-range intera
tion:an introdu
tionIn this �rst introdu
tory 
hapter we give a syntheti
 introdu
tion to the dynami
sand thermodynami
s of systems with long-range intera
tion (LRI), and outline thedi�eren
es with short-range intera
ting (SRI) systems. It does not 
ontain originalmaterial and is based prin
ipally on [15,31,43℄. Systems with long-range intera
tionsare 
hara
terized by a pair potential whi
h de
ays at large distan
es as a power law,with an exponent smaller than the spa
e dimension: examples are gravitational andCoulomb intera
tions (see e.g. [31, 43℄). The thermodynami
 and dynami
al prop-erties of su
h systems were poorly understood until a few years ago. Substantialprogress has been made only re
ently, when it was realized that the la
k of additiv-ity indu
ed by long-range intera
tions does not hinder the development of a fully
onsistent thermodynami
s formalism. This has, as we will see in more detail in thisintrodu
tory 
hapter, however, important 
onsequen
es: entropy is no more a 
on-vex fun
tion of mas
ros
opi
 extensive parameters (energy, magnetization, et
.), andthe set of a

essible ma
ros
opi
 states does not form a 
onvex region in the spa
e ofthermodynami
 parameters. This is at the origin of ensemble inequivalen
e, whi
h inturn determines 
urious thermodynami
 properties su
h as negative spe
i�
 heat inthe mi
ro
anoni
al ensemble, �rst dis
ussed in the 
ontext of astrophysi
s [81℄. Onthe other hand, it has been re
ognized that systems with long-range intera
tions dis-play universal non-equilibrium features. In parti
ular, long-lived metastable states,also 
alled quasi-stationary states (QSS) may develop, in whi
h the system remainstrapped for a long time before relaxing towards thermodynami
 equilibrium.Histori
ally, it was with the work of Emden and Chandrasekhar [32,54℄, and laterAntonov, Lynden-Bell and Thirring [6, 81, 103℄, in the 
ontext of astrophysi
s, thatit was realized that for systems with long-range intera
tions the thermodynami
 en-tropy might not have a global maximum, and therefore thermodynami
 equilibriumitself 
ould not exist. The appearan
e and meaning of negative temperature was�rst dis
ussed in a seminal paper by Onsager on point vorti
es intera
ting via along-range logarithmi
 potential in two-dimensions [122℄.We formalize this presentation in the following with the study of the equilibrium9



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONstatisti
al me
hani
s and the out-of-equilibrium dynami
s of systems with LRI. Wesimply sear
h to illustrate in ea
h 
ase, with the use of toy models, a unifying 
on-
ept: the mean-�eld theory for statisti
al equilibirum study and the Vlasov equationfor out-of-equilibrium dynami
s.1 De�nition of long-range intera
tionsIn this se
tion, we give a pedagogi
al introdu
tion to the theory of LRI systems. Weoutline the 
ru
ial di�eren
es with SRI systems, and present the general idea witha simple toy model: the Ising model [30℄. Let us 
onsider in Fig. 1.1 a ma
ros
opi

A B

P’

PFigure 1.1: S
hemati
 representation of a system made of two sub-systems A and
B. Parti
les P and P ′ do not belong to the same sub-system.system divided into two sub-systems A andB. The total energy E of the ma
ros
opi
system is then equal to the sum of the energies of ea
h sub-systems (EA or EB), plusthe intera
tion energy EAB between these two sub-systems, i.e. E = EA + EB +
EAB. When one 
onsiders a short-range intera
tion between the 
onstituents of thissystem, this interfa
e energy EAB is proportional to the surfa
e between these twosub-systems. For a ma
ros
opi
 system, this is negligible in 
omparison with thevolume energy. The energy of the parti
le P in A is thus insensitive to whether theparti
le P ′ in B is present. However, this argument is not valid if the intera
tion issu�
iently long-range as the interfa
e energy is no longer negligible in 
omparisonwith the volume energy. To illustrate this di�eren
e, we 
onsider the Ising model:
N spins Si = ±1, with i ∈ [1, N ], are �xed on a regular latti
e and intera
t with anintera
tion of in�nite range and independant of the distan
e between the spins. Wethen 
an write the Hamiltonian

H = −J
∑

i 6=j

SiSj . (1.1)If the parameter J > 0, the intera
tion is 
alled ferromagneti
, if J < 0 the in-tera
tion is 
alled anti-ferromagneti
 and if J = 0 the spins are non-intera
ting.When all the spins are ordered in the same positive way, the total energy is simply
E = −JN(N −1). If we divide the system into two di�erent subsystems made iden-ti
aly of N ′ = N/2 spins, ea
h subsytem, independently of the other, has a totalenergy E ′ = −J N(N−2)

4
. We then obtain E 6= 2E ′. Let us note that the use of a
ouplig 
onstant J ′ = J/N renormalized by the number of spins, as 
ommon use for10



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONthis mean-�eld model, gives energies of order N , i.e. the system is 
alled extensive,but does not solve the la
k of additivity of this model.In the following, we will 
onsider this non-additivity 
riterion as the de�nitionof long-range intera
ting system: a ma
ros
opi
 system would be 
onsideredas �long-range� if we 
annot write its total energy as the sum of the en-ergies of independant ma
ros
opi
 subsystems. Following this de�nition, apair-intera
tion de
aying as a power-law with the distan
e as 1/rα, is long-range,when the exponent α < d, where d is the spatial dimension.To illustrate this proposition, we 
onsider a �modi�ed� Ising model whi
h is nownot independant of the distan
e between the spins (the spins are nevertheless still�xed on the latti
e sites), and without short-range divergen
e
H = −J

∑

i 6=j

SiSj

dαij
(1.2)where dij represents the distan
e between two sites i and j. This system will be�long-range�, or non-additive, if the spins far away from the site i 
ontribute in anon-negligible way to the energy of the spin Si. This 
ontribution is then negligibleas soon as the sum

∑

j 6=i,N→∞

1

dαij
(1.3)
onverges, for a system size going to in�nity. Comparing this sum with an integral,one 
learly sees that it 
onverges as soon as α > d where d is the spa
e dimension.This demonstration 
an be generalized to the 
ases where the two-body intera
tionpotential in 1/rα. 1This analysis in
lude the gravitational newtonian intera
tion but not the Vander Waals intera
tion. Let us note that this 
riterion does not 
orrespond tothe terminology of 
riti
al phenomena, in whi
h long range potential is de�nedas α < D + 2− η, where η is a 
riti
al exponent whi
h depends on the system, butusually small [20℄. Then the designation �long-range� used in the 
riti
al phenom-ena 
ommunity has a larger meaning than the one refered to in this thesis. Ourlong-range intera
tions are also 
alled non-integrable intera
tions.The non-additivity 
an generate, as we will see, unusual behaviours as the ther-modynami
s at equilibrium or out-of-equilibrium dynami
al relaxation propertiesare 
on
erned. Indeed, phase separation in the usual meaning is impossible. This
alls into question the equivalen
e of ensembles between the 
anoni
al and the mi
ro-
anoni
al ensembles. Furthermore, the dynami
s is now 
oherent at the s
ale of thewhole system, and this 
hanges the usual understanding of the relaxation towardsequilibrium. These di�erent aspe
ts have already been studied in detail in ea
hspe
i�
 domain: self-gravitating system [124℄, bidimensional turbulen
e [34℄, andplasma physi
s [53℄. As far as equilibrium statisti
al me
hani
s and its anomaliesare 
on
erned, we 
an refer to the work of Hertel and Thirring [81℄; the similarityof the methods to solve these di�erent models has been developped in the studies1We do not 
onsider the limit 
ase where α = d, as in this 
ase the presen
e of semi-
onvergentintegrals 
an yield parti
ular behaviours. 11



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONof Spohn et al. [63, 109℄ and Kiessling et al. [93, 94, 144℄. As far as the dynami
s is
on
erned, Chavanis, Sommeria and Robert [34,36℄ have developed the analogies be-tween bidimensional turbulen
e and self-gravitating systems, 
onsidering the formalproximity between the Euler and Vlasov equations.2 Equilibrium statisti
al me
hani
s of long-rangeintera
ting systemsFollowing the de�nition of LRI systems introdu
ed previously, the thermodynami
sof these systems presents unusual behaviours in 
omparison with the thermodynam-i
s of SRI systems: the energy is not additive, and then many standard results ofthe usual thermodynami
s and statisti
al me
hani
s be
ome ina

urate.2.1 The mean-�eld Ising modelLet us 
onsider the example of the mean-�eld Ising model. Its Hamiltonian is
H = − J

N

N
∑

i,j=1

SiSj , (1.4)where Si represents the spin with value ±1. The 
oupling 
onstant is renormalizedby a fa
tor depending on the number of spins in the system, N , in order to preservethe extensivity of the system. Without this tri
k, the thermodynami
 limit wouldnot exist in the usual sense, i.e. the total energy of the system would not be propor-tional to the system size in the limit where N → ∞. However, even if the intera
tionis renormalized to keep the system extensive, it is still non-additive; a 
onsequen
eis that it 
annot separate itself into two di�erent phases. Let us imagine a systemwhere the entropy S(e) is not 
on
ave (see Fig. 1.2), and let us 
onsider an energy
e0 below the tangent. For a system with short-range intera
tion, this 
urve 
annot

Figure 1.2: S
hemati
 representation of a non-
on
ave entropy in the 
ase of anadditive system: for the energy e0 a phase separation o

urs.represent the entropy S(e). The reason is that, owing to additivity, the system rep-resented by this 
urve is unstable in the energy interval e1 < e0 < e2. Entropy 
an12



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONbe gained by phase separating the system into two subsystems 
orresponding to e1and e2, keeping the total energy �xed. The average energy and entropy densities inthe 
oexisten
e region are given by the weighted average of the 
orresponding den-sities of the two 
oexisting systems. Thus the 
orre
t entropy 
urve in this regionis given by the 
ommon tangent line, resulting in an overall 
on
ave 
urve.However, in systems with long-range intera
tions, the average energy densityof two 
oexisting subsystems is not given by the weighted average of the energydensity of the two subsystems. Therefore, the non
on
ave 
urve in Fig. 1.2 
ould,in prin
iple, represent an entropy 
urve of a stable system, and phase separationneed not take pla
e. This results in a negative spe
i�
 heat (see e.g. [31℄). Sin
ewithin the 
anoni
al ensemble spe
i�
 heat is non-negative, the mi
ro
anoni
al and
anoni
al ensembles are not equivalent. The above 
onsiderations suggest that theinequivalen
e of the two ensembles is parti
ularly manifested whenever a 
oexisten
eof two phases is found within the 
anoni
al ensemble. This inequivalen
e betweenthe mi
ro
anoni
al and 
anoni
al ensembles is know for years in astrophysi
s, buttook time to grow on the statisi
al physi
s 
ommunity where people get used tothe 
anoni
al ensemble: M. Lax shed light on the inequivalen
e of ensemble in thespheri
al model of Berlin and Ka
 [100℄, and Hertel and Thirring studied in [81℄a simple model inspired from gravity, exa
tly solvable in both the 
anoni
al andmi
ro
anini
al ensembles, bringing into light the negative spe
i�
 heat.The importan
e of the mi
ro
anoni
al ensemble, as well as its di�eren
es withthe 
anoni
al ensemble, has also been studied these last ten years by D. Gross, evenwithout any long-range intera
tion, in the domain of systems with few degrees ofliberty [78℄, as in nu
lear physi
s for example.Let us note that a new de�nition of the entropy has emerged to solve the physi
alquestions of the long-range intera
ting systems, intrinsi
ally non-additive [147℄: theusual entropy of Gibbs, SG = −
∑

i pi ln pi, for a set of probability pi, is repla
ed bythe Tsallis entopy that depends on a parameter q
Sq =

1−
∑

i p
q
i

q − 1
, (1.5)and a new thermodynami
al formalism is developped, depending on this new pa-rameter q. Sq is said non-additive, as the q-entropy of the union of two independantsubsystems (in probability) is not equal to the sum of the two entropies of thesesubsystems taken independently. Sq be
omes SG when q → 1. It seems that thisentropy works to des
ribre systems out-of-equilibrium instead of a des
ription ofsystems at equilibirum (see e.g. [31℄).In the following, we will explain the results of the mean-�eld approa
h. Indeed,as often in statisti
al me
hani
s, the usual approa
h is to perform a mean-�eld ap-proximation. We will use a pedagogi
al approa
h based on the use of toy models:we start studying simple models where an analyti
al approa
h 
an be performed.We must note that we only restri
t the analysis to the 
lass of latti
e systems.As far as 
ontinuous systems are 
on
erned, i.e. systems made of parti
les withtranslational degrees of freedom, the additivity property is still satis�ed in all 
ases13



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONfor whi
h the system does not 
ollapse if the pair-intera
tion V (r) ∝ |r|−α de
aysat large distan
es faster than the power law r−d where d is the dimension spa
e.Moreover, following Ruelle [136℄, two 
onditions must also be 
onsidered in the 
aseof 
ontinuous systems: the stability 
ondition and the temperedness 
ondition.The stability 
ondition assures that there will not be situations of 
ollapse of thesystem. The potential is said to be stable if there exists A ≥ 0 su
h that
∑

1≤i<j≤N

V (ri − rj) ≥ −NA (1.6)for ea
h 
on�guration (r1, . . . , rN). We note that for this it is ne
essary that V (r) tobe bounded below for r → 0. Therefore, for the o

uren
e of normal thermodynami
behavior it is possible to adopt, following Ruelle [136℄, the following 
onditions onthe two-body potential: the �rst is the stability 
ondition, while the se
ond is
V (r) ≤ C|r|−α (1.7)whenever |r| ≥ R0 > 0; this 
ondition, for C > 0 and α > d, is 
alled temperedness.When stability and temperedness are satis�ed there are theorems that assure theequivalen
e of ensembles [31℄.If we 
onsider LRI systems for whi
h the potential de
ays at large distan
e a
-
ording to |r|−α with α < d, depending on whether it will do so 
onsidering repulsionat large distan
e, or attra
tion at large distan
e, the temperedness 
ondition or thestability 
ondition will be violated, respe
tively. In both 
ases, it 
an be shown that,in
reasing the size of the systems, the total energy will in
rease faster than N , vio-lating the extensivity property, and also the additivity property will not hold [136℄.2.2 Inequivalen
e of ensembles: the BEG mean-�eld modelIn the following, we fo
us our attention on a solvable model introdu
ed originallyto study the binary mixing of He3 − He4, and whi
h illustrates the parti
ularitiesof the thermodynami
s of non-additive systems: the Blume-Emery-Gri�ths (BEG)model [26℄. The 
anoni
al phase diagram of this model is well known [30℄, andpresents an interesting phenomenology: a line of se
ond order phase transition anda line of �rst order transition disjoined by a tri
riti
al point. The mi
ro
anoni
alapproa
h has been studied in [30℄. Here we present a brief analysis of the BEGmodel in both the 
anoni
al and mi
ro
anoni
al ensembles (see e.g. [15℄ for moredetails).One de�nes the BEG model as a latti
e where ea
h site is o

upied by a spin

Si = 0,±1. one 
an write the Hamiltonian
H = ∆

N
∑

i=1

S2
i −

J

N

(

N
∑

i=1

Si

)2

, (1.8)where J > 0 is a ferromagneti
 
oupling 
onstant, and ∆ 
ontrols the energy di�er-en
e between the magneti
 states (Si = ±1) and the non-magneti
 state (Si = 0).In this Hamiltonian the intera
tion is renormalized by 1/N to keep the system ex-tensive. However, it does not prevent it from the non-additivity.14



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONThe 
anoni
al solutionFor small value of∆/J , the system be
omes 
loser to the mean-�eld Ising model, andundergoes a se
ond order phase transition when β 
hanges. Conversely, when T = 0,and 2∆/J = 1, the paramagneti
 phases Si = 0 for all i, and ferromagneti
 phases
Si = 1 for all i, are degenerated: a �rst order phase transition takes pla
e betweenthese two fondamental states. The 
anoni
al solution is known for years [26℄; theusual method de�ned the partition fun
tion

Z(β,N) =
∑

Si

exp

(

− β∆
∑

i

S2
i +

βJ

2N

(

∑

i

Si

)2
)

. (1.9)One uses the gaussian transformation
exp

(βNJm2

2

)

=

√

N

πβJ

∫ +∞

−∞
dv exp

(−Nv2
2βJ

+Nmv
)

, (1.10)to perform the sum over all the a

essible 
on�gurations:
Z(β,N) =

√

N

πβJ

∫ +∞

−∞
dv exp

(−Nv2
2βJ

)[

1 + 2e−β∆ cosh v
]N

. (1.11)This last integral 
an be evaluated by the saddle point method in the limit where
N → ∞. The free energy par parti
les is then

F (β) = − 1

β
min
v

(

v2

2βJ
− ln[1 + 2e−β∆ cosh v]

)

. (1.12)The line of se
ond order transition is then given by the expression
βJ =

1

2
eβ∆ + 1 . (1.13)The tri
riti
al point whi
h separates this line from the �rt order transition line is at

∆/J = ln(4)/3, βJ = 3. The �rst order line transition must be obtained numeri
ally.We give in Fig. 1.3 the s
hemati
 representation of the 
anoni
al phase transitiondiagram.The mi
ro
anoni
al solutionWe are now interesting in the mi
ro
anoni
al solution of the BEG model. We thendetermine the entropy of the system for a given energy. Let us note by N+, N−,and N0 the number of spin +1, −1, and 0 of a given mi
ros
opi
 
on�guration. Wenote q the quadrupole moment, and m the magnetisation per spin,
q =

1

N

∑

i

S2
i =

N+ +N−
N

, (1.14)
m =

1

N

∑

i

Si =
N+ −N−

N
. (1.15)15
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Figure 1.3: S
hemati
 representation of the 
anoni
al phase diagram of the mean-�eld BEG model. For small values of ∆/J there is a se
ond order transition (dashedline). When ∆/J in
reases a �rst order transition appears. This two regimes areseparated by a tri
riti
al point (T ). For ∆/J > 1/2, there is no more transition.The energy per parti
le, renormalized by ∆ for 
onvenien
e, 
an simply be written
e =

H

∆N

(

q − J

2∆
m2
)

. (1.16)As N0 +N+ +N− = N , the parameters q and m are enough to obtain N0, N+, and
N−. By simple 
ombinatory, one obtains the number of mi
ros
opi
 
on�gurationsfor given q and m:

Ω(q,m) =
N !

N+!N−!N0!
. (1.17)Using the Stirling formula and the standard de�nition of the entropy, one obtains

s(q,m) = −q +m

2
ln
q +m

2
− q −m

2
ln
q −m

2
− (1− q) ln(1− q)− ln 3 . (1.18)The mi
ro
anoni
al entropy is then obtained by maximizing s for a 
onstant e.Giving the 
onstraint q = e+km2, with k = J/2∆, we obtain a variational problemwith a single variable:

S(e) = sup
m

(

s(e+ km2, m)
)

. (1.19)The mi
ro
anoni
al temperature is then given by ∆β = ∂S/∂e.As in the 
anoni
al ensemble, the equation of the se
ond order transition line
an be obtained analyti
aly. This 
riti
al line stops in a tri
riti
al point givenby k ≈ 1.0813 and β∆ ≈ 1.3998. This values are 
lose to the 
anoni
al valuesbut di�erent as k ≈ 1.0820 and β∆ ≈ 1.3995. The se
ond order line stret
heso� the mi
ro
anoni
al one. In the region between these two di�erent tri
riti
alpoints, the transition is �rst order in 
anoni
al ensemble, but stays 
ontinuous in themi
ro
anoni
al ensemble (see Figs. 1.4). Beyond the mi
ro
anoni
al tri
riti
al point,the temperature undergoes a dis
ontinuity at the transition of the mi
ro
anoni
al16
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Figure 1.4: S
hemati
 representation of the (∆/J, T ) phase diagrams of the BEGmodel within the 
anoni
al and mi
ro
anoni
al ensembles (from [18℄). We repre-sent the tri
riti
al 
anoni
al point (Ctp) and the tri
riti
al mi
ro
anoni
al point(Mtp). The bold dashed line (on the left of Ctp) illustrates that in the mi
ro
anon-i
al ensemble the 
ontinuous transition 
oin
ides with the 
anoni
al one. The linerepresents the �rst order 
anoni
al phase transition. The bold line represents themi
ro
anoni
al �rst order phase transition. The area between delimited by the boldline is not a

essible.
riti
al energy; the two lines in Fig. 1.4 represent the temperature at ea
h side ofthe jump. All the transitions disappear at T = 0, ∆/J = 1/2.The BEG mean-�eld model is solvable analyti
aly in both the 
anoni
al andmi
ro
anoni
al ensembles. The phenomenology around the tri
riti
al point is inter-esting as it brings to light the inequivalen
e of ensembles, with area with negativespe
i�
 heat and temperature dis
ontinuities.In the next se
tion, we brie�y present a general method to study the equilibriumproperties of systems with long-range intera
tion, whi
h is ne
essary to solve more
ompli
ated models.2.3 Mean-�eld and large deviation theoryThe mean-�eld approximation 
onsists in evaluate the �eld on a parti
le, assum-ing that all the parti
les are in a mean state. For LRI systems, a large numberof parti
les 
ontribute to this mean-�eld, and the �u
tuations around this mean-�eld should be small with the large number theory. It is then 
on
eivable that we
an obtain a very good approximation of the real behaviour with this mean-�eldapproa
h. Furthermore, one 
an show that the mean-�eld approximation be
omesexa
t in numerous models, for a large number of parti
les.In this subse
tion we introdu
e, following [15℄ without any mathemati
al rigor,the large-deviation theory, a mathemati
al tool essential to show the a

ura
y ofthe mean-�eld approximation in many instan
es. It is above all a powerful tool toobtain the equilibrium states in the mi
ro
anoni
al and 
anoni
al ensembles.A rigorous approa
h of the large-deviation theory is given in [44℄; referen
e [52℄gives an appli
ation of this theory to statisti
al physi
s, with a mathemati
al pointof view. 17



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONHow does large-deviation theory work?Let us 
onsider a sum of N random variables identi
aly distributed Xk. Assumingthey follow the same probability distribution, with a null average, the empiri
alaverage SN is then
SN =

1

N

N
∑

k=1

Xk . (1.20)The large number law states that SN tends to the average value of Xk, i.e. zero inour 
ase, when N goes to in�nity. If the assumptions of the 
entral limit theoremare valid, one 
an 
onsider that the fun
tion P (
√
NSN = x) goes to a gaussiandistribution in x if we 
onsider random variables with null mean. The �u
tuationsof SN are of order 1/

√
N . It is also interesting to study the behavior of the tailof the distribution: what is the probability for a �u
tuation of order 1? i.e. whatis the value of P (SN = x)? The large deviation theory is essential to answer thisquestion.Let us 
onsider an example to illustrate large deviation theory. We 
onsider a
oin, and the random variable Xk, following Xk = 1 for the reverse side, Xk = 0 forthe head side. Combinatory simply gives
P (SN = x) =

N !

(1+x
2
N)!(1−x

2
N)!2N

(1.21)whi
h gives with the Stirling formula
lnP (x) ∼ −N

(1 + x

2
ln

1 + x

2
+

1− x

2
ln

1− x

2
+ ln 2

) (1.22)
∼ −NI(x) . (1.23)One says that SN follows a large deviation prin
iple, with rate fun
tion I. I(x)is the opposite of the entropy atta
hed to a 
on�guration with a mean value x.One sees that the values of x su
h that I(x) > 0 are exponentially suppressed with

N . Moreover, to satisfy the normalization 
ondition of the probability, one needs
I(x) ≥ 0, and inf I(x) = 0.the Cramer theoremThe Cramer theorem [52℄ is the mathemati
al basis to answer to this question forrandom variables Xk following the same rapidly de
reasing probability distribution.Let us on
e more 
onsider

SN =
1

N

N
∑

k=1

Xk , (1.24)where P (SN = x) follows the large deviation prin
iple
lnP (SN = x) ∼ −NI(x) . (1.25)The 
ramer theorem allows us to 
ompute the rate fun
tion I(x). To do this, onede�nes the fun
tion

Ψ(λ) = 〈eλ.X1〉 , (1.26)18



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONwhere λ is a real value and 〈. . . 〉 denotes the average value of the probability dis-tribution of X1 (or of any Xk as they are identi
aly distributed). The rate fun
tion
I(x) is then given by the Legendre transformation of lnΨ:

I(x) = sup
λ

(

λ.x− lnΨ(λ)
)

. (1.27)This theorem is valid if the probability distribution of Xk is rapidly de
reasing atin�nity in order to Ψ to be de�nite. This gives a general method to evaluate therate fun
tion, when the 
ombinatory methods are not possible, as in the 
ase of a
ontinuous probability density fun
tion.One must note that the large deviation approa
h does not work for all the systemswith long-range intera
tion. This method 
onsists in introdu
ing 
oarse-grained vari-ables, and this des
ription is useful to des
rible stru
tures at the s
ale of the system.This method is thus useless when interesting phenomena take pla
e at mi
ros
opi
s
ales. This 
an be the 
ase when one 
onsiders repulsive for
e at long range; themean-�eld approa
h predi
ts the absen
e of stru
tures at large s
ales, and the in-teresting physi
s at small s
ale must be studied with a di�erent approa
h.In this �rst introdu
tary se
tion, we have presented the theory of equilibriumstatisti
al me
hani
s of LRI systems. We have illustrated an interesting result of LRIwith the BEG model: the inequivalen
e of ensemble. We have also introdu
ed themain tool to study these systems, the mean-�eld approa
h and have given 
ommentson the large deviation theory .We have seen in the previous subse
tion that the equilibrium statisti
al me
han-i
s provides powerful tools whi
h give information about the mi
ros
opi
 states ofLRI systems. However, it is essential to understand the relaxation properties ofthese systems. It appears that the relaxation time of these systems is very long, andin
reases with the number of 
onstituents in the system as we will dis
uss below.3 Out-of-equilibrium dynami
s of long-range inter-a
ting systemsIn the introdu
tory se
tion on the equilibrium properties of LRI systems, we usedsolvable toy models to shed light on general 
on
epts. We will follow the same ap-proa
h in this se
tion to introdu
e the out-of-equilibrium dynami
s of LRI systems.3.1 Introdu
tionThe kineti
 theory proposes to study the evolution of ma
ros
opi
 observables, start-ing with mi
ros
opi
 equations. However, this evolution is not easy to obtain. Itis usually impossible to 
onsider the 
orrelations between parti
les 
oming from thedynami
s. The kineti
 theory des
ribes a system through the use of probability dis-tribution in the N-parti
les phase spa
e, fN(r1,p1, ..., rN ,pN , t). All the essentialinformation about the 
orrelation are 
ontained in this fun
tion. The easiest ap-proximation 
onsists in negle
ting these 
orrelations, and in des
ribing the system19



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONwith a one-parti
le probability distribution, f(r,p, t); The N-parti
les probabilitydistribution is then linked to the one-parti
le distribution fun
tion through the re-lation
fN (r1,p1, ..., rN ,pN , t) = f(r1,p1, t) . . . f(rN ,pN , t) . (1.28)This one-parti
le fun
tion evolves under the mean-�eld potential, and under the
ollisions between the parti
les

∂f

∂t
+ p.∇rf −∇rV.∇pf = C(f) , (1.29)where V is the potential, and C(f) represents the 
ollisional evolution. If we negle
tthe 
ollision term, we obtain the Vlasov equation that 
ould be seen as the dynami
alequivalent of the mean �eld approximation in the equilibrium analysis.General results exist allowing to show the 
onvergen
e of the parti
ular dynami
sthrough the dynami
s of the Vlasov equation, for a number of parti
les whi
h goes toin�nity. The Braun and Hepp theorem [28℄ gives mathemati
al rigour to state this.Let us 
onsider a 
lassi
al system of N parti
les, intera
ting through the potential,
Ep =

1

N

∑

1≤i<j≤N

Φ(xi − xj) , (1.30)where the potential Φ is even and regular enough. Then for all time t, and for anygiven a

eptable error ǫ, there exists an number N of parti
les for whi
h the par-ti
ular and Vlasov dynami
s 
oin
ide until the time t, with a maximal error ǫ. Asfor any equilibrium study, the renormalization fa
tor 1/N of the intera
tion 
orre-sponds to the limit where the number of parti
les goes to in�nity, keeping 
onstantthe mi
ros
opi
 time s
ale of the system. This 
ould be the physi
al interestinglimit. Moreover, let us note that the regularity assumption of the Φ potential isnot valid for self-gravitating systems. This di�
ulty 
omes from the short distan
esingularity of this intera
tion.The Vlasov equation a
quires from the parti
ular dynami
s the same 
onservedquantities (total energy, momentum, . . . ). Furthermore, the 
onsideration of a 
on-tinuous des
ription generates also an in�nite number of 
onserved quantities, 
alledthe Casimirs. Indeed, the Vlasov equation is a non-linear equation of adve
tion ofthe density f , whi
h means that the quantities
I[φ] =

∫

dr dp φ
(

f(r,p, t)) , (1.31)where φ is some fun
tion, are 
onserved. These new 
onserved quantities play animportant role in the parti
ular dynami
s. Furthermore, it is known that this equa-tion has many stationary solutions. These two points then gives intuition why therelaxation toward equilibrium of systems with LRI are very slow.
ollisional relaxation and violent relaxationIf one negle
ts 
ollisions between parti
les, i.e. the right hand side of Eq. (1.29)
C(f) = 0, 
reating an in�nite number of new 
onserved quantities, one 
ould thinkthat the Vlasov dynami
s would not relax towards a statisti
al equilibrium. In20



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONreality, the Vlasov dynami
s 
reates rapidly a �ner and �ner �lamentation of thedensity f . Then an equilibrium distribution 
an appear for the density f̄ , 
oarse-grained density of the real density f . This is the idea of violent relaxation introdu
edby Lynden-Bell in 1968 in astrophysi
s [103℄. This violent relaxation plays its roleon shorter time s
ale than the 
ollisional relaxation, and then gives a statisti
alequilibrium di�erent from the standars 
ollisional equilibrium, as it 
ontains new
onserved quantities. We will 
ome ba
k again to the Vlasov equation with itsillustration in the ferromagneti
 Hamiltonian-Mean-Field toy model.The result of Braun and Hepp 
an lead to the idea that the Vlasov equation 
anplay the same role as the mean-�eld approximation at equilibrium. In reality, thetheorem shows the 
onvergen
e towards the Vlavov dynami
s when N → ∞, for anybounded temporal interval. In other words, the dis
rete dynami
s and the Vlasovdynami
s 
oin
ide over a time s
ale whi
h s
ales with the number of parti
les N .3.2 Slow relaxation to equilibrium: the ferromagneti
 Hamiltonian-Mean-Field modelTo illustrate the parti
ular behaviour of relaxation towards equilibrium in LRI sys-tems, we 
onsider the well known toy model: the ferromagneti
 Hamiltonian-Mean-Field (HMF) model [30℄. It des
ribes the intera
tion of N identi
al parti
les whi
hmove on a 
ir
le of radius unity. We 
an write its hamiltonian
H =

∑

j

p2j
2

− 1

N

∑

i,j

cos(θi − θj) , (1.32)where the parti
le position θi is between 0 and 2π. The 
oupling 
onstant is negativeand the system tends naturally to a magnetized state, i.e. M1 =
(

∑

eiθj
)

/N 6= 0.In that 
ase, it has been shown in [5℄ that the 
anoni
al and mi
ro
anoni
al en-sembles were equivalent. However, for some parti
ular initial 
onditions, the systemdoes not relax to equilibrium (see e.g. Fig. 1.5). In fa
t, the system relaxes towardsequilibrium, but relaxes slower as the number of parti
les in
reases. For su�
ientlylarge N , however, it is di�
ult to observe this relaxation in numeri
al simulations.Fig. 1.6 illustrates this behaviour: the magnetisation stays initially 
lose to 0, andrelaxes to its equilibrium value M1 = |M1| 6= 0 for times that in
rease with thenumber of parti
les in the system. Let us 
onsider this evolution through the eyesof the Vlasov equation:
• the system qui
kly evolves following the Vlavov dynami
s, in a time s
aleindependant of the number of parti
les;
• the system stays trapped near one of the numerous stationary states of theVlasov equation. If the violent relaxation theory is valid, this state is thestatisi
al equilibrium of the Vlasov equation. In reality, it does not 
orrespondhowever exa
tly to this statisti
al equilibrium;
• the system evolves slowly under the e�e
ts of 
ollisions. The time s
ale dependsnow on the number of parti
les in the system. One 
an assume that the systemevolves among the numerous stationary states of the Vlasov equation; 21
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Figure 1.5: Representation of the (T, U) diagram (from [15℄) for the ferromagneti
HMF model. The straight line represents the 
anoni
al equilibrium state. Theverti
al dashed line marks where the se
ond order phase transition takes pla
e. The
ir
ular points stand for the result of the mole
ular numeri
al simulation, startingwith out-of-equilibrium initial 
ondition and for long integration time.
• �nally, the system rea
hes a stable stationary state of the Vlasov equation:the 
ollisional statisti
al equilibrium. This is di�erent from the statisti
alequilibrium of the Vlasov equation, as the Casimirs are not 
onserved throughthe 
ollisional relaxation.The sytem 
ould of 
ourse stay trapped in these stable stationary states fordi�erent reasons (as it is the 
ase for the antiferromagneti
 HMF model [16, 17℄).However, these states are the most natural hypothesis.The ferromagneti
 HMF model is a popular toy model to study the Vlasovdynami
s. The idea of this se
tion is not to perform a 
omplete analyti
al analysisof the HMF model, although the simpli
ity of this model gives this opportunity.In the following the approa
h of the Vlasov stable stationary states, and the slowevolution towards equilibrium, amongst the stable stationary states of the vlasovdynami
s are illustrated with the results of numeri
al analysis (see e.g. [156℄ formore details). .The Vlasov equationThe �rst step of the evolution presented above 
orresponds to a rapid evolution,under the e�e
t of the Vlasov dynami
s, on a time s
ale independant of the numberof parti
les in the system. To determine the stationary states of this equation forthe HMF model one 
onsiders the equation of motion

dθj
dt

= pj ,
dpj
dt

= −Mx sin θj +Mj cos θj , (1.33)where Mx and My represent the real and imaginary parts of the 
omplex magneti-sation M1. To follow the Vlasov approa
h, one must 
onsider the approximation of22
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Figure 1.6: Temporal evolution of the magnetisationM(t) for a number of parti
les
N = 100(1000), 1000(100), 2000(8), 5000(8), 10000(8) and 20000(4) from left toright (from [156℄. We give in bra
ket the number of realisations used to performthe ensemble average. The horizontal line represents the equilibrium value of themagnetization.the di
rete distribution

1

N

N
∑

j=1

δ(θ − θj , p− pj) (1.34)with a 
ontinuous density in the one-parti
le phase spa
e f(θ, p, t). One 
an write
Mx[f ] ≡

∫

cos(θ)f(θ, p, t)dθdp , My[f ] ≡
∫

sin(θ)f(θ, p, t)dθdp . (1.35)In this approximation (whi
h be
omes exa
t in the limit N → ∞) all the parti
lesfeel the same potential
V (θ)[f ] = 1−Mx[f ] cos θ −My[f ] sin θ . (1.36)The Vlasov equation 
an be written [31℄

∂f

∂t
+ p

∂f

∂θ
− dV

dθ
[f ]
∂f

∂p
= 0 . (1.37)As explained previously, the Vlasov equation 
onserves the energy and the momen-tum of the system, i.e.

H [f ] =

∫

p2

2
f(θ, p, t)dθdp−

M2
x +M2

y

2
(1.38)and

P =

∫

pf(θ, p, t)dθdp , (1.39)23



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONand 
onserves an in�nite number of new quantities, the so 
alled Casimirs
Cφ[f ] =

∫

φ
(

f(θ, p, t)
)

dθdp , (1.40)where φ is a 
ontinuous fun
tion. The stationary states of the Vlasov equation,obtained with the method of 
hara
teristi
s [41℄, are given by the density f 
onstantalong the 
hara
teristi
s of the equation i.e. the level line of the energy ǫ
ǫ(θ, p) =

p2

2
+ V (θ) =

p2

2
+ 1−Mx[f ] cos θ −My[f ] sin θ . (1.41)The stationary solutions of the Vlasov equation are then given by f(θ, p) = ψ

(

ǫ(θ, p)
),where ψ is any fun
tion. The parti
ular 
ase ψ = exp(−βǫ) 
orresponds to statisti
alequilibrium.One 
ould expe
t that a large number of stationary states would prevent theVlasov equation to rea
h its statisti
al equilibrium, and on the other hand wouldspark o� the slow relaxation or the QSS observed with the parti
ular dynami
s.It is then interesting to study the stability of these stationary states to give anexplanation of the slow relaxation towards equilibrium for a parti
ular 
lass of initial
onditions.The main idea of this method for a dynami
al system 
an be introdu
ed as follow(see e.g. [15℄ for more details): 
onsidering a 
onserved quantity F [f ] using 
onservedquantities as energy and 
asimirs, any extemum f0 of F is a stationary point of thedynami
s. Moreover, if f0 is a stri
t maximum or minimum of F , f0 is said to beformaly stable. The di�erent kind of stabilities 
an be studied in [83℄. This is astandard method in plasma physis
s whi
h gives the opportunity to obtain resultsof non-linear stability. This was used, for example, by Kandrup for self-gravitatingsystems [91℄. The formal fon
tional quantity 
onsidered in [15℄ is

F [f ] = Cs[f ]− βH [f ]− µ

∫

f(θ, p, t)dθdp (1.42)where β and µ are two free parameters. The energy H , the Casimir Cs and ∫ f = 1are quantities 
onserved by the dynami
s. The 
riti
al points of this fun
tional givesthe stationary states of the Vlasov equation. The stability of these stationary statesis then studied 
onsidering the se
ond variations of this fun
tional. Yamagu
hi etal. studied in [156℄ a simple 
riterion for stability for all the homogeneous stationarystates of the Vlasov equation and showed that the presen
e of these stable stationarystates would give an explanation to the slow relaxation toward equilibrium for a
ertain 
lass of initial 
onditions.3.3 Convergen
e towards a stationary state of the VlasovequationIf the initial 
ondition does not 
orrespond to a stable stationary solution of theVlasov equation, it is natural to assume that the system will evolve, under thee�e
t of the Vlasov dynami
s, towards a stable stationary solution after a rapidevolution. This hypothesis 
an however only be tested with numeri
al simulations(see e.g. [156, 159℄).24



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONThese numeri
al simulations show that, after a rapid relaxation, the evolution
an be parametrized with an evolution among the stable stationary states of theVlasov equation; the system rea
hes �nally the statisti
al equilibrium. Two mainpoints remain however unsolved: one the one hand, the Vlasov stationary state 
ho-sen by the violent relaxation is not explained, and on the other hand, the dynami
swhi
h governs the slow evolution among the stationary states.

Figure 1.7: Temporal evolution of the distribution f(θ, t) obtained for a �water-bag�initial 
ondition for the velo
ities (from [156℄). The number of parti
les is N = 1000and an ensemble average over 100 realisations is performed. For U = 0.55 and
U = 0.69, we represent the distribution at time t = 1 (
ross), t = 10 (white square),
t = 104 (bla
k square) and t = 105 (white 
ir
le). The straight line represents theequilibrium distribution.The numeri
al study of the slow evolution has been studied in [156℄ for the HMFmodel. We 
onsider the results presented in Fig. 1.7 to illustrate brie�y the slow 
on-vergen
e of the angular and velo
ity distributions towards the statisti
al equilibriumstate. The initial 
ondition of this simulation is a water-bag velo
ity distribution andan homogeneous angle distribution. For U = 0.55 (left hand panel in Fig. 1.7), theinitial 
ondition is unstable and the system undergoes a rapid evolution between
t = 1 and t = 10. The system evolves then slowly towards the equilibrium staterea
hed for t ∼ 105. For U = 0.69 (right hand panel in Fig. 1.7), the initial 
onditionis stable. The dynami
s is then very slow right from the begining and the equilib-rium state is rea
hed at t ∼ 105. One must noti
e that, although the dynami
sevolves slowly, it seems that the evolution of the system is 
ontinuous. It is thendi�
ult to de�ne a QSS (see e.g. [156, 159℄).We 
on
lude this introdu
tory se
tion with the study of the time s
ales of theHMF model. We have already said that the relaxation time, i.e. the lifetime of theout-of-equilibrium states, in
reases with the number of parti
les in the system. Itis thus interesting to understand this temporal dependen
e to identify the di�erentregimes of the dynami
al evolution. Astrophysi
s provides a very ni
e example toillustrate this question: It is believed that the stru
ture of galaxies arises from violentrelaxation while the 
ollisional relaxation 
ould play a role in the dynami
s of theglobular 
lusters [34℄. 25



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONAs far as the HMF model is 
on
erned, the theorem of Braun and Hepp [28℄ statesthat the Vlasov dynami
s and the parti
ular dynami
s 
oin
ide on a times
ale oforder lnN . One 
ould then expe
t a �rst relaxation time trel ∼ lnN . Using theHMF model with U = 0.69 and water-bag velo
ity distribution and homogeneousangular distribution, Yamagu
hi et al. studied in [156℄ the temporal evolution of
M1(t) for a number of parti
leN = 102, 103, 2.103, 5.103, 104 and 2.104 (see Fig. 1.8).To study the times
ale relaxation represented in Fig. 1.8, M1(t) is approximated by

Figure 1.8: Panel (a) presents the temporal evolution of the magnetizationM(t) fordi�erent parti
les numbers N = 100(1000), 1000(100), 2000(8), 5000(8), 10000(8)and 20000(4) from left to right. The number between bra
kets 
orresponds to thenumber of samples. The horizontal line represents the equilibrium value of M .Panel (b) shows the logarithmi
 times
ale b(N) as a fun
tion of N . The dashed line
orresponds to b(N) ∼ N1.7. (from [156℄)hyperboli
 tangent [156℄, i.e.
M1(t) =

[

1 + tanh
(

a(N)(log10 t− b(N))
)

]

c(N) + d(N) , (1.43)where the parameters a(N), b(N), c(N) and d(N) represent respe
tively the slopeat time log10(t) = b(N), the time s
ale, the semi-di�eren
e between the initial leveland the equilibrium level of M1(t) and the initial level of M1(t). The equilibriumlevel is given by the statisti
al me
hani
s and the initial level by the �u
tuationproportional to 1/
√
N . Fig. 1.8 shows that, for U = 0.69, b(N) ∝ N1.7 whi
h isthe same dependan
e found by Zanette et al in [159℄ for di�erent initial 
onditions.This exponent stays unexplained, but analyti
al approa
hes try to explain it (seee.g. [90℄).Let us re
all brie�y the results presented above. We have 
hara
terized thestationary states of the Vlasov equation and presented a method to study theirstability. It has been shown in [156℄ that it was possible to analyse them as maximaof a fun
tional 
onstru
ted with 
onserved quantities as energy and Casimirs. Fora 
lass of initial 
onditions whi
h are not stable stationary states of the Vlasovequation, the system rapidly relaxes towards a stable stationary state, i.e. the so26
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alled violent relaxation. The system then evolves slowly among the stable stationarystates towards the statisti
al equilibrium state, the so 
alled 
ollisional relaxation.This introdu
tory 
hapter was limited to the study of di�erent toy models. It ishowever expe
ted that it 
ould be generalized to any long-range intera
ting systemseven if the analysis of ea
h system must be adapted to ea
h model.4 Con
lusionIn this �rst introdu
tory 
hapter we have given a brief overview of the physi
s oflong-range intera
ting systems: the statisti
al me
hani
s at equilibrium and theout-of-equilibrium dynami
s. We have illustrated the parti
ular behaviours whi
hemerge from these systems using simple toy models: the Blume-Emery-Gri�thsmodel, the Ising model and the Hamiltonian-Mean-Field model whi
h have beenused as tools in the statisti
al physi
s 
ommunity to probe the physi
s of the LRIsystems.In the �rst se
tion of this 
hapter, we have underlined the inequivalen
e of en-sembles between the mi
ro
anoni
al and the 
anoni
al ensemble in the BEG model.We have also introdu
ed the mean-�eld approa
h and the large-deviation theorywhi
h is the mathemati
al basis to justify the relevan
e of this approa
h.However, the knowledge of the equilibrium properties remains in
omplete if we
annot probe the physi
s of the relaxation towards this equilibrium. This was thesubje
t of the se
ond se
tion of this 
hapter. Following a kineti
 theory approa
h,we have introdu
ed the Vlasov equation whi
h 
an be seen as the dynami
al equiv-alent of the mean �eld approximation. We have seen that the Vlasov equation hasan in�nite number of 
onserved quantities, the so-
alled Casimirs, whi
h underliethe slow relaxation towards equilibrium. We have brie�y presented a method ex-tra
ted from [156℄ whi
h gives the opportunity to obtain the stationary states ofthe Vlasov equation as well as to analyse their stability. Indeed, for a 
lass of ini-tial 
onditions whi
h are not stable stationary states of the Vlasov equation, thesystem rapidly relaxes towards a stable stationary state, and then evolves slowlyamong these stationary states until it rea
hes the statisti
al equilibrium throughthe 
ollisional relaxation.
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Chapter 2Basi
 results on self-gravitatingsystemsWe �rst extend the 
onsiderations of the previous 
hapter to the spe
i�
 
ase of self-gravitating systems dis
ussing the statisti
al equilibrium of self-gravitating systems:we use the mean �eld approximation introdu
ed in Chapter 1 for an LRI system,whi
h leads to the well known isothermal sphere solution. The rest of the 
hapter
on
erns self-gravitating systems in the 
ontext of 
osmology, whi
h are intrinsi
allydi�erent to those 
onsidered in Chapter 1 be
ause they are in�nite rather than �nite.To give some ba
kground, we review the basi
s of the standard 
osmologi
al model,fo
using on the formation of large s
ale stru
ture. The understanding of the originof large s
ale stru
ture in the universe (
luster of galaxies, super
lusters) is indeedone of the major unsolved questions in 
osmology. In the next se
tion we give anintrodu
tion to the kineti
 theory used to study the out-of-equilibrium dynami
sof in�nite self-gravitating systems in 
osmology, and whi
h allow the derivation ofthe equation of an (in�nite) self-gravitating �uid (i.e. a hydrodynami
 des
riptionof the system). We present the perturbation theory of these �uid equations, wherethe density �eld is des
ribed with smooth fun
tions, and 
onsider non-
ontinuousapproa
h in terms of dis
rete parti
les. Following [126℄, this latter analysis leadsto a 
ondition on the initial �u
tuation for the appli
ability of �uid linear theory.We then introdu
e the 
on
ept of sto
hasti
 distributions and the most importantquantities that 
hara
terize them, as density �elds in 
osmology are usually treatedas a mean ba
kground positive density with small positive an negative sto
hasti
�u
tuations. We 
on
lude this introdu
tory 
hapter with a se
tion whi
h presentsthe numeri
al investigations of the non-linear regime of the formation of stru
turesin the Universe, and a dis
ussion of 
entral notions whi
h are used in this 
ontext(self-similarity, stable 
lustering and halo models).1 Finite self-gravitating systems: statisti
al equilib-rium and dynami
al evolutionIn this se
tion we �rst present some aspe
ts of the statisti
al me
hani
s of �niteself-gravitating systems. We dis
uss the mean-�eld approa
h, already introdu
edin Chapter 1, in this parti
ular 
ase and dis
uss the resulting isothermal spheressolution. We also introdu
e an important result for self-gravitating systems, the29



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSvirial theorem.1.1 Statisti
al equilibrium of self-gravitating systemsIn the 
ase that a self-gravitating system is su�
iently far from other matter inthe universe so that tidal for
es due to the latter are su�
iently weak (i.e. playa role only on a times
ale mu
h longer than the 
hara
teristi
 times
ale for theevolution of the system itself), one would expe
t to be able to treat this systemas isolated and apply a statisti
al me
hani
s treatment like that dis
ussed for ageneri
 LRI in Chapter 1. One su
h 
ase are astrophysi
al systems su
h as globular
lusters and galaxies, whi
h are made of stars whi
h, ex
ept when they are 
loseenough to be in 
onta
t physi
ally, intera
t via the 1/r potential. Another 
asewhere su
h an approa
h may be useful are dark matter �halos� around astrophysi
alobje
t, postulated to be 
onstituted of (perhaps elementary) parti
les whi
h intera
tessentially through gravity alone.Realisti
 astrophysi
al systems of this kind are open in the sense that parti
lesin these systems 
an es
ape to in�nity. It is easy to see, however, that in themi
ro
anoni
al ensemble the integral de�ning the density of state g(E), i.e.
g(E) =

1

N !

∫

dq dp δ
(

E −H(q, p)
)

, (2.1)will diverge if the range of spatial integrations is extended to in�nity [124℄. Thisdivergen
e is in addition to any divergen
e we may en
ounter due to the shortdistan
e behaviour of the potential. A similar divergen
e of g(E) will o

ur even foran ideal gas if it were not 
on�ned in a box. We are, therefore, for
ed to introdu
ethe �rst arti�
iality: one must 
on�ne the system inside a spheri
al box of radius
R. This assumption 
an be justi�ed if one 
an demonstrate that the fra
tional rateof evaporation of parti
les from the system is small.Given su
h a 
on�ning volume and a suitable short distan
e behaviour of thepotential, one 
an, in prin
iple, 
ompute the phase volume g(E, V ) and the entropy
S(E, V ). However, these quantities behave in an unfamiliar manner for gravitatingsystems. The 
entral di�
ulty arises from the non-extensive nature of the energyalready introdu
ed in Chapter 1.There is also another well known property of gravitating systems [124℄: gravi-tating systems in virial equilibrium have negative spe
i�
 heat. However, systemsdes
ribed by the 
anoni
al distribution 
annot have negative spe
i�
 heat. No su
h
onstraint exists for the mi
ro
anoni
al distribution. Therefore it is often 
laimedthat the mi
ro
anoni
al distribution is the proper distribution to use in the studyof gravitating systems [124℄.Let us note that even though the 
anoni
al distribution 
annot be derived fromthe mi
ro
anoni
al distribution in the presen
e of long-range for
es one 
an, purelyas a formal mathemati
al 
on
ept, de�ne the partition fun
tion for su
h systems.Comparing the fun
tion E(β) obtained from the mi
ro
anoni
al distribution withthe 
orresponding fun
tion obtained from the partition fun
tion one 
an prove thatthe negative spe
i�
 heat region of the mi
ro
anoni
al distribution is repla
ed by aphase transition in the 
anoni
al distribution [124℄.In the following, we shall assume that the potentialy e�ets due to the shortdistan
e singularity is regularized by a soft or hard 
ore radius. This assumption30



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSallows us to 
on
entrate on the statisti
al aspe
ts of the gravitating system, withoutworrying about the 
ompli
ating details of 
lose en
ounters. Let us note that, as faras numeri
al simulation are 
on
erned, it is prin
ipally the soft 
ore regularizationwhi
h is used as its numeri
al implementation is less numeri
aly 
ostly.Mean �eld equilibrium of gravitating systemsIn the following, we study the physi
s of the gravitating systems in the mean �eldlimit introdu
ed in Chapter 1, whi
h ignores the granularity and 
orrelations presentin the N-parti
le system.Consider a system of N parti
les intera
ting with ea
h other through the two-body potential U . The entropy S of this system, in the mi
ro
anoni
al des
ription,is de�ned through the relation
eS = g(E) =

1

N !

∫

d3Nx d3Np δ(E −H) =
A

N !

∫

d3Nx
(

E − 1

2

∑

i 6=j

U(xi, xj)
)3N/2

,(2.2)wherein one has performed the momentum integrations and repla
ed (3N/2 − 1)by 3N/2. We shall approximate this expression in the following manner. Let thespatial volume V be divided into M (with M << N) 
ells of equal size, largeenough to 
ontain many parti
les but small enough for the potential to be treatedas a 
onstant inside ea
h 
ell. Instead of integrating over the parti
le 
oordinates
(x1, x2, . . . , xN), we shall sum over the number of parti
les na in the 
ell 
entred at
xa, where a = 1, 2, . . . ,M . Using the standard result that the integration over d3Nx

N !
an be repla
ed by
∞
∑

n1=1

1

n1!
· · ·

∞
∑

nM=1

1

nM !
δ
(

N −
∑

a

na

)( V

M

)N

, (2.3)one 
an rewrite Eq. (2.2) as
eS =

∞
∑

n1=1

1

n1!
· · ·

∞
∑

nM=1

1

nM !
δ
(

N −
∑

a

na

)( V

M

)N(

E − 1

2

M
∑

a6=b

naUabnb

)3N/2

≈
∞
∑

n1=1

· · ·
∞
∑

nM=1

δ
(

N −
∑

a

na

)

expS[na] , (2.4)where
S[na] =

3

2
N ln

(

E − 1

2

M
∑

a6=b

naU(xa, xb)nb

)

−
M
∑

a=1

na ln(naM/V ) . (2.5)In arriving at the last expression, the Stirling approximation for the fa
torials is usedand the unimportant 
onstant A is ignored. The mean �eld limit is now obtainedby retaining in the sum in Eq. (2.4) only the term for whi
h the summand rea
hesthe maximum value, subje
t to the 
onstraint on the total number. That is, oneassumes
∑

na

eS[na] ≈ eS[na,max] , (2.6)31



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwhere na,max is the solution to the variational problem
(

∂S

∂na

)

na=na,max

= 0 (2.7)with ∑M
a=1 na = N . Imposing this 
onstraint with a lagrange multiplier and usingexpression Eq. (2.5) for S, one obtains the equation satis�ed by na,max,

1

T

M
∑

b=1

U(xa, xb) nb,max + ln(na,maxM/V ) = 
onstant , (2.8)where we have de�ned the temperature T as
1

T
=

3

2
N

(

E − 1

2

M
∑

a6=b

naU(xa, xb)nb

)−1

= β . (2.9)We see from Eq. (2.5) that this expression is also equal to ∂S/∂E; therefore, T isindeed the 
orre
t thermodynami
 temperature. We 
an now return ba
k to the
ontinuum limit with the repla
ements
na,maxM/V = ρ(xa) and M

∑

a=1

→ M

V
. (2.10)In this limit the extremum solution Eq. (2.8) is given by

ρ(x) = A exp[−βφ(x)] and φ(x) =

∫

d3y U(x, y) ρ(y) , (2.11)whi
h, in the 
ase of gravitational intera
tions, be
omes
φ(x) = −G

∫

ρ(y) d3y

|x− y| . (2.12)This equation represents the equilibrium 
on�guration for a gravitating system inthe mean �eld limit. The 
onstant β is already determined through Eq. (2.9) interms of the total energy of the system. The 
onstant A has to be �xed in terms ofthe total number (or mass) of the parti
les in the system. A more formal derivationof the above result 
an be given using the fun
tional integral representation of thepartition fun
tion. It turns out that the saddle point approximation of the fun
tionalintegral leads to the mean �eld des
ription (see e.g. [124℄).An important point needs to be noted about the mean �eld result we haveobtained: the various manipulations ta
itly assume that the expressions we aredealing with are �nite. Unfortunately, for gravitational intera
tions without a shortdistan
e 
uto�, the quantity eS, and hen
e all the terms we have been handling, aredivergent. One should therefore remember that a short distan
e 
uto� is needed tojustify the entire pro
edure. One shall 
ontinue to work with Eq. (2.12) be
auseof its mathemati
al 
onvenien
e. The e�e
ts due to the short distan
e 
uto� aredes
ribed in [124℄.32



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSIsothermal spheresIt 
an easily be shown that among all the solutions to Eq. (2.8) the spheri
ally sym-metri
 
on�guration maximises the entropy (see e.g. [6℄). This solution representswhat is known as the gravitational isothermal sphere. The extemum 
ondition forthe entropy is equivalent to the following di�erential equation for the gravitationalpotential:
▽2φ = 4πGρce

−β[φ(x)−φ(0)] . (2.13)Given the solution to this equation, all other quantities 
an be determined. Aswe shall see, this system shows several pe
uliarities. It is 
onvenient to introdu
elength, mass, and energy s
ales by the de�nitions
L0 = (4πGρcβ)

1/2 , M0 = 4πρcL
3
0 , φ0 ≡ β−1 =

GM0

L0
, (2.14)where ρc = ρ(0). All other physi
al variables 
an be expressed in terms of thedimensionless quantities

x ≡ r

L0
, n =

ρ

ρc
, m =

M(r)

M0
, y ≡ β[φ− φ(0)] . (2.15)In terms of y(x), the isothermal equation Eq. (2.13) be
omes

1

x2
d

dx

(

x2
dy

dx

)

= e−y , (2.16)with the boundary 
ondition y(0) = y′(0) = 0. Let us 
onsider the nature of thesolutions to this equation.By dire
t substitution, one sees that n = 2/x2, m = 2x, y = 2 ln(x) satis�esthese equations. This solution, however, is singular at the origin and hen
e is notphysi
ally admissible. The importan
e of this solution lies in the fa
t that other(physi
ally admissible) solutions tend to this solution for large values of x [124℄.This asymptoti
 behavior of all solutions shows that the density de
reases as 1/r2for large r, implying that the mass 
ontained inside a sphere of radius r in
reases as
M(r) ∝ r at large r. To �nd physi
ally useful solutions, it is ne
essary to assumethat the system is en
losed in a spheri
al box of radius R. In what follows, it willbe assumed that the system has some 
uto� radius R.Eq. (2.16) is invariant under the transformation y → y+a, x→ kx with k2 = ea.This invarian
e implies that, given a solution with some value of y(0), we 
an obtaina solution with any other value of y(0) by simple res
aling. Therefore, only one ofthe two integration 
onstants in Eq. (2.16) is really nontrivial. Hen
e it must bepossible to redu
e the degree of the equation from two to one by a judi
ious 
hoi
eof variables [124℄. One su
h of set variables is

v ≡ m

x
, u ≡ nx3

m
=
nx2

v
. (2.17)In terms of v and u, Eq. (2.13) be
omes

u

v

dv

du
= − u− 1

u+ v − 3
. (2.18)33



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe boundary 
onditions y(0) = y′(0) = 0 translate into the following: v is zero at
u = 3, and dv

du
= −5/3 at (3, 0). The solution v(u) has to be obtained numeri
ally:it is plotted in Fig. 2.1 as the spiraling 
urve. The singular points of this di�erentialequation are given by the interse
tion of the straight lines u = 1 and u+ v = 3, onwhi
h the numerator and denominator of the right-hand side of Eq. (2.18) vanish;that is, the singular point is at us = 1, vs = 2, 
orresponding to the solution

n = 2/x2, m = 2x. It is obvious from the nature of the equation that the solutionswill spiral around the singular point.

