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RésuméLa formation des strutures dans l'univers demeure une des interrogations majeuresen osmologie. La roissane des strutures dans le régime linéaire, où l'amplitudedes �utuations est faible, est bien omprise analytiquement, mais les simulationsnumériques à N-orps restent l'outil prinipal pour sonder le régime �non-linéaire�où es �utuations sont grandes. Nous abordons ette question d'un point de vuedi�érent de eux utilisés ouramment en osmologie, elui de la physique statistiqueet plus partiulièrement elui de la dynamique hors-équilibre des systèmes ave in-teration à longue portée. Nous étudions une lasse partiulière de modèles 1−d quiprésentent une évolution similaire à elle renontrée dans les modèles 3 − d. Nousmontrons que le lustering spatial qui se développe présente des propriétés (fratales)d'invariane d'éhelles, et que des propriétés d'auto-similarité apparaissent lors del'évolution temporelle. D'autre part, les exposants aratérisant ette invarianed'éhelle peuvent être expliqués par l'hypothèse du �stable-lustering�. En suiv-ant une analyse de type halos séletionnés par un algorithme �friend-of-friend�, nousmontrons que le lustering non-linéaire de es modèles 1−d orrespond au développe-ment d'une �hiérarhie fratale statistiquement virielisée�. Nous terminons par uneétude formalisant une lassi�ation des interations basée sur des propriétés de on-vergene de la fore agissant sur une partiule en fontion de la taille du système,plut�t que sur les propriétés de onvergene de l'énergie potentielle, habituellementonsidérée en physique statistique des systèmes ave interation à longue portée.
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AbstratThe formation of strutures in the universe is one of the major questions in os-mology. The growth of struture in the linear regime of low amplitude �utuationsis well understood analytially, but N-body simulations remain the main tool toprobe the �non-linear� regime where �utuations are large. We study this ques-tion approahing the problem from the more general perspetive to the usual onein osmology, that of statistial physis. Indeed, this question an be seen as awell posed problem of out-of-equilibrium dynamis of systems with long-range in-teration. In this ontext, it is natural to develop simpli�ed models to improve ourunderstanding of this system, reduing the question to fundamental aspets. Wede�ne a lass of in�nite 1 − d self-gravitating systems relevant to osmology, andwe observe strong qualitative similarities with the evolution of the analogous 3 − dsystems. We highlight that the spatial lustering whih develops may have saleinvariant (fratal) properties, and that they display �self-similar� properties in theirtemporal evolution. We show that the measured exponents haraterizing the sale-invariant lustering an be very well aounted for using an appropriately generalized�stable-lustering� hypothesis. Further by means of an analysis in terms of halo se-leted using a friend-of-friend algorithm we show that, in the orresponding spatialrange, strutures are, statistially virialized. Thus the non-linear lustering in these
1− d models orresponds to the development of a �virialized fratal hierarhy�. Weonlude with a separate study whih formalizes a lassi�ation of pair-interationsbased on the onvergene properties of the fores ating on partiles as a funtionof system size, rather than the onvergene of the potential energy, as it is usual instatistial physis of long-range-interating systems.
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Introdution en FrançaisLa ompréhension de la formation des strutures dans l'univers demeure l'une desinterrogations majeures en osmologie. La distribution de matière observée au-jourd'hui à grande éhelle dans l'univers apparaît en e�et très inhomogène et présenteune distribution très struturée de galaxies : amas de galaxies, superamas, vide et �l-aments. D'autre part, les observations du fond di�us osmologique (CMB) suggèrentque l'univers présentait par le passé une distribution de matière représentée par defaibles �utuations de densité autour d'une distribution homogène. Selon l'approhethéorique du modèle �standard� de la osmologie, la matière présente dans l'universest prinipalement onstituée de Matière Noire (�Dark Matter�) n'intéragissant es-sentiellement que par l'interation gravitationelle. Sur les éhelles spatiales perti-nentes pour l'étude de la formation des strutures dans l'univers, l'approximationNewtonienne de l'interation gravitationnelle s'applique et la question se réduit alorsà la formation des strutures dans un système de partiules auto-gravitantes partantd'une ondition initiale orrespondant à une répartition de matière presque unifor-mément distribuée.La ompréhension analytique de e problème reste essentiellement limitée auxapprohes perturbatives linéaires des solutions des équations de type �uide (i.e. lerégime linéaire de formation des strutures). L'étude du régime non-linéaire est ainsiprinipalement abordée par des simulations numériques. Le degré de sophistiationet de parallélisation de es simulations osmologiques s'est amélioré de façon impres-sionante es dernières années ave notamment l'utilisation de simulations hautementparallélisées. En dépit de es progrès, les simulations numériques en osmologierestent limitées par une résolution modeste (au maximum 2 ou 3 ordres de grandeuren e qui onerne les éhelles spatiales du régime non-linéaire). L'absene de sup-port analytique laisse également ouvert la question de la pertinene des résultatsdérivés de es simulations.Dans ette thèse, nous approhons ette question d'un point de vue di�érentde eux utilisés ouramment en osmologie : elui de la physique statistique. Ene�et, la formation de strutures dans l'univers via l'approximation Newtonienne del'interation gravitationelle peut être simplement vue omme un problème de dy-namique hors-équilibre des interations à longue portée. Dans le ontexte de laphysique statistique, il est alors naturel de développer des modèles simpli�és (mod-èles jouets) a�n d'améliorer notre ompréhension de e système, en le réduisantautant que possible à ses aspets fondamentaux. Les versions unidimensionnellesde e problème osmologique pr±entent l'opportunité de pouvoir sonder des éhellesspatiales beauoup plus étendues (même pour un nombre limité de partiules). De1



INTRODUCTION EN FRANÇAISplus, es approhes sont extrêmement préises, étant uniquement limitées par lapréision numérique de la mahine. Cette thèse présente une étude détaillée d'unelasse partiulière de modèles, ainsi que des résultats généraux sur la dynamiquehors-équilibre des systèmes ave interation à longue portée.Les deux premiers hapitres introdutifs sont onsarés à la présentation desbases néessaires a�n de omprendre le ontexte et les résultats de ette thèse. Lepremier hapitre introdutif présente un aperçu des méthodes de la physique statis-tique des interations à longue portée, tandis que le seond présente une introdutionà la formation des strutures en osmologie.Dans le Chapitre 1, nous introduisons la dynamique et la thermodynamique dessystèmes ave interation à longue portée, dont la gravitation Newtonienne est unas partiulier, en mettant en valeur les résultats importants qui ont émergés esdernières années. Ces résultats ne présentent ependant pas un intérêt fondamentalpour l'étude des systèmes auto-gravitants en osmologie, es derniers faisant partiedes systèmes d'extension in�nie plut�t que �nie. Ils sont néanmoins pertinents pourl'étude faite dans le Chapitre 6.Le Chapitre 2 élargit les onsidérations faites dans le premier hapitre au asspéi�que des systèmes �nis auto-gravitants, et passe en revue les bases du modèleosmologique �standard�, en s'intéressant plus partiulièrement à la formation desstrutures à grande éhelle. En onsidérant que les systèmes partiulaires en os-mologie sont d'extension spatiale in�nie, une attention toute partiulière doit êtreattahée à la dé�nition de la fore gravitationelle dans es systèmes. Nous intro-duisons la théorie inétique utilisée pour étudier la dynamique hors-équilibre des sys-tèmes in�nis auto-gravitants en osmologie néessaire à la dérivation de l'approhehydrodynamique standard de es systèmes. Nous présentons ensuite l'approhe per-turbative de es équations de type �uide, ainsi que l'analyse numérique du régimenon-linéaire de formation des strutures dans l'univers, en disutant les notions en-trales utilisées dans e ontexte : auto-similarité, �stable-lustering� et les modèlesdes �halos�.Dans le Chapitre 3, nous introduisons et dé�nissons la lasse des modèles jouetsunidimensionnels que nous étudions dans ette thèse. Nous abordons ette questiond'un point de vue de la théorie des proessus stohastiques de points, et traitons enpartiulier la question de la dé�nition de la fore totale agissant sur une partiuleappartenant à un système d'extension spatiale in�nie. Nous montrons que ettequestion réside en fait dans une subtilité de l'appliation de �l'arnaque de Jeans� enune dimension. Nous insistons sur le fait que la fore devient bien dé�nie en unedimension pour une lasse partiulière de ondition initiale, la lasse des réseaux in-�nis perturbés, qui représente les proessus de points pertinents dans les simulationsnumériques à N-orps en osmologie. Le texte de e hapitre est tiré d'un artilepublié dans Phys. Rev. E [70℄.Dans le Chapitre 4, nous présentons les résultats de notre analyse numériquede l'évolution dynamique de es modèles jouets. Nous montrons qu'ils présentent2



INTRODUCTION EN FRANÇAISde forte similarités qualitatives ave les systèmes tridimensionnels analogues, no-tamment le omportement auto-similaire (i.e. un saling dynamique) en partant deonditions initiales pour le spetre de puissane (i.e. la transformée de Fourier de lafontion de orrélation) en loi de puissane. Nous explorons également les aspetspartiuliers de es omportements que nous ne pouvons pas étudier aussi simplementdans les simulations numériques tridimensionnelles à ause des di�ultés numériquesrenontrées. Nous étudions en partiulier la formation des strutures pour une lassepartiulière de ondition initiale, elle orrespondant à des �utuations de densitédites �ausales�. Nous explorons le régime fortement non-linéaire et dérivons lesexposants qui le aratérisent. Dans le adre d'un univers en expansion, nous mon-trons que nos résultats sont bien expliqués par un modèle basé sur l'hypothèse du�stable lustering�, analogue à elui parfois proposé en trois dimensions.Dans le Chapitre 5, nous explorons plus en détail les propriétés des distributionsde partiules produites dans les modèles dé�nis préédemment. Nous e�etuonsune analyse multifratale de es distributions et la omplétons par une approheanalogue à elle utilisée atuellement dans les simulations numériques tridimension-nelles en osmologie, dans lesquelles la distribution est dérite par une olletionde �halos� de taille �nie. Nous onluons qu'une desription en terme de struturesstatistiquement virialisées est valide, préisement dans le régime fratal non-linéairede formation des strutures. L'interprétation de nos résultats amène à penser quedans le régime non-linéaire invariant d'éhelle, la distribution peut être vue ommeorrespondant à une sorte de hiérarhie virialisée.Le Chapitre 6 présente des résultats qui généralisent aux interations dérois-santes à grande distane en loi de puissane l'approhe introduite dans le Chapitre3 pour étudier la dé�nition de la fore gravitationelle en une dimension dans un sys-tème d'extension spatiale in�nie. Nous donnons ainsi une lassi�ation �dynamique�de la portée des interations s'appuyant sur les propriétés de onvergene de la foreà grande distane. Nous expliquons également qu'une ondition de onvergeneplus faible est en fait su�sante pour dé�nir la dynamique dans la limite des sys-tèmes d'extension spatiale in�nie. Notre onlusion entrale est que l'interationgravitationnelle (quelque soit la dimension spatiale) est le as limite pour lequel ladynamique dans la limite des sytèmes in�nis est bien dé�ni. Le texte de e hapitreest tiré d'un artile publié dans J. Stat. Phys. [68℄.Nous terminons ette thèse par une disussion sur les perspetives de reherheenvisagées.
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Introdution
The formation of struture in the universe is one of the major open questions inosmology. Indeed the distribution of visible matter at large sales in the universeappears to be very inhomogeneous today, and presents a highly strutured distribu-tion of galaxies: luster of galaxies, superlusters, voids and �laments. On the otherhand, it is inferred from observations of the Cosmi Mirowave Bakground radia-tion that the universe was in the past very lose to homogeneous with tiny density�utuations. In the theoretial framework of the �standard� osmologial model,it is postulated that the matter in the universe is onstituted mainly by so-alledDark Matter interating essentially through gravity. On the spatial sales, relevantto the formation of large strutures in the universe, the Newtonian approximationto gravity applies, and thus the problem redues to the evolution of lustering in anin�nite self-gravitating system with lose to uniform initial onditions.Analytial understanding of this problem is limited essentially to linear pertur-bative approahes to the solution of the �uid equations (i.e. the �linear regime�of struture formation), and the study of the �non-linear� regime is mainly probedthrough numerial investigation. The degrees of sophistiation and parallelizationof the algorithms used in osmologial simulations has inreased impressively in thelast deades, with the use notably of highly multithreaded lusters on both CPUand GPU. Despite this progress, osmologial numerial simulations remain limitedby a modest resolution (at very most two or three orders of magnitude in sale fornon-linear lustering). The absene of analytial �benhmarks� also leaves open todoubt the reliability of the results drawn from them. In this thesis, we approahthis problem from a di�erent perspetive to the usual one in osmology, that ofstatistial physis. Indeed, the formation of strutures in the universe through theusual Newtonian gravitational interation an be seen as a well posed problem ofout-of-equilibrium dynamis of systems with long-range interation. In the ontextof statistial physis, it is natural to develop simpli�ed models (�toy-models�) to tryto improve our understanding of this system, reduing as muh as possible the ques-tion to fundamental aspets. One dimensional versions of the osmologial problemof gravity present the partiular interest that they give the opportunity to probe avery large range of sales (even for a number of partiles whih an be simulatedon a single proessor). Furthermore, as we will explain, they are extremely preise,being limited only by mahine preision. In this thesis we report a detailed studyof a lass of suh models, as well as some more general results on out-of-equilibriumdynamis of long-range interating systems. 5



INTRODUCTIONOrganization of the thesisThe �rst two introdutory hapters of this thesis are devoted to giving some stan-dard bakground whih is useful for understanding the ontext and the results ofthis thesis. The manusript is addressed to the two ommunities, whose methodsand problems are relevant, osmologial and statistial physis one. The �rst intro-dutory hapter gives a review of some relevant methods in statistial physis, whilethe seond one introdues the basis of struture formation in osmology.In Chapter 1 we thus give an introdution to the dynamis and thermodynamisof systems with long-range interation, of whih the Newtonian gravitational inter-ation is an example, outlining important results whih have emerged in statistialphysis in reent years. These results turn out not to be so diretly relevant for ourstudy of self-gravitating systems, beause the latter are in�nite rather than �nite.They are, however, relevant bakground to the study we report in Chapter 6.The seond hapter extends the onsiderations of the previous hapter to thespei� ase of self-gravitating systems, and then reviews the basis of the standardosmologial model, fousing on the formation of large sale strutures. Consideringthat the systems of partiles in osmology are in�nite rather than �nite, partiularattention must be said to the de�nition of the gravitational fore in these systems.We give an introdution to the kineti theory used to study the out-of-equilibriumdynamis of in�nite self-gravitating systems in osmology whih allows the derivationof the usual hydrodynami desription of these systems. We then present the per-turbative treatment of these �uid equations, and then the numerial investigationsof the non-linear regime of the formation of strutures in the Universe, disussingentral notions whih are used in this ontext: self-similarity, stable lustering and�halo models�.In Chapter 3 we introdue and de�ne the lass of 1 − d toy models we study inthis thesis. We address the problem of their general formulation in the ontext ofstohasti point proess theory, in partiular the question of the de�nition of thetotal fore ating on a partile belonging to an in�nite system. We show that thisproblem arises from a subtlety about how the so-alled �Jeans' swindle� is appliedin 1 − d. We underline that the fore turns out to be well-de�ned in 1 − d for abroad lass of distributions, a lass of perturbed in�nite lattie, whih are the pointproesses relevant to osmologial N-body simulations. The text of this hapter istaken from from an artile published in Phys. Rev. E. [70℄In Chapter 4 we present results of a numerial investigation of the dynamialevolution of these toy models. We show that they are physially interesting asthey present very strong qualitative similarities with the evolution of the analogous
3− d systems, notably �self-similar� behavior (i.e. dynamial saling) starting frompower-law initial onditions. We also explore aspets of these behaviors whih oneannot easily probe with 3−d numerial simulations due to numerial di�ulties. Westudy in partiular struture formation for the partiular lass of initial onditionorresponding to �ausal �utuations�. We explore further the strongly lusteredregime and derive the exponents whih haraterize it. We show that our results,for the expanding models, are well aounted for by a model based on a �stable-lustering� hypothesis, analogous to that sometimes proposed in 3− d.In Chapter 5 we explore further the properties of the partile distributions pro-dued in models we have studied in the previous hapter. We perform a multifratal6



INTRODUCTIONanalysis and omplete it with an approah analogous to that now used anoniallyin 3− d N-body simulations in osmology in whih the distribution is desribed asa olletion of �nite �halos�. We reah the onlusion that a desription in termsof statistially virialized strutures is valid, preisely in the regime where there isfratal lustering. We interpret our results to mean that in the regime of non-linearfratal lustering the distribution an be said to orrespond to a kind of �virializedhierarhy�.Chapter 6 reports results whih generalize to any pair interation deaying as apower-law at large separation the approah used in Chapter 3 to determine whetherthe 1 − d gravitational fore is de�ned in an in�nite system. In so doing it gives a�dynamial� lassi�ation of the range of pair interations based on the onvergeneproperties of the fore at large distanes. It also explains that a weaker onvergeneondition is in fat a su�ient one for dynamis to be de�ned in the in�nite systemlimit. Our entral onlusion in this respet is that the gravitational interation (inany dimension) is the limiting ase for whih an in�nite system limit for dynamisan be meaningfully de�ned. The text of this hapter is taken from an artilepublished in J. Stat. Phys. [68℄.We onlude this thesis with a brief disussion of some perspetives for furtherwork.
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Chapter 1Dynamis and thermodynamis ofsystems with long-range interation:an introdutionIn this �rst introdutory hapter we give a syntheti introdution to the dynamisand thermodynamis of systems with long-range interation (LRI), and outline thedi�erenes with short-range interating (SRI) systems. It does not ontain originalmaterial and is based prinipally on [15,31,43℄. Systems with long-range interationsare haraterized by a pair potential whih deays at large distanes as a power law,with an exponent smaller than the spae dimension: examples are gravitational andCoulomb interations (see e.g. [31, 43℄). The thermodynami and dynamial prop-erties of suh systems were poorly understood until a few years ago. Substantialprogress has been made only reently, when it was realized that the lak of additiv-ity indued by long-range interations does not hinder the development of a fullyonsistent thermodynamis formalism. This has, as we will see in more detail in thisintrodutory hapter, however, important onsequenes: entropy is no more a on-vex funtion of masrosopi extensive parameters (energy, magnetization, et.), andthe set of aessible marosopi states does not form a onvex region in the spae ofthermodynami parameters. This is at the origin of ensemble inequivalene, whih inturn determines urious thermodynami properties suh as negative spei� heat inthe miroanonial ensemble, �rst disussed in the ontext of astrophysis [81℄. Onthe other hand, it has been reognized that systems with long-range interations dis-play universal non-equilibrium features. In partiular, long-lived metastable states,also alled quasi-stationary states (QSS) may develop, in whih the system remainstrapped for a long time before relaxing towards thermodynami equilibrium.Historially, it was with the work of Emden and Chandrasekhar [32,54℄, and laterAntonov, Lynden-Bell and Thirring [6, 81, 103℄, in the ontext of astrophysis, thatit was realized that for systems with long-range interations the thermodynami en-tropy might not have a global maximum, and therefore thermodynami equilibriumitself ould not exist. The appearane and meaning of negative temperature was�rst disussed in a seminal paper by Onsager on point vorties interating via along-range logarithmi potential in two-dimensions [122℄.We formalize this presentation in the following with the study of the equilibrium9



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONstatistial mehanis and the out-of-equilibrium dynamis of systems with LRI. Wesimply searh to illustrate in eah ase, with the use of toy models, a unifying on-ept: the mean-�eld theory for statistial equilibirum study and the Vlasov equationfor out-of-equilibrium dynamis.1 De�nition of long-range interationsIn this setion, we give a pedagogial introdution to the theory of LRI systems. Weoutline the ruial di�erenes with SRI systems, and present the general idea witha simple toy model: the Ising model [30℄. Let us onsider in Fig. 1.1 a marosopi
A B

P’

PFigure 1.1: Shemati representation of a system made of two sub-systems A and
B. Partiles P and P ′ do not belong to the same sub-system.system divided into two sub-systems A andB. The total energy E of the marosopisystem is then equal to the sum of the energies of eah sub-systems (EA or EB), plusthe interation energy EAB between these two sub-systems, i.e. E = EA + EB +
EAB. When one onsiders a short-range interation between the onstituents of thissystem, this interfae energy EAB is proportional to the surfae between these twosub-systems. For a marosopi system, this is negligible in omparison with thevolume energy. The energy of the partile P in A is thus insensitive to whether thepartile P ′ in B is present. However, this argument is not valid if the interation issu�iently long-range as the interfae energy is no longer negligible in omparisonwith the volume energy. To illustrate this di�erene, we onsider the Ising model:
N spins Si = ±1, with i ∈ [1, N ], are �xed on a regular lattie and interat with aninteration of in�nite range and independant of the distane between the spins. Wethen an write the Hamiltonian

H = −J
∑

i 6=j

SiSj . (1.1)If the parameter J > 0, the interation is alled ferromagneti, if J < 0 the in-teration is alled anti-ferromagneti and if J = 0 the spins are non-interating.When all the spins are ordered in the same positive way, the total energy is simply
E = −JN(N −1). If we divide the system into two di�erent subsystems made iden-tialy of N ′ = N/2 spins, eah subsytem, independently of the other, has a totalenergy E ′ = −J N(N−2)

4
. We then obtain E 6= 2E ′. Let us note that the use of aouplig onstant J ′ = J/N renormalized by the number of spins, as ommon use for10



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONthis mean-�eld model, gives energies of order N , i.e. the system is alled extensive,but does not solve the lak of additivity of this model.In the following, we will onsider this non-additivity riterion as the de�nitionof long-range interating system: a marosopi system would be onsideredas �long-range� if we annot write its total energy as the sum of the en-ergies of independant marosopi subsystems. Following this de�nition, apair-interation deaying as a power-law with the distane as 1/rα, is long-range,when the exponent α < d, where d is the spatial dimension.To illustrate this proposition, we onsider a �modi�ed� Ising model whih is nownot independant of the distane between the spins (the spins are nevertheless still�xed on the lattie sites), and without short-range divergene
H = −J

∑

i 6=j

SiSj

dαij
(1.2)where dij represents the distane between two sites i and j. This system will be�long-range�, or non-additive, if the spins far away from the site i ontribute in anon-negligible way to the energy of the spin Si. This ontribution is then negligibleas soon as the sum

∑

j 6=i,N→∞

1

dαij
(1.3)onverges, for a system size going to in�nity. Comparing this sum with an integral,one learly sees that it onverges as soon as α > d where d is the spae dimension.This demonstration an be generalized to the ases where the two-body interationpotential in 1/rα. 1This analysis inlude the gravitational newtonian interation but not the Vander Waals interation. Let us note that this riterion does not orrespond tothe terminology of ritial phenomena, in whih long range potential is de�nedas α < D + 2− η, where η is a ritial exponent whih depends on the system, butusually small [20℄. Then the designation �long-range� used in the ritial phenom-ena ommunity has a larger meaning than the one refered to in this thesis. Ourlong-range interations are also alled non-integrable interations.The non-additivity an generate, as we will see, unusual behaviours as the ther-modynamis at equilibrium or out-of-equilibrium dynamial relaxation propertiesare onerned. Indeed, phase separation in the usual meaning is impossible. Thisalls into question the equivalene of ensembles between the anonial and the miro-anonial ensembles. Furthermore, the dynamis is now oherent at the sale of thewhole system, and this hanges the usual understanding of the relaxation towardsequilibrium. These di�erent aspets have already been studied in detail in eahspei� domain: self-gravitating system [124℄, bidimensional turbulene [34℄, andplasma physis [53℄. As far as equilibrium statistial mehanis and its anomaliesare onerned, we an refer to the work of Hertel and Thirring [81℄; the similarityof the methods to solve these di�erent models has been developped in the studies1We do not onsider the limit ase where α = d, as in this ase the presene of semi-onvergentintegrals an yield partiular behaviours. 11



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONof Spohn et al. [63, 109℄ and Kiessling et al. [93, 94, 144℄. As far as the dynamis isonerned, Chavanis, Sommeria and Robert [34,36℄ have developed the analogies be-tween bidimensional turbulene and self-gravitating systems, onsidering the formalproximity between the Euler and Vlasov equations.2 Equilibrium statistial mehanis of long-rangeinterating systemsFollowing the de�nition of LRI systems introdued previously, the thermodynamisof these systems presents unusual behaviours in omparison with the thermodynam-is of SRI systems: the energy is not additive, and then many standard results ofthe usual thermodynamis and statistial mehanis beome inaurate.2.1 The mean-�eld Ising modelLet us onsider the example of the mean-�eld Ising model. Its Hamiltonian is
H = − J

N

N
∑

i,j=1

SiSj , (1.4)where Si represents the spin with value ±1. The oupling onstant is renormalizedby a fator depending on the number of spins in the system, N , in order to preservethe extensivity of the system. Without this trik, the thermodynami limit wouldnot exist in the usual sense, i.e. the total energy of the system would not be propor-tional to the system size in the limit where N → ∞. However, even if the interationis renormalized to keep the system extensive, it is still non-additive; a onsequeneis that it annot separate itself into two di�erent phases. Let us imagine a systemwhere the entropy S(e) is not onave (see Fig. 1.2), and let us onsider an energy
e0 below the tangent. For a system with short-range interation, this urve annot

Figure 1.2: Shemati representation of a non-onave entropy in the ase of anadditive system: for the energy e0 a phase separation ours.represent the entropy S(e). The reason is that, owing to additivity, the system rep-resented by this urve is unstable in the energy interval e1 < e0 < e2. Entropy an12



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONbe gained by phase separating the system into two subsystems orresponding to e1and e2, keeping the total energy �xed. The average energy and entropy densities inthe oexistene region are given by the weighted average of the orresponding den-sities of the two oexisting systems. Thus the orret entropy urve in this regionis given by the ommon tangent line, resulting in an overall onave urve.However, in systems with long-range interations, the average energy densityof two oexisting subsystems is not given by the weighted average of the energydensity of the two subsystems. Therefore, the nononave urve in Fig. 1.2 ould,in priniple, represent an entropy urve of a stable system, and phase separationneed not take plae. This results in a negative spei� heat (see e.g. [31℄). Sinewithin the anonial ensemble spei� heat is non-negative, the miroanonial andanonial ensembles are not equivalent. The above onsiderations suggest that theinequivalene of the two ensembles is partiularly manifested whenever a oexisteneof two phases is found within the anonial ensemble. This inequivalene betweenthe miroanonial and anonial ensembles is know for years in astrophysis, buttook time to grow on the statisial physis ommunity where people get used tothe anonial ensemble: M. Lax shed light on the inequivalene of ensemble in thespherial model of Berlin and Ka [100℄, and Hertel and Thirring studied in [81℄a simple model inspired from gravity, exatly solvable in both the anonial andmiroaninial ensembles, bringing into light the negative spei� heat.The importane of the miroanonial ensemble, as well as its di�erenes withthe anonial ensemble, has also been studied these last ten years by D. Gross, evenwithout any long-range interation, in the domain of systems with few degrees ofliberty [78℄, as in nulear physis for example.Let us note that a new de�nition of the entropy has emerged to solve the physialquestions of the long-range interating systems, intrinsially non-additive [147℄: theusual entropy of Gibbs, SG = −
∑

i pi ln pi, for a set of probability pi, is replaed bythe Tsallis entopy that depends on a parameter q
Sq =

1−
∑

i p
q
i

q − 1
, (1.5)and a new thermodynamial formalism is developped, depending on this new pa-rameter q. Sq is said non-additive, as the q-entropy of the union of two independantsubsystems (in probability) is not equal to the sum of the two entropies of thesesubsystems taken independently. Sq beomes SG when q → 1. It seems that thisentropy works to desribre systems out-of-equilibrium instead of a desription ofsystems at equilibirum (see e.g. [31℄).In the following, we will explain the results of the mean-�eld approah. Indeed,as often in statistial mehanis, the usual approah is to perform a mean-�eld ap-proximation. We will use a pedagogial approah based on the use of toy models:we start studying simple models where an analytial approah an be performed.We must note that we only restrit the analysis to the lass of lattie systems.As far as ontinuous systems are onerned, i.e. systems made of partiles withtranslational degrees of freedom, the additivity property is still satis�ed in all ases13



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONfor whih the system does not ollapse if the pair-interation V (r) ∝ |r|−α deaysat large distanes faster than the power law r−d where d is the dimension spae.Moreover, following Ruelle [136℄, two onditions must also be onsidered in the aseof ontinuous systems: the stability ondition and the temperedness ondition.The stability ondition assures that there will not be situations of ollapse of thesystem. The potential is said to be stable if there exists A ≥ 0 suh that
∑

1≤i<j≤N

V (ri − rj) ≥ −NA (1.6)for eah on�guration (r1, . . . , rN). We note that for this it is neessary that V (r) tobe bounded below for r → 0. Therefore, for the ourene of normal thermodynamibehavior it is possible to adopt, following Ruelle [136℄, the following onditions onthe two-body potential: the �rst is the stability ondition, while the seond is
V (r) ≤ C|r|−α (1.7)whenever |r| ≥ R0 > 0; this ondition, for C > 0 and α > d, is alled temperedness.When stability and temperedness are satis�ed there are theorems that assure theequivalene of ensembles [31℄.If we onsider LRI systems for whih the potential deays at large distane a-ording to |r|−α with α < d, depending on whether it will do so onsidering repulsionat large distane, or attration at large distane, the temperedness ondition or thestability ondition will be violated, respetively. In both ases, it an be shown that,inreasing the size of the systems, the total energy will inrease faster than N , vio-lating the extensivity property, and also the additivity property will not hold [136℄.2.2 Inequivalene of ensembles: the BEG mean-�eld modelIn the following, we fous our attention on a solvable model introdued originallyto study the binary mixing of He3 − He4, and whih illustrates the partiularitiesof the thermodynamis of non-additive systems: the Blume-Emery-Gri�ths (BEG)model [26℄. The anonial phase diagram of this model is well known [30℄, andpresents an interesting phenomenology: a line of seond order phase transition anda line of �rst order transition disjoined by a triritial point. The miroanonialapproah has been studied in [30℄. Here we present a brief analysis of the BEGmodel in both the anonial and miroanonial ensembles (see e.g. [15℄ for moredetails).One de�nes the BEG model as a lattie where eah site is oupied by a spin

Si = 0,±1. one an write the Hamiltonian
H = ∆

N
∑

i=1

S2
i −

J

N

(

N
∑

i=1

Si

)2

, (1.8)where J > 0 is a ferromagneti oupling onstant, and ∆ ontrols the energy di�er-ene between the magneti states (Si = ±1) and the non-magneti state (Si = 0).In this Hamiltonian the interation is renormalized by 1/N to keep the system ex-tensive. However, it does not prevent it from the non-additivity.14



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONThe anonial solutionFor small value of∆/J , the system beomes loser to the mean-�eld Ising model, andundergoes a seond order phase transition when β hanges. Conversely, when T = 0,and 2∆/J = 1, the paramagneti phases Si = 0 for all i, and ferromagneti phases
Si = 1 for all i, are degenerated: a �rst order phase transition takes plae betweenthese two fondamental states. The anonial solution is known for years [26℄; theusual method de�ned the partition funtion

Z(β,N) =
∑

Si

exp

(

− β∆
∑

i

S2
i +

βJ

2N

(

∑

i

Si

)2
)

. (1.9)One uses the gaussian transformation
exp

(βNJm2

2

)

=

√

N

πβJ

∫ +∞

−∞
dv exp

(−Nv2
2βJ

+Nmv
)

, (1.10)to perform the sum over all the aessible on�gurations:
Z(β,N) =

√

N

πβJ

∫ +∞

−∞
dv exp

(−Nv2
2βJ

)[

1 + 2e−β∆ cosh v
]N

. (1.11)This last integral an be evaluated by the saddle point method in the limit where
N → ∞. The free energy par partiles is then

F (β) = − 1

β
min
v

(

v2

2βJ
− ln[1 + 2e−β∆ cosh v]

)

. (1.12)The line of seond order transition is then given by the expression
βJ =

1

2
eβ∆ + 1 . (1.13)The triritial point whih separates this line from the �rt order transition line is at

∆/J = ln(4)/3, βJ = 3. The �rst order line transition must be obtained numerially.We give in Fig. 1.3 the shemati representation of the anonial phase transitiondiagram.The miroanonial solutionWe are now interesting in the miroanonial solution of the BEG model. We thendetermine the entropy of the system for a given energy. Let us note by N+, N−,and N0 the number of spin +1, −1, and 0 of a given mirosopi on�guration. Wenote q the quadrupole moment, and m the magnetisation per spin,
q =

1

N

∑

i

S2
i =

N+ +N−
N

, (1.14)
m =

1

N

∑

i

Si =
N+ −N−

N
. (1.15)15



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTION

Figure 1.3: Shemati representation of the anonial phase diagram of the mean-�eld BEG model. For small values of ∆/J there is a seond order transition (dashedline). When ∆/J inreases a �rst order transition appears. This two regimes areseparated by a triritial point (T ). For ∆/J > 1/2, there is no more transition.The energy per partile, renormalized by ∆ for onveniene, an simply be written
e =

H

∆N

(

q − J

2∆
m2
)

. (1.16)As N0 +N+ +N− = N , the parameters q and m are enough to obtain N0, N+, and
N−. By simple ombinatory, one obtains the number of mirosopi on�gurationsfor given q and m:

Ω(q,m) =
N !

N+!N−!N0!
. (1.17)Using the Stirling formula and the standard de�nition of the entropy, one obtains

s(q,m) = −q +m

2
ln
q +m

2
− q −m

2
ln
q −m

2
− (1− q) ln(1− q)− ln 3 . (1.18)The miroanonial entropy is then obtained by maximizing s for a onstant e.Giving the onstraint q = e+km2, with k = J/2∆, we obtain a variational problemwith a single variable:

S(e) = sup
m

(

s(e+ km2, m)
)

. (1.19)The miroanonial temperature is then given by ∆β = ∂S/∂e.As in the anonial ensemble, the equation of the seond order transition linean be obtained analytialy. This ritial line stops in a triritial point givenby k ≈ 1.0813 and β∆ ≈ 1.3998. This values are lose to the anonial valuesbut di�erent as k ≈ 1.0820 and β∆ ≈ 1.3995. The seond order line stretheso� the miroanonial one. In the region between these two di�erent triritialpoints, the transition is �rst order in anonial ensemble, but stays ontinuous in themiroanonial ensemble (see Figs. 1.4). Beyond the miroanonial triritial point,the temperature undergoes a disontinuity at the transition of the miroanonial16



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTION

Figure 1.4: Shemati representation of the (∆/J, T ) phase diagrams of the BEGmodel within the anonial and miroanonial ensembles (from [18℄). We repre-sent the triritial anonial point (Ctp) and the triritial miroanonial point(Mtp). The bold dashed line (on the left of Ctp) illustrates that in the miroanon-ial ensemble the ontinuous transition oinides with the anonial one. The linerepresents the �rst order anonial phase transition. The bold line represents themiroanonial �rst order phase transition. The area between delimited by the boldline is not aessible.ritial energy; the two lines in Fig. 1.4 represent the temperature at eah side ofthe jump. All the transitions disappear at T = 0, ∆/J = 1/2.The BEG mean-�eld model is solvable analytialy in both the anonial andmiroanonial ensembles. The phenomenology around the triritial point is inter-esting as it brings to light the inequivalene of ensembles, with area with negativespei� heat and temperature disontinuities.In the next setion, we brie�y present a general method to study the equilibriumproperties of systems with long-range interation, whih is neessary to solve moreompliated models.2.3 Mean-�eld and large deviation theoryThe mean-�eld approximation onsists in evaluate the �eld on a partile, assum-ing that all the partiles are in a mean state. For LRI systems, a large numberof partiles ontribute to this mean-�eld, and the �utuations around this mean-�eld should be small with the large number theory. It is then oneivable that wean obtain a very good approximation of the real behaviour with this mean-�eldapproah. Furthermore, one an show that the mean-�eld approximation beomesexat in numerous models, for a large number of partiles.In this subsetion we introdue, following [15℄ without any mathematial rigor,the large-deviation theory, a mathematial tool essential to show the auray ofthe mean-�eld approximation in many instanes. It is above all a powerful tool toobtain the equilibrium states in the miroanonial and anonial ensembles.A rigorous approah of the large-deviation theory is given in [44℄; referene [52℄gives an appliation of this theory to statistial physis, with a mathematial pointof view. 17



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONHow does large-deviation theory work?Let us onsider a sum of N random variables identialy distributed Xk. Assumingthey follow the same probability distribution, with a null average, the empirialaverage SN is then
SN =

1

N

N
∑

k=1

Xk . (1.20)The large number law states that SN tends to the average value of Xk, i.e. zero inour ase, when N goes to in�nity. If the assumptions of the entral limit theoremare valid, one an onsider that the funtion P (
√
NSN = x) goes to a gaussiandistribution in x if we onsider random variables with null mean. The �utuationsof SN are of order 1/

√
N . It is also interesting to study the behavior of the tailof the distribution: what is the probability for a �utuation of order 1? i.e. whatis the value of P (SN = x)? The large deviation theory is essential to answer thisquestion.Let us onsider an example to illustrate large deviation theory. We onsider aoin, and the random variable Xk, following Xk = 1 for the reverse side, Xk = 0 forthe head side. Combinatory simply gives
P (SN = x) =

N !

(1+x
2
N)!(1−x

2
N)!2N

(1.21)whih gives with the Stirling formula
lnP (x) ∼ −N

(1 + x

2
ln

1 + x

2
+

1− x

2
ln

1− x

2
+ ln 2

) (1.22)
∼ −NI(x) . (1.23)One says that SN follows a large deviation priniple, with rate funtion I. I(x)is the opposite of the entropy attahed to a on�guration with a mean value x.One sees that the values of x suh that I(x) > 0 are exponentially suppressed with

N . Moreover, to satisfy the normalization ondition of the probability, one needs
I(x) ≥ 0, and inf I(x) = 0.the Cramer theoremThe Cramer theorem [52℄ is the mathematial basis to answer to this question forrandom variables Xk following the same rapidly dereasing probability distribution.Let us one more onsider

SN =
1

N

N
∑

k=1

Xk , (1.24)where P (SN = x) follows the large deviation priniple
lnP (SN = x) ∼ −NI(x) . (1.25)The ramer theorem allows us to ompute the rate funtion I(x). To do this, onede�nes the funtion

Ψ(λ) = 〈eλ.X1〉 , (1.26)18



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONwhere λ is a real value and 〈. . . 〉 denotes the average value of the probability dis-tribution of X1 (or of any Xk as they are identialy distributed). The rate funtion
I(x) is then given by the Legendre transformation of lnΨ:

I(x) = sup
λ

(

λ.x− lnΨ(λ)
)

. (1.27)This theorem is valid if the probability distribution of Xk is rapidly dereasing atin�nity in order to Ψ to be de�nite. This gives a general method to evaluate therate funtion, when the ombinatory methods are not possible, as in the ase of aontinuous probability density funtion.One must note that the large deviation approah does not work for all the systemswith long-range interation. This method onsists in introduing oarse-grained vari-ables, and this desription is useful to desrible strutures at the sale of the system.This method is thus useless when interesting phenomena take plae at mirosopisales. This an be the ase when one onsiders repulsive fore at long range; themean-�eld approah predits the absene of strutures at large sales, and the in-teresting physis at small sale must be studied with a di�erent approah.In this �rst introdutary setion, we have presented the theory of equilibriumstatistial mehanis of LRI systems. We have illustrated an interesting result of LRIwith the BEG model: the inequivalene of ensemble. We have also introdued themain tool to study these systems, the mean-�eld approah and have given ommentson the large deviation theory .We have seen in the previous subsetion that the equilibrium statistial mehan-is provides powerful tools whih give information about the mirosopi states ofLRI systems. However, it is essential to understand the relaxation properties ofthese systems. It appears that the relaxation time of these systems is very long, andinreases with the number of onstituents in the system as we will disuss below.3 Out-of-equilibrium dynamis of long-range inter-ating systemsIn the introdutory setion on the equilibrium properties of LRI systems, we usedsolvable toy models to shed light on general onepts. We will follow the same ap-proah in this setion to introdue the out-of-equilibrium dynamis of LRI systems.3.1 IntrodutionThe kineti theory proposes to study the evolution of marosopi observables, start-ing with mirosopi equations. However, this evolution is not easy to obtain. Itis usually impossible to onsider the orrelations between partiles oming from thedynamis. The kineti theory desribes a system through the use of probability dis-tribution in the N-partiles phase spae, fN(r1,p1, ..., rN ,pN , t). All the essentialinformation about the orrelation are ontained in this funtion. The easiest ap-proximation onsists in negleting these orrelations, and in desribing the system19



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONwith a one-partile probability distribution, f(r,p, t); The N-partiles probabilitydistribution is then linked to the one-partile distribution funtion through the re-lation
fN (r1,p1, ..., rN ,pN , t) = f(r1,p1, t) . . . f(rN ,pN , t) . (1.28)This one-partile funtion evolves under the mean-�eld potential, and under theollisions between the partiles

∂f

∂t
+ p.∇rf −∇rV.∇pf = C(f) , (1.29)where V is the potential, and C(f) represents the ollisional evolution. If we negletthe ollision term, we obtain the Vlasov equation that ould be seen as the dynamialequivalent of the mean �eld approximation in the equilibrium analysis.General results exist allowing to show the onvergene of the partiular dynamisthrough the dynamis of the Vlasov equation, for a number of partiles whih goes toin�nity. The Braun and Hepp theorem [28℄ gives mathematial rigour to state this.Let us onsider a lassial system of N partiles, interating through the potential,
Ep =

1

N

∑

1≤i<j≤N

Φ(xi − xj) , (1.30)where the potential Φ is even and regular enough. Then for all time t, and for anygiven aeptable error ǫ, there exists an number N of partiles for whih the par-tiular and Vlasov dynamis oinide until the time t, with a maximal error ǫ. Asfor any equilibrium study, the renormalization fator 1/N of the interation orre-sponds to the limit where the number of partiles goes to in�nity, keeping onstantthe mirosopi time sale of the system. This ould be the physial interestinglimit. Moreover, let us note that the regularity assumption of the Φ potential isnot valid for self-gravitating systems. This di�ulty omes from the short distanesingularity of this interation.The Vlasov equation aquires from the partiular dynamis the same onservedquantities (total energy, momentum, . . . ). Furthermore, the onsideration of a on-tinuous desription generates also an in�nite number of onserved quantities, alledthe Casimirs. Indeed, the Vlasov equation is a non-linear equation of advetion ofthe density f , whih means that the quantities
I[φ] =

∫

dr dp φ
(

f(r,p, t)) , (1.31)where φ is some funtion, are onserved. These new onserved quantities play animportant role in the partiular dynamis. Furthermore, it is known that this equa-tion has many stationary solutions. These two points then gives intuition why therelaxation toward equilibrium of systems with LRI are very slow.ollisional relaxation and violent relaxationIf one neglets ollisions between partiles, i.e. the right hand side of Eq. (1.29)
C(f) = 0, reating an in�nite number of new onserved quantities, one ould thinkthat the Vlasov dynamis would not relax towards a statistial equilibrium. In20



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONreality, the Vlasov dynamis reates rapidly a �ner and �ner �lamentation of thedensity f . Then an equilibrium distribution an appear for the density f̄ , oarse-grained density of the real density f . This is the idea of violent relaxation introduedby Lynden-Bell in 1968 in astrophysis [103℄. This violent relaxation plays its roleon shorter time sale than the ollisional relaxation, and then gives a statistialequilibrium di�erent from the standars ollisional equilibrium, as it ontains newonserved quantities. We will ome bak again to the Vlasov equation with itsillustration in the ferromagneti Hamiltonian-Mean-Field toy model.The result of Braun and Hepp an lead to the idea that the Vlasov equation anplay the same role as the mean-�eld approximation at equilibrium. In reality, thetheorem shows the onvergene towards the Vlavov dynamis when N → ∞, for anybounded temporal interval. In other words, the disrete dynamis and the Vlasovdynamis oinide over a time sale whih sales with the number of partiles N .3.2 Slow relaxation to equilibrium: the ferromagneti Hamiltonian-Mean-Field modelTo illustrate the partiular behaviour of relaxation towards equilibrium in LRI sys-tems, we onsider the well known toy model: the ferromagneti Hamiltonian-Mean-Field (HMF) model [30℄. It desribes the interation of N idential partiles whihmove on a irle of radius unity. We an write its hamiltonian
H =

∑

j

p2j
2

− 1

N

∑

i,j

cos(θi − θj) , (1.32)where the partile position θi is between 0 and 2π. The oupling onstant is negativeand the system tends naturally to a magnetized state, i.e. M1 =
(

∑

eiθj
)

/N 6= 0.In that ase, it has been shown in [5℄ that the anonial and miroanonial en-sembles were equivalent. However, for some partiular initial onditions, the systemdoes not relax to equilibrium (see e.g. Fig. 1.5). In fat, the system relaxes towardsequilibrium, but relaxes slower as the number of partiles inreases. For su�ientlylarge N , however, it is di�ult to observe this relaxation in numerial simulations.Fig. 1.6 illustrates this behaviour: the magnetisation stays initially lose to 0, andrelaxes to its equilibrium value M1 = |M1| 6= 0 for times that inrease with thenumber of partiles in the system. Let us onsider this evolution through the eyesof the Vlasov equation:
• the system quikly evolves following the Vlavov dynamis, in a time saleindependant of the number of partiles;
• the system stays trapped near one of the numerous stationary states of theVlasov equation. If the violent relaxation theory is valid, this state is thestatisial equilibrium of the Vlasov equation. In reality, it does not orrespondhowever exatly to this statistial equilibrium;
• the system evolves slowly under the e�ets of ollisions. The time sale dependsnow on the number of partiles in the system. One an assume that the systemevolves among the numerous stationary states of the Vlasov equation; 21



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTION

Figure 1.5: Representation of the (T, U) diagram (from [15℄) for the ferromagnetiHMF model. The straight line represents the anonial equilibrium state. Thevertial dashed line marks where the seond order phase transition takes plae. Theirular points stand for the result of the moleular numerial simulation, startingwith out-of-equilibrium initial ondition and for long integration time.
• �nally, the system reahes a stable stationary state of the Vlasov equation:the ollisional statistial equilibrium. This is di�erent from the statistialequilibrium of the Vlasov equation, as the Casimirs are not onserved throughthe ollisional relaxation.The sytem ould of ourse stay trapped in these stable stationary states fordi�erent reasons (as it is the ase for the antiferromagneti HMF model [16, 17℄).However, these states are the most natural hypothesis.The ferromagneti HMF model is a popular toy model to study the Vlasovdynamis. The idea of this setion is not to perform a omplete analytial analysisof the HMF model, although the simpliity of this model gives this opportunity.In the following the approah of the Vlasov stable stationary states, and the slowevolution towards equilibrium, amongst the stable stationary states of the vlasovdynamis are illustrated with the results of numerial analysis (see e.g. [156℄ formore details). .The Vlasov equationThe �rst step of the evolution presented above orresponds to a rapid evolution,under the e�et of the Vlasov dynamis, on a time sale independant of the numberof partiles in the system. To determine the stationary states of this equation forthe HMF model one onsiders the equation of motion

dθj
dt

= pj ,
dpj
dt

= −Mx sin θj +Mj cos θj , (1.33)where Mx and My represent the real and imaginary parts of the omplex magneti-sation M1. To follow the Vlasov approah, one must onsider the approximation of22
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Figure 1.6: Temporal evolution of the magnetisationM(t) for a number of partiles
N = 100(1000), 1000(100), 2000(8), 5000(8), 10000(8) and 20000(4) from left toright (from [156℄. We give in braket the number of realisations used to performthe ensemble average. The horizontal line represents the equilibrium value of themagnetization.the direte distribution

1

N

N
∑

j=1

δ(θ − θj , p− pj) (1.34)with a ontinuous density in the one-partile phase spae f(θ, p, t). One an write
Mx[f ] ≡

∫

cos(θ)f(θ, p, t)dθdp , My[f ] ≡
∫

sin(θ)f(θ, p, t)dθdp . (1.35)In this approximation (whih beomes exat in the limit N → ∞) all the partilesfeel the same potential
V (θ)[f ] = 1−Mx[f ] cos θ −My[f ] sin θ . (1.36)The Vlasov equation an be written [31℄

∂f

∂t
+ p

∂f

∂θ
− dV

dθ
[f ]
∂f

∂p
= 0 . (1.37)As explained previously, the Vlasov equation onserves the energy and the momen-tum of the system, i.e.

H [f ] =

∫

p2

2
f(θ, p, t)dθdp−

M2
x +M2

y

2
(1.38)and

P =

∫

pf(θ, p, t)dθdp , (1.39)23



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONand onserves an in�nite number of new quantities, the so alled Casimirs
Cφ[f ] =

∫

φ
(

f(θ, p, t)
)

dθdp , (1.40)where φ is a ontinuous funtion. The stationary states of the Vlasov equation,obtained with the method of harateristis [41℄, are given by the density f onstantalong the harateristis of the equation i.e. the level line of the energy ǫ
ǫ(θ, p) =

p2

2
+ V (θ) =

p2

2
+ 1−Mx[f ] cos θ −My[f ] sin θ . (1.41)The stationary solutions of the Vlasov equation are then given by f(θ, p) = ψ

(

ǫ(θ, p)
),where ψ is any funtion. The partiular ase ψ = exp(−βǫ) orresponds to statistialequilibrium.One ould expet that a large number of stationary states would prevent theVlasov equation to reah its statistial equilibrium, and on the other hand wouldspark o� the slow relaxation or the QSS observed with the partiular dynamis.It is then interesting to study the stability of these stationary states to give anexplanation of the slow relaxation towards equilibrium for a partiular lass of initialonditions.The main idea of this method for a dynamial system an be introdued as follow(see e.g. [15℄ for more details): onsidering a onserved quantity F [f ] using onservedquantities as energy and asimirs, any extemum f0 of F is a stationary point of thedynamis. Moreover, if f0 is a strit maximum or minimum of F , f0 is said to beformaly stable. The di�erent kind of stabilities an be studied in [83℄. This is astandard method in plasma physiss whih gives the opportunity to obtain resultsof non-linear stability. This was used, for example, by Kandrup for self-gravitatingsystems [91℄. The formal fontional quantity onsidered in [15℄ is

F [f ] = Cs[f ]− βH [f ]− µ

∫

f(θ, p, t)dθdp (1.42)where β and µ are two free parameters. The energy H , the Casimir Cs and ∫ f = 1are quantities onserved by the dynamis. The ritial points of this funtional givesthe stationary states of the Vlasov equation. The stability of these stationary statesis then studied onsidering the seond variations of this funtional. Yamaguhi etal. studied in [156℄ a simple riterion for stability for all the homogeneous stationarystates of the Vlasov equation and showed that the presene of these stable stationarystates would give an explanation to the slow relaxation toward equilibrium for aertain lass of initial onditions.3.3 Convergene towards a stationary state of the VlasovequationIf the initial ondition does not orrespond to a stable stationary solution of theVlasov equation, it is natural to assume that the system will evolve, under thee�et of the Vlasov dynamis, towards a stable stationary solution after a rapidevolution. This hypothesis an however only be tested with numerial simulations(see e.g. [156, 159℄).24



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONThese numerial simulations show that, after a rapid relaxation, the evolutionan be parametrized with an evolution among the stable stationary states of theVlasov equation; the system reahes �nally the statistial equilibrium. Two mainpoints remain however unsolved: one the one hand, the Vlasov stationary state ho-sen by the violent relaxation is not explained, and on the other hand, the dynamiswhih governs the slow evolution among the stationary states.

