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Introduction

Let k be an algebraically closed field of characteristic 0. The algebraic torus
T, = T of dimension n is the algebraic variety (k*)” with its natural structure of
algebraic group. A T-variety is an algebraic variety endowed with an effective action
of the torus T.

This thesis is devoted to the study of two aspects of normal affine T-varieties: the
additive group actions and the characterization of singularities.

The introduction is divided in three parts. First, we introduce a combinatorial
description of normal affine T-varieties, this corresponds to Chapter [Il We also give
a historical overview on the subject. In the second part we present the results con-
cerning the additive group actions on affine T-varieties, these results are developed
in Chapters 2] and [3] Finally, we expose the results of Chapter [ about the classifi-
cation of singularities on T-varieties. In this introduction all varieties are assumed
to be normal.

Normal T-varieties

A character (resp. one-parameter subgroup) of the torus is a morphism y : T —
k* (resp. A : k* — T) that is at the same time a group homomorphism. The set of
all characters (resp. one-parameter subgroups) form a lattice M (resp. N) of rank
n and there is a natural duality given by (see Section [1.3.1])

(LA =10 i xoeAr) =t

It is the standard convention to consider M and N as abstract lattices. In this
case, the torus T = Speck[M] and for every m € M (resp. p € N) we denote by
X" (resp. Ap) the corresponding character (resp. one-parameter subgroup) of the
torus. We also let Ng and Mg be the rational vector spaces N ® Q and M ® Q,
respectively. The natural duality between M and N extends in an obvious way to a
duality between the vector spaces Mg and Ng.

It is well known that a T-action on an affine variety X = Spec A gives rise
to an M-grading on A, where M is the character lattice of T, see Theorem [I.3.
Moreover, letting KT C Frac A be the field of T-invariant rational functions on X,
without loss of generality, we may assume that

A= @ Apx™, where A, CK",
meaVNM

and o is the weight cone of the M-grading i.e., the cone spanned in Mg by all the
lattice vectors m such that A,, # 0, see Section [[.3.3] In the sequel, for any cone
o" C Mg we denote the set ¥ N M by o).

1



2 INTRODUCTION

For an algebraic torus T acting on an algebraic variety X, the complexity of this
action is defined as the codimension of the general orbit. If the T-action is effective,
then the complexity is dim X — dimT. Moreover, the complexity of the T-action
equals the transcendence degree of KT over k.

In 2006, Altmann and Hausen [AHO6] gave a combinatorial description of nor-
mal affine T-varieties that generalizes two well established theories: the theory of
toric varieties, that corresponds to T-varieties of complexity zero; and the theory of
quasihomogeneous varieties that corresponds to Ti = k*-varieties. It also general-
izes a combinatorial description in the particular case of complexity one given by
Mumford [KKMS73l, Chapter 4].

Let us now introduce the above mentioned descriptions of toric varieties, of quasi-
homogeneous varieties, of T-varieties of complexity one, and finally of T-varieties of
arbitrary complexity, in more detail.

Toric varieties. The theory of toric varieties first appeared in 1970 in the
influential work of Demazure on the Cremona group [Dem70]. It was later developed
independently by Kempf, Knudsen, Mumford and Saint-Donat [KKMS73|, Miyake
and Oda [MOT5], and Satake [Sat73]. See also the surveys by Danilov [Dan78] and
Teissier [Tei81].

This theory represents a bridge between convex and algebraic geometry, which
in particular allows to treat a large class of algebraic varieties in a combinatorial
way. In the present, there are several textbooks covering the basic theory [Oda88;
Ful93; [CLS|. This is still an active domain of research.

Let T be an algebraic torus, M be its character lattice, and N be its one-
parameter subgroup lattice. A toric variety is a normal T-variety of complexity
Zero.

A fan ¥ in Ng is a collection of pointed convex polyhedral cones in Ng such that
for all o € X, each face of o also belongs to X; and for all o, 0’ € X, the intersection
o No’ is a face of each of them. There is a natural way to associate to a fan 3 a
toric variety Xy, and every toric variety arises in this way, see Section

The case of affine toric varieties is particularly simple. These varieties correspond
to fans X consisting of only one maximal cone ¢ and all of its faces. In this case, we
denote Xs. by X,. Furthermore, the algebra of regular functions of an affine toric
variety X, is the semigroup algebra

k[X,] =k[o}] = €D k-x™.

Vv
meo,,

In this setting, the variety X, is completely determined by the pointed cone o C Ng
or, equivalently, by the weight cone oV C M.

Quasihomogeneous affine varieties. A quasihomogeneous variety is a variety
endowed with an effective action of the torus T; = Speck[Z] = k* H A quasihomo-
geneous affine variety is called unmixed if the corresponding Z-grading is positive
i.e., if the weight cone ¢V is Q>, and hyperbolic if the weight cone o is Q.

There is a well known description of a quasihomogeneous affine variety X by
means of rational divisors (Q-divisors) on a variety Y of dimension dim X — 1.

IThis definition differs from the concept of quasihomogeneity in theory of algebraic group
actions.
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This description first appeared for unmixed k*-actions. For surfaces it was en-
countered in the works of Dolgachev [Dol75] and Pinkham [Pin77; [Pin78|, and latter
on was generalized by Demazure [Dem88]E| to arbitrary dimension.

For hyperbolic k*-surfaces this description was developed by Flenner and Zaiden-
berg in [FZ03]. Finally, in arbitrary dimension the description follows easily from
the results in [FZ03] and [Dem88]. It is also a corollary of [AHOG].

A variety Y is called semiprojective if it is projective over an affine variety. Let
Y be a normal semiprojective variety and let D be an ample Q-divisor on Y. Letting
Oy (D) be the sheaf Oy (| D]), where | D] is the integral part of D, we define the
algebra

AlY,D] = EB ApX™, where A, = H(Y,Oy(mD)).

meZZO

In this setting, X = Spec A[Y, D] is a normal affine variety of dimension dim Y +1
endowed with an unmixed k*-action. Conversely, every unmixed affine k*-variety
arises in this way [Dem88, Theorem 3.5]. The variety Y in this description is, in
general, not unique. However Y can be made unique by imposing the condition
Y ~ Proj A[Y, D].

Let as before Y be a normal semiprojective variety and let Dy, D_ be two ample
Q-divisors such that Dy + D_ < 0. We define the algebra

AlY,D,,D_]| = @ Anx™, where A, =
meZ
The condition Dy + D_ < 0 ensures that A[Y, Dy, D_] is indeed an algebra,
see Section In this setting X = Spec A[Y, D4, D_] is a normal affine variety of
dimension dim Y + 1 endowed with a hyperbolic k*-action. Conversely, every affine
hyperbolic k*-variety arises in this way [FZ03].

HY(Y,Oy(mDy)) ifm >0,
HO(Y,Oy(—mD_)) otherwise.

T-varieties of complexity one. In Chapter 4 of [KKMS73|, Mumford gave
a combinatorial description of T-varieties of complexity one admitting a rational
quotient that is also a regular morphism, see Definition [1.3.3]

More generally, Timashev [Tim97] gave a combinatorial description of normal
varieties endowed with an effective action of a reductive group of complexity one.
When specialized to the case of G = T [Tim08], this description coincides with
the one given previously by Mumford. The description due to Timashev is also
available in the case where the T-action does not admit a rational quotient which is
a morphism. We recall briefly the description of affine T-varieties due to Timashev.

Let C be a smooth projective curve, M and N be mutually dual lattices of rank
n, H" = Ng X Qx>0, and H = Ng x {0} C H*". A hypercone © on C is a set of
pointed polyhedral cones C, C H™, for all z € C such that the following conditions
hold.

(i) The cone C, N'H =: o does not depend on z € C.
(7i) C, = o x Q¢ for all but finitely many z.
(iii) Let A, denote the projection onto Ng of the polyhedron C, N (H + (0,1))
and A =3 _~ A, then the polyhedron A is a proper subset of o.

2This paper was officially published in 1988, but it first appeared in the Demazure-Giraud-
Teissier seminary in 1979.
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(iv) Let h, (resp. he) be the support functionE] of A, (resp. A), and O, =
Y sechz(m) -z, for all m € oy;. If A # () then for every m € oy, such
that hg(m) = 0 a multiple of the divisor ©,, is principal.

We let C° = {z € C | C, # o}. For every hypercone © on a smooth projective
curve C' we define the algebra

AlC,0]= @ Amx™, where Ap = H(C°,0c(0n)).

v
meo

In this setting X = Spec A[C, ©] is a normal affine variety of dimension rank M +
1 endowed with an effective T-action. Conversely, every affine T-variety of complex-
ity one arises in this way [Tim08, Theorem 2].

T-varieties of arbitrary complexity. We pass now to the announced com-
binatorial description of normal affine T-varieties of arbitrary complexity due to
Altmann and Hausen [AHOG].

Let M and N be mutually dual lattices of rank n, and T = Speck[M]. We let as
before Ng = N ® Q and Mg = M ® Q. Let o be a pointed polyhedral cone in Ng.
A polyhedron A is called a o-polyhedron if can be decomposed as the Minkowski
sum of a bounded polyhedron and o.

A o-polyhedral divisor on a semiprojective variety Y is a formal sum

D= Ay Z,
Z

where Z runs over all prime divisors on Y, Az is a o-polyhedron, and Az = o for
all but finitely many prime divisors Z. For m € ¢" we can evaluate ® by letting
D(m) be the Q-divisor

D(m) = hz(m)-Z,
Z

where hy is the support function of Az. A o-polyhedral divisor ® is called proper
if ®(m) is semiample and Q-Cartier for all m € ¢V, and D (m) is bigﬁ for all m €
rel. int(cV).

To any proper o-polyhedral divisor ® on a semiprojective variety Y we associate
the algebra

AY, D] = @ Amx™, where Ay, = H'(Y,0y(D(m)) Ck(Y).

v
meo,,

THEOREM (Altmann and Hausen). Let © be a proper o-polyhedral divisor on
a semiprojective variety Y. Then X[Y,®] := Spec A[Y,®] is a normal affine T-
variety of dimension rank M + dimY . Conversely, every normal affine T-variety
is isomorphic to X|[Y,®] for some semiprojective variety Y and some proper o-
polyhedral divisor ® onY .

In [AHS08], divisorial fans were introduced to extend this combinatorial descrip-
tion to normal not necessarily affine T-varieties. This provides a generalization of
the passage from cones to fans in toric geometry.

3See Section for a definition.

“Recall that a Q-Cartier divisor D on Y is called big if there exists a divisor Dy in the linear
system |rD|, for some r > 1, such that Y\ Supp Dy is affine.
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In the following, we show how this description restricts to the particular cases
of toric varieties, quasihomogeneous varieties, and T-varieties of complexity one.

Affine toric varieties. Affine toric varieties correspond to the case where Y is reduced
to a point. Since the only divisor on Y is ), for any proper o-polyhedral divisor ®
the evaluations D (m) = 0, for all m € o), and so H°(Y,Oy(D(m))) = k. This
yields

Ay, D] = @ ky™, andso X[V,D]=X,.

v
meo

Affine quasihomogeneous varieties. Let X be a quasihomogeneous variety. In the
case where X is unmixed, we let X ~ Spec A[Y, D], for some ample Q-Cartier divisor
D on a semiprojective variety Y. Letting M = 7Z, 0 = Q>0, and

D =[l,00)-D yields A[Y,D]= A[Y,D].

In the case where X is hyperbolic, we let X ~ Spec A[Y, D4, D_], for some ample
Q-Cartier divisors Dy, D_ on a semiprojective variety Y such that Dy + D_ < 0.
Letting M = Z, o = {0}, and

D={1}-D; +[0,1- (-Dy — D_) yields A[Y,D,,D_] = A[Y,D].

Affine T-varieties of complexity one. Let X be an affine T-variety of complexity
one. We can assume that X = Spec A[C, O] where © is a hypercone over a smooth
projective curve C'. With the notation as in the definition of a hypercone, (i) shows
that all the polyhedra A, are o-polyhedra. By (i7)

D= ZAZ~Z

zeC°

is a o-polyhedral divisor on C°. Finally, (#i7) and (iv) ensure that © is proper. With
these definitions, it is clear that A[C, 0] = A[C°, D], see also [Vol07].

Additive group actions

The additive group G, over an algebraically closed field k of characteristic zero is
defined as the affine variety A' ~ k endowed with the natural structure of algebraic
group induced by the addition on k.

Let X = Spec A be an affine variety. A derivation 0 : A — A is called locally
nilpotent (LND for short) if for every a € A there exists k € Z>q such that 9% (a) = 0.
A G,-action on X gives rise to an LND on A and every Gy-action on X arises in
this way, see Section [2.1

The study of G,-actions goes back to Hilbert who calculated the rings of invari-
ants of certain linear G,-actions on A™ up to integral closure. In 1959, Nagata gave
a counterexample to the famous Hilbert’s fourteenth problem, which uses a linear
action of G}3 on A3? [Nag59).

In 1968, Rentschler classified all the locally nilpotent derivations of the polyno-
mial ring in two variables over a field of characteristic zero, and showed how this
gives the equivalent classification of all G,-actions on A? [Ren6S].

The modern interest in G,-actions and LNDs comes from the introduction by
Kaliman and Makar-Limanov [ML96} [KML97] of the ring absolute constants, now
called the Makar-Limanov invariant (ML invariant for short). The ML invariant of
an affine variety X = Spec A is defined as the intersection of the kernels of all the
LNDs on A.
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Let us consider the Koras-Russell affine cubic threefold X = Spec A, where
A=K[z,y, 2,1/ (x + 2%y + 22 + 7).

The ML invariant was first introduced to distinguish X from A3. In fact ML(X) =
k[z] while ML(A3) = k. This was the last step in the proof of the fact that all the
k*-actions on A? are linearizable [KKMLR97].

We describe now the results in Chapters[2]and [3| where we investigate G,-actions
on affine T-varieties, or equivalently LNDs on normal affine M-graded domains.
These results are contained in the paper [Liel0] and the preprint [Lie09a].

Let as before M and N be mutually dual lattices of rank n, Ng = N ® Q,
Mg =M ®Q, and T = Speck[M]. We also let o be a pointed polyhedral cone in
Ng. We consider an integrally closed affine effectively M-graded domain

A= EB Apx™ C KY[M], where A, C KT,

\
meo,,

and we let X = Spec A be the corresponding affine T-variety.

A derivation 0 : A — A is called homogeneous if it sends homogeneous elements
into homogeneous elements i.e., if there exists a lattice vector e = degd € M such
that

O(AnX™) C Apaex™te, forall meoay,.

A Gy-action on X is called compatible with the T-action if the corresponding LND
is homogeneous, geometrically this means that the G,-action is normalized by the
torus T.

In Lemma we show that we can associate to any LND on A a homogeneous
one. A homogencous LND 0 on A can be extended to a derivation on KT[M] by
the Leibniz rule. We also denote this extension by 0.

We say a homogeneous LND 0 on A, or equivalently, a compatible G,-action
on X, is of fiber type if 9(K™) = 0 and of horizontal type otherwise. In geometric
terms, a compatible G,-action is of fiber type if the general orbits of the G,-action
are contained in the orbit closures of the T-action.

Let LND(A) be the set of all LNDs on A. The Makar-Limanov invariant of A,
or equivalently of X, is defined as

ML(A) = ﬂ ker 0.
HELND(A)
Similarly, letting LNDy(A) be the set of all homogeneous LNDs on A, we define the
homogeneous Makar-Limanov invariant of A as
MLy(A) = (] kerd.
HELNDy, (A)

We say that the ML invariant of A is trivial if ML(A) = k. Clearly, the triviality
of the homogeneous ML invariant implies that of the usual one.

Ga-actions on toric varieties. Letting o C Ng be a pointed polyhedral cone,
we let A = k[o);], and X, = Spec A. Fix a ray p of o with primitive vector py and
dual facet 7 C o¥. We define S, as the set

S,={me M| {py,m)=—1, and (p',m) > 0Vp' € o(1) \ p} ,
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where (1) is the set of all rays of . The main result of Section is the follow-
ing classification, which is valid over an arbitrary field of characteristic zero, not
necessarily algebraically closed.

THEOREM A. To any pair (p,e), where p is a ray of o and e is a lattice vector
in S,, we can associate in a natural way a homogeneous LND 9,. on A = ko]
with kernel ker 0, = k[Tas] and deg 0, = e.

Conversely, if 0 # 0 is a homogeneous LND on A, then 0 = X0, for some ray
p € o, some lattice vector e € S,, and some X € k*.

In [Dem70] an analog result is proven for smooth not necessarily affine toric
varieties. In loc. cit. the elements in the set R = — pea(l) S, are called the roots
of 0.

As usual, we denote a ray and its primitive vector by the same letter p. Let p
be a ray of o and e € S, then the LND 0, is given by

m+e

Ope(X™) = {m, p)x

As a first corollary of Theorem [A] we show that the equivalence classes of ho-
mogeneous LNDs on the toric variety X, are in one to one correspondence with the
rays of . Concerning the ML invariant of toric varieties we obtain the following
result, see Proposition [3.2.1]

THEOREM B. Let § C Mg be the mazimal subspace contained in o¥. Then
ML(A) = MLy, (A) = k[0] -

In particular ML(A) = k if and only if o is of full dimension i.e., if and only if X
does not have a non-trivial torus factor in X.

Ga-actions of fiber type on T-varieties of arbitrary complexity. We fix
a smooth semiprojective variety Y and a proper o-polyhedral divisor

QZZAZ-Z on Y.
z

Letting k(Y") be the field of rational functions on Y, we consider the affine variety
X = Spec A, where

A=Ay, D= @ Anx™ with A, =H"(Y,0(D(m))) C k().

\;
meo,

We also fix a homogeneous LND 9 of fiber type on A, and we let A = k(Y')[o},] be
the affine semigroup algebra of o), over the field k(Y'). The LND 0 can be extended
to a homogeneous locally nilpotent k(Y)-derivation @ on A. The derivations on A
were classified in Theorem [Al

In Section [2.4] we apply this remark to classify the LNDs of fiber type on T-
varieties of arbitrary complexity. This is done first in the particular case of com-
plexity one in Section [2.3.1}

For any e € S, we let ®; = HO(Y,Oy(—D,)) \ {0}, where D, is the Q-divisor
on Y defined by

D, = max (hz(m)—hz(m+e))-Z.

Z meoy \Tar
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For a ray p C o we denote by 7 the corresponding dual facet of oV. The main
result concerning the classification of LNDs of fiber type on A[Y,®] is the following
theorem.

THEOREM C. To any triple (p, e, ), where p is a ray of o, e € S,, and ¢ € P,
the derivation Ope.p = @0p.e is a homogeneous LND of fiber type on A = A]Y, D] of
degree e with kernel

ker 0p e, = @ Apx™.
meT)N

Conversely, every non-trivial homogeneous LND O of fiber type on A is of the
form O = 0, for some ray p C o, some lattice vector e € S,, and some function
p € P,

The kernel of the LND 0,. ., depends only on the ray p. So the equivalence
classes of LNDs of fiber type on A are in one to one correspondence with the rays
p of o satisfying that there exists e € S, such that ®7 is non-empty. The following
theorem gives a condition for the latter to happen.

THEOREM D. Let p C o be the ray dual to a facet 1 C oV. Then there exists
e € S, such that ®} is non-empty if and only if the divisor D(m) is big for all lattice
vector m € rel.int(7).

In particular, the LNDs of fiber type on A = A[Y, D] are in one to one correspon-
dence with the rays p of o such that ®(m) is big for all lattice vector m € rel. int(7).

Form Theorem [D] we obtain the following corollary that gives a condition for the
triviality of the ML invariant of A.

COROLLARY E. Let A = A[Y,D]. If Y is projective, rank M > 2, o is full
dimensional, and D (m) is big for all non-zero lattice vector m € o, then ML(A) =

k.

Ga-actions on T-varieties of complexity one. The case of compatible G,-
actions on affine k*-surfaces was first studied by Flenner and Zaidenberg in [FZ05a].
This paper was our motivation in the next part of the thesis. In Section [2.3.3] we
show how that our results restrict to those in [FZ05al in the case of affine k*-surfaces.

In the case of affine T-varieties of complexity one we give in Section [2.3]a classi-
fication of all homogeneous LNDs. Let o be a pointed cone in Ng. We fix a smooth
curve C' and a proper o-polyhedral divisor © on C'

’D:ZAZ-z.

zeC

Letting k(C') be the field of rational functions of C, we consider the affine variety
X = Spec A, where

A=A[C,D] = P Anx", with A, =H"(C,0c(®(m))) Ck(C).

meoy,
We define the degree of ® as the polyhedron
deg® =) A..
zeC

The classification of the homogeneous LNDs of fiber type on A is given in The-
orem [C] above. Furthermore, in the case of complexity one we can replace the
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condition “D(m) is big for all lattice vector m € rel.int(r)” in Theorem [D] by the
simpler one “p is disjoint from deg®”.

The classification of LNDs of horizontal type is more involved. First, we prove
that the existence of a homogeneous LND of horizontal type on A implies that the
base curve C is isomorphic to Al or to P!, see Lemma In the following we
assume that C' = Al or C = P

The main classification result for homogeneous LNDs of horizontal type on
A = A[C, D] is Theorem The statement of this theorem requires too much
notation to be included in this introduction. Here, we only state its main corollary
in Theorem [El

Letting h, : 0¥ — Q be the support function of A., we define the normal
quasifan A(D) of D as the coarsest refinement of the quasifan of 0¥ C Mg such that
for every z € C, the function h, is linear in each cone n € A(®). We say that a
maximal cone n € A(D) is good if there exists zy € C such that h.|, is integral, for
all z € C'\ {20}

With these definitions we can state the following classification of the equivalence
classes of homogeneous LNDs of horizontal type on A = A[C, D], see Corollaries

2327 and 2.3.28

THEOREM F. Let ® be a proper o-polyhedral divisor on C, and let A = A[C,D].
The equivalence classes of homogeneous LNDs of horizontal type on A are in one to
one correspondence with:

(i) The good mazimal cones n in the normal quasifan A(D), in case where C = A'.
(73) The pairs (zoo,n), where zoo € C and n is a good maximal cone in the normal
quasifan of A(D|c,), with Cp := C \ {200}, in case where C = P1.

In Theorem [3.3.4] we compute the homogeneous ML invariant of A. Again, it
requires too much notation to be included in this introduction.

The ML invariant and rationality. As stated before the ML invariant is
an important tool for affine geometry. In particular, it allows to distinguish certain
varieties from the affine space. Nevertheless, this invariant is far from being optimal.
Indeed, the ML invariant of the affine space A" is trivial i.e., ML(A™) = k. However,
it can also be trivial for a non-rational affine variety.

Recall that a variety is rational if its field of functions is a purely transcendental
extension of the base field k. In Section |3.3.1] we apply Corollary |Ef to give, to our
best knowledge, the first example of a non-rational affine variety having a trivial ML
invariant. This example is generalized in Section [3.4]

We give here a geometrical instance of these examples. Let Y be a projective
variety, H be an ample Cartier divisor on Y, and n > 2. We let X be the total
space of the vector bundle associated to the locally free sheaf @;" ; Oy (H), and X
be the contraction of the zero section of X to a point. In Example we show
that ML(X) = k, while X has the birational type of Y x P™.

In Theorem [3.4.1] we apply this example to give the following birational charac-
terization of normal affine varieties with trivial ML invariant.

THEOREM G. Let X be an affine variety over the field k. If ML(X) = k then
X ~uir Y x P2 for some variety Y. Conversely, in any birational class Y x P? there
is an affine variety X with ML(X) = k.
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To avoid such pathological examples, we introduce in Section [3.5 a field version
of the ML invariant, we call it the FML invariant. This invariant is defined as

FML(A) = ﬂ Frac(ker 0) .
HELND(A)

For any finitely generated normal domain A there is an inclusion ML(A) C
FML(A). Since FML(A") = k the FML invariant is stronger than the classical one
in the sense that it can distinguish more varieties form the affine space that the
classical one.

For an affine variety X, we conjecture that FML(X) = k implies that X is
rational. In Theorem we confirm this conjecture for dimensions up to 3.

Finitely generated rings of invariants. The generalized Hilbert’s fourteenth
problem can be formulated as follows. Let k C L C K be field extensions, and let
A C K be a finitely generated k-algebra. Is it true that the k-algebra A N L is also
finitely generated?

In the case where K = Frac A and Spec A has a G,-action, we consider L = K©»
so that AN L is the subring of invariants of the G,-action. So ANL = ker 0, where 9
is the associated LND on A. In this case the answer to the question above is known
to be negative even for the polynomial ring in n > 5 variables [DF99]. On the other
hand, in Section [2.5| we show the following result.

THEOREM H. Let A be a normal finitely generated effectively M -graded algebra,
where M is a lattice of finite rank, and let 0 be a homogeneous LND on A. If the
complexity of the corresponding T-action on Spec A is zero or one, or the LND 0 is
of fiber type, then ker 0 is finitely generated.

This theorem follows from our classification results. The hard case, where the
LND is of horizontal type, follows as well from a result due to Kuroda [Kur(3].

Furthermore, in Corollary 2.5.5] we apply Kuroda’s result to prove that ker d is
also finitely generated in the case where X = Spec A is rational and the T-action is
of complexity two.

Normal singularities with torus actions

Let X be a normal variety endowed with an effective torus action. By a classic
theorem of Sumihiro (see Theorem every point x € X has an affine open
neighborhood invariant by the torus action. Hence, local problems can be reduced
to the affine case.

We give now the geometrical counterpart of the combinatorial description of
normal affine T-varieties due to Altmann and Hausen. Let Y be a normal semipro-
jective variety and ® be a proper o-polyhedral divisor on Y. We define the M-graded
Oy-algebra

A=Ay, D]:=  Ov(D(m)).
meay,
So that taking the global sections of E[Y, D] yields the M-graded algebra A[Y,D]
defined before B
A= AlY,®] = H(Y, AlY,D]).
We also let

X = X[Y,D)] := Specy A[Y, D].
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Here, Specy stands for the relative spectrum of a Oy-algebra. See [Har77, Ch. II
Ex. 5.17] for a definition.

The Specy construction provides a T-invariant affine morphism 7 : X Y
which is thus a rational quotient for the T-action on X. The global sections functor
provides a T-equivariant birational morphism ¢ : X — X = X[Y,D] and so o~}
is again a rational quotient for the T-action on X. We can summarize all this
considerations in the following commutative diagram, where all the arrows pointing
down are rational quotients.

With these definitions, we have the following theorem.

THEOREM (Altmann and Hausen).

(i) X is a variety.
(ii) The affine morphism 7 is a good quotient for the T-action on X.
(7i1) The birational morphism ¢ is proper.

We describe now the results in Chapter [4] where we investigate singularities
on affine T-varieties. These results are contained in the preprint [Lie09b] and are
currently being generalized in a joint work with S8 [LS10].

The combinatorial description (Y,®) of a T-variety X is not unique. Indeed,
if we consider a blow up ¥ : Y — Y of Y at a closed point and the proper o-
polyhedral divisor ¢*®, then X[Y,®] ~ X[Y,¢*D], see Lemma for a more
general statement.

We define the support of a o-polyhedral divisor ® on a semiprojective variety Y
as

Supp® = Z Z.
Ag#o

We say that © is an SNC o-polyhedral divisor if Y is smooth, ® is proper, and
Supp® is a simple normal crossing (SNC) divisor. In Corollary we show that
every affine T-variety admits a combinatorial description (Y,®) such that ® is an
SNC o-polyhedral divisor.

Recall that a normal variety X is called toroidal if for every x € X the formal
neighborhood of z is isomorphic to the formal neighborhood of a point in a toric
variety. With this definitions, in Section [£.2] we prove the following result.

THEOREM 1. Let ® be a proper o-polyhedral divisor on a normal semiprojective
variety Y. If © is SNC then X[Y, D] is a toroidal variety.

This theorem shows in particular that the proper birational morphism

0: X = X[V, 9] - X = X[V, D]
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is a partial desingularization of X having only toric singularities. Moreover, a desin-
gularization of X can be obtained by toric methods and so also a desingularization
of X.

Since toric singularities are well understood (see Section , in the following
we will use the morphism ¢ : X — X to study the singularities of X.

Let X be a normal variety and let ¢ : W — X be a (full) desingularization of
X. Usually, the classification of singularities involves the higher direct images of the
structure sheaf R'1),Oy,. These sheaves are defined via

U — H(U, R, Ow) := H' ("1 (U), Ow|yp-1(17)) -

The sheaves R, Oy are independent of the particular choice of a desingular-
ization of X. Furthermore, X is normal if and only if R%, Oy := 1,.Ow = Ox. In
the following theorem we compute the sheaves R't), Oy of a normal affine T-variety
X[Y,®] in terms of the combinatorial data, see Theorem

THEOREM J. Let X = X|[Y,®], where © is an SNC o-polyhedral divisor on'Y .
If ¢+ W — X s a desingularization, then for every i > 0, the higher direct image
ROy is the sheaf associated to

P H (Y, 0 (m)))

v
uEo i,

A normal variety X is said to have rational singularities if ROy = 0 for
all i > 1, see e.g., [Art66} KKMST73; [EIK78|. In the following theorem we apply
Theorem [J] to give a criterion for X to have rational singularities.

THEOREM K. Let X = X[Y, D], where © is an SNC o-polyhedral divisor on'Y .
Then X has rational singularities if and only if for every m € oy,

H'(Y,Oy(®(m))) =0, Vie{l,...,dimY}.

The “only if” part of Theorem [K| for m = 0 gives as a corollary that if X[Y,D]
has rational singularities, then the structure sheaf Oy of Y is acyclic. Furthermore,
in the case of complexity one, we have a more explicit result.

COROLLARY L. IfY is a smooth curve, then X has rational singularities if and
only if
(i) Y is affine, or
(ii) Y =P! and deg|D(m)] > —1 for all m € oy;.

Rational singularities are Cohen-Macaulay. Recall that a local ring is Cohen-
Macaulay if its Krull dimension equals to the depth. A variety X is called Cohen-
Macaulay if all the local rings Ox , are Cohen-Macaulay, see Section

Let as before ¢ : W — X be a desingularization of X. By a well known theorem
due to Kempf (see Lemma , a variety X has rational singularities if and only
if X is Cohen-Macaulay and the induced map .wy — wx is an isomorphism. We
apply Kempf’s Theorem to prove the following result.

THEOREM M. Let X = X[Y, D], where ® is an proper o-polyhedral divisor on
Y. Assume that the following hold.
(i) For every facet T C ¢V, the divisor ®(m) is big for all m € rel. int(7).
(i7) For every prime diwisor Z on'Y and every vertex p on Ay, the divisor ®(m)|z
is big for all m € rel. int(cone((Az —p)Y)).
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Then X is Cohen-Macaulay if and only if X has rational singularities.

In the case of complexity one, condition (ii) in Theorem [M]|is always satisfied.
From Theorem [M] we obtain the following corollary characterizing isolated Cohen-
Macaulay singularities in complexity one.

