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Summary

In this thesis, we demonstrate the preparation and detection of single atoms on an
atom chip. We prepare a single Rubidium atom strongly coupled to a high-finesse cavity
integrated to the atom chip. The atom is extracted from a Bose-Einstein condensate and
trapped at the maximum of the cavity field. The prepared system is reproducibly in the
strong-coupling regime of cavity quantum electrodynamics, as shown by a measurement
of the normal mode spectrum of the coupled system. We use the cavity reflection
and transmission signal to infer the atomic hyperfine state with a fidelity exceeding
99.93% in a detection time of 100 microseconds. The atom remains trapped during
the detection. This performance of the detector is comparable to the best ion-trap
experiments and makes the detector suitable for error correcting schemes in the context
of quantum information processing. Additionally, the cavity-based detection scheme
greatly reduces scattering compared to optical detection schemes in free space. We
measure the scattering rate during detection, and show that we are able to detect the
atomic internal state with an error below 10% while scattering less than 0.2 photons
on average. To finalize the characterization of the detection process, we analyze the
projection of the atomic state due to the measurement by performing a quantum Zeno
type experiment. We find that each photon incident on the cavity reduces the coherence
of the atomic state by a factor of 0.7. The presented detection is close to the textbook
example of a projective measurement of a two-level quantum system.





Résumé

Dans ce mémoire, nous démontrons la préparation et la détection d’atomes uniques
sur une puce à atomes intégrant un résonateur optique de haute finesse. L’atome est
extrait d’un condensat de Bose-Einstein et piégé à une position de couplage maximum
au résonateur. Nous mesurons le spectre du système atome-cavité et démontrons qu’il
se situe dans le régime de couplage fort. Ceci nous permet d’utiliser la transmission
et la réflexion du résonateur pour déduire l’état hyperfin de l’atome. Nous obtenons
une fidélité de détection de 99.93% avec un temps de détection de 100 microsecondes.
L’atome reste piégé pendant la détection. Ces caractéristiques sont comparables à celles
obtenues ans les expériences avec des ions piégés. Nous mesurons également le taux
de diffusion de photons pendant la détection, et démontrons que nous détectons l’état
interne de l’atome avec une erreur inférieure à 10% en diffusant en moyenne moins de
0.2 photons. Pour conclure la caractérisation du processus de détection, nous analysons
la projection de l’état atomique due à la mesure en effectuant une expérience de type
Zeno quantique. Nous démontrons que chaque photon incident sur la cavité réduit la
cohérence de l’état atomique d’un facteur 0.7. La détection présentée est donc proche
d’une mesure projective idéale pour un système quantique à deux niveaux.
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Introduction

The study of the interaction between matter and light is at the very origin of quantum
physics. Max Planck first proposed the quantization of the energy exchanged between
the electromagnetic field and matter as a solution to the spectrum of black-body radi-
ation [1]. Shortly after, the hypothesis was successfully expanded and applied to the
photoelectric effect by Albert Einstein [2]. Since those early days of quantum mechan-
ics, quantum electrodynamics (QED) has never ceased to be an area of active research.
Today, a hundred years later, rapid technological progress enables fundamental tests
as well as potential applications of basic quantum mechanics. A surge in experimental
studies has ensued. At the heart of this experimental progress lies an ever increasing
control over the quantum world.
Cavity quantum electrodynamics [3, 4] is based on the fascinating insight first put

forward by Purcell [5] that the spontaneous emission rate of an atom can be dramatically
increased by placing a resonator around the atom. By altering the boundary conditions
on the electromagnetic field, a resonator "colors" the vacuum’s mode density and thereby
changes the radiative properties of the atom. The Purcell effect thus unequivocally
demonstrates that the spontaneous emission rate is not an intrinsic characteristic of a
quantum emitter but rather arises from the coupling to a large number of modes in a
reservoir.

If one decreases the mode volume of the resonator, the coupling between the atom
and the resonator mode is enhanced. In the extreme case where this coupling strength
surpasses the decay rates associated with the atom and the cavity, new physics beyond
the Purcell effect can be observed. In this so-called strong coupling regime, the atom
and the light field can no longer be considered as separate systems, since entanglement
between the atomic state and the cavity field state is created [6]. In this regime, cavity
QED effectively implements the most elementary model of the interaction between a
two-level atom and a single mode of the electromagnetic field first described by Jaynes
and Cummings[7, 8].

Experimentally reaching the regime of strong coupling has proven to be a challenging
task. Pioneering implementations of cavity QED were achieved with Rydberg atoms
coupled to a high-finesse microwave cavity [6, 9–14]. Experiments with optical cavities
followed suit [15–22]. More recently, artificially engineered quantum systems have been
coupled to resonators in a variety of systems. Experiments with quantum dots coupled
to Bragg-mirror cavities or photonic crystal microcavities in semiconductors [23–27] and
superconducting Cooper-pair boxes embedded in strip-line microwave cavities [28–30]
have been able to show strong coupling in their systems.

Experiments in the strong coupling regime have provided a fertile soil for ground-
breaking results in experimental quantum mechanics. They have led to results such as

9
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the observation of non-classical states and the measurement of their decoherence [31, 32],
quantum non-demolition photon counting [33], or the realization of cavity optomechanics
[34].
Practical applications of cavity QED have grown to considerable relevance with the

rise of "information" as a central concept in quantum mechanics. Quantum information
theory arose out of seminal contributions in particular by Feynman, who proposed a
universal quantum computer [35–38] as well as a quantum simulation machine [39].
Since then, a host of quantum information protocols have been proposed for cavity
QED systems [40–44]. Additionally, the coherent interaction between matter and light
realized in strongly coupled systems makes them ideal candidates for coherent light-
matter interfaces in quantum communications networks [45–50].
Common to all the experimental efforts in the field are the severe requirements im-

posed on experimental techniques. There needs to be a way to prepare the system in a
well-defined initial quantum state. In order to preserve coherence over an experimental
cycle, the system has to be well isolated from the environment. A mechanism is required
to control the internal and external state of the system. For the creation of entangle-
ment, strong interaction between sub-systems is required. Finally, it is of paramount
importance to accurately detect the final state to read out the result of an experiment
or computation.
Atomic physics has been successful in addressing many of these difficulties. Laser

cooling and magnetic trapping of ensembles of atoms lead to unprecedented control
over the external degrees of freedom. The motional ground state is routinely reached by
performing evaporative cooling until Bose-Einstein condensation (BEC) takes place [51].
Similarly, trapped single ions can be cooled to their motional ground state by resolved
sideband cooling [52].
Cavity QED experiments have taken advantage of some of these advances in atomic

physics. Single atom cavity QED experiments often use magneto-optical traps as a source
of cold atoms [53–55]. While this approach has been successful, the temperature of laser
cooled atoms is too high to allow for very precise positioning of the atoms within the
cavity mode [19, 55, 56]. Imperfect control over the coupling strength is the undesired
consequence. Only recently have experiments been realized that combine a high-finesse
cavity and a BEC [57, 58] that have the potential to overcome this difficulty.
In this thesis, we present results obtained with a single atom cavity QED system that

presents a major step forward in control over internal and external degrees of freedom
of the atom. The main results concern the preparation of ultracold single atoms from a
BEC coupled to the cavity and the high-finesse and nondestructive detection of a qubit
state encoded in the atom’s internal state.
For the preparation, we make use of the tailored magnetic potentials available on an

atom chip. A Bose-Einstein condensate is placed at a position of maximum coupling to
the high-finesse cavity. We extract a single atom from the BEC and measure its coupling
strength to the cavity, showing that all single atoms prepared in this way couple with
identical strength to the cavity.
Since the atom-cavity system so prepared is in the high-cooperativity regime, cavity

reflection and transmission are strongly dependent on the atom’s hyperfine state. Ex-
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ploiting this effect, we achieve a hyperfine state read-out fidelity of 99.93%, on par with
the best ion trap experiments [59]. Additionally, the cavity based read-out scheme offers
very fast detection times down to the submicrosecond range. Since the atom remains
trapped after the state read-out, the method can also be used to prepare a well-defined
hyperfine state.
Besides the low detection error, our detection scheme offers the advantage that it does

not rely on scattering for the read-out of the state It therefore avoids the most important
source of heating of the traditional fluorescence detection method. We measure the
scattering rate during detection and show that our system is well within the regime of
energy exchange free measurements. A quantum Zeno effect experiment allows us to
measure the projection of the atomic state our measurement causes. As a result, we
show that our detection is very close to an ideal textbook example of a purely projective
state measurement.

Overview

The organization of the thesis is as follows. The first chapter gives an introduction to
the theory of strongly coupled atom-cavity systems. A master equation that takes into
account the particularities of our experiment is presented and solved numerically. Chap-
ter two presents the experimental setup and the basic experimental steps common to all
experiments of this thesis. In the third chapter, the preparation of single atoms with
controlled coupling to the cavity is described. Experimental results characterizing the
coupled atom-cavity system are presented, in particular in the form of measured normal-
mode spectra. Chapter five investigates the capacities of the high-finesse cavity to act
as a hyperfine-state dependent single atom detector. Two detection methods are intro-
duced, and both methods are shown to lead to a high-fidelity detection. Chapter five
scrutinizes the measurement induced backaction on the single atom. Scattering during
detection is quantified and its relation to the detection error mapped out. The decoher-
ence of the atom’s internal states caused by the detection is measured via the observation
of a quantum Zeno effect. As a central result, it is shown that the cavity-based detection
scheme is capable of a measurement that does not rely on energy exchange. Finally, the
conclusion summarizes the results and presents an outlook on future experiments.





1. Cavity quantum electrodynamics
with single atoms

This chapter gives an introduction to the theoretical framework underlying strongly cou-
pling cavity QED. The basic model, the Jaynes-Cummings Hamiltonian, is introduced
at first. In order to be able to take incoherent losses into account, the master equation
approach is used. Finally, a more realistic model of our atom-cavity system is discussed.
It takes into account birefringence of cavity mirrors, multiple atomic levels and light
shifts due to the dipole trap. The resulting master equation is numerically solved for
our parameters.

1.1. Ideal case: Two atomic levels, one light mode

A single two-level atom coupled to a single mode of the electromagnetic field is one
of the simplest quantum systems one can imagine. This system can be realized using
a high-finesse resonator (see figure 1.1). When neglecting the decay channels of the
atom and the cavity, the system is described by the Jaynes-Cummings Hamiltonian [7].
The most important characteristics of the system is already present in this very simple
model. For experimental applications, the decay channels however are of paramount
importance, since they provide a means of interaction with and read-out of the system.
In the following, we discuss the formalism used to describe both the closed and open
system.

1.1.1. The Jaynes-Cummings model of the closed system

The Jaynes-Cummings model considers a single point-like atom with two internal energy
levels, called |g〉 and |e〉, coupled via electrical dipolar interaction to the quantized light
field of an optical resonator. The Hamiltonian describing the system in the rotating
wave and dipole approximation is the Jaynes-Cummings Hamiltonian, given by

ĤJC = ~ωaσ̂+σ̂− + ~ωcâ†â+ ~g0(â†σ̂− + σ̂+â), (1.1)

where σ̂− ≡ |g〉〈e| and σ̂+ ≡ |e〉〈g| are the atomic lowering and rising operators, and
ωa/2π and ωc/2π are the atomic and cavity resonance frequencies and â and â† are
the destruction and creation operator for photons, obeying the canonical commutation
relation for bosons,

[
â, â†

]
= 1. The strength of the interaction is described by the

13
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g0

γ

κη
APD

Figure 1.1.: A sketch of the atom-cavity system. A single atom is coupled to the single
mode of the electromagnetic field resonant to a high-finesse optical cavity.
The coherent coupling constant is g0. The system is coherently pumped by
a laser through one of the cavity mirrors. The pump strength is η. Two
decay channels exist: One is through spontaneous emission of photons into
free space from the excited atom with rate 2γ, the other is through optical
losses through the cavity mirrors with rate 2κ. In typical experiments, the
photons leaking from the cavity are detected by an avalanche photodiode to
observe the system.

coupling constant g0, defined as

g0 =

√
ωc

2~ε0V
· µeg. (1.2)

g0 therefore depends on the mode volume V and the dipole matrix element µeg of the
atomic transition. The mode volume for a Gaussian beam is given by

V = πω2
0Lc/4 (1.3)

where Lc is the resonator length and ω0 the TEM00 mode waist.
In general, the effective coupling constant g also depends on the localization of the

atom,

g(~r) =g0ψ(~r) (1.4)

ψ(~r) = cos(kx)e−(y2+z2)/ω2
0 . (1.5)

Here, ψ(~r) is the spatial mode of the TEM00 resonator mode with wave number k = ωc/c
and waist ω0.
The Jaynes-Cummings Hamiltonian is very simple, yet contains the most important

features of quantized matter-light interactions: σ̂†â describes the absorption of a photon
by the atom, σ̂â† describes the inverse process of the emission of a photon by the atom.
The Jaynes-Cummings Hamiltonian can be diagonalized to obtain the eigenstates of
the coupled system. The ground state of the system is |g, 0〉, with the atom in the
ground state and the electromagnetic field in the vaccum state. The other eigenstates
of the coupled system are so-called dressed states, linear superpositions of the states
|g, n〉 (atom in the ground state and n photons in the cavity) and |e, n− 1〉 (atom in the



1.1. Ideal case: Two atomic levels, one light mode 15

excited state and n− 1 photons in the cavity. They can be written as

|n+〉 = cos θn|e, n− 1〉+ sin θn|g, n〉 (1.6)
|n−〉 = − sin θn|e, n− 1〉+ cos θn|g, n〉. (1.7)

The mixing angle θn is determined by the coupling g0 as well as the cavity-atom detuning
∆ca = ωc − ωa:

θn = arctan
g0

√
n

−∆ca/2 +
√
g2

0n+ (∆ca/2)2
. (1.8)

The energy eigenvalues of the system form a ladder of doublets. The splitting of the

cavity coupled systematom

|e>

|g>

ωa

|1>

|0>

ωc

|2>
ωc

|n+1>
ωc

|1,->
|1,+>

|2,->
|2,+>

|n+1,->

|n+1,+>

|g,0>

2g

2√2g

2√(n+1) g

Figure 1.2.: The Jaynes-Cummings model. A single two-level atom is coupled to one
mode of the electromagnetic field. The electromagnetic field is represented
by a harmonic oscillator with an infinite number of levels spaced by the
photon energy. The coupling of the system leads to a splitting in the energy
levels, such that a structure of a ladder of doublets emerges. The splitting
between the doublet states increases with the square root of the principal
quantum number n of the mode, making the coupled system anharmonic.

doublets increases with the square root of the photon number n (see figure 1.2)

En,+ = n~ωc +
~
2

(
−∆ca +

√
∆2
ca + 4g2

0n

)
(1.9)

En,− = n~ωc +
~
2

(
−∆ca −

√
∆2
ca + 4g2

0n

)
(1.10)
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Figure 1.3.: The spectrum of the Jaynes-Cummings Hamiltonian with a single excitation
(n=1) and g0/2π = 240MHz for different values of ∆ac. For the y-axis, ω+

(resp. ω−) is defined as E1,+/~ (resp. E1,−/~).

The variation of the dressed energies as a function of ∆ac is represented in figure 1.3 for
n = 1. Note that for large detunings, the coupled states are only slightly shifted from
the uncoupled atomic or cavity states. At zero detuning ∆ac = 0 however, the dressed
energies show an avoided crossing, where the minimal energy difference, min(E1,+−E1,−),
is the coupling energy 2~g0. This is the so-called vacuum-Rabi splitting.