Figure 2.1: Bound on RE/GM2 for the isothermal sphere (from [124℄).The nature of the solution shown in Fig. 2.1 allow one to put interesting boundson some physi
al quantities, in
luding the energy. To see this, one shall 
omputethe total energy E of the isothermal sphere. The potential and kineti
 energies are
U = −

∫ R

0

GM(r)

r

dM

dr
dr = −GM

2
0

L0

∫ x0

0

mnxdx (2.19)
K =

3

2

M

β
=

3

2

GM2
0

L0
m(x0) =

3

2

GM2
0

L0

∫ x0

0

nx2dx , (2.20)where x0 = R/L0. The total energy is therefore,
E = K + U =

GM2
0

2L0

∫ x0

0

dx(3nx2 − 2mnx) (2.21)
=

GM2
0

2L0

∫ x0

0

dx
d

dx
(2nx2 − 3m) =

GM2
0

L0

(

n0x
3
0 −

3

2
m0

)

, (2.22)where n0 = n(x0) and m0 = m(x0). The dimensionless quantity RE/GM2 is givenby
λ =

RE

GM2
=

1

v0

(

u0 −
3

2

)

. (2.23)34



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSNote that the 
ombinationRE/GM2 is a fun
tion of (u, v) alone. One now 
onsidersthe 
onstraints on λ. Suppose one spe
i�es some value for λ by spe
ifying R, E,and M . Then su
h an isothermal sphere must lie on the 
urve
v =

1

λ

(

u− 3

2

)

, λ ≡ RE

GM2
, (2.24)whi
h is a straight line through the point (1.5, 0) with a slope λ−1. On the otherhand, sin
e all isothermal spheres must lie on the u− v 
urve, an isothermal sphere
an exist only if the line in Eq. (2.24) interse
ts the (u− v) 
urve.For large positive λ (positive E), there is just one interse
tion. When λ = 0 (zeroenergy), One still has a unique isothermal sphere. When λ is negative (negative E),the line 
an 
ut the (u − v) 
urve at more than one point; thus more than oneisothermal sphere 
an exist with a given value of λ. But as one de
reases λ (moreand more negative E), the line in Eq. (2.24) will slope more and more to the left;and when λ is smaller than a 
riti
al value λc, the interse
tion will 
ease to exist.Thus no isothermal sphere 
an exist if RE/GM2 is below a 
riti
al value λc [124℄.This fa
t follows immediately from the nature of the (u − v) 
urve and Eq. (2.24).The value of λc 
an be found from the numeri
al solution shown in the �gure. Itturns out to be about −0.335.The isothermal sphere has a spe
ial status as a solution to the mean-�eld equa-tions. Isothermal spheres, however, 
annot exist if RE/GM2 < −0.335. Even when

RE/GM2 > −0.335, the isothermal solution need not be stable. The stability ofthis solution 
an be investigated by studying the se
ond variation of the entropy.Su
h a detailes analysis shows that the following results are true [124℄. Systems with
RE/GM2 < −0.335 
annot evolve into isothermal spheres. The entropy has no ex-tremum for su
h systems. Systems with RE/GM2 > −0.335 and ρ(0) > 709 ρ(R)
an exist in a metastable (saddle point state) isothermal-sphere 
on�guration. Here
ρ(0) and ρ(R) denote the densities at the 
enter and edge, respe
tively. The entropyextrema exist but they are not lo
al extrema. Systems with RE/GM2 > −0.335and ρ(0) < 709 ρ(R) 
an form isothermal spheres whi
h are a lo
al maximum of theentropy.1.2 Virial equilibriumAs we explained in Chapter 1, a system with an initial 
ondition whi
h is not astable equilibrium solution of the Vlasov equation knows a rapid evolution on atimes
ale independent of the number of parti
les N in the system, the so 
alledviolent relaxation. The system then evolves for a long time, whi
h behaves as apower of N , among the numerous stable stationary states of the Vlasov equation.It is then interesting to link this evolution with the main general tool of parti
lesdynami
s: the virial theorem. Let us note that this theorem applies to any, smoothand non-smooth distribution of parti
les.We derive below the virial relation whi
h provides a powerful 
onstraint on self-gravitating systems in a ma
ros
opi
aly stationary state. Let us 
onsider a perfe
tself-gravitating system of N parti
les, that is without a surrounding box and with35



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSa perfe
t 1/r potential. The Hamiltonian is therefore
H(qµ, pµ) =

N
∑

i=1

p2
i

2m
−

N−1
∑

i=1

Gm2

|qi − qj|
, (2.25)where qi and pi represent the position and the momentum of the ith parti
le respe
-tively. Introdu
ing the moment of inertia tensor [25℄:

Iµν =
N
∑

i=1

mqi,µqi,ν (2.26)where qi,µ is the µth position 
omponent of the ith parti
le, the se
ond time derivativeof this expression is
Ïµν =

N
∑

i=1

m

(

q̈i,µqi,ν + qi,µq̈i,ν + 2q̇i,µq̇i,ν

)

. (2.27)Using that the a

eleration of a parti
le is given by
q̈i,µ = Gm

N
∑

j 6=i=1

qj,µqi,µ
|qj − qi|3

, (2.28)one obtains
Ïµν = 2m

N
∑

i=1

q̇i,µ, q̇i,ν +Gm2

N
∑

i 6=j=1

1

|qj − qi|3
[

(qj,µ − qi,µ)qi,ν + qi,µ(qj,ν − qi,ν)

]

= 2m
N
∑

i=1

q̇i,µ, q̇i,ν −Gm2
N
∑

i 6=j=1

(qj,µ − qi,µ)(qj,ν − qi,ν)

|qj − qi|3
. (2.29)The tra
e of Ïµν is̈

I =

3
∑

mu=1

Ïµµ = 2m

N
∑

i=1

q̇2
i −Gm2

N
∑

i 6=j=1

1

|qj − qi|
. (2.30)The �rst term is a
tually four times the total kineti
 energy of the system while these
ond is twi
e its total potential energy:

1

2
Ï = 2K + U . (2.31)Assuming that the system is in a state su
h that Ï = 0, we have the famous relation
2K + U = 0 , (2.32)whi
h in all textbooks on astrophysi
s is 
alled the virial theorem. Sin
e the totalenergy is E = K + U , we obtain the following relation
E = −K =

U

2
. (2.33)Let us note that the 
ru
ial assumption involved in deriving the s
alar virial theoremis that the moment of inertia I is time-independent. However, in a system with asmall number of parti
les, there are ne
essarily statisti
al �u
tuations in I simplydue to the �nite-size, and Eq. (2.32) 
ould be expe
ted to hold only for the time-averaged values of K and U .36



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS2 Introdu
tion to CosmologyThe basi
 hypothesis used to 
onstru
t the standard 
osmologi
al model is given bythe Cosmologi
al Prin
iple. One way to state it is : �Viewed on su�
iently largedistan
e s
ales, the universe is homogeneous and isotropi
�.Homogeneity means that the universe is translationally invariant, i.e. it looksthe same from all points, and isotropy means that the universe is rotationally in-variant, i.e. it looks the same in all dire
tions. For a long time, there was no 
learobservational eviden
es for this statement. It had the status of a postulate, in thesame manner as, for example, Einstein's Prin
iple of Relativity. In fa
t, given only2 points from whi
h the universe appears isotropi
, one 
an proves homogeneity
onsidering that our position in the universe is not spe
ial.The Cosmologi
al Prin
iple, stated as above, is a strong hypothesis. There is an-other version of it, 
alled the 
onditional 
osmologi
al prin
iple, whi
h hypothesisesonly statisti
al istropy and statisti
al homogeneity. This is a mu
h weaker assump-tion, whi
h allows one to admit notably the possibility of a fra
tal distribution ofmatter, in whi
h the density averaged in an in�nite volume is zero.An indi
ation to support the hypothesis of stri
t homogeneity and isotropy atlarge s
ales is the fa
t that the model based on it des
ribes remarkably well thelarge s
ale dynami
s of the observed universe, given by the Hubble law. Dire
teviden
e of the isotropy of the universe is given by that of the temperature of theCosmi
 Mi
rowave ba
kground (CMB) radiation, whi
h pervades the universe [127℄.Indeed it took more than two de
ades after its dis
overy to dete
t the �u
tuationsof the temperature as a fun
tion of the angle of observation, whi
h are at a level ofabout one in ten thousand [55℄. However, all these observations do not 
onstitute,of 
ourse, a dire
t test of the hypothesis.The only dire
t 
urrent observation whi
h dire
tly probes the homogeneity ofthe universe is that provided by 3−d surveys 
onstraining the distribution of visiblematter, notably galaxy and 
luster surveys. Given that 
urrent 
osmologi
al modeldes
ribes a universe in whi
h 80% of the matter is non visible �dark matter�, thisis an in
omplete test of homogeneity. However, it is plausible to suppose that thevisible matter tra
e the dark matter one, and therefore these kind of observationsare a good probe of homogeneity.In Fig. 2.2 we show a sli
e of the largest galaxy survey to date. It is apparent thatat small s
ales the distributions of galaxies is very inhomogeneous, with 
omplexstru
tures as 
luster of galaxies and voids. However, at large s
ale, there is aneviden
e that the distribution of galaxies rea
hes a de�nitive (non-zero) density.This is shown in Fig. 2.3, in whi
h the density in fun
tion of the s
ale is shown.For large s
ales, the density presents a 
rossover to a 
onstant density, i.e. tohomogeneity.Assuming that the universe is homogeneous and isotropi
 at su�
iently larges
ales, the large s
ale dynami
s of the universe is des
ribed with an exa
tly homo-geneous (equal density everywhere) and isotropi
 model: the Friedmann-Robertson-Walkermodel, based on the framework of the General Theory of Relativity, proposedby Albert Einstein, and whi
h explains and des
ribes gravity. 37
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Figure 2.2: Sli
es of the 2dF and SDSS surveys. Observe how at small s
ales (smallredshift) the galaxies are highly 
lustered, forming walls and �laments.2.1 the Friedmann-Robertson-Walker universeGeneral relativity is a metri
 theory that des
ribes gravity as the manifestation ofthe 
urvature of spa
etime. This theory, 
oupled to 
osmologi
al prin
iple, impliesthat the universe should either be expanding or 
ontra
ting, with a geometry whi
hmay be �at, hyperboli
 or spheri
al. Usually the asso
iated spatial 
urvature isdenoted by means of the 
urvature 
oe�
ient k. It has the value k = 0 for a �atspa
e, k = +1 for a spheri
al spa
e, and k = −1 for a negatively 
urved hyperboli
spa
e. The spa
etime metri
 of these universes is the Robertson-Walker metri

ds2 = c2dt2 − a2(t)

(

dr2 +R2
c S

2
k(r/Rc) (dθ

2 + sin2 θdφ2)
)

, (2.34)where Rc is the radius of 
urvature, and Sk(r) is the fun
tion given by
Sk(x) =







sin(x) if k = +1 ,
x if k = 0 ,
sinh(x) if k = −1 .

(2.35)The variable t is the so-
alled 
osmi
 time. The dimensionless s
ale fa
tor a(t)des
ribes the expansion (or 
ontra
tion) of the universe, and may be normalizedwith respe
t to the present-day value, i.e. a(t0) = 1. The 
onstant c is the velo
ityof light and r, θ, φ are the spheri
al 
oordinates. Friedmann solved Einstein'sequations for general homogeneous and isotropi
 universe models, and derived thetime dependen
e of the expansion fa
tor. The resulting equations are known as theFriedmann-Robertson-Walker-Lemaitre (FRW) equations:
ä

a
= −4πG

3

(

ρ+
3p

c2

)

+
Λ

3
, (2.36)and

( ȧ

a

)2

=
8πGρ

3
− kc2

a2R2
0

+
Λ

3
. (2.37)38
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Figure 2.3: Representation of the average 
omoving density (i.e. number 
ounteddivided by expe
ted from an homogeneous distribution) as fun
tion of a 
omovingsphere of radius R. Observe how at log10R ≈ 1.5 the density stabilizes, whi
h meansthat observed at s
ales larger than this one the universe is homogeneous (from [56℄).In the FRW equations, G is Newton's gravitational 
onstant, ρ is the energy densityof the universe, p is the pressure of the various 
osmi
 exponents, Λ is the 
osmologi-
al 
onstant, and R0 is the present-day value of the 
urvature radius. The evolutionof the energy density ρ of the universe 
an be inferred from the energy equationobtained by 
ombining the FRW equations Eqs. (2.36) and (2.37). This is given by
ρ̇+ 3

(

ρ+
p

c2

) ȧ

a
= 0 . (2.38)The ma
ros
opi
 nature of the medium is expressed by the equation of state, p =

p(ρ), whi
h for most 
osmologi
ally relevant 
omponents may be expressed as
p = wρc2 . (2.39)Here w is 
alled the equation of state parameter. Eqs. (2.38) and (2.39) 
an be
ombined to give the evolution of energy density with the expansion of the universe:

ρ(t) ∝ a(t)−3(1+w) . (2.40)2.2 Cosmi
 ExpansionThe expansion rate of the universe is expressed in terms of the Hubble parameter,
H(t) =

ȧ

a
. (2.41)The present-day value ofH(t), sometimes 
alled the Hubble 
onstant, is often parametrizedin terms of a dimensionless fa
tor h, (h = H0/100 km

−1s Mpc), where H0 is theHubble 
onstant express in units of km s1Mp c−1. The expansion of the universedoes not only express itself in 
ontinuously growing distan
es between any two ob-je
ts, it also leads to the in
rease of the wavelengths of photons. This resulting39
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osmologi
al redshift z of a presently observed obje
t is given by the relation
1 + z =

a(t0)

a(t)
=

1

a(t)
, (2.42)where a(t) is the expansion fa
tor of the universe at the time the observed light wasemitted.2.3 Cosmi
 ConstituentsThe evolution of the universe is fully di
tated by its energy density ρ and its 
urva-ture k. The energy density of the universe is 
onveniently expressed in terms of thedensity needed to produ
e a geometri
ally �at universe, the 
riti
al density:

ρc(t) =
3H2

8πG
. (2.43)The 
ontribution of any 
omponent towards the energy density of the universe maybe expressed in terms of the ratio of its energy density to the 
riti
al density. Thisratio is denoted by Ω(t), the density parameter, and is expressed as:

Ω(t) =
ρ(t)

ρc(t)
=

8πGρ

3H2
. (2.44)The value of Ω(t) at t = t0, denoted by Ω is given by

Ω =
8πGρ0
3H2

0

. (2.45)A

ording to the �standard model� the universe 
ontains a variety of 
omponents.While the 
ontributions of magneti
 �elds and gravitational waves may be taken tobe negligible, the most important ingredients of the universe are radiation, baryoni
matter, nonbaryoni
 dark matter and dark energy. The equation of state parameter
w for radiation and matter (baryoni
 as well as nonbaryoni
) is 1/3 and 0 respe
-tively, whereas for dark energy its value is less than −1/3. If the dark energy is inthe form of a 
osmologi
al 
onstant, then w = −1. Thus Eq. (2.40) suggests thatradiation (ρr ∝ a−4), matter (ρm ∝ a−3), and dark energy (ρΛ = 
onstant) haveevolved di�erently with the expansion of the universe.As the radiation 
ools o� as a result of the expansion of the universe, its spe
trumpeaks at mi
rowave wavelengths and is observed today in the form of the CMB witha temperature of T0 = 2, 725Ko. Sin
e the temperature of radiation s
ales in inverseproportion to the s
ale fa
tor (T ∝ a−1(t)), it must have been very high in the earlyuniverse. The almost perfe
t bla
kbody spe
trum of CMB de�nes the strongesteviden
e for the existen
e of a very hot and dense phase in the early universe (seeFig. 2.4). At very early times radiation was dynami
ally dominant 
omponent ofthe universe. Its 
urrent density 
onstituted only a fra
tion of 10−5 of the total den-sity. Baryoni
 matter Ωb is 
omposed mostly of 
omposite parti
les made of threequarks whi
h parti
ipate in the strong intera
tion. However, it only represents aminor 
osmologi
al 
omponent and a

ounts for a mere 4, 4% of the energy 
ontent40
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Figure 2.4: Sky proje
tion of the Cosmi
 Mi
rowave Ba
kground measured with theWilkinson Mi
rowave Anisotropy Probe (WMAP) experiment.of the universe. Nonbaryoni
 dark matter Ωdm is a very important 
omponent forthe formation of stru
tures in the universe. The 
ombined 
ontribution of matterto the energy density is usually expressed as Ωm.One of the most pressing problems in astrophysi
s is the identity of this darkmatter. While its presen
e is unmistakably felt through its gravitational attra
tion,it has a yet es
aped dire
t observation or dete
tion in the laboratory. Dark matteris pressureless and insensitive to the ele
tromagneti
 in�uen
e of radiation.Flu
tuations in the dark matter 
ould have started growing as soon as matterbegan to dominate the dynami
s of the universe at around the epo
h of matter-radiation equality (ρr = ρm). This o

urs at a s
ale of a(t) ≈ 10−4. The growth ofthese �u
tuations in the dark matter 
reated the gravitational potential wells. Afterthe baryoni
 matter and radiation de
oupled at the epo
h of re
ombination, thebaryoni
 matter started falling into these gravitation potential wells. This pro
essis believed to have led to the formation of galaxies and stars. Dark matter plays a
entral role in the modelling of stru
ture formation. Indeed, without dark matter,the epo
h of galaxy formation would o

ur substantially later in the universe thanis observed.The 
osmologi
al framework of the Hot Big Bang in a spatially homogeneousand isotropi
 universe is so widely a

epted that is is 
alled the standard Hot BigBang Model. This model is supported by many observations, notably
• the relation between distan
e and re
ession velo
ity (Hubble law) as a 
onse-quen
e of its metri
 implies that the universe has a �nite age;
• the almost perfe
t bla
k-body spe
trum of the Cosmi
 Mi
rowave Ba
kgroundis eviden
e for an extremely hot initial phase of the universe;
• the ex
ellent mat
h in the observed abundan
es of light elements and predi
-tions from primordial nu
leosynthesis;
• the evident evolution of the appearan
e of obje
ts as fun
tion of their distan
efrom us. 41



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSParameter Value Des
ription
H0 70.4± 2.4 km s−1Mpc−1 Hubble parameter
Ωm 0.277± 0.029 Matter Density
Ωb 0.0459± 0.0028 Baryon Density
ΩΛ 0.723± 0.029 Dark Energy Density
ρc 0.94± 0.07× 10−26kg m−3 Criti
al Density
t0 13.72± 0.14 Gyr Age of the Universe
σ8 0.811± 0.032 Galaxy �u
tuation amplitude
n 0.960± 0.014 Spe
tral IndexTable 2.1: Values of 
osmologi
al parameters (from WMAP5 + SDSS [57℄).We now have eviden
e (see e.g. [60, 61℄)to suggest that universe at the presentepo
h is undergoing an a

elerated expansion, i.e. ä > 0. This 
ould be due tothe presen
e of an elusive medium 
alled dark energy. Dark energy (ΩΛ) is themost dominant 
omponent of our universe at the present epo
h. It a

ounts forapproximatively 73% of 
osmi
 energy density. The nature of Dark Energy is evenmore mysterious than dark matter. All that 
an be said about dark energy is thatit has a negative pressure. This is apparent from Eq. (2.36) whi
h suggests that for

ä > 0, we need p < −ρ/3. Most observational studies agree with the Dark Energybeing equivalent to a 
osmologi
al 
onstant although other options are still viable.2.4 The ΛCDM modelThe 
urrent understanding of the 
omponents of the universe is en
oded in theLambda Cold Dark Matter (ΛCDM) model. In this model one attempts to ex-plain supernova observations in terms of the a

elerated expansion of the universe.Indeed, supernovae are useful in 
osmology as they represent ex
ellent standard 
an-dles a
ross 
osmologi
al distan
es [60, 61℄. They allow the expansion history of theuniverse to be measured by looking at the relationship between the distan
e to anobje
t and its redshift, whi
h gives how fast it is re
eding from us. This model isa

ounted remarkably well notably for the spe
trum of �u
tuations in temperatureobserved in the Cosmi
 Mi
rowave Ba
kground. In the a
ronym ΛCDM, the term
Λ refers to the dark energy (ΩΛ) whi
h is believed to be the driving for
e behind thea

elerated expansion of the universe at the present epo
h. Λ is assumed to havethe form of a 
osmologi
al 
onstant (w = −1). Cold Dark Matter refers to a modelwhere the dark matter is explained as being 
old, i.e. its velo
ity was non-relativisti
at an epo
h when it de
oupled from other 
onstituents of the universe. This typeof dark matter is assumed to be non-baryoni
, dissipationless and 
ollisionless. The
ΛCDM model has several parameters from whi
h the most important are shown inTab. 2.4.2.5 The Newtonian approximationIn pra
ti
e in 
osmology the study of how irregularities in the matter distributionin the universe develop is treated almost ex
lusively in the Newtonian limit. This42



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSapproximation is justi�ed by the fa
t that in the formation of large s
ale stru
turesone 
onsiders a regime in whi
h
• parti
le velo
ities are typi
ally non-relativisti
 (e.g. in �
old� dark matter
osmology);
• the gravitational �elds generated are �su�
iently weak�;
• the physi
al s
ale 
onsidered where �non-linear� stru
tures form are small 
om-pared to the horizon size (
hara
terizing the s
ale at whi
h 
onstraints asso
i-ated to the �niteness of the speed of light are expe
ted to be
ome important).In this thesis we will 
onsider solely the Newtonian limit.3 In�nite self-gravitating systems in 
osmology: an-alyti
al resultsWe now review some standard methods to des
ribe the non-equilibrium dynami
alevolution of parti
ular self-gravitating systems in 
osmology. This is a key subje
tbe
ause it will permit us to justify the �uid formalism used in 
osmology. Wereview the basi
s of kineti
 theory, i.e. the non-equilibrium evolution of a systemof intera
ting parti
les. To do so, we study the well known BBGKY hierar
hy. Wethen explain the approximations made in the derivation of a �uid theory from thekineti
 one, and introdu
e the perturbative methods used in both the Eulerian andLagrangian approa
h. We 
on
lude this se
tion with a dis
rete approa
h whi
h helpsto 
lassify the limits of the appli
ation of linear theory.3.1 Non-equilibrium evolution of a self-gravitating systemIt is important to underline here the 
ru
ial di�eren
e between �nite (Newtonian)systems, as dis
ussed in the previous se
tion, and the in�nite (Newtonian) systemswe 
onsider here, and whi
h are those prin
ipally of relevan
e in the 
ontext of thestru
ture formation in 
osmology. We 
onsider in 
osmology systems � distributionsof parti
les � whi
h are of in�nite extent and have a non-zero mean density. TheNewtonian for
e on parti
le i, Fi, due to all the others (in a system of parti
les ofequal mass m), i.e. Fi = −Gm

∑

j 6=i

(ri − rj)
|ri − rj|3 , (2.46)in su
h a system is badly de�ned due to the 
ontribution of the mean density. Thefor
e used in the Newtonian limit of 
osmology is that obtained when the 
ontributionof the mean density is removed. This 
an be written formally in di�erent ways:most often this is done by writing Fi = −∇ φi, and spe
ify that the potential φi is
al
ulated from the modi�ed Poisson equation

∇2φi = 4πG (ρ− ρ0) , (2.47)where ρ(r) is the mass density �eld and ρ0 is its mean value. Alternatively, it 
an bewritten using a pres
ription of symmetri
 summation (whi
h sets the 
ontribution43



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSof the mean density to zero)F′
i = −Gm lim

R→∞

∑

j∈Vi(R)

(ri − rj)
|ri − rj|3 , (2.48)where Vi(R) is the sphere of radius R 
entered on the parti
le i. As pointed out byKiessling [95℄ a more physi
ally appealing version isF′

i = −Gm lim
µ→0

∑ (ri − rj)
|ri − rj |3 e−µ |ri−rj | (2.49)In the 
osmologi
al 
ontext, this �subtra
tion� of the mean density is properly justi-�ed by the fa
t that the mean density sour
es the Hubble expansion, and the for
eF′

i appears in the equation of motion in �
omoving 
oordinates�, i.e. in whi
h par-ti
les remain �xed when they follow the Hubble expansion. Indeed the equation ofmotion in these 
oordinates for a parti
le is
d2xi

dt2
+ 2 H(t)

dxi

dt
=
F′

i

a3
, (2.50)where F′

i is given by one of the expressions above, a(t) is the s
ale fa
tor of themodel 
onsidered and H(t) = ȧ/a is the Hubble �
onstant�. Formally we 
an de�nea non-expanding (i.e. stati
 universe) limit to these equations by setting H = 0. As,however, there is no su
h stati
 solution in a universe with non-zero mean density,su
h a model does not have the physi
al motivation of the expanding model. Theadoption of the modi�ed for
e in this 
ase is known as the �Jeans swindle� as it was�rst introdu
ed by Jeans to treat the growth of perturbation in a stati
 (but in�nite)universe. As dis
ussed by Kiessling (and in Chapters 3 and 6 of this thesis) the useof the term �swindle� is inappropriate as in fa
t the pres
ription is a mathemati
allywell de�ned regularization of the Newtonian problem.We will 
onsider in the rest of this se
tion mostly this limit H = 0, as thepresen
e of this term is not essential to understanding the appro
hes presentedand essential results. In treating the for
e term we will assume that the systemis an in�nite periodi
 system, and take the appropriate expression for the for
e tobe de�ned. Issues 
on
erning the well de�nedness of these for
es (and indeed theassumed equivalen
e of the di�erent expressions above) will be ignored here, butthey will be treated in detail in Chapters 3 and 6 of this thesis.The BBGKY hierar
hyIf we have a system for whi
h we 
an write a Hamiltonian, we know, by using theLiouville theorem [73℄, how an ensemble of su
h systems evolves: if the fun
tion
f(qµ, pν , t) is the density fun
tion of these systems in phase spa
e, it satis�es

∂tf +
3N
∑

µ=1

q̇µ∂qµf +
3N
∑

ν=1

ṗν∂pνf = 0 , (2.51)where we have assumed that the system 
ontains N parti
les in 3N dimensions. Itis important to note that this equation is very similar to the Vlasov equation, but44



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSit is 
ru
ial to understand that they des
ribe two di�erent quantities. Eq. (2.51)des
ribes exa
tly the evolution of an ensemble f(qµ, pν , t) of identi
al systems onphase spa
e (6N dimensions), while the Vlasov equation des
ribes approximatelythe evolution of the parti
le density f(x, v, t) in the 6 dimensional (x, v)-spa
e forone of these systems. What we are going to see now is that we 
an obtain the Vlasovequation from Eq. (2.51). We will illustrate this for a periodi
 gravitating system.Let us denote by f (N) the density in the N-parti
le phase spa
e used with theLiouville theorem, and whi
h depends on the 
oordinates of the N parti
les. Wemake also a 
hange of variables to repla
e the momenta with the velo
ities: pµ →
mvµ and write xµ instead qµ for the positions so that Eq. (2.51) be
omes

∂tf
(N) +

3N
∑

µ=1

ẋµ∂xµf
(N) +

3N
∑

ν=1

v̇ν∂vνf
(N) = 0 , (2.52)or equivalently

∂tf
(N) +

N
∑

i=1

vi∇xi
f (N) +

N
∑

i=1

1

m
Fi∇vif

(N) = 0 , (2.53)with
Fi = Gm2

∑

n∈Z3

∑

i 6=j

xi − xj + Ln

|xi − xj + Ln|3 , (2.54)where L is the period of the system. The subs
ript are su
h that x1 = (x1, x2, x3),
. . . , xN = (x3N−2, x3N−1, x3N ). A similar notation is used for the velo
ities.We de�ne now the fun
tion f (1) by

f (1)(x1, v1, t) =

∫

f (N)(xµ, vν , t) d
3x2 d

3v2 . . . d
3xN d3vN , (2.55)that is by integrating f (N) over all the parti
le positions and velo
ities ex
ept thoseof the �rst parti
le. The integrals for the positions are done over the box size whilethose for the velo
ities are done over the whole real axis. The next step is to integratein the same way Eq. (2.52) or Eq. (2.53). The �rst term be
omes ∂tf (1). For theother terms, we note that

∫ L

0

ẋµ∂xµf
(N)dxν = vµ∂xµ

∫ L

0

f (N)dxν (2.56)if µ 6= ν.
∫ L

0

ẋµ∂xµf
(N)dxµ = vµ

∫ L

0

∂xµf
(N)dxµ = 0 , (2.57)be
ause of the periodi
ity of the box.

∫ +∞

−∞
v̇µ∂vµf

(N)dvν =
Fµ

m
∂vµ

∫ +∞

−∞
f (N)dvν (2.58)if µ 6= ν, and �nally

∫ +∞

−∞
v̇µ∂vµf

(N)dvµ = 0 , (2.59)45



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSby assuming that limvµ→±∞ f (N) = 0, whi
h is a reasonable hypothesis even if we
onsider a perfe
t 1/r potential, without modi�
ation at small s
ale. By putting allthis together, we get
∂tf

(1) + v1.∇x1
f (1) +

∫

1

m
F1.∇v1f

(N)d3x2d
3v2 . . . d

3xNd
3vN = 0 . (2.60)Let us suppose now that the fun
tion f (N) is a symmetri
 fun
tion of the parti
lesnumbers:

f (N)(x1, v1, . . . , xN , vN , t) = f (N)(xσ(1), vσ(1), . . . , xσ(N), vσ(N), t) (2.61)for any permutation σ of the �rst N integers. Note that this has no e�e
t on thedynami
s of a system. We are free to 
hoose any phase spa
e fun
tions in theLiouville equation, and our 
hoi
e is only motivated by the fa
t that it puts all theparti
les on the same level. By noting that
1

m
F1 =

N
∑

i=2

Gm
∑

n∈Z3

xi − x1 + Ln

|xi − x1 + Ln|3 ≡ 1

m

N
∑

i=2

F1,i , (2.62)where F1,i is the for
e on parti
le 1 due to parti
le i, the symmetry of f (N) allowsus to write the third term of Eq. (2.60) as
(N − 1)

m

∫

F1,2.∇v1f
(N)d3x2d

3v2 . . . d
3xNd

3vN . (2.63)By de�ning the following fun
tion
f (2)(x1, v1, x2, v2, t) =

∫

f (N)d3x3d
3v3 . . . d

3xNd
3vN , (2.64)Eq. (2.60) be
omes

∂tf
(1) + v1.∇x1

f (1) +
(N − 1)

m

∫

F1,2.∇v1f
(2)d3x2d

3v2 = 0 . (2.65)This gives the evolution of the one parti
le fun
tion f (1) in fun
tion of the twoparti
les fun
tion f (2). If we had started by integrating over x3, v3, . . . , xN , vN , wewould have obtained an equation of f (2) in fun
tion of the three parti
les fun
tion
f (3)(x1, . . . , v3) =

∫

f (N)d3x4d
3v4 . . . d

3xNd
3vN . (2.66)We 
an 
ontinue in a similar way for higher order fun
tions and obtain a sequen
eof equations of the type

∂tf
(n) = F

(

f (n+1)
)

, (2.67)known as the Bogoliubov-Born-Green-Kiriwood-Yvon (BBGKY) hierar
hy. Withoutany approximations these equations are not easier to solve than Liouville equation.The advantage is that by 
hoosing a judi
ious approximative fun
tion for one of the
f (i), we 
an redu
e the number of equations and have a 
han
e to solve them or at46



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSleast obtain interesting informations 
on
erning the evolution of the system studied.Let us assume that
f (2)(x1, v1, x2, v2) = f (1)(x1, v1)f

(1)(x2, v2) + g(x1, v1, x2, v2) (2.68)and 
onsider the last fun
tion g to be negligible. We 
an assume without loss ofgenerality that
∫

f (n)d3x1d
3v1 . . . d

3xNd
3vN = 1 . (2.69)This allows us to see f (1)(x, v) as the probability density of �nding a parti
le at (x, v)in the ensemble of systems represented by f (N). The fun
tion f (2)(x1, v1, x2, v2)is then simply the density probability to have one parti
le at (x1, v1) and one at

(x2, v2). Therefore g(x1, v1, x2, v2) is the two-parti
le 
orrelation fun
tion as it givesthe 
hange in the probability to �nd a parti
le at (x1, v1) when it is known thatthere is another one at (x2, v2). By repla
ing f (2) by Eq. (2.68) in Eq. (2.65), weobtain
∂tf

(1) + v1.∇x1
f (1) +

(N − 1)

m
∇v1f

(1).

∫

F1,2.f
(1)(x2, v2, t)d

3x2d
3v2

+
(N − 1)

m

∫

F1,2.∇v1gd
3x2d

3v2 = 0 . (2.70)In the Vlasov equation, the fun
tion f satis�es
∫

f(x, v, t)d3xd3v = N . (2.71)Multiplying Eq. (2.70) by N and writing f ≡ Nf (1), we get
∂tf + v1.∇x1

f +
(N − 1)

Nm
∇v1f.

∫

F1,2.f(x2, v2, t)d
3x2d

3v2

+
N(N − 1)

m

∫

F1,2.∇v1gd
3x2d

3v2 = 0 . (2.72)By assuming that g(x1, v1, x2, v2) = 0, we �nd
∂tf + v1.∇x1

f +
(N − 1)

Nm2
∇vf.

∫

F1,2ρ(x2, t)d
3x2 = 0 , (2.73)where we have used the fa
t that the integral of f over the velo
ity is the massdensity ρ(x, t) divided by the mass of a parti
le. By approximating (N − 1)/N ≈ 1,we have

∂tf + v.∇xf +
1

m
F.∇vf = 0 . (2.74)This is the Vlasov equation for our periodi
 system.Two important points have to be noted 
on
erning this demonstration to obtainthe Vlasov equation from the Liouville equation. The �rst one is that the fun
tion fdoes not des
ribe a parti
ular system, but is an average over an ensemble of systemsand it gives only a probability to �nd a parti
le at a 
ertain point. A

ording to [47℄,47



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSBoltzmann's point of view was that the evolution of f has to be understood as themost probable behaviour of a member of an ensemble of systems. By 
hoosing anensemble of systems with equal fun
tions f(x, v, t), one 
an therefore expe
t that theVlasov equation des
ribes relatively well the evolution of one parti
ular system ofthe ensemble as they should all behave similarly 
on
erning ma
ros
opi
 quantities.The se
ond point is that we have negle
ted the two-parti
le 
orrelation fun
tion gand approximated (N − 1)/N by 1.From Vlasov equation to �uid equationsWe have just seen that the Vlasov equation 
an be derived from the Liouville equa-tion by making 
ertain approximations. In this se
tion we show that with furtherapproximations, the Vlasov equation yields the �uid equations. The method isbased on a moment integration te
hnique of the Vlasov equation. One multipliesthis equation su

essively by rising powers of the velo
ity and integrates the result-ing equation over the entire velo
ity spa
e. The system of hydrodynami
 equationsobtained 
onsists of an in�nite set for the in�nitely many possible moments of theone-parti
le distribution fun
tion (see e.g. [146℄). In the following, we only 
onsiderthe derivation of the �rst two moment equations, i.e. the 
ontinuity equation andthe momentum 
onservation equation.Using that m ∫ fdv = ρ(x, t), we obtain after having integrated the Vlasov equa-tion with respe
t to v,
∂tρ+m

∫

R3

v.∇xfdv = 0 . (2.75)We have assumed that limvi→±∞ f = 0. We 
an �nd the average of one of the
omponents of the velo
ity at a point x by 
al
ulating
v̄i ≡

∫

Z3 fvid
3v

∫

Z3 fd3v
=

m

ρ(x, t)

∫

Z3

fvid
3v . (2.76)This allows us to write Eq. (2.75) as

∂tρ+∇x.(ρv̄) = 0 , (2.77)with v̄ ≡ (v̄1, v̄2, v̄3). This is the so 
alled 
ontinuity equation of �uid dynami
s.Now we multiply the Vlasov equation by vi and integrate over v:
∂t

∫

fvid
3v +

∫

viv.∇xfd
3v +

1

m
F.

∫

(vi∇vf)d
3v = 0 . (2.78)The last term 
an be evaluated by noting that

∫

vi∂vjfdvj = −
∫

δijfdvj . (2.79)Using Eq. (2.76), we get
∂t(ρv̄i) +

3
∑

j=1

∂xj
( ¯vivjρ)−

1

m
Fiρ = 0 . (2.80)48



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSWith Eq. (2.77), the �rst term 
an be written as
∂t(ρv̄i) = ρ∂tv̄i − v̄i∂xj

(ρv̄j) (2.81)and de�ning
σ2
ij ≡ vivj − v̄iv̄j , (2.82)we obtain

∂tv̄i + v̄.∇xv̄i =
Fi

m
− 1

ρ
∂xj

(ρσ2
ij) . (2.83)Setting the term 
ontaining σ2

ij on the rhs to zero, one obtains the (pressureless)Euler equation. In the Euler equation, this term is related to the pressure as it isgiven by −(∂xi
p)/ρ. This shows that ρσ2

ij 
an be 
onsidered as a �pressure� due tothe parti
le velo
ities.3.2 Perturbation theoryAs general solutions to the equations - Vlasov equation, �uid equation - whi
h wehave dis
ussed and whi
h are supposed to approximate the evolution of gravitatingsystems are not known, their study is mainly restri
ted to a perturbative analysis.Jeans instabilityLet us 
onsider the Vlasov equation for a periodi
 system. We assume that f(x,v, t) =
f0(v). This is a
tually a solution of the Vlasov equation (the resulting density fun
-tion is 
ontant so that F = 0). We suppose now small perturbations:

f(x,v, t) = f0(v) + f1(x,v, t) (2.84)with |f1(x,v, t)| << f0(v). We assume that these �u
tuations do not 
hange thenumber of parti
les, that is
N =

∫

CL

d3x

∫

R3

f(x,v, t)d3v = ∫
CL

d3x

∫

R3

f0(v)d3v =
L3ρ0
m

. (2.85)A

ording to the modi�ed Poisson equation
∇2Φ1 = 4πGm

∫

R3

f1(x,v, t)d3v . (2.86)We have denoted the potential by Φ1 in order to remember that this is a perturbationaround Φ0 = 0. The Vlasov equation is, at linear order in the perturbations,
∂tf1 + v.∇xf1 −∇xΦ1.∇vf0 = 0 . (2.87)Be
ause of the periodi
ity of the system we 
an expand f1 and Φ1 in Fourier seriesand be
ause of the linearity of the �linear� Vlasov equation, we look for solutions ofthe type ( [25℄)

f1(x,v, t) = fk(v) exp[i(k.x− ωt)] , (2.88)
Φ1(x, t) = Φk exp[i(k.x− ωt)] , (2.89)49



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwith usual k = 2πn/L. Inserting this in Eq. (2.86) and Eq. (2.87), we obtain thatthe following equations must be satis�ed
−k2 Φk = 4πGm

∫

R3

fk(v)d3v , (2.90)
Φk k.∇vf0 = fk(v)(v.k− ω) . (2.91)Integrating the se
ond with respe
t to v, and 
ombining the two together we obtaina dispersion relation
1 +

4πGm

k2

∫

R3

k.∇vf0v.k− ω
d3v = 0 . (2.92)Considering a Maxwellian distribution for f0

f0(v) = ρ0
m

1

(2πσ2)3/2
exp(− v2

2σ2
) , (2.93)where ρ0 is the average density. The dispersion relation be
omes

1− 2
√
2πGρ0
kσ3

∫ +∞

−∞

v exp(−v2/2σ2)

kv − ω
dv = 0 . (2.94)If ω = 0, one �nds

k2(ω = 0) ≡ k2J =
4πGρ0
σ2

. (2.95)A 
al
ulation (see e.g. [25℄) shows that if k2 < k2J , ω has to be 
omplex in orderto satisfy the dispersion relation, and therefore the perturbations be
omes unstableas they 
an grow exponentially. This implies that if there are �u
tuations of a sizelarger than λJ ≡ 2π/kJ , they will start to develop. The length λJ is 
alled the Jeanslength and the instability related to this length is the Jeans instability. Qualitativelythis instability is due to the fa
t that if a density �u
tuation is large enough, it
ontains enough matter to 
ollapse as the velo
ity dispersion - or temperature -of the parti
les, whi
h a
ts as a pressure, is not su�
iently large to 
ounter thegravitational for
e.Linear �uid equationsWe 
onsider the set of �uid equations
∂tρ+∇(ρv) = 0 , (2.96)

∂tv+ (v.∇)v = −∇Φ (2.97)
∇2Φ = 4πG(ρ− ρ0) (2.98)whi
h gives in terms of the density 
ontrast δ(x, t) = (ρ(x, t)− ρ0

)

/ρ0

∂tδ +∇.[(1 + δ)v] = 0 ,

∂tv+ (v.∇)v = −∇Φ , (2.99)
∇2Φ = 4πGρ0δ .We assume that the system is originally at rest v(x, t) = 0 and that δ(x, t) = 0.This satis�es the �uid equations. We suppose now that there are small density50



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS�u
tuations su
h that |δ(x, t)| << 1. They give rise to small �u
tuations in thepotential Φ and in the velo
ity �eld v. At �rst order in these quantities, the set ofEqs. (2.99) be
omes
∂tδ +∇.v = 0 , (2.100)
∂tv = −∇Φ , (2.101)

∇2Φ = 4πGρ0δ . (2.102)Di�erentiating Eq. (2.100) with respe
t to t, one gets
δ̈ +∇.∂tv = 0 . (2.103)Taking the divergen
e of Eq. (2.101); one 
an use Eq. (2.102) to get

∇.∂tv = −4πGρδ . (2.104)Putting these last two equations together, one �nds
δ̈ = 4πGρ0δ , (2.105)whose general solution is a+ exp(

√
4πGρ0t) + a− exp(−

√
4πGρ0t), i.e. the sum ofthe so 
alled growing and de
aying modes of perturbations. One �nds in the growingmode

δ(x, t) = δ0(x) exp(√4πGρ0t) . (2.106)It is also important to note that if we expand the density 
ontrast in Fourier series,Eq. (2.106) be
omes
δk(t) = δk(0) exp(√4πGρ0t) . (2.107)Ea
h mode evolves independently from all the others. Let us note that in theexpanding 
ase, Eq. (2.105) is simply modi�ed to

δ̈ + 2 Hδ̇ =
4πGρ0
a3

δ , (2.108)whose general solution 
an also be written as the a sum of a growing mode δ+ ∝ a(t)and a de
aying mode δ− ∝ a−3/2 for the 
ase that a(t) ∝ t2/3 in the EdS universe.However, as we have already underlined above, the presen
e of the expansion is notessential to understanding essential results.Linear Lagrangian theory & Zeldovi
h approximationIn the previous se
tion, we have 
onsidered the evolution of small perturbationsof density on a uniform distribution of matter. With the Lagrangian approa
h,the fun
tion whi
h des
ribes the evolution of the matter is the displa
ement �eldf(x, t) of the �uid element. In this se
tion we are going to look at a perturbationtheory for this displa
ement �eld. This 
an be parti
ularly interesting as it 
andes
ribe situations in whi
h the density �u
tuations 
an be
ome very large, andwhi
h 
an therefore not be des
ribed with the linear approa
h we have 
onsideredin the previous se
tion. 51



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSAs we have a ve
tor �eld v(x, t) whi
h des
ribes the velo
ity of the �uid at (x, t),we 
an look for integral 
urves of this ve
tor �eld, that is the fun
tion f(x, t) su
hthat for any x0 in the �xed spa
e, f(x0, 0) = x0 and
df
dt

∣

∣

∣

(x0,t)
=
∂f
∂t

∣

∣

∣

(x0,t)
= v(f(x0, t), t

)

. (2.109)This means that for a given x0, by varying t, f(x0, t) tra
es the traje
tory of a pointin the �uid whi
h follows the �ow and whi
h is at x0 when t = t0. Let us 
onsiderthe set of Eqs. (2.99)The left hand side of Eq. (2.97) 
ontains two terms: the �rst, ∂tv, is related tothe variation of v at a �xed x while the se
ond is related to the variation of v in thedire
tion of the �ow at a �xed time. The sum of the two is therefore the a

elerationof a point following the �ow. Indeed, if su
h a point is at x at time t, it goes tox+ v dt at time t + dt and its velo
ity is given byv(x+ v dt, t+ dt) = v(x, t) + ∂tv|(x,t)dt+ (v.∇x)v|(x,t)dt+O(dt2) , (2.110)so that its a

eleration is ∂tv+ (v.∇x)v. A

ording to Eq. (2.97), this a

elerationis equal to g(x, t) = −∇Φ, with
∇x × g = 0 , (2.111)and using f, we 
an rewrite this equation as

d2f
dt2 (x0,t)

= g(f(x0, t), t
)

, (2.112)sin
e, for a �xed x0, f(x0, t) follows the �ow. Eq. (2.96) des
ribes mass 
onserva-tion: if we 
onsider an in�nite volume d3x, the variation of ρ d3x (the mass in anin�nitesimal volume around x) is equal to the di�eren
e between what 
omes in andwhat goes out. If we follow the �uid, the in�nitesimal volume d3x is deformed. Forinstan
e, if it is 
ontra
ted, this means that lo
ally the density in
reases. This 
anbe expressed by the following formula
ρ(x0, 0) d

3x = ρ
(f(x0, t), t

)

Jf(x0, t) d
3x , (2.113)where Jf(x, t) is the determinant, evaluated at (x, t), of the Ja
obian matrix Jf ≡

(

∂f/∂x) related to the transformation x → f(x, t). If we know the fun
tion f(x, t)and its inverse, that is the fun
tion h(x, t) su
h that h(f(x, t)) = x, we 
an �ndthe density at any point from the density at t = 0:
ρ(x, t) = 1

Jf(h(x, t), t)ρ(h(x, t), 0) . (2.114)This is Eq. (2.96) expressed in terms of f(x, t). What remains to do now is to obtainEqs. (2.98) and (2.111) in terms of fun
tion. From now on we assume that f has aninverse h. Eq. (2.112) tells us thatg(x, t) = d2f
dt2

∣

∣

∣

∣

∣

(h(x,t),t) ≡ f̈(h(x, t), t) . (2.115)52



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSSin
e we are interested in ∇.g and ∇×g, the �rst quantity to 
al
ulate is ∂gi/∂xj ≡
gi,j. By using the last equation, we �nd

gi,j =
∂f̈i
∂xk

∂hk
∂xj

≡ f̈i,k hk,j (2.116)where summation over repeated indi
es is impli
it. Note that as h is the inverse off, the Ja
obian matrix of h is related to the one of f by
Jh(x, t) ≡ (∂h

∂x) =
1

Jf(h(x, t), t)adj[Jf(h(x, t), t)] . (2.117)Here adj means the adjoint:
(adj Jf)

ij
=

1

2
ǫimn ǫjkl fk,m fl,n , (2.118)where ǫijk is the permutation of Levi-Civita tensor. The divergen
e of g 
an thenbe written

(∇.g)(x, t) = f̈i,k
1

2 Jf ǫkmn ǫirs fr,m fs,n =

[

ǫirs
2 Jf ∂(̈fi, fr, fs)∂(x1, x2, x3)

]

(h(x,t),t) (2.119)with
∂(̈fi, fr, fs)
∂(x1, x2, x3)

≡= ǫjkl f̈i,j fr,k fs,l . (2.120)The Eq. (2.97) be
omes by using Eq. (2.114)
[

ǫirs
∂(̈fi, fr, fs)
∂(x1, x2, x3)

]x,t) = −4 π G
[

ρ(x, 0)− ρ0 Jf(x, t)] . (2.121)For the rotational of g we have
(∇× g)i = ǫijk gk,j (2.122)so that, after some 
al
ulations, Eq. (2.111) be
omes
∂(f̈k, fk, fi)

∂(x1, x2, x3)
= 0 (2.123)for i = 1, 2, 3. By de�nition we have f(x, 0) = x. This implies that Jf(x, 0) = 1. Ifv(x, 0) and ρ(x, 0) are known, the se
ond equation gives us ḟ(x, 0) and what remainsto do is to solve the last two equations.In the following we are going to look a perturbation theory for the displa
ement�eld f(x, t) of the �uid element. If we write the displa
ement �el f(x, t) = x+p(x, t),we obtain at �rst order in p

∇.(p̈− 4πGρ0p) = −4πGρ0δ(x, 0) , (2.124)
∇× p̈ = 0 . (2.125)53



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwhere δ(x) is the density 
ontrast. The �rst equation 
an be solved by assumingthat p = ∇χ. The se
ond equation 
an be rewritten as
∇2(χ̈− 4πGρ0χ) = −4πGρ0δ(x, 0) . (2.126)If we 
onsider a periodi
 system, one 
an write

δ(x, 0) =∑k6=0 δk exp(ik.x) , (2.127)
χ(x, t) =∑k6=0 χk(t) exp(ik.x) . (2.128)Eq. (2.126) be
omes
χ̈k − 4πGρ0χk =

4πGρ0
k2

δk . (2.129)The general solution is
χk = A+ exp

(

√

4πGρ0t
)

+ A− exp
(

−
√

4πGρ0t
)

− δk
k2
. (2.130)With the initial 
onditions for p, we �nd thatp(x, t) = [ cosh (√4πGρ0t

)

− 1
]

∑k6=0

ikδk
k2

exp(ik.x) . (2.131)We 
an rewrite this expression asp(x, t) = [cosh(√4πGρ0t
)

− 1

4πGρ0

]g(x, 0) , (2.132)where g is the for
e �eld. This means that a �uid element, initially at x, is a

eler-ated a

ording to p̈ = cosh
(

√

4πGρ0t
)g(x, 0) . (2.133)It is interesting to 
ompare these result with Eq. (2.107)

δk(t) = δk(0) cosh(√4πGρ0t
)

. (2.134)This implies that g(x, t) = cosh
(

√

4πGρ0t
)g(x, 0) , (2.135)sin
e g(x, t) 
an be expressed in terms of the δk. We would then expe
t that a �uidelement is a

elerated a

ording top̈(x, t) = g(x+ p(x, t), t) = cosh

(

√

4πGρ0t
)g(x+ p(x, t), 0) (2.136)and for small displa
ement this gives Eq. (2.133).54



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSWriting the ve
tor �eld p as the sum of a 
url-free part pD and a divergen
e-lesspart pR (i.e. pD 
an be written as the gradient of a s
alar fun
tion, and pR as the
url of a ve
tor �eld), one �nds thatp(x, t) = p̈(x, 0)cosh(√4πGρ0t
)

− 1

4πGρ0
+ ṗD(x, 0)sinh(√4πGρ0t

)

√
4πGρ0

+ ṗR(x, 0)t ,(2.137)with the initial 
onsition p(x, 0) = 0. Sin
e the gravitational for
e is 
onservativep̈(x, 0) = p̈D(x, 0). The asymptoti
 behavior of the solution Eq. (2.137) isp(x, t) t→∞−−−→ 1

2

[ p̈(x, 0)
4πGρ0

+
p̈D(x, 0)√
4πGρ0

]

exp
(

√

4πGρ0t
)

. (2.138)By 
hoosing ṗR(x, 0) = 0 and √
4πGρ0 p̈(x, 0) = ṗ(x, 0), the solution is thendire
tly in its asymptoti
 regime. This is the stati
 spa
e version of the Zeldovi
happroximation, more usually given in an expanding ba
kground.3.3 Limit of linear theory: a non-
ontinuous approa
hFor the moment, we have only 
onsidered a 
ontinuous approa
h to study the evo-lution of self-gravitating systems, i.e. we have des
ribed the density �eld usinga smooth fun
tion. This has allowed us to obtain di�erent result 
on
erning thisevolution by using a perturbative approa
h. However, to understand the limit oflinear theory and the validity of the �uid approximation, it is interesting to follow anon-
ontinuous approa
h in terms of dis
rete pari
les. We 
onsider in the followingthe derivation of Peebles in [126℄.Let us 
onsider again N parti
les of mass m in a periodi
 box of volume V = L3.The density fun
tion at time t is given by

ρ(x, t) = m

N
∑

i=1

δD
(x− xi(t)

)

, (2.139)where xi(t) is the position of parti
le i at time t. The Fourier 
oe�
ients of thedensity 
ontrast are given by
δk(t) = { 1

N

∑N
i=1 exp(−ik.xi(t)) if k 6= 0

0 otherwise (2.140)We obtain the derivatives
δ̇k =

1

N

N
∑

i=1

(−ik.ẋi) e
−ik.xi , (2.141)

δ̈k =
1

N

N
∑

i=1

(−ik.ẍi − (k.ẋi)
2) e−ik.xi . (2.142)Melding the equation of evolution Eq. (2.50) with H = 0 and the Lapla
e-Poissonequation on obtains ẍi = 4πGρ0

∑

k 6=0

ik
k2
δkeik.xi (2.143)55



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSInserting this in Eq. (2.50) one obtains
δ̈k = 4πGρ0 + A− C , (2.144)where A and C represent the nonlinear part of the equation,

A = 4πGρ0
∑q6=0,k k.qq2 δkδk−q and C =

1

N

N
∑

i=1

(k.ẋi)
2e−ik.xi . (2.145)If we 
an negle
t during some time the last two terms on the rhs in the last line,we are left with a linear equation identi
al to what we have obtained in Eq. (2.105).This shows that the last two terms of the last line of Eq. (2.144) are due to non-linear e�e
ts and the dis
rete nature of the parti
les. A 
areful analysis of these twoterms should therefore provide us interesting information on the appli
ability of thelinear theory.The problem with Eq. (2.144) is that it is not 
losed for the δk as it still 
ontainsthe parti
le velo
ities ẋi. Despite this and following [126℄, one 
an show that even ifat small s
ales the dynami
s are non-linear, linear theory 
an be used at large s
ales.On
e gravity starts to a
t, some 
lusters 
an be 
reated, where �
lusters� meansvirialised stru
tures. The velo
ities of the parti
les in su
h obje
ts 
an be very high.This implies that the term C in Eq. (2.145) 
an be very large and this 
ould havean important e�e
t on the evolution of every δk. This is in fa
t not true. UsingEq. (2.142), we havë

δk =
1

N

N
∑

i=1

[−ik.g(xi)− (k.ẋi)
2] exp(−ik.xi) , (2.146)where g(xi) is the gravitational �eld at xi. If Nc 
lusters are 
reated, we 
an rewritethis expression as

δ̈k =
1

N

{

Nc
∑

α=1

∑

i∈Iα

[−ik.g(xi)−(k.ẋi)
2] exp(−ik.xi)+

∑

i/∈
luster[−ik.g(xi)−(k.ẋi)
2] exp(−ik.xi)

}

,(2.147)where �i ∈ Iα� means all the parti
les in the 
luster α whi
h 
ontains Nα parti
les,and �i /∈ 
lusters� means all the parti
les whi
h are not in a 
luster. For parti
leswhi
h are in a 
luster we 
an de
ompose the �eld g(x) into two parts: g1(x)+g2(x)where the �rst term is due to for
e of all the other parti
les in the same 
luster whilethe se
ond is the for
e from the rest. If we 
onsider one 
luster, we 
an write its
ontribution to the right hand side of Eq. (2.147) as
∑

i∈Iα

[−ik.g1(xi)− ik.g2(xi)− (k.ẋi)
2] . exp(−ik.xi) (2.148)The part 
ontaining g1(xi) 
an be written as

∑

i∈Iα

[−ik.g1(xi)] exp(−ik.xi) =
∑

i∈Iα

[

− ik.Gm ∑

j 6=i∈Iα

xj − xi

|xj − xi|3
]

exp(−ik.xi) .(2.149)56



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSDe�ning Xα as the 
entre of mass of the 
lusterXα =
1

Nα

∑

i∈Iα

xi , (2.150)the last expression be
omes
exp(−ik.Xα)

∑

i∈Iα

[

− ik.Gm ∑

j 6=i∈Iα

yj − yi

|yj − yi|3
]

exp(−ik.yi) (2.151)where yi = xi−Xα. These ve
tors do not have a length longer than the 
luster sizewhi
h we will denote by R. This means that for k su
h that |k| << 1/R we 
anmake the following approximation
∑

i∈Iα

[−ik.g1(xi)] exp(−ik.xi) ≈ exp(−ik.Xα)
∑

i∈Iα

[

−ik.Gm ∑

j 6=i∈Iα

yj − yi

|yj − yi|3
]

(1−ik.yi) ,(2.152)whi
h 
an be written as
Gm

2
exp(−ik.Xα)kµkν

∑

j 6=i∈Iα

(yi,µ − yj,µ)(yi,ν − yj,ν)

|yi − yj|3
(2.153)with an impli
it summation over µ and ν. Using the results derived in se
tion ??,this be
omes simply

∑

i∈Iα

[−ik.g1(xi)] exp(−ik.xi) = exp(−ik.Xα)
∑

i∈Iα

(k.ẏi)
2 . (2.154)Inserting this expression in Eq. (2.148) and negle
ting terms of order (kR)2, it 
omes

exp(−ik.Xα)
∑

i∈Iα
{

(k.ẏi)
2 − [ik.g2(xi) + (k.ẋi)

2] exp(−ik.yi)
}

≈ Nα exp(−ik.Xα)
[

− ik.g2(Xα) + (k.Ẋα)
2
]

. (2.155)Then Eq. (2.147) be
omes
δ̈k =

1

N

{

Nc
∑

α=1

Nα[−ik.g2(Xα)−(k.Ẋα)
2] exp(−ik.Xα)+

∑

i/∈
luster[−ik.g(xi)−(k.ẋi)
2] exp(−ik.xi)

}

.(2.156)This shows that 
lusters 
an be 
onsidered as �ma
ro-pati
les� for what 
on
ernsthe evolution of δk for k mu
h smaller than the inverse of the 
luster size. Indeedthis evolution depends to a good approximation only on the motion of the 
entre ofmass of the 
lusters and not on what happens inside them. This is a
tually quitein agreement with the intuition that on
e a 
luster is 
reated, it is seen as a bigparti
le when it is looked from far away. Note that this is valid if we 
an negle
tterms of order (kR)2 in Eq. (2.156).Let us now study the term δk for k 6= 0 (as δ0 = 0)
δk =