COROLLARY N. Let X = X[Y,®], where Y is a smooth curve. Assume that X
has only isolated singularities, then the following hold.

(i) If rank M =1, then X is Cohen-Macaulay.
(i) If rank M > 2, then X is Cohen-Macaulay if and only if X has rational sin-
gularities.

A normal surface singularity (X, z) is called elliptic if R'1,Op = k, see e.g.,
[Lau77; Wat80; [Yau80]. An elliptic singularity is called minimal if it is Gorenstein
i.e., is Cohen-Macaulay and the canonical sheaf wx is invertible.

In Proposition |4.4.2] we give a criterion for a surface with a k*-action to be
Gorenstein. Its formulation requires too much notation to be included in this intro-
duction. In Theorem we characterize (minimal) elliptic singularities in term
of the combinatorial data, here we only state the elliptic singularities part of the
theorem.

Let rank M = 1 and Let X = X[Y, D], where Y is a smooth curve and ®© is an
SNC o-polyhedral divisor on Y. If Y is affine, then X has rational singularities, so
in the following we assume that Y is projective i.e., that the action is elliptic. In
this setting we may assume that ¢ = Q>0 and so ® is completely determined by
D7 :=D(1). Furthermore, there is a unique attractive fixed point 0.

THEOREM O. Let X = X[Y,D] be a normal affine surface with an effective
elliptic k*-action, and let 0 € X be the unique fived point. Then (X,0) is an elliptic
singularity if and only if one of the following two conditions holds:

(i) Y =P!, deg|m®D1] > —2 and deg|m®D;| = —2 for one and only one m € Z~y.
(ii) Y s an elliptic curve, and for every m € Zsq, the divisor |mDi]| is not
principal and deg|m®1| > 0.






Introduction (version frangaise)

Soit k un corps algébriquement clos de caractéristique nulle. Le tore algébrique
T, = T de dimension n est la variété algébrique (k*)™ avec sa structure naturelle
de groupe algébrique. Une T-variété est une variété algébrique munie d’une action
effective du tore T.

Cette thése est consacrée a l'étude de deux aspects des T-variétés affines normales :
les actions du groupe additif et la caractérisation des singularités.

Cette introduction est divisée en trois parties. D’abord, on introduit une des-
cription combinatoire des T-variétés affines normales, ceci correspond au Chapitre
On fournit aussi un apercu historique du sujet. Dans la seconde partie, on présente
les résultats concernant les actions du groupe additif dans des T-variétés affines, ces
résultats sont contenus dans les Chapitres [2] et 3l Enfin, on expose les résultats du
Chapitre 4] sur la classification des singularités de T-variétés. Dans cette introduc-
tion, toutes les variétés sont supposées étre normales.

T-variétés normales

Un caractére (resp. sous-groupe & un parametre) du tore est un morphisme
X : T — k* (resp. A : k* — T) qui est en méme temps un homomorphisme de
groupes. L’ensemble de tous les caracteéres (resp. sous-groupes a un parametre) forme
un réseau M (resp. N) de rang n et il y a une dualité naturelle donnée par (voir

Section [1.3.1])

GA) =0, si o) =t".

La convention de notation standard veut que 1’on considere M et N comme des
réseaux abstrait. Dans ce cas, le tore T = Speck[M] et pour tout m € M (resp.
p € N) on note x™ (resp. \,) le caractere (resp. sous-groupe & un parametre) du tore
correspondant. On note Ng et Mg les espaces vectoriels rationnels N ® Q et M ®Q,
respectivement. La dualité naturelle entre M et N s’étend d’une fagon unique en
une dualité entre les espaces vectoriels Mg et Ng.

Il est bien connu qu’une action de T dans une variété affine X = Spec A engendre
une graduation de A indexée par M (M-graduation), ou M est le réseau des carac-
teres de T, voir le Théoreme m De plus, si I'on note K" le corps des fonctions
rationnelles sur X invariantes par T, sans perte de généralité, on peut supposer que

A= D Aux", o Ay CKT,
meoVNM

et 0¥ est le cone des poids de la M-graduation ¢’est-a-dire, le cone dans Mg engendré
par tous les éléments du réseau m tels que A, # 0, voir Section[1.3.3] Dans la suite,
pour tout cone 0¥ C Mg on note oy, I'ensemble o N M.

15
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Pour un tore algébrique T agissant sur une variété algébrique X, la complexité
de cette action est définie comme la codimension d’une orbite générale. Si ’action de
T est effective, la complexité est dim X — dim T. De plus, la complexité de I'action
est aussi donné par le degré de transcendance de KT sur k.

En 2006, Altmann et Hausen [AHO6] ont donné une description combinatoire
des T-variétés affines normales qui généralise deux théories bien établies : la théorie
des variétés toriques, qui correspondent aux T-variétés de complexité zéro; et la
théorie des variétés quasi-homogenes, qui correspondent aux T; = k*-variétés. Cette
description généralise également une description combinatoire dans le cas particulier
de complexité un donnée par Mumford [KKMS73|, Chapter 4].

Introduisons maintenant les descriptions, mentionnées ci-dessus, des variétés to-
riques, des variétés quasi-homogenes, des T-variétés de complexité un, et enfin plus
en détail des T-variétés de complexité arbitraire.

Variétés toriques. La théorie des variétés toriques est apparu en 1970 dans
I'influent article de Demazure sur le groupe de Cremona [Dem70]. Elle a ensuite
été développée indépendamment par Kempf, Knudsen, Mumford et Saint-Donat
[KKMST73], Miyake et Oda [MOT5], et Satake [Sat73]. Voir aussi les articles de survol
par Danilov [Dan78] et Teissier [Tei81].

Cette théorie représente un pont entre la géométrie convexe et la géométrie algé-
brique, qui permet, en particulier, de traiter une large classe de variétés algébriques
de maniere combinatoire. Aujourd’hui, il existe plusieurs livres portant sur la théorie
de base [Oda88}; [Ful93}; [CLS]. Les variétés toriques sont encore un domaine actif de
recherche.

Soit T un tore, M son réseau de caracteres, et N son réseau de sous-groupes a
un parametre. Une variété torique est une T-variété normale de complexité zéro.

Un éventail ¥ dans Ng est une collection de cones polyédraux fortement convexes
dans N telle que pour tout o € ¥, chaque face de o appartient aussi a ¥ ; et pour
tout 0,0’ € X, l'intersection o N o’ est une face de chacun d’entre eux. Il existe une
fagon naturelle d’associer a un éventail ¥ une variété torique Xy, et toute variété
torique est obtenue de cette fagon, voir la Section [T.4]

Le cas des variétés toriques affines est particulierement simple. Ces variétés cor-
respondent aux éventails 3 formés d’un seul cone maximal o et de toutes ses faces.
Dans ce cas, on note X, la variété Xx. De plus, ’algebre des fonctions régulieres
sur une variété torique affine X, est ’algebre de semi-groupe

k[X,] =k[oy] = €D k-x".

Vv
meo

Dans ce cadre, la variété X, est uniquement déterminé par le cone o C Ng ou, de
maniére équivalente, par le cone des poids ¥ C M.

Variétés affines quasi-homogénes. Une variété quasi-homogene est une va-
riété munie d’une action effective du tore Ty = Speck[Z] = k* ﬂ Une variété quasi-
homogene affine est dit non-hyperbolique si la Z-graduation correspondante est po-
sitive c’est-a-dire, si le cone des poids 0¥ est Qxp, et hyperbolique si le cone des
poids est Q.

5Cette définition differe du concept du quasi-homogénéité dans la théorie des actions des groupes
algébriques.
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Il est bien connu qu’une variété quasi-homogene affine X peut étre décrit par
des diviseurs a coefficients rationnels (Q-diviseurs) sur une variété Y de dimension
dim X — 1.

Cette description est apparue d’abord pour des actions de k* non-hyperboliques.
Pour les surfaces elle se trouve dans les ccuvres de Dolgachev [Dol75] et Pinkham
[Pin77; Pin78]. Plus tard elle a été généralisée par Demazure [DemSS]H en dimension
quelconque.

Pour des k*-surfaces hyperboliques cette description a été développée par Flenner
et Zaidenberg dans [FZ03]. Enfin, en dimension quelconque la description est une
conséquence des résultats dans [FZ03] et [Dem88|. Elle est aussi un corollaire de
[AHO6].

Une variété Y est dite semi-projective si elle est projective au-dessus d’une variété
affine. Soit Y une variété semi-projective normale et soit D un Q-diviseur ample sur
Y. On note Oy (D) le faisceau Oy (| D]), ou | D] est la partie entiere de D, et on
définit I'algebre

AY, D= @ Amx™, out Ap=H(Y,0y(mD)).

mGZZO

Dans ce cadre, X = Spec A[Y, D] est une variété affine normale de dimension
dim Y 4 1 munie d’une action non-hyperbolique de k*. Inversement, toute k*-variété
affine non-hyperbolique est obtenue de cette fagon [Dem88, Théoreme 3.5]. En gé-
néral, la variété Y dans cette description n’est pas unique. Cependant, le choix de
Y peut étre rendu unique en imposant la condition Y ~ Proj A[Y, D].

Soit comme avant Y une variété semi-projective normale et soit Dy, D_ deux
Q-diviseurs amples tels que Dy + D_ < 0. On définit I'algebre

AlY,Dy,D_| = P Anx™, ot Ay =

meZ

HO(Y,0y(mDy)) sim >0,
HO(Y,Oy(-mD_)) sinon.

La condition Dy + D_ < 0 assure que A[Y, D, D_] est en effet une algebre, voir
la Section Dans ce cadre, X = Spec A[Y, Dy, D_] est une variété affine normale
de dimension dim Y 4 1 munie d’une action hyperbolique de k*. Inversement, toute
k*-variété affine hyperbolique est obtenue de cette fagon [FZ03].

T-variétés de complexité un. Dans le Chapitre 4 de [KKMS73], Mumford a
donné une description combinatoire des T-variétés de complexité un admettant un
quotient rationnel qui est aussi un morphisme, voir la Définition [1.3.3

Plus généralement, Timashev [Tim97] a donné une description combinatoire des
variétés normales munies d’une action effective de complexité un d’un groupe réduc-
tif. Lorsque I'on spécialise cette description au cas G = T [Tim08], elle coincide avec
celle donnée auparavant par Mumford. La description de Timashev considére aussi
le cas ou 'action de T n’admet pas un quotient rationnel qui est un morphisme.
Dans la suite on présente sommairement la description des T-variétés affines due a
Timashev.

Soit C' une courbe projective lisse, M et N des réseaux mutuellement duaux de
rang n, H" = Ng x Q>0, et H = Ng x {0} € HT. Un hyper-céne © sur C est

6Cette article a été officiellement publié en 1988, mais il est apparu en 1979 dans le séminaire
Demazure-Giraud-Teissier.
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un ensemble des cones polyédraux fortement convexes C, C H™T, pour tout z € C
satisfaisant les propriétés suivantes.

(i) Le cone C, N'H =: 0 ne dépend pas de z € C.
(77) C; = 0 x Q>0 pour tous sauf un nombre fini de z.

(4i7) On note A, la projection sur Ny du polyedre C, N (H + (0,1)) et on pose
A =3 coA;. Alors, le polyedre A est un sous-ensemble propre de o.

(iv) Soit h, (resp. he) la fonction de supportﬂ de A, (resp. A), et O, =
> ec hz(m) - z, pour tout m € o). Si A # () alors pour chaque m € oy,
tel que hg(m) = 0, un multiple du diviseur ©,, est principal.

On pose C° = {z € C | C, # o}. Pour tout hyper-cone © sur une courbe
projective lisse C' on définit ’algebre

AlC,0l= @ Anx™, ot Ay =H’(C® 0c(On)).

v
meo

Dans ce cadre, X = Spec A[C, O] est une variété affine normale de dimension
rang M 4+ 1 munie d’une action effective de T. Inversement, toute T-variété affine
normale de complexité un est obtenue de cette fagon [Tim08, Theorem 2].

T-variétés de complexité quelconque. On expose maintenant la description
combinatoire des T-variétés affine normales de complexité quelconque due & Altmann
et Hausen [AHO6].

Soit M et N des réseaux mutuellement duaux de rang n, T = Speck[M], Ng =
N®Q, et Mg = M®Q. On fixe un cone polyédral fortement convexe o dans Ng. On
dit qu’un polyédre A est un o-polyedre s’il peut étre décomposé comme la somme
de Minkowski d’un polyedre borné et de o.

Un diviseur o-polyédral sur une variété semi-projective Y est une somme formelle

D=) Az Z,
Z

ou Z parcourt tous les diviseurs premiers sur Y, Az est un o-polyedre, et Ay =0
pour tous sauf un nombre fini de diviseurs premiers Z. Pour chaque m € o' on
définit I’évaluation D(m) de © en m comme le Q-diviseur :

D(m) = hz(m)- 2,
Z

ou hy est la fonction de support de Az. Un diviseur o-polyédral ® est dit propre si
D(m) est semi-ample et Q-Cartier pour tout m € oV, et D(m) est abondantﬁ pour
tout m € rel.int(c").

A tout diviseur o-polyédral propre © sur une variété semi-projective Y on peut
associer l'algebre

AY, D] = @ Anx™, ot Ay =HO(Y,0y(D(m)) Ck(Y).

Vv
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"Voir la Section m pour la définition de fonction de support.
80n dit qu'un diviseur Q-Cartier D sur Y est abondant s’il existe un diviseur Dy dans le
systéme linéaire |rD|, pour quelque r > 1, tel que Y \ Supp Dy est affine.
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THEOREME (Altmann et Hausen). Soit © un diviseur o-polyédral propre sur une
variété semi-projective Y. Alors X[Y, D] := Spec A[Y, D] est une T-variété affine
normale de dimension rang M +dim Y . Inversement, toute T-variété affine normale
est isomorphe a X[Y,®] pour une certaine variété semi-projective Y et un certain
diviseur o-polyédral propre ® sur'Y .

Dans [AHSO0S8|, des éventails divisoriaux ont été introduits pour étendre cette
description combinatoire aux T-variétés normales, non nécessairement affines. Ceci
donne une généralisation du passage des cones aux éventails dans la géométrie to-
rique.

Dans la suite, on montre la fagon dont cette derniere description généralise les
cas particuliers des variétés toriques, des variétés quasi-homogenes, et des T-variétés
de complexité un.

Variétés toriques affines. Les variétés toriques affines correspondent au cas ou Y
est réduite a un point. Comme l'unique diviseur sur Y est (), pour tout diviseur
o-polyédral propre ® les évaluations ®(m) = 0, pour tout m € oy, et alors
HO(Y, 0y (D(m))) = k. Ceci donne

AV, D)= @ kx™, et X[V,D]=X,.

v
meo

Variétés affines quasi-homogénes. Soit X une variétés affines quasi-homogenes. On
suppose d’abord que X est non-hyperbolique. Soit D un diviseur Q-Cartier ample
sur une variété semi-projective Y tel que X ~ Spec A[Y, D]. Si 'on pose M = Z,
g = QZO, et
D =[l,00)-D ona A[Y,D]=A[Y,D].

On suppose maintenant que X est hyperbolique. Soit Dy, D_ deux diviseurs
Q-Cartier amples sur une variété semi-projective Y tels que Dy + D_ < 0 et X ~
AlY,Dy,D_]. Si 'on pose M =Z, 0 = {0}, et

D={1}-D,+[0,1]- (=D —D_) ona A[Y,D,,D_]=A[Y,D].

T-variétés affines de complexité un. Soit X une T-variété affine de complexité un.
On peut supposer que X = Spec A[C, O] ou © est un hyper-cone sur une courbe
projective lisse C'. Avec la notation de la définition d’un hyper-cone, (i) montre que
tous les polyedres A, sont des o-polyedres. D’apres (ii)

D = ZAZ-Z

zeC°

est un diviseur o-polyédral sur C°. Enfin, (iii) et (iv) assurent que © est propre.
Avec ces définitions, il est évident que A[C,B] = A[C°, D], voir aussi [Vol07].

Actions du groupe additif

Le groupe additif G, sur un corps algébriquement clos k de caractéristique nulle
est défini comme la variété affine A! ~ k munie de la structure naturelle de groupe
algébrique induite par ’addition dans k.

Soit X = Spec A une variété affine. Une dérivation J : A — A est dite localement
nilpotente (DLN en abrégé) si pour tout a € A il existe k € Zxg tel que 9*(a) = 0.
Une action du groupe additif sur X donne lieu & une DLN de A et toute action du
groupe additif sur X est obtenue de cette fagon, voir la Section [2.1
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L’étude des actions du groupe additif remonte a Hilbert qui a calculé les anneaux
d’invariants de certaines actions linéaires de G, sur A" a cloture intégrale pres. En
1959, Nagata a donné un contre-exemple au célebre quatorzieme probleme de Hilbert,
qui utilise une action linéaire de G13 sur A3? [Nag59].

En 1968, Rentschler a classifié toutes les dérivations localement nilpotentes de
I’anneau des polynoémes a deux variables sur un corps de caractéristique nulle, et
a montré que celle-ci donne une classification des actions du groupe additif sur A?
[Ren68].

L’intérét moderne dans les actions du groupe additif et dans les DLN provient
de l'introduction par Kaliman et Makar-Limanov de I’anneau des constantes abso-
lues, maintenant appelé 'invariant Makar-Limanov (I'invariant de ML en abrégé).
L’invariant de ML d’une variété affine X = Spec A est défini comme l'intersection
des noyaux de toutes les DLN sur A.

On considere la variété de Koras-Russell X = Spec A donné par

A=Kz, y, 2, 1]/ (x + 2%y + 22 +1%).

L’invariant de ML a été introduit pour distinguer X de A3. En effet, ML(X) = k[z]
tandis que ML(A3) = k. Ceci fiit le dernier pas dans la preuve du fait que toutes les
actions du groupe multiplicatif sur A? sont linéarisables [KKMLRIT].

Dans la suite on décrit les résultats des Chapitres [2] et [3| o I'on étudie les
actions du groupe additif G, sur des T-variétés affines, ou de maniére équivalente,
les DLN des algebres integres de type fini M-graduées. Ces résultats sont contenus
dans Darticle [Liel0] et la pré-publication [Lic09a].

Soit M et N des réseaux mutuellement duaux de rang n, et T = Speck[M].
Soit aussi Ng = N ® Q, et Mg = M ® Q. On fixe un cone polyédral fortement
convexe o dans Ng, on considere une algebre integre de type fini intégralement close
M-graduée

A= P A" CKE'[M], ot A, CK",

Vv
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et on pose X = Spec A la T-variété affine correspondante.

Une dérivation 0 : A — A est dite homogene si elle envoie des éléments ho-
mogenes sur des éléments homogenes c’est-a-dire, s’il existe un élément du réseau
e =degd € M tel que

O(AmX™) C Apaex™ e, pout tout m € o).

Une action du groupe additif sur X est dite compatible avec I’action de T si la DLN
correspondante est homogene, en termes géométriques cela signifie que 'action du
G, est normalisée par le tore T.

Dans le Lemme [2.1.7] on montre qu’a chaque DLN de A on peut associer une
DLN homogene. Une DLN homogene 0 de A peut s’étendre a une dérivation de
KT[M] par la régle de Leibniz. On note aussi cette extension par 0.

On dit qu'une DLN homogene 0 de A, ou de maniére équivalente, une action
du groupe additif sur X, est de type fibre si O(K T) = 0 et de type horizontal sinon.
En termes géométriques, une action de G, compatible est de type fibre si les orbites
générales de 'action de G, sont contenues dans les adhérences des orbites de ’action
de T.
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Soit LND(A) ’ensemble de toutes les DLN de A. L’invariant de Makar-Limanov
de A (ou de X) est défini comme

ML(A) = ﬂ ker 0.
HELND(A)

De maniére similaire, on note LNDy},(A) 'ensemble de toutes les DLN homogenes de
A, on définit I'invariant de Makar-Limanov homogene de A comme

MLy(A) = (] kerd.
OELNDy (A)

On dit que I'invariant de ML de A est trivial si ML(A) = k. Evidement, la
trivialité de I'invariant de ML homogene entraine celle de 'invariant de ML usuel.

Actions du groupe additif sur des variétés toriques. Soit ¢ C Ng un cone
polyédral fortement convexe . On pose A = k[o};] et X, = Spec A. On considére un
rayon p de o avec vecteur primitif py et son mur dual 7 C 0. On définit S, comme
I’ensemble

S,={me M| (py,m)=—1, et (p/,m) >0Vp' € (1) \ p},

ou o(1) est 'ensemble de tous le rayons de o. Le résultat principal de la Section
est la classification suivante, valable sur un corps de caractéristique nulle qui n’est
pas forcement algébriquement clos.

THEOREME A. A toute couple (p,e), ot p est un rayon de o et e est un élément
du réseau dans S,, on peut associer une DLN homogéne 0,. de A = k[o),] avec
noyau ker 0, . = k(] et degré degd, . = e.

Inversement, si O # 0 est une DLN homogéne de A, alors 0 = X0, . pour un
certain rayon p C o, un certain élément du réseau e € S,, et un certain A € k*.

Dans [Dem70] le résultat analogue est obtenu pour une variété torique lisse
qui n’est pas nécessairement affine. Dans loc. cit. les éléments de I'’ensemble R =
- Upea(l) S, sont appelés les racines de o.

Comme d’habitude, on note un rayon et son vecteur primitif par la méme lettre
p- Soit p un rayon de o et e € S, alors la DLN 0, . est donné par

Ope(X™) = (m, p)x™"°.

Comme premiére application du Théoreéme [A] on montre que les classes d’équi-
valence de DLN homogenes de la variété torique X, sont en bijection avec les rayons
de o. Pour l'invariant de ML d’une variété torique, on obtient le résultat suivant,
voir la Proposition |3.2.1]

THEOREME B. Soit § C Mg le sous-espace vectoriel mazimal contenu dans oV .
Alors
ML(A) = MLy, (A) = k[0] -
En particulier, ML(A) = k si et seulement si o est de dimension mazimale c’est-a-

dire, si et seulement si X n’est pas isomorphe a Y x T pour un tore T' de dimension
positive.
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Actions du groupe additif de type fibre sur des T-variétés de com-
plexité quelconque. Soit Y une variété semi-projective et ® le diviseur o-polyédral
propre

@zZAZ-Z sur Y.
z

On note k(Y') le corps des fonctions rationnelles de Y, et on considere la variété
affine X = Spec A, ou

A=A, D)= P Anx™, avec Ay =H(Y,0(D(m))) k().

Vv
meo

On choisit aussi une DLN homogene 9 de type fibre de A, et on considere ’al-
gebre A = k(Y)[o),] du semi-groupe oy, au-dessus du corps k(Y). La DLN 9 peut
s’étendre & une k(Y )-dérivation localement nilpotente homogene 9 de A. Les déri-
vations de A ont été classifiées dans le Théoreme [Al

Dans la Section [2.4]on utilise cette remarque pour classifier les DLN de type fibre
des T-variétés de complexité quelconque. Ceci est d’abord fait pour le cas particulier
de complexité un dans la Section [2.3.1

Pour tout e € S,, on pose ® = HY(Y, Oy (—D.)) \ {0}, ott D, est le Q-diviseur
sur Y défini par

D, = max (hz(m)—hz(m+e))-Z.

~ meoy \Ta

Etant donné un rayon p C o on note 7 le mur de o¥ dual & p. Notre résultat
principal par rapport aux DLN de type fibre de A[Y, D] est le théoreme suivant.

THEOREME C. Pour chaque triplet (p,e,¢), ot p est un rayon de o, e € S,
et ¢ € ®F, la dérivation O,e, = @0, est une DLN homogéne de type fibre de
A = A[Y,D] de degré e avec noyau

ker 0p e = @ A ™.

meTN

Inversement, si O est une DLN homogéne de type fibre non-trivial de A, alors
0 = Op,ep pour un certain rayon p C o, un certain élément du réseau e € S, et une
certaine fonction rationnelle p € ®}.

Le noyau de la DLN 0, . , ne dépend que du rayon p. Alors les classes d’équiva-
lence de DLN de type fibre de A sont en bijection avec les rayons p de o satisfaisant
la condition suivante : il existe e € S, avec ®; non-vide. Le théoreme suivant donne
une interprétation géometrique de cette condition.

THEOREME D. Soit p C o le rayon dual a un mur 7 C V. Alors il existe e € Sy
tel que @} est non-vide si et seulement si le diviseur ©(m) est abondant pour tout
élément du réseau m € rel.int(7).

En particulier, les DLN de type fibre de A = A[Y,D] sont en correspondance
bijective avec les rayons p de o tels que ©(m) est abondant pour tout élément du
réseau m € rel. int(7).

A partir du Théoreme [D]on obtient le corollaire suivant qui donne une condition
pour que 'invariant de ML de A soit trivial.
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COROLLAIRE E. Soit A = A[]Y,D]. Si Y est projective, rang M > 2, o est de
dimension mazimale, et D(m) est abondant pour tous les éléments du réseaum € o
différents de zéro, alors M L(A) = k.

Actions du groupe additif sur des T-variétés de complexité un. Le cas
des actions compatibles du groupe additif sur des k*-surfaces affines a été étudié
d’abord par Flenner et Zaidenberg dans [EZ05a]. Cette article a été la motivation
pour développer la partie de cette these décrite ci-dessous. Dans la Section on
montre que nos résultats généralisent les résultats de [FZ05al.

Pour le cas des T-variétés affines de complexité un on donne, dans la Section [2.3]
une classification complete de toutes les DLN homogenes. Soit ¢ un cone polyédral
fortement convexe dans Ng. On considere une courbe lisse C' et un diviseur o-

polyédral propre © sur C'
D= Z A,z

zeC

On note k(C) le corps de fonctions rationnelles de C, et on considere la variété affine
X = Spec A, ou

A=A[C,D)= P Anx™, avec An=H"(C,0c(D(m))) Ck(C).

Vv
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On définit aussi le degré de ® comme le polyedre

deg® =) _A..
zeC

La classification des DLN homogenes de type fibre de A a été donnée dans le
Théoreme [C} De plus, dans le cas de complexité un on peut remplacer la condition
“D(m) est abondant pour tout élément du réseau m € rel. int(7)” dans le Théoreme D]
par la condition suivante “p est disjoint de deg®” qui est plus simple a vérifier.

La classification des DLN homogenes de type horizontal est plus compliquée.
D’abord, on montre que ’existence d’une DLN de type horizontal de A entraine que
la courbe de base C' est isomorphe & Al ot & P!, voir le Lemme Dans la suite
on suppose que C = Al ou C = P!,

Le résultat principal pour les DLN homogenes de type horizontal de A = A[C, D]
est le Théoreme L’énoncé de ce théoreme est trop technique pour étre inclus
dans cette introduction. Ici, on donne dans le Théoréme [E] son corollaire le plus
important.

On note h, : 0V — Q la fonction de support de A, et on définit le quasi-éventail
normal A(D) de © comme le plus petit raffinement du quasi-éventail de ¢V C Mg
tel que pour tout z € C, la fonction h, est linéaire dans chaque céne n € A(D). On
dit qu'un cone maximal n € A(D) est convenable sl existe zg € C tel que h.|, est
entier, pour tout z € C'\ {20}.

Avec ces définitions on peut énoncer la classification suivante des classes d’équi-
valence de DLN homogenes de type fibre de A = A[C, D], voir les Corollaires
et

THEOREME F. Soit © un diviseur o-polyédral propre sur C, et soit A = A|C,D].
Les classes d’équivalence des DLN homogénes de type horizontal de A sont en bijec-
tion avec :
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(i) Les cones mazximauz convenables n du quasi-éventail normal A(D), dans le cas
o C = Al

(ii) Les couples (zo0,M), 0U zoo € C' et n est un cone mazimal convenable du quasi-
éventail normal A(D|c,), avec Cy:= C \ {2z}, dans le cas ou C = P!,

Dans le Théoreme on calcule 'invariant de ML homogene de A. A nouveau,
I’énoncé de ce résultat est trop technique pour étre inclus dans cette introduction.

L’invariant de ML et rationnalité. Comme on 'a dit antérieurement, 1'in-
variant de ML est un outil important en géométrie affine. En particulier, il permet
de distinguer certaines variétés de 1’espace affine. Cependant, cet invariant est loin
d’étre optimal. En effet, I'invariant de ML de l’espace affine A" est trivial c’est-a-
dire, ML(A™) = k. Pourtant, il peut aussi étre trivial pour des variétés affines non
rationnelles.

Rappelons qu’une variété est rationnelle si son corps de fonctions rationnelles est
une extension purement transcendante du corps de base k. Dans la Section [3:3.1] on
applique le Corollaire [E] pour donner, & notre connaissance, le premier exemple d’une
variété affine non-rationnelle d’invariant de ML trivial. Cet exemple est généralisé
dans la Section [3.4l

On donne ici un cas particulier de ces exemples. Soit Y une variété projective,
H un diviseur de Cartier ample sur Y, et n > 2. On considere ’espace total X du
fibré vectoriel associé au faisceau localement libre @' ; Oy (H), et on note X la

contraction de la section nulle de X en un point. Dans I'Exemple on montre
que ML(X) = k, tandis que X est birationnelle & Y x P™.

Dans le Théoreme |3.4.1| on applique cet exemple pour donner la caractérisation
birationnelle suivante des variétés affines normales d’invariant de ML trivial.

THEOREME G. Soit X une variété affine au-dessus du corps k. Si ML(X) = k
alors X ~i Y x P2 pour une certaine variété Y. Inversement, dans chaque classe
d’équivalence birationnelle Y x P? il y a une variété affine X avec ML(X) = k.

Pour éviter ces exemple pathologiques, on introduit dans la Section [3.5] une
version de I'invariant ML que ’on calcule dans le corps de fonctions rationnelles, on
I’appelle 'invariant FML. Cet invariant est défini comme

FML(A) = ﬂ Frac(ker 0) .
HELND(A)

Pour toute algebre affine integre et intégralement close A il existe une inclusion
ML(A) € FML(A). Comme FML(A") = k l'invariant FML est plus puissant que
I'invariant classique puisqu’il permet de distinguer plus de variétés de ’espace affine
que l'invariant classique.

On conjecture que FML(X) = k entraine la rationnalité de X. Dans le Théo-
reme on confirme cette conjecture en dimension inférieure ou égale a 3.

Anneaux d’invariants de type fini. Le quatorzieme probleme de Hilbert
généralisé peut étre formulé comme suit. Soit k C L. C K une extension de corps, et
soit A C K une k-algebre de type fini. Est-il vrai que la k-algebre A N L est aussi
de type fini?

Dans le cas ou K = Frac A et Spec A admet une action du groupe additif, on
pose L = K® et donc A N L est 'anneau d’invariants de Paction de G,. On a que
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ANL =kerd, ou d est la DLN de A correspondante. Dans ce cas, la réponse a la
question au-dessus est négative, méme si A est l'algebre des polynémes de n > 5
variables [DF99]. De l'autre c6té, dans la Section on montre le résultat suivant.