1.1.2. Master equation for an open system

The Jaynes-Cummings Hamiltonian describes a closed quantum system, where no en-
ergy is exchanged between the atom-cavity system and the environment. The interaction
of the system with the environment is neglected. In experimental situations however,
the system under consideration cannot be completely shut off from interaction with the
environment. An energy exchange and the loss of coherence from the system has to
be taken into account. The main sources of decoherence in the optical domain are the
process of spontaneous emission of the atom into free space and the loss of photons from
the cavity. While these damping mechanisms lead to the often unwanted loss of coher-
ence, they also allow to collect information of the system. Another experimentally vital
part not included in the Jaynes-Cummings Hamiltonian is the pump process required
to probe the system.
The master equation framework [60] allows to extend the Jaynes-Cummings model

to include these processes. To obtain the master equation, the joint evolution of the
system and its environment is calculated. The environment is modeled as a reservoir of
modes, i.e. the collection of all free-space modes that couple to either the atom or the
cavity. It is assumed that correlations within the reservoir decay on a timescale much
faster than the timescale of the interaction with the system. The state of the reservoir
is therefore independent of the state of the system, meaning that the environment does
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not contain any information of the state of the system at earlier times. This assumed
lack of memory on the part of the environment is the Markov approximation, which is
satisfied with the reservoirs encountered in quantum optics.
The master equation for the density matrix ρ of a system takes the general linear form

ρ̇ = Lρ, (1.11)

where L is the Liouvillian superoperator. It is given by

Lρ = − i
~

[H, ρ] +
∑
i

γiD[ĉi]ρ, (1.12)

where H is the Hamiltonian of the system, and the decay superoperator D[ĉi] takes into
account the decay process associated with operator ci and decay rate 2γi. It is defined
as

D[ĉ]ρ ≡ 2ĉρĉ† −
{
ρ, ĉ†ĉ

}
= 2ĉρĉ† − ĉ†ĉρ− ρĉ†ĉ, (1.13)

where {·, ·} is the anti-commutator. In our case, the two loss processes are cavity decay at
a rate 2κ and atomic spontaneous emission at a rate 2γ. The master equation therefore
reads

ρ̇ = −i[Ĥ, ρ] + κD[â]ρ+ γD[σ̂]ρ. (1.14)

The contribution of an external pump field can be added to the Jaynes-Cummings Hamil-
tonian in a term of the form ([61])

Ĥpump = −iη(âeiωpt − â†e−iωpt), (1.15)

such that the total Hamiltonian in a frame rotating with ωp becomes

Ĥ = ∆apσ̂
+σ̂− + ∆cpâ

†â+ g0(â†σ̂− + σ̂+â)− iη(â− â†). (1.16)

The definitions of the detunings are ∆ap = ωa − ωp and ∆cp = ωc − ωp.

Coupling regimes

In order for the Hamiltonian evolution of the master equation 1.14 to be observable
before the decay terms lead to a loss of coherence, g0 needs to be larger than the decay
rates of the atom γ and the cavity κ. This is the condition for strong coupling in cavity
QED:

g0 > κ, γ (1.17)

Systems, for which g0 < κ are said to be in the "bad cavity" limit. Other characteristics
of the system are described by the critical photon number, n0 = γ2/g2

0 and the critical
atom number N0 = 2κγ/g2

0. The critical photon number n0 gives the maximum number
of photons in the resonator before the coherent interaction starts to saturate the atom.
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The critical atom number N0 gives the mean number of atoms that need to be coupled
to the resonator in order for the coherent interaction to be dominant. The inverse of the
critical atom number is the cooperativity, defined as

C =
g2

0

2κγ
(1.18)

An intuitive understanding of the cooperativity is most easily obtained by considering
the Purcell effect.

Purcell effect

In free space, an atom in the excited state decays spontaneously to its ground state with
a typical time constant 1/γ while emitting a photon. The addition of a resonator to the
system influences the situation quite strongly. The emission of the photon now occurs
predominantly into the resonator mode. In the bad cavity limit, the photon is then lost
through the cavity mirrors. Purcell predicted this effect [5], and it was first measured
using microwave resonators and atoms in a Rydberg state [62]. The altered emission
rate γ′ of the coupled atom is

γ′ = γ +
g2

0

κ
= (1 + 2C)γ. (1.19)

The factor (1+2C) is called the Purcell factor. The cooperativity is here seen to be the
ratio between the spontaneous emission rate into the cavity mode and the emission rate
into free space.

1.1.3. Steady state solution to the master equation

The master equation 1.14 can be solved analytically in the weak excitation limit. In this
limit, only the ground state |g, 0〉 and first doublet states |g, 1〉 and |e, 0〉 are populated.
In this approximation, the algebra of the pseudo-spin operators σ+, σ− and σz can be
approximated by the harmonic oscillator algebra. The solution in this limit was first
calculated by Hechenblaikner [63] (see also [64]).
Here, we are interested in the steady state solution given by Lρss = 0. The following

notations simplify the expressions for the steady state solution:

∆̃ap =∆ap − iγ (1.20)

∆̃cp =∆cp − iκ (1.21)
(1.22)

Using this notations, the steady-state expectation values for the intracavity photon
number 〈a†a〉ss and the atomic excitation 〈σ+σ−〉ss read

〈a†a〉ss =η2 |∆̃ap|2

|g2
0 − ∆̃ap∆̃cp|2

(1.23)

〈σ+σ−〉ss =η2 g2
0

|g2
0 − ∆̃ap∆̃cp|2

. (1.24)
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The solution for the intracavity photon number ncav = 〈â†â〉 is of special interest,
since ncavκ is the rate of photons leaking from the cavity, which the experimenter can
detect. In expanded form ncav is

ncav =
η2/κ2(

1 + 2C 1
1+∆2

ap/γ
2

)2

+
(

∆cp

κ
− 2C ∆ap/γ

1+∆2
ap/γ

2

)2 . (1.25)

Interestingly, the same result can be obtained by treating the electromagnetic field
in a classical manner. It is in this semiclassical approximation that Lugiato derived his
solution [65] in the study of optical bistability.

1.1.4. Analysis of the steady state solution

A number of interesting consequences arise from the steady state solution to this simple
system, in particular with respect to the use of the cavity as a single atom detector.

The cavity transmission obtained from the intracavity photon number (equation 1.25)
is plotted in figure 1.4 as a function of atom-cavity detuning and laser-cavity detuning,
using the parameters of our system. Since our system is in the strong coupling regime
(g0/2π = 240MHz, κ/2π = 53MHz and γ/2π = 3MHz), the vacuum Rabi splitting is
clearly visible when probing the coupled system (right graphs in figure 1.4).
The empty cavity transmission (blue lines) can be obtained from the steady state

solution for the intracavity photon number ne by putting g0 = 0:

ne(∆cp) = 〈â†â〉 =
η2

κ2 + ∆2
cp

(1.26)

This is of course just the Lorentzian with width κ expected for the cavity resonance. By
setting ∆cp = 0, we see that the pump term η is given by the intracavity photon number
when the empty cavity is resonant to the probe:

η =
√
neκ, (1.27)

where we write ne = ne(0).
From the spectrum of the coupled system, it is clear that the cavity can act as a

detector of single atoms. When probing the cavity resonantly, the transmission strongly
changes when an atom is coupled to it. The transmission of the coupled system is only
a fraction of the empty cavity transmission:

ncavκ =
η2κ2

(1 + 2C)2
κ ≈ ne

4C2
κ (1.28)

What about the spontaneous emission rate when the system is probed? The sponta-
neous emission rate Γeff for an atom coupled to the cavity is calculated from the excited
state population as

Γeff = 2γ〈σ+σ−〉ss =
2γη2g2

0

|g2
0 − κγ|2

∼=
2γη2

g2
0

(1.29)
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Figure 1.4.: The analytical solution to the master equation of a two-level atom coupled
to a single-mode cavity in the weak excitation limit. The upper graphs show
the result with a linear scaling, the lower ones with logarithmic scaling.
The parameters chosen are those of our system: g0/2π = 240MHz, κ/2π =
53MHz and γ/2π = 3MHz. On the two-dimensional plot on the left, both
atom-cavity detuning ∆ac (x-Axis) and laser-cavity detuning ∆lc (y-Axis)
are scanned. The one-dimensional graphs on the right are correspond to a
spectroscopy at ∆ac = 0. Blue lines correspond to the empty cavity, the red
lines to the coupled atom-cavity system. Compared to the empty cavity, a
dramatic decrease in the cavity transmission is observed when probing the
coupled system on resonance (∆lc = ∆ac = 0).

Since the rate at which pump photons couple to the cavity is η2/κ, the scattering prob-
ability per incoming photon is

pscat = 1/C (1.30)

We can conclude that while the transmission of the cavity is strongly reduced due to the
presence of an atom, this reduction is not due to spontaneous scattering. Rather, the
photons are reflected from the cavity when an atom is coupled to it. In a simple picture,
this is due to the cavity resonance being shifted out of resonance due to the vacuum
Rabi splitting.
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From equation 1.29 also follows the pump rate ηsat at which the atom starts to saturate.
The excited state population goes as η2/g2

0. To avoid saturating the atom, pump power
η2 should therefore be chosen such that

η2/g2
0 � 1. (1.31)

In our experiment, we obtain a count rate on the transmission avalanche photo diode of
1× 106 counts/s for an intracavity photon number of ncav = 2.5× 10−2. At this empty
cavity photon number, which is typical for many of our experiments, condition 1.31 is
fulfilled.

A test of the validity of the weak excitation limit was done in [66] by comparing
the numerical solution to the master equation to the analytical weak-pumping limit.
Condition 1.31 is shown to be correct as far as atomic saturation is concerned. Cavity
transmission however increases already at a lower pump power, leading to the more
stringent condition

η2/g2
0 � 1/C2. (1.32)

1.2. Real-world atoms and cavities

The model discussed so far considered the idealized situation of a two-level atom and
a single mode cavity. In this section, we discuss the adaption of this model to our
particular situation, where we have to take into account multiple atomic levels and
two cavity modes with perpendicular polarizations. Additionally, we use an intracavity
dipole trap to trap the atom inside the cavity, leading to state-dependent light shifts.
Finally, a magnetic field is applied to the system to avoid mixing between the Zeeman
levels of the ground state.

1.2.1. Master equation for many levels and two light modes

All our experiments are performed close to the F = 2→ F ′ = 3 transition of the 87Rb
D2 line. The relevant level scheme is shown in figure 1.5 (for a complete 87Rb level
scheme, see annexe A.1.2). Even though most of the system dynamics takes place on
the F = 2 → F ′ = 3 transition, we can not neglect the other excited hyperfine states.
The hyperfine splitting here are 267MHz (between F ′ = 3 and F ′ = 2) and 157MHz
(between F ′ = 2 and F ′ = 1). The coupling strength g between the levels is on the same
order, leading to the excitation of all hyperfine states in the 52P3/2 multiplet (with the
exception of F ′ = 0, which has no allowed transitions to F ′ = 2). The hyperfine state
splitting of the ground state (6.8GHz) however is much bigger than in the excited state,
such that we can neglect the F = 1 ground state in our model.

Due to the multiple atomic levels, the Pauli-operator σ− used in the Jaynes-Cummings
model is replaced by the atomic lowering operator D̂−q , defined in the usual way as

D̂−q =
2∑

mF=−2

3∑
F ′=1

F ′∑
m′F=−F ′

|F = 2,mF 〉〈F = 2,mF |µq|F ′,m′F + q〉〈F ′,m′F + q|, (1.33)
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F’=3

F’=2

F’=1π

Figure 1.5.: The level scheme of the 87Rb D2 line as it is taken into account in a full
master equation. Since we are interested in experiments near resonant to the
F = 2→ F ′ = 3 transition, the F = 1 ground state is neglected. The effect
of a dipole trap is a mF -state dependent light shift in the excited states.
Additionally, a magnetic field is applied to lift the degeneracy of the ground
state Zeeman levels. The cavity modes with linear polarizations π and ⊥
are schematically shown as red arrows. Birefringence in the mirror coatings
leads to a different resonance frequency for the two different polarizations.

where q ∈ {−1, 0, 1} and µq is the dipole matrix element for σ−, π, σ+ transitions,
normalized such that for the cycling transition 〈µ〉 = 1. As in the Jaynes-Cummings
model, the atom-field interaction will be approximated to be dipole interactions.
The assumption of a single mode cavity in the Jaynes-Cummings Hamiltonian also

does not hold in our case. Our cavity mirrors induce a polarization dependent phase
shift on the probe light in the cavity, leading to two polarization TEM00 modes separated
by a birefringent splitting of ∆bi/2π = 540MHz. Both polarization modes are linearly
polarized. Accordingly, two polarization vectors of unity length (~E1 and ~E2, such that
~E1 · ~E2 = 0) describe the polarization of the intracavity probe light.
The coherent interaction between the light and the cavity in analogy to the Jaynes-

Cummings model (taking into account all atomic levels and the two cavity modes) is
therefore given by

Ĥint = g0

(∑
i=1,2

âi
†
(
~Ei ~̂D−

)
+
(
~Ei ~̂D+

)
âi

)
, (1.34)

where âi and â†i are the destruction and creation operator for the cavity field mode i.
The purely atomic and photonic terms Hat and Hph are given, in straightforward

generalization and in the frame rotating at ωp, by

Hat =
∑
F ′

∑
m′F

∆HF (F ′) |F ′,m′F 〉〈F ′,m′F | (1.35)

Hph =
∑
i=1,2

∆cipâi
†âi (1.36)
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where ∆HF are the excited states hyperfine splittings and ∆cip are the detunings of the
two cavity modes to the probe laser frequency.

We use a linearly polarized intracavity dipole trap at 830 nm. For linearly polarized
traps, the ground state light shift ∆ls is Zeeman state independent to a very good
degree. For the excited states however, the light shift depends on the Zeeman state due
to the contribution of higher excited states [67]. Since these light-shifts are larger than
the Zeeman shifts, we choose the dipole trap polarization as quantization axis. We can
write therefore write the dipole trap contribution to the Hamiltonian as a diagonal term,

Htrap =
2∑

mF=−2

∆ls(F = 2)|F = 2,mF 〉〈F = 2,mF |+ (1.37)∑
F ′

∑
m′F

∆ls (F ′,m′F ) |F ′,m′F 〉〈F ′,m′F | (1.38)

The calculation of ∆ls is done in the usual way [68]. The depth of the ground state
trapping potential ∆ls is between 2MHz and 60MHz in our experiment.
To lift the Zeeman state degeneracy of the F = 2 ground state, we apply a bias

magnetic field on the order of typically 1G. The magnetic field leads to a Zeeman state
dependent shift of the atomic energy levels when it is oriented along the quantization
axis. In general however, its contribution includes off-diagonal terms and is given by

HB = gF2µB

(
~B · ~̂F2

)
+

∑
F ′=1,2,3

gF ′µB

(
~B · ~̂FF ′

)
(1.39)

Here, gF ’s are the g-factors of the hyperfine states, ~B is the magnetic field vector and
the components of ~̂FF are the angular momentum operators corresponding to angular
momentum F .

Finally, we can state the complete, general Hamiltonian for our system in the rotating
frame:

Ĥfull =g0

(∑
i=1,2

âi
†
(
~E i ~̂D−

)
+
(
~E i ~̂D+

)
âi

)
+
∑
F ′

∑
m′F

[∆′HF (F ′) + ∆ls (F ′,m′F )] |F ′,m′F 〉〈F ′,m′F |+
∑
i=1,2

∆cipâi
†âi

+ gF2µB

(
~B · ~̂F2

)
+

∑
F ′=1,2,3

gF ′µB

(
~B · ~̂FF ′

)
− i

∑
i=1,2

ηi

(
âi − â†i

)
(1.40)

Note that we have added pump terms for both polarization modes as a last term. We in-
clude the ground state light shift as an offset to ∆HF , such that ∆′HF = ∆HF + ∆ls(F = 2).
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For the master equation of our system, we need the decoherence terms associated with
spontaneous decay. The decoherence due to the two cavity modes is given as a sum of
the decay operators of each individual mode:

Lcavρ = κ
∑
i=1,2

D[âi]ρ. (1.41)

For spontaneous emission of the atom, we define the following superoperator:

Latρ = γ
∑

q=−1,0,1

D[D̂−q ]ρ. (1.42)

Here, a little care has to be taken. Since we neglect the F = 1 ground state in our model
(and therefore in the lowering operator D̂−q ), Lat strictly speaking neglects spontaneous
decays into F = 1. However, for the experiments discussed in this thesis, both cavity
and laser are usually resonant to the F = 2→ F ′ = 3. The atomic excitation therefore
is dominantly in F ′ = 3, which has no allowed transition to F = 1. The approximation
of equation 1.42 is therefore justified.