1

V ρ0

∫

CL

(ρ(x, t)− ρ0) exp(−ik.x)d3x (2.157)
=

1

V ρ0

∫

CL

ρ(x, t) exp(−ik.x)d3x . (2.158)57



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwhere we have omitted the term ∫

CL
exp(−ik.x)d3x = V δKk,0 with δKk,0 the 3D Kro-ne
ker symbol. We 
an now split the box into ND small domains (Ωα) os similarsize in su
h a way that ea
h of them 
ontains at least a few parti
les. We 
al
ulatethe 
entre of mass Xα in all of them. If we denote by R their size, we have fork << 1/R,

δk =
1

V ρ0

ND
∑

α=1

∫

Ωα

ρ(x, t) exp(−ik.x)d3x (2.159)
=

1

V ρ0

ND
∑

α=1

exp(−ik.Xα)

∫y+Xα∈Ωα

ρ(Xα + y, t) exp(−ik.y)d3y (2.160)
≈ 1

V ρ0

ND
∑

α=1

exp(−ik.Xα)

∫y+Xα∈Ωα

ρ(Xα + y, t)(1− ik.y)d3y (2.161)
=

1

V ρ0

ND
∑

α=1

exp(−ik.Xα) Nαm (2.162)
=

1

N

ND
∑

α=1

Nα exp(−ik.Xα) , (2.163)where Nα is the number of parti
les in the domain Ωα. This means that up to termsof order (kR)2, δk depends only on the positions of the 
entres of mass Xα as if theywere simply parti
les of di�erent masses. As before, we 
an draw the 
on
lusionthat dynami
s whi
h do not 
hange the positions of the 
entres of mass above a
ertain s
ale R, as it is the 
ase when some parti
les 
ollapse, have no e�e
ts on δkfor k mu
h smaller than the inverse of this s
ale. But 
learly, as before, this is trueonly if terms of order (kR)2 are really negligible 
ompared to the right hand side ofthe last line of Eq. (2.161).A 
on
lusion whi
h 
an be drawn from this dis
ussion but whi
h should be handlewith 
are is the following: if at t = 0, for a �xed value of k and a s
ale R, one hason the one hand
δk ≈ 1

N

ND
∑

α=1

Nα exp(−ik.Xα) (2.164)as in Eq. (2.161), and on the other hand
4πGρ0δk+4πGρ0

∑q6=0,k k.qq2 δkδk−q− 1

N

N
∑

i=1

(k.ẋi)
2 exp(−ik.xi) ≈ 4πGρ0δk , (2.165)then the evolution of δk will satisfy approximatively the equation

δ̈k = 4πGρ0δk , (2.166)des
ribing the motion of the 
entres of mass in the domains of size R as long asthe 
lusters will have a size smaller than 1/k ≈ R, without being in�uen
ed by the
ompli
ated dynami
s on smaller s
ales. A

ording to Eq. (2.156) these dynami
shave only negligible e�e
ts on 
entres of mass at a s
ale equal to R. For k su
h that
|k| < 1/R, the simple linear �uid approa
h should be justi�ed and if everything holdfor all k of similar size, δ(x, t) should also be des
ribed by the linear �uid theory ats
ales larger then R.58



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe limit value n = 4 for the exponent of the power spe
trum - model fornewly forming 
lustersIn the following, we follow the derivation of Peebles [126℄ to determine the limit value
n = 4 for the exponent of the power-spe
trum for the validity of linear perturbationtheory.We are interested in a distribution where the large-s
ale �u
tuations are sup-pressed as mu
h as possible, so the power spe
trum will be taken to be

|δk|2 ∝ kn (2.167)for small k < x−1
0 , where x0 represents the interparti
le distan
e, and n > 0. Atlarge s
ale the spe
trum is similar ro random. The �u
tuations are just be
omingnonlinear at s
ale x0, signaling the in
ipient formation of a new generation of 
lusterson this s
ale. Sin
e this generation has not yet formed, we shall suppose that thevelo
ity term C in Eq. (2.144) may be negle
ted, and we shall estimate the size ofthe gravity term A in Eq. (2.144)

A = 4πGρ0
∑q6=0,k k.qq2 δkδk−q , (2.168)

A∗ = 4πGρ0
∑q6=0,k k.qq2 δ-kδq−k (2.169)One then has to 
ompare the mean of the square of A, i.e. 〈|A|2〉 with the lineargravitational term 4πGρ|δk|2. Peebles shown in [126℄ that 〈|A|2〉 ∼ k4, whereas

|δk|2 ∼ kn. Then if n < 4 the linear term is larger than A and we expe
t linearampli�
ation to be valid, while if n ≥ 4 this will not be the 
ase.4 Ba
kground on Sto
hasti
 point pro
essesIn the following we introdu
e the formalism used to des
ribe density �elds in 
os-mology: (in�nite) statisti
ally homogeneous and isotropi
 point pro
esses whi
h areuniform, i.e. have a well-de�ned non zero mean density.4.1 Sto
hasti
 distributionsLet us 
onsider a dis
rete random mass distribution represented by the mi
ros
opi
density fun
tion ρ(r). The quantity ρ(r)dV represents the number of parti
les 
on-tained in the in�nitesimal volume dV around the point r. Assuming that the par-ti
les have unitary mass we 
an write
ρ(r) =∑

i

δ(r− ri) , (2.170)where ri is the position ve
tor of the parti
le i of the distribution and δ(r) is theDira
 delta fun
tion. The fun
tion ρ(r) 
an be thought as a realization of a sto
hasti
pro
ess. It means that to any point r is asso
iated a positive random variable ρ̂(r)whose �extra
ted� value is ρ(r). The sto
hasti
 pro
ess is totally 
hara
terized by59



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSthe probability density fun
tional P [ρ(r)] of the density �eld ρ(r), that gives theprobability to have the parti
ular realization ρ(r) of the sto
hasti
 �eld ρ̂(r, t). Wewill limit our analysis to ordinary or regular point pro
esses, in whi
h taking a smallvolume ∆V in an arbitrary point of the spa
e, the probability to have more thanone point in this volume is of higher order of ∆V .We 
an 
ompute the average value of any fun
tion of the density F [ρ(r)] infun
tion of the probability density fun
tional:
〈F 〉 =

∫

Dρ(r) F [ρ(r)] P [ρ(r)] , (2.171)where we have used a fun
tional integral (see e.g. [71℄).We 
an smooth a dis
rete distribution to obtain a 
ontinuous one ρ by averagingover small volumes ∆V (ri) (
entered around the position r) but 
ontaining a largeamount of parti
les:
ρ(r, t) = 1

∆V (r) ∫∆V (r′) d3r ρ(r′, t) . (2.172)Note that the density for dis
rete distribution Eq. (2.170) is a sum of distributions(and then non-smooth fun
tion) whereas the averaged density fun
tion de�ned inEq. (2.172) is a smooth fun
tion.In the probability density fun
tional P [ρ(r)] all the information about the sto
has-ti
 �eld is 
ontained. In general, this information is mu
h more than one wantsmanipulate. For this reason, one fo
uses on the ℓ-point 
orrelation fun
tions of thesto
hasti
 �eld de�ned as
〈ρ̂(r1)ρ̂(r2) . . . ρ̂(rℓ)〉 = ∫ Dρ(r)P [ρ(r)]ρ̂(r1)ρ̂(r2) . . . ρ̂(rℓ) . (2.173)The quantity de�ned in Eq. (2.173), multiplied by [dV ]ℓ, gives the a priori probabilityof �nding simultaneously ℓ parti
les, in a volume dV about the positions r1, . . . , rℓ,independently of the position of the remaining parti
les. For example, the 1-point
orrelation fun
tion is simply the lo
al density fun
tion 〈ρ(r)〉.Spatial averages and ergodi
ityA typi
al assumption in the statisti
al analysis of sto
hasti
 �elds is the so-
allesergodi
ity of the sto
hasti
 pro
ess whi
h generates the mass �eld both in the 
on-tinuous and dis
rete 
ase. In order to 
larify the meaning of ergodi
ity, let us take ageneri
 observable F = F (ρ(r1, ρ(r2, . . . ) of the mass distribution ρ(r). Ergodi
itymeans that 〈F 〉 is equal to the spatial average F given by:

F = lim
V→∞

1

V

∫

V

d3r0 F
(

ρ(r1 + r0), ρ(r2 + r0), . . . ) , (2.174)where V is the integration volume and limV →∞ means that the limit of the inte-gration is taken over all spa
e. Finally, ρ(r) is almost any realization of the massdistribution �extra
ted� from the probability fun
tional P [ρ(r)]. This property isalso referred to as the self-averaging property of the distribution. Note that if the60



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSaverage in Eq. (2.174) is extended only to a �nite sub-sample V of the whole spa
e,then Eq. (2.174) is only an estimator of 〈F 〉 in the given sub-sample. In 
osmologyone typi
ally has only su
h �nite volume estimators. Therefore the assumption ofergodi
ity is ne
essary if we want to use these statisti
al estimators of some spe
i�
quantities to build or verify hypotheses and theories.The assumption of ergodi
ity is based on a theorem of 
ontinuous sto
hasti
pro
esses: the ergodi
 theorem of Birkho�-Khin
hin whi
h states that if ρ(r) has awell-de�ned average value ρ0, then the volume average, in the in�nite volume limit,
onverges with probability one to a well-de�ned limit [75℄.Statisti
ally homogeneous and isotropi
 distributionsA sto
hasti
 pro
ess is statisti
ally homogeneous when the probability density fun
-tional P [ρ(r)] is invariant under spatial translations. The 
onsequen
e is that the
omplete ℓ-point 
orrelation fun
tion has the property
〈ρ̂(r1)ρ̂(r2) . . . ρ̂(rℓ)〉 = 〈ρ̂(r1 + r0)ρ̂(r2 + r0) . . . ρ̂(rℓ + r0)〉 . (2.175)It therefore does not depend on ℓ ve
tor variables anymore but only on ℓ− 1 ve
torvariables. For example, the large s
ale stru
ture of the universe is assumed to bedes
ribed by a sto
hasti
 density �eld whi
h is statisti
ally homogeneous, i.e. it isassumed that there is no privileged positions in the universe (this is the Cosmologi
alprin
iple).A sto
hasti
 system is statisti
ally isotropi
 if the probability density fun
tionalis invariant under rotations, in the sense that

P [ρ(r)] = P [ρ(R̂r)] , (2.176)where R̂ is any rotation. In the 
ase of the universe, the Cosmologi
al prin
ipleassumes statisti
al isotropy.The working hypothesis of the 
urrent 
osmologi
al models are therefore to as-sume statisti
ally homogeneity and isotropy. In this 
ase, the 1-point 
orrelationfun
tion does not depend on the position:
〈ρ̂(r)〉 = ρ0 . (2.177)We will also suppose, when the average is performed in an in�nite volume, that

ρ0 > 0, what is 
alled homogeneity or uniformity. It is distin
t from the 
on
ept ofstatisti
al homogeneity or translational invarian
e dis
usses above. Homogeneity oruniformity means that if a lo
al average density is performed in a �nite volume, theresult does not depend on the volume. Current observations indi
ate homogeneityon large s
ales in 
osmology (see [71℄).Homogeneity and Homogeneity s
aleLet us now 
onsider the meaning of homogeneity given by Eq. (2.177) in terms ofthe spatial average in a single realization of a sto
hasti
 mass distribution. Theexisten
e of a well-de�ned average positive density implies that
lim
R→∞

1

||C(R;x0)||

∫

C(R;x0)

ρ(r)d3r = ρ0 > 0 , ∀x0 , (2.178)61



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwhere ||C(R;x0)|| ≡ 4πR3/3 is the volume of the sphere C(R;x0) of radius R, 
en-tered on an arbitrary point x0. When Eq. (2.178) is valid, i.e. a well-de�ned positiveaverage density exists for the mass distribution, the 
hara
teristi
 homogeneity s
ale
λ0 
an be de�ned as the s
ale su
h that

∣

∣

∣

1

C(R;x0)

∫

C(R;x0)

d3r ρ(r)− ρ0

∣

∣

∣
< ρ0 , ∀R > λ0, , ∀x0 . (2.179)This s
ale gives basi
ally the distan
e above whi
h �u
tuations 
an be 
onsideredsmall with respe
t to the mean density ρ0 and a perturbative approa
h 
an beappropriate to des
ribe the physi
s of the system.Correlation Fun
tionUsing the hypothesis of homogeneity, we de�ne the 2-point redu
ed 
orrelation fun
-tion as

C2(r12) = 〈(ρ̂(r1)− ρ0)(ρ̂(r2)− ρ0)〉 , (2.180)where r12 = |r1 − r2|. The 
omplete 2-point 
orrelation fun
tion 
an be writen as afun
tion of the redu
ed 2-point 
orrelation fun
tion as:
〈ρ̂(r1)ρ̂(r2)〉 = 〈ρ̂(r1)〉〈ρ̂(r2)〉 . (2.181)The redu
ed 
orrelation fun
tion C12 (also 
alled 
ovarian
e fun
tion) gives the non-trivial part of this probability. It is usual to normalize the 
orrelation fun
tion fordensity �eld as

ξ(r12) =
C2(r12)

ρ20
. (2.182)The Power Spe
trumIn 
osmology and Statisti
al Physi
s it is very usual to 
hara
terize distributionin Fourier spa
e rather than in real spa
e. In Cosmology a parti
ular emphasis ispla
ed on this representation be
ause it is mathemati
ally mu
h easier to modelizetheoreti
ally the evolution of stru
tures in Fourier spa
e. We de�ne the Fouriertransform (FT) of a fun
tion f(r), in a 
ubi
 volume of size L (V = Ld), where d isthe spatial dimension as:

f̃(k) = ∫
V

ddrf(r)e−ik.r . (2.183)The inverse transform is therefore
f(r) = 1

V

∑k f̃(k)e−ik.r , (2.184)where the sum over the dis
rete k is restri
ted to those with 
omponents ki = 2mπ
Lwith m ∈ Z. In the limit of in�nite d-dimensional Eu
lidian spa
e the dire
t andinverse FT are de�ned as

f̃(k) = FT [f(r)] = ∫
Rd

ddrf(r)e−ik.r (2.185)
f(r) = FT−1[f̃(k)] = 1

(2π)d

∫

Rd

ddkf̃(k)e−ik.r . (2.186)62



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSFrom now on, for simpli
ity, we will denote by ρ(r) both the sto
hasti
 density �eld
ρ̂(r) and any realization of it. We de�ne the �u
tuation of the density �eld δρ(r) as

δρ(r) = ρ(r)− ρ0 . (2.187)Its Fourier transform in a volume V is
δρ(k;V ) = ∫

V

ddrδρ(r)e−ik.r . (2.188)Be
ause δρ(r) is real, δρ(k, V ) = δ∗ρ(−k;V ), where the asterisk denotes �
omplex
onjugate�. We de�ne the stru
ture fa
tor (SF) as
S(k) = 〈|δρ(k;V )|2〉

V
. (2.189)It is obviously a positive-de�nite quantity. In the thermodynami
 limit, one takes

V → ∞ (with 
onstant ρ0). The bra
kets 〈.〉 in Eq. (2.189) indi
ate an average overrealizations. In 
osmology the SF is 
alled Power Spe
trum (PS) and it is de�nedas the in�nite volume limit of the SF:
P (k) = lim

V→∞

〈|δρ(k;V )|2〉
V

. (2.190)If we assume statisti
al homogeneity, it is simple to show from their respe
tivede�nitions that the 2-point 
orrelation fun
tion and the SF are FT pairs:
S(k) = FT [C2(r)] (2.191)
P (k) = ρ20 FT [ξ(r)] . (2.192)If we assume statisti
al isotropy an additional average over ve
tors k with the samemodulus 
an be performed, the SF depending then only on k = |k|.There is an important theorem in the theory of sto
hasti
 pro
esses related withthe PS. This is basi
ally the Wiener-Khin
hin theorem (see e.g. [71℄), whi
h statesthat, given a 2-point 
orrelation fun
tion C2(r), it exists a statisti
ally homogeneous
ontinuous sto
hasti
 stationary pro
ess with this 
orrelation, if and only if its PSis integrable and non-negative for all k, i.e. FT [C2(r)] > 0. In the 
ase of a pointdistribution this 
ondition is only ne
essary. A 
orollary of this theorem is theproperty:

ξ(0) ≥ ξ(r) . (2.193)Its proof is straightforward: the 
orrelation fun
tion ξ(r) is the FT of the PS
ξ(r) = 1

(2π)d

∫

Rd

P (k)eik.rddk . (2.194)Sin
e by de�ntion, P (k) ≥ 0 and || exp(ik.r)|| ≤ 1, the inequality Eq. (2.193) isevident. 63



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSMass varian
eAnother 
onvenient way to 
hara
terize sto
hasti
 distributions is via the �u
tua-tions of mass in d-dimensional regions that we will denote Λ. The normalized massvarian
e is de�ned as
σ2(Λ) =

〈M(Λ)2〉 − 〈M(Λ)〉2
〈M(Λ)〉2 . (2.195)The average amount of mass in the region Λ is

〈M(Λ)〉 =
∫

Rd

WΛ(r) 〈ρ(r)〉ddr , (2.196)where we have introdu
ed the window fun
tion WΛ(r)
WΛ(r) = { 1 if r ∈ Λ

0 otherwise (2.197)Further, the average of the square of the mass in the same region is
〈M(Λ)2〉 =

∫ ∫

Rd

ddr1d
dr2WΛ(r1)WΛ(r2)〈ρ(r1)ρ(r2)〉 . (2.198)Using the above formulae and the de�ntion of 
orrelation fun
tion Eq. (2.182) we
an write

σ2(Λ) =
1

V 2

∫ ∫

Rd

ddr1d
dr2WΛ(r1)WΛ(r2)ξ(|r1 − r2|) , (2.199)where V is the volume of the region Λ =

∫

ddrWΛ(r). Performing the FT ofEq. (2.199) we obtain
σ2(Λ) =

1

(2π)d

∫

ddkP (k)|W̃Λ(k)|2 , (2.200)where W̃Λ(k) is the FT of WΛ(r). Very often the natural 
hoi
e of volume Λ inwhi
h to 
ompute the �u
tuations is a sphere. It is simple to �nd that the FT ofthe window fun
tion is in three dimensions [71℄
W̃Λ(k) = 3

(kR)3
(sin kR− kR cos kR) . (2.201)Dis
rete versus 
ontinuous distributionsWhen performing numeri
al simulations in 
osmology, evolution of 
ontinuous �eldis 
omputed evolving dis
rete N-body parti
le distributions. In this 
ontext it isimportant to understand the di�eren
es between 
ontinuous and dis
rete distribu-tions.Dis
reteness introdu
es a kind of �u
tuations that does not appear in 
ontinuousdistributions. For example, it is possible to 
onstru
t a 
ontinuous distribution withzero �u
tuations, i.e. with C12(r) = 0 for all r (we assume statisti
al homogeneity).This is simply a distribution with 
onstant density everywhere. In the 
ase of dis
retedistributions there is always a �u
tuation introdu
ed by dis
reteness: a parti
le is
orrelated with itself, whi
h introdu
es a singularity in C12(r). We 
an see thatstudying the un
orrelated (dis
rete) Poisson distribution.64



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe Poisson distribution We work for simpli
ity in d = 3 dimensions. Wedivide the 3-dimensional real spa
e in n = V/dV in�nitesimal 
ells of volume dVand we de�ne the sto
hasti
 density �eld in ea
h 
ell as
ρ̂(r) = { 1

dV
with probability ρdV

0 with probability 1− ρdV
(2.202)The average density (the 1-point 
orrelation fun
tion) is trivially

〈ρ̂(r)〉 = n.(1/dV ).ρ0dV + n.0.(1− ρ0dV )

n
= ρ0 . (2.203)The 2-point 
orrelation fun
tion is

〈ρ̂(r1)ρ̂(r2)〉 = 〈ρ̂(r)〉2 = ρ20 (2.204)if r1 6= r2 and
〈ρ̂(r1)ρ̂(r2)〉 = n.(1/dV )2.ρ0dV + n.02.(1− ρ0dV )

n
=

ρ0
dV

, (2.205)if r1 = r2. Therefore, in the limit dV → 0 we obtain:
C2(r12) = 〈ρ̂(r1)ρ̂(r2)〉 − ρ20 = ρ0δ(r1 − r2) . (2.206)The dis
reteness of the distribution introdu
es a singularity in the 
orrelation fun
-tion C12(r) at r = 0 (and indeed for all ℓ-point 
orrelation fun
tions). The densityhas an in�nite dis
ontinuity around any parti
le with �nite mass, whi
h is mathe-mati
ally represented by a delta fun
tion in the 
orrelation fun
tion. Note that thisresult is general for any parti
le distribution and not only for a Poisson distribution.The 
orrelation fun
tion of a 
orrelated parti
le distribution 
an be written thereforeas the sum of two pie
es:

C12(r) = δ(r) + ρ20 h(r) , (2.207)where δ(r) is the singularity introdu
ed by dis
reteness and h(r) is a smooth fun
-tion.Asymptoti
 behavior It is important to know the permitted asymptoti
 behav-ior of the 
orrelation fun
tion. The general 
ondition to be a 
ontinuous sto
hasti
pro
ess well de�ned are
• The distribution is no singular with regions with in�nite density, i.e.

∫

ǫ

n0(1 + ξ(r))dV <∞ , (2.208)where the integration is performed in any arbitrary small region ǫ. It impliesthat if we 
onsider a power-law behavior of the 
orrelation fun
tion at smalls
ales, we have
lim
r→0

ξ(r) ∼ rα , α > −d . (2.209)65
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• Regions at in�nite distan
e are not 
orrelated. Therefore

lim
r→∞

ξ(r) ∼ rβ , β < 0 . (2.210)In the 
ase of a dis
rete distribution the situation is very similar. At large s
ales,the 
orrelation fun
tion remains un
hanged and therefore 
ondidition Eq. (2.210)holds. At small s
ales, the divergen
e introdu
ed by the dis
retness give rise onlyto a �nite 
ontribution and the 
ondition Eq. (2.209) has to be ful�lled now by thesmooth fun
tion h(r).From above properties for the 
orrelation fun
tion, it is simple to dedu
e theanalogous permitted asymptoti
 behaviour of the PS. From Eq. (2.209), for a 
on-tinuous distribution, we have the 
ondition
lim
k→∞

P (k) = 0 , (2.211)whi
h implies that, if P (k → ∞) ∼ kγ, γ < 0. If, moreover, the sto
hasti
 pro
esshas �nite varian
e (i.e. ξ(0) <∞), then
lim
k→∞

kdP (k) = 0 , (2.212)and then γ < −d. For a point-parti
le distribution we have the 
onstraint
lim
k→∞

∣

∣

∣
P (k)− 1

ρ0

∣

∣

∣
= 0 , (2.213)i.e. if ∣∣

∣
P (k) − 1

ρ0

∣

∣

∣
∼ kγ then γ < 0. The small k behaviour of the PS is, from
ondition Eq. (2.210),

P (k → 0) ∼ kδ (2.214)then δ > −d.4.2 Classi�
ation of sto
hasti
 pro
essesIn order to derive a 
omplete 
lassi�
ation of sto
hasti
 pro
esses, let us 
onsiderEqs. (??) and (2.201), and assume without loss of generality that P (k) = Aknf(k),where A > 0 and f(k) a 
ut-o� fun
tion 
hosen su
h that (i) limk→0 f(k) = 1, and(ii) limk→∞ knf(k) is �nite. We also require n > −3 to have the integrability of
P (k) around k = 0. It is 
onvenient to res
ale variables putting x = kR to rewrite

σ2(R) =
9A

2π2

1

R3+n

∫ ∞

0

dx(sin x− x cosx)2xn−4f(
x

R
) . (2.215)By analyzing in detail this formula, we obtain (see a 
omplete derivation in [71℄)the following general relation between the large R behavior of σ2(R) and the small

k behavior of P (k):
σ2(R) ∼







R−(3+n) for −3 < n < 1
R−4 logR for n = 1
R−4 for n > 1 .

(2.216)66



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe argument used to derive Eq. (2.216) 
an be generalized to Eu
lidian spa
esof any dimension d. Therefore supposing P (k) = Aknf(k) as above, it is possibleto pro
eed to the following 
lassi�
ation for the s
aling behavior of the normalizedmass-varian
e:
σ2(R) ∼







R−(d+n) for −d < n < 1
R−(d+1) logR for n = 1
R−(d+1) for n > 1 .

(2.217)Therefore
• For −d < n < 0, we have �super-Poisson� mass �u
tuations typi
al of systemsat the 
riti
al point of a se
ond order phase transition.
• For n = 0, we have Poisson-like �u
tuations, and the system 
an be 
alledsubstantially Poisson. This behavior is typi
al of many 
ommon physi
al sys-tems, e.g. an homogeneous gas at thermodynami
 equilibrium at su�
ientlyhigh temperature.
• For n > 0, we have �sub-Poisson� �u
tuations, and for this reason we name this
lass of systems super-homogeneous. This behaviour is typi
al, for example, oflatti
e-like point distributions where positively 
orrelated regions are balan
edby negatively 
orrelated ones. Therefore the 
ondition of P (0) = 0 
orrespondsto a sort of underlying long-range order. This 
lass of mass distributions playan important role in Cosmology.4.3 Causal bounds on the Power spe
trumThe 
onsideration in se
tion 3.3 above of the evolution of dis
rete self-gravitatingsystem, whi
h leads to the �limit� value n = 4 for the appli
ability of �uid lineartheory is in fa
t related to a mu
h more general signi�
an
e of this parti
ular powerspe
trum. This arises when one 
onsiders the 
onstraints imposed by 
ausality onthe power spe
trum of density �u
tuations whi
h may be generated by a physi
alpro
ess in an expanding universe with a �nite 
ausal �horizon� (i.e. a �nite distan
eup to whi
h light 
an travel up to 
osmi
 time t, as in standard FRW expandingmodels dominated by matter or radiation).Zeldovi
h 
on
luded, using a simple heuristi
 derivation, that in this 
ase, ifone assumes that the physi
s involved 
onserves mass and momentum, one obtainsthat, at small k, P (k) ∼ kn with n ≥ 4 [160℄. Indeed su
h �u
tuations 
an onlybe 
orrelated up to a �nite distan
e (LH say), i.e. ξ(r) = 0 for r > LH . ByFourier transform theory, this implies that the PS is analyti
 at k = 0. Then Taylorexpansion about k = 0 gives P (k) = P (0) + k2

2
P ′′(0) + O(k4). It 
an be shownquite rigorously that P (0) = 0 follows from the 
ondition of lo
al mass 
onservation,and heuristi
 arguments suggest that P ′′(0) = 0 follows from lo
al �
enter of mass
onservation� (i.e. momentum 
onservation). Spe
i�
 
onstru
tions (see e.g. [69℄)also show the apparent generality of the result.Assuming non-linear stru
ture formation through self-gravity to be an exampleof su
h a 
ausal pro
ess (where the �horizon� is now the non-linear s
ale at thegiven time) one immediately 
omes to the 
on
lusion of se
tion 3.3, that non-linear
lustering 
an 
reate P (k → 0) ∼ k4, whi
h will overwhelm the linear ampli�
ationif the initial large s
ale �u
tuations have P (k → 0) ∼ kn and n > 4. 67



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS5 The non-linear regime: numeri
al simulationIn the 
urrent 
osmologi
al paradigm, stru
tures grow through the gravitationalinstability of initial density �u
tuations of 
ollisionless dark matter. This o

ursin a hierar
hi
al way, with small-s
ale perturbations 
ollapsing �rst and large-s
aleperturbations latter, i.e. the bottom-up formation s
enario of the CDM model. Letus note, however, that di�erent models were proposed in the late 1970s and early
1980s: the hot dark matter (HDM) models [131℄. HDM models of 
osmologi
alstru
ture formation led to a top-down formation s
enario, in whi
h super
lusters ofgalaxies are the �rst obje
ts to form after the big bang, with galaxies and 
lustersforming through a subsequent pro
ess of fragmentation. However, it was alreadybe
oming 
lear from observations that galaxies are mu
h older than super
lusters,
ontrary to what the HDM s
enario implies, and su
h models were abandoned bythe mid-1980s after 
osmologists realized that if galaxies had formed early enoughto agree with observations, their distribution would be mu
h more inhomogeneousthan is the 
ase [154℄.One of the most dire
t manifestations of this nonlinear pro
ess is the evolutionof the power spe
trum of the mass, P (k), where k is the wavenumber of a givenFourier mode. Understanding this evolution of the power spe
trum is one of thekey problems in stru
ture formation, being dire
tly related to the abundan
e and
lustering of galaxy systems as a fun
tion of mass and redshift. If the pro
esses that
ontribute to the evolution 
ould be 
aptured in an a

urate analyti
 model, thiswould open the way to using observations of the nonlinear mass distribution (fromlarge-s
ale galaxy 
lustering or weak gravitational lensing) in order to re
over theprimordial spe
trum of �u
tuations. One su
h attempt at su
h analyti
 des
riptionof 
lustering evolution was the �stable 
lustering � hypothesis of Davis and Peebles[126℄ that assumes that a nonlinear 
ollapsed obje
t would de
ouple from the globalexpansion of the Universe to form an isolated system in virial equilibrium.We provide a brief overview of the theoreti
al understanding of nonlinear evolu-tion. In parti
ular we introdu
e the stable 
lustering hypothesis and the halo model,as these ideas are 
entral in the study of nonlinear 
lustering. We also dis
uss thes
ale-free models and their self-similarity properties.5.1 N-body simulationsEquations of motionEquation of motion in 
osmologi
al N-body simulations, introdu
ed in Eq. (2.50),
an be expli
itly written̈xi + 2 H(t) ẋi = −Gm

a3

∗
∑

j 6=i

xi − xj

|xi − xj |3
(2.218)where the notation ∑∗ impli
itly ex
ludes the (badly de�ned) 
ontribution due tothe mean density, and where a(t) is the s
ale fa
tor of the model 
onsidered, and

H(t) = ȧ/a is the Hubble �
onstant�. For the EdS 
osmology k = 0, Λ = 0,
a(t) ∝ t2/3 and H2 = 8 π G

3
ρ. The 
ase H = 0 de�nes a �stati
 universe� limit.68



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSAlgorithms and timestepThe basi
 idea for numeri
al integration is as follows. The equation of motionexpresses the se
ond derivative of position in terms of position, velo
ity and time.Position and velo
ity at later times are expressed in terms of position and velo
ity atearlier times using a trun
ated Taylor series. The key 
onstraint in 
osmologi
al sim-ulations is that for
e evaluation is very time 
onsuming and one wishes to minimisethe number of for
e evaluations per time step. Mainly for this reason, 
osmologi
al
N-body simulations use the Leap-Frog method for integrating the equation of mo-tion as it requires only one evaluation of for
e and the error is of order (∆t)3, where
∆t is the time step (see e.g. [59℄).The optimum value of the time step depends on the distribution of parti
les andit 
hanges as this distribution evolves. It is 
ommon to use a time step that varieswith time so that the N-body 
ode does not use too small a time step when a smallervalue is required for 
onserving integrals of motion. It is possible to generalise evenfurther and 
hoose a di�erent time step for ea
h parti
le as well, motivation for thisbeing that a few parti
les in a very dense regions require a small ∆t whereas mostparti
les are not in su
h regions. There are several methods of implementing thisin N-body simulations, and main 
onsideration is to ensure that the positions andvelo
ities of all parti
les are syn
hronised at frequent intervals. Using individual timesteps 
an speed up N-body simulations by a signi�
ant amount (see e.g. [129, 132℄and referen
es therein).Cal
ulation of for
eThe attra
tive gravitational for
e produ
es, during the evolution, smaller and smallerstru
tures. The ne
essary to resolve the smallest possible s
ales. The 
ombinationof this ne
essity to resolve small s
ales in large regions implies the need to use themaximum number of parti
les.The 
al
ulation of the for
e is the most time 
onsuming task in N-body simu-lations. As a result, a lot of attention has been fo
used on this aspe
t and manyalgorithms and optimising s
hemes have been developed.The dire
t 
al
ulation of the for
e is numeri
ally 
ostly - N2 operations for Nparti
les - and even a modest 104 parti
les simulation needs 
onsiderable 
omputerresour
es (while the largest 
urrent simulations use more than 1010 parti
les). Tosolve this te
hni
al problem di�erent approximations are used, su
h as the (for areview see e.g. [1℄). In short, the �rst one smooths the parti
le mass on a grid to al-low the use of FFT te
hniques, whi
h speed up the 
omputation. The P 3M methoddoes almost the same but gains a

ura
y by 
omputing dire
tly (�Parti
le-Parti
le�)the for
e from nearby parti
les. Tree-
odes build a hierar
hy between the parti
lesthat resembles a �tree�. The gravitational for
e is 
al
ulated using the stru
tureof the tree. The for
e between two 
lose parti
les in the tree is 
omputed almostexa
tly. The for
e between distant parti
les in the tree is 
omputed using a wholebran
h as a single e�e
tive parti
le, as in a multipole expansion method (for detailssee [142℄). Others re�nements are used to improve the small s
ale resolution inthe simulations. One of them is to use an adaptative mesh: in regions with higherdensity a mesh with more resolution is used, keeping a lower resolution in regionswith small density. Another method is the te
hnique of �re-simulation�: a �rst sim-69



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSulation is performed to lo
alise regions with high density. Then, the simulation isperformed again putting more parti
les in the region where the parti
les of the �nalhigh density regions were initially (for details, see e.g. [24, 46, 96, 141℄.To mimi
 as 
losely as possible a truly in�nite system, one uses an in�nite peri-odi
 system, made of 3−d 
ubi
 
ells 
ontaining N parti
les. The for
es on parti
lesare then 
al
ulated 
onsidering not only the parti
les situated in the original boxbut also the parti
les of all the 
opies. Then if the ith parti
le has 
oordinate ri, its
opies will have 
oordinates ri + nL, where n is a ve
tor with integer 
omponents.For the gravitational intera
tion
φ(ri) =

∗
∑

j,n

mj

|rij + nL| , (2.219)where mj is the mass of the parti
les and the asterisk denotes that the sum n = 0does not in
lude the term i = j. As we have noted in se
tion 3.1, this expression isbadly de�ned, and its regularisation by subtra
tion of the 
ontribution due to themean density is impli
it. A natural way of writing the sum in an expli
itly 
onvergentway taking this regularisation into a

ount is to separate the potential into a shortrange and long range part by intodu
ing a parameter-dependent damping fun
tion
f(r;α):

φ(ri) =

∗
∑

j,n

mj

(f(rij + nL;α)

|rij + nL| +
1− f(rij + nL;α)

|rij + nL|
)

. (2.220)The �rst term on the r.h.s of Eq. (2.220) is short-range (i.e. de
ays rapidly) and these
ond term is long-range. The pro
edure used in the Ewald summation method isto 
ompute the �rst term in real spa
e and the se
ond in Fourier spa
e [62℄. If theparameter α is appropriately 
hosen, the real part 
onverges well taking only the sumover the 
losest image, and the part of the sum in Fourier part is rapidly 
onvergent.Of 
ourse the sum of the two terms yields the original parti
le distribution. We writethe potential energy then as:
φ = φ(s)

r + φ
(l)
k . (2.221)Further it is 
onvenient to separate out the zero mode in the long-range part, writing

φ
(l)
k = φ

(l)
k=0 + φ

(l)
k 6=0 . (2.222)The fun
tion f(r;α) is 
hosen in the Ewald summation so that φ(s)

r and φ
(l)
k 6=0 areboth rapidly 
onvergent, and with a known analyti
al expression for its Fouriertransform. The value of the term k = 0 depends on how pre
isely the in�nitesum in Eq. (2.219) is de�ned. In 
osmology this term is simply removed, as this
orresponds to subtra
ting the mean density.5.2 Initial 
onditionsWhen one runs an N-body simulation, the �rst step is to generate adequate initial
onditions (IC) with the 
orrelations spe
i�ed by some theoreti
al model. The mostwidely used method to generate su
h IC uses 
orrelated displa
ement of parti
lesinitially pla
ed on a latti
e. The 
orrelations of the displa
ement �eld are determined70



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSto be su
h as to obtain a �nal distribution that has, approximately, the desired
orrelation properties (
f. [65℄).How this 
an be done 
an be understood, up to 
orre
tions 
oming from dis-
rete nature of the distribution, using the Zeldovi
h approximation. As dis
ussed inse
tion above, this gives an approximation valid (at su�
iently short time) for thedispla
ements of �uid elements from their initial position qr(q, t) = q+ A(t) u(q) with u(q) = −∇.Φ(q) , (2.223)where A(t) is simply the growth fa
tor asso
iated with the growing mode in linearperturbative theory and Φ(q) is the gravitational potential at the initial time 
reatedby the density �u
tuations.Now if we 
onsider the points on the initial grid as de�ning the initial positions qof the �uid elements, we 
an obtain the 
orresponding displa
ements (and velo
ities
du
dt

= −ḟ(t) ∇Φ(q)) by determining the gravitational potential Φ(q), whi
h 
anbe inferred dire
tly from the desired power spe
trum P (k) through the Poissonequation. The latter is assumed to be a realization of a Gaussian pro
ess.To set up IC for the N parti
les of a 
osmologi
al N -body simulation the pro
e-dure is then in summary [50℄:
• one sets up a �pre-initial� 
on�guration (usually a latti
e) of the N parti
les.
• given an input theoreti
al PS Pth(k), and �u
tuations assumed Gaussian, the
orresponding displa
ement �eld in the ZA is applied to the �pre-initial� pointdistribution.In the following, we give a brief survey of basi
 results derived from 
osmologi
al

N-body simulations.5.3 Self-similarityOne of the important results from numeri
al simulations in the 
ontext of 
osmologyis that, for a power-law initial 
ondition P (k) ∼ kn, the system rea
hes a kindof s
aling regime, in whi
h the temporal evolution is equivalent to a res
aling ofthe spatial variables. This spatio-temporal s
aling relation is referred to as self-similarity: the 2-point 
orrelation fun
tion ξ(x, t) s
ales as
ξ(x, t) ≡ ξ

( x

Rs(t)

) (2.224)where Rs(t) is a time dependent fun
tion derived from linear theory. In statisti
alphysi
s su
h behaviour is known as dynami
al s
aling, and is observed for examplein the ordering dynami
s of quen
hed ferromagneti
 systems.Two ne
essary requirements for the evolution to be self-similar are usually iden-ti�ed1. the ba
kground 
osmologi
al model should not possess any 
hara
teristi
 lengthor time-s
ales. Thus the universe must be spatially �at, with zero 
osmologi
al
onstant and a s
ale-free equation of state; 71



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS2. the initial density perturbation �eld should have no 
hara
teristi
 length s
ale.Its power spe
trum must therefore have power law form.There are then only two 
hara
teristi
 s
ales in the problem
• the homogeneity s
ale ℓ(t) de�ned initially through the amplitude of the PS;
• an ultraviolet s
ale (
ut-o� in the PS at large k, provided in 
osmologi
alsimulations by the latti
e spa
ing).Now if the se
ond s
ale is irrelevant to the dynami
s and the 
lustering it produ
esat su�
iently long times and large s
ales, one then ne
essarily must have

f(x, t) = f0

( x

Rs(t)

) (2.225)where f is any dimensionless fun
tion 
hara
terizing the 
lustering in real spa
e(i.e. the physi
al behavior of 
lustering at any s
ale 
an only be determined by itssize 
ompared to this single 
hara
teristi
 length s
ale), where Rs(t) is the temporalbehavior of the s
ale ℓ(t). In k-spa
e, likewise, f(k, t) = f0(kRs(t)). Further, iflinear perturbation theory is valid, su
h behavior is indeed veri�ed (and di�erents
ales de
ouple, the UV 
ut-o� being irrelevant). This allows us to determine thefun
tion Rs(t). The linear ampli�
ation gives
kd P (k, t) = A2(t) P (k, t0) =

(

k Rs(t)
)d
P
(

k Rs(t), t0
)

, (2.226)whi
h is satis�ed for a power-law initial PS if
Rs(t) = A(t)2/(d+n) . (2.227)In a �at, matter-dominated universe A(t) ∝ t2/3 so one simply obtains
Rs(t) ∝ t4/3(3+n) . (2.228)If it is linear theory that drives stru
ture formation, in a hierar
hi
al pro
ess inwhi
h non-linear is generated through the 
ollapse of the initial �u
tuations, wewould expe
t su
h behavior always to result. Given the analysis of the range ofvalidity of linear theory, this means the range
−d < n < 4 . (2.229)In the 
osmologi
al literature, di�erent 
onsiderations have led various authors torestri
t this range. If one naively 
onsiders the fa
t that the mass �u
tuationsbe
omes sensitive to the UV 
ut-o�, one would limit this range to n < 1. Efstathiouet al. [51℄ suggested that −d < n < −d+2 
ould be ex
luded (in addition to n > 1)be
ause of the divergen
e of the displa
ements in the Zeldovi
h approximation inthis 
ase, whi
h they thought would mean that evolution would depend in this 
aseon the box size. Jain and Berts
hinger [84, 85℄ argued that this would not be the
ase. Numeri
ally only the 
ase n ≤ 1 appear to have been studied in the literaturefor an expanding universe. As n de
reases it be
omes more di�
ult to determinewhether self-similarity applies be
ause the temporal range a

essible is mu
h shorter.72



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSHowever numeri
al studies [39, 85℄ indi
ate the self-similarity does indeed hold for
n = −2 in d = 3.Studies of the stati
 limit have been performed whi
h show that self-similarity isvalid for n = 0 and n = 2 [11℄. Note that in the 
osmology literature self-similarityis argued to be asso
iated to power-law behaviour of Rs(t) whi
h arises in �s
ale-free� 
osmologies like EdS � and related to the existen
e of s
aling solutions tothe Vlasov equation in this 
ase. The arguments given above are mu
h general and
learly apply also to a stati
 model. Indeed, following [11℄, Eq. (2.226) gives for astati
 universe Rs(t) ∝ exp

[

2(t−tref )

(3+n)τdyn

] if one 
onsiders the growing mode, where onehas 
hosen for 
onvenien
e Rs(tref) = 1.5.4 From linear theory to stable 
lusteringIn the non-linear regime where perturbation theory fails, it was proposed that 
lus-tering in the very non-linear regime might be understood by assuming that regionsof high density 
ontrast undergo virialization and subsequently maintain a �xedproper density [126℄. Denoting x a 
omoving distan
e, the 
orrelation fun
tion for apopulation of su
h systems would then simply evolve a

ording to
ξ(x, t) ∝ a−3 . (2.230)This evolution was termed stable 
lustering. Peebles went on to show that if theintial power spe
trum was a pure power-law in k with spe
tral index n, P (k) ∝ kn,and if Ω = 1, then under the stable 
lustering hypothesis, the slope of the nonlinear
orrelation fun
tion would be dire
tly related to the spe
tral index through therelation

ξ(r, t) ∝ r−γ with γ =
3(3 + n)

5 + n
. (2.231)where r is a proper distan
e. This 
an be simply derived if we link the resultsobtained in both 
omoving and physi
al 
oordinates, i.e.

a3ξ(x, t) ∼ r−γ ∼
( r0
a Rs(t)

)−γ

, (2.232)whi
h gives a3+γ ∼ Rγ
s (t) ∼ t4γ/3(3+n) ∼ a2γ/(3+n). Hen
e, if stable 
lustering applies,then nonlinear density �eld retains some memory of its initial 
on�guration, and inprin
iple 
an be used to measure the primordial spe
trum of �u
tuations.5.5 Halo modelsWe present now an approa
h whi
h has its origins in papers by Neyman and S
ott[119℄. They were interested in des
ribing the spatial distribution of galaxies. Theyargued that it was useful to think of the galaxy distribution as being made up ofdistin
t 
lusters with a range of sizes. Sin
e galaxies are dis
rete obje
ts, they de-s
ribed how to study statisti
al properties of distribution of dis
rete points; thedes
ription requires knowledge of the distribution of 
luster sizes, the distributionof points around the 
luster 
enter, and a des
ription of the 
lustering of 
lusters.73



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe non-linear evolution of the dark matter distribution has been studied ex-tensively using numeri
al simulations of the large s
ale stru
ture 
lustering pro
ess.These simulations indi
ate that an initially smooth matter distribution evolves intoa 
omplex network of sheets, �laments and knots. The dense knots are often 
alleddark matter halos. High resolution, but relatively small volume, simulations havebeen used to provide detailed information about the distribution of mass in andaround su
h halos (i.e. the halo density pro�le [115, 116℄), whereas larger volume,but lower resolution simulations have provided information about the abundan
eand spatial distribution of halos [37, 87℄. Simulations su
h as these show that thehalo abundan
e, spatial distribution and internal density pro�les are 
losely relatedto the properties of the initial �u
tuation �eld. When these halos are treated as theanalogs of Neyman and S
ott's 
lusters, their formalism provides a way to des
ribethe spatial statisti
s of the dark matter density �eld from the linear to highly non-linear regimes.Su
h a halo based des
ription of the dark matter distribution of large s
alestru
ture is extremely useful be
ause, following White and Rees [155℄, the idea thatgalaxies form within su
h dark matter halos has gained in
reasing 
reden
e. In thispi
ture, the physi
al properties of galaxies are determined by the halos in whi
hthey form. Therefore, the statisti
al properties of a given galaxy population are de-termined by the properties of the parent halo population. There are now a numberof detailed �semi-analyti
� models whi
h implement this approa
h [21, 38, 92, 140℄;they 
ombine simple physi
ally motivated galaxy formation re
ipes with the halopopulation output from a numeri
al simulation of the 
lustering of the dark matterdistribution to make predi
tions about how the galaxy and dark matter distribu-tions di�er.In the following, we give a brief introdu
tion of the ingredients building thehalo model of large s
ale stru
ture. The approa
h assumes that all the mass in theUniverse is partitioned up into distin
t units, the halos. If these halos are small
ompared to the typi
al distan
es between them, the statisti
s of the mass density�eld on small s
ales are determined by the spatial distribution within the halos; thepre
ise way in whi
h the halos themselves may be organized into large s
ale stru
-tures is not important. On the other hand, the details of the internal stru
ture of thehalos 
annot be important on s
ales larger than a typi
al halo; on large s
ales, theimportant ingredient is the spatial distribution of the halos. This approximation,in whi
h the distribution of the mass is studied in two steps (i.e. the distributionof mass within ea
h halo and the spatial distribution of the halos themselves) is thekey to what has 
ome to be 
alled the halo model.The halo model assumes that, in addition to thinking of the spatial statisti
sin two steps, it is useful and a

urate to think of the physi
s in two steps also. Inparti
ular, the model assumes that the regime in whi
h the physi
s is not des
ribedby perturbation theory is 
on�ned to regions within halos, and that halos 
an beadequately approximated by assuming that they are in virial equilibrium.74



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe spheri
al 
ollapse modelThe assumption that non-linear obje
ts formed from a spheri
al 
ollapse is a simpleand useful approximation. The spheri
al 
ollapse of an initially top-hat densityperturbation was �rst study by Gunn and Gott [79℄.In the top-hat model, one starts with a region of initial, 
omoving Lagrangiansize R0. Let δi denote the initial density within this region. We will suppose thatthe initial �u
tuations were Gaussian with an rms value on s
ale R0 whi
h wasmu
h less than unity, i.e. |δi| << 1. This means that the mass M0 within R0 is
M0 =

4π
3
ρ(1 + δi) R

3
0 ≈ 4π

3
ρR3

0 where ρ denotes the 
omoving ba
kground density.As the Universe evolves, the size of this region 
hanges. Let R denote the 
o-moving size of the region at some later time. The density within the region is
(R0/R)

3 ≡ (1 + δ). In the spheri
al 
ollapse model there is a deterministi
 relationbetween the initial 
omoving Lagrangian size R0 and density of an obje
t, and itsEulerian size R at any subsequent time. For an EdS universe, one 
an obtain aparametri
 solution to R(z) in terms of θ:
R(z)

R0

=
(1 + z)

(5/3)|δ0|
(1− cos θ)

2
, (2.233)and

1

1 + z
=
(3

4

)2/3 (θ − sin θ)2/3

(5/3)|δ0|
, (2.234)where δ0 denotes the initial density δi extrapolated using linear theory to the presenttime (see e.g. [126℄). If δi < 0, then (1− cos θ) should be repla
ed with (cosh θ − 1)and (θ − sin θ) with (sinh θ − θ).In the spheri
al 
ollapse model, initally overdense regions 
ollapse: with θ = 0at start, they �turnaround� at θ = π, and have 
ollapsed 
ompletely when θ = 2π.Eq. (2.233) shows that the size of an overdense region evolves as

R0

R(z)
=

62/3

2

(θ − sin θ)2/3

(1− cos θ)
. (2.235)At turnaround, θ = π, so [R0/R(zta)]

3 = (3π/4)2; when an overdense region turnsaround, the average density within it is about 5.55 times that of the ba
kgrounduniverse.At 
ollapse, the average density within the region is even higher: formally,
R(zcol) = 0, so the density at 
ollapse is in�nite. In pra
ti
e the region does not
ollapse to vanishingly small size: it virializes at some non-zero size. The averagedensity within the virialized obje
t is usually estimated as follows. Assume thatafter turning around the obje
t virializes at half the value of the turnaround radiusin physi
al, rather than 
omoving units. In the time between turnaround and 
ol-lapse, the ba
kground universe expands by a fa
tor of (1 + zta)/(1 + zcol) = 22/3,so the virialized obje
t is eight times denser than it was at turnaround (be
ause
Rvir = Rta/2). The ba
kground density at turnaround is (22/3)3 = 4 times theba
kground density at zvir. Therefore the virialized obje
t is

∆vir ≡ (9π2/16)× 8× 4 = 18π2 (2.236)75



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMStimes the density of the ba
kground at virialization.What was the initial overdensity of su
h an obje
t? Eq. (2.233) shows that ifthe region is to 
ollapse at z, the average density within it must have had a 
riti
alvalue δsc given by
δsc

1 + z
=

3

5
(
3π

2
)2/3 . (2.237)Thus a 
ollapsed obje
t is one in whi
h the initial overdensity, extrapolated usinglinear theory to the time of 
ollapse, was δsc(z). At this time, the a
tual overdensityis signi�
antly larger than the linear theory predi
tion. Although the formal over-density is in�nite, the virialisation argument just presented says that the obje
t isabout 178 times denser than the ba
kground.There is an imporant feature of the spheri
al 
ollapse model whi
h is extremelyuseful. Sin
e (1+ δ) = (R/R0)

3, the equations above provide a relation between thea
tual overdensity δ and that predi
ted by linear theory δ0, and this relation is thesame for all R0. That is to say, it is the ratio R/R0 whi
h is determined by δi, ratherthan the value of R itself. Be
ause the mass of the obje
t is proportional to R3
0, thismeans that the 
riti
al density for 
ollapse δsc is the same for all obje
ts, whatevertheir mass. In addition, the evolution of the average density within a region whi
his 
ollapsing is also independent of the mass within it.The mass-fun
tion of the halos: the Press-S
he
hter formalismPress and S
he
hter proposed a formalism to 
ompute the average number of obje
tsthat 
ollapsed from the primordial Gaussian density �eld [130℄. They assumed thatthe dense obje
ts seen at the present time are a dire
t result of the peaks in theinitial density �eld. These small perturbations 
ollapsed spheri
ally under the a
tionof gravity to form selfbound virialized obje
ts.In the primordial Gaussian �eld the probability that a given point lies in a regionwith the density 
ontrast δ greater than the 
riti
al density for 
ollapse δc is givenby

p
(

δ > δc|Rf

)

=
1

2

[

1− erf
( δc√

2σ(Rf )

)

]

, (2.238)where σ(Rf ) is the varian
e of the density �eld smoothed on the s
ale Rf . The Press-S
he
hter formalism assumes that this probability 
orresponds to the probabilitythat a given point has ever been part of a 
ollapsed obje
t of s
ale > Rf . Then, the
omoving number density of halos of mass M at redshift z is given by
dn

dM
(M, z) =

√

2

π

ρ

M2

δc(z)

σm

∣

∣

∣

∣

∣

d lnσ(M)

d lnM

∣

∣

∣

∣

∣

exp
(

− δc(z)
2

2σ2(M)

)

, (2.239)where σ(M) is the varian
e 
orresponding to a radius Rf 
ontaining a mass M and
δc(z) = δ0c/D(z) is the 
riti
al overdensity minearly extrapolated to the present time.Here δ0c = δc(z = 0). For an EdS universe the 
riti
al overdensity is δ0c = 1.69. Thereare approximations for other models and in general δ0c has a weak dependen
e on Ωm(see e.g. [117℄). Let us note, however, that Press and S
he
hter used an additional76



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSingredient to derive Eq. (2.239): the fra
tion of (dark) matter in halos above M ismultiplied by an additional fa
tor of 2 in order to ensure that every parti
le endsup as part of some halo with M > 0. This ad-ho
 fa
tor of 2 is ne
essary, sin
eotherwise only positive �u
tuations of δ would be in
luded.One of the limitations of the Press-S
he
hter formalism is that it assumes over-dense perturbations to be perfe
tly spheri
ally symmetri
. In reality the situationis more 
omplex. Bardeen et al. ( [14℄) extensively studied the statisti
s of peaksin a random density �eld. They showed that peaks in the primordial density �eldhave a degree of �attening. This departure from a spheri
al distribution is ampli�edunder the a
tion of gravity a�e
ting the �nal 
ollapse of the obje
t.Halo density pro�lesTo des
ribe Halo density pro�les, fun
tions of the form
ρ(r) =

ρs
(r/rs)α(1 + r/rs)β

or ρ(r) =
ρs

(r/rs)α[1 + (r/rs)β]
, (2.240)have been extensively studied as models of ellipti
al galaxies [23,64℄. Setting (α, β) =

(1, 3) and (1, 2) in the expression on the left gives the Hernquist and NFW pro-�les [116℄, whereas (α, β) = (3/2, 3/2) in the expression on the right is the M99pro�le [115℄.The NFW and M99 pro�les di�er on small s
ales, r << rs, and whether oneprovides a better des
ription of the simulations than the other is still being hotlydebated (see e.g. [116℄). Both pro�les are parametrized by rs and ρs, whi
h de�nea s
ale radius and the density at that radius, respe
tively. Although they appearto provide a two-parameter �t, in pra
ti
e, one �nds an obje
t of given mass mand radius rvir in the simulations, and then �nds that rs whi
h provides the best�t to the density run. This is be
ause the edge of the obje
t is its virial radius rvir,while the 
ombination of rs and the mass determines the 
hara
teristi
 density, ρs,following
m ≡

∫ rvir

0

dr 4πr2 ρ(r) . (2.241)For the NFW and M99 pro�les,
m = 4πρsr

3
s

[

ln(1 + c)− c

1 + c

] and m = 4πρsr
3
s

2 ln(1 + c3/2)

3
(2.242)where c ≡ rvir/rs is known as the 
on
entration parameter. Note that we haveexpli
itly assumed that the halo pro�le is trun
ated at rvir, even though formally,the NFW and M99 pro�les extend to in�nity.There is a very extensive literature not only on the numeri
al 
hara
terization ofhalos, but also developing theoreti
al models to explain these measured properties(see e.g. [116,121,128,152℄). The 
ups-
ore debate is indeed a rather subtle issue, as,for example, it emerges from re
ent numeri
al investigations [118,143℄ that the masspro�le of ΛCDM halos deviates slightly but systemati
ally from the form proposedby Navarro, Frenk and White in Eq. (2.240). This implies that the mass pro�le of

ΛCDM halos are not universal: di�erent halos 
annot, in general, be res
aled tolook identi
al. 77
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Chapter 3
1− d gravity in in�nite pointdistributionsThe development of 
lustering in initially quasi-uniform in�nite distributions ofpoint parti
les evolving purely under their Newtonian self-gravity has been the sub-je
t of extensive numeri
al study in 
osmology over the last de
ades. Howeveranalyti
al understanding, whi
h would be very useful in trying to extend the nu-meri
al results and also 
ontrol their reliability, remains very limited. In attemptsto progress in this dire
tion it is natural to look to simpli�ed toy models whi
h mayprovide insight and qualitative understanding. Su
h models may also be interestingtheoreti
ally in a purely statisti
al me
hani
s setting, and spe
i�
ally in the 
on-text of the investigation of out of equilibrium dynami
s of systems with long-rangeintera
tions introdu
ed in Chapter 1.An obvious toy model for this full 3-d problem is the analogous problem in 1-
d, i.e., the generalization to an in�nite spa
e (stati
 or expanding) of the so-
alled�sheet model�, whi
h is formulated for �nite mass distributions. In this latter model,whi
h has been quite extensively investigates (see, e.g., [82, 110, 133, 134, 138, 148℄),parti
les in 1-d experien
e pair for
es independent of their separation, like thosebetween parallel self-gravitating sheets in 3-d of in�nite extent. Several groups ofauthors [7,8,10,111�113,135,145,150,151,157℄ have then dis
ussed di�erent variantson this model to develop the analogy with the 3-d in�nite spa
e problem. Just as forthe �nite sheet model, these models have the parti
ular interest of admitting exa
tsolutions between sheet 
rossing, whi
h means that they 
an be easily solved numer-i
ally to ma
hine pre
ision, and at modest numeri
al 
ost for quite large numbersof parti
les.In this 
hapter we revisit the basi
s of these toy models (in either stati
 orexpanding universes), addressing the problem of their general formulation for in�nitedistributions. Indeed, as we will dis
uss, previous dis
ussions have required, intheir implemantation, the imposition of symmetry about a point, or �nite extentof the 
onsidered density perturbations1. Su
h a restri
tion on the 
lass of pointpro
esses whi
h 
an be 
onsidered, and notably the requirement that statisti
altranslational invarian
e be broken, is not desirable. Indeed in the 
ontext of the
osmologi
al problem, this latter property of the distributions usually 
onsidered1This is not true of the treatments in [145,157℄, whi
h start dire
tly from the �uid limit (ratherthan from a parti
le des
ription). See further dis
ussion below. 79