THEOREME H. Soit A une algébre affine intégre intégralement close et M-
graduée, ot M est un réseau de rang fini, et soit O une DLN homogéne de A. Si la
complexité de l’action correspondante de T sur Spec A est zéro ou un, ou la DLN 0
est de type fibre, alors ker 0 est de type fini.

Ce théoreme suit de nos différentes classifications. Le cas difficile, ot la DLN est
de type horizontal, est aussi corollaire d’un résultat du & Kuroda [Kur03].

De plus, dans le Corollaire 2.5.5] on utilise le résultat de Kuroda pour montrer
que ker J est de type fini aussi dans le cas ou X = Spec A est rationnelle et ’action
de T est de complexité deux.

Singularités normaux avec une action du tore

Soit X une variété normale munie d’une action effective d’un tore algébrique.
D’apres un résultat bien connu de Sumihiro (voir le Théoreme tout point
x € X a un voisinage affine invariant par laction du tore. Alors les problemes
locaux peuvent étre réduits au cas affine.

On donne maintenant le point de vue géométrique de la description combinatoire
des T-variétés affines normales due & Altmann et Hausen. Soit Y une variété semi-
projective normale et soit © un diviseur o-polyédral propre sur Y. On définit la
Oy-algebre M-graduée

A=Ay, )= P 0y(®(m)).

Vv
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Dans ce cas, prendre les sections globales de E[Y, D] donne l'algebre M-graduée
A[Y,®]| définie auparavant

A= Aly,®] = H(Y, AlY,D)).
On définit aussi le schéma

X = X[Y, D] := Specy A[Y,D].
Ici, Specy est le spectre relatif d’'une Oy-algebre. Voir [Har77, Ch. IT Ex. 5.17] pour
une définition. N

La construction de Specy donne un morphisme affine 7 : X — Y invariant par

T qui est donc un quotient rationnel pour I'action de T sur X. Le foncteur sections
globales donne un morphisme birationnel ¢ : X — X = X[Y, D] équivariant par
rapport & T. On a alors que 7o ¢~ ! est un quotient rationnel pour l'action de T
sur X. On peut résumer ces considérations dans le diagramme suivant, ot toutes les
fleches vers le bas sont des quotients rationnels.

XX
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Avec ces définitions, on a le théoréme suivant.

THEOREME (Altmann et Hausen).
(i) X est une variété.
(ii) Le morphisme affine m est un bon quotient pour l'action de T sur X.
(7i1) Le morphisme birationnel ¢ est propre.

On décrit maintenant les résultats au chapitre [4, ot on étudie les singularités
des T-variétés affines. Ces résultats sont contenus dans la pré-publication [Lie09b].
Une généralisation de ces résultats dans un travail conjoint avec Siif§ [LS10] est en
cours de rédaction.

La description combinatoire (Y,®) d’une T-variété X n’est pas unique. En effet,
si I'on considere 1’éclatement v : Y - Y dun point fermé de Y et le diviseur o-
polyédral propre ¢*®, on a que X[Y, D] ~ X[f/, Y*D], voir le Lemme pour un
énoncé plus précis.

On définit le support d’un diviseur o-polyédral © sur une variété semi-projective
Y par

Supp® = Z Z.
Ag#o

On dit que © est un diviseur o-polyédral SNC si Y est lisse, ® est propre, et Supp D
est un diviseur & croisements normaux simples. Dans le Corollaire on montre
que toute T-variété admet une description combinatoire (Y, D) telle que ®© est un
diviseur o-polyédral SNC.

Rappelons qu’une variété normale X est dite toroidale si pour tout x € X, le
voisinage formel de z est isomorphe au voisinage formel d’un point d’une variété
torique. Avec ces définitions, dans la Section [4.2] on montre le résultat suivant.

THEOREME 1. Soit © un diviseur o-polyédral propre sur une variété normale
semi-projective Y. Si D est SNC alors XY, D] est une variété toroidale.

En particulier, ce théoreme entraine que le morphisme birationnel propre
0: X = X[V, 9] - X = X[V, D]

est une désingularisation partielle de X n’ayant que des singularités toriques. De
plus, une désingularisation de X, et donc aussi de X, peut étre obtenue par des
méthodes toriques.

Comme les singularités toriques sont bien comprises (voir Section , dans la
suite on utilisera le morphisme ¢ : X - X pour étudier les singularités de X.

Soit X une variété normale et soit ¢ : W — X désingularisation (complete)
de X. Habituellement, la classification des singularités utilise les images directes
supérieures du faisceau structural R, Oy . Ces faisceaux sont définis par

U — H(U, R, Ow) := H' ("1 (U), Ow|yp-117)) -

Les faisceaux R'1), Oy sont indépendants de la désingularisation de X choisie. De
plus, X est normale si et seulement si R, Oy := 9,0y = Ox. Dans le théoréme
suivant on calcule les faisceaux ROy d'une T-variété affine normale X[Y, D] en
fonction de la donnée combinatoire, voir le Théoreme [4.3.3]
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THEOREME J. Soit X = X[V,D], ot ® est un diviseur o-polyédral SNC' sur
Y. Si¢: W — X est une désingularisation, alors pour tout i > 0, l’image directe
supérieure R",Ow est le faisceau associé a

P H'(v,0(D(m))

Y
u€o 5,

Une variété normale X a des singularités rationnelles si R, Oy = 0 pour tout
i > 1, voir e.g., [Art66; KKMS73} [EIK78]. Dans le théoréme suivant on applique le
Théoreme [J] pour donner un critére pour que X ait des singularités rationnelles.

THEOREME K. Soit X = X[Y, D], ot D est un diviseur o-polyédral SNC sur'Y .
Alors X a des singularités rationnelles si et seulement si pour tout m € oy,

HY(Y,Oy(®(m))) =0, Vie{l,...,dimY}.

La restriction du Théoréme [K| au cas m = 0 montre que si X[Y, D] a des singu-
larités rationnelles, alors le faisceau structural Oy de Y est acyclique. De plus, dans
le cas de complexité un, on a un résultat plus explicite.

COROLLAIRE L. SiY est une courbe lisse, alors X a des singularités rationnelles
st et seulement si

(i) Y est affine, ou
(i1) Y =P et deg|D(m)]| > —1 pour tout m € oy,.

Les singularités rationnelles sont de Cohen-Macaulay. Rappelons qu'un anneau
local est de Cohen-Macaulay si sa dimension de Krull est égale a sa profondeur.
Une variété X est dite de Cohen-Macaulay si tous les anneaux locaux Ox , sont de
Cohen-Macaulay, voir la Section [1.6]

Soit comme avant ¢ : W — X une désingularisation de X. D’aprés un théo-
réme bien connu de Kempf (voir le Lemme , une variété X a des singularités
rationnelles si et seulement si X est de Cohen-Macaulay et le comorphisme induit
Yyeww — wx est un isomorphisme. On applique ce théoreme pour démontrer le
résultat suivant.

THEOREME M. Soit X = X[V, D], ot D est un diviseur o-polyédral propre sur
Y. On suppose que les conditions suivantes sont satisfaites.
(i) Pour chaque mur T C oV, le diviseur D(m) est abondant pour tout m €
rel. int(7).
(1i) Pour chaque diviseur premier Z sur'Y et chaque sommet p de Ay, le diviseur
D(m)|z est abondant pour tout m € rel.int(cone((Az —p)¥)).
Alors X est de Cohen-Macaulay si et seulement si X a des singularités rationnelles.
Dans le cas de complexité un, la condition (iz) dans le Théoreme [M|est toujours

satisfaite. D’apres le Théoreme [M] on obtient le corollaire suivant qui caractérise les
singularités de Cohen-Macaulay isolées dans le cas de complexité un.

COROLLAIRE N. Soit X = X[Y, D], ou Y est une courbe lisse. On suppose que
X n'a que des singularités isolées.
(1) Sirang M =1, alors X est de Cohen-Macaulay.

(13) Sirang M > 2, alors X est de Cohen-Macaulay si et seulement si X a des
singularités rationnelles.
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Une singularité normale (X, z) d’une surface est dite elliptique si R'¢,Op = k,
voir e.g., [Lau77; [Wat80; [Yau80]. Une singularité elliptique est minimale si elle est
de Gorenstein c’est-a-dire, elle est de Cohen-Macaulay et le faisceau canonique wy
est inversible.

Dans la Proposition [£.4.2] on donne un critére pour qu'une surface munie d’une
action de k* soit de Gorenstein. L’énoncé de ce résultat est trop technique pour étre
inclus dans cette introduction. Dans le Théoréme [£.4.3 on caractérise les singularités
elliptiques (minimales) en fonction de la donnée combinatoire. Ici, on énonce juste
la partie concernant les singularités elliptiques.

Soit rang M =1 et X = X[V, D], ou Y est une courbe lisse et © est un diviseur
o-polyédral SNC sur Y. Si Y est affine, alors X a des singularités rationnelles. Dans
la suite on suppose que Y est projective c’est-a-dire, que ’action est elliptique. Dans
ce cadre on peut supposer que o = Q>9, et donc ® est completement déterminé par
D7 :=D(1). De plus, il y a un unique point fixe 0.

THEOREME O. Soit X = X[Y, D] une surface affine normale munie d’une action
elliptique de k*, et soit 0 € X lunique point five. Alors (X,0) est une singularité
elliptique si et seulement si l'une de conditions suivantes est satisfaite.

(i) Y =P, deg|m®D1] > —2 et deg|mD;| = —2 pour ezactement un m € Zg.

(i) Y est une courbe elliptique, et pour tout m € Z~q le diviseur |m®1| n’est pas
principal et deg|m®;| > 0.



CHAPTER 1

Combinatorial description of T-varieties

By a T-variety we mean an algebraic variety endowed with an effective action of
an algebraic torus T. In this chapter we recall a combinatorial description of torus
actions on normal algebraic varieties with special emphasis in affine varieties. The
exposition is divided in two cases: the case of toric varieties, and the case of general
T-varieties. Obviously the later contains the former, however, the theory in the toric
case is more developed.

Before getting into the announced description of T-varieties, we recall the basic
definitions and results from convex geometry and semigroup algebras that will be
needed in this thesis. We also give a brief review on the classification of toric
singularities.

1.1. Convex geometry

In this section we recall the standard terminology and the basic facts of convex
geometry needed in this thesis. The proofs of these facts can be found in any book
on convex or toric geometry, such as [0da88; [Ful93; [Ewa90; [CLS].

Let N be a lattice of rank n and M = Hom(N,Z) be its dual lattice. We also
let Ng = N®Q, Mg =M ®Q be the corresponding rational vector spaces, and we
consider the natural duality Mg x Ng — Q, (m,p) — (m, p).

We define the Minkowski sum of two sets A and A’ in Ny as

A+A ={p+p|pel, per}
For a finite set S C Ng we define the convex polyhedral cone o spanned by S as

the positive span of S i.e.,

o = cone(S) = {Zapp\pe S, ap 20} ,

and the bounded convex polyhedron A of S as the convex hull of S E| ie.,

A = conv(S) = {Zozpp]pes, ap >0, Zap: 1} .

REMARK 1.1.1. The previous definitions also make sense for an infinite set S
provided that the sums are taken to be finite and there is a finite subset Sy C S
such that cone(S) = cone(Sp) and conv(S) = conv(Sp).

A convex polyhedron is the Minkowski sum of a convex polyhedral cone and
a bounded convex polyhedron. By this definition, convex polyhedral cones and
bounded convex polyhedra are also convex polyhedra.

Since we only consider convex polyhedral sets, we usually refer to convex poly-
hedral cones and convex polyhedra simply as cones and polyhedra, respectively.

IThis is the usual definition of a convex polytope. In the interest of homogeneity in the notation,
we do not use this notation.

29
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1.1.1. Convex polyhedral cones. Let o be a cone in Ng, o is called full
dimensional if the topological dimension of o coincides with the rank of M. o is
called pointed if it contains no subspaces of positive dimension. Furthermore, a cone
is called regular (resp. simplicial) if the set of primary vectors of its rays can be
completed into a basis of N (resp. Ng).

Given a cone o € N, its dual cone is defined by

o' ={me Mg | (m,s) > 0}.

The cone ¢ is also a convex polyhedral cone, and duality is reflexive i.e., o = (oV)V.

The cone ¢ is full dimensional if and only if o is pointed.

The relative interior rel.int(o) of a cone o is the topological interior of ¢ in the
vector space spanned by o. A supporting hyperplane of o is an hyperplane H such
that HNrel.int(c) = () and a supporting halfspace H of o is the halfspace delimited
by a supporting hyperplane that contains . Given any m € o" the sets H,, and
Ht defined as follows

Hy={pe Ng| (m,p)=0},  Hf={peNg| (m,p) >0}

are a supporting hyperplane and a supporting halfspace, respectively. Furthermore,
every supporting hyperplane (halfspace) arises in this way.

A face of o is the intersection of o with a supporting hyperplane. A facet of o
is a face of codimension 1. A ray of o is a face of dimension 1. By duality, there is a
bijective correspondence between rays p € o and facets 7 € ¢V given by 7 = ptnoV,
where p* denotes the subspace of Mg orthogonal to p. A cone o is pointed if and
only if 0 € N is a face of o.

A quasifan ¥ in Ng is a finite collection of cones such that

(i) For all o € 3, each face of o is also in 3.
(11) For all 0,0’ € X, the intersection o N ¢’ is a face of each.

Furthermore, a fan is a quasifan satisfying
(7i1) Every cone o € X is pointed.

A quasifan is completely determined by the set of its maximal cones.

1.1.2. Tailed polyhedra. Let o be a pointed cone in Ng. We say that a
polyhedron in Ng is o-tailed if it can be decomposed as the Minkowski sum of a
bounded polyhedron and o. A o-polyhedron is called full dimensional if its topo-
logical dimension coincides with the rank of M. If ¢ is full dimensional, then any
o-polyhedron is full dimensional.

We define Pol,(Ng) to be the set of all o-tailed polyhedra in Ng. The set
Pol,(Ng) equipped with the Minkowski sum forms a commutative semigroup with
neutral element o.

We let also CPLg(c") denote the set of all piecewise linear Q-valued functions
h: oV — Q which are concave and positively homogeneous i.e.,

h(m +m') > h(m) + h(m'), and h(Am) = Ah(m),Vm,m’ € ¢”, VA € Q> .

The set CPLg(c") with the usual addition forms a commutative semigroup with
neutral element 0.
For a o-tailed polyhedron A € Pol,(Ng) we define its support function

ha:o’ —Q, m min(m,p).
peEA
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/

A(A) C Mg

Fi1GURE 1. The o-polyhedron A and its normal fan.

The support function of any o-tailed polyhedron is piecewise linear, positively
homogeneous and convex. Furthermore, the map Pol,(Ng) — CPLg(c") given by
A — ha is an isomorphism of semigroups.

For a function h € CPLg(c") we define its normal quasifan A(h) as the coarsest
refinement of the quasifan of 0¥ in Mg such that h is linear in each cone § € A(h).
For a o-polyhedron A € Pol,(Ng) we define its normal quasifan A(A) as the normal
quasifan of the support function ha. The normal quasifan of A is a fan if and only
if A is full dimensional.

Alternatively, the normal quasifan of a o-polyhedron A € Ng can be obtained
as follows. Given a vertex v € A, we define the cones

oy =cone(A —v) C Np and w, =0, € Mg.
Now, the set of cones w,, for all vertex v is the set of maximal cones of the normal

quasifan of A in Mg.

EXAMPLE 1.1.2. Letting N = Z? and o = {(0,0)}, in Ng = Q* we consider the
polyhedron A with vertices (2,0), (0,2), (—3,2), (—1,—2) and (2, —2). The cones
o, and w, are

0(2,0) = cone((0, —1), (=1,1)), w
0,2) — Cone(( -1 ’( ) ))

( 2,0) —Cone((—l,O),(—l,—l)),
( )

(=3,2) — cone(( ) )7 (1’ 2))

(- 1

(

(

(0,2) = cone((—1,-1),(0,-1)),
(=3,2) = cone((0, 1), (2, 1)),
(-
(

o

q
E €

q
E

1,-2) = cone(( 72) ( 0))’ 1,-2) = Cone((2, 1)7 (O’ 1))7
2,—2) = cone((—1,0), (0,1)), w(a,—2) = cone((0,1),(~1,0)).

The o-polyhedron A and its normal quasifan, which is a fan in this case, are
shown in Figure

Q

1.2. Semigroup algebras

In this section we gather some basic results about semigroup algebras needed for
this thesis. A more detailed exposition can be found in any book on toric geometry,
see for instance [Ful93; [Oda88}; [CLS].

Let (S,4) be a commutative semigroup with an identity elementﬂ If the binary
operation in S is clear from the context we denote (S,+) by S. We define the

2Some authors refer to (S,4+) as a commutative monoid.
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semigroup algebra of (S,+) as the k-algebra

k[S]=EPk-x"

meS

where " is a new variable for every m € S, and the multiplicative structure of k[S]
is given by the relations

m m’ m-+m/

X" ox™ =x , forall m,m' €S.

REMARK 1.2.1.

(i) If S is a group under the considered operation this construction coincides with
the group algebra studied in group theory.

(7) Given a semigroup S and an algebra A, we can define an algebra A[S] in the
same way.

Let 8 C S be a generating set of S i.e.,
S = {Zass finite | s € B and a5 € Zzo} .

It is clear from the definition of a semigroup algebra that k[S] is generated as a
k-algebra by the elements x° := {x* | s € 8}. Furthermore, if the generating set 3
is minimal, then x” is a minimal generating set of k[S] as a k-algebra.

ExXAMPLES 1.2.2. We present a list of basic examples to cover a variety of dif-
ferent possibilities illustrating the definitions below.

(1) Let S = (Z>0,+). S is generated by the element 1 and so the semigroup
algebra k[S] is generated as an algebra by x!. The element y! satisfies no non-
trivial polynomial relation, thus k[S] is the polynomial algebra in the variable
x".

(73) Let S = {0,2,3,...} with addition as the binary operation. A generating
set of k[S] is {2,3} and so the algebra k[S] is generated by z = x? and
y = x3. Furthermore, this elements satisfy 23 — 32 = 0 and so the k[S] =
klz,y]/(2* — y?).

(131) Let S = (Z,,+) be the group of integers modulo r. S is spanned as a semigroup
by the element [1] (the class of 1) and so k[S] is generated by = = x[!. The
element z satisfies the relation 2" — 1 = 0 and so k[Z,] = k[z]|/(z" — 1).

(iv) Let S = Zso with the multiplication as binary operation. By the unique
factorization theorem on Z, the semigroup S is generated by the set 3 of
positive prime numbers, and k[S] is generated by x?. Again by the unique
factorization, there are no non-trivial relations between the elements of y*
and so k[S] is a polynomial algebra in infinitely many variables indexed by the
positive prime numbers.

(v) Let S = (Z,+). A generating set of S is {1, —1} and so k[S] is generated by
xz = x! and y = x~!. These elements satisfy the relation xy — 1 = 0 and so

k[S] = klz,y]/(zy — 1) = k[z,271].

The algebra k[S] is just the algebra of Laurent polynomials in one variable.
(vi) Let M be a lattice of rank n and let {u1, -, u,} be a base of M as a free
Z-module. The addition as a module induces a structure of semigroup on M,
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and M is generated as a semigroup by the elements 3 = {4y, -+, +u,}. The
algebra k[M] is generated by x°. These elements satisfy the relations

xtix M —-1=0, ie{l,---,m}
and so
K[M] = Ko x0T = L xR ).
Letting z; = x* for i € {1,--- ,n}, k[M] can be written as
K[M] = k[z1, 27", 2,z

This algebra is known as the algebra of Laurent polynomials in n variables.
There is a splitting of k[M] as

k[M] = ®k Era

DEFINITION 1.2.3. A commutative semigroup with an identity element is affine
if it is finitely generated and can be embedded in a lattice M. An affine semigroup
S is saturated if for all k € Z>9 and m € M, k-m € S implies m € S.

The semigroups in Example (1), (i1), (v), and (vi) are affine semigroups
since they are trivially embedded in a lattice and all of these but the one in (i7) are
saturated. In contrast, the semigroup in (iii) has torsion and hence it cannot be
embedded in a lattice, which is torsion free. Finally, the semigroup in (iv) fails to
be finitely generated.

Let S be a semigroup. The properties of being affine or saturated can be trans-
lated into well known properties of the algebra k[S]. This is done in the following
lemma.

LEMMA 1.2.4.

(i) Let S be a semigroup. If S is affine then k[S] is an affine domain.
(1) Let S be an affine semigroup. Then S is saturated if and only if k[S] is an
integrally closed domain.

PRrROOF. See [CLS, Prop. 1.1.14] for the first assertion and [CLS, Th. 1.3.5] for
the second one. 0

Let as before M be a lattice of rank n and let Mg = M ® Q be the associated
rational vector space. Let w C Mg be a full dimensional convex polyhedral cone.
Then the set of lattice points w N M forms a saturated affine semigroup.

PROPOSITION 1.2.5. For every saturated affine semigroup S there exists a lattice
M and a full dimensional polyhedral cone w C Mg such that S ~w N M.

PROOF. For a proof of this proposition, see Theorem 1.3.5 in [CLS]. ]

NOTATION 1.2.6. Let w C Mg be a convex polyhedral cone. Throughout the
thesis we denote the semigroup w N M by wyy.

The class of saturated affine semigroups will be crucial to this thesis. Given a
saturated affine semigroup wys, the affine variety Specwys is called an affine toric
variety. Such varieties are the main object of our study in Section [1.4
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1.3. Algebraic torus actions

In this section we fix the notation and recall some general facts about the actions
of algebraic tori on normal varieties. For a more general view on torus actions, or
more generally, on linear group actions see [CLS; [Hum75; [Bor91].

1.3.1. Algebraic tori. Let M be a lattice of rank n and N = Hom(M,Z) be
its dual lattice. We fix dual bases {vi,---,v,} and {u1,---,pn} for N and M,
respectively. We also let Ng = N ® Q, Mg = M ® Q, and we consider the natural
duality Mg x Ng — Q, (m,p) — (m,p).

DEFINITION 1.3.1. The algebraic torus associated to M is defined as the affine
algebraic variety Tys = Spec k[M].

We usually refer to an algebraic torus simply as a torus and we denote it by T
when the lattice M is obvious from the context. Letting z; = x*i, Vi € {1,...,n},

by Example (vi)
n
k[M] = P kx" = Qk [zi,z; '] .
i=1

meM
Thus, the torus T is isomorphic to (k*)™. Via this isomorphism, the coordinate-wise
multiplication on (k*)™ induces the structure of a linear algebraic group on T.

A chamctmﬂ of the torus T is a morphism y : T — k* that is also a group
homomorphism. For every m € M the regular function x™ gives a character of the
torus. Conversely, every character arises in this way (see [Hum75l §16]). Thus, the
character group of T is naturally isomorphic to the lattice M.

More explicitly, for any m = miu; + ... mpun € M, under the isomorphism
T ~ (k*)" the character x™ : T — k* is given by (z1,...,z,) — " -2,

A one-parameter subgroup of the torus T is a morphism A : k* — T that is also
a group homomorphism. Equivalently, a one-parameter subgroup is given by the
comorphism \* : k[M] — k[t,t7']. For every p € N the morphism X} : k[M] —
k[t,t7!] given by ™ t{mP) is the comorphism of a one-parameter subgroup.
Conversely, every one-parameter subgroup arises in this way (see [HumT75, §16]).
Therefore, the group of one-parameter subgroups is naturally isomorphic to the
lattice V.

More explicitly, for any p = p1v1 + ... pptn € N, under the isomorphism T ~
(k*)™ the one-parameter subgroup A, : k* — T is given by t — (P, ... tP").

Given a character x™ and a one-parameter subgroup A, the composition x™ o\, :
k* — k* is given by t — t{mP),

1.3.2. Torus actions. Let G be an algebraic group and let X be an algebraic
variety. An (algebraic) action of the group G on X is a group homomorphism
¢ : G — Aut(X) such that the map G x X — X, sending (g,z) to ¢(g)(z) is
a morphism. A G-action is called non-trivial if coker(¢) # Aut(X), effective if
ker(¢) = {1}, and locally free if the stabilizer of a general point is trivial.

Let now X, X’ be two varieties endowed with a G-action. We say that a mor-
phism 6 : X — X' is called G-equivariant if

6(6(9)(x) = d(g)(8(x)), forall z€X, geG.

3This is a particular case of the more general notion of a character of group.
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The morphism 6 : X — X' is called G-invariant if it is G-equivariant for the trivial
G-action on X',

Let T = Speck[M] be an algebraic torus and let ¢ be a non-trivial T-action on
an algebraic variety X. Without loss of generality, we may assume that the action
is effective and locally free. Indeed, if the T-action is not effective, we may replace T
by its quotient modulo ker(¢). This is again a torus and the new action is effective.
Furthermore, any effective T-action is locally free.

DEFINITION 1.3.2. A T-variety is an algebraic variety endowed with an effective
action of the algebraic torus T.

For a T-action on an algebraic variety X, the complexity is defined as the codi-
mension of a general orbit. If the T-action is effective the complexity is dim X —
dim T. The complexity of a T-action is also given by tr. degy (k(X)T), where k(X)T
in the field of T-invariant rational functions.

In particular, a T-variety of complexity zero is a T-variety having an open orbit.
Since any effective T-action is locally free, it follows that a T-variety X of complexity
zero corresponds to a T-equivariant embedding of the torus T <— X. Here, we regard
the torus T as a T-variety with the action by multiplication.

The notion of a quotient of an algebraic variety by a torus action (or more
generally by an algebraic group action) is rather delicate, and will not be developed
here, see [MFK94]. Nevertheless, we will need two different definitions of a quotient.

DEFINITION 1.3.3. Let X be a T-variety. A rational quotient of the T-action
on X is a T-invariant rational morphism r : X --» W such that the comorphism
r* : k(W) — k(X) induces an isomorphism k(W) ~ k(X)*. A good quotient is a
T-invariant affine morphism ¢ : X — W such that the natural morphism Oy —
¢+(Ox)T is an isomorphism.

For a T-action, there always exists a rational quotient. In contrast, the existence
of a good quotient imposes strong restrictions on a T-action.

In the sequel, we restrict to normal T-varieties. The study of the local behavior
of normal T-varieties can be restricted to the study of affine T-varieties due to the
following theorem.

THEOREM 1.3.4 (Sumihiro). Let X be a normal T-variety. Then every point
x € X has a T-invariant affine open neighborhood.

PROOF. See [Sum74] for a proof, cf. [Sum75]. O

REMARK 1.3.5. The condition that X is normal is essential in Theorem [1.3.4
Indeed, let C C P? be the nodal cubic defined by the equation y%z = x2(x + 2).
By the Jacobian criterion C' has a unique singular point at P = (0 : 0 : 1). The
complement of this point is isomorphic to k* and the action of k* = T on itself
given by multiplication extends to an action of T; on C' with P a unique fixed point.
Any Ti-invariant open neighborhood of P contains P and T; and hence it is the
whole curve C' which is not affine.

By Theorem [1.3.4] any normal T-variety has a T-invariant affine open cover-
ing. Hence, a description of normal T-varieties can be obtained by addressing the
following two problems.

(i) Describe normal affine T-varieties; and
(17) describe a way to patch them together.
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Since we deal with affine varieties, we will mainly address the first problem.
The second problem will only be studied in the case of toric varieties. We refer
the reader to [AHSOS] for a general treatment of the second problem that uses the
combinatorial methods which will be explained in Section see also [FKZ07].

1.3.3. Torus actions on affine varieties. In this section we show that the
algebra of regular functions of an affine T-variety is naturally graded by M. Let us
first give a definition of graded algebra adapted to our setting.

DEFINITION 1.3.6. Let S be a semigroup and let A be an algebra. We say that
A is an S-graded algebra if there exists a direct sum decomposition

A:EBAS

sES
such that A - Ay C Agy o for all 5,8 € S.

The simplest example of an S-graded algebra is the semigroup algebra k[S].

Let S be a saturated affine semigroup. By Proposition [I.2.5] there exist a lattice
M and a cone w C Mg such that S is isomorphic to wys. In this setting, any was-
graded algebra is also an M-graded algebra by setting A,, = 0 for all m ¢ wyy.
Since all the algebras in this thesis are graded by a saturated affine semigroup wjy,
we will follow the convention of saying that they are graded by the lattice M.

We turn now to affine T-varieties. Recall that the algebra of regular functions
of the torus T is canonically isomorphic to the semigroup algebra of its character
lattice M.

THEOREM 1.3.7. Let X = Spec A, where A is an affine domain. Then there is
a bijective correspondence between the T-actions on X and the M -gradings on A.

Proor. If Tx X — X is a T-action, then the correspondence is given by pulling
back the natural M grading on A[M] by the comorphism A — k[M]® A = A[M].
See [KR&2] for more details. O

DEFINITION 1.3.8. We say that an M-grading on an algebra A is effective if the
set {m € M : A,, # 0} is not contained in a proper sublattice of M. A T-action is
effective if an only if the corresponding M-grading is effective.

We consider an effectively M-graded affine domain
A @A
meM
and we let K = Frac A. For any m € M we define

Km:{f/geK]feAm+e,geAe}.

If f/g € Ko\ {0} then the same hold for 9/f and so Kj is a field. Clearly, K
corresponds to the field of T-invariant rational functions, so we will denote Ky by
KT, There is a tower of field extensions k C KT C K.

Recall that {u1,. .., 1y} is a basis of M, we fix for every i € {1,...,n} an element
x" € K,; and we let

XTTL — H(Xuz)mz’ Where m = Zm,“u/z c M .

7 7
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By the definition of K, we have K, = x"K T and since A4,, C K,, we can
write A, = A, X", where A,, C KT. Thus, without loss of generality, we assume
in the sequel that

A= @ Anx™, where A, C KT,
meM

Recall that the complexity of the T-action equals the transcendence degree of
KT over k. In particular, for a T-variety X of complexity zero KT = k and so
A C k[M]. Since the torus T is an open subset in X, x™ can be chosen to be a
character of T regarded as a rational function on X. More generally, in arbitrary
complexity the algebra A is contained in the semigroup KT-algebra KT[M], and
Frac A = Frac KT[M]. Hence x™ can be chosen to be a character of the KT-torus
Spec K T[M] regarded as a rational function on X.

DEFINITION 1.3.9. The weight cone w C Mg of A is the cone in Mg spanned by
the set {m € M | A,,, # 0}.

Recall that for a cone w C Mg, wys stands for the semigroup of lattice points in
w. The algebra A is also graded by the semigroup wjs, and so we have

A= @ Apx™, where A, C KT, (1)

mewns

Since A is finitely generated, the cone w is a convex polyhedral cone and since
the M-grading is effective, w is of full dimension.