1.2.2. Solution to the full master equation

The full master equation of our system includes 20 atomic levels and two modes of the
electromagnetic field with orthogonal polarization. In the weak-pumping limit, we can
restrict the population of the light modes to at most one photon, reducing the size of
the system’s density matrix.
We numerically calculate the steady-state solution in the weak-pumping limit. For

this, the system’s density matrix ρ with dimensions 80 × 80 is written as a vector ~ρ
of length 6400. The total Liouville operator L is written in matrix form as L with
dimensions 6400 × 6400. In this form, the time evolution of the system is expressed as
a simple linear relationship

d~ρ

dt
= L · ~ρ. (1.43)

The steady state is the eigenvector ρss of L with eigenvalue zero.
Figure 1.6 shows the steady state solution as a function of probe laser frequency. The

parameters used are following: Probe light is polarized orthogonally to the dipole trap
light. The dipole trap depth is 60MHz, leading to an excited state light shift of around
30MHz for the F ′ = 3,m′F = 0 state. The lower frequency polarization mode of the
cavity is resonant to the F = 2,mF = 0→ F ′ = 3,m′F = 0 atomic resonance frequency.
This cavity mode is pumped, at a pump power well below saturation. The pump laser
frequency is scanned from -300MHz to +300MHz with respect to the F = 2,mF = 0→
F ′ = 3,m′F = 0 atomic resonance frequency. A bias magnetic field of 3.7G is applied
in different directions. These are the same parameters we later use for atomic state
detection.
Both the cavity transmission (figure 1.6 a and b) and atomic state populations (c and

d) are plotted. A relatively complex spectrum results in the cavity transmission. Due to
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Figure 1.6.: The solution of the full master equation as a function of probe laser detuning
for σ+ + σ− probe light polarization. Plotted in a) and b) is the cavity
transmission (in logarithmic scale in a and linear scale in b). The color
of the curves correspond to different magnetic field orientations: blue is
along the quantization axis z, green is along the cavity axis x, and red
is perpendicular to both z and x. In panels c) and d), the atomic state
populations in the different Zeeman sublevels of F = 2 and F ′ = 3 are
plotted. For these curves, the magnetic field is oriented along z. The pump
rate is η = κ

√
3× 10−5. All other parameters are described in the text.

the different atomic levels, a variety of local transmission peak arise, in contrast to the
normal vacuum Rabi splitting. The different magnetic field orientations (blue, red and
green curves in figure 1.6 a and b) has an important influence and cavity transmission,
since it leads to a redistribution of population in the different mF levels when it is not
parallel to the dipole trap polarization.

Only when the magnetic field is parallel to the dipole trap polarization (blue curve
in figure 1.6 a and b, and all curves in c and d), the minimum transmission drops to a
very low value of 10−4. At the probe laser detuning where this happens (-27MHz), the
F = 2,mF ±2→ F ′ = 3,m′F ±3 cycling transitions are resonant to the probe light. The
light therefore predominantly drives these cycling transitions, and the atom is pumped
into the F = 2,mF ± 2 ground states, as can be seen in panels c) and d). It can be
seen that at this detuning, only the stretched state of the F = 2 and F ′ = 3 levels are
populated. Since the system is largely symmetric with respects to mF states (except
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Figure 1.7.: The solution of the full master equation as a function of probe laser detuning
for π polarized probe light. Plotted in a) and b) is the cavity transmission
(in logarithmic scale in a) and linear scale in b). The color of the curves
correspond to different magnetic field orientations: blue is along the quan-
tization axis z, green is along the cavity axis x, and red is perpendicular to
both z and x. In panels c) and d), the atomic state populations in the dif-
ferent Zeeman sublevels of F = 2 and F ′ = 3 are plotted. For these curves,
the magnetic field is oriented along z. The pump rate is η = κ

√
3× 10−5.

All other parameters are described in the text.

for the Zeeman shifts), the system behaves very similarly to a two-level system in this
situation.

Figure 1.6 shows the steady state solution for π-polarized probe light. Here, Probe
light is polarized parallel to the dipole trap light, and the higher frequency polarization
mode of the cavity is resonant to the F = 2,mF = 0 → F ′ = 3,m′F = 0 atomic
resonance frequency. This cavity mode is pumped. The other parameters are the same
as for the previous results. For this parameters, the minimum transmission is higher
than for σ+ + σ− probe light. The populations of the Zeeman sublevels in F = 2 and
F ′ = 3 are markedly different, with in general less population in the mF = ±2 resp.
m′F = ±3 states.
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1.3. Conclusion

In this chapter, the basic theoretical formalism necessary for the theoretical understand-
ing of our atom-cavity system was presented. The results obtained from the simple
model of a two-level atom and a single-mode cavity show the potential of the cavity to
act as a single atom detector that is able to largely avoid scattering. When modifying
this model to take into account the level structure of 87Rb and the two modes of our
cavity, the behavior of the system becomes more complex. Therefore, it is important
to carefully choose the correct set of parameters (probe light polarization, detuning,
magnetic field orientation) to obtain the optimum signal for the desired application.





2. Setup

This chapter is devoted to the presentation of the experimental apparatus. The goal
of the description provided here is to give a complete overview of setup. The vacuum
chamber and the atom chip are briefly described, and the fiber-based cavity is introduced.
The laser systems necessary for atom cooling and cavity stabilization and probing are
described. Special care is taken to present an outline of the locking schemes necessary
for the length stabilization of the science cavity.

2.1. Overview

At the heart of the experimental setup is a high-finesse, fiber based Fabry-Pérot (FFP)
cavity[58, 69]. The primary aim of the setup is to provide an ensemble of trapped
ultracold atoms well controlled spatially, and to couple them to the FFP cavity. To
optimize coupling, the atoms need to be positioned at an antinode of the cavity mode.
Figure 2.1 gives a schematic overview of how this aim is achieved. A MOT and an optical
molasses are used to trap and pre-cool a large number of atoms. The atoms are then
transferred into a magnetic trap created by the atom chip. The atoms are magnetically
transported to the chip region where the cavity is positioned. Here, evaporative cooling
in a strongly confining magnetic trap is employed to achieve Bose-Einstein condensation.
After an optional phase of surface evaporation, the BEC is positioned at the exact center
of the cavity mode, and an intracavity dipole trap is ramped up to trap the atoms inside
the cavity. The atom-cavity system can now be investigated at will. The following
sections provide more details on each of the experimental steps.
The design and construction of the core of the apparatus goes back a few years and is

documented in [70]. A number of changes and improvements were implemented during
the work for this thesis, and most of these changes are described in [66].

2.2. Cold atoms and BEC on an atom chip

2.2.1. Atomchip and magnetic micro traps

The energy of an atom with angular momentum F , magnetic quantum number mF and
g-factor g in a magnetic field is given by E(mF ) = gµBmFB, where µB is the Bohr
magneton. Particles in states for which gmF > 0 experience a force towards magnetic
field minima. Atoms in such low-field seeking states can therefore be trapped in magnetic
field distributions with a minimum (Maxwell’s equations do not allow maxima of the
magnetic field in free space [71]). Traditionally, arrangements of coils have been (and are

29
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Figure 2.1.: A schematic overview of the experimental vacuum chamber. Panel a) shows
the glass cell from the side, with the atom chip glued onto the top. Active
cooling is used fot the atom chip. A mirror MOT extracts atoms from the
background gas. The trapped atoms are transferred to a magnetic trap and
transported towards the resonator, where a BEC is obtained by evaporative
cooling. Panel b) shows a sketch of the high-finesse resonator above the
atom chip (in the experiment, the resonator is below the atom chip). The
BEC is loaded into an intracavity dipole trap. The cavity is probed by a
pump laser through the single-mode fiber. Panel a) adapted from [70]

being) used to create magnetic traps [72]. This approach, while successfully employed in
many experiments, allows a limited range of geometries and control over the magnetic
traps. Atom chips present some advantages in this regard.
An atom chip [73–75] uses a combination of microfabricated wires and macroscopic

coils to generate magnetic field distributions well suited for trapping atoms. The use
of standard microfabrication methods allows the generation of relatively complex wire
configurations and therefore enables the creation of a large variety of magnetic potentials.
The small structure size of the current carrying structures results in the possibility
of microstructuring the magnetic field [76] and gives the experimenter high-precision
control of the position of the magnetic trap, with a resolution much better than optical
wavelengths.

Our atom chip

Our atom chip is constituted of a basis chip and a science chip glued together with a
vacuum compatible epoxy glue. Both layers are shown in figure 2.2. The basis chip
contains wire structures with a typical width of 0.2mm - 1mm and a thickness of 7µm.
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It is glued on top of the glass cell, thereby closing the experiment chamber. PCI-
connectors are use to connect the 48 contacts of the basis chip. 12 of these contacts
connect wires directly on the basis chip, whereas the remaining contacts are used to
connect the science chip via bonding wires. The science layer is glued onto the basis

a) b)

45 mm

25 mm

35
 m

m

28
 m

m

Figure 2.2.: a) The basis chip, which covers the glass cell. b) The science chip which is
glued onto the basic chip.

layer. It is smaller and lies entirely within the vacuum chamber. This chip contains
a large number of wires that can be connected individually using any of 34 contacts.
The wire structures on the science layer typically have a width of at least 50µm and
a thickness of 7µm. A dielectric mirror covers the surface of the science chip. It is
separated from the microwires by a layer of epoxy glue of about 10µm thickness.

A macroscopic U-shaped copper wire is placed on top of the basis substrate, outside
the vacuum chamber. A current of∼60A through the copper U generates the quadrupole
magnetic field for the initial MOT. The copper-U is inside a block of copper which covers
the backside of the basis chip. A Peltier element on top of this copper block actively
stabilizes the atom chip temperature. The heat extracted by the Peltier is removed by
a second copper block which is water-cooled.

2.2.2. Vacuum apparatus

The vacuum apparatus consists of the experiment chamber, a Rubidium dispenser and
an ion getter pump. The geometry of the setup is shown in figure 2.3. The chamber
itself is formed by a cubic glass cell of dimensions 30mmx30mmx30mm, onto the top
of which the atom chip is glued. The opposite side of the cube has a hole of 27mm
diameter. Epoxy glue was used to connect a glass-metal transition to the cube via this
hole. The feedthroughs for both the optical fibers that form the FFP-cavities as well as
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the wires contacting the cavity piezo elements were realized by cutting grooves into two
opposing walls of the cubic glass cell. The epoxy glue used to glue the atom chip to the
cell also seals these feedtrough grooves. A 25 l ion getter pump maintains the vacuum
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Figure 2.3.: Sketch of the vacuum apparatus. a) side view b)top view. The glass cell
is used together with standard ultra-high vacuum components: One six-
way cross, one four-way cross, an ion pump (25 l/s), a titanium sublimation
pump, a pressure gauge, and six electrical feedthroughs. The windowed
flange below the chip gives optical access perpendicular to the chip and is
used for a cavity side excitation beam. Adapted from [70].
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in the chamber. A titanium sublimation pump can be used to improve the pressure.
As source of Rubidium, commercially available dispensers are used and contacted via
electrical feedthroughs. The resulting background pressure is around 10−9 mbar.

2.2.3. Laser system for cold atoms

The laser system used can be conveniently grouped into two mostly independent subsys-
tems. Three laser diodes are used to laser-cool the atoms, three more are required for the
locking and probing of the FFP cavity. The two systems are described independently,
the system for laser cooling here, the cavity-related system in chapter 2.3.2.

The level scheme of the 87Rb D2-line is shown in figure 2.4, along with the different
frequencies needed for laser cooling. The main cooling laser operates red detuned to the
|F = 2〉 → |F ′ = 3〉 transition. A repump laser resonant to the |F = 1〉 → |F ′ = 2〉
transition prevents pumping into |F = 1〉. A circularly polarized pump beam resonant
to the |F = 2〉 → |F ′ = 2〉 transition is used to optically pump the atoms into |F =
2,mF = 2〉.
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Figure 2.4.: 87Rb Levels used for laser cooling.

The light with the required frequencies is generated by three diode lasers: the master,
the slave and the repumper. The optical setup is shown in figure 2.5. Tunable external-
cavity diode lasers in the Littrow configuration [77] are used for all but one of the laser
sources. Frequency modulation Doppler-free saturation spectroscopy setups [78–80] are
used to lock these lasers to well-determined detunings with respect to 87Rb transitions.
The slave laser is frequency locked by light injected from the master. In the following
section, we describe the complete setup used for the generation the required light fields.

The cooling light is provided by two laser sources in a master-slave setup. The master
is locked on the |F = 2〉 → |F ′ = 2〉 |F = 2〉 → |F ′ = 3〉 cross-over resonance of
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an saturated absorption spectroscopy. Part of the light from the master diode injects
the slave laser diode. The injection light is frequency shifted by an acousto-optical
modulator (AOM) in double pass configuration running at a frequency from 60MHz to
115MHz. This allows to bring the frequency of the slave laser to a range of +2Γ to -14Γ
with respect to the |F = 2〉 → |F ′ = 3〉 transition. Most of the slave output is used as
MOT cooling light after further frequency shifting by an AOM running at 80 MHz. It
is therefore divided into four parts using polarization optics and coupled into the MOT
fibers. Since we use a mirror MOT (see section 2.2.4), only four beams are required for
the MOT.
The repump laser is locked on the |F = 1〉 → |F ′ = 1〉 |F = 1〉 → |F ′ = 2〉 cross-over

resonance of a saturated absorption spectroscopy. It is frequency shifted by a single-pass
AOM operating at 83 MHz, leading to a frequency resonant to the |F = 1〉 → |F ′ = 2〉
transition. It is superposed with the 45 ◦ MOT beam before fiber coupling.
The light required for the pump beam is obtained from the master laser output. It

is frequency shifted in a double-pass AOM configuration running at -67MHz to make it
resonant to the |F = 2〉 → |F ′ = 2〉 transition.
Absorption imaging requires light resonant to the |F = 2〉 → |F ′ = 3〉 transition.

A small portion of the slave beam is separated from the MOT light for imaging. A
single-pass AOM at -55MHz shifts the frequency to the right value. Since there are
two spatially separated regions of interest for absorption imaging on the chip (the MOT
region and the cavity region), the imaging beam is split into two before being coupled
into optical fibers.

2.2.4. The optical setup around the vacuum chamber

There are three groups of optical components around the vacuum chamber (more pre-
cisely, around the glass cell), pertaining to three different functions: the MOT beams,
two independent imaging systems, and cavity side-excitation beams aligned vertically to
the cavity axis. Figure 2.6 shows a picture of the optics around the chamber.
The MOT uses the mirror MOT configuration [73, 81] that only uses four laser beams,

two of which are reflected from a dielectric mirror on the chip surface. For absorption
imaging, two independent systems are installed. One allows imaging in the region where
the MOT is created, the other images the cavity region, where the BEC is created. The
two side-excitation beams allow the pumping of atoms coupled to the cavity. One side
excitation beam is aligned parallel to the chip surface, the other perpendicular to it (see
[66, 70] for details).

2.3. The high-finesse cavity

2.3.1. Introduction

The core of the experiment is the FFP cavity. Just as conventional high-finesse cavities
[16, 53, 82], it is formed by two highly reflective, multilayer dielectric mirrors. The
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Figure 2.6.: Optical setup around the vacuum chamber in top view. Two of the four
mirror MOT beams are shown. The additional two are directed at a 45 ◦
towards the chip, where they are reflected by a dielectric mirror on the chip
surface. Two detection setups allow absorption imaging in the MOT region
(y-detection) and in the cavity region (x-detection). Adapted from [70]

FFP cavity however uses the end facets of optical fibers as substrate for the reflective
coatings, rather than finely polished blocks of glass. Replacing relatively cumbersome
mirror substrates with fibers results in a number of advantages. In particular, cavity
probe light is easily accessible since the cavity output is contained in a single mode
fiber. Additionally, the fiber design enables relatively easy integrability on an atom
chip. The magnetic traps generated by atom chips typically are at a distance of a few
tens to hundreds of micrometers from the chip surface, and the trap frequency scales
inversely to the chip-trap distance. If one wishes to couple atoms in these traps to a
cavity in a well controlled manner, the cavity mode axis should not be more than around
100µm away from the chip surface . Using bulk substrates with diameters on the order
of many millimeters, this is only possible when placing the mirrors around the chip
rather than on top of it. This however leads to a large cavity length and large cavity
mode volume, strongly limiting the atom-cavity coupling strength. The fibers used here
have a diameter of 125µm, allowing to mount the cavity directly onto the atom chip.
Therefore, a FFP system is not subject to these constraints and allows to achieve a very
small cavity length. The small cavity length also means that small radii of curvature
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can be used for the mirror surfaces1, reducing the mode waist and enabling even smaller
mode volumes.

The fiber based construction of the cavity also makes the system scalable in the sense
that many cavities can be mounted next to each other on one and the same single chip.
In our setup, there are two cavities parallel to each other.

The production process of the cavities is presented in detail in reference [69], and
we only give an overview here. The end facets of two fibers are shaped into a concave
structure by CO2-laser machining. The CO2-laser is focused on the fiber end facet and
a short pulse abruptly heats the fiber endfacet. A combination of evaporation from and
material flow on the surface leads to the formation of a concave structure with very
low surface roughness (≤0.2 nm). The structure shape can be made close to circular.
The radius of curvature at the bottom of the structure and the structure size can be
fine-tuned by adjusting pulse length, pulse energy, CO2 laser beam waist and thermal
contact between the fiber and its holder. After the CO2-laser machining, the fiber end
facets are coated in a commercial coating facility.
To mount the cavities on the atom chip, V-groove holders are used. Each fiber is glued

into one groove of a holder itself glued onto a shear piezo. The piezos allow to adjust the
cavity length by approximately 1µm over a voltage range of ± 400 V. No other degree
of freedom is adjustable once the fibers are glued to the V-groove. The shear piezos are
mounted on a ceramic bridge which is glued to the atom chip at one end. Figure 2.7
shows a picture of the two mounted cavities. The fibers are positioned such that the
cavity mode center lies above a crossing of microwires on the chip. A magnetic dimple
trap can therefore be generated inside the cavity mode, allowing optimal control over
the position and extension of the atomic cloud. A hole in the ceramic bridge enables
optical access transversally to the cavity mode along the vertical z-axis.