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSas initial 
onditions for simulations is very important, be
ause of the �
osmologi
alprin
iple� whi
h supposes that there are no preferred 
entres (see e.g. [71, 126℄).Further the question of the extrapolation of the �nite version of the model (whi
his what is simulated numeri
ally) to the in�nite system limit has, as we will dis
ussbelow, not been 
arefully examined. We will show that problems with the de�nitionof the for
e (as used in these previous treatments) arise from a subtlety about howthe so-
alled �Jeans' swindle� is applied in one dimension. We draw here on the workof Kiessling in [95℄, where it has been shown that, in 3− d, the usual formulation ofthe �Jeans' swindle� � subtra
tion of a 
ompensating negative mass ba
kground in
al
ulation of the potential � may be more physi
ally formulated as a pres
riptionfor the 
al
ulation of the for
e in the in�nite volume limit. It turns out, as we willsee, that while in 3− d it is su�
ient to pres
ribe that the for
e on a given parti
leis obtained by summing symmetri
ally about it (e.g. summing in spheres of radius
R with 
entre at the parti
le, and then sending R to in�nity), in 1− d this limitingpro
edure needs to be further spe
i�ed. More spe
i�
ally the for
e turns out to bede�ned in 1− d for a broader 
lass of distributions � and notably for distributionswithout a 
entre � when the summation is performed by taking the uns
reenedlimit of the same sum for a s
reened version of the intera
tion, rather than as thelimit of the sum trun
ated to a �nite symmetri
�top-hat� interval.1 From �nite to in�nite systems1.1 De�nitionsBy gravity in one dimension we mean the pair intera
tion 
orresponding to an attra
-tive for
e independent of separation, i.e., the for
e f(x) on a parti
le at 
oordinateposition x exerted by a parti
le at the origin is given by

f(x) = −g x|x| = −g sgn(x) , (3.1)where g is the 
oupling. Equivalently it is the pair intera
tion given by the pairpotential φ(x) = g|x| whi
h satis�es the 1 − d Poisson equation for a point sour
e,
d2φ
dx2 = 2gδD(x) (where δD is the Dira
 delta fun
tion). Comparing with the 3 − dPoisson equation shows the equivalen
e with the 
ase of an in�nitely thin planeof in�nite extent and surfa
e mass density Σ = g/2πG, whi
h explains the widelyused name �sheet model�. We will work in the one dimensional language, referringto �parti
les�. For 
onvenien
e we will set the mass of these parti
les, whi
h willalways be equal here, to unity.1.2 Finite systemLet us 
onsider �rst the 
ase of a �nite system, 
onsisting of a �nite number Nof parti
les (with either open boundary 
onditions, or 
ontained in a �nite box).Denoting by xi the 
oordinate position of the ith parti
le along the real axis, thefor
e �eld F (x) (i.e. the for
e on a test parti
le) at the point x is

F (x) = g
∑

i

sgn(xi − x) = g

∫

dy n(y) sgn(y − x) , (3.2)80



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSwhere n(y) = ∑i δD(y − xi) is the mi
ros
opi
 number density and the integral isover the real line2. Equivalently it may be written as
F (x) = g

[

N>(x)−N<(x)
]

. (3.3)whereN>(x) (N<(x)) is the number of parti
les to the right (left) of x. The dynami
sof this model, from various initial 
onditions and over di�erent times s
ales, has beenextensively explored in the literature (see referen
es given above).1.3 In�nite system limitLet us 
onsider now the in�nite system limit, i.e., an in�nite uniform distributionof points3 on the real line with some mean density n0 (e.g. a Poisson pro
ess). It isevident that the for
es a
ting on parti
les are not well de�ned in this limit, as thedi�eren
e between the number of parti
les on the right and left of a given parti
ledepends on how the limit is taken. Formally we 
an write the for
e �eld of Eq. (3.2)as
F (x) = gn0

∫

dy sgn(y − x) + g

∫

dy δn(y) sgn(y − x) , (3.4)where δn(y) = n(y) − n0 =
∑

i δD(y − xi) − n0 represents the number density�u
tuation. While the se
ond term would, naively, be expe
ted to 
onverge if the�u
tuations δn(y) 
an de
ay su�
iently rapidly, the �rst term, due to the meandensity, is expli
itly badly de�ned (as the integral is only semi-
onvergent). Pre
iselythe same problem arises for gravity in in�nite 3 − d distributions. The solution,known as the �Jeans swindle�, is the subtra
tion of the 
ontribution due to themean density. As dis
ussed by Kiessling in [95℄, rather than a �swindle�, this is, in
3− d, in fa
t a mathemati
ally well-de�ned regularisation of the physi
al problem,
orresponding simply to the pres
ription that the for
e be summed so that it vanishesin the limit of exa
t uniformity. The simplest form of su
h a pres
ription in 3 − dis that the for
e on a parti
le be 
al
ulated by summing symmetri
ally about theparti
le (e.g. by summing about the 
onsidered point in spheres of radius R, andthen sending R → ∞). This formulation needs no expli
it use of a �ba
kgroundsubtra
tion�, sin
e the term due to the mean density does not 
ontribute when thesum is performed symmetri
ally.Applying the same reasoning to the 1− d 
ase would lead to the pres
ription

F (x) = g

∫

dy δn(y) sgn(y − x) . (3.5)The question is whether this expression for the gravitational for
e is now well de�ned,and if it is, in what 
lass of in�nite point distributions. As we will detail in the nextse
tion of the 
hapter, this question may be given a pre
ise answer, as in 3 − d,by 
onsidering the probability density fun
tion of the for
e in su
h distributions,des
ribed as sto
hasti
 point pro
esses in in�nite spa
e. In the rest of this se
tion2We use the standard 
onvention that sgn(0) = 0, whi
h implies this same formula is valid forthe for
e on a parti
le of the distribution (rather than a test parti
le) at x.3By �uniform� we mean that the point pro
ess has a well de�ned positive mean density, i.e., itbe
omes homogeneous at su�
iently large s
ales. 81
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c)

b)

a)

Figure 3.1: Cal
ulation of the for
e using a top-hat regularisation 
entred on thepoint 
onsidered, i.e., as de�ned in Eq. (3.7). In an unperturbed latti
e (
ase a)the for
e on points of the latti
e vanishes. However, as shown in b) and 
), whena single point is displa
ed o� latti
e, the for
e be
omes badly de�ned, os
illatingbetween g and zero as the size of top-hat goes to in�nity.we will simply explain the problems whi
h arise when the in�nite system limit ofexpression Eq. (3.5) is taken using a simple top-hat pres
ription. This dis
ussionmotivates the use of a smooth version of this pres
ription, whi
h we then showrigorously in the subsequent se
tion to give a well de�ned for
e for a broad 
lass ofin�nite perturbed latti
es.For Eq. (3.5) to be well de�ned in an in�nite point distribution it must give thesame answer no matter how it is 
al
ulated. Two evident top-hat pres
riptions forits 
al
ulation are the following. On the one hand it may be written as
F (x) = g lim

L→∞

∫ x+L

x−L

dy n(y) sgn(y − x) , (3.6)or, equivalently,
F (x) = g lim

L→∞

[

N(x, x + L)−N(x− L, x)
]

, (3.7)where N(x, y) is the number of points between x and y, i.e., the for
e is proportionalto the di�eren
e in the number of points on the right and left of x inside a symmetri
interval 
entred on x, when the size of the interval is taken to in�nity. On the otherhand, we 
an write
F (x) = g lim

L→∞

∫ +L

−L

dy δn(y) sgn(y − x) , (3.8)or, equivalently,
F (x) = g lim

L→∞

[

N(x, L)−N(−L, x)
]

+ 2gn0x, (3.9)i.e., we integrate the mass density �u
tuations in a top-hat 
entred on some arbi-trarily 
hosen origin.That these expressions are both badly de�ned in an in�nite Poisson distributionis easy to see: in this 
ase the �u
tuation in mass on the right of any point is82
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orrelated with that on the left, giving a typi
al for
e proportional to the squareroot of the mass in a randomly pla
ed window of size L, whi
h grows in proportionto √
L (and thus diverges). Cal
ulating the for
e with Eq. (3.7) it has been shownin [65℄ that it is in fa
t not well de�ned either in a 
lass of more uniform distributionsof points, randomly perturbed latti
es4. Why this is so 
an be understood easilyby 
onsidering, as illustrated in Fig. 3.1, the 
al
ulation of the for
e using Eq. (3.7)in su
h 
on�gurations. While on the unperturbed latti
e (
ase a) the for
e on allpoints of the latti
e is well-de�ned (and vanishing, as it should be), this is no longertrue when a parti
le is displa
ed: the for
e on the displa
ed parti
le now os
illatesdeterministi
ally (between g in 
ase b, and zero in 
ase 
) and does not 
onverge as

L→ ∞.For the same 
ase, of a single parti
le displa
ed o� an in�nite perfe
t latti
e, thepres
ription Eq. (3.9) for the for
e does, however, give a well-de�ned result if one
hooses as origin a point of the unperturbed latti
e: sin
e the �rst (�parti
le�) term isun
hanged by the displa
ement of the parti
le, the only non-vanishing 
ontribution
omes from the se
ond (�ba
kground�) term, giving a �nite for
e
F (u) = 2gn0u , (3.10)where u is the displa
ement of the parti
le from its latti
e site (and we assume uis smaller than the latti
e spa
ing). If we 
onsider now, however, applying randomdispla
ements of small amplitude (
ompared to the interparti
le spa
ing) to theother parti
les of the latti
e, the problem of the �rst pres
ription Eq. (3.7) reappears:at any given L the �rst term in Eq. (3.9) pi
ks up a sto
hasti
 �u
tuation whi
hvaries dis
retely between ±g and zero, and does not 
onverge as L→ ∞. This willevidently be the 
ase for any su
h 
on�guration generated by displa
ing parti
les o�a latti
e, and more generally for any sto
hasti
 parti
le distribution in 1− d, unlesssome additional 
onstraint is applied to make this surfa
e 
ontribution to the for
evanish.The previous literature on this model employ top-hat pres
riptions equivalent toEq. (3.9) to 
al
ulate the for
e, adding su
h a 
onstraint. On the one hand, Aurellet al. in [10℄ restri
t themselves to the study of an in�nite perfe
t latti
e o� whi
honly a �nite number are initially displa
ed. In this 
ase the problemati
 surfa
e�u
tuation vanishes for su�
iently large L. On the other hand [7, 112, 135, 150℄impose exa
t symmetry in the displa
ements about some 
hosen point, whi
h isthen taken as the origin of the symmetri
 summation interval. A parti
le entering(or leaving) at one extremity of the interval is then always 
ompensated by onedoing the same at the other extremity.We note that it is only in [10℄ that the problem of the in�nite system limitis a
tually 
onsidered. In the other works the authors do not dis
uss this limitexpli
itly: they 
onsider and study in pra
ti
e a �nite system, with a pres
riptionfor the for
e equivalent to Eq. (3.9) where 2L is the system size, i.e., without theexpli
it limit L → ∞. Symmetry about the origin is imposed be
ause this allowsone to use periodi
 boundary 
onditions. Su
h a �nite periodi
 system of period

2L is equivalent to a �nite system of size L with re�e
ting boundary 
onditions.4The for
e is, however, shown to be well de�ned in this 
lass of point distributions using theanalogous de�nition for any power law intera
tion in whi
h the pair for
e de
ays with separation.See [65℄ for details. 83



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSThe dynami
s of su
h a system is of 
ourse always well de�ned, for any (�nite)initial distribution of the points in the box. This does not, however, mean thatthis dynami
s 
an be de�ned in the limit that the size of the system is taken toin�nity. This is the question we fo
us on here, as the de�nition of su
h a limit isessential if a proper analogy is to made with the 
osmologi
al problem in 3 − d:in this 
ase the gravitational for
e is well de�ned in the in�nite system limit, fora 
lass of statisti
ally translationally invariant distributions representing the initial
onditions of 
osmologi
al models5.The problems with the top-hat pres
riptions arise, as we have seen, from non-
onvergent �u
tuations at the surfa
e of a top-hat window, whi
h will be generi
 instatisti
ally translationally invariant point pro
esses. It is thus natural to 
onsidersmoothing the summation window, and spe
i�
ally a pres
ription for Eq. (3.5) su
has:
F (x) = g lim

µ→0

∫

dy n(y) sgn(y − x) e−µ|x−y| , (3.11)or, equivalently,
F (x) = g lim

µ→0

∑

i

sgn(xi − x)e−µ|xi−x| , (3.12)where the sum runs over all parti
les in the (in�nite) distribution. Rather than asmoothing of the summation window, this 
an be interpreted more physi
ally interms of the s
reening of the gravitational intera
tion, i.e., the pair for
e law ofEq. (3.1) is repla
ed by
fµ(x) = −g sgn(x) e−µ |x|, (3.13)and the gravitational for
e in the in�nite system limit is de�ned as that obtainedwhen the s
reening length is taken to in�nity, after the in�nite system is taken6.This treatment is borrowed from the 
lass of infrared problems well known in quan-tum �eld theory. The standard pro
edure of handling infrared divergen
es is toapply an infrared regularization, to solve the regularized problem, and to removethe regularization at the end of the 
al
ulation, perhaps involving a renormalization.For the 
ase of a single parti
le displa
ed o� a perfe
t latti
e dis
ussed above itis simple to 
al
ulate the for
e using Eq. (3.11). Denoting the latti
e spa
ing by ℓ,and the displa
ement by u, we have

F (u) = g lim
µ→0

∑

n 6=0

sgn(nℓ− u)e−µ|nℓ−u|. (3.14)For |u| ≤ ℓ the sum gives
2 sinh(µu)

(

∑

n>0

e−µnℓ
)

. (3.15)5Numeri
ally one treats, of 
ourse, a periodi
 system, but it is an in�nite periodi
 system, i.e.,the for
e is 
al
ulated by summing over the parti
les in the �nite box and all its (in�nite) 
opies.This is the so-
alled �repli
a method�, used also widely in equilibrium systems su
h as the one
omponent plasma [19℄. The in�nite sum is usually 
al
ulated using the Ewald sum method. Toobtain results independent of the 
hosen periodi
 box, the pres
ription for the for
e must 
onvergein the appropriate 
lass of in�nite point distributions.6Although we will not use the interparti
le potential in our 
al
ulations, we note that fµ(x) =
−dφµ/dx where φµ(x) = −ge−µ|x|/µ is the solution of d2φµ

dx2 − µ2φµ = 2gδD(x).84
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Figure 3.2: S
hemati
 representation of the smooth s
reening of the for
e (or, equiv-alently, summation window).Expanding this in powers of µ we obtain
Fµ(u) =

2gu

ℓ
+O(µ). (3.16)Taking the limit µ → 0 gives Eq. (3.10), i.e., the result obtained using the top-hatpres
ription Eq. (3.9). The equivalen
e of the two pres
riptions 
an likewise beshown to apply when displa
ements are applied to a �nite number of parti
les onthe latti
e (whi
h leave the for
es un
hanged, and equal to Eq. (3.10), if there are no
rossings). Thus the only di�eren
e between the pres
riptions is how they treat the
ontribution from parti
les at arbitrarily large distan
es when the in�nite systemlimit is taken.We will show rigorously in the next se
tion that, for a 
lass of in�nite perturbedlatti
es in whi
h parti
les do not 
ross, the pres
ription Eq. (3.11) simply removesthe problemati
 surfa
e 
ontribution present in the top-hat pres
riptions (withoutapplying any additional 
onstraint of symmetry). This gives a for
e on ea
h parti
leequal to Eq. (3.10) where u is the displa
ement of the parti
le, the only di�eren
ewith respe
t to the 
ase of a �nite number of displa
ed parti
les being that theorigin of this displa
ement may be rede�ned by a net translation of the whole sys-tem indu
ed by the in�nite displa
ements. The for
e felt by ea
h parti
le is thusequivalent to that exerted by an inverted harmoni
 os
illator about an (unstable)equilibrium point. We note that this expression for the for
e is in fa
t what onewould expe
t from a naive generalization of the analagous results in 3 − d. In thelatter 
ase it 
an be shown [66℄ that the for
e on a single parti
le displa
ed o� anin�nite latti
e by a ve
tor u is, to linear order in |u|, simply

F(u) = 4πGρ0u/3 . (3.17)This for
e is simply that whi
h is inferred, by Gauss's law, as due to a uniformba
kground of mass density -ρ0 (i.e. due to the mass of su
h a ba
kground 
ontainedin a sphere of radius |u|). The 1− d result is exa
tly analogous, as 2n0|u| is simplythe mass inside the interval of �radius� |u|. While this result is valid, in 3−d, only atlinear order and for the 
ase of a single displa
ed parti
les, it is exa
tly valid in 1−din absen
e of parti
le 
rossings and for a broad 
lass of displa
ement statisti
s. Thereason is simply that in 1− d the for
e on a parti
le is una�e
ted by displa
ementsof other parti
les, unless the latter 
ross the 
onsidered parti
le. 85



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS2 For
es in in�nite perturbed latti
esIn this se
tion we 
al
ulate, using the de�nition Eq. (3.12), the gravitational for
eon parti
les in a 
lass of in�nite perturbed latti
es. To do this we des
ribe thesepoint distributions as generated by a sto
hasti
 pro
ess in whi
h the parti
les aredispla
ed7. The for
e on a parti
le (or the for
e �eld at a point in spa
e) is thenitself a sto
hasti
 variable, taking a di�erent value in ea
h realization of the pointpro
ess, and the question of its de�nedness 
an be 
ast in terms of the existen
eof the probability distribution fun
tion (PDF) of the for
e. We thus 
al
ulate herethe PDF of the for
e on a parti
le with a given displa
ement u, in the ensemble ofrealizations of the displa
ements of the other parti
les. The result is that, for the
lass of sto
hasti
 displa
ement �elds in whi
h displa
ements are su
h that parti
lesdo not 
ross, this for
e PDF be
omes simply a Dira
 delta fun
tion. This gives theanti
ipated result, that the only for
e whi
h results is that due to the parti
le's owndispla
ement given by Eq. (3.10), modulo an additional term des
ribing a 
ontri-bution from the 
oherent displa
ement of the whole in�nite latti
e if the averagedispla
ement is non-zero.2.1 Sto
hasti
 perturbed latti
esLet us 
onsider �rst an in�nite 1 − d regular 
hain of unitary mass parti
les withlatti
e spa
ing ℓ > 0, i.e., the position of the nth parti
le is Xn = nℓ, and themi
ros
opi
 number density 
an be written as
nin(x) =

+∞
∑

n=−∞
δD(x− nℓ). (3.18)We now apply a sto
hasti
 displa
ement �eld {Un} to this system, in whi
h thedispla
ement Un is applied to the generi
 nth parti
le with n ∈ Z. Let us 
all {un}the single realization of the sto
hasti
 �eld {Un}. The 
orresponding realization ofthe point pro
ess thus has mi
ros
opi
 number density

n(x) =
+∞
∑

n=−∞
δD(x− nℓ− un) . (3.19)This displa
ement �eld is 
ompletely 
hara
terized by the joint displa
ement PDF

P({un}) where {un} is the set of all parti
le displa
ements with n ∈ Z. We willfurther assume that this sto
hasti
 pro
ess is statisti
ally translationally invariant,i.e. P({un}) = P({un+l}) for any integer l. This implies in parti
ular that the onedispla
ement PDF (for the displa
ement applied to a single parti
le) is independentof the position of that parti
le, i.e., the fun
tion
pm(u) ≡

∫

∏

n

dunP({un})δD(u− um) (3.20)7For an introdu
tion to the formalism of sto
hasti
 point pro
esses i.e. sto
hasti
 spatial dis-tributions of point-parti
les with identi
al mass, see, e.g., [71℄.86



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSis independent of m, i.e. pm(u) = p(u). Moreover the joint two-displa
ement PDF
qnm(u, v) =

∫

∏

n

dunP({un})δD(u− um)δD(v − un)depends parametri
ally on the latti
e positions n,m only through their relativedistan
e (m− n).2.2 Mean value and varian
e of the total for
eLet us denote in general by Fµ(x0) the total gravitational for
e, with �nite s
reening
µ, a
ting on the parti
le at x0 and due to all the other parti
les pla
ed at xn:

Fµ(x0) = g
∑

n 6=0

sgn(xn − x0)e
−µ|xn−x0| . (3.21)Writing now xn = nℓ+un in Eq. (3.21), we 
an write the total s
reened for
e on theparti
le at x0 = u0 in a perturbed latti
e for a given realization of the displa
ement�eld:

Fµ(u0) = g
∑

n 6=0

sgn(nℓ+ un − u0)e
−µ|nℓ+un−u0|. (3.22)Note that, given the assumed statisti
al translational invarian
e of the �eld {Un}the statisti
al properties of the for
e are the same for all parti
les in the system.If, further, we assume now that the displa
ements from the latti
e are su
h thatparti
les do not 
ross, i.e. sgn(nℓ+un−u0) = sgn(n) for n 6= 0, this 
an be writtenas

Fµ(u0) = g

∞
∑

n=1

e−µnℓfn, (3.23)where we de�ne for, n ≥ 1,
fn ≡ fn(µ) = e−µ(un−u0) − e−µ(u0−u−n).We now take the average of Eq. (3.23) over all realizations of the displa
ementsof all parti
les, ex
ept the 
hosen one u0, whi
h we 
onsider as �xed. We denotethis 
onditional average as 〈·〉0, while we use 〈·〉 for the un
onditional average. Inorder to do this we need the 
onditional PDF of Un to U0, whi
h by de�nition of
onditional probability is

Pn(u; u0) =
qn0(u, u0)

p(u0)
. (3.24)By using this fun
tion we 
an write

〈fn(µ)〉0 = eµu0 P̃n(µ; u0)− e−µu0P̃−n(−µ; u0) (3.25)and therefore
〈

Fµ(u0)
〉

0
= g

∞
∑

n=1

[

eµu0 P̃n(µ; u0)− e−µu0P̃−n(−µ; u0)
]

e−µnℓ (3.26)87



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSwhere we have de�ned
P̃n(µ; u0) =

∫ ∞

−∞
duPn(u; u0)e

−µu, (3.27)
=

∞
∑

k=0

(−µ)k
〈

Uk
n

〉

0

k!
.The latter equality is valid when all the moments 〈Uk

n

〉

0
of Pn(u; u0) are �nite. Notethat, given the assumption that parti
les do not 
ross, it follows from the de�nition(3.24) that qn0(u, u0) = 0 for u+ n ≶ u0 respe
tively for n ≷ 0. Therefore Pn(u; u0)is always zero for some su�
iently negative u0 dependent value of u if n > 0, andlikewise for su�
iently positive values if n < 0. This ensures that the integral inEq. (3.27) is indeed �nite.In order to study the behavior of Eq. (3.26) for µ→ 0, we will assume that

qnm(u, v)
|n−m|→∞−→ p(u)p(v) . (3.28)This 
orresponds to the assumption that the displa
ement �eld is a well de�nedsto
hasti
 �eld, whi
h requires (see e.g. [71℄) that the two-displa
ement 
orrelationsvanish as the spatial separation diverges. We will dis
uss in the next se
tion therestri
tion this 
orresponds to on the large s
ale behaviour of the density pertur-bations, whi
h is of parti
ular relevan
e when one 
onsiders the analogy to 3 − d
osmologi
al simulations.Assuming Eq. (3.28) we 
an write

Pn(u; u0) = p(u) + rn(u; u0) ,where rn(u; u0) is a fun
tion vanishing for |n| → ∞ and with zero integral over ufor any n. As a 
onsequen
ẽ
Pn(µ; u0) = p̃(µ) + r̃n(µ; u0) , (3.29)where we used the de�nition analogous to Eq. (3.27) for p̃(µ) and r̃n(µ; u0), and thelatter vanishes for µ → 0 and/or n → ∞. If we now suppose that both 〈U〉 and

〈Un〉0 are �nite, with evidently 〈Un〉0 → 〈U〉 for n → ∞, we 
an write at lowerorder:
p̃(µ) = 1− µ 〈U〉+ o(µ), (3.30)
r̃n(µ; u0) = µ(〈U〉 − 〈Un〉0) + o(µ) .It is now simple, by substituting Eqs. (3.29) and (3.30) into Eq. (3.26), to show that,if ( 〈U〉 − 〈Un〉0

) de
ays in n as a negative power law or faster, we have
〈F (u0)〉0 ≡ lim

µ→0

〈

Fµ(u0)
〉

0
= 2gn0(u0 − 〈U〉) . (3.31)We will now show that both for un
orrelated displa
ements, and then moregenerally for 
orrelated displa
ements with de
aying 
orrelations, this average for
eis in fa
t the exa
t for
e in every realization. We do so by simply showing that

lim
µ→0

[

〈

F 2
µ(u0)

〉

0
− 〈Fµ(u0)〉20

]

= 0 . (3.32)88



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSThis implies that the varian
e of the 
onditional PDF of the total for
e F a
tingon the parti
le in u0 vanishes, i.e., it is a Dira
 delta fun
tion at the average valuegiven by Eq. (3.31). Compared to the simple 
ase of a single displa
ed parti
le weanalysed above, the only e�e
t of the (in�nite number of) other displa
ements is topossibly shift the 
entre of mass of the whole (in�nite) distribution with respe
t towhi
h the displa
ement of the single parti
le is de�ned.In order to show Eq. (3.32) we note �rst that the se
ond 
onditional moment of
F may be written

〈

F 2
µ(u0)

〉

0
= g2

1,∞
∑

n,m

e−µ(n+m)ℓ 〈fn fm〉0

= 〈Fµ(u0)〉20 + g2
∞
∑

n=1

e−2µnℓAn(µ)

+g2
1,∞
∑

n,m

′

e−µ(n+m)ℓBnm(µ), (3.33)with
An(µ) =

〈

f 2
n

〉

0
− 〈fn〉20 , (3.34)

Bnm(µ) = 〈fnfm〉0 − 〈fn〉0 〈fm〉0 (m 6= n),and where ∑′
n,m as usual indi
ates the sum over m and n with the ex
eption of the

n = m terms. To prove Eq. (3.32) it is su�
ient to show that the last two terms inEq. (3.33) go 
ontinuously to zero as µ does so.2.3 Latti
e with un
orrelated displa
ementsWe 
onsider �rst the 
ase that the displa
ements are un
orrelated and identi
allydistributed, i.e.,
P({un}) =

+∞
∏

n=−∞
p(un). (3.35)We refer to this as a �shu�ed latti
e� 
on�guration (following [71℄). In this 
ase
onditional and un
onditional averages 
oin
ide. Given the assumption that thedispla
ements do not make parti
les 
ross, we must have that p(u) = 0 for |u| > ℓ/2,implying that all the moments of p(u) are ne
essarily �nite.In this 
ase the un are statisti
ally independent and identi
ally distributed ran-dom variables. Given the de�nition Eq. (3.24), it follows that the fn also have thisproperty, i.e.,

〈fnfm〉 = 〈fn〉 〈fm〉 , (3.36)and thus that Bnm(µ) = 0. Further An(µ) is independent of n and 
an be expressedexpli
itly as
An(µ) = e2µu0

[

p̃(2µ)− p̃2(µ)
]

− e−2µu0
[

p̃(−2µ)− p̃2(−µ)
]

. (3.37)89



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSExpanding this expression in µ about µ = 0, we �nd that the leading non-vanishingterm is at order µ2. The desired result, Eq. (3.32), follows as
∞
∑

n=1

e−2µnl =
e−2µl

1− e−2µl
= O(µ−1) for µ → 0 ,where O(µl) means as usual a term of order l in µ.2.4 Latti
e with 
orrelated displa
ementsWe now 
onsider the 
ase where the displa
ements are non-trivially 
orrelated. Inorder to 
al
ulate An(µ) and Bnm(µ) we need both the 
onditional single displa
e-ment PDF Pn(u; u0) and the 
onditional two-displa
ement PDF Qnm(u, v; u0), both
onditioned to the �xed value u0 of the sto
hasti
 displa
ement U0. The fun
tion

Qnm(u, v; u0) is de�ned by the rules of 
onditional probability as
Qnm(u, v; u0) =

snm0(u, v, u0)

p(u0)
,where snml(u, v, w) is the joint three displa
ement PDF of having the three displa
e-ments u, v, w respe
tively at the latti
e sites n,m, l.Let us start from the evaluation of An(µ). From its de�nition it is simple toshow that

〈

f 2
n(µ)

〉

0
= e2µu0 P̃n(2µ; u0) + e−2µu0P̃−n(−2µ; u0)

−2Q̃n−n(µ,−µ; u0), (3.38)where
Q̃nm(µ, ν; u0) =

∫ ∫ +∞

−∞
du dvQnm(u, v; u0)e

−(µu+νv).In order to study the limit µ → 0 we have to expand P̃n(µ; u0) and Q̃nm(µ,±µ; u0)in powers of µ. Assuming that at least the �rst two moments of the displa
ementstatisti
s are �nite, we 
an write
P̃n(µ; u0) = 1− µ 〈Un〉0 +

µ2

2

〈

U2
n

〉

0
+ o(µ2),

Q̃nm(µ,±µ; u0) = 1− µ (〈Un〉0 ± 〈Um〉0) +
µ2

2

(〈

U2
n

〉

0

+
〈

U2
m

〉

0
± 〈UnUm〉0

)

+ o(µ2). (3.39)Using this result and Eqs. (3.25) and (3.38) in the de�nition (3.34) of An(µ), it issimple to show that
An(µ) = µ2

[

e2µu0
(〈

U2
n

〉

0
− 〈Un〉20

) (3.40)
+e−2µu0

(〈

U2
−n

〉

0
− 〈U−n〉20

)

+2 (〈UnU−n〉0 − 〈Un〉0 〈U−n〉0)] + o(µ2) .90



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSNote that for |n| → ∞ we have 〈Un〉0 → 〈U〉, 〈U2
n〉0 → 〈U2〉 and 〈UnU−n〉0 → 〈U〉2.Therefore we 
an write

An(µ)
n→∞−→ µ2(

〈

U2
〉

− 〈U〉2)(e2µu0 + e−2µu0) ,where we have used the fa
t that, as the 
oe�
ients of the higher order 
ontributionsin µ to An(µ) are non-diverging, they 
an be negle
ted. This is su�
ient to 
on
ludethat ∞
∑

n=1

e−µnAn(µ) = O(µ) , (3.41)where O(µl) as usual means a term of order µl, and therefore the sum vanishes as µfor µ→ 0.Let us now move to analyze the last sum in Eq. (3.33). We study the behaviorof Bnm(µ) as de�ned by Eq. (3.34). It is simple to show that
〈fnfm〉0 = e−2µu0Q̃nm(µ, µ; u0) + e2µu0Q̃−n−m(−µ,−µ; u0)

−Q̃n−m(µ,−µ; u0)− Q̃−nm(−µ, µ; u0). (3.42)Using this equation together with Eqs. (3.34),(3.25) and (3.39), we 
an write
Bnm(µ) = µ2[e−2µu0g(n,m; u0) + e2µu0g(−n,−m; u0)

−g(n,−m; u0)− g(−n,m; u0)] + o(µ2), (3.43)where we have 
alled
g(n,m; u0) = 〈UnUm〉0 − 〈Un〉0 〈Um〉0 ,i.e., the 
onditional displa
ement 
ovarian
e matrix. Sin
e this is a �
onditional�
orrelation it does not depend simply on n − m, but on both n and m in a non-trivial way. However for both |n|, |m| → ∞ the 
onditional averages 
oin
ide withthe un
onditional ones and therefore we 
an write
g(n,m; u0) = c(|n−m|)[1 + h(n,m; u0)] , (3.44)where c(|n − m|) = 〈UnUm〉 − 〈U〉2 is the un
onditional displa
ement 
ovarian
ematrix, and h(n,m; u0) → 0 for |n|, |m| → ∞. In order to analyze the asymptoti
behavior for small µ of

I(µ) ≡
1,∞
∑

n,m

′

e−µ(n+m)Bnm(µ), (3.45)it is su�
ient to study the behavior of the sum 
oming from the �rst term (orequivalently the se
ond) of Bnm(µ) in Eq. (3.43) as it is the most slowly 
onvergentone, i.e., basi
ally to study the following sum:
J(µ) =

1,∞
∑

n,m

′

e−µ(n+m)g(n,m; u0) . 91



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSSin
e h(n,m; u0) → 0 for |n|, |m| → ∞, the small µ s
aling behavior of J(µ) is thesame if we repla
e g(n,m; u0) by c(|n−m|):
J(µ) ≃

1,∞
∑

n,m

′

e−µ(n+m)c(|n−m|) . (3.46)This 
an be also shown by the following argument: assuming that h(n,m; u0) isbounded, say |h(n,m; u0)| ≤ A, we 
an write
|J(µ)| ≤

∑1,∞
n,m

′

e−µ(n+m)|g(n,m; u0)|
≤ (1 + A)

∑1,∞
n,m

′

e−µ(n+m)|c(|n−m|)| .Therefore the 
onvergen
e to zero of µ2 times the right-hand side of Eq. (3.46) is asu�
ient 
ondition to have the varian
e of F to vanish for µ→ 0.Let us now analyze the right-hand side of Eq. (3.46). We 
an write
1,∞
∑

n,m

′

e−µ(n+m)c(|n−m|)

=

1,∞
∑

n,m

e−µ(n+m)c(|n−m|)− c(0)
1

e2µ − 1
, (3.47)where c(0) is the single displa
ement varian
e. Note that the se
ond term is of order

µ−1 at small µ and therefore gives rise to a term at linear order in µ in Eq. (3.45).Let us introdu
e the Fourier transform c̃(k) of c(n), de�ned by
c(n) =

∫ π

−π

dk

2π
c̃(k)eikn .Using this in the right-hand side of Eq. (3.47) we get

1,∞
∑

n,m

e−µ(n+m)c(|n−m|) (3.48)
=

∫ π

−π

dk

2π
c̃(k)

1

e2µ + 1− 2eµ cos k
.The small µ limit of this integral is dominated by the behavior at small k of theintegrand. In this limit the following approximation holds (e2µ + 1 − 2eµ cos k) ≃

(µ2 + k2). Let us also assume that c(n) ∼ n−α at large n (with in general α > 0)8whi
h implies at small |k| c̃(k) ∼ |k|α−1 for 0 < α ≤ 1 (with logarithmi
 
orre
tionsfor α = 1) and c̃(k) ∼ |k|β with β ≥ 0 for α > 1. Therefore the small µ behavior ofEq. (3.48) is the same as that of the simple integral
∫ π

−π

dk

2π

c̃(k)

µ2 + k2
∼
{

µα−2 for 0 < α ≤ 1,
µβ−1 for α > 1.

(3.49)8The 
ase of a de
ay faster than any power, e.g. exponential de
ay, 
an be in
luded for α → ∞.92



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSTaking also into a

ount the se
ond term in Eq. (3.47), we 
an therefore 
on
ludethat
1,∞
∑

n,m

′

Bnm(µ)e
−(n+m)µ ∼

{

µα for 0 < α < 1,
µ for α ≥ 1 .

(3.50)This, together with the results for the �rst sum in Eq. (3.33), it follows that at small
µ

〈

F 2
µ(u0)

〉

0
− 〈Fµ(u0)〉20 ∼

{

µα for 0 < α < 1,
µ for α ≥ 1,

(3.51)i.e. it vanishes in the µ → 0 limit and the PDF of the total for
e a
ting on a parti
ledispla
ed by u0 from its latti
e position is W (F ; u0) = δ[F −2g(u0−〈U〉)]. In otherwords, even in the 
ase of spatially 
orrelated displa
ements, the total for
e a
ting ona parti
le is a deterministi
 quantity equal to 2g(u0−〈U〉) with no �u
tuations. Thisvalue depends only on the displa
ement of the parti
le on whi
h we are 
al
ulatingthe for
e and not on the displa
ements of other parti
les as it does in 3− d [66℄.3 Dynami
s of 1d gravitational systemsIn the previous se
tion we have shown the pres
ription Eq. (3.11) for the 1 − dgravitational for
e to give a well de�ned result in a 
lass of in�nite displa
ed latti
edistributions. This result 
an be used in the 
onstru
tion of di�erent toy models,through di�erent pres
riptions for the dynami
s asso
iated to these for
es. In thisse
tion we dis
uss two su
h models, analogous to the 3 − d 
ases of gravitational
lustering in an in�nite stati
 or expanding universe, respe
tively. In the last sub-se
tion we dis
uss in detail the relation of these models to previous treatments ofsu
h models in the literature.As motivation let us �rst 
omment on the reason for our interest in the 
ase ofperturbed latti
es: in 3−d 
osmologi
al N-body simulations pre
isely su
h 
on�gu-rations are used as initial 
onditions. The reason is that by displa
ing parti
les froma latti
e in this way, one 
an represent a

urately, at su�
iently large s
ales, low-amplitude density perturbations about uniformity with a desired power spe
trum
P (k) (for a detailed dis
ussion see e.g. [71℄ or [88℄). This algorithm is stri
tly validin the limit of very small relative displa
ements of parti
les, so that the assumptionthat parti
les do not 
ross in our derivation is a reasonable one (although not, as wewill dis
uss in our 
on
lusions, rigorously valid). The further assumption Eq. (3.28)we have made, on the de
ay of 
orrelations, 
orresponds, also to a reasonable re-stri
tion on the 
lass of initial power spe
tra. Indeed it 
an be shown easily that it
orresponds, in d dimensions, to the assumption that P (k)/k2 be integrable at k = 0.In 3− d this 
orresponds to P (k → 0) ∼ kn with n > −1, whi
h is stri
tly satis�edin typi
al 
osmologi
al models whi
h are 
hara
terised by an exponent n = 1 atasymptoti
ally small k.3.1 Toy models: stati
The simplest su
h model is the 
onservative Newtonian dynami
s asso
iated to thederived for
e law, i.e., with equation of motion

ẍi = Fi({xj , j = 0..∞}, t), (3.52)93



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSwhere Fi is the gravitational for
e on the i-th parti
le of the distribution, withposition xi at time t (and dots denote derivatives with respe
t to t), 
al
ulatedusing the pres
ription Eq. (3.12), i.e.,
ẍi = −g lim

µ→0

∑

j 6=i

sgn(xi − xj)e
−µ|xi−xj |. (3.53)We have shown that, for the 
ase of an in�nite latti
e subje
ted to displa
ementswhi
h (i) do not make the parti
les 
ross, and (ii) satisfy Eq. (3.28), the for
e onthe right-hand side is simply given deterministi
ally as proportional to the parti
le'sdispla
ement (when 〈U〉, the average displa
ement, is zero). Denoting then thedispla
ements of the i-th parti
le by ui, i.e. xi = ia + ui, the equation of motion istherefore

üi(t) = 2gn0ui(t) , (3.54)i.e., simply that of an inverted harmoni
 os
illator. The same equation is valid in the
ase that 〈U〉 6= 0 if we de�ne xi = ia+ 〈U〉+ui. This equation of motion is valid, of
ourse, only as long as the non-
rossing 
ondition is satis�ed. While it is in prin
iplestraightforward to generalize our 
al
ulation of the for
e to in
orporate the e�e
ts ofa �nite number of 
rossings, it is mu
h more 
onvenient to make use of the followingfa
t, whi
h we re
alled above: parti
les 
rossings in 1 − d are equivalent, up toex
hange of parti
le labels, to elasti
 
ollisions between parti
les, in whi
h velo
itiesare ex
hanged. This means that if we are interested in properties of the modelwhi
h do not depend on parti
le labels, the model of 1− d self-gravitating parti
lesis equivalent to a model in whi
h parti
les boun
e elasti
ally. In this 
ase the parti
lesdispla
ements from their original latti
e sites are at all times su
h that there is no
rossing of parti
les, and Eq. (3.54) remains valid, ex
ept exa
tly at �
ollisions�.The dynami
s of this model is therefore equivalent to that of an in�nite set ofinverted harmoni
 os
illators 
entred on the sites of a perfe
t latti
e whi
h boun
eelasti
ally, ex
hanging velo
ities, when they 
ollide. To avoid any 
onfusion, let usunderline that these 
ollisions are no way analogous to �2-body 
ollisions� whi
hformally appear in the Boltzmann equation, and whi
h 
ause relaxation towardsequilibrium. As in the �nite �sheet model� the equation of motion may be integratedexa
tly. De�ning, for 
onvenien
e, time in units of the 
hara
teristi
 �dynami
al�time τdyn = 1/
√
2gn0, the evolution between 
ollisions is given exa
tly by

ui(t0 + t) = ui(t0) cosh t+ vi(t0) sinh t, (3.55)
vi(t0 + t) = ui(t0) sinh t+ vi(t0) cosh t, (3.56)where ui(t0) (vi(t0))is the position (velo
ity) after the pre
eeding 
ollision. Thesolution of the dynami
s requires simply the determination of the next 
rossingtime, whi
h involves the solution of a quadrati
 equation (in et), followed by anappropriate updating of the velo
ities of the 
olliding parti
les.3.2 Toy models: expandingThe model we have just dis
ussed is the 1−d analogy for the problem of gravitational
lustering in an in�nite stati
 universe, with equations of motion

r̈i = −Gm
∑J

j 6=i

ri − rj

|ri − rj |3
, (3.57)94



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSfor identi
al parti
les of mass m. We use the supers
ript J on the sum to indi
atethat the sum is 
al
ulated using the �Jeans swindle�. As we have dis
ussed this�swindle� in 3 − d 
an be implemented by summing symmetri
ally about the point
i either in a top-hat (i.e. sphere) or using the limiting pro
edure with a s
reening.The equations of motion for parti
les in an in�nite expanding 3− d universe areusually written in the form

ẍi + 2Hẋi = −Gm
a3

∑J xi − xj

|xi − xj |3
, (3.58)where xi are the so-
alled 
omoving 
oordinates of the parti
les, H(t) = ȧ/a is theHubble �
onstant�, and a(t) is the s
ale fa
tor whi
h is a solution of the equations

H2 =

(

ȧ

a

)2

=
8πG

3a3
ρ0 +

C

a2
, (3.59)

ä

a
= −4πG

3a3
ρ0 , (3.60)where ρ0 is the mean mass density when a = 1, and C is a 
onstant of integration9.Note that these equations 
an be derived entirely in a Newtonian framework,and 
orrespond simply to a di�erent regularisation of the in�nite system limit thanthat employed in the Jeans' swindle: instead of dis
arding the e�e
t of the meanmass density, the for
e is regularised so that the mean density sour
es a homolo-gous expansion (or 
ontra
tion) of the whole system. This 
orresponds to takingequations of motion

r̈i = −Gm lim
R→∞

∑

j 6=i,|rj|<R

ri − rj

|ri − rj|3
, (3.61)i.e. with the sum for the for
e 
al
ulated by summing symmetri
ally about a 
hosenorigin. Dividing the sum into a term due to the mean mass density and a term dueto �u
tuations about this density, this may be written as

r̈i = −4πGρ

3
ri −Gm

∑J ri − rj

|ri − rj|3
, (3.62)Negle
ting the se
ond term (i.e. taking only the for
e due to the mean density)gives an equation of motion admitting solutions of the form ri(t) = a(t)ri(t0), with

a(t) satisfying Eqs. (3.59) and (3.60). Changing to 
omoving 
oordinates de�nedby ri = a(t)xi in Eq. (3.61) [or in Eq. (3.62)℄, and using Eq. (3.60), then givesEq. (3.58).Note that setting a(t) = 1 in Eq. (3.58) gives exa
tly the stati
 
ase Eq. (3.57),i.e., the �Jeans' swindle� in stati
 spa
e 
orresponds formally to the non-expandinglimit of an expanding FRW universe. This stati
 solution a(t) = 1 is, however, asolution to Eqs. (3.59) and (3.60) only if ρ0 = 0 (and C = 0), i.e., it is not a physi
allimit of the expanding 
ase but 
orresponds to the di�erent pres
ription, Eq. (3.57),9C = 0 
orresponds to the �at Einstein de Sitter universe, C > 0 to a 
losed universe, and
C < 0 to an open universe. In the Newtonian derivation of these equations, given below, C 
an beexpressed in terms of the physi
al parti
le velo
ities at some initial time. 95



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSfor 
al
ulating the for
e in the in�nite volume limit. While almost all numeri
alstudies are of the expanding 
ase (for a review, see e.g., [12℄), a re
ent study [11℄ ofthe stati
 
ase for su
h initial 
onditions has shown that the evolution of 
lusteringis, in essential respe
ts, qualitatively similar in both 
ases. This suggests that it maybe possible to understand essential qualitative features of the dynami
s of stru
tureformation in the universe in the 
on
eptually simpler framework in whi
h there isno expansion.With the 3 − d equation of motion in the form of Eq. (3.58) it is evident howthe stati
 1 − d model dis
ussed above is naturally modi�ed to mimi
 the 3 − dexpanding 
ase: one 
an simply repla
e the for
e term due to the in�nite 3 − ddistribution [i.e. the sum on the right-hand side of Eqs. (3.58)℄ by that due tothe 3 − d distribution 
onsisting of in�nite sheets. The summation pres
riptionimplementing the Jeans' swindle for the general 3 − d 
ase, i.e. spheri
al top-hat summation, is then, as we have dis
ussed at length above, most appropriatelyrepla
ed by the smooth pres
ription we have given. Thus we take the following 1−dequation for the positions xi of the parti
les (sheets):
ẍi + 2Hẋi = −2πGΣ

a3
lim
µ→0

∑

j 6=i

sgn(xi − xj)e
−µ|xi−xj |, (3.63)where the sum extends over the in�nite distribution of sheets, and we have expli
itlymade the identi�
ation g = 2πGΣ (where Σ is the mass per unit surfa
e).With initial 
onditions in the 
lass of 1− d in�nite perturbed latti
es for whi
hwe have shown the sum for the for
e to be well de�ned and given by Eq. (3.10), wethen have

üi + 2Hu̇i =
4πGρ0
a3

ui , (3.64)where we have used that the mean 
omoving mass density ρ0 = Σn0 (i.e. physi
almass density when a = 1). As in the stati
 
ase, this equation of motion remainsvalid at all times if we ex
hange the labels of parti
les when they 
ross, so that theyboun
e instead of passing through one another.For the 
ase of an Einstein de Sitter (EdS) universe, whi
h 
orresponds to C = 0in Eq. (3.59), a(t) = (6πGρ0)
1/3t2/3 and Eqs. (3.64) simplify to

üi +
4

3t
u̇i =

2

3t2
ui (3.65)of whi
h the independent solutions are ui(t) ∝ t2/3 and ui(t) ∝ t−1 [whi
h aresimply the well known growing and de
aying solutions for small perturbations to aself-gravitating �uid in an EdS universe (see, e.g., [126℄)℄. The evolution in between�
ollisions� is thus given by

ui(t) = ui(t0)

[

3

5

(

t

t0

)2/3

+
2

5

(

t

t0

)−1
]

+vi(t0)t0

[

3

5

(

t

t0

)2/3

− 3

5

(

t

t0

)−1
]

. (3.66)Note that, from Eq. (3.66) the determination of the 
rossings in these models, insteadof a quadrati
 equation in the stati
 model, thus involves the solution of a �fth orderequation (for t1/3).96



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS3.3 Dis
ussion of previous literatureStati
 modelsA few previous studies [10,150,151℄ have 
onsidered stati
 1−d toy models, de�ningthe for
e on the right hand side of Eq. (3.52) as the derivative of a potential, whi
his the sum of the 
ontribution from the sheets in a �nite system of size L, and anadditional one due to a uniform negative ba
kground. This is exa
tly the �naive�version of the Jeans swindle dis
ussed above, and 
orresponds exa
tly to the pre-s
ription Eq. (3.9) for the 
alulation of the for
e (with L �nite). The authors of [10℄dis
uss expli
itly the problems asso
iated with taking the in�nite system limit. Asa result they limit their analysis only to a 
ase for whi
h their pres
ription gives aunique and �nite result: a �nite number of parti
les displa
ed o� an in�nite perfe
tlatti
e, modelling a �nite lo
alized perturbation embedded in an otherwise uniformuniverse. It is simple to verify that equation of motion for these displa
ements isthen exa
tly Eq. (3.54), whi
h we have now shown to be valid for the in�nite latti
ewith perturbations whi
h do not break the latti
e translational invarian
e.In [150,151℄, on the other hand, the dynami
s is formulated for a system of �nite
L, and the problem of the de�nedness of the for
e in the in�nite system limit isnot expli
itly addressed. Instead it is dealt with impli
itly by assuming that the�nite system is symmetri
 about some point. Taking this latter point as origin of
oordinates, the top-hat pres
ription Eq. (3.9) for the for
e at 
oordinate position
x may then be rewritten as

F (x) = −2gN(0, x) + 2gn0x , (3.67)in whi
h the size of the system does not expli
itly appear. Labelling the parti
lesby their position with respe
t to the origin (i = 1...N), the for
e on the i-th parti
lemay then be written
Fi = 2gn0

[

xi −
(

L

N

)

(i− 1)

]

, (3.68)where xi is the position of the parti
le. For any �nite system the quantity in bra
kets
an be 
onsidered as the displa
ement ui of the parti
le i from its �original� latti
esite [at (i− 1)L/N ℄. Thus the equation of motion for the parti
les is again identi
alto that we have derived.We note again that we have derived this for
e law without the assumption ofsymmetry (and without the expli
it introdu
tion of a ba
kground). Further, andmost 
ru
ially, we have shown it to remain valid for a 
ertain 
lass of distributionswhen the in�nite volume limit is taken � perturbed latti
es without 
rossing anddispla
ements of �nite varian
e. In this respe
t we underline, as we have done inSe
t. 1, that while in the formulation of [150℄ the same equations of motion Eq. (3.54)are valid for the parti
les in any �nite symmetri
 system, this does not mean thatthe in�nite system limit is well de�ned, even with the assumed symmetry. It isillustrative to see what �goes wrong� when the in�nite system limit is taken, forexample, for the 
ase of a Poisson distribution, i.e., when we 
onsider a systemof size L in whi
h we distribute N parti
les randomly, and the take L → ∞ at�xed n0 = N/V . The problem is that for
es, although de�ned at any �nite L,by Eq. (3.68), diverge as L does. This 
an be seen by 
onsidering the statisti
sof the displa
ements as a fun
tion of L � the varian
e diverges, violating a 
ru
ial97
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iFigure 3.3: The varian
e of the displa
ement ui (see text) as a fun
tion of a parti
le'sordered position i, 
al
ulated for one thousand realizations of one thousand parti
lesrandomly pla
ed in an interval.assumption in our derivation � or more dire
tly from the for
e written as Eq. (3.67):the for
e on a parti
le at x, as it is proportional to the �u
tuation in the numberof parti
les in the interval [0, x] about its average value, grows in proportion to √
x.This means that the typi
al for
e on a parti
le not only diverges as L does, but thatin a �nite system its typi
al value depends on the position of the parti
le with respe
tto the boundaries. This is illustrated in Fig. 3.3, whi
h shows the varian
e of thedispla
ement ui (as de�ned above as a fun
tion of i, as measured in one thousandrealizations of one thousand randomly thrown parti
les. In a typi
al realization thefor
e on a parti
le in the 
entre of the box is thus mu
h larger that on a parti
le at theboundaries. In pra
ti
e this means that the evolution of 
lustering in a symmetri
�nite system of initially Poisson distributed parti
les is, right from the initial time,global in 
hara
ter, and expli
itly size dependent. Su
h behaviour 
an be seen in

1 − d simulations reported in [151℄ from su
h initial 
onditions, whi
h 
ontrastsqualitatively with the lo
al 
lustering 
hara
teristi
 of the 1− d (and 
osmologi
al)simulations whi
h we will des
ribe in the next se
tion.Expanding modelsWe note �rst that Eq. (3.64) 
oin
ides exa
tly with that obtained in the so-
alledZeldovi
h approximation (see, e.g., [29, 126℄), when ui is repla
ed by a ve
tor fun
-tion u(x). This approximation des
ribes the evolution of displa
ement �elds u(x)engendering small amplitude �u
tuations to a self-gravitating �uid in an expandinguniverse, and 
an be obtained rigorously by a perturbative treatment of the full �uidequations [29℄ in the lagrangian formalism10. For the 
ase of one-dimensional per-turbations it is well known (see [126℄ and referen
es therein) that this approximationbe
omes exa
t, up to the time when 
austi
s form, 
orresponding to the 
rossing10
x is a lagrangian 
oordinate and the �uid is exa
tly uniform when u(x) = 0.98



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSof �sheets� of �uid (i.e. parti
les in our 
ase). It is thus, perhaps, not surprising,a posteriori, that we re
over exa
tly the Zeldovi
h approximation for the motionof dis
rete sheets up to the time they 
ross: as the pair for
e between sheets isindependent of separation, the only way a sheet 
an �see� that the for
e sour
ing itsmotion is dis
rete, rather than 
ontinuous (as in the �uid limit), is when it 
rossesother sheets.Eq. (3.64) 
an equally be derived [89,105℄ using a perturbative treatment of thedynami
s of an in�nite perturbed latti
e (in 3 − d) of parti
les. For plane wavedispla
ements of the parti
les with a wave-ve
tor orthogonal to one of the latti
eplanes, the amplitude of the displa
ement wave obeys exa
tly this equation in thelimit that the dis
reteness of the mass distribution in these orthogonal planes isnegle
ted. This latter assumption is weaker than that used in this framework toderive the Zeldovi
h approximation for a general perturbation, whi
h would requirealso that the displa
ement be of long wavelength 
ompared to the dis
reteness s
alein the dire
tion parallel to it.In the studies of [145, 157℄, the authors study exa
tly the equations of motionEq. (3.64) for the displa
ements of sheets perturbed o� a perfe
t latti
e (as in
osmologi
al simulations). They adopt these equations arguing that they representthe �uid limit for 1−d perturbations in a 3−d expanding universe. While before sheet
rossing (i.e. the formation of 
austi
s), as dis
ussed above, this is indeed knownto be true � these equations are just the Zeldovi
h approximation whi
h is, in thisregime, exa
t � the extension to longer times is argued to be valid be
ause the�
ollisionless� sheets of �uid will simply pass through one another. Our derivationof these equations shows that this in fa
t 
orresponds to the dis
rete parti
le/sheetmodel. Indeed we have not taken the �uid limit in our derivation, and the equationsdo not represent the �uid limit of this model. It simply happens to be the 
ase thatin this model, before 
rossing, the equations 
orrespond with those in the �uid limit,for the physi
al reasons we have mentioned above. After 
rossing this equivalen
ebreaks down, and the pres
ription used by [157℄ to �analyti
ally 
ontinue� the �uidmodel beyond its regime of validity a
tually maps onto this dis
rete parti
le/shellmodel.The other two groups who have 
onsidered 1− d toy models in
orporating 3− dexpansion have, as in this arti
le, worked in a parti
le/sheet framework. Both theoriginal model, proposed in [135℄ and studied further in [111℄, and the subsequentone proposed and studied in [7, 8℄ and [112℄, derive their (di�erent) equations ofmotion by following, formally, the steps des
ribed above leading from Eq. (3.61) toEq. (3.58). The for
e on the right hand side of Eq. (3.57) is simply that due to thesheets, 
al
ulated in the analogous manner11, i.e.,
r̈i = 2πGΣ lim

L→∞

∑

rj∈[−L,L]

sgn(rj − ri) . (3.69)The 
hange to 
omoving 
oordinates, when assumed also to res
ale the mass in the11In [135℄ the for
e term is simply denoted Ei, without an expli
it pres
ription for 
al
ulating it.It 
an be inferred from the des
ription given subsequently of the numeri
al simulations that theimpli
it summation is the symmetri
 top-hat 
entred at the spatial origin. In [7, 8℄, on the otherhand, the top-hat regularisation is expli
ited. 99



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSsheets in the orthogonal dire
tion (so that Σ → Σ/a2), gives
ẍi + 2Hẋi

=
2πGΣ

a3



 lim
L→∞

∑

xj∈[−L,L]

sgn(xj − xi) + 2n0xi



 , (3.70)provided that a(t) obeys the equation
ä

a
= −4πG

a3
ρ0 . (3.71)As above ρ0 = Σn0 is the mass density (in 3− d) when a = 1.The Eqs. (3.70) are those adopted by [7,8,111,112,135℄. The term whi
h we havewritten on the right hand side of the equation 
orresponds exa
tly to the pres
riptionEq. (3.9) for the 
al
ulation of the for
e. It in
orporates the required subtra
tion ofthe e�e
t of the ba
kground, so that motion in 
omoving 
oordinates is sour
ed onlyby perturbations to uniformity. Just as in the stati
 models of [10, 150℄ dis
ussedabove, whi
h are obtained formally by setting a = 1 in Eq. (3.70), this for
e is wellde�ned only if symmetry is assumed about the 
hosen origin in the point distribution.This is indeed the assumption made in the numeri
al studies of [7, 8, 111, 112, 135℄.The di�eren
e between the models of [111,135℄ and of [7,8℄ (studied also in [112℄)arises only in what they assume about the s
ale fa
tor a(t). The former authorsimpose an EdS 
osmology behaviour for the s
ale fa
tor, a(t) ∝ t2/3, and requirethat it is a solution of Eq. (3.71). Comparing Eq. (3.71) and Eq. (3.59) we see thatit 
orresponds to imposing a Hubble expansion sour
ed by a mean density threetimes the physi
al mass density of the sheet (or, equivalently, assuming that thegravitational 
onstant is not the same for the ba
kground as for the perturbations).Refs. [7,8℄, on the other hand, simply impose that a(t) be the EdS expansion, withthe right normalization. This amounts to adding �by hand� a term to the derivedequation [112℄. It 
orresponds e�e
tively to simply repla
ing the �Jeans swindle�

3 − d for
e term in Eq. (3.58) by the pres
ription Eq. (3.9). This di�ers from the�derivation� we have given above for Eqs. (3.63) only in the form of the Jeans swindleadopted. For the 
ase that symmetry about the origin is assumed, we have the sameequations of motion. In a �nite system Eq. (3.68) is valid and so the equations ofmotion in their numeri
al simulations redu
e exa
tly to Eqs. (3.64).In 
on
lusion the equations of motion Eqs. (3.64) are exa
tly the same as thoseused by [145, 157℄, and by [7, 8, 112℄. The only di�eren
e in pra
ti
e between allthese studies are the initial 
onditions adopted and also the analysis of the resultant
lustering given. Rather than working in the 
osmologi
al time variables, the latterauthors de�ne, a new time 
oordinate τ =
√

2/3 ln t. Eqs. (3.65), for the 
ase of anEdS universe, then take the very simple form
d2ui
dτ 2

+
1√
6

dui
dτ

= ui . (3.72)In these variables the model is thus equivalent to an in�nite set of inverted os
illatorswhi
h boun
e elasti
ally, with an additional 
onstant damping. Be
ause of the100



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS�fth order equation whi
h must be solved to determine the 
rossings (now for theparameter t1/3 = eτ/
√
6), the model has been dubbed the �quinti
� model by theauthors of [8℄.The model of [111, 135℄, on the other hand does not impose on the sheets thephysi
al 3 − d expansion. Following the same approa
h as for the quinti
 modelpreviously de�ned, we obtained an equation of motion

d2ui
dτ 2

+
1√
2

dui
dτ

= ui . (3.73)Then it simply 
orresponds to Eq. (3.72) with a di�erent damping term.we note however that, in the derivation of [135℄, any fun
tion a(t) satisfyingEq. (3.71) 
an be adopted with the same 
onsisten
y. The only way in fa
t in whi
hthe derivation of the 3− d equations 
an be rigorously adapted to 1− d is by usingthe 1−d expansion law derived from Eq. (3.69) in the limit of uniformly distributedsheets. This is
a(t) = 1 +H0t− 2πGn0t

2 , (3.74)where H0 = H(t = 0), i.e., free fall in a 
onstant gravitational �eld of strength
4πGn0. As this is very di�erent to the 3 − d expansion law it is probably not avariant of the toy model whi
h is of pra
ti
al interest.4 Con
lusionWe have revisited in this 
hapter a basi
 question 
on
erning the de�nition of thegravitational for
e in 1−d in in�nite point distributions. Previous de�nitions of thisquantity in the literature have required the assumption of the existen
e of a spe
ialpoint (
entre) in the distribution, i.e., expli
it breaking of statisti
al translationalinvarian
e whi
h is typi
ally a feature of the in�nite distributions one instead wishesto study. We have noted that the problem, asso
iated with the non-
onvergingsurfa
e �u
tuations in su
h distributions, may be solved by employing a de�nitionusing a smooth s
reening whi
h is sent to zero at the end of the 
al
ulation. We havethen shown expli
itly that this leads to a well de�ned for
e for a spe
i�
 
lass ofin�nite perturbed latti
es � those subje
t to perturbations of �nite varian
e whi
hdo not make parti
les 
ross. In this 
ase, when the mean displa
ement of parti
lesis also assumed to vanish, the for
e on ea
h parti
le take a unique value whi
h issimply proportional to its own displa
ement from its latti
e site. We note that wehave assumed also that varian
e of the displa
ement �elds is �nite, whi
h restri
ts toinitial density �u
tuations whi
h have a su�
iently rapidly de
aying power spe
trumat small wavenumber (spe
i�
ally, su
h that P (k →) ∼ kn where n > 1, analagousto the same 
ondition with n > −1 in 3− d).We have then dis
ussed di�erent dynami
al toy models whi
h in
orporate thisde�nition of the for
e � the simple 
onservative Newtonian dynami
s and one whi
hin
orporates a damping term mimi
king the e�e
t of 3−d expansion (the quinti
 andthe RF models). Sin
e the 
rossing of parti
les is equivalent, up to labels, to elasti

ollisions with ex
hange of velo
ities, the 
on�gurations generated by su
h dynami
s,at any �nite time, are always in the 
lass of in�nite perturbed latti
es for whi
h thefor
e is de�ned (provided su
h a 
on�guration is the initial 
ondition). This is the101
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ase be
ause, at any �nite time, 
ollisions/
rossings may only 
orrelate parti
les upto a �nite distan
e, and the 
orrelation properties of displa
ements at asymptoti
allylarge separations therefore always obey the required 
onditions. The equations ofmotion are then simply those of an in�nite set of inverted harmoni
 os
illators (withdamping in the expanding 
ase) with 
entres on the original latti
e sites, and whi
hboun
e elasti
ally when they 
ollide. In this 
ontext we have also dis
ussed in detailthe di�erent formulations of these models in the previous literature.