Figure 1.7: Temporal evolution of the distribution f(θ, t) obtained for a �water-bag�initial ondition for the veloities (from [156℄). The number of partiles is N = 1000and an ensemble average over 100 realisations is performed. For U = 0.55 and
U = 0.69, we represent the distribution at time t = 1 (ross), t = 10 (white square),
t = 104 (blak square) and t = 105 (white irle). The straight line represents theequilibrium distribution.The numerial study of the slow evolution has been studied in [156℄ for the HMFmodel. We onsider the results presented in Fig. 1.7 to illustrate brie�y the slow on-vergene of the angular and veloity distributions towards the statistial equilibriumstate. The initial ondition of this simulation is a water-bag veloity distribution andan homogeneous angle distribution. For U = 0.55 (left hand panel in Fig. 1.7), theinitial ondition is unstable and the system undergoes a rapid evolution between
t = 1 and t = 10. The system evolves then slowly towards the equilibrium statereahed for t ∼ 105. For U = 0.69 (right hand panel in Fig. 1.7), the initial onditionis stable. The dynamis is then very slow right from the begining and the equilib-rium state is reahed at t ∼ 105. One must notie that, although the dynamisevolves slowly, it seems that the evolution of the system is ontinuous. It is thendi�ult to de�ne a QSS (see e.g. [156, 159℄).We onlude this introdutory setion with the study of the time sales of theHMF model. We have already said that the relaxation time, i.e. the lifetime of theout-of-equilibrium states, inreases with the number of partiles in the system. Itis thus interesting to understand this temporal dependene to identify the di�erentregimes of the dynamial evolution. Astrophysis provides a very nie example toillustrate this question: It is believed that the struture of galaxies arises from violentrelaxation while the ollisional relaxation ould play a role in the dynamis of theglobular lusters [34℄. 25



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONAs far as the HMF model is onerned, the theorem of Braun and Hepp [28℄ statesthat the Vlasov dynamis and the partiular dynamis oinide on a timesale oforder lnN . One ould then expet a �rst relaxation time trel ∼ lnN . Using theHMF model with U = 0.69 and water-bag veloity distribution and homogeneousangular distribution, Yamaguhi et al. studied in [156℄ the temporal evolution of
M1(t) for a number of partileN = 102, 103, 2.103, 5.103, 104 and 2.104 (see Fig. 1.8).To study the timesale relaxation represented in Fig. 1.8, M1(t) is approximated by

Figure 1.8: Panel (a) presents the temporal evolution of the magnetizationM(t) fordi�erent partiles numbers N = 100(1000), 1000(100), 2000(8), 5000(8), 10000(8)and 20000(4) from left to right. The number between brakets orresponds to thenumber of samples. The horizontal line represents the equilibrium value of M .Panel (b) shows the logarithmi timesale b(N) as a funtion of N . The dashed lineorresponds to b(N) ∼ N1.7. (from [156℄)hyperboli tangent [156℄, i.e.
M1(t) =

[

1 + tanh
(

a(N)(log10 t− b(N))
)

]

c(N) + d(N) , (1.43)where the parameters a(N), b(N), c(N) and d(N) represent respetively the slopeat time log10(t) = b(N), the time sale, the semi-di�erene between the initial leveland the equilibrium level of M1(t) and the initial level of M1(t). The equilibriumlevel is given by the statistial mehanis and the initial level by the �utuationproportional to 1/
√
N . Fig. 1.8 shows that, for U = 0.69, b(N) ∝ N1.7 whih isthe same dependane found by Zanette et al in [159℄ for di�erent initial onditions.This exponent stays unexplained, but analytial approahes try to explain it (seee.g. [90℄).Let us reall brie�y the results presented above. We have haraterized thestationary states of the Vlasov equation and presented a method to study theirstability. It has been shown in [156℄ that it was possible to analyse them as maximaof a funtional onstruted with onserved quantities as energy and Casimirs. Fora lass of initial onditions whih are not stable stationary states of the Vlasovequation, the system rapidly relaxes towards a stable stationary state, i.e. the so26



CHAPTER 1. DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITHLONG-RANGE INTERACTION: AN INTRODUCTIONalled violent relaxation. The system then evolves slowly among the stable stationarystates towards the statistial equilibrium state, the so alled ollisional relaxation.This introdutory hapter was limited to the study of di�erent toy models. It ishowever expeted that it ould be generalized to any long-range interating systemseven if the analysis of eah system must be adapted to eah model.4 ConlusionIn this �rst introdutory hapter we have given a brief overview of the physis oflong-range interating systems: the statistial mehanis at equilibrium and theout-of-equilibrium dynamis. We have illustrated the partiular behaviours whihemerge from these systems using simple toy models: the Blume-Emery-Gri�thsmodel, the Ising model and the Hamiltonian-Mean-Field model whih have beenused as tools in the statistial physis ommunity to probe the physis of the LRIsystems.In the �rst setion of this hapter, we have underlined the inequivalene of en-sembles between the miroanonial and the anonial ensemble in the BEG model.We have also introdued the mean-�eld approah and the large-deviation theorywhih is the mathematial basis to justify the relevane of this approah.However, the knowledge of the equilibrium properties remains inomplete if weannot probe the physis of the relaxation towards this equilibrium. This was thesubjet of the seond setion of this hapter. Following a kineti theory approah,we have introdued the Vlasov equation whih an be seen as the dynamial equiv-alent of the mean �eld approximation. We have seen that the Vlasov equation hasan in�nite number of onserved quantities, the so-alled Casimirs, whih underliethe slow relaxation towards equilibrium. We have brie�y presented a method ex-trated from [156℄ whih gives the opportunity to obtain the stationary states ofthe Vlasov equation as well as to analyse their stability. Indeed, for a lass of ini-tial onditions whih are not stable stationary states of the Vlasov equation, thesystem rapidly relaxes towards a stable stationary state, and then evolves slowlyamong these stationary states until it reahes the statistial equilibrium throughthe ollisional relaxation.

27
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Chapter 2Basi results on self-gravitatingsystemsWe �rst extend the onsiderations of the previous hapter to the spei� ase of self-gravitating systems disussing the statistial equilibrium of self-gravitating systems:we use the mean �eld approximation introdued in Chapter 1 for an LRI system,whih leads to the well known isothermal sphere solution. The rest of the hapteronerns self-gravitating systems in the ontext of osmology, whih are intrinsiallydi�erent to those onsidered in Chapter 1 beause they are in�nite rather than �nite.To give some bakground, we review the basis of the standard osmologial model,fousing on the formation of large sale struture. The understanding of the originof large sale struture in the universe (luster of galaxies, superlusters) is indeedone of the major unsolved questions in osmology. In the next setion we give anintrodution to the kineti theory used to study the out-of-equilibrium dynamisof in�nite self-gravitating systems in osmology, and whih allow the derivation ofthe equation of an (in�nite) self-gravitating �uid (i.e. a hydrodynami desriptionof the system). We present the perturbation theory of these �uid equations, wherethe density �eld is desribed with smooth funtions, and onsider non-ontinuousapproah in terms of disrete partiles. Following [126℄, this latter analysis leadsto a ondition on the initial �utuation for the appliability of �uid linear theory.We then introdue the onept of stohasti distributions and the most importantquantities that haraterize them, as density �elds in osmology are usually treatedas a mean bakground positive density with small positive an negative stohasti�utuations. We onlude this introdutory hapter with a setion whih presentsthe numerial investigations of the non-linear regime of the formation of struturesin the Universe, and a disussion of entral notions whih are used in this ontext(self-similarity, stable lustering and halo models).1 Finite self-gravitating systems: statistial equilib-rium and dynamial evolutionIn this setion we �rst present some aspets of the statistial mehanis of �niteself-gravitating systems. We disuss the mean-�eld approah, already introduedin Chapter 1, in this partiular ase and disuss the resulting isothermal spheressolution. We also introdue an important result for self-gravitating systems, the29



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSvirial theorem.1.1 Statistial equilibrium of self-gravitating systemsIn the ase that a self-gravitating system is su�iently far from other matter inthe universe so that tidal fores due to the latter are su�iently weak (i.e. playa role only on a timesale muh longer than the harateristi timesale for theevolution of the system itself), one would expet to be able to treat this systemas isolated and apply a statistial mehanis treatment like that disussed for ageneri LRI in Chapter 1. One suh ase are astrophysial systems suh as globularlusters and galaxies, whih are made of stars whih, exept when they are loseenough to be in ontat physially, interat via the 1/r potential. Another asewhere suh an approah may be useful are dark matter �halos� around astrophysialobjet, postulated to be onstituted of (perhaps elementary) partiles whih interatessentially through gravity alone.Realisti astrophysial systems of this kind are open in the sense that partilesin these systems an esape to in�nity. It is easy to see, however, that in themiroanonial ensemble the integral de�ning the density of state g(E), i.e.
g(E) =

1

N !

∫

dq dp δ
(

E −H(q, p)
)

, (2.1)will diverge if the range of spatial integrations is extended to in�nity [124℄. Thisdivergene is in addition to any divergene we may enounter due to the shortdistane behaviour of the potential. A similar divergene of g(E) will our even foran ideal gas if it were not on�ned in a box. We are, therefore, fored to introduethe �rst arti�iality: one must on�ne the system inside a spherial box of radius
R. This assumption an be justi�ed if one an demonstrate that the frational rateof evaporation of partiles from the system is small.Given suh a on�ning volume and a suitable short distane behaviour of thepotential, one an, in priniple, ompute the phase volume g(E, V ) and the entropy
S(E, V ). However, these quantities behave in an unfamiliar manner for gravitatingsystems. The entral di�ulty arises from the non-extensive nature of the energyalready introdued in Chapter 1.There is also another well known property of gravitating systems [124℄: gravi-tating systems in virial equilibrium have negative spei� heat. However, systemsdesribed by the anonial distribution annot have negative spei� heat. No suhonstraint exists for the miroanonial distribution. Therefore it is often laimedthat the miroanonial distribution is the proper distribution to use in the studyof gravitating systems [124℄.Let us note that even though the anonial distribution annot be derived fromthe miroanonial distribution in the presene of long-range fores one an, purelyas a formal mathematial onept, de�ne the partition funtion for suh systems.Comparing the funtion E(β) obtained from the miroanonial distribution withthe orresponding funtion obtained from the partition funtion one an prove thatthe negative spei� heat region of the miroanonial distribution is replaed by aphase transition in the anonial distribution [124℄.In the following, we shall assume that the potentialy e�ets due to the shortdistane singularity is regularized by a soft or hard ore radius. This assumption30



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSallows us to onentrate on the statistial aspets of the gravitating system, withoutworrying about the ompliating details of lose enounters. Let us note that, as faras numerial simulation are onerned, it is prinipally the soft ore regularizationwhih is used as its numerial implementation is less numerialy ostly.Mean �eld equilibrium of gravitating systemsIn the following, we study the physis of the gravitating systems in the mean �eldlimit introdued in Chapter 1, whih ignores the granularity and orrelations presentin the N-partile system.Consider a system of N partiles interating with eah other through the two-body potential U . The entropy S of this system, in the miroanonial desription,is de�ned through the relation
eS = g(E) =

1

N !

∫

d3Nx d3Np δ(E −H) =
A

N !

∫

d3Nx
(

E − 1

2

∑

i 6=j

U(xi, xj)
)3N/2

,(2.2)wherein one has performed the momentum integrations and replaed (3N/2 − 1)by 3N/2. We shall approximate this expression in the following manner. Let thespatial volume V be divided into M (with M << N) ells of equal size, largeenough to ontain many partiles but small enough for the potential to be treatedas a onstant inside eah ell. Instead of integrating over the partile oordinates
(x1, x2, . . . , xN), we shall sum over the number of partiles na in the ell entred at
xa, where a = 1, 2, . . . ,M . Using the standard result that the integration over d3Nx
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∞
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, (2.3)one an rewrite Eq. (2.2) as
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∞
∑
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∞
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∑
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∞
∑

n1=1

· · ·
∞
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expS[na] , (2.4)where
S[na] =
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2
N ln
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E − 1

2

M
∑

a6=b

naU(xa, xb)nb

)

−
M
∑

a=1

na ln(naM/V ) . (2.5)In arriving at the last expression, the Stirling approximation for the fatorials is usedand the unimportant onstant A is ignored. The mean �eld limit is now obtainedby retaining in the sum in Eq. (2.4) only the term for whih the summand reahesthe maximum value, subjet to the onstraint on the total number. That is, oneassumes
∑

na

eS[na] ≈ eS[na,max] , (2.6)31



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwhere na,max is the solution to the variational problem
(

∂S

∂na

)

na=na,max

= 0 (2.7)with ∑M
a=1 na = N . Imposing this onstraint with a lagrange multiplier and usingexpression Eq. (2.5) for S, one obtains the equation satis�ed by na,max,

1

T

M
∑

b=1

U(xa, xb) nb,max + ln(na,maxM/V ) = onstant , (2.8)where we have de�ned the temperature T as
1

T
=

3

2
N

(

E − 1

2

M
∑

a6=b

naU(xa, xb)nb

)−1

= β . (2.9)We see from Eq. (2.5) that this expression is also equal to ∂S/∂E; therefore, T isindeed the orret thermodynami temperature. We an now return bak to theontinuum limit with the replaements
na,maxM/V = ρ(xa) and M

∑

a=1

→ M

V
. (2.10)In this limit the extremum solution Eq. (2.8) is given by

ρ(x) = A exp[−βφ(x)] and φ(x) =

∫

d3y U(x, y) ρ(y) , (2.11)whih, in the ase of gravitational interations, beomes
φ(x) = −G

∫

ρ(y) d3y

|x− y| . (2.12)This equation represents the equilibrium on�guration for a gravitating system inthe mean �eld limit. The onstant β is already determined through Eq. (2.9) interms of the total energy of the system. The onstant A has to be �xed in terms ofthe total number (or mass) of the partiles in the system. A more formal derivationof the above result an be given using the funtional integral representation of thepartition funtion. It turns out that the saddle point approximation of the funtionalintegral leads to the mean �eld desription (see e.g. [124℄).An important point needs to be noted about the mean �eld result we haveobtained: the various manipulations taitly assume that the expressions we aredealing with are �nite. Unfortunately, for gravitational interations without a shortdistane uto�, the quantity eS, and hene all the terms we have been handling, aredivergent. One should therefore remember that a short distane uto� is needed tojustify the entire proedure. One shall ontinue to work with Eq. (2.12) beauseof its mathematial onveniene. The e�ets due to the short distane uto� aredesribed in [124℄.32



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSIsothermal spheresIt an easily be shown that among all the solutions to Eq. (2.8) the spherially sym-metri on�guration maximises the entropy (see e.g. [6℄). This solution representswhat is known as the gravitational isothermal sphere. The extemum ondition forthe entropy is equivalent to the following di�erential equation for the gravitationalpotential:
▽2φ = 4πGρce

−β[φ(x)−φ(0)] . (2.13)Given the solution to this equation, all other quantities an be determined. Aswe shall see, this system shows several peuliarities. It is onvenient to introduelength, mass, and energy sales by the de�nitions
L0 = (4πGρcβ)

1/2 , M0 = 4πρcL
3
0 , φ0 ≡ β−1 =

GM0

L0
, (2.14)where ρc = ρ(0). All other physial variables an be expressed in terms of thedimensionless quantities

x ≡ r

L0
, n =

ρ

ρc
, m =

M(r)

M0
, y ≡ β[φ− φ(0)] . (2.15)In terms of y(x), the isothermal equation Eq. (2.13) beomes

1

x2
d

dx

(

x2
dy

dx

)

= e−y , (2.16)with the boundary ondition y(0) = y′(0) = 0. Let us onsider the nature of thesolutions to this equation.By diret substitution, one sees that n = 2/x2, m = 2x, y = 2 ln(x) satis�esthese equations. This solution, however, is singular at the origin and hene is notphysially admissible. The importane of this solution lies in the fat that other(physially admissible) solutions tend to this solution for large values of x [124℄.This asymptoti behavior of all solutions shows that the density dereases as 1/r2for large r, implying that the mass ontained inside a sphere of radius r inreases as
M(r) ∝ r at large r. To �nd physially useful solutions, it is neessary to assumethat the system is enlosed in a spherial box of radius R. In what follows, it willbe assumed that the system has some uto� radius R.Eq. (2.16) is invariant under the transformation y → y+a, x→ kx with k2 = ea.This invariane implies that, given a solution with some value of y(0), we an obtaina solution with any other value of y(0) by simple resaling. Therefore, only one ofthe two integration onstants in Eq. (2.16) is really nontrivial. Hene it must bepossible to redue the degree of the equation from two to one by a judiious hoieof variables [124℄. One suh of set variables is

v ≡ m

x
, u ≡ nx3

m
=
nx2

v
. (2.17)In terms of v and u, Eq. (2.13) beomes

u

v

dv

du
= − u− 1

u+ v − 3
. (2.18)33



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe boundary onditions y(0) = y′(0) = 0 translate into the following: v is zero at
u = 3, and dv

du
= −5/3 at (3, 0). The solution v(u) has to be obtained numerially:it is plotted in Fig. 2.1 as the spiraling urve. The singular points of this di�erentialequation are given by the intersetion of the straight lines u = 1 and u+ v = 3, onwhih the numerator and denominator of the right-hand side of Eq. (2.18) vanish;that is, the singular point is at us = 1, vs = 2, orresponding to the solution

n = 2/x2, m = 2x. It is obvious from the nature of the equation that the solutionswill spiral around the singular point.

Figure 2.1: Bound on RE/GM2 for the isothermal sphere (from [124℄).The nature of the solution shown in Fig. 2.1 allow one to put interesting boundson some physial quantities, inluding the energy. To see this, one shall omputethe total energy E of the isothermal sphere. The potential and kineti energies are
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=
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nx2dx , (2.20)where x0 = R/L0. The total energy is therefore,
E = K + U =
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, (2.22)where n0 = n(x0) and m0 = m(x0). The dimensionless quantity RE/GM2 is givenby
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. (2.23)34



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSNote that the ombinationRE/GM2 is a funtion of (u, v) alone. One now onsidersthe onstraints on λ. Suppose one spei�es some value for λ by speifying R, E,and M . Then suh an isothermal sphere must lie on the urve
v =

1

λ

(

u− 3

2

)

, λ ≡ RE

GM2
, (2.24)whih is a straight line through the point (1.5, 0) with a slope λ−1. On the otherhand, sine all isothermal spheres must lie on the u− v urve, an isothermal spherean exist only if the line in Eq. (2.24) intersets the (u− v) urve.For large positive λ (positive E), there is just one intersetion. When λ = 0 (zeroenergy), One still has a unique isothermal sphere. When λ is negative (negative E),the line an ut the (u − v) urve at more than one point; thus more than oneisothermal sphere an exist with a given value of λ. But as one dereases λ (moreand more negative E), the line in Eq. (2.24) will slope more and more to the left;and when λ is smaller than a ritial value λc, the intersetion will ease to exist.Thus no isothermal sphere an exist if RE/GM2 is below a ritial value λc [124℄.This fat follows immediately from the nature of the (u − v) urve and Eq. (2.24).The value of λc an be found from the numerial solution shown in the �gure. Itturns out to be about −0.335.The isothermal sphere has a speial status as a solution to the mean-�eld equa-tions. Isothermal spheres, however, annot exist if RE/GM2 < −0.335. Even when

RE/GM2 > −0.335, the isothermal solution need not be stable. The stability ofthis solution an be investigated by studying the seond variation of the entropy.Suh a detailes analysis shows that the following results are true [124℄. Systems with
RE/GM2 < −0.335 annot evolve into isothermal spheres. The entropy has no ex-tremum for suh systems. Systems with RE/GM2 > −0.335 and ρ(0) > 709 ρ(R)an exist in a metastable (saddle point state) isothermal-sphere on�guration. Here
ρ(0) and ρ(R) denote the densities at the enter and edge, respetively. The entropyextrema exist but they are not loal extrema. Systems with RE/GM2 > −0.335and ρ(0) < 709 ρ(R) an form isothermal spheres whih are a loal maximum of theentropy.1.2 Virial equilibriumAs we explained in Chapter 1, a system with an initial ondition whih is not astable equilibrium solution of the Vlasov equation knows a rapid evolution on atimesale independent of the number of partiles N in the system, the so alledviolent relaxation. The system then evolves for a long time, whih behaves as apower of N , among the numerous stable stationary states of the Vlasov equation.It is then interesting to link this evolution with the main general tool of partilesdynamis: the virial theorem. Let us note that this theorem applies to any, smoothand non-smooth distribution of partiles.We derive below the virial relation whih provides a powerful onstraint on self-gravitating systems in a marosopialy stationary state. Let us onsider a perfetself-gravitating system of N partiles, that is without a surrounding box and with35



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSa perfet 1/r potential. The Hamiltonian is therefore
H(qµ, pµ) =

N
∑

i=1

p2
i

2m
−

N−1
∑

i=1

Gm2

|qi − qj|
, (2.25)where qi and pi represent the position and the momentum of the ith partile respe-tively. Introduing the moment of inertia tensor [25℄:

Iµν =
N
∑

i=1

mqi,µqi,ν (2.26)where qi,µ is the µth position omponent of the ith partile, the seond time derivativeof this expression is
Ïµν =
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. (2.27)Using that the aeleration of a partile is given by
q̈i,µ = Gm
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∑
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, (2.28)one obtains
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∑
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∑
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. (2.29)The trae of Ïµν is̈
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∑
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∑

i=1

q̇2
i −Gm2

N
∑

i 6=j=1

1

|qj − qi|
. (2.30)The �rst term is atually four times the total kineti energy of the system while theseond is twie its total potential energy:

1

2
Ï = 2K + U . (2.31)Assuming that the system is in a state suh that Ï = 0, we have the famous relation
2K + U = 0 , (2.32)whih in all textbooks on astrophysis is alled the virial theorem. Sine the totalenergy is E = K + U , we obtain the following relation
E = −K =

U

2
. (2.33)Let us note that the ruial assumption involved in deriving the salar virial theoremis that the moment of inertia I is time-independent. However, in a system with asmall number of partiles, there are neessarily statistial �utuations in I simplydue to the �nite-size, and Eq. (2.32) ould be expeted to hold only for the time-averaged values of K and U .36



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS2 Introdution to CosmologyThe basi hypothesis used to onstrut the standard osmologial model is given bythe Cosmologial Priniple. One way to state it is : �Viewed on su�iently largedistane sales, the universe is homogeneous and isotropi�.Homogeneity means that the universe is translationally invariant, i.e. it looksthe same from all points, and isotropy means that the universe is rotationally in-variant, i.e. it looks the same in all diretions. For a long time, there was no learobservational evidenes for this statement. It had the status of a postulate, in thesame manner as, for example, Einstein's Priniple of Relativity. In fat, given only2 points from whih the universe appears isotropi, one an proves homogeneityonsidering that our position in the universe is not speial.The Cosmologial Priniple, stated as above, is a strong hypothesis. There is an-other version of it, alled the onditional osmologial priniple, whih hypothesisesonly statistial istropy and statistial homogeneity. This is a muh weaker assump-tion, whih allows one to admit notably the possibility of a fratal distribution ofmatter, in whih the density averaged in an in�nite volume is zero.An indiation to support the hypothesis of strit homogeneity and isotropy atlarge sales is the fat that the model based on it desribes remarkably well thelarge sale dynamis of the observed universe, given by the Hubble law. Diretevidene of the isotropy of the universe is given by that of the temperature of theCosmi Mirowave bakground (CMB) radiation, whih pervades the universe [127℄.Indeed it took more than two deades after its disovery to detet the �utuationsof the temperature as a funtion of the angle of observation, whih are at a level ofabout one in ten thousand [55℄. However, all these observations do not onstitute,of ourse, a diret test of the hypothesis.The only diret urrent observation whih diretly probes the homogeneity ofthe universe is that provided by 3−d surveys onstraining the distribution of visiblematter, notably galaxy and luster surveys. Given that urrent osmologial modeldesribes a universe in whih 80% of the matter is non visible �dark matter�, thisis an inomplete test of homogeneity. However, it is plausible to suppose that thevisible matter trae the dark matter one, and therefore these kind of observationsare a good probe of homogeneity.In Fig. 2.2 we show a slie of the largest galaxy survey to date. It is apparent thatat small sales the distributions of galaxies is very inhomogeneous, with omplexstrutures as luster of galaxies and voids. However, at large sale, there is anevidene that the distribution of galaxies reahes a de�nitive (non-zero) density.This is shown in Fig. 2.3, in whih the density in funtion of the sale is shown.For large sales, the density presents a rossover to a onstant density, i.e. tohomogeneity.Assuming that the universe is homogeneous and isotropi at su�iently largesales, the large sale dynamis of the universe is desribed with an exatly homo-geneous (equal density everywhere) and isotropi model: the Friedmann-Robertson-Walkermodel, based on the framework of the General Theory of Relativity, proposedby Albert Einstein, and whih explains and desribes gravity. 37



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS

Figure 2.2: Slies of the 2dF and SDSS surveys. Observe how at small sales (smallredshift) the galaxies are highly lustered, forming walls and �laments.2.1 the Friedmann-Robertson-Walker universeGeneral relativity is a metri theory that desribes gravity as the manifestation ofthe urvature of spaetime. This theory, oupled to osmologial priniple, impliesthat the universe should either be expanding or ontrating, with a geometry whihmay be �at, hyperboli or spherial. Usually the assoiated spatial urvature isdenoted by means of the urvature oe�ient k. It has the value k = 0 for a �atspae, k = +1 for a spherial spae, and k = −1 for a negatively urved hyperbolispae. The spaetime metri of these universes is the Robertson-Walker metri
ds2 = c2dt2 − a2(t)

(

dr2 +R2
c S

2
k(r/Rc) (dθ

2 + sin2 θdφ2)
)

, (2.34)where Rc is the radius of urvature, and Sk(r) is the funtion given by
Sk(x) =







sin(x) if k = +1 ,
x if k = 0 ,
sinh(x) if k = −1 .

(2.35)The variable t is the so-alled osmi time. The dimensionless sale fator a(t)desribes the expansion (or ontration) of the universe, and may be normalizedwith respet to the present-day value, i.e. a(t0) = 1. The onstant c is the veloityof light and r, θ, φ are the spherial oordinates. Friedmann solved Einstein'sequations for general homogeneous and isotropi universe models, and derived thetime dependene of the expansion fator. The resulting equations are known as theFriedmann-Robertson-Walker-Lemaitre (FRW) equations:
ä

a
= −4πG

3
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+
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3
, (2.36)and

( ȧ
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+
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3
. (2.37)38



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS

Figure 2.3: Representation of the average omoving density (i.e. number ounteddivided by expeted from an homogeneous distribution) as funtion of a omovingsphere of radius R. Observe how at log10R ≈ 1.5 the density stabilizes, whih meansthat observed at sales larger than this one the universe is homogeneous (from [56℄).In the FRW equations, G is Newton's gravitational onstant, ρ is the energy densityof the universe, p is the pressure of the various osmi exponents, Λ is the osmologi-al onstant, and R0 is the present-day value of the urvature radius. The evolutionof the energy density ρ of the universe an be inferred from the energy equationobtained by ombining the FRW equations Eqs. (2.36) and (2.37). This is given by
ρ̇+ 3

(

ρ+
p

c2

) ȧ

a
= 0 . (2.38)The marosopi nature of the medium is expressed by the equation of state, p =

p(ρ), whih for most osmologially relevant omponents may be expressed as
p = wρc2 . (2.39)Here w is alled the equation of state parameter. Eqs. (2.38) and (2.39) an beombined to give the evolution of energy density with the expansion of the universe:

ρ(t) ∝ a(t)−3(1+w) . (2.40)2.2 Cosmi ExpansionThe expansion rate of the universe is expressed in terms of the Hubble parameter,
H(t) =

ȧ

a
. (2.41)The present-day value ofH(t), sometimes alled the Hubble onstant, is often parametrizedin terms of a dimensionless fator h, (h = H0/100 km

−1s Mpc), where H0 is theHubble onstant express in units of km s1Mp c−1. The expansion of the universedoes not only express itself in ontinuously growing distanes between any two ob-jets, it also leads to the inrease of the wavelengths of photons. This resulting39



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSosmologial redshift z of a presently observed objet is given by the relation
1 + z =

a(t0)

a(t)
=

1

a(t)
, (2.42)where a(t) is the expansion fator of the universe at the time the observed light wasemitted.2.3 Cosmi ConstituentsThe evolution of the universe is fully ditated by its energy density ρ and its urva-ture k. The energy density of the universe is onveniently expressed in terms of thedensity needed to produe a geometrially �at universe, the ritial density:

ρc(t) =
3H2

8πG
. (2.43)The ontribution of any omponent towards the energy density of the universe maybe expressed in terms of the ratio of its energy density to the ritial density. Thisratio is denoted by Ω(t), the density parameter, and is expressed as:

Ω(t) =
ρ(t)

ρc(t)
=

8πGρ

3H2
. (2.44)The value of Ω(t) at t = t0, denoted by Ω is given by

Ω =
8πGρ0
3H2

0

. (2.45)Aording to the �standard model� the universe ontains a variety of omponents.While the ontributions of magneti �elds and gravitational waves may be taken tobe negligible, the most important ingredients of the universe are radiation, baryonimatter, nonbaryoni dark matter and dark energy. The equation of state parameter
w for radiation and matter (baryoni as well as nonbaryoni) is 1/3 and 0 respe-tively, whereas for dark energy its value is less than −1/3. If the dark energy is inthe form of a osmologial onstant, then w = −1. Thus Eq. (2.40) suggests thatradiation (ρr ∝ a−4), matter (ρm ∝ a−3), and dark energy (ρΛ = onstant) haveevolved di�erently with the expansion of the universe.As the radiation ools o� as a result of the expansion of the universe, its spetrumpeaks at mirowave wavelengths and is observed today in the form of the CMB witha temperature of T0 = 2, 725Ko. Sine the temperature of radiation sales in inverseproportion to the sale fator (T ∝ a−1(t)), it must have been very high in the earlyuniverse. The almost perfet blakbody spetrum of CMB de�nes the strongestevidene for the existene of a very hot and dense phase in the early universe (seeFig. 2.4). At very early times radiation was dynamially dominant omponent ofthe universe. Its urrent density onstituted only a fration of 10−5 of the total den-sity. Baryoni matter Ωb is omposed mostly of omposite partiles made of threequarks whih partiipate in the strong interation. However, it only represents aminor osmologial omponent and aounts for a mere 4, 4% of the energy ontent40
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Figure 2.4: Sky projetion of the Cosmi Mirowave Bakground measured with theWilkinson Mirowave Anisotropy Probe (WMAP) experiment.of the universe. Nonbaryoni dark matter Ωdm is a very important omponent forthe formation of strutures in the universe. The ombined ontribution of matterto the energy density is usually expressed as Ωm.One of the most pressing problems in astrophysis is the identity of this darkmatter. While its presene is unmistakably felt through its gravitational attration,it has a yet esaped diret observation or detetion in the laboratory. Dark matteris pressureless and insensitive to the eletromagneti in�uene of radiation.Flutuations in the dark matter ould have started growing as soon as matterbegan to dominate the dynamis of the universe at around the epoh of matter-radiation equality (ρr = ρm). This ours at a sale of a(t) ≈ 10−4. The growth ofthese �utuations in the dark matter reated the gravitational potential wells. Afterthe baryoni matter and radiation deoupled at the epoh of reombination, thebaryoni matter started falling into these gravitation potential wells. This proessis believed to have led to the formation of galaxies and stars. Dark matter plays aentral role in the modelling of struture formation. Indeed, without dark matter,the epoh of galaxy formation would our substantially later in the universe thanis observed.The osmologial framework of the Hot Big Bang in a spatially homogeneousand isotropi universe is so widely aepted that is is alled the standard Hot BigBang Model. This model is supported by many observations, notably
• the relation between distane and reession veloity (Hubble law) as a onse-quene of its metri implies that the universe has a �nite age;
• the almost perfet blak-body spetrum of the Cosmi Mirowave Bakgroundis evidene for an extremely hot initial phase of the universe;
• the exellent math in the observed abundanes of light elements and predi-tions from primordial nuleosynthesis;
• the evident evolution of the appearane of objets as funtion of their distanefrom us. 41



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSParameter Value Desription
H0 70.4± 2.4 km s−1Mpc−1 Hubble parameter
Ωm 0.277± 0.029 Matter Density
Ωb 0.0459± 0.0028 Baryon Density
ΩΛ 0.723± 0.029 Dark Energy Density
ρc 0.94± 0.07× 10−26kg m−3 Critial Density
t0 13.72± 0.14 Gyr Age of the Universe
σ8 0.811± 0.032 Galaxy �utuation amplitude
n 0.960± 0.014 Spetral IndexTable 2.1: Values of osmologial parameters (from WMAP5 + SDSS [57℄).We now have evidene (see e.g. [60, 61℄)to suggest that universe at the presentepoh is undergoing an aelerated expansion, i.e. ä > 0. This ould be due tothe presene of an elusive medium alled dark energy. Dark energy (ΩΛ) is themost dominant omponent of our universe at the present epoh. It aounts forapproximatively 73% of osmi energy density. The nature of Dark Energy is evenmore mysterious than dark matter. All that an be said about dark energy is thatit has a negative pressure. This is apparent from Eq. (2.36) whih suggests that for

ä > 0, we need p < −ρ/3. Most observational studies agree with the Dark Energybeing equivalent to a osmologial onstant although other options are still viable.2.4 The ΛCDM modelThe urrent understanding of the omponents of the universe is enoded in theLambda Cold Dark Matter (ΛCDM) model. In this model one attempts to ex-plain supernova observations in terms of the aelerated expansion of the universe.Indeed, supernovae are useful in osmology as they represent exellent standard an-dles aross osmologial distanes [60, 61℄. They allow the expansion history of theuniverse to be measured by looking at the relationship between the distane to anobjet and its redshift, whih gives how fast it is reeding from us. This model isaounted remarkably well notably for the spetrum of �utuations in temperatureobserved in the Cosmi Mirowave Bakground. In the aronym ΛCDM, the term
Λ refers to the dark energy (ΩΛ) whih is believed to be the driving fore behind theaelerated expansion of the universe at the present epoh. Λ is assumed to havethe form of a osmologial onstant (w = −1). Cold Dark Matter refers to a modelwhere the dark matter is explained as being old, i.e. its veloity was non-relativistiat an epoh when it deoupled from other onstituents of the universe. This typeof dark matter is assumed to be non-baryoni, dissipationless and ollisionless. The
ΛCDM model has several parameters from whih the most important are shown inTab. 2.4.2.5 The Newtonian approximationIn pratie in osmology the study of how irregularities in the matter distributionin the universe develop is treated almost exlusively in the Newtonian limit. This42



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSapproximation is justi�ed by the fat that in the formation of large sale struturesone onsiders a regime in whih
• partile veloities are typially non-relativisti (e.g. in �old� dark matterosmology);
• the gravitational �elds generated are �su�iently weak�;
• the physial sale onsidered where �non-linear� strutures form are small om-pared to the horizon size (haraterizing the sale at whih onstraints assoi-ated to the �niteness of the speed of light are expeted to beome important).In this thesis we will onsider solely the Newtonian limit.3 In�nite self-gravitating systems in osmology: an-alytial resultsWe now review some standard methods to desribe the non-equilibrium dynamialevolution of partiular self-gravitating systems in osmology. This is a key subjetbeause it will permit us to justify the �uid formalism used in osmology. Wereview the basis of kineti theory, i.e. the non-equilibrium evolution of a systemof interating partiles. To do so, we study the well known BBGKY hierarhy. Wethen explain the approximations made in the derivation of a �uid theory from thekineti one, and introdue the perturbative methods used in both the Eulerian andLagrangian approah. We onlude this setion with a disrete approah whih helpsto lassify the limits of the appliation of linear theory.3.1 Non-equilibrium evolution of a self-gravitating systemIt is important to underline here the ruial di�erene between �nite (Newtonian)systems, as disussed in the previous setion, and the in�nite (Newtonian) systemswe onsider here, and whih are those prinipally of relevane in the ontext of thestruture formation in osmology. We onsider in osmology systems � distributionsof partiles � whih are of in�nite extent and have a non-zero mean density. TheNewtonian fore on partile i, Fi, due to all the others (in a system of partiles ofequal mass m), i.e. Fi = −Gm

∑

j 6=i

(ri − rj)
|ri − rj|3 , (2.46)in suh a system is badly de�ned due to the ontribution of the mean density. Thefore used in the Newtonian limit of osmology is that obtained when the ontributionof the mean density is removed. This an be written formally in di�erent ways:most often this is done by writing Fi = −∇ φi, and speify that the potential φi isalulated from the modi�ed Poisson equation

∇2φi = 4πG (ρ− ρ0) , (2.47)where ρ(r) is the mass density �eld and ρ0 is its mean value. Alternatively, it an bewritten using a presription of symmetri summation (whih sets the ontribution43



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSof the mean density to zero)F′
i = −Gm lim

R→∞

∑

j∈Vi(R)

(ri − rj)
|ri − rj|3 , (2.48)where Vi(R) is the sphere of radius R entered on the partile i. As pointed out byKiessling [95℄ a more physially appealing version isF′

i = −Gm lim
µ→0

∑ (ri − rj)
|ri − rj |3 e−µ |ri−rj | (2.49)In the osmologial ontext, this �subtration� of the mean density is properly justi-�ed by the fat that the mean density soures the Hubble expansion, and the foreF′

i appears in the equation of motion in �omoving oordinates�, i.e. in whih par-tiles remain �xed when they follow the Hubble expansion. Indeed the equation ofmotion in these oordinates for a partile is
d2xi

dt2
+ 2 H(t)

dxi

dt
=
F′

i

a3
, (2.50)where F′

i is given by one of the expressions above, a(t) is the sale fator of themodel onsidered and H(t) = ȧ/a is the Hubble �onstant�. Formally we an de�nea non-expanding (i.e. stati universe) limit to these equations by setting H = 0. As,however, there is no suh stati solution in a universe with non-zero mean density,suh a model does not have the physial motivation of the expanding model. Theadoption of the modi�ed fore in this ase is known as the �Jeans swindle� as it was�rst introdued by Jeans to treat the growth of perturbation in a stati (but in�nite)universe. As disussed by Kiessling (and in Chapters 3 and 6 of this thesis) the useof the term �swindle� is inappropriate as in fat the presription is a mathematiallywell de�ned regularization of the Newtonian problem.We will onsider in the rest of this setion mostly this limit H = 0, as thepresene of this term is not essential to understanding the approhes presentedand essential results. In treating the fore term we will assume that the systemis an in�nite periodi system, and take the appropriate expression for the fore tobe de�ned. Issues onerning the well de�nedness of these fores (and indeed theassumed equivalene of the di�erent expressions above) will be ignored here, butthey will be treated in detail in Chapters 3 and 6 of this thesis.The BBGKY hierarhyIf we have a system for whih we an write a Hamiltonian, we know, by using theLiouville theorem [73℄, how an ensemble of suh systems evolves: if the funtion
f(qµ, pν , t) is the density funtion of these systems in phase spae, it satis�es

∂tf +
3N
∑

µ=1

q̇µ∂qµf +
3N
∑

ν=1

ṗν∂pνf = 0 , (2.51)where we have assumed that the system ontains N partiles in 3N dimensions. Itis important to note that this equation is very similar to the Vlasov equation, but44



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSit is ruial to understand that they desribe two di�erent quantities. Eq. (2.51)desribes exatly the evolution of an ensemble f(qµ, pν , t) of idential systems onphase spae (6N dimensions), while the Vlasov equation desribes approximatelythe evolution of the partile density f(x, v, t) in the 6 dimensional (x, v)-spae forone of these systems. What we are going to see now is that we an obtain the Vlasovequation from Eq. (2.51). We will illustrate this for a periodi gravitating system.Let us denote by f (N) the density in the N-partile phase spae used with theLiouville theorem, and whih depends on the oordinates of the N partiles. Wemake also a hange of variables to replae the momenta with the veloities: pµ →
mvµ and write xµ instead qµ for the positions so that Eq. (2.51) beomes

∂tf
(N) +

3N
∑

µ=1

ẋµ∂xµf
(N) +

3N
∑

ν=1

v̇ν∂vνf
(N) = 0 , (2.52)or equivalently

∂tf
(N) +

N
∑

i=1

vi∇xi
f (N) +

N
∑

i=1

1

m
Fi∇vif

(N) = 0 , (2.53)with
Fi = Gm2

∑

n∈Z3

∑

i 6=j

xi − xj + Ln

|xi − xj + Ln|3 , (2.54)where L is the period of the system. The subsript are suh that x1 = (x1, x2, x3),
. . . , xN = (x3N−2, x3N−1, x3N ). A similar notation is used for the veloities.We de�ne now the funtion f (1) by

f (1)(x1, v1, t) =

∫

f (N)(xµ, vν , t) d
3x2 d

3v2 . . . d
3xN d3vN , (2.55)that is by integrating f (N) over all the partile positions and veloities exept thoseof the �rst partile. The integrals for the positions are done over the box size whilethose for the veloities are done over the whole real axis. The next step is to integratein the same way Eq. (2.52) or Eq. (2.53). The �rst term beomes ∂tf (1). For theother terms, we note that

∫ L

0

ẋµ∂xµf
(N)dxν = vµ∂xµ

∫ L

0

f (N)dxν (2.56)if µ 6= ν.
∫ L

0

ẋµ∂xµf
(N)dxµ = vµ

∫ L

0

∂xµf
(N)dxµ = 0 , (2.57)beause of the periodiity of the box.

∫ +∞

−∞
v̇µ∂vµf

(N)dvν =
Fµ

m
∂vµ

∫ +∞

−∞
f (N)dvν (2.58)if µ 6= ν, and �nally

∫ +∞

−∞
v̇µ∂vµf

(N)dvµ = 0 , (2.59)45



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSby assuming that limvµ→±∞ f (N) = 0, whih is a reasonable hypothesis even if weonsider a perfet 1/r potential, without modi�ation at small sale. By putting allthis together, we get
∂tf

(1) + v1.∇x1
f (1) +

∫

1

m
F1.∇v1f

(N)d3x2d
3v2 . . . d

3xNd
3vN = 0 . (2.60)Let us suppose now that the funtion f (N) is a symmetri funtion of the partilesnumbers:

f (N)(x1, v1, . . . , xN , vN , t) = f (N)(xσ(1), vσ(1), . . . , xσ(N), vσ(N), t) (2.61)for any permutation σ of the �rst N integers. Note that this has no e�et on thedynamis of a system. We are free to hoose any phase spae funtions in theLiouville equation, and our hoie is only motivated by the fat that it puts all thepartiles on the same level. By noting that
1

m
F1 =

N
∑

i=2

Gm
∑

n∈Z3

xi − x1 + Ln

|xi − x1 + Ln|3 ≡ 1

m

N
∑

i=2

F1,i , (2.62)where F1,i is the fore on partile 1 due to partile i, the symmetry of f (N) allowsus to write the third term of Eq. (2.60) as
(N − 1)

m

∫

F1,2.∇v1f
(N)d3x2d

3v2 . . . d
3xNd

3vN . (2.63)By de�ning the following funtion
f (2)(x1, v1, x2, v2, t) =

∫

f (N)d3x3d
3v3 . . . d

3xNd
3vN , (2.64)Eq. (2.60) beomes

∂tf
(1) + v1.∇x1

f (1) +
(N − 1)

m

∫

F1,2.∇v1f
(2)d3x2d

3v2 = 0 . (2.65)This gives the evolution of the one partile funtion f (1) in funtion of the twopartiles funtion f (2). If we had started by integrating over x3, v3, . . . , xN , vN , wewould have obtained an equation of f (2) in funtion of the three partiles funtion
f (3)(x1, . . . , v3) =

∫

f (N)d3x4d
3v4 . . . d

3xNd
3vN . (2.66)We an ontinue in a similar way for higher order funtions and obtain a sequeneof equations of the type

∂tf
(n) = F

(

f (n+1)
)

, (2.67)known as the Bogoliubov-Born-Green-Kiriwood-Yvon (BBGKY) hierarhy. Withoutany approximations these equations are not easier to solve than Liouville equation.The advantage is that by hoosing a judiious approximative funtion for one of the
f (i), we an redue the number of equations and have a hane to solve them or at46



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSleast obtain interesting informations onerning the evolution of the system studied.Let us assume that
f (2)(x1, v1, x2, v2) = f (1)(x1, v1)f

(1)(x2, v2) + g(x1, v1, x2, v2) (2.68)and onsider the last funtion g to be negligible. We an assume without loss ofgenerality that
∫

f (n)d3x1d
3v1 . . . d

3xNd
3vN = 1 . (2.69)This allows us to see f (1)(x, v) as the probability density of �nding a partile at (x, v)in the ensemble of systems represented by f (N). The funtion f (2)(x1, v1, x2, v2)is then simply the density probability to have one partile at (x1, v1) and one at

(x2, v2). Therefore g(x1, v1, x2, v2) is the two-partile orrelation funtion as it givesthe hange in the probability to �nd a partile at (x1, v1) when it is known thatthere is another one at (x2, v2). By replaing f (2) by Eq. (2.68) in Eq. (2.65), weobtain
∂tf

(1) + v1.∇x1
f (1) +

(N − 1)

m
∇v1f

(1).

∫

F1,2.f
(1)(x2, v2, t)d

3x2d
3v2

+
(N − 1)

m

∫

F1,2.∇v1gd
3x2d

3v2 = 0 . (2.70)In the Vlasov equation, the funtion f satis�es
∫

f(x, v, t)d3xd3v = N . (2.71)Multiplying Eq. (2.70) by N and writing f ≡ Nf (1), we get
∂tf + v1.∇x1

f +
(N − 1)

Nm
∇v1f.

∫

F1,2.f(x2, v2, t)d
3x2d

3v2

+
N(N − 1)

m

∫

F1,2.∇v1gd
3x2d

3v2 = 0 . (2.72)By assuming that g(x1, v1, x2, v2) = 0, we �nd
∂tf + v1.∇x1

f +
(N − 1)

Nm2
∇vf.

∫

F1,2ρ(x2, t)d
3x2 = 0 , (2.73)where we have used the fat that the integral of f over the veloity is the massdensity ρ(x, t) divided by the mass of a partile. By approximating (N − 1)/N ≈ 1,we have

∂tf + v.∇xf +
1

m
F.∇vf = 0 . (2.74)This is the Vlasov equation for our periodi system.Two important points have to be noted onerning this demonstration to obtainthe Vlasov equation from the Liouville equation. The �rst one is that the funtion fdoes not desribe a partiular system, but is an average over an ensemble of systemsand it gives only a probability to �nd a partile at a ertain point. Aording to [47℄,47



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSBoltzmann's point of view was that the evolution of f has to be understood as themost probable behaviour of a member of an ensemble of systems. By hoosing anensemble of systems with equal funtions f(x, v, t), one an therefore expet that theVlasov equation desribes relatively well the evolution of one partiular system ofthe ensemble as they should all behave similarly onerning marosopi quantities.The seond point is that we have negleted the two-partile orrelation funtion gand approximated (N − 1)/N by 1.From Vlasov equation to �uid equationsWe have just seen that the Vlasov equation an be derived from the Liouville equa-tion by making ertain approximations. In this setion we show that with furtherapproximations, the Vlasov equation yields the �uid equations. The method isbased on a moment integration tehnique of the Vlasov equation. One multipliesthis equation suessively by rising powers of the veloity and integrates the result-ing equation over the entire veloity spae. The system of hydrodynami equationsobtained onsists of an in�nite set for the in�nitely many possible moments of theone-partile distribution funtion (see e.g. [146℄). In the following, we only onsiderthe derivation of the �rst two moment equations, i.e. the ontinuity equation andthe momentum onservation equation.Using that m ∫ fdv = ρ(x, t), we obtain after having integrated the Vlasov equa-tion with respet to v,
∂tρ+m

∫

R3

v.∇xfdv = 0 . (2.75)We have assumed that limvi→±∞ f = 0. We an �nd the average of one of theomponents of the veloity at a point x by alulating
v̄i ≡

∫

Z3 fvid
3v

∫

Z3 fd3v
=

m

ρ(x, t)

∫

Z3

fvid
3v . (2.76)This allows us to write Eq. (2.75) as

∂tρ+∇x.(ρv̄) = 0 , (2.77)with v̄ ≡ (v̄1, v̄2, v̄3). This is the so alled ontinuity equation of �uid dynamis.Now we multiply the Vlasov equation by vi and integrate over v:
∂t

∫

fvid
3v +

∫

viv.∇xfd
3v +

1

m
F.