Cavity parameters

Both cavities in the experiment consist of a non-polarization maintaining single mode
fiber used as input port and a multi mode fiber used as output port. The multi mode
fiber on the output side was chosen to make alignment of the two fibers forming the
cavity less critical. For the experiments described in this thesis, only one cavity (called
science cavity) was used for measurements, with the second cavity supporting the cavity
lock (see chapter 2.3.2).
Table 2.1 lists the most important cavity parameters for both cavites. The science cav-

ity has mirrors with radii of curvature of 450µm on the single mode fiber and 150µm on
the multimode fiber. Note that these radii are estimates based on profilometer measure-
ments and are prone to errors. They are of importance especially in their role of defining
the cavity mode volume, and therefore g0. The coupling constant g0/2π = 240MHz given
in the table however is the measured g0 (see chapter 3.5).

1For symmetric cavities, the region of stable configurations is given by ∞ < r < d/2, where r is the
radius of curvature of the mirrors and d the cavity length [83].
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Figure 2.7.: Photographs of the atom chip and the fiber cavities. a) The science layer
of the atom chip. b) The chip with mounted cavities. The cavities are
between the ceramic bridge and the chip. The hole in the ceramic bridge
enables optical access perpendicular to the chip surface. Electrical wires
contacting the cavity piezos can be seen. c) Top-view of the fiber cavities
mounted on the ceramic bridge, before gluing the bridge to the chip. V-
grooves, shear piezos and the optical fibers are shown. d) Close-up view of
the cavities.

2.3.2. FFP laser system and locking scheme

The FFP probe laser

The laser used to probe the atom-cavity system needs to fulfill a few specific require-
ments. A variety of experimental situations call for a flexibility of the locking scheme.
The atom-probe detuning |∆ap| may vary from zero to up to 60GHz depending on the
experimental regime. Also, the atomic reference frequency might be any transition of
the D2 multiplet starting in either |F = 1〉 or |F = 2〉, separated by 6.8GHz. Little
power is required, typically on the order of picowatts. A laser diode with antireflection
coating in a setup identical to the master and repump laser sources is used. Frequency
locking is achieved with a beat lock, in which a beam picked up from either the repump
or master beam is used as reference. A chain of voltage controlled oscillators (VCO) and
mixers allow detunings from either repump or master frequency of up to 4GHz. After
the double pass AOM, the beam is coupled into an optical fiber. The beam is coupled
out of the fiber on the second optical table and frequency shifted in a single pass AOM.
It then passes an optional neutral density filter before being coupled to the optical fiber
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resonator parameter science cavity auxiliary cavity
r1: radius of curvature single mode fiber 450µm 350µm
r2: radius of curvature multi mode fiber 150µm 97µm
d: effective resonator length 39.01µm ≈ 27µm
parameters for 780 nm
FWHM 106MHz 156MHz
F :finesse 38000 35600
∆bi: birefringent mode splitting 540MHz 730MHz
T: mirror transmission 31× 10−6 31× 10−6

L: mirror losses 56× 10−6 56× 10−6

T0: total transmission 7.5% n.a.
R0: total reflection 42% n.a.
n780: longitudinal mode number 100 n.a.
ω0: mode waist 3.48 µm 3.18µm
κ/2π: decay constant 53MHz 78MHz
g0/2π: coupling constant 240MHz 313MHz
C0: cooperativity 181 210
parameters for 830 nm
FWHM 260MHz 390MHz
Finesse 14000 13100
n830: longitudinal mode number 94 n.a.

Table 2.1.: Parameters of both the science fiber Fabry-Perot cavity and the auxiliary
FFP cavity

connected to the main experimental table.
For experiments in which a large detuning larger than the 4GHz enabled by the

offset lock is required, the fiber after the double pass AOM can easily be replaced by
a fiber integrated electro-optical modulator (EOM). This allows phase-modulation of
up to 20GHz, with a significant amount of power in the second and third sidebands at
40GHz and 60GHz respectively. Using a sideband instead of the carrier as cavity probe
allows for experiments with a total detuning of ±60GHz.

On the main experimental table, the probe laser is superposed with the dipole trap
laser (see figure 2.5) before being coupled into the FFP cavity input fiber. The polar-
ization of the probe is adjusted so as to excite only of the two cavity polarization eigen
modes.

Cavity locking chain

The science cavity needs to have a well defined length in order to remain resonant at
the same frequency throughout the experimental cycle. An active stabilization of the
cavity length is therefore required. The stabilization needs to accommodate some key
requirements. It has to be fast enough to correct for vibrational as well as thermal
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Figure 2.8.: The science cavity lock chain. The science cavity is stabilized using a PDH
locking scheme, stabilizing the cavity on a resonance of a TEM00 mode of
an 830 nm locking laser. The locking laser itself is frequency stabilized on a
macroscopic cavity, called transfer cavity, using a PDH setup. The transfer
cavity length is stabilized using a third PDH setup which stabilizes the cavity
length to be resonant with a 780 nm laser, here called auxiliary laser. This
auxiliary laser itself is frequency stabilized using a beat lock setup which
stabilizes its frequency at a given offset frequency to the master laser. The
master is locked relative to a 87Rb transition.

disturbances. A large range of possible set points is required: the detuning between
cavity and atomic resonance can vary from 0 to many tens of gigahertz. The lock point
should be independent of the probe laser frequency. Finally, the cavity needs to remain
locked throughout the experimental sequence. Figure 2.8 conceptually shows the chain
of lock systems implemented to stabilize the science cavity length. The science cavity
is stabilized using a Pound-Drever-Hall (PDH) locking scheme, stabilizing the cavity on
a resonance of a TEM00 mode of the 830 nm locking laser. The laser itself is frequency
stabilized on a macroscopic cavity, called transfer cavity, using another PDH setup.
Using a third PDH setup, we stabilize the transfer cavity length to be resonant with a
780 nm laser, here called auxiliary laser. This auxiliary laser itself is frequency stabilized
to a given offset frequency to the master laser using a beat lock setup. As seen above
(page 34), the master is locked relative to a 87Rb transition, thereby giving a fixed
frequency anchor to the whole locking chain.
In the following, a more detailed description of this lock chain is given.
Figure 2.9 shows a schematic of the science cavity lock. The main contribution to the

lock comes from the 830 nm PDH setup. This scheme is used to lock the cavity length
to d=Lc/2, where

Lc = n8302cπ/ω830. (2.1)

Here, n830 is the longitudinal mode number of the dipole trap laser, and Lc the effective
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cavity length. For the implementation of the PDH lock, the locking light at 830 nm is
phase modulated at 1.3GHz by a fiber-integrated EOM, before being coupled to the
FFP input fiber. The reflection of the locking light from the cavity is separated from the
probe reflection using an interference filter and detected by a fast photodiode2. After
amplification and demodulation, a PDH error signal is obtained and used as input for a
PI-lock with feedback on the science cavity shear piezo.

A second contribution to the science cavity lock comes from the second fiber cavity.
Since the two cavities are separated by just 500µm and mounted on the same ceramic
bridge, they are subject to the same thermally induced drifts. This effect is used to
enhance the science cavity lock by locking the second fiber cavity and adding the resulting
correction signal to the shear piezo of the science cavity.

The lock of the second fiber cavity relies on a mechanism similar to the tilt-locking-
scheme [84], where the reflection of a non-TEM00 mode provides a dispersion-like profile.
This effect is used to lock the cavity without modulating either the probe frequency or
cavity length. To obtain the error signal, it suffices to couple a part of the 830 nm laser
to the second cavity input fiber and detect the reflection signal on a photodiode. The
resulting error signal is processed in a PI-circuit and the correction signal is fed to both
the shear piezo of the second cavity and the science cavity. While the science cavity
could be locked by the PDH-lock alone, this additional lock provides some advantages.
It leads to an enhanced stability of the science cavity lock; it gives a correction signal
even when the locking light in the science cavity has to be switched off (see chapter
2.4.1); and it enables locking when a very shallow intracavity dipole trap (and therefore
low locking light power for the science cavity) is required. This last point is important
since the lock laser also serves as intracavity dipole trap.

The third contribution to the science cavity lock is used during times in which locking
light switched off completely, i.e. before the loading of the intracavity dipole trap (see
chapter 2.4.1). Due to the slightly different thermal drifts between the two cavities, the
correction signal from the second cavity is not sufficient to keep the science cavity within
κ from its lock point for more than a few milliseconds. However, the necessary additional
correction to the science cavity shear piezo is identical in each run. A computer generated
signal (called feedforward signal) is therefore used to compensate for this drift. With
a correctly adjusted feedforward correction, the science cavity does not noticeably drift
from its lock point during up to 100ms even with its PDH-lock completely disabled.

2.3.3. Transfer cavity

The frequency of the locking laser ω830 determines the science cavity length as given by
equation 2.1. The value for ω830 is chosen such that the cavity resonance frequency is at
a detuning ∆cp with respect to the TEM00 mode of the probe laser at frequency ω780:

Lc = n7802πc/(ω780 −∆cp), (2.2)

In the special case ∆cp = 0, the cavity is therefore doubly resonant to the locking laser
and the probe laser. Equations 2.1 and 2.2 constrain the locking laser frequency to a

2Hamamatsu MSM G4176-03
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Figure 2.9.: a) Scheme of the components used for the science FFP lock. The three
contributions to the feedback on the science FFP are shown: A PDH setup
on the science FFP, the correction signal originating from the second FFP as
well as the computer generated feedforward. b)The optical setup around the
fiber cavities, including the locking laser and the probe laser components.
D1, P1 and P2 refer to the optical fiber inputs in figure 2.11

single possible value ω830. The locking laser needs to be stabilized at this frequency. This
is achieved by using the transfer cavity as shown in figure 2.10. A part of the 830 nm
laser is phase modulated at 17MHz by an EOM and coupled to the transfer cavity. The
reflection from the cavity is recorded on a fast photodiode. The photodiode signal is
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Figure 2.10.: Sketch of the transfer cavity setup. A PDH setup locks the 830 nm laser
frequency. The transfer cavity’s length is stabilized on the auxiliary laser
frequency, itself locked via a beat lock to the master frequency.

demodulated, resulting in a PDH error signal which is used as input in a PI circuit. The
resulting correction signal is fed back to the piezo regulating the external cavity length
of the 830 nm diode laser.

To stabilize the transfer cavity length, the auxiliary laser is used. Part of its beam is
coupled to the transfer cavity, and its frequency ωaux is chosen such that it is resonant
to the cavity. A PDH setup analogous to the one for the 830 nm laser is employed, see
figure 2.10. However, the correction signal is fed back not to the auxilary laser but to
the piezo regulating the cavity length.

The auxiliary laser’s frequency is stabilized at ωaux by means of a beat lock. Part
of the auxiliary laser beam is superposed with a part of the master laser beam. The
resulting beat frequency is converted into a direct current signal by digital electronics3
and used to stabilize the external cavity length of the auxiliary laser via a PI loop.

2.4. Experimental sequence

A dual system is used to control the experimental sequence.. A computer equipped with
analog and digital output PCI-cards4 controls all standard steps that do not require
reaction on feedback from experimental events. Parallel to this system, a dedicated real-

3Home built by the atom chip clock team at SYRTE
4PCI-3360 and PCI-4820, from National Instruments
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Figure 2.11.: Setup of optical components on the optical table 2, used mainly for the
transfer cavity setup.

time system 5 controls those part of the experimental sequence that require feedback
enabled reactions. In particular, ADWin reads in APD counts during cavity detection
phases of each run and proceeds according to a pre-established set of rules depending
on the cavity transmission and reflection signals.

5Jaeger Electronics, ADWin light
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Figure 2.12.: A sketch of important wires on the chip and the names given to them.

2.4.1. From the magneto-optical trap to a BEC in the cavity

All experiments described in this thesis require a sample of ultracold atoms, usually
a BEC, as a starting point. A standardized procedure common to all experiments is
therefore used for the generation of a BEC. Here, a description of the steps required
to obtain the BEC and loading it into the intracavity dipole trap is given. Figure 2.12
gives the names of the most important wires on the chip used during the sequence.
In a first step, atoms are collected, trapped and cooled in a mirror MOT. The MOT

quadrupole magnetic field is generated by a current of 57A through the macroscopic
copper U and an external homogeneous magnetic field of By=9G. In a loading time of
about 6 s around 2× 107 atoms are obtained, trapped at a distance of about 4mm from
the chip surface.

The atoms are then transferred into a MOT whose spatially dependent magnetic
field is generated by a U-wire of the chip basis layer. A simultaneous ramp of the
current through this U (5A→3.5A) together with a ramp in the bias magnetic field
(By = 2G → 4.2G) leads to the compression of the MOT and the approach of the
center of the MOT to the chip surface to about 0.8mm. The temperature of the atoms
in this final MOT is 70µK.
In the next step, the atomic cloud is cooled below the Doppler temperature using

Sisyphus cooling [85] in an optical molasses phase of 3ms. This step leads to a cloud of
typically 1.3×107 atoms at a temperature of 14µK, as measured by absorption imaging
after 10ms time of flight. After molasses cooling, a short pump pulse of 0.7ms is used
to optically pumps the atoms into the low field seeking state |F = 2;mF = 2〉. This
concludes the laser cooling cycle and the atoms are transferred to the first of a series of
magnetic traps. In the following, each of the 12 traps used until the atoms are loaded
into the intracavity dipole trap is described.

• Trap 1: For the first magnetic trap, the P-wire (see figure 2.13) on the science layer
together with a bias field along the x̂ direction is used to generate a magnetic trap
whose center precisely overlaps with the position of the atoms in the preceding
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Figure 2.13.: Geometry of the rotatable P-Trap. The position of the atomic cloud is
depicted in blue. Adapted from [66]

optical molasses. The transfer efficiency from the optical molasses to this first
magnetic trap is over 90%.

• Trap 2: The bias field used in conjunction with the P-wire is continuously rotated
from x̂-direction to ŷ-direction. The minimum of the magnetic field accordingly
moves to the position shown in figure 2.13, directly above the central wire of the
science layer of the chip.

• Trap 3: The atoms are transferred to a trap in the form of a waveguide formed by
a current through the waveguide wire and a bias field along ŷ. The confinement
along the x-Axis is provided by an externally generated quadrupole field added to
a bias field along x̂.

• Trap 4: To transport the atoms toward the FFP cavity, it suffices to gradually
change the bias field Bx, thereby moving the magnetic field minimum along x̂ in
direction of the cavity. Moving the atoms directly into the FFP-cavity region would
lead to collisions with the fibers and consequently atom losses. The transport is
therefore stopped at a distance of about 1mm from the cavity.

• Trap 5: The atoms are transferred to a Z-type trap, with the bias magnetic field
along ŷ. An additional current through the stopwire (blue in figure 2.12) results
in a potential barrier preventing collisions of atoms with the cavity fibers. Traps
5-8 are depicted in figure 2.14.

• Trap 6: Subsequently, the bias field By is increased, leading to a steeper trap closer
to the chip surface. Simultaneously, a current through the dimple wire along the
cavity axis leads to the formation of a second local minimum of the magnetic field,
which however is not yet accessible to the atoms due to the barrier generated by
the stop wire.
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Figure 2.14.: Chip wires and the magnetic traps they create. From top to bottom, trap
numbers five to eight are depicted. The insets on the wire configurations
(leftmost graphs) give the magnetic bias field (red vector). All magnetic
field scales are in Gauss.

• Trap 7: This barrier is now removed by turning off the current through the stop
wire. At the same time, radio frequency induced evaporation is applied during
about 500ms, leading to a drastic increase of the phase-space density of the cloud.
The dimple trap, just above the cavity, is filled with ultra-low temperature atoms.

• Trap 8: For a second phase of evaporative cooling, the atoms are transferred into
a pure dimple trap formed by currents in the waveguide and dimple wires, with
a bias field predominantly in ŷ direction. The resulting trap is at a calculated
distance of 131µm from the chip. Bose-Einstein condensation is achieved with a
second step of evaporative cooling (duration: 50ms), resulting in an almost pure
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Figure 2.15.: Time of flight images of the atomic cloud after RF-evaporation in trap 8.
The final frequency of the evaporation ramp is changed in steps of 5 kHz
from the picture in the upper left to the picture in the lower right. The
characteristic change from the symmetric expansion of a thermal cloud to
the elliptical expansion of a BEC is clearly visible. The population of the
ground state can be seen to become macroscopic at an RF-end frequency of
about 1.77MHz. At 1.75MHz, an almost pure BEC of about 1000 atoms
is obtained. Continuing evaporation even further, all atoms are lost at the
trap bottom of around 1.725MHz.