REMARK 1.3.10.

(i) Throughout this thesis, we assume that all the M-graded algebras are in the
standard form of the algebra A in .

(1) We will sometimes represent K by the field of fractions k(Y'), where X =
Spec A --» Y is a rational quotient of the corresponding T-action, see Sec-
tion

(iii) With this notation, the field of fractions of A if given by Frac A = K (M),
where KT(M) denotes the field of fractions of the semigroup K'-algebra
KT[M].

1.4. Toric varieties

In the rest of this chapter, we will show several combinatorial descriptions of
normal T-varieties. We begin in this section with the simplest case i.e., the case of
toric varieties.

A toric variety is a normal T-variety of complexity zero. There is a well estab-
lished theory of toric varieties See e.g., [Dem70], Chapter 1 in [KKMS73|, [Dan78§],
[Oda88], [Ful93], and [CLS]. In this section we review the definitions and results
needed for this thesis.

The following proposition gives a combinatorial description of affine toric vari-
eties in terms of convex polyhedral cones.

PROPOSITION 1.4.1. Let X be a normal affine variety with A as its ring of
reqular functions. Then X admits the structure of a toric variety if and only if A is
isomorphic to the algebra of a saturated affine semigroup.
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PROOF. Let wys be a saturated affine semigroup and let A = k[wy|. By Theo-
rem X admits a T-action. In this case, the field KT = k and so the complexity
of the T-action is tr.degy K = 0. Finally, X is normal by Lemma

Conversely, assume that X admits a T-action of complexity zero, then for this
action KT =k and so by

A= @ Apx™, where A, €{0,k}.

mewpnsr

Furthermore, the normality of A implies that A,, =k, for all m € wy;. Thus

A= @ o™ = klwu] . s

MmeEWN

In the particular case of a toric variety the weight cone w C Mg, which com-
pletely determines X, corresponds to the cone spanned by all lattice vectors m € M
such that the character ™ : T — k* extends to a regular function on X.

REMARK 1.4.2. The usual description of an affine toric variety X = Speck[w/]
is by means of the cone 0 C Ng dual to the weight cone w C Mg, this is denoted
by X = X,. Of course, these two descriptions are equivalent by duality. The reason
for this choice is that general toric varieties are better described in Ng than in Mg,
see the description below.

In the following, we sketch the description of general toric varieties by means of
polyhedral fans. For a detailed treatment see any of the references at the beginning
of this section.

Let 0 C Ng be a convex polyhedral cone and let 7 C o be a face of 0. By
duality w := ¢¥ C 7V and so k[wps] C k[ry,]. This yields an open immersion of toric
varieties X, — X,.

Let now ¥ C Ng be a fan, o1 and 02 be any two cones in X, and 7 = o1 N 02.
By the previous analysis, X, can be seen as an open set sitting inside X,, and X,,.
We define a scheme Xx by gluing the affine varieties X, for all ¢ € ¥ along the
open sets X defined above.

THEOREM 1.4.3. Let ¥ be a fan in Ng. The scheme Xx, is a normal separated
toric variety.

PROOF. See Theorem 3.1.5 in [CLS]. O

The main result that we will need in this thesis about general toric varieties is
the following theorem known as the orbit-cone correspondence.

THEOREM 1.4.4. Let N be a lattice of rank n and let Xy, be the toric variety
of a fan ¥ in Ng, then there is a bijective correspondence between the cones o of
dimension £ in ¥ and the T-orbits orb(o) of dimension n — £. Moreover, for any
cone o in X, the open affine variety X, is the union of the orbits

X, = U orb(7).

T s a face of o

PROOF. See Theorem 3.2.6 in [CLS| for a proof. O
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1.5. Normal affine T-varieties

In [AHOG], Altmann and Hausen gave a combinatorial description of normal
affine T-varieties of arbitrary complexity similar to the description of toric varieties
by means on convex polyhedral cones. In [AHSOS8] this description was expanded
to describe all normal T-varieties. Their theory generalizes the description of toric
varieties given in Section [I.4] as well as many other descriptions of T-varieties given
previously under different restrictions.

In [Tim97], a combinatorial description of reductive group actions of complexity
one is given and in [Tim08] it is specialized for torus actions. For torus actions of
complexity one, the descriptions in [AHO6] and [Tim97] are equivalent and agree with
the one given earlier in a slightly more restrictive setting by Mumford [KKMS73],
Chapters 2 and 4], see [Tim08] and [Vol07] for more details.

Furthermore, the case of Ty = k*-actions was studied in [Dem88| and [Wat81]
and the particular case of k*-surfaces has been treated by several authors, see [Dol75}
Pin77; [Pin78; [FZ03]. This has led to an almost full understanding of k*-actions on
normal surfaces [FKZ09]. In particular, the description of Altmann and Hausen
specializes to the ones given previously in [Dem88} [FZ03].

In the following we recall the main features of the description of normal affine
T-varieties due to Altmann and Hausen.

Let k be an algebraically closed field of characteristic zero. A variety Y is called
semiprojective if its algebra of global regular functions k[Y] is finitely generated and
Y is projective over Speck[Y].

NOTATION 1.5.1. For every a € Q, we denote the integral part of a by |a]| and
the fractional part by {a}. Similarly, for a Q-divisor D =), az-Z on'Y, we define
the integral part and the fractional part, respectively, by

|D| =) laz|-Z, and {D}=> faz} Z
Z

Z

For any Weil divisor D on Y, the sheaf of sections Oy (D) is classically defined
via
U — HOWU, 0y (D)) = {f € k(Y) | div(fl) + Dlu > 0}
For a Q-divisor D, we can define the sheaf of sections Oy (D) in the same way.
Obviously, with this definition we have

Oy (D) = Oy (|D]).

Let as before, N be a lattice of rank n and M = Hom(N,Z) be its dual lattice.
We also let Ng = N ®Q, Mg = M ® Q, and we consider the natural duality
Mg x Ng — Q, (m,p) — (m,p). Let Y be a normal semiprojective variety and o
be a cone in Ng with dual cone w € M.

DEFINITION 1.5.2. A o-polyhedral divisor on Y is a formal sum
D= Az-Z, where Ay € Poly(Ng),
Z

and Ay = o for all but finitely prime divisors Z. Here the sum runs over all prime
divisors Z C Y.
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Let ® be a o-polyhedral divisor. For a prime divisor Z on Y we denote the
support function of Az by hz := ha,. For every m € w we can evaluate © in m by
letting ®(m) be the Q-divisor on Y

= th(m
Z

DEFINITION 1.5.3. For a o-polyhedral divisor ® on Y, we define its normal
quasifan A(D) as the coarsest common refinement of the quasifans A(hyz), for all
prime divisors Z C Y.

Recall that a Q-Cartier divisor D on Y is called semiample if there exists r > 1
such that the linear system |rD| is base point free, and big if there exists a divisor
Dy € |rD|, for some r > 1, such that Y \ Supp Dy is affine.

DEFINITION 1.5.4. A o-polyhedral divisor is called proper if the following hold.

(7) The divisor ®(m) is Q-Cartier and semiample for all m € w, and
(ii) ©(m) is big for all m € rel. int(w).
Let ® = ) , Az - Z be a proper o-polyhedral divisor on Y. The concavity of
the support functions hy ensures that
D(m+m') >D(m)+D(m’), forall m,m' €wy.
And so, there exist multiplication maps
Oy (D(m)) ® Oy (D(m')) — Oy (D(m +m')), forall m,m' €wy.

This ensures that the sheaves Oy (D(m)), where m € wy; can be put together
into a M-graded Oy-algebra

A=A[Y,D]: = P ov(®(

mew
Moreover, taking the global sections of A yields an M-graded algebra
A= AlY,®]:= H(Y, AlY,D]).

Since the global section functor commutes with direct sums, we can give a nicer
description of A as

A=AY, D= @ Anx™, where A, =H"(Y,0y(D(m))) Ck(Y).
mewpys
The following theorem gives a combinatorial description of T-varieties of arbi-
trary complexity analogous to the classical combinatorial description of toric vari-
eties.

THEOREM 1.5.5. For any proper o-polyhedral divisor ® on a semiprojective va-
riety Y, the M -graded algebra AlY, D] is a normal finitely generated effectively M -
graded domain of dimension rank M + dim Y.

Conversely, if k is algebraically closed then any normal finitely generated effec-
tively M -graded domain is isomorphic to AlY, D] for some semiprojective variety Y
and some proper o-polyhedral divisor ® onY .

PROOF. The proof of Theorem is the main subject of the paper [AHOG]
and due to its length it is out of the scope of this thesis. It applies some strong
geometrical results. In particular, the converse statement is based on results from
geometric invariant theory. O
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DEFINITION 1.5.6. Let X = Spec A be a normal affine T-variety. A combinatorial
description of X is a pair (Y, D) such that A ~ A[Y,®]. The semiprojective variety
Y is called the base variety.

The combinatorial description (Y,®) of a T-variety X is not unique. Indeed, if
we consider a blow up 1 : Y — Y of Y at a closed point and the proper o-polyhedral
divisor ¥*®, then X ~ X DN/, Y*D]. See Lemma for a more precise statement.

Even if it is not obvious from Theorem given a normal affine T-variety
X a combinatorial description can be obtained in an explicit way. In Section 11 of
[AHO6] a recipe is given to obtain such a description.

To give the geometrical counterpart of this classification, we define

X = X[V, D] :=Spec A]Y,®], and X = X[V, D] := Specy A[Y,D].
Here, Specy stands for the relative spectrum of a Oy-algebra. See [Har77, Ch. II
Ex. 5.17] for a definition. A priori, X and X are only schemes, but Theorem
implies that X is a normal affine variety. Moreover, the gradings on A and A endow
X and X with T-actions.

The Specy construction provides a T-invariant affine morphism 7 : X Y
which is thus a rational quotient for the T-action on X. The global section functor
provides a T-equivariant birational morphism ¢ : X — X and so 7o o~ ! is again
a rational quotient for the T-action on X. We can summarize all these considera-
tions in the following commutative diagram, where all the arrows pointing down are
rational quotients.

With these definitions, we have the following Theorem.

THEOREM 1.5.7.
(i) X is a variety.
(it) The affine morphism 7 is a good quotient for the T-action on X.
(7i1) The birational morphism ¢ is proper.
REMARK 1.5.8. In the particular case where Y is affine the morphism ¢ is always
an isomorphism since any quasi-coherent sheaf on an affine variety is generated by
its global sections.

Recall that a variety X is called toroidal if every closed point x € X has a formal
neighborhood isomorphic to a formal neighborhood of a point in a toric variety. We
will show in Chapter that every T-variety X has a combinatorial description (Y, D)
such that X is toroidal.

Since toric singularities are well understood (see Section , in Chapter [4| we
will use the morphism ¢ : X — X to study the singularities of X.

REMARK 1.5.9. It is not true, in general, that the singularities of X are milder
that those of X. In Example X is the affine space, hence smooth and X has
some singularities.
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1 1

Ay € Ng A; C Ng

F1cURE 2. The polyhedra Ag and A; in Example [1.5.11

The following remark will be useful in Chapter

REMARK 1.5.10. Since every graded piece H(Y, Oy (®(m))) of A is contained in
k(Y), there is a natural embedding A — k(Y)[M]. Moreover, the field of fractions
of both algebras coincide, thus X = Spec A is birationally equivalent to Y x P"
where n = rank M, and to the scheme Speck(Y)[M]. The former scheme, which is
a k(Y')-variety, is the algebraic torus over the field k(YY) associated to the lattice M.

The description in Theorem for an affine k*-surface is particularly simple.
Let X = X[Y,®] be a normal affine k*-surface, then Y is a smooth curve, M ~ Z,
and o is isomorphic to one of the pointed cones {0} and Q> in Mg ~ Q.

In [FK91] (see also [FZ03]) all k*-surfaces are divided into three types: elliptic,
parabolic and hyperbolic. These correspond to the cases Y projective, Y affine and
0 = Q>0, and Y affine and o = {0}, respectively.

In the general case, we will use the following terminology. An M-graded domain
AlY, D] (or, equivalently, a T-variety X) will be called elliptic if Y is projective. A
non-elliptic T-variety will be called parabolic if o is of full dimension and hyperbolic
if o = {0}. If dim X > 3, this does not exhaust all the possibilities.

EXAMPLE 1.5.11. Letting N = Z? and o = {(0,0)}, in Ng = Q? we consider
the triangle Ay with vertices (0,0),(0,1) and (—1/4,—1) and the segment A; =
{0} x [0,1], see Figure

Let Y = Spec k[t] and ©® = A - [0] + Ay - [1]. In Figure [3 for the normal
quasifans A(ha,), A(ha,) and A(D) in Mg = Q?, for i = 0,1 we show the values of
h; = ha, on each maximal cone.

We let A = A[Y, D] as in Theorem and X = Spec A. The torus T = (k*)?
acts on X. Since Y is affine and o = {(0,0)}, X is hyperbolic as T-variety. By
Theorem [LL5.5 we have

Aoy =tk[t], Acio)=k[t], Acar =k[t], and Ag ) =1t(t—1k[].
An easy calculation shows that the elements
uyp = _tX(470)7 U2 = X(iLO)? us = _X(7471)a and Ug = t(t - 1)X(8771)

generate A as an algebra. Furthermore, they satisfy the irreducible relation u; +
utu3 + uzuy = 0, and so

A ~ K[z, z2, 23, 24] /(21 + w%x% + x324) . (2)
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mo Mo ma

A(ho) A(hy) A(®D)
Qx0(—4,1) Qx0(—4,1)
—iml — My 0
\ @zu(LU)
ms < » > M < P> M
Qx0(—1,0) Q>0(—1,0) Q50(1,0) Qs0(—1,0)
Q>0(8,-1) mo Q>0(8,-1

mo

FIGURE 3. The normal quasifans A(ha,), A(ha,) and A(D) in Ex-
ample [1.5.11

A

FIGURE 4. The polyhedra Ay, A; and Ay in Example [[.5.12]

The Z2-grading on A is given by degz1 = (4,0), degxo = (—1,0), deg w3 = (—4,1),
and degzy = (8,—1). The curve Y and the proper polyhedral divisor ® can be
recovered from this description of A following the recipe in [AH06, Section 11].

EXAMPLE 1.5.12. Letting N = Z? and o = cone((1,0),(1,6)), in Ng = Q?
we consider the o-polyhedra Ag = conv((1,0),(1,1)) + o, Ay = (—=1/2,0) + o, and
Ay = (—1/3,0) + o, see Figure

Let Y = P! so that k(Y) = k(t), where ¢ is a local coordinate at zero. We
consider the polyhedral divisor ® = Ag - [0] + Ay - [1] + A - [00], and we let
A= A]Y,®] and X = Spec A. An easy calculation shows that the elements

(t—17° 1
5 X( )

Uy = X(O’l), U2

t—1 (t—1)2
= V20, = NEXO

and w4 =
generate A as an algebra. Furthermore, they satisfy the irreducible relation u3 —
u% + uiug = 0, and so

A~ K[z1, 29, 3, 24) /(15 — 25 4+ 2124) .

1.5.1. Complexity one case. In this section we review the classification of
T-varieties restricted to this case.

Let X = X[Y, D] be a T-variety of complexity one. Since Y is a rational quotient,
its dimension equals the complexity of the T-action. Thus, Y is a curve. For this
reason, the semiprojective variety Y will be denoted by C' in this case.

Every normal curve is smooth, and every smooth curve is either affine or projec-
tive. Furthermore, prime divisors on C are simply closed points. This make things
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rather explicit in complexity one. We let ® be the o-polyhedral divisor on C

@:ZAZ.Z.

zeC
DEFINITION 1.5.13. We define the degree of © as the o-polyhedron

deg® = Z A, .
zeC

The degree of the evaluation ®(m) can be expressed in terms of support function
of deg® i.e.,
deg®(m) = haegp(m), forall m e wy.
Moreover, the normal quasifan A(D) of ® equals the normal quasifan A(deg®) of
the o polyhedron deg®.
The condition that a o-polyhedral divisor is proper can be stated in terms of the
o-polyhedron deg®.

LEMMA 1.5.14. A o-polyhedral divisor ® on a smooth curve C is proper if and
only if either C is affine or C is projective and the following two conditions hold.

(i) The polyhedron deg® is a proper subset of the cone o.
i1) If hgeg (m) = 0 then m is contained in the boundary of w = oV and a multiple
g
of ©(m) is principal.

PrOOF. Since C is smooth, any Q-divisor is Cartier. If C' is affine then every
divisor is ample, hence big and semiample. If C'is projective then a divisor D is big if
and only if deg D > 0 and semiample if and only if it is principal or deg D > 0. With
these considerations, (i) corresponds to Definition (#7) and (i7) to Definition
154 (4). 0

Since two smooth projective curves are birationally equivalent if and only if they
are isomorphic, the condition for two normal affine T-varieties of complexity one to
be equivariantly isomorphic is particularly simple.

THEOREM 1.5.15. The M-graded domains A[C, D] and A[C',D'] are isomorphic
if and only if C ~ C', and under this isomorphism, ©(m) — ®'(m) is linear on m,
and principal for all m € wyy.

PROOF. See Theorem 8.8 in [AHO6]. O

In the case where A = A[C, D] is non-elliptic we have that C' = Spec Ay is affine.
This allows us to prove the following useful property.

LEMMA 1.5.16. Let A be an M-graded algebra of complexity one. If A is non-
elliptic then Ay, is a locally free Ag-module of rank 1 for every m € wyy.

PRrOOF. This is the algebraic counterpart of the well known fact that the sheaf
Oc¢(D) is invertible, for all Cartier divisor D on C. O

Following [FZ03l, Proposition 4.12], in the next lemma we show the way in which
our combinatorial description is affected when passing to a certain cyclic covering.
This rather technical lemma will be needed in the proof of Lemma

LEMMA 1.5.17. Let A = A[C, D], where C is a smooth curve and ® is a proper
o-polyhedral divisor on C. Consider the normalization A’ of the cyclic ring extension
Alsx®], where e € M, s = f € Age Ck(C) and d > 0. Then A’ = A[C',D'], where
C" and ®' are defined as follows:
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1 1s elliptic, then 18 also elliptic an 18 the smooth projective curve
If A I hen A’ l I dC’ h h
with function field k(C)[s].
1) 15 non-elliptic, then 1S also non-elliptic an = Spec Ap, where 18
If A I hen A’ l I dC =S Af), where Aj
the normalization of Ao in k(C)[s].
(ii) In both cases, ®' =3 .~ A, -p*(2), where p: C' — C is the projection.

PROOF. The normalization A’ admits a natural M-grading. The latter is defined
by the M-grading on A and by letting degsy® = e. Let K = Frac A. Since
(sx)% — fx% =0, A’ is the normalization of A in the function field K’ := K[sx®].
But x ¢ € K, so K’ = K[s]. Moreover K|[s] = k(C)[s] ® Frac k[M], so the function
field of C” is k(C)[s], and Ajf is the normalization of Aj in the field k(C)[s]. This
proves (i) and (i7).

For every m € N we have @'(m) = Y .- h.(m)p*(2) = p*(D(m)). Therefore
for every f € k(C') there are equivalences:

dive(f) + D(m) > 0 & diver(p* f) + p*(D(m)) > 0 & diver(f) + D'(m) > 0.
Let m € wyy and let r > 0 be such that ©(rd - m) is integral. Then
ge Al =g e Ay o dive(g") +D(rd-m) >0
& diver (¢ + D' (rd - m) > 0 < diver(g) + D' (m) > 0,

which proves (ii). O

1.6. Singularities and toric varieties

In Chapter [ we will study singularities of normal T-varieties of arbitrary com-
plexity. In this section we briefly recall the classification of singularities needed for
Chapter dl We also gather several results about singularities of toric varieties that
will be useful in the sequel.

Some of these results are rather new and so the proofs cannot be found in the
books cited in Section Nevertheless, all of them can be found in the survey
[Dai02] by Dais.

1.6.1. Different types of singularities. In all this section we let X be a
variety (not necessarily affine) and we denote the local ring of X at a point x by
Oxz.

Let R be a Noetherian local ring and let m be the unique maximal ideal. The
ring R is called regular if

dim R = dim(m/m?)

and normal if it is a domain and integrally closed in its field of fractions.

A finite sequence a1, ..., ay of elements in R is defined to be a reqular sequence
if a; is not a zero-divisor of R and for all ¢+ = 2,...,¢, a; is not a zero divisor
of R/(a1,...,ai—1). The depth of R is the maximum of the lengths of all regular
sequences contained in the maximal ideal m. The local ring R is called Cohen-
Macaulay if

depth R =dim R.

A local Cohen-Macaulay ring R is called Gorenstein if there is a maximal regular
sequence contained in the maximal ideal generating an irreducible ideal.
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DEFINITION 1.6.1. A variety X is regular, normal, Cohen-Macaulay, or Goren-
stein if all the local rings Ox , are of this type. An affine variety X = Spec A is
factom’aﬁ if A is a unique factorization domain.

Let now v : Z — X be a desingularization of X i.e., Z is smooth and v is a
proper birational morphism that is an isomorphism outside the singular locus of X

1/)’¢71(Xreg) . 'l/}il(Xreg) ; Xreg .

We also assume that the singular locus is a divisor ), ; with only simple normal
crossings (SNC). We define the i-th direct image sheaf R, Oz via

U— HU,R',0z) == H' ("1 (U), Ozlyp-117)) -

DEFINITION 1.6.2. We say that a variety X has rational singularities if it is
normal and '
R'Y,0z =0, forall i>0.
Similarly, we say that X has elliptic singularities if it is normal and
Rip,Oz =0 for all i #0,dim X, and R¥™Xy, 0, =k.

Assume now that X is normal. For the regular part X™8 of X, we define the

canonical sheaf wxres as the top exterior product of the sheaf of differentials
dim X
Wxreg = /\ O xreg .
i=1
The canonical sheaf of X'®8 is invertible and so there exists a Cartier divisor K xres
on X" such that
Wxreg — OXreg (KXreg) .

The Zariski closure K x of K xres is a Weil divisor on X. We call Kx the canonical

divisor of X.

DEFINITION 1.6.3. A normal variety X is called Q-factorial if every Weil divisor
is Q-Cartier. X is called Q-Gorenstein if the canonical divisor Kx is Q-Cartier. If
X is Q-Gorenstein, then the Gorenstein index of X is the smallest integer ¢ such
that /K x is Cartier.

REMARK 1.6.4. Contrary to what the notation suggests, a normal Q-Gorenstein
variety of index 1 is not necessarily Gorenstein. Nevertheless, a normal variety X is
Gorenstein if and only if it is Cohen-Macaulay and Q-Gorenstein of index 1. This
is usually taken as the definition of the Gorenstein property for normal varieties.

Assume now that X is Q-Gorenstein of index ¢ and recall that ¢ : 7 — X is a
desingularization of X. We can pull back the canonical divisor by setting

V' Kx = 49" ((Kx).

Let E; be the exceptional prime divisors of the morphism 1. We define the discrep-
ancy divisor of ¢ as

Kz —¢*Kx =) aFE;,
i
and the discrepancies of 1 as the coefficients a; of the discrepancy divisor.

4This definition is stronger than the usual definition of factoriality in projective geometry that
asks for all the local rings of X to be factorial.
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DEFINITION 1.6.5. We say that X has terminal, canonical, log-terminal or log-
canonical singularities  if all the discrepancies are > 0, > 0, > —1 or > —1,
respectively. This definition is independent of the particular choice of the desingu-
larization.

This last definition is inspired by the classes of singularities needed to run the
minimal model program.

1.6.2. Toric singularities. By Theorem [1.3.4] without loss of generality, we
can restrict the analysis to the case of affine toric varieties. Indeed, given a fan
Y € Ng, the variety X, belongs to any of the classes of singularities defined in the
previous section if and only if X, belong to it, for all cone o € 3.

THEOREM 1.6.6. Let 0 C Ng be a convex polyhedral cone and let X, be the
corresponding toric variety, then the following hold.
(i) X, is smooth if and only if o is regular.
(i) If X, is factorial if and only if X, is smooth.
(1i1) X, is Q-factorial if and only if o is simplicial.
(iv) Xo is Cohen-Macaulay.
(v) Xy has rational singularities.
(vi) X, is Q-Gorenstein if and only if there exists mg € Mg such that (mg, p) =1,
for every ray p C o. In this case, the Gorenstein index is the smallest integer
£ such that ¢ -mqg € M.
(vit) If X, is Q-Gorenstein then X has log-terminal singularities.
(viii) If X, is Q-Gorenstein then X has canonical singularities if and only if

oN{pe Ng | (ma,p) <1} ={0}.

PROOF. See the survey [Dai02] for proofs or references to proofs. O






CHAPTER 2

G,-action on T-varieties

The group G, is the additive group of an algebraically closed field k. In this
chapter we give some classification results about compatible G,-actions on affine T-
varieties. More precisely, we give a full classification of compatible G,-actions in two
cases: for toric varieties, and for T-varieties of complexity 1. In general complexity,
we give a classification of compatible G,-actions whose general orbits are contained
in the closures of the general orbits of the T-action. Finally, we show that in all
these three cases the ring of invariants of a G,-action is finitely generated.

2.1. Locally nilpotent derivations and G,-actions

Any affine k-algebra A can be regarded as a vector space over the base field k.
A derivation 0 : A — A is a linear morphism satisfying the Leibniz rule

d(ad’) = ad(d’) + d'd(a), forall a,d € A.

DEFINITION 2.1.1. A derivation on A is called locally nilpotent (LND for short)
if for every a € A there exists n € Z>q such that 0"(a) = 0. The additive group G,
is defined as the algebraic variety A' ~ k endowed with the group structure induced
by the addition on k.

Given an LND 0 on A, the map

dg: Gy x A— A, (t,a)Hetaa::Z (?a
i=0

7!

defines a G,-action on X = Spec A. Conversely, given a G,-action ¢ on X, the map

d
Dp: A=A, a— —(¢"(a))
dt =0
defines an LND on A. The following well known lemma shows that these maps are
mutually inverse.

LEMMA 2.1.2. The maps defined above are mutually inverse and so there is a
bijective correspondence between LNDs on A and Gy-actions on X = Spec A.

PROOF. See [Fre06] Section 1.5]. O

REMARK 2.1.3. Under the above correspondence, the kernel ker 9 corresponds
to the ring of invariants k[X]® of the corresponding G,-action.

In the following lemma we collect some well known facts about LNDs over a field
of characteristic 0 not necessarily algebraically closed, needed for later purposes, see
e.g., IMLE [Ere06].

LEMMA 2.1.4. Let A be a finitely generated normal domain over a field of char-
acteristic 0. If & and &' are two LNDs on A, then the following hold:

49
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i) ker 0 is a normal subdomain of codimension 1.
ii) ker 0 is factorially closed i.e., ab € ker 0 = a,b € ker 0.
(131) If a € A is invertible, then a € ker 0.
(tv) If ker 0 = ker @', then there exist a,a’ € ker @ such that a0 = a'd'.
v) If a € ker 0, then ad is again an LND.
(vi) If O(a) € (a) for some a € A, then a € ker d.
(vit) The field extension Frac(ker ) C Frac A is purely transcendental of degree 1.
The following definition is motivated by Lemma [2.1.4] (iv).

DEFINITION 2.1.5. We say that two LNDs 9 and &’ on A are equivalent if ker 0 =
ker @'. Geometrically this means that the general orbits of the associated G,-actions
on X = Spec A coincide.

Let as before M and N be dual lattices. Let k(Y) be the field of rational
functions of an algebraic variety Y. We consider a finitely generated effectively
M-graded domainﬂ

A= P Anx™,  where A, Ck(Y). (3)
mews
A derivation 0 on A is called homogeneous if it sends homogeneous elements into
homogeneous elements. Hence 9 sends homogeneous pieces of A into homogeneous
pieces. A Gy-action on an affine T-variety is called compatible if the corresponding
LND is homogeneous. In geometric terms, a G,-action is compatible if and only if
it is normalized by the torus T. Let

My ={m e wp | 0(Amx™) # 0} .
The action of @ on homogeneous pieces of A defines a map Oy : My — wyy i.e.,

O(AmX™) € Apym)X™. By Leibniz rule, for homogeneous elements a € A, x™ \
ker & and a’ € Ay x™ \ ker @ we have

d(aa") = ad(a') + d'd(a) € Agimsmy »
and so
O (m+m') =m+ Ay (m') =m’ + dpr(m) .
Thus dy;(m) —m € M is a constant function on My. This leads to the following
definition.

DEFINITION 2.1.6. Let 9 be a nonzero homogeneous derivation on A. The de-
gree of O is the lattice vector degd defined by degd = degd(f) — deg(f) for any
homogeneous element f ¢ ker 9. With this notation the map dys : My — wyy is just
the translation by the vector deg 0.

We also say that an LND 0 on A is negative if degd ¢ wpr, non-negative if
deg 0 € wyy, and positive if 0 is non-negative and deg d # 0.

The following well known fact shows that any LND on A decomposes into a sum
of homogeneous derivations, some of which are locally nilpotent.

LEMMA 2.1.7. Let A be a finitely generated normal M -graded domain. For any
derivation 0 on A there is a decomposition 0 =) s Oc, where O, is a homogeneous
derivation of degree e. Moreover, let A(O) be the convex hull in Mg of the set

IRecall our convention regarding M-graded algebras in Remark |1.3.10| (7).
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{e € M : 9. # 0}. Then A(D) is a bounded polyhedron and for every verter e of
A(D), Oe is locally nilpotent if O is.

PROOF. Letting ay,--- ,a, be a set of homogeneous generators of A we have A ~
km/I, where k"l = k[x1,--- ,x,] and I denotes the ideal of relations of aj,--- ,a,.
The M-grading and the derivation 0 can be lifted to an M-grading and a derivation
9" on kIl respectively.

The proof of Proposition 3.4 in [Ere06] can be applied to an M-grading, proving
that &' = 3., 0L, where 0., is a homogeneous derivation on kl"l. Furthermore,
since 9'(I) C I and I is homogeneous, we have 0.(I) C I. Hence 0. induces a
homogeneous derivation 9, on A of degree e, proving the first assertion.

The algebra A being finitely generated, the set {e € M : J. # 0} is finite
and so A(0) is a bounded polyhedron. Let e be a vertex of A(9) and n > 1. If
ne = Y. m; with m; € A(9) N M, then m; = e Vi. For a € A,,,x"™ this yields
0¢ (a) = (0™(a)),qne> Where (0"(a)),, e stands for the summand of degree m + ne

in the homogeneous decomposition of 0"(a). Hence 0, is locally nilpotent if O is
S0. g

In the following lemma we extend Lemma 1.8 in [FZ05a] to more general grad-
ings. This lemma shows that any LND 0 on a normal domain can be extended as
an LND to a cyclic ring extension defined by an element of ker 0.

LEMMA 2.1.8. Let A be a finitely generated normal domain and let O be an LND
on A.