∫

(vi∇vf)d
3v = 0 . (2.78)The last term an be evaluated by noting that

∫

vi∂vjfdvj = −
∫

δijfdvj . (2.79)Using Eq. (2.76), we get
∂t(ρv̄i) +

3
∑

j=1

∂xj
( ¯vivjρ)−

1

m
Fiρ = 0 . (2.80)48



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSWith Eq. (2.77), the �rst term an be written as
∂t(ρv̄i) = ρ∂tv̄i − v̄i∂xj

(ρv̄j) (2.81)and de�ning
σ2
ij ≡ vivj − v̄iv̄j , (2.82)we obtain

∂tv̄i + v̄.∇xv̄i =
Fi

m
− 1

ρ
∂xj

(ρσ2
ij) . (2.83)Setting the term ontaining σ2

ij on the rhs to zero, one obtains the (pressureless)Euler equation. In the Euler equation, this term is related to the pressure as it isgiven by −(∂xi
p)/ρ. This shows that ρσ2

ij an be onsidered as a �pressure� due tothe partile veloities.3.2 Perturbation theoryAs general solutions to the equations - Vlasov equation, �uid equation - whih wehave disussed and whih are supposed to approximate the evolution of gravitatingsystems are not known, their study is mainly restrited to a perturbative analysis.Jeans instabilityLet us onsider the Vlasov equation for a periodi system. We assume that f(x,v, t) =
f0(v). This is atually a solution of the Vlasov equation (the resulting density fun-tion is ontant so that F = 0). We suppose now small perturbations:

f(x,v, t) = f0(v) + f1(x,v, t) (2.84)with |f1(x,v, t)| << f0(v). We assume that these �utuations do not hange thenumber of partiles, that is
N =

∫

CL

d3x

∫

R3

f(x,v, t)d3v = ∫
CL

d3x

∫

R3

f0(v)d3v =
L3ρ0
m

. (2.85)Aording to the modi�ed Poisson equation
∇2Φ1 = 4πGm

∫

R3

f1(x,v, t)d3v . (2.86)We have denoted the potential by Φ1 in order to remember that this is a perturbationaround Φ0 = 0. The Vlasov equation is, at linear order in the perturbations,
∂tf1 + v.∇xf1 −∇xΦ1.∇vf0 = 0 . (2.87)Beause of the periodiity of the system we an expand f1 and Φ1 in Fourier seriesand beause of the linearity of the �linear� Vlasov equation, we look for solutions ofthe type ( [25℄)

f1(x,v, t) = fk(v) exp[i(k.x− ωt)] , (2.88)
Φ1(x, t) = Φk exp[i(k.x− ωt)] , (2.89)49



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwith usual k = 2πn/L. Inserting this in Eq. (2.86) and Eq. (2.87), we obtain thatthe following equations must be satis�ed
−k2 Φk = 4πGm

∫

R3

fk(v)d3v , (2.90)
Φk k.∇vf0 = fk(v)(v.k− ω) . (2.91)Integrating the seond with respet to v, and ombining the two together we obtaina dispersion relation
1 +

4πGm

k2

∫

R3

k.∇vf0v.k− ω
d3v = 0 . (2.92)Considering a Maxwellian distribution for f0

f0(v) = ρ0
m

1

(2πσ2)3/2
exp(− v2

2σ2
) , (2.93)where ρ0 is the average density. The dispersion relation beomes

1− 2
√
2πGρ0
kσ3

∫ +∞

−∞

v exp(−v2/2σ2)

kv − ω
dv = 0 . (2.94)If ω = 0, one �nds

k2(ω = 0) ≡ k2J =
4πGρ0
σ2

. (2.95)A alulation (see e.g. [25℄) shows that if k2 < k2J , ω has to be omplex in orderto satisfy the dispersion relation, and therefore the perturbations beomes unstableas they an grow exponentially. This implies that if there are �utuations of a sizelarger than λJ ≡ 2π/kJ , they will start to develop. The length λJ is alled the Jeanslength and the instability related to this length is the Jeans instability. Qualitativelythis instability is due to the fat that if a density �utuation is large enough, itontains enough matter to ollapse as the veloity dispersion - or temperature -of the partiles, whih ats as a pressure, is not su�iently large to ounter thegravitational fore.Linear �uid equationsWe onsider the set of �uid equations
∂tρ+∇(ρv) = 0 , (2.96)

∂tv+ (v.∇)v = −∇Φ (2.97)
∇2Φ = 4πG(ρ− ρ0) (2.98)whih gives in terms of the density ontrast δ(x, t) = (ρ(x, t)− ρ0

)

/ρ0

∂tδ +∇.[(1 + δ)v] = 0 ,

∂tv+ (v.∇)v = −∇Φ , (2.99)
∇2Φ = 4πGρ0δ .We assume that the system is originally at rest v(x, t) = 0 and that δ(x, t) = 0.This satis�es the �uid equations. We suppose now that there are small density50



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS�utuations suh that |δ(x, t)| << 1. They give rise to small �utuations in thepotential Φ and in the veloity �eld v. At �rst order in these quantities, the set ofEqs. (2.99) beomes
∂tδ +∇.v = 0 , (2.100)
∂tv = −∇Φ , (2.101)

∇2Φ = 4πGρ0δ . (2.102)Di�erentiating Eq. (2.100) with respet to t, one gets
δ̈ +∇.∂tv = 0 . (2.103)Taking the divergene of Eq. (2.101); one an use Eq. (2.102) to get

∇.∂tv = −4πGρδ . (2.104)Putting these last two equations together, one �nds
δ̈ = 4πGρ0δ , (2.105)whose general solution is a+ exp(

√
4πGρ0t) + a− exp(−

√
4πGρ0t), i.e. the sum ofthe so alled growing and deaying modes of perturbations. One �nds in the growingmode

δ(x, t) = δ0(x) exp(√4πGρ0t) . (2.106)It is also important to note that if we expand the density ontrast in Fourier series,Eq. (2.106) beomes
δk(t) = δk(0) exp(√4πGρ0t) . (2.107)Eah mode evolves independently from all the others. Let us note that in theexpanding ase, Eq. (2.105) is simply modi�ed to

δ̈ + 2 Hδ̇ =
4πGρ0
a3

δ , (2.108)whose general solution an also be written as the a sum of a growing mode δ+ ∝ a(t)and a deaying mode δ− ∝ a−3/2 for the ase that a(t) ∝ t2/3 in the EdS universe.However, as we have already underlined above, the presene of the expansion is notessential to understanding essential results.Linear Lagrangian theory & Zeldovih approximationIn the previous setion, we have onsidered the evolution of small perturbationsof density on a uniform distribution of matter. With the Lagrangian approah,the funtion whih desribes the evolution of the matter is the displaement �eldf(x, t) of the �uid element. In this setion we are going to look at a perturbationtheory for this displaement �eld. This an be partiularly interesting as it andesribe situations in whih the density �utuations an beome very large, andwhih an therefore not be desribed with the linear approah we have onsideredin the previous setion. 51



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSAs we have a vetor �eld v(x, t) whih desribes the veloity of the �uid at (x, t),we an look for integral urves of this vetor �eld, that is the funtion f(x, t) suhthat for any x0 in the �xed spae, f(x0, 0) = x0 and
df
dt
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(x0,t)
= v(f(x0, t), t

)

. (2.109)This means that for a given x0, by varying t, f(x0, t) traes the trajetory of a pointin the �uid whih follows the �ow and whih is at x0 when t = t0. Let us onsiderthe set of Eqs. (2.99)The left hand side of Eq. (2.97) ontains two terms: the �rst, ∂tv, is related tothe variation of v at a �xed x while the seond is related to the variation of v in thediretion of the �ow at a �xed time. The sum of the two is therefore the aelerationof a point following the �ow. Indeed, if suh a point is at x at time t, it goes tox+ v dt at time t + dt and its veloity is given byv(x+ v dt, t+ dt) = v(x, t) + ∂tv|(x,t)dt+ (v.∇x)v|(x,t)dt+O(dt2) , (2.110)so that its aeleration is ∂tv+ (v.∇x)v. Aording to Eq. (2.97), this aelerationis equal to g(x, t) = −∇Φ, with
∇x × g = 0 , (2.111)and using f, we an rewrite this equation as

d2f
dt2 (x0,t)

= g(f(x0, t), t
)

, (2.112)sine, for a �xed x0, f(x0, t) follows the �ow. Eq. (2.96) desribes mass onserva-tion: if we onsider an in�nite volume d3x, the variation of ρ d3x (the mass in anin�nitesimal volume around x) is equal to the di�erene between what omes in andwhat goes out. If we follow the �uid, the in�nitesimal volume d3x is deformed. Forinstane, if it is ontrated, this means that loally the density inreases. This anbe expressed by the following formula
ρ(x0, 0) d

3x = ρ
(f(x0, t), t

)

Jf(x0, t) d
3x , (2.113)where Jf(x, t) is the determinant, evaluated at (x, t), of the Jaobian matrix Jf ≡

(

∂f/∂x) related to the transformation x → f(x, t). If we know the funtion f(x, t)and its inverse, that is the funtion h(x, t) suh that h(f(x, t)) = x, we an �ndthe density at any point from the density at t = 0:
ρ(x, t) = 1

Jf(h(x, t), t)ρ(h(x, t), 0) . (2.114)This is Eq. (2.96) expressed in terms of f(x, t). What remains to do now is to obtainEqs. (2.98) and (2.111) in terms of funtion. From now on we assume that f has aninverse h. Eq. (2.112) tells us thatg(x, t) = d2f
dt2
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(h(x,t),t) ≡ f̈(h(x, t), t) . (2.115)52



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSSine we are interested in ∇.g and ∇×g, the �rst quantity to alulate is ∂gi/∂xj ≡
gi,j. By using the last equation, we �nd

gi,j =
∂f̈i
∂xk

∂hk
∂xj

≡ f̈i,k hk,j (2.116)where summation over repeated indies is impliit. Note that as h is the inverse off, the Jaobian matrix of h is related to the one of f by
Jh(x, t) ≡ (∂h

∂x) =
1

Jf(h(x, t), t)adj[Jf(h(x, t), t)] . (2.117)Here adj means the adjoint:
(adj Jf)

ij
=

1

2
ǫimn ǫjkl fk,m fl,n , (2.118)where ǫijk is the permutation of Levi-Civita tensor. The divergene of g an thenbe written

(∇.g)(x, t) = f̈i,k
1

2 Jf ǫkmn ǫirs fr,m fs,n =

[

ǫirs
2 Jf ∂(̈fi, fr, fs)∂(x1, x2, x3)

]

(h(x,t),t) (2.119)with
∂(̈fi, fr, fs)
∂(x1, x2, x3)

≡= ǫjkl f̈i,j fr,k fs,l . (2.120)The Eq. (2.97) beomes by using Eq. (2.114)
[

ǫirs
∂(̈fi, fr, fs)
∂(x1, x2, x3)

]x,t) = −4 π G
[

ρ(x, 0)− ρ0 Jf(x, t)] . (2.121)For the rotational of g we have
(∇× g)i = ǫijk gk,j (2.122)so that, after some alulations, Eq. (2.111) beomes
∂(f̈k, fk, fi)

∂(x1, x2, x3)
= 0 (2.123)for i = 1, 2, 3. By de�nition we have f(x, 0) = x. This implies that Jf(x, 0) = 1. Ifv(x, 0) and ρ(x, 0) are known, the seond equation gives us ḟ(x, 0) and what remainsto do is to solve the last two equations.In the following we are going to look a perturbation theory for the displaement�eld f(x, t) of the �uid element. If we write the displaement �el f(x, t) = x+p(x, t),we obtain at �rst order in p

∇.(p̈− 4πGρ0p) = −4πGρ0δ(x, 0) , (2.124)
∇× p̈ = 0 . (2.125)53



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwhere δ(x) is the density ontrast. The �rst equation an be solved by assumingthat p = ∇χ. The seond equation an be rewritten as
∇2(χ̈− 4πGρ0χ) = −4πGρ0δ(x, 0) . (2.126)If we onsider a periodi system, one an write

δ(x, 0) =∑k6=0 δk exp(ik.x) , (2.127)
χ(x, t) =∑k6=0 χk(t) exp(ik.x) . (2.128)Eq. (2.126) beomes
χ̈k − 4πGρ0χk =

4πGρ0
k2

δk . (2.129)The general solution is
χk = A+ exp

(

√

4πGρ0t
)

+ A− exp
(

−
√

4πGρ0t
)

− δk
k2
. (2.130)With the initial onditions for p, we �nd thatp(x, t) = [ cosh (√4πGρ0t

)

− 1
]

∑k6=0

ikδk
k2

exp(ik.x) . (2.131)We an rewrite this expression asp(x, t) = [cosh(√4πGρ0t
)

− 1

4πGρ0

]g(x, 0) , (2.132)where g is the fore �eld. This means that a �uid element, initially at x, is aeler-ated aording to p̈ = cosh
(

√

4πGρ0t
)g(x, 0) . (2.133)It is interesting to ompare these result with Eq. (2.107)

δk(t) = δk(0) cosh(√4πGρ0t
)

. (2.134)This implies that g(x, t) = cosh
(

√

4πGρ0t
)g(x, 0) , (2.135)sine g(x, t) an be expressed in terms of the δk. We would then expet that a �uidelement is aelerated aording top̈(x, t) = g(x+ p(x, t), t) = cosh

(

√

4πGρ0t
)g(x+ p(x, t), 0) (2.136)and for small displaement this gives Eq. (2.133).54



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSWriting the vetor �eld p as the sum of a url-free part pD and a divergene-lesspart pR (i.e. pD an be written as the gradient of a salar funtion, and pR as theurl of a vetor �eld), one �nds thatp(x, t) = p̈(x, 0)cosh(√4πGρ0t
)

− 1

4πGρ0
+ ṗD(x, 0)sinh(√4πGρ0t

)

√
4πGρ0

+ ṗR(x, 0)t ,(2.137)with the initial onsition p(x, 0) = 0. Sine the gravitational fore is onservativep̈(x, 0) = p̈D(x, 0). The asymptoti behavior of the solution Eq. (2.137) isp(x, t) t→∞−−−→ 1

2

[ p̈(x, 0)
4πGρ0

+
p̈D(x, 0)√
4πGρ0

]

exp
(

√

4πGρ0t
)

. (2.138)By hoosing ṗR(x, 0) = 0 and √
4πGρ0 p̈(x, 0) = ṗ(x, 0), the solution is thendiretly in its asymptoti regime. This is the stati spae version of the Zeldovihapproximation, more usually given in an expanding bakground.3.3 Limit of linear theory: a non-ontinuous approahFor the moment, we have only onsidered a ontinuous approah to study the evo-lution of self-gravitating systems, i.e. we have desribed the density �eld usinga smooth funtion. This has allowed us to obtain di�erent result onerning thisevolution by using a perturbative approah. However, to understand the limit oflinear theory and the validity of the �uid approximation, it is interesting to follow anon-ontinuous approah in terms of disrete pariles. We onsider in the followingthe derivation of Peebles in [126℄.Let us onsider again N partiles of mass m in a periodi box of volume V = L3.The density funtion at time t is given by

ρ(x, t) = m

N
∑

i=1

δD
(x− xi(t)

)

, (2.139)where xi(t) is the position of partile i at time t. The Fourier oe�ients of thedensity ontrast are given by
δk(t) = { 1

N

∑N
i=1 exp(−ik.xi(t)) if k 6= 0

0 otherwise (2.140)We obtain the derivatives
δ̇k =

1

N

N
∑

i=1

(−ik.ẋi) e
−ik.xi , (2.141)

δ̈k =
1

N

N
∑

i=1

(−ik.ẍi − (k.ẋi)
2) e−ik.xi . (2.142)Melding the equation of evolution Eq. (2.50) with H = 0 and the Laplae-Poissonequation on obtains ẍi = 4πGρ0

∑

k 6=0

ik
k2
δkeik.xi (2.143)55



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSInserting this in Eq. (2.50) one obtains
δ̈k = 4πGρ0 + A− C , (2.144)where A and C represent the nonlinear part of the equation,

A = 4πGρ0
∑q6=0,k k.qq2 δkδk−q and C =

1

N

N
∑

i=1

(k.ẋi)
2e−ik.xi . (2.145)If we an neglet during some time the last two terms on the rhs in the last line,we are left with a linear equation idential to what we have obtained in Eq. (2.105).This shows that the last two terms of the last line of Eq. (2.144) are due to non-linear e�ets and the disrete nature of the partiles. A areful analysis of these twoterms should therefore provide us interesting information on the appliability of thelinear theory.The problem with Eq. (2.144) is that it is not losed for the δk as it still ontainsthe partile veloities ẋi. Despite this and following [126℄, one an show that even ifat small sales the dynamis are non-linear, linear theory an be used at large sales.One gravity starts to at, some lusters an be reated, where �lusters� meansvirialised strutures. The veloities of the partiles in suh objets an be very high.This implies that the term C in Eq. (2.145) an be very large and this ould havean important e�et on the evolution of every δk. This is in fat not true. UsingEq. (2.142), we havë

δk =
1

N

N
∑

i=1

[−ik.g(xi)− (k.ẋi)
2] exp(−ik.xi) , (2.146)where g(xi) is the gravitational �eld at xi. If Nc lusters are reated, we an rewritethis expression as

δ̈k =
1

N

{

Nc
∑

α=1

∑

i∈Iα

[−ik.g(xi)−(k.ẋi)
2] exp(−ik.xi)+

∑

i/∈luster[−ik.g(xi)−(k.ẋi)
2] exp(−ik.xi)

}

,(2.147)where �i ∈ Iα� means all the partiles in the luster α whih ontains Nα partiles,and �i /∈ lusters� means all the partiles whih are not in a luster. For partileswhih are in a luster we an deompose the �eld g(x) into two parts: g1(x)+g2(x)where the �rst term is due to fore of all the other partiles in the same luster whilethe seond is the fore from the rest. If we onsider one luster, we an write itsontribution to the right hand side of Eq. (2.147) as
∑

i∈Iα

[−ik.g1(xi)− ik.g2(xi)− (k.ẋi)
2] . exp(−ik.xi) (2.148)The part ontaining g1(xi) an be written as

∑

i∈Iα

[−ik.g1(xi)] exp(−ik.xi) =
∑

i∈Iα

[

− ik.Gm ∑

j 6=i∈Iα

xj − xi

|xj − xi|3
]

exp(−ik.xi) .(2.149)56



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSDe�ning Xα as the entre of mass of the lusterXα =
1

Nα

∑

i∈Iα

xi , (2.150)the last expression beomes
exp(−ik.Xα)

∑

i∈Iα

[

− ik.Gm ∑

j 6=i∈Iα

yj − yi

|yj − yi|3
]

exp(−ik.yi) (2.151)where yi = xi−Xα. These vetors do not have a length longer than the luster sizewhih we will denote by R. This means that for k suh that |k| << 1/R we anmake the following approximation
∑

i∈Iα

[−ik.g1(xi)] exp(−ik.xi) ≈ exp(−ik.Xα)
∑

i∈Iα

[

−ik.Gm ∑

j 6=i∈Iα

yj − yi

|yj − yi|3
]

(1−ik.yi) ,(2.152)whih an be written as
Gm

2
exp(−ik.Xα)kµkν

∑

j 6=i∈Iα

(yi,µ − yj,µ)(yi,ν − yj,ν)

|yi − yj|3
(2.153)with an impliit summation over µ and ν. Using the results derived in setion ??,this beomes simply

∑

i∈Iα

[−ik.g1(xi)] exp(−ik.xi) = exp(−ik.Xα)
∑

i∈Iα

(k.ẏi)
2 . (2.154)Inserting this expression in Eq. (2.148) and negleting terms of order (kR)2, it omes

exp(−ik.Xα)
∑

i∈Iα
{

(k.ẏi)
2 − [ik.g2(xi) + (k.ẋi)

2] exp(−ik.yi)
}

≈ Nα exp(−ik.Xα)
[

− ik.g2(Xα) + (k.Ẋα)
2
]

. (2.155)Then Eq. (2.147) beomes
δ̈k =

1

N

{

Nc
∑

α=1

Nα[−ik.g2(Xα)−(k.Ẋα)
2] exp(−ik.Xα)+

∑

i/∈luster[−ik.g(xi)−(k.ẋi)
2] exp(−ik.xi)

}

.(2.156)This shows that lusters an be onsidered as �maro-patiles� for what onernsthe evolution of δk for k muh smaller than the inverse of the luster size. Indeedthis evolution depends to a good approximation only on the motion of the entre ofmass of the lusters and not on what happens inside them. This is atually quitein agreement with the intuition that one a luster is reated, it is seen as a bigpartile when it is looked from far away. Note that this is valid if we an negletterms of order (kR)2 in Eq. (2.156).Let us now study the term δk for k 6= 0 (as δ0 = 0)
δk =

1

V ρ0

∫

CL

(ρ(x, t)− ρ0) exp(−ik.x)d3x (2.157)
=

1

V ρ0

∫

CL

ρ(x, t) exp(−ik.x)d3x . (2.158)57



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwhere we have omitted the term ∫

CL
exp(−ik.x)d3x = V δKk,0 with δKk,0 the 3D Kro-neker symbol. We an now split the box into ND small domains (Ωα) os similarsize in suh a way that eah of them ontains at least a few partiles. We alulatethe entre of mass Xα in all of them. If we denote by R their size, we have fork << 1/R,

δk =
1

V ρ0

ND
∑

α=1

∫

Ωα

ρ(x, t) exp(−ik.x)d3x (2.159)
=

1

V ρ0

ND
∑

α=1

exp(−ik.Xα)

∫y+Xα∈Ωα

ρ(Xα + y, t) exp(−ik.y)d3y (2.160)
≈ 1

V ρ0

ND
∑

α=1

exp(−ik.Xα)

∫y+Xα∈Ωα

ρ(Xα + y, t)(1− ik.y)d3y (2.161)
=

1

V ρ0

ND
∑

α=1

exp(−ik.Xα) Nαm (2.162)
=

1

N

ND
∑

α=1

Nα exp(−ik.Xα) , (2.163)where Nα is the number of partiles in the domain Ωα. This means that up to termsof order (kR)2, δk depends only on the positions of the entres of mass Xα as if theywere simply partiles of di�erent masses. As before, we an draw the onlusionthat dynamis whih do not hange the positions of the entres of mass above aertain sale R, as it is the ase when some partiles ollapse, have no e�ets on δkfor k muh smaller than the inverse of this sale. But learly, as before, this is trueonly if terms of order (kR)2 are really negligible ompared to the right hand side ofthe last line of Eq. (2.161).A onlusion whih an be drawn from this disussion but whih should be handlewith are is the following: if at t = 0, for a �xed value of k and a sale R, one hason the one hand
δk ≈ 1

N

ND
∑

α=1

Nα exp(−ik.Xα) (2.164)as in Eq. (2.161), and on the other hand
4πGρ0δk+4πGρ0

∑q6=0,k k.qq2 δkδk−q− 1

N

N
∑

i=1

(k.ẋi)
2 exp(−ik.xi) ≈ 4πGρ0δk , (2.165)then the evolution of δk will satisfy approximatively the equation

δ̈k = 4πGρ0δk , (2.166)desribing the motion of the entres of mass in the domains of size R as long asthe lusters will have a size smaller than 1/k ≈ R, without being in�uened by theompliated dynamis on smaller sales. Aording to Eq. (2.156) these dynamishave only negligible e�ets on entres of mass at a sale equal to R. For k suh that
|k| < 1/R, the simple linear �uid approah should be justi�ed and if everything holdfor all k of similar size, δ(x, t) should also be desribed by the linear �uid theory atsales larger then R.58



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe limit value n = 4 for the exponent of the power spetrum - model fornewly forming lustersIn the following, we follow the derivation of Peebles [126℄ to determine the limit value
n = 4 for the exponent of the power-spetrum for the validity of linear perturbationtheory.We are interested in a distribution where the large-sale �utuations are sup-pressed as muh as possible, so the power spetrum will be taken to be

|δk|2 ∝ kn (2.167)for small k < x−1
0 , where x0 represents the interpartile distane, and n > 0. Atlarge sale the spetrum is similar ro random. The �utuations are just beomingnonlinear at sale x0, signaling the inipient formation of a new generation of lusterson this sale. Sine this generation has not yet formed, we shall suppose that theveloity term C in Eq. (2.144) may be negleted, and we shall estimate the size ofthe gravity term A in Eq. (2.144)

A = 4πGρ0
∑q6=0,k k.qq2 δkδk−q , (2.168)

A∗ = 4πGρ0
∑q6=0,k k.qq2 δ-kδq−k (2.169)One then has to ompare the mean of the square of A, i.e. 〈|A|2〉 with the lineargravitational term 4πGρ|δk|2. Peebles shown in [126℄ that 〈|A|2〉 ∼ k4, whereas

|δk|2 ∼ kn. Then if n < 4 the linear term is larger than A and we expet linearampli�ation to be valid, while if n ≥ 4 this will not be the ase.4 Bakground on Stohasti point proessesIn the following we introdue the formalism used to desribe density �elds in os-mology: (in�nite) statistially homogeneous and isotropi point proesses whih areuniform, i.e. have a well-de�ned non zero mean density.4.1 Stohasti distributionsLet us onsider a disrete random mass distribution represented by the mirosopidensity funtion ρ(r). The quantity ρ(r)dV represents the number of partiles on-tained in the in�nitesimal volume dV around the point r. Assuming that the par-tiles have unitary mass we an write
ρ(r) =∑

i

δ(r− ri) , (2.170)where ri is the position vetor of the partile i of the distribution and δ(r) is theDira delta funtion. The funtion ρ(r) an be thought as a realization of a stohastiproess. It means that to any point r is assoiated a positive random variable ρ̂(r)whose �extrated� value is ρ(r). The stohasti proess is totally haraterized by59



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSthe probability density funtional P [ρ(r)] of the density �eld ρ(r), that gives theprobability to have the partiular realization ρ(r) of the stohasti �eld ρ̂(r, t). Wewill limit our analysis to ordinary or regular point proesses, in whih taking a smallvolume ∆V in an arbitrary point of the spae, the probability to have more thanone point in this volume is of higher order of ∆V .We an ompute the average value of any funtion of the density F [ρ(r)] infuntion of the probability density funtional:
〈F 〉 =

∫

Dρ(r) F [ρ(r)] P [ρ(r)] , (2.171)where we have used a funtional integral (see e.g. [71℄).We an smooth a disrete distribution to obtain a ontinuous one ρ by averagingover small volumes ∆V (ri) (entered around the position r) but ontaining a largeamount of partiles:
ρ(r, t) = 1

∆V (r) ∫∆V (r′) d3r ρ(r′, t) . (2.172)Note that the density for disrete distribution Eq. (2.170) is a sum of distributions(and then non-smooth funtion) whereas the averaged density funtion de�ned inEq. (2.172) is a smooth funtion.In the probability density funtional P [ρ(r)] all the information about the stohas-ti �eld is ontained. In general, this information is muh more than one wantsmanipulate. For this reason, one fouses on the ℓ-point orrelation funtions of thestohasti �eld de�ned as
〈ρ̂(r1)ρ̂(r2) . . . ρ̂(rℓ)〉 = ∫ Dρ(r)P [ρ(r)]ρ̂(r1)ρ̂(r2) . . . ρ̂(rℓ) . (2.173)The quantity de�ned in Eq. (2.173), multiplied by [dV ]ℓ, gives the a priori probabilityof �nding simultaneously ℓ partiles, in a volume dV about the positions r1, . . . , rℓ,independently of the position of the remaining partiles. For example, the 1-pointorrelation funtion is simply the loal density funtion 〈ρ(r)〉.Spatial averages and ergodiityA typial assumption in the statistial analysis of stohasti �elds is the so-allesergodiity of the stohasti proess whih generates the mass �eld both in the on-tinuous and disrete ase. In order to larify the meaning of ergodiity, let us take ageneri observable F = F (ρ(r1, ρ(r2, . . . ) of the mass distribution ρ(r). Ergodiitymeans that 〈F 〉 is equal to the spatial average F given by:

F = lim
V→∞

1

V

∫

V

d3r0 F
(

ρ(r1 + r0), ρ(r2 + r0), . . . ) , (2.174)where V is the integration volume and limV →∞ means that the limit of the inte-gration is taken over all spae. Finally, ρ(r) is almost any realization of the massdistribution �extrated� from the probability funtional P [ρ(r)]. This property isalso referred to as the self-averaging property of the distribution. Note that if the60



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSaverage in Eq. (2.174) is extended only to a �nite sub-sample V of the whole spae,then Eq. (2.174) is only an estimator of 〈F 〉 in the given sub-sample. In osmologyone typially has only suh �nite volume estimators. Therefore the assumption ofergodiity is neessary if we want to use these statistial estimators of some spei�quantities to build or verify hypotheses and theories.The assumption of ergodiity is based on a theorem of ontinuous stohastiproesses: the ergodi theorem of Birkho�-Khinhin whih states that if ρ(r) has awell-de�ned average value ρ0, then the volume average, in the in�nite volume limit,onverges with probability one to a well-de�ned limit [75℄.Statistially homogeneous and isotropi distributionsA stohasti proess is statistially homogeneous when the probability density fun-tional P [ρ(r)] is invariant under spatial translations. The onsequene is that theomplete ℓ-point orrelation funtion has the property
〈ρ̂(r1)ρ̂(r2) . . . ρ̂(rℓ)〉 = 〈ρ̂(r1 + r0)ρ̂(r2 + r0) . . . ρ̂(rℓ + r0)〉 . (2.175)It therefore does not depend on ℓ vetor variables anymore but only on ℓ− 1 vetorvariables. For example, the large sale struture of the universe is assumed to bedesribed by a stohasti density �eld whih is statistially homogeneous, i.e. it isassumed that there is no privileged positions in the universe (this is the Cosmologialpriniple).A stohasti system is statistially isotropi if the probability density funtionalis invariant under rotations, in the sense that

P [ρ(r)] = P [ρ(R̂r)] , (2.176)where R̂ is any rotation. In the ase of the universe, the Cosmologial prinipleassumes statistial isotropy.The working hypothesis of the urrent osmologial models are therefore to as-sume statistially homogeneity and isotropy. In this ase, the 1-point orrelationfuntion does not depend on the position:
〈ρ̂(r)〉 = ρ0 . (2.177)We will also suppose, when the average is performed in an in�nite volume, that

ρ0 > 0, what is alled homogeneity or uniformity. It is distint from the onept ofstatistial homogeneity or translational invariane disusses above. Homogeneity oruniformity means that if a loal average density is performed in a �nite volume, theresult does not depend on the volume. Current observations indiate homogeneityon large sales in osmology (see [71℄).Homogeneity and Homogeneity saleLet us now onsider the meaning of homogeneity given by Eq. (2.177) in terms ofthe spatial average in a single realization of a stohasti mass distribution. Theexistene of a well-de�ned average positive density implies that
lim
R→∞

1

||C(R;x0)||

∫

C(R;x0)

ρ(r)d3r = ρ0 > 0 , ∀x0 , (2.178)61



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSwhere ||C(R;x0)|| ≡ 4πR3/3 is the volume of the sphere C(R;x0) of radius R, en-tered on an arbitrary point x0. When Eq. (2.178) is valid, i.e. a well-de�ned positiveaverage density exists for the mass distribution, the harateristi homogeneity sale
λ0 an be de�ned as the sale suh that

∣

∣

∣

1

C(R;x0)

∫

C(R;x0)

d3r ρ(r)− ρ0

∣

∣

∣
< ρ0 , ∀R > λ0, , ∀x0 . (2.179)This sale gives basially the distane above whih �utuations an be onsideredsmall with respet to the mean density ρ0 and a perturbative approah an beappropriate to desribe the physis of the system.Correlation FuntionUsing the hypothesis of homogeneity, we de�ne the 2-point redued orrelation fun-tion as

C2(r12) = 〈(ρ̂(r1)− ρ0)(ρ̂(r2)− ρ0)〉 , (2.180)where r12 = |r1 − r2|. The omplete 2-point orrelation funtion an be writen as afuntion of the redued 2-point orrelation funtion as:
〈ρ̂(r1)ρ̂(r2)〉 = 〈ρ̂(r1)〉〈ρ̂(r2)〉 . (2.181)The redued orrelation funtion C12 (also alled ovariane funtion) gives the non-trivial part of this probability. It is usual to normalize the orrelation funtion fordensity �eld as

ξ(r12) =
C2(r12)

ρ20
. (2.182)The Power SpetrumIn osmology and Statistial Physis it is very usual to haraterize distributionin Fourier spae rather than in real spae. In Cosmology a partiular emphasis isplaed on this representation beause it is mathematially muh easier to modelizetheoretially the evolution of strutures in Fourier spae. We de�ne the Fouriertransform (FT) of a funtion f(r), in a ubi volume of size L (V = Ld), where d isthe spatial dimension as:

f̃(k) = ∫
V

ddrf(r)e−ik.r . (2.183)The inverse transform is therefore
f(r) = 1

V

∑k f̃(k)e−ik.r , (2.184)where the sum over the disrete k is restrited to those with omponents ki = 2mπ
Lwith m ∈ Z. In the limit of in�nite d-dimensional Eulidian spae the diret andinverse FT are de�ned as

f̃(k) = FT [f(r)] = ∫
Rd

ddrf(r)e−ik.r (2.185)
f(r) = FT−1[f̃(k)] = 1

(2π)d

∫

Rd

ddkf̃(k)e−ik.r . (2.186)62



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSFrom now on, for simpliity, we will denote by ρ(r) both the stohasti density �eld
ρ̂(r) and any realization of it. We de�ne the �utuation of the density �eld δρ(r) as

δρ(r) = ρ(r)− ρ0 . (2.187)Its Fourier transform in a volume V is
δρ(k;V ) = ∫

V

ddrδρ(r)e−ik.r . (2.188)Beause δρ(r) is real, δρ(k, V ) = δ∗ρ(−k;V ), where the asterisk denotes �omplexonjugate�. We de�ne the struture fator (SF) as
S(k) = 〈|δρ(k;V )|2〉

V
. (2.189)It is obviously a positive-de�nite quantity. In the thermodynami limit, one takes

V → ∞ (with onstant ρ0). The brakets 〈.〉 in Eq. (2.189) indiate an average overrealizations. In osmology the SF is alled Power Spetrum (PS) and it is de�nedas the in�nite volume limit of the SF:
P (k) = lim

V→∞

〈|δρ(k;V )|2〉
V

. (2.190)If we assume statistial homogeneity, it is simple to show from their respetivede�nitions that the 2-point orrelation funtion and the SF are FT pairs:
S(k) = FT [C2(r)] (2.191)
P (k) = ρ20 FT [ξ(r)] . (2.192)If we assume statistial isotropy an additional average over vetors k with the samemodulus an be performed, the SF depending then only on k = |k|.There is an important theorem in the theory of stohasti proesses related withthe PS. This is basially the Wiener-Khinhin theorem (see e.g. [71℄), whih statesthat, given a 2-point orrelation funtion C2(r), it exists a statistially homogeneousontinuous stohasti stationary proess with this orrelation, if and only if its PSis integrable and non-negative for all k, i.e. FT [C2(r)] > 0. In the ase of a pointdistribution this ondition is only neessary. A orollary of this theorem is theproperty:

ξ(0) ≥ ξ(r) . (2.193)Its proof is straightforward: the orrelation funtion ξ(r) is the FT of the PS
ξ(r) = 1

(2π)d

∫

Rd

P (k)eik.rddk . (2.194)Sine by de�ntion, P (k) ≥ 0 and || exp(ik.r)|| ≤ 1, the inequality Eq. (2.193) isevident. 63



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSMass varianeAnother onvenient way to haraterize stohasti distributions is via the �utua-tions of mass in d-dimensional regions that we will denote Λ. The normalized massvariane is de�ned as
σ2(Λ) =

〈M(Λ)2〉 − 〈M(Λ)〉2
〈M(Λ)〉2 . (2.195)The average amount of mass in the region Λ is

〈M(Λ)〉 =
∫

Rd

WΛ(r) 〈ρ(r)〉ddr , (2.196)where we have introdued the window funtion WΛ(r)
WΛ(r) = { 1 if r ∈ Λ

0 otherwise (2.197)Further, the average of the square of the mass in the same region is
〈M(Λ)2〉 =

∫ ∫

Rd

ddr1d
dr2WΛ(r1)WΛ(r2)〈ρ(r1)ρ(r2)〉 . (2.198)Using the above formulae and the de�ntion of orrelation funtion Eq. (2.182) wean write

σ2(Λ) =
1

V 2

∫ ∫

Rd

ddr1d
dr2WΛ(r1)WΛ(r2)ξ(|r1 − r2|) , (2.199)where V is the volume of the region Λ =

∫

ddrWΛ(r). Performing the FT ofEq. (2.199) we obtain
σ2(Λ) =

1

(2π)d

∫

ddkP (k)|W̃Λ(k)|2 , (2.200)where W̃Λ(k) is the FT of WΛ(r). Very often the natural hoie of volume Λ inwhih to ompute the �utuations is a sphere. It is simple to �nd that the FT ofthe window funtion is in three dimensions [71℄
W̃Λ(k) = 3

(kR)3
(sin kR− kR cos kR) . (2.201)Disrete versus ontinuous distributionsWhen performing numerial simulations in osmology, evolution of ontinuous �eldis omputed evolving disrete N-body partile distributions. In this ontext it isimportant to understand the di�erenes between ontinuous and disrete distribu-tions.Disreteness introdues a kind of �utuations that does not appear in ontinuousdistributions. For example, it is possible to onstrut a ontinuous distribution withzero �utuations, i.e. with C12(r) = 0 for all r (we assume statistial homogeneity).This is simply a distribution with onstant density everywhere. In the ase of disretedistributions there is always a �utuation introdued by disreteness: a partile isorrelated with itself, whih introdues a singularity in C12(r). We an see thatstudying the unorrelated (disrete) Poisson distribution.64



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe Poisson distribution We work for simpliity in d = 3 dimensions. Wedivide the 3-dimensional real spae in n = V/dV in�nitesimal ells of volume dVand we de�ne the stohasti density �eld in eah ell as
ρ̂(r) = { 1

dV
with probability ρdV

0 with probability 1− ρdV
(2.202)The average density (the 1-point orrelation funtion) is trivially

〈ρ̂(r)〉 = n.(1/dV ).ρ0dV + n.0.(1− ρ0dV )

n
= ρ0 . (2.203)The 2-point orrelation funtion is

〈ρ̂(r1)ρ̂(r2)〉 = 〈ρ̂(r)〉2 = ρ20 (2.204)if r1 6= r2 and
〈ρ̂(r1)ρ̂(r2)〉 = n.(1/dV )2.ρ0dV + n.02.(1− ρ0dV )

n
=

ρ0
dV

, (2.205)if r1 = r2. Therefore, in the limit dV → 0 we obtain:
C2(r12) = 〈ρ̂(r1)ρ̂(r2)〉 − ρ20 = ρ0δ(r1 − r2) . (2.206)The disreteness of the distribution introdues a singularity in the orrelation fun-tion C12(r) at r = 0 (and indeed for all ℓ-point orrelation funtions). The densityhas an in�nite disontinuity around any partile with �nite mass, whih is mathe-matially represented by a delta funtion in the orrelation funtion. Note that thisresult is general for any partile distribution and not only for a Poisson distribution.The orrelation funtion of a orrelated partile distribution an be written thereforeas the sum of two piees:

C12(r) = δ(r) + ρ20 h(r) , (2.207)where δ(r) is the singularity introdued by disreteness and h(r) is a smooth fun-tion.Asymptoti behavior It is important to know the permitted asymptoti behav-ior of the orrelation funtion. The general ondition to be a ontinuous stohastiproess well de�ned are
• The distribution is no singular with regions with in�nite density, i.e.

∫

ǫ

n0(1 + ξ(r))dV <∞ , (2.208)where the integration is performed in any arbitrary small region ǫ. It impliesthat if we onsider a power-law behavior of the orrelation funtion at smallsales, we have
lim
r→0

ξ(r) ∼ rα , α > −d . (2.209)65



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS
• Regions at in�nite distane are not orrelated. Therefore

lim
r→∞

ξ(r) ∼ rβ , β < 0 . (2.210)In the ase of a disrete distribution the situation is very similar. At large sales,the orrelation funtion remains unhanged and therefore ondidition Eq. (2.210)holds. At small sales, the divergene introdued by the disretness give rise onlyto a �nite ontribution and the ondition Eq. (2.209) has to be ful�lled now by thesmooth funtion h(r).From above properties for the orrelation funtion, it is simple to dedue theanalogous permitted asymptoti behaviour of the PS. From Eq. (2.209), for a on-tinuous distribution, we have the ondition
lim
k→∞

P (k) = 0 , (2.211)whih implies that, if P (k → ∞) ∼ kγ, γ < 0. If, moreover, the stohasti proesshas �nite variane (i.e. ξ(0) <∞), then
lim
k→∞

kdP (k) = 0 , (2.212)and then γ < −d. For a point-partile distribution we have the onstraint
lim
k→∞

∣

∣

∣
P (k)− 1

ρ0

∣

∣

∣
= 0 , (2.213)i.e. if ∣∣

∣
P (k) − 1

ρ0

∣

∣

∣
∼ kγ then γ < 0. The small k behaviour of the PS is, fromondition Eq. (2.210),

P (k → 0) ∼ kδ (2.214)then δ > −d.4.2 Classi�ation of stohasti proessesIn order to derive a omplete lassi�ation of stohasti proesses, let us onsiderEqs. (??) and (2.201), and assume without loss of generality that P (k) = Aknf(k),where A > 0 and f(k) a ut-o� funtion hosen suh that (i) limk→0 f(k) = 1, and(ii) limk→∞ knf(k) is �nite. We also require n > −3 to have the integrability of
P (k) around k = 0. It is onvenient to resale variables putting x = kR to rewrite

σ2(R) =
9A

2π2

1

R3+n

∫ ∞

0

dx(sin x− x cosx)2xn−4f(
x

R
) . (2.215)By analyzing in detail this formula, we obtain (see a omplete derivation in [71℄)the following general relation between the large R behavior of σ2(R) and the small

k behavior of P (k):
σ2(R) ∼







R−(3+n) for −3 < n < 1
R−4 logR for n = 1
R−4 for n > 1 .

(2.216)66



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe argument used to derive Eq. (2.216) an be generalized to Eulidian spaesof any dimension d. Therefore supposing P (k) = Aknf(k) as above, it is possibleto proeed to the following lassi�ation for the saling behavior of the normalizedmass-variane:
σ2(R) ∼







R−(d+n) for −d < n < 1
R−(d+1) logR for n = 1
R−(d+1) for n > 1 .

(2.217)Therefore
• For −d < n < 0, we have �super-Poisson� mass �utuations typial of systemsat the ritial point of a seond order phase transition.
• For n = 0, we have Poisson-like �utuations, and the system an be alledsubstantially Poisson. This behavior is typial of many ommon physial sys-tems, e.g. an homogeneous gas at thermodynami equilibrium at su�ientlyhigh temperature.
• For n > 0, we have �sub-Poisson� �utuations, and for this reason we name thislass of systems super-homogeneous. This behaviour is typial, for example, oflattie-like point distributions where positively orrelated regions are balanedby negatively orrelated ones. Therefore the ondition of P (0) = 0 orrespondsto a sort of underlying long-range order. This lass of mass distributions playan important role in Cosmology.4.3 Causal bounds on the Power spetrumThe onsideration in setion 3.3 above of the evolution of disrete self-gravitatingsystem, whih leads to the �limit� value n = 4 for the appliability of �uid lineartheory is in fat related to a muh more general signi�ane of this partiular powerspetrum. This arises when one onsiders the onstraints imposed by ausality onthe power spetrum of density �utuations whih may be generated by a physialproess in an expanding universe with a �nite ausal �horizon� (i.e. a �nite distaneup to whih light an travel up to osmi time t, as in standard FRW expandingmodels dominated by matter or radiation).Zeldovih onluded, using a simple heuristi derivation, that in this ase, ifone assumes that the physis involved onserves mass and momentum, one obtainsthat, at small k, P (k) ∼ kn with n ≥ 4 [160℄. Indeed suh �utuations an onlybe orrelated up to a �nite distane (LH say), i.e. ξ(r) = 0 for r > LH . ByFourier transform theory, this implies that the PS is analyti at k = 0. Then Taylorexpansion about k = 0 gives P (k) = P (0) + k2

2
P ′′(0) + O(k4). It an be shownquite rigorously that P (0) = 0 follows from the ondition of loal mass onservation,and heuristi arguments suggest that P ′′(0) = 0 follows from loal �enter of massonservation� (i.e. momentum onservation). Spei� onstrutions (see e.g. [69℄)also show the apparent generality of the result.Assuming non-linear struture formation through self-gravity to be an exampleof suh a ausal proess (where the �horizon� is now the non-linear sale at thegiven time) one immediately omes to the onlusion of setion 3.3, that non-linearlustering an reate P (k → 0) ∼ k4, whih will overwhelm the linear ampli�ationif the initial large sale �utuations have P (k → 0) ∼ kn and n > 4. 67



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS5 The non-linear regime: numerial simulationIn the urrent osmologial paradigm, strutures grow through the gravitationalinstability of initial density �utuations of ollisionless dark matter. This oursin a hierarhial way, with small-sale perturbations ollapsing �rst and large-saleperturbations latter, i.e. the bottom-up formation senario of the CDM model. Letus note, however, that di�erent models were proposed in the late 1970s and early
1980s: the hot dark matter (HDM) models [131℄. HDM models of osmologialstruture formation led to a top-down formation senario, in whih superlusters ofgalaxies are the �rst objets to form after the big bang, with galaxies and lustersforming through a subsequent proess of fragmentation. However, it was alreadybeoming lear from observations that galaxies are muh older than superlusters,ontrary to what the HDM senario implies, and suh models were abandoned bythe mid-1980s after osmologists realized that if galaxies had formed early enoughto agree with observations, their distribution would be muh more inhomogeneousthan is the ase [154℄.One of the most diret manifestations of this nonlinear proess is the evolutionof the power spetrum of the mass, P (k), where k is the wavenumber of a givenFourier mode. Understanding this evolution of the power spetrum is one of thekey problems in struture formation, being diretly related to the abundane andlustering of galaxy systems as a funtion of mass and redshift. If the proesses thatontribute to the evolution ould be aptured in an aurate analyti model, thiswould open the way to using observations of the nonlinear mass distribution (fromlarge-sale galaxy lustering or weak gravitational lensing) in order to reover theprimordial spetrum of �utuations. One suh attempt at suh analyti desriptionof lustering evolution was the �stable lustering � hypothesis of Davis and Peebles[126℄ that assumes that a nonlinear ollapsed objet would deouple from the globalexpansion of the Universe to form an isolated system in virial equilibrium.We provide a brief overview of the theoretial understanding of nonlinear evolu-tion. In partiular we introdue the stable lustering hypothesis and the halo model,as these ideas are entral in the study of nonlinear lustering. We also disuss thesale-free models and their self-similarity properties.5.1 N-body simulationsEquations of motionEquation of motion in osmologial N-body simulations, introdued in Eq. (2.50),an be expliitly written̈xi + 2 H(t) ẋi = −Gm

a3

∗
∑

j 6=i

xi − xj

|xi − xj |3
(2.218)where the notation ∑∗ impliitly exludes the (badly de�ned) ontribution due tothe mean density, and where a(t) is the sale fator of the model onsidered, and

H(t) = ȧ/a is the Hubble �onstant�. For the EdS osmology k = 0, Λ = 0,
a(t) ∝ t2/3 and H2 = 8 π G

3
ρ. The ase H = 0 de�nes a �stati universe� limit.68



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSAlgorithms and timestepThe basi idea for numerial integration is as follows. The equation of motionexpresses the seond derivative of position in terms of position, veloity and time.Position and veloity at later times are expressed in terms of position and veloity atearlier times using a trunated Taylor series. The key onstraint in osmologial sim-ulations is that fore evaluation is very time onsuming and one wishes to minimisethe number of fore evaluations per time step. Mainly for this reason, osmologial
N-body simulations use the Leap-Frog method for integrating the equation of mo-tion as it requires only one evaluation of fore and the error is of order (∆t)3, where
∆t is the time step (see e.g. [59℄).The optimum value of the time step depends on the distribution of partiles andit hanges as this distribution evolves. It is ommon to use a time step that varieswith time so that the N-body ode does not use too small a time step when a smallervalue is required for onserving integrals of motion. It is possible to generalise evenfurther and hoose a di�erent time step for eah partile as well, motivation for thisbeing that a few partiles in a very dense regions require a small ∆t whereas mostpartiles are not in suh regions. There are several methods of implementing thisin N-body simulations, and main onsideration is to ensure that the positions andveloities of all partiles are synhronised at frequent intervals. Using individual timesteps an speed up N-body simulations by a signi�ant amount (see e.g. [129, 132℄and referenes therein).Calulation of foreThe attrative gravitational fore produes, during the evolution, smaller and smallerstrutures. The neessary to resolve the smallest possible sales. The ombinationof this neessity to resolve small sales in large regions implies the need to use themaximum number of partiles.The alulation of the fore is the most time onsuming task in N-body simu-lations. As a result, a lot of attention has been foused on this aspet and manyalgorithms and optimising shemes have been developed.The diret alulation of the fore is numerially ostly - N2 operations for Npartiles - and even a modest 104 partiles simulation needs onsiderable omputerresoures (while the largest urrent simulations use more than 1010 partiles). Tosolve this tehnial problem di�erent approximations are used, suh as the (for areview see e.g. [1℄). In short, the �rst one smooths the partile mass on a grid to al-low the use of FFT tehniques, whih speed up the omputation. The P 3M methoddoes almost the same but gains auray by omputing diretly (�Partile-Partile�)the fore from nearby partiles. Tree-odes build a hierarhy between the partilesthat resembles a �tree�. The gravitational fore is alulated using the strutureof the tree. The fore between two lose partiles in the tree is omputed almostexatly. The fore between distant partiles in the tree is omputed using a wholebranh as a single e�etive partile, as in a multipole expansion method (for detailssee [142℄). Others re�nements are used to improve the small sale resolution inthe simulations. One of them is to use an adaptative mesh: in regions with higherdensity a mesh with more resolution is used, keeping a lower resolution in regionswith small density. Another method is the tehnique of �re-simulation�: a �rst sim-69



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSulation is performed to loalise regions with high density. Then, the simulation isperformed again putting more partiles in the region where the partiles of the �nalhigh density regions were initially (for details, see e.g. [24, 46, 96, 141℄.To mimi as losely as possible a truly in�nite system, one uses an in�nite peri-odi system, made of 3−d ubi ells ontaining N partiles. The fores on partilesare then alulated onsidering not only the partiles situated in the original boxbut also the partiles of all the opies. Then if the ith partile has oordinate ri, itsopies will have oordinates ri + nL, where n is a vetor with integer omponents.For the gravitational interation
φ(ri) =

∗
∑

j,n

mj

|rij + nL| , (2.219)where mj is the mass of the partiles and the asterisk denotes that the sum n = 0does not inlude the term i = j. As we have noted in setion 3.1, this expression isbadly de�ned, and its regularisation by subtration of the ontribution due to themean density is impliit. A natural way of writing the sum in an expliitly onvergentway taking this regularisation into aount is to separate the potential into a shortrange and long range part by intoduing a parameter-dependent damping funtion
f(r;α):

φ(ri) =

∗
∑

j,n

mj

(f(rij + nL;α)

|rij + nL| +
1− f(rij + nL;α)

|rij + nL|
)

. (2.220)The �rst term on the r.h.s of Eq. (2.220) is short-range (i.e. deays rapidly) and theseond term is long-range. The proedure used in the Ewald summation method isto ompute the �rst term in real spae and the seond in Fourier spae [62℄. If theparameter α is appropriately hosen, the real part onverges well taking only the sumover the losest image, and the part of the sum in Fourier part is rapidly onvergent.Of ourse the sum of the two terms yields the original partile distribution. We writethe potential energy then as:
φ = φ(s)

r + φ
(l)
k . (2.221)Further it is onvenient to separate out the zero mode in the long-range part, writing

φ
(l)
k = φ

(l)
k=0 + φ

(l)
k 6=0 . (2.222)The funtion f(r;α) is hosen in the Ewald summation so that φ(s)

r and φ
(l)
k 6=0 areboth rapidly onvergent, and with a known analytial expression for its Fouriertransform. The value of the term k = 0 depends on how preisely the in�nitesum in Eq. (2.219) is de�ned. In osmology this term is simply removed, as thisorresponds to subtrating the mean density.5.2 Initial onditionsWhen one runs an N-body simulation, the �rst step is to generate adequate initialonditions (IC) with the orrelations spei�ed by some theoretial model. The mostwidely used method to generate suh IC uses orrelated displaement of partilesinitially plaed on a lattie. The orrelations of the displaement �eld are determined70



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSto be suh as to obtain a �nal distribution that has, approximately, the desiredorrelation properties (f. [65℄).How this an be done an be understood, up to orretions oming from dis-rete nature of the distribution, using the Zeldovih approximation. As disussed insetion above, this gives an approximation valid (at su�iently short time) for thedisplaements of �uid elements from their initial position qr(q, t) = q+ A(t) u(q) with u(q) = −∇.Φ(q) , (2.223)where A(t) is simply the growth fator assoiated with the growing mode in linearperturbative theory and Φ(q) is the gravitational potential at the initial time reatedby the density �utuations.Now if we onsider the points on the initial grid as de�ning the initial positions qof the �uid elements, we an obtain the orresponding displaements (and veloities
du
dt

= −ḟ(t) ∇Φ(q)) by determining the gravitational potential Φ(q), whih anbe inferred diretly from the desired power spetrum P (k) through the Poissonequation. The latter is assumed to be a realization of a Gaussian proess.To set up IC for the N partiles of a osmologial N -body simulation the proe-dure is then in summary [50℄:
• one sets up a �pre-initial� on�guration (usually a lattie) of the N partiles.
• given an input theoretial PS Pth(k), and �utuations assumed Gaussian, theorresponding displaement �eld in the ZA is applied to the �pre-initial� pointdistribution.In the following, we give a brief survey of basi results derived from osmologial

N-body simulations.5.3 Self-similarityOne of the important results from numerial simulations in the ontext of osmologyis that, for a power-law initial ondition P (k) ∼ kn, the system reahes a kindof saling regime, in whih the temporal evolution is equivalent to a resaling ofthe spatial variables. This spatio-temporal saling relation is referred to as self-similarity: the 2-point orrelation funtion ξ(x, t) sales as
ξ(x, t) ≡ ξ

( x

Rs(t)

) (2.224)where Rs(t) is a time dependent funtion derived from linear theory. In statistialphysis suh behaviour is known as dynamial saling, and is observed for examplein the ordering dynamis of quenhed ferromagneti systems.Two neessary requirements for the evolution to be self-similar are usually iden-ti�ed1. the bakground osmologial model should not possess any harateristi lengthor time-sales. Thus the universe must be spatially �at, with zero osmologialonstant and a sale-free equation of state; 71



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMS2. the initial density perturbation �eld should have no harateristi length sale.Its power spetrum must therefore have power law form.There are then only two harateristi sales in the problem
• the homogeneity sale ℓ(t) de�ned initially through the amplitude of the PS;
• an ultraviolet sale (ut-o� in the PS at large k, provided in osmologialsimulations by the lattie spaing).Now if the seond sale is irrelevant to the dynamis and the lustering it produesat su�iently long times and large sales, one then neessarily must have

f(x, t) = f0

( x

Rs(t)

) (2.225)where f is any dimensionless funtion haraterizing the lustering in real spae(i.e. the physial behavior of lustering at any sale an only be determined by itssize ompared to this single harateristi length sale), where Rs(t) is the temporalbehavior of the sale ℓ(t). In k-spae, likewise, f(k, t) = f0(kRs(t)). Further, iflinear perturbation theory is valid, suh behavior is indeed veri�ed (and di�erentsales deouple, the UV ut-o� being irrelevant). This allows us to determine thefuntion Rs(t). The linear ampli�ation gives
kd P (k, t) = A2(t) P (k, t0) =

(

k Rs(t)
)d
P
(

k Rs(t), t0
)

, (2.226)whih is satis�ed for a power-law initial PS if
Rs(t) = A(t)2/(d+n) . (2.227)In a �at, matter-dominated universe A(t) ∝ t2/3 so one simply obtains
Rs(t) ∝ t4/3(3+n) . (2.228)If it is linear theory that drives struture formation, in a hierarhial proess inwhih non-linear is generated through the ollapse of the initial �utuations, wewould expet suh behavior always to result. Given the analysis of the range ofvalidity of linear theory, this means the range
−d < n < 4 . (2.229)In the osmologial literature, di�erent onsiderations have led various authors torestrit this range. If one naively onsiders the fat that the mass �utuationsbeomes sensitive to the UV ut-o�, one would limit this range to n < 1. Efstathiouet al. [51℄ suggested that −d < n < −d+2 ould be exluded (in addition to n > 1)beause of the divergene of the displaements in the Zeldovih approximation inthis ase, whih they thought would mean that evolution would depend in this aseon the box size. Jain and Bertshinger [84, 85℄ argued that this would not be thease. Numerially only the ase n ≤ 1 appear to have been studied in the literaturefor an expanding universe. As n dereases it beomes more di�ult to determinewhether self-similarity applies beause the temporal range aessible is muh shorter.72



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSHowever numerial studies [39, 85℄ indiate the self-similarity does indeed hold for
n = −2 in d = 3.Studies of the stati limit have been performed whih show that self-similarity isvalid for n = 0 and n = 2 [11℄. Note that in the osmology literature self-similarityis argued to be assoiated to power-law behaviour of Rs(t) whih arises in �sale-free� osmologies like EdS � and related to the existene of saling solutions tothe Vlasov equation in this ase. The arguments given above are muh general andlearly apply also to a stati model. Indeed, following [11℄, Eq. (2.226) gives for astati universe Rs(t) ∝ exp