BEC of typically around 1000 atoms (see figure 2.15).

Many of the experiments presented in this thesis require an atom number much
smaller than the typical condensed atom number after radio frequency evaporation.
An effective way to reduce the atom number without heating is the process of
surface evaporation. By bringing the trapped atoms close to the fiber surface,
hotter atoms are removed from the trap by surface interactions. It was shown
before [70] that this process can be used instead of radio frequency evaporation to
obtain a BEC. Similarly, it can be used to reduce the atom number in the BEC.
This is done in the next three traps. Surface evaporation is used because it is less
sensitive to magnetic field fluctuations than RF-evaporation.

• Trap 9: First, the dimple trap is adiabatically moved closer to the fiber surface.

• Trap 10: In a second step, where the cooling takes place, the trap approaches the
fiber surface further until atoms are lost. The resulting atom number can be tuned
by changing the final distance between trap minimum and fiber surface.



2.4. Experimental sequence 49

• Trap 11: In the last step, the magnetic trap is positioned at the exact center of
the cavity mode. This is the first time the atoms are moved to within the cavity
mode. The intracavity dipole trap has to be switched off during this time.

• Trap 12: In the next and final step of the generic experimental preparation, the
atoms are transferred to the intracavity dipole trap. The intracavity dimple trap
is ramped up, and all magnetic fields are ramped down. The time constants of
both ramps (around 5ms) are chosen to result in an adiabatic transfer from the
magnetic trap to the dipole trap.





3. Coupling single atoms to the
cavity

This chapter presents the experimental results concerning the preparation of a single
atom trapped at a well-controlled position of maximum coupling to the mode of the
cavity. The preparation process is described in detail. The obtained coupled atom-cavity
system is characterized. In particular, measurements of the normal-mode spectrum are
presented. The spectrum is measured by pumping either the cavity mode or the atom,
with consistent results which clearly demonstrate the strong coupling realized in the
system.

3.1. Introduction

Coupling of single atoms to high-finesse cavities in the strong-coupling regime requires
the positioning of the atom inside a cavity with low mode-volume. In the first successful
experiments, this was done by letting atoms fall from a MOT above the cavity [86],
or by ejecting them from a an atomic fountain below the cavity [53]. Little control
over the atomic position inside the resonator was possible in these experiments. More
recent experiments use optical conveyor belts to transport single atoms from a MOT to
the cavity mode volume [55, 87, 88]. While this method increases the precision of the
atom delivery, the positioning along the cavity axis is limited by the beam waist of the
standing wave dipole trap and the temperature of the atoms, leading to variations in the
coupling strength [67, 89]. Here, we present a single atom preparation in a high-finesse
cavity that delivers ultracold single atoms with well-defined coupling to the cavity.

3.2. Coupling of single atoms in a waveguide to the
cavity

This section presents results obtained by magnetically guiding atoms through the cavity.
The cavity is shown to be well capable of detecting single atoms. Issues related to the
imperfectly controlled positioning of the atoms are pointed out and motivate the single-
atom preparation introduced in the following sections.
For this experiment, the initial BEC is prepared in a dimple trap at an intersection of

two wires 1.25mm away from the cavity 3.1. From here, the atoms are released into a
trap in the shape of a two-dimensional waveguide, oriented perpendicularly to the cavity
axis. The magnetic potential in this waveguide provides a steep potential along ŷ and ẑ

51
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Figure 3.1.: The wires used for the waveguide experiments. The initial BEC is prepared
in the dimple trap at the intersection between the waveguide wire and the
dimple wire. The push and pull wire respectively create a potential hill and
valley, and therefore a potential gradient along x̂, giving a preferred direction
for the movement of expansion of the atomic cloud in the waveguide when
turning off the dimple trap.

directions, and a weak gradient along x̂ lets the atom cloud fly through the center of the
cavity mode while continuously expanding. The waveguide trap is created by a current
through the waveguide wire together with a bias field along ŷ and an offset field along
x̂. The small gradient along x̂ is created by currents through the push and pull wires
(see figure 3.1), creating a potential valley behind the cavity, and a potential hill before
it.
The absorption images in figure 3.2 shows the expansion in x̂-direction of a cloud of

atoms in the waveguide potential through the cavity. The detection of atoms by the
cavity is achieved with a probe laser near-resonant to the atomic frequency ∆pa = −7γ.
The small negative detuning is chosen to provide an attractive potential for the atoms,
such that they are drawn to positions of strong intracavity field and therefore strong
coupling. The cavity is locked resonant to the probe laser. Figure 3.3 shows the cavity
transmission dips as the atoms fall through the cavity.
A histogram of the cavity transmission during the atomic transit is shown in figure 3.4

a). A maximum of the distribution at 58 counts/20µs corresponds to the empty cavity
transmission. A second maximum at 4 counts/20µs is due to the presence of atoms. The
count distribution of all counts shows that the two peaks are not clearly separated, due
to the finite slope of the dips. We therefore use a threshold-based method to find the
distribution of dip minima. The result is shown in figure 3.4 b) in the form of a histogram
of the dip depths distribution. Here, a clear difference between the distributions derived
from runs with atoms and runs without atoms is visible. Only runs with atoms have dips
below 20 counts/20µs. The distributions prove that our cavity-based detector can detect
single atoms. Using a threshold method, the cavity transmission allows to establish the
presence of a single atom in 20µs with high confidence.
However, it is not straightforward to deduce the detection efficiency of the detector
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Figure 3.2.: Absorption images of a large cloud of atoms expanding in the waveguide and
traversing the cavity mode. The images are taken after a time of expansion
increasing from 1ms for the image at the left to 80ms for the last image
on the left. The position of the optical fibers forming the cavity is shown
in shaded gray. Note that the limited depth of field and aberrations of the
imaging system leads to the distortion of the shape of the atomic cloud in
horizontal direction.
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Figure 3.3.: Telegraph signal observed on the cavity transmission when the atomic cloud
traverses the cavity mode. To the right, an expanded view of the transit
of a few atoms is shown. Clear dips of duration on the order of 100µs and
good contrast are visible.

from the distribution. In the strictest sense of the term, the detection efficiency is the
fraction of atoms detected among all atoms falling through the cavity. Some atoms
might cross the cavity mode at a position of a node of the cavity field, leading to no
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visible transmission drop. Furthermore, while entering the cavity mode, atoms start to
scatter and have a non-negligible probability to be pumped into the F = 1 hyperfine
state, a state that is not detected by the cavity transmission, or heated out of the
waveguide potential. Furthermore, each single atom might cause several dips. This can
happen when it oscillates strongly along the cavity axis while it crosses the cavity mode.
Reference [66] investigates all of these effects in detail, and puts a conservative estimate
of the detection efficiency at 50%.
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Figure 3.4.: a) Histogram of the cavity transmission during the transit of an atomic
cloud. A large poissonian contribution due to the high cavity transmis-
sion when no atom is present leads to a large peak around 58 counts/20µs.
Atom transits lead to the much smaller peak around 4 counts/20µs. b) A
histogram showing the distribution of dip depths of the same experimental
traces as used in a). The blue histogram is recorded for an empty cavity,
the red histogram is measured with atoms traversing the mode. The his-
tograms are clearly distinct, with a minimum in the distribution at around
20 counts/20µs. This value can be used for the detection of single atoms
using a threshold method. Such a method could ascertain the presence of
an atom with high certainty.

Despite these problems, we can claim that those atoms that cross the cavity mode at
positions that provide strong coupling are detected by our detector. The next sections
discuss how we proceed to achieve a better control of the system by trapping single
atoms exclusively at positions of strong coupling.

3.3. Microwave based single atom extraction

3.3.1. Heralded preparation of single atoms

The method developed to obtain trapped single atoms strongly coupled to the cavity in
our experiment is probabilistic but heralded. The principle of the preparation method
is illustrated in figure 3.5. As a starting point to the scheme, a small ensemble of a few
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atoms in state |F = 1,mF = 1〉 is trapped in the dipole trap at a position of maximum
coupling to the cavity. The cavity is resonant to the |F = 2〉 → |F ′ = 3〉 transition,
such that the few atoms in F=1 act as a small dispersive element inside the cavity,
with negligible effect on the cavity effective length. A weak MW-pulse resonant to the
|F = 1,mF = 1〉 → |F = 2,mF = 0〉 transition is applied. The MW pulse has a
single atom transfer probability pt � 1. It is followed by a measurement of the cavity
transmission by a probe beam resonant to the empty cavity, ωp = ωc. This measurement
gives a signal of the internal state of the atoms: High transmission signals that all atoms
are in F = 1, whereas low transmission signals that at least one atom was transferred
to F = 2. This sequence of MW-pulse/transmission measurement is repeated until low
transmission is observed as shown in figure 3.5 b).
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Figure 3.5.: a) Illustration of the single atom preparation method. A weak MW-
pulse is applied to a small reservoir of atoms in |F = 1,mF = 1〉 cou-
pled to the cavity. The cavity transmission is then probed with the
probe laser frequency resonant to the empty cavity, itself resonant to the
|F = 1,mF = 1〉 → |F = 2,mF = 0〉 transition. b)Cavity transmission
during the single atom preparation cycle. In this example, the ninth MW-
pulse led to a transfer of an atom to F=2, as heralded in the subsequent low
cavity transmission.

3.3.2. The reservoir and single atom extraction

The starting point for the single atom experiment is a BEC prepared in a dimple trap
above the cavity mode, as described in chapter 2.4.1. The dimple trap is cigar shaped
with its long axis perpendicular to the cavity axis and trap frequencies (ωy/2π;ω⊥/2π) =
(270; 4100)Hz. Radiofrequency evaporation is performed within 500ms to a final RF-
frequency of about 1MHz, resulting in an almost pure BEC of around 500 atoms in state
|F = 2,mF = 2〉. While it is possible to cut farther into the BEC with the RF-knife
and thereby further reduce the atom number, this method has not proven practical to
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Figure 3.6.: Time line of the surface preparation and dipole trap loading. A BEC is
initially trapped outside the cavity mode volume. It is brought towards
one fiber end facet for surface evaporation (between 30ms and 40ms). The
magnetic trap is then moved to the exact cavity mode center (at 70ms),
and the dipole trap is ramped up. The magnetic trap is then switched off,
and a microwave adiabatic rapid passage (ARP) transfers the reservoir into
F = 1,mF = 0, from where the single atom extraction starts.

obtain ensembles of only a few atoms. In particular, relative atom number fluctuations
become increasingly large when reducing the atom number in this way, preventing a
reliable preparation of a determinate number of atoms. We think that magnetic field
fluctuations are the cause of this problem.
The alternative method of surface evaporation has proven a more reliable way to

reduce the atom number in our experiment. Surface evaporation has already been shown
to be an alternative way to achieve BEC, and is a method particularly well suited for
atom chips([58, 70]). On an atom chip, magnetic traps can easily be brought close to
surfaces, in our case the fiber end facets. At distances of less than about 1µm, the
magnetic trap potential is disturbed by a combination of Casimir-Polder and Van der
Waals-London forces due to interactions with the mirror surface and adsorbed atoms.
The deformation of the trapping potential leads to a decrease in trap frequencies[90] and
to the opening of a loss channel towards the approached surface.
Figure 3.6 shows a time line of the steps from surface evaporation to the loading of

the dipole trap. To achieve surface evaporation in our experiment, the BEC is moved
to within 5µm of the fiber surface in 30ms, a position where surface forces have no
effect. A further ramp of the magnetic bias field by 800mG during 10ms moves the
atom closer to the surface, leading to evaporation. The final number of atoms can be
fine-tuned by changing the final bias field amplitude. The final position is held for a
short time of around 1ms, after which the atoms are moved to the center of the cavity
mode in 30ms. During this last transport, the atoms enter the cavity mode for the first
time. The dipole trap light has to be switched off during this time to not interfere with
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the magnetic potential. A feedforward is therefore used to stabilize the cavity length.
The atoms are now transferred into the intracavity dipole trap in two steps. First,

the dipole trap is ramped up in 5ms to a trap depth of 800µK. The magnetic trap
is then ramped down within 1ms. A bias magnetic field of B0 = 3.7Gauss is applied
to lift the degeneracy of the Zeeman levels. The small ensemble of atoms in state
|F = 2,mF = 2〉 is transferred to state |F = 1,mF = 1〉 by means of a MW adiabatic
rapid passage (ARP)[91]. Our MW-frequency generator does not allow sweeps of the
MW frequency as required for an ARP. The ARP is therefore done by sweeping the
bias field by 0.4G around its nominal value B0 with MW radiation resonant to the
|F = 2,mF = 2〉 → |F = 1,mF = 1〉 transition frequency (Zeeman-shifted by B0)
turned on. The effective, Zeeman-shifted transition frequency is thereby swept across
resonance with the MW, and a population transfer with efficiency >99% is achieved.

The atoms in |F = 1,mF = 1〉 act as a dispersive medium for the cavity. The shift of
the effective cavity resonance per atom can be calculated as

δc = g2
|1,1〉/∆HFS = 6.1 MHz, (3.1)

where ∆HFS/2π = 6.8GHz is the ground state hyperfine splitting. The cavity shift
induced by the atomic reservoir can be detected by measuring the cavity transmission.
We measure cavity transmission during 150µs to estimate the number or atoms in the
reservoir. In postselection, we discard runs with more than 5 atoms in the reservoir to
reduce the probability to accidentally extract more than one atom from the reservoir.
We now apply a 1.9µs MW pulse resonant to the |F = 1,mF = 1〉 → |F = 2,mF = 0〉
transition. The Rabi-frequency on this transition is Ω/2π = 34.6 kHz, leading to a
transfer probability per atom of pt = sin(Ω/2 · 1.9µs)2 = 4.2%. In order to detect
whether the MW pulse has led to the transfer of an atom to F = 2, we measure the
cavity transmission during 20µs. Figure 3.7 shows a histogram of detected counts in
20µs on the transmission APD following the MW pulse.
The measured probability distribution is well approximated by the sum of two Pois-

sonian distributions of mean values 0.3 and 22, respectively. The low transmission peak
corresponds to the presence of at least one F = 2 atom, whereas high transmission
signals that no atom was transferred. The distribution drops to close to zero between
the two peaks. This is of importance for the single atom preparation, since it justi-
fies the choice of a threshold to determine whether an atom was transferred (in this
case, the threshold is at 5 counts). The probability of a false positive event, i.e. a
drop of cavity transmission below threshold although no atom is in F = 2, is given by∑5

i=0 λ(i, 22) ≈ 10−5, where λ(i, µ) is the poissonian probability distribution with mean
µ.
We repeatedly apply this preparation cycle until a transmission level below threshold

signals a successful transfer. Figure 3.8 shows the number of pulses required to prepare
an atom. For a given number of atoms Na in the reservoir, the probability that np MW
pulses are needed before an atom is transferred is given by the geometric distribution,
P (np) = (1−Napt)

k−1Napt. The distribution of np for an initial atom number distribu-
tion in the reservoir can be calculated, and the line in figure 3.8 shows the resulting fit
assuming a Poissonian distribution with fitted mean of N̄a = 1.5.
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Figure 3.7.: Histogram of counts in transmission during 20µs after the first MW pulse
during single atom preparation. The black and red lines are Poissonian
fits with expectation values of 0.3 and 22 respectively. There is a clear
dip between the two peaks, allowing us to use a thresholding technique to
signal the preparation of a single atom. Compare this to the situation of
atoms in the waveguide depicted in figure 3.4 a), where there is no clear-cut
separation between the two maxima.
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Figure 3.8.: Distribution of the number of required MW pulses to prepare an atom. The
line is a fit assuming a reservoir with a Poisson distribution.

3.3.3. Reservoir removal

An experiment with the single extracted atom can now be started. However, for some
experiments, and especially when the atom is to be used as a qubit, the reservoir should
be removed from the dipole trap. This is achieved by first preparing the single atom in
F = 2 in the mF = 0 Zeeman state (see below). After this, the dipole trap is lowered to
a depth of 25µK (corresponding to ≈500 kHz), while at the same time applying a strong
magnetic field gradient of 2.7 kG/cm. The field gradient is produced by a current of
3A through the waveguide wire at a distance of 150µm from the atoms. The magnetic
field gradient creates a strong force on the reservoir atoms in the magnetic-field sensitive
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state |F = 1,mF = 1〉, while the atom in |F = 2,mF = 0〉 remains unaffected. The
|F = 1,mF = 1〉 state being a high-field seeker, the reservoir atoms feel a strong energy
gradient along the z-axis of ≈1.9GHz/cm. This gradient is slightly stronger than the the
one from the dipole trap, which is 500 kHz · d

dz
e−2z2/ω2

0 with a maximum of 1.5GHz/cm.
The magnetic field gradient is left on during 30ms.