(i) Given a nonzero element v € ker 0 and d > 0, we let A" denote the normaliza-
tion of the cyclic ring extension Alu] O A in its fraction field, where u® = v.
Then O extends in a unique way to an LND &' on A'.

(11) Moreover, if A is M-graded and O and v are homogeneous, with degv = dm
for some m € M, then A’ is M -graded as well, and u and 0’ are homogeneous
with degu = m and degd = degd.

PROOF. Actually (7) is contained in [FZ05al, Lemma 1.8] while the proof of (i)
is similar and so we omit it. O

Recall that A = @,,c,,,, AmX™; where 4, C k(Y), k(Y) is a field of rational

functions of an algebraic variety and Frac A = k(Y)(M) ﬂ The following lemma
provides some useful extension of a homogeneous LND 9 on A.

LEMMA 2.1.9. For any homogeneous LND 0 on A, the following hold:
(i) The derivation O extends in a unique way to a homogeneous k-derivation on
k(Y)[M].
(i) If O(k(Y)) = O then the extension of O as in (i) restricts to a homogeneous
locally nilpotent k(Y')-derivation on k(Y)[was].

PRrROOF. Since FracA = k(Y)(M), any fx™, f € k(Y), can be written as
fix™ [ paxme2, where fix™, fax™? € A homogeneous. Then 0 extends to k(Y')[M]
by the rule

0 (fle) O™ X — XM O(fax™)
Jax™? f3xma

2Recall that for a field k(Y) and a lattice M, k(Y)(M) denotes the function field of k(Y')[M].
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To show (ii), suppose that d(k(Y)) = 0. Assuming that fx™ € k(Y)[wn], we
consider r > 0 such that A,,, # 0. Letting g € Ay, we have fx"™ = f'gx"™ for
some f" € k(Y). Thus f"x"™ is nilpotent an so is fx™. O

In the setting as in the previous lemma, the extension of 0 to k(Y)[M] will be
still denoted by 0. Following [FZ05a] we use the next definition.

DEFINITION 2.1.10. With A as in , a homogeneous LND 9 on A or, equiva-
lently, a G,-action on X = Spec A4, is said to be of fiber type if d(k(Y')) = 0 and of
horizontal type otherwise.

Let A be a finitely generated domain and X = Spec A. In this setting, 0 is
of fiber type if and only if the general orbits of the corresponding G,-action are
contained in the closures of general orbits of the T-action given by the M-grading.
Otherwise, 0 is of horizontal type.

2.2. Compatible G,-actions on toric varieties

In this section we consider more generally toric varieties defined over a field k of
characteristic 0, not necessarily algebraically closed.

Let as before M and N be dual lattices of rank n. We also let Ng = N ® Q,
Mg = M ®Q, and we consider the natural duality Mg x Ng — Q, (m,p) — (m,p).

NOTATION 2.2.1. Let p € N and e € M be lattice vectors. We define 0, . as the
homogeneous derivation of degree e on k[M] given by 9,.(x™) = (m, p) - x™ €.

An easy computation shows that 0, is indeed a derivation. Let H, be the
subspace of Mg orthogonal to p, and H;L be the halfspace of Mg given by (-, p) > 0.
The kernel ker d, . is spanned by all characters x™ with m € M orthogonal to p,
ie., kerd,. = k[H, N M].

Let Nil(0,,c) be the subalgebra of k[M] where 0, . acts in a nilpotent way. As-
sume that (e, p) = —1. For every m € H} N M, the character " € Nil(9,.) since
8ﬁ7e(xm) = 0, where £ = (m, p) + 1. Thus, the derivation 0, . restricted to the sub-
algebra k[H;r N M] is a homogeneous LND. On the other hand, d,. is not locally
nilpotent in k[M], in fact for every m ¢ H N M the character x™ ¢ Nil(d).c).

REMARK 2.2.2. If 9,  stabilizes a subalgebra A C k[H; N M], then J, |4 is also
a homogeneous LND on A of degree e and ker(0,.|4a) = ANk[H, N M].

For the rest of this section, we let o be a pointed polyhedral cone in the vector
space Ng with dual cone w C Mg, and

A =Kklwy] = @ kx™

mew s

be the affine semigroup algebra of ¢ with the corresponding affine toric variety
X = Spec A. Since the cone o is pointed, w is of full dimension and the subalgebra
A C k[M] is effectively graded by M.

To every ray p C o we can associate a facet 7 C w given by 7 = w N pt. As
usual, we denote a ray and its primitive vector by the same letter p. Thus w C Hj
and 7 C H,.
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ol o C N oV C Mg

Tp

FIGURE 5. The set S, and the cone o,

DEFINITION 2.2.3. Let 0, be the cone spanned by all the rays of o except p, so
that w = oy N H. We also let

S, =0/ N{ee M| (ep)=—1}.

This definition is illustrated in Figure [5 where p C Ng is pointing upwards.
Alternatively, we can define S, as the set of lattice vectors m € M such that (p, m) =
—1 and (p’,m) > 0 for every other ray p’ C 0.

LEMMA 2.2.4. Lete € M. Then e € S, if and only if

(i) e & wyr, and
(ii) m+e € wyr, Ym € wyr \ Tar-

PROOF. Assume first that e € S,. Then (i) is evident. To show (ii), we let
m € wyr \ Tar. Then m+e € H because (m+e,p) = (m,p) —1. Alsom € w C o)
yielding m +e € o). Thusm+ecw=0)NHS.

To show the converse, we let e € M be such that () and (i7) hold. Letting p;,
i=1,---,¢ be all the rays of o except p, for m € wys \ 7as we have

<m+e,pi> = <m7pi> + <67pi> >0, Vi e {17"’ 76}'
If m € p-Nwyy then (m, p;) = 0 and so (e, p;) > 0Vi. Thus e € o). Since e € o) \w,

(e, p) is negative. We have (e, p) = —1, otherwise m + e ¢ w for any m € wys such
that (m, p) = 1. This yields e € S,,. O

REMARK 2.2.5. Since p ¢ o, we have S, # (. Furthermore, by the previous
lemma, e +m € S, whenever e € S, and m € 7).

In the following lemma we provide a translation of Lemma [2.2.4] from the lan-
guage of convex geometry to that of affine semigroup algebras.

LEMMA 2.2.6. For every pair (p,e), where p is a ray of o and e is a lattice
vector in S,, the homogeneous derivation 0, . restricts to a homogeneous LND on
A = k(wp]| with kernel ker 0, ¢ = k[Tas] and deg 0, = e.

PRrROOF. If o = {0}, then o has no, so the statement is trivial. We assume in the
sequel that o has at least one ray p. By Lemma [2.2.4] 0, stabilizes A. Hence by
Remark (2), Oy, is a homogeneous LND on A with kernel k{7)s] and of degree
e. O

The following theorem completes our classification, cf. [Dem70, Prop. 11] and
[Oda88), Section 3.4].



54 2. Go-ACTION ON T-VARIETIES

THEOREM 2.2.7. If 0 # 0 is a homogeneous LND on A, then 0 = X0, for some
ray p on o, some lattice vector e € S,, and some X € k*.

PrOOF. The kernel ker 9 is a subsemigroup subalgebra of A of codimension 1.
Since ker § is factorially closed (see Lemma [2.1.4), it follows that ker d = klwas N H]
for a certain codimension 1 subspace H of Mg.

If wN H is not a facet of w, then H divides the cone w into two pieces. Since
the action of d on characters is a translation by a constant vector degd, only the
characters from one of these pieces can reach H in a finite number of iterations of
0, which contradicts the fact that 0 is locally nilpotent.

In the case where wN H = 7 is a facet of w, we let p be the ray dual to 7. Since
0 is an homogeneous LND, the translation by e = degd maps (wps \ 7ar) into wpyy.
So by Lemma e €S, and d = \J, ., as required. O

REMARK 2.2.8. In [Dem70] a similar result is proved for smooth, not necessarily
affine, toric varieties. In loc. cit. the elements in the set

R=J-5,
pCo
are called the roots of o.

From our classification we obtain the following corollaries.

COROLLARY 2.2.9. A homogeneous LND O on a toric variety is uniquely deter-
mined, up to a constant factor, by its degree.

PROOF. By Theorem we have 0 = A0, where e = degd. We claim that
the p is uniquely determined by e. Indeed, the sets S, and S, are disjoint for

p#p. O

COROLLARY 2.2.10. Ewvery homogeneous LND 0 on a toric variety X is of fiber
type and negative.

PRrROOF. The first claim is evident because T acts with an open orbit. By
Theorem [2.2.7, any LND on a toric variety is of the form AJ,.. Its degree is
degd,e =e€ S, and S, Nw = 0, so d is negative. O

COROLLARY 2.2.11. Two homogeneous LNDs 0 = X0y and 0' = N0y o on A
are equivalent if and only if p = p'. In particular, there is only a finite number of
pairwise non-equivalent homogeneous LNDs on A.

PRroOF. The first assertion follows from the description of kerd,. in Lemma
and the second one from the fact that o, being polyhedral, has only a finite
number of rays. 0

EXAMPLE 2.2.12. With N = Z? we let o be the cone in Ng having rays p; =
(1,0,0), p2 = (0,1,0), p3 = (1,0,1), and ps = (0,1,1). The dual cone w C Mg = Q3
is spanned by the lattice vectors u; = (1,0,0), ug = (0,1,0), uz = (0,0,1), and
ug = (1,1, —1). Furthermore, these elements satisfy the relation uj + uy = us + uy
and the algebra A = k|w)y] is generated by z; = x", i =1,...,4. Thus

A ~ K[z, 22, 23, 24]/(T1202 — T324) . (4)

Corollary shows that there are four non-equivalent homogeneous LNDs

on A corresponding to the rays p; C 0. By a routine calculation we obtain

Spy ={(-1,b,c) e M |b>0,c>1}, S,, ={(a,—1l,c)e M |a>0,c>1},
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Sy, ={(a,b,c) e M |a>0,b+c>0,a+c=—1}, and
S,y ={(a,b,c) e M |b>0,a+c>0,b+c=—1}.
Letting e; = (_17071)7 €2 = (Oa_171)7 €2 = (Oala_l)a €4 = (1707_1)7 0; =
Opires» and m = (m1,m2, m3), we have

m—+e; m-+tez
) 9

A(xX™) =m1-x Oa(X™) =ma - x
O5(X™) = (m1+mg3) - X", and  94(X™) = (mag +m3) - X" T,

Finally, under the isomorphism of the four homogeneous LNDs on A are given
by

81:517387“4-%287“, aQszaixz-i-l’laim,
0 0 ) o
83—96487314-3328—%, and 84_3;487:624-;5167%,

2.3. Compatible G,-actions on T-varieties of complexity 1

In this section we give a complete classification of homogeneous LNDs on T-
varieties of complexity 1 over an algebraically closed field k of characteristic 0. In
the first part we treat the case of a homogeneous LNDs of fiber type, while in the
second one we deal with the more delicate case of homogeneous LNDs of horizontal
type.

We fix a lattice M of rank n, the torus T, a smooth curve C' and a proper
o-polyhedral divisor ® on C

D= Z Az,

zeC
Letting k(C') be the function field of C', we consider the affine variety X = Spec A,
where

A=A[CD]= P Anx™, with A, =H"(C,0(D(m))) Ck(C).
mewpn
We denote by h, = ha, the support function of A, so that
D(m) = h(m)-z.
zeC

We also fix a homogeneous LND 0 on A. In this context, we can interpret
Definitions [2.1.6] and [2.1.10] as follows.

LEMMA 2.3.1. With the notation as above, let O be a homogeneous LND on A.
Then the following hold.
(7) If O is of fiber type, then O is negative and ker 0 = P
a facet of w.
(ii) Assuming further that A is non-elliptic, 0 is of fiber type if and only if O is
negative.

m ‘
mery AmX™; where T is

PRrROOF. To prove (i) we let 0 be a homogeneous LND of fiber type on A. By
Lemma we can extend 0 to a homogeneous LND 9 on A = k(C')[wy;] which is
an affine semigroup algebra over k(C). Since 9(k(C)) = 0,  is a locally nilpotent
k(C)-derivation. It follows from Corollary that degd = degd ¢ wyy, so 0 is
negative.
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Furthermore, Lemma and Theorem m show that kerd = k(C)[ra],

where 7 is a facet of w. Thus

kerd = ANkerd = @ (A Nk(C))x™ = @ ApX™,

MET)N meTN

which proves (7).

To prove (ii) we assume further that A is non-elliptic. Let O be a negative
homogeneous LND on A. Let d be the extension of d to k(C)[M] as in Lemma
Since 0 is negative, d(Ap) € Adgego = 0. Since A is non-elliptic we have
k(C) = Frac Ay, so 9(k(C)) =0 and 9 is of fiber type. O

REMARK 2.3.2. In the elliptic case, the second assertion in Lemma [2.3.1] does
not hold, in general. Consider for instance the elliptic k-domain A = k[z,y] graded
via degxz = degy = 1. Then the partial derivative 0, is a negative homogeneous
LND of horizontal type on A.

2.3.1. Homogeneous LNDs of fiber type. In this subsection we consider
a homogeneous LND 9 on A of fiber type. Let as before A = k(C)[wy] be the
affine semigroup k(C')-algebra with cone o € Ng over the field k(C). By Lemma
0 can be extended to a homogeneous locally nilpotent k(C)-derivation on A.
To classify homogeneous LNDs of fiber type, we will rely on the classification of
homogeneous LNDs on affine semigroup algebras from the previous section.

If o has no ray then 0 = 0 and w = Mgp. By Lemma in this case there are
no homogeneous LND of fiber type. So we may assume in the sequel that ¢ has at
least one ray, say p. Let 7 be its dual facet, and let S, be as defined in Lemma [2.2.4]

LEMMA 2.3.3. For any e € S,,

D, := max (hy(m)—h,(m+e))-z

mew T
zeC MATM

1s a well defined Q-divisor on C.

Proor. By Lemma for all m € wys \ 7ar, m + e is contained in wys and
thus h,(m) and h,(m + e) are well defined. Recall that for any z € C, the function
h. is concave and piecewise linear on w. Thus the above maximum is achieved by
one of the linear pieces of h, i.e., by one of the maximal cones in the normal quasifan
A(h.) (see Definition [L.5.3).

For every z € C, we let {01, , 0, .} be the set of all maximal cones in A(h,)
and g, 7 € {1,---, £} be the linear extension of h./|5, , to Mg. Since the maximum
is achieved by one of the linear pieces we have

max (h.(m)—h.(m+e)) = max (—gr.(e)).

mGuJ]\/[\T]W re 1,'",fz}
Since g,..(e) € Q V(r, z), D, is indeed a Q-divisor. O
REMARK 2.3.4. An alternative description of D, is as follows. Let the notation
be as in the preceding proof. Since 7 is a facet of w, it is contained as a face in one

and only one maximal cone ¢, .. We may assume that 7 C §; .. By the concavity of
h, we have g1 .(e) < g,.(e) Vr and so

D, = — 291,2(6) -z

zeC
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NoTATION 2.3.5. We let
&, = H(C,0c(—D.)), and & =o.\{0}.
We need the following lemma.

LEMMA 2.3.6. Let p € o be a ray, T € w be its dual facet ande € S,. If ¢ € k(C),
then o € @, if and only if Ay, C Apye for any m € war \ Ty

PROOF. If ¢ € ®., then for every m € wps \ T,

div(p) > De > > (hz(m) — ho(m+e)) -z =D(m) — D(m +e).
zeC

If f e @A, then div(f) + ©(m) > div(y) and so div(f) + D(m +¢e) > 0. Thus
@Am - Aere-

To prove the converse, we let ¢ € k(C) be such that pA,, C A, for any
m € wyr \ Tar. With the notation of Remark [2.3.4) we let m € M be a lattice vector
such that ®(m) is an integral divisor, and m and m + e belong to rel. int(d .), for

any z € C.
For every z € Supp @, we let f, € A, be a rational function such that

ord.(fz) = —hz(m) = —g1,.(m).
By our assumption ¢f, € A4 and so
Ordz(()@fz) > _hz(m =+ 6) = _gl,z(m + 6) .
This yields ord,(¢) > —g1,.(m +¢e) + g1.(m) = —g1,.(e) and so ¢ € ®,. This

proves the lemma. ]

There is a natural way to associate to a nonzero function ¢ € ®} a homogeneous
LND of fiber type on A. More precisely we have the following lemma.

LEMMA 2.3.7. To any triple (p,e, ), where p is a ray of o, e € S, is a lattice
vector, and ¢ € ®% is a nonzero function, we can associate a homogeneous LND

Opep on A= A[C, D] with kernel
ker Ope,p = EB AmXx™, and degdpep =e.

meTr
PROOF. Letting A = k(C)[wa], we consider the k(C)-LND d,. on A as in
Lemma Since ¢ € k(C), ¢, . is again an k(C)-LND on A.
We claim that 0, stabilizes A C A. Indeed, let f € A,, C k(C) be a homo-
geneous element so that div f +©(m) > 0. If m € 7y, then ©0,(fx™) = 0. If
m € wyr \ Tar, then

©0p.e(fX™) = 0 f0pe(X™) = mopfX™ e,

where mg := (m, p) € Z~o. By Lemma ofx™Te € A and so does mopfx™e,
proving the claim.
Finally 0, = ©0pe|a is an homogeneous LND on A with kernel

ker 0p e p = EB Apx™,

meTN

as desired. O

The following theorem gives the converse of Lemma and so completes our
classification of homogeneous LNDs of fiber type on T-varieties.
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THEOREM 2.3.8. Ewvery monzero homogeneous LND O of fiber type on A =
A[C, D] is of the form 0 = 0, for some ray p C o, some lattice vector e € S,,
and some function @ € ®,.

PROOF. Since 9 is of fiber type, d(k(C)) = 0 and so J can be extended to a
k(C)-LND 0 on the affine semigroup algebra A = k(C)[w]. By Theorem we
have 0 = 0, for some ray p of o, some e € S, and some ¢ € k(C). Since A is

stable under ¢0, ., by Lemma @€ P, and 50 0 = YOpela = Ope,p- a

COROLLARY 2.3.9. Let as before X = Spec A be a T-variety of complexity 1, O
be a homogeneous LND of fiber type on A, and let fx™ € A\ kerd be a homoge-
neous element. Then O is completely determined by the image gx™ ¢ := d(fx™) €
Am+exm+e.

PRrOOF. By the previous theorem 0 = 0,., for some ray p, some e € S,, and
some ¢ € ®., where e = degd and p is uniquely determined by e, see Corollary
2.2.9)

In the proof of Lemma it was shown that 9, ¢ (fX™) = mopfx"1¢. Thus
Y= miof € k(C) is also uniquely determined by our data. O

COROLLARY 2.3.10. Two homogeneous LND 0 = Op ¢, and &' = Oy o of fiber
type on A are equivalent if and only if p = p'. In particular, there is a finite number
of pairwise non-equivalent LNDs of fiber type on A.

PROOF. The first assertion follows from the description of kerd, ., in Lemma
[2.:3771 The second one follows from the fact that ¢ has a finite number of rays. [

Givenaray p C o and e € S, it might happen that ®} = ), so that there exist no
homogeneous LND 9 of fiber type on A with degd = e and ker 9 = @mem] AmXx™.
In the following lemma we give a criterion for the existence of e € S, such that
dim ®. is nonzero.

LEMMA 2.3.11. Let A = A[C,D], and let p C o be a ray dual to a facet T C w.
There exists e € S, such that dim ®, is positive if and only if the curve C is affine
or C' is projective and hgeg |- 7 0.

ProoF. If C is affine, then for any Z-divisor D the sheaf O¢(D) is generated
by the global sections. It follows in this case that dim &, > 0.

Let further C be a projective curve of genus g. If deg| —D.| < 0 then dim ®, = 0.
On the other hand, by the Riemann-Roch theorem dim ®, > 0 if deg| —D.| > g (see
Lemma 1.2 in [Har77, Chapter IV]).

Letting h = hdaego = > _.cc Mz, with the notation of Remark we have
hl; = > .cc 91, and deg(—D¢) = > ..~ 91.2(e). By the definition of proper o-
polyhedral divisor, h(m) > 0 for any m in the relative interior of w.

If hl; = 0 then by the linearity of g;. we obtain that deg(—D.) < 0, so
deg|—D.| < 0 and dim ®, = 0.

If h|; # 0 then by the concavity of h, h(m) > 0 for all m in the relative interior
of 7. By Remark deg(—D.) is linear on e and so, according to Remark
we can choose a suitable e € S, so that deg|—D.| > g. Hence dim ®, > 0. O

We can now deduce the following corollary.

COROLLARY 2.3.12. Let A = A[C,D], and let p C o be a ray dual to a facet
7 C w. There exists a homogeneous LND of fiber type 0 on A such that ker 0 =
@meTM Amx™ if and only if C is affine or C is projective and p N deg® = ).
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PROOF. Since pNdeg® = 0 is equivalent to hgeg »|+ # 0, the corollary follows
from Theorem 2.3.8 and Lemma 2.3.111 O

REMARK 2.3.13. By Corollaries [2.3.10] and [2.3.12] the equivalence classes of
LNDs of fiber type on A = A[C, D] are in one to one correspondence with the rays
p C o if C is affine and with rays p C o such that pNdeg® = () if C is projective.

2.3.2. Homogeneous LNDs of horizontal type. Let A = A[C, D], where ©
is a proper o-polyhedral divisor on a smooth curve C. We consider a homogeneous
LND 0 of horizontal type on A. We also denote by 0 its extension to a homogeneous
k-derivation on k(C)[M], where k(C) is the field of rational functions of C' (see
Lemma [2.1.9] (7)).

The existence of a homogeneous LND of horizontal type imposes strong restric-
tions on C, as we show in the next lemma.

LEMMA 2.3.14. If there exists a homogeneous LND O of horizontal type on A =
A[C, D], then C ~ P! in the case where A is elliptic and C ~ A" in the case where A
is non-elliptic. In the latter case A, is a free Ag-module of rank 1 for every m € wys
and so

Am = pmAo  for some @, € Ay, such that  div(em) + [D(m)] =0.

PROOF. Let m : X = Spec A --» C be the rational quotient for the T-action
given by the inclusion 7* : k(C') — K = Frac A. Since X is normal, the indetermi-
nacy locus Xy of m has codimension greater than 1, and so the general orbits of the
Ga-action corresponding to 0 are contained in X \ X.

Since d(k(C)) # 0, the general orbits of the G,-action on X are not contained
in the fibers of 7, so map dominantly onto C. Hence C being dominated by A! we
have C' ~ P! in the elliptic case and C' ~ A! in the non-elliptic case.

Thus, if C' is affine then Ay = k[t] and so A,, is a locally free Ap-module of rank
1 for any m € wys. By the primary decomposition, any locally free module over a
principal ring is free and so A,, ~ Ay as a module (see also Ch. VII §4 Corollary 2
in [Bou70]). Now the last assertion easily follows. O

NOTATION 2.3.15. For the rest of this section we let k(C') = k(t), so that C' = P!
in the elliptic case, and C = A' otherwise. We also let Sy be the set of all lattice
vectors

L(0) € M be the sublattice spanned by Sy, and 7n(9) be the cone spanned by Sy
in Mg. We write L and 7 instead of L(J) and n(d) whenever 0 is clear from the
context.

LEMMA 2.3.16. Let A = A[C, D], where D is a proper o-polyhedral divisor on
C, and let O be a homogeneous LND of horizontal type on A. With the notation as
above, the following hold.

(1) The ki;’nel ker 0 is a semigroup algebra given by ker 9 = @m@u ko x™, where
Pm € Am.

(2) In the non-elliptic case div(ey,)+D(m) = 0, while in the elliptic one div(em,) +
D(m) = X [200] for some 2o € P and some positive \ € Q.

(8) The cone n is a mazximal cone of the quasifan A(D) in the non-elliptic case, and
of the quasifan A(D|p1\(.1) in the elliptic one. In particular, rank(L) = n.
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(4) M is spanned by degd and L. More precisely, any m € M can be uniquely
written as m = l+1rdegd for somel € L and some r € Z with 0 < r < d, where
d > 0 is the smallest integer such that ddegd € L.

PROOF. Since k C ker 0 we have 0 € Sy. If m,m’ € Sy then m +m' € Sy and
S0 Sy is a subsemigroup of wjy.

For any f € k(C) = k(t) we have 9(f) = f'(t)0(t), where 9(t) # 0 since 9 is
of horizontal type. Thus 9(f) = 0 if and only if f is constant. Let us fix m € Sy.
If om, ¢, € kerd N Ay, x™ are nonzero, then ¢, /@), € kerd Nk(C) = k and so
o, = Apm, for some \ € k*.

Hence ker 0 = P, ¢ s, KemX™ and ker 0 is a semigroup algebra. Since ker d is
normal, Sy is saturated, and so Sy = 1z, which proves (1).

To prove (2), we assume first that C' is affine. Given m € np, we let @, be as in
Lemma Since ker 0 is factorially closed, if fp,,,x™ € ker d N A, x™ for some
f € Ap, then f € kerd N Ag = k and @, X" € kerd N A, x™. The latter implies
that ¢ X" € ker 0N App X" Vr > 1, and so

r®(m)] = |rD(m)]|, forall r>1.

Hence ®(m) is an integral divisor, which yields (2) in the non-elliptic case.
In the case where C' = P!, we may suppose that that z,, = co. Given m € ny,
let us assume that
div(pm) + [D(m)] = [0] + [oc],
so that ty,, € A, and t~1p,, € A,,. We have

(tomX ™)t omx™) = (pmx™)? € ker 0.
Thus tp,x™ € ker 0, which contradicts (1). Henceforth
div(gm) + [D(m)] = X - [200], for some A€ Z>g.
An argument similar to that employed in the non-elliptic case, yields
div(pm) +D(m) = X - [200), forsome A€ Zxp.
proving (2).

We have dimker @ = dimn. Since 9 is an LND, ker 0 has codimension 1 in A.
Hence 7 is of full dimension in Mg. Furthermore, in the non-elliptic case (2) shows
that h.|, is linear Vz € Al, so that 7 is contained in a maximal cone § in A(D).

Assume that n C 0. Let m € § \ n and ¢, € k(¢) be such that ©(m) is integral
and div(em) +D(m) = 0. Letting m’ € iz, be such that m +m’ € np, the linearity
of ® implies

OmX"Om X" = X € ker D).
Hence @, x™ € ker d which is a contradiction, proving (3) in the non-elliptic case.
In the elliptic case a similar argument (with z € P!\ {2..}) provides the result.

Finally, since wp; spans M as a lattice and 0 is a homogeneous LND, for any
m € M we have m + rdegd € L for some r € Z. Thus for 0 > r > —d the
decomposition as in (4) is unique because of the minimality of d. O

COROLLARY 2.3.17. In the notation of Lemma|2.3.16, by (3) w C Ng is a pointed
polyhedral cone and by (1)

kerd = P komx™ ~ k)
menL

is an affine semigroup algebra. In particular ker 0 is finitely generated.
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Let us consider two basic examples, one with a non-elliptic T-action and the
other one with an elliptic T-action. They are universal in the sense of Lemma [2.3.21
below. We use both examples in our final classification, cf. Lemma and

Theorem 2.3.26]

Starting with an affine toric variety X and a homogeneous LND 0 of fiber type
(see Corollary, we can restrict the big torus action to an appropriate codimen-
sion 1 subtorus T so that d becomes of horizontal type for the T-action of complexity
1 on X. This is actually the case in our examples.

EXAMPLE 2.3.18. Letting A = A[C,D], where C = Al, p € Ng, and ® =
(p+ o) - [0] we have that hg : w — Q, m +— (m,p) is linear and h, = 0 Vz € k*.
Denoting by h : Mg — Q the linear extension of hg to the whole Mg, for m € wys
we obtain

Ap =t~k = @ kt".
r>—h(m)
Letting N = N xZ, M = M x Z, and  be the cone in N@ spanned by (0, 0) and
(p,1), a vector (m,r) € Mg belongs to the dual cone @ := " if and only if m € w
and r > —h(m). By identifying x(®") with ¢ we obtain

A= P kx"= P k"™ =koyl.

(m,r)€Lg; (m,r)€bg;

Hence A is an affine semigroup algebra and so, we can apply the results of the
previous section.

Since Ay is spanned as affine semigroup algebra by the character x(%1), the only
facet of @ not containing the lattice vectors (0, 1) is

T:{(m,T)EJ/W\Q|m€w, T:_h(m)}‘

This is the face of & dual to the ray p spanned by (p,1) in ]v@.

In the notation of Lemma picking ¢’ € S, and X € k* we let 0 = \J, o
be the homogeneous LND with respect to the M -grading described in Lemma
Since (0,1) ¢ 7, O is of horizontal type with respect to the M-grading on A. Let
deg,, stand for the corresponding degree function.

For any e’ = (e,s) € M x Z we have deg); 0 = e and ker 0 = k[ry;]. Therefore,
in the notation of Lemma [2.3.16, n = w and L = {m € M : h(m) € Z}.

To be more concrete, we let d > 0 be the smallest integer such that d-p € N.
Then d - h is an integer valued function on wps. Letting m; € M be a lattice vector
such that {h(m1)} = {2}, by a routine calculation we obtain

S :{(G,S)EM\|€€L—’ITL1,S:—h(e)—é}ﬂdv (5)

p bl
and

D™ - 47) = A (r + h(m)) - ™ 47O () € BT (6)

where o, C ]VQ is as defined in Lemma A € k¥, and 0 is the partial derivative
with respect to t. Moreover, in this case 0, = o x {0} and so

S :{(6,3)6]/\4\|66wﬂ(L—m1), s:—h(e)—é}.
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EXAMPLE 2.3.19. Let C = P!, p € Ng. Let Ay be a o-tailed polyhedron, and
let ® = (p+0)-[0] + Ax - [00]. Under these assumptions hg : w — Q, m — (m, p)
is linear and h, = 0 Vz € k*. We let as before h : Mg — Q denote the linear
extension of hg to the whole Mg. We also suppose that p+ A, € ¢ and so the sum
ho + hoo > 0 is not identically 0. Under these assumptions the o-polyhedral divisor
® is proper. Letting A = A[C, D], for any m € wy; we have

Ay = @ L
—ho(m)<r<hoo(m)

Let N = N x Z, M =M x Z, and let o be the cone in N@ spanned by (o,0),
(p,1) and (As, —1). A vector (m,r) € Mg belongs to the dual cone ¢ := @ if and
only if m € w, r > —ho(m) and r < hoo(m). Thus by identifying x (1)

obtain:
A= P xx"= P k"™ =kl

(m,r)€Lg; (m,r)€bg;

with ¢ we

Hence A is again an affine semigroup algebra, and so the results in the previous
section can be applied.
We let as before p C & be the ray spanned by (p,1). The facet dual to p is

TZ{(m,T‘)GJ/W\Q|me’ r=—h(m)}.