102



Chapter 4Dynami
s of in�nite one dimensionalself-gravitating systems:self-similarity and its limitsIn the previous 
hapter we have de�ned gravitational for
es in 1 − d in an in�nitesystem of parti
les. We have shown that for a parti
ular 
lass of initial 
ondi-tions, i.e. a 
lass of perturbed in�nite latti
es, whi
h are point pro
esses relevant to
osmologi
al N-body simulations, the dynami
s is that of parti
les in inverted har-moni
 os
illator potential 
entred at the latti
e sites, whi
h boun
e elasti
ally whenthey 
ollide. The e�e
t of 
osmologi
al expansion analogous to 3 − d simulationsin 
osmology 
an be des
ribed by a simple �uid damping term. In this 
hapter, wepresent the results of a numeri
al investigation of the dynami
al evolution of thesetoy models.In the next se
tion, we start by introdu
ing the numeri
al simulation: integrationof the dynami
s, 
hoi
e of units and initial 
onditions. In se
tion 2, we present resultsof this 1−d numeri
al investigation, whi
h shows that these toy models are physi
allyinteresting in so far as they present very strong qualitative similarities with theevolution of the analogous 3 − d systems. Indeed, using as initial 
ondition theparti
ular 
lass of sto
hasti
 point pro
esses whose power spe
tra are simple power-laws Pinit(k) ∝ kn with n = 0 and 2, the 1 − d system exhibits interesting featuresas the hierar
hi
al nature of the 
lustering, the me
hanism of linear ampli�
ationdetermining the growth of the non-linearity s
ale, as well as �self-similar� behaviour.We also observe a qualitative di�eren
e between stati
 and expanding 
ases, likethose whi
h 
an be seen in 3− d. This is brought to light through the study of thetemporal evolution of statisti
al measures su
h as the normalized mass varian
e, the
orrelation fun
tion and its Fourier transfrom, the power spe
trum. We 
onsideralso the qualitative behavior of the shape of the 
orrelation fun
tion as a fun
tionof n, the exponent of the initial power spe
tra, and the nature of the model (stati
or expanding 
ase), and �nd again similar behaviours as in 3− d.In the rest of the 
hapter, we then explore aspe
ts of these behaviors whi
h one
annot easily probe with 3−d numeri
al simulations due to numeri
al di�
ulties. Westudy in parti
ular, in se
tion 3, stru
ture formation for the parti
ular 
lass of initial
ondition 
orresponding to �
ausal �u
tuations�, i.e. Pinit(k) ∝ k4. We investigatethe absen
e or presen
e of linear ampli�
ation, parti
ularly whether self-similarity103



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSapplies in this 
ase and how the non-linearity s
ale grows.In the last se
tion, we explore further what 
an be learnt about the strongly 
lus-tered regime, and in parti
ular the exponents whi
h 
hara
terize it. The advantageof the 1−d toy model is that it allows us to probe the development of self-similarityat smaller s
ale. In 3− d, in 
ontrast, this is not possible be
ause of the presen
e ofa smoothing at small s
ales, whi
h limits spatial resolution. Numeri
al investigationallows us to identify the lower 
ut-o� of the self-similar regime, and to identify itsbehaviour. We observe that our results, for the expanding (i.e. damping) mod-els suggest that a �stable-
lustering� hypothesis 
an be made, analogous to thatsometimes proposed in 3 − d. Using this hypothesis we derive a simple analyti
alpredi
tion for the exponent of the power spe
trum in the self-similar regime. Ex
el-lent agreement is observed with the results of the simulations for a range of n anddi�erent values of the damping term modeling expansion.1 Numeri
al simulationIn this se
tion, we outline how our 1−d N-body simulations are performed. We startby explaining the heap algorithm we use to integrate the dynami
al equations of oursystems. We present the way we generate numeri
ally the di�erent initial 
onditions,both for the parti
les positions and velo
ities. We de�ne the estimators of statisti
alquantities used to study the dynami
al evolution of 1 − d self-gravitating systems:
orrelation fun
tion, mass varian
e and power spe
trum. We also introdu
e theappropriate unit of time based on the 
hara
teristi
 times
ales of the system. Notonly 1− d toy model presents the interest of being �exa
t�, i.e. limited only by thema
hine pre
ision, but also, as we will see, gives the opportunity to probe a mu
hlarger range of s
ale than in analogous 3− d simulations.1.1 Integration of dynami
sIn the 1− d 
ase, we have studied in Chapter 3 that for a 
lass of perturbed latti
es(whi
h are the 
on�gurations used as initial 
onditions in 
osmologi
al simulations)the for
e is given exa
tly as a trivial fun
tion only of the parti
le displa
ement.Thus, to simulate numeri
ally the evolution of a 1 − d in�nite system, the stepin whi
h the for
e is 
al
ulated is trivial, and does not involve any approximationof an in�nite sum as in 3 − d (see Chapter 2). The only question whi
h arises ishow to treat the boundary 
onditions of the �nite sub-system of this in�nite systemwhi
h one 
an simulate. Periodi
 boundary 
onditions, i.e parti
les whi
h leave the�nite interval on one side enter at the other side, are the evident simple 
hoi
e, asthey have advantage of maintaining (dis
rete) translational invarian
e. We 
ouldhowever, easily use other boundary 
onditions (e.g. simply negle
ting mass loss,or inje
ting mass in a sto
hasti
 manner to 
ompensate average loss). Our resultsshould not depend on this 
hoi
e, just as they should not depend on the size of theperiodi
 box.We start with a subsystem of N parti
les initially distributed in a 1− d regularlatti
e, with latti
e spa
ing ℓ > 0, i.e. the position of the nth parti
les is Xn = nℓ,with n ∈ [0, (N − 1)]. We then apply a displa
ement �eld Un to this system: theposition of the nth parti
le then be
omes Xn = nℓ+ Un.104



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSAs far as the dynami
al evolution of the displa
ement �eld in the stati
 and ex-panding 
ases is 
on
erned, whe have de�ned in Chapter 3 the generi
 expression forthe equations of motion for our 1−d toy model between parti
le 
ollisions/
rossings:
d2ui
dt2

+ Γ
dui
dt

= ui , (4.1)where
• Γ = 0 
orresponds to the stati
 model, where t ≡ ts with ts the stati
 timevariable de�ned in the units of τdyn ≡ 1√

2gn0
,

• Γ = 1√
6

orresponds to the quinti
 model (i.e. �EdS� like), where t ≡√2

3
ln(tE/t0)is a dimensionless time variable with tE the expanding time variable de�ned inthe units of t0.

• Γ = 1√
2

orresponds to the RF model, where t ≡ √

2
3
ln(tE/t0) is a dimensionlesstime variable with tE the expanding time variable de�ned in the units of t0.As we 
onsider a system of 
olliding parti
les, ea
h parti
le keeps its own label i.The e�e
t of the 
ollisions is to ex
hange the velo
ities of the 
ouple of parti
les
on
erned. Between 
ollisions, the solutions of these equations are given by

uSi (ts) = ets/τdyn
(ui(0) + vi(0)

2

)

+ e−ts/τdyn
(ui(0)− vi(0)

2

)

, (4.2)
uQi (te) =

(te
t0

)2/3 3
(

ui(t0) + t0vi(t0)
)

5
+
( te
t0

)−1
(

2ui(t0)− 3t0vi(t0)
)

5
, (4.3)

uRF
i (te) =

(te
t0

)1/3
(

2ui(t0) + 3t0vi(t0)
)

3
+
( te
t0

)−2/3
(

ui(t0)− 3t0vi(t0)
)

3
, (4.4)where uSi (ts), uQi (te) and uRF

i (te) represent the displa
ement of the ith parti
le ofthe latti
e between 
ollisions in the stati
, quinti
 and RF models. The subsequent
rossing is determined at ea
h time, and the positions and velo
ities of the 
rossingparti
les are updated a

ordingly. For numeri
al e�
ien
y we have implemented theoptimized heap-algorithm (see e.g. [120℄ for a detailed study): 1−d systems have theimportant 
hara
teristi
 that the set of positions is well-ordered. This means thatall (N−1) possible 
ollisions between N parti
les 
an be easily enumerated and thatthe neighbors of two 
olliding parti
les 
an be found in O(1) operations if we keepthe parti
les sorted by position. It is then possible to built an event-driven algorithmto simulate a set of parti
les by �nding the minimum of all possible 
ollision times,evolving all parti
les up to that time and repeating the pro
edure. At �rst sight thisinvolves O(N) operations per 
ollision. However, in 1 − d, it is possible to updateonly the states of the two 
olliding parti
les and their next 
ollision times with theirtwo nearest neighbors. Also, by using a heap stru
ture, we 
an �nd the minimum ofthe set of 
ollision times using O(logN) operations per 
ollision.The basi
 idea of a heap stru
ture is to put the key elements in a binary tree andensure that they satisfy the heap 
ondition: the value in any tree node is smallerthan the value in its �
hild� nodes. This does not 
ompletely order the set, butis enough to warrant that the smallest value in the heap is at the root. Also, the105



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSheap 
ondition 
an be maintained e�
iently: if a node value is modi�ed so thatthe heap 
ondition is violated, we ex
hange the value with its parent node (if thevalue de
reased) or with the smallest of its 
hild nodes (if the value in
reased) andwe repeat the pro
edure, moving up or down the tree until the heap 
ondition issatis�ed again, or we rea
h the root or leaves of the tree.We now explain how the heap-algorithm is implemented in our N-body simula-tion. We 
onsider the motion of N 
olliding parti
les in 1− d, and require that theequations of motion for parti
les 
an be integrated in between two su

essive 
olli-sions. We 
onstru
t arrays of size N whi
h 
ontain the states of the parti
les, su
has position, velo
ity and a

eleration, at the time of their last 
ollision, stored inin
reasing order of the spatial 
oordinates. An additional state variable asso
iatedto ea
h parti
le is τj , the time it last experien
ed a 
ollision.The algorithm starts by 
omputing the 
ollision time of ea
h parti
le with itsneighbor to the right, and the results are stored in an array of size (N −1), whi
h isthen turned into a heap. So that we do not need to move the whole parti
les statewhile pro
essing the heap, we introdu
e an indexing array, Parti
le-Heap (PH [.]),mapping the position in the heap to the rank in spa
e of the leftmost of the twoparti
les (j and j + 1) involved in that 
ollision (see Fig. 4.1). To update the listof predi
ted 
ollision times of neighbors parti
les, we also need the index arrayinverse to Parti
le-Heap, whi
h we 
all Heap-Parti
le (HP [.]). Hen
e for all j in therange 1 to (N − 1), PH [HP [j]] = j and HP [PH [j]] = j. This 
ondition will bepreserved at all times while we update the heap. Note that the 
ollision times aredire
tly present in the heap, and that the two indexing arrays then realize exa
tlythe fun
tions needed to implement the algorithm.

Figure 4.1: Representation of the stru
ture of the heap algorithm implemented in our
1−d N-body simulation (from [120℄). It represents the two arrays PH [.] and HP [.].The �rst array in the �gure only 
ontains the predi
ted 
ollision times ordered asa heap, while the se
ond 
ontains the parti
le states stored in in
reasing order ofspatial positions. The two indexing arrays allow to move ba
k and forth betweenthe two sets.106



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSOn
e the heap has been built, the minimum 
ollision time tmin is at the root. Theparti
les involved in the �rst 
ollision, j = PH [1] and (j+1), are sele
ted and theirstates evolved up to time tmin where they are rearranged by the 
ollision (momentasimply ex
hanged in the 
ase of elasti
 
ollision), and τj and τj+1 are set equal to
tmin. Next the new predi
ted 
ollision time between j and (j + 1) is 
omputed andrepla
es the one at the root of the tree. The root might now not ful�ll the heap
ondition, so the heap array is re-arranged by sifting down the root value, using atmost O(logN) operations.The next 
ollision times of parti
les j and (j+1) with their other nearest neigh-bor, (j − 1) and (j + 2), respe
tively, also need to be re-
omputed (see Fig. 4.2).To do this, parti
les (j − 1) and (j + 2) are temporarily moved forward in timeup to tmin, where their new 
ollision times are 
omputed and put into the heapat HP [j − 1] and HP [j + 1], repla
ing the old ones. As a 
onsequen
e, the heaphas to be re-arranged two more times, again at a 
ost of at lost O(logN) for ea
hmodi�
ation.

Figure 4.2: Interse
tion of the traje
tories of parti
les j and j + 1 at time t = tmin(from [120℄). The ringed interse
tions are the 
ollisions/
rossings that need to bere
omputed.
The heap is now again in a 
onsistent state with the next 
ollision time at theroot, and the whole pro
edure 
an be repeated. The evolution 
an be stoppedeither after some �xed number of 
ollisions Z, or when the predi
ted time for thenext 
ollision be
omes larger than some 
hosen �nal time Tend. At the end, allparti
les are moved forward in time from their own τj to the �nal time whi
h iseither Tend or the time of the last 
ollision. The 
ompexity of the algorithm is thenin the worst-
ase O(Z logN) plus lower-order terms O(Z) and O(N). 107



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS1.2 Initial 
onditionsAs the stru
ture of the algorithm whi
h explains the numeri
al integration of theequations of motions has been introdu
ed, we present the 
lasses of initial 
onditionswe study.As dis
ussed in Chapter 2, perturbed latti
e initial 
ondition allows one to pro-du
e a sto
hasti
 point pro
ess with a desired power spe
trum, up to 
ontribution
oming from the original latti
e stru
ture. As in general studies in 
osmology wewill 
onsider a 
lass of latti
es in whi
h Pinit(k) ∝ kn , where n is a 
onstant for
k ≤ kN (where kN = π

ℓ
is the Nyquist frequen
y). Around and above kN , P (k)be
omes dominated by terms asso
iated with the �pre-initial latti
e�. Su
h initial
onditions are often referred to as �s
ale-free� in 
osmology - be
ause of the s
ale-freepower law behaviour - but it is important to underline that su
h initial 
onditiondo 
ontain at least two 
hara
teristi
 s
ales:

• the latti
e spa
ing, whi
h leads in k spa
e to the deviation from the power-lawbehaviour at kN ;
• the homogeneity s
ale at whi
h the amplitude of the �u
tuations are of orderone.If the dynami
s does not depend on the ultraviolet s
ale, su
h as the latti
e spa
ing,there is only one relevant 
hara
teristi
 s
ale in the initial 
onditions. If the dynami
sintrodu
es no further s
ale (i.e. on
e the transients due to UV 
ut-o� have gone)one expe
ts to �nd asymptoti
ally the �self-similar� behaviour we have dis
ussed inChapter 2. In 3−d it was shown, using the BBGKY hierar
hy, des
ribing the matterin the �uid limit, that in su
h a spe
i�
 
ase (EdS and power law PS) one 
an �ndsolution of this kind for the phase spa
e density. We will 
onsider here a range of nthat 
orresponds to di�erent relevant sub
lasses of initial 
onditions:
• n = 0 
orresponds to a spe
i�
 
lass of in�nite perturbed latti
es for whi
hthe varian
e of the displa
ement �eld is in�nite (see Chapter 3). Therefore,it leads to a divergent for
e, analogous to the range −3 < n < −1 in 3 − d,whi
h is regulated therefore by the box size. However, this divergen
e of thefor
e does not prevent the dynami
s of formation of stru
tures from setting,as it has been shown in [3℄ that what does really matter is the 
onvergen
e ofthe di�eren
e of the for
e between parti
les.
• n = 2 
orresponds to a spe
i�
 
lass of in�nite perturbed latti
e, the shu�edlatti
e, for whi
h the varian
e of the un
orrelated displa
ements is �nite (seeChapter 3), and whi
h leads to a 
onvergent for
e, analogous to the range
−1 < n < 4 in 3− d,

• n = 4 represents the limit of �
ausal pro
ess� whi
h lo
ally 
onserves mass.This 
orresponds to the power generated by the �newly forming stru
tures�me
hanism introdu
ed by Peeble in [126℄ and dis
ussed in Chapter 2.Flat power spe
trum: Pinit(k) ∝ k0 at small kTo generate the intial PS Pinit(k) ∝ k0 at small k, we 
onsider the 
anoni
al methodintrodu
ed in Chapter 2, whi
h is based on the so-
alled Zeldovi
h approximation.108
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edure is the following (see e.g. [49,137℄): i) we set up a �pre-initial� 
on�g-uration of the N parti
les: a simple regular latti
e; ii) given an input theoreti
al PS
Pth(k) ∝ k0, the 
orresponding displa
ement �eld in the Zeldovi
h approximation isapplied to the �pre-initial� point distribution. The 
osmologi
al IC are usually takento be Gaussian, and the displa
ements are determined by generating a realizationof the gravitational potential

Φ(q) =
∑

k

ak cos(k.q) + bk sin(k.q) , (4.5)with ak = R1

√
Pth(k)

k2
and bk = R2

√
Pth(k)

k2
, where R1 and R2 are Gaussian randomnumbers of mean zero and dispersion unity. We have seen in Chapter 2 that this
orresponds to generating a realization of a sto
hasti
 displa
ement �eld with PS

ĝ(k) = Pth(k)/k
2 ∝ 1/k2. The motivation for the 
hoi
e of this algorithm insteadof a simple Poissonian initial 
ondition (i.e. parti
les randomly distributed in thesimulation box) 
onsists in the fa
t that we 
an 
ontrol the amplitude of the initial
ondition, as it is done in 3− d simulations.The shu�ed latti
e IC: Pinit(k) ∝ k2 at small kFollowing [71℄, we use the term SL to refer to the in�nite point distribution ob-tained by randomly perturbing a perfe
t latti
e: ea
h parti
le on the latti
e, oflatti
e spa
ing ℓ, is moved randomly (�shu�ed�) about its latti
e site, ea
h par-ti
le independently of all others. A parti
le initially at the latti
e site R is thusat x(R) = R + u(R), where the random displa
ements u(R) are spe
i�ed by thefa
torised joint probability density fun
tion

P [u(R)] =
∏

R

p(u(R)) . (4.6)The distribution is thus entirely spe
i�ed by p(u), the probability density fun
tionfor the displa
ement of a single parti
le. We study evolution from SL with thefollowing PDF:
p(u) =

{

2∆ if u ∈ [−∆,∆]
0 otherwise (4.7)Ea
h parti
le is therefore moved randomly in an interval of side 2∆ 
entered onthe 
orresponding latti
e site by taking into a

ount the periodi
ity of the sys-tem. The resulting distribution is a shu�ed latti
e. We assume that ∆ ≤ ℓ. Theaverage displa
ement of a parti
le is 〈u〉 = 0 and the varian
e of the shu�ing

〈u2〉 =
∫

du u2p(u) = ∆2.We 
an now estimate the PS of a SL. De�ning the Fourier transform δk of thedensity 
ontrast δx = n(x)−n0

n0
as

δk =

{

0 if k = 0
1
N

∑N
i=1 exp(−ikx) otherwise (4.8)we obtain

δk =
1

N

∑

n

exp[−ik(ℓn + un)] , (4.9)109



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSwhere n is an integer labelling the parti
les of the system and where un is thedispla
ement of the parti
le on the site n. For k su
h that (k un) << 1, we obtain,by using the approximation exp(ix) ≈ 1 − ix − x2/2 and 〈un〉 = 0, that the PS isgiven by
P (k) = 〈|δk|2〉 ≈

1

N2

∑

n1,n2

exp[−iℓk(n1 − n2)]{1−
1

2
〈[k(un1

− un2
)]2〉} . (4.10)The independen
e of un1

and un2
if n1 6= n2 implies that

〈[k(un1
− un2

)]2〉 = 2∆2k2(1− δn1,n2
) , (4.11)with δn1,n2

= 1 if n1 = n2 and 0 otherwise. Therefore
P (k) ≈ k2∆2

N
+

1−∆2k2

N2

∑

n1,n2

exp[−iℓk(n1 − n2)] . (4.12)Limiting our analysis to the leading order in the behavior for small values of k, weobtain
P (k) ≈ 1

N
∆2k2 (4.13)when k is small. The SL 
on�gurations are therefore spe
i�ed by two parameters:the latti
e 
onstant ℓ and the shu�ing parameter ∆. An alternative 
onvenient
hara
terization would be given by ℓ and the adimensional ratio ∆/ℓ.Causal power spe
trum: Pinit(k) ∝ k4 at small kTo generate the intial PS in k4 at small k, we follow the argument in [2℄: we startwith an arbitrary uniform spatial point-parti
le distribution with a known PS. Wesuppose that ea
h of these parti
les, 
alled �mother� parti
les in [2℄, splits into a�
loud� of m identi
al �daughter� parti
les, where m is a 
onstant. Ea
h daughterparti
le is then assumed to be displa
ed from its mother position by a sto
hasti
displa
ement whi
h may, or may not, be 
orrelated with the displa
ement of otherparti
les. In other words ea
h set of m parti
les initially lying at the same spatialpoint �explodes� forming a �
loud� of parti
les around it; this pro
edure was 
alledin [2℄, a sto
hasti
 
loud pro
ess.We suppose that the displa
ements applied to di�erent parti
les belonging to thesame mother are symmetri
ally distributed with arbitrary pair 
orrelations. One 
an
hoose, for instan
e, these 
orrelations in order to �x 
ertain moments of the massdispersion of ea
h 
loud. To generate a k4 initial 
ondition, we apply this resultto the spe
i�
 
ase that the mother distribution is a regular latti
e, and we thusderive, following [2℄, the interesting small k behaviour of the PS of the daughterdistribution.For a mother distribution 
orresponding to a regular latti
e, we 
an write themi
ros
opi
 parti
le density as

n(x) =
∑

R

δ(x− R) , (4.14)110



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSwhere R is the generi
 latti
e site. In this 
ase, the PS of n(x) is
Sn(k) = 2πn0

∑

H 6=0

δ(k −H) , (4.15)where the sum is over all the ve
tors H of the re
ipro
al latti
e but H = 0. Notethat this vanishes identi
ally in the �rst Brillouin zone, and therefore in this regionof the k-spa
e the following relation holds exa
tly:
Sρ(k) = 1 + (m− 1)

+∞
∑

l=0

(−ik)l (u− v)l

l!
−m

∣

∣

∣

+∞
∑

l=0

(−ik)lu
l

l!

∣

∣

∣

2

, (4.16)where ρ = mn is the mi
ros
opi
 parti
le density of the daughter parti
les distri-bution, and where u and v are the displa
ements applied to two di�erent parti
lesbelonging to the same 
loud. Expanding the terms (u− v)l in Eq. (4.16), we obtain
Sρ(k) =

+∞
∑

l=1

(−ik)l
l!

l
∑

j=0

(−1)j
(

l

j

)

[

(m− 1)uj × vl−j −muj × vl−j
]

. (4.17)Making the additional assumption of statisti
al symmetry in the displa
ements,
p(u) = p(−u), all the terms with odd l in Eq. (4.17) vanish.Let us now analyse in detail Eq. (4.17), denoting by On(k) its term proportionalto kn. The lowest order non-zero term is n = 2:

O2(k) =
[

u2 + (m− 1)u× v
]

k2 . (4.18)It is simple to verify that [u2 + (m− 1)u× v] ≥ 0 always, as required from the fa
tthat Sρ(k) is a PS. This quantity, however, given our symmetry hypotheses aboutthe displa
ement distribution, is nothing other than
(

m
∑

i=1

ui

)2

= m
[

u2 + (m− 1)u× v
]

. (4.19)Consequently the 
ondition to have an identi
ally vanishing O2(k) term, and there-fore a small k PS of order greater than two, is (∑m
i=1 ui)

2 = 0, or in other words,
m
∑

i=1

ui = 0 , (4.20)with probability one. This means that the 
enter of mass of ea
h 
loud does notmove away from the mother parti
le when the displa
ements are applied. Clearly, for
m = 1, this 
ondition 
an only be trivially satis�ed by applying no displa
ement, inwhi
h 
ase the daughter distribution is the original latti
e distribution. Form = 2, it
an be satis�ed non-trivially: 
hoosing the displa
ement of a �rst point with the PDF
p(u), the other parti
le is then displa
ed deterministi
ally by (−u). The method weuse in this thesis then 
onsists in starting with a distribution of N parti
les on aregular latti
e of latti
e spa
ing ℓ. We divide the total set of N parti
les (N even)into N/2 subsets of 
ouple of parti
les. Let us denote these subsets (i, i+ 1) where
i = 2 k+1 with k ∈ [0; N

2
− 1]. We then displa
e parti
le i with the PDF p(ui) su
hthat
p(ui) =

{

ℓ if ui ∈ [− ℓ
2
; ℓ
2
]

0 otherwise . (4.21)Its neighbours (i+ 1) is then displa
ed deterministi
aly by ui+1 = −ui. 111



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSInitial velo
itiesTo 
omplete information about the initial 
onditions, we must 
hoose the initialvelo
ities. One possible 
hoi
e would be to 
onsider the system of parti
les at rest,i.e vi = 0 for all i ∈ [0, N − 1]. However, in exploring the analogy with 
osmologi
alsimulation there is another 
hoi
e whi
h is natural. This is that 
orresponding tothat given by the Zeldovi
h approximation (whi
h be
omes exa
t in 1−d) dis
ussedin Chapter 2. This 
onsists in the purely growing mode of the displa
ement �eld inEqs. (4.2), (4.3) and (4.4) at early time, i.e. obtained by setting the 
oe�
ients ofthe se
ond term in these equations to zero, su
h that
uSi (ts) = ets/τdyn

(ui(0) + vi(0)

2

)

, (4.22)
uQi (te) =

( te
t0

)2/3 3
(

ui(t0) + t0vi(t0)
)

5
, (4.23)

uRF
i (te) =

( te
t0

)1/3
(

2ui(t0) + 3t0vi(t0)
)

3
, (4.24)where uSi (ts), uQi (te) and uRF

i (te) represent the displa
ement of the ith parti
le ofthe latti
e between 
ollisions in the stati
, quinti
 and RF models. Its only e�e
ton the dynami
al evolution will be to make the transient to self-similarity, whi
hwe will dis
uss below, slightly shorter. We then obtain the 
onditions on the initialvelo
ity �eld
vSi (0) = uSi (0) , (4.25)
vQi (t0) =

2

3t0
uQi (t0) , (4.26)

vRF
i (t0) =

1

3t0
uRF
i (t0) . (4.27)Whe then have, up to the �rst 
rossing/
ollision

uSi (ts) = ui(0)e
ts/τdyn , (4.28)

uQi (te) = ui(t0)
( te
t0

)2/3

, (4.29)
uRF
i (te) = ui(t0)

( te
t0

)1/3

. (4.30)1.3 Choi
e of unitsWe now explain our 
hoi
e of units of length, mass and time for the 1 − d system.We simply �x our unit of mass equal to the parti
le mass, m = 1. As unit oflength we 
hoose the initial latti
e spa
ing ℓ = L/N = 1, where L is the size of thesimulation box and N the total number of parti
les in the system. To follow thedynami
al evolution of the 1− d toy model, we 
hoose the unit of time 
onsideringEq. (4.1) and the dis
ussion below it. Indeed, Eq. (4.1) simply in
orporates the
hoi
e of the di�erent time units: in the stati
 
ase we 
hoose the so 
alled dynami
altime τdyn = 1√
2gn0

and in the expanding 
ase (quinti
 and RF) we 
onsider thedimensionless time variable τΓ = 1
3Γ

ln
(

tE
t0

). For 
onvenien
e, we �x τdyn = 1 = t0.112



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSBelow we will 
ompare the dynami
al evolution in the stati
 and expanding 
ases.To do so it is ne
essary to de�ne the relation between the di�erent time variablesin the two 
ases (as there is a priori no 
onne
tion between the two). An evidentpossible 
hoi
e of mapping is given by the very early time evolution (before �rst
rossing) of the displa
ement given by Eqs. (4.28), (4.29) and (4.30). If we 
hoose
ts/τdyn =

2

3
ln(te/t0) and ts/τdyn =

1

3
ln(te/t0) , (4.31)in ea
h 
ase (quinti
 and RF) we map so that these early two displa
ements areidenti
al in ea
h 
ase. This mapping Eq. (4.31) allows us to asso
iate to any ex-panding simulation (
orresponding to a 
ertain value of Γ) a �stati
 time variable�

ts. In the 
ontinuum approximation, the displa
ements of the parti
les are relatedto the density perturbation through the 
ontinuity equation δ ∝ ∇u. ConsideringEqs. (4.28), (4.29) and (4.30) and the de�nition of the PS P (k) ∝ 〈|δk|2〉, we simplyobtain then
Ps(k, ts) = P (k, 0)e2ts/τdyn , (4.32)
PQ(k, te) = P (k, t0)

(te
t0

)4/3

, (4.33)
PRF (k, te) = P (k, t0)

( te
t0

)2/3

. (4.34)Considering that the PS in the stati
 and expanding 
ases are initially identi
al,i.e. P (k, 0) = P (k, t0) we obtain the same relation as in Eq. (4.31). This meansthat, with this mapping in these time variables, the linear regimes in the stati
 andexpanding 
ases (quinti
 and RF) are identi
al at early time. The physi
al meaningof this mapping extends however, as we will see, for beyond early time: the growthof displa
ements re�e
ts exa
tly that of the PS in the linearised approximation (
f.Chapter 2). The mapping in fa
t relates times in di�erent models (with identi
alinitial 
onditions) at whi
h the PS will be identi
al, if linear ampli�
ation is valid.We will see below that, as in 3− d, linear ampli�
ation does indeed hold at all timeat su�
iently small k. The mapping of time 
hosen therefore relates evolved 
on-�gurations whi
h remain approximately the same at the large s
ales where density�u
tuations are small.In the following, we will only refer to the stati
 time ts to 
ompare the di�erentanalysis in both the stati
 and expanding 
ases. Let us note that we 
an derive ageneri
 relation between t (i.e. the time variable in Eq. (4.1)) and the referen
e time
ts in the growing mode. We simply obtain from Eqs. (4.1) and (4.2) with τdyn = 1

ts = D(Γ) t , (4.35)where D(Γ) = 1
2

(

−Γ+
√
Γ2 + 4

). This gives in the quinti
 and RF models respe
-tively
t =

√

3

2
ts and t =

√
2 ts . (4.36)113



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS1.4 Statisti
al measuresIn the previous 
hapters, we have talked about ensemble averages, that is averageson all possible realizations of a sto
hasti
 pro
ess ρ(x, t). In pra
ti
e, what we have isonly one or at most a few realizations of su
h a sto
hasti
 pro
ess. While in statisti
alme
hani
s, ergodi
ity refers to equality between time average and ensemble average,here it implies equality between spa
e average and ensemble average. Therefore,we have seen in Chapter 2 that if the sto
hasti
 pro
ess is ergodi
, one (in�nite)realization su�
es to obtain an ensemble average. Thus if we 
onsider a quantity Fdepending on the sto
hasti
 pro
ess ρ(x, t) at some positions y1, . . . , yn, we denote
〈F 〉 its ensemble average and F its estimator in the spa
e average. We will use thisnotation in the following.The redu
ed two-point 
orrelation ξ̃In order to estimate the redu
ed two-point 
orrelation fun
tion ξ̃ de�ned in Chapter2, we 
al
ulate �rst an estimate of the 
onditional average density 〈ρ(x)〉p: we 
hooserandomly Nc parti
les (
entres) in the distribution resulting from one realizationof the 
onsidered sto
hasti
 pro
ess and for ea
h of them we 
al
ulate the averagedensity in 1−d �spheri
al shells� of di�erent radii, taking into a

ount the periodi
ity.This 
an be summarised by the following formula

ρ(x, t)p ≡
1

Nc

Nc
∑

i=1

m

V (x, δx)
Ni(x, δx) , (4.37)where V (x, δx) is the �volume� of the symmetri
 interval 
entered on the ith parti
leof a subset of Nc < N parti
les randomly 
hosen among the N parti
les of thesystem. Clearly the result is a fun
tion whi
h does not depend on the sign of x butonly on its absolute value. An estimation of ξ̃(x, t) for x 6= 0 is then

ξ̃(x, t) ≈ ρ(x, t)p
ρ0

− 1 . (4.38)Note that we will generally restri
t ourselves to s
ales where |x| < L/2 in order toavoid e�e
ts 
oming from the periodi
ity of the system. A
tually if one looks atlarger s
ales, the estimators ρ(x, t)p gives always a value 
lose to ρ0.The power spe
trumFor the power spe
trum P (k, t) = P (|k|, t), we use the following quantity to estimateit:
P (k, t) ≈ 1

Nq

∑

k≤q≤k+δk

|δ(q, t)|2 , (4.39)where Nq is simply the number of ve
tor q 
onsidered in the sum. Note that to speedup the 
al
ulation, not all the ve
tor q for a given modulus are taken into a

ount:at large k the density of ve
tors 
onsidered is smaller than at small k. Numeri
allywe simply use a logarithmi
 separation of the ve
tor k to represent the PS.114



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSThe normalized mass varian
eIn the 
ase of the normalized varian
e, we 
hoose Nr random points in the system(i.e. not ne
essarily parti
les of the distribution) and 
al
ulate the mass insidespheres 
entred on them: if Ni(R) is the number of parti
les in the sphere 
entredon the point i and N(R, t) its average, i.e.
N(R, t) =

1

Nr

Nr
∑

i=1

Ni(R) , (4.40)then
σ2(R, t) ≈

1
Nr

∑Nr

i=1N
2
i (R)−N(R, t)

2

N(R, t)
2 . (4.41)2 Basi
 results: 
omparison with 3− dIn this se
tion, we fo
us our analysis on the dynami
al evolution of a stati
 and 1−dequivalent of an expanding �EdS� universe (i.e. quinti
 model), starting with initialPS Pinit(k) ∝ k0 and k2. We present basi
 results, and underline the very strongqualitative similarities with 3− d.2.1 Visual inspe
tionThe evolution of 
lustering 
an �rstly be illustrated by a visual inspe
tion in 
on-�guration spa
e as well as in one-parti
le phase spa
e (also 
alled µ-spa
e). Shownin Figs. 4.3, 4.4, 4.5 and 4.6 are snapshots of di�erent initial 
onditions and evolved
on�gurations at in
reasing time for initial PS Pinit(k) ∝ k0 and k2, in a stati
 andexpanding (quinti
) universe, for a system of N = 105 parti
les. The plots in theleft-hand panels show the number of parti
les N(i) in ea
h latti
e 
ell at ea
h time,whi
h is proportional to the mass density in ea
h 
ell. De�ning the number density
ontrast as

δ(x) =
n(x)− n0

n0
, (4.42)where n(x) =

∑N
i=1 δD(x − xi) is the mi
ros
opi
 number density and n0 is themean mi
ros
opi
 density, the plots represent the evolution of δ̄(x) + 1, where thebar indi
ates an average over the unit latti
e 
ell. In the phase spa
e plots, in theright-hand panels, ea
h point represents simply one parti
le.One sees 
learly that, in both the stati
 and expanding 
ases, the evolutionappears to pro
eed in a �bottom-up� manner: overdensities �rst develop at smalls
ales and subsequently at larger s
ales. This is typi
al of what is termed in 3 − dthe hierar
hi
al formation of stru
tures.We note a di�eren
e between the 
ase 
orresponding to an initial PS Pinit(k) ∝ k0and the one 
orresponding to Pinit(k) ∝ k2. In the latter 
ase, we see 
learly theappearan
e of voids in the simulation box whose size grows monotoni
ally in time,and whi
h separate overdense regions. In the 
ase of an initial PS Pinit(k) ∝ k0, onthe other hand, we see that, while one 
an distinguish 
learly overdensities whi
hemerge at in
reasing s
ale with time, they are not separated by voids. We will115



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSreturn in Chapter 5 to these di�eren
es in the 
ontext of a multifra
tal analysis ofthe 
lustering in ea
h 
ase.Furthemore, the sense in whi
h the system is representative of the evolution ofan in�nite system is manifest visually in the fa
t that the system does not appearto have a preferred 
enter - 
lusters form in apparently random lo
ations withoutsensitivity to the boundaries. Indeed we do not follow the evolution for longer timesthan those shown pre
isely be
ause the system then begins to be dominated by asingle non-linear stru
ture. This is a regime in whi
h we are not interested sin
e itis evidently strongly a�e
ted by �nite size e�e
ts. The maximal time to rea
h thisregime depends not only on the number of parti
les N in the system (or size L ofthe simulation box), but also on the amplitude of the displa
ements.
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Figure 4.3: Evolution in 
on�guration spa
e (left hand panels) and in one parti
lephase spa
e - µ-spa
e - (right hand panels) starting with an initial PS Pinit ∝ k0 forthe stati
 model at time ts = 0, 4, 6, 7, 8. The unit of length is given by the initiallatti
e spa
ing ℓ = L/N and thus L = N = 105.

Figure 4.4: Evolution in 
on�guration spa
e (left hand panels) and in one parti
lephase spa
e - µ-spa
e - (right hand panels) starting with an initial PS Pinit ∝ k2for the stati
 model at time ts = 0, 6, 10, 12, 14. The unit of length is given by theinitial latti
e spa
ing ℓ = L/N , and thus L = N = 105. 117
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Figure 4.5: Evolution in 
on�guration spa
e (left hand panels) and in one parti
lephase spa
e - µ-spa
e - (right hand panels) starting with an initial PS Pinit ∝ k0 forthe expanding (quinti
) model at time ts = 0, 4, 6, 7, 8. The unit of length is givenby the initial latti
e spa
ing ℓ = L/N , and thus L = N = 105.

Figure 4.6: Evolution in 
on�guration spa
e (left hand panels) and in one parti
lephase spa
e - µ-spa
e - (right hand panels) starting with an initial PS Pinit ∝ k2for the expanding (quinti
) model at time ts = 0, 6, 10, 12, 14. The unit of length isgiven by the initial latti
e spa
ing ℓ = L/N , and thus L = N = 105.118



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSMemory of initial 
onditionsIt is interesting to 
ompare visually the evolution of 
lustering in the two 
ases(stati
 and expanding). Note that the simulations are started for ea
h value of nfrom identi
al initial 
onditions (i.e. the same realization of the displa
ements). Weshow in Figs. 4.7 and 4.8 the evolution of the density �eld, smoothed, as in previousplots, at the s
ale of initial latti
e spa
ing, for initial PS Pinit(k) ∝ k0 and k2.We see that the prin
ipal stru
tures are formed approximately at the same spatiallo
ations in the two 
ases. That our 
hoi
e of �time 
orresponden
e� Eq. (4.31) isappropriate is, as we will see below, re�e
ted in the fa
t that, if we smooth thestru
tures on large s
ale, the two 
on�gurations strongly ressemble one another.This is indi
ative of the 
entral role of the linear ampli�
ation of density �u
tuationdis
ussed in Chapter 2, whi
h leads to the development of stru
tures from the �seed�overdensities in the initial 
onditions. The amplitude of the density �eld in theexpanding 
ase (blue representation in Figs. 4.7 and 4.8) is 
learly typi
ally higherthan that in the stati
 
ase (red representation in Fig. 4.7 and 4.8). This 
anbe explained by the fa
t that in the expanding 
ase there is simply an additionaldamping term: as we will dis
uss in detail below, the e�e
t of this term is thatit simply 
auses, in the highly 
lustered regions, the stru
tures to �shrink� in size
ompared to the stati
 
ase. This �shrinking� is indu
ed by the �
ooling� asso
iatedwith the damping term.
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Figure 4.7: Density �eld (smoothed on initial latti
e spa
ing) for the stati
 (red)and expanding (blue) models obtained from identi
al initial 
ondition for an initialPS Pinit(k) ∝ k0 at ts = 8. 119
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Figure 4.8: Density �eld (smoothed on initial latti
e spa
ing) for the stati
 (red)and expanding (blue) models obtained from identi
al initial 
ondition for an initialPS Pinit(k) ∝ k2 at time ts = 14.We show in Fig. 4.9, a spatial zoom in the 
ase of Pinit(k) ∝ k2: starting witha subsystem of width of approximately 3.104 (in units where the size of the box
L = N = 105) sele
ted out from the simulation box, we perform a zoom, betweenea
h plot, by about a fa
tor of �ve, i.e. ea
h plot shows a small part of the previousone, the s
ale on the x-axis being multiplied in ea
h 
ase by this fa
tor. Althoughwe are limited in this parti
ular representation by the 
hosen resolution (we have�xed the size of the bin in the histogram equal to the initial latti
e spa
ing), we seethat our numeri
al simulation gives the opportunity to resolve non-trivial 
lusteringin the system over a large range of s
ale (in 3− d it is typi
ally limited to two or atvery most three orders of magnitude). At large s
ales, we observe that the stru
turesare formed at the same pla
es in the stati
 and expanding 
ases. However, when wezoom in, we see that this 
orresponden
e is lost. This is a re�e
tion of the fa
t thatthe non-linear physi
s, whi
h 
omes into play at smaller s
ales, wipes out memoryof the initial 
ondition.
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Figure 4.9: Representation of the superposition of the density �eld in the stati
 (red) and expanding (blue)
ases for an initial power PS Pinit(k) ∝ k2. Between ea
h pi
tures a �zoom� of fa
tor 5 is applied, i.e. ea
hplot shows a small part of the previous one, the s
ale on the x-axis being multiplied in ea
h 
ase by thisfa
tor. We are limited by the resolution 
hosen.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS2.2 Development of �u
tuations in real spa
e: hierar
hi
al
lusteringIn order to distinguish the non-linear regime of large �u
tuations from the linearregime of small �u
tuations (in whi
h the linear �uid theory introdu
ed in Chapter2 is expe
ted to be valid), it is useful to 
onsider, just as in 3 − d, the normalizedvarian
e of parti
le number (or mass) in intervals, de�ned in Chapter 2, se
tion 4.The homogeneity s
ale, already de�ned in Chapter 2 , and denoted λ0, marks this
ross-over from large to small �u
tuations. An alternative de�nition of λ0 is thelength-s
ale at whi
h the normalized mass varian
e is of order unity, i.e.
σ2(λ0) ≃ 1 , (4.43)and σ2(x) < 1 for ∀x > λ0 (this de�nition of the homogeneity s
ale 
an however bemisleading when the average density is not a well-de�ned property of the system, asin fra
tal parti
le distributions (see e.g. [71℄), but is appropriate here where the meandensity is indeed non-zero and known exa
tly). Through the study of the normalizedmass varian
e we will probe in the following the validity of the linearized �uid theoryas well as the hierar
hi
al nature of the 
lustering.We start here with the analysis of the temporal evolution of σ2(x). We show inFigs. 4.10, 4.11, 4.12 and 4.13 its temporal evolution in the stati
 and expanding(quinti
) 
ases, starting with initial PS Pinit(k) ∝ k0 and k2. In ea
h 
ase, we 
andistinguish three distin
t regimes: at large s
ales we see a simple ampli�
ation of theinitial fun
tional behaviour. In the 
ase of Pinit(k) ∝ kn with n > 1, this 
orrespondsto σ2(x) ∝ x−2. This behaviour simply 
orresponds, as explained in Chapter 2,to unnormalized mass �u
tuations independent of s
ale, whi
h is the most rapidde
ay (proportional to the surfa
e) possible in any spatially homogeneous pointdistribution, i.e. σ2(x) ∝ x−d+1 where d represents the dimension of the Eu
lideanspa
e (d = 1 in our model). In the 
ase P (k) ∝ kn with n < 1 the large s
alesbehaviour simply 
orresponds to σ2(x) ∝ x−d+n, with d = 1. Thus for n = 0 wehave σ2(x) ∝ x−1.At small s
ales, we observe in all 
ases σ2(x) ∝ x−1. This is the shot noisebehaviour intrinsi
 to any su
h distribution at small s
ales. The range of s
alesbetween these two limiting behaviours is that of the non-linear 
lustering. We seequalitatively that the �
ross-over� to this non-linear regime from the linear regimeo

urs approximately where the amplitude of the �u
tuations is of order unity.To study the validity of the linear theory and illustrate the �hierar
hi
al� natureof the 
lustering, we 
onsider further the temporal evolution of the s
ale λ(α, t)de�ned by the relation

σ2
(

λ(α, t), t
)

= α , (4.44)where α is a 
hosen 
onstant. Let us note that if we �x α = 1, we re
over thede�nition for the homogeneity s
ale Eq. (4.43). We represent in Figs. 4.14 and 4.15the temporal evolution of the s
ale λ(α, t) for di�erent values of α and for di�erentinitial PS Pinit(k) ∝ k0 and k2. For α < 1, whi
h 
orresponds to the regime ofsmall �u
tuations, we see that the s
ale λ(α, t) in
reases in time, i.e. the s
ale atwhi
h linear theory would be expe
ted to remain valid in
reases. This means that,as non-linearity develops at small-s
ale, homogeneity is still valid at larger s
ale for122
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h we are still in the regime of small �u
tuations. This is 
ompletely analogousto what is observed in 3 − d simulations of hierar
hi
al 
lustering, whi
h is generi
in the evolution of 3− d simulations starting from this kind of initial 
ondition: theinitial small �u
tuations at a given �non-linear� s
ale are ampli�ed, as des
ribed bylinear theory, until the �u
tuations in overdense regions 
ollapse forming stru
tures.For an initial 
ondition with a PS with n < 1 it is simple to derive the predi
tionwhi
h follows from linear theory alone for the growth of the s
ale λ(α, t) for α < 1.Indeed, we have seen in Chapter 2 that for n < 1, σ2(x, t) ∼ kdP (k, t)
∣

∣

∣

k∼x−1
. Thusthe linear ampli�
ation of P (k, t) dis
ussed in Chapter 2, i.e. P (k, t) = A(t) P (k, 0)for su�
iently small k, where A(t) may be infered in ea
h 
ase from the set ofEqs. (4.32), implies

σ2(x, t) = A(t) σ2(x, 0) (4.45)i.e. the varian
e in real spa
e is ampli�ed linearly also. For P (k) ∝ kn, we have
σ2(x, t) ∼ 1

xn+1 , thus
σ2
(

λ(α, t), t
)

= α = A(t) σ2
(

λ(α, t), 0
)

= A(t)

(

λ(1, 0)

λ(α, t)

)1+n

, (4.46)whi
h gives
λ(α, t) ∝ A1+n(t) = Rs(t) . (4.47)where Rs(t) is the s
aling fa
tor derived in Chapter 2 in the dis
ussion of self-similarity. We see in Figs. 4.14 and 4.15 that these behaviours in fa
t �t well thebehaviour of λ(α, t) not just for n < 1 and α < 1, but they work also for n > 1 and,at su�
iently long times, for α > 1 for both 
ases. This is a result of the self-similarevolution of the system whi
h we dis
uss in the following se
tion in detail. Notethat, for n = 2, we have σ2 ∝ 1

x2 at large x, and thus σ2(x, t) ∼ R2
s(t)σ

2(x, 0) ≁

A(t) σ2(x, 0) at large x, i.e. we do not obtain the ampli�
ation of Eq. (4.46).Let us note that the fa
t that in the 
ase n = 0, for α = 0.1 whi
h 
orrespondto a s
ale of small �u
tuations, the points at early time do not mat
h the linearampli�
ation predi
tion (the line symbolizing Rs(t)) 
an be simply explained by thefa
t that the mass-varian
e σ2(x, t) is dominated at early times by large k.
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Figure 4.14: Evolution of the s
ale λ(α, t) de�ned in Eq. (4.44) starting with aninitial PS Pinit(k) ∝ k0 in the stati
 
ase.
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Figure 4.16: Evolution of the s
ale λ(α, t) de�ned in Eq. (4.44) starting with aninitial PS Pinit(k) ∝ k0 in the expanding (quinti
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orrelation in real spa
e: self-similarityWe next 
onsider the evolution of 
lustering in real spa
e as 
hara
terized by theredu
ed two-point 
orrelation fun
tion, ξ(x), introdu
ed in Chapter 2.In Figs. 4.18, 4.19, 4.20 and 4.21, we show the evolution of |ξ(x, t)|, the absolutevalue of the 
orrelation fun
tion in a log-log plot. As expe
ted from the study ofthe temporal evolution of the normalized mass varian
e, we observe that startingfrom ξ(x) ≤ 1 everywhere, non-linear 
lustering (i.e. ξ(x) ≫ 1) �rst developsaround the initial interparti
le distan
e, and then progressively develops both atlarger and smaller s
ales. At any given s
ale the amplitude of 
orrelation grows intime monotoni
ally. In parti
ular, the s
ale of non-linear 
lustering whi
h we 
ande�ne by ξ(λNL) = 1 monotoni
ally grows, re�e
ting again the hierar
hi
al natureof the 
lustering dis
ussed in the previous se
tions.On
e the 
orrelation has evolved in all 
ases a ξ emerges in whi
h one 
an in-dentify three distin
t regimes:1. an approximately �at (
onstant) ξ(x, t) = ξmax(t) at small s
ale, below a s
ale
xmin;2. a region of strong 
lustering ξ with approximately power law behaviour;3. a region of weak 
lustering, ξ < 1, where the 
lustering signal be
omes verynoisy.Let us now turn to the question of whether the evolution is self-similar. Asdis
ussed in Chapter 2, this means that the system evolves towards a behaviour

ξ(x, t) ≈ Ξ
(

x/Rs(t)
)

, (4.48)i.e. towards a dynami
al s
aling behaviour of the 
orrelation fun
tion, where Rs(t)is the s
aling fa
tor predi
ted by the linearized �uid theory. To test this we showin Figs. 4.22, 4.23, 4.24 and 4.25 the appropriately res
aled version of the previous�gures, i.e. we represent the absolute value of the 
orrelation fun
tion |ξ(x, t)| as afun
tion of x/Rs(t) where Rs(t) = exp
(

2(ts−tref )

n+1

) in 1− d, with tref some arbitrarytime, has been introdu
ed in Chapter 2. We observe that in all 
ases the 
urvesindeed superimpose well in a range of s
ale whi
h grows monotoni
ally in time, i.e.the spatial range in whi
h self-similarity is valid be
omes more and more extended.The �break� from self-similarity at small s
ales is 
learly asso
iated with a plateau atthese s
ales in the 
orrelation fun
tion. Indeed su
h a plateau 
an only be 
onsistentwith self-similarity if its amplitude does not evolve, whi
h is 
learly not the 
ase. Atlarge s
ale the noise in ξ makes it di�
ult to assess whether self-similarity applies.We will see in the next se
tion that it does indeed apply as expe
ted at large s
aleswhere it re�e
ts the validity of linear theory.In the non-linear regime, and where self-similarity is valid, the 
orrelation fun
-tion �ts to a good approximation in all 
ases
Ξ(x) ∝ x−γ , (4.49)where γ(n,Γ) depends on the index n of the initial PS and on the value of thedamping term Γ. We give in Table 2.3 the values of the power index γ(n,Γ) obtained128



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSintial PS stati
 (Γ = 0) quinti
 (Γ = 1/
√
6) RF (Γ = 1/

√
2)

n = 0 γ = 0.18± 0.03 γ = 0.20± 0.05 γ = 0.25± 0.02
n = 2 γ = 0.18± 0.03 γ = 0.34± 0.03 γ = 0.50± 0.02Table 4.1: power index γ(n,Γ) of the 
orrelation fun
tion in the self-similar regime

ΞSS(x) ∝ x−γ, for the di�erent values of n and Γ indi
ated. We 
onsider both thestati
 and expanding (quinti
 and RF) 
ases. The di�erent values of γ and the
orresponding error bars are obtained with a linear interpolation. We see that thepower index γ depends on the index n of the initial power spe
trum and the dampingterm Γ.with a linear interpolation.Note that in 3− d similar trends are observed:
• γ is independent of n for stati
 model (see e.g. [11℄);
• γ in
reases with n in expanding (EdS) model (see e.g. [139℄).A striking di�eren
e between the stati
 and expanding 
ases is that xmin de
reasesvery signi�
antly in the expanding 
ase, while it remains roughly 
onstant in thestati
 
ase. We will 
ome ba
k to study more 
arefully these behaviours in se
tion4 below.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS2.4 Development of 
orrelations in re
ipro
al spa
eWe next analyse the evolution of 
orrelation as 
hara
terized by the PS for the same
ases.Shown in Figs. 4.27, 4.28, 4.29 and 4.30 are the evolution of the PS in ea
h ofthe same four 
ases above. We observe in ea
h 
ase that
• at small k, there is a simple ampli�
ation of the initial �u
tuation whi
h hasindeed the appropriate simple power law form. This ampli�
ation 
orrespondsto the behaviour expe
ted from the linearized treatment of the equation for aself-gravitating �uid, i.e. the linear ampli�
ation. This 
an be simply writtenin the growing mode

P (k, t) = P (k, 0) exp(2ts) , (4.50)where the relation is written in the referen
e time units ts;
• the range in whi
h the initial PS shape is maintained, i.e. over whi
h simpleampli�
ation is observed, be
omes more redu
ed as time progresses. Thissimple ampli�
ation, indeed, is observed in a range of k < kNL(t), where
kNL(t) is a wave number whi
h de
reases as a fun
tion of time. The monotoni
de
rease of kNL(t) just re�e
ts the hierar
hi
al nature of the 
lustering. Thisis pre
isely the qualitative behavior one would anti
ipate as linear theory isexpe
ted to hold only above a s
ale whi
h, in real spa
e, be
ause of 
lustering,in
reases with time;

• at all times, the PS 
onverges at large wave-numbers (k ≥ kN , where kN = π
ℓis the Nyquist frequen
y) to the asymptoti
 value 1/n0. This is simply a re-�e
tion of the ne
essary presen
e of shot noise �u
tuations at small s
ales dueto the parti
le nature of the distribution.The e�e
t of expansion (i.e. the damping term in the equation of motionEq. (4.1)) is illustrated more 
learly in Fig. 4.26. It shows, at ts = 8, the PS inthe stati
 and expanding (quinti
 and RF) models starting with identi
al initial
onditions (i.e. the same realization of the displa
ements). We 
learly see that thelinear regimes are superposed as expe
ted with the growing mode. This also re�e
tsthe e�e
t of the damping term in the expanding 
ases. In the intermediate range of

k, i.e. kNL(t) < k ≤ kN , the evolution is quite di�erent than that given by lineartheory. This is the regime of nonlinear 
lustering in whi
h the density �u
tuationsare large in amplitude.Let us now examine how the self-similarity dis
ussed in previous se
tion manifestsitself in the behaviour of the PS. In 1− d this 
orresponds to the relation
k P (k, t) = k Rs(t)× P (k Rs, tref) , (4.51)where Rs(t) is the time dependent res
aling of length, normalized by at some arbi-trary time tref . As explained previously in Chapter 2, the small k behaviour of thePS taken together with the fa
t that it is ampli�ed at small k as given by linear134
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hoose for 
omparaison the evolved 
on�guration of the stati
 (Γ = 0),the quinti
 (Γ = 1/
√
6) and the RF (Γ = 1/

√
2) models at time ts = 8. We 
learlysee that the linear regimes are superposed as expe
ted with the growing mode, andthat the s
ale kmax in
reases when the parameter Γ (i.e. the damping) in
reases.theory then imply that the self-similar s
aling will be 
hara
terized in 1− d by thefun
tion

Rs(t) = exp
( 2

n+ 1

ts − tref
τdyn

)

. (4.52)To assess the validity of this in our system, we show in Figs. 4.31, 4.32, 4.33 and 4.34the temporal evolution of k × P (k, t) as a fun
tion of the dimensionless parameter
k×Rs(t), and taking tref = 0. At small k, we see that right from the initial time theself-similarity is indeed followed (as the res
aled 
urves are always superimposed atthese s
ales). This is simply a 
he
k on the result validity of linear theory in thisregime for an index n < 4, as anti
ipated above. As time progresses we see therange of k in whi
h the 
urves are superimposed in
reases, extending further withtime into the non-linear regime. This is pre
isely what is observed in the analogous3-d simulations. Note that the behavior at asymptoti
ally large k is 
onstrainedto be proportional to k/n0 at all times, 
orresponding to the shot noise present inall parti
le distributions with average density n0 and whi
h, by de�nition, does notevolve in time (and therefore 
annot manifest self-similarity).We must however noti
e that in the study of the temporal evolution of the PS, thebehavior at asymptoti
ally large k (proportional to 1/n0) is di�erent from the resultthat we might expe
t naively from the study of the 
orrelation fun
tion. Indeed, wefound that the 
orrelation fun
tion rea
hes at small s
ales a plateau whose amplitudewould 
orrespond to an asymptoti
ally large k behavior of the PS proportional to
1/nplat << 1/n0. This di�eren
e 
an be explained by the fa
t that the PS 
ontains135



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSintial PS stati
 quinti
 RF
n = 0 β = 0.02± 0.01 β = 0.14± 0.02 β = 0.25± 0.02
n = 2 β = 0.01± 0.01 β = 0.35± 0.02 β = 0.50± 0.02Table 4.2: power index β(n,Γ) of k × P (k) ∝ kβ in the self-similar regime, when

n the index of the initial PS is n = 0 and n = 2, and Γ the damping term. We
onsider both the stati
 and expanding (quinti
 and RF) 
ases. The di�erent valuesof β and the 
orresponding error bars are obtained with a linear interpolation. Wesee the dependan
e of β in n and Γ as observed in the 
orrelation fun
tion.a term proportional to 1/n0 whi
h �drowns� the signal at small s
ales whi
h we 
andis
ern in the 
orrelation fun
tion.De�ning the parameter β through the power-law relation
k × P (k) ∝ kβ (4.53)in the self-similar regime for the stati
 and expanding models, we 
an extra
t fromFigs. 4.31, 4.32, 4.33 and 4.34 the di�erent values measured for this power index.The results are presented in table 2.4. We show in the non-linear regime, in the stati
and expanding models, that just as for the 
orrelation fun
tion, the exponents β donot depend on n in the stati
 
ase, but do show su
h a dependen
e in the expanding
ases.As the PS is the Fourier transform of the 
orrelation fun
tion (
f. Chapter 2),we expe
t the power indexis β(n,Γ) and γ(n,Γ), for a pure power law, to be equal.It is then interesting to 
ompare the results presented in Table 2.3 and Table 2.4.We see that the values of the two di�erent exponents are in agreement within thestandard numeri
al error in the expanding (quinti
 and RF) 
ases. In the stati

ase, however, we see that β and γ do not tally. We note that this di�eren
e is notlimited to the 1 − d study, as the same disagreement is also observed in 3 − d [11℄in whi
h 
ase P (k) ∝ k−3 and ξ(r) ∝ r−0.2 in the self-similar regime.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSSummary of 
omparison with 3− dAs far as the expanding (EdS) 
ase is 
on
erned in 3− d, self-similarity is expe
tedto be valid, as explained in Chapter 2, in a range of n, the index of the initial PS,su
h that −3 < n < 4. While there has been 
onsiderable dis
ussion of the 
ase
−3 < n < −1 in the literature, with di�erent 
on
lusions about the observed degreeof self-similarity (see e.g. [51℄ and [139℄), the 
ase n ≥ 1 has remained open. Thereason why the 
ase n > 1 has not been studied numeri
ally appears to be twofold:

• �rstly, it is not of dire
t interest to �real� 
osmologi
al models whi
h des
ribePS with exponents in the range −3 < n < −1;
• se
ondly, su
h initial 
onditions are 
onsidered �hard to simulate� (see e.g.[139℄).In the stati
 
ase, a qualitative similarity seems to emerge from the 1− d and 3− d

N-body simulations: self-similarity is observed in 3−d even for n > 1 (n = 2 in [11℄),and the slope of the PS in the self-similar regime appears to be independant of theinitial spe
trum.In the expanding 
ase, our 1 − d results show the same tenden
y as the resultobserved in 3 − d (see e.g. [139℄): the slope of the PS in the self-similar regimeshows dependen
e on the initial spe
trum. When the index of the initial spe
trumin
reases, the slope of the PS in the self-similar regime in
reases also.3 Evolution from 
ausal density seedsWe now 
onsider the 
ase where the initial PS is Pinit(k) ∝ k4. We treat this
ase separatly be
ause, as dis
ussed in Chapter 2, it 
orresponds to the power-lawbehaviour at whi
h one expe
ts linear theory, whi
h we have seen is the �drivingfor
e� of the dynami
s in the 
ases above, to break down. One thus expe
ts aqualitative di�erent me
hanism for the formation of stru
tures. As explained also inChapter 2, this 
orresponds to the so-
alled �
ausal seeds�, i.e. density perturbationsat large s
ale, whi
h 
ould be produ
ed by some small s
ale physi
s obeying simplyto 
onservation of mass and momentum. It has not been studied in 3 − d, theprin
ipal reason being probably the 
onsiderable numeri
al a

ura
y needed: anyspatially un
orrelated random error introdu
es a k2 
ontribution to the PS whi
h
an be
ome dominant at small k. We follow the same approa
h as in the 
ase k0and k2, starting with visual inspe
tion.3.1 Visual inspe
tionIn Figs. 4.36 and 4.37, the plots in the left-hand panels again show the number ofparti
les N(i) in ea
h latti
e 
ell at ea
h time, whi
h is proportional to the massdensity in ea
h 
ell. In the phase spa
e plots, in the right-hand panels, ea
h pointrepresents simply one parti
le.One sees 
learly that, as in the 
ase whith initial PS Pinit ∝ k0 and k2, in boththe stati
 and expanding 
ases, the evolution appears again to pro
eed in a �bottom-up� manner. As before, the system is representative of the evolution of an in�nitesystem: it does not appear to have a preferred 
enter - 
lusters form in apparently141



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSrandom lo
ations without sensitivity to the boundaries.
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Figure 4.35: Superposition of the 
ases stati
 (red) and expanding (blue) for aninitial PS Pinit(k) ∝ k4, at time ts = 22. In both 
ases, the initial displa
ement
on�gurations are exa
tly the same.The system shows however a qualitative di�eren
e 
ompared to the previousanalysis. We 
ompare qualitatively in Fig. 4.35 the evolved 
on�gurations in thestati
 and expanding 
ases. As in the previous plot, the �gure shows the densitydistribution smoothed on initial latti
e spa
ing. The simulations are started withexa
tly the same density perturbation and Pinit(k) ∝ k4. We see that the 
orrelationbetween the lo
ation of the stru
tures is, 
ontrary to n = 0 and n = 2, not so strongat all. In the former 
ases the strong 
orrelation was explained to be the result ofthe validity of linear theory at large s
ales: the stru
tures at large s
ales are theampli�ed seed �u
tuations. The fa
t that this is not the 
ase when n = 4 is thennot surprising; indeed this 
ase is pre
isely expe
ted to be very di�erent be
auselinear ampli�
ation is no longer valid.
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Figure 4.36: Evolution in the 
on�guration spa
e and in the one parti
le phase spa
e(µ-spa
e) of our one-dimensional toy model, starting with an initial PS Pinit(k) ∝ k4in a stati
 
ase at time ts = 0, 12, 14, 18, 22. The unit of length is given by the initiallatti
e spa
ing ℓ = L/N with L = N = 105.