Figure 3.9 shows the successful removal of atoms when the dipole trap depth is lowered
below the critical depth. Here, a large number of about 200 atoms in |F = 2,mF = 0〉
was used to measure the efficiency of the push-out sequence. The probability that at
least on atom is left in the dipole trap after the push-out sequence can be seen (blue
points). As a comparison, the red points show the fraction of runs in which at least
on atom remains in the trap when no push-out current is applied. This probability is
limited by cavity length fluctuations leading to variations in the dipole trap depth.

In order not to remove the single atom in F = 2 during the push-out, it has to be
in the magnetic field insensitive state mF = 0. In the next section, we explain how we
prepare the single atom in this state before switching on the magnetic field gradient.

3.3.4. Zeeman-state preparation

Cavity transmission is a good signals for the measurement of the atom’s hyperfine state.
However, it does not yield information concerning the Zeeman state. The different
Zeeman states have comparable coupling strengths and are detuned from one another
by much less than g0, such that cavity transmission does not depend on mF . In order
to prepare and detect well defined Zeeman states, we therefore use a slightly more
elaborate scheme involving MW radiation, which selectively couples pairs of Zeeman
states in the two hyperfine ground states. While the scheme described here may be
used for any of the Zeeman states, we will focus on the states of the clock transition
|F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉. The state |F = 2,mF = 0〉 is of particular interest
because we prepare it before the push-out of the reservoir. The state |F = 1,mF = 0〉
will be used in chapter 5.

For the preparation of either clock state, we use the following protocol. We start by
preparing a single atom in F = 2, as described above. We then apply a "preparation"
MW π-pulse resonant to the clock transition. The Rabi frequency of the pulse is chosen
low enough to have negligible transfer probability if the atom is not in a clock state.
Typically, a bias magnetic field leading to Zeeman splittings on the order of ∆/2π=1MHz
is used, whereas the MW Rabi frequency on the clock transition is on the order of
ΩMW/2π = 30 kHz. For atoms in a non-resonant Zeeman state, the transfer probability
is Ω2

MW/∆
2 ≈ 10−3. The π-pulse efficiency for the resonant transition is ≈ 99%.

The "preparation" π-pulse is succeeded by a measurement of cavity transmission to
determine the hyperfine state. If the atom is found to be in F = 1, we can conclude
that the MW π-pulse was successful. We therefore know that the atom was in state
F = 2,mF = 0 before the π-pulse, and now is in |F = 1,mF = 0〉. This state is
unperturbed by the hyperfine state measurement, since the scattering rate of the atom
in state F = 1 is on the order of 100Hz, such that it is negligible compared to the
measurement time. The preparation of |F = 1,mF = 0〉 is thereby complete.
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Figure 3.9.: Determination of the critical dipole trap depth for the push-out of the
reservoir. For the measurement, an ensemble of ≈ 200 atoms in state
|F = 2,mF = 2〉 is trapped in a weak dipole trap. A current of 1.5A
through the waveguide wire is turned on during 30ms, creating a strong
force on the ensemble. After this push-out, cavity transmission is measured
and a thresholding method used to determine whether at least one atom
has remained trapped. Plotted is the fraction of runs in which at least one
atom remains trapped after the push-out (called p(Nremain > 0)), versus the
dipole trap depth on the x-axis (blue points). The red points are a reference
measurement, where no push-out is performed in an otherwise identical mea-
surement. Below a critical dipole trap depth of 25µK, atoms are removed
from the dipole trap when the current is turned on, whereas the trap is
strong enough to keep atoms trapped in the absence of the push-out current
in 75% of the runs. The missing 25% are partially explained by dipole trap
depth fluctuations due to cavity length variations during the waiting time.
Note that the magnetic force on the atoms in this measurement is identical
to the one experienced by |F = 1,mF = 1〉 atoms with a waveguide current
of 3A.

If the atom was not in |F = 2,mF = 0〉 before the preparation π-pulse, the atom
remains in F = 2. In this case, we repeat the π-pulse / hyperfine state measurement
procedure until the atom is transferred to |F = 1,mF = 0〉. Note that each hyperfine
state measurement redistributes the atom among the F = 2 Zeeman states due to
scattering, such that the scheme eventually is successful in producing an atom in |F =
1,mF = 0〉. A further π-pulse on the clock transition can be used to prepare |F =
2,mF = 0〉.
This preparation scheme relies on two requirements. First, the probability of optically

pumping an atom from F = 2 to F = 1 during the hyperfine state detection must be
small. This condition is fulfilled since the F = 2 hyperfine state lifetime (≈ 50ms, see
section 3.4.2) is three orders of magnitude larger than the measurement time of 60 µs.
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Second, since the measurement of a F = 1 atom can not be distinguished from an atom
lost from the dipole trap, the atom loss rate from the trap has to be much smaller than
the preparation time. This condition is fulfilled as well, since the atomic life time in
the dipole trap is on the order of hundreds of milliseconds (see section 3.4.1). We can
additionally check for the presence of the atom at the end of the experiment to postselect
only runs where the atom was present.

3.3.5. Two atom probability

The sequence of short microwave pulses used to transfer an atom into F = 2 from the
reservoir can potentially transfer more than one atom. While we use the cavity trans-
mission signal to verify the presence of an F = 2 atom after the short MW preparation
pulse, we can not use the signal to differentiate between different atom numbers. This is
because a single atom already leads to a very low transmission, which is not measurably
lowered by additional atoms. We use two alternative methods to obtain the probability
to prepare more than one atom.

First, knowing the atom number distribution in the reservoir (see figure 3.8) allows
us to calculate the probability that the MW-pulse transfers more than one atom, given
the event that it transfered at least one atom. Under the assumption of a Poissonian
reservoir with the measured mean N̄a = 1.5, this probability is 2.6%.
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Figure 3.10.: Normalized histogram of the number of probe light pulses np required until
only the F = 2,mF = 0 state is populated. A sum of two functions with
different mean number of pulses n̄p, corresponding to runs with one and
two prepared atoms, fit the data well.
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Second, we directly measure the probability of two atoms remaining in the dipole
trap after the push-out sequence using the following method. We repeatedly attempt
to pump the (single or more) atoms into F = 2,mF = 0 by using probe light pulses. If
there is only a single atom present, we expect it to be pumped into mF = 0 after a mean
number of probe pulses n̄p = n̄p,1 given by the inverse of the steady-state population
in mF = 0. If two atoms are present, the mean number of required pump pulses to
pump both atoms into mF = 0 is n̄p = n̄p,2. Assuming that the atoms are independent,
n̄p,2 = n̄2

p,1. Figure 3.10 shows the distribution of np obtained from around 15000 runs.
The distribution is fitted by the weighted sum of the two functions expected for single
atom runs and two atoms runs. Each is characterized by a mean number of pulses
n̄p. We obtain n̄p,1 = 3.3 ± 0.2 and n̄p,2 = 14 ± 2.5. n̄p,1 and n̄p,2 correspond well to
the calculated mF = 0 steady state population of 0.32 obtained from the full master
equation. The fitted weights give the fraction of runs with single atoms and two atoms
prepared. They are (in percent) 94.2± 0.6 for the single atom function and 5.8± 0.6 for
the two atom function.
The difference between the two-atom probability of 5.8% measured here and the 2.6%

calculated above is probably due to errors in the measurement of the mean atom number
in the reservoir as well as to an imperfect push-out of F = 1 atoms. In conclusion, the
single atom preparation succeeds in the large majority of runs. In less than 6% of runs,
two atoms are prepared instead. This number could be lowered by using even weaker
MW pulses for the extraction of single atoms from the reservoir.

3.4. Characterisation of the single atom-cavity
system

3.4.1. Dipole trap lifetime

An experimentally important parameter of the system is the time the single atom remains
trapped in the dipole trap. Three possible loss processes exist. Collisions with the
background gas (measured loss time constant in a magnetic trap: τbg = 1.4 s), parametric
heating at twice the trap frequency (we did not measure the noise spectral density
at the relevant frequencies and therefore can not estimate the expected heating rate),
and momentum diffusion due to off-resonant scattering and photon redistribution [92]
(expected lifetime from momentum diffusion τmd ≈2 s).
The experimental measurement of the dipole trap lifetime is straightforward. After the

single atom preparation in a dipole trap of 3mK depth, we switch off the detection light
during a variable time t, and we then perform a further short transmission measurement
to determine whether the atom is still trapped. Before the second measurement, we
apply a short pulse on the repumper transition |F = 1〉 → |F = 2〉, perpendicular to the
cavity axis. This pulse is required because dipole trap light can induce hyperfine state
changing, off-resonant absorption-emission processes (the estimated rate of this process
is at least an order of magnitude smaller than the expected dipole trap lifetime). Figure
3.11 shows the probability of the atom to still be trapped after time t. An exponential
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Figure 3.11.: Measurement of the dipole trap lifetime. The graph shows the fraction of
atoms that remain trapped after a holding time t in a dipole trap of 3mK
depth. Data points of two different measurements are shown along with
an exponential fit with decay constant 427ms.

decay function with a fitted decay constant of 427± 15ms fits the data well. Whilst we
can not pinpoint the dominant heating mechanism, 427ms is long compared to relevant
experimental timescales such as our typical Rabi-frequencies (on the order of 30 kHz)
and time necessary for atom detection (typically on the order of 100µs).

3.4.2. Single atom internal state dynamics

Information about the coupled atom-cavity system is obtained by transmission measure-
ments of the probe laser. Figure 3.12 shows an experimental trace of cavity transmission
with a single atom coupled to the cavity. Sudden changes in the transmission signal is
observed. They are due to quantum jumps of the atom between the resonant F = 2 and
the non-resonant F = 1 state. Transmission is low when the atom is in F = 2, due to
the vacuum-Rabi splitting. An atom in F = 1 on the other hand has negligible effect
to cavity transmission compared to an empty cavity. The atoms jumps between the
hyperfine states due to non-resonant excitation to the D2 multiplet. An atom in F = 2
is resonantly excited to F ′ = 3 by the weak, but non-zero intracavity probe intensity,
from where only the transition back to F = 2 is allowed. Off-resonant excitations to
F ′ = 2, 1 however lead to a possible decay into F = 1. F = 1 atoms on the other hand
are exposed to a much higher light intensity, since they have a negligible effect on the
cavity resonance. However, they are 6.8GHz off-resonant to the probe light and are only
excited with weak rates to F ′ = 0, 1, 2, leading to the eventual decay to F = 2.
A large number of traces like the one shown in figure 3.12 allow us to directly measure

the lifetimes of the hyperfine states under the action of probe light. To measure the
distribution of lifetimes, we use a thresholding method to determine when a quantum
jump happens. The detected signal in transmission, a flux of counts on the APD with
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Figure 3.12.: Typical experimental trace of cavity transmission with a single atom cou-
pled to the cavity. Sudden changes in the transmission signal are observed.
They are due to quantum jumps of the atom between the resonant F = 2
and non-resonant F = 1 hyperfine state.

rate Φt(t) is integrated during a signal integration time tint. We determine that the
atom underwent a hyperfine changing scattering event at time τ if the integrated signal
N=

∫ τ+tint
τ

Φt(t)dt becomes larger (or smaller) than a threshold value Ncrit. Ncrit is
typically chosen at about NF=1/2, where NF=1 is the number of counts expected during
tint if the atom is in F = 1. The integration time is chosen such that NF=1 ≈ 15, so
that photonic shot noise does not contribute to the observed quantum jumps. Figure
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Figure 3.13.: Single atom hyperfine state lifetimes under the action of probe light. A
total of 1594 events with an atom in F = 2 and 937 events with an atom
in F = 1 are shown in the form of a histogram. The lines are exponential
fits with decay times of 26ms (F = 1) and 52ms (F = 2).

3.13 shows histograms of the duration the atom spends in either F = 1 or F = 2 before
a quantum jump happens. Both histograms show an exponential decay with decay
constants of 26ms for F = 1 atoms and 52ms for F = 2 atoms. Probe power for this
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measurement corresponded to Φ0 = 1.9 · 105 s−1 for the empty cavity, and integration
time was chosen as tint = 15/Φ0 ≈ 79µs.
The same traces allow to determine the count rates in both transmission and reflection.

The count rate in transmission for an atom in F = 1 is equal to the empty cavity
transmission of Φ0 = 1.9 · 105 s−1, with an atom in F = 2 it is reduced to 1.4 · 103 s−1

or 0.0074 ·Φ0. The count rates in reflection are 4.4 · 105 s−1 with an atom in F = 1 and
1.9 · 105 s−1 with an atom in F = 2.
A noteworthy feature of the transmission traces as shown in figure 3.12 is the absence of

any sign of an increase of the count rate with time when the atom is in F = 2. Indeed,
one might expect this count rate to increase as the atom heats due to spontaneous
scattering. Heating of the atom has two effects. First, it leads to a decrease in its
coupling strength to the cavity. Second, it decreases the light shift due to the dipole
trap, shifting the atomic resonance away from the probe laser frequency. Both effects
lead to an increase in cavity transmission. The absence of this observation leads us to
conclude that the atom remains at a position of strong coupling until it is lost from the
dipole trap.

3.5. Vacuum Rabi splitting

To show that all single atoms we prepare couple to the cavity with similar strength,
we measure the normal-mode spectrum of the atom-cavity system. The theory of the
vacuum Rabi splitting for our system was presented in chapter 1. Here, we use a trans-
mission measurement by pumping the cavity to obtain the spectrum. Alternatively, we
excite the atom perpendicularly to the cavity axis, and collect fluorescence through the
cavity fibers.

3.5.1. Spectroscopy of the strongly coupled system

We use the following experimental sequence to measure the spectrum of the atom-cavity
system. After preparing a single atom, we probe cavity transmission at a given probe-
cavity detuning ∆pc = ∆pc,i during 8µs. To ensure that the atoms has remained trapped
during the probe pulse, we then apply a short repump pulse transversally to the cav-
ity axis and check that the on-resonance cavity transmission is below the preparation
threshold. For this, we change the probe frequency to cavity resonance. If this measure-
ment confirms that the atom still couples to the cavity, we set the probe laser frequency
back to ∆pc,i and again measure transmission. This measurement-control cycle is re-
peated until the atom is lost. For each probe detuning ∆pc,i, the transmission signals of
approximately 20 atoms are averaged.
Both dipole trap light and probe light are linearly polarized along axis ε̂c,b correspond-

ing to the blue cavity eigenpolarization with resonance frequency ωc,b. (The second cavity
eigenpolarization axis ε̂c,r has resonance frequency ωc,r such that ωc,b = ωc,r + ∆bi.) The
bias magnetic field of 3.7G is also polarized along ε̂c,b The dipole trap gives rise to a
light shift of -60MHz to the F = 2 multiplet, and an mF -dependent light shift to the
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Figure 3.14.: a) Normal-mode spectrum of a single atom coupled to the cavity. Red
points are the measured transmission. The black line is the steady-state
solution of the master equation for g0/2/π=240MHz and ∆ac=0. The gray
area bounds the solutions when varying g0/2π by ±10MHz and ∆ac/2π by
±10MHz. The blue dots are the measured empty cavity transmission. The
blue line is a Lorentzian fit to the measured cavity transmission, giving a
fitted width of 53MHz. b) Level scheme including coupling strengths (in
MHz) for different transitions connecting Zeeman sublevels of F = 2 to
the excited states. Note that coupling strengths do not depend on the
sign of mF . The difference in coupling strengths explains the asymmetric
normal-mode spectrum, as described in the text.

excited states in multiplet F ′ = 3. In first order calculations, taking into account contri-
butions only from the D2 and D1 transitions, the lightshift in this multiplet is 33MHz
for mF = 0, 29MHz for mF = ±1, 18MHz for mF = ±2 and 0 for mF = ±3.
The measured normal-mode spectrum is shown in figure 3.14. The multilevel atomic

structure coupled to the two-mode cavity leads to a rich structure in the observed spec-
trum. Especially striking is the asymmetry between the two-peak structure observed for
∆pc < 0 and the single peak for ∆pc > 0, which can be understood qualitatively as fol-
lows. Depending on the probe laser frequency, optical pumping leads to different steady
state populations in the F = 2 multiplet. Only the state F = 2,mF = 0 approximates
a two-level atom coupled to the cavity, since it has no allowed π transitions to F ′ = 3
(see figure 3.14). Population in this state leads to the dominant peak on the left (red
detuned) side of the spectrum at -190MHz, and also contributes to the peak on the blue
detuned side of the spectrum. The population in mF = ±1, 2 is also coupled to F ′ = 3,
but with smaller coupling strengths due to smaller Clebsch-Gordan coefficients. These
levels however have additional allowed transitions to F ′ = 2 and F ′ = 1, red detuned
to the probe laser and cavity. The combined effect of a smaller coupling strength plus
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the additional coupling to a red-detuned transition leads to a second peak for ∆pc < 0,
whereas the two effects lead to opposite and almost equal shifts compared to the mF = 0
population for ∆pc > 0, leading to a single peak on the blue side of the spectrum.
Along with the measurement, figure 3.14 shows the steady-state solution of the mas-

ter equation taking into account the coupling of the atom to both cavity polarization
eigenmodes, dipole trap light shifts, magnetic field and the excited state multiplets
F ′ = 1, 2, 3. The coupling strength g0 was used as only adjustable parameter in the
model. The value extracted from the fit is g0=240±10MHz, 12% higher than the value
calculated from the mode volume given by mirror curvatures (see [70]). Since the mirror
curvatures underlying this calculations are not known with good precision, this measured
value of g0 is well within the error bar of the calculation.