In the notation of Lemma picking ¢/ € S, and X € k* we let 9 = X0, ¢
be the homogeneous LND with respect to the M -grading described in Lemmam
Again 0 is of horizontal type with respect to the M-grading on A.
Furthermore, for any e’ = (e,r) € M x Z we have deg,, 0 = e and ker 0 = k[75;].
Therefore, in the notation of Lemma n=wand L={m e M : h(m) € Z}.
To be more concrete, we let d and m; be as in the previous example. By a
routine calculation we obtain that S, is as in and 0 is as in @

REMARK 2.3.20.

(1) In both examples, the homogeneous LND 0 extends to a derivation on k(C')[M]
given by @

(2) With the same formula @, 0 extends to a homogeneous LND on

Ay = @D k[, where A C Ay Ck(C)[M].
meM
(3) In particular, if p = 0, then p is the ray spanned by (0,1), d =1, and L = M.
Furthermore, we can choose m; = 0 so that S, = (M x {=1}) N o}/, and the

homogeneous LND 0 of horizontal type on A is given by 0 = Ax®d:;, where
(e,—1) € S,.

We return now to the general case. We recall that
A=A[C,D], where D = ZAZ -z
zeC

is a proper o-polyhedral divisor on C = A! or C = P!, h, is the support function of
A,, and 9 is a homogeneous LND of horizontal type on A.

In the next lemma we show that the subalgebra of A generated by the homoge-
neous elements whose degrees are contained in 7, is as in the previous examples.
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LEMMA 2.3.21. With the notation ofLemma we let A, = ®m€nA4 Apx™.
Then A, ~ A[C,D,] as M-graded algebras, where
(i) Dy = (p+w) - [0] for some p € Ng, in the case where C = Al, and
(17) Dy = (p+w) - [0]+ Ax - [00] for some p € Ng and some Ay, € Pol,(Ng) with
p+ Ao C o, in the case where C = P!,

Proor. By Lemma (3), the support functions h, restricted to 7 are linear
for all z € Al in the non-elliptic case and for all z € P!\ {2z} in the elliptic case. In
the non-elliptic case this shows that D, = ) .~ (p. +w) - z, where p. € Ng. In the
elliptic case, we may suppose that 2o, = 00 and s0 Dy, = D41 (P2 +w)-2+Ag-[00],
where Ao, € Pol,(Ng) and p, € Ng Vz € Al

By Lemma (v), without loss of generality we may replace 0 to assume that
degd € ny. Letting e = degd we consider the 2-dimensional finitely generated
normal Z>o-graded domain

B, = @ Arex".

r€l>q

If C is affine then (B, 0|p,) is a parabolic pair in the sense of Definition 3.1 in
[EZ05a]. Now Corollary 3.19 in loc. cit. shows that, for any r € Z>, the fractional
part {9, (re)} is supported in at most one pointﬂ While for C' projective, (Be, d|5,)
is an elliptic pair in the sense of loc. cit. Then Theorem 3.3 in loc. cit. shows that
B, is an affine semigroup algebra. According to Example 5.1 in [Tim08§|, for any
r € Z>0, the fractional part {®,(re)} is supported in at most two point.

Given m € L, the derivation ¢,,x™0 on A with ¢,, as in Lemma (1) is
again locally nilpotent. Applying the previous analysis to this LND shows that, for
any r € Z>o, the fractional part {D,(r - (e+m))} is supported in at most one point
in the non-elliptic case and in at most two points in the elliptic case. By Lemma
(4) L and e span M. So the functions h.|, are integral except for at most one
value of z in the non-elliptic case and at most two values of z in the elliptic case.
Furthermore, in the elliptic case one of the two values of z € P! such that h, is not
integral corresponds to z = oo.

Without loss of generality, in both cases we may suppose that z = 0 is an
exceptional value in A!, provided there is one. In particular p, € N is a lattice
vector for any z € k*. Since any integral divisor on A! and any integral divisor of
degree 0 on P! are principal, Theorem shows that ©,, can always be chosen
so that p, = 0 Vz € k*. Now the result follows. ]

REMARK 2.3.22.

(1) By Examples [2.3.18 and [2.3.19] the previous lemma shows that A, is an affine
semigroup algebra, or equivalently, Spec A, is a toric variety.

(2) In the notation of Lemma let h(m) = (m,p). By virtue of Lemma
(1) and (2), L={m € M : h(m) € Z}.

REMARK 2.3.23. Whatever is an isomorphism A ~ A[C,®], the proof of the
previous lemma implies the following.

(1) If C = A! then all h,|, are linear and all but possibly one of them are integral.
(2) If C = P! then all but possibly one of h.|, are linear and all but possibly two of
them are integral.

3The classification results in [EZ05a] are stated for surfaces over the field C but they are valid
over any algebraically closed field of characteristic 0 with the same proofs.
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(3) By virtue of Theorem |1.5.15] we may suppose, in both cases, that h.[, = 0
Vz € k* and hgl, is linear.

The following lemma provides the main ingredient in our classification of the
homogeneous LNDs of horizontal type on A = A[C,D].

LEMMA 2.3.24. Let ® be a proper o-polyhedral divisor on C = A' or C = P!,
Let n be a mazimal cone in the quasifan A(D) or A(D]|a1), respectively, such that
h.ly =0 Vz € k*. Let O be the derivation of degree e given by formula @ Then 0
extends to a homogeneous LND on A = A[C,D)] if and only if, for every m € wys
such that m + e € wyy the following hold.

(7) If hy(m+e) #0, then |hy(m+e)| — |h(m)] > 1 Vz € k*.

(#i) If ho(m +e) # h(m + e), then |dho(m +e)] — [dho(m)| > 1+ dh(e).
(i4i) If C =PL, then |dhoo(m +€)] — |dhoo(m)] > —1 — dh(e).
Here h is the linear extension of hol, and d > 0 is the smallest integer such that dh
1s integral.

PROOF. Similarly as in Example h(m) = (m, p) for some p € Ng. Since
each h, is concave, h,(m) < 0 for z € k* and ho(m) < h(m). Letting Ay =
D.ne s emklt]x™, where o, = t~ MM (see Remark [2.3.20) we have A C Ay By
virtue of this remark 0 extends to a homogeneous LND on Ap;. We still denote
by O this extension. Thus 0 extends to a homogeneous LND on A if and only if 9
stabilizes A.

To show that O stabilizes A, let us start with the simplest case where h = 0.

Case h =0. In this case, Remark (3) shows that L = M, d = 1, and
r = —1, and so & = A\x®0;. Furthermore, h, < 0 Vz € Al and in the elliptic case
hoo = 0. For any m € wj; such that m + e € w)s, the conditions in the lemma can
be reduced to

(i") If hy(m +e) # 0, then |h,(m +e)| — |h,(m)] >1Vz € AL.
(iii') If C =Pl then |hoo(m +€)| — |hoo(m)] > —1 Ym € wyy.
In this case A, = H° (C,O(|D(m)])) C k[t] and O stabilizes A if and only if

F() € Am = /(1) € Amse Y € i,
or equivalently
div f+ [D(m)] > 0=div f' + |D(m+e)| >0,Ym € wyr,
or else
ord,(f) + [hz(m)] > 0= ord.(f) + |h.(m+e)] >0,YVm € wy and V2 € C. (7)

Next we show that (¢') and (ii¢") hold if and only if (7)) holds.

Let z € A! and let m € wyy such that m+-e € wyy. If ho(m+e) = 0 the condition
holds since f € k[t].

Assume h,(m+e) # 0. Since h, < 0 is concave, if h,(m) = 0 then h,(m+re) #0
Vr > 1 contradicting the fact that 0 is an LND. Hence we may assume that h,(m) # 0
so that f € (¢t — 2)k[t]. In this setting ord,(f’) = ord.(f) — 1 and so

ord; (f') + [h=(m + )] = ord.(f) + [h=(m)] + (Lhz(m +€)| = [he(m)] — 1) . (8)
Therefore (i') implies (7).
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To show the converse, let us suppose that ([7]) holds. Assuming that C'is affine, for

every m € wyy we consider ,, as in Lemma 6, Since by this lemma ord, (¢.,)+

|h.(m)] = 0, applying and to ., we obtain

ordz(em) + [hz(m)] + ([h=(m + €)] —|hz(m)] 1) =
[hz(m +e)] = [h(m)] =1 >0,

proving (i') when C is affine. If C is projective, then for any z € A! and any m € wyy
we can still find ¢, . € A, such that ord;(ym, ) + |h(m)] = 0. Thus again the
previous argument applies.

In the elliptic case, we let z = co and we fix m € wys. If f is constant, then
holds because hoo(m) > 0. Otherwise ordoo (f') = ordeo(f) + 1 and so

ordeo (f)+|hoo(m +€)| =
ordoo(f) + [hoo(m)]| + ([hoo(m +€)] — [hoo(m)] +1) . 9)

Therefore (i) implies (7).
To show the converse, we let as before ¢, o € Ay, be such that orde(¥m,00) +
|hoo(m)| = 0. Applying and (9) to ¢m, 0o We obtain

0rdog (Pm.co) + [hoo (M) | + ([hoo(m + €)| —[hoo(m)] +1) =
[hoo(m +€)] = [hoo(m)] +1 20,

proving (iit’).

Next we assume that h is integral.

Case h integral. In this case we still have d = 1. We recall that h(m) = (m, p).
Letting ®' = — (p+0) - [0] if C is affine and ®' =D — (p+0) - [0] + (p+ ) - [o0]
if C' is projective, by Theorem A ~ A[C,D’]. In this setting A[C,D] is as in
the previous case with h{ = ho — h, hl, = hoo + h and hl, = h, Vz € k*.

This consideration shows that 9 stabilizes A if and only if (i) and (i7i") hold for
h’,(m) Vz € C. For any z € k*, (i') is equivalent to (i) in the lemma. Since

[ho(m + €)] — [ho(m)] — 1 = [ho(m + €)] — [ho(m)] — 1 — h(e),

condition (i') for z = 0 is equivalent to (i).
Similarly, if C' is projective

[Pl (m +e)] = [hig(m)] +1 = [hoo(m + €)] = |hoo(m)] + 1 + h(e) ,

and so (i4i") is equivalent to (4i7).

Now we turn to the general case.

General case. We may assume that h is not integral i.e., d > 1. We consider
the normalization A" of A[&/@aex?], where pge = t~hde) 5o that A C A’ is a cyclic
extension. With the notation of Lemma we have A’ = A[C', D] and K|, =
K(C)[/Pacl-

By the minimality of d we deduce that ged(h(de),d) = 1 and so #/pge = t*b/4,
where ged(b,d) = 1. So k(C)" = k(s), where s¢ = t. Thus ¢’ ~ A! if A is non-
elliptic and C" ~ P! if A is elliptic. Let p: C' — C, 2/ — 2’4 = z be the projection
induced by the morphism k(C) — K}, t — t = s?. By Lemma we have

D =d-No- 0]+ Y A, Z i C=A"
2 ek*
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and
D' =d-No-[0]+d-Ax-[o0]+ D A2 if C=P.
z'ek*
So h{, = dhg, hly, = dheo and h’, = h,. Moreover hy|, is integral and A’ is as in the
previous case.
Recall that Ayr = B,,c s emK[t]x™, where ¢, = t=1Mm)] We define further

=P ¢Lklslx",  where ¢, = —s™0m).
meM
Since Apr € A’ is a cyclic extension, by Lemma 0: Ay — Ajg extends to a
homogeneous LND o' : A}, — A,

We claim that 9 stabilizes A if and only if @’ stabilizes A’. In fact the “only if”
direction is a consequence of Lemma If &' stabilizes A’ then 0'(A) = 9(A) C
Ay N A’ = A, proving the claim.

We let A/ be the linear extension of hg|,. Clearly A’ = dh. The previous case
shows that & stabilizes A’ if and only if, for any m € wys such that m + e € wyy,
the following conditions hold.

(") If h,(m +e€) #0, then |h.,(m +e)] — |, (m)| > 1V € k*.

(¢7") If hi(m +e) # h'(m+e), then |hy(m +e€)] — |hy(m)]| > 1+ K (e).

(iii") If C = P!, then |hL (m +e)| — |\ (m)] > —1 — B/ (e).

Replacing in (i”)-(i7") k' by dh, hjy by dho, hly, by dhs, and k!, by h. for z € k*,
shows that O stabilizes A if and only if (¢)-(i7i) of the lemma hold. Now the proof
is completed. O

REMARK 2.3.25. In the elliptic case, if e € 1y, then (7i7) in Lemma [2.3.24| holds.
In fact

|dhoo(m 4+ €) | — |dhoo(m)]| > dhoo(m 4+ €) — 1 — dhoo(m)
> dho(€) — 1> —dh(e) — 1.

In the following theorem we describe all the homogeneous LND of horizontal
type on a T-variety of complexity one. It is our main classification result which
summarizes the previous ones.

THEOREM 2.3.26. Let ® be a proper o-polyhedral divisor on C = A' or C = P!,
and let A = A[C,D]. Let n C Mg be a polyhedral cone, and e € M be a lattice
vector. Then there exists a homogeneous LND 0 : A — A of horizontal type with
deg 0 = e and n(0) = n if and only if the following conditions (i)-(v) hold.

(i) If C = Al, then 1 is a maximal cone in the quasifan A(D), and there exists

zp € C such that h|, is integral Vz € C'\ {20}.
(i') If C =P, then there exists zoo € P* such that (i) holds for Co := P!\ {25}
Without loss of generality, we may suppose that zg = 0, zoo = 00 in the elliptic case,
and h,(m)|, = 0 Vz € k*. Let h and d be as in Lemma (2.3.24), let my be as in

Ezample [2.5.18, and let L be as in Remark[2.5.29 (2).
(i1) The lattice vector (e,—5 — h(e)) belongs to S, as defined in ().
For any m € wyy such that m + e € wyy, the following hold.
(13i) If ho(m +e) # 0, then |h,(m+e)] — |hy(m)| > 1 Vz € k*.
() If ho(m + e) # h(m + e), then |dho(m + e)] — |dho(m)]| > 1+ dh(e).
(v) If C =P, then |dhoo(m +€)] — |dhoo(m)] > —1 — dh(e).
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Moreover,

ker 0 = @ komx™,

menL
where ©n, € A, satisfy the relation

div(em) +D(m) =0 if C=A" or div(em)lc, +D(m)|c, =0 if C =P,
PROOF. Let 0 be a homogeneous LND of horizontal type on A with degd = e

and n(0) = n. Lemma (3) and Remark show that (i) and (i) hold.
Lemma [2.3.21) and Examples [2.3.18] and [2.3.19| shows that (i7) holds. To conclude,
Lemma [2.3.24] shows that (7i7)-(v) hold.

To show the converse, assume that (i), (') and (ii)-(v) are fulfilled. By Theo-
rem [1.5.15] (i) and (i) imply that A, ~ A[C,D,] with D, as in Lemma [2.3.21] By
Examples [2.3.18| and [2.3.19| and Remark (2), (i7) shows that there exists a
homogeneous LND 0 : Ay; — Ajp; with degd = e. By Lemma and its proof,
(7i7)-(v) imply that O restricts to a homogeneous LND on A. Finally, by Lemma
(3), (i) and (¢") imply that n(9) = 7.

Moreover, Lemma (1) and (2) give the desired description of ker 0. O

COROLLARY 2.3.27. In the notation of Theorem A admits a homogeneous
LND 0 of horizontal type such that n(0) = n if and only if (i) and (i') in the theorem
hold.

PROOF. The only if part follows directly form Theorem

Assume that (i) and (i) hold. By Theorem and Examples and
we only need to show that there exists e € M such that (e, —% — h(e)) € S,
and (2i7)-(v) hold.

Let (¢/,r") € S, (by Remark this set is non-empty). By this remark
e =¢ +m Vm € ng is such that (e,7” — h(m)) € S,. In particular, we can assume
that e belongs to the relative interior of 7. In this setting, Remark shows that
(v) holds.

As in the proof of Lemma for every z € Al we let {0o ., -, 0, .} denote
the set of all maximal cones in A(h;) and g, ., r € {0,--- ,£,} be the linear extension
of hz\(;r’z to Mg. We assume further that n C dp . Vz € Al

Since the functions h, are concave, the inequalities in (¢7¢) and (iv) hold if they
hold in every maximal cone on A(h;) except o, i.e.,

(i17") |gr-(m+e)] — |g-(m)] > 1Vzek*, Vre{l,---,£,} and Vm € 6, , N M.
(iv") |dgro(m+e)| —|dgro(m)| > 14+dh(e) Vr € {1,--- Lo} and Vm € §, N M.

These inequalities are fulfilled if the following hold

{gr,z(e) >1Vzekand Vr € {1,---,£,}, and (10

gro(e) > Ly The)] vre{l, -, 4},

Since e belongs to the relative interior of 7, we have g, .(e) > go.(e) Vz € Al
go,o(e) = h(e), and go . = 0 Vz € k*. By the linearity of the functions g, . we can
choose e such that holds, proving the corollary. O

COROLLARY 2.3.28. In the notation on Theorem two homogeneous LND
0 and &' of horizontal type on A are equivalent if and only if n(9) = n(d") and, in
the elliptic case, 250(0) = 200 ().
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PrROOF. Indeed, the description of ker d given in Theorem [2.3.26] depends only
on 7 in the non-elliptic case and on 7 and zo, € C' in the elliptic one. 0

COROLLARY 2.3.29. The number of pairwise non-equivalent homogeneous LNDs
of horizontal type on A = A[C,D] is finite except in the case where A is elliptic
and there exists a mazimal cone n of A(D) such that all but possibly one h.|, are
integral.

PROOF. Since A(D) has only a finite number of maximal cones, Corollary
gives the result in the case where A is non-elliptic. Furthermore, in the elliptic case
by this corollary there is an infinite number of pairwise non-equivalent LNDs on A
if and only if in Theorem (i') we can choose zs, € P! arbitrarily. However the
latter is indeed possible under the assumptions of the corollary. O

EXAMPLE 2.3.30. A combinatorial description of k[ = k[x, y] with the grading
induced by degx = degy = 1 is given by the proper o-polyhedral divisor ® =
(1+ o) -[0] on P!, where 0 = Q>0 C Ng ~ Q. By Corollary there exist an
infinite number of pairwise non-equivalent LNDs on k[ homogeneous with respect
to the given grading. Indeed, the derivations on the family

0 0

are homogeneous and pairwise non-equivalent for different values of A.

In contrast, a combinatorial description of k2 with the grading induced by
degx = —degy = 1 is given by the proper o-polyhedral divisor ® = [0, 1] - [0] on
Al. By Corollary there exist a finite number of pairwise non-equivalent LNDs
homogeneous with respect to this grading. Indeed, by Corollary the only such
LNDs are the partial derivatives.

In the following example we study the existence of homogeneous LNDs on the
M-graded algebra A of Example [1.5.11

EXAMPLE 2.3.31. Let the notation be as in Example Since ¢ = {0},
Lemma [2.3.7] shows that there is no homogeneous LND of fiber type on A. In
contrast, let us show that there exist exactly 4 pairwise non-equivalent homogeneous
LNDs on A.

Indeed, since hg is the only support function which is non-integral Corollaries
[2.3.27 and [2.3.28] show that there are four non-equivalent homogeneous LNDs of
horizontal type on A corresponding to the four maximal cones in A(D),

01 = cone((1,0),(—4,1)), 2 = cone((—4,1),(—1,0)),
03 = cone((—1,0),(8,—1)), 04 = cone((8,—-1),(1,0)).
For the cones §; and d2 the hypothesis of Lemma are fulfilled i.e., h.|s;, = 0
Vz € k* for i = 1,2. Moreover, e; = (—3,1) and e3 = (—8,1) satisfy conditions
(7)-(7i7) in this lemma for ¢; and da, respectively.
We let 91 and 95 be the respective LNDs defined in @ Letting m = (my, mg) €
M, by a routine calculation we obtain

o (X)) = (r— ym1 —my) - YT, and Do (™) =1 - X"Te2t"
Furthermore, under the isomorphism in Example [1.5.11} 0; and 02 can be
extended to k¥ = k[x1, 2o, 23, 24] as LNDs
1 0 0 0
and Dy = 23— — (2125 + 1) =——

O = —~r3— + airh— .
! 41:3 (9.%'2 + 12 8$4 8.%'1 8$4
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To obtain the derivations corresponding to d3 and d4 we let C" = Spec k]s], A} =
{0} x [-1,0], and ®" = Ag - [0] + A] - [1]. Theorem [1.5.15shows that A ~ A[C',D].

Under this new combinatorial description we have
Uy = _SX(470)7 U2 = X(iLO)? uz = (1 - S)X(74’1)7 and Uq = SX(&il) .

Now the assumptions of Lemma are satisfied for d3 and d,. Moreover, e3 =
(4,—1) and eq = (9,—1) satisfy conditions (7)-(#i7) in this lemma for J3 and dq,
respectively.

We let 05 and 94 be the respective LNDs defined by (@ By a simple computation
we obtain

83 (Xmsr) — (T + m2) . Xm—l—easr’ and 84(Xm5r) — (7‘ _ %ml _ m2) . Xm+e457’+1 )

Furthermore, under the isomorphism 03 and J4 are induced by the LNDs

R 9 19 5,40
63 = 1174873:1 + (21‘1552 + 1)61‘3 and 84 Z$4a 2 xleTxB

on k4,

2.3.3. The surface case. A description of C*-surfaces was given in [FZ03| in
terms of the DPD (Dolgachev-Pinkham-Demazure) presentation. In [FZ05a] this de-
scription was applied to classify the homogeneous LNDs on normal affine C*-surfaces
(of both horizontal and fiber type). Here we relate both descriptions. Besides, we
stress the difference that appears in higher dimensions.

In the case of dimension 2 the lattice N has rank 1, which makes things quite
explicit (cf. e.g., [Siis08]).

We treat the elliptic case first. In this case o is of full dimension, and so we
can assume that 0 = Q9 € Ng = Q. Let A = A[C,D], where D is a proper
o-polyhedral divisor on a smooth projective curve C. In this setting, © is uniquely
determined by the Q-divisor ®(1) on C. Here (C,®(1)) coincides with the DPD
presentation data. Since the only ray of o is o itself and deg® is o-tailed, by
Corollary there is no homogeneous LND of fiber type on A.

Furthermore, if there is a homogeneous LND 0 of horizontal type on A, then
n(0) = w, and so by Remark (1) A= A, is an affine semigroup algebra i.e.,
Spec A is an affine toric surface. This corresponds to Theorem 3.3 in loc. cit.

Next we consider a non-elliptic algebra A so that C' is an affine curve. In loc.cit.
this case is further divided into two subcases, the parabolic one which corresponds
to 0 = Qx¢, and the hyperbolic one which corresponds to o = {0}.

In the parabolic case, the DPD presentation data is the same as in the elliptic
one. In this case there is again just one ray p = o and S, = {—1}. Moreover, since
the support functions h, are positively homogeneous on w = Q>o, they are linear
and so D_; = D(1) (see Lemma [2.3.3). By Theorem [2.3.8] the homogeneous LNDs

of fiber type on A are in one to one correspondence with the rational functions
p € H(C,0c(|-2(1)])).

This corresponds to Theorem 3.12 in loc. cit.

If a graded parabolic 2-dimensional algebra A admits a homogeneous LND of
horizontal type, then Spec A is a toric variety by the same argument as in the elliptic
case. This yields Theorem 3.16 and Corollary 3.19 in loc. cit.

In the hyperbolic case the o-polyhedral divisor ® is uniquely determined by
the pair of Q-divisors (D(1),D(—1)) which correspond to the pair (D, D_) in the
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DPD presentation data. Since ® is a proper polyhedral divisor, this pair satisfies
(1) +D(—1) < 0. In this case, by Lemma there is no homogeneous LND of
fiber type on A since 0 = {0}. This corresponds to Lemma 3.20 in loc. cit.

The homogeneous LNDs of horizontal type are classified in Theorem
above. Specializing this classification to dimension 2 gives Theorem 3.22 in loc.
cit. More precisely, conditions (7) and (ii) of lead to (i) of Theorem 3.22 in
loc. cit. while (i77) and (iv) in lead to (i¢) in Theorem 3.22 in loc. cit.

In contrast, in dimension 3 a new phenomena appear. For instance, there exist
non-toric threefolds with an elliptic T-action and a homogeneous LND of horizontal
or fiber type, see Section [3.3.1] for an example of fiber type. With the notation as
in Section E considering C' = P* and © = JA - [0] + 3A - [1] + A’ - [oc], where
A"=0on{{(1,1),-) > 1} C Ng gives a non-toric example with 2 equivalence classes
of homogeneous LNDs of fiber type and 4 equivalence classes of homogeneous LNDs
of horizontal type.

2.4. Compatible G,-actions of fiber type in arbitrary complexity

In this section we give a complete classification of compatible G,-actions on
T-varieties over an algebraically closed field k of characteristic 0.

One of the main results applied in the classification of G,-actions of fiber type in
complexity one is m (77) that allows to extend an LND of fiber type to a semigroup
algebra over the field of T-invariant rational functions. The same result will allows
us to obtain a classification in the more general case of arbitrary complexity.

We fix a smooth semiprojective variety Y and a proper o-polyhedral divisor

QZZAZ-Z on Y.
z

Letting k(Y) be the field of rational functions on Y and w = ¢, we consider the
affine variety X = Spec A, where

A=Ay, D= @ Anx™, with A, =H"(Y,0(D(m))) Ck(Y).

We denote by hz the support function of Az so that
D(m) = th(m) -Z, forall mewy.
Z

We also fix a homogeneous LND 9 of fiber type on A, and we let A = k(Y)[wa/]
be the affine semigroup algebra of wyy over k(Y). By Lemma [2.1.9 (ii) 0 can be
extended to a homogeneous locally nilpotent k(Y')-derivation d on A.

If o has no ray i.e., ¢ = {0}, then & = 0 by Theorem [2.2] and so 0 is trivial. In
the sequel we assume that ¢ has at least one ray, say p. Let 7 be its dual facet, and
let S, be as defined in Definition [2.2.3]

DEFINITION 2.4.1. Similarly to Lemma for any e € S,, we let D, be the
Q-divisor on Y defined by

D, := max (hz(m)—hz(m+e))- Z.
7 mEWAI\TJW
REMARK 2.4.2. For every prime divisor Z on Y, we let {d1 z,---, 0, z} be the

set of all maximal cones in A(hz), where the facet 7 is contained in §; z. We also let
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grz, T €{1,--- £z} be the linear extension of hz|s, , to Mg. The same argument
as in Remark 2.3.4] shows that

D, = —Zgl’z(e)-Z.
Z

The proofs of Lemma [2.4.3] Theorem [2.4.4] and Corollary are analogous
to the corresponding results in Section [2.3.1]

LEMMA 2.4.3. For any e € S, we define ®. = H(Y,Oy(=D,)). If ¢ € k(Y)
then ¢ € @, if and only if 0Am C Apmte for any m € wyr \ Tar-

The following theorem gives a classification of LNDs of fiber type on normal affine
T-varieties analogous to Lemma and Theorem We let & = @, \ {0}.

THEOREM 2.4.4. To any triple (p,e, ), where p is a ray of o, e € S,, and
@ € ®F, we can associate a homogeneous LND 0, .., of fiber type on A = A[Y, D] of

e’
degree e with kernel

ker O ¢ , = @ Apx™.
meTN
Conwversely, every non-trivial homogeneous LND O of fiber type on A is of the
form 0 = 0, for some ray p C o, some lattice vector e € S,, and some function
p € ®F.

COROLLARY 2.4.5. Let as before O be a homogeneous LND of fiber type on A =
AlY, D], and let fx™ € A\ ker @ be a homogeneous element. Then O is completely
determined by the image gx™ ¢ := O(fX™) € ApmreX™ .

It might happen that ®} as above is empty. Given a ray p C o, in the following
theorem we give a criterion for the existence of e € S, such that ® is non-empty. The
proof depends on the geometry of the variety Y and so it is not a direct generalization
of the analogous result in Section [2.3.1

THEOREM 2.4.6. Let A = A[Y, D], and let p C o be the ray dual to a facet T C w.
Then there exists e € S, such that dim ®. is positive if and only if the divisor D (m)
is big for all lattice vectors m € rel.int(T).

PROOF. Let the notation be as in Remark Assuming that ©(m) is big for
all lattice vector m € rel.int(7), we consider the linear map

G: Mg — Divg(Y), m— Y g1z(m)-Z,
Z

so that G(m) = ©(m) for all m € 7 and D, = —G(e) for all e € S,. Choosing
m € rel.int(7) N (S, + ) and r € Zo, we let j = m — 1 - u. We consider the divisor

G(j) = G(m) = - G(p) =D(m) — v - G(p) .

s s

Since ©(m) is big and the big cone is open in Divg(Y") (see [Laz04, Def. 2.2.25]),
by choosing r big enough, we may assume that G(j) is big. Furthermore, possible
increasing r, we may assume that G(r - j) has a section. Now,

rej=r-m—pu=(r—1)-m+(m—u).

Since (r—1)-m ey and m—pu € S,, we have r- j € S,. Lettinge =1r-j € S, we
obtain D, = —G(e) and so dim H°(Y, Oy (— D)) is positive.
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Assume now that there is m € rel.int(7) such that ©(m) is not big. Since the
set of big divisors is and open and convex subset in Divg(Y'), the divisor ©(m) is
not big whatever is m € 7. We let B be the algebra

B = EB Apx™.
meTN
Under our assumption dim B < n+ k — 1. Since dim A = n + k, by Lemma (1)
B cannot be the kernel of an LND on A. The latter implies, by Theorem that
there is no e € S, such that dim ®, is positive. O

Finally, we deduce the following corollary.

COROLLARY 2.4.7. Two homogeneous LNDs of fiber type O = Op¢,, and 0’ =
Op et on A = A[Y, D] are equivalent if and only if p = p'. Furthermore, the
equivalence classes of homogeneous LNDs of fiber type on A are in one to one cor-
respondence with the rays p C o such that ©(m) is big Ym € rel.int(7), where T is
the facet dual to p.

PROOF. The first assertion follows from the description of ker 9, ¢ ,, in Lemmal[2.4.4}
The second follows from the first one due to Theorem [2.4.0l O

2.5. Finitely generated rings of invariants

The generalized Hilbert’s fourteenth problem can be formulated as follows.

Let k C L C K be field extensions, and let A C K be a finitely generated
k-algebra. Is it true that the k-algebra AN L is also finitely generated?

In the case where K = Frac A and Spec A has a Gy-action, we consider L = KC»
so that AN L is the subring of invariants of the G,-action. So A N L = ker 0, where
0 is the associated LND on A. In this case the answer is known to be negative even
for the polynomial rings in n > 5 variables.