[

2(t−tref )

(3+n)τdyn

] if one onsiders the growing mode, where onehas hosen for onveniene Rs(tref) = 1.5.4 From linear theory to stable lusteringIn the non-linear regime where perturbation theory fails, it was proposed that lus-tering in the very non-linear regime might be understood by assuming that regionsof high density ontrast undergo virialization and subsequently maintain a �xedproper density [126℄. Denoting x a omoving distane, the orrelation funtion for apopulation of suh systems would then simply evolve aording to
ξ(x, t) ∝ a−3 . (2.230)This evolution was termed stable lustering. Peebles went on to show that if theintial power spetrum was a pure power-law in k with spetral index n, P (k) ∝ kn,and if Ω = 1, then under the stable lustering hypothesis, the slope of the nonlinearorrelation funtion would be diretly related to the spetral index through therelation

ξ(r, t) ∝ r−γ with γ =
3(3 + n)

5 + n
. (2.231)where r is a proper distane. This an be simply derived if we link the resultsobtained in both omoving and physial oordinates, i.e.

a3ξ(x, t) ∼ r−γ ∼
( r0
a Rs(t)

)−γ

, (2.232)whih gives a3+γ ∼ Rγ
s (t) ∼ t4γ/3(3+n) ∼ a2γ/(3+n). Hene, if stable lustering applies,then nonlinear density �eld retains some memory of its initial on�guration, and inpriniple an be used to measure the primordial spetrum of �utuations.5.5 Halo modelsWe present now an approah whih has its origins in papers by Neyman and Sott[119℄. They were interested in desribing the spatial distribution of galaxies. Theyargued that it was useful to think of the galaxy distribution as being made up ofdistint lusters with a range of sizes. Sine galaxies are disrete objets, they de-sribed how to study statistial properties of distribution of disrete points; thedesription requires knowledge of the distribution of luster sizes, the distributionof points around the luster enter, and a desription of the lustering of lusters.73



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe non-linear evolution of the dark matter distribution has been studied ex-tensively using numerial simulations of the large sale struture lustering proess.These simulations indiate that an initially smooth matter distribution evolves intoa omplex network of sheets, �laments and knots. The dense knots are often alleddark matter halos. High resolution, but relatively small volume, simulations havebeen used to provide detailed information about the distribution of mass in andaround suh halos (i.e. the halo density pro�le [115, 116℄), whereas larger volume,but lower resolution simulations have provided information about the abundaneand spatial distribution of halos [37, 87℄. Simulations suh as these show that thehalo abundane, spatial distribution and internal density pro�les are losely relatedto the properties of the initial �utuation �eld. When these halos are treated as theanalogs of Neyman and Sott's lusters, their formalism provides a way to desribethe spatial statistis of the dark matter density �eld from the linear to highly non-linear regimes.Suh a halo based desription of the dark matter distribution of large salestruture is extremely useful beause, following White and Rees [155℄, the idea thatgalaxies form within suh dark matter halos has gained inreasing redene. In thispiture, the physial properties of galaxies are determined by the halos in whihthey form. Therefore, the statistial properties of a given galaxy population are de-termined by the properties of the parent halo population. There are now a numberof detailed �semi-analyti� models whih implement this approah [21, 38, 92, 140℄;they ombine simple physially motivated galaxy formation reipes with the halopopulation output from a numerial simulation of the lustering of the dark matterdistribution to make preditions about how the galaxy and dark matter distribu-tions di�er.In the following, we give a brief introdution of the ingredients building thehalo model of large sale struture. The approah assumes that all the mass in theUniverse is partitioned up into distint units, the halos. If these halos are smallompared to the typial distanes between them, the statistis of the mass density�eld on small sales are determined by the spatial distribution within the halos; thepreise way in whih the halos themselves may be organized into large sale stru-tures is not important. On the other hand, the details of the internal struture of thehalos annot be important on sales larger than a typial halo; on large sales, theimportant ingredient is the spatial distribution of the halos. This approximation,in whih the distribution of the mass is studied in two steps (i.e. the distributionof mass within eah halo and the spatial distribution of the halos themselves) is thekey to what has ome to be alled the halo model.The halo model assumes that, in addition to thinking of the spatial statistisin two steps, it is useful and aurate to think of the physis in two steps also. Inpartiular, the model assumes that the regime in whih the physis is not desribedby perturbation theory is on�ned to regions within halos, and that halos an beadequately approximated by assuming that they are in virial equilibrium.74



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSThe spherial ollapse modelThe assumption that non-linear objets formed from a spherial ollapse is a simpleand useful approximation. The spherial ollapse of an initially top-hat densityperturbation was �rst study by Gunn and Gott [79℄.In the top-hat model, one starts with a region of initial, omoving Lagrangiansize R0. Let δi denote the initial density within this region. We will suppose thatthe initial �utuations were Gaussian with an rms value on sale R0 whih wasmuh less than unity, i.e. |δi| << 1. This means that the mass M0 within R0 is
M0 =

4π
3
ρ(1 + δi) R

3
0 ≈ 4π

3
ρR3

0 where ρ denotes the omoving bakground density.As the Universe evolves, the size of this region hanges. Let R denote the o-moving size of the region at some later time. The density within the region is
(R0/R)

3 ≡ (1 + δ). In the spherial ollapse model there is a deterministi relationbetween the initial omoving Lagrangian size R0 and density of an objet, and itsEulerian size R at any subsequent time. For an EdS universe, one an obtain aparametri solution to R(z) in terms of θ:
R(z)

R0

=
(1 + z)

(5/3)|δ0|
(1− cos θ)

2
, (2.233)and

1

1 + z
=
(3

4

)2/3 (θ − sin θ)2/3

(5/3)|δ0|
, (2.234)where δ0 denotes the initial density δi extrapolated using linear theory to the presenttime (see e.g. [126℄). If δi < 0, then (1− cos θ) should be replaed with (cosh θ − 1)and (θ − sin θ) with (sinh θ − θ).In the spherial ollapse model, initally overdense regions ollapse: with θ = 0at start, they �turnaround� at θ = π, and have ollapsed ompletely when θ = 2π.Eq. (2.233) shows that the size of an overdense region evolves as

R0

R(z)
=

62/3

2

(θ − sin θ)2/3

(1− cos θ)
. (2.235)At turnaround, θ = π, so [R0/R(zta)]

3 = (3π/4)2; when an overdense region turnsaround, the average density within it is about 5.55 times that of the bakgrounduniverse.At ollapse, the average density within the region is even higher: formally,
R(zcol) = 0, so the density at ollapse is in�nite. In pratie the region does notollapse to vanishingly small size: it virializes at some non-zero size. The averagedensity within the virialized objet is usually estimated as follows. Assume thatafter turning around the objet virializes at half the value of the turnaround radiusin physial, rather than omoving units. In the time between turnaround and ol-lapse, the bakground universe expands by a fator of (1 + zta)/(1 + zcol) = 22/3,so the virialized objet is eight times denser than it was at turnaround (beause
Rvir = Rta/2). The bakground density at turnaround is (22/3)3 = 4 times thebakground density at zvir. Therefore the virialized objet is

∆vir ≡ (9π2/16)× 8× 4 = 18π2 (2.236)75



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMStimes the density of the bakground at virialization.What was the initial overdensity of suh an objet? Eq. (2.233) shows that ifthe region is to ollapse at z, the average density within it must have had a ritialvalue δsc given by
δsc

1 + z
=

3

5
(
3π

2
)2/3 . (2.237)Thus a ollapsed objet is one in whih the initial overdensity, extrapolated usinglinear theory to the time of ollapse, was δsc(z). At this time, the atual overdensityis signi�antly larger than the linear theory predition. Although the formal over-density is in�nite, the virialisation argument just presented says that the objet isabout 178 times denser than the bakground.There is an imporant feature of the spherial ollapse model whih is extremelyuseful. Sine (1+ δ) = (R/R0)

3, the equations above provide a relation between theatual overdensity δ and that predited by linear theory δ0, and this relation is thesame for all R0. That is to say, it is the ratio R/R0 whih is determined by δi, ratherthan the value of R itself. Beause the mass of the objet is proportional to R3
0, thismeans that the ritial density for ollapse δsc is the same for all objets, whatevertheir mass. In addition, the evolution of the average density within a region whihis ollapsing is also independent of the mass within it.The mass-funtion of the halos: the Press-Shehter formalismPress and Shehter proposed a formalism to ompute the average number of objetsthat ollapsed from the primordial Gaussian density �eld [130℄. They assumed thatthe dense objets seen at the present time are a diret result of the peaks in theinitial density �eld. These small perturbations ollapsed spherially under the ationof gravity to form selfbound virialized objets.In the primordial Gaussian �eld the probability that a given point lies in a regionwith the density ontrast δ greater than the ritial density for ollapse δc is givenby

p
(

δ > δc|Rf

)

=
1

2

[

1− erf
( δc√

2σ(Rf )

)

]

, (2.238)where σ(Rf ) is the variane of the density �eld smoothed on the sale Rf . The Press-Shehter formalism assumes that this probability orresponds to the probabilitythat a given point has ever been part of a ollapsed objet of sale > Rf . Then, theomoving number density of halos of mass M at redshift z is given by
dn

dM
(M, z) =

√

2

π

ρ

M2

δc(z)

σm

∣

∣

∣

∣

∣

d lnσ(M)

d lnM

∣

∣

∣

∣

∣

exp
(

− δc(z)
2

2σ2(M)

)

, (2.239)where σ(M) is the variane orresponding to a radius Rf ontaining a mass M and
δc(z) = δ0c/D(z) is the ritial overdensity minearly extrapolated to the present time.Here δ0c = δc(z = 0). For an EdS universe the ritial overdensity is δ0c = 1.69. Thereare approximations for other models and in general δ0c has a weak dependene on Ωm(see e.g. [117℄). Let us note, however, that Press and Shehter used an additional76



CHAPTER 2. BASIC RESULTS ON SELF-GRAVITATING SYSTEMSingredient to derive Eq. (2.239): the fration of (dark) matter in halos above M ismultiplied by an additional fator of 2 in order to ensure that every partile endsup as part of some halo with M > 0. This ad-ho fator of 2 is neessary, sineotherwise only positive �utuations of δ would be inluded.One of the limitations of the Press-Shehter formalism is that it assumes over-dense perturbations to be perfetly spherially symmetri. In reality the situationis more omplex. Bardeen et al. ( [14℄) extensively studied the statistis of peaksin a random density �eld. They showed that peaks in the primordial density �eldhave a degree of �attening. This departure from a spherial distribution is ampli�edunder the ation of gravity a�eting the �nal ollapse of the objet.Halo density pro�lesTo desribe Halo density pro�les, funtions of the form
ρ(r) =

ρs
(r/rs)α(1 + r/rs)β

or ρ(r) =
ρs

(r/rs)α[1 + (r/rs)β]
, (2.240)have been extensively studied as models of elliptial galaxies [23,64℄. Setting (α, β) =

(1, 3) and (1, 2) in the expression on the left gives the Hernquist and NFW pro-�les [116℄, whereas (α, β) = (3/2, 3/2) in the expression on the right is the M99pro�le [115℄.The NFW and M99 pro�les di�er on small sales, r << rs, and whether oneprovides a better desription of the simulations than the other is still being hotlydebated (see e.g. [116℄). Both pro�les are parametrized by rs and ρs, whih de�nea sale radius and the density at that radius, respetively. Although they appearto provide a two-parameter �t, in pratie, one �nds an objet of given mass mand radius rvir in the simulations, and then �nds that rs whih provides the best�t to the density run. This is beause the edge of the objet is its virial radius rvir,while the ombination of rs and the mass determines the harateristi density, ρs,following
m ≡

∫ rvir

0

dr 4πr2 ρ(r) . (2.241)For the NFW and M99 pro�les,
m = 4πρsr

3
s

[

ln(1 + c)− c

1 + c

] and m = 4πρsr
3
s

2 ln(1 + c3/2)

3
(2.242)where c ≡ rvir/rs is known as the onentration parameter. Note that we haveexpliitly assumed that the halo pro�le is trunated at rvir, even though formally,the NFW and M99 pro�les extend to in�nity.There is a very extensive literature not only on the numerial haraterization ofhalos, but also developing theoretial models to explain these measured properties(see e.g. [116,121,128,152℄). The ups-ore debate is indeed a rather subtle issue, as,for example, it emerges from reent numerial investigations [118,143℄ that the masspro�le of ΛCDM halos deviates slightly but systematially from the form proposedby Navarro, Frenk and White in Eq. (2.240). This implies that the mass pro�le of

ΛCDM halos are not universal: di�erent halos annot, in general, be resaled tolook idential. 77
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Chapter 3
1− d gravity in in�nite pointdistributionsThe development of lustering in initially quasi-uniform in�nite distributions ofpoint partiles evolving purely under their Newtonian self-gravity has been the sub-jet of extensive numerial study in osmology over the last deades. Howeveranalytial understanding, whih would be very useful in trying to extend the nu-merial results and also ontrol their reliability, remains very limited. In attemptsto progress in this diretion it is natural to look to simpli�ed toy models whih mayprovide insight and qualitative understanding. Suh models may also be interestingtheoretially in a purely statistial mehanis setting, and spei�ally in the on-text of the investigation of out of equilibrium dynamis of systems with long-rangeinterations introdued in Chapter 1.An obvious toy model for this full 3-d problem is the analogous problem in 1-
d, i.e., the generalization to an in�nite spae (stati or expanding) of the so-alled�sheet model�, whih is formulated for �nite mass distributions. In this latter model,whih has been quite extensively investigates (see, e.g., [82, 110, 133, 134, 138, 148℄),partiles in 1-d experiene pair fores independent of their separation, like thosebetween parallel self-gravitating sheets in 3-d of in�nite extent. Several groups ofauthors [7,8,10,111�113,135,145,150,151,157℄ have then disussed di�erent variantson this model to develop the analogy with the 3-d in�nite spae problem. Just as forthe �nite sheet model, these models have the partiular interest of admitting exatsolutions between sheet rossing, whih means that they an be easily solved numer-ially to mahine preision, and at modest numerial ost for quite large numbersof partiles.In this hapter we revisit the basis of these toy models (in either stati orexpanding universes), addressing the problem of their general formulation for in�nitedistributions. Indeed, as we will disuss, previous disussions have required, intheir implemantation, the imposition of symmetry about a point, or �nite extentof the onsidered density perturbations1. Suh a restrition on the lass of pointproesses whih an be onsidered, and notably the requirement that statistialtranslational invariane be broken, is not desirable. Indeed in the ontext of theosmologial problem, this latter property of the distributions usually onsidered1This is not true of the treatments in [145,157℄, whih start diretly from the �uid limit (ratherthan from a partile desription). See further disussion below. 79



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSas initial onditions for simulations is very important, beause of the �osmologialpriniple� whih supposes that there are no preferred entres (see e.g. [71, 126℄).Further the question of the extrapolation of the �nite version of the model (whihis what is simulated numerially) to the in�nite system limit has, as we will disussbelow, not been arefully examined. We will show that problems with the de�nitionof the fore (as used in these previous treatments) arise from a subtlety about howthe so-alled �Jeans' swindle� is applied in one dimension. We draw here on the workof Kiessling in [95℄, where it has been shown that, in 3− d, the usual formulation ofthe �Jeans' swindle� � subtration of a ompensating negative mass bakground inalulation of the potential � may be more physially formulated as a presriptionfor the alulation of the fore in the in�nite volume limit. It turns out, as we willsee, that while in 3− d it is su�ient to presribe that the fore on a given partileis obtained by summing symmetrially about it (e.g. summing in spheres of radius
R with entre at the partile, and then sending R to in�nity), in 1− d this limitingproedure needs to be further spei�ed. More spei�ally the fore turns out to bede�ned in 1− d for a broader lass of distributions � and notably for distributionswithout a entre � when the summation is performed by taking the unsreenedlimit of the same sum for a sreened version of the interation, rather than as thelimit of the sum trunated to a �nite symmetri�top-hat� interval.1 From �nite to in�nite systems1.1 De�nitionsBy gravity in one dimension we mean the pair interation orresponding to an attra-tive fore independent of separation, i.e., the fore f(x) on a partile at oordinateposition x exerted by a partile at the origin is given by

f(x) = −g x|x| = −g sgn(x) , (3.1)where g is the oupling. Equivalently it is the pair interation given by the pairpotential φ(x) = g|x| whih satis�es the 1 − d Poisson equation for a point soure,
d2φ
dx2 = 2gδD(x) (where δD is the Dira delta funtion). Comparing with the 3 − dPoisson equation shows the equivalene with the ase of an in�nitely thin planeof in�nite extent and surfae mass density Σ = g/2πG, whih explains the widelyused name �sheet model�. We will work in the one dimensional language, referringto �partiles�. For onveniene we will set the mass of these partiles, whih willalways be equal here, to unity.1.2 Finite systemLet us onsider �rst the ase of a �nite system, onsisting of a �nite number Nof partiles (with either open boundary onditions, or ontained in a �nite box).Denoting by xi the oordinate position of the ith partile along the real axis, thefore �eld F (x) (i.e. the fore on a test partile) at the point x is

F (x) = g
∑

i

sgn(xi − x) = g

∫

dy n(y) sgn(y − x) , (3.2)80



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSwhere n(y) = ∑i δD(y − xi) is the mirosopi number density and the integral isover the real line2. Equivalently it may be written as
F (x) = g

[

N>(x)−N<(x)
]

. (3.3)whereN>(x) (N<(x)) is the number of partiles to the right (left) of x. The dynamisof this model, from various initial onditions and over di�erent times sales, has beenextensively explored in the literature (see referenes given above).1.3 In�nite system limitLet us onsider now the in�nite system limit, i.e., an in�nite uniform distributionof points3 on the real line with some mean density n0 (e.g. a Poisson proess). It isevident that the fores ating on partiles are not well de�ned in this limit, as thedi�erene between the number of partiles on the right and left of a given partiledepends on how the limit is taken. Formally we an write the fore �eld of Eq. (3.2)as
F (x) = gn0

∫

dy sgn(y − x) + g

∫

dy δn(y) sgn(y − x) , (3.4)where δn(y) = n(y) − n0 =
∑

i δD(y − xi) − n0 represents the number density�utuation. While the seond term would, naively, be expeted to onverge if the�utuations δn(y) an deay su�iently rapidly, the �rst term, due to the meandensity, is expliitly badly de�ned (as the integral is only semi-onvergent). Preiselythe same problem arises for gravity in in�nite 3 − d distributions. The solution,known as the �Jeans swindle�, is the subtration of the ontribution due to themean density. As disussed by Kiessling in [95℄, rather than a �swindle�, this is, in
3− d, in fat a mathematially well-de�ned regularisation of the physial problem,orresponding simply to the presription that the fore be summed so that it vanishesin the limit of exat uniformity. The simplest form of suh a presription in 3 − dis that the fore on a partile be alulated by summing symmetrially about thepartile (e.g. by summing about the onsidered point in spheres of radius R, andthen sending R → ∞). This formulation needs no expliit use of a �bakgroundsubtration�, sine the term due to the mean density does not ontribute when thesum is performed symmetrially.Applying the same reasoning to the 1− d ase would lead to the presription

F (x) = g

∫

dy δn(y) sgn(y − x) . (3.5)The question is whether this expression for the gravitational fore is now well de�ned,and if it is, in what lass of in�nite point distributions. As we will detail in the nextsetion of the hapter, this question may be given a preise answer, as in 3 − d,by onsidering the probability density funtion of the fore in suh distributions,desribed as stohasti point proesses in in�nite spae. In the rest of this setion2We use the standard onvention that sgn(0) = 0, whih implies this same formula is valid forthe fore on a partile of the distribution (rather than a test partile) at x.3By �uniform� we mean that the point proess has a well de�ned positive mean density, i.e., itbeomes homogeneous at su�iently large sales. 81



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS
c)

b)

a)

Figure 3.1: Calulation of the fore using a top-hat regularisation entred on thepoint onsidered, i.e., as de�ned in Eq. (3.7). In an unperturbed lattie (ase a)the fore on points of the lattie vanishes. However, as shown in b) and ), whena single point is displaed o� lattie, the fore beomes badly de�ned, osillatingbetween g and zero as the size of top-hat goes to in�nity.we will simply explain the problems whih arise when the in�nite system limit ofexpression Eq. (3.5) is taken using a simple top-hat presription. This disussionmotivates the use of a smooth version of this presription, whih we then showrigorously in the subsequent setion to give a well de�ned fore for a broad lass ofin�nite perturbed latties.For Eq. (3.5) to be well de�ned in an in�nite point distribution it must give thesame answer no matter how it is alulated. Two evident top-hat presriptions forits alulation are the following. On the one hand it may be written as
F (x) = g lim

L→∞

∫ x+L

x−L

dy n(y) sgn(y − x) , (3.6)or, equivalently,
F (x) = g lim

L→∞

[

N(x, x + L)−N(x− L, x)
]

, (3.7)where N(x, y) is the number of points between x and y, i.e., the fore is proportionalto the di�erene in the number of points on the right and left of x inside a symmetriinterval entred on x, when the size of the interval is taken to in�nity. On the otherhand, we an write
F (x) = g lim

L→∞

∫ +L

−L

dy δn(y) sgn(y − x) , (3.8)or, equivalently,
F (x) = g lim

L→∞

[

N(x, L)−N(−L, x)
]

+ 2gn0x, (3.9)i.e., we integrate the mass density �utuations in a top-hat entred on some arbi-trarily hosen origin.That these expressions are both badly de�ned in an in�nite Poisson distributionis easy to see: in this ase the �utuation in mass on the right of any point is82



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSunorrelated with that on the left, giving a typial fore proportional to the squareroot of the mass in a randomly plaed window of size L, whih grows in proportionto √
L (and thus diverges). Calulating the fore with Eq. (3.7) it has been shownin [65℄ that it is in fat not well de�ned either in a lass of more uniform distributionsof points, randomly perturbed latties4. Why this is so an be understood easilyby onsidering, as illustrated in Fig. 3.1, the alulation of the fore using Eq. (3.7)in suh on�gurations. While on the unperturbed lattie (ase a) the fore on allpoints of the lattie is well-de�ned (and vanishing, as it should be), this is no longertrue when a partile is displaed: the fore on the displaed partile now osillatesdeterministially (between g in ase b, and zero in ase ) and does not onverge as

L→ ∞.For the same ase, of a single partile displaed o� an in�nite perfet lattie, thepresription Eq. (3.9) for the fore does, however, give a well-de�ned result if onehooses as origin a point of the unperturbed lattie: sine the �rst (�partile�) term isunhanged by the displaement of the partile, the only non-vanishing ontributionomes from the seond (�bakground�) term, giving a �nite fore
F (u) = 2gn0u , (3.10)where u is the displaement of the partile from its lattie site (and we assume uis smaller than the lattie spaing). If we onsider now, however, applying randomdisplaements of small amplitude (ompared to the interpartile spaing) to theother partiles of the lattie, the problem of the �rst presription Eq. (3.7) reappears:at any given L the �rst term in Eq. (3.9) piks up a stohasti �utuation whihvaries disretely between ±g and zero, and does not onverge as L→ ∞. This willevidently be the ase for any suh on�guration generated by displaing partiles o�a lattie, and more generally for any stohasti partile distribution in 1− d, unlesssome additional onstraint is applied to make this surfae ontribution to the forevanish.The previous literature on this model employ top-hat presriptions equivalent toEq. (3.9) to alulate the fore, adding suh a onstraint. On the one hand, Aurellet al. in [10℄ restrit themselves to the study of an in�nite perfet lattie o� whihonly a �nite number are initially displaed. In this ase the problemati surfae�utuation vanishes for su�iently large L. On the other hand [7, 112, 135, 150℄impose exat symmetry in the displaements about some hosen point, whih isthen taken as the origin of the symmetri summation interval. A partile entering(or leaving) at one extremity of the interval is then always ompensated by onedoing the same at the other extremity.We note that it is only in [10℄ that the problem of the in�nite system limitis atually onsidered. In the other works the authors do not disuss this limitexpliitly: they onsider and study in pratie a �nite system, with a presriptionfor the fore equivalent to Eq. (3.9) where 2L is the system size, i.e., without theexpliit limit L → ∞. Symmetry about the origin is imposed beause this allowsone to use periodi boundary onditions. Suh a �nite periodi system of period

2L is equivalent to a �nite system of size L with re�eting boundary onditions.4The fore is, however, shown to be well de�ned in this lass of point distributions using theanalogous de�nition for any power law interation in whih the pair fore deays with separation.See [65℄ for details. 83



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSThe dynamis of suh a system is of ourse always well de�ned, for any (�nite)initial distribution of the points in the box. This does not, however, mean thatthis dynamis an be de�ned in the limit that the size of the system is taken toin�nity. This is the question we fous on here, as the de�nition of suh a limit isessential if a proper analogy is to made with the osmologial problem in 3 − d:in this ase the gravitational fore is well de�ned in the in�nite system limit, fora lass of statistially translationally invariant distributions representing the initialonditions of osmologial models5.The problems with the top-hat presriptions arise, as we have seen, from non-onvergent �utuations at the surfae of a top-hat window, whih will be generi instatistially translationally invariant point proesses. It is thus natural to onsidersmoothing the summation window, and spei�ally a presription for Eq. (3.5) suhas:
F (x) = g lim

µ→0

∫

dy n(y) sgn(y − x) e−µ|x−y| , (3.11)or, equivalently,
F (x) = g lim

µ→0

∑

i

sgn(xi − x)e−µ|xi−x| , (3.12)where the sum runs over all partiles in the (in�nite) distribution. Rather than asmoothing of the summation window, this an be interpreted more physially interms of the sreening of the gravitational interation, i.e., the pair fore law ofEq. (3.1) is replaed by
fµ(x) = −g sgn(x) e−µ |x|, (3.13)and the gravitational fore in the in�nite system limit is de�ned as that obtainedwhen the sreening length is taken to in�nity, after the in�nite system is taken6.This treatment is borrowed from the lass of infrared problems well known in quan-tum �eld theory. The standard proedure of handling infrared divergenes is toapply an infrared regularization, to solve the regularized problem, and to removethe regularization at the end of the alulation, perhaps involving a renormalization.For the ase of a single partile displaed o� a perfet lattie disussed above itis simple to alulate the fore using Eq. (3.11). Denoting the lattie spaing by ℓ,and the displaement by u, we have

F (u) = g lim
µ→0

∑

n 6=0

sgn(nℓ− u)e−µ|nℓ−u|. (3.14)For |u| ≤ ℓ the sum gives
2 sinh(µu)

(

∑

n>0

e−µnℓ
)

. (3.15)5Numerially one treats, of ourse, a periodi system, but it is an in�nite periodi system, i.e.,the fore is alulated by summing over the partiles in the �nite box and all its (in�nite) opies.This is the so-alled �replia method�, used also widely in equilibrium systems suh as the oneomponent plasma [19℄. The in�nite sum is usually alulated using the Ewald sum method. Toobtain results independent of the hosen periodi box, the presription for the fore must onvergein the appropriate lass of in�nite point distributions.6Although we will not use the interpartile potential in our alulations, we note that fµ(x) =
−dφµ/dx where φµ(x) = −ge−µ|x|/µ is the solution of d2φµ

dx2 − µ2φµ = 2gδD(x).84



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS

Figure 3.2: Shemati representation of the smooth sreening of the fore (or, equiv-alently, summation window).Expanding this in powers of µ we obtain
Fµ(u) =

2gu

ℓ
+O(µ). (3.16)Taking the limit µ → 0 gives Eq. (3.10), i.e., the result obtained using the top-hatpresription Eq. (3.9). The equivalene of the two presriptions an likewise beshown to apply when displaements are applied to a �nite number of partiles onthe lattie (whih leave the fores unhanged, and equal to Eq. (3.10), if there are norossings). Thus the only di�erene between the presriptions is how they treat theontribution from partiles at arbitrarily large distanes when the in�nite systemlimit is taken.We will show rigorously in the next setion that, for a lass of in�nite perturbedlatties in whih partiles do not ross, the presription Eq. (3.11) simply removesthe problemati surfae ontribution present in the top-hat presriptions (withoutapplying any additional onstraint of symmetry). This gives a fore on eah partileequal to Eq. (3.10) where u is the displaement of the partile, the only di�erenewith respet to the ase of a �nite number of displaed partiles being that theorigin of this displaement may be rede�ned by a net translation of the whole sys-tem indued by the in�nite displaements. The fore felt by eah partile is thusequivalent to that exerted by an inverted harmoni osillator about an (unstable)equilibrium point. We note that this expression for the fore is in fat what onewould expet from a naive generalization of the analagous results in 3 − d. In thelatter ase it an be shown [66℄ that the fore on a single partile displaed o� anin�nite lattie by a vetor u is, to linear order in |u|, simply

F(u) = 4πGρ0u/3 . (3.17)This fore is simply that whih is inferred, by Gauss's law, as due to a uniformbakground of mass density -ρ0 (i.e. due to the mass of suh a bakground ontainedin a sphere of radius |u|). The 1− d result is exatly analogous, as 2n0|u| is simplythe mass inside the interval of �radius� |u|. While this result is valid, in 3−d, only atlinear order and for the ase of a single displaed partiles, it is exatly valid in 1−din absene of partile rossings and for a broad lass of displaement statistis. Thereason is simply that in 1− d the fore on a partile is una�eted by displaementsof other partiles, unless the latter ross the onsidered partile. 85



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS2 Fores in in�nite perturbed lattiesIn this setion we alulate, using the de�nition Eq. (3.12), the gravitational foreon partiles in a lass of in�nite perturbed latties. To do this we desribe thesepoint distributions as generated by a stohasti proess in whih the partiles aredisplaed7. The fore on a partile (or the fore �eld at a point in spae) is thenitself a stohasti variable, taking a di�erent value in eah realization of the pointproess, and the question of its de�nedness an be ast in terms of the existeneof the probability distribution funtion (PDF) of the fore. We thus alulate herethe PDF of the fore on a partile with a given displaement u, in the ensemble ofrealizations of the displaements of the other partiles. The result is that, for thelass of stohasti displaement �elds in whih displaements are suh that partilesdo not ross, this fore PDF beomes simply a Dira delta funtion. This gives theantiipated result, that the only fore whih results is that due to the partile's owndisplaement given by Eq. (3.10), modulo an additional term desribing a ontri-bution from the oherent displaement of the whole in�nite lattie if the averagedisplaement is non-zero.2.1 Stohasti perturbed lattiesLet us onsider �rst an in�nite 1 − d regular hain of unitary mass partiles withlattie spaing ℓ > 0, i.e., the position of the nth partile is Xn = nℓ, and themirosopi number density an be written as
nin(x) =

+∞
∑

n=−∞
δD(x− nℓ). (3.18)We now apply a stohasti displaement �eld {Un} to this system, in whih thedisplaement Un is applied to the generi nth partile with n ∈ Z. Let us all {un}the single realization of the stohasti �eld {Un}. The orresponding realization ofthe point proess thus has mirosopi number density

n(x) =
+∞
∑

n=−∞
δD(x− nℓ− un) . (3.19)This displaement �eld is ompletely haraterized by the joint displaement PDF

P({un}) where {un} is the set of all partile displaements with n ∈ Z. We willfurther assume that this stohasti proess is statistially translationally invariant,i.e. P({un}) = P({un+l}) for any integer l. This implies in partiular that the onedisplaement PDF (for the displaement applied to a single partile) is independentof the position of that partile, i.e., the funtion
pm(u) ≡

∫

∏

n

dunP({un})δD(u− um) (3.20)7For an introdution to the formalism of stohasti point proesses i.e. stohasti spatial dis-tributions of point-partiles with idential mass, see, e.g., [71℄.86



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSis independent of m, i.e. pm(u) = p(u). Moreover the joint two-displaement PDF
qnm(u, v) =

∫

∏

n

dunP({un})δD(u− um)δD(v − un)depends parametrially on the lattie positions n,m only through their relativedistane (m− n).2.2 Mean value and variane of the total foreLet us denote in general by Fµ(x0) the total gravitational fore, with �nite sreening
µ, ating on the partile at x0 and due to all the other partiles plaed at xn:

Fµ(x0) = g
∑

n 6=0

sgn(xn − x0)e
−µ|xn−x0| . (3.21)Writing now xn = nℓ+un in Eq. (3.21), we an write the total sreened fore on thepartile at x0 = u0 in a perturbed lattie for a given realization of the displaement�eld:

Fµ(u0) = g
∑

n 6=0

sgn(nℓ+ un − u0)e
−µ|nℓ+un−u0|. (3.22)Note that, given the assumed statistial translational invariane of the �eld {Un}the statistial properties of the fore are the same for all partiles in the system.If, further, we assume now that the displaements from the lattie are suh thatpartiles do not ross, i.e. sgn(nℓ+un−u0) = sgn(n) for n 6= 0, this an be writtenas

Fµ(u0) = g

∞
∑

n=1

e−µnℓfn, (3.23)where we de�ne for, n ≥ 1,
fn ≡ fn(µ) = e−µ(un−u0) − e−µ(u0−u−n).We now take the average of Eq. (3.23) over all realizations of the displaementsof all partiles, exept the hosen one u0, whih we onsider as �xed. We denotethis onditional average as 〈·〉0, while we use 〈·〉 for the unonditional average. Inorder to do this we need the onditional PDF of Un to U0, whih by de�nition ofonditional probability is

Pn(u; u0) =
qn0(u, u0)

p(u0)
. (3.24)By using this funtion we an write

〈fn(µ)〉0 = eµu0 P̃n(µ; u0)− e−µu0P̃−n(−µ; u0) (3.25)and therefore
〈

Fµ(u0)
〉

0
= g

∞
∑

n=1

[

eµu0 P̃n(µ; u0)− e−µu0P̃−n(−µ; u0)
]

e−µnℓ (3.26)87



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSwhere we have de�ned
P̃n(µ; u0) =

∫ ∞

−∞
duPn(u; u0)e

−µu, (3.27)
=

∞
∑

k=0

(−µ)k
〈

Uk
n

〉

0

k!
.The latter equality is valid when all the moments 〈Uk

n

〉

0
of Pn(u; u0) are �nite. Notethat, given the assumption that partiles do not ross, it follows from the de�nition(3.24) that qn0(u, u0) = 0 for u+ n ≶ u0 respetively for n ≷ 0. Therefore Pn(u; u0)is always zero for some su�iently negative u0 dependent value of u if n > 0, andlikewise for su�iently positive values if n < 0. This ensures that the integral inEq. (3.27) is indeed �nite.In order to study the behavior of Eq. (3.26) for µ→ 0, we will assume that

qnm(u, v)
|n−m|→∞−→ p(u)p(v) . (3.28)This orresponds to the assumption that the displaement �eld is a well de�nedstohasti �eld, whih requires (see e.g. [71℄) that the two-displaement orrelationsvanish as the spatial separation diverges. We will disuss in the next setion therestrition this orresponds to on the large sale behaviour of the density pertur-bations, whih is of partiular relevane when one onsiders the analogy to 3 − dosmologial simulations.Assuming Eq. (3.28) we an write

Pn(u; u0) = p(u) + rn(u; u0) ,where rn(u; u0) is a funtion vanishing for |n| → ∞ and with zero integral over ufor any n. As a onsequenẽ
Pn(µ; u0) = p̃(µ) + r̃n(µ; u0) , (3.29)where we used the de�nition analogous to Eq. (3.27) for p̃(µ) and r̃n(µ; u0), and thelatter vanishes for µ → 0 and/or n → ∞. If we now suppose that both 〈U〉 and

〈Un〉0 are �nite, with evidently 〈Un〉0 → 〈U〉 for n → ∞, we an write at lowerorder:
p̃(µ) = 1− µ 〈U〉+ o(µ), (3.30)
r̃n(µ; u0) = µ(〈U〉 − 〈Un〉0) + o(µ) .It is now simple, by substituting Eqs. (3.29) and (3.30) into Eq. (3.26), to show that,if ( 〈U〉 − 〈Un〉0

) deays in n as a negative power law or faster, we have
〈F (u0)〉0 ≡ lim

µ→0

〈

Fµ(u0)
〉

0
= 2gn0(u0 − 〈U〉) . (3.31)We will now show that both for unorrelated displaements, and then moregenerally for orrelated displaements with deaying orrelations, this average foreis in fat the exat fore in every realization. We do so by simply showing that

lim
µ→0

[

〈

F 2
µ(u0)

〉

0
− 〈Fµ(u0)〉20

]

= 0 . (3.32)88



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSThis implies that the variane of the onditional PDF of the total fore F atingon the partile in u0 vanishes, i.e., it is a Dira delta funtion at the average valuegiven by Eq. (3.31). Compared to the simple ase of a single displaed partile weanalysed above, the only e�et of the (in�nite number of) other displaements is topossibly shift the entre of mass of the whole (in�nite) distribution with respet towhih the displaement of the single partile is de�ned.In order to show Eq. (3.32) we note �rst that the seond onditional moment of
F may be written

〈

F 2
µ(u0)

〉

0
= g2

1,∞
∑

n,m

e−µ(n+m)ℓ 〈fn fm〉0

= 〈Fµ(u0)〉20 + g2
∞
∑

n=1

e−2µnℓAn(µ)

+g2
1,∞
∑

n,m

′

e−µ(n+m)ℓBnm(µ), (3.33)with
An(µ) =

〈

f 2
n

〉

0
− 〈fn〉20 , (3.34)

Bnm(µ) = 〈fnfm〉0 − 〈fn〉0 〈fm〉0 (m 6= n),and where ∑′
n,m as usual indiates the sum over m and n with the exeption of the

n = m terms. To prove Eq. (3.32) it is su�ient to show that the last two terms inEq. (3.33) go ontinuously to zero as µ does so.2.3 Lattie with unorrelated displaementsWe onsider �rst the ase that the displaements are unorrelated and identiallydistributed, i.e.,
P({un}) =

+∞
∏

n=−∞
p(un). (3.35)We refer to this as a �shu�ed lattie� on�guration (following [71℄). In this aseonditional and unonditional averages oinide. Given the assumption that thedisplaements do not make partiles ross, we must have that p(u) = 0 for |u| > ℓ/2,implying that all the moments of p(u) are neessarily �nite.In this ase the un are statistially independent and identially distributed ran-dom variables. Given the de�nition Eq. (3.24), it follows that the fn also have thisproperty, i.e.,

〈fnfm〉 = 〈fn〉 〈fm〉 , (3.36)and thus that Bnm(µ) = 0. Further An(µ) is independent of n and an be expressedexpliitly as
An(µ) = e2µu0

[

p̃(2µ)− p̃2(µ)
]

− e−2µu0
[

p̃(−2µ)− p̃2(−µ)
]

. (3.37)89



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSExpanding this expression in µ about µ = 0, we �nd that the leading non-vanishingterm is at order µ2. The desired result, Eq. (3.32), follows as
∞
∑

n=1

e−2µnl =
e−2µl

1− e−2µl
= O(µ−1) for µ → 0 ,where O(µl) means as usual a term of order l in µ.2.4 Lattie with orrelated displaementsWe now onsider the ase where the displaements are non-trivially orrelated. Inorder to alulate An(µ) and Bnm(µ) we need both the onditional single displae-ment PDF Pn(u; u0) and the onditional two-displaement PDF Qnm(u, v; u0), bothonditioned to the �xed value u0 of the stohasti displaement U0. The funtion

Qnm(u, v; u0) is de�ned by the rules of onditional probability as
Qnm(u, v; u0) =

snm0(u, v, u0)

p(u0)
,where snml(u, v, w) is the joint three displaement PDF of having the three displae-ments u, v, w respetively at the lattie sites n,m, l.Let us start from the evaluation of An(µ). From its de�nition it is simple toshow that

〈

f 2
n(µ)

〉

0
= e2µu0 P̃n(2µ; u0) + e−2µu0P̃−n(−2µ; u0)

−2Q̃n−n(µ,−µ; u0), (3.38)where
Q̃nm(µ, ν; u0) =

∫ ∫ +∞

−∞
du dvQnm(u, v; u0)e

−(µu+νv).In order to study the limit µ → 0 we have to expand P̃n(µ; u0) and Q̃nm(µ,±µ; u0)in powers of µ. Assuming that at least the �rst two moments of the displaementstatistis are �nite, we an write
P̃n(µ; u0) = 1− µ 〈Un〉0 +

µ2

2

〈

U2
n

〉

0
+ o(µ2),

Q̃nm(µ,±µ; u0) = 1− µ (〈Un〉0 ± 〈Um〉0) +
µ2

2

(〈

U2
n

〉

0

+
〈

U2
m

〉

0
± 〈UnUm〉0

)

+ o(µ2). (3.39)Using this result and Eqs. (3.25) and (3.38) in the de�nition (3.34) of An(µ), it issimple to show that
An(µ) = µ2

[

e2µu0
(〈

U2
n

〉

0
− 〈Un〉20

) (3.40)
+e−2µu0

(〈

U2
−n

〉

0
− 〈U−n〉20

)

+2 (〈UnU−n〉0 − 〈Un〉0 〈U−n〉0)] + o(µ2) .90



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSNote that for |n| → ∞ we have 〈Un〉0 → 〈U〉, 〈U2
n〉0 → 〈U2〉 and 〈UnU−n〉0 → 〈U〉2.Therefore we an write

An(µ)
n→∞−→ µ2(

〈

U2
〉

− 〈U〉2)(e2µu0 + e−2µu0) ,where we have used the fat that, as the oe�ients of the higher order ontributionsin µ to An(µ) are non-diverging, they an be negleted. This is su�ient to onludethat ∞
∑

n=1

e−µnAn(µ) = O(µ) , (3.41)where O(µl) as usual means a term of order µl, and therefore the sum vanishes as µfor µ→ 0.Let us now move to analyze the last sum in Eq. (3.33). We study the behaviorof Bnm(µ) as de�ned by Eq. (3.34). It is simple to show that
〈fnfm〉0 = e−2µu0Q̃nm(µ, µ; u0) + e2µu0Q̃−n−m(−µ,−µ; u0)

−Q̃n−m(µ,−µ; u0)− Q̃−nm(−µ, µ; u0). (3.42)Using this equation together with Eqs. (3.34),(3.25) and (3.39), we an write
Bnm(µ) = µ2[e−2µu0g(n,m; u0) + e2µu0g(−n,−m; u0)

−g(n,−m; u0)− g(−n,m; u0)] + o(µ2), (3.43)where we have alled
g(n,m; u0) = 〈UnUm〉0 − 〈Un〉0 〈Um〉0 ,i.e., the onditional displaement ovariane matrix. Sine this is a �onditional�orrelation it does not depend simply on n − m, but on both n and m in a non-trivial way. However for both |n|, |m| → ∞ the onditional averages oinide withthe unonditional ones and therefore we an write
g(n,m; u0) = c(|n−m|)[1 + h(n,m; u0)] , (3.44)where c(|n − m|) = 〈UnUm〉 − 〈U〉2 is the unonditional displaement ovarianematrix, and h(n,m; u0) → 0 for |n|, |m| → ∞. In order to analyze the asymptotibehavior for small µ of

I(µ) ≡
1,∞
∑

n,m

′

e−µ(n+m)Bnm(µ), (3.45)it is su�ient to study the behavior of the sum oming from the �rst term (orequivalently the seond) of Bnm(µ) in Eq. (3.43) as it is the most slowly onvergentone, i.e., basially to study the following sum:
J(µ) =

1,∞
∑

n,m

′

e−µ(n+m)g(n,m; u0) . 91



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSSine h(n,m; u0) → 0 for |n|, |m| → ∞, the small µ saling behavior of J(µ) is thesame if we replae g(n,m; u0) by c(|n−m|):
J(µ) ≃

1,∞
∑

n,m

′

e−µ(n+m)c(|n−m|) . (3.46)This an be also shown by the following argument: assuming that h(n,m; u0) isbounded, say |h(n,m; u0)| ≤ A, we an write
|J(µ)| ≤

∑1,∞
n,m

′

e−µ(n+m)|g(n,m; u0)|
≤ (1 + A)

∑1,∞
n,m

′

e−µ(n+m)|c(|n−m|)| .Therefore the onvergene to zero of µ2 times the right-hand side of Eq. (3.46) is asu�ient ondition to have the variane of F to vanish for µ→ 0.Let us now analyze the right-hand side of Eq. (3.46). We an write
1,∞
∑

n,m

′

e−µ(n+m)c(|n−m|)

=

1,∞
∑

n,m

e−µ(n+m)c(|n−m|)− c(0)
1

e2µ − 1
, (3.47)where c(0) is the single displaement variane. Note that the seond term is of order

µ−1 at small µ and therefore gives rise to a term at linear order in µ in Eq. (3.45).Let us introdue the Fourier transform c̃(k) of c(n), de�ned by
c(n) =

∫ π

−π

dk

2π
c̃(k)eikn .Using this in the right-hand side of Eq. (3.47) we get

1,∞
∑

n,m

e−µ(n+m)c(|n−m|) (3.48)
=

∫ π

−π

dk

2π
c̃(k)

1

e2µ + 1− 2eµ cos k
.The small µ limit of this integral is dominated by the behavior at small k of theintegrand. In this limit the following approximation holds (e2µ + 1 − 2eµ cos k) ≃

(µ2 + k2). Let us also assume that c(n) ∼ n−α at large n (with in general α > 0)8whih implies at small |k| c̃(k) ∼ |k|α−1 for 0 < α ≤ 1 (with logarithmi orretionsfor α = 1) and c̃(k) ∼ |k|β with β ≥ 0 for α > 1. Therefore the small µ behavior ofEq. (3.48) is the same as that of the simple integral
∫ π

−π

dk

2π

c̃(k)

µ2 + k2
∼
{

µα−2 for 0 < α ≤ 1,
µβ−1 for α > 1.

(3.49)8The ase of a deay faster than any power, e.g. exponential deay, an be inluded for α → ∞.92



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSTaking also into aount the seond term in Eq. (3.47), we an therefore onludethat
1,∞
∑

n,m

′

Bnm(µ)e
−(n+m)µ ∼

{

µα for 0 < α < 1,
µ for α ≥ 1 .