The high value of the observed coupling and the absence of broadening of the peaks
compared to the master equation (which assumes a point-like atom positioned at exactly
an anti-node of the probe light) is a strong indication that a large fraction of the prepared
single atoms are indeed trapped close to the maximum of the cavity field. This is in
agreement with the observed binary transmission level during preparation (see figure
3.7), where no intermediate levels of transmission are observed.

In order to observe a Rabi-spectrum more closely resembling the ideal case of a two-
level atom, we measured the normal-mode spectrum for single atoms prepared in state
|F = 2,mF = 0〉 (see chapter 3.3.4 for the preparation of this state). Figure 3.15 shows
the time-resolved spectrum observed for atoms initially in |F = 2,mF = 0〉. When
measuring the transmission only during a time smaller than the optical pumping time,
the spectrum is almost symmetrical, as expected for a two-level atom. With continuous
probing, the system evolves towards the steady state and the spectrum reaches the
associated asymmetrical shape.

3.5.2. Fluorescence single atom vacuum Rabi spectrum

For the results presented so far, measurements were performed by pumping a cavity
mode and observing cavity transmission. The Jaynes-Cummings hamiltonian however
is symmetric with respect to the atomic and photonic operators, and the atom-cavity
system can equivalently be probed by driving the atom, using a pump beam perpendic-
ular to the cavity axis. An excitation in the cavity mode builds up due to the strong
coupling of the atom to the mode. The excitation of the cavity mode decays with rate
κ into the cavity fibers, such that the number of photons in the cavity can be measured
on the APD’s.
The experimental procedure is similar to the one used in chapter 3.5.1 to measure

the vacuum Rabi splitting via the cavity transmission. With the lower-frequency cavity
mode resonant to the |F = 2,mF = 0〉 → |F ′ = 3,mF = 0〉 transition, a single atom
is prepared in the cavity using cavity transmission to signal a successful preparation.
The side excitation beam, polarized perpendicular to the cavity axis and parallel to the
chip surface (x̂), is then turned on during 5ms. We use the APD on the single- mode
fiber output to measure the number of photons in the cavity during the side excitation
pulse. The frequency of the side excitation beam ωp/2π is changed from run to run over
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Figure 3.15.: Time-resolved normal-mode spectrum of a single atom coupled to the
cavity. The atom is initially prepared in mF = 0. For each curve, the
transmission is integrated over 2µs after a variable time of probing. The
normal-mode spectrum changes as the atom is optically pumped. After
72µs, the asymmetric normal-mode spectrum closely resembling the steady
state as shown in figure 3.14 is reached.

a range of ±800MHz.

Figure 3.16 shows the observed count rates during the first 400µs of the pump interval
as a function of the probe frequency. Four distinct peaks can be distinguished. As in the
transmission measurement, the normal-mode spectrum is asymmetric, around ∆pc = 0,
with two peaks on the red-detuned side. Due to the different pumping process, the weight
of the three peaks is different however, see figure 3.16 b). A broadening of the peaks is
also observable, and the peaks are closer to resonance. We attribute this to heating of
the atom during the measurement due to the pump beam. Heating of the atom leads
to higher amplitude oscillations in the dipole trap, and therefore simultaneously to a
decrease in coupling strength and increase in detuning of the atom due to a decrease in
the average light shift. Both effects lead to a broadening of the peaks.

The measured frequency range is large enough to observe the coupling to the second,
higher frequency cavity mode. Corresponding to the birefringent splitting of ∆bi/2π =
540MHz, the cavity-like peak of the second mode leads to an increased count rate
between ∆pc/2π = 500 MHz− 600MHz.

The total count rate with the side excitation beam on, but without atom coupled to
the cavity, is on the order of 1 kHz, much lower than the observed signal on the peaks
of the spectrum.
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Figure 3.16.: Fluorescence measurements of the normal-mode spectrum. A single atom
coupled to the cavity is driven by a pump laser perpendicular to the cavity
axis, and photons leaking out of the cavity are detected. a) Full spectrum
showing the normal mode spectrum of the resonant mode as well as the
off-resonant second cavity mode at 540MHz. Each data point is an average
of about 5 runs. b) Same data as in a) (red), compared to the normal mode
spectrum measured in transmission (blue). The y-axis for the blue curve
was changed to enable an easy comparison.

3.6. Conclusion

This chapter discussed the preparation of single atoms to an FFP cavity on an atom chip.
A BEC is the starting point of the single atom preparation. Thanks to the magnetic
potentials available on the atom chip, the BEC can be positioned with high precision at
the center of the cavity mode volume. The single atom is extracted from the BEC and
is therefore in a well-defined antinode of the intra-cavity dipole trap. A high degree of
control over the coupling strength between the cavity and the single atom is therefore
achieved. The coupling strength was directly measured in the form of the normal-mode
spectrum of the coupled system. The measured spectrum corresponds very well to the
solution of the full master equation. The measured coupling strength corresponds to the
maximum coupling strength expected when the atom is at the exact maximum of the
cavity field, giving an indication that the single atom is cold and close to its motional
ground state.





4. Detection of a single atom
hyperfine state

This chapter discusses the characteristics of the FFP cavity when used as a state-
dependent detector for single atoms. An introduction to existing methods for detecting
single atoms is presented, and their advantages and disadvantages discussed. Our cavity-
based detection scheme is introduced together with two different methods enabling us to
access the hyperfine state from cavity transmission and reflection. Experimental results
quantifying the detection fidelity are presented. Finally, the time-dependency of the
detection fidelity is investigated to achieve detection times in the microseconds range.

4.1. Introduction

The read-out of the internal state of neutral atoms or ions is of importance for many
experiments in quantum optics and atomic physics. In quantum information applications
for example, the internal states of atoms represent an ideal carrier of information due to
long coherence times and the well-defined transition frequencies. The qubits are typically
encoded into hyperfine states of single atoms (or ions), or are mapped onto them before
detection [93]. Detection of the hyperfine state then constitutes the last step to obtain
the result of an experiment (e.g. a gate operation), and as such is a crucial component
in determining the overall fidelity of the experiment.

The most important characteristics of any internal state read-out are detection error,
detection time and destructiveness or repeatability [94]. The requirements for detection
error vary with the application at hand. In general, it would be desirable to have a de-
tection error that is not a limiting factor for the experiment. With single ions, two qubit
quantum gates reach fidelities of up to 99.3% [95]. For faul-tolerant quantum compu-
tation, the error requirements is thought to lie around 10−4[96, 97], and computational
overhead varies inversely with the required gate fidelity. A detection error in the range
of 10−4 is therefore required for this kind of application.

Detection time should as a minimum requirement be much faster than the qubit’s
decoherence time. For hyperfine qubits in neutral atoms, this requirement is not overly
stringent, since coherence times can be in the range of seconds [98]. For quantum
information processing proposes, detection time however can easily become a limiting
factor to the repetition rate. With two qubit gate times on the order of microseconds
or less [99–102], minimizing the detection time with concurring low detection error is of
high relevance.

Similarly, repeatability and non-destructiveness in the sense that the atom or ion not

71
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be lost due to the detection is relevant to the repetition rate of the experiment. For
neutral atoms, single atom preparation (or loading) times typically are on the order of
many milliseconds or seconds, such that experiment repetition rates are greatly reduced
if the detection is destructive.

4.1.1. Single atom state detection methods

Hyperfine state read-out for neutral atoms has proven to be a challenging task. While
many methods have been devised and implemented, many of them face drawbacks. In
many cases, they are intrinsically destructive [103–107]. Others lack efficiency, such that
only a small part of the read-out attempt lead to a definite result [108, 109]. In all of
these schemes, as well in those that circumvent these drawbacks [89, 110–114], read-out
error has not reached the values of down to 6×10−4 achieved in the best hyperfine state
detections with single ions [59, 93].
The dominant quantum state read-out method implemented in ion traps is state-

selective fluorescence [115–118]. The method relies on a close transition to scatter many
thousands of photons. Since each scattering event leads to the heating of the atoms by
an amount around the recoil temperature Trecoil = ~2k2/mkB, quite large trap depths
are required in order not to lose the atom before successfully detecting it. Ion traps
are many thousand of Kelvin deep and fulfill this requirement. Impressive detection
fidelities of up to 99.99% (for an optical qubit) are possible as a result [59]. Since traps
for neutral atoms typically have a depth of only a millidegree Kelvin, the heating caused
by many thousand recoils easily pushes the atom out of the trap. Only recently have two
groups been able to overcome this problem by using high numerical aperture optics for
fluorescence detection, demonstrating the possiblity to adapt fluorescence detection for
neutral atoms [113, 114]. Fuhrmanek et al. reached 98.6% detection efficiency without
losing the atom.
Another widely used method is the so-called push-out detection. Here, the atom is

state-selectively removed from the trap by a resonant laser [103–106, 119, 120]. This
method leads to detection errors on the order of 1%, and is destructive by definition.
State-dependent ionization of atoms is another destructive detection scheme [13, 107,

121]. A static electric field is used for ionization, and the resulting charged particles are
detected on multi-channel plates. Detection speeds are quite high (1µs), and detection
errors are around 5%.
To aid optical detection schemes, cavities can be used. Cavities can help increase

detection fidelity in two ways. One is by increasing the collection efficiency in a fluores-
cence measurement([108, 112]). When coupling the atom to a cavity, the Purcell effect
leads to an increased spontaneous emission rate into the cavity mode when exciting the
atom perpendicularly to the cavity axis. Most of the fluorescence emission can therefore
be collected. This scheme is most suited to the "bad cavity" regime of cavity QED. A
detection fidelity of 99.4% was reached in 85µs by Bochmann et al ([112]).
The method we have chosen to pursue is to measure the state dependent cavity trans-

mission and reflection to read out the hyperfine state ([89, 110]). The most important
parameter in this scheme is the cooperativity of the system, since a high cooperativity
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leads to a large state-dependent transmission ratio and a low scattering rate. Our cavity
is therefore uniquely suited for this detection method. In the following, we describe the
detection process in detail.

4.1.2. Detection error and fidelity

We start by clarifying the fundamental concepts of detection error and detection fidelity.
Consider a system that can be in one of two quantum states |0〉 or |1〉. A measurement
device is used to determine in which of the states the system is. After each measure-
ment, the device is supposed to yield measurement result "0" (or "1")if the system was
in state |0〉(or |1〉) just before the measurement. For a non-perfect measurement device,
two detection errors ε0 and ε1 can then be defined. The error ε0 is given by the prob-
ability that the device gives out "1" even though the system was in |0〉, and ε1 is the
corresponding error if the system was in |1〉. If we suppose that the system has equal
probability to be in either state, the mean detection error is defined as

ε =
ε0 + ε1

2
. (4.1)

We define the fidelity F as
F ≡ 1− ε. (4.2)

This is a definition that is widely used in quantum computing literature. It gives the
expected fraction of correct read-outs when many measurements are performed. An
alternatively employed, slightly more conservative, definition is F = 1 − max{ε0, ε1}
(e.g. in [112]). Note that it is critical for either definition to make sense that the
efficiency of the device be 100%, meaning that the device gives a definite read-out of
either 0 or 1 after each measurement.

4.2. Accessing the quantum state from photon
counts

4.2.1. Counts thresholding in two dimensions

Consider the situation depicted in figure 4.1 a). A 87Rb atom is strongly coupled to
a high-finesse cavity. The cavity and probe laser are tuned to resonance to the optical
transition between the F = 2 → F ′ = 3 states, such that both cavity reflection and
transmission strongly depend on the internal (hyperfine) state of the atom: an atom in
the resonant state F = 2 blocks cavity transmission due to the vacuum Rabi splitting,
whereas an atom in state F = 1 has no effect on cavity transmission since it is very far
detuned from the probe frequency. The reflection signal is inverse to the transmission,
it is high for an atom in F = 2 and low for an atom in F = 1. An experimental of both
cavity transmission and reflection is shown in figure 4.1 b).

The count rate measured by the APD in transmission is ΦT
F1 (ΦT

F2)for an atom in
F = 1 (F = 2), whereas the count rate in reflection is ΦR

F1 (ΦR
F1). In this situation,
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Figure 4.1.: a) Principle of cavity based state detection. Cavity reflection and trans-
mission depend on the hyperfine state of the atom coupled to the cavity.
APD’s detect the photon fluxes ΦR and ΦT . b) Experimental trace of cav-
ity reflection and transmission with an atom coupled to the cavity. Both
signals depend on the hyperfine state of the atom, as can be observed when
the atoms changes its hyperfine state under the action of probe light.

a hyperfine state detection can be realized by integrating the photon counts during a
detection time T . The probability distribution to observe (cR = T · ΦR, cT = T · ΦT )
counts in reflection and transmission will be different for an atom initially in F = 1 or
F = 2. We call pF2(cR, cT ) (pF1(cR, cT )) the probability distribution obtained for an
atom initially in F = 2 (resp. F = 1).
The two-dimensional threshold method consists in taking outcomes in subspace C2

defined by pF2(cR, cT ) > pF1(cR, cT ) to signal an atom in F = 2 and an atom in F =
1 if the outcome is in C1 defined by pF2(cR, cT ) ≤ pF1(cR, cT ). Note that this is a
straightforward extension of thresholding using a single (e.g. fluorescence) signal.
The detection errors εF1 and εF2 using this method are determined by the overlap be-

tween pF2 and pF1. They are given by εF1=
∑
C2 pF1 and εF2=

∑
C1 pF2. This overlap, and

therefore the detection errors, is determined by two factors. In general, the distributions
pF1 and pF2 are Poisson distributions due to photon shot noise. The contribution of the
overlap due to this noise can be made arbitrarily small by increasing the integration time,
and therefore the mean number of counts detected in transmission and reflection. The
second contribution to the overlap is due to depumping into the other hyperfine state
during the detection time. This happens due to off-resonant excitation of the F ′ = 2
and F ′ = 1 states (see section 3.4.2). Since the probability of depumping increases with
detection time, so does the contribution of this effect to the detection error. An optimum
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Figure 4.2.: Example of a two-dimensional distributions of counts expected with an
atom prepared in F = 1 (left) and F = 2 (right). The solid black lines
represent the threshold used to differentiate F = 2 from F = 1 atoms.
The tail on the "wrong" side of the threshold is due to depumping during
the detection time. The calculation is based on experimentally measured
parameters (τF1 = 26ms, τF2 = 52ms, ΦR

F2 = 8.8× 105 s−1, ΦR
F1 = 4.3× 105

s−1, ΦT
F2 = 1.3× 103 s−1, ΦT

F1 = 1.8× 105 s−1, detection time 60µs).

detection time can be determined that minimizes the detection error.
Assuming poissonian count distributions and exponential distributions of hyperfine

state lifetimes (with time constants τF1 and τF2), we calculate pF2(cR, cT ) and pF1(cR, cT )
as

pF2 =e−T/τF2λ(cR, T · ΦR
F2)λ(cT , T · ΦT

F2) + . . .∫ T

0

e−td/τF2

τF2

λ
(
cR, (T − td) · ΦR

F1 + td · ΦR
F2

)
λ
(
cT , (T − td) · ΦT

F1 + td · ΦT
F2

)
dtd

pF1 =e−T/τF1λ(cR, T · ΦR
F1)λ(cT , T · ΦT

F1) + . . .∫ T

0

e−td/τF1

τF1

λ
(
cR, (T − td) · ΦR

F2 + td · ΦR
F1

)
λ
(
cT , (T − td) · ΦT

F2 + td · ΦT
F1

)
dtd,

(4.3)

where λ(k, µ) is the Poisson distribution with mean µ. The first term in pF2 and pF1 is the
purely poissonian count distribution arising when the atom does not change its hyperfine
state during readout, multiplied by the probability that the atom is not depumped. The
count rate in transmission and reflection stays constant and is integrated over detection
time T . The probability that the atom is not depumped during T is e−T/τF1 (resp.
e−T/τF2) when it is in F = 1 (resp. F = 2). The second term in pF2 and pF1 is the count
distribution arising when the atom changes its hyperfine state within T . The probability
of depumping at time td is e−td/τF1

τF1
dtd (resp. e−td/τF2

τF2
dtd). This probability multiplied

by the count distribution arising when the atoms is depumped at td, integrated over
all possible depumping times, gives the second terms in pF2 and pF1. An example of
a calculated distribution for an atom in either F = 2 or F = 1 is shown in figure
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Figure 4.3.: Sketch of time resolved counts in transmission for two possible detection
events of 15 photons each. Supposing an F = 1 atom would lead to one
count per bin on average, both traces would lead to the detection result
F = 1 when using a simple thresholding. The maximum likelihood method
on the other hand accesses the time resolved data and would lead to the
(probably correct) result that the atom in trace b) initially was in F = 2.
In our experiment, we additionally use reflected counts to access the state
for both threshold and maximum likelihood method.