Explicit counterexamples can be found in [Rob90], [Ere00] and [DF99] (see also
[Ere06, Chapter 7]). For instance, Daigle and Freudenburg showed in [DF99] that
ker 0 is not finitely generated for the LND

0x9 Oxs 0xy Oxs
on kbl = k[z1,...,2s5]. Furthermore it is easy to see that 0 is homogeneous of degree

(—1,1) under the effective Z2-grading on k° given by
degzy = (1,0), degzo=(2,1), degzs=(1,2),
degxy = (0,3), degzs=(1,1).
The corresponding T-action on A® is of complexity 3. In the following example, we
describe the T-variety A’ with the given action of T in terms of the Altmann-Hausen

description. The combinatorial description (Y,®) below was obtained by a routine
application of the method in [AHO6l Section 11].

EXAMPLE 2.5.1. Let N be a lattice of rank 3 and fix an isomorphism N ~ 73.
We let ¥ C Ng be the complete fan having the following six rays

p1 = cone(1,0,0), p2 = cone(0,1,0), p3 = cone(0,0,1),
ps = cone(—1,—2,-3), ps =cone(—1,1,3), and pg= cone(0,1,3),



2.5. FINITELY GENERATED RINGS OF INVARIANTS 73

and the following 8 maximal cones
01 = COHe(PlaPSaﬁM)a 02 = Cone(p27p4ap5)7 03 = Cone(p3ap5ap6)7

o4 = cone(py, p2, P4), 05 = CODG(Pl,szpG% 06 = COﬂe(Pb 3, P6),

o7 = cone(pa, ps5, p6), and oy = cone(ps, pa, P5) -

We consider now a lattice N of rank 2 and a fixed isomorphism N ~ Z2. Letting
o = cone((1,0),(0,1)) be the first quadrant of Ng we define the o-polyhedra

As = conv ((0,0),(2/3,—1/3)) + 0, As4=(0,1)+ 0,
As = conv((0,0),(1,-1)) +0, and Ag=conv((0,1),(1,-1))+o.

Let T be the torus corresponding to the lattice M = Hom(N,Z), Y be the toric
variety corresponding to the fan ¥ with maximal torus 'ﬁ', and D; be the T-invariant
prime divisor on Y corresponding to the ray p;, ¢ = 1,---,6. We consider the
o-polyhedral divisor on Y

D=A4-Dy+ As- D5+ Ag - Dg.

Letting T be the torus corresponding to the lattice M = Hom(N,Z), the T-
variety X[Y,®] corresponds to A® with the grading given in the counterexample due
to Daigle and Freudenburg above.

On the other hand, for T-actions of complexity 0, 1, or for LNDs of fiber type
we have the following result.

THEOREM 2.5.2. Let A be a normal finitely generated effectively M -graded alge-
bra, where M is a lattice of finite rank, and let O be a homogeneous LND on A. If
the complexity of the corresponding T-action on Spec A is 0 or 1, or the LND 0 is
of fiber type, then ker 0 is finitely generated.

PRrROOF. If the complexity is 0, then by Lemma and Theorem ker 0
is an affine semigroup algebra, and so it is finitely generated.

If the complexity is 1 and O is of horizontal type, then Corollary shows
again that ker 9 is an affine semigroup algebra.

In the case of arbitrary complexity and 0 of fiber type, we let A = A[C, D], where
® is a proper o-polyhedral divisor on a semiprojective variety Y. In the notation of
Theorem we have 0 = )¢, where p C o is a ray. Letting 7 C w be the facet
dual to p, Theorem shows that ker 0 = @,,c,,, AmX™-

Let a1,...,a, be a set of homogeneous generators of A. Without loss of gen-
erality, we assume further that dega; € 7ps if and only if 1 < i < s < r. We
claim that ai,...,as generate ker 0. Indeed, let P be any polynomial such that

P(ay,...,a;) € kerd. Since 7 C w is a face, Y m; € 7y for m; € wys implies
that m; € 7 Vi. Hence all the monomials composing P(ay,...,a,) are monomials in
ai,...,as, proving the claim. ]

REMARK 2.5.3. In the particular case where Spec A is rational, Theorem
is a consequence of the following theorem [Kur03].

THEOREM 2.5.4. Let X = Spec A be a T-variety, 0 be a homogeneous LND on
A, and 0 be the extension of O to a derivation on K = FracA. If kerd N KT
is a purely transcendental extension of k of degree at most 1, then ker 0 is finitely
generated.
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In the following corollary we apply Theorem to prove that the ring of
invariants of any compatible G,-action on a rational T-variety of complexity two is
finitely generated.

COROLLARY 2.5.5. Let X = Spec A be a normal rational affine T-variety of
complexity two. If O is a homogeneous LND on A, then ker 0 is finitely generated.

PROOF. If 9 is of fiber type, then by Theorem ker 9 is finitely generated.
In the case where 0 is of horizontal type, we denote by @' the extension of 9 to
the field of rational functions K = Frac A. By Liiroth’s Theorem ker & N K7 is a
purely transcendental extension of k of degree 1. Hence ker 0 is finitely generated
by Theorem [2.5.4] g

REMARK 2.5.6. To our best knowledge it is unknown whether Corollary
holds without the rationality hypothesis.



CHAPTER 3

The Makar-Limanov invariant

The Makar-Limanov invariant [KML97] (ML for short) is an important tool
which allows, in particular, to distinguish certain varieties from the affine space. In
this chapter, we consider a homogeneous version of the ML invariant.

For toric varieties and T-varieties of complexity one we give an explicit expression
of the latter invariant in terms of the classification developed in Chapter 2] The
triviality of the homogeneous ML invariant implies that of the usual one. As an
application we show a first example of a non-rational affine variety having a trivial
ML invariant. This is a mayor shortcoming for the ML invariant.

Furthermore, we establish a birational characterization of affine varieties with
trivial ML invariant and propose a field version of the ML invariant called the FML
invariant. We conjecture that the triviality of the FML invariant implies rationality.
We confirm this conjecture in dimension at most 3.

3.1. The homogeneous Makar-Limanov invariant

In this section we introduce the ML invariant and its homogeneous version, and
show that there is a significant difference between these two invariants.

DEFINITION 3.1.1. Let X = Spec A be a normal affine variety, and let LND(A)
be the set of all LNDs on A. The Makar-Limanov invariant of A (or, equivalently,
of X)) is defined as

ML(X) =ML(4)= () kerd.
OELND(A)

Similarly, if A is effectively M-graded we let LNDy(A) be the set of all homo-
geneous LNDs on A, LNDgp(A) be the set of all homogeneous LNDs of fiber type
on A, and LNDy,,(A) be the set of all homogeneous LNDs of horizontal type on A.
We define

MLy(X) =MLy(4) = (] kerd
HELNDy, (A)
the homogeneous Makar-Limanov invariant of A. We also let
MLgp(A) = ()  kerd, and MLye(4)= [)  kerd.
HELNDg, (A) OELNDop (A)

Clearly,
ML(A) € ML,(A) € MLgp(A), and MLy(A) = ML, (A) N MLgp(A) . (11)
REMARK 3.1.2.

(i) Let X = Spec A be an affine variety. Taking the kernel ker 9 on an LND 0 on A
is the same as taking the ring of invariants H°(X, Ox )% by the corresponding
Ga-action, see Remark Therefore, the above invariants can be expressed
in terms of the G,-actions on X.

75
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(74) Since two equivalent LNDs (see Definition [2.1.5) have the same kernel, to
compute ML(A) or MLy (A) it is sufficient to consider pairwise non-equivalent
LNDs on A.

Now, we provide examples showing that, in general, the inclusions in ([11)) are
strict and so, the homogeneous LNDs are not enough to compute the ML invariant.

ExamMPLE 3.1.3. Let A = k|z,y| with the grading given by degax = 0 and
degy = 1. In this case, both partial derivatives 0, = 0/0x and 0, = 0/0y are
homogeneous. Since ker 9, = k[y] and ker 9, = k[z] we have ML}, = k. Furthermore,
it is easy to see that there is only one equivalence class of LNDs of fiber type. A
representative of this class is 9, (see Corollary [2.3.10). This yields MLg,(A) = k[z].
Thus ML}, (A) € MLgp(A) in this case.

EXAMPLE 3.1.4. To provide an example where ML(A) € MLy (A) we consider
the Koras-Russell threefold X = Spec A, where

A=Kz, y, 2,1/ (x + 2%y + 22 + 7).

The ML invariant was first introduced in [KML97] to prove that X ¢ A3. In fact
ML(A) = k[z] while ML(A%) = k [ML96]. In the recent paper [Dub09] Dubouloz
shows that the cylinder over the Koras-Russell threefold has trivial ML invariant
i.e., ML(A[w]) = k, where w is a new variable.

Let AJw] be graded by deg A = 0 and degw = 1, and let 0 be a homogeneous
LND on A[w]. If e := degd < —1 then J(A) = 0 and by Lemma [2.1.4] (i) we have
that ker = A and 9 is equivalent to the partial derivative 9/0w.

If e > 0 then d(w) = aw®*!, where a € A and so, by Lemma (vi) w € ker 0.
Furthermore, for any a € A we have d(a) = bw®, for a unique b € A. We define a
derivation 0 : A — A by 9(a) = b. Since 9"(a) = 9"(a)w"® the derivation d is LND.
This yields MLy (A[w]) = ML(A) = k[z| while ML(A[w]) = k.

REMARK 3.1.5. In Example the T-action on X x Al is of complexity three.
On the contrary, in Section [3.2] we show that if X is a normal affine T-variety of
complexity zero i.e., a toric variety, then ML(X) = ML (X).

To our best knowledge, it is unknown if the equality ML(X) = MLy (X) holds
in complexity one or two. Nevertheless, Theorem 4.5 in [FZ05a] shows that it does
hold for k*-surfaces.

In the following two sections we apply the results in Section and in order
to compute MLy (A) in the case where the complexity of the T-action on Spec A
is 0 or 1. We also give some partial results for the usual invariant ML(A) in this
particular case.

3.2. ML-invariant of toric varieties

We treat now the case of affine toric varieties. Let 0 C Ng be a pointed polyhe-
dral cone and w C Mg be its dual cone.

PROPOSITION 3.2.1. Let A = k|wyy| be an affine semigroup algebra so that X =
Spec A is a toric variety. Then

ML(A) = ML (A) = k[0n],
where § C Mg is the mazimal subspace contained in w. In particular ML(A) =k if

and only if o is of complete dimension i.e., if and only if there is no torus factor in
X.
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Proor. By Corollary and Theorem the pairwise non-equivalent
homogeneous LNDs on A are in one to one correspondence with the rays of o. For
any ray p C 0 and any e € S, as in Lemma the kernel of the corresponding
homogeneous LND is ker d, . = k[rps], where 7 C w is the facet dual to p.

Since § C w is the intersection of all facets, we have MLy(A) = k[fy]. Fur-
thermore, the characters in k[fy;] € A are invertible functions on A and so, by
Lemma [2.1.4] (iii), O(k[0as]) = 0 VO € LND(A). Hence k[f] € ML(A), proving the

lemma. O

3.3. ML-invariant of T-varieties of complexity one

In this section we give a combinatorial description of the homogeneous ML in-
variant of T-varieties of complexity one in terms of the Altmann-Hausen description.
Let A = A[C,D], where © is a proper o-polyhedral divisor on a smooth curve C.

We first compute MLgp(A). If A is non-elliptic (elliptic, respectively) we let {p;}
be the set of all rays of w (of all rays of w such that pNdeg® = (), respectively). In
both cases we let 7; C Mg denote the facet dual to p; and 0 = (7.

LEMMA 3.3.1. With the notation as abowve,
MLy (4) = @ Anx™.

mebns
PRrooF. By Corollary for every ray p; there is a homogeneous LND 9; of
fiber type with kernel
ker 0; = @ AmXx™ .
meT;NM
By Corollary any homogeneous LND of fiber type on A is equivalent to one

of the 0;. Finally, taking the intersection (), ker 0; gives the desired description of
MLg,(A). d

REMARK 3.3.2. If A is non-elliptic, then § C Mg is the maximal subspace
contained in w. In particular, if A is parabolic then § = {0} and MLg,(A) = Ay,
and if A is hyperbolic then § = Mg and MLg,(A) = A.

If there is no LND of horizontal type on A, then MLy, (A) = A and MLy, (A4) =
MLgp(A). In the sequel we assume that A admits a homogeneous LND of horizontal
type.

If A is non-elliptic, we let {0;} be the set of all cones in Mg satisfying (i) in
Theorem and 6 = ), d;. If A is elliptic, we let {; .} be the set of all cones in
Mg satistying (i') in Theorem with 2o = 2, B = {m € w : hgeg» = 0}, and
6= mi,z (51"2 N B.

LEMMA 3.3.3. With the notation as before, if O is a homogeneous LND on A of
horizontal type, then

MLhor(A) = @ kSOmea

medy,
where L = L(9) and pm, € Ay, satisfy the relation div(em,) + D (m) = 0.
PrROOF. We treat first the non-elliptic case. By Corollary [2.3.27] for every ¢;
there is a homogeneous LND 0; of horizontal type with kernel

ker 9; = @ ko, x™,

med;NL;
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where L; = L(0;) and ¢, € Ay, is such that div(p,,) + D (m) = 0. By Corollary
any homogeneous LND of horizontal type on A is equivalent to one of the 0.
Taking the intersection of all ker 9; gives the lemma in this case.

Let further A be elliptic, and let 0 be a homogeneous LND of horizontal type
on A. Let 29, 200 € P1, and 1 and L be as in Theorem so that

ker 0 = @ kpmx™,
mengL

where @, € A,, satisfies

div(om)|p1\(zo0) + D (M) [p1\ {2y = 0.
By permuting the roles of zp and 2. in Theorem [2.3.26] we obtain another LND
0" on A. The description of ker @ and ker @’ shows that

ker & Nker & = @ kox™,
n,NB

where @, € A,, is such that div(¢,,) +D(m) = 0.
Now the lemma follows by an argument similar to that in the non-elliptic case.
O

THEOREM 3.3.4. In the notation of Lemmas|5.5.1 and|3.5.5, if there is no ho-
mogeneous LND of horizontal type on A, then

MLy (A) = @ Amx™.

mebdys

If 0 is a homogeneous LND of horizontal type on A, then

MLy (A) = @ komx™,

medNdy,
where L = L(9) and ¢, € Ay, is such that div(p,,) + D (m) = 0.

PROOF. The assertions follow immediately by virtue of and Lemmas
and B.3.3 O

In the following corollary we give a criterion of triviality of the homogeneous
Makar-Limanov invariant MLy (A).

COROLLARY 3.3.5. With the notation as above, MLy (A) = k if and only if one
of the following conditions hold.

(1) A is elliptic, rank(M) > 2, and deg® does not intersect any of the rays of the
cone w.
(ii) A admits a homogeneous LND of horizontal type and 6§ N6 = {0}.

In particular, in both cases ML(A) = k.

PROOF. By Lemma [3.3.1] (¢) holds if and only if MLy, (A) = k. By Theorem
3.3.4) (i7) holds if and only if there is a homogeneous LND of horizontal type and
MLy (A) = k. O

REMARK 3.3.6. It easily seen that MLy (A) =k for A as in Example [2.3.31
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3.3.1. A non-rational threefold with trivial Makar-Limanov invariant.
To exhibit such an example, we let o be a pointed polyhedral cone in Mg, where
rank(M) =n > 2. We let as before A = A[C, D], where D is a proper o-polyhedral
divisor on a smooth curve C. By Remark (731), Frac A = k(C)(M) and so
X = Spec A is birational to C' x P™.

By Corollary if A is non-elliptic and ML(A) = k, then A admits a ho-
mogeneous LND of horizontal type. So C ~ A! and X is rational. On the other
hand, if A is elliptic Corollary () is independent of the curve C. So if (i) is
fulfilled, then ML(A) = k while X is birational to C' x P". This leads to the following
proposition.

PROPOSITION 3.3.7. Let A = A[C, D], where ® is a proper o-polyhedral divisor
on a smooth projective curve C of positive genus. Suppose further that deg® is
contained in the relative interior of o. Then ML(A) = k whereas Spec A is non-
rational.

REMARK 3.3.8. It is evident that X in Proposition [3.3.7] is in fact stably non-
rational i.e., X x P’ is non-rational for all £ > 0, cf. [Pop10, Example 1.22].

In the remaining of this section we give a concrete geometric example illustrating
this proposition.

EXAMPLE 3.3.9. Letting N = Z? and M = Z? with the canonical bases and
duality, we let 0 C Ng be the first quadrant, A = (1,1) + o, and h = ha so that
h(ml, mg) =mi+ mo.

Furthermore, we let A = A[C, D], where C' C P? is the elliptic curve with affine
equation s —t3 4+t =0, and ® = A- P is the proper o-polyhedral divisor on C' with
P being the point at infinity of C.

Since C' % P! and deg® = A, A satisfies the assumptions of Corollary
Letting k(C) be the function field of C', by Theorem we obtain

A(m17m2) = HO(Cv O((ml + mQ)P)) - k(C) :

The functions ¢, s € k(C') are regular in the affine part of C', and have poles of or-
der 2 and 3 on P, respectively. By the Riemann-Roch theorem dim H°(C, O(rP)) =
r Vr > 0. Hence the functions {t*,#/s : 2i < r and 2j + 3 < r} form a basis of
H°(C,0(rP)) (see [Har77] Chapter IV, Proposition 4.6).

In this setting the first gradded pieces are the k-modules

A0 = A0 = A1) =k,

Aoy =Aan = Az =ktkt,
A(370) = A(le) = A(172) = A(073) =k + kt + ks,
A(470) = A(371) = A(Q’Q) = A(1’3) = A(OA) =k + kt + kt2 + ks.
It is easy to see that A admits the following set of generators.
Uy = X(LO)a U2 = X(Ojl)) us = tX(ZO)? Ug = tX(Ll)? Us = tX(
0,3)

0,2)
Ug = SX(3,0)7 Uy = SX(2’1)7 ug = SX(LQ)? ug = SX(

So A ~ kI9/I where kI¥ = Kk[x1,...,29], and I is the ideal of relations of u;
(i = 1...9). Using a software for elimination theory it is possible to show that
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following list is a minimal set of generators of I.

ToTy — XT1T5, —mi+x3x5, XXy — T1X4, —X5%8 + T4X9,
—T5%7 + X428, —T5Te +XTaX7, —T4T8 + T3X9, —T4T7 + 2378,
—X4Te + X327, XXy — T1T9, —CC% + z7x9, —x7x8 + T,
ToT7 — XT1X8, —JJ%—i—x@xg, X9 Tg — T1 X7, —a:%:m—x%—i—a:é,
—x1x§$5—m4$§+x8x9, —x%x%xg, —:L‘gzng+:z:7x9,
—x§x2x5—x3x4x5 + zg g, —w%% —m§x5 + xrg 8,
—x‘fu—x%:m + xe 27, —x‘llxg —x§+x%.

Furthermore, A, C k[s,t]/(s?> — 3 +t) Vm € wy since D is supported at the
point at infinity P. The semigroup wys is spanned by (1,0) and (0,1), so letting
(1.9 and w = x(©1) we obtain

A =Xkv,w, tv?, tow, tw?, sv3, sv*w, svw?, sw®] C ks, t,v,w]/(s* — 3 +1).

Thus Spec A is birationally dominated by Co x A%, where Cy = C'\ {P}.

Since C' % P!, by Lemma there is no homogeneous LND of horizontal
type on A. There are two rays p; C o spanned by the vectors (1,0) and (0, 1). Since
deg® = A is contained in the relative interior of o, Corollaries [2.3.10] and [2.3.12]
imply that there are exactly 2 pairwise non-equivalent homogeneous LNDs 0; of fiber
type which correspond to the rays p;, i = 1,2, respectively.

The facet 71 dual to p; is spanned by (0, 1) and, in the notation of Lemmam
S, ={(—=1,r) | r > 0}. Letting e; = (—1,1) yields D, = 0 and so ®., = k. We fix
p1 =1 ¢€ ®.,. By the same lemma we can chose 01 = 0, ¢;,, as

V=X

o (X(ml’m2)> =my - x ™MD forall  (my,me) € o))

Likewise, the facet 7o dual to ps is spanned by (1,0) and, in the notation of
Lemma Sp, = {(r,—1) : 7 > 0}. Letting eo = (1,—1) yields D, = 0 and so
®., = k. We fix o3 =1 € &,,. By Lemma we can chose 0y = 0y, ey, aS

Oy <X(m17m2)> =mgy - X(m1+17m2_1), for all  (mq,m2) € o).
The kernels of 91 and 0 are given by
ker 0 = @ Apx™ and kerds = @ Amx™
merNM mersNM
Since 11 N2 = {0} we have
ML(A) = ker Nker 02 = A ) = k.

This agrees with Corollary
The LNDs 9; are induced, under the isomorphism A ~ k! /I, by the following
LNDs on k[I:

0 T + 2z 9 +x 9 + 3z 9 + 2z 9 +x 9
1 =225 — 92, 45— 923 55— 921 Ta Dz 87— D 95— D5’
and B b B b )
82—$1a +$3a +2x4a —|—ﬂ?6a +2:C73 +3x88$9
respectively.

We let below X = Spec A, and we let 7w : X --» C be the rational quotient for
the T-action on X. The comorphism of 7 is given by the inclusion 7* : k(C) —
Frac A = k(C)(u1,u2).
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The orbit closure © = 7=1(0,0) over (0,0) € C is general and it is isomorphic
to A% = Spec k[z1, 22]. The restrictions to © of the G,-actions ¢; corresponding to
0;, 1 = 1,2, respectively are given by

¢1|@ : (t, (1'1,1'2)) — (331 + tl‘g,l‘g) and (ﬁg‘@ : (t, (1’1,1‘2)) — (xl,fbg —l—tl‘l).

Furthermore, there is a unique singular point 0 € X corresponding to the fixed
point of the T-action on X. The point 0 is given by the augmentation ideal

AJr = @ Amea
wn \{0}

On the other hand, let A = A[C,D], where D is a proper o-polyhedral divisor
on a smooth projective curve C'. By Theorem 2.5 in [KR&2], if Spec A is smooth,
then Spec A ~ A™*! (see also Proposition 3.1 in [Siis08]). In particular, Spec A is
rational.

3.4. Birational geometry of varieties with trivial ML invariant

In this section we establish the following birational characterization of normal
affine varieties with trivial ML invariant. Let k be an algebraically closed field of
characteristic 0.

THEOREM 3.4.1. Let X = Spec A be an affine variety over k. If ML(X) = k
then X ~pi Y x P? for some variety Y. Conversely, in any birational class Y x P?
there is an affine variety X with ML(X) = k.

PROOF. As usual tr.degy (K) denotes the transcendence degree of the field ex-
tension k C K. Let K = Frac A be the field of rational functions on X so that
tr. degy (K) > 2.

Since ML(X) = k, there exists at least 2 non-equivalent LNDs 0;,05 : A — A.
We let L; = Frac(ker 9;) C K, for i = 1,2. By Lemmam (vii), L; C K is a purely
transcendental extension of degree 1, for i = 1, 2.

We let L = LiNLs. By an inclusion-exclusion argument we have tr. deg; (K) = 2.
We let A be the 2-dimensional algebra over L

A:A(X)kL.

Since Frac A = FracA = K and L C ker 0; for i = 1,2, the LND 0; extends to a
locally nilpotent L-derivation 0; by setting

Oi(a®1) = 0;(a) ®1, where a€ A, andl € L.
Furthermore, ker9; = AN L;, for i = 1,2 and so
kerélﬁkerég :AﬂLlﬂLg =L.

Thus the Makar-Limanov invariant of the 2-dimensional L-algebra A is trivial.
By the theorem in [ML p. 41], A is isomorphic to an L-subalgebra of L[z, 23],
where x1, xo are new variables. Thus

K ~ L(x1,225), andso X o~ Y x P2,

where Y is any variety with L as the field of rational functions.
The second assertion follows from Lemma bellow. This completes the
proof. O
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The following lemma provides examples of affine varieties with trivial ML invari-
ant in any birational class Y x P n > 2. It is a generalization of Section Let
us introduce some notation.

As before, we let N be a lattice of rank n > 2 and M be its dual lattice. We let
o C Ng be a pointed polyhedral cone of full dimension. We fix p € rel. int(c) N M.
We let A =p+ o0 and h = ha so that

h(m) = (p,m) >0, forallmew){0}.

Furthermore, letting Y be a projective variety and H be a semiample and big
Cartier Z-divisor on Y, we let A = A[Y, D], where ® is the proper o-polyhedral
divisor ® = A - H, so that

D(m) = (p,m)-H, forallmew.

Recall that Frac A = k(Y')(M) so that Spec A ~; Y x P™.

LEMMA 3.4.2. With the above notation, the affine variety X = Spec A[Y, D] has
trivial ML invariant.

PROOF. Let {p;}; be the set of all rays of o and {7;}; the set of the corresponding
dual facets of w. Since rH is big for all » > 0, Theorem [2.4.6| shows that there exists
e; € Sp, such that dim &, is positive, and so we can chose a non-zero ¢; € ®,,.
In this case, Theorem shows that there exists a non-trivial locally nilpotent
derivation 0,, ¢;,,,;, with

ker 8,01',61',% = @ AmX™ .
meT;NM

Since the cone o is pointed and has full dimension, the same holds for w. Thus,
the intersection of all facets reduces to one point (), 7; = {0} and so

ket dp,c,p; € Ao = H(Y,Oy) = k.
7

This yields
ML(A) = ML, (A) = MLgL(A) = k.
O
EXAMPLE 3.4.3. With the notation as in the proof of Lemma [3.4.2], we can
provide yet another explicit construction. We fix isomorphisms M ~ Z" and N =~
Z™ such that the standard bases {pu1,---,p,} and {v1,--- v} for Mg and Ng,

respectively, are mutually dual. We let o be the first quadrant in Ng, and p = ), v,
so that

h(m) = Zmi, and ©D(m) = Zmi - H, where

m = (my,---,my), and m; € Q>¢.

We let p; C o be the ray spanned by the vector v;, and let 7; be its dual facet.
In this setting, S,, = (7 — p;) N M. Furthermore, letting e; ; = —p; + p; (where
J #1i) yields
h(m) = h(m +e€;;), sothat D, =0, and & =H"(Y,0y)=k.
Choosing ¢; j = 1 € @, ; we obtain that 9; ; := 9

ei’j
given by

1+€4,55Pi,5

81,](me) = <m71/i> : me+6¢,j7 where Z7] € {17 e 777’}7 { 7é.7
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is a homogeneous LND on A = A[Y,®] with degree e; ; and kernel

ker 0; j = @ Amx™.
NM

As in the proof of Lemma [3.4.2] the intersection
ﬂker 0;j =k, andso ML(X)=k.

4,3
We can give a geometrical description of X. Consider the Oy-algebra

A= @ Oy (D(m))x™, sothat A= HOY,A).

mewns

In this case, we have

g:@ EB Oy (rH)x™ ~ Sym (@Oy(ﬂ)) .
i=1

r=0 3" m;=r, m;>0

And so X = Specy A is the vector bundle associated to the locally free sheaf
P, , Oy(H) (see Ch. II Ex. 5.18 in [Har77]). We let 7 : X — Y be the corre-
sponding affine morphism.

The morphism ¢ : X — X induced by taking global sections corresponds to the
contraction of the zero section to a point 0. We let 6 := 1o ¢~! : X\ {0} — Y.
The point 0 corresponds to the augmentation ideal A \ k. It is the only attractive
fixed point of the T-action. The orbit closures of the T-action on X are ©, :=
0-(y) = 07 Y(y) U {0}, Vy € Y. Let x* = u;. ©, is equivariantly isomorphic to
Specklwar] = Speck[uq, - - -, uy,| >~ A™.

The Ga-action ¢; ; : G x X — X induced by the homogeneous LND 0; ; restricts
to a Ga-action on O, given by

dijloy : Ga x A" — A", where u; — u; +tuj, up — up, Vr#i.

Moreover, the unique fixed point 0 is singular unless Y is a projective space
and there is no other singular point. By Theorem 2.9 in [Lie09b] X has rational
singularities if and only if Oy and Oy (H) are acyclic. The latter assumption can
be fulfilled by taking, for instance, Y toric or Y a rational surface, and H a large
enough multiple of an ample divisor.

3.5. A field version of the ML invariant

The main application of the ML invariant is to distinguish some varieties from
the affine space. Nevertheless, this invariant is far from being optimal as we have
seen in the previous section. Indeed, there is a large class of non-rational normal
affine varieties with trivial ML invariant. To eliminate such a pathology, we propose
below a generalization of the classical ML invariant.

Let A be a finitely generated normal domain. We define the FML invariant of
A as the subfield of K = Frac A given by

FML(A) = ﬂ Frac(ker 0) .
HELND(A)

In the case where A is M-graded we define FMLj, and FMLgy, in the analogous way.
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REMARK 3.5.1. Let A = k[z1, - ,zy] so that K = k(x1,---,z,). For the
partial derivative 9; = 0/0z; we have Frac(ker 0;) = k(x1,--- ,&;, -+ ,zy), where T;
means that x; is omitted. This yields

FML(A) C ﬂ Frac(ker 0;) =k,
i=1

and so FML(A) = k. Thus, the FML invariant of the affine space is trivial.

For any finitely generated normal domain A there is an inclusion ML(A) C
FML(A). A priori, since FML(A™) = k the FML invariant is stronger than the
classical one in the sense that it can distinguish more varieties form the affine space
that the classical one. In the next proposition we show that the classical ML invariant
can be recovered from the FML invariant.

PROPOSITION 3.5.2. Let A be a finitely generated normal domain, then
ML(A) =FML(A)N A.

ProOOF. We must show that for any LND 0 on A,
ker 0 = Frac(ker0) N A.

The inclusion “C” is trivial. To prove the converse inclusion, we fix an element
a € Frac(ker 9) N A. Letting b, ¢ € ker 0 be such that ac = b, Lemma (73) shows
that a € ker 0. O

Let A = A[Y, D] for some proper o-polyhedral divisor ® on a normal semiprojec-
tive variety Y. In this case K = Frac A = k(Y')(M), where k(Y")(M) corresponds to
the field of fractions of the semigroup algebra k(Y)[M]. It is a purely transcendental
extension of k(Y) of degree rank M.

Let 0 be a homogeneous LND of fiber type on A. By definition, k(Y) C
Frac(ker @) and so, k(Y) C FMLg,(A). This shows that the pathological exam-
ples as in Lemma [|3.4.2| cannot occur. Let us formulate the following conjecture.

CONJECTURE 3.5.3. Let X be an affine variety. If FML(X) = k then X is
rational.

The following lemma proves Conjecture|3.5.3]in the particular case where X ~y;,
C x P", with C a curve.

LEMMA 3.5.4. Let X = Spec A be an affine variety such that X ~y;, C x P7,
where C' is a curve with field rational functions L. If C has positive genus then
FML(X) D L. In particular, if FML(X) = k then C is rational.

PROOF. Assume that C has positive genus. We have K = Frac A = L(z1,..., %),
where z1,...,x, are new variables.