(3.50)This, together with the results for the �rst sum in Eq. (3.33), it follows that at small
µ

〈

F 2
µ(u0)

〉

0
− 〈Fµ(u0)〉20 ∼

{

µα for 0 < α < 1,
µ for α ≥ 1,

(3.51)i.e. it vanishes in the µ → 0 limit and the PDF of the total fore ating on a partiledisplaed by u0 from its lattie position is W (F ; u0) = δ[F −2g(u0−〈U〉)]. In otherwords, even in the ase of spatially orrelated displaements, the total fore ating ona partile is a deterministi quantity equal to 2g(u0−〈U〉) with no �utuations. Thisvalue depends only on the displaement of the partile on whih we are alulatingthe fore and not on the displaements of other partiles as it does in 3− d [66℄.3 Dynamis of 1d gravitational systemsIn the previous setion we have shown the presription Eq. (3.11) for the 1 − dgravitational fore to give a well de�ned result in a lass of in�nite displaed lattiedistributions. This result an be used in the onstrution of di�erent toy models,through di�erent presriptions for the dynamis assoiated to these fores. In thissetion we disuss two suh models, analogous to the 3 − d ases of gravitationallustering in an in�nite stati or expanding universe, respetively. In the last sub-setion we disuss in detail the relation of these models to previous treatments ofsuh models in the literature.As motivation let us �rst omment on the reason for our interest in the ase ofperturbed latties: in 3−d osmologial N-body simulations preisely suh on�gu-rations are used as initial onditions. The reason is that by displaing partiles froma lattie in this way, one an represent aurately, at su�iently large sales, low-amplitude density perturbations about uniformity with a desired power spetrum
P (k) (for a detailed disussion see e.g. [71℄ or [88℄). This algorithm is stritly validin the limit of very small relative displaements of partiles, so that the assumptionthat partiles do not ross in our derivation is a reasonable one (although not, as wewill disuss in our onlusions, rigorously valid). The further assumption Eq. (3.28)we have made, on the deay of orrelations, orresponds, also to a reasonable re-strition on the lass of initial power spetra. Indeed it an be shown easily that itorresponds, in d dimensions, to the assumption that P (k)/k2 be integrable at k = 0.In 3− d this orresponds to P (k → 0) ∼ kn with n > −1, whih is stritly satis�edin typial osmologial models whih are haraterised by an exponent n = 1 atasymptotially small k.3.1 Toy models: statiThe simplest suh model is the onservative Newtonian dynamis assoiated to thederived fore law, i.e., with equation of motion

ẍi = Fi({xj , j = 0..∞}, t), (3.52)93



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSwhere Fi is the gravitational fore on the i-th partile of the distribution, withposition xi at time t (and dots denote derivatives with respet to t), alulatedusing the presription Eq. (3.12), i.e.,
ẍi = −g lim

µ→0

∑

j 6=i

sgn(xi − xj)e
−µ|xi−xj |. (3.53)We have shown that, for the ase of an in�nite lattie subjeted to displaementswhih (i) do not make the partiles ross, and (ii) satisfy Eq. (3.28), the fore onthe right-hand side is simply given deterministially as proportional to the partile'sdisplaement (when 〈U〉, the average displaement, is zero). Denoting then thedisplaements of the i-th partile by ui, i.e. xi = ia + ui, the equation of motion istherefore

üi(t) = 2gn0ui(t) , (3.54)i.e., simply that of an inverted harmoni osillator. The same equation is valid in thease that 〈U〉 6= 0 if we de�ne xi = ia+ 〈U〉+ui. This equation of motion is valid, ofourse, only as long as the non-rossing ondition is satis�ed. While it is in priniplestraightforward to generalize our alulation of the fore to inorporate the e�ets ofa �nite number of rossings, it is muh more onvenient to make use of the followingfat, whih we realled above: partiles rossings in 1 − d are equivalent, up toexhange of partile labels, to elasti ollisions between partiles, in whih veloitiesare exhanged. This means that if we are interested in properties of the modelwhih do not depend on partile labels, the model of 1− d self-gravitating partilesis equivalent to a model in whih partiles boune elastially. In this ase the partilesdisplaements from their original lattie sites are at all times suh that there is norossing of partiles, and Eq. (3.54) remains valid, exept exatly at �ollisions�.The dynamis of this model is therefore equivalent to that of an in�nite set ofinverted harmoni osillators entred on the sites of a perfet lattie whih bouneelastially, exhanging veloities, when they ollide. To avoid any onfusion, let usunderline that these ollisions are no way analogous to �2-body ollisions� whihformally appear in the Boltzmann equation, and whih ause relaxation towardsequilibrium. As in the �nite �sheet model� the equation of motion may be integratedexatly. De�ning, for onveniene, time in units of the harateristi �dynamial�time τdyn = 1/
√
2gn0, the evolution between ollisions is given exatly by

ui(t0 + t) = ui(t0) cosh t+ vi(t0) sinh t, (3.55)
vi(t0 + t) = ui(t0) sinh t+ vi(t0) cosh t, (3.56)where ui(t0) (vi(t0))is the position (veloity) after the preeeding ollision. Thesolution of the dynamis requires simply the determination of the next rossingtime, whih involves the solution of a quadrati equation (in et), followed by anappropriate updating of the veloities of the olliding partiles.3.2 Toy models: expandingThe model we have just disussed is the 1−d analogy for the problem of gravitationallustering in an in�nite stati universe, with equations of motion

r̈i = −Gm
∑J

j 6=i

ri − rj

|ri − rj |3
, (3.57)94



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSfor idential partiles of mass m. We use the supersript J on the sum to indiatethat the sum is alulated using the �Jeans swindle�. As we have disussed this�swindle� in 3 − d an be implemented by summing symmetrially about the point
i either in a top-hat (i.e. sphere) or using the limiting proedure with a sreening.The equations of motion for partiles in an in�nite expanding 3− d universe areusually written in the form

ẍi + 2Hẋi = −Gm
a3

∑J xi − xj

|xi − xj |3
, (3.58)where xi are the so-alled omoving oordinates of the partiles, H(t) = ȧ/a is theHubble �onstant�, and a(t) is the sale fator whih is a solution of the equations

H2 =

(

ȧ

a

)2

=
8πG

3a3
ρ0 +

C

a2
, (3.59)

ä

a
= −4πG

3a3
ρ0 , (3.60)where ρ0 is the mean mass density when a = 1, and C is a onstant of integration9.Note that these equations an be derived entirely in a Newtonian framework,and orrespond simply to a di�erent regularisation of the in�nite system limit thanthat employed in the Jeans' swindle: instead of disarding the e�et of the meanmass density, the fore is regularised so that the mean density soures a homolo-gous expansion (or ontration) of the whole system. This orresponds to takingequations of motion

r̈i = −Gm lim
R→∞

∑

j 6=i,|rj|<R

ri − rj

|ri − rj|3
, (3.61)i.e. with the sum for the fore alulated by summing symmetrially about a hosenorigin. Dividing the sum into a term due to the mean mass density and a term dueto �utuations about this density, this may be written as

r̈i = −4πGρ

3
ri −Gm

∑J ri − rj

|ri − rj|3
, (3.62)Negleting the seond term (i.e. taking only the fore due to the mean density)gives an equation of motion admitting solutions of the form ri(t) = a(t)ri(t0), with

a(t) satisfying Eqs. (3.59) and (3.60). Changing to omoving oordinates de�nedby ri = a(t)xi in Eq. (3.61) [or in Eq. (3.62)℄, and using Eq. (3.60), then givesEq. (3.58).Note that setting a(t) = 1 in Eq. (3.58) gives exatly the stati ase Eq. (3.57),i.e., the �Jeans' swindle� in stati spae orresponds formally to the non-expandinglimit of an expanding FRW universe. This stati solution a(t) = 1 is, however, asolution to Eqs. (3.59) and (3.60) only if ρ0 = 0 (and C = 0), i.e., it is not a physiallimit of the expanding ase but orresponds to the di�erent presription, Eq. (3.57),9C = 0 orresponds to the �at Einstein de Sitter universe, C > 0 to a losed universe, and
C < 0 to an open universe. In the Newtonian derivation of these equations, given below, C an beexpressed in terms of the physial partile veloities at some initial time. 95



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSfor alulating the fore in the in�nite volume limit. While almost all numerialstudies are of the expanding ase (for a review, see e.g., [12℄), a reent study [11℄ ofthe stati ase for suh initial onditions has shown that the evolution of lusteringis, in essential respets, qualitatively similar in both ases. This suggests that it maybe possible to understand essential qualitative features of the dynamis of strutureformation in the universe in the oneptually simpler framework in whih there isno expansion.With the 3 − d equation of motion in the form of Eq. (3.58) it is evident howthe stati 1 − d model disussed above is naturally modi�ed to mimi the 3 − dexpanding ase: one an simply replae the fore term due to the in�nite 3 − ddistribution [i.e. the sum on the right-hand side of Eqs. (3.58)℄ by that due tothe 3 − d distribution onsisting of in�nite sheets. The summation presriptionimplementing the Jeans' swindle for the general 3 − d ase, i.e. spherial top-hat summation, is then, as we have disussed at length above, most appropriatelyreplaed by the smooth presription we have given. Thus we take the following 1−dequation for the positions xi of the partiles (sheets):
ẍi + 2Hẋi = −2πGΣ

a3
lim
µ→0

∑

j 6=i

sgn(xi − xj)e
−µ|xi−xj |, (3.63)where the sum extends over the in�nite distribution of sheets, and we have expliitlymade the identi�ation g = 2πGΣ (where Σ is the mass per unit surfae).With initial onditions in the lass of 1− d in�nite perturbed latties for whihwe have shown the sum for the fore to be well de�ned and given by Eq. (3.10), wethen have

üi + 2Hu̇i =
4πGρ0
a3

ui , (3.64)where we have used that the mean omoving mass density ρ0 = Σn0 (i.e. physialmass density when a = 1). As in the stati ase, this equation of motion remainsvalid at all times if we exhange the labels of partiles when they ross, so that theyboune instead of passing through one another.For the ase of an Einstein de Sitter (EdS) universe, whih orresponds to C = 0in Eq. (3.59), a(t) = (6πGρ0)
1/3t2/3 and Eqs. (3.64) simplify to

üi +
4

3t
u̇i =

2

3t2
ui (3.65)of whih the independent solutions are ui(t) ∝ t2/3 and ui(t) ∝ t−1 [whih aresimply the well known growing and deaying solutions for small perturbations to aself-gravitating �uid in an EdS universe (see, e.g., [126℄)℄. The evolution in between�ollisions� is thus given by

ui(t) = ui(t0)

[

3

5

(

t

t0

)2/3

+
2

5

(

t

t0

)−1
]

+vi(t0)t0

[

3

5

(

t

t0

)2/3

− 3

5

(

t

t0

)−1
]

. (3.66)Note that, from Eq. (3.66) the determination of the rossings in these models, insteadof a quadrati equation in the stati model, thus involves the solution of a �fth orderequation (for t1/3).96



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS3.3 Disussion of previous literatureStati modelsA few previous studies [10,150,151℄ have onsidered stati 1−d toy models, de�ningthe fore on the right hand side of Eq. (3.52) as the derivative of a potential, whihis the sum of the ontribution from the sheets in a �nite system of size L, and anadditional one due to a uniform negative bakground. This is exatly the �naive�version of the Jeans swindle disussed above, and orresponds exatly to the pre-sription Eq. (3.9) for the alulation of the fore (with L �nite). The authors of [10℄disuss expliitly the problems assoiated with taking the in�nite system limit. Asa result they limit their analysis only to a ase for whih their presription gives aunique and �nite result: a �nite number of partiles displaed o� an in�nite perfetlattie, modelling a �nite loalized perturbation embedded in an otherwise uniformuniverse. It is simple to verify that equation of motion for these displaements isthen exatly Eq. (3.54), whih we have now shown to be valid for the in�nite lattiewith perturbations whih do not break the lattie translational invariane.In [150,151℄, on the other hand, the dynamis is formulated for a system of �nite
L, and the problem of the de�nedness of the fore in the in�nite system limit isnot expliitly addressed. Instead it is dealt with impliitly by assuming that the�nite system is symmetri about some point. Taking this latter point as origin ofoordinates, the top-hat presription Eq. (3.9) for the fore at oordinate position
x may then be rewritten as

F (x) = −2gN(0, x) + 2gn0x , (3.67)in whih the size of the system does not expliitly appear. Labelling the partilesby their position with respet to the origin (i = 1...N), the fore on the i-th partilemay then be written
Fi = 2gn0

[

xi −
(

L

N

)

(i− 1)

]

, (3.68)where xi is the position of the partile. For any �nite system the quantity in braketsan be onsidered as the displaement ui of the partile i from its �original� lattiesite [at (i− 1)L/N ℄. Thus the equation of motion for the partiles is again identialto that we have derived.We note again that we have derived this fore law without the assumption ofsymmetry (and without the expliit introdution of a bakground). Further, andmost ruially, we have shown it to remain valid for a ertain lass of distributionswhen the in�nite volume limit is taken � perturbed latties without rossing anddisplaements of �nite variane. In this respet we underline, as we have done inSet. 1, that while in the formulation of [150℄ the same equations of motion Eq. (3.54)are valid for the partiles in any �nite symmetri system, this does not mean thatthe in�nite system limit is well de�ned, even with the assumed symmetry. It isillustrative to see what �goes wrong� when the in�nite system limit is taken, forexample, for the ase of a Poisson distribution, i.e., when we onsider a systemof size L in whih we distribute N partiles randomly, and the take L → ∞ at�xed n0 = N/V . The problem is that fores, although de�ned at any �nite L,by Eq. (3.68), diverge as L does. This an be seen by onsidering the statistisof the displaements as a funtion of L � the variane diverges, violating a ruial97



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS
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iFigure 3.3: The variane of the displaement ui (see text) as a funtion of a partile'sordered position i, alulated for one thousand realizations of one thousand partilesrandomly plaed in an interval.assumption in our derivation � or more diretly from the fore written as Eq. (3.67):the fore on a partile at x, as it is proportional to the �utuation in the numberof partiles in the interval [0, x] about its average value, grows in proportion to √
x.This means that the typial fore on a partile not only diverges as L does, but thatin a �nite system its typial value depends on the position of the partile with respetto the boundaries. This is illustrated in Fig. 3.3, whih shows the variane of thedisplaement ui (as de�ned above as a funtion of i, as measured in one thousandrealizations of one thousand randomly thrown partiles. In a typial realization thefore on a partile in the entre of the box is thus muh larger that on a partile at theboundaries. In pratie this means that the evolution of lustering in a symmetri�nite system of initially Poisson distributed partiles is, right from the initial time,global in harater, and expliitly size dependent. Suh behaviour an be seen in

1 − d simulations reported in [151℄ from suh initial onditions, whih ontrastsqualitatively with the loal lustering harateristi of the 1− d (and osmologial)simulations whih we will desribe in the next setion.Expanding modelsWe note �rst that Eq. (3.64) oinides exatly with that obtained in the so-alledZeldovih approximation (see, e.g., [29, 126℄), when ui is replaed by a vetor fun-tion u(x). This approximation desribes the evolution of displaement �elds u(x)engendering small amplitude �utuations to a self-gravitating �uid in an expandinguniverse, and an be obtained rigorously by a perturbative treatment of the full �uidequations [29℄ in the lagrangian formalism10. For the ase of one-dimensional per-turbations it is well known (see [126℄ and referenes therein) that this approximationbeomes exat, up to the time when austis form, orresponding to the rossing10
x is a lagrangian oordinate and the �uid is exatly uniform when u(x) = 0.98



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSof �sheets� of �uid (i.e. partiles in our ase). It is thus, perhaps, not surprising,a posteriori, that we reover exatly the Zeldovih approximation for the motionof disrete sheets up to the time they ross: as the pair fore between sheets isindependent of separation, the only way a sheet an �see� that the fore souring itsmotion is disrete, rather than ontinuous (as in the �uid limit), is when it rossesother sheets.Eq. (3.64) an equally be derived [89,105℄ using a perturbative treatment of thedynamis of an in�nite perturbed lattie (in 3 − d) of partiles. For plane wavedisplaements of the partiles with a wave-vetor orthogonal to one of the lattieplanes, the amplitude of the displaement wave obeys exatly this equation in thelimit that the disreteness of the mass distribution in these orthogonal planes isnegleted. This latter assumption is weaker than that used in this framework toderive the Zeldovih approximation for a general perturbation, whih would requirealso that the displaement be of long wavelength ompared to the disreteness salein the diretion parallel to it.In the studies of [145, 157℄, the authors study exatly the equations of motionEq. (3.64) for the displaements of sheets perturbed o� a perfet lattie (as inosmologial simulations). They adopt these equations arguing that they representthe �uid limit for 1−d perturbations in a 3−d expanding universe. While before sheetrossing (i.e. the formation of austis), as disussed above, this is indeed knownto be true � these equations are just the Zeldovih approximation whih is, in thisregime, exat � the extension to longer times is argued to be valid beause the�ollisionless� sheets of �uid will simply pass through one another. Our derivationof these equations shows that this in fat orresponds to the disrete partile/sheetmodel. Indeed we have not taken the �uid limit in our derivation, and the equationsdo not represent the �uid limit of this model. It simply happens to be the ase thatin this model, before rossing, the equations orrespond with those in the �uid limit,for the physial reasons we have mentioned above. After rossing this equivalenebreaks down, and the presription used by [157℄ to �analytially ontinue� the �uidmodel beyond its regime of validity atually maps onto this disrete partile/shellmodel.The other two groups who have onsidered 1− d toy models inorporating 3− dexpansion have, as in this artile, worked in a partile/sheet framework. Both theoriginal model, proposed in [135℄ and studied further in [111℄, and the subsequentone proposed and studied in [7, 8℄ and [112℄, derive their (di�erent) equations ofmotion by following, formally, the steps desribed above leading from Eq. (3.61) toEq. (3.58). The fore on the right hand side of Eq. (3.57) is simply that due to thesheets, alulated in the analogous manner11, i.e.,
r̈i = 2πGΣ lim

L→∞

∑

rj∈[−L,L]

sgn(rj − ri) . (3.69)The hange to omoving oordinates, when assumed also to resale the mass in the11In [135℄ the fore term is simply denoted Ei, without an expliit presription for alulating it.It an be inferred from the desription given subsequently of the numerial simulations that theimpliit summation is the symmetri top-hat entred at the spatial origin. In [7, 8℄, on the otherhand, the top-hat regularisation is expliited. 99



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSsheets in the orthogonal diretion (so that Σ → Σ/a2), gives
ẍi + 2Hẋi

=
2πGΣ

a3



 lim
L→∞

∑

xj∈[−L,L]

sgn(xj − xi) + 2n0xi



 , (3.70)provided that a(t) obeys the equation
ä

a
= −4πG

a3
ρ0 . (3.71)As above ρ0 = Σn0 is the mass density (in 3− d) when a = 1.The Eqs. (3.70) are those adopted by [7,8,111,112,135℄. The term whih we havewritten on the right hand side of the equation orresponds exatly to the presriptionEq. (3.9) for the alulation of the fore. It inorporates the required subtration ofthe e�et of the bakground, so that motion in omoving oordinates is soured onlyby perturbations to uniformity. Just as in the stati models of [10, 150℄ disussedabove, whih are obtained formally by setting a = 1 in Eq. (3.70), this fore is wellde�ned only if symmetry is assumed about the hosen origin in the point distribution.This is indeed the assumption made in the numerial studies of [7, 8, 111, 112, 135℄.The di�erene between the models of [111,135℄ and of [7,8℄ (studied also in [112℄)arises only in what they assume about the sale fator a(t). The former authorsimpose an EdS osmology behaviour for the sale fator, a(t) ∝ t2/3, and requirethat it is a solution of Eq. (3.71). Comparing Eq. (3.71) and Eq. (3.59) we see thatit orresponds to imposing a Hubble expansion soured by a mean density threetimes the physial mass density of the sheet (or, equivalently, assuming that thegravitational onstant is not the same for the bakground as for the perturbations).Refs. [7,8℄, on the other hand, simply impose that a(t) be the EdS expansion, withthe right normalization. This amounts to adding �by hand� a term to the derivedequation [112℄. It orresponds e�etively to simply replaing the �Jeans swindle�

3 − d fore term in Eq. (3.58) by the presription Eq. (3.9). This di�ers from the�derivation� we have given above for Eqs. (3.63) only in the form of the Jeans swindleadopted. For the ase that symmetry about the origin is assumed, we have the sameequations of motion. In a �nite system Eq. (3.68) is valid and so the equations ofmotion in their numerial simulations redue exatly to Eqs. (3.64).In onlusion the equations of motion Eqs. (3.64) are exatly the same as thoseused by [145, 157℄, and by [7, 8, 112℄. The only di�erene in pratie between allthese studies are the initial onditions adopted and also the analysis of the resultantlustering given. Rather than working in the osmologial time variables, the latterauthors de�ne, a new time oordinate τ =
√

2/3 ln t. Eqs. (3.65), for the ase of anEdS universe, then take the very simple form
d2ui
dτ 2

+
1√
6

dui
dτ

= ui . (3.72)In these variables the model is thus equivalent to an in�nite set of inverted osillatorswhih boune elastially, with an additional onstant damping. Beause of the100



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONS�fth order equation whih must be solved to determine the rossings (now for theparameter t1/3 = eτ/
√
6), the model has been dubbed the �quinti� model by theauthors of [8℄.The model of [111, 135℄, on the other hand does not impose on the sheets thephysial 3 − d expansion. Following the same approah as for the quinti modelpreviously de�ned, we obtained an equation of motion

d2ui
dτ 2

+
1√
2

dui
dτ

= ui . (3.73)Then it simply orresponds to Eq. (3.72) with a di�erent damping term.we note however that, in the derivation of [135℄, any funtion a(t) satisfyingEq. (3.71) an be adopted with the same onsisteny. The only way in fat in whihthe derivation of the 3− d equations an be rigorously adapted to 1− d is by usingthe 1−d expansion law derived from Eq. (3.69) in the limit of uniformly distributedsheets. This is
a(t) = 1 +H0t− 2πGn0t

2 , (3.74)where H0 = H(t = 0), i.e., free fall in a onstant gravitational �eld of strength
4πGn0. As this is very di�erent to the 3 − d expansion law it is probably not avariant of the toy model whih is of pratial interest.4 ConlusionWe have revisited in this hapter a basi question onerning the de�nition of thegravitational fore in 1−d in in�nite point distributions. Previous de�nitions of thisquantity in the literature have required the assumption of the existene of a speialpoint (entre) in the distribution, i.e., expliit breaking of statistial translationalinvariane whih is typially a feature of the in�nite distributions one instead wishesto study. We have noted that the problem, assoiated with the non-onvergingsurfae �utuations in suh distributions, may be solved by employing a de�nitionusing a smooth sreening whih is sent to zero at the end of the alulation. We havethen shown expliitly that this leads to a well de�ned fore for a spei� lass ofin�nite perturbed latties � those subjet to perturbations of �nite variane whihdo not make partiles ross. In this ase, when the mean displaement of partilesis also assumed to vanish, the fore on eah partile take a unique value whih issimply proportional to its own displaement from its lattie site. We note that wehave assumed also that variane of the displaement �elds is �nite, whih restrits toinitial density �utuations whih have a su�iently rapidly deaying power spetrumat small wavenumber (spei�ally, suh that P (k →) ∼ kn where n > 1, analagousto the same ondition with n > −1 in 3− d).We have then disussed di�erent dynamial toy models whih inorporate thisde�nition of the fore � the simple onservative Newtonian dynamis and one whihinorporates a damping term mimiking the e�et of 3−d expansion (the quinti andthe RF models). Sine the rossing of partiles is equivalent, up to labels, to elastiollisions with exhange of veloities, the on�gurations generated by suh dynamis,at any �nite time, are always in the lass of in�nite perturbed latties for whih thefore is de�ned (provided suh a on�guration is the initial ondition). This is the101



CHAPTER 3. 1−D GRAVITY IN INFINITE POINT DISTRIBUTIONSase beause, at any �nite time, ollisions/rossings may only orrelate partiles upto a �nite distane, and the orrelation properties of displaements at asymptotiallylarge separations therefore always obey the required onditions. The equations ofmotion are then simply those of an in�nite set of inverted harmoni osillators (withdamping in the expanding ase) with entres on the original lattie sites, and whihboune elastially when they ollide. In this ontext we have also disussed in detailthe di�erent formulations of these models in the previous literature.

102



Chapter 4Dynamis of in�nite one dimensionalself-gravitating systems:self-similarity and its limitsIn the previous hapter we have de�ned gravitational fores in 1 − d in an in�nitesystem of partiles. We have shown that for a partiular lass of initial ondi-tions, i.e. a lass of perturbed in�nite latties, whih are point proesses relevant toosmologial N-body simulations, the dynamis is that of partiles in inverted har-moni osillator potential entred at the lattie sites, whih boune elastially whenthey ollide. The e�et of osmologial expansion analogous to 3 − d simulationsin osmology an be desribed by a simple �uid damping term. In this hapter, wepresent the results of a numerial investigation of the dynamial evolution of thesetoy models.In the next setion, we start by introduing the numerial simulation: integrationof the dynamis, hoie of units and initial onditions. In setion 2, we present resultsof this 1−d numerial investigation, whih shows that these toy models are physiallyinteresting in so far as they present very strong qualitative similarities with theevolution of the analogous 3 − d systems. Indeed, using as initial ondition thepartiular lass of stohasti point proesses whose power spetra are simple power-laws Pinit(k) ∝ kn with n = 0 and 2, the 1 − d system exhibits interesting featuresas the hierarhial nature of the lustering, the mehanism of linear ampli�ationdetermining the growth of the non-linearity sale, as well as �self-similar� behaviour.We also observe a qualitative di�erene between stati and expanding ases, likethose whih an be seen in 3− d. This is brought to light through the study of thetemporal evolution of statistial measures suh as the normalized mass variane, theorrelation funtion and its Fourier transfrom, the power spetrum. We onsideralso the qualitative behavior of the shape of the orrelation funtion as a funtionof n, the exponent of the initial power spetra, and the nature of the model (statior expanding ase), and �nd again similar behaviours as in 3− d.In the rest of the hapter, we then explore aspets of these behaviors whih oneannot easily probe with 3−d numerial simulations due to numerial di�ulties. Westudy in partiular, in setion 3, struture formation for the partiular lass of initialondition orresponding to �ausal �utuations�, i.e. Pinit(k) ∝ k4. We investigatethe absene or presene of linear ampli�ation, partiularly whether self-similarity103



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSapplies in this ase and how the non-linearity sale grows.In the last setion, we explore further what an be learnt about the strongly lus-tered regime, and in partiular the exponents whih haraterize it. The advantageof the 1−d toy model is that it allows us to probe the development of self-similarityat smaller sale. In 3− d, in ontrast, this is not possible beause of the presene ofa smoothing at small sales, whih limits spatial resolution. Numerial investigationallows us to identify the lower ut-o� of the self-similar regime, and to identify itsbehaviour. We observe that our results, for the expanding (i.e. damping) mod-els suggest that a �stable-lustering� hypothesis an be made, analogous to thatsometimes proposed in 3 − d. Using this hypothesis we derive a simple analytialpredition for the exponent of the power spetrum in the self-similar regime. Exel-lent agreement is observed with the results of the simulations for a range of n anddi�erent values of the damping term modeling expansion.1 Numerial simulationIn this setion, we outline how our 1−d N-body simulations are performed. We startby explaining the heap algorithm we use to integrate the dynamial equations of oursystems. We present the way we generate numerially the di�erent initial onditions,both for the partiles positions and veloities. We de�ne the estimators of statistialquantities used to study the dynamial evolution of 1 − d self-gravitating systems:orrelation funtion, mass variane and power spetrum. We also introdue theappropriate unit of time based on the harateristi timesales of the system. Notonly 1− d toy model presents the interest of being �exat�, i.e. limited only by themahine preision, but also, as we will see, gives the opportunity to probe a muhlarger range of sale than in analogous 3− d simulations.1.1 Integration of dynamisIn the 1− d ase, we have studied in Chapter 3 that for a lass of perturbed latties(whih are the on�gurations used as initial onditions in osmologial simulations)the fore is given exatly as a trivial funtion only of the partile displaement.Thus, to simulate numerially the evolution of a 1 − d in�nite system, the stepin whih the fore is alulated is trivial, and does not involve any approximationof an in�nite sum as in 3 − d (see Chapter 2). The only question whih arises ishow to treat the boundary onditions of the �nite sub-system of this in�nite systemwhih one an simulate. Periodi boundary onditions, i.e partiles whih leave the�nite interval on one side enter at the other side, are the evident simple hoie, asthey have advantage of maintaining (disrete) translational invariane. We ouldhowever, easily use other boundary onditions (e.g. simply negleting mass loss,or injeting mass in a stohasti manner to ompensate average loss). Our resultsshould not depend on this hoie, just as they should not depend on the size of theperiodi box.We start with a subsystem of N partiles initially distributed in a 1− d regularlattie, with lattie spaing ℓ > 0, i.e. the position of the nth partiles is Xn = nℓ,with n ∈ [0, (N − 1)]. We then apply a displaement �eld Un to this system: theposition of the nth partile then beomes Xn = nℓ+ Un.104



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSAs far as the dynamial evolution of the displaement �eld in the stati and ex-panding ases is onerned, whe have de�ned in Chapter 3 the generi expression forthe equations of motion for our 1−d toy model between partile ollisions/rossings:
d2ui
dt2

+ Γ
dui
dt

= ui , (4.1)where
• Γ = 0 orresponds to the stati model, where t ≡ ts with ts the stati timevariable de�ned in the units of τdyn ≡ 1√

2gn0
,

• Γ = 1√
6
orresponds to the quinti model (i.e. �EdS� like), where t ≡√2

3
ln(tE/t0)is a dimensionless time variable with tE the expanding time variable de�ned inthe units of t0.

• Γ = 1√
2
orresponds to the RF model, where t ≡ √

2
3
ln(tE/t0) is a dimensionlesstime variable with tE the expanding time variable de�ned in the units of t0.As we onsider a system of olliding partiles, eah partile keeps its own label i.The e�et of the ollisions is to exhange the veloities of the ouple of partilesonerned. Between ollisions, the solutions of these equations are given by

uSi (ts) = ets/τdyn
(ui(0) + vi(0)

2

)

+ e−ts/τdyn
(ui(0)− vi(0)

2

)

, (4.2)
uQi (te) =

(te
t0

)2/3 3
(

ui(t0) + t0vi(t0)
)

5
+
( te
t0

)−1
(

2ui(t0)− 3t0vi(t0)
)

5
, (4.3)

uRF
i (te) =

(te
t0

)1/3
(

2ui(t0) + 3t0vi(t0)
)

3
+
( te
t0

)−2/3
(

ui(t0)− 3t0vi(t0)
)

3
, (4.4)where uSi (ts), uQi (te) and uRF

i (te) represent the displaement of the ith partile ofthe lattie between ollisions in the stati, quinti and RF models. The subsequentrossing is determined at eah time, and the positions and veloities of the rossingpartiles are updated aordingly. For numerial e�ieny we have implemented theoptimized heap-algorithm (see e.g. [120℄ for a detailed study): 1−d systems have theimportant harateristi that the set of positions is well-ordered. This means thatall (N−1) possible ollisions between N partiles an be easily enumerated and thatthe neighbors of two olliding partiles an be found in O(1) operations if we keepthe partiles sorted by position. It is then possible to built an event-driven algorithmto simulate a set of partiles by �nding the minimum of all possible ollision times,evolving all partiles up to that time and repeating the proedure. At �rst sight thisinvolves O(N) operations per ollision. However, in 1 − d, it is possible to updateonly the states of the two olliding partiles and their next ollision times with theirtwo nearest neighbors. Also, by using a heap struture, we an �nd the minimum ofthe set of ollision times using O(logN) operations per ollision.The basi idea of a heap struture is to put the key elements in a binary tree andensure that they satisfy the heap ondition: the value in any tree node is smallerthan the value in its �hild� nodes. This does not ompletely order the set, butis enough to warrant that the smallest value in the heap is at the root. Also, the105



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSheap ondition an be maintained e�iently: if a node value is modi�ed so thatthe heap ondition is violated, we exhange the value with its parent node (if thevalue dereased) or with the smallest of its hild nodes (if the value inreased) andwe repeat the proedure, moving up or down the tree until the heap ondition issatis�ed again, or we reah the root or leaves of the tree.We now explain how the heap-algorithm is implemented in our N-body simula-tion. We onsider the motion of N olliding partiles in 1− d, and require that theequations of motion for partiles an be integrated in between two suessive olli-sions. We onstrut arrays of size N whih ontain the states of the partiles, suhas position, veloity and aeleration, at the time of their last ollision, stored ininreasing order of the spatial oordinates. An additional state variable assoiatedto eah partile is τj , the time it last experiened a ollision.The algorithm starts by omputing the ollision time of eah partile with itsneighbor to the right, and the results are stored in an array of size (N −1), whih isthen turned into a heap. So that we do not need to move the whole partiles statewhile proessing the heap, we introdue an indexing array, Partile-Heap (PH [.]),mapping the position in the heap to the rank in spae of the leftmost of the twopartiles (j and j + 1) involved in that ollision (see Fig. 4.1). To update the listof predited ollision times of neighbors partiles, we also need the index arrayinverse to Partile-Heap, whih we all Heap-Partile (HP [.]). Hene for all j in therange 1 to (N − 1), PH [HP [j]] = j and HP [PH [j]] = j. This ondition will bepreserved at all times while we update the heap. Note that the ollision times arediretly present in the heap, and that the two indexing arrays then realize exatlythe funtions needed to implement the algorithm.

Figure 4.1: Representation of the struture of the heap algorithm implemented in our
1−d N-body simulation (from [120℄). It represents the two arrays PH [.] and HP [.].The �rst array in the �gure only ontains the predited ollision times ordered asa heap, while the seond ontains the partile states stored in inreasing order ofspatial positions. The two indexing arrays allow to move bak and forth betweenthe two sets.106



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSOne the heap has been built, the minimum ollision time tmin is at the root. Thepartiles involved in the �rst ollision, j = PH [1] and (j+1), are seleted and theirstates evolved up to time tmin where they are rearranged by the ollision (momentasimply exhanged in the ase of elasti ollision), and τj and τj+1 are set equal to
tmin. Next the new predited ollision time between j and (j + 1) is omputed andreplaes the one at the root of the tree. The root might now not ful�ll the heapondition, so the heap array is re-arranged by sifting down the root value, using atmost O(logN) operations.The next ollision times of partiles j and (j+1) with their other nearest neigh-bor, (j − 1) and (j + 2), respetively, also need to be re-omputed (see Fig. 4.2).To do this, partiles (j − 1) and (j + 2) are temporarily moved forward in timeup to tmin, where their new ollision times are omputed and put into the heapat HP [j − 1] and HP [j + 1], replaing the old ones. As a onsequene, the heaphas to be re-arranged two more times, again at a ost of at lost O(logN) for eahmodi�ation.

Figure 4.2: Intersetion of the trajetories of partiles j and j + 1 at time t = tmin(from [120℄). The ringed intersetions are the ollisions/rossings that need to bereomputed.
The heap is now again in a onsistent state with the next ollision time at theroot, and the whole proedure an be repeated. The evolution an be stoppedeither after some �xed number of ollisions Z, or when the predited time for thenext ollision beomes larger than some hosen �nal time Tend. At the end, allpartiles are moved forward in time from their own τj to the �nal time whih iseither Tend or the time of the last ollision. The ompexity of the algorithm is thenin the worst-ase O(Z logN) plus lower-order terms O(Z) and O(N). 107



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS1.2 Initial onditionsAs the struture of the algorithm whih explains the numerial integration of theequations of motions has been introdued, we present the lasses of initial onditionswe study.As disussed in Chapter 2, perturbed lattie initial ondition allows one to pro-due a stohasti point proess with a desired power spetrum, up to ontributionoming from the original lattie struture. As in general studies in osmology wewill onsider a lass of latties in whih Pinit(k) ∝ kn , where n is a onstant for
k ≤ kN (where kN = π

ℓ
is the Nyquist frequeny). Around and above kN , P (k)beomes dominated by terms assoiated with the �pre-initial lattie�. Suh initialonditions are often referred to as �sale-free� in osmology - beause of the sale-freepower law behaviour - but it is important to underline that suh initial onditiondo ontain at least two harateristi sales:

• the lattie spaing, whih leads in k spae to the deviation from the power-lawbehaviour at kN ;
• the homogeneity sale at whih the amplitude of the �utuations are of orderone.If the dynamis does not depend on the ultraviolet sale, suh as the lattie spaing,there is only one relevant harateristi sale in the initial onditions. If the dynamisintrodues no further sale (i.e. one the transients due to UV ut-o� have gone)one expets to �nd asymptotially the �self-similar� behaviour we have disussed inChapter 2. In 3−d it was shown, using the BBGKY hierarhy, desribing the matterin the �uid limit, that in suh a spei� ase (EdS and power law PS) one an �ndsolution of this kind for the phase spae density. We will onsider here a range of nthat orresponds to di�erent relevant sublasses of initial onditions:
• n = 0 orresponds to a spei� lass of in�nite perturbed latties for whihthe variane of the displaement �eld is in�nite (see Chapter 3). Therefore,it leads to a divergent fore, analogous to the range −3 < n < −1 in 3 − d,whih is regulated therefore by the box size. However, this divergene of thefore does not prevent the dynamis of formation of strutures from setting,as it has been shown in [3℄ that what does really matter is the onvergene ofthe di�erene of the fore between partiles.
• n = 2 orresponds to a spei� lass of in�nite perturbed lattie, the shu�edlattie, for whih the variane of the unorrelated displaements is �nite (seeChapter 3), and whih leads to a onvergent fore, analogous to the range
−1 < n < 4 in 3− d,

• n = 4 represents the limit of �ausal proess� whih loally onserves mass.This orresponds to the power generated by the �newly forming strutures�mehanism introdued by Peeble in [126℄ and disussed in Chapter 2.Flat power spetrum: Pinit(k) ∝ k0 at small kTo generate the intial PS Pinit(k) ∝ k0 at small k, we onsider the anonial methodintrodued in Chapter 2, whih is based on the so-alled Zeldovih approximation.108



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSThe proedure is the following (see e.g. [49,137℄): i) we set up a �pre-initial� on�g-uration of the N partiles: a simple regular lattie; ii) given an input theoretial PS
Pth(k) ∝ k0, the orresponding displaement �eld in the Zeldovih approximation isapplied to the �pre-initial� point distribution. The osmologial IC are usually takento be Gaussian, and the displaements are determined by generating a realizationof the gravitational potential

Φ(q) =
∑

k

ak cos(k.q) + bk sin(k.q) , (4.5)with ak = R1

√
Pth(k)

k2
and bk = R2

√
Pth(k)

k2
, where R1 and R2 are Gaussian randomnumbers of mean zero and dispersion unity. We have seen in Chapter 2 that thisorresponds to generating a realization of a stohasti displaement �eld with PS

ĝ(k) = Pth(k)/k
2 ∝ 1/k2. The motivation for the hoie of this algorithm insteadof a simple Poissonian initial ondition (i.e. partiles randomly distributed in thesimulation box) onsists in the fat that we an ontrol the amplitude of the initialondition, as it is done in 3− d simulations.The shu�ed lattie IC: Pinit(k) ∝ k2 at small kFollowing [71℄, we use the term SL to refer to the in�nite point distribution ob-tained by randomly perturbing a perfet lattie: eah partile on the lattie, oflattie spaing ℓ, is moved randomly (�shu�ed�) about its lattie site, eah par-tile independently of all others. A partile initially at the lattie site R is thusat x(R) = R + u(R), where the random displaements u(R) are spei�ed by thefatorised joint probability density funtion

P [u(R)] =
∏

R

p(u(R)) . (4.6)The distribution is thus entirely spei�ed by p(u), the probability density funtionfor the displaement of a single partile. We study evolution from SL with thefollowing PDF:
p(u) =

{

2∆ if u ∈ [−∆,∆]
0 otherwise (4.7)Eah partile is therefore moved randomly in an interval of side 2∆ entered onthe orresponding lattie site by taking into aount the periodiity of the sys-tem. The resulting distribution is a shu�ed lattie. We assume that ∆ ≤ ℓ. Theaverage displaement of a partile is 〈u〉 = 0 and the variane of the shu�ing

〈u2〉 =
∫

du u2p(u) = ∆2.We an now estimate the PS of a SL. De�ning the Fourier transform δk of thedensity ontrast δx = n(x)−n0

n0
as

δk =

{

0 if k = 0
1
N

∑N
i=1 exp(−ikx) otherwise (4.8)we obtain

δk =
1

N

∑

n

exp[−ik(ℓn + un)] , (4.9)109



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSwhere n is an integer labelling the partiles of the system and where un is thedisplaement of the partile on the site n. For k suh that (k un) << 1, we obtain,by using the approximation exp(ix) ≈ 1 − ix − x2/2 and 〈un〉 = 0, that the PS isgiven by
P (k) = 〈|δk|2〉 ≈

1

N2

∑

n1,n2

exp[−iℓk(n1 − n2)]{1−
1

2
〈[k(un1

− un2
)]2〉} . (4.10)The independene of un1

and un2
if n1 6= n2 implies that

〈[k(un1
− un2

)]2〉 = 2∆2k2(1− δn1,n2
) , (4.11)with δn1,n2

= 1 if n1 = n2 and 0 otherwise. Therefore
P (k) ≈ k2∆2

N
+

1−∆2k2

N2

∑

n1,n2

exp[−iℓk(n1 − n2)] . (4.12)Limiting our analysis to the leading order in the behavior for small values of k, weobtain
P (k) ≈ 1

N
∆2k2 (4.13)when k is small. The SL on�gurations are therefore spei�ed by two parameters:the lattie onstant ℓ and the shu�ing parameter ∆. An alternative onvenientharaterization would be given by ℓ and the adimensional ratio ∆/ℓ.Causal power spetrum: Pinit(k) ∝ k4 at small kTo generate the intial PS in k4 at small k, we follow the argument in [2℄: we startwith an arbitrary uniform spatial point-partile distribution with a known PS. Wesuppose that eah of these partiles, alled �mother� partiles in [2℄, splits into a�loud� of m idential �daughter� partiles, where m is a onstant. Eah daughterpartile is then assumed to be displaed from its mother position by a stohastidisplaement whih may, or may not, be orrelated with the displaement of otherpartiles. In other words eah set of m partiles initially lying at the same spatialpoint �explodes� forming a �loud� of partiles around it; this proedure was alledin [2℄, a stohasti loud proess.We suppose that the displaements applied to di�erent partiles belonging to thesame mother are symmetrially distributed with arbitrary pair orrelations. One anhoose, for instane, these orrelations in order to �x ertain moments of the massdispersion of eah loud. To generate a k4 initial ondition, we apply this resultto the spei� ase that the mother distribution is a regular lattie, and we thusderive, following [2℄, the interesting small k behaviour of the PS of the daughterdistribution.For a mother distribution orresponding to a regular lattie, we an write themirosopi partile density as

n(x) =
∑

R

δ(x− R) , (4.14)110



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSwhere R is the generi lattie site. In this ase, the PS of n(x) is
Sn(k) = 2πn0

∑

H 6=0

δ(k −H) , (4.15)where the sum is over all the vetors H of the reiproal lattie but H = 0. Notethat this vanishes identially in the �rst Brillouin zone, and therefore in this regionof the k-spae the following relation holds exatly:
Sρ(k) = 1 + (m− 1)

+∞
∑

l=0

(−ik)l (u− v)l

l!
−m

∣

∣

∣

+∞
∑

l=0

(−ik)lu
l

l!

∣

∣

∣

2

, (4.16)where ρ = mn is the mirosopi partile density of the daughter partiles distri-bution, and where u and v are the displaements applied to two di�erent partilesbelonging to the same loud. Expanding the terms (u− v)l in Eq. (4.16), we obtain
Sρ(k) =

+∞
∑

l=1

(−ik)l
l!

l
∑

j=0

(−1)j
(

l

j

)

[

(m− 1)uj × vl−j −muj × vl−j
]

. (4.17)Making the additional assumption of statistial symmetry in the displaements,
p(u) = p(−u), all the terms with odd l in Eq. (4.17) vanish.Let us now analyse in detail Eq. (4.17), denoting by On(k) its term proportionalto kn. The lowest order non-zero term is n = 2:

O2(k) =
[

u2 + (m− 1)u× v
]

k2 . (4.18)It is simple to verify that [u2 + (m− 1)u× v] ≥ 0 always, as required from the fatthat Sρ(k) is a PS. This quantity, however, given our symmetry hypotheses aboutthe displaement distribution, is nothing other than
(

m
∑

i=1

ui

)2

= m
[

u2 + (m− 1)u× v
]

. (4.19)Consequently the ondition to have an identially vanishing O2(k) term, and there-fore a small k PS of order greater than two, is (∑m
i=1 ui)

2 = 0, or in other words,
m
∑

i=1

ui = 0 , (4.20)with probability one. This means that the enter of mass of eah loud does notmove away from the mother partile when the displaements are applied. Clearly, for
m = 1, this ondition an only be trivially satis�ed by applying no displaement, inwhih ase the daughter distribution is the original lattie distribution. Form = 2, itan be satis�ed non-trivially: hoosing the displaement of a �rst point with the PDF
p(u), the other partile is then displaed deterministially by (−u). The method weuse in this thesis then onsists in starting with a distribution of N partiles on aregular lattie of lattie spaing ℓ. We divide the total set of N partiles (N even)into N/2 subsets of ouple of partiles. Let us denote these subsets (i, i+ 1) where
i = 2 k+1 with k ∈ [0; N

2
− 1]. We then displae partile i with the PDF p(ui) suhthat
p(ui) =

{

ℓ if ui ∈ [− ℓ
2
; ℓ
2
]

0 otherwise . (4.21)Its neighbours (i+ 1) is then displaed deterministialy by ui+1 = −ui. 111



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSInitial veloitiesTo omplete information about the initial onditions, we must hoose the initialveloities. One possible hoie would be to onsider the system of partiles at rest,i.e vi = 0 for all i ∈ [0, N − 1]. However, in exploring the analogy with osmologialsimulation there is another hoie whih is natural. This is that orresponding tothat given by the Zeldovih approximation (whih beomes exat in 1−d) disussedin Chapter 2. This onsists in the purely growing mode of the displaement �eld inEqs. (4.2), (4.3) and (4.4) at early time, i.e. obtained by setting the oe�ients ofthe seond term in these equations to zero, suh that
uSi (ts) = ets/τdyn

(ui(0) + vi(0)

2

)

, (4.22)
uQi (te) =

( te
t0

)2/3 3
(

ui(t0) + t0vi(t0)
)

5
, (4.23)

uRF
i (te) =

( te
t0

)1/3
(

2ui(t0) + 3t0vi(t0)
)

3
, (4.24)where uSi (ts), uQi (te) and uRF

i (te) represent the displaement of the ith partile ofthe lattie between ollisions in the stati, quinti and RF models. Its only e�eton the dynamial evolution will be to make the transient to self-similarity, whihwe will disuss below, slightly shorter. We then obtain the onditions on the initialveloity �eld
vSi (0) = uSi (0) , (4.25)
vQi (t0) =

2

3t0
uQi (t0) , (4.26)

vRF
i (t0) =

1

3t0
uRF
i (t0) . (4.27)Whe then have, up to the �rst rossing/ollision

uSi (ts) = ui(0)e
ts/τdyn , (4.28)

uQi (te) = ui(t0)
( te
t0

)2/3

, (4.29)
uRF
i (te) = ui(t0)

( te
t0

)1/3

. (4.30)1.3 Choie of unitsWe now explain our hoie of units of length, mass and time for the 1 − d system.We simply �x our unit of mass equal to the partile mass, m = 1. As unit oflength we hoose the initial lattie spaing ℓ = L/N = 1, where L is the size of thesimulation box and N the total number of partiles in the system. To follow thedynamial evolution of the 1− d toy model, we hoose the unit of time onsideringEq. (4.1) and the disussion below it. Indeed, Eq. (4.1) simply inorporates thehoie of the di�erent time units: in the stati ase we hoose the so alled dynamialtime τdyn = 1√
2gn0

and in the expanding ase (quinti and RF) we onsider thedimensionless time variable τΓ = 1
3Γ

ln
(

tE
t0

). For onveniene, we �x τdyn = 1 = t0.112



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSBelow we will ompare the dynamial evolution in the stati and expanding ases.To do so it is neessary to de�ne the relation between the di�erent time variablesin the two ases (as there is a priori no onnetion between the two). An evidentpossible hoie of mapping is given by the very early time evolution (before �rstrossing) of the displaement given by Eqs. (4.28), (4.29) and (4.30). If we hoose
ts/τdyn =

2

3
ln(te/t0) and ts/τdyn =

1

3
ln(te/t0) , (4.31)in eah ase (quinti and RF) we map so that these early two displaements areidential in eah ase. This mapping Eq. (4.31) allows us to assoiate to any ex-panding simulation (orresponding to a ertain value of Γ) a �stati time variable�

ts. In the ontinuum approximation, the displaements of the partiles are relatedto the density perturbation through the ontinuity equation δ ∝ ∇u. ConsideringEqs. (4.28), (4.29) and (4.30) and the de�nition of the PS P (k) ∝ 〈|δk|2〉, we simplyobtain then
Ps(k, ts) = P (k, 0)e2ts/τdyn , (4.32)
PQ(k, te) = P (k, t0)

(te
t0

)4/3

, (4.33)
PRF (k, te) = P (k, t0)

( te
t0

)2/3

. (4.34)Considering that the PS in the stati and expanding ases are initially idential,i.e. P (k, 0) = P (k, t0) we obtain the same relation as in Eq. (4.31). This meansthat, with this mapping in these time variables, the linear regimes in the stati andexpanding ases (quinti and RF) are idential at early time. The physial meaningof this mapping extends however, as we will see, for beyond early time: the growthof displaements re�ets exatly that of the PS in the linearised approximation (f.Chapter 2). The mapping in fat relates times in di�erent models (with identialinitial onditions) at whih the PS will be idential, if linear ampli�ation is valid.We will see below that, as in 3− d, linear ampli�ation does indeed hold at all timeat su�iently small k. The mapping of time hosen therefore relates evolved on-�gurations whih remain approximately the same at the large sales where density�utuations are small.In the following, we will only refer to the stati time ts to ompare the di�erentanalysis in both the stati and expanding ases. Let us note that we an derive ageneri relation between t (i.e. the time variable in Eq. (4.1)) and the referene time
ts in the growing mode. We simply obtain from Eqs. (4.1) and (4.2) with τdyn = 1

ts = D(Γ) t , (4.35)where D(Γ) = 1
2

(

−Γ+
√
Γ2 + 4

). This gives in the quinti and RF models respe-tively
t =

√

3

2
ts and t =

√
2 ts . (4.36)113



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS1.4 Statistial measuresIn the previous hapters, we have talked about ensemble averages, that is averageson all possible realizations of a stohasti proess ρ(x, t). In pratie, what we have isonly one or at most a few realizations of suh a stohasti proess. While in statistialmehanis, ergodiity refers to equality between time average and ensemble average,here it implies equality between spae average and ensemble average. Therefore,we have seen in Chapter 2 that if the stohasti proess is ergodi, one (in�nite)realization su�es to obtain an ensemble average. Thus if we onsider a quantity Fdepending on the stohasti proess ρ(x, t) at some positions y1, . . . , yn, we denote
〈F 〉 its ensemble average and F its estimator in the spae average. We will use thisnotation in the following.The redued two-point orrelation ξ̃In order to estimate the redued two-point orrelation funtion ξ̃ de�ned in Chapter2, we alulate �rst an estimate of the onditional average density 〈ρ(x)〉p: we hooserandomly Nc partiles (entres) in the distribution resulting from one realizationof the onsidered stohasti proess and for eah of them we alulate the averagedensity in 1−d �spherial shells� of di�erent radii, taking into aount the periodiity.This an be summarised by the following formula

ρ(x, t)p ≡
1

Nc

Nc
∑

i=1

m

V (x, δx)
Ni(x, δx) , (4.37)where V (x, δx) is the �volume� of the symmetri interval entered on the ith partileof a subset of Nc < N partiles randomly hosen among the N partiles of thesystem. Clearly the result is a funtion whih does not depend on the sign of x butonly on its absolute value. An estimation of ξ̃(x, t) for x 6= 0 is then

ξ̃(x, t) ≈ ρ(x, t)p
ρ0

− 1 . (4.38)Note that we will generally restrit ourselves to sales where |x| < L/2 in order toavoid e�ets oming from the periodiity of the system. Atually if one looks atlarger sales, the estimators ρ(x, t)p gives always a value lose to ρ0.The power spetrumFor the power spetrum P (k, t) = P (|k|, t), we use the following quantity to estimateit:
P (k, t) ≈ 1

Nq

∑

k≤q≤k+δk

|δ(q, t)|2 , (4.39)where Nq is simply the number of vetor q onsidered in the sum. Note that to speedup the alulation, not all the vetor q for a given modulus are taken into aount:at large k the density of vetors onsidered is smaller than at small k. Numeriallywe simply use a logarithmi separation of the vetor k to represent the PS.114



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSThe normalized mass varianeIn the ase of the normalized variane, we hoose Nr random points in the system(i.e. not neessarily partiles of the distribution) and alulate the mass insidespheres entred on them: if Ni(R) is the number of partiles in the sphere entredon the point i and N(R, t) its average, i.e.
N(R, t) =

1

Nr

Nr
∑

i=1

Ni(R) , (4.40)then
σ2(R, t) ≈

1
Nr

∑Nr

i=1N
2
i (R)−N(R, t)

2

N(R, t)
2 . (4.41)2 Basi results: omparison with 3− dIn this setion, we fous our analysis on the dynamial evolution of a stati and 1−dequivalent of an expanding �EdS� universe (i.e. quinti model), starting with initialPS Pinit(k) ∝ k0 and k2. We present basi results, and underline the very strongqualitative similarities with 3− d.2.1 Visual inspetionThe evolution of lustering an �rstly be illustrated by a visual inspetion in on-�guration spae as well as in one-partile phase spae (also alled µ-spae). Shownin Figs. 4.3, 4.4, 4.5 and 4.6 are snapshots of di�erent initial onditions and evolvedon�gurations at inreasing time for initial PS Pinit(k) ∝ k0 and k2, in a stati andexpanding (quinti) universe, for a system of N = 105 partiles. The plots in theleft-hand panels show the number of partiles N(i) in eah lattie ell at eah time,whih is proportional to the mass density in eah ell. De�ning the number densityontrast as

δ(x) =
n(x)− n0

n0
, (4.42)where n(x) =

∑N
i=1 δD(x − xi) is the mirosopi number density and n0 is themean mirosopi density, the plots represent the evolution of δ̄(x) + 1, where thebar indiates an average over the unit lattie ell. In the phase spae plots, in theright-hand panels, eah point represents simply one partile.One sees learly that, in both the stati and expanding ases, the evolutionappears to proeed in a �bottom-up� manner: overdensities �rst develop at smallsales and subsequently at larger sales. This is typial of what is termed in 3 − dthe hierarhial formation of strutures.We note a di�erene between the ase orresponding to an initial PS Pinit(k) ∝ k0and the one orresponding to Pinit(k) ∝ k2. In the latter ase, we see learly theappearane of voids in the simulation box whose size grows monotonially in time,and whih separate overdense regions. In the ase of an initial PS Pinit(k) ∝ k0, onthe other hand, we see that, while one an distinguish learly overdensities whihemerge at inreasing sale with time, they are not separated by voids. We will115



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSreturn in Chapter 5 to these di�erenes in the ontext of a multifratal analysis ofthe lustering in eah ase.Furthemore, the sense in whih the system is representative of the evolution ofan in�nite system is manifest visually in the fat that the system does not appearto have a preferred enter - lusters form in apparently random loations withoutsensitivity to the boundaries. Indeed we do not follow the evolution for longer timesthan those shown preisely beause the system then begins to be dominated by asingle non-linear struture. This is a regime in whih we are not interested sine itis evidently strongly a�eted by �nite size e�ets. The maximal time to reah thisregime depends not only on the number of partiles N in the system (or size L ofthe simulation box), but also on the amplitude of the displaements.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

Figure 4.3: Evolution in on�guration spae (left hand panels) and in one partilephase spae - µ-spae - (right hand panels) starting with an initial PS Pinit ∝ k0 forthe stati model at time ts = 0, 4, 6, 7, 8. The unit of length is given by the initiallattie spaing ℓ = L/N and thus L = N = 105.

Figure 4.4: Evolution in on�guration spae (left hand panels) and in one partilephase spae - µ-spae - (right hand panels) starting with an initial PS Pinit ∝ k2for the stati model at time ts = 0, 6, 10, 12, 14. The unit of length is given by theinitial lattie spaing ℓ = L/N , and thus L = N = 105. 117



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

Figure 4.5: Evolution in on�guration spae (left hand panels) and in one partilephase spae - µ-spae - (right hand panels) starting with an initial PS Pinit ∝ k0 forthe expanding (quinti) model at time ts = 0, 4, 6, 7, 8. The unit of length is givenby the initial lattie spaing ℓ = L/N , and thus L = N = 105.