Figure 4.37: Evolution in the 
on�guration spa
e and in the one parti
le phase spa
e(µ-spa
e) of our one-dimensional toy model, starting with an initial PS Pinit(k) ∝ k4in an expanding 
ase at time ts = 0, 12, 14, 18, 22. The unit of length is given by theinitial latti
e spa
ing ℓ = L/N with L = N = 105. 143



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS3.2 The power spe
trumWe now study the PS as the qualitative di�eren
es anti
ipated are most evident in
k spa
e. Shown in Figs. 4.39 and 4.40 are the temporal evolution of the PS in boththe stati
 and expanding (quinti
) 
ases.We note that at small wave-numbers the PS shows a temporal ampli�
ation in
k4. The regime in whi
h this temporal ampli�
ation is valid de
reases with time andis observed in a range k < kNL(t), where kNL(t) is a wave number whi
h de
reasesas a fun
tion of time. At all times, the PS still 
onverges at large wave-numbers tothe asymptoti
 value 1/n0. However, this ampli�
ation is not the one predi
ted bylinear theory. This is illustrated in Fig. 4.38 where we plot [ P (k,t)

P (k,0)

] at small k. Indashed line is plotted for 
omparaison the behaviour expe
ted naively from lineartheory, i.e. A(t) = Rn+1
s (t) with n = 4. As anti
ipated we see that the linear theoryis not followed as the points are not superimposed with the linear predi
tion. Wewill 
ome ba
k to this result in the following with the study of self-similarity.
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Figure 4.38: Temporal evolution of P (k,t)
P (k,0)

for k = 10−3, i.e. in the regime where asimple ampli�
ation is observed, in the stati
 (left panel) and expanding (quinti
)models (right panel). We also represent the fun
tion A(t) = Rn+1
s (t) with n = 4,where Rs(t) is the s
aling fa
tor predi
ted naively by the linearized �uid theory for

n = 4.We observe the same di�eren
e between the stati
 and the expanding 
ases asin the 
ase k0 and k2: the s
ale kmax at whi
h the PS rea
hes its asymptoti
 value
1/n0 stays approximatly 
onstant in the stati
 
ase, while it translates to the rightin the expanding 
ase.As in the previous se
tion, to assess whether self-similarity applies, we showin Figs. 4.41 and 4.42 the temporal evolution of k × P (k, t) as a fun
tion of thedimensionless parameter k × Rs(t), where Rs(t) is the s
aling fa
tor predi
ted bylinear theory for n = 4, and taking tref = 0.In both the stati
 and the expanding 
ases, we see that right from the initialtime the self-similarity is not followed at small k (as the res
aled 
urves are neversuperimposed). This is representative of the non-validity of the linear ampli�
ationin the parti
ular 
ase k4, as expe
ted in Chapter 2. However, as time progresses,144



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSwe see a non-linear range of k in whi
h the 
urves are superimposed and where thisrange of k in
reases with time: this means that as non-linearity develops in this limit
ase, we re
over the self-similarity in the non-linear range with the s
aling fa
tor
Rs(t) predi
ted by linear theory.De�ning the parameter β as in Eq. (4.53) in the self-similar regime for the stati
and expanding models, we 
an extra
t from Figs. 4.41 and 4.42, using linear interpo-lation, the di�erent values measured for this power index. We obtain β = 0.43±0.01and β = 0.62± 0.01 in the quinti
 and RF models and β = 0.01± 0.02 in the stati

ase.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS3.3 Correlation fun
tionIn Figs. 4.43 and 4.44 we show the temporal evolution of the absolute value |ξ(x)| ina log-log plot just as in the 
ase n < 4. We observe a qualitative similar behaviouras previously obtained for n < 4: starting from ξ(x) ≤ 1 everywhere, non-linear
orrelations develop �rst at s
ales smaller than the intial inter-parti
le distan
e, andafter few dynami
al times the 
lustering develops at smaller s
ales.From Figs. 4.45 and 4.46 it appears that on
e signi�
ant non-linear 
orrelationsare formed, the evolution of the 
orrelation fun
tion ξ(x) 
an be des
ribed, ap-proximately, by the same simple translation in time des
ribed in Eq. (4.48). Letus note, however, that in Fig. 4.45 the di�erent 
urves do not perfe
tly superposethemselves. This is not surprising as we expe
t from our study of the PS above thatself-similarity does not apply at large x. Then, as the redu
ed 2-point 
orrelationfun
tion is simply the FT of the PS, the 
orrelation fun
tion in the stati
 model(where the non-linear regime is less developped than in the expanding model) isdominated by large x.Starting with an initial PS Pinit(k) ∝ k4, we measure the values of the exponent
γ = 0.15 ± 0.05 in the stati
 model, γ = 0.46 ± 0.03 in the quinti
 model and
γ = 0.63 ± 0.01 in the RF model, using a linear interpolation. We noti
e againthat the res
aled 
orrelation fun
tions are superimposed above a s
ale xmin where a�plateau� of amplitude ξmax is rea
hed and shows the same qualitative behaviour asobserved for n < 4.As we did previously in the 
ase where the initial PS Pinit ∝ k0 and k2, we 
an
ompare the power index β and γ. We see that they are in agreement within thestandard numeri
al error in the expanding 
ases (quinti
 and RF). However, as inthe 
ase k0 and k2, they do not agree again in the stati
 
ase.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS3.4 Normalized mass varian
eWe show in Figs. 4.47 and 4.48 the temporal evolution of σ2(x). Its qualitativebehaviour is very similar to that observed in the 
ase n = 0 and n = 2: at larges
ales we see a temporal ampli�
ation of the initial fun
tional behaviour, whi
h
orresponds to σ2(x) ∝ x−2. As we explained in Chapter 2, this behaviour simply
orresponds to mass �u
tuations independent of s
ale, whi
h is the most rapid de
aypossible in any spatially homogeneous point distribution.At small s
ales, we observe σ2(x) ∝ x−1 whi
h is the shot noise behaviour intrin-si
 to any su
h distribution at small s
ales. The range of s
ales between these twolimiting behaviours is still that of the non-linear 
lustering. Note that the ampli�-
ation of the varian
e at large separation seen in Figs. 4.47 and 4.48 is not a resultof linear ampli�
ation, just as dis
ussed for the 
ase n = 2 in se
tion above. Indeed,as for n = 2, σ2 ∼ 1
x2 , so that self-similarity implies σ2 ∼ Rs(t) ≁ A(t)σ2(x, 0).To probe in real spa
e the self-similar behaviour we 
onsider in Figs. 4.49 and4.50 the temporal evolution of the s
ale λ(α, t) de�ned in Eq. (4.44).We see in Figs. 4.49 and 4.50 that, in both the stati
 and expanding 
ases, despitethe absen
e of linear ampli�
ation of PS, self-similarity seems to emerges with thebehaviour that this would predi
t. Indeed, 
onsidering an initial PS Pinit ∝ kn with

n < 1, we have seen in Chapter 2 that σ2(x) ∝ k P (k)
∣

∣

∣

k=x−1
. Then linear ampli-�
ation of the PS implies 
onsequently linear ampli�
ation of the normalized massvarian
e. However, for n > 1, whi
h 
orresponds to the 
ase where Pinit(k) ∝ k4,the relation between the PS and the normalized mass varian
e is di�erent. Follow-ing the argument developped in [11℄, the integral in Eq. (2.200) in Chapter 2 with

P (k) ∝ kn with n > 1 diverges at all k, and an ultraviolet 
ut-o� is required toregulate it. The authors of [11℄ have shown that this 
ut-o� is 
learly in the rangein whi
h the ampli�
ation in k spa
e is non-linear. Thus the evolution of this quan-tity, even at very large s
ales, is determined by modes in k spa
e whi
h are in thenon-linear regime.Furthermore, as in the 
ase k0 and k2, we see that in both the stati
 and theexpanding 
ases, we see that self-similarity propagates in time to non-linear ranges,as expe
ted from the analysis of the PS.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS4 Development of the range of self-similarity and
hara
teristi
 exponentsAs we have already emphasized in se
tion 1, one of the parti
ularly interestingfeatures of the 1 − d self-gravitating model is the absen
e of smoothing at smalls
ales analogous to that used in 3 − d simulations. This means that we 
an studyfully the development of 
lustering at small s
ales unimpeded by su
h a 
ut-o�.We have already seen that the results above allow us to identify a lower-
ut-o� toself-similarity whi
h we denoted xmin, and the existen
e of a regime below this s
alewhere there is non-trivial 
lustering. We �rst study numeri
ally the evolution of thiss
ale xmin and of the 
orresponding approximate plateau ξmax. In the expanding
ase we observe that there is a simple relation between them, with ξmax ∝ x−1
min.Noting that this suggests the validity of a �stable 
lustering� hypothesis for theevolution at small s
ales, like that in 3 − d whi
h we dis
ussed in Chapter 2, wedetermine pre
isely what the predi
tion of this hypothesis is in our 1 − d models.This leads us to an analyti
 predi
tion for the exponent 
hara
terizing non-linear(and self-similar) 
lustering as a fun
tion of n and Γ. We 
ompare then the exponentsmeasured numeri
ally with this predi
tion, �nding good agreement.4.1 Evolution of the spatial extent of non-linear SS 
lusteringWe have seen in the previous se
tion that the evolution of the lower 
uto� to self-similarity in 
on�guration spa
e (xmin) is di�erent in the stati
 and the expanding
ases: while in both 
ases the 
orrelation fun
tion appears to rea
h a plateau withan amplitude whi
h grows in time, the s
ale xmin remains approximately 
onstantin the stati
 
ase but de
reases monotoni
ally in the expanding 
ase. Let us fo
usin the following on the expanding 
ase. We will 
ome ba
k to the study of the stati

ase at the end of this se
tion.We show in Fig.4.52 the evolution of xmin and ξmax as a fun
tion of the referen
etime ts for the quinti
 model and an initial 
ondition Pinit(k) ∝ k2. Fig. 4.51illustrates the method we use to extra
t this information: we 
onsider the same�
ollapse plot� used to test for self-similarity of ξ(x, t) in the previous se
tion in whi
hwe res
ale the x-axis by the time-dependent fa
tor Rs(t). We thus lo
ate simply thetemporal evolution of the s
ale marking the departure from the self-similar regime(represented in Fig 4.51 by the small arrows) xmin, and then determine also theamplitude of the 
orresponding plateau ξmax in the 
orrelation fun
tion at ea
htime.The semi-log representation of Fig. 4.52 shows an exponential de
rease of xminand an exponential in
rease of ξmax. We observe that the result approximatelysatis�es the relation

xmin ∝ ξ−1
max ∝ exp(−ǫ ts) , (4.54)where we measure the parameter ǫ = 0.33 ± 0.03 in the quinti
 model (Γ = 1/

√
6)and ǫ = 0.66± 0.03 in the RF model (Γ = 1/

√
2), whatever is the value of n (n = 0,

2 and 4). Thus, the parameter ǫ appears not to depend on the power index of theinitial PS, but only on the value of the damping term Γ.154
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ale xmin(and the amplitude of the 
orresponding plateau ξmax) in the quinti
 model with aninitial 
ondition Pinit(k) ∝ k2. We use a �
ollapse plot� of |ξ(x, t)|: for ea
h time, weres
ale the x-axis by the time-dependent fa
tor Rs(t) to superimpose all the 
urveas 
losely as possible. We then lo
ate simply by arrows the temporal evolution ofthe departure from the self-similar regime.The simple relation between xmin and ξmax and the independen
e of n suggestthat this result might be related to the so-
alled �stable 
lustering� hypothesis pro-posed sometimes in 3 − d for the strongly 
lustered regime and dis
ussed in Chap-ter 2 [126℄: in this 
ase one envisages that, in the strongly non-linear regime, thedistribution at small s
ales remains frozen (i.e. �stable�) in physi
al 
oordinates,whi
h are related to the 
omoving 
oordinates of the simulation by a simple res
al-ing (rphys = a(t) xcom) as dis
ussed in Chapter 2. Thus in 
omoving 
oordinates,the 
onditional density (i.e. the mean density in a region r about a given point)s
ales as a3(t). In 
omoving 
oordinates the mean density is �xed so one obtainsalso ξ(x) ∝ a3(t). If we now suppose here that xmin also remains �xed in physi
al
oordinates, we have xmin ∝ 1/a and ξmax ∝ 1/x3min.If we adopt this argument naively to 1− d we would obtain ξmax ∝ 1/xmin, i.e.

xmin, whi
h is a 
hara
teristi
 s
ale of the 
lustering (breaking s
ale invarian
e),is 
onstant in 
omoving 
oordinates. To do so, however, we must 
larify what wemean by �stable 
lustering� in our 1 − d models, be
ause in deriving these models,we never made use of a transformation between physi
al and 
omoving 
oordinatesas in 3− d.�Stable 
lustering� 
an indeed be given meaning without referen
e to physi-
al/
omoving 
oordinates in 1 − d through the following formulation: it is the be-haviour expe
ted by supposing that the 
lustering evolves as if it were that of adistribution made of isolated virialized systems. In the following se
tion we 
onsider155
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Figure 4.52: Evolution of the non-linear s
ale xmin and the amplitude of the plateau
ξmax in the quinti
 model with an initial 
ondition Pinit(k) ∝ k2what this behaviour is.4.2 Stable 
lustering in one dimensionThe meaning of an �isolated� subsystem in 1− d is mu
h more exa
tly de�ned thanin 3−d (where it means tidal for
es due to far away matter may be negle
ted): if theparti
les of a given subsystem do not 
ross (or 
ollide) with other parti
les, theirevolution is indeed 
ompletely independent of the rest of the system. If this isolationis maintained for a su�
ient time, one would expe
t the subsystem to equilibrate(just as any LRI systems) and virialize.Equations of motion for an isolated subsystemTo see what exa
tly this implies it is 
onvenient to transform our equation ba
k tothe labelling in whi
h parti
les 
ross rather than boun
e: to derive analogy of theusual virial relation ,dis
ussed in Chapter 2, we need a potential whi
h is stri
lya power law, whi
h is only the 
ase at all times in the labelling in whi
h parti
les
ross. In the 
olliding labelling we have seen in se
tion 1 that we simply have, byappropriate 
hoi
e of time variable

d2ui
dt2

+ Γ
dui
dt

= ui , (4.55)where i = 1 . . .M (< N). The assumption of isolation means we 
an de
ouplethese M equations from the other N −M parti
les in the system (with N → ∞).Let us now transform these equations ba
k to the �
rossing labelling�. At someinitial time t = 0, both labellings 
oin
ide; at t > 0 we show in Fig. 4.53 thetwo labellings whi
h now di�er. To illustrate the di�eren
e of labelling between asystem Scross of parti
les 
rossing and a system Scoll of parti
les 
olliding, we denoteby ai = a0 + iℓ the original position of the ith parti
le in Scoll on a regular latti
e,where a0 represents an arbitrary origin of the x-axis and ℓ = 1/n0 is the latti
espa
ing. We then write xi the position of the parti
le i in Scoll , i.e. xi < xi+1 ∀i156
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e between a) Scoll and b) Scrossand xI the position of the �same� parti
le expressed in the di�erent labelling Scross.In Fig. 4.53 is illustrated the simple 
orrepondan
e between Scoll and Scross. Wethen have the relation i = I+∆NI where ∆NI is the di�eren
e between the numberof parti
les 
rossed by parti
le I from the left in the time interval and the numberof parti
les whi
h have 
rossed the parti
le I from the right in the same interval.Sin
e we 
learly have
∆NI =

(N<
I (t)−N>

I (t)

2

)

−
(N<

I (0)−N>
I (0)

2

)

, (4.56)where N<
I (t) (respe
tively N>

I (t)) represents the number of parti
les on the left(respe
tively on the right) of the parti
le I at time t, we 
an rewrite the for
e onthe parti
le as
Fi = FI = ui = xi − ai = xI − ai = xI − aI+∆NI

= xI − aI −
[

(N<
I (t)−N>

I (t)

2

)

−
(N<

I (0)−N>
I (0)

2

)

]

ℓ . (4.57)Denoting by xCM = 1
M

∑

I=1..M xI the position of the 
enter of mass of the system,and noting that 1
M

∑

I=1..M

(

N<
I (t)−N>

I (t)

2

)

= 0 we obtain
d2

dt2
(xI − xCM ) + Γ

d

dt
(xI − xCM) =

(

N>
I (t)−N<

I (t)

2 n0

)

+ (xI − xCM ) . (4.58)The gravitational 
ontribution thus divides into two terms: fgrav =
(

N>
I (t) −

N<
I (t)

)

/2 n0 just as in the �nite 1− d system; the only e�e
t of the ini�nite systemis thus the appearan
e of the ba
kground with fback = (xI−xCM )(t). We also denotethe damping term by fΓ = Γ d
dt
(xI − xCM ).Evolution of an isolated overdensityLet us 
onsider now an overdense isolated subsystem, i.e. M

Ls
= ns >> n0 (where

Ls is the spatial extent of the subsystem of M parti
les). It is simple to see that inthis 
ase, assuming Γ ∼ 1, one expe
ts the evolution to be 
hara
terized by quite157



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSdi�erent time s
ales asso
iated with the terms fgrav, fΓ and fback. For fgrav the 
har-a
teristi
 time s
ale 
an be expe
ted to be τgrav ∼√Ls n0

M
∼
√

n0

ns
<< 1. One thenhas to 
ompare it with the times
ales asso
iated to fΓ, i.e. τΓ ∼ 1
Γ
∼ 1 and fbacki.e. τback ∼ 1. The times
ale asso
iated with the gravitational term is thus mu
hshorter than that asso
iated with the damping (expansion) and the ba
kground.Now Eq. (4.58) without fback and fgrav is simply the equation of motion of Mparti
les of a �nite 1 − d self-gravitating system, whi
h are known to evolve to avirialized QSS on the times
ale τgrav [90, 158℄. We would then expe
t to be able totreat the full system in an adiabati
 approximation, in whi
h we assume that thedamping (and ba
kground) term 
auses the system to evolve while remaining viri-alized at all times. Let us negle
t for the moment the ba
kground term. Given thatthe term fgrav is a 
onservative for
e, we 
an then de�ne the asso
iated me
hani
alenergy E = K + U , where K and U are respe
tively the kineti
 and the potentialenergies, and write for the full system,

dE

dt
= −Γ

(dxI
dt

)2

= −2ΓK . (4.59)Considering now the adiabati
 approximation dis
ussed above, i.e. assuming thatthe system is alway virialized, we have 〈E〉 = 〈K〉+ 〈U〉 = 3 〈K〉 sin
e we have thevirial relation 2 〈K〉+ 〈U〉 = 0. We 
an approximate Eq. (4.59)
3
d〈K〉
dt

= −2Γ〈K〉 (4.60)whi
h gives in the appropriate 
hoi
e of time variable
〈K〉 ∝ exp(−2

3
Γt) and 〈U〉 ∝ exp(−2

3
Γt) . (4.61)By simple dimensional analysis we infer that

〈v2I 〉 ∝ exp(−2

3
Γt) and 〈Ls〉 ∝ exp(−2

3
Γt) , (4.62)i.e. the e�e
t of the damping is simply to res
ale the whole system slowly in spa
eand velo
ity. Thus our 1−d models behave as if there is an �e�e
tive� physi
al 
oor-dinate related to the 
omoving one through the relation xphys = exp

(

− 2
3
Γt
)

xcom.Let us 
ompare the result obtained in Eq. (4.61) with those given through thestudy of the dynami
al evolution of xmin. Using the relations derived in se
tion 1.3whi
h introdu
es the relation between the appropriate time variable and the stati
time ts we obtain
〈Ls〉 ∝ exp(−ts

3
) and 〈Ls〉 ∝ exp(−2

3
ts) (4.63)in the quinti
 and RF models respe
tively. This is in agreement within the numeri
alerrors with the values of the parameter ǫ, de�ned in Eq. (4.54), given above, and alsowith the exponent measured by Aurell et al. in [9℄ dire
tly for an isolated stru
ture.We have then identi�ed the behaviour expe
ted of a �nite virialized stru
ture withthat observed to �t xmin. We thus make the hypothesis that, up to this s
ale, thedistribution is well des
ribed as a set of virialized independent 
lusters (of size xmin).158



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSNumeri
al simulation of an isolated subsystemIt is straightforward to test numeri
ally the a

ura
y of this predi
tion for the be-haviour of an isolated subsystem: we simply evolve the same in�nite system we havebeen 
onsidering, but now for an initial 
ondition 
ontaining only a single lo
alizedoverdensity. More spe
i�
ally we 
onsider N = 103 parti
les initially distributedin a region of size Lc = 103 in a box of size L = 107, i.e. n0 = N
L

= 10−4 and
nc = N

Lc
= 1 so that it 
orresponds to an overdensity of magnitude nc/n0 = 104.This initial 
ondition make the ba
kground term, as well as the damping term, neg-ligible in 
omparison with the gravitational term (fback/fgrav ∝ 10−4 in both thestati
 and the expanding 
ases). It also 
learly separates the times
ale τΓ and τgravas τΓ/τgrav ∼ 102Γ. To 
omplete the numeri
al des
ription of our system it is 
on-venient to use di�erent time units to those previously 
onsidered. We then de�ne a�nite dynami
al time unit

tfinitedyn =

√

1

gnc
, (4.64)where g = 1/2 n0, whi
h is the 
hara
teristi
 time for the �nite overdensities' evo-lution under the mean �eld for
e. It is interesting to 
ompare this time with thein�nite dynami
al time τdyn we de�ned for the referen
e time we used in our analysisabove, i.e.

τ finitedyn =

√

2
n0

nc
∼ 10−2 τdyn . (4.65)For 
onvenien
e in the simulation we 
hoose our 
oordinate system su
h that the
entre of mass of the system is at rest (i.e. after distributing the parti
les in ourinitial 
ondition we add a spatial translation and a 
onstant velo
ity to all parti
lesto satisfy this 
ondition).Temporal evolution of the dynami
al observablesFor the initial 
ondition just des
ribed, we study the evolution of di�erent observ-ables: the kineti
 energy K, the potential energy U , the virial ratio V = 2K

U
and aparameter φ = 〈xv〉

〈x〉〈v〉 − 1 introdu
ed in [90℄. In a typi
al quasi-stationary state thisparameter is 
onstant and di�erent from zero.In Figs. 4.55 and 4.56 are represented the evolution of the virial ratio and theparameter φ as a fun
tion of time in both the stati
 and the expanding 
ases. We
learly see two stages in the ma
ros
opi
 evolution (
f. Chapter 1): a �rst stageof violent relaxation during whi
h all quantities �u
tuate strongly before settlingdown to behaviours whi
h appear to �u
tuate about a well de�ned average, andspe
i�
ally about unity for the virial ratio and about a value di�erent from zero forthe parameter φ. This last parameter is 
learly non-zero on mu
h longer time s
alesthan that 
hara
terizing the virialization and indi
ating a dynami
al equilibriumwhi
h is not the thermodynami
 equilibrium of this model (
f. [90℄).In Fig. 4.54 we see that the kineti
 and the potential energies of the stati
 modelrea
h a value independent of time, whi
h is illustrated in the phase spa
e evolution bya virialized stru
ture of 
onstant size. A di�erent behaviour is observed in Fig. 4.54for the expanding (quinti
) model: kineti
 and potential energies de
reases in timeas exp(−τfinite/3) ∝ exp(−ts/3). This is in agreement with our derivation of 〈v2I 〉and 〈Ls〉 in Eq. (4.62) above and with the values of the parameter ǫ. 159
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS4.3 Predi
tion of exponents of power-law 
lustering (expand-ing 
ase)We derive now the exponent predi
ted by this �stable 
lustering� hypothesis. As-suming the power-law behaviour ξSS(x) ∝ x−γ (whi
h 
orresponds to a PS PSS(k) ∝
kβ−1 with β = γ) for the redu
ed 2-point 
orrelation fun
tion in the non-linear self-similar regime, we fo
us on the study of the evolution of the s
ales xmin, markingthe break from power-law behaviour at small s
ales. The evolution of xNL is givenby the self-similar behaviour xNL(t) ∝ Rs(t) and ξNL(t) ≈ 1. Through the hypoth-esis that 
lustering up to the s
ale xmin is produ
ed essentialy by isolated virializedstru
tures, we have shown that xmin(t) ∝ ξ−1

max(t) ∝ exp(−2
3
Γt).Assuming that xNL = xmin at the initial time, it is then possible to determinethe value of the exponent γ (and 
onsequently β) through the relation

γ(n,Γ) = −
(

ln(ξmax(t))− ln(ξNL(t))

ln(xmin(t))− ln(xNL(t))

)

. (4.66)whi
h gives the general expression
γ(n,Γ) =

2
3
Γ/D(Γ)

2
3
Γ/D(Γ) + 2

n+1

, (4.67)sin
e Rs(t) ∼
(

ets
)2/(1+n) ∼

(

eD(Γ) t
)2/(1+n) and xmin ∼ e−

2

3
Γ t ∼ ξ−1

max. We simplyobtain in the quinti
 and RF models respe
tively
γ(n, 1/

√
6) =

n+ 1

n+ 7
and γ(n, 1/

√
2) =

n+ 1

n+ 4
. (4.68)We see in Tab. 4.3 that this result agrees with the numeri
al predi
tion of β and γ.This shows that we 
an explain very well the exponent 
hara
terizing 
lustering forthe expanding 
ase.intial PS Quinti
 RF Quinti
 (simulation) RF (simulation)

n = 0 γ = 1/7 γ = 1/4 γ = 0.14± 0.02 γ = 0.25± 0.02
n = 2 γ = 1/3 γ = 1/2 γ = 0.35± 0.02 γ = 0.50± 0.02
n = 4 γ = 5/11 γ = 5/8 γ = 0.43± 0.01 γ = 0.62± 0.01Table 4.3: Theoreti
al and numeri
al values of the parameter γ(n,Γ), the exponentof the power-law behaviour of the redu
ed 2-point 
orrelation fun
tion in the self-similar regime. We 
onsider the expanding (quinti
 and RF) models. We see thattheoreti
al results and numeri
al measures are in agreement within the standardnumeri
al error.4.4 Exponent of the power-law 
lustering in the stati
 limitLet us now return to the analysis of the stati
 model and underline its di�eren
ewith the expanding one. We expe
t from our analysis that in the stati
 model, theabsen
e of damping (Γ = 0 in Eq. (4.1)) prevents the system from shrinking. Then161



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSthe size of the smaller stru
tures should remain un
hanged. This is what is observedin the analysis of the 
orrelation fun
tion in se
tion 2.3 where the s
ale xmin staysroughly �xed during the dynami
al evolution of the system. However, the amplitudeof the plateau, ξmax, in
reases. Thus Eq. (4.54) is not followed in the stati
 limit.If we 
ompare the in
rease of the amplitude ξmax in the stati
 and expanding 
ases,we see that this amplitude in
reases by a fa
tor of less than 10 in the stati
 
ase,while it in
reases by a fa
tor of more than 100 in the expanding 
ase. This suggeststhat the in
rease of ξmax in the stati
 limit would be due to a �se
ond order� e�e
t,
ompared of Eq. (4.54), whi
h is negligible in the expanding 
ases (for su�
ientlylarge Γ). Considering our numeri
al result for the exponent γ in Tab. 2.3, we 
ouldpostulate a generalization of Eq. (4.67). Given that in the stati
 limit the observed
γ is independent of n, one might suppose a generalization to

γ(n,Γ) =
2
3
Γ/D(Γ) + ν 2

n+1
2
3
Γ/D(Γ) + 2

n+1

. (4.69)where ν is simply the n-independent exponent measured for the stati
 
ase inTab. 2.3, i.e. ν = γ(n, 0) = 0.18 ± 0.03. Su
h an ansatz would 
orrespond toan ampli�
ation of ξmax (additional to stable 
lustering) proportional to Rs(t), i.e.
ξmax ∼ e

2

3
Γ t Rs(t)

γ(0).5 Con
lusionIn this 
hapter, we have presented the results of the numeri
al investigation of thedynami
al evolution of 1 − d self-gravitating toy models, starting with a 
lass ofinitial 
onditions analogous to those studied in 
osmology: latti
es perturbed toprodu
e an initial PS Pinit(k) ∝ kn at small k. We found that, when the index nof the initial PS is equal to 0 and 2, there are very strong qualitative similaritiesbetween the evolution of the 1− d and 3− d systems. We have observed spe
i�
allythe hierar
hi
al nature of the 
lustering and brought to light the me
hanism oflinear ampli�
ation determining the growth of non-linearity s
ale. Moreover, wehave shown that �self-similarity� is indeed observed in 1 − d system in both thestati
 and expanding (quinti
 and RF) 
ases just as in 3− d.An interesting result is that qualitative di�eren
es 
an be identi�ed between thestati
 and expanding 
ases. The shape of the 
orrelation fun
tion (or the power spe
-trum) has appeared to be a fun
tion of the index n of the initial PS in the expanding
ase, and is independent of this index in the stati
 
ase. Moreover the value of thedamping term Γ, whose di�erent values 
orrespond to di�erent expanding model(Γ = 1/
√
6 and Γ = 1/

√
2 represent the quinti
 and RF models respe
tively), hasan in�uen
e on the shape of the 
orrelation fun
tion or the power spe
trum, andthen on the exponent of these two statisti
al measures in the self-similar regime.This again 
oin
ides with 3− d results.The 1− d self-gravitating model has also given us the opportunity to investigateeasily stru
ture formation in the limit of �
ausal �u
tuations�, i.e. P (k) ∝ k4 atsmall k, a numeri
ally di�
ult 
ase whi
h has not been explored in 3 − d. Wehave shown that, di�erently to the 
ase where P (k) ∝ k0 or k2 at small k, theampli�
ation of the PS at small k is not the one we 
ould expe
t from a naive linear162



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITStheory. However, despite the non-validity of the linear ampli�
ation of the small
k PS, the non-linear stru
ture formation does show asymptoti
ally a self-similarevolution.The 1 − d toy model allowed us to probe the development of self-similarity atsmaller s
ales and its range of validity. Su
h a study is impossible in 3−d due to thepresen
e of smoothing at small s
ale. This investigation allowed us to identify thelower 
ut-o� xmin marking the end of the self-similar regime at small s
ale. We haveshown that this 
ut-o� was explained naturally by a �stable 
lustering� hypothesisand we have shown that the exponent observed is in fa
t that expe
ted for this 
ase.Then as we know the temporal behaviour of the lower and upper 
ut-o�, we 
anthen determine the exponent in self-similar regime in terms of the index n of theinitial PS and the damping term Γ.We must however dis
uss the 
omparaison we made with 3− d stable 
lustering:in 1− d model, we envisage virialization only as valid up to the s
ale xmin, i.e. onlysmallest virialized stru
tures 
an be supposed to be stable (at the same s
ale wherethe self-similarity break down, and not in the self-similar regime itself). This willbe explored further in the next 
hapter. We will see that we 
an in fa
t 
onsider, ina statisti
al sense, the stru
tures in the self-similar regime to be virialized, but thestable 
lustering does not apply be
ause they are not isolated.

163



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

164



Chapter 5Dynami
s of in�nite one dimensionalself-gravitating systems: s
aleinvarian
e, halos and virializationIn this 
hapter we explore and 
hara
terize further the properties of the parti
ledistributions produ
ed in the 1 − d self-gravitating models we have studied in theprevious 
hapter. In parti
ular we fo
us our analysis on two distin
t approa
hes.We start with a 
lassi
al fra
tal analysis whi
h is useful in parti
ular to answerthe following question: does the power-law behaviour observed in the 
orrelationfun
tion 
orrespond to a fra
tal-type distribution in this range of s
ales? In agree-ment with previous work of Miller et al. [112�114℄ we �nd that the answer is in thepositive, and we extend some of the results whi
h they have reported notably to the
ase where the initial power spe
trum Pinit(k) ∝ k4 at small k.In a se
ond approa
h, we perform an analysis analogous to that now used 
anoni-
ally in 3−d N-body simulations in 
osmology in whi
h the distribution is des
ribedas a 
olle
tion of �nite �halos�. As dis
ussed in the introdu
tory 
hapter 2, these areenvisaged to be smooth virialized stru
tures with properties given by a few param-eters. Su
h a des
ription, as it 
learly does not 
orrespond to a distribution withs
ale invariant properties, is at odds with the fra
tal des
ription whi
h emerges fromthe �rst part of this 
hapter. We will see that a des
ription in terms of approxi-mately virialized substru
tures may nevertheless be valid, pre
isely in the regimewhere there is fra
tal 
lustering. The substru
tures are, however, not smooth stru
-tures with a 
hara
teristi
 size; they must be de�ned as a fun
tion of an arbitrarily
hosen s
ale. We interpret our results to mean that in the regime of non-linearfra
tal 
lustering the distribution 
an be said to 
orrespond to a kind of �virializedhierar
hy�.1 Tools for fra
tal analysisFra
tals have been invoked to des
ribe many physi
al phenomena whi
h exhibit self-similarity (see e.g. [123℄). Fra
tal geometry deals with the obje
ts whi
h are highlyirregular and 
annot be handled by the tools of di�erential geometry. A geometri
obje
t 
an in general be des
ribed in terms of its topologi
al dimension whi
h isan integer that de�nes the number of 
oordinates needed to spe
ify the geometri
165
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t. Loosely speaking a fra
tal is a shape that tends to have a s
aling property,implying that the degree of its irregularity and/or fragmentation is identi
al at alls
ales. A single de�nition of fra
tal would be restri
tive and it would be best to
onsider fra
tals as a 
olle
tion of te
hniques and methods appli
able in the studyof the irregular, broken and self-similar geometri
al patterns [104℄. It seems best toregard a fra
tal as a set that has properties su
h as those des
ribed below: whenwe refer to a set as a fra
tal, we will typi
ally keep in mind that this set has a �nestru
ture, i.e. one has to look for detail on all a

essible s
ales. It is too irregularto be des
ribed in traditional geometri
al language, both lo
ally and globally. Thisset whi
h we 
all a fra
tal, often has some form of self-similarity, approximate orstatisti
al. Although the 
on
ept of non di�erentiable geometry has been subse-quently used in many physi
al and mathemati
al appli
ation, the 
on
ept of fra
talobje
t has been expli
itly introdu
ed and formalized by Mandelbrot (see e.g. [104℄).A given fra
tal shape 
an be 
hara
terized by more than one de�nition of fra
taldimension, and they do not ne
essarily need to 
oin
ide with ea
h other. There-fore, an important aspe
t of studying a fra
tal stru
ture (on
e it is 
hara
terized asself-similar in some way) is the 
hoi
e of a de�nition for fra
tal dimension that bestapplies to, or is derived from, the 
ase in study.The approa
h we use in the following is a multifra
tal analysis of our simulateddistribution of points [80℄. A multifra
tal is an extension of the 
on
ept of fra
tal. Itin
ludes the possibility that the self-similar behaviour of parti
le distributions maybe di�erent in di�erent density environments.1.1 The Hausdor� DimensionOne of the most basi
 aspe
ts of a set is its dimension whi
h gives a quantitative
hara
terization of its geometri
al stru
ture. An important step in the understand-ing of fra
tal dimensions is the Hausdor� dimension [104℄. It 
an take non-integervalues and was found to 
oin
ide with many other de�nitions. Hausdor� used theidea of de�ning measures using 
overs of point sets. To de�ne the Hausdor� di-mension of a subset S ⊂ R
p, let us 
onsider a 
overing of the set by p-dimensionalneighborhoods, the ith of whi
h has a linear size ǫi. The Hausdor� dimension DHis the 
riti
al dimension whi
h the Hausdor� measure Hd(ǫ) passes from zero to anin�nite value:

Hd(ǫ) = inf
∑

i

ǫdi →
{

0 if d > DH

∞ if d < DH
(5.1)and where the in�mum extends over all the possible 
overings subje
t to the 
on-straint that any ǫi 6 ǫ.The de�nition proposed by Mandelbrot for a fra
tal [104℄ is �A fra
tal is a setfor whi
h the Hausdor� dimension stri
tly ex
eeds the topologi
al dimension�. Thetopologi
al dimension 
an be simply de�ned as the number of independent dire
tionsin whi
h one 
an move around a given point of the set. Smooth idealized forms like aplane and a 
ube, where the topologi
al dimension equals the Hausdor� dimension,are non-fra
tal and are 
ommonly 
alled homogeneous or 
ompa
t. Whenever a sethas a non-integer Hausdor� dimension it is a fra
tal. This is su�
ient but not ane
essary 
ondition [71℄.166



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONThe Hausdor� dimension de�ned so far provides a de�nition of fra
tal dimensionfor deterministi
 fra
tals, i.e. 
lassi
al fra
tal sets in a mathemati
al idealized way.Although some of these 
lassi
al fra
tals 
an be used to model physi
al stru
tures,what is ne
essary is to dis
uss stru
tures that are statisti
ally self-similar, whi
hare en
ountered in natural phenomena. The �rst tool to extra
t information is thebox-
ounting dimension, also 
alled the 
apa
ity of the set. It provides a relativelysimple and appealing way of assigning a dimension to a set in su
h a way that 
ertainkinds of sets are assigned a dimension whi
h is not an integer.1.2 Box Counting DimensionIn this approa
h the irregular distribution of parti
les is 
overed with a set of 
ells ofsize ℓcell, and the number of 
ells are 
ounted whi
h 
ontain part of the fra
tal. Thissize ℓcell is varied over a range, and the resulting number of 
ells required to 
overthe distribution of points gives the number N(ℓcell). Obviously N(ℓcell) will in
reaseas the size ℓcell de
reases. If we pro
eed this way and �nd N(ℓcell) for smaller valuesof ℓcell, we are able to plot a graph of N(ℓcell) versus ℓcell, for di�erent grid sizes. Ifasymptoti
ally in the limit of small ℓcell we rea
h the relation
N(ℓcell) ∝ ℓ−D

cell , (5.2)we 
an de�ne the fra
tal dimension D. To a

omplish the determination of thisfra
tal dimension we �nd the slope of ln (N(ℓcell)
) plotted as a fun
tion of ln(ℓcell).We then get the expression for the box-
ounting dimension

Db ≡ lim
ℓcell→0

ln
(

N(ℓcell)
)

ln
(

1/ℓcell
) . (5.3)If the limit does not exist then one must talk about the upper box-
ounting dimensionand the lower box-
ounting dimension whi
h 
orrespond to the upper limit andlower limit respe
tively in the expression above. In other words, the box-
ountingdimension is stri
tly de�ned only if the upper and lower box-
ounting dimension areequal. The box 
ounting dimension Db is, in essen
e, a s
aling rule 
omparing howa pattern's detail 
hanges with the s
ale at whi
h it is 
onsidered. It is the most
ommonly used method of 
al
ulating dimensions. Its advantage lies in the easy andautomati
 
omputability provided by the method, as it is straightforward to 
ount
ells and maintain statisti
s allowing dimension 
al
ulation.Note that the box-
ounting dimension deals only with the number of required
overings. This de�nition has no regard to the number of points 
ontained insideea
h of the 
overing 
ells. In this sense, su
h a dimension depends on the �shape�of the distribution. In this way they provide a purely geometri
al des
ription, whileno information is given about the 
lumpiness, as by 
orrelation fun
tions, dis
ussedin Chapter 2, do.In order to extend the des
ription in terms of fra
tal dimensions, so as to in-
lude the 
lustering properties of a distribution, we need to introdu
e a probabilitymeasure, so that adequate information about the 
lustering of the distribution isavailable. 167



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION1.3 Generalized dimensionThe de�nition of fra
tal dimension just introdu
ed represents a parti
ular 
ase of a
ontinuous sequen
e of s
aling indi
es, known as the multifra
tal spe
trum of gen-eralized dimensions [80℄. To de�ne it, let us partition ea
h spa
e into 
ells of length
ℓcell. At ea
h time of observation in the simulation, a measure µi(t) = Ni(t)/NT isassigned to 
ell i, where Ni(t) is the population of 
ell i, i.e. the number of parti
lesin the 
ell, at time t and NT is the total number of parti
les in the simulation. Wethus de�ne the sum over all o

upied 
ells, i.e. the e�e
tive partition fun
tion

Cq =
∑

i

µq
i =

∑

i

(

Ni

NT

)q

. (5.4)If in some range of ℓcell the quantity Cq has a s
aling behaviour
Cq ∝ ℓ

τ(q)
cell , (5.5)with a 
oe�
ient depending possibly on q but not on ℓcell, its exponent τ(q) isde�ned as the 
onstant value, in this range, of

τ(q) = lim
ℓcell→0

lnCq

ln ℓcell
. (5.6)The generalized dimension of order q, named also the Renyi dimension, is de�nedas

Dq ≡
τ(q)

q − 1
=

1

q − 1
lim

ℓcell→0

lnCq

ln ℓcell
, (5.7)and appears as a generalization of the Hausdor� dimension. The box-
ounting di-mension Db is simply obtained putting q = 0 in Eq. (5.7) and is 
alled D0.To take into a

ount the di�erent natural measures of the 
ells it is usual tointrodu
e notably the quantities D1, obtained by taking properly the limit q → 1,and D2. D1 is 
alled the information dimension sin
e it is related to the informationentropy of the measure, i.e. it is related to the rate of information loss as theresolution s
ale in
reases [71℄. It gives the fra
tal dimension of the points on whi
hthe measure is mostly 
on
entrated. D2 is the 
orrelation dimension, originallyintrodu
ed by Grassberger and Pro
a

ia (see e.g. [77℄), and gives an important
hara
terization of the s
ale-invariant properties of a fra
tal set. The 
orrelationdimension 
an be easily related to the measured power-law shape of the 2-point
orrelation fun
tion de�ned in Chapter 2. As a 
omplete statisti
al des
ription ofa given point distribution requires the knowledge of 
orrelations or moments of anyorder, a 
omplete 
hara
terization of the s
aling properties of a fra
tal set shouldrequire the introdu
tion of the hierar
hy of s
aling indi
es. Thus, as q in
reases above

0, the Dq provide information on the geometry of 
ells with higher population. It iswell established that, for an homogeneous fra
tal, all of the generalized dimension areequal, while for an inhomogeneous fra
tal it is a de
reasing fun
tion of its argument,i.e. the existen
e of several values for Dq as a fun
tion of q in a given range of ℓcell,reveals di�erent s
aling behaviours for 
ells of the same size lying in dense or inunderdense regions (see e.g. [123℄).168
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ti
e, it is not possible to take the limit ℓcell → 0 with a �nite sample.Instead, one looks for a s
aling relation over a substantial range of ln(ℓcell) with thehope that a linear relation between lnCq and ln(ℓcell) o

urs, suggesting power lawdependen
e of Cq on ℓcell. Then, in the most favorable 
ase, the slope of the linearregion should provide the 
orre
t power and, after dividing by q−1, the generalizeddimension Dq. Following [107℄, if s
aling 
an be found, either from experiment or
omputation, over three de
ades of ℓcell then we typi
ally infer that there is a goodeviden
e of fra
tal stru
ture.1.4 Relation to 2-point analysisPart of our goal is to illustrate how the fra
tal analysis 
an be related to the study ofthe 
lustering properties of the distribution of points through statisti
al tools su
has the redu
ed 
orrelation fun
tion. In our study of the s
ale-invariant properties ofthe fra
tal set, we followed the temporal evolution of the 
orrelation dimension D2.As this 
an be related to the measured power-law shape of the 2-point 
orrelationfun
tion, it is interesting to 
ompare the values obtained for D2 with the exponents
β and γ de�ned in 
hapter 4 generated by the PS and the 
orrelation fun
tionrespe
tively of the self-similar regime, i.e. P (k) ∝ kβ−1 and ξ(x) ∝ x−γ. It is easyto show this relation. Let us 
onsider the probability Ci(r) of �nding ni(< r) pointsout of the N points of a set within a distan
e r from xi,

Ci(r) =
1

N

N
∑

j 6=i=1

Θ
(

r − |xi − xj |
)

=
ni(r)

N
, (5.8)where Θ(x) represents the well-known Heaviside step fun
tion. We then introdu
ethe 
orrelation integral

C(r) =
1

N
lim

N→∞

N
∑

i=1

Ci(r) , (5.9)whose s
aling in the limit r → 0 de�nes the 
orrelation dimension, D2, a

ordingto C(r) ∝ rD2. Following the de�nition of the 2-point 
orrelation fun
tion givenin [71℄, it is easy to see that it 
an be related to the 
orrelation integral a

ordingto
C(r) =

∫ r

0

dr
(

1 + ξ(r)
)

. (5.10)As the 
orrelation fun
tion behaves as a power-law ξ(x) ∝ x−γ we obtain the relation,
D2 = 1− γ = β , (5.11)where the se
ond equality simply 
omes from the fa
t that the PS is the Fouriertransform of the 
orrelation fun
tion.2 Fra
tal analysis of evolved self-gravitating distri-butionsWe now apply the tools des
ribed in the previous se
tion to analyse the 
lustering inreal spa
e whi
h emerges in the toy models we have studied in the previous 
hapter.169



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONWe explore the same range of initial 
onditions as in the previous 
hapter (i.e. initialPS with Pinit(k) ∝ kn at small k for n = 0, 2 and 4) and the same range of models(stati
, quinti
 and RF), and analyse exa
tly the same simulations with N = 105parti
les. We also 
ompare our results with those reported previously by Miller etal [112�114℄. All our results apply to the same simulations with N = 105 parti
lesreported in the previous 
hapter.If it exists, a s
aling range of ℓcell is de�ned as the interval on whi
h plots of lnCqversus ln(ℓcell) are linear. For the spe
ial 
ase of q = 1 we plot −∑µi lnµi versus
ln(ℓcell) to obtain the information dimension. If a s
aling range 
an be found, Dq isobtained by taking the appropriate derivative. To probe the multifra
tal property,we limit our analysis to the generalized dimension Dq for q = 0, 1, 2 and 10. Thislatter large value of q has been 
hosen arbitrarly to probe for the multifra
tality ofthe distributions.2.1 AlgorithmTo perform the numeri
al fra
tal analysis, we simply follow the re
ipe introdu
edin se
tion 1.3, i.e. we partition the 
on�guration spa
e into 
ells of length ℓcell (ata given time of observation). For ea
h length of 
ell lcell, we assigned a measure
µi(t) = Ni(t)/NT to 
ell i, where Ni(t) is the population of 
ell i and NT is thetotal number of parti
les in the simulation. We thus perform the sum over allo

upied 
ells, i.e. the e�e
tive partition fun
tion Cq =

∑

i µ
q
i =

∑

i

(

Ni

NT

)q de�nedpreviously.We start with a single 
ell whose size is the same as the box size. We thende
rease the size ℓcell of the 
ell, in
reasing the number of 
ells Ncell in the box, andsatisfying the relation L = Ncell × ℓcell, where L is the total size of the simulationbox. We simply de
rease the size of the 
ell by a fa
tor 2, i.e. the number of 
ellsin 
overing the 
on�guration spa
e is Ncell = 2n, where n is an integer whi
h 
ountsthe number of iterations. As we will dis
uss immediately below, the distributionitself de�nes a lower 
uto� to the value ℓcell we should 
onsider in any 
ase.2.2 Temporal evolution of the generalized dimensionsWe are interested in the temporal evolution of the generalized dimension in the
on�guration spa
e. In Figs. 5.1 and 5.2 we 
onsider the 
orrelation dimension D2,starting with an initial PS Pinit(k) ∝ k2 in the stati
 and expanding (quinti
) 
ases.As time progresses three di�erent regimes 
an be 
learly distinguished:
• for very small ℓcell, below a s
ale we indi
ate in Figs. 5.1 and 5.2 as ℓspar, wehave a trivial s
aling behavior indi
ative of the so-
alled sparseness limit, i.e.
ℓcell is su�
iently small so that no box 
ontains more than one point. Belowthe s
ale denoted by ℓspar in Figs. 5.1 and 5.2, Ni(t) = 0 or 1 and the numberof o

upied boxes is equal to the total number of parti
les NT in the system.Thus Cq =

∑NT

i=1

(

1
NT

)q. The slope of 1
q−1

lnCq versus ln(ℓcell) is then zero;
• for the largest value of ℓcell, above the s
ale ℓunif in Figs. 5.1 and 5.2, wehave a trivial s
aling behavior indi
ative of the large s
ale uniformity of the170
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Figure 5.1: Temporal evolution of 1
q−1

ln(C(q, ℓcell)) versus ln(ℓcell) in 
on�gurationspa
e for the stati
 model for q = 2, and starting with an initial PS Pinit(k) ∝ k2.distribution. Above ℓunif , Ni(t) ≈ NT

ℓcell
and the number of o

upied 
ells issimply equal to the number of 
ells Ncell = L/ℓcell. The slope of 1

q−1
lnCqversus ln(ℓcell) is then equal to unity;

• intermediate between these two regions, between the s
ales ℓmin and ℓmax, wehave a s
aling behavior whi
h 
orresponds to the range where non-trivial non-linear 
lustering develops, and in whi
h we fo
us our multifra
tal analysis:the slope of 1
q−1

lnCq versus ln(ℓcell) then takes an intermediate value betweenzero and one in the range ℓmin ≤ ℓcell ≤ ℓmax (see Figs. 5.1 and 5.2). Theemergen
e of a s
aling regime would indi
ate a fra
tal behaviour of the non-linear 
lustering. We expe
t that this range to 
orrespond to the range ofs
ale invariant 
lustering indi
ated by the analysis of the 2-point 
orrelationfun
tion.We note that there are also two distin
t transient regimes between these threedi�erent s
aling regions. Firstly, there is a range of ℓcell between the sparsenesslimit and the self-similar regime, i.e ℓspar ≤ ℓcell ≤ ℓmin, whi
h would 
orrespondin the 2-point 
orrelation analysis in Chapter 4 to the 
lustering signal present ats
ales below those of the s
aling regime, and where the 
orrelation fun
tion is �at.The se
ond transient regime 
orresponds to a range of ℓcell between the self-similarregime and the s
ale of uniformity, i.e. ℓmax ≤ ℓcell ≤ ℓunif , and would 
orrespondto the �quasi-linear� regime where the amplitude of the relative density �u
tuationsis of order unity or a little larger (see e.g. [22℄).A qualitative inspe
tion shows that the observed size of ea
h s
aling range de�nedpreviously depends on the elapsed time into the simulation, as ℓmin and ℓmax evolve171
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Figure 5.2: Temporal evolution of 1
q−1

ln
(

C(q, ℓ)
) versus ln(ℓ) in 
on�guration spa
efor the quinti
 model for q = 2, and starting with an initial PS Pinit(k) ∝ k2.in time. This evolution, however, is di�erent in the stati
 and expanding 
ases:the s
ale ℓmin 
learly de
reases in time in the expanding 
ase, whereas it staysapproximately 
onstant in the stati
 
ase. Basing our investigation on the 2-pointanalysis of Chapter 4, we expe
t the s
ale ℓmax to 
orrespond to the s
ale of non-linearity, above whi
h one 
rosses over to a uniform distribution, and the s
ale ℓminto mat
h with the lower 
ut-o� to self-similarity, xmin, introdu
ed in Chapter 4.Shown in Fig. 5.4 and 5.3 are the evolution of the s
ales ℓmin and ℓmax for theinitial PS Pinit(k) ∝ k2 in the stati
 and expanding (quinti
) 
ases, de�ned with theuse of a linear regression of the 
orrelation dimension in the self-similar range. Asanti
ipated, these behaviors are pre
isely those we have observed in the previous
hapter for the s
ale of self-similarity, ℓmin ∝ exp(−2

3
Γt) in the expanding 
ase, andfor the s
ale of non-linearity, ℓmax ∝ Rs(t) in both the stati
 and expanding 
ases,whi
h follows the behavior predi
ted from linear theory.2.3 Dependen
e of exponents on initial 
onditions and modelWe fo
us now our analysis on the numeri
al assessment of the di�erent fra
tal dimen-sions Dq in the range where 
lustering is non-linear and self-similar. To guaranteethat the fra
tal stru
ture is fully developed, we 
onsider the most evolved 
on�gu-rations in time in whi
h the range of non-linear 
lustering is greatest. We will seethat it is possible to �nd good s
aling over more than three de
ades in ℓcell.Following the de�nition of the generalized dimension in Eq. (1.3), we give �rst inTab. 5.1 the di�erent values of Dq in the self-similar regime, obtained with the useof a linear regression, and for di�erent initial PS Pinit(k) ∝ k2 and k4 in the stati
and expanding (quinti
 and RF) 
ases. We dis
uss separately the 
ase where the172



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 4  6  8  10  12

ln
[ 

l m
in

(t
) 

]

t

 0

 1

 2

 3

 4

 5

 6

 7

 4  6  8  10  12

ln
[ 

l m
ax

(t
) 

]

t

Rs(t)

Figure 5.3: Evolution of the s
ales ℓmin and ℓmax in the stati
 
ase for an initial PS
Pinit ∝ k2. We de�ne these s
ales with the use of a linear regression of the redu
ed
orrelation dimension in the self-similar regime. We observe that ℓmin stays slighty
onstant whereas ℓmax ∝ Rs(t). The error bars represent the un
ertainty of thelinear regression.initial PS Pinit(k) ∝ k0 in Tab. 5.2 for the same models. We restri
t our analysis tothe dimensions Dq with q = 0, 1, 2 and 10. The higher value of q has been 
hosento shed light on the potential multifra
tal behaviour of the system. Inspe
ting theresults in Tab. 5.1 we draw the following 
on
lusions:

• the results for the 
orrelation dimension D2 are in agreement, within the stan-dard numeri
al error, with the exponents derived in the previous 
hapter (seeTabs. 2.3 and results in Chapter 4 se
tion 3.3) from the 2-point 
orrelationanalysis, as given by Eq. (5.11);
• the systems are de�nitely fra
tal as the box-
ounting dimension D0 is di�erentfrom unity. Moreover, all results for the generalized dimensions Dq are 
onsis-tent with the 
onstraint whi
h applies to fra
tal behavior, i.e. Dq1 ≥ Dq2 for
q1 ≤ q2;

• a 
lear di�eren
e between stati
 and expanding 
ases is evident: in the latter
ases there is a signi�
ant variation of the exponent (i.e. non-trivial spe
trumof multi-fra
tal exponents) while in the stati
 
ase the results appear 
onsistentwith the hypothesis of a homogeneous fra
tal;
• further in the stati
 
ase the exponents depend very weakly, if at all, on theinitial 
ondition (i.e. on the exponent n of the initial PS); in the expanding
ases, all measured exponents show the same trend with the exponent n asshown by D2, i.e. greater is n, smaller is the exponent.We note that these results are partly in agreement with the investigation ofMiller et al. in [113, 114℄ where a multifra
tal analysis has been performed in boththe 
on�guration spa
e and the phase spa
e. We 
learly obtain the same qualitativebehaviour for the generalized dimension in the expanding 
ases, as a multifra
tal173
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Figure 5.4: Evolution of the s
ales ℓmin and ℓmax in the quinti
 
ase for an initial PS
Pinit(k) ∝ k2. We de�ne these s
ales with the use of a linear regression of the redu
ed
orrelation dimension in the self-similar regime. We observe that ℓmin ∝ exp(−2

3
Γt)with Γ = 1/

√
6, and ℓmax ∝ Rs(t). The error bars represent the un
ertainty of thelinear regression.behavior is observed. However, we do not rea
h the same 
on
lusion as in [113℄ asfar as the stati
 
ase is 
on
erned: As our numeri
al investigation shows that thesystems are in agreement, within the numeri
al error, with a mono-fra
tal behavior,i.e. Dq remains aproximately 
onstant for q ∈ [0, 10], Miller et al. 
laim that thebehavior of Dq in the stati
 
ase is qualitatively similar to the expanding (quinti
)
ase, but with less robust s
aling ranges.Furthermore, 
onsidering the measure of the 
orrelation dimension D2 in [114℄for an initial 
ondition whi
h 
orresponds to the 
hoi
e of an initial PS Pinit(k) ∝ k2at small k, we 
an 
ompare quantitatively our results with those obtained by Milleret al. We see that they are in agreement within our numeri
al error in both thequinti
 and RF models. We obtain the same dependen
e on the initial 
ondition,i.e. on the index of the initial PS. We now return to the 
ase where the initial PSintial PS D0 D1 D2 D10stati
 k2 0.87± 0.03 0.88± 0.02 0.83± 0.04 0.84± 0.03

k4 0.89± 0.03 0.87± 0.03 0.85± 0.02 0.86± 0.03quinti
 k2 0.64± 0.02 0.65± 0.02 0.64± 0.02 0.59± 0.03
k4 0.56± 0.02 0.56± 0.02 0.53± 0.02 0.46± 0.04RF k2 0.49± 0.02 0.50± 0.02 0.49± 0.01 0.45± 0.01
k4 0.39± 0.03 0.38± 0.02 0.37± 0.01 0.32± 0.02Table 5.1: Generalized dimension Dq for q = 0, 1, 2 and 10 in the stati
, quinti
 andRF 
ases (i.e. Γ = 0, 1/√6 and 1/

√
2). We analyse the di�erent initial 
ondition
hara
terized with di�erent initial PS Pinit ∝ k2 and k4.