We claim that L € FML(A). Indeed, let 0 be an LND on A and let f,g € L\ k.
Since tr. degy (L) = 1, there exists a polynomial P € k[z,y]\k such that P(f,g) = 0.
Applying the derivation 0 : K — K to P(f,g) we obtain

oP oP
—(f,g9)-0 —(f,9)-0(g9) =0.
5 (9) 0(f) + oy 9) (9)

Since f and g are not constant we may suppose that %—f(f, g) # 0 and %(f, g) #

0. Hence 9(f) = 0 if and only if d(g) = 0. This shows that one of the two following
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possibilities occurs:
L C Frac(kerd) or LNFrac(kerd)=k.
Assume first that L N Frac(ker 9) = k. Then, by Lemma [2.1.4] (i) Frac(ker 9) =

k(x1,...,z,) and so the field extension Frac(ker 9) C K is not purely transcendental.
This contradits Lemma (vii). Thus L C Frac(ker 0) proving the claim and the
lemma. O

REMARK 3.5.5. We can apply Lemma to show that the FML invariant
carries more information than usual ML invariant. Indeed, let, in the notation of

Lemma Y be a smooth projective curve of positive genus. Lemma [3.4.2| shows
that ML(A[Y,®]) = k. While by Lemma FML(A[Y,D]) 2 k(Y).

In the following theorem we prove Conjecture in dimension at most 3.

THEOREM 3.5.6. Let X be an affine variety of dimension dim X < 3. IfFML(X) =
k then X is rational.

PROOF. Since FML(X) is trivial, the same holds for ML(X). If dim X < 2 then
ML(X) = k implies X rational (see e.g., [ML, p. 41]). Assume that dim X = 3.
Lemma implies that X ~p;. C' x P2 for some curve C. While by Lemma
C' is a rational curve. O






CHAPTER 4

Normal singularities with torus actions

In this chapter we give some classification results concerning the singularities
of a normal T-varieties in terms of the combinatorial description in Theorem [1.5.5
due to Altmann and Hausen. In particular, we give criteria for a T-variety X to
have rational, (minimal) elliptic, or Cohen-Macaulay singularities. This part of the
thesis is taken from the preprint [LieQ9b]. In a forthcoming joint work with H. Siif3
[LS10] we further generalize this results to give criteria for X to have Q-Gorenstein,
factorial or log-terminal singularities.

In all this chapter, we let as before, N be a lattice of rank n and M = Hom(N, Z)
be its dual lattice, Ng = N ® Q, Mg = M ® Q, and we consider the natural duality
Mg x Ng — Q, (m,p) — (m,p).

We also let Y be a normal semiprojective variety, o be a cone in Ng with dual
cone w € Mg, and © be a proper o-polyhedral divisor on ¥’

@zZAZ-Z.
Z

With these definitions we let X = X[V, D], X = X[V,D], A = A[Y,D], A = A[Y, D],
and ¢ : X — X be as in Theorems |1.5.5/ and 1.5.71

4.1. Divisors on T-varieties

To formulate some of our classification results we need a combinatorial descrip-
tion of divisors on T-varieties. In [FZ03] a characterization of T-invariant divisors
of an affine k*-surface is given, including formulas for the Canonical divisor, class
group and Picard group. In [PSO§| some of these results are generalized to the case
of a T-variety of arbitrary complexity. In this section we recall the needed results
from [PSO8] and add some minor generalizations.

Since the contraction morphism ¢ : X — X in Theorem is equivariant,
the T-invariant prime Weil divisors on X are in bijection with the T-invariant prime
WEeil divisors on X not contracted by ¢. N

We first apply the orbit decomposition of the variety X in Proposition 7.10
and Corollary 7.11 of [AHOG] to obtain a description of the T-invariant prime Weil
divisors in X. There are 2 types of T-invariant prime Weil divisors on X:

(i) The horizontal type corresponding to families of T-orbits closures of dimension
rank M — 1 over Y; and

(ii) The vertical type corresponding to families of T-orbits closures of dimension
rank M over a prime divisor on Y.

LEMMA 4.1.1. Let® =), Az - Z be a proper o-polyhedral divisor on a normal
semiprojective variety Y. Letting X = X[Y, D], the following hold.

87
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(i) The T-invariant prime Weil divisors on X of horizontal type are in bijection
with the rays p C o. N

(i) The T-invariant prime Weil divisors on X of vertical type are in bijection with
pairs (Z,p) where Z is a prime Weil divisor on'Y and p is a vertex of Ay.

PROOF. The lemma follows from Proposition 7.10 and Corollary 7.11 of [AHO6].
See also the proof of Proposition 3.13 in [PS08]. O

The following lemma is a reformulation of Proposition 3.13 in [PS0§].

LEMMA 4.1.2. Let® =), Ay - Z be a proper o-polyhedral divisor on a normal
semiprojective variety Y. The following hold.

(i) Let p C o be an ray and let T C w be its dual facet. The T-invariant prime
Weil divisors of horizontal type on X corresponding to p is not contracted by
@ if and only if D(m) is big for all m € rel.int(7).

(ii) Let Z be a prime Weil divisor on'Y and let p be a vertex of Agz. The T-
mvariant prime Weil divisors on X of vertical type corresponding to (Z,p) is
not contracted by ¢ if and only if ®(m)|z is big for all m € rel. int(cone(Az —

p)).
The following corollary gives a criterion as to when the morphism ¢ is an iso-
morphism in codimension one.

COROLLARY 4.1.3. The morphism ¢ : X — X isan isomorphism in codimension
one if and only if the following conditions hold.

(1) For every facet T C w, the divisor ®(m) is big for all m € rel.int(7).
(13) For every prime Weil divisor Z on'Y and every vertex p on Az, the divisor
D(m)|z is big for all m € rel. int(cone((Az — p)V).

PrOOF. We only need to prove that no T-invariant Weil divisor is contracted by
. The first condition ensures that no divisor of horizontal type is contracted and
the second condition ensures that no divisor of vertical type is contracted. O

REMARK 4.1.4. In the case of a complexity one T-action i.e., when Y is a smooth
curve, the condition (i7) in Lemma and Corollary is trivially verified.

For one of our applications we need the following lemma concerning the Picard
group of a T-variety, see Proposition 3.1 in [PS08] for a particular case.

LEMMA 4.1.5. Let X = Spec X[Y, D], where ® is a proper o-polyhedral divisor
on a normal semiprojective variety Y. If Y is projective then Pic(X) is trivial.

PRrROOF. Let D be a Cartier divisor on X, and let f be a local equation of D in
an open set U C X containing 0. By [Bou65, §1, Exercise 16] we may assume that
D and U are T-invariant. Since 0 is an attractive fixed point, every T-orbit closure
contains 0 and so U = X, proving the lemma. ]

4.2. Toroidal desingularization

In this section we elaborate a method to effectively compute an equivariant
partial desingularization of an affine T-variety in terms of the combinatorial data
(Y,®). This partial desingularization has only toric singularities.
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Let © be a proper o-polyhedral divisor on a normal semiprojective variety Y. For
any projective morphism ¢ : Y — Y we can define the pull back of the o-polyhedral
divisor ® as

VD = W (r-?),
where 7 is a positive integer such that »®(m) is an integral Cartier divisor for all
m € wy.

The combinatorial description of T-varieties in Theorem [1.5.5is not unique. The
following Lemma is a specialization of Corollary 8.12 in [AHO6|]. For the convenience
of the reader, we provide a short argument.

LEMMA 4.2.1. Let® be a proper o-polyhedral divisor on a normal semiprojective
variety Y. Then for any projective birational morphism ¢ 'Y — Y the variety
XY, D] is equivariantly isomorphic to X[Y,*D].

Proor. We only need to show that

HO(Y, Oy (D(m))) ~ H (Y, Oz (¢*D(m))), for all m € way .

Letting r € Z~¢ be such that »®(m) is an integral Cartier divisor Vm € wys, we
have

HO(Y, 0y (®D(m))) = {f € k(Y) | fr € H'(Y,rD(m))}, Ym € wy.

Since Y is normal and 1) is projective, by Zariski main theorem 1.0y = Oy and by
the projection formula, for all m € wy; we have

HO(Y, 0y (D(m))) ~ {f € k(2) | f € H'(Y, 05 (¢*rD(m))) }
= H'(Y, 03 (v"®(m))).
This completes the proof. ]

REMARK 4.2.2. In the previous Lemma, X [Y, D] is not equivariantly isomorphic
to X[Y,¢*D], unless 1 is an isomorphism.

To restrict further the class of o-polyhedral divisor we introduce the following
notation.

DEFINITION 4.2.3. We define the support of a o-polyhedral divisor ® on a
semiprojective variety Y as
Supp® = Z Z.
AgF#o
We say that ® is an SNC' o-polyhedral divisor if Y is smooth, ® is proper, and
Supp® is a simple normal crossing (SNC) divisor.

REMARK 4.2.4. In the case of complexity one i.e., when Y is a curve, any proper
o-polyhedral divisor is SNC. Indeed, any normal curve is smooth and any divisor on
a smooth curve is SNC.

COROLLARY 4.2.5. For any T-variety X there exists an SNC o-polyhedral divisor
on a smooth semiprojective variety Y such that X = X[Y,D].

Proor. By Theorem there exists a proper o-polyhedral divisor ®’ on a
normal semiprojective variety Y’ such that X = Spec A[Y,®]. Let v : ¥ — Y’
be a resolution of singularities of Y such that Supp®’ is SNC. By Chow Lemma
we can assume that Y is semiprojective. By Lemma D = ¢Y*D" is an SNC
o-polyhedral divisor such that X = Spec A[Y, D]. O
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Now we elaborate a method to effectively compute an equivariant partial desin-
gularization of an affine T-variety in terms of the combinatorial data (Y,D). A
key ingredient for our results is the following example that is a generalization of

Example [2.3.18

EXAMPLE 4.2.6. Let H;, ¢ € {1,...,n} be the coordinate hyperplanesin Y = A",
and let ® be the SNC o-polyhedral divisor on Y given by

n
D= ZAZ - H;, where A; € PO]U(N@) .
i=1
Letting h; = ha, be the support function of A; and k(YY) = k(¢1,...,t,), for every
m € wys we have

H(Y, 0y (®(m))) = {f € k(Y) | div(f) + D(m) > 0}
:{fek( | div(f +Zh HZ-ZO}
= P k-

ri>—h;(u)

Let N' = N x Z", M' = M x Z™ and ¢’ be the cone in ]VQ spanned by (0,0) and
(Ai,e;), Vi € {1,...,n}, where e; is the i-th vector in the standard base of Q™. A
vector (m,r) € M’ belongs to the dual cone w’ := (¢/)" if and only if m € w and

T 2 —hl(m)
With this definitions we have
Ay, D= @ H V. 0v(®(m)= P k-t 2 kW 0 M.

mewn (m,r)ew'NM’

Hence X[Y, D] is isomorphic as an abstract variety to the toric variety with cone
o' C Np. Since Y is affine X ~ X, and so X is also a toric variety.

DEFINITION 4.2.7. A normal variety X is called toroidal if for every x € X the

formal neighborhood of x is isomorphic to the formal neighborhood of a point in a
toric variety [KKMST73]|.

In the following proposition we show that X is a toroidal variety when ® is a
SNC o-polyhedral divisor.

PROPOSITION 4.2.8. Let ® = >, Ay - Z be a proper o-polyhedral divisor on
a normal semiprojective variety Y. If © is SNC then X = X[Y,®] is a toroidal

variety.

PRrROOF. For y € Y we consider the reduced fiber )?y over y for the morphism

VY X — Y. We let also i, be the formal neighborhood of )~(y.
We let n = dimY and

Sy = {Z prime divisor |y € Z and Ay # o}.

Since Supp® is SNC, we have that card(S,) < n. Letting j : Sy, — {1,...,n} be
any injective function, we consider the SNC o-polyhedral divisor

y— Z AZ i(Z)> on A",
ZESy
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Since Y is smooth, i, is isomorphic to the formal neighborhood of the fiber over
zero for the canonical morphism

X[A™,D,] = Spec,. A[A",D,] — A™.
Finally, Example shows that X [A",D,] is toric for all y and so X is toroidal.
This completes the proof. O

REMARK 4.2.9. Since the contraction ¢ : X[Y, D] — X[Y,D] in Theorem
is proper and birational, to obtain a full desingularization of X it is enough to have
a desingularization of X. If further D is SNC, then X is toroidal and there exists a
toric desingularization.

4.3. Higher direct images sheaves

Let X = X[Y,®] be a T-variety, with © an SNC o-polyhedral divisor on Y. In
this section we apply the partial desingularization ¢ : X Y, 9] — X[Y, D] to compute
the higher direct images of the structure sheaf of any desingularization ¢ : W — X
in terms of the combinatorial data (Y,®). This allows us to provide information
about the singularities of X.

Recall that the i-th direct image sheaf R%),Oyy is defined via
U — H(U, R, Ow) := H' ("1 (U), Ow|yp-1(17)) -

The sheaves R, Oy are independent of the particular choice of a desingularization
of X. Furthermore, X is normal if and only if R%,Ow := ,Ow = Ox.

DEFINITION 4.3.1. A variety X has rational singularities if there exists a desin-
gularization ¢ : W — X such that

0Oy = Ox, and R4HOw =0, Vi>0.

The following well known Lemma follows by applying the Leray spectral se-
quence. For the convenience of the reader we provide a short argument.

LEMMA 4.3.2. Let ¢ : X > Xbea proper surjective, birational morphism, and
let ¢ : W — X be a desingularization of X. If)N( has only rational singularities,
then

ROy = R'p,0%, Vi>0.

PROOF. We may assume that the desingularization ¢ is such that ¢ = po ¢,

where 1/1 W—Xisa desingularization of X. The question is local on X, so we
may assume that X is affine. Then, by [Har77, Ch. III, Prop. 8.5] we haveﬂ

Ry, Ow = H(W,0w)~ and R0z = H'(X,05%)~, Vi>0.
Since X has rational singularities
00w =0, and R4.Ow =0, ¥i>0.
By Leray spectral sequence for (p,q) = (i,0) we have
H (W, Ow) = H(X,9.0w) = H(X,0z), Vi>0,
proving the Lemma. O

1As usual for a A-module M, M~ denontes the associated sheaf on X = Spec A.
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Recall that w C Mg is the cone dual to 0. In the following theorem for a
T-variety X = X [Y,®] and a desingularization ¢ : W — X of X we provide an
expression for R*,Oz in terms of the combinatorial data (Y, D).

THEOREM 4.3.3. Let X = X[Y, D], where © is an SNC o-polyhedral divisor on
Y. Ify : W — X is a desingularization, then for every i > 0, the higher direct
image R',.Ow is the sheaf associated to

P H(Y,0(D(m)))

UEWN

ProOF. Consider the proper birational morphism ¢ : X = )~([Y, D] — X. By
Lemma m X is toroidal, thus it has only toric singularities wich are rational, see
Theorem |1 By Lemma [4.3.2| we have

RO = R'p,0%, Vi>0.
Since X is affine, we have
R'p, 0z = H'(X,05)~, Vi>0,
see [Har77, Ch. III, Prop. 8.5]. Letting
- Ayo= @ oy

mew s

we let 7 be the structure morphism 7 : X = Specy A — Y. Since 7 is an affine
morphism, we have

H'(X,05)=H'(Y,A) = @ H'(Y,0y(D(m))), Vi>0

by [Har77, Ch III, Ex. 4.1], proving the theorem. O

As an immediate consequence of Theorem [4.3.3] in the following theorem, we
characterize T-varieties having rational singularities.

THEOREM 4.3.4. Let X = X[Y, D], where ® is an SNC o-polyhedral divisor on
Y. Then X has rational singularities if and only if for every m € wys

HY(Y,0y(®(m))) =0, Vie{l,...,dimY}.
PRrROOF. Since X is normal, by Theorem [4.3.3] we only have to prove that
P H (Y, 0v(D(m)) =0, Vi>0
mewn

This direct sum is trivial if and only if each summand is. Hence X has rational

singularities if and only if H* (Y, Oy (D(m))) = 0, for all i > 0 and all m € wy.
Finally, H(Y,.#) = 0, for all i > dimY and for any coherent sheaf .%, see

[Har77, Ch III, Th. 2.7]. Now the lemma follows. O

In particular, we have the following corollary.

COROLLARY 4.3.5. Let X = X[Y, D] for some SNC o-polyhedral divisor © on
Y. If X has only rational singularities, then the structure sheaf Oy is acyclic i.e.,
H'(Y,Oy) =0 for alli > 0.

PRrROOF. This is the “only if” part of Theorem for m = 0. O
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Recall that a local ring is Cohen-Macaulay if its Krull dimension is equal to its
depth. A variety is Cohen-Macaulay if all its local rings are, see Section [I.6] The
following lemma is well known, see for instance [KKMS73| page 50].

LEMMA 4.3.6. Let v : W — X be a desingularization of X. Then X has rational
singularities if and only if X is Cohen-Macaulay and Y.wy ~ wx E|

As in Lemma [4.3.2] applying the Leray spectral sequence the previous lemma is
still valid if we allow W to have rational singularities. In the next proposition, we
give a partial criterion as to when a normal T-variety is Cohen-Macaulay.

PROPOSITION 4.3.7. Let X = X[Y, D], where © is an SNC o-polyhedral divisor
on Y. Assume that following hold.
(i) For every facet T C w, the divisor ®(m) is big for all m € rel.int(7).
(ii) For every prime Weil divisor Z on'Y and every vertex p on Ay, the divisor
D(m)|z is big for all m € rel. int(cone((Az —p)Y).
Then X is Cohen-Macaulay if and only if X has rational singularities.

Proor. By Corollary the contraction ¢ : X — X is an isomorphism in
codimension 1. Thus p.wg =~ wx. The result now follows from Lemma O

For isolated singularities we can give a full classification whenever rank M > 2.

COROLLARY 4.3.8. Let X = X[Y, D], where ® is an SNC o-polyhedral divisor on
Y. Ifrank M > 2 and X has only isolated singularities, then X is Cohen-Macaulay
if and only if X has rational singularities.

PrOOF. We only have to prove the “only if” part. Assume that X is Cohen-
Macaulay and let ¥ : W — X be a resolution of singularities. Since X has only
isolated singularities we have that R’1), Oy vanishes except possibly for i = dim X —
1, see [Kov99, Lemma 3.3]. Now Theorem shows that R't),Oy vanishes also
for i =dim X — 1 since dimY = dim X — rank M and rank M > 2. O

REMARK 4.3.9. In [Wat81] a criterion for X to be Cohen-Macaulay is given in
the case of rank M = 1. In this particular case, a condition for X to have rational
singularities is given.

4.3.1. Complexity one. In this section we specialize Theorem [£.3.4land Propo-
sition to the case of complexity one.
We let C be a smooth curve, and ® be the o-polyhedral divisor on C

D= A,z
zeC
The following proposition gives a simple characterization of T-varieties of com-
plexity one having rational singularities.
PROPOSITION 4.3.10. Let X = X[C,®]. Then X has rational singularities if
and only if

(i) C is affine, or
(ii) C =P and deg|D(m)| > —1 for all m € wyy.

2As usual ww and wx denote the canonical sheaf of W and X respectively.
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PROOF. If Y is affine, then the morphism ¢ : X[C,®] — X is an isomorphism.
By Lemma [£.2.8] X is toroidal and thus X has only toric singularities and toric
singularities are rational.

If C is projective of genus g, we have dim H'(C,O¢) = g. So by Corollary
if X has rational singularities then C' = P!. Furthermore, for the projective line we
have HY(P!, Op1 (D)) # 0 if and only if deg D < —2 [Har77, Ch. III, Th 5.1]. Now
the corollary follows from Theorem [4.3.4 g

In the next proposition we provide a partial criterion for the Cohen-Macaulay
property in the complexity one case. Recall that deg® is defined as the o-polyhedron

deg® = Z A, .
zeC

PROPOSITION 4.3.11. Let X = X[C,®], where C is a smooth curve and D is an
proper o-polyhedral divisor on C. If one of the following conditions hold,
(1) C is affine, or
(i) rank M =1
Then X is Cohen-Macaulay.

Moreover, if C' is projective and deg® does not intersect any of the rays of the
cone w = o, then X is Cohen-Macaulay if and only if X has rational singularities.

PROOF. If C is affine then X = X[C,®]. Thus X has rational singularities and
so X is Cohen-Macaulay. If rank M = 1 then X is a normal surface. By Serre
So normality criterion any normal surface is Cohen-Macaulay, see Theorem 11.5 in
[Eis95).

Since any proper o-polyhedral divisor is SNC, the last assertion is the specializa-
tion of Proposition to complexity one. Indeed, If C' is projective, Proposition
4.3.7| (i) is equivalent to the condition deg® does not intersect any of the rays of
the cone w, while Proposition m (i) is trivially satisfied in the case of complexity
one. g

REMARK 4.3.12. Corollary and Proposition 4.3.11] give a full classification
of isolated Cohen-Macaulay singularities on a T-variety of complexity 1.

4.4. Quasihomogeneous surfaces singularities

In this section we study in more detail the particular case of a one dimensional
torus action of complexity one i.e., the case of k*-surfaces. We characterize Goren-
stein and elliptic singularities in terms of the combinatorial data as in Theorem
.0,

Let X = X|[C, D] be a k*-surface, so that C' is a smooth curve and M =~ Z. There
are only two non-equivalent pointed polyhedral cones in Ng ~ Q corresponding to
o ={0} and 0 = Q>¢, and any o-polyhedral divisor ® on C'is SNC.

With the notation of Theorem suppose that C' is affine. Then X ~ X by
Remark [I.5.8] and so X is toroidal by Lemma [£.2.8] In this case the singularities
of X can be classified by toric methods. In particular they are all rational, see
Section

If C is projective, then o # {0} and so we can assume that o = Q>¢. In this
case D(m) = mD(1). Hence ® is completely determined by ©; := D(1).
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Furthermore,

AlC,D] = @ Amx™, where An = H"(C,00(mD1)).

m>0

and there is an unique atractive fixed point 0 corresponding to the augmentation
ideal mg = @,,~ o Amx™.

This is exactly the setting studied in [FZ03], where all k*-surfaces are divided
in three types: elliptic, parabolic and hyperbolic. In combinatorial language these
correspond, respectively, to the cases where C' is projective and o = Q>¢, C' is affine
and ¢ = Q>¢, and finally C is affine and o = {0}.

In particular, in [FZ03] invariant divisors on k*-surfaces are studied. The results
in loc.cit. are stated only for the hyperbolic case. However, similar statements for
the remaining cases can be obtained with essentially the same proofs. In the recent
preprint [Stis08] some of the results in loc.cit. have been generalized to the case of
rank M > 1. Let us recall the necessary results from [FZ03] §4], see also [Siis08].

Let X = X|[C,®], where D is a proper o-polyhedral divisor on a projective
smooth curve C, and let as before ®; = ®(1). We can write

14

©1 = Z &Zi) where ng(pZa Q’L) = 1, and q; > 0.
im1 4

In this case, with the notation of Theorem [I.5.7] the birational morphism
:=mop 1: X = C

is surjective and its indeterminacy locus consists of the unique fixed point corre-
sponding to the augmentation ideal. The k*-invariant prime divisors are D, :=
6~1(z), V2 € C. The total transforms are: 6*(z) = D, for all z ¢ Supp®;, and
0*(z;) = ¢;D,,, fori=1,.... 0. Welet D; =D, fori=1,... (.

The canonical divisor of X is given by

L
Kx =0"(Ko)+ Y (¢ —1)D;.
=1

For a rational semi-invariant function f - x™, where f € K(C) and m € Z, we have
¢
div(f - x™) =0"(div f) + mZpiDl- .
i=1
For our next result we need the following notation.

NOTATION 4.4.1. We let

¢
1 qi—l
= deg K 12
ma deg©1<eg c+; o ); (12)
and

d pimag + 1
Dg =Y d;zj, where dj=""———1, Vie{l,... (}. 13
> ” { } (13)

i=1
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Recall that a normal variety X is Gorenstein if it is Cohen-Macaulay and the
canonical divisor Kx is Cartier, see Section [1.6] By Serre So normality criterion, all
normal surface singularities are Cohen- Macaulay. In the following proposition we
give a criterion for a k*-surface to have Gorenstein singularities.

PROPOSITION 4.4.2. Let X = X[C, D], where D is a proper o-polyhedral divisor
on a smooth projective curve C'. With the notation as in the surface X has
Gorenstein singularities if and only if mg is integral and Dg — K¢ is a principal
divisor on C.

Proor. By Lemma X is Gorenstein if and only if Kx is a principal divisor
i.e., there exist mg € Z and a principal divisor D = div(f) on C such that

¢ l
Kx = 0"(Kc) + Y (¢ = 1)Di = 0°D +mg y_ piDi = div(f - X",
i—= i=1

Clearly Supp(Kc — D) C{z1...,2}. Letting

L
Ko-D=) d
i=1

we obtain

Z(hd D;i = Z(mpi —gi+1)D;.

=1
Hence the d; satisfy (12] 1n Furthermore, since

deg K¢ = deg(K¢ — D) Zd“

m¢ satisfies in So X is Gorenstein if and only if mg is integral and
D = K¢ — D¢ is principal, proving the proposition. O

Let (X, x) be a normal surface singularity, and let ¢ : W — X be a resolution of
the singularity (X, x). One says that (X, x) is an elliptic smgularityﬁ if R4, 0w ~ k.
An elliptic singularity is minimal if it is Gorenstein. e.g., [Lau77], [Wat80], and
[Yau80].

In the following theorem we characterize quasihomogeneous (minimal) elliptic
singularities of surfaces.

THEOREM 4.4.3. Let X = X|[C,D] be a normal affine surface with an effective
elliptic 1-torus action, and let 0 € X be the unique fized point. Then (X,0) is an
elliptic singularity if and only if one of the following two conditions holds:

(i) C =Pl, deg|mD1] > —2 and deg|mD1| = —2 for one and only one m € Z~y.
(i7) C is an elliptic curve, and for every m € Zsq, the divisor |m®i| is not
principal and deg|m®;| > 0.
Moreover, (X,0) is a minimal elliptic singularity if and only if (i) or (i) holds, mq
1s integral and Dg — K¢ is a principal divisor on C, where mg and Dg are as in

Notation [{41]

3Some authors call such (X, z) a strongly elliptic singularity.
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PrROOF. Assume that C is a projective curve of genus g, and let ) : W — X be
a resolution of singularities. By Theorem

R'4,. 0w = @ H'(C,0c(mDy)) .
m>0

Since dim R'¢,Ow > g = dim H'(C,O¢), if X has an elliptic singularity then
g€ {0,1}.

If C = P! then (X, 0) is an elliptic singularity if and only if H!(C, Oc(m®1) = k
for one and only one value of m. This is the case if and only if (7) holds.

If C is an elliptic curve, then H'(C,O¢) = k. So the singularity (X, 0) is elliptic
if and only if H!'(C,m®1) = 0 for all m > 0. This is the case if and only if (i)
holds.

Finally, the last assertion concerning maximal elliptic singularities follows im-
mediately form Proposition O

EXAMPLE 4.4.4. By applying the criterion of Theorem the following com-
binatorial data gives rational k*-surfaces with an elliptic singularity at the only fixed
point.

(i) C =P and D1 = —%[0] — 2[1] + 2[0c]. In this case X = X[C,D] is isomorphic
to the surface in A% with equation
x‘f:v;;%—x%%—a:% =0.
(i) C =P and D1 = —1[0] — 2[1] + 3[o0]. In this case X = X[C,D] is isomorphic
to the surface in A3 with equation
x‘f + a:% + m% =0.
(iii) C =Pt and D1 = —2[0] — 2[1]+ 3% [00]. In this case X = X[C, D] is isomorphic
to the surface
V(x%wgmg — xgxg + mi ; x‘i’xg — xlxg + X224 ; x% — w1x4) - At

This last example is not a complete intersection since otherwise (X,0) would be
Gorenstein i.e., minimal elliptic which is not the case by virtue of Theorem [4.4.3
In the first two examples the elliptic singlarities are minimal, since every normal
hypersurface is Gorenstein.
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RESUME

Une T-variété est une variété algébrique munie d’une action effective d’un
tore algébrique T. Cette these est consacrée a I’étude de deux aspects des T-
variétés normales affines : les actions du groupe additif et la caractérisation
des singularités.

Soit X = Spec A une T-variété affine normale et soit 0 une dérivation homo-
gene localement nilpotente de l’algebre affine integre Z™"-graduée A, alors 0
engendre une action du groupe additif dans X. On donne une classification
complete des couples (X, d) dans trois cas : pour les variétés toriques, dans le
cas de complexité un, et dans le cas ou 0 est de type fibre. Comme application,
on calcule l'invariant de Makar-Limanov (ML) homogene de ces variétés. On
en déduit que toute variété d’invariant de ML trivial est birationnelle & Y x P?,
pour une certaine variété Y. Inversement, pour toute variété Y, il existe une
T-variété affine X d’invariant de ML trivial birationnelle & Y x P2,

Dans la seconde partie concernant les singularités d’une T-variété X, on calcule
les images directes supérieures du faisceau structural d’une désingularisation
de X. Comme conséquence, on donne un critére pour qu’une T-variété ait des
singularités rationnelles. On présente aussi une condition pour qu’une T-variété
soit de Cohen-Macaulay. Comme application, on caractérise les singularités
elliptiques des surfaces quasi-homogenes.

ABSTRACT

A T-variety is an algebraic variety endowed with an effective action of an
algebraic torus T. This thesis is devoted to the study of two aspects of nor-
mal affine T-varieties: the additive group actions and the characterization of
singularities.

Let X = Spec A be a normal affine T-variety and let 0 be a homogeneous
locally nilpotent derivation on the normal affine Z"-graded domain A, so that
0 generates an action of the additive group on X. We provide a complete
classification of pairs (X,0) in three cases: for toric varieties, in the case
where the complexity is one, and in the case where 0 is of fiber type. As
an application, we compute the homogeneous Makar-Limanov (ML) invariant
of such varieties. We deduce that any variety with trivial ML-invariant is
birationally decomposable as Y x P2, for some variety Y. Conversely, given a
variety Y, there exists an affine T-variety X with trivial ML invariant birational
to Y x P2

In the second part concerning singularities of a T-variety X we compute the
higher direct images of the structure sheaf of a desingularization of X. As
a consequence, we give a criterion as to when a T-variety has rational singu-
larities. We also provide a condition for a T-variety to be Cohen-Macaulay.
As an application, we characterize quasihomogeneous elliptic singularities of
surfaces.

MOTS-CLES

Actions du tore, actions du groupe additif, dérivations localement nilpotentes,
variétés affines, invariant de Makar-Limanov, singularités rationnelles, singu-
larités de Cohen-Macaulay, singularités elliptiques des surfaces.

CLASSIFICATION MATHEMATIQUE
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