Figure 4.6: Evolution in on�guration spae (left hand panels) and in one partilephase spae - µ-spae - (right hand panels) starting with an initial PS Pinit ∝ k2for the expanding (quinti) model at time ts = 0, 6, 10, 12, 14. The unit of length isgiven by the initial lattie spaing ℓ = L/N , and thus L = N = 105.118



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSMemory of initial onditionsIt is interesting to ompare visually the evolution of lustering in the two ases(stati and expanding). Note that the simulations are started for eah value of nfrom idential initial onditions (i.e. the same realization of the displaements). Weshow in Figs. 4.7 and 4.8 the evolution of the density �eld, smoothed, as in previousplots, at the sale of initial lattie spaing, for initial PS Pinit(k) ∝ k0 and k2.We see that the prinipal strutures are formed approximately at the same spatialloations in the two ases. That our hoie of �time orrespondene� Eq. (4.31) isappropriate is, as we will see below, re�eted in the fat that, if we smooth thestrutures on large sale, the two on�gurations strongly ressemble one another.This is indiative of the entral role of the linear ampli�ation of density �utuationdisussed in Chapter 2, whih leads to the development of strutures from the �seed�overdensities in the initial onditions. The amplitude of the density �eld in theexpanding ase (blue representation in Figs. 4.7 and 4.8) is learly typially higherthan that in the stati ase (red representation in Fig. 4.7 and 4.8). This anbe explained by the fat that in the expanding ase there is simply an additionaldamping term: as we will disuss in detail below, the e�et of this term is thatit simply auses, in the highly lustered regions, the strutures to �shrink� in sizeompared to the stati ase. This �shrinking� is indued by the �ooling� assoiatedwith the damping term.
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Figure 4.7: Density �eld (smoothed on initial lattie spaing) for the stati (red)and expanding (blue) models obtained from idential initial ondition for an initialPS Pinit(k) ∝ k0 at ts = 8. 119
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Figure 4.8: Density �eld (smoothed on initial lattie spaing) for the stati (red)and expanding (blue) models obtained from idential initial ondition for an initialPS Pinit(k) ∝ k2 at time ts = 14.We show in Fig. 4.9, a spatial zoom in the ase of Pinit(k) ∝ k2: starting witha subsystem of width of approximately 3.104 (in units where the size of the box
L = N = 105) seleted out from the simulation box, we perform a zoom, betweeneah plot, by about a fator of �ve, i.e. eah plot shows a small part of the previousone, the sale on the x-axis being multiplied in eah ase by this fator. Althoughwe are limited in this partiular representation by the hosen resolution (we have�xed the size of the bin in the histogram equal to the initial lattie spaing), we seethat our numerial simulation gives the opportunity to resolve non-trivial lusteringin the system over a large range of sale (in 3− d it is typially limited to two or atvery most three orders of magnitude). At large sales, we observe that the struturesare formed at the same plaes in the stati and expanding ases. However, when wezoom in, we see that this orrespondene is lost. This is a re�etion of the fat thatthe non-linear physis, whih omes into play at smaller sales, wipes out memoryof the initial ondition.
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Figure 4.9: Representation of the superposition of the density �eld in the stati (red) and expanding (blue)ases for an initial power PS Pinit(k) ∝ k2. Between eah pitures a �zoom� of fator 5 is applied, i.e. eahplot shows a small part of the previous one, the sale on the x-axis being multiplied in eah ase by thisfator. We are limited by the resolution hosen.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS2.2 Development of �utuations in real spae: hierarhiallusteringIn order to distinguish the non-linear regime of large �utuations from the linearregime of small �utuations (in whih the linear �uid theory introdued in Chapter2 is expeted to be valid), it is useful to onsider, just as in 3 − d, the normalizedvariane of partile number (or mass) in intervals, de�ned in Chapter 2, setion 4.The homogeneity sale, already de�ned in Chapter 2 , and denoted λ0, marks thisross-over from large to small �utuations. An alternative de�nition of λ0 is thelength-sale at whih the normalized mass variane is of order unity, i.e.
σ2(λ0) ≃ 1 , (4.43)and σ2(x) < 1 for ∀x > λ0 (this de�nition of the homogeneity sale an however bemisleading when the average density is not a well-de�ned property of the system, asin fratal partile distributions (see e.g. [71℄), but is appropriate here where the meandensity is indeed non-zero and known exatly). Through the study of the normalizedmass variane we will probe in the following the validity of the linearized �uid theoryas well as the hierarhial nature of the lustering.We start here with the analysis of the temporal evolution of σ2(x). We show inFigs. 4.10, 4.11, 4.12 and 4.13 its temporal evolution in the stati and expanding(quinti) ases, starting with initial PS Pinit(k) ∝ k0 and k2. In eah ase, we andistinguish three distint regimes: at large sales we see a simple ampli�ation of theinitial funtional behaviour. In the ase of Pinit(k) ∝ kn with n > 1, this orrespondsto σ2(x) ∝ x−2. This behaviour simply orresponds, as explained in Chapter 2,to unnormalized mass �utuations independent of sale, whih is the most rapiddeay (proportional to the surfae) possible in any spatially homogeneous pointdistribution, i.e. σ2(x) ∝ x−d+1 where d represents the dimension of the Eulideanspae (d = 1 in our model). In the ase P (k) ∝ kn with n < 1 the large salesbehaviour simply orresponds to σ2(x) ∝ x−d+n, with d = 1. Thus for n = 0 wehave σ2(x) ∝ x−1.At small sales, we observe in all ases σ2(x) ∝ x−1. This is the shot noisebehaviour intrinsi to any suh distribution at small sales. The range of salesbetween these two limiting behaviours is that of the non-linear lustering. We seequalitatively that the �ross-over� to this non-linear regime from the linear regimeours approximately where the amplitude of the �utuations is of order unity.To study the validity of the linear theory and illustrate the �hierarhial� natureof the lustering, we onsider further the temporal evolution of the sale λ(α, t)de�ned by the relation

σ2
(

λ(α, t), t
)

= α , (4.44)where α is a hosen onstant. Let us note that if we �x α = 1, we reover thede�nition for the homogeneity sale Eq. (4.43). We represent in Figs. 4.14 and 4.15the temporal evolution of the sale λ(α, t) for di�erent values of α and for di�erentinitial PS Pinit(k) ∝ k0 and k2. For α < 1, whih orresponds to the regime ofsmall �utuations, we see that the sale λ(α, t) inreases in time, i.e. the sale atwhih linear theory would be expeted to remain valid inreases. This means that,as non-linearity develops at small-sale, homogeneity is still valid at larger sale for122



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSwhih we are still in the regime of small �utuations. This is ompletely analogousto what is observed in 3 − d simulations of hierarhial lustering, whih is generiin the evolution of 3− d simulations starting from this kind of initial ondition: theinitial small �utuations at a given �non-linear� sale are ampli�ed, as desribed bylinear theory, until the �utuations in overdense regions ollapse forming strutures.For an initial ondition with a PS with n < 1 it is simple to derive the preditionwhih follows from linear theory alone for the growth of the sale λ(α, t) for α < 1.Indeed, we have seen in Chapter 2 that for n < 1, σ2(x, t) ∼ kdP (k, t)
∣

∣

∣

k∼x−1
. Thusthe linear ampli�ation of P (k, t) disussed in Chapter 2, i.e. P (k, t) = A(t) P (k, 0)for su�iently small k, where A(t) may be infered in eah ase from the set ofEqs. (4.32), implies

σ2(x, t) = A(t) σ2(x, 0) (4.45)i.e. the variane in real spae is ampli�ed linearly also. For P (k) ∝ kn, we have
σ2(x, t) ∼ 1

xn+1 , thus
σ2
(

λ(α, t), t
)

= α = A(t) σ2
(

λ(α, t), 0
)

= A(t)

(

λ(1, 0)

λ(α, t)

)1+n

, (4.46)whih gives
λ(α, t) ∝ A1+n(t) = Rs(t) . (4.47)where Rs(t) is the saling fator derived in Chapter 2 in the disussion of self-similarity. We see in Figs. 4.14 and 4.15 that these behaviours in fat �t well thebehaviour of λ(α, t) not just for n < 1 and α < 1, but they work also for n > 1 and,at su�iently long times, for α > 1 for both ases. This is a result of the self-similarevolution of the system whih we disuss in the following setion in detail. Notethat, for n = 2, we have σ2 ∝ 1

x2 at large x, and thus σ2(x, t) ∼ R2
s(t)σ

2(x, 0) ≁

A(t) σ2(x, 0) at large x, i.e. we do not obtain the ampli�ation of Eq. (4.46).Let us note that the fat that in the ase n = 0, for α = 0.1 whih orrespondto a sale of small �utuations, the points at early time do not math the linearampli�ation predition (the line symbolizing Rs(t)) an be simply explained by thefat that the mass-variane σ2(x, t) is dominated at early times by large k.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS2.3 Development of orrelation in real spae: self-similarityWe next onsider the evolution of lustering in real spae as haraterized by theredued two-point orrelation funtion, ξ(x), introdued in Chapter 2.In Figs. 4.18, 4.19, 4.20 and 4.21, we show the evolution of |ξ(x, t)|, the absolutevalue of the orrelation funtion in a log-log plot. As expeted from the study ofthe temporal evolution of the normalized mass variane, we observe that startingfrom ξ(x) ≤ 1 everywhere, non-linear lustering (i.e. ξ(x) ≫ 1) �rst developsaround the initial interpartile distane, and then progressively develops both atlarger and smaller sales. At any given sale the amplitude of orrelation grows intime monotonially. In partiular, the sale of non-linear lustering whih we ande�ne by ξ(λNL) = 1 monotonially grows, re�eting again the hierarhial natureof the lustering disussed in the previous setions.One the orrelation has evolved in all ases a ξ emerges in whih one an in-dentify three distint regimes:1. an approximately �at (onstant) ξ(x, t) = ξmax(t) at small sale, below a sale
xmin;2. a region of strong lustering ξ with approximately power law behaviour;3. a region of weak lustering, ξ < 1, where the lustering signal beomes verynoisy.Let us now turn to the question of whether the evolution is self-similar. Asdisussed in Chapter 2, this means that the system evolves towards a behaviour

ξ(x, t) ≈ Ξ
(

x/Rs(t)
)

, (4.48)i.e. towards a dynamial saling behaviour of the orrelation funtion, where Rs(t)is the saling fator predited by the linearized �uid theory. To test this we showin Figs. 4.22, 4.23, 4.24 and 4.25 the appropriately resaled version of the previous�gures, i.e. we represent the absolute value of the orrelation funtion |ξ(x, t)| as afuntion of x/Rs(t) where Rs(t) = exp
(

2(ts−tref )

n+1

) in 1− d, with tref some arbitrarytime, has been introdued in Chapter 2. We observe that in all ases the urvesindeed superimpose well in a range of sale whih grows monotonially in time, i.e.the spatial range in whih self-similarity is valid beomes more and more extended.The �break� from self-similarity at small sales is learly assoiated with a plateau atthese sales in the orrelation funtion. Indeed suh a plateau an only be onsistentwith self-similarity if its amplitude does not evolve, whih is learly not the ase. Atlarge sale the noise in ξ makes it di�ult to assess whether self-similarity applies.We will see in the next setion that it does indeed apply as expeted at large saleswhere it re�ets the validity of linear theory.In the non-linear regime, and where self-similarity is valid, the orrelation fun-tion �ts to a good approximation in all ases
Ξ(x) ∝ x−γ , (4.49)where γ(n,Γ) depends on the index n of the initial PS and on the value of thedamping term Γ. We give in Table 2.3 the values of the power index γ(n,Γ) obtained128



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSintial PS stati (Γ = 0) quinti (Γ = 1/
√
6) RF (Γ = 1/

√
2)

n = 0 γ = 0.18± 0.03 γ = 0.20± 0.05 γ = 0.25± 0.02
n = 2 γ = 0.18± 0.03 γ = 0.34± 0.03 γ = 0.50± 0.02Table 4.1: power index γ(n,Γ) of the orrelation funtion in the self-similar regime

ΞSS(x) ∝ x−γ, for the di�erent values of n and Γ indiated. We onsider both thestati and expanding (quinti and RF) ases. The di�erent values of γ and theorresponding error bars are obtained with a linear interpolation. We see that thepower index γ depends on the index n of the initial power spetrum and the dampingterm Γ.with a linear interpolation.Note that in 3− d similar trends are observed:
• γ is independent of n for stati model (see e.g. [11℄);
• γ inreases with n in expanding (EdS) model (see e.g. [139℄).A striking di�erene between the stati and expanding ases is that xmin dereasesvery signi�antly in the expanding ase, while it remains roughly onstant in thestati ase. We will ome bak to study more arefully these behaviours in setion4 below.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS2.4 Development of orrelations in reiproal spaeWe next analyse the evolution of orrelation as haraterized by the PS for the sameases.Shown in Figs. 4.27, 4.28, 4.29 and 4.30 are the evolution of the PS in eah ofthe same four ases above. We observe in eah ase that
• at small k, there is a simple ampli�ation of the initial �utuation whih hasindeed the appropriate simple power law form. This ampli�ation orrespondsto the behaviour expeted from the linearized treatment of the equation for aself-gravitating �uid, i.e. the linear ampli�ation. This an be simply writtenin the growing mode

P (k, t) = P (k, 0) exp(2ts) , (4.50)where the relation is written in the referene time units ts;
• the range in whih the initial PS shape is maintained, i.e. over whih simpleampli�ation is observed, beomes more redued as time progresses. Thissimple ampli�ation, indeed, is observed in a range of k < kNL(t), where
kNL(t) is a wave number whih dereases as a funtion of time. The monotoniderease of kNL(t) just re�ets the hierarhial nature of the lustering. Thisis preisely the qualitative behavior one would antiipate as linear theory isexpeted to hold only above a sale whih, in real spae, beause of lustering,inreases with time;

• at all times, the PS onverges at large wave-numbers (k ≥ kN , where kN = π
ℓis the Nyquist frequeny) to the asymptoti value 1/n0. This is simply a re-�etion of the neessary presene of shot noise �utuations at small sales dueto the partile nature of the distribution.The e�et of expansion (i.e. the damping term in the equation of motionEq. (4.1)) is illustrated more learly in Fig. 4.26. It shows, at ts = 8, the PS inthe stati and expanding (quinti and RF) models starting with idential initialonditions (i.e. the same realization of the displaements). We learly see that thelinear regimes are superposed as expeted with the growing mode. This also re�etsthe e�et of the damping term in the expanding ases. In the intermediate range of

k, i.e. kNL(t) < k ≤ kN , the evolution is quite di�erent than that given by lineartheory. This is the regime of nonlinear lustering in whih the density �utuationsare large in amplitude.Let us now examine how the self-similarity disussed in previous setion manifestsitself in the behaviour of the PS. In 1− d this orresponds to the relation
k P (k, t) = k Rs(t)× P (k Rs, tref) , (4.51)where Rs(t) is the time dependent resaling of length, normalized by at some arbi-trary time tref . As explained previously in Chapter 2, the small k behaviour of thePS taken together with the fat that it is ampli�ed at small k as given by linear134
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kmax. We hoose for omparaison the evolved on�guration of the stati (Γ = 0),the quinti (Γ = 1/
√
6) and the RF (Γ = 1/

√
2) models at time ts = 8. We learlysee that the linear regimes are superposed as expeted with the growing mode, andthat the sale kmax inreases when the parameter Γ (i.e. the damping) inreases.theory then imply that the self-similar saling will be haraterized in 1− d by thefuntion

Rs(t) = exp
( 2

n+ 1

ts − tref
τdyn

)

. (4.52)To assess the validity of this in our system, we show in Figs. 4.31, 4.32, 4.33 and 4.34the temporal evolution of k × P (k, t) as a funtion of the dimensionless parameter
k×Rs(t), and taking tref = 0. At small k, we see that right from the initial time theself-similarity is indeed followed (as the resaled urves are always superimposed atthese sales). This is simply a hek on the result validity of linear theory in thisregime for an index n < 4, as antiipated above. As time progresses we see therange of k in whih the urves are superimposed inreases, extending further withtime into the non-linear regime. This is preisely what is observed in the analogous3-d simulations. Note that the behavior at asymptotially large k is onstrainedto be proportional to k/n0 at all times, orresponding to the shot noise present inall partile distributions with average density n0 and whih, by de�nition, does notevolve in time (and therefore annot manifest self-similarity).We must however notie that in the study of the temporal evolution of the PS, thebehavior at asymptotially large k (proportional to 1/n0) is di�erent from the resultthat we might expet naively from the study of the orrelation funtion. Indeed, wefound that the orrelation funtion reahes at small sales a plateau whose amplitudewould orrespond to an asymptotially large k behavior of the PS proportional to
1/nplat << 1/n0. This di�erene an be explained by the fat that the PS ontains135



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSintial PS stati quinti RF
n = 0 β = 0.02± 0.01 β = 0.14± 0.02 β = 0.25± 0.02
n = 2 β = 0.01± 0.01 β = 0.35± 0.02 β = 0.50± 0.02Table 4.2: power index β(n,Γ) of k × P (k) ∝ kβ in the self-similar regime, when

n the index of the initial PS is n = 0 and n = 2, and Γ the damping term. Weonsider both the stati and expanding (quinti and RF) ases. The di�erent valuesof β and the orresponding error bars are obtained with a linear interpolation. Wesee the dependane of β in n and Γ as observed in the orrelation funtion.a term proportional to 1/n0 whih �drowns� the signal at small sales whih we andisern in the orrelation funtion.De�ning the parameter β through the power-law relation
k × P (k) ∝ kβ (4.53)in the self-similar regime for the stati and expanding models, we an extrat fromFigs. 4.31, 4.32, 4.33 and 4.34 the di�erent values measured for this power index.The results are presented in table 2.4. We show in the non-linear regime, in the statiand expanding models, that just as for the orrelation funtion, the exponents β donot depend on n in the stati ase, but do show suh a dependene in the expandingases.As the PS is the Fourier transform of the orrelation funtion (f. Chapter 2),we expet the power indexis β(n,Γ) and γ(n,Γ), for a pure power law, to be equal.It is then interesting to ompare the results presented in Table 2.3 and Table 2.4.We see that the values of the two di�erent exponents are in agreement within thestandard numerial error in the expanding (quinti and RF) ases. In the statiase, however, we see that β and γ do not tally. We note that this di�erene is notlimited to the 1 − d study, as the same disagreement is also observed in 3 − d [11℄in whih ase P (k) ∝ k−3 and ξ(r) ∝ r−0.2 in the self-similar regime.

136



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

10
-3

10
-1

10
1

10
3

10
-5

10
-3

10
-1

10
1

P
(
k
,
t
)

k

t = 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7Figure 4.27: Evolution in time of the PS starting with an initial PS Pinit(k) ∝ k0 inthe stati ase.

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

P
(
k
,
t
)

k

t = 0
t = 2
t = 4
t = 6
t = 8
t = 10
t = 12Figure 4.28: Evolution in time of the PS starting with an initial PS Pinit(k) ∝ k2 inthe stati ase. 137



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

10
-3

10
-1

10
1

10
3

10
-5

10
-3

10
-1

10
1

P
(
k
,
t
)

k

t = 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7Figure 4.29: Evolution in time of the PS starting with an initial PS Pinit(k) ∝ k0 inthe expanding (quinti) ase.

10
-6

10
-4

10
-2

10
0

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

P
(
k
,
t
)

k

t = 0
t = 2
t = 4
t = 6
t = 8

t = 10
t = 12Figure 4.30: Evolution in time of the PS starting with an initial PS Pinit(k) ∝ k2 inthe expanding (quinti) ase.138



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

10
-4

10
-2

10
0

10
2

10
-2

10
0

10
2

10
4

10
6

10
8

k
 
*
 
P
(
k
,
t
)

k * Rs(t)

t = 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

Figure 4.31: Evolution of k×P (k, t) as a funtion of k×Rs(t) where Rs(t) is givenin Eq.4.52 starting with an initial PS Pinit(k) ∝ k0 in the stati ase.

10
-4

10
-2

10
0

10
2

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

k
 
*
 
P
(
k
,
t
)

k * Rs(t)

t = 0
t = 2
t = 4
t = 6
t = 8
t = 10
t = 12

Figure 4.32: Evolution of k×P (k, t) as a funtion of k×Rs(t) where Rs(t) is givenin Eq.4.52 starting with an initial PS Pinit(k) ∝ k2 in the stati ase. 139



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

10
-4

10
-2

10
0

10
2

10
-2

10
0

10
2

10
4

10
6

10
8

k
 
*
 
P
(
k
,
t
)

k * Rs(t)

t = 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

Figure 4.33: Evolution of k×P (k, t) as a funtion of k×Rs(t) where Rs(t) is givenin Eq.4.52 starting with an initial PS Pinit(k) ∝ k0 in the expanding (quinti) ase.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSSummary of omparison with 3− dAs far as the expanding (EdS) ase is onerned in 3− d, self-similarity is expetedto be valid, as explained in Chapter 2, in a range of n, the index of the initial PS,suh that −3 < n < 4. While there has been onsiderable disussion of the ase
−3 < n < −1 in the literature, with di�erent onlusions about the observed degreeof self-similarity (see e.g. [51℄ and [139℄), the ase n ≥ 1 has remained open. Thereason why the ase n > 1 has not been studied numerially appears to be twofold:

• �rstly, it is not of diret interest to �real� osmologial models whih desribePS with exponents in the range −3 < n < −1;
• seondly, suh initial onditions are onsidered �hard to simulate� (see e.g.[139℄).In the stati ase, a qualitative similarity seems to emerge from the 1− d and 3− d

N-body simulations: self-similarity is observed in 3−d even for n > 1 (n = 2 in [11℄),and the slope of the PS in the self-similar regime appears to be independant of theinitial spetrum.In the expanding ase, our 1 − d results show the same tendeny as the resultobserved in 3 − d (see e.g. [139℄): the slope of the PS in the self-similar regimeshows dependene on the initial spetrum. When the index of the initial spetruminreases, the slope of the PS in the self-similar regime inreases also.3 Evolution from ausal density seedsWe now onsider the ase where the initial PS is Pinit(k) ∝ k4. We treat thisase separatly beause, as disussed in Chapter 2, it orresponds to the power-lawbehaviour at whih one expets linear theory, whih we have seen is the �drivingfore� of the dynamis in the ases above, to break down. One thus expets aqualitative di�erent mehanism for the formation of strutures. As explained also inChapter 2, this orresponds to the so-alled �ausal seeds�, i.e. density perturbationsat large sale, whih ould be produed by some small sale physis obeying simplyto onservation of mass and momentum. It has not been studied in 3 − d, theprinipal reason being probably the onsiderable numerial auray needed: anyspatially unorrelated random error introdues a k2 ontribution to the PS whihan beome dominant at small k. We follow the same approah as in the ase k0and k2, starting with visual inspetion.3.1 Visual inspetionIn Figs. 4.36 and 4.37, the plots in the left-hand panels again show the number ofpartiles N(i) in eah lattie ell at eah time, whih is proportional to the massdensity in eah ell. In the phase spae plots, in the right-hand panels, eah pointrepresents simply one partile.One sees learly that, as in the ase whith initial PS Pinit ∝ k0 and k2, in boththe stati and expanding ases, the evolution appears again to proeed in a �bottom-up� manner. As before, the system is representative of the evolution of an in�nitesystem: it does not appear to have a preferred enter - lusters form in apparently141



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSrandom loations without sensitivity to the boundaries.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS

Figure 4.36: Evolution in the on�guration spae and in the one partile phase spae(µ-spae) of our one-dimensional toy model, starting with an initial PS Pinit(k) ∝ k4in a stati ase at time ts = 0, 12, 14, 18, 22. The unit of length is given by the initiallattie spaing ℓ = L/N with L = N = 105.

Figure 4.37: Evolution in the on�guration spae and in the one partile phase spae(µ-spae) of our one-dimensional toy model, starting with an initial PS Pinit(k) ∝ k4in an expanding ase at time ts = 0, 12, 14, 18, 22. The unit of length is given by theinitial lattie spaing ℓ = L/N with L = N = 105. 143



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS3.2 The power spetrumWe now study the PS as the qualitative di�erenes antiipated are most evident in
k spae. Shown in Figs. 4.39 and 4.40 are the temporal evolution of the PS in boththe stati and expanding (quinti) ases.We note that at small wave-numbers the PS shows a temporal ampli�ation in
k4. The regime in whih this temporal ampli�ation is valid dereases with time andis observed in a range k < kNL(t), where kNL(t) is a wave number whih dereasesas a funtion of time. At all times, the PS still onverges at large wave-numbers tothe asymptoti value 1/n0. However, this ampli�ation is not the one predited bylinear theory. This is illustrated in Fig. 4.38 where we plot [ P (k,t)

P (k,0)

] at small k. Indashed line is plotted for omparaison the behaviour expeted naively from lineartheory, i.e. A(t) = Rn+1
s (t) with n = 4. As antiipated we see that the linear theoryis not followed as the points are not superimposed with the linear predition. Wewill ome bak to this result in the following with the study of self-similarity.
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Figure 4.38: Temporal evolution of P (k,t)
P (k,0)

for k = 10−3, i.e. in the regime where asimple ampli�ation is observed, in the stati (left panel) and expanding (quinti)models (right panel). We also represent the funtion A(t) = Rn+1
s (t) with n = 4,where Rs(t) is the saling fator predited naively by the linearized �uid theory for

n = 4.We observe the same di�erene between the stati and the expanding ases asin the ase k0 and k2: the sale kmax at whih the PS reahes its asymptoti value
1/n0 stays approximatly onstant in the stati ase, while it translates to the rightin the expanding ase.As in the previous setion, to assess whether self-similarity applies, we showin Figs. 4.41 and 4.42 the temporal evolution of k × P (k, t) as a funtion of thedimensionless parameter k × Rs(t), where Rs(t) is the saling fator predited bylinear theory for n = 4, and taking tref = 0.In both the stati and the expanding ases, we see that right from the initialtime the self-similarity is not followed at small k (as the resaled urves are neversuperimposed). This is representative of the non-validity of the linear ampli�ationin the partiular ase k4, as expeted in Chapter 2. However, as time progresses,144



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSwe see a non-linear range of k in whih the urves are superimposed and where thisrange of k inreases with time: this means that as non-linearity develops in this limitase, we reover the self-similarity in the non-linear range with the saling fator
Rs(t) predited by linear theory.De�ning the parameter β as in Eq. (4.53) in the self-similar regime for the statiand expanding models, we an extrat from Figs. 4.41 and 4.42, using linear interpo-lation, the di�erent values measured for this power index. We obtain β = 0.43±0.01and β = 0.62± 0.01 in the quinti and RF models and β = 0.01± 0.02 in the statiase.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS3.3 Correlation funtionIn Figs. 4.43 and 4.44 we show the temporal evolution of the absolute value |ξ(x)| ina log-log plot just as in the ase n < 4. We observe a qualitative similar behaviouras previously obtained for n < 4: starting from ξ(x) ≤ 1 everywhere, non-linearorrelations develop �rst at sales smaller than the intial inter-partile distane, andafter few dynamial times the lustering develops at smaller sales.From Figs. 4.45 and 4.46 it appears that one signi�ant non-linear orrelationsare formed, the evolution of the orrelation funtion ξ(x) an be desribed, ap-proximately, by the same simple translation in time desribed in Eq. (4.48). Letus note, however, that in Fig. 4.45 the di�erent urves do not perfetly superposethemselves. This is not surprising as we expet from our study of the PS above thatself-similarity does not apply at large x. Then, as the redued 2-point orrelationfuntion is simply the FT of the PS, the orrelation funtion in the stati model(where the non-linear regime is less developped than in the expanding model) isdominated by large x.Starting with an initial PS Pinit(k) ∝ k4, we measure the values of the exponent
γ = 0.15 ± 0.05 in the stati model, γ = 0.46 ± 0.03 in the quinti model and
γ = 0.63 ± 0.01 in the RF model, using a linear interpolation. We notie againthat the resaled orrelation funtions are superimposed above a sale xmin where a�plateau� of amplitude ξmax is reahed and shows the same qualitative behaviour asobserved for n < 4.As we did previously in the ase where the initial PS Pinit ∝ k0 and k2, we anompare the power index β and γ. We see that they are in agreement within thestandard numerial error in the expanding ases (quinti and RF). However, as inthe ase k0 and k2, they do not agree again in the stati ase.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS3.4 Normalized mass varianeWe show in Figs. 4.47 and 4.48 the temporal evolution of σ2(x). Its qualitativebehaviour is very similar to that observed in the ase n = 0 and n = 2: at largesales we see a temporal ampli�ation of the initial funtional behaviour, whihorresponds to σ2(x) ∝ x−2. As we explained in Chapter 2, this behaviour simplyorresponds to mass �utuations independent of sale, whih is the most rapid deaypossible in any spatially homogeneous point distribution.At small sales, we observe σ2(x) ∝ x−1 whih is the shot noise behaviour intrin-si to any suh distribution at small sales. The range of sales between these twolimiting behaviours is still that of the non-linear lustering. Note that the ampli�-ation of the variane at large separation seen in Figs. 4.47 and 4.48 is not a resultof linear ampli�ation, just as disussed for the ase n = 2 in setion above. Indeed,as for n = 2, σ2 ∼ 1
x2 , so that self-similarity implies σ2 ∼ Rs(t) ≁ A(t)σ2(x, 0).To probe in real spae the self-similar behaviour we onsider in Figs. 4.49 and4.50 the temporal evolution of the sale λ(α, t) de�ned in Eq. (4.44).We see in Figs. 4.49 and 4.50 that, in both the stati and expanding ases, despitethe absene of linear ampli�ation of PS, self-similarity seems to emerges with thebehaviour that this would predit. Indeed, onsidering an initial PS Pinit ∝ kn with

n < 1, we have seen in Chapter 2 that σ2(x) ∝ k P (k)
∣

∣

∣

k=x−1
. Then linear ampli-�ation of the PS implies onsequently linear ampli�ation of the normalized massvariane. However, for n > 1, whih orresponds to the ase where Pinit(k) ∝ k4,the relation between the PS and the normalized mass variane is di�erent. Follow-ing the argument developped in [11℄, the integral in Eq. (2.200) in Chapter 2 with

P (k) ∝ kn with n > 1 diverges at all k, and an ultraviolet ut-o� is required toregulate it. The authors of [11℄ have shown that this ut-o� is learly in the rangein whih the ampli�ation in k spae is non-linear. Thus the evolution of this quan-tity, even at very large sales, is determined by modes in k spae whih are in thenon-linear regime.Furthermore, as in the ase k0 and k2, we see that in both the stati and theexpanding ases, we see that self-similarity propagates in time to non-linear ranges,as expeted from the analysis of the PS.
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS4 Development of the range of self-similarity andharateristi exponentsAs we have already emphasized in setion 1, one of the partiularly interestingfeatures of the 1 − d self-gravitating model is the absene of smoothing at smallsales analogous to that used in 3 − d simulations. This means that we an studyfully the development of lustering at small sales unimpeded by suh a ut-o�.We have already seen that the results above allow us to identify a lower-ut-o� toself-similarity whih we denoted xmin, and the existene of a regime below this salewhere there is non-trivial lustering. We �rst study numerially the evolution of thissale xmin and of the orresponding approximate plateau ξmax. In the expandingase we observe that there is a simple relation between them, with ξmax ∝ x−1
min.Noting that this suggests the validity of a �stable lustering� hypothesis for theevolution at small sales, like that in 3 − d whih we disussed in Chapter 2, wedetermine preisely what the predition of this hypothesis is in our 1 − d models.This leads us to an analyti predition for the exponent haraterizing non-linear(and self-similar) lustering as a funtion of n and Γ. We ompare then the exponentsmeasured numerially with this predition, �nding good agreement.4.1 Evolution of the spatial extent of non-linear SS lusteringWe have seen in the previous setion that the evolution of the lower uto� to self-similarity in on�guration spae (xmin) is di�erent in the stati and the expandingases: while in both ases the orrelation funtion appears to reah a plateau withan amplitude whih grows in time, the sale xmin remains approximately onstantin the stati ase but dereases monotonially in the expanding ase. Let us fousin the following on the expanding ase. We will ome bak to the study of the statiase at the end of this setion.We show in Fig.4.52 the evolution of xmin and ξmax as a funtion of the referenetime ts for the quinti model and an initial ondition Pinit(k) ∝ k2. Fig. 4.51illustrates the method we use to extrat this information: we onsider the same�ollapse plot� used to test for self-similarity of ξ(x, t) in the previous setion in whihwe resale the x-axis by the time-dependent fator Rs(t). We thus loate simply thetemporal evolution of the sale marking the departure from the self-similar regime(represented in Fig 4.51 by the small arrows) xmin, and then determine also theamplitude of the orresponding plateau ξmax in the orrelation funtion at eahtime.The semi-log representation of Fig. 4.52 shows an exponential derease of xminand an exponential inrease of ξmax. We observe that the result approximatelysatis�es the relation

xmin ∝ ξ−1
max ∝ exp(−ǫ ts) , (4.54)where we measure the parameter ǫ = 0.33 ± 0.03 in the quinti model (Γ = 1/

√
6)and ǫ = 0.66± 0.03 in the RF model (Γ = 1/

√
2), whatever is the value of n (n = 0,

2 and 4). Thus, the parameter ǫ appears not to depend on the power index of theinitial PS, but only on the value of the damping term Γ.154
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xmin, whih is a harateristi sale of the lustering (breaking sale invariane),is onstant in omoving oordinates. To do so, however, we must larify what wemean by �stable lustering� in our 1 − d models, beause in deriving these models,we never made use of a transformation between physial and omoving oordinatesas in 3− d.�Stable lustering� an indeed be given meaning without referene to physi-al/omoving oordinates in 1 − d through the following formulation: it is the be-haviour expeted by supposing that the lustering evolves as if it were that of adistribution made of isolated virialized systems. In the following setion we onsider155
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d2ui
dt2

+ Γ
dui
dt

= ui , (4.55)where i = 1 . . .M (< N). The assumption of isolation means we an deouplethese M equations from the other N −M partiles in the system (with N → ∞).Let us now transform these equations bak to the �rossing labelling�. At someinitial time t = 0, both labellings oinide; at t > 0 we show in Fig. 4.53 thetwo labellings whih now di�er. To illustrate the di�erene of labelling between asystem Scross of partiles rossing and a system Scoll of partiles olliding, we denoteby ai = a0 + iℓ the original position of the ith partile in Scoll on a regular lattie,where a0 represents an arbitrary origin of the x-axis and ℓ = 1/n0 is the lattiespaing. We then write xi the position of the partile i in Scoll , i.e. xi < xi+1 ∀i156
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∆NI =

(N<
I (t)−N>

I (t)

2

)

−
(N<

I (0)−N>
I (0)

2

)

, (4.56)where N<
I (t) (respetively N>

I (t)) represents the number of partiles on the left(respetively on the right) of the partile I at time t, we an rewrite the fore onthe partile as
Fi = FI = ui = xi − ai = xI − ai = xI − aI+∆NI

= xI − aI −
[

(N<
I (t)−N>

I (t)

2

)

−
(N<

I (0)−N>
I (0)

2

)

]

ℓ . (4.57)Denoting by xCM = 1
M

∑

I=1..M xI the position of the enter of mass of the system,and noting that 1
M

∑

I=1..M

(

N<
I (t)−N>

I (t)

2

)

= 0 we obtain
d2

dt2
(xI − xCM ) + Γ

d

dt
(xI − xCM) =

(

N>
I (t)−N<

I (t)

2 n0

)

+ (xI − xCM ) . (4.58)The gravitational ontribution thus divides into two terms: fgrav =
(

N>
I (t) −

N<
I (t)

)

/2 n0 just as in the �nite 1− d system; the only e�et of the ini�nite systemis thus the appearane of the bakground with fback = (xI−xCM )(t). We also denotethe damping term by fΓ = Γ d
dt
(xI − xCM ).Evolution of an isolated overdensityLet us onsider now an overdense isolated subsystem, i.e. M

Ls
= ns >> n0 (where

Ls is the spatial extent of the subsystem of M partiles). It is simple to see that inthis ase, assuming Γ ∼ 1, one expets the evolution to be haraterized by quite157



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSdi�erent time sales assoiated with the terms fgrav, fΓ and fback. For fgrav the har-ateristi time sale an be expeted to be τgrav ∼√Ls n0

M
∼
√

n0

ns
<< 1. One thenhas to ompare it with the timesales assoiated to fΓ, i.e. τΓ ∼ 1
Γ
∼ 1 and fbacki.e. τback ∼ 1. The timesale assoiated with the gravitational term is thus muhshorter than that assoiated with the damping (expansion) and the bakground.Now Eq. (4.58) without fback and fgrav is simply the equation of motion of Mpartiles of a �nite 1 − d self-gravitating system, whih are known to evolve to avirialized QSS on the timesale τgrav [90, 158℄. We would then expet to be able totreat the full system in an adiabati approximation, in whih we assume that thedamping (and bakground) term auses the system to evolve while remaining viri-alized at all times. Let us neglet for the moment the bakground term. Given thatthe term fgrav is a onservative fore, we an then de�ne the assoiated mehanialenergy E = K + U , where K and U are respetively the kineti and the potentialenergies, and write for the full system,

dE

dt
= −Γ

(dxI
dt

)2

= −2ΓK . (4.59)Considering now the adiabati approximation disussed above, i.e. assuming thatthe system is alway virialized, we have 〈E〉 = 〈K〉+ 〈U〉 = 3 〈K〉 sine we have thevirial relation 2 〈K〉+ 〈U〉 = 0. We an approximate Eq. (4.59)
3
d〈K〉
dt

= −2Γ〈K〉 (4.60)whih gives in the appropriate hoie of time variable
〈K〉 ∝ exp(−2

3
Γt) and 〈U〉 ∝ exp(−2

3
Γt) . (4.61)By simple dimensional analysis we infer that

〈v2I 〉 ∝ exp(−2

3
Γt) and 〈Ls〉 ∝ exp(−2

3
Γt) , (4.62)i.e. the e�et of the damping is simply to resale the whole system slowly in spaeand veloity. Thus our 1−d models behave as if there is an �e�etive� physial oor-dinate related to the omoving one through the relation xphys = exp

(

− 2
3
Γt
)

xcom.Let us ompare the result obtained in Eq. (4.61) with those given through thestudy of the dynamial evolution of xmin. Using the relations derived in setion 1.3whih introdues the relation between the appropriate time variable and the statitime ts we obtain
〈Ls〉 ∝ exp(−ts

3
) and 〈Ls〉 ∝ exp(−2

3
ts) (4.63)in the quinti and RF models respetively. This is in agreement within the numerialerrors with the values of the parameter ǫ, de�ned in Eq. (4.54), given above, and alsowith the exponent measured by Aurell et al. in [9℄ diretly for an isolated struture.We have then identi�ed the behaviour expeted of a �nite virialized struture withthat observed to �t xmin. We thus make the hypothesis that, up to this sale, thedistribution is well desribed as a set of virialized independent lusters (of size xmin).158



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSNumerial simulation of an isolated subsystemIt is straightforward to test numerially the auray of this predition for the be-haviour of an isolated subsystem: we simply evolve the same in�nite system we havebeen onsidering, but now for an initial ondition ontaining only a single loalizedoverdensity. More spei�ally we onsider N = 103 partiles initially distributedin a region of size Lc = 103 in a box of size L = 107, i.e. n0 = N
L

= 10−4 and
nc = N

Lc
= 1 so that it orresponds to an overdensity of magnitude nc/n0 = 104.This initial ondition make the bakground term, as well as the damping term, neg-ligible in omparison with the gravitational term (fback/fgrav ∝ 10−4 in both thestati and the expanding ases). It also learly separates the timesale τΓ and τgravas τΓ/τgrav ∼ 102Γ. To omplete the numerial desription of our system it is on-venient to use di�erent time units to those previously onsidered. We then de�ne a�nite dynamial time unit

tfinitedyn =

√

1

gnc
, (4.64)where g = 1/2 n0, whih is the harateristi time for the �nite overdensities' evo-lution under the mean �eld fore. It is interesting to ompare this time with thein�nite dynamial time τdyn we de�ned for the referene time we used in our analysisabove, i.e.

τ finitedyn =

√

2
n0

nc
∼ 10−2 τdyn . (4.65)For onveniene in the simulation we hoose our oordinate system suh that theentre of mass of the system is at rest (i.e. after distributing the partiles in ourinitial ondition we add a spatial translation and a onstant veloity to all partilesto satisfy this ondition).Temporal evolution of the dynamial observablesFor the initial ondition just desribed, we study the evolution of di�erent observ-ables: the kineti energy K, the potential energy U , the virial ratio V = 2K

U
and aparameter φ = 〈xv〉

〈x〉〈v〉 − 1 introdued in [90℄. In a typial quasi-stationary state thisparameter is onstant and di�erent from zero.In Figs. 4.55 and 4.56 are represented the evolution of the virial ratio and theparameter φ as a funtion of time in both the stati and the expanding ases. Welearly see two stages in the marosopi evolution (f. Chapter 1): a �rst stageof violent relaxation during whih all quantities �utuate strongly before settlingdown to behaviours whih appear to �utuate about a well de�ned average, andspei�ally about unity for the virial ratio and about a value di�erent from zero forthe parameter φ. This last parameter is learly non-zero on muh longer time salesthan that haraterizing the virialization and indiating a dynamial equilibriumwhih is not the thermodynami equilibrium of this model (f. [90℄).In Fig. 4.54 we see that the kineti and the potential energies of the stati modelreah a value independent of time, whih is illustrated in the phase spae evolution bya virialized struture of onstant size. A di�erent behaviour is observed in Fig. 4.54for the expanding (quinti) model: kineti and potential energies dereases in timeas exp(−τfinite/3) ∝ exp(−ts/3). This is in agreement with our derivation of 〈v2I 〉and 〈Ls〉 in Eq. (4.62) above and with the values of the parameter ǫ. 159
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CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITS4.3 Predition of exponents of power-law lustering (expand-ing ase)We derive now the exponent predited by this �stable lustering� hypothesis. As-suming the power-law behaviour ξSS(x) ∝ x−γ (whih orresponds to a PS PSS(k) ∝
kβ−1 with β = γ) for the redued 2-point orrelation funtion in the non-linear self-similar regime, we fous on the study of the evolution of the sales xmin, markingthe break from power-law behaviour at small sales. The evolution of xNL is givenby the self-similar behaviour xNL(t) ∝ Rs(t) and ξNL(t) ≈ 1. Through the hypoth-esis that lustering up to the sale xmin is produed essentialy by isolated virializedstrutures, we have shown that xmin(t) ∝ ξ−1

max(t) ∝ exp(−2
3
Γt).Assuming that xNL = xmin at the initial time, it is then possible to determinethe value of the exponent γ (and onsequently β) through the relation

γ(n,Γ) = −
(

ln(ξmax(t))− ln(ξNL(t))

ln(xmin(t))− ln(xNL(t))

)

. (4.66)whih gives the general expression
γ(n,Γ) =

2
3
Γ/D(Γ)

2
3
Γ/D(Γ) + 2

n+1

, (4.67)sine Rs(t) ∼
(

ets
)2/(1+n) ∼

(

eD(Γ) t
)2/(1+n) and xmin ∼ e−

2

3
Γ t ∼ ξ−1

max. We simplyobtain in the quinti and RF models respetively
γ(n, 1/

√
6) =

n+ 1

n+ 7
and γ(n, 1/

√
2) =

n+ 1

n+ 4
. (4.68)We see in Tab. 4.3 that this result agrees with the numerial predition of β and γ.This shows that we an explain very well the exponent haraterizing lustering forthe expanding ase.intial PS Quinti RF Quinti (simulation) RF (simulation)

n = 0 γ = 1/7 γ = 1/4 γ = 0.14± 0.02 γ = 0.25± 0.02
n = 2 γ = 1/3 γ = 1/2 γ = 0.35± 0.02 γ = 0.50± 0.02
n = 4 γ = 5/11 γ = 5/8 γ = 0.43± 0.01 γ = 0.62± 0.01Table 4.3: Theoretial and numerial values of the parameter γ(n,Γ), the exponentof the power-law behaviour of the redued 2-point orrelation funtion in the self-similar regime. We onsider the expanding (quinti and RF) models. We see thattheoretial results and numerial measures are in agreement within the standardnumerial error.4.4 Exponent of the power-law lustering in the stati limitLet us now return to the analysis of the stati model and underline its di�erenewith the expanding one. We expet from our analysis that in the stati model, theabsene of damping (Γ = 0 in Eq. (4.1)) prevents the system from shrinking. Then161



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITSthe size of the smaller strutures should remain unhanged. This is what is observedin the analysis of the orrelation funtion in setion 2.3 where the sale xmin staysroughly �xed during the dynamial evolution of the system. However, the amplitudeof the plateau, ξmax, inreases. Thus Eq. (4.54) is not followed in the stati limit.If we ompare the inrease of the amplitude ξmax in the stati and expanding ases,we see that this amplitude inreases by a fator of less than 10 in the stati ase,while it inreases by a fator of more than 100 in the expanding ase. This suggeststhat the inrease of ξmax in the stati limit would be due to a �seond order� e�et,ompared of Eq. (4.54), whih is negligible in the expanding ases (for su�ientlylarge Γ). Considering our numerial result for the exponent γ in Tab. 2.3, we ouldpostulate a generalization of Eq. (4.67). Given that in the stati limit the observed
γ is independent of n, one might suppose a generalization to

γ(n,Γ) =
2
3
Γ/D(Γ) + ν 2

n+1
2
3
Γ/D(Γ) + 2

n+1

. (4.69)where ν is simply the n-independent exponent measured for the stati ase inTab. 2.3, i.e. ν = γ(n, 0) = 0.18 ± 0.03. Suh an ansatz would orrespond toan ampli�ation of ξmax (additional to stable lustering) proportional to Rs(t), i.e.
ξmax ∼ e

2

3
Γ t Rs(t)

γ(0).5 ConlusionIn this hapter, we have presented the results of the numerial investigation of thedynamial evolution of 1 − d self-gravitating toy models, starting with a lass ofinitial onditions analogous to those studied in osmology: latties perturbed toprodue an initial PS Pinit(k) ∝ kn at small k. We found that, when the index nof the initial PS is equal to 0 and 2, there are very strong qualitative similaritiesbetween the evolution of the 1− d and 3− d systems. We have observed spei�allythe hierarhial nature of the lustering and brought to light the mehanism oflinear ampli�ation determining the growth of non-linearity sale. Moreover, wehave shown that �self-similarity� is indeed observed in 1 − d system in both thestati and expanding (quinti and RF) ases just as in 3− d.An interesting result is that qualitative di�erenes an be identi�ed between thestati and expanding ases. The shape of the orrelation funtion (or the power spe-trum) has appeared to be a funtion of the index n of the initial PS in the expandingase, and is independent of this index in the stati ase. Moreover the value of thedamping term Γ, whose di�erent values orrespond to di�erent expanding model(Γ = 1/
√
6 and Γ = 1/

√
2 represent the quinti and RF models respetively), hasan in�uene on the shape of the orrelation funtion or the power spetrum, andthen on the exponent of these two statistial measures in the self-similar regime.This again oinides with 3− d results.The 1− d self-gravitating model has also given us the opportunity to investigateeasily struture formation in the limit of �ausal �utuations�, i.e. P (k) ∝ k4 atsmall k, a numerially di�ult ase whih has not been explored in 3 − d. Wehave shown that, di�erently to the ase where P (k) ∝ k0 or k2 at small k, theampli�ation of the PS at small k is not the one we ould expet from a naive linear162



CHAPTER 4. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SELF-SIMILARITY AND ITS LIMITStheory. However, despite the non-validity of the linear ampli�ation of the small
k PS, the non-linear struture formation does show asymptotially a self-similarevolution.The 1 − d toy model allowed us to probe the development of self-similarity atsmaller sales and its range of validity. Suh a study is impossible in 3−d due to thepresene of smoothing at small sale. This investigation allowed us to identify thelower ut-o� xmin marking the end of the self-similar regime at small sale. We haveshown that this ut-o� was explained naturally by a �stable lustering� hypothesisand we have shown that the exponent observed is in fat that expeted for this ase.Then as we know the temporal behaviour of the lower and upper ut-o�, we anthen determine the exponent in self-similar regime in terms of the index n of theinitial PS and the damping term Γ.We must however disuss the omparaison we made with 3− d stable lustering:in 1− d model, we envisage virialization only as valid up to the sale xmin, i.e. onlysmallest virialized strutures an be supposed to be stable (at the same sale wherethe self-similarity break down, and not in the self-similar regime itself). This willbe explored further in the next hapter. We will see that we an in fat onsider, ina statistial sense, the strutures in the self-similar regime to be virialized, but thestable lustering does not apply beause they are not isolated.
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Chapter 5Dynamis of in�nite one dimensionalself-gravitating systems: saleinvariane, halos and virializationIn this hapter we explore and haraterize further the properties of the partiledistributions produed in the 1 − d self-gravitating models we have studied in theprevious hapter. In partiular we fous our analysis on two distint approahes.We start with a lassial fratal analysis whih is useful in partiular to answerthe following question: does the power-law behaviour observed in the orrelationfuntion orrespond to a fratal-type distribution in this range of sales? In agree-ment with previous work of Miller et al. [112�114℄ we �nd that the answer is in thepositive, and we extend some of the results whih they have reported notably to thease where the initial power spetrum Pinit(k) ∝ k4 at small k.In a seond approah, we perform an analysis analogous to that now used anoni-ally in 3−d N-body simulations in osmology in whih the distribution is desribedas a olletion of �nite �halos�. As disussed in the introdutory hapter 2, these areenvisaged to be smooth virialized strutures with properties given by a few param-eters. Suh a desription, as it learly does not orrespond to a distribution withsale invariant properties, is at odds with the fratal desription whih emerges fromthe �rst part of this hapter. We will see that a desription in terms of approxi-mately virialized substrutures may nevertheless be valid, preisely in the regimewhere there is fratal lustering. The substrutures are, however, not smooth stru-tures with a harateristi size; they must be de�ned as a funtion of an arbitrarilyhosen sale. We interpret our results to mean that in the regime of non-linearfratal lustering the distribution an be said to orrespond to a kind of �virializedhierarhy�.1 Tools for fratal analysisFratals have been invoked to desribe many physial phenomena whih exhibit self-similarity (see e.g. [123℄). Fratal geometry deals with the objets whih are highlyirregular and annot be handled by the tools of di�erential geometry. A geometriobjet an in general be desribed in terms of its topologial dimension whih isan integer that de�nes the number of oordinates needed to speify the geometri165



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONobjet. Loosely speaking a fratal is a shape that tends to have a saling property,implying that the degree of its irregularity and/or fragmentation is idential at allsales. A single de�nition of fratal would be restritive and it would be best toonsider fratals as a olletion of tehniques and methods appliable in the studyof the irregular, broken and self-similar geometrial patterns [104℄. It seems best toregard a fratal as a set that has properties suh as those desribed below: whenwe refer to a set as a fratal, we will typially keep in mind that this set has a �nestruture, i.e. one has to look for detail on all aessible sales. It is too irregularto be desribed in traditional geometrial language, both loally and globally. Thisset whih we all a fratal, often has some form of self-similarity, approximate orstatistial. Although the onept of non di�erentiable geometry has been subse-quently used in many physial and mathematial appliation, the onept of fratalobjet has been expliitly introdued and formalized by Mandelbrot (see e.g. [104℄).A given fratal shape an be haraterized by more than one de�nition of frataldimension, and they do not neessarily need to oinide with eah other. There-fore, an important aspet of studying a fratal struture (one it is haraterized asself-similar in some way) is the hoie of a de�nition for fratal dimension that bestapplies to, or is derived from, the ase in study.The approah we use in the following is a multifratal analysis of our simulateddistribution of points [80℄. A multifratal is an extension of the onept of fratal. Itinludes the possibility that the self-similar behaviour of partile distributions maybe di�erent in di�erent density environments.1.1 The Hausdor� DimensionOne of the most basi aspets of a set is its dimension whih gives a quantitativeharaterization of its geometrial struture. An important step in the understand-ing of fratal dimensions is the Hausdor� dimension [104℄. It an take non-integervalues and was found to oinide with many other de�nitions. Hausdor� used theidea of de�ning measures using overs of point sets. To de�ne the Hausdor� di-mension of a subset S ⊂ R
p, let us onsider a overing of the set by p-dimensionalneighborhoods, the ith of whih has a linear size ǫi. The Hausdor� dimension DHis the ritial dimension whih the Hausdor� measure Hd(ǫ) passes from zero to anin�nite value:

Hd(ǫ) = inf
∑

i

ǫdi →
{

0 if d > DH

∞ if d < DH
(5.1)and where the in�mum extends over all the possible overings subjet to the on-straint that any ǫi 6 ǫ.The de�nition proposed by Mandelbrot for a fratal [104℄ is �A fratal is a setfor whih the Hausdor� dimension stritly exeeds the topologial dimension�. Thetopologial dimension an be simply de�ned as the number of independent diretionsin whih one an move around a given point of the set. Smooth idealized forms like aplane and a ube, where the topologial dimension equals the Hausdor� dimension,are non-fratal and are ommonly alled homogeneous or ompat. Whenever a sethas a non-integer Hausdor� dimension it is a fratal. This is su�ient but not aneessary ondition [71℄.166



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONThe Hausdor� dimension de�ned so far provides a de�nition of fratal dimensionfor deterministi fratals, i.e. lassial fratal sets in a mathematial idealized way.Although some of these lassial fratals an be used to model physial strutures,what is neessary is to disuss strutures that are statistially self-similar, whihare enountered in natural phenomena. The �rst tool to extrat information is thebox-ounting dimension, also alled the apaity of the set. It provides a relativelysimple and appealing way of assigning a dimension to a set in suh a way that ertainkinds of sets are assigned a dimension whih is not an integer.1.2 Box Counting DimensionIn this approah the irregular distribution of partiles is overed with a set of ells ofsize ℓcell, and the number of ells are ounted whih ontain part of the fratal. Thissize ℓcell is varied over a range, and the resulting number of ells required to overthe distribution of points gives the number N(ℓcell). Obviously N(ℓcell) will inreaseas the size ℓcell dereases. If we proeed this way and �nd N(ℓcell) for smaller valuesof ℓcell, we are able to plot a graph of N(ℓcell) versus ℓcell, for di�erent grid sizes. Ifasymptotially in the limit of small ℓcell we reah the relation
N(ℓcell) ∝ ℓ−D

cell , (5.2)we an de�ne the fratal dimension D. To aomplish the determination of thisfratal dimension we �nd the slope of ln (N(ℓcell)
) plotted as a funtion of ln(ℓcell).We then get the expression for the box-ounting dimension