Pinit ∝ k0 for the same three di�erent models. We give in Tab. 5.2 the di�erentvalues of Dq for the same values of q as above. A di�eren
e emerges 
ompared to174
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ase Pinit(k) ∝ k2 and k4. While in an inhomogeneous fra
tal the generalizeddimension Dq is a de
reasing fun
tion of its argument, we see that in the threedi�erent models (stati
, quinti
 and RF) D0 is smaller than D1. This puzzling result
an be explained by the fa
t that su
h a distribution (i.e. initial spe
trum n = 0) isnot as strongly 
lustered as the others, i.e. not all the parti
les are 
on
entrated inthe overdense regions. This was already noted in our visual inspe
tion in Figs. 4.3and 4.5 in Chapter 4. Then undersampling e�e
ts lead to lowering of the box-
ounting dimension. This paradoxi
al result was already dis
ussed by Borgani in itsstudy of the multifra
tal behaviour of 3 − d hierar
hi
al density distributions [27℄and Dubrulle et al. in their multifra
tal analysis of 3− d galaxy 
atalogs with box-
ounting methods [48℄. This illustrates that the box-
ounting method should beused with 
aution when analyzing dis
rete sets like galaxy distributions.
k0 D0 D1 D2 D10stati
 0.71± 0.04 0.85± 0.02 0.84± 0.02 0.82± 0.06quinti
 0.62± 0.02 0.79± 0.02 0.80± 0.02 0.72± 0.03RF 0.48± 0.02 0.69± 0.02 0.71± 0.02 0.61± 0.04Table 5.2: Generalized dimension Dq for q = 0, 1, 2 and 10 in the stati
, quinti
and RF 
ases (i.e. Γ = 0, 1/√6 and 1/

√
2). We analyse the initial 
ondition withPS Pinit(k) ∝ k0.

175



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION3 Halos and virializationIn this se
tion, we explore the possibility of des
ribing the 
lustered distributionsobtained in the toy models we have studied as a 
olle
tion of �halos�, i.e. as a 
olle
-tion of approximately independent virialized stru
tures. As dis
ussed in Chapter 2,it is now standard to use su
h a des
ription to 
hara
terize the stru
tures obtainedin 
osmologi
al simulations in 3− d. As we noted in the introdu
tion, the fra
talitywe have found in these models in the pre
eeding se
tions would seem to be 
learlyat odds with su
h a des
ription: these halos are 
onsidered to have smooth densitypro�les and 
learly do not have s
ale invariant properties.In the following, we �rst introdu
e and employ a simple �Friend-of-Friend� (FoF)algorithmwhi
h allows one to sele
t out a set of (
andidate) halos in a manner whollyanalogous to how it is done in 3 − d simulations. We analyse the properties of thesele
ted halos and the degree to whi
h their statisti
al properties re�e
t or not thes
ale invarian
e (in a 
ertain range of s
ales) of the distribution. We then turn to thequestion of whether these halos, or at least a 
ertain appropriately sele
ted sub
lassof them, may a
tually be 
onsidered as roughly independent obje
ts dynami
ally.This in pra
ti
e is probed by testing whether they show a tenden
y to be virialized.This leads us then to analyze in detail the distribution of the measured virial ratios,testing whether, for halos sele
ted with 
hara
teristi
 sizes in the range of s
ale-invariant 
lustering, there is eviden
e for a stable PDF of the virial ratio peakedabout unity.3.1 Halo sele
tion: The Friend-of-Friend algorithmTo de�ne 
andidate �halos�, we follow the simplest method whi
h 
onsists in astru
ture-�nding algorithm 
alled the FoF-algorithm (see e.g. [58,74,108℄). As illus-trated in Fig. 5.5, this purely geometri
al method 
onsists in introdu
ing an arbitrarylinking length ℓfof that represents the distan
e below whi
h two neighboring parti-
les belong to the same FoF-group. The 
olle
tion of linked parti
les forms a group,
d > l d > l d > lfof fof fof

d < l fof

Figure 5.5: 1 − d s
hemati
 representation of the FoF-algorithm: if and only ifthe distan
e d between two parti
les is less than the linking length ℓfof these twoparti
les are grouped together in the same FoF-halo (dashed line).whi
h we refer to an �FoF-halo�. In the following we dis
ard isolated parti
les.One way of des
ribing what the algorithm does is that it simply sele
ts outregions in whi
h the density, smoothed on s
ale of lo
al interparti
le distan
e, isgreater than a threshold density given by 1/ℓfof . Note that sin
e the mean densityis simply 1/ℓ, where ℓ is the initial latti
e spa
ing, if ℓfof < ℓ we sele
t out regions176



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONwhi
h are ne
essarily overdensities. Equivalently, the algorithm 
an be thought in
1 − d as simply breaking the distribution into �nite pie
es by �
utting� it at anyempty regions (i.e. voids) greater than ℓfof .In relation to the physi
al motivation - whi
h is to try to de�ne �nite subsystemswhi
h have some dynami
al independen
e - the limitation of the algorithm is thatit pi
ks out su
h subsystems in an extremely elementary way, without using anydynami
al 
riterion notably. If there are su
h subsystems or �nite stru
tures, thealgorithm will, for example, 
learly put two of them together whi
h �happen to be�
loseby at the time 
onsidered. In the 
ontext of 
osmology this has led to thedevelopment of various alternative algorithms (see e.g. [101, 102℄).A 
ru
ial feature of the algorithm is, evidently, that it in
ludes one free parame-ter, ℓfof , and the 
andidate �halos� one pi
ks out depend on it. In 3−d 
osmologi
alsimulations a single value of this is 
hosen by hand, 
orresponding to a threshold inthe density a few times the mean density, the idea being to sele
t out all groups ofparti
les whi
h have undergone together non-linear evolution 1.Here we will study 
arefully the dependen
e of the halos on this free parameter
ℓfof . In parti
ular we will examine whether a 
hoi
e of ℓfof a little smaller than
ℓ, as used in 
osmologi
al simulations, has any physi
al justi�
ation or meaning.This latter point essentially 
on
erns the question of whether there is a parti
ular
hoi
e of ℓfof whi
h sele
ts out stru
tures whi
h are (typi
ally) virialized. Su
hvirialization is what indi
ates that they are of dynami
al signi�
an
e 
onsidered ontheir own (be
ause virialization is one of the distinguishing 
hara
teristi
s of �niteisolated stru
tures).In the rest of the se
tion we 
onsider �rst the basi
 properties of the stru
turessele
ted out by the FoF-algorithm, spe
i�
ally

• the distribution of their size Lc, i.e. their spatial extent;
• the distribution of their mean densities nc;
• the distribution of the number of points they 
ontain (known as their massfun
tion in the 
osmologi
al 
ontext).Provided ℓfof is signi�
antly smaller than the size of the system, su
h distributionsmay be assumed to be sampled from some underlying PDF whi
h 
ontains inevitablya 
ertain kind of information about the distribution in the in�nite system limit. Thequestion whi
h interests us is how these PDF depend on the single parameter ℓfof . Ingeneral we would expe
t them to depend on how ℓfof 
ompares with the 
hara
teris-ti
 s
ales in the system. In the 
ase of s
ale-invariant 
lustering in the distribution,whi
h we have found appears to be the 
ase of those 
onsidered here, one might ex-pe
t appropriate properties of the FoF-halos to be independent of ℓfof . If this is the
ase su
h an analysis is a suitable instrument for revealing s
ale-invariant properties.1In other variants of the algorithm employed in 
osmology at least one parameter, or oftenseveral su
h parameters must be introdu
ed, and thay are as
ribed essentially ad-ho
 values givensimilar kinds of physi
al motivation. 177



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONWe present here only results for a single 
hosen 
ase: initial 
onditions with PSin k4 (�
ausal �u
tuations�) evolved up to ts = 22, in the quinti
 model. We 
hoosethis 
ase be
ause it is one of those where the range of s
ales over whi
h both non-linear 
lustering and, in parti
ular, s
ale-invariant 
lustering is greatest. In Fig. 5.6is re
alled the redu
ed 2-point 
orrelation fun
tion as it develops in time in this
ase up to the �nal time at whi
h we analyse it here. For what follows it will beimportant to have present the s
ales 
hara
terising the 
lustering at the �nal time:as addressed in Chapter 4, the s
ale-invariant power-law 
lustering regime stret
hesin this 
ase over approximately �ve orders of magnitude, i.e. between the s
ales
xmin ∼ 10−3ℓ ∼ 10−8 and xmax ∼ 102ℓ ∼ 10−3 where ℓ is the initial latti
e spa
ing.In the following, we will use the normalized parameter Λ = ℓfof/ℓ in studying thebehaviors of the di�erent observables. In this variable the region of s
ale invarian
ethen 
orresponds to Λ = 10−3 to 102. In our analysis, we do not 
onsider values of
Λ > 10 as in this 
ase, the number of FoF-halos is too small to give a signi�
antstatisti
s.
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t = 22Figure 5.6: Evolution of the absolute value of the redu
ed 2-point 
orrelation fun
-tion |ξ(x, t)| in the quinti
 
ase, starting with an initial PS Pinit(k) ∝ k4. Consideringthe evolved time ts = 22, we see that the self-similar regime is well developed.Just as in the fra
tal analysis of the previous se
tion using box 
ounting, we noteat the outset that we expe
t to see limiting behaviours of the PDF of FoF-halos forvery large or small values of ℓfof :

• when ℓfof be
omes su�
iently small, the probability of having more thantwo parti
les be
omes negligible and one has essentially just pairs of nearest-neighbor parti
les;
• when ℓfof be
omes 
omparable to the s
ale of non-linearity, we will link to-gether the whole system and the result would be trivial.We will show here only results up to ℓfof = 10 ℓ be
ause the number of FoF-halosbe
omes so small that the measures of the PDF we 
onsider be
ome too noisy.Indeed, at ℓfof = 102 ℓ there are only a 
ouple of FoF-halos.178



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION
Λ = 10

Lh Λ

D
is

tr
ib

ut
io

n

10−2 10−1 1 10

0
0.

1
0.

2
0.

3
0.

4
0.

5

Λ = 1

Lh Λ

D
is

tr
ib

ut
io

n
10−3 10−2 10−1 1 10

0
0.

1
0.

2
0.

3
0.

4

Λ = 10−1

Lh Λ

D
is

tr
ib

ut
io

n

10−3 10−2 10−1 1 10

0
0.

1
0.

2
0.

3

Λ = 10−2

Lh Λ

D
is

tr
ib

ut
io

n

10−3 10−2 10−1 1 10

0
0.

1
0.

2
0.

3

Λ = 10−3

Lh Λ

D
is

tr
ib

ut
io

n

10−2 10−1 1 10

0
0.

1
0.

2
0.

3
0.

4

Λ = 10−4

Lh Λ

D
is

tr
ib

ut
io

n
10−2 10−1 1 10

0
0.

2
0.

4
0.

6
0.

8

Figure 5.7: Distribution (normalized to unity) of the size Lh of the FoF-halos ex-tra
ted from the simulation box for di�erent values of the parameter Λ = ℓfof/ℓ in asemi-log representation. These results are for the 
ase of an initial PS Pinit(k) = k4evolved at ts = 22. The value of the parameter Λ de
reases from left to rightand from top to bottom. The red, blue, green, yellow, magenta an orange plots
orrespond respe
tively to a value of Λ = 10, 1, 10−1, 10−2, 10−3 and 10−4.In Fig. 5.7 is shown the PDF of the size Lh of the FoF-halos, renormalized bythe parameter Λ. For ℓfof between ℓ and 10−2 ℓ we observe a reasonably stable formwith a peak somewhere between Λ and 10Λ. As we go towards smaller Λ we seea sharper peak appear, whi
h also shifts to smaller Λ. That this latter behaviouris indi
ative of the sparseness limit will be
ome 
learer below. We note that theseplots also suggest that the properties of FoF-halos are not a very �
lean� way tosingle out s
ale-invariant properties: the algorithm is not a simple 
oarse-grainingwhi
h breaks the system into subsystems of a single size, but rather it sele
ts outsub-systems with quite a broad range of sizes. Given that s
ale invarian
e appliesin a limited range of s
ale (between 4 and 5 orders of magnitude in this 
ase), thismeans in pra
ti
e that even when the FoF-algorithm pi
ks out mostly stru
tureswith a size in this range, it also in
ludes some stru
tures whi
h fall outside therange. In Fig. 5.7 we see that at only Λ = 1 does the full range of sizes fall withinthe range of s
ale invarian
e. At Λ = 0.1 we already have a signi�
ant �pollution�by stru
tures of size less than 10−3 ℓ = xmin.Shown in Fig. 5.8 is the measured distribution of the density of the FoF-halos.The qualitative behaviours are quite similar to in the previous plots: in the range179
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Figure 5.8: Distribution (normalized to unity) of the lo
al density nh = Nh/Lh ofthe FoF-halos extra
ted from the simulation box for di�erent values of the parameter
Λ in a semi-log representation. The 
olor 
ode is the same as in previous �gure.
Λ ∈ [10−2, 10] there is a roughly stable form whi
h be
omes modi�ed at the twosmaller Λ (to an almost stri
tly monotoni
ally de
reasing form). As we noted above,the FoF-algorithm singles out regions in whi
h the density is stri
tly larger than athreshold equal to 2/ℓfof . As 
an be seen in the plots this stri
t lower limit (imposedagain by the sparseness) begins to play a role for Λ = 10−2, and at Λ = 10−3 
learlyde�nes the sharp 
ut-o� whi
h has appeared. The FoF-algorithm is then sele
tingout single stru
tures with density around and sligtly larger than nmin = 2/ℓfof .The histogram of the number Nc of parti
les in the FoF-halos is shown in Fig. 5.9.These plots show mu
h more 
learly how the e�e
t of sparseness (i.e. the existen
eof a lower 
ut-o� in the s
ale invarian
e) already �pollutes� the statisti
s of theFoF-halos when ℓfof >> xmin: we see already at Λ = 1 a signi�
ant number ofhalo with only a few parti
les. For the two smallest values the 2 parti
les FoF-halos
ompletely dominate, and 
learly the properties we saw in the previous two �guresat these values were indeed, as supposed, indi
ative of the sparseness limit. Indeedwe 
an infer that the plot for Λ = 10−4 in Fig. 5.7 is essentialy just the distributionof nearest-neighbours distan
es in the distribution with the sharp 
ut arising fromthe upper 
ut-o� at Lh = ℓfof .In summary, the FoF-algorithm pi
ks out FoF-halos of whi
h the statisti
al prop-erties 
arry information about the s
ale invarian
e in the distributions, but in a verylimited range as the algorithm mixes quite strongly a range of s
ales.180
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olor 
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION3.2 Testing for virialization of halosIn this se
tion, we 
onsider whether the 
on
ept of virialization, whi
h appliesstri
tly to isolated �nite systems, is of relevan
e to the �halos� sele
ted out by theFoF-algorithm, whose basi
 
hara
teristi
s we have just dis
ussed. In parti
ular wewish to see whether there is a parti
ular value, or range of values, of ℓfof for whi
hthe algorithm appears to pi
k out, typi
ally, sub-systems whi
h are virialized.Virialization of isolated subsystemsThe question we �rst answer is what virial relation applies to a �nite isolated sub-sytem in our system. To do so we re
all expli
itly the equations of motion of su
h asubsystem. We re
all that isolated means that parti
les in subsystem do not 
rossother parti
les outside it. We then have
d2

dt2
(xi − xCM) + Γ

d

dt
(xi − xCM) =

N>
i (t)−N<

i (t)

2n0
+ (xi − xCM) , (5.12)where xCM represents in both 
ases the position of the 
enter of mass of the sub-system. N<

i (t) (respe
tively N>
i (t)) represents the number of parti
les on the left(respe
tively on the right) of the parti
le i at time t. We have seen that the rhs
an be divided into two distin
t 
ontributions. The �rst one represents the �nitegravitational for
e 
ontibution from parti
les belonging to the subsystem, fgrav, andthe se
ond one stands for the ba
kground 
ontribution fback.If su
h a �nite isolated subsystem rea
hes a dynami
al equilibrium on a times
alemu
h shorter than the expansion times
ale (∼ Γ−1), we expe
t it to be virialized.Following Chapter 2, the usual virial relation 
an be generalized in this 
ase toin
lude the 
ontribution from the ba
kground, i.e. the term fback, and be
omes

2

Nc
∑

i=1

1

2
v2i +

Nc
∑

i=1

xi . f
i
grav +

Nc
∑

i=1

xi . f
i
back = 0 , (5.13)where vi and xi are the velo
ity and the position of the ith parti
le with respe
t tothe velo
ity and position of the 
enter of mass (vCM and xCM) of the subsystem.This relation is stri
tly valid if the system is in a steady state, so that the se
ondderivative of the moment of inertia I 
an
els, i.e. d2I

dt2
= 0. Sin
e fgrav

fback
∼ Nh

n0

1
Lcthe ba
kground term is negligible in the virial relation if nh

n0
>> 1, i.e. if the meandensity of the subsystem is mu
h greater than the global mean density. As dis
ussedin Chapter 4, this is pre
isely the same assumption in fa
t whi
h allows one to negle
tthe damping term, and assume virialization.Thus we 
an expe
t the �usual� virial relation for a �nite isolated 1 − d self-gravitating system, i.e.

2K − U = 0 , (5.14)to hold if the subsystem may be 
onsidered as isolated and is signi�
antly overdense(i.e. nh/n0 >> 1). For the FoF-halos, we note that nh/n0 ≥ ℓ/ℓfof = 1 by
onstru
tion (sin
e Lh ≥ Nh ℓfof ). Thus for Λ << 1 our FoF-halos are ne
essarilyoverdense, while for Λ > 1 they are not. Then we will apply for Λ > 1 a 
ut on our182
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andidate virialized FoF-halos to sele
t only those with nh

n0
> 1. Fig. 5.8 shows thatthis 
ut is of marginal relevan
e.We note that the 
ru
ial assumption involved in deriving the s
alar virial theoremis that the moment of inertia I is time-independent. However, in a system with asmall number of parti
les, there are ne
essarily statisti
al �u
tuations in I simplydue to the �nite-size, and Eqs. (5.13) and (5.14) 
ould be expe
ted to hold only fortime-averaged values of K and U . Let us summarize the steps of our analysis:

• we �nd and extra
t the FoF-Halos in our simulation box for a given ℓfof ,
• we dis
ard FoF-halos with nh < n0;
• we 
al
ulate the position and velo
ity of the 
enter of mass of ea
h FoF-halo;
• we measure the virial ratio V = 2K/U of ea
h FoF-halo measuring velo
itieswith respe
t to its 
enter of mass.As in the previous se
tion we 
onsider here results only for the 
ase of the quinti
model with an initial PS Pinit(k) ∝ k4 evolved to ts = 22.Spatial distribution of the virial ratioIn Fig. 5.11 is plotted the virial ratio of ea
h of the FoF-halos at the position ofits 
enter of mass for a given Λ = ℓfof/ℓ = 10−2 in two separate regions of the fullsystem.
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xFigure 5.11: Measure of the virial ratio as a fun
tion of the 
enter of mass of the FoF-halos for two di�erent samples extra
ted from the simulation box at time ts = 22and Λ = 10−2.The signal appears highly disorganized and unpredi
table in its detailed behavior,and presents stru
tures on all s
ales. These two di�erent samples of about the sameextend in spa
e are taken around two di�erent positions in the simulation box. Wesee that the general aspe
t is the same in the two samples but all the details aredi�erent and 
ould not have been predi
ted from looking at a single sample.We show in Fig. 5.12 the histogram of the virial ratio for these same regions.183
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Figure 5.12: Distribution (normalized to unity) of the virial ratio of FoF-halos forthe two regions shown in Fig. 5.11 measured for Λ = 10−2.The two histograms in Fig. 5.12 resemble one another very strongly. This pro-vides 
lear eviden
e that, although the detailed properties of the signal appear notto be predi
table, its statisti
al properties are self-averaging, i.e. the distributionof the virial ratio in samples of the size 
onsidered does appear to 
onverge well toa sample-independent statisti
al quantity. This observation suggests that a proba-bilisti
 approa
h to the question of virialization of the halos 
an indeed be used. Itis this approa
h whi
h we now use.Probability distribution of the virial ratioIn the following we thus study the behaviour of the distribution of the virial ratiosof the FoF-halos sele
ted with the FoF-algorithm, as a fun
tion of ℓfof .In Fig. 5.13 is shown the measured distribution of the virial ratio for di�erentvalues of the parameter Λ. The overall qualitative appearan
e of these plots is quitesimilar to Figs. 5.7 and 5.8 in the previous se
tion: there appears to be a roughlystable shape in the range Λ ∈ [10−2, 1] whi
h is strongly modi�ed at Λ = 10−3. In this�rst range, the distribution presents a non-symmetri
 behaviour with a maximumvirial ratio Vmax in the range [0, 2], and a tail on the right of the distribution atlarge virial ratio. This tail be
omes more and more predominant as the value of Λde
reases. At smaller Λ we see that the main 
ontribution to the distribution ofthe virial ratio 
omes from large values of it and that stru
tures with virial ratio inthe range [0, 2] are not present. We note further that the in
reasing importan
e ofthe 
ontribution of virial ratios mu
h larger than unity as Λ de
reases is 
oherentphysi
ally with the hypothesis that, at the s
ale xmin, marking the lower 
ut-o�to self-similarity, one has a transition to approximately smooth virialized 
lustersexa
tly as envisaged in the stable 
lustering hypothesis: subsystems of su
h 
lusterswill simply, be
ause of the super-extensivity of potential energy, be expe
ted to havelarge virial ratios.We thus posit that the existen
e of this apparently stable PDF roughly 
enteredon unity means we 
an say that the halos in the range of s
ales 
orresponding to184
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Figure 5.13: Distribution (normalized to unity) of the virial ratio V for di�erentvalues of the parameter Λ. The 
olor 
ode is the same as in previous �gures.s
ale invarian
e are typi
ally virialized. In other words we posit that the observeds
ale invariant 
lustering 
an, in a statisti
al sense, be asso
iated to virialization inthis range of s
ale.To probe further whether this is a well justi�ed interpretation, we examine nowwhether there are the physi
ally expe
ted 
orrelations of virialization with param-eters 
hara
terizing the halos. We 
onsider in parti
ular the size of the halos andthe distan
e to the nearest halo, i.e. the distan
e between two parti
les at theextremities of two di�erent halos.We start with a qualitative inspe
tion of Fig. 5.14 and 5.15, whi
h show thedependen
e of the fra
tion of FoF-halos with a virial ratio V ≤ 2 (blue 
urve) and
V > 2 (red 
urve) as a fun
tion of the size Lh of these stru
tures, and then as thenearest halo distan
e dnh for di�erent values of the parameter Λ.The plots show more quantitatively than above that there is a 
lear tenden
y tovirialization for a range of ℓfof down to Λ = 10−2: there is apparently a 
orrelationbetween su
h virialization and the two 
hosen parameters, i.e. the size of the halosand the distan
e to the next halo. For what 
on
erns the size, it is in ea
h 
ase thehalos in a range around ℓfof whi
h most 
learly show the tenden
y to virialization.The high values of the virial ratio do indeed appear to 
ome from the extremes ofhalos mu
h larger and mu
h smaller than ℓfof . This is 
onsistent with the inter-185
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Figure 5.14: Fra
tion of FoF-halos with a virial ratio V ≤ 2 (blue 
urve) and V > 2(red 
urve) as a fun
tion of the size Lh of the FoF-halos for di�erent values of Λ.The fra
tion is the number of halos with a given range of virial ratio (V ≤ 2 or
V > 2) divided by the total number of halos sele
ted out by the FoF-algorithm atthe given linking-length. The 
olor 
ode is the same as in previous �gures.pretation that these are, in both 
ases, in fa
t sub-stru
tures of larger halos. Forwhat 
on
erns the nearest-halo distan
e we also observe the expe
ted 
orrelation.Roughly if a halo is separated spatially we would expe
t it to be isolated to a betterapproximation, i.e. that it has not intera
ted with the rest of the system for a longertime, and thus that it would be better virialized.
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Figure 5.15: Fra
tion of FoF-halos with a virial ratio V ≤ 2 (blue 
urve) and V > 2(red 
urve) as a fun
tion of the nearest-halo distan
e dnh for di�erent values of Λ.The proportion is de�ned as the number of halos with a given range of virial ratio(V ≤ 2 or V > 2) divided by the total number of halos sele
ted out by the FoF-algorithm and at the given linking-length. The 
olor 
ode is the same as in previous�gures.
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONTo test more quantitatively these 
on
lusions drawn from visual analysis of theseplots we perform a statisti
al hypothesis test, Pearson's 
hi-square test [40℄. Wedivide our set of sele
ted FoF-halos (for a given value of the parameter Λ) intothe two distin
t populations, one with V ≤ 2 and the se
ond one with V > 2.We then 
onsider two distin
t 
lasses, one with size Lh > Λ and the se
ond onewith Lh ≤ Λ. Likewise we 
onsider two other distin
t 
lasses, one with nearest-haloseparation dnc > 2Λ and dnc ≤ 2Λ. Pearson's 
hi-square test tests the null hypothesisstating that the o

uren
e of these two populations is statisti
ally independent. Anobservation Oij is the number of halos in the population �i� and for 
lass �j�. Ea
hobservation is allo
ated to one 
ell of a two-dimensional array of 
ells (
alled a table).If there are r rows and c 
olumns in the table, the theoreti
al frequen
y for a 
ell,given the hypothesis of independen
e is
Eij =

∑c
k=1Oik

∑r
k=1Okj

Ntot

, (5.15)where Ntot is the total number of FoF-halos in our sample, and �tting the model ofindependen
e redu
es the number of degrees of freedom by q = r+ c− 1. The valueof the test-statisti
 is
X2 =

r
∑

i=1

c
∑

j=1

(

Oij −Eij

)2

Eij
. (5.16)The distribution of this statisti
 is a χ2 distribution with (r − 1)× (c− 1) degreesof freedom (i.e. the number of 
ells (r × c) minus the redu
tion in degrees of free-dom q). To extra
t quantitative information, we report in Tables 5.3 and 5.4 the

p-values of this test. In statisti
al hypothesis testing, the p-value is the probabilityof obtaining a test statisit
 at least as extreme as the one that was a
tually ob-served, assuming that the null hypothesis is �true�. In our parti
ular 
ase, the nullhypothesis 
onsists in assuming that the two distin
t populations are independent,and that the deviation between the observation and the theoreti
al expe
tation is a
oin
iden
e. The lower the p-value, the less likely the result is if the null hypothesisis true, and 
onsequently the more �signi�
ant� the result is, in the sense of sta-tisti
al signi�
an
e. One often a

epts the alternative hypothesis (i.e. reje
tion ofthe null hypothesis) if the p-value is less than 0.05 
orresponding to a 5% 
han
eof reje
ting the null hypothesis when it is true [40℄. The p-value for the χ2 test isProb(χ2 ≥ X2), the probability of observing a value at least as extreme as the teststatisti
 for a χ2 distribution with (r − 1)× (c− 1) degrees of freedom.
Λ 10 1 0.1 0.01 0.001 0.0001

p-value 0.004 10−6 10−14 10−16 0.002 0.6Table 5.3: Result of Pearson's 
hi square test for the two distin
t populations (V ≤ 2and V > 2) and with two distin
t 
lasses (Lc ≤ l and Lc > l). In the range ofs
ale-invariant 
lustering, the p-value is small enough to reje
t the null hypothesis.However, for small values of Λ, this tenden
y disappears as we see that the p-value
learly ex
ludes the reje
tion of the null hypothesis.188



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONThe results obtained in Tab. 5.3 show that, in the range of s
ale-invariant 
lus-tering, the p-value is small enough to reje
t the null hypothesis. This means thatthe fa
t that the FoF-halos with Lh ≤ Λ mainly 
ontribute to V ≤ 2 is not a 
o-in
iden
e. However, for small values of Λ, i.e. outside the range of s
ale-invariant
lustering, represented here by Λ = 10−4, this tenden
y disappears as we see thatthe p-value 
learly ex
ludes the reje
tion of the null hypothesis.
Λ 10 1 0.1 0.01 0.001 0.0001

p-value 0.5 0.2 0.01 10−16 10−16 0.6Table 5.4: Result of Pearson's 
hi square test for the two distin
t populations (V ≤ 2and V > 2) and with two distin
t 
lasses (dnh ≥ 2 Λ and dnc < 2 l). In therange of s
ale invariant 
lustering, the p-values show the tenden
y to reje
t the nullhypothesis. However, this result is not 
lear for the values of the parameter Λ = 10and 1.The results obtained in Tab. 5.4 show the tenden
y to reje
t the null hypothesisin the range of s
ale invariant 
lustering, i.e. the fa
t that the FoF-halos with near-est halo separation dnh ≥ 2 × Λ mainly 
ontribute to V ≤ 2 is not a 
oin
iden
e.However, this result is not 
lear for the values of the parameter Λ = 10 and 1.Analysing Fig. 5.15 we see that the departure from the expe
ted result would bejusti�ed by the fa
t that stru
tures with V > 2 are too under-represented in thesystem. This result would be explained by the tenden
y of spatially isolated stru
-tures to dynami
ally evolve enough in time to rea
h statisti
ally a virial equilibrium.We show next in Fig. 5.16 the impa
t of making a 
ut on the size of the halos Lhand on the nearest-halo distan
e dnh, i.e. we ex
lude from our halos at any Λ thosewith Lh > Λ and dnh < 2Λ, on the distribution of the virial ratio. In 
omparaisonwith Fig. 5.13, we see that the 
ontribution to the tail of the measured distributionhas noti
eably redu
ed, leading to a stronger reprodu
ibility of the signal.
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Figure 5.16: Distribution (normalized to unity) of the virial ratio for di�erent valuesof the parameter Λ, i.e. as in Fig. 5.13, but now with two additional 
uts applied:we ex
lude from our halos at any Λ those with Lh > Λ and dnh < 2Λ. The 
olor
ode is the same as in previous �gures.
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONInformation about the reprodu
ibility of the signal 
an also be extra
ted fromthe 
umulative distribution fun
tion (CDF) of the di�erent distributions obtainedfor the di�erent values of the linking-length.We show in Figs. 5.17 and 5.18 the CDF of the virial ratio of the FoF-halos forde
reasing values of the parameter Λ with and without the same 
ut used above.Above the s
ale xmin marking the lower 
ut-o� to the self-similar regime, we seereprodu
ibility of the statisti
al signal. This is illustrated by the red, blue andgreen CDF. Below the s
ale xmin, the shape of the CDF 
hanges dramati
ally;this variation 
hara
terizes well the end of the self-similar regime. This qualitativeinspe
tion illustrates the improvement of the reprodu
ibility of the signal when we
onsider these 
uts on the size of the stru
tures and the one on the nearest-haloseparation.
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Figure 5.17: Cumulative distribution fun
tion of the virial ratio for di�erent values of
Λ. The 
olor 
ode is the same as in previous �gures. We see a strongly reprodu
iblesignal. The orange 
urve shows that the behaviour of the CDF 
hanges dramati
alywhen ℓfof < xmin.
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Figure 5.18: Cumulative distribution fun
tion of the virial ratio for di�erent valuesof Λ. We 
onsider the statisti
al 
uts on the size of the halos and the nearest-haloseparation dis
ussed in the text. The 
olor 
ode is the same as in previous �gures.We still see a strongly reprodu
ible signal.
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION3.3 Statisti
al tests for stability of the probability distibutionof the virial ratio in s
ale-invariant regimeThe Kolmogorov-Smirnov test as a quantitative study of reprodu
ibilityTo more quantitatively 
hara
terize the reprodu
ibility of the probability distribu-tion of the virial ratio, we 
onsider �nally a statisti
al test of the di�erent probabilitydensity fun
tion. We use the Kolmogorov-Smirnov (K-S) test that is a form of min-imum distan
e estimation used as a nonparametri
 test to 
ompare two samples.The K-S test is the one of the most useful and general nonparametri
 methods for
omparing two samples, as it is sensitive to di�eren
es in both lo
ation and shapeof the empiri
al 
umulative distribution fun
tions of the two samples [40℄. The K-Sstatisti
 quanti�es a distan
e between the empiri
al distribution fun
tions of the twosamples. The null distribution of this statisti
 is 
al
ulated under the null hypothesisthat the samples are drawn from the same distribution.To perform this test, we de�ne the K-S statisti
 Dn,m = supx |Fn(x) − Fm(x)|where n and m represent the number of data in the two samples, and where Fn(x)and Fm(x) are the 
umulative distribution fun
tions obtained with the 2 samples.The null hypothesis is reje
ted at level α if
√

nm

n+m
Dn,m > Dα , (5.17)where Dα is a 
hosen 
riti
al value of the test statisti
 su
h that Prob(Dn,m < Dα) =

1 − α. This two-samples test 
he
ks whether the two data samples 
ome from thesame distribution. This does not spe
ify what the 
ommon distribution is.We then 
onsider the p-value of this test to extra
t quantitative informationabout the reprodu
ibility of the pdf of the virial ratio. Generally, one reje
ts thenull hypothesis if the p-value is smaller than or equal to the signi�
an
e level, oftenrepresented by the Greek letter α. If the level is 0.05, then results that are only 5%likely or less, given that the null hypothesis is true, are deemed extraordinary.
Λ 1 0.1 0.01 0.00110 0.26 0.23 0.04 10−101 0.70 0.03 10−160.1 10−6 10−160.01 10−16Table 5.5: Result of the Kolmogorov-Smirnov-2-samples test between the di�erentmeasured distribution of V . Ea
h 
ase in the table 
orresponds to the p-value ofthe KS-test between the two samples obtained with the values of the parameter Λ
orresponding to the �srt raw and the �rst 
olumn.We perform the K-S test for the di�erent distribution fun
tions and bring to-gether the di�erent p-values in Table 5.5. We see that the p-values in the �fth
olumn, 
orresponding to the K-S test between samples obtained with Λ = 10−3and the smaller ones, is extremely small; we 
an thus reje
t the null hypothesis with193



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONmore than 99% of 
on�den
e, i.e. the samples do not 
ome from the same distribu-tion. In the se
ond and the third 
olumn, the p-value is very large, and do not allowus to reje
t the null hypothesis, i.e. we 
annot 
on
lude that the di�erent samplesobtained with Λ = 10, 1, and 10−1 
ome from di�erent distributions. The fourth
olumn, 
orresponding to the KS-test between the sample obtained with Λ = 10−2and the other ones, is a limit 
ase where we 
annot reje
t the null hypothesis ora

ept it with enough 
on�den
e. This result is in agreement with the fa
t that theend of the regime of s
ale invariant 
lustering is roughly lo
ated at a s
ale between
10−6 and 10−8.Furthermore, this quantitative inspe
tion illustrates that the signal looks repro-du
ible in the regime of s
ale-invariant 
lustering, but shows above all the end of thisreprodu
ibility at the end of the regime of s
ale invariant 
lustering. It is interestingto go a little further into detail and to study the impa
t of the 
uts on size of thestru
tures and on the nearest-halo separation dis
ussed above on the K-S test andthe p-values whi
h follow.Condition on the size of the stru
turesWe have qualitatively seen previously that the FoF-halos sele
ted out from thesimulation box with Lh ≤ Λ mainly 
ontributed to V ≤ 2. We perform the K-S

Λ 1 0.1 0.01 0.00110 0.27 0.23 0.04 10−101 0.70 0.03 10−160.1 10−5 10−160.01 10−16Table 5.6: Result of the Kolmogorov-Smirnov-2-samples test between the di�erentmeasured distribution of V obtained with the 
ut on the size of the halos. Ea
h
ase in the table 
orresponds to the p-value of the KS-test between the two samplesobtained with the values of the parameter Λ 
orresponding to the �srt raw and the�rst 
olumn.test and bring together the di�erent p-values in Tab. 3.3. Without 
hanging the
on
lusion we made previously about the reje
tion of the null hypothesis, we seethat the results presented in Tab. 3.3 do not present signi�
ant di�eren
e with theresults refered in Tab. 5.5. The 
ut on the size Lh of the FoF-halos is thus notstatisti
ally relevant for this test.Condition on the nearest-halos separationWe have seen that, given a linking-length, we obtain that two di�erent FoF-halosare inevitably separated with a distan
e ℓgap > ℓfof . Due to the arbitrary 
hoi
eof ℓfof , it is interesting to analyse the impa
t of the 
ut on the nearest-neighboursseparation on the reprodu
ibility of the measured distribution of the virial ratio.We 
onsider stru
tures with a nearest-neigbour at distan
e dnh ≥ 2Λ. Followingthe same quantitative approa
h as previously, the p-values obtained with the K-Stest are bring together in Table 3.3. We see that if we 
onsider the �fth 
olumn,194



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION
Λ 1 0.1 0.01 0.00110 0.97 0.14 0.27 10−31 0.68 0.84 10−20.1 0.46 10−40.01 10−8Table 5.7: Result of the Kolmogorov-Smirnov-2-samples test between the di�erentmeasured distribution of V obtained with the 
ut on the nearest-halo distribution.Ea
h 
ase in the table 
orresponds to the p-value of the KS-test between the twosamples obtained with the values of the parameter Λ 
orrespon�ng to the �srt rawand the �rst 
olumn.the p-value is always small and we 
an reje
t the null hypothesis. This simplymeans that the sample 
orresponding to Λ ≤ 10−3 does not 
orrespond to the samedistribution than the ones 
orreponding to larger value of the linking-length. Asfar as the other 
olumns are 
on
erned, we 
learly see a signi�
ant di�eren
e withthe results presented in Tab. 5.5 and Tab. 3.3. The 
on
lusion is still the same asthe obtained p-values do not still allow us to reje
t the null hypothesis, i.e. we
annot 
on
lude that the di�erent samples obtained with Λ = 10, 1, 10−1, and 10−2
ome from di�erent distributions, but this statisti
al 
ut signi�
antly improves thenon-reje
tion of the null hypothesis.This result shows that the nearest-halo separation has a signi�
ant impa
t onthe reprodu
ibility of the distribution of the virial ratio. Its e�e
t is to redu
e the
ontribution of the tail to the measured distribution of the virial ratio, and thus toimprove the statisti
al reprodu
ibility of the signal.4 Con
lusionIn the �rst se
tion of this 
hapter we saw that there is indeed very 
lear eviden
efor s
ale-invarian
e in the non-linear 
lustering that develops in the 
lass of toymodels we have 
onsidered. We used a multi-fra
tal analysis to measure the spe
-trum of fra
tal exponents and studied their dependen
e on the model and initial
onditions. In the stati
 model the results are quite 
onsistent with a simple ho-mogeneous fra
tal, while in the expanding 
ases there is a signi�
ant multi-fra
tality.In the se
ond part of our analysis we explored the appli
ability of a des
riptionof the 
lustering like that used 
anoni
ally in 
osmologi
al simulations, that in termsof �halos�. We used the simplest kind of �Friends of Friends� algorithm, whi
h hasone free parameter, the linking-length ℓfof . We des
ribed some of the statisti
alproperties of the sele
ted halos as a fun
tion of ℓfof , and then fo
ussed on the ques-tion of whether these sele
ted halos are, typi
ally, virialized. Su
h virialization isan indi
ator of the degree to whi
h they behave as independent sub-systems, whoseelements intera
t essentially only with one another on a time s
ale su�
ient to es-tablish a kind of equilibrium. We found that there is indeed eviden
e that, when

ℓfof is in the range where it e�e
tively pi
ks out stru
tures on length s
ales wherethe 
lustering is s
ale-invariant, the PDF of the halos virial ratio is peaked about195



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONunity. We observed also that the tail of the distribution at large virial ratio 
ouldbe asso
iated with halos larger or smaller than the typi
al size, and thus result fromthe fa
t that the algorithm does not stri
tly pi
k out a single s
ale.This leads us to 
on
lude that in the regime of s
ale-invariant 
lustering thedistribution 
an be des
ribed as a �virialized hierar
hy�. By this we mean that thedistribution in spa
e, when appropriately analyzed at any s
ale, 
an be 
onsideredas a 
olle
tion of approximately virialized sub-systems. These �halos�, however, arenot smooth obje
ts of a single 
hara
teristi
 size as assumed in the 3−d 
osmologi
alsetting. Only at the very small s
ale at whi
h self-similarity and s
ale-invarian
ebreak down (i.e. the s
ale xmin de�ned in Chapter 4) is there eviden
e for roughlysmooth virialized stru
tures. Further, we have reported here only results for the
ase of an initial PS with n = 4, and it shoulb be veri�ed that the same 
on
lusionsapply to other 
ases, and also to the stati
 limit. More spe
i�
ally, it would beinteresting to see whether it is possible to relate the evolution of the s
ale xmin andthe asso
iated 
orrelation amplitude ξmax in 
ases where stable 
lustering does notapply to �merging� of halo type stru
tures.This analysis 
ould be developed on various points. For example we have anal-ysed the distribution at just one time, while it 
ould 
learly be instru
tive to studythe evolution of the �halos� in time to more dire
tly probe the extent to whi
h they
an be 
onsidered to evolve as independent sub-systems. It would be interestingalso to study alternative algorithms for halo sele
tion analogous to ones other thanthe FOF-algorithm whi
h have been developed in 
osmology, and to verify that the
on
lusions we have 
ome to here do not depend on the spe
i�
 FoF-algorithm wehave used.
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Chapter 6A dynami
al 
lassi�
ation of therange of pair intera
tionsIn this 
hapter, we report results whi
h generalize to any pair intera
tion de
ayingas a power-law at large separation the approa
h used in Chapter 3 to determinewhether the 1 − d gravitational for
e is de�ned in an in�nite system. This is aninteresting question as the Newtonian gravitation is 
learly a parti
ular long-rangeintera
tion, for whi
h linear ampli�
ation emerges from linear �uid theory.In so doing, we formalize and des
ribe a simple 
lassi�
ation of pair intera
tionswhi
h is di�erent to the usual thermodynami
 one,dis
ussed in Chapter 1, appliedto determine equilibrium properties (see e.g. [31, 42, 136℄), and whi
h we believeshould be very relevant in understanding aspe
ts of the out of equilibrium dynami
sof these systems. Instead of 
onsidering the 
onvergen
e properties of potentialenergy in the usual thermodynami
 limit, we 
onsider therefore those of the for
ein the same limit. Thus, while in the former 
ase one 
onsiders (see e.g. [136℄) themathemati
al properties of essential fun
tions des
ribing systems at equilibrium inthe limit N → ∞, V → ∞ at �xed parti
le density n0 = N/V , we will 
onsider thebehavior of fun
tions 
hara
terising the for
es in this same limit. More spe
i�
allywe 
onsider, following an approa
h introdu
ed by Chandrasekhar for the 
ase ofgravity [33, 71℄, the de�nedness of the probability distribution fun
tion (PDF) ofthe for
e �eld in statisti
ally homogeneous in�nite parti
le distributions. To avoidany 
onfusion we will refer to the usual thermodynami
 limit in this 
ontext simplyas the in�nite system limit. Indeed the existen
e or non-existen
e of the quantitieswe are studying in this limit has no dire
t relation here to the determination ofproperties at thermal equilibrium. Further, in the 
ontext of the literature on long-range intera
tions the term �thermodynami
 limit" is now widely asso
iated withthe generalized su
h limit taken so that relevant ma
ros
opi
 quantities be
omeindependent of N and V (for a dis
ussion see e.g. [13℄).We also dis
uss a further (and di�erent) 
lassi�
ation whi
h 
an be given of therange of pair intera
tions based on dynami
al 
onsiderations. This arises when oneaddresses the question of whether dynami
s under a given pair intera
tion may bede�ned in in�nite systems, i.e., in a manner analogous to that in whi
h it is de�nedfor self-gravitating masses in an in�nite universe.In this 
hapter we 
onsider the general analyti
ity properties of the PDF of thetotal for
e at an arbitrary spatial point in su
h a parti
le distribution. We showthat, for any pair for
e whi
h is bounded, this PDF in the in�nite volume limit is197



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSeither well de�ned and rapidly de
reasing, or else vanishes pointwise. This meansthat it su�
es for almost all 
ases of interest to show that some 
hosen moment ofthe PDF 
onverges to a �nite value in this limit (or diverges) in order to establishthat the whole PDF itself is well-de�ned (or ill de�ned). We then give a generaland formal expression for the varian
e of the total for
e PDF in a generi
 in�niteuniform sto
hasti
 pro
ess in terms of the pair for
e and the two-point 
orrelationproperties of the SPP. From this we then dedu
e our prin
ipal result that the for
ePDF exists stri
tly in the in�nite system limit if and only if the pair for
e is abso-lutely integrable at large separations, while it 
an be de�ned only in a weaker sense,introdu
ing a regularization, when the pair for
e is not absolutely integrable. Wedis
uss the physi
al relevan
e of the use of su
h a regularization, whi
h is just a gen-eralization of the so-
alled �Jeans swindle" used to de�ne the dynami
s of (
lassi
alnon-relativisti
) self-gravitating parti
les in an in�nite universe. By analyzing theevolution of density perturbations in an in�nite system, we show that the physi
alrelevan
e of su
h a regularization of the for
es requires also a 
onstraint on the be-havior of the PDF of total for
e di�eren
es as a fun
tion of system size. The textof this 
hapter is taken from an arti
le published in J. Stat. Phys. [68℄.1 The for
e PDF in uniform sto
hasti
 point pro-
esses: general resultsWe �rst re
all the de�nitions of some basi
 quantities used in the statisti
al 
hara
-terization of a sto
hasti
 point pro
ess and de�ne the total for
e PDF (see e.g. [71℄for a detailed dis
ussion). We then derive some results on the analyti
ity propertiesof the latter quantity whi
h we will exploit in deriving our 
entral results in the nextse
tion.1.1 Sto
hasti
 point pro
essesIn order to study the properties of the for
e �eld in the in�nite system limit givenby N → ∞, V → ∞ with �xed average density n0 > 0 for a large s
ale uniformand spatially homogeneous parti
le system, we generalize the approa
h introdu
edby Chandrasekhar in [33℄ for the total gravitational �eld in a homogeneous Poissonparti
le distribution to more general 
ases and spatial dimensions. To do so we needto 
hara
terize statisti
ally point-parti
le distributions in this limit, and we do thisusing the language of sto
hasti
 point pro
esses (SPP). The mi
ros
opi
 numberdensity of a single realization of the pro
ess is
n(x) =

∑

i

δ (x− xi) (6.1)where δ is the d-dimensional Dira
 delta fun
tion, xi is the position of the ith systemparti
le and the sum runs over all the parti
les of the system. We will limit ourdis
ussion to parti
le distributions in a eu
lidean d−dimensional spa
e whi
h are(i) statisti
ally translationally invariant (i.e. spatially homogeneous or stationary)and (ii) large s
ale uniform in the in�nite volume limit. Property (i) means thatthe statisti
al properties around a given spatial point of the parti
le distribution do198



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSnot depend on the lo
ation of the point. In other words the statisti
al weights oftwo realizations of the point pro
ess, of whi
h one is the rigidly translated version ofthe other, are the same and do not depend on the translation ve
tor. In parti
ularthis implies that the ensemble average (i.e. average over the realizations of theSPP) 〈n(x)〉 of the mi
ros
opi
 number density takes a 
onstant value n0 > 0independent of x. Moreover the two-point 
orrelation fun
tion of the mi
ros
opi
density 〈n(x)n(x′)〉 depends only on the ve
tor distan
e x− x′. Feature (ii) meansthat the average parti
le number �u
tuation δN(R) = (〈N2(R)〉 − 〈N(R)〉2)1/2 in asphere of radius R in
reases slower with R than the average number 〈N(R)〉0 V (R)with R, where V (R) ∝ Rd is the volume of the d−dimensional sphere.Let us start by 
onsidering a generi
 realization of the parti
le distribution in a�nite volume V and let the total number of parti
les of the given realization be N .The parti
le positions xi are fully 
hara
terized statisti
ally by the joint probabilitydensity fun
tion (PDF) PN ({xi}) 
onditional to having N parti
les in the realization({xi} indi
ates the set of positions of all system parti
les in the given realization). Asa simple, but paradigmati
 example we 
an think of the homogeneous d−dimensionalPoisson point pro
ess. In this 
ase PN ({xi}) = V −N simply and independently ofthe value of n0. Given a fun
tion X({xi}) of the N parti
le positions in the volume
V its average, 
onditional to the value of N , 
an be written as

〈X〉N ≡
∫

V

[

N
∏

i=1

ddxi

]

PN ({xi})X({xi}) ,where the position of ea
h parti
le is integrated in the volume V . In order to evaluatethe un
onditional average of the property X , for whi
h all possible out
omes of thevalue N are 
onsidered, one would need the probability qN of having N parti
les inthe volume V , whi
h permits to write:
〈X〉 =

∞
∑

N=0

qN 〈X〉N , (6.2)in a stri
t analogy with the grand 
anoni
al ensemble average in equilibrium sta-tisti
al me
hani
s. However, sin
e we are restri
ting the dis
ussion to large s
aleuniform parti
le distributions, for whi
h δN(R)/ 〈N(R)〉 vanishes for asymptoti
allylargeR, we expe
t that the larger the volume V the narrower will be the peak around
N = 〈N(V )〉 = n0V in whi
h the measure qN will be 
on
entrated (for simpli
itywe have indi
ated with V both the region and its size). Asymptoti
ally we expe
tthat only the term of index N0V will 
ontribute to the sum in Eq. (6.2), i.e., forsu�
iently large V we 
an write:

〈X〉 ≃ 〈X〉N0V .In other words we 
an 
onsider that for su�
iently large V the 
onditional PDF
Pn0V ({xi}) 
hara
terizes 
ompletely the statisti
al properties of the parti
le distri-bution in the �nite volume V and use this to evaluate in the following subse
tionthe statisti
al properties of the total for
e. This is exa
tly what has been done, forinstan
e, by Chandrasekhar in [33℄ to 
al
ulate the total gravitational for
e PDF inthe Poissonian 
ase. 199



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSIn Appendix A we re
all some of the basi
 de�nitions and properties of thestatisti
al 
hara
terizations of uniform SPP. We will use below notably two essentialproperties of S(k), the stru
ture fa
tor (SF), whi
h follow from its de�nition:
lim
k→0

kdS(k) = 0 , (6.3)i.e, the SF is an integrable fun
tion of k at k = 0, and
lim
k→∞

S(k) = 1 . (6.4)1.2 General expression for the for
e PDFLet us 
onsider now that the parti
les in any realization of the SPP intera
t through apair for
e f(x), i.e., f(x) is the for
e exerted by a parti
le on another one at ve
torialseparation x. Further we will assume that the pair for
e is 
entral, i.e.,
f(x) = x̂f(x) , (6.5)where x̂ = x/x, and bounded, i.e.,

∃ f0 <∞ , |f(x)| = f(x) ≤ f0 ∀x (6.6)These assumptions simplify our 
al
ulations 
onsiderably, but do not limit our aimwhi
h is to establish the relation solely between the statisti
al properties of thefor
e �eld and the behavior of the pair intera
tion at large distan
es. Note that these
ond assumption means that, in 
ases su
h as the gravitational or the Coulombintera
tion, the divergen
e at zero separation is assumed appropriately regularized.We will brie�y des
ribe in our 
on
lusions below how our results 
ould be generalizedto in
lude su
h singularities.Let us assume for the moment that the system volume V is �nite. As shownabove, if V is su�
iently large, one 
an 
onsider that the number of parti
les inthis volume is deterministi
ally N0V . We will deal with the important problem ofthe in�nite volume limit de�ned by N, V → ∞ with N/V → n0 > 0 in the nextsubse
tion, by studying dire
tly the limit V → ∞ with �xed N0V . The total for
e�eld F(x) at a point x, i.e., the for
e on a test parti
le pla
ed at a point x, maythus be written
F(x) =