Db ≡ lim
ℓcell→0

ln
(

N(ℓcell)
)

ln
(

1/ℓcell
) . (5.3)If the limit does not exist then one must talk about the upper box-ounting dimensionand the lower box-ounting dimension whih orrespond to the upper limit andlower limit respetively in the expression above. In other words, the box-ountingdimension is stritly de�ned only if the upper and lower box-ounting dimension areequal. The box ounting dimension Db is, in essene, a saling rule omparing howa pattern's detail hanges with the sale at whih it is onsidered. It is the mostommonly used method of alulating dimensions. Its advantage lies in the easy andautomati omputability provided by the method, as it is straightforward to ountells and maintain statistis allowing dimension alulation.Note that the box-ounting dimension deals only with the number of requiredoverings. This de�nition has no regard to the number of points ontained insideeah of the overing ells. In this sense, suh a dimension depends on the �shape�of the distribution. In this way they provide a purely geometrial desription, whileno information is given about the lumpiness, as by orrelation funtions, disussedin Chapter 2, do.In order to extend the desription in terms of fratal dimensions, so as to in-lude the lustering properties of a distribution, we need to introdue a probabilitymeasure, so that adequate information about the lustering of the distribution isavailable. 167



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION1.3 Generalized dimensionThe de�nition of fratal dimension just introdued represents a partiular ase of aontinuous sequene of saling indies, known as the multifratal spetrum of gen-eralized dimensions [80℄. To de�ne it, let us partition eah spae into ells of length
ℓcell. At eah time of observation in the simulation, a measure µi(t) = Ni(t)/NT isassigned to ell i, where Ni(t) is the population of ell i, i.e. the number of partilesin the ell, at time t and NT is the total number of partiles in the simulation. Wethus de�ne the sum over all oupied ells, i.e. the e�etive partition funtion

Cq =
∑

i

µq
i =

∑

i

(

Ni

NT

)q

. (5.4)If in some range of ℓcell the quantity Cq has a saling behaviour
Cq ∝ ℓ

τ(q)
cell , (5.5)with a oe�ient depending possibly on q but not on ℓcell, its exponent τ(q) isde�ned as the onstant value, in this range, of

τ(q) = lim
ℓcell→0

lnCq

ln ℓcell
. (5.6)The generalized dimension of order q, named also the Renyi dimension, is de�nedas

Dq ≡
τ(q)

q − 1
=

1

q − 1
lim

ℓcell→0

lnCq

ln ℓcell
, (5.7)and appears as a generalization of the Hausdor� dimension. The box-ounting di-mension Db is simply obtained putting q = 0 in Eq. (5.7) and is alled D0.To take into aount the di�erent natural measures of the ells it is usual tointrodue notably the quantities D1, obtained by taking properly the limit q → 1,and D2. D1 is alled the information dimension sine it is related to the informationentropy of the measure, i.e. it is related to the rate of information loss as theresolution sale inreases [71℄. It gives the fratal dimension of the points on whihthe measure is mostly onentrated. D2 is the orrelation dimension, originallyintrodued by Grassberger and Proaia (see e.g. [77℄), and gives an importantharaterization of the sale-invariant properties of a fratal set. The orrelationdimension an be easily related to the measured power-law shape of the 2-pointorrelation funtion de�ned in Chapter 2. As a omplete statistial desription ofa given point distribution requires the knowledge of orrelations or moments of anyorder, a omplete haraterization of the saling properties of a fratal set shouldrequire the introdution of the hierarhy of saling indies. Thus, as q inreases above

0, the Dq provide information on the geometry of ells with higher population. It iswell established that, for an homogeneous fratal, all of the generalized dimension areequal, while for an inhomogeneous fratal it is a dereasing funtion of its argument,i.e. the existene of several values for Dq as a funtion of q in a given range of ℓcell,reveals di�erent saling behaviours for ells of the same size lying in dense or inunderdense regions (see e.g. [123℄).168



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONIn pratie, it is not possible to take the limit ℓcell → 0 with a �nite sample.Instead, one looks for a saling relation over a substantial range of ln(ℓcell) with thehope that a linear relation between lnCq and ln(ℓcell) ours, suggesting power lawdependene of Cq on ℓcell. Then, in the most favorable ase, the slope of the linearregion should provide the orret power and, after dividing by q−1, the generalizeddimension Dq. Following [107℄, if saling an be found, either from experiment oromputation, over three deades of ℓcell then we typially infer that there is a goodevidene of fratal struture.1.4 Relation to 2-point analysisPart of our goal is to illustrate how the fratal analysis an be related to the study ofthe lustering properties of the distribution of points through statistial tools suhas the redued orrelation funtion. In our study of the sale-invariant properties ofthe fratal set, we followed the temporal evolution of the orrelation dimension D2.As this an be related to the measured power-law shape of the 2-point orrelationfuntion, it is interesting to ompare the values obtained for D2 with the exponents
β and γ de�ned in hapter 4 generated by the PS and the orrelation funtionrespetively of the self-similar regime, i.e. P (k) ∝ kβ−1 and ξ(x) ∝ x−γ. It is easyto show this relation. Let us onsider the probability Ci(r) of �nding ni(< r) pointsout of the N points of a set within a distane r from xi,

Ci(r) =
1

N

N
∑

j 6=i=1

Θ
(

r − |xi − xj |
)

=
ni(r)

N
, (5.8)where Θ(x) represents the well-known Heaviside step funtion. We then introduethe orrelation integral

C(r) =
1

N
lim

N→∞

N
∑

i=1

Ci(r) , (5.9)whose saling in the limit r → 0 de�nes the orrelation dimension, D2, aordingto C(r) ∝ rD2. Following the de�nition of the 2-point orrelation funtion givenin [71℄, it is easy to see that it an be related to the orrelation integral aordingto
C(r) =

∫ r

0

dr
(

1 + ξ(r)
)

. (5.10)As the orrelation funtion behaves as a power-law ξ(x) ∝ x−γ we obtain the relation,
D2 = 1− γ = β , (5.11)where the seond equality simply omes from the fat that the PS is the Fouriertransform of the orrelation funtion.2 Fratal analysis of evolved self-gravitating distri-butionsWe now apply the tools desribed in the previous setion to analyse the lustering inreal spae whih emerges in the toy models we have studied in the previous hapter.169



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONWe explore the same range of initial onditions as in the previous hapter (i.e. initialPS with Pinit(k) ∝ kn at small k for n = 0, 2 and 4) and the same range of models(stati, quinti and RF), and analyse exatly the same simulations with N = 105partiles. We also ompare our results with those reported previously by Miller etal [112�114℄. All our results apply to the same simulations with N = 105 partilesreported in the previous hapter.If it exists, a saling range of ℓcell is de�ned as the interval on whih plots of lnCqversus ln(ℓcell) are linear. For the speial ase of q = 1 we plot −∑µi lnµi versus
ln(ℓcell) to obtain the information dimension. If a saling range an be found, Dq isobtained by taking the appropriate derivative. To probe the multifratal property,we limit our analysis to the generalized dimension Dq for q = 0, 1, 2 and 10. Thislatter large value of q has been hosen arbitrarly to probe for the multifratality ofthe distributions.2.1 AlgorithmTo perform the numerial fratal analysis, we simply follow the reipe introduedin setion 1.3, i.e. we partition the on�guration spae into ells of length ℓcell (ata given time of observation). For eah length of ell lcell, we assigned a measure
µi(t) = Ni(t)/NT to ell i, where Ni(t) is the population of ell i and NT is thetotal number of partiles in the simulation. We thus perform the sum over alloupied ells, i.e. the e�etive partition funtion Cq =

∑

i µ
q
i =

∑

i

(

Ni

NT

)q de�nedpreviously.We start with a single ell whose size is the same as the box size. We thenderease the size ℓcell of the ell, inreasing the number of ells Ncell in the box, andsatisfying the relation L = Ncell × ℓcell, where L is the total size of the simulationbox. We simply derease the size of the ell by a fator 2, i.e. the number of ellsin overing the on�guration spae is Ncell = 2n, where n is an integer whih ountsthe number of iterations. As we will disuss immediately below, the distributionitself de�nes a lower uto� to the value ℓcell we should onsider in any ase.2.2 Temporal evolution of the generalized dimensionsWe are interested in the temporal evolution of the generalized dimension in theon�guration spae. In Figs. 5.1 and 5.2 we onsider the orrelation dimension D2,starting with an initial PS Pinit(k) ∝ k2 in the stati and expanding (quinti) ases.As time progresses three di�erent regimes an be learly distinguished:
• for very small ℓcell, below a sale we indiate in Figs. 5.1 and 5.2 as ℓspar, wehave a trivial saling behavior indiative of the so-alled sparseness limit, i.e.
ℓcell is su�iently small so that no box ontains more than one point. Belowthe sale denoted by ℓspar in Figs. 5.1 and 5.2, Ni(t) = 0 or 1 and the numberof oupied boxes is equal to the total number of partiles NT in the system.Thus Cq =

∑NT

i=1

(

1
NT

)q. The slope of 1
q−1

lnCq versus ln(ℓcell) is then zero;
• for the largest value of ℓcell, above the sale ℓunif in Figs. 5.1 and 5.2, wehave a trivial saling behavior indiative of the large sale uniformity of the170
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Figure 5.1: Temporal evolution of 1
q−1

ln(C(q, ℓcell)) versus ln(ℓcell) in on�gurationspae for the stati model for q = 2, and starting with an initial PS Pinit(k) ∝ k2.distribution. Above ℓunif , Ni(t) ≈ NT

ℓcell
and the number of oupied ells issimply equal to the number of ells Ncell = L/ℓcell. The slope of 1

q−1
lnCqversus ln(ℓcell) is then equal to unity;

• intermediate between these two regions, between the sales ℓmin and ℓmax, wehave a saling behavior whih orresponds to the range where non-trivial non-linear lustering develops, and in whih we fous our multifratal analysis:the slope of 1
q−1

lnCq versus ln(ℓcell) then takes an intermediate value betweenzero and one in the range ℓmin ≤ ℓcell ≤ ℓmax (see Figs. 5.1 and 5.2). Theemergene of a saling regime would indiate a fratal behaviour of the non-linear lustering. We expet that this range to orrespond to the range ofsale invariant lustering indiated by the analysis of the 2-point orrelationfuntion.We note that there are also two distint transient regimes between these threedi�erent saling regions. Firstly, there is a range of ℓcell between the sparsenesslimit and the self-similar regime, i.e ℓspar ≤ ℓcell ≤ ℓmin, whih would orrespondin the 2-point orrelation analysis in Chapter 4 to the lustering signal present atsales below those of the saling regime, and where the orrelation funtion is �at.The seond transient regime orresponds to a range of ℓcell between the self-similarregime and the sale of uniformity, i.e. ℓmax ≤ ℓcell ≤ ℓunif , and would orrespondto the �quasi-linear� regime where the amplitude of the relative density �utuationsis of order unity or a little larger (see e.g. [22℄).A qualitative inspetion shows that the observed size of eah saling range de�nedpreviously depends on the elapsed time into the simulation, as ℓmin and ℓmax evolve171
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Figure 5.2: Temporal evolution of 1
q−1

ln
(

C(q, ℓ)
) versus ln(ℓ) in on�guration spaefor the quinti model for q = 2, and starting with an initial PS Pinit(k) ∝ k2.in time. This evolution, however, is di�erent in the stati and expanding ases:the sale ℓmin learly dereases in time in the expanding ase, whereas it staysapproximately onstant in the stati ase. Basing our investigation on the 2-pointanalysis of Chapter 4, we expet the sale ℓmax to orrespond to the sale of non-linearity, above whih one rosses over to a uniform distribution, and the sale ℓminto math with the lower ut-o� to self-similarity, xmin, introdued in Chapter 4.Shown in Fig. 5.4 and 5.3 are the evolution of the sales ℓmin and ℓmax for theinitial PS Pinit(k) ∝ k2 in the stati and expanding (quinti) ases, de�ned with theuse of a linear regression of the orrelation dimension in the self-similar range. Asantiipated, these behaviors are preisely those we have observed in the previoushapter for the sale of self-similarity, ℓmin ∝ exp(−2

3
Γt) in the expanding ase, andfor the sale of non-linearity, ℓmax ∝ Rs(t) in both the stati and expanding ases,whih follows the behavior predited from linear theory.2.3 Dependene of exponents on initial onditions and modelWe fous now our analysis on the numerial assessment of the di�erent fratal dimen-sions Dq in the range where lustering is non-linear and self-similar. To guaranteethat the fratal struture is fully developed, we onsider the most evolved on�gu-rations in time in whih the range of non-linear lustering is greatest. We will seethat it is possible to �nd good saling over more than three deades in ℓcell.Following the de�nition of the generalized dimension in Eq. (1.3), we give �rst inTab. 5.1 the di�erent values of Dq in the self-similar regime, obtained with the useof a linear regression, and for di�erent initial PS Pinit(k) ∝ k2 and k4 in the statiand expanding (quinti and RF) ases. We disuss separately the ase where the172
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Figure 5.3: Evolution of the sales ℓmin and ℓmax in the stati ase for an initial PS
Pinit ∝ k2. We de�ne these sales with the use of a linear regression of the reduedorrelation dimension in the self-similar regime. We observe that ℓmin stays slightyonstant whereas ℓmax ∝ Rs(t). The error bars represent the unertainty of thelinear regression.initial PS Pinit(k) ∝ k0 in Tab. 5.2 for the same models. We restrit our analysis tothe dimensions Dq with q = 0, 1, 2 and 10. The higher value of q has been hosento shed light on the potential multifratal behaviour of the system. Inspeting theresults in Tab. 5.1 we draw the following onlusions:

• the results for the orrelation dimension D2 are in agreement, within the stan-dard numerial error, with the exponents derived in the previous hapter (seeTabs. 2.3 and results in Chapter 4 setion 3.3) from the 2-point orrelationanalysis, as given by Eq. (5.11);
• the systems are de�nitely fratal as the box-ounting dimension D0 is di�erentfrom unity. Moreover, all results for the generalized dimensions Dq are onsis-tent with the onstraint whih applies to fratal behavior, i.e. Dq1 ≥ Dq2 for
q1 ≤ q2;

• a lear di�erene between stati and expanding ases is evident: in the latterases there is a signi�ant variation of the exponent (i.e. non-trivial spetrumof multi-fratal exponents) while in the stati ase the results appear onsistentwith the hypothesis of a homogeneous fratal;
• further in the stati ase the exponents depend very weakly, if at all, on theinitial ondition (i.e. on the exponent n of the initial PS); in the expandingases, all measured exponents show the same trend with the exponent n asshown by D2, i.e. greater is n, smaller is the exponent.We note that these results are partly in agreement with the investigation ofMiller et al. in [113, 114℄ where a multifratal analysis has been performed in boththe on�guration spae and the phase spae. We learly obtain the same qualitativebehaviour for the generalized dimension in the expanding ases, as a multifratal173
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Figure 5.4: Evolution of the sales ℓmin and ℓmax in the quinti ase for an initial PS
Pinit(k) ∝ k2. We de�ne these sales with the use of a linear regression of the reduedorrelation dimension in the self-similar regime. We observe that ℓmin ∝ exp(−2

3
Γt)with Γ = 1/

√
6, and ℓmax ∝ Rs(t). The error bars represent the unertainty of thelinear regression.behavior is observed. However, we do not reah the same onlusion as in [113℄ asfar as the stati ase is onerned: As our numerial investigation shows that thesystems are in agreement, within the numerial error, with a mono-fratal behavior,i.e. Dq remains aproximately onstant for q ∈ [0, 10], Miller et al. laim that thebehavior of Dq in the stati ase is qualitatively similar to the expanding (quinti)ase, but with less robust saling ranges.Furthermore, onsidering the measure of the orrelation dimension D2 in [114℄for an initial ondition whih orresponds to the hoie of an initial PS Pinit(k) ∝ k2at small k, we an ompare quantitatively our results with those obtained by Milleret al. We see that they are in agreement within our numerial error in both thequinti and RF models. We obtain the same dependene on the initial ondition,i.e. on the index of the initial PS. We now return to the ase where the initial PSintial PS D0 D1 D2 D10stati k2 0.87± 0.03 0.88± 0.02 0.83± 0.04 0.84± 0.03

k4 0.89± 0.03 0.87± 0.03 0.85± 0.02 0.86± 0.03quinti k2 0.64± 0.02 0.65± 0.02 0.64± 0.02 0.59± 0.03
k4 0.56± 0.02 0.56± 0.02 0.53± 0.02 0.46± 0.04RF k2 0.49± 0.02 0.50± 0.02 0.49± 0.01 0.45± 0.01
k4 0.39± 0.03 0.38± 0.02 0.37± 0.01 0.32± 0.02Table 5.1: Generalized dimension Dq for q = 0, 1, 2 and 10 in the stati, quinti andRF ases (i.e. Γ = 0, 1/√6 and 1/

√
2). We analyse the di�erent initial onditionharaterized with di�erent initial PS Pinit ∝ k2 and k4.

Pinit ∝ k0 for the same three di�erent models. We give in Tab. 5.2 the di�erentvalues of Dq for the same values of q as above. A di�erene emerges ompared to174



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONthe ase Pinit(k) ∝ k2 and k4. While in an inhomogeneous fratal the generalizeddimension Dq is a dereasing funtion of its argument, we see that in the threedi�erent models (stati, quinti and RF) D0 is smaller than D1. This puzzling resultan be explained by the fat that suh a distribution (i.e. initial spetrum n = 0) isnot as strongly lustered as the others, i.e. not all the partiles are onentrated inthe overdense regions. This was already noted in our visual inspetion in Figs. 4.3and 4.5 in Chapter 4. Then undersampling e�ets lead to lowering of the box-ounting dimension. This paradoxial result was already disussed by Borgani in itsstudy of the multifratal behaviour of 3 − d hierarhial density distributions [27℄and Dubrulle et al. in their multifratal analysis of 3− d galaxy atalogs with box-ounting methods [48℄. This illustrates that the box-ounting method should beused with aution when analyzing disrete sets like galaxy distributions.
k0 D0 D1 D2 D10stati 0.71± 0.04 0.85± 0.02 0.84± 0.02 0.82± 0.06quinti 0.62± 0.02 0.79± 0.02 0.80± 0.02 0.72± 0.03RF 0.48± 0.02 0.69± 0.02 0.71± 0.02 0.61± 0.04Table 5.2: Generalized dimension Dq for q = 0, 1, 2 and 10 in the stati, quintiand RF ases (i.e. Γ = 0, 1/√6 and 1/

√
2). We analyse the initial ondition withPS Pinit(k) ∝ k0.
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION3 Halos and virializationIn this setion, we explore the possibility of desribing the lustered distributionsobtained in the toy models we have studied as a olletion of �halos�, i.e. as a olle-tion of approximately independent virialized strutures. As disussed in Chapter 2,it is now standard to use suh a desription to haraterize the strutures obtainedin osmologial simulations in 3− d. As we noted in the introdution, the fratalitywe have found in these models in the preeeding setions would seem to be learlyat odds with suh a desription: these halos are onsidered to have smooth densitypro�les and learly do not have sale invariant properties.In the following, we �rst introdue and employ a simple �Friend-of-Friend� (FoF)algorithmwhih allows one to selet out a set of (andidate) halos in a manner whollyanalogous to how it is done in 3 − d simulations. We analyse the properties of theseleted halos and the degree to whih their statistial properties re�et or not thesale invariane (in a ertain range of sales) of the distribution. We then turn to thequestion of whether these halos, or at least a ertain appropriately seleted sublassof them, may atually be onsidered as roughly independent objets dynamially.This in pratie is probed by testing whether they show a tendeny to be virialized.This leads us then to analyze in detail the distribution of the measured virial ratios,testing whether, for halos seleted with harateristi sizes in the range of sale-invariant lustering, there is evidene for a stable PDF of the virial ratio peakedabout unity.3.1 Halo seletion: The Friend-of-Friend algorithmTo de�ne andidate �halos�, we follow the simplest method whih onsists in astruture-�nding algorithm alled the FoF-algorithm (see e.g. [58,74,108℄). As illus-trated in Fig. 5.5, this purely geometrial method onsists in introduing an arbitrarylinking length ℓfof that represents the distane below whih two neighboring parti-les belong to the same FoF-group. The olletion of linked partiles forms a group,
d > l d > l d > lfof fof fof

d < l fof

Figure 5.5: 1 − d shemati representation of the FoF-algorithm: if and only ifthe distane d between two partiles is less than the linking length ℓfof these twopartiles are grouped together in the same FoF-halo (dashed line).whih we refer to an �FoF-halo�. In the following we disard isolated partiles.One way of desribing what the algorithm does is that it simply selets outregions in whih the density, smoothed on sale of loal interpartile distane, isgreater than a threshold density given by 1/ℓfof . Note that sine the mean densityis simply 1/ℓ, where ℓ is the initial lattie spaing, if ℓfof < ℓ we selet out regions176



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONwhih are neessarily overdensities. Equivalently, the algorithm an be thought in
1 − d as simply breaking the distribution into �nite piees by �utting� it at anyempty regions (i.e. voids) greater than ℓfof .In relation to the physial motivation - whih is to try to de�ne �nite subsystemswhih have some dynamial independene - the limitation of the algorithm is thatit piks out suh subsystems in an extremely elementary way, without using anydynamial riterion notably. If there are suh subsystems or �nite strutures, thealgorithm will, for example, learly put two of them together whih �happen to be�loseby at the time onsidered. In the ontext of osmology this has led to thedevelopment of various alternative algorithms (see e.g. [101, 102℄).A ruial feature of the algorithm is, evidently, that it inludes one free parame-ter, ℓfof , and the andidate �halos� one piks out depend on it. In 3−d osmologialsimulations a single value of this is hosen by hand, orresponding to a threshold inthe density a few times the mean density, the idea being to selet out all groups ofpartiles whih have undergone together non-linear evolution 1.Here we will study arefully the dependene of the halos on this free parameter
ℓfof . In partiular we will examine whether a hoie of ℓfof a little smaller than
ℓ, as used in osmologial simulations, has any physial justi�ation or meaning.This latter point essentially onerns the question of whether there is a partiularhoie of ℓfof whih selets out strutures whih are (typially) virialized. Suhvirialization is what indiates that they are of dynamial signi�ane onsidered ontheir own (beause virialization is one of the distinguishing harateristis of �niteisolated strutures).In the rest of the setion we onsider �rst the basi properties of the struturesseleted out by the FoF-algorithm, spei�ally

• the distribution of their size Lc, i.e. their spatial extent;
• the distribution of their mean densities nc;
• the distribution of the number of points they ontain (known as their massfuntion in the osmologial ontext).Provided ℓfof is signi�antly smaller than the size of the system, suh distributionsmay be assumed to be sampled from some underlying PDF whih ontains inevitablya ertain kind of information about the distribution in the in�nite system limit. Thequestion whih interests us is how these PDF depend on the single parameter ℓfof . Ingeneral we would expet them to depend on how ℓfof ompares with the harateris-ti sales in the system. In the ase of sale-invariant lustering in the distribution,whih we have found appears to be the ase of those onsidered here, one might ex-pet appropriate properties of the FoF-halos to be independent of ℓfof . If this is thease suh an analysis is a suitable instrument for revealing sale-invariant properties.1In other variants of the algorithm employed in osmology at least one parameter, or oftenseveral suh parameters must be introdued, and thay are asribed essentially ad-ho values givensimilar kinds of physial motivation. 177



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONWe present here only results for a single hosen ase: initial onditions with PSin k4 (�ausal �utuations�) evolved up to ts = 22, in the quinti model. We hoosethis ase beause it is one of those where the range of sales over whih both non-linear lustering and, in partiular, sale-invariant lustering is greatest. In Fig. 5.6is realled the redued 2-point orrelation funtion as it develops in time in thisase up to the �nal time at whih we analyse it here. For what follows it will beimportant to have present the sales haraterising the lustering at the �nal time:as addressed in Chapter 4, the sale-invariant power-law lustering regime strethesin this ase over approximately �ve orders of magnitude, i.e. between the sales
xmin ∼ 10−3ℓ ∼ 10−8 and xmax ∼ 102ℓ ∼ 10−3 where ℓ is the initial lattie spaing.In the following, we will use the normalized parameter Λ = ℓfof/ℓ in studying thebehaviors of the di�erent observables. In this variable the region of sale invarianethen orresponds to Λ = 10−3 to 102. In our analysis, we do not onsider values of
Λ > 10 as in this ase, the number of FoF-halos is too small to give a signi�antstatistis.
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION3.2 Testing for virialization of halosIn this setion, we onsider whether the onept of virialization, whih appliesstritly to isolated �nite systems, is of relevane to the �halos� seleted out by theFoF-algorithm, whose basi harateristis we have just disussed. In partiular wewish to see whether there is a partiular value, or range of values, of ℓfof for whihthe algorithm appears to pik out, typially, sub-systems whih are virialized.Virialization of isolated subsystemsThe question we �rst answer is what virial relation applies to a �nite isolated sub-sytem in our system. To do so we reall expliitly the equations of motion of suh asubsystem. We reall that isolated means that partiles in subsystem do not rossother partiles outside it. We then have
d2

dt2
(xi − xCM) + Γ

d

dt
(xi − xCM) =

N>
i (t)−N<

i (t)

2n0
+ (xi − xCM) , (5.12)where xCM represents in both ases the position of the enter of mass of the sub-system. N<

i (t) (respetively N>
i (t)) represents the number of partiles on the left(respetively on the right) of the partile i at time t. We have seen that the rhsan be divided into two distint ontributions. The �rst one represents the �nitegravitational fore ontibution from partiles belonging to the subsystem, fgrav, andthe seond one stands for the bakground ontribution fback.If suh a �nite isolated subsystem reahes a dynamial equilibrium on a timesalemuh shorter than the expansion timesale (∼ Γ−1), we expet it to be virialized.Following Chapter 2, the usual virial relation an be generalized in this ase toinlude the ontribution from the bakground, i.e. the term fback, and beomes

2

Nc
∑

i=1

1

2
v2i +

Nc
∑

i=1

xi . f
i
grav +

Nc
∑

i=1

xi . f
i
back = 0 , (5.13)where vi and xi are the veloity and the position of the ith partile with respet tothe veloity and position of the enter of mass (vCM and xCM) of the subsystem.This relation is stritly valid if the system is in a steady state, so that the seondderivative of the moment of inertia I anels, i.e. d2I

dt2
= 0. Sine fgrav

fback
∼ Nh

n0

1
Lcthe bakground term is negligible in the virial relation if nh

n0
>> 1, i.e. if the meandensity of the subsystem is muh greater than the global mean density. As disussedin Chapter 4, this is preisely the same assumption in fat whih allows one to negletthe damping term, and assume virialization.Thus we an expet the �usual� virial relation for a �nite isolated 1 − d self-gravitating system, i.e.

2K − U = 0 , (5.14)to hold if the subsystem may be onsidered as isolated and is signi�antly overdense(i.e. nh/n0 >> 1). For the FoF-halos, we note that nh/n0 ≥ ℓ/ℓfof = 1 byonstrution (sine Lh ≥ Nh ℓfof ). Thus for Λ << 1 our FoF-halos are neessarilyoverdense, while for Λ > 1 they are not. Then we will apply for Λ > 1 a ut on our182



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONandidate virialized FoF-halos to selet only those with nh

n0
> 1. Fig. 5.8 shows thatthis ut is of marginal relevane.We note that the ruial assumption involved in deriving the salar virial theoremis that the moment of inertia I is time-independent. However, in a system with asmall number of partiles, there are neessarily statistial �utuations in I simplydue to the �nite-size, and Eqs. (5.13) and (5.14) ould be expeted to hold only fortime-averaged values of K and U . Let us summarize the steps of our analysis:

• we �nd and extrat the FoF-Halos in our simulation box for a given ℓfof ,
• we disard FoF-halos with nh < n0;
• we alulate the position and veloity of the enter of mass of eah FoF-halo;
• we measure the virial ratio V = 2K/U of eah FoF-halo measuring veloitieswith respet to its enter of mass.As in the previous setion we onsider here results only for the ase of the quintimodel with an initial PS Pinit(k) ∝ k4 evolved to ts = 22.Spatial distribution of the virial ratioIn Fig. 5.11 is plotted the virial ratio of eah of the FoF-halos at the position ofits enter of mass for a given Λ = ℓfof/ℓ = 10−2 in two separate regions of the fullsystem.
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V > 2 (red urve) as a funtion of the size Lh of these strutures, and then as thenearest halo distane dnh for di�erent values of the parameter Λ.The plots show more quantitatively than above that there is a lear tendeny tovirialization for a range of ℓfof down to Λ = 10−2: there is apparently a orrelationbetween suh virialization and the two hosen parameters, i.e. the size of the halosand the distane to the next halo. For what onerns the size, it is in eah ase thehalos in a range around ℓfof whih most learly show the tendeny to virialization.The high values of the virial ratio do indeed appear to ome from the extremes ofhalos muh larger and muh smaller than ℓfof . This is onsistent with the inter-185
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Figure 5.14: Fration of FoF-halos with a virial ratio V ≤ 2 (blue urve) and V > 2(red urve) as a funtion of the size Lh of the FoF-halos for di�erent values of Λ.The fration is the number of halos with a given range of virial ratio (V ≤ 2 or
V > 2) divided by the total number of halos seleted out by the FoF-algorithm atthe given linking-length. The olor ode is the same as in previous �gures.pretation that these are, in both ases, in fat sub-strutures of larger halos. Forwhat onerns the nearest-halo distane we also observe the expeted orrelation.Roughly if a halo is separated spatially we would expet it to be isolated to a betterapproximation, i.e. that it has not interated with the rest of the system for a longertime, and thus that it would be better virialized.
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONTo test more quantitatively these onlusions drawn from visual analysis of theseplots we perform a statistial hypothesis test, Pearson's hi-square test [40℄. Wedivide our set of seleted FoF-halos (for a given value of the parameter Λ) intothe two distint populations, one with V ≤ 2 and the seond one with V > 2.We then onsider two distint lasses, one with size Lh > Λ and the seond onewith Lh ≤ Λ. Likewise we onsider two other distint lasses, one with nearest-haloseparation dnc > 2Λ and dnc ≤ 2Λ. Pearson's hi-square test tests the null hypothesisstating that the ourene of these two populations is statistially independent. Anobservation Oij is the number of halos in the population �i� and for lass �j�. Eahobservation is alloated to one ell of a two-dimensional array of ells (alled a table).If there are r rows and c olumns in the table, the theoretial frequeny for a ell,given the hypothesis of independene is
Eij =

∑c
k=1Oik

∑r
k=1Okj

Ntot

, (5.15)where Ntot is the total number of FoF-halos in our sample, and �tting the model ofindependene redues the number of degrees of freedom by q = r+ c− 1. The valueof the test-statisti is
X2 =

r
∑

i=1

c
∑

j=1

(

Oij −Eij

)2

Eij
. (5.16)The distribution of this statisti is a χ2 distribution with (r − 1)× (c− 1) degreesof freedom (i.e. the number of ells (r × c) minus the redution in degrees of free-dom q). To extrat quantitative information, we report in Tables 5.3 and 5.4 the

p-values of this test. In statistial hypothesis testing, the p-value is the probabilityof obtaining a test statisit at least as extreme as the one that was atually ob-served, assuming that the null hypothesis is �true�. In our partiular ase, the nullhypothesis onsists in assuming that the two distint populations are independent,and that the deviation between the observation and the theoretial expetation is aoinidene. The lower the p-value, the less likely the result is if the null hypothesisis true, and onsequently the more �signi�ant� the result is, in the sense of sta-tistial signi�ane. One often aepts the alternative hypothesis (i.e. rejetion ofthe null hypothesis) if the p-value is less than 0.05 orresponding to a 5% haneof rejeting the null hypothesis when it is true [40℄. The p-value for the χ2 test isProb(χ2 ≥ X2), the probability of observing a value at least as extreme as the teststatisti for a χ2 distribution with (r − 1)× (c− 1) degrees of freedom.
Λ 10 1 0.1 0.01 0.001 0.0001

p-value 0.004 10−6 10−14 10−16 0.002 0.6Table 5.3: Result of Pearson's hi square test for the two distint populations (V ≤ 2and V > 2) and with two distint lasses (Lc ≤ l and Lc > l). In the range ofsale-invariant lustering, the p-value is small enough to rejet the null hypothesis.However, for small values of Λ, this tendeny disappears as we see that the p-valuelearly exludes the rejetion of the null hypothesis.188



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONThe results obtained in Tab. 5.3 show that, in the range of sale-invariant lus-tering, the p-value is small enough to rejet the null hypothesis. This means thatthe fat that the FoF-halos with Lh ≤ Λ mainly ontribute to V ≤ 2 is not a o-inidene. However, for small values of Λ, i.e. outside the range of sale-invariantlustering, represented here by Λ = 10−4, this tendeny disappears as we see thatthe p-value learly exludes the rejetion of the null hypothesis.
Λ 10 1 0.1 0.01 0.001 0.0001

p-value 0.5 0.2 0.01 10−16 10−16 0.6Table 5.4: Result of Pearson's hi square test for the two distint populations (V ≤ 2and V > 2) and with two distint lasses (dnh ≥ 2 Λ and dnc < 2 l). In therange of sale invariant lustering, the p-values show the tendeny to rejet the nullhypothesis. However, this result is not lear for the values of the parameter Λ = 10and 1.The results obtained in Tab. 5.4 show the tendeny to rejet the null hypothesisin the range of sale invariant lustering, i.e. the fat that the FoF-halos with near-est halo separation dnh ≥ 2 × Λ mainly ontribute to V ≤ 2 is not a oinidene.However, this result is not lear for the values of the parameter Λ = 10 and 1.Analysing Fig. 5.15 we see that the departure from the expeted result would bejusti�ed by the fat that strutures with V > 2 are too under-represented in thesystem. This result would be explained by the tendeny of spatially isolated stru-tures to dynamially evolve enough in time to reah statistially a virial equilibrium.We show next in Fig. 5.16 the impat of making a ut on the size of the halos Lhand on the nearest-halo distane dnh, i.e. we exlude from our halos at any Λ thosewith Lh > Λ and dnh < 2Λ, on the distribution of the virial ratio. In omparaisonwith Fig. 5.13, we see that the ontribution to the tail of the measured distributionhas notieably redued, leading to a stronger reproduibility of the signal.
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Figure 5.16: Distribution (normalized to unity) of the virial ratio for di�erent valuesof the parameter Λ, i.e. as in Fig. 5.13, but now with two additional uts applied:we exlude from our halos at any Λ those with Lh > Λ and dnh < 2Λ. The olorode is the same as in previous �gures.
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONInformation about the reproduibility of the signal an also be extrated fromthe umulative distribution funtion (CDF) of the di�erent distributions obtainedfor the di�erent values of the linking-length.We show in Figs. 5.17 and 5.18 the CDF of the virial ratio of the FoF-halos fordereasing values of the parameter Λ with and without the same ut used above.Above the sale xmin marking the lower ut-o� to the self-similar regime, we seereproduibility of the statistial signal. This is illustrated by the red, blue andgreen CDF. Below the sale xmin, the shape of the CDF hanges dramatially;this variation haraterizes well the end of the self-similar regime. This qualitativeinspetion illustrates the improvement of the reproduibility of the signal when weonsider these uts on the size of the strutures and the one on the nearest-haloseparation.
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Figure 5.17: Cumulative distribution funtion of the virial ratio for di�erent values of
Λ. The olor ode is the same as in previous �gures. We see a strongly reproduiblesignal. The orange urve shows that the behaviour of the CDF hanges dramatialywhen ℓfof < xmin.
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Figure 5.18: Cumulative distribution funtion of the virial ratio for di�erent valuesof Λ. We onsider the statistial uts on the size of the halos and the nearest-haloseparation disussed in the text. The olor ode is the same as in previous �gures.We still see a strongly reproduible signal.
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CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION3.3 Statistial tests for stability of the probability distibutionof the virial ratio in sale-invariant regimeThe Kolmogorov-Smirnov test as a quantitative study of reproduibilityTo more quantitatively haraterize the reproduibility of the probability distribu-tion of the virial ratio, we onsider �nally a statistial test of the di�erent probabilitydensity funtion. We use the Kolmogorov-Smirnov (K-S) test that is a form of min-imum distane estimation used as a nonparametri test to ompare two samples.The K-S test is the one of the most useful and general nonparametri methods foromparing two samples, as it is sensitive to di�erenes in both loation and shapeof the empirial umulative distribution funtions of the two samples [40℄. The K-Sstatisti quanti�es a distane between the empirial distribution funtions of the twosamples. The null distribution of this statisti is alulated under the null hypothesisthat the samples are drawn from the same distribution.To perform this test, we de�ne the K-S statisti Dn,m = supx |Fn(x) − Fm(x)|where n and m represent the number of data in the two samples, and where Fn(x)and Fm(x) are the umulative distribution funtions obtained with the 2 samples.The null hypothesis is rejeted at level α if
√

nm

n+m
Dn,m > Dα , (5.17)where Dα is a hosen ritial value of the test statisti suh that Prob(Dn,m < Dα) =

1 − α. This two-samples test heks whether the two data samples ome from thesame distribution. This does not speify what the ommon distribution is.We then onsider the p-value of this test to extrat quantitative informationabout the reproduibility of the pdf of the virial ratio. Generally, one rejets thenull hypothesis if the p-value is smaller than or equal to the signi�ane level, oftenrepresented by the Greek letter α. If the level is 0.05, then results that are only 5%likely or less, given that the null hypothesis is true, are deemed extraordinary.
Λ 1 0.1 0.01 0.00110 0.26 0.23 0.04 10−101 0.70 0.03 10−160.1 10−6 10−160.01 10−16Table 5.5: Result of the Kolmogorov-Smirnov-2-samples test between the di�erentmeasured distribution of V . Eah ase in the table orresponds to the p-value ofthe KS-test between the two samples obtained with the values of the parameter Λorresponding to the �srt raw and the �rst olumn.We perform the K-S test for the di�erent distribution funtions and bring to-gether the di�erent p-values in Table 5.5. We see that the p-values in the �ftholumn, orresponding to the K-S test between samples obtained with Λ = 10−3and the smaller ones, is extremely small; we an thus rejet the null hypothesis with193



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONmore than 99% of on�dene, i.e. the samples do not ome from the same distribu-tion. In the seond and the third olumn, the p-value is very large, and do not allowus to rejet the null hypothesis, i.e. we annot onlude that the di�erent samplesobtained with Λ = 10, 1, and 10−1 ome from di�erent distributions. The fourtholumn, orresponding to the KS-test between the sample obtained with Λ = 10−2and the other ones, is a limit ase where we annot rejet the null hypothesis oraept it with enough on�dene. This result is in agreement with the fat that theend of the regime of sale invariant lustering is roughly loated at a sale between
10−6 and 10−8.Furthermore, this quantitative inspetion illustrates that the signal looks repro-duible in the regime of sale-invariant lustering, but shows above all the end of thisreproduibility at the end of the regime of sale invariant lustering. It is interestingto go a little further into detail and to study the impat of the uts on size of thestrutures and on the nearest-halo separation disussed above on the K-S test andthe p-values whih follow.Condition on the size of the struturesWe have qualitatively seen previously that the FoF-halos seleted out from thesimulation box with Lh ≤ Λ mainly ontributed to V ≤ 2. We perform the K-S

Λ 1 0.1 0.01 0.00110 0.27 0.23 0.04 10−101 0.70 0.03 10−160.1 10−5 10−160.01 10−16Table 5.6: Result of the Kolmogorov-Smirnov-2-samples test between the di�erentmeasured distribution of V obtained with the ut on the size of the halos. Eahase in the table orresponds to the p-value of the KS-test between the two samplesobtained with the values of the parameter Λ orresponding to the �srt raw and the�rst olumn.test and bring together the di�erent p-values in Tab. 3.3. Without hanging theonlusion we made previously about the rejetion of the null hypothesis, we seethat the results presented in Tab. 3.3 do not present signi�ant di�erene with theresults refered in Tab. 5.5. The ut on the size Lh of the FoF-halos is thus notstatistially relevant for this test.Condition on the nearest-halos separationWe have seen that, given a linking-length, we obtain that two di�erent FoF-halosare inevitably separated with a distane ℓgap > ℓfof . Due to the arbitrary hoieof ℓfof , it is interesting to analyse the impat of the ut on the nearest-neighboursseparation on the reproduibility of the measured distribution of the virial ratio.We onsider strutures with a nearest-neigbour at distane dnh ≥ 2Λ. Followingthe same quantitative approah as previously, the p-values obtained with the K-Stest are bring together in Table 3.3. We see that if we onsider the �fth olumn,194



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATION
Λ 1 0.1 0.01 0.00110 0.97 0.14 0.27 10−31 0.68 0.84 10−20.1 0.46 10−40.01 10−8Table 5.7: Result of the Kolmogorov-Smirnov-2-samples test between the di�erentmeasured distribution of V obtained with the ut on the nearest-halo distribution.Eah ase in the table orresponds to the p-value of the KS-test between the twosamples obtained with the values of the parameter Λ orrespon�ng to the �srt rawand the �rst olumn.the p-value is always small and we an rejet the null hypothesis. This simplymeans that the sample orresponding to Λ ≤ 10−3 does not orrespond to the samedistribution than the ones orreponding to larger value of the linking-length. Asfar as the other olumns are onerned, we learly see a signi�ant di�erene withthe results presented in Tab. 5.5 and Tab. 3.3. The onlusion is still the same asthe obtained p-values do not still allow us to rejet the null hypothesis, i.e. weannot onlude that the di�erent samples obtained with Λ = 10, 1, 10−1, and 10−2ome from di�erent distributions, but this statistial ut signi�antly improves thenon-rejetion of the null hypothesis.This result shows that the nearest-halo separation has a signi�ant impat onthe reproduibility of the distribution of the virial ratio. Its e�et is to redue theontribution of the tail to the measured distribution of the virial ratio, and thus toimprove the statistial reproduibility of the signal.4 ConlusionIn the �rst setion of this hapter we saw that there is indeed very lear evidenefor sale-invariane in the non-linear lustering that develops in the lass of toymodels we have onsidered. We used a multi-fratal analysis to measure the spe-trum of fratal exponents and studied their dependene on the model and initialonditions. In the stati model the results are quite onsistent with a simple ho-mogeneous fratal, while in the expanding ases there is a signi�ant multi-fratality.In the seond part of our analysis we explored the appliability of a desriptionof the lustering like that used anonially in osmologial simulations, that in termsof �halos�. We used the simplest kind of �Friends of Friends� algorithm, whih hasone free parameter, the linking-length ℓfof . We desribed some of the statistialproperties of the seleted halos as a funtion of ℓfof , and then foussed on the ques-tion of whether these seleted halos are, typially, virialized. Suh virialization isan indiator of the degree to whih they behave as independent sub-systems, whoseelements interat essentially only with one another on a time sale su�ient to es-tablish a kind of equilibrium. We found that there is indeed evidene that, when

ℓfof is in the range where it e�etively piks out strutures on length sales wherethe lustering is sale-invariant, the PDF of the halos virial ratio is peaked about195



CHAPTER 5. DYNAMICS OF INFINITE ONE DIMENSIONALSELF-GRAVITATING SYSTEMS: SCALE INVARIANCE, HALOS ANDVIRIALIZATIONunity. We observed also that the tail of the distribution at large virial ratio ouldbe assoiated with halos larger or smaller than the typial size, and thus result fromthe fat that the algorithm does not stritly pik out a single sale.This leads us to onlude that in the regime of sale-invariant lustering thedistribution an be desribed as a �virialized hierarhy�. By this we mean that thedistribution in spae, when appropriately analyzed at any sale, an be onsideredas a olletion of approximately virialized sub-systems. These �halos�, however, arenot smooth objets of a single harateristi size as assumed in the 3−d osmologialsetting. Only at the very small sale at whih self-similarity and sale-invarianebreak down (i.e. the sale xmin de�ned in Chapter 4) is there evidene for roughlysmooth virialized strutures. Further, we have reported here only results for thease of an initial PS with n = 4, and it shoulb be veri�ed that the same onlusionsapply to other ases, and also to the stati limit. More spei�ally, it would beinteresting to see whether it is possible to relate the evolution of the sale xmin andthe assoiated orrelation amplitude ξmax in ases where stable lustering does notapply to �merging� of halo type strutures.This analysis ould be developed on various points. For example we have anal-ysed the distribution at just one time, while it ould learly be instrutive to studythe evolution of the �halos� in time to more diretly probe the extent to whih theyan be onsidered to evolve as independent sub-systems. It would be interestingalso to study alternative algorithms for halo seletion analogous to ones other thanthe FOF-algorithm whih have been developed in osmology, and to verify that theonlusions we have ome to here do not depend on the spei� FoF-algorithm wehave used.
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Chapter 6A dynamial lassi�ation of therange of pair interationsIn this hapter, we report results whih generalize to any pair interation deayingas a power-law at large separation the approah used in Chapter 3 to determinewhether the 1 − d gravitational fore is de�ned in an in�nite system. This is aninteresting question as the Newtonian gravitation is learly a partiular long-rangeinteration, for whih linear ampli�ation emerges from linear �uid theory.In so doing, we formalize and desribe a simple lassi�ation of pair interationswhih is di�erent to the usual thermodynami one,disussed in Chapter 1, appliedto determine equilibrium properties (see e.g. [31, 42, 136℄), and whih we believeshould be very relevant in understanding aspets of the out of equilibrium dynamisof these systems. Instead of onsidering the onvergene properties of potentialenergy in the usual thermodynami limit, we onsider therefore those of the forein the same limit. Thus, while in the former ase one onsiders (see e.g. [136℄) themathematial properties of essential funtions desribing systems at equilibrium inthe limit N → ∞, V → ∞ at �xed partile density n0 = N/V , we will onsider thebehavior of funtions haraterising the fores in this same limit. More spei�allywe onsider, following an approah introdued by Chandrasekhar for the ase ofgravity [33, 71℄, the de�nedness of the probability distribution funtion (PDF) ofthe fore �eld in statistially homogeneous in�nite partile distributions. To avoidany onfusion we will refer to the usual thermodynami limit in this ontext simplyas the in�nite system limit. Indeed the existene or non-existene of the quantitieswe are studying in this limit has no diret relation here to the determination ofproperties at thermal equilibrium. Further, in the ontext of the literature on long-range interations the term �thermodynami limit" is now widely assoiated withthe generalized suh limit taken so that relevant marosopi quantities beomeindependent of N and V (for a disussion see e.g. [13℄).We also disuss a further (and di�erent) lassi�ation whih an be given of therange of pair interations based on dynamial onsiderations. This arises when oneaddresses the question of whether dynamis under a given pair interation may bede�ned in in�nite systems, i.e., in a manner analogous to that in whih it is de�nedfor self-gravitating masses in an in�nite universe.In this hapter we onsider the general analytiity properties of the PDF of thetotal fore at an arbitrary spatial point in suh a partile distribution. We showthat, for any pair fore whih is bounded, this PDF in the in�nite volume limit is197



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSeither well de�ned and rapidly dereasing, or else vanishes pointwise. This meansthat it su�es for almost all ases of interest to show that some hosen moment ofthe PDF onverges to a �nite value in this limit (or diverges) in order to establishthat the whole PDF itself is well-de�ned (or ill de�ned). We then give a generaland formal expression for the variane of the total fore PDF in a generi in�niteuniform stohasti proess in terms of the pair fore and the two-point orrelationproperties of the SPP. From this we then dedue our prinipal result that the forePDF exists stritly in the in�nite system limit if and only if the pair fore is abso-lutely integrable at large separations, while it an be de�ned only in a weaker sense,introduing a regularization, when the pair fore is not absolutely integrable. Wedisuss the physial relevane of the use of suh a regularization, whih is just a gen-eralization of the so-alled �Jeans swindle" used to de�ne the dynamis of (lassialnon-relativisti) self-gravitating partiles in an in�nite universe. By analyzing theevolution of density perturbations in an in�nite system, we show that the physialrelevane of suh a regularization of the fores requires also a onstraint on the be-havior of the PDF of total fore di�erenes as a funtion of system size. The textof this hapter is taken from an artile published in J. Stat. Phys. [68℄.1 The fore PDF in uniform stohasti point pro-esses: general resultsWe �rst reall the de�nitions of some basi quantities used in the statistial hara-terization of a stohasti point proess and de�ne the total fore PDF (see e.g. [71℄for a detailed disussion). We then derive some results on the analytiity propertiesof the latter quantity whih we will exploit in deriving our entral results in the nextsetion.1.1 Stohasti point proessesIn order to study the properties of the fore �eld in the in�nite system limit givenby N → ∞, V → ∞ with �xed average density n0 > 0 for a large sale uniformand spatially homogeneous partile system, we generalize the approah introduedby Chandrasekhar in [33℄ for the total gravitational �eld in a homogeneous Poissonpartile distribution to more general ases and spatial dimensions. To do so we needto haraterize statistially point-partile distributions in this limit, and we do thisusing the language of stohasti point proesses (SPP). The mirosopi numberdensity of a single realization of the proess is
n(x) =

∑

i

δ (x− xi) (6.1)where δ is the d-dimensional Dira delta funtion, xi is the position of the ith systempartile and the sum runs over all the partiles of the system. We will limit ourdisussion to partile distributions in a eulidean d−dimensional spae whih are(i) statistially translationally invariant (i.e. spatially homogeneous or stationary)and (ii) large sale uniform in the in�nite volume limit. Property (i) means thatthe statistial properties around a given spatial point of the partile distribution do198



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSnot depend on the loation of the point. In other words the statistial weights oftwo realizations of the point proess, of whih one is the rigidly translated version ofthe other, are the same and do not depend on the translation vetor. In partiularthis implies that the ensemble average (i.e. average over the realizations of theSPP) 〈n(x)〉 of the mirosopi number density takes a onstant value n0 > 0independent of x. Moreover the two-point orrelation funtion of the mirosopidensity 〈n(x)n(x′)〉 depends only on the vetor distane x− x′. Feature (ii) meansthat the average partile number �utuation δN(R) = (〈N2(R)〉 − 〈N(R)〉2)1/2 in asphere of radius R inreases slower with R than the average number 〈N(R)〉0 V (R)with R, where V (R) ∝ Rd is the volume of the d−dimensional sphere.Let us start by onsidering a generi realization of the partile distribution in a�nite volume V and let the total number of partiles of the given realization be N .The partile positions xi are fully haraterized statistially by the joint probabilitydensity funtion (PDF) PN ({xi}) onditional to having N partiles in the realization({xi} indiates the set of positions of all system partiles in the given realization). Asa simple, but paradigmati example we an think of the homogeneous d−dimensionalPoisson point proess. In this ase PN ({xi}) = V −N simply and independently ofthe value of n0. Given a funtion X({xi}) of the N partile positions in the volume
V its average, onditional to the value of N , an be written as

〈X〉N ≡
∫

V

[

N
∏

i=1

ddxi

]

PN ({xi})X({xi}) ,where the position of eah partile is integrated in the volume V . In order to evaluatethe unonditional average of the property X , for whih all possible outomes of thevalue N are onsidered, one would need the probability qN of having N partiles inthe volume V , whih permits to write:
〈X〉 =

∞
∑

N=0

qN 〈X〉N , (6.2)in a strit analogy with the grand anonial ensemble average in equilibrium sta-tistial mehanis. However, sine we are restriting the disussion to large saleuniform partile distributions, for whih δN(R)/ 〈N(R)〉 vanishes for asymptotiallylargeR, we expet that the larger the volume V the narrower will be the peak around
N = 〈N(V )〉 = n0V in whih the measure qN will be onentrated (for simpliitywe have indiated with V both the region and its size). Asymptotially we expetthat only the term of index N0V will ontribute to the sum in Eq. (6.2), i.e., forsu�iently large V we an write:

〈X〉 ≃ 〈X〉N0V .In other words we an onsider that for su�iently large V the onditional PDF
Pn0V ({xi}) haraterizes ompletely the statistial properties of the partile distri-bution in the �nite volume V and use this to evaluate in the following subsetionthe statistial properties of the total fore. This is exatly what has been done, forinstane, by Chandrasekhar in [33℄ to alulate the total gravitational fore PDF inthe Poissonian ase. 199



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSIn Appendix A we reall some of the basi de�nitions and properties of thestatistial haraterizations of uniform SPP. We will use below notably two essentialproperties of S(k), the struture fator (SF), whih follow from its de�nition:
lim
k→0

kdS(k) = 0 , (6.3)i.e, the SF is an integrable funtion of k at k = 0, and
lim
k→∞

S(k) = 1 . (6.4)1.2 General expression for the fore PDFLet us onsider now that the partiles in any realization of the SPP interat through apair fore f(x), i.e., f(x) is the fore exerted by a partile on another one at vetorialseparation x. Further we will assume that the pair fore is entral, i.e.,
f(x) = x̂f(x) , (6.5)where x̂ = x/x, and bounded, i.e.,

∃ f0 <∞ , |f(x)| = f(x) ≤ f0 ∀x (6.6)These assumptions simplify our alulations onsiderably, but do not limit our aimwhih is to establish the relation solely between the statistial properties of thefore �eld and the behavior of the pair interation at large distanes. Note that theseond assumption means that, in ases suh as the gravitational or the Coulombinteration, the divergene at zero separation is assumed appropriately regularized.We will brie�y desribe in our onlusions below how our results ould be generalizedto inlude suh singularities.Let us assume for the moment that the system volume V is �nite. As shownabove, if V is su�iently large, one an onsider that the number of partiles inthis volume is deterministially N0V . We will deal with the important problem ofthe in�nite volume limit de�ned by N, V → ∞ with N/V → n0 > 0 in the nextsubsetion, by studying diretly the limit V → ∞ with �xed N0V . The total fore�eld F(x) at a point x, i.e., the fore on a test partile plaed at a point x, maythus be written
F(x) =

N
∑

i=1

f(x− xi) =

N
∑

i=1

x− xi

|x− xi|
f(|x− xi|) . (6.7)The fore �eld F(x) may be onsidered as a stohasti variable with respet to theSPP. Choosing arbitrarily the origin as the point where the total fore is evaluated,the PDF of this fore is formally de�ned by1

PN(F) =

∫

V

[

N
∏

i=1

ddxi

]

PN ({xi})δ
[

F+
∑

i

f(xi)

]

,1We onsider here the unonditional fore PDF, i.e., the fore is that at an arbitrary spatialpoint, rather than that on a point oupied by a partile whih belongs to the partile distribution.It is the latter ase, of the onditional fore PDF, whih is often onsidered in alulations of thiskind (see e.g. [65,66,153℄). The distintion is not important here as the onstraints we derive, whihdepend on the large sale orrelation properties of the partile distribution, would be expeted tobe the same in both ases.200



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSwhere we have used, as assumed, that f(−xi) = −f(xi). Using the identity
δ(y) =

1

(2π)d

∫

ddq eiq·y (6.8)this an be rewritten as
PN(F) =

1

(2π)d

∫

ddq eiq·F
∫

V

[

N
∏

i=1

ddxi e
iq·f(xi)

]

PN ({xi}) .The integral over the spatial oordinates in the above equation de�nes the hara-teristi funtion of the total �eld F

P̃N(q) =

∫

V

[

N
∏

i=1

ddxi e
iq·f(xi)

]

PN ({xi}) , (6.9)so that
PN(F) =

1

(2π)d

∫

ddq eiq·FP̃N(q) .The integral over spatial on�gurations in Eq. (6.9) an be onveniently rewritten asan integral over the possible values of the pair fores due to eah of the i = 1, ..., Npartiles:
P̃N(q) ≡

∫

[

N
∏

i=1

ddfi e
iq·fi

]

QN({fi}) , (6.10)where
QN ({fi}) =

∫

V

[

N
∏

i=1

ddxi

]

PN ({xi})
N
∏

i=1

δ[fi − f(xi)] (6.11)is the joint PDF for the pair fores fi. Note that, sine F is the sum of the variables
{fi} its harateristi funtion P̃N(q) an be given as

P̃N(q) = Q̃N({qi = q}) (6.12)where Q̃N ({qi}) is the Nd−dimensional FT of the joint pair fores PDF QN ({fi}),i.e.,
Q̃N({qi}) =

∫

[

N
∏

i=1

ddfie
iqi·fi

]

QN({fi}) . (6.13)1.3 Analytiity properties of the fore PDFFrom the fat that the pair fore is bounded it follows that QN ({fi}) has a ompatsupport, and, sine it is absolutely integrable (by de�nition), FT theory (see e.g.[98℄) implies that its harateristi funtion Q̃N({qi}) is an analyti funtion of thevariables {qi}. Consequently P̃N(q) is an analyti funtion of q. Again from FTtheory one has therefore that PN(F) is a rapidly dereasing funtion of F:
lim
F→∞

F αPN(F) = 0 , ∀α > 0. 201



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSThus PN(F) is a well-de�ned funtion of whih all moments �nite, i.e., 0 < 〈|F|n〉 <
+∞ for any n ≥ 0.Let us now onsider what happens when we take the limit V → ∞ with N0V . Onone hand the joint PDF QN({fi}) remains non-negative and absolutely integrable atall inreasing V . On the other hand the support of this funtion remains ompatwith a diameter una�eted by the values of V , but �xed only by f0. Thereforewe expet that the FT theorem keeps its validity also in the in�nite system limitresulting in an analytial

P̃ (q) ≡ lim
V →∞
N/V0

P̃N(q) .Therefore we will have that
P (F) ≡ lim

V →∞
N0V

PN(F)satis�es
lim
F→∞

F αP (F) = 0 , ∀α > 0.There are then only two possibilities for the behavior of P̃N(q) in the in�nite systemlimit:1. It onverges to an absolutely integrable funtion whih is not identially zeroeverywhere, giving a P (F) whih is normalizable and non-negative on its sup-port. Further all the integer moments of |F| are positive and �nite.2. It onverges to zero everywhere, giving P (F) ≡ 0. More spei�ally PN (F)with N0V onverges point-wise to the null funtion: it beomes broader andbroader with inreasing N (and V ), but with an amplitude whih dereasesorrespondingly and eventually goes to zero in the limit.This latter ase is analogous to the ase of the sum of identially distributedunorrelated random variables: if this sum is not normalized with the appropriatepower of the number N of suh variables, the PDF of the sum vanishes point-wisein a similar way in the limit N → ∞.In summary it follows from these onsiderations of the analytiity properties of
P̃N(q) at inreasing V that the ase of a well de�ned, but fat tailed P (F), an beexluded: in the in�nite system limit the fore PDF, if de�ned, is expeted to be anormalizable and rapidly dereasing funtion.2 Large distane behavior of pair interations andthe fore PDFIn this setion we use the result derived in the previous setion to infer the mainresult of this paper: the relation between the large sale behavior of the pair inter-ation and the fore PDF in the in�nite system limit. We thus onsider, as above,a entral and bounded pair fore suh that

f(x) ≃ g

xγ+1
for x→ ∞ , (6.14)202



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSor, equivalently, a pair interation orresponding to a two-body potential V (x) ≃
g/(γxγ) at large x for γ 6= 0 (and from V (x) ≃ −g ln x for γ = 0). Sine the pairfore is bounded, we have γ > −1.Given the �nal result derived in the previous setion, it follows that, to determinewhether the fore PDF exists, it is su�ient to analyze a single even moment of thisPDF: beause the PDF, when it exists, is rapidly dereasing, any suh moment isneessarily �nite and non-zero in this ase, and diverges instead when the PDF doesnot exist. We hoose to analyze the behavior of the seond moment, 〈F 2〉, whihis equal to the variane of the PDF sine the �rst moment 〈F〉 is zero (see below).We hoose this moment beause, as we will now see, it an be expressed solely interms of the FT of f(x) and of the SF of the mirosopi density of the partiledistribution. From these expressions we an then infer easily our result.2.1 Variane of the fore in in�nite system limitThe formal expression of the total fore ating on a test partile (i.e. the fore �eld)at x in the in�nite system limit may be written

F(x) =

∫

ddx′
x− x′

|x− x′|f(|x− x′|)n(x′) (6.15)where the integral is over the in�nite spae and n(x), given in Eq. (6.1), is thedensity �eld in a realization of the general lass of uniform SPP we have disussedwith positive mean density n0.It is simple to show, using Eq. (6.15) and the de�nition of the SF that formally
〈F2〉 = 1

(2π)d

∫

ddk|f̃(k)|2S(k) (6.16)where f̃(k) is the (d-dimensional) FT of x̂f(x). It is straightforward to show that
f̃(k) = k̂f̃(k), where the expliit expression for f̃(k) is given in the appendix2. Wean thus write

〈F2〉 =
1

(2π)d

∫

ddk|f̃(k)|2S(k) (6.17)
=

1

2d−1πd/2Γ(d/2)

∫ ∞

0

dk kd−1|f̃(k)|2S(k) ,where Γ(x) is the usual Euler Gamma funtion.2.2 Fore PDF for an integrable pair foreLet us now onsider the integrability of the integrand in Eq. (6.17). We start withthe ase in whih f(x) is not only bounded but integrable in R
d, i.e., with γ > d−1.Given these properties, it is straightforward to verify, using the onditions (6.3)and (6.4) on S(k) and standard FT theorems, that the funtion |f̃(k)|2S(k) is alsointegrable in R

d. The variane is therefore �nite, from whih it follows that the PDFexists, and furthermore that all its moments are �nite.2Note that only in d = 1 does f̃(k) oinide with the diret FT of f(x). 203



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONS2.3 Fore PDF for a non-integrable pair foresFor a pair fore whih is absolutely non-integrable, i.e., γ < d − 1, the FT f̃(k) of
f(x) in Eq. (6.17) is de�ned only in the sense of distributions, i.e., the integrals overall spae of f(x) must be de�ned by a symmetri limiting proedure. Physiallythis means that the expression Eq. (6.15) for the fore on a partile in in�nite spaemust be alulated as

F(x) = lim
µ→0+

lim
V→∞

∫

V

x− x′

|x− x′|f(|x− x′|)e−µ|x−x′|n(x′)ddx′ , (6.18)where the two limits do not ommute. In other words, F(x) is de�ned as thezero sreening limit of a sreened version of the simple power law interation in anin�nite system. The expression Eq. (6.17) is then meaningful when f̃(k) is taken tobe de�ned in the analogous manner with the two limits µ → 0+ of the sreening and
V → ∞ (i.e. with the minimal non-zero mode k ∼ 1/V → 0+) taken in the sameorder as indiated in Eq. (6.18).Let us onsider then again, for the ase γ < d − 1, the integrability of theintegrand in Eq. (6.17). To do so we need to examine in detail the small k behaviorof f̃(k). It is shown in the appendix that, as one would expet from a simpledimensional analysis, for f(r → ∞) ∼ 1/rγ+1 we have f(k → 0) ∼ k−d+γ+1 in any
d, for the ase of a pair fore whih is not absolutely integrable, and bounded, i.e.,
−1 < γ < d−1. It follows then from Eq. (6.17) that the variane is �nite for a given
γ only for a sub-lass of uniform point proesses, spei�ally those whih satisfy

lim
k→0

k−d+2γ+2S(k) = 0 , (6.19)i.e., for S(k → 0) ∼ kn with
n > d− 2γ − 2 = −d+ 2(d− 1− γ) . (6.20)For uniform point proesses violating this ondition, i.e., with S(k → 0) ∼ kn and

−d < n ≤ −d + 2(d − γ − 1), the variane diverges. It follows from the results onthe PDF of F presented in the previous setion that the total fore itself F(x) isthen badly de�ned in the in�nite system limit.These results of Se. 2.2 and Se. 2.3 ombined are the entral ones in this paper,antiipated in the introdution.Firstly, when pair fores are absolutely integrable at large separations, the totalfore PDF is well de�ned in the in�nite system limit, while for pair fores whih arenot absolutely integrable this quantity is ill de�ned. This has the simple physialmeaning antiipated in the introdution: when this PDF is well de�ned, the foreon a typial partile takes its dominant ontribution from partiles in a �nite regionaround it; when instead the PDF is ill de�ned far-away ontributions to the totalfore dominate, diverging with the size of the system. Thus absolutely integrablepair fores with γ > d − 1 are, in this preise sense, �short-range", while they are�long-range" when γ ≤ d − 1. To avoid onfusion with the usual lassi�ation ofthe range of interations based on the integrability properties of the interationpotential, we will adopt the nomenlature that interations in the ase γ > d−1 aredynamially short-range, while for γ ≤ d− 1 they are dynamially long-range. Thus204



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSan interation with d−1 < γ ≤ d an be desribed as thermodynamially long-rangebut dynamially short-range.Seondly the results in Se. 2.3 detail how, for γ ≤ d − 1, the fore PDF in thein�nite system limit may be de�ned provided an additional presription is given forthe alulation of the fore. In the next setion we explain the physial meaningand relevane of this result.3 De�nedness of dynamis in an in�nite uniformsystemThe regularization Eq. (6.18) is simply the generalization to a generi pair forewith γ ≤ d−1 of one whih is used for the ase of Newtonian gravity, often referredto as the �Jeans swindle� (see e.g. [25℄). It was indeed originally introdued byJeans [86℄ in his treatment of self-gravitatingmatter in an in�nite universe. However,as explained by Kiessling in [95℄, its denomination as a �swindle� is very misleading,as it an be formulated in a mathematially rigorous and physially meaningfulmanner, preisely as in Eq. (6.18).The presription Eq. (6.18) simply makes the fore on a partile de�ned bysetting to zero the ill de�ned ontribution due to the non-zero mean density:
〈F(x)〉 = lim

µ→0+
n0

∫

x− x′

|x− x′|f(|x− x′|)e−µ|x−x′|ddx′ = 0 , (6.21)The fore on a partile an thus be written as
F(x) = lim

µ→0+

∫

x− x′

|x− x′|f(|x− x′|)e−µ|x−x′|δn(x′)ddx′ , (6.22)where δn(x′) = n(x′) − n0 is the density �utuation �eld. It is straightforwardto show that the derived onstraint (6.20) orresponds simply to that whih an beantiipated by a naive analysis of the onvergene of the integral Eq. (6.22): treating
δn(x′) as a deterministi funtion (rather than a stohasti �eld) one an require itto deay at large |x′| with a su�iently large exponent in order to give integrability;taking the FT to infer the behavior of |δ̃n(k)|2 one obtains the ondition (6.20).The relevane of the results we have derived for the fore PDF in the in�nitesystem limit using this regularization arises thus, as it does in the ase of Newtoniangravity, when one addresses the following question: is it possible to de�ne onsis-tently dynamis under a given pair interation in an in�nite system whih is uniformat large sales? As we now disuss, generalizing onsiderations given in [3℄ for thespei� ase of gravity in d = 1, the answer to this question is in fat phrased interms of the de�nedness of the PDF of fore di�erenes rather than that of fores.This leads then to our seond lassi�ation of pair interations.3.1 Evolution of �utuations and de�nedness of PDFLet us onsider �rst an in�nite partile distribution whih is suh that the total forePDF is de�ned at some given time, i.e., for γ > d− 1 we may onsider any uniformSSP, while for γ < d − 1 we may onsider (employing the regularization disussed)205



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSonly the lass of SSP with �utuations at large sales obeying the ondition (6.20)at this time. The fores on partiles at this initial time are then well de�ned. Thiswill only remain true, however, after a �nite time interval, if the evolved distributionontinues to obey the same ondition (6.20). Let us determine when this is the aseor not.In order to do so, it su�es to onsider the evolution of the density �utuations,and spei�ally of the SF at small k, due to the ation of this fore �eld. Given thatwe are interested in the long-wavelength modes of the density �eld, we an apply thedi�erential form of the ontinuity equation for the mass (and thus number) densitybetween an initial time t = 0 and a time t = δt:
n(x, δt)− n(x, 0) = ~∇[n(x, 0)u(x, 0)] (6.23)where u(x, 0) is the in�nitesimal displaement �eld. Subtrating the mean density

n0 from both sides, and linearizing in δn(x, δt) = [n(x, δt) − n0] and u(x, 0), weobtain, on taking the FT,
δ̃n(k, δt) = δ̃n(k, 0) + i n0 k · ũ(k, 0) . (6.24)Taking the square modulus of both sides, in the same approximation we get

|δ̃n(k, δt)|2 − |δ̃n(k, 0)|2 = (6.25)
n2
0k

2|ũ(k)|2 + 2kn0Im[δ̃n(k, 0)ũ∗(k, 0)] .If the displaements are generated solely by the fores ating (i.e. assuming veloitiesare initially zero), we have that
u(x, 0) =

1

2
F(x, 0)δt2 (6.26)and thus, that |ũ(k)|2 ∝ |F(k)|2. The latter quantity is given, using Eq. (6.16), by

|F(k)|2 = |f̃(k)|2S(k) . (6.27)In the analysis in the previous setion we used the result that at small k, f̃(k) ∼
k−d+γ+1. Thus |ũ(k)|2 ∼ k2m+n, where m = −d+ γ + 1, if S(k) ∼ kn. It thenfollows, from Eq. (6.25), that the small k behavior of the time-evolved SF is givenby

Sδt(k → 0) ∼ kn + k1+m+n + k2+2m+n . (6.28)It an be inferred that the leading small k behavior of the SF is unhanged if andonly if m + 1 ≥ 0, i.e., γ ≥ d − 2. Gravity (γ = d − 2) in the marginal ase iswhih the long wavelength ontribution to the SF generated by the evolution hasthe same exponent as the initial SF: this is the well known phenomenon of linearampli�ation of initial density perturbations (see e.g. [25, 126℄) whih applies3 inin�nite self-gravitating systems (derived originally by Jeans).3The result does not apply, however, when n > 4 [126℄; the reason is that �utuations with
S(k → 0) ∼ k4 arise generially from any rearrangement of matter due to dynamis whih on-serves mass and momentum loally. These e�ets are negleted impliitly above when we use theontinuum approximation to the density �utuation �eld.206



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSIf, on the other hand, γ < d − 2 (i.e. the interation is �more long-range� thangravity in d dimensions) the exponent of the small k behavior is redued from n to
n− 2(d− 2− γ). Given that our result is for an in�nitesimal time δt, this indiatesin fat a pathologial behavior: in any �nite time interval the exponent n shouldbeome, apparently, arbitrarily large and negative, while, as shown in Set. 1, theonstraint n > −d is imposed by the assumed large sale uniformity of the SPP. Inother words this result means that, in the in�nite system limit, when γ < d − 2,the ondition of large sale uniformity is violated immediately by the dynamialevolution. The reason is simply that in this ase the rate of growth of a perturbationat a given sale inreases with the sale. Indeed this is the essential ontent of theanalysis given just above: through the ontinuity equation, the perturbation to thedensity �eld is proportional to the gradient of the displaement �eld, whih in turnis simply proportional to the gradient of the fore. As we now detail more expliitly, when γ < d− 2, this quantity diverges with the size of the system.3.2 PDF of fore di�erenesLet us onsider now the behavior of the PDF of the di�erene of the fores betweentwo spatial points separated by a �xed vetor distane a:

∆F(x;x+ a) ≡ F(x)− F(x+ a) . (6.29)If this quantity is well de�ned in the in�nite system limit, its PDF P(∆F; a) willbe independent of x and will have a parametri dependee only on a = |a| beauseof the assumed statistial translational and rotational invariane of the partiledistribution.The analysis of the properties of P(∆F; a) in the in�nite volume limit is formallyexatly the same as that given above for the total fore F, with the only replaementof the pair fore in Eq. (6.14) by the pair fore di�erene:
∆f(x,x+ a) = f(x)− f(x + a) , (6.30)i.e., the di�erene of the pair fores on two points loated at x and x + a due toa point at the origin. Assuming again the possible small sale singularities in thispair fore di�erene to be suitably regulated, our previous analysis arries through,the only signi�ant hange being that, as x→ ∞,

∆f(x,x+ a) ∼ ax̂/xγ+2 . (6.31)Proeeding in exatly the same manner to analyse P(∆F; a), we �nd that
• For γ > d − 2, i.e., if the gradient of the pair fore at �xed a is an absolutelyintegrable funtion of x at large separations, the PDF P(∆F; a) is well de�nedin the in�nite system limit, and is a rapidly dereasing funtion of its argumentfor any SPP. This is true without any regularization.
• For γ ≤ d−2, on the other hand, a well de�ned PDF may be obtained only byusing the regularization like that introdued above in Eq. (6.18). Therefore thePDF of the fore di�erenes then remains well de�ned, i.e., the fore di�erene207



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONS
∆F(x; a) remains �nite at all x, only in a sub-lass of SPP de�ned by theonstraint

n > d− 2γ − 4 = −d+ 2(d− 2− γ) . (6.32)For the ase of gravity γ = d − 2 this oinides with the full lass of uniformSPP, while for any smaller γ, it restrits to a sub-lass of the latter.
3.3 Conditions for de�nedness of dynamis in an in�nite sys-temOur analysis in Se. 3.1 of the evolution of density perturbations under the e�etof the mutual pair fores gave the su�ient ondition γ ≥ d− 2 for the onsistenyof the dynamis in the in�nite system limit, but with the assumption that the totalfore PDF was itself de�ned. This means that, in the range d− 2 ≤ γ < d− 1, theresult derived applies only to the sub-lass of in�nite uniform partile distributionsin whih the large sale �utuations obey the ondition (6.20). It is straightforwardto verify, however, that the analysis and onlusions of Se. 3.1 an be generalizedto over all uniform SPP for γ ≥ d − 2. In line with the disussion given above,the analysis requires in fat only assumptions about the behavior of the gradientof the fores, rather the fores themselves. More spei�ally, the only equationwhih expliitly ontains the fore, Eq. (6.26), is a purely formal step whih an bemodi�ed to inlude the possibility that the fore diverges with system size. Indeedif the fore � at a given point � inludes suh a divergene it is su�ient that thisdivergene anels out when we alulate the di�erene between this fore and thatat a neighboring point. Physially this means simply that, as disussed above, whenwe onsider the relative motions of partiles, it is su�ient to onsider relative fores.Further, as we are onsidering the limit of an in�nite system in whih there is nopreferred point (i.e. statistial homogeneity holds), only relative motions of pointshas physial signi�ane, and therefore only the spatial variation of the fores anhave physial meaning. These latter statements an be viewed as a kind of orollaryto Mah's priniple: if the mass distribution of the universe is, as it is in the ase weonsider, suh that there is no preferred point in spae (and, spei�ally, no enterof mass) inertial frames whih give absolute meaning to fores (rather than tidalfores) annot be de�ned.In summary our onlusion is that the neessary and su�ient ondition fordynamis to be de�ned in the in�nite system limit � in analogy to how it is de�nedfor Newtonian self-gravitating partiles in a in�nite universe of onstant density �is that the gradient of the pair fore be absolutely integrable at large separations.Gravity is the marginal (logarithmially divergent) ase in whih suh a dynamisan be de�ned, but only by using a presription suh as Eq. (6.18). Further theseonditions on the range of pair fores an be expressed simply as one on the existeneof the PDF of fore di�erenes of points as �nite separations in the in�nite systemlimit.208



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONS4 Disussion and onlusionsIn onlusion we make some brief remarks on how the results derived here relate toprevious work in the literature on fore PDFs. In this ontext we also disuss theimportant assumption we made throughout the artile, that the pair fore onsid-ered was bounded. Finally we return brie�y to the question of the relevane of thelassi�ation dividing interations aording to the integrability properties of thepair fore, onerning whih we have reported initial results elsewhere [67℄.The �rst and most known alulation of the fore PDF is that of Chandrasekhar[33℄, who evaluated it for the gravitational pair interation in an in�nite homoge-neous Poisson partile distribution (in d = 3). This results in the so-alledHoltzmarkdistribution, a probability distribution belonging to the Levy lass (i.e. power lawtailed with a diverging seond moment) with P (F) ∼ F−9/2 at large F . Aord-ing to our results here, a well de�ned PDF may be obtained for suh a fore law,whih is not absolutely integrable at large separations, only by using a presrip-tion for the alulation of the fore in the in�nite system limit. In his alulationChandrasekhar indeed obtains the fore on a point by summing the ontributionsfrom mass in spheres of radius R entered on the point onsidered, and then taking
R → ∞ (with n0 �xed). This presription is a slight variant of the one we have em-ployed (following Kiessling [95℄): instead of the smooth exponential sreening of theinteration, it uses a �spherial top-hat" sreening so that the fore may be writtenformally as in Eq. (6.18) with the replaement of e−µ|x−x′| by a Heaviside funtion
Θ(µ−1 − |x − x′|). It is straightforward to verify that the result of Chandrasekharis unhanged if the smooth presription Eq. (6.18) is used instead. As the Poissondistribution orresponds to an SF S(k → 0) ∼ kn with n = 0, the general ondition(6.20) for the existene of the PDF we have derived, whih gives n > −1 for gravityin d = 3, is indeed satis�ed. The fat that the PDF is power-law tailed (and thusnot rapidly dereasing) arises from the fat that the alulation of Chandrasekhardoes not, as done here, assume that the singularity in the gravitational interationis regularized. Indeed it is simple to show expliitly [71℄ that this power law tailarises from the divergene in the pair fore at zero separation. This an be doneby onsidering the ontribution to the total fore on a system partile due to itsnearest neighbor partile, whih turns out to have a power law tail idential, bothin exponent and amplitude, to that of the full P (F).Our analysis shows that it is true in general that well de�ned, but power-lawtailed fore PDFs, an arise only when there are singularities in the pair fore: for abounded fore we have seen that the PDF is neessarily rapidly dereasing when itexists. More spei�ally, returning to the analysis of Se. 1.3, it is straightforward tosee that the ruial property we used of QN ({fi}), that it have ompat support, is nolonger valid when the pair fore has singularities. The analytiity properties whihlead to a rapidly dereasing PDF may then not be inferred. We note that this is trueat �nite N , and has nothing to do with the in�nite volume limit, i.e., the appearaneof the assoiated power-law tail arises from the possibility of having a single partilewhih give an unbounded ontribution rather than from the ombination of theontribution of many partiles whih then diverges in the in�nite system limit. Theexponent in suh a power-law tail will depend on the nature of the divergene atsmall separation. More spei�ally, for a entral pair fore as onsidered above andnow with a singularity f(x → 0) ∼ 1/xa, a simple generalization of the analysis209



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSfor the ase of gravity (see [?℄) of the leading ontribution to the total fore omingfrom the nearest neighbor partile leads to the onlusion that P (F → ∞) ∼ F−d− d
a(where F = |F|). This implies that the variane diverges (i.e. the PDF beomesfat-tailed) for a > d/2.Fore PDFs have been alulated in various other spei� ases. Wesenbergand Molmer [153℄ derived that of fores exerted by randomly distributed dipolesin d = 3, orresponding to a pair fore with γ = 2. Aording to our resultsthis is the marginal ase in whih a summation presription is required for thefore, and indeed a presription using spheres, like that used by Chandrasekhar forgravity, is employed. We note that [153℄ fousses on the power-law tails assoiatedwith the singularity at zero separation of the fore, whih lead in this ase (asan be inferred from the result summarized above) to the divergene of the �rstmoment of the fore PDF. One of us (AG) has given results previously [65℄ forthe PDF for a generi power-law interation in d = 1 for γ > −1 in our notationabove. The onditional fore PDF is then derived for the ase of an in�nite �shu�edlattie� of partiles, i.e., partiles initially on an in�nite lattie and then subjetedto unorrelated displaements of �nite variane, and using again, as Chandrasekhar,a �spherial top-hat" presription for the fore summation (for γ ≤ 0, when the pairfore is not absolutely integrable). It is simple to show [71℄ that suh a distributionhas an SF with n = 2 at small k, and thus the existene of the fore PDF in theseases is again in line with the onstraint (6.20) derived. Power-law tails are againobserved in these ases, and their exponents related expliitly to the singularity inthe assumed power-law fore at zero separation.The alulation of Chandrasekhar has been generalized in [66℄ to the ase ofpartiles on an in�nite shu�ed lattie. This leads again, in line with ondition(6.20), to a well de�ned PDF, again with or without power-law tails aordingto whether the singularities in the pair fore are inluded or not. Chavanis [35℄onsiders, on the other hand, the generalization of Chandrasekhar alulation (forthe PDF of gravitational fores in a Poisson distribution) to d = 2 and d = 1. Theondition (6.20 for gravity (γ = d − 2) gives n > −d + 2, whih implies that thefore PDF is not de�ned in the in�nite system limit we have onsidered for d ≤ 2,and indeed in [35℄ well de�ned PDFs are obtained in d = 2 and d = 1 by using adi�erent limiting proedure involving in eah ase an appropriate resaling of theoupling with N . The physial meaning of suh a proedure is disussed in [?℄, whihonsiders in detail the alulation of the fore PDF for gravity in d = 1 in a Poissondistribution (as in [35℄). An exat alulation of the fore PDF of the sreenedgravitational fore in the in�nite system limit is given, whih allows one to see inthis ase exatly how the general result given here is veri�ed in this spei� ase:all moments of the PDF diverge simultaneously as the sreening length is takento in�nity, giving a PDF whih onverges point-wise to zero. The fore PDF forgravity in d = 1 for a lass of in�nite partile distributions generated by perturbinga lattie has been derived reently in [70℄. It is straightforward to show that one ofthe onditions imposed on the perturbations to obtain the PDF, that the varianeof the perturbations be �nite, orresponds in fat to the ondition n > 1 whihoinides preisely with the more general ondition (6.20) derived here. Unlike inthe other spei� ases just disussed, it turns out that in this ase (gravity in d = 1)it is in fat neessary to use the smooth presription Eq. (6.18). As explained in210



CHAPTER 6. A DYNAMICAL CLASSIFICATION OF THE RANGE OF PAIRINTERACTIONSdetail in [70℄, the top-hat presription does not give a well de�ned result in thisase, beause surfae ontributions to the fore whih do not deay with distane inthis ase are not regulated by it. We underline that the general result given in thepresent artile are for this spei� presription Eq. (6.18). Further analysis would berequired to derive the general onditions in whih a top-hat presription also givesthe same (and well-de�ned) PDF.Finally let us omment on why we antiipate the lassi�ation of pair interationsaording to their �dynamial range�, formalized here using the fore PDF, shouldbe a useful and relevant one physially in the study of systems with long-rangeinterations. The reason is that this lassi�ation re�ets, as we have explained,the relative importane of the mean �eld ontribution to the fore on a partile,due to the bulk, ompared with that due to nearby partiles. Now it is preiselythe domination by the former whih is understood to give the regime of ollisionlessdynamis whih is expeted to lead to the formation of QSS states, whih are usuallyinterpreted to be stationary states of the Vlasov equations desribing suh a regimeof the dynamis (see e.g. [13℄). In a reent artile [67℄ a numerial and analytialstudy has been reported whih provides strong evidene for the following result,very muh in line with this naive expetation: systems of partiles interating byattrative power law pair interations like those onsidered here an always giverise to QSS; however when the pair fore is dynamially short-range their existenerequires the presene of a su�iently large soft ore, while in the dynamially long-range ase QSS an our independently of the ore, whether hard or soft, providedit is su�iently small. In other words only in the ase of a pair fore whih is�dynamially long-range" an the ourrene of QSS be onsidered to be the resultonly of the long distane behavior of the interation alone. This �nding is veryonsistent with what ould be antiipated from the preeding (naive) argument: thee�et of a �soft ore� is preisely to redue the ontribution to the fore due to nearbypartiles, whih would otherwise dominate over the mean �eld fore in the ase ofa pair fore whih is absolutely integrable at large distanes. Indeed the meaningof �su�iently large� spei�ed in [67℄ is that the size of the soft ore must inreasein an appropriate manner with the size of the system as the limit N → ∞ is taken,while we have always impliitly assumed it to be �xed in units of the interpartiledistane here.
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Conlusion and perspetivesIn Chapters 3, 4 and 5 of this thesis, we have presented a simpli�ed 1− d toy modelto study the temporal evolution of in�nite self-gravitating systems, onsidering alass of initial onditions analogous to those anonially studied in osmology. Inso doing, we have revisited a basi question onerning the de�nition of the gravi-tational fore in 1− d in�nite point distributions. We then have disussed di�erentdynamial toy models whih inorporate this de�nition of the fore � the simpleonservative Newtonian dynamis and one whih inorporates a damping term mim-iking the e�et of 3− d expansion.We then have presented in Chapter 4 the results of numerial investigations ofthe dynamial evolution of 1 − d self-gravitating toy models, starting with a lassof initial onditions analogous to those studied in osmology: latties perturbed toprodue an initial power spetrum in a simple power-law form, i.e. Pinit(k) ∝ kn atsmall k. We have observed very strong qualitative similarities between the evolutionof 1 − d and 3 − d systems when the exponent of the initial power spetrum wasequal to 0 and 2. We have observed spei�ally the hierarhial nature of thelustering, and brought to light the mehanism of linear ampli�ation determiningthe growth of non-linearity sale. Moreover, we have shown that �self-similarity�is indeed observed in 1 − d system in both the stati and expanding ases just asin 3 − d. We have shown, however, that qualitative di�erenes an be identi�edbetween the stati and expanding ases. The shape of the orrelation funtion hasappeared to be a funtion of the exponent n of the initial power spetrum and of thedamping term Γ in the expanding ase, and to be independent of this exponent inthe stati limit (Γ = 0). This result again oinides with 3−d numerial simulation.The 1− d self-gravitating model has also given us the opportunity to investigateeasily struture formation in the limit of �ausal �utuations�, i.e. P (k) ∝ k4 atsmall k. We have shown that, di�erently to the ase where P (k) ∝ k0 or k2 atsmall k, the evolution of the PS at small k is not, as expeted, the one preditedfrom linear theory. However, despite the non-validity of the linear ampli�ationof the small k PS, the non-linear struture formation does show asymptotially aself-similar evolution.Due to the absene of smoothing at small sale (whih is impossible in 3− d N-body simulations), our 1− d model allowed us to identify the lower ut-o� markingthe end of the self-similar regime at small-sale, xmin say. We have shown that thisut-o� was explained naturally by a �stable-lustering� hypothesis, a result whihallowed us to determine the exponent in the self-similar regime in terms of the expo-nent n of the initial power spetrum and the damping term Γ. The stable lusteringhypothesis we have desribed, however, is atually subtly di�erent from the original213



CONCLUSION AND PERSPECTIVESone introdued by Peebles in 3 − d in an EdS universe [126℄: we assumed only thestable lustering applies below the sale xmin marking the lower ut-o�, and notneessarily to the strongly non-linear regime as a whole. Thus we assumed, in ourderivation of the exponent haraterizing the self-similar regime, only that stablelustering applies at an ultraviolet sale �xed by the resolution of the simulation(or, physially, by the sale at whih the very �rst strutures form).We have then explored and haraterized further in Chapter 5 the sale-invariantproperties of the partile distribitions produed in these 1− d self-gravitating mod-els. We used a multifratal analysis to measure the spetrum of fratal exponentsand studied their dependene on the model and initial onditions. We onludedthat, in the stati model the results are quite onsistent with a simple homogeneousfratal, while in the expanding ases there is signi�ant multi-fratality. Further-more, we have explored the appliability of a desription of the lustering like thatused anonially in osmologial simulations, that in terms of �halos�. We used thesimplest kind of �Friend-of-Friend� algorithm and foussed on the question whetherthese seleted halos are, typially, virialized. The study of the virial ratios we havepresented indiated that suh halos an be onsidered as entities with a dynamialrelevane, as they show a lear tendeny to have a virial ratio of order unity (whihis the behaviour of an isolated struture). It emerged from this analysis that onean e�etively deompose the distribution of partiles into a olletion of strutureswhih are, statistially, virialized. The �statistial virialization� we have observedusing the halo analysis applies aross the range of the sale-invariant lustering.Thus the strongly non-linear lustering in these models is aurately desribed as avirialized fratal struture, very muh in line with the �lustering hierarhy� whihPeebles originally envisaged qualitatively as assoiated with stable lustering [126℄.If transposed to 3 − d these results would imply, notably, that old-dark matterhalos (or even subhalos) are 1) not well modeled as smooth objets, and 2) that thesupposed �universality� of their pro�les is, like apparent smoothness, an artefat ofpoor numerial resolution. There are, however, learly two possible onlusions onean draw from this analysis:
• A) These 1 − d models produe non-linear lustering whih is qualitativelydi�erent in its nature to that in 3− d, or
• B) The spatial resolution in 3− d simulations up to now has been too limitedto reveal the nature of lustering in old dark matter osmologies, whih isorretly re�eted (qualitatively) in the 1− d simulations.We believe that, despite the impressive omputational size and sophistiation of

3− d osmologial simulations, onlusion B may well be the orret one. The verylargest modern studies in a osmologial volume aes roughly two deades in salein the non-linear regime while referene studies in the literature of power law initialonditions in EdS osmology [51, 139℄ measure the ruial power-law behaviour inthe orrelation funtion over at most one deade. If we were to perform our 1 − dsimulations at omparable resolution to large osmologial simulations like Smith etal. [139℄, we would ertainly have a great di�ulty in establishing the sale invariantnature of the strongly non-linear lustering arising from power law initial ondi-tions. Although halos de�ned exatly as in three dimensions might look lumpy, an214



CONCLUSION AND PERSPECTIVESapproximately smooth pro�le ould be determined for them if they were averaged(as they an be in three dimensions when spherial symmetry is assumed). Higherresolution 3D simulations of smaller regions have shown over the last deade thatthere is in fat muh more substruture inside halos than was originally antiipated(see, e.g., [45,76,115℄), and some very reent work [161℄ even omes to the onlusionthat halos are indeed, intrinsially grainy rather than smooth. Previous analyses byother authors (see, e.g., [72, 149℄) have also argued for similar onlusions based onthe analysis of 3D simulations.Let us onsider nevertheless one possible onsideration in favour of (the moreonservative) onlusion A. In the expanding (i.e. damped) 1D models, the stablelustering predition �ts the measured exponents extremely well. Early 3D stud-ies for EdS osmologies (e.g. [51℄) measured exponents roughly onsistent with thestable lustering predition, but later studies (e.g. [139℄) have found signi�ant dis-agreement. This disagreement is attributed to physial mehanisms whih ause thefundamental assumption of stability to be violated � by the evident fat that thereare interations between �halos", whih an even lead to their merging into singlestrutures. We have noted that in one dimension tidal fores vanish, and struturesan interat only when they atually physially ross one another. While mergingmay our, it may be that it is a less e�ient proess than in three dimensions.Thus the exellent agreement in the 1D models ompared to EdS may perhaps beattributed to the fat that these models probably represent poorly the role of suhphysial e�ets. The essential question, however, is not whether these e�ets play arole and an lead to deviations from stable lustering, but whether suh e�ets anqualitatively hange the nature of lustering, destroying sale invariane by smooth-ing out the distribution on a sale related to the upper ut-o� to sale invariane.Our study of the ase Γ = 0 suggests that the answer is negative. The preditionof stable lustering does not work in this ase, and like in three dimensions, oneobtains a small value of the exponent whih does not sensibly depend on n. Thephysial reasons why the exponent is lose to, but di�erent to, the stable lusteringpredition are a priori the ones just ited. Further, as we have mentioned, the lowerut-o� xmin remains onstant as in the stable lustering hypothesis, of order theinitial lattie spaing (and unrelated to the upper ut-o�).These results on 1D models suggest diretions for 3D investigations whih mightestablish de�nitively the orretness of onlusion B. We note, for example, thatthe 1D models lead one to expet that the exponents derived phenomenologially toharaterize the highly non-linear density �eld inside smoothed halos (i.e. the �innerslope" of halos) should be losely related to the exponent γ determined from theorrelation funtion. Indeed � in the approximation of a simple fratal behaviorin the strongly non-linear regime, whih the spetrum of multi-fratal exponentsmeasured in [114℄ suggests should be quite good � the mean density about theentre of suh halos will derease just as about any random point, i.e., with the sameexponent γ. Despite the ontradition with the widely laimed �universality" of suhexponents in halos pro�les, suh a hypothesis annot urrently be ruled out, as thedetermination of suh exponents is beset by numerial di�ulties (arising again fromthe limited resolution of numerial simulations). In a study of halo pro�les obtainedfrom power law initial onditions Knollmann et al. [97℄ show expliitly that theresults for the halo exponents depend greatly on what numerial �tting proedure215



CONCLUSION AND PERSPECTIVESis adopted. While one proedure gives �universality" (i.e. exponents independentof n), a di�erent one favors learly steepening inner pro�les for larger n. Indeedwe note that the numerial values for the inner slopes obtained by Knollman etal. [97℄ are, for the larger n investigated, in quite good agreement with the exponentpredited by stable lustering.Our onsiderations here are stritly relevant only to dissipationless old darkmatter simulations. If the initial onditions are �warm" or �hot", or if other non-gravitational interations are turned on, the assoiated physial e�ets will lead tendto smooth out the matter distribution up to some sale (and thus destroy the saleinvariane up to this sale). Nevertheless, if the onlusion B is orret even for thisidealized ase, it is likely to have very important observational impliations rele-vant to testing standard osmologial models � intrinsially lumpy or grainy haloslead, for example, to very di�erent preditions for dark matter annihilation (see,e.g. [4, 76℄)). At larger sales the possible link to the striking power-law behaviorwhih haraterizes galaxy orrelations over several deades (see, e.g., [99,106,125℄)� whih was the motivation for original work on stable lustering [125℄ and isnaturally interpreted as indiative of underlying sale invariane in the matter dis-tribution (see, e.g. [72, 99℄) � is intriguings.In the last Chapter 6 of this thesis, we have reported results whih generalizeto any pair interation deaying as a power-law at large separation the approahused in Chapter 3 to determine whether the 1 − d gravitational fore is de�nedin an in�nite system. This is an interesting question as the gravitational fore islearly a partiular long-range interation, for whih linear ampli�ation emergesfrom linear �uid theory. We have formalized and desribed a simple lassi�ationof pair interations whih is di�erent to the usual thermodynami one applied todetermine equilibrium properties, and whih we believe should be very relevant inunderstanding aspets of the out of equilibrium dynamis of these systems. Insteadof onsidering the onvergene properties of potential energy in the usual thermody-nami limit, we have onsidered therefore those of the fore in the same limit. Thus,while in the former ase one onsiders (see e.g. [136℄) the mathematial properties ofessential funtions desribing systems at equilibrium in the limit N → ∞, V → ∞at �xed partile density n0 = N/V , we have onsidered the behavior of funtionsharaterising the fores in this same limit. More spei�ally we have onsidered thede�nedness of the probability distribution funtion (PDF) of the fore �eld in statis-tially homogeneous in�nite partile distributions. We have also disussed a further(and di�erent) lassi�ation whih an be given of the range of pair interationsbased on dynamial onsiderations. This arises when one addresses the question ofwhether dynamis under a given pair interation may be de�ned in in�nite systems,i.e., in a manner analogous to that in whih it is de�ned for self-gravitating massesin an in�nite universe. We have then dedued our prinipal result that the forePDF exists stritly in the in�nite system limit if and only if the pair fore is abso-lutely integrable at large separations, while it an be de�ned only in a weaker sense,introduing a regularization, when the pair fore is not absolutely integrable. Wehave disussed the physial relevane of the use of suh a regularization, whih isjust a generalization of the so-alled �Jeans swindle" used to de�ne the dynamis of(lassial non-relativisti) self-gravitating partiles in an in�nite universe. By ana-216



CONCLUSION AND PERSPECTIVESlyzing the evolution of density perturbations in an in�nite system, we have shownthat the physial relevane of suh a regularization of the fores requires also a on-straint on the behavior of the PDF of total fore di�erenes as a funtion of systemsize. We expet that this lassi�ation re�ets, as we have explained, the relativeimportane of the mean �eld ontribution to the fore on a partile, due to the bulk,ompared with that due to nearby partiles. Now it is preisely the domination bythe former whih is understood to give the regime of ollisionless dynamis whih isexpeted to lead to the formation of QSS states, whih are usually interpreted to bestationary states of the Vlasov equations desribing suh a regime of the dynamis(see e.g. [13℄).Work in progress will use the power of 1−d models, whih is their simple imple-mentation in numerial studies, to study the impat of the range of the interationand of the presene of a regularization (hard or soft ore) at small sale on thedynamis whih is expeted to lead to the formation of QSS states. We will use anexat N-partiles ode, optimized to run using Graphial Proessing units (GPU)programming. This simpli�ed approah will give us the opportunity to follow thedynamial evolution of the systems diretly in the one-partile phase-spae, analysiswhih is impossible in three dimensions.
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Appendix AOne and two point properties ofuniform SPPIn this appendix we give the general one and two-point statistial haraterizationof a SPP whih is uniform on large sales.The desription of the orrelation properties of a generi uniform SPP is given bythe n-point orrelation funtions of the density �eld. For our onsiderations it willturn out to be su�ient to onsider only the two-point properties, and more speif-ially it will be most onvenient to haraterize them in reiproal spae throughthe struture fator (SF) (or power spetrum). This is de�ned by
S(k) = lim

V→∞

〈

|δ̃n(k;V )|2
〉

n0V
(A.1)where

δ̃n(k;V ) =

∫

V

ddx e−ik·x[n(x)− n0] . (A.2)With these normalisations the SF of an unorrelated Poisson proess is S(k) = 1.For a statistially isotropi point proess S(k) ≡ S(k), where k = |k|. We reallhere that S(k) is the Fourier transform (FT) of the onneted two point densityorrelation funtion:
S(k) =

∫

ddx e−ik·xC(x)where
C(x) =

〈n(x0 + x)n(x0)〉 − n2
0

n0
= δ(x) + n0h(x) .In the last expression we have expliitly separated in the orrelation funtion C(x)the shot noise term δ(x), present in all SPP and due to the �granularity� of thepartile distribution, from the �o�-diagonal� term n0h(x) whih gives the atualspatial orrelations between di�erent partiles.In the paper we study the onvergene properties of fores at large distanes andare thus mainly interested in the properties of the SF at small k. In this respet wewill use the following limit on the SF whih follows from the assumed uniformity ofthe SPP:

lim
k→0

kdS(k) = 0 , 219



APPENDIX A. ONE AND TWO POINT PROPERTIES OF UNIFORM SPPi.e, the SF is an integrable funtion of k at k = 0. This onstraint simply translates inreiproal spae the requirement from uniformity on the deay of relative �utuationsof the number of partiles ontained in a volume V about the mean at large V :
lim
V→∞

〈N(V )2〉 − 〈N(V )〉2
〈N(V )〉2 = 0 .Given that 〈N(V )〉 ∝ V , the root mean square �utuation of partile number N in avolume V must diverge slower than the volume V itself in order that this onditionbe ful�lled. (This is equivalent to saying that C(x) must vanish at large x).We use likewise in the paper only one onstraint on the large k behavior of theSF, whih is valid for any uniform SPP (see e.g. [?℄) and oinides with the shotnoise term in the orrelation funtion C(x):

lim
k→∞

S(k) = 1 .
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Appendix BSmall k behavior of f̃(k)We are interested in the small k behavior of the Fourier transform f̃(k) of the pairfore in d dimensions in the ase where the pair fore f(x) = x̂f(x), where x̂ = x
|x| ,is non-integrable but onverges to zero at x → ∞, i.e., f(r) ∼ x−(γ+1) at large xwith −1 < γ ≤ d− 1.We �rst show that for a funtion f(x) = x̂f(x), its Fourier transform, f̃(k) =FT[f(x)](k), an be written f̃(k) = k̂ ψ(k) where ψ(k) is a funtion depending onlyon the modulus of k and k̂ = k

|k| . In order to obtain this result, we start by writingf̃(k) = ∫ ddx f(x)e−ik.x =

∫

ddx x̂f(x)e−ikx ,where this integral is de�ned in the sense of funtions or distributions aording tothe integrability of f(x).In the following we denote by (ê1, ê2, . . . , ên) the artesian vetor basis in d-dimensionand we de�ne (r, θ1, θ2, . . . , θd−1) the hyper-spherial oordinates of x. Consideringk = k ê1 and denoting for simpliity θ = θ1, we an writef̃(k) = ∫ ddx x̂f(x)e−ikxcosθ ,where
ddx =

(

d−1
∏

j=0

sinj(θd−j)dθd−j

)

xd−1dx .Projeting f̃(k) on the artesian basis, it is easy to see that the only non-vanishingterm is ê1 .̃f(k) whih giveŝ
e1.f̃(k) = Cθi6=1

∫ ∞

0

dxxd−1

×
∫ π

0

dθ sinn−2(θ) cos θf(x)e−ikxcosθ ,where Cθi6=1
is a onstant term oming from the integration over all the hyper-spherial oordinates θi with i 6= 1. We thus an write f̃(k) = k̂ ψ(k) where ψ(k) isa funtion depending only on the modulus of k. 221



APPENDIX B. SMALL K BEHAVIOR OF F̃(K)We now fous our attention on the small k behavior of the term
∫ ∞

0

dxxd−1f(r)e−ikxcosθ , (B.1)where the funtion f(x) is non-integrable but onverges to zero at x → ∞, i.e.,
f(x) ∼ x−(γ+1) at large x with −1 < γ ≤ d − 1, and thus an be written f(x) =
x−(γ+1) + h(x) with h(x) a smooth funtion, integrable at x = 0 and suh that
xγ+1h(x) → 0 for x→ ∞.De�ning expliitly eq.(B.1) in the sense of distributions, the small k behavior isdetermined by this leading divergene at x → ∞,

lim
µ→0

∫ ∞

0

dx xd−1 e
−µx

xγ+1
e−ikx cos θ , (B.2)where the parameter µ > 0. We de�ne α = d−γ−2 whih satis�es −1 ≤ α < d−1and rewrite eq. (B.2)

lim
µ→0

∫ ∞

0

dx xαe−(ik cos θ+µ)x .This an be easily alulated with Laplae's transform and gives
∫ ∞

0

dx xαe−(ik cos θ+µ)x =
Γ(α + 1)

(µ+ ik cos θ)α+1
.We an onlude that

lim
µ→0

∫ ∞

0

dxxd−1 e
−µx

xγ+1
e−ikx cos θ

= i−(α+1) cos−(α+1)(θ)Γ(α + 1)k−(α+1) ∼ kγ−d+1 .
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RésuméLa formation des strutures dans l'univers demeure une des interrogations majeures en os-mologie. La roissane des strutures dans le régime linéaire, où l'amplitude des �utuations estfaible, est bien omprise analytiquement, mais les simulations numériques à N -orps restent l'outilprinipal pour sonder le régime �non-linéaire� où es �utuations sont grandes. Nous abordons ettequestion d'un point de vue di�érent de eux utilisés ouramment en osmologie, elui de la physiquestatistique et plus partiulièrement elui de la dynamique hors-équilibre des systèmes ave inter-ation à longue portée. Nous étudions une lasse partiulière de modèles 1 − d qui présentent uneévolution similaire à elle renontrée dans les modèles 3− d. Nous montrons que le lustering spa-tial qui se développe présente des propriétés (fratales) d'invariane d'éhelles, et que des propriétésd'auto-similarité apparaissent lors de l'évolution temporelle. D'autre part, les exposants ara-térisant ette invariane d'éhelle peuvent être expliqués par l'hypothèse du �stable-lustering�. Ensuivant une analyse de type halos séletionnés par un algorithme �friend-of-friend�, nous montronsque le lustering non-linéaire de es modèles 1 − d orrespond au développement d'une �hiérarhiefratale statistiquement virielisée�. Nous terminons par une étude formalisant une lassi�ationdes interations basée sur des propriétés de onvergene de la fore agissant sur une partiule enfontion de la taille du système, plut�t que sur les propriétés de onvergene de l'énergie potentielle,habituellement onsidérée en physique statistique des systèmes ave interation à longue portée.Mot-lefsFormation de strutures, Interations longue portée, Simulations N -orpsAbstratThe formation of strutures in the universe is one of the major questions in osmology. Thegrowth of struture in the linear regime of low amplitude �utuations is well understood analytially,but N -body simulations remain the main tool to probe the �non-linear� regime where �utuationsare large. We study this question approahing the problem from the more general perspetive to theusual one in osmology, that of statistial physis. Indeed, this question an be seen as a well posedproblem of out-of-equilibrium dynamis of systems with long-range interation. In this ontext, itis natural to develop simpli�ed models to improve our understanding of this system, reduing thequestion to fundamental aspets. We de�ne a lass of in�nite 1−d self-gravitating systems relevantto osmology, and we observe strong qualitative similarities with the evolution of the analogous
3 − d systems. We highlight that the spatial lustering whih develops may have sale invariant(fratal) properties, and that they display �self-similar� properties in their temporal evolution. Weshow that the measured exponents haraterizing the sale-invariant lustering an be very wellaounted for using an appropriately generalized �stable-lustering� hypothesis. Further by meansof an analysis in terms of halo seleted using a friend-of-friend algorithm we show that, in the or-responding spatial range, strutures are, statistially virialized. Thus the non-linear lustering inthese 1− d models orresponds to the development of a �virialized fratal hierarhy�. We onludewith a separate study whih formalizes a lassi�ation of pair-interations based on the onvergeneproperties of the fores ating on partiles as a funtion of system size, rather than the onvergeneof the potential energy, as it is usual in statistial physis of long-range-interating systems.KeywordsCosmologial struture formation, Long range interations, N -body simulations