N
∑

i=1

f(x− xi) =

N
∑

i=1

x− xi

|x− xi|
f(|x− xi|) . (6.7)The for
e �eld F(x) may be 
onsidered as a sto
hasti
 variable with respe
t to theSPP. Choosing arbitrarily the origin as the point where the total for
e is evaluated,the PDF of this for
e is formally de�ned by1

PN(F) =

∫

V

[

N
∏

i=1

ddxi

]

PN ({xi})δ
[

F+
∑

i

f(xi)

]

,1We 
onsider here the un
onditional for
e PDF, i.e., the for
e is that at an arbitrary spatialpoint, rather than that on a point o

upied by a parti
le whi
h belongs to the parti
le distribution.It is the latter 
ase, of the 
onditional for
e PDF, whi
h is often 
onsidered in 
al
ulations of thiskind (see e.g. [65,66,153℄). The distin
tion is not important here as the 
onstraints we derive, whi
hdepend on the large s
ale 
orrelation properties of the parti
le distribution, would be expe
ted tobe the same in both 
ases.200



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSwhere we have used, as assumed, that f(−xi) = −f(xi). Using the identity
δ(y) =

1

(2π)d

∫

ddq eiq·y (6.8)this 
an be rewritten as
PN(F) =

1

(2π)d

∫

ddq eiq·F
∫

V

[

N
∏

i=1

ddxi e
iq·f(xi)

]

PN ({xi}) .The integral over the spatial 
oordinates in the above equation de�nes the 
hara
-teristi
 fun
tion of the total �eld F

P̃N(q) =

∫

V

[

N
∏

i=1

ddxi e
iq·f(xi)

]

PN ({xi}) , (6.9)so that
PN(F) =

1

(2π)d

∫

ddq eiq·FP̃N(q) .The integral over spatial 
on�gurations in Eq. (6.9) 
an be 
onveniently rewritten asan integral over the possible values of the pair for
es due to ea
h of the i = 1, ..., Nparti
les:
P̃N(q) ≡

∫

[

N
∏

i=1

ddfi e
iq·fi

]

QN({fi}) , (6.10)where
QN ({fi}) =

∫

V

[

N
∏

i=1

ddxi

]

PN ({xi})
N
∏

i=1

δ[fi − f(xi)] (6.11)is the joint PDF for the pair for
es fi. Note that, sin
e F is the sum of the variables
{fi} its 
hara
teristi
 fun
tion P̃N(q) 
an be given as

P̃N(q) = Q̃N({qi = q}) (6.12)where Q̃N ({qi}) is the Nd−dimensional FT of the joint pair for
es PDF QN ({fi}),i.e.,
Q̃N({qi}) =

∫

[

N
∏

i=1

ddfie
iqi·fi

]

QN({fi}) . (6.13)1.3 Analyti
ity properties of the for
e PDFFrom the fa
t that the pair for
e is bounded it follows that QN ({fi}) has a 
ompa
tsupport, and, sin
e it is absolutely integrable (by de�nition), FT theory (see e.g.[98℄) implies that its 
hara
teristi
 fun
tion Q̃N({qi}) is an analyti
 fun
tion of thevariables {qi}. Consequently P̃N(q) is an analyti
 fun
tion of q. Again from FTtheory one has therefore that PN(F) is a rapidly de
reasing fun
tion of F:
lim
F→∞

F αPN(F) = 0 , ∀α > 0. 201



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSThus PN(F) is a well-de�ned fun
tion of whi
h all moments �nite, i.e., 0 < 〈|F|n〉 <
+∞ for any n ≥ 0.Let us now 
onsider what happens when we take the limit V → ∞ with N0V . Onone hand the joint PDF QN({fi}) remains non-negative and absolutely integrable atall in
reasing V . On the other hand the support of this fun
tion remains 
ompa
twith a diameter una�e
ted by the values of V , but �xed only by f0. Thereforewe expe
t that the FT theorem keeps its validity also in the in�nite system limitresulting in an analyti
al

P̃ (q) ≡ lim
V →∞
N/V0

P̃N(q) .Therefore we will have that
P (F) ≡ lim

V →∞
N0V

PN(F)satis�es
lim
F→∞

F αP (F) = 0 , ∀α > 0.There are then only two possibilities for the behavior of P̃N(q) in the in�nite systemlimit:1. It 
onverges to an absolutely integrable fun
tion whi
h is not identi
ally zeroeverywhere, giving a P (F) whi
h is normalizable and non-negative on its sup-port. Further all the integer moments of |F| are positive and �nite.2. It 
onverges to zero everywhere, giving P (F) ≡ 0. More spe
i�
ally PN (F)with N0V 
onverges point-wise to the null fun
tion: it be
omes broader andbroader with in
reasing N (and V ), but with an amplitude whi
h de
reases
orrespondingly and eventually goes to zero in the limit.This latter 
ase is analogous to the 
ase of the sum of identi
ally distributedun
orrelated random variables: if this sum is not normalized with the appropriatepower of the number N of su
h variables, the PDF of the sum vanishes point-wisein a similar way in the limit N → ∞.In summary it follows from these 
onsiderations of the analyti
ity properties of
P̃N(q) at in
reasing V that the 
ase of a well de�ned, but fat tailed P (F), 
an beex
luded: in the in�nite system limit the for
e PDF, if de�ned, is expe
ted to be anormalizable and rapidly de
reasing fun
tion.2 Large distan
e behavior of pair intera
tions andthe for
e PDFIn this se
tion we use the result derived in the previous se
tion to infer the mainresult of this paper: the relation between the large s
ale behavior of the pair inter-a
tion and the for
e PDF in the in�nite system limit. We thus 
onsider, as above,a 
entral and bounded pair for
e su
h that

f(x) ≃ g

xγ+1
for x→ ∞ , (6.14)202



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSor, equivalently, a pair intera
tion 
orresponding to a two-body potential V (x) ≃
g/(γxγ) at large x for γ 6= 0 (and from V (x) ≃ −g ln x for γ = 0). Sin
e the pairfor
e is bounded, we have γ > −1.Given the �nal result derived in the previous se
tion, it follows that, to determinewhether the for
e PDF exists, it is su�
ient to analyze a single even moment of thisPDF: be
ause the PDF, when it exists, is rapidly de
reasing, any su
h moment isne
essarily �nite and non-zero in this 
ase, and diverges instead when the PDF doesnot exist. We 
hoose to analyze the behavior of the se
ond moment, 〈F 2〉, whi
his equal to the varian
e of the PDF sin
e the �rst moment 〈F〉 is zero (see below).We 
hoose this moment be
ause, as we will now see, it 
an be expressed solely interms of the FT of f(x) and of the SF of the mi
ros
opi
 density of the parti
ledistribution. From these expressions we 
an then infer easily our result.2.1 Varian
e of the for
e in in�nite system limitThe formal expression of the total for
e a
ting on a test parti
le (i.e. the for
e �eld)at x in the in�nite system limit may be written

F(x) =

∫

ddx′
x− x′

|x− x′|f(|x− x′|)n(x′) (6.15)where the integral is over the in�nite spa
e and n(x), given in Eq. (6.1), is thedensity �eld in a realization of the general 
lass of uniform SPP we have dis
ussedwith positive mean density n0.It is simple to show, using Eq. (6.15) and the de�nition of the SF that formally
〈F2〉 = 1

(2π)d

∫

ddk|f̃(k)|2S(k) (6.16)where f̃(k) is the (d-dimensional) FT of x̂f(x). It is straightforward to show that
f̃(k) = k̂f̃(k), where the expli
it expression for f̃(k) is given in the appendix2. We
an thus write

〈F2〉 =
1

(2π)d

∫

ddk|f̃(k)|2S(k) (6.17)
=

1

2d−1πd/2Γ(d/2)

∫ ∞

0

dk kd−1|f̃(k)|2S(k) ,where Γ(x) is the usual Euler Gamma fun
tion.2.2 For
e PDF for an integrable pair for
eLet us now 
onsider the integrability of the integrand in Eq. (6.17). We start withthe 
ase in whi
h f(x) is not only bounded but integrable in R
d, i.e., with γ > d−1.Given these properties, it is straightforward to verify, using the 
onditions (6.3)and (6.4) on S(k) and standard FT theorems, that the fun
tion |f̃(k)|2S(k) is alsointegrable in R

d. The varian
e is therefore �nite, from whi
h it follows that the PDFexists, and furthermore that all its moments are �nite.2Note that only in d = 1 does f̃(k) 
oin
ide with the dire
t FT of f(x). 203



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONS2.3 For
e PDF for a non-integrable pair for
esFor a pair for
e whi
h is absolutely non-integrable, i.e., γ < d − 1, the FT f̃(k) of
f(x) in Eq. (6.17) is de�ned only in the sense of distributions, i.e., the integrals overall spa
e of f(x) must be de�ned by a symmetri
 limiting pro
edure. Physi
allythis means that the expression Eq. (6.15) for the for
e on a parti
le in in�nite spa
emust be 
al
ulated as

F(x) = lim
µ→0+

lim
V→∞

∫

V

x− x′

|x− x′|f(|x− x′|)e−µ|x−x′|n(x′)ddx′ , (6.18)where the two limits do not 
ommute. In other words, F(x) is de�ned as thezero s
reening limit of a s
reened version of the simple power law intera
tion in anin�nite system. The expression Eq. (6.17) is then meaningful when f̃(k) is taken tobe de�ned in the analogous manner with the two limits µ → 0+ of the s
reening and
V → ∞ (i.e. with the minimal non-zero mode k ∼ 1/V → 0+) taken in the sameorder as indi
ated in Eq. (6.18).Let us 
onsider then again, for the 
ase γ < d − 1, the integrability of theintegrand in Eq. (6.17). To do so we need to examine in detail the small k behaviorof f̃(k). It is shown in the appendix that, as one would expe
t from a simpledimensional analysis, for f(r → ∞) ∼ 1/rγ+1 we have f(k → 0) ∼ k−d+γ+1 in any
d, for the 
ase of a pair for
e whi
h is not absolutely integrable, and bounded, i.e.,
−1 < γ < d−1. It follows then from Eq. (6.17) that the varian
e is �nite for a given
γ only for a sub-
lass of uniform point pro
esses, spe
i�
ally those whi
h satisfy

lim
k→0

k−d+2γ+2S(k) = 0 , (6.19)i.e., for S(k → 0) ∼ kn with
n > d− 2γ − 2 = −d+ 2(d− 1− γ) . (6.20)For uniform point pro
esses violating this 
ondition, i.e., with S(k → 0) ∼ kn and

−d < n ≤ −d + 2(d − γ − 1), the varian
e diverges. It follows from the results onthe PDF of F presented in the previous se
tion that the total for
e itself F(x) isthen badly de�ned in the in�nite system limit.These results of Se
. 2.2 and Se
. 2.3 
ombined are the 
entral ones in this paper,anti
ipated in the introdu
tion.Firstly, when pair for
es are absolutely integrable at large separations, the totalfor
e PDF is well de�ned in the in�nite system limit, while for pair for
es whi
h arenot absolutely integrable this quantity is ill de�ned. This has the simple physi
almeaning anti
ipated in the introdu
tion: when this PDF is well de�ned, the for
eon a typi
al parti
le takes its dominant 
ontribution from parti
les in a �nite regionaround it; when instead the PDF is ill de�ned far-away 
ontributions to the totalfor
e dominate, diverging with the size of the system. Thus absolutely integrablepair for
es with γ > d − 1 are, in this pre
ise sense, �short-range", while they are�long-range" when γ ≤ d − 1. To avoid 
onfusion with the usual 
lassi�
ation ofthe range of intera
tions based on the integrability properties of the intera
tionpotential, we will adopt the nomen
lature that intera
tions in the 
ase γ > d−1 aredynami
ally short-range, while for γ ≤ d− 1 they are dynami
ally long-range. Thus204



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSan intera
tion with d−1 < γ ≤ d 
an be des
ribed as thermodynami
ally long-rangebut dynami
ally short-range.Se
ondly the results in Se
. 2.3 detail how, for γ ≤ d − 1, the for
e PDF in thein�nite system limit may be de�ned provided an additional pres
ription is given forthe 
al
ulation of the for
e. In the next se
tion we explain the physi
al meaningand relevan
e of this result.3 De�nedness of dynami
s in an in�nite uniformsystemThe regularization Eq. (6.18) is simply the generalization to a generi
 pair for
ewith γ ≤ d−1 of one whi
h is used for the 
ase of Newtonian gravity, often referredto as the �Jeans swindle� (see e.g. [25℄). It was indeed originally introdu
ed byJeans [86℄ in his treatment of self-gravitatingmatter in an in�nite universe. However,as explained by Kiessling in [95℄, its denomination as a �swindle� is very misleading,as it 
an be formulated in a mathemati
ally rigorous and physi
ally meaningfulmanner, pre
isely as in Eq. (6.18).The pres
ription Eq. (6.18) simply makes the for
e on a parti
le de�ned bysetting to zero the ill de�ned 
ontribution due to the non-zero mean density:
〈F(x)〉 = lim

µ→0+
n0

∫

x− x′

|x− x′|f(|x− x′|)e−µ|x−x′|ddx′ = 0 , (6.21)The for
e on a parti
le 
an thus be written as
F(x) = lim

µ→0+

∫

x− x′

|x− x′|f(|x− x′|)e−µ|x−x′|δn(x′)ddx′ , (6.22)where δn(x′) = n(x′) − n0 is the density �u
tuation �eld. It is straightforwardto show that the derived 
onstraint (6.20) 
orresponds simply to that whi
h 
an beanti
ipated by a naive analysis of the 
onvergen
e of the integral Eq. (6.22): treating
δn(x′) as a deterministi
 fun
tion (rather than a sto
hasti
 �eld) one 
an require itto de
ay at large |x′| with a su�
iently large exponent in order to give integrability;taking the FT to infer the behavior of |δ̃n(k)|2 one obtains the 
ondition (6.20).The relevan
e of the results we have derived for the for
e PDF in the in�nitesystem limit using this regularization arises thus, as it does in the 
ase of Newtoniangravity, when one addresses the following question: is it possible to de�ne 
onsis-tently dynami
s under a given pair intera
tion in an in�nite system whi
h is uniformat large s
ales? As we now dis
uss, generalizing 
onsiderations given in [3℄ for thespe
i�
 
ase of gravity in d = 1, the answer to this question is in fa
t phrased interms of the de�nedness of the PDF of for
e di�eren
es rather than that of for
es.This leads then to our se
ond 
lassi�
ation of pair intera
tions.3.1 Evolution of �u
tuations and de�nedness of PDFLet us 
onsider �rst an in�nite parti
le distribution whi
h is su
h that the total for
ePDF is de�ned at some given time, i.e., for γ > d− 1 we may 
onsider any uniformSSP, while for γ < d − 1 we may 
onsider (employing the regularization dis
ussed)205



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSonly the 
lass of SSP with �u
tuations at large s
ales obeying the 
ondition (6.20)at this time. The for
es on parti
les at this initial time are then well de�ned. Thiswill only remain true, however, after a �nite time interval, if the evolved distribution
ontinues to obey the same 
ondition (6.20). Let us determine when this is the 
aseor not.In order to do so, it su�
es to 
onsider the evolution of the density �u
tuations,and spe
i�
ally of the SF at small k, due to the a
tion of this for
e �eld. Given thatwe are interested in the long-wavelength modes of the density �eld, we 
an apply thedi�erential form of the 
ontinuity equation for the mass (and thus number) densitybetween an initial time t = 0 and a time t = δt:
n(x, δt)− n(x, 0) = ~∇[n(x, 0)u(x, 0)] (6.23)where u(x, 0) is the in�nitesimal displa
ement �eld. Subtra
ting the mean density

n0 from both sides, and linearizing in δn(x, δt) = [n(x, δt) − n0] and u(x, 0), weobtain, on taking the FT,
δ̃n(k, δt) = δ̃n(k, 0) + i n0 k · ũ(k, 0) . (6.24)Taking the square modulus of both sides, in the same approximation we get

|δ̃n(k, δt)|2 − |δ̃n(k, 0)|2 = (6.25)
n2
0k

2|ũ(k)|2 + 2kn0Im[δ̃n(k, 0)ũ∗(k, 0)] .If the displa
ements are generated solely by the for
es a
ting (i.e. assuming velo
itiesare initially zero), we have that
u(x, 0) =

1

2
F(x, 0)δt2 (6.26)and thus, that |ũ(k)|2 ∝ |F(k)|2. The latter quantity is given, using Eq. (6.16), by

|F(k)|2 = |f̃(k)|2S(k) . (6.27)In the analysis in the previous se
tion we used the result that at small k, f̃(k) ∼
k−d+γ+1. Thus |ũ(k)|2 ∼ k2m+n, where m = −d+ γ + 1, if S(k) ∼ kn. It thenfollows, from Eq. (6.25), that the small k behavior of the time-evolved SF is givenby

Sδt(k → 0) ∼ kn + k1+m+n + k2+2m+n . (6.28)It 
an be inferred that the leading small k behavior of the SF is un
hanged if andonly if m + 1 ≥ 0, i.e., γ ≥ d − 2. Gravity (γ = d − 2) in the marginal 
ase iswhi
h the long wavelength 
ontribution to the SF generated by the evolution hasthe same exponent as the initial SF: this is the well known phenomenon of linearampli�
ation of initial density perturbations (see e.g. [25, 126℄) whi
h applies3 inin�nite self-gravitating systems (derived originally by Jeans).3The result does not apply, however, when n > 4 [126℄; the reason is that �u
tuations with
S(k → 0) ∼ k4 arise generi
ally from any rearrangement of matter due to dynami
s whi
h 
on-serves mass and momentum lo
ally. These e�e
ts are negle
ted impli
itly above when we use the
ontinuum approximation to the density �u
tuation �eld.206
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tion is �more long-range� thangravity in d dimensions) the exponent of the small k behavior is redu
ed from n to
n− 2(d− 2− γ). Given that our result is for an in�nitesimal time δt, this indi
atesin fa
t a pathologi
al behavior: in any �nite time interval the exponent n shouldbe
ome, apparently, arbitrarily large and negative, while, as shown in Se
t. 1, the
onstraint n > −d is imposed by the assumed large s
ale uniformity of the SPP. Inother words this result means that, in the in�nite system limit, when γ < d − 2,the 
ondition of large s
ale uniformity is violated immediately by the dynami
alevolution. The reason is simply that in this 
ase the rate of growth of a perturbationat a given s
ale in
reases with the s
ale. Indeed this is the essential 
ontent of theanalysis given just above: through the 
ontinuity equation, the perturbation to thedensity �eld is proportional to the gradient of the displa
ement �eld, whi
h in turnis simply proportional to the gradient of the for
e. As we now detail more expli
itly, when γ < d− 2, this quantity diverges with the size of the system.3.2 PDF of for
e di�eren
esLet us 
onsider now the behavior of the PDF of the di�eren
e of the for
es betweentwo spatial points separated by a �xed ve
tor distan
e a:

∆F(x;x+ a) ≡ F(x)− F(x+ a) . (6.29)If this quantity is well de�ned in the in�nite system limit, its PDF P(∆F; a) willbe independent of x and will have a parametri
 depende
e only on a = |a| be
auseof the assumed statisti
al translational and rotational invarian
e of the parti
ledistribution.The analysis of the properties of P(∆F; a) in the in�nite volume limit is formallyexa
tly the same as that given above for the total for
e F, with the only repla
ementof the pair for
e in Eq. (6.14) by the pair for
e di�eren
e:
∆f(x,x+ a) = f(x)− f(x + a) , (6.30)i.e., the di�eren
e of the pair for
es on two points lo
ated at x and x + a due toa point at the origin. Assuming again the possible small s
ale singularities in thispair for
e di�eren
e to be suitably regulated, our previous analysis 
arries through,the only signi�
ant 
hange being that, as x→ ∞,

∆f(x,x+ a) ∼ ax̂/xγ+2 . (6.31)Pro
eeding in exa
tly the same manner to analyse P(∆F; a), we �nd that
• For γ > d − 2, i.e., if the gradient of the pair for
e at �xed a is an absolutelyintegrable fun
tion of x at large separations, the PDF P(∆F; a) is well de�nedin the in�nite system limit, and is a rapidly de
reasing fun
tion of its argumentfor any SPP. This is true without any regularization.
• For γ ≤ d−2, on the other hand, a well de�ned PDF may be obtained only byusing the regularization like that introdu
ed above in Eq. (6.18). Therefore thePDF of the for
e di�eren
es then remains well de�ned, i.e., the for
e di�eren
e207
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∆F(x; a) remains �nite at all x, only in a sub-
lass of SPP de�ned by the
onstraint

n > d− 2γ − 4 = −d+ 2(d− 2− γ) . (6.32)For the 
ase of gravity γ = d − 2 this 
oin
ides with the full 
lass of uniformSPP, while for any smaller γ, it restri
ts to a sub-
lass of the latter.
3.3 Conditions for de�nedness of dynami
s in an in�nite sys-temOur analysis in Se
. 3.1 of the evolution of density perturbations under the e�e
tof the mutual pair for
es gave the su�
ient 
ondition γ ≥ d− 2 for the 
onsisten
yof the dynami
s in the in�nite system limit, but with the assumption that the totalfor
e PDF was itself de�ned. This means that, in the range d− 2 ≤ γ < d− 1, theresult derived applies only to the sub-
lass of in�nite uniform parti
le distributionsin whi
h the large s
ale �u
tuations obey the 
ondition (6.20). It is straightforwardto verify, however, that the analysis and 
on
lusions of Se
. 3.1 
an be generalizedto 
over all uniform SPP for γ ≥ d − 2. In line with the dis
ussion given above,the analysis requires in fa
t only assumptions about the behavior of the gradientof the for
es, rather the for
es themselves. More spe
i�
ally, the only equationwhi
h expli
itly 
ontains the for
e, Eq. (6.26), is a purely formal step whi
h 
an bemodi�ed to in
lude the possibility that the for
e diverges with system size. Indeedif the for
e � at a given point � in
ludes su
h a divergen
e it is su�
ient that thisdivergen
e 
an
els out when we 
al
ulate the di�eren
e between this for
e and thatat a neighboring point. Physi
ally this means simply that, as dis
ussed above, whenwe 
onsider the relative motions of parti
les, it is su�
ient to 
onsider relative for
es.Further, as we are 
onsidering the limit of an in�nite system in whi
h there is nopreferred point (i.e. statisti
al homogeneity holds), only relative motions of pointshas physi
al signi�
an
e, and therefore only the spatial variation of the for
es 
anhave physi
al meaning. These latter statements 
an be viewed as a kind of 
orollaryto Ma
h's prin
iple: if the mass distribution of the universe is, as it is in the 
ase we
onsider, su
h that there is no preferred point in spa
e (and, spe
i�
ally, no 
enterof mass) inertial frames whi
h give absolute meaning to for
es (rather than tidalfor
es) 
annot be de�ned.In summary our 
on
lusion is that the ne
essary and su�
ient 
ondition fordynami
s to be de�ned in the in�nite system limit � in analogy to how it is de�nedfor Newtonian self-gravitating parti
les in a in�nite universe of 
onstant density �is that the gradient of the pair for
e be absolutely integrable at large separations.Gravity is the marginal (logarithmi
ally divergent) 
ase in whi
h su
h a dynami
s
an be de�ned, but only by using a pres
ription su
h as Eq. (6.18). Further these
onditions on the range of pair for
es 
an be expressed simply as one on the existen
eof the PDF of for
e di�eren
es of points as �nite separations in the in�nite systemlimit.208
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ussion and 
on
lusionsIn 
on
lusion we make some brief remarks on how the results derived here relate toprevious work in the literature on for
e PDFs. In this 
ontext we also dis
uss theimportant assumption we made throughout the arti
le, that the pair for
e 
onsid-ered was bounded. Finally we return brie�y to the question of the relevan
e of the
lassi�
ation dividing intera
tions a

ording to the integrability properties of thepair for
e, 
on
erning whi
h we have reported initial results elsewhere [67℄.The �rst and most known 
al
ulation of the for
e PDF is that of Chandrasekhar[33℄, who evaluated it for the gravitational pair intera
tion in an in�nite homoge-neous Poisson parti
le distribution (in d = 3). This results in the so-
alledHoltzmarkdistribution, a probability distribution belonging to the Levy 
lass (i.e. power lawtailed with a diverging se
ond moment) with P (F) ∼ F−9/2 at large F . A

ord-ing to our results here, a well de�ned PDF may be obtained for su
h a for
e law,whi
h is not absolutely integrable at large separations, only by using a pres
rip-tion for the 
al
ulation of the for
e in the in�nite system limit. In his 
al
ulationChandrasekhar indeed obtains the for
e on a point by summing the 
ontributionsfrom mass in spheres of radius R 
entered on the point 
onsidered, and then taking
R → ∞ (with n0 �xed). This pres
ription is a slight variant of the one we have em-ployed (following Kiessling [95℄): instead of the smooth exponential s
reening of theintera
tion, it uses a �spheri
al top-hat" s
reening so that the for
e may be writtenformally as in Eq. (6.18) with the repla
ement of e−µ|x−x′| by a Heaviside fun
tion
Θ(µ−1 − |x − x′|). It is straightforward to verify that the result of Chandrasekharis un
hanged if the smooth pres
ription Eq. (6.18) is used instead. As the Poissondistribution 
orresponds to an SF S(k → 0) ∼ kn with n = 0, the general 
ondition(6.20) for the existen
e of the PDF we have derived, whi
h gives n > −1 for gravityin d = 3, is indeed satis�ed. The fa
t that the PDF is power-law tailed (and thusnot rapidly de
reasing) arises from the fa
t that the 
al
ulation of Chandrasekhardoes not, as done here, assume that the singularity in the gravitational intera
tionis regularized. Indeed it is simple to show expli
itly [71℄ that this power law tailarises from the divergen
e in the pair for
e at zero separation. This 
an be doneby 
onsidering the 
ontribution to the total for
e on a system parti
le due to itsnearest neighbor parti
le, whi
h turns out to have a power law tail identi
al, bothin exponent and amplitude, to that of the full P (F).Our analysis shows that it is true in general that well de�ned, but power-lawtailed for
e PDFs, 
an arise only when there are singularities in the pair for
e: for abounded for
e we have seen that the PDF is ne
essarily rapidly de
reasing when itexists. More spe
i�
ally, returning to the analysis of Se
. 1.3, it is straightforward tosee that the 
ru
ial property we used of QN ({fi}), that it have 
ompa
t support, is nolonger valid when the pair for
e has singularities. The analyti
ity properties whi
hlead to a rapidly de
reasing PDF may then not be inferred. We note that this is trueat �nite N , and has nothing to do with the in�nite volume limit, i.e., the appearan
eof the asso
iated power-law tail arises from the possibility of having a single parti
lewhi
h give an unbounded 
ontribution rather than from the 
ombination of the
ontribution of many parti
les whi
h then diverges in the in�nite system limit. Theexponent in su
h a power-law tail will depend on the nature of the divergen
e atsmall separation. More spe
i�
ally, for a 
entral pair for
e as 
onsidered above andnow with a singularity f(x → 0) ∼ 1/xa, a simple generalization of the analysis209
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ase of gravity (see [?℄) of the leading 
ontribution to the total for
e 
omingfrom the nearest neighbor parti
le leads to the 
on
lusion that P (F → ∞) ∼ F−d− d
a(where F = |F|). This implies that the varian
e diverges (i.e. the PDF be
omesfat-tailed) for a > d/2.For
e PDFs have been 
al
ulated in various other spe
i�
 
ases. Wesenbergand Molmer [153℄ derived that of for
es exerted by randomly distributed dipolesin d = 3, 
orresponding to a pair for
e with γ = 2. A

ording to our resultsthis is the marginal 
ase in whi
h a summation pres
ription is required for thefor
e, and indeed a pres
ription using spheres, like that used by Chandrasekhar forgravity, is employed. We note that [153℄ fo
usses on the power-law tails asso
iatedwith the singularity at zero separation of the for
e, whi
h lead in this 
ase (as
an be inferred from the result summarized above) to the divergen
e of the �rstmoment of the for
e PDF. One of us (AG) has given results previously [65℄ forthe PDF for a generi
 power-law intera
tion in d = 1 for γ > −1 in our notationabove. The 
onditional for
e PDF is then derived for the 
ase of an in�nite �shu�edlatti
e� of parti
les, i.e., parti
les initially on an in�nite latti
e and then subje
tedto un
orrelated displa
ements of �nite varian
e, and using again, as Chandrasekhar,a �spheri
al top-hat" pres
ription for the for
e summation (for γ ≤ 0, when the pairfor
e is not absolutely integrable). It is simple to show [71℄ that su
h a distributionhas an SF with n = 2 at small k, and thus the existen
e of the for
e PDF in these
ases is again in line with the 
onstraint (6.20) derived. Power-law tails are againobserved in these 
ases, and their exponents related expli
itly to the singularity inthe assumed power-law for
e at zero separation.The 
al
ulation of Chandrasekhar has been generalized in [66℄ to the 
ase ofparti
les on an in�nite shu�ed latti
e. This leads again, in line with 
ondition(6.20), to a well de�ned PDF, again with or without power-law tails a

ordingto whether the singularities in the pair for
e are in
luded or not. Chavanis [35℄
onsiders, on the other hand, the generalization of Chandrasekhar 
al
ulation (forthe PDF of gravitational for
es in a Poisson distribution) to d = 2 and d = 1. The
ondition (6.20 for gravity (γ = d − 2) gives n > −d + 2, whi
h implies that thefor
e PDF is not de�ned in the in�nite system limit we have 
onsidered for d ≤ 2,and indeed in [35℄ well de�ned PDFs are obtained in d = 2 and d = 1 by using adi�erent limiting pro
edure involving in ea
h 
ase an appropriate res
aling of the
oupling with N . The physi
al meaning of su
h a pro
edure is dis
ussed in [?℄, whi
h
onsiders in detail the 
al
ulation of the for
e PDF for gravity in d = 1 in a Poissondistribution (as in [35℄). An exa
t 
al
ulation of the for
e PDF of the s
reenedgravitational for
e in the in�nite system limit is given, whi
h allows one to see inthis 
ase exa
tly how the general result given here is veri�ed in this spe
i�
 
ase:all moments of the PDF diverge simultaneously as the s
reening length is takento in�nity, giving a PDF whi
h 
onverges point-wise to zero. The for
e PDF forgravity in d = 1 for a 
lass of in�nite parti
le distributions generated by perturbinga latti
e has been derived re
ently in [70℄. It is straightforward to show that one ofthe 
onditions imposed on the perturbations to obtain the PDF, that the varian
eof the perturbations be �nite, 
orresponds in fa
t to the 
ondition n > 1 whi
h
oin
ides pre
isely with the more general 
ondition (6.20) derived here. Unlike inthe other spe
i�
 
ases just dis
ussed, it turns out that in this 
ase (gravity in d = 1)it is in fa
t ne
essary to use the smooth pres
ription Eq. (6.18). As explained in210
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ription does not give a well de�ned result in this
ase, be
ause surfa
e 
ontributions to the for
e whi
h do not de
ay with distan
e inthis 
ase are not regulated by it. We underline that the general result given in thepresent arti
le are for this spe
i�
 pres
ription Eq. (6.18). Further analysis would berequired to derive the general 
onditions in whi
h a top-hat pres
ription also givesthe same (and well-de�ned) PDF.Finally let us 
omment on why we anti
ipate the 
lassi�
ation of pair intera
tionsa

ording to their �dynami
al range�, formalized here using the for
e PDF, shouldbe a useful and relevant one physi
ally in the study of systems with long-rangeintera
tions. The reason is that this 
lassi�
ation re�e
ts, as we have explained,the relative importan
e of the mean �eld 
ontribution to the for
e on a parti
le,due to the bulk, 
ompared with that due to nearby parti
les. Now it is pre
iselythe domination by the former whi
h is understood to give the regime of 
ollisionlessdynami
s whi
h is expe
ted to lead to the formation of QSS states, whi
h are usuallyinterpreted to be stationary states of the Vlasov equations des
ribing su
h a regimeof the dynami
s (see e.g. [13℄). In a re
ent arti
le [67℄ a numeri
al and analyti
alstudy has been reported whi
h provides strong eviden
e for the following result,very mu
h in line with this naive expe
tation: systems of parti
les intera
ting byattra
tive power law pair intera
tions like those 
onsidered here 
an always giverise to QSS; however when the pair for
e is dynami
ally short-range their existen
erequires the presen
e of a su�
iently large soft 
ore, while in the dynami
ally long-range 
ase QSS 
an o

ur independently of the 
ore, whether hard or soft, providedit is su�
iently small. In other words only in the 
ase of a pair for
e whi
h is�dynami
ally long-range" 
an the o

urren
e of QSS be 
onsidered to be the resultonly of the long distan
e behavior of the intera
tion alone. This �nding is very
onsistent with what 
ould be anti
ipated from the pre
eding (naive) argument: thee�e
t of a �soft 
ore� is pre
isely to redu
e the 
ontribution to the for
e due to nearbyparti
les, whi
h would otherwise dominate over the mean �eld for
e in the 
ase ofa pair for
e whi
h is absolutely integrable at large distan
es. Indeed the meaningof �su�
iently large� spe
i�ed in [67℄ is that the size of the soft 
ore must in
reasein an appropriate manner with the size of the system as the limit N → ∞ is taken,while we have always impli
itly assumed it to be �xed in units of the interparti
ledistan
e here.
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Con
lusion and perspe
tivesIn Chapters 3, 4 and 5 of this thesis, we have presented a simpli�ed 1− d toy modelto study the temporal evolution of in�nite self-gravitating systems, 
onsidering a
lass of initial 
onditions analogous to those 
anoni
ally studied in 
osmology. Inso doing, we have revisited a basi
 question 
on
erning the de�nition of the gravi-tational for
e in 1− d in�nite point distributions. We then have dis
ussed di�erentdynami
al toy models whi
h in
orporate this de�nition of the for
e � the simple
onservative Newtonian dynami
s and one whi
h in
orporates a damping term mim-i
king the e�e
t of 3− d expansion.We then have presented in Chapter 4 the results of numeri
al investigations ofthe dynami
al evolution of 1 − d self-gravitating toy models, starting with a 
lassof initial 
onditions analogous to those studied in 
osmology: latti
es perturbed toprodu
e an initial power spe
trum in a simple power-law form, i.e. Pinit(k) ∝ kn atsmall k. We have observed very strong qualitative similarities between the evolutionof 1 − d and 3 − d systems when the exponent of the initial power spe
trum wasequal to 0 and 2. We have observed spe
i�
ally the hierar
hi
al nature of the
lustering, and brought to light the me
hanism of linear ampli�
ation determiningthe growth of non-linearity s
ale. Moreover, we have shown that �self-similarity�is indeed observed in 1 − d system in both the stati
 and expanding 
ases just asin 3 − d. We have shown, however, that qualitative di�eren
es 
an be identi�edbetween the stati
 and expanding 
ases. The shape of the 
orrelation fun
tion hasappeared to be a fun
tion of the exponent n of the initial power spe
trum and of thedamping term Γ in the expanding 
ase, and to be independent of this exponent inthe stati
 limit (Γ = 0). This result again 
oin
ides with 3−d numeri
al simulation.The 1− d self-gravitating model has also given us the opportunity to investigateeasily stru
ture formation in the limit of �
ausal �u
tuations�, i.e. P (k) ∝ k4 atsmall k. We have shown that, di�erently to the 
ase where P (k) ∝ k0 or k2 atsmall k, the evolution of the PS at small k is not, as expe
ted, the one predi
tedfrom linear theory. However, despite the non-validity of the linear ampli�
ationof the small k PS, the non-linear stru
ture formation does show asymptoti
ally aself-similar evolution.Due to the absen
e of smoothing at small s
ale (whi
h is impossible in 3− d N-body simulations), our 1− d model allowed us to identify the lower 
ut-o� markingthe end of the self-similar regime at small-s
ale, xmin say. We have shown that this
ut-o� was explained naturally by a �stable-
lustering� hypothesis, a result whi
hallowed us to determine the exponent in the self-similar regime in terms of the expo-nent n of the initial power spe
trum and the damping term Γ. The stable 
lusteringhypothesis we have des
ribed, however, is a
tually subtly di�erent from the original213



CONCLUSION AND PERSPECTIVESone introdu
ed by Peebles in 3 − d in an EdS universe [126℄: we assumed only thestable 
lustering applies below the s
ale xmin marking the lower 
ut-o�, and notne
essarily to the strongly non-linear regime as a whole. Thus we assumed, in ourderivation of the exponent 
hara
terizing the self-similar regime, only that stable
lustering applies at an ultraviolet s
ale �xed by the resolution of the simulation(or, physi
ally, by the s
ale at whi
h the very �rst stru
tures form).We have then explored and 
hara
terized further in Chapter 5 the s
ale-invariantproperties of the parti
le distribitions produ
ed in these 1− d self-gravitating mod-els. We used a multifra
tal analysis to measure the spe
trum of fra
tal exponentsand studied their dependen
e on the model and initial 
onditions. We 
on
ludedthat, in the stati
 model the results are quite 
onsistent with a simple homogeneousfra
tal, while in the expanding 
ases there is signi�
ant multi-fra
tality. Further-more, we have explored the appli
ability of a des
ription of the 
lustering like thatused 
anoni
ally in 
osmologi
al simulations, that in terms of �halos�. We used thesimplest kind of �Friend-of-Friend� algorithm and fo
ussed on the question whetherthese sele
ted halos are, typi
ally, virialized. The study of the virial ratios we havepresented indi
ated that su
h halos 
an be 
onsidered as entities with a dynami
alrelevan
e, as they show a 
lear tenden
y to have a virial ratio of order unity (whi
his the behaviour of an isolated stru
ture). It emerged from this analysis that one
an e�e
tively de
ompose the distribution of parti
les into a 
olle
tion of stru
tureswhi
h are, statisti
ally, virialized. The �statisti
al virialization� we have observedusing the halo analysis applies a
ross the range of the s
ale-invariant 
lustering.Thus the strongly non-linear 
lustering in these models is a

urately des
ribed as avirialized fra
tal stru
ture, very mu
h in line with the �
lustering hierar
hy� whi
hPeebles originally envisaged qualitatively as asso
iated with stable 
lustering [126℄.If transposed to 3 − d these results would imply, notably, that 
old-dark matterhalos (or even subhalos) are 1) not well modeled as smooth obje
ts, and 2) that thesupposed �universality� of their pro�les is, like apparent smoothness, an artefa
t ofpoor numeri
al resolution. There are, however, 
learly two possible 
on
lusions one
an draw from this analysis:
• A) These 1 − d models produ
e non-linear 
lustering whi
h is qualitativelydi�erent in its nature to that in 3− d, or
• B) The spatial resolution in 3− d simulations up to now has been too limitedto reveal the nature of 
lustering in 
old dark matter 
osmologies, whi
h is
orre
tly re�e
ted (qualitatively) in the 1− d simulations.We believe that, despite the impressive 
omputational size and sophisti
ation of

3− d 
osmologi
al simulations, 
on
lusion B may well be the 
orre
t one. The verylargest modern studies in a 
osmologi
al volume a

es roughly two de
ades in s
alein the non-linear regime while referen
e studies in the literature of power law initial
onditions in EdS 
osmology [51, 139℄ measure the 
ru
ial power-law behaviour inthe 
orrelation fun
tion over at most one de
ade. If we were to perform our 1 − dsimulations at 
omparable resolution to large 
osmologi
al simulations like Smith etal. [139℄, we would 
ertainly have a great di�
ulty in establishing the s
ale invariantnature of the strongly non-linear 
lustering arising from power law initial 
ondi-tions. Although halos de�ned exa
tly as in three dimensions might look 
lumpy, an214



CONCLUSION AND PERSPECTIVESapproximately smooth pro�le 
ould be determined for them if they were averaged(as they 
an be in three dimensions when spheri
al symmetry is assumed). Higherresolution 3D simulations of smaller regions have shown over the last de
ade thatthere is in fa
t mu
h more substru
ture inside halos than was originally anti
ipated(see, e.g., [45,76,115℄), and some very re
ent work [161℄ even 
omes to the 
on
lusionthat halos are indeed, intrinsi
ally grainy rather than smooth. Previous analyses byother authors (see, e.g., [72, 149℄) have also argued for similar 
on
lusions based onthe analysis of 3D simulations.Let us 
onsider nevertheless one possible 
onsideration in favour of (the more
onservative) 
on
lusion A. In the expanding (i.e. damped) 1D models, the stable
lustering predi
tion �ts the measured exponents extremely well. Early 3D stud-ies for EdS 
osmologies (e.g. [51℄) measured exponents roughly 
onsistent with thestable 
lustering predi
tion, but later studies (e.g. [139℄) have found signi�
ant dis-agreement. This disagreement is attributed to physi
al me
hanisms whi
h 
ause thefundamental assumption of stability to be violated � by the evident fa
t that thereare intera
tions between �halos", whi
h 
an even lead to their merging into singlestru
tures. We have noted that in one dimension tidal for
es vanish, and stru
tures
an intera
t only when they a
tually physi
ally 
ross one another. While mergingmay o

ur, it may be that it is a less e�
ient pro
ess than in three dimensions.Thus the ex
ellent agreement in the 1D models 
ompared to EdS may perhaps beattributed to the fa
t that these models probably represent poorly the role of su
hphysi
al e�e
ts. The essential question, however, is not whether these e�e
ts play arole and 
an lead to deviations from stable 
lustering, but whether su
h e�e
ts 
anqualitatively 
hange the nature of 
lustering, destroying s
ale invarian
e by smooth-ing out the distribution on a s
ale related to the upper 
ut-o� to s
ale invarian
e.Our study of the 
ase Γ = 0 suggests that the answer is negative. The predi
tionof stable 
lustering does not work in this 
ase, and like in three dimensions, oneobtains a small value of the exponent whi
h does not sensibly depend on n. Thephysi
al reasons why the exponent is 
lose to, but di�erent to, the stable 
lusteringpredi
tion are a priori the ones just 
ited. Further, as we have mentioned, the lower
ut-o� xmin remains 
onstant as in the stable 
lustering hypothesis, of order theinitial latti
e spa
ing (and unrelated to the upper 
ut-o�).These results on 1D models suggest dire
tions for 3D investigations whi
h mightestablish de�nitively the 
orre
tness of 
on
lusion B. We note, for example, thatthe 1D models lead one to expe
t that the exponents derived phenomenologi
ally to
hara
terize the highly non-linear density �eld inside smoothed halos (i.e. the �innerslope" of halos) should be 
losely related to the exponent γ determined from the
orrelation fun
tion. Indeed � in the approximation of a simple fra
tal behaviorin the strongly non-linear regime, whi
h the spe
trum of multi-fra
tal exponentsmeasured in [114℄ suggests should be quite good � the mean density about the
entre of su
h halos will de
rease just as about any random point, i.e., with the sameexponent γ. Despite the 
ontradi
tion with the widely 
laimed �universality" of su
hexponents in halos pro�les, su
h a hypothesis 
annot 
urrently be ruled out, as thedetermination of su
h exponents is beset by numeri
al di�
ulties (arising again fromthe limited resolution of numeri
al simulations). In a study of halo pro�les obtainedfrom power law initial 
onditions Knollmann et al. [97℄ show expli
itly that theresults for the halo exponents depend greatly on what numeri
al �tting pro
edure215



CONCLUSION AND PERSPECTIVESis adopted. While one pro
edure gives �universality" (i.e. exponents independentof n), a di�erent one favors 
learly steepening inner pro�les for larger n. Indeedwe note that the numeri
al values for the inner slopes obtained by Knollman etal. [97℄ are, for the larger n investigated, in quite good agreement with the exponentpredi
ted by stable 
lustering.Our 
onsiderations here are stri
tly relevant only to dissipationless 
old darkmatter simulations. If the initial 
onditions are �warm" or �hot", or if other non-gravitational intera
tions are turned on, the asso
iated physi
al e�e
ts will lead tendto smooth out the matter distribution up to some s
ale (and thus destroy the s
aleinvarian
e up to this s
ale). Nevertheless, if the 
on
lusion B is 
orre
t even for thisidealized 
ase, it is likely to have very important observational impli
ations rele-vant to testing standard 
osmologi
al models � intrinsi
ally 
lumpy or grainy haloslead, for example, to very di�erent predi
tions for dark matter annihilation (see,e.g. [4, 76℄)). At larger s
ales the possible link to the striking power-law behaviorwhi
h 
hara
terizes galaxy 
orrelations over several de
ades (see, e.g., [99,106,125℄)� whi
h was the motivation for original work on stable 
lustering [125℄ and isnaturally interpreted as indi
ative of underlying s
ale invarian
e in the matter dis-tribution (see, e.g. [72, 99℄) � is intriguings.In the last Chapter 6 of this thesis, we have reported results whi
h generalizeto any pair intera
tion de
aying as a power-law at large separation the approa
hused in Chapter 3 to determine whether the 1 − d gravitational for
e is de�nedin an in�nite system. This is an interesting question as the gravitational for
e is
learly a parti
ular long-range intera
tion, for whi
h linear ampli�
ation emergesfrom linear �uid theory. We have formalized and des
ribed a simple 
lassi�
ationof pair intera
tions whi
h is di�erent to the usual thermodynami
 one applied todetermine equilibrium properties, and whi
h we believe should be very relevant inunderstanding aspe
ts of the out of equilibrium dynami
s of these systems. Insteadof 
onsidering the 
onvergen
e properties of potential energy in the usual thermody-nami
 limit, we have 
onsidered therefore those of the for
e in the same limit. Thus,while in the former 
ase one 
onsiders (see e.g. [136℄) the mathemati
al properties ofessential fun
tions des
ribing systems at equilibrium in the limit N → ∞, V → ∞at �xed parti
le density n0 = N/V , we have 
onsidered the behavior of fun
tions
hara
terising the for
es in this same limit. More spe
i�
ally we have 
onsidered thede�nedness of the probability distribution fun
tion (PDF) of the for
e �eld in statis-ti
ally homogeneous in�nite parti
le distributions. We have also dis
ussed a further(and di�erent) 
lassi�
ation whi
h 
an be given of the range of pair intera
tionsbased on dynami
al 
onsiderations. This arises when one addresses the question ofwhether dynami
s under a given pair intera
tion may be de�ned in in�nite systems,i.e., in a manner analogous to that in whi
h it is de�ned for self-gravitating massesin an in�nite universe. We have then dedu
ed our prin
ipal result that the for
ePDF exists stri
tly in the in�nite system limit if and only if the pair for
e is abso-lutely integrable at large separations, while it 
an be de�ned only in a weaker sense,introdu
ing a regularization, when the pair for
e is not absolutely integrable. Wehave dis
ussed the physi
al relevan
e of the use of su
h a regularization, whi
h isjust a generalization of the so-
alled �Jeans swindle" used to de�ne the dynami
s of(
lassi
al non-relativisti
) self-gravitating parti
les in an in�nite universe. By ana-216



CONCLUSION AND PERSPECTIVESlyzing the evolution of density perturbations in an in�nite system, we have shownthat the physi
al relevan
e of su
h a regularization of the for
es requires also a 
on-straint on the behavior of the PDF of total for
e di�eren
es as a fun
tion of systemsize. We expe
t that this 
lassi�
ation re�e
ts, as we have explained, the relativeimportan
e of the mean �eld 
ontribution to the for
e on a parti
le, due to the bulk,
ompared with that due to nearby parti
les. Now it is pre
isely the domination bythe former whi
h is understood to give the regime of 
ollisionless dynami
s whi
h isexpe
ted to lead to the formation of QSS states, whi
h are usually interpreted to bestationary states of the Vlasov equations des
ribing su
h a regime of the dynami
s(see e.g. [13℄).Work in progress will use the power of 1−d models, whi
h is their simple imple-mentation in numeri
al studies, to study the impa
t of the range of the intera
tionand of the presen
e of a regularization (hard or soft 
ore) at small s
ale on thedynami
s whi
h is expe
ted to lead to the formation of QSS states. We will use anexa
t N-parti
les 
ode, optimized to run using Graphi
al Pro
essing units (GPU)programming. This simpli�ed approa
h will give us the opportunity to follow thedynami
al evolution of the systems dire
tly in the one-parti
le phase-spa
e, analysiswhi
h is impossible in three dimensions.
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Appendix AOne and two point properties ofuniform SPPIn this appendix we give the general one and two-point statisti
al 
hara
terizationof a SPP whi
h is uniform on large s
ales.The des
ription of the 
orrelation properties of a generi
 uniform SPP is given bythe n-point 
orrelation fun
tions of the density �eld. For our 
onsiderations it willturn out to be su�
ient to 
onsider only the two-point properties, and more spe
if-i
ally it will be most 
onvenient to 
hara
terize them in re
ipro
al spa
e throughthe stru
ture fa
tor (SF) (or power spe
trum). This is de�ned by
S(k) = lim

V→∞

〈

|δ̃n(k;V )|2
〉

n0V
(A.1)where

δ̃n(k;V ) =

∫

V

ddx e−ik·x[n(x)− n0] . (A.2)With these normalisations the SF of an un
orrelated Poisson pro
ess is S(k) = 1.For a statisti
ally isotropi
 point pro
ess S(k) ≡ S(k), where k = |k|. We re
allhere that S(k) is the Fourier transform (FT) of the 
onne
ted two point density
orrelation fun
tion:
S(k) =

∫

ddx e−ik·xC(x)where
C(x) =

〈n(x0 + x)n(x0)〉 − n2
0

n0
= δ(x) + n0h(x) .In the last expression we have expli
itly separated in the 
orrelation fun
tion C(x)the shot noise term δ(x), present in all SPP and due to the �granularity� of theparti
le distribution, from the �o�-diagonal� term n0h(x) whi
h gives the a
tualspatial 
orrelations between di�erent parti
les.In the paper we study the 
onvergen
e properties of for
es at large distan
es andare thus mainly interested in the properties of the SF at small k. In this respe
t wewill use the following limit on the SF whi
h follows from the assumed uniformity ofthe SPP:

lim
k→0

kdS(k) = 0 , 219



APPENDIX A. ONE AND TWO POINT PROPERTIES OF UNIFORM SPPi.e, the SF is an integrable fun
tion of k at k = 0. This 
onstraint simply translates inre
ipro
al spa
e the requirement from uniformity on the de
ay of relative �u
tuationsof the number of parti
les 
ontained in a volume V about the mean at large V :
lim
V→∞

〈N(V )2〉 − 〈N(V )〉2
〈N(V )〉2 = 0 .Given that 〈N(V )〉 ∝ V , the root mean square �u
tuation of parti
le number N in avolume V must diverge slower than the volume V itself in order that this 
onditionbe ful�lled. (This is equivalent to saying that C(x) must vanish at large x).We use likewise in the paper only one 
onstraint on the large k behavior of theSF, whi
h is valid for any uniform SPP (see e.g. [?℄) and 
oin
ides with the shotnoise term in the 
orrelation fun
tion C(x):

lim
k→∞

S(k) = 1 .
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Appendix BSmall k behavior of f̃(k)We are interested in the small k behavior of the Fourier transform f̃(k) of the pairfor
e in d dimensions in the 
ase where the pair for
e f(x) = x̂f(x), where x̂ = x
|x| ,is non-integrable but 
onverges to zero at x → ∞, i.e., f(r) ∼ x−(γ+1) at large xwith −1 < γ ≤ d− 1.We �rst show that for a fun
tion f(x) = x̂f(x), its Fourier transform, f̃(k) =FT[f(x)](k), 
an be written f̃(k) = k̂ ψ(k) where ψ(k) is a fun
tion depending onlyon the modulus of k and k̂ = k

|k| . In order to obtain this result, we start by writingf̃(k) = ∫ ddx f(x)e−ik.x =

∫

ddx x̂f(x)e−ikx ,where this integral is de�ned in the sense of fun
tions or distributions a

ording tothe integrability of f(x).In the following we denote by (ê1, ê2, . . . , ên) the 
artesian ve
tor basis in d-dimensionand we de�ne (r, θ1, θ2, . . . , θd−1) the hyper-spheri
al 
oordinates of x. Consideringk = k ê1 and denoting for simpli
ity θ = θ1, we 
an writef̃(k) = ∫ ddx x̂f(x)e−ikxcosθ ,where
ddx =

(

d−1
∏

j=0

sinj(θd−j)dθd−j

)

xd−1dx .Proje
ting f̃(k) on the 
artesian basis, it is easy to see that the only non-vanishingterm is ê1 .̃f(k) whi
h giveŝ
e1.f̃(k) = Cθi6=1

∫ ∞

0

dxxd−1

×
∫ π

0

dθ sinn−2(θ) cos θf(x)e−ikxcosθ ,where Cθi6=1
is a 
onstant term 
oming from the integration over all the hyper-spheri
al 
oordinates θi with i 6= 1. We thus 
an write f̃(k) = k̂ ψ(k) where ψ(k) isa fun
tion depending only on the modulus of k. 221



APPENDIX B. SMALL K BEHAVIOR OF F̃(K)We now fo
us our attention on the small k behavior of the term
∫ ∞

0

dxxd−1f(r)e−ikxcosθ , (B.1)where the fun
tion f(x) is non-integrable but 
onverges to zero at x → ∞, i.e.,
f(x) ∼ x−(γ+1) at large x with −1 < γ ≤ d − 1, and thus 
an be written f(x) =
x−(γ+1) + h(x) with h(x) a smooth fun
tion, integrable at x = 0 and su
h that
xγ+1h(x) → 0 for x→ ∞.De�ning expli
itly eq.(B.1) in the sense of distributions, the small k behavior isdetermined by this leading divergen
e at x → ∞,

lim
µ→0

∫ ∞

0

dx xd−1 e
−µx

xγ+1
e−ikx cos θ , (B.2)where the parameter µ > 0. We de�ne α = d−γ−2 whi
h satis�es −1 ≤ α < d−1and rewrite eq. (B.2)

lim
µ→0

∫ ∞

0

dx xαe−(ik cos θ+µ)x .This 
an be easily 
al
ulated with Lapla
e's transform and gives
∫ ∞

0

dx xαe−(ik cos θ+µ)x =
Γ(α + 1)

(µ+ ik cos θ)α+1
.We 
an 
on
lude that

lim
µ→0

∫ ∞

0

dxxd−1 e
−µx

xγ+1
e−ikx cos θ

= i−(α+1) cos−(α+1)(θ)Γ(α + 1)k−(α+1) ∼ kγ−d+1 .
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RésuméLa formation des stru
tures dans l'univers demeure une des interrogations majeures en 
os-mologie. La 
roissan
e des stru
tures dans le régime linéaire, où l'amplitude des �u
tuations estfaible, est bien 
omprise analytiquement, mais les simulations numériques à N -
orps restent l'outilprin
ipal pour sonder le régime �non-linéaire� où 
es �u
tuations sont grandes. Nous abordons 
ettequestion d'un point de vue di�érent de 
eux utilisés 
ouramment en 
osmologie, 
elui de la physiquestatistique et plus parti
ulièrement 
elui de la dynamique hors-équilibre des systèmes ave
 inter-a
tion à longue portée. Nous étudions une 
lasse parti
ulière de modèles 1 − d qui présentent uneévolution similaire à 
elle ren
ontrée dans les modèles 3− d. Nous montrons que le 
lustering spa-tial qui se développe présente des propriétés (fra
tales) d'invarian
e d'é
helles, et que des propriétésd'auto-similarité apparaissent lors de l'évolution temporelle. D'autre part, les exposants 
ara
-térisant 
ette invarian
e d'é
helle peuvent être expliqués par l'hypothèse du �stable-
lustering�. Ensuivant une analyse de type halos séle
tionnés par un algorithme �friend-of-friend�, nous montronsque le 
lustering non-linéaire de 
es modèles 1 − d 
orrespond au développement d'une �hiérar
hiefra
tale statistiquement virielisée�. Nous terminons par une étude formalisant une 
lassi�
ationdes intera
tions basée sur des propriétés de 
onvergen
e de la for
e agissant sur une parti
ule enfon
tion de la taille du système, plut�t que sur les propriétés de 
onvergen
e de l'énergie potentielle,habituellement 
onsidérée en physique statistique des systèmes ave
 intera
tion à longue portée.Mot-
lefsFormation de stru
tures, Intera
tions longue portée, Simulations N -
orpsAbstra
tThe formation of stru
tures in the universe is one of the major questions in 
osmology. Thegrowth of stru
ture in the linear regime of low amplitude �u
tuations is well understood analyti
ally,but N -body simulations remain the main tool to probe the �non-linear� regime where �u
tuationsare large. We study this question approa
hing the problem from the more general perspe
tive to theusual one in 
osmology, that of statisti
al physi
s. Indeed, this question 
an be seen as a well posedproblem of out-of-equilibrium dynami
s of systems with long-range intera
tion. In this 
ontext, itis natural to develop simpli�ed models to improve our understanding of this system, redu
ing thequestion to fundamental aspe
ts. We de�ne a 
lass of in�nite 1−d self-gravitating systems relevantto 
osmology, and we observe strong qualitative similarities with the evolution of the analogous
3 − d systems. We highlight that the spatial 
lustering whi
h develops may have s
ale invariant(fra
tal) properties, and that they display �self-similar� properties in their temporal evolution. Weshow that the measured exponents 
hara
terizing the s
ale-invariant 
lustering 
an be very wella

ounted for using an appropriately generalized �stable-
lustering� hypothesis. Further by meansof an analysis in terms of halo sele
ted using a friend-of-friend algorithm we show that, in the 
or-responding spatial range, stru
tures are, statisti
ally virialized. Thus the non-linear 
lustering inthese 1− d models 
orresponds to the development of a �virialized fra
tal hierar
hy�. We 
on
ludewith a separate study whi
h formalizes a 
lassi�
ation of pair-intera
tions based on the 
onvergen
eproperties of the for
es a
ting on parti
les as a fun
tion of system size, rather than the 
onvergen
eof the potential energy, as it is usual in statisti
al physi
s of long-range-intera
ting systems.KeywordsCosmologi
al stru
ture formation, Long range intera
tions, N -body simulations