4.2. The contributions of the two terms are clearly visible. The main components of
the distributions are Poisson distributed. They are accompanied by a tail caused by
depumping. The border between the two subspaces C1 and C2 is made explicit by the
two-dimensional threshold shown as a thick black line.

4.2.2. Maximum likelihood method

The simple count thresholding method discards the useful information encoded in the
temporal evolution of the count signals. Consider a situation where the qubit under
measurement is depumped from F = 2 to F = 1 during the measurement time τmeas.
The transmission signal may then contain a significant amount of counts (bigger than
the optimal threshold), such that the threshold method would lead to the wrong iden-
tification of the initial atomic state as F = 1. The counts are clustered near the end
of the detection time, after the scattering event leading to depumping has occurred,
but the count histogram does not reveal this. In these cases, the use of a time-resolved
measurement and associated analysis method leads to an improvement in the detection
error[122]. Here, we make use of the maximum likelihood method (MLM) [59].
To apply the MLM, we divide the detection pulse into N time bins of length Tbin.

Tbin is chosen much smaller than the expected measurement time (in our case, the lower
limit is given by the counter clock rate, leading to Tbin=4µs). The transmission and
reflection counts for every bin constitute a set M = {ciR, ciT}, where i=1. . . N refers to
the bin number. We calculate the probability qF2 that a given set M was generated by
an atom initially in F = 2 as well as the probability qF1 that the same set was generated
by an atom initially in F = 1. The criterion for discrimination between F = 2 and
F = 1 atoms is simple: If qF2(M) > qF1(M), we infer that the atom was in F = 2, and
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vice versa. The maximum number of bins N is chosen such that a further increase in
detection time does not significantly alter the outcome of the measurement.
We use a recursive calculation over M to obtain qF2 and qF1. To this end, we define

pka and pkb , the probability that the atom initially (i.e. before the detection pulse) was in
state F = a (F = b) and that its state after bin k is F = b (F = a), given the observed
trace M={ciR, ciT}, i = 1 . . . k. It follows that

qF2 = pk22 + pk21 (4.4)
qF1 = pk11 + pk12. (4.5)

We use a recursive calculation to find pNa,b:

pi11 = pi−1
11 f11(ciR, c

i
T ) + pi−1

12 f21(ciR, c
i
T ) (4.6)

pi12 = pi−1
12 f22(ciR, c

i
T ) + pi−1

11 f12(ciR, c
i
T ) (4.7)

pi21 = pi−1
21 f11(ciR, c

i
T ) + pi−1

22 f21(ciR, c
i
T ) (4.8)

pi22 = pi−1
21 f12(ciR, c

i
T ) + pi−1

22 f22(ciR, c
i
T ), (4.9)

where the base case is given as

p0
11 = p0

22 = 1 (4.10)
p0

12 = p0
21 = 0. (4.11)

Here, the distributions fa(ciR, ciT ) and fa(ciR, ciT ) are closely related to the count proba-
bility distributions used in the thresholding method. Indeed, f22 is nothing but the first
term of pF2 in equation 4.3, when the detection time T is replaced by the binning time
Tbin:

f22(cR, cT ) = e−Tbin/τF2λ(cR, Tbin · ΦR
F2)λ(cT , Tbin · ΦT

F2) (4.12)

Equally, f21 corresponds to the second term in pF2:

f21(cR, cT ) =

∫ Tbin

0

e−td/τF2

τF2

λ
(
cR, (Tbin − td) · ΦR

F1 + td · ΦR
F2

)
. . .

λ
(
cT , (Tbin − td) · ΦT

F1 + td · ΦT
F2

)
dtd (4.13)

The equivalent holds for f11 and f12 with respect to pF1.
The recursion is continued until bin N , where N is defined such that the stopping

condition ∣∣∣∣log10

(
pN11 + pN12

pN21 + pN22

)∣∣∣∣ < δ (4.14)

holds. This condition is a measure of the certainty with which the recursion has led to
the correct result. δ is chosen such that 10−δ is much smaller than the expected detection
error. In our case, δ = 6 is suitable, since we expect a detection error on the order of
10−4. Additionally, a maximum number of bins Nmax is defined, and the recursion is
stopped if the stopping condition is not reached after Nmax bins.
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The detection time necessary for the maximum likelihood method varies, since the
number of bins N necessary to reach the stopping condition varies with each individual
trace. It is therefore possible in principle to define an effective mean detection time
(see [59]) which can be shorter than the optimum detection time for the thresholding
method. Here however, we define the detection time as given by Nmax, since for many
practical applications a fixed detection time is advantageous for timing purposes.

4.3. Experimental results

4.3.1. Measurement of the detection efficiency

The detection error of both the thresholding and maximum likelihood detection methods
depend on hyperfine state lifetimes and mean count rates. The measurement of these
parameters was presented in section 3.4.2. The probe pump power is chosen to be low
enough to not saturate either the APDs or the atom. Under these conditions, count
rates in transmission are ΦT

F1 = 1.8× 105 counts per second for an atom in F = 1, and
ΦT
F2 = 1.3× 103 counts per second for an atom in F = 2. The count rates in reflection

are ΦR
F=1 = 4.3 × 105 s−1 and ΦR

F2 = 8.8 × 105 s−1. Both APD’s are read-out with a
binning time of 4µs. The hyperfine state lifetimes are τF2 = 52ms and τF1 = 26ms.
With these numbers, we calculate the overlap of the expected count distributions, and
thereby the detection error of the thresholding method according to equation 4.3. We
obtain εF1 = 7.0×10−4 and εF2 = 9.1×10−4, and the total detection error is ε = 8.0×10−4

at the optimum detection time of 60µs. The associated expected count distributions are
shown in figure 4.4 (left panels).
To obtain the detection error expected from the maximum likelihood method, we

use a Monte-Carlo algorithm to generate artificial "detection traces" on which we then
apply the maximum likelihood recursive algorithm. The resulting detection errors are
εF1,ML = 4.8× 10−4, εF2,ML = 4.9× 10−4 and εML = 4.9× 10−4. We set the maximum
number of bins Nmax to 25, since a larger Nmax does not further decrease the detection
error. The detection time for this method is therefore 100µs. At the cost of a longer
detection time, the maximum likelihood method is able to reduce the detection error by
approximately 40%.
In order to experimentally confirm the errors of both readout methods, we have to

prepare a single atom in a well-defined hyperfine state before applying either detection
method. For this, we load a single atom into the dipole trap and continuously monitor
cavity transmission until the atom is lost. The observation of transmission below a
lower (above a higher) threshold signals a successful preparation in F = 2 (F = 1). Two
different thresholds are used to minimize preparation error: To signal the preparation of
an atom in F = 2, we integrate over 72 µs and use threshold 1, for F = 1 we integrate
over 24µs and use a lower threshold of 2 counts. The choice of integration times Tprep

and threshold is made to minimize preparation errors while maximizing the probability
of successful preparation. With the chosen parameters, 85% of the preparation attempts
lead to a successful state preparation.
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Figure 4.4.: Two-dimensional distributions of counts registered during 60µs in reflection
and transmission with an atom prepared in F = 1 (upper graphs) and
F = 2 (lower graphs). The left graphs are calculated distributions. The
right graphs show the experimentally measured distributions. Note that the
data are plotted on a logarithmic scale. The solid black lines represents the
threshold used to differentiate F = 2 from F = 1 atoms.

Preparation error arises due to photon shot noise and depumping. The contribution
due to shot noise for the preparation of the F = 2 state is given by λ(0, 72µs · ΦT

F1) =
2.0× 10−6, for the preparation of the F = 1 state by

∑
i>3 λ(i, 24µs ·ΦT

F2) = 4.3× 10−8.
Both of these are negligible.

The contribution due to depumping during the preparation time is calculated similarly.
The count distribution in transmission for the case that an atom initially in state F = 2
(F = 1) is depumped during the preparation time is given by pF2(cT) (resp. pF1(cT)):

pF2(cT) =

∫ Tprep,F2

0

e−t/τF2

τF2

λ
(
cT , (Tprep,F2 − t) · ΦT

F1 + t · ΦT
F2

)
dt (4.15)

pF1(cT) =

∫ Tprep,F2

0

e−t/τF1

τF1

λ
(
cT , (Tprep,F2 − t) · ΦT

F2 + t · ΦT
F1

)
dt, (4.16)

similarly to equation 4.3. The preparation error for the F = 1 state is therefore domi-
nated by depumping and given by

∑
i>3 pF1(i) = 3.5× 10−4. For the F = 2 state, this

term is given by pF1(0) = 2.0× 10−6.
We can repeat the preparation-detection cycle many times on each single atom pre-

pared in the dipole trap. On average, more than 1000 preparation-detection cycles are
performed on each atom. Table 4.1 shows the measured and calculated detection errors.
As expected, the maximum likelihood method gives the best detection fidelity of 99.93%.
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threshold threshold maximum likelihood maximum likelihood prepa-
calculated measured calculated measured ration

εF1 7.0 11.4± 0.6 4.8 9.1± 0.6 3.5
εF2 9.1 9.0± 0.5 4.9 5.7± 0.4 ≈ 0

ε 8.0 10.2± 0.4 4.9 7.4± 0.3

Table 4.1.: Calculated and measured hyperfine state readout errors for the threshold-
ing method and the maximum likelihood method. All numbers have to be
multiplied by 10−4. Uncertainties are statistical. The last column gives
preparation errors.

The measured thresholding fidelity is 99.9%, close to the prediction of the model. The
difference between the calculated and measured fidelities is mostly accounted for by the
state preparation error. The runs in which more than one error were prepared affect the
error only at the level of 10−5.
Figure 4.4 shows the comparison between the calculated and measured probability

distributions of counts from which we extract the errors for the thresholding method.
The tails that make up the dominant contribution to the detection error are clearly
visible on both the measured data and the calculation. Figure 4.5 shows the same
data as one-dimensional histograms, with transmission and reflection shown in separate
panels. Again, a very good agreement between theory and measurements is found. In
the reflection signal, it can be seen that the measured count distributions are slightly
super-poissonian. We attribute this to long-term probe power fluctuations of around
5%. These fluctuations lead to a larger measured detection error when compared to
the error calculated from the ideal distributions. The same probe power fluctuations
of course are present in the transmission measurements, however they are not resolved
there since their effect is smaller than shot noise. Since the hyperfine state preparation
is based solely on transmission counts, it is not affected by the fluctuations.

4.3.2. Time dependency of the detection efficiency

The detection times of our scheme of 60µs-100µs are smaller than typical fluorescence
detection times, which are upwards from 400µs [59]. Many experiments could benefit
from even faster detection rates. In quantum information experiments with single ions,
gate times are usually faster than the time required for detection [123], such that the
cycling time could be increased by a faster detection. Detection times in the sub-µs range
are also desirable for the realization of loophole-free Bell test ([107]). To close both the
"locality loophole" and the "detection loophole", fast and high-finesse detectors are
necessary.
For constant probe power, simply decreasing the integration time leads to a rapidly

increasing detection error, which quickly becomes dominated by photon shot noise. The
time dependence of the detection error for our parameters is shown in figure 4.6. As
expected, the detection error increases when detection time is lower than the optimum.
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Figure 4.5.: Count distributions in transmission (a and c) and in reflection (b and d),
with logarithmic y-axis (a and b) and linear y-axis (c and d), obtained
from the data in 4.4. Measurement time is 60µs. Red (green) circles are
measured distributions for an atom initially in hyperfine state F = 2 (F =
1). Lines are theoretical curves, constituted by a Poisson distribution with
a tail caused by depumping. Parameters used for the theoretical curves
are measured mean count rates and lifetimes. The measured distributions
follow theory closely. In the reflection signals, the measured distributions
are seen to be slightly broader than Poissonian. The difference is mainly
due to light power fluctuations in the probe laser. This effect is less visible
in transmission due to the lower mean count rates and consequently larger
relative shot noise.

The largest deviation between theory and measurements is in the time range where the
count distribution broadening due to probe power fluctuations lead to an increase in the
measured detection error. Overall, the agreement between theory and measurement is
good. However, for detection times on the order of microseconds, the error increases to
above 10%.

To decrease detection time while avoiding large detection errors, probe power has to
be increased. Figure 4.7 shows the calculated and measured count distributions for a
detection time of 2µs. The detection time of 2µs corresponds to the clock rate of the
counter we use to read the APD clicks, and could easily be further reduced using faster
electronics.
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Figure 4.6.: Detection error versus detection time for the thresholding method, with
constant probe power. The blue line is the result of the model, the red
points are measured data with 1σ errorbars. An optimum detection time
exists for which the detection error is minimized. For our parameters, this
happens at 60µs. Integrating for less than this optimum time deteriorates
the detection finesse.

While this detection time is 30 times shorter than before, we use a probe power
increased by a factor of 60 to counteract saturation effects (see below). This leads to
transmission count rates of 7.6×106 s−1 (4.4×105 s−1) for an atom in F = 1 (F = 2) and
reflection count rates of 9.2× 106 s−1 (1.3× 107 s−1). Hyperfine state lifetimes are τF1 =
460± 50µs and τF2 = 205± 50µs. The measured detection error is ε = 6.1± 0.7× 10−3,
in agreement with the prediction from the model of 5.7× 10−3.

The increase in detection error with higher probe power is due to various factors. First,
our APD has a dead time of 53 ns. The APD detection efficiency therefore decreases with
light power and saturates at 1.5×107 counts/s. Appendix A.2 gives the correction factor
by which the detection efficiency decreases as a function of count rate. At the maximum
count rate reached here (1.3 × 107 s−1 on the reflection APD), the correction factor is
3.5. The overlap between the F = 1 and F = 2 detection histograms is increased by
this effect.

Second, the extinction ratio of the cavity transmission ΦT
F2/Φ

T
F1 decreases with increas-

ing probe power, even when correcting for the APD non-linearity. In this measurement,
ΦT
F2/Φ

T
F1 = 3.6%, compared to the value of 0.7% in the low-power measurement. The

F = 2 lifetime decreases with the same non-linearity due to a higher scattering rate,
further increasing the detection error. In spite of these negative effects, our result shows
a high-fidelity read-out at a detection times orders of magnitude below previous results.
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Figure 4.7.: Two-dimensional distributions of counts registered during 2µs in reflection
and transmission with an atom prepared in F = 1 (upper graphs) and
F = 2 (lower graphs). The left graphs are calculated distributions. The
right graphs show the experimentally measured distributions. Note that the
data are plotted on a logarithmic scale. The solid black lines represents the
threshold used to differentiate F = 2 from F = 1 atoms.

4.4. Conclusion

This chapter explored the capabilities of the FFP to act as a high-fidelity hyperfine state
detector of single atoms. For detection times of 100µs, a detection fidelity of 99.93%
was measured, making the detection scheme suitable for applications in quantum infor-
mation processing with neutral atoms. Since the detection is not based on scattering,
it is non-destructive and the atom remains trapped during the measurement. Addition-
ally, the hyperfine state of the atom is preserved during the measurement, enabling the
deterministic preparation of single atoms in the desired hyperfine state.

Shorter detection times are possible, potentially well below the microsecond range. In
a detection time of 2µs, limited by the counter clock rate, the detection fidelity obtained
is 99.4%. The fundamental limit for detection time is on the order of 1/κ, which for our
system is 3 ns.





5. Measurement backaction

So far we have shown that the FFP cavity is perfectly suited as a state-dependent atom
detector with very high measurement fidelity. Fidelity is one of the most important
characteristics of a measurement device, especially in the field of quantum computation.
Another important aspect in measurements is backaction, the change caused by the
measurement on the measured system. The study of backaction has merits due to it
being one of the fundamental concepts in quantum mechanics, but it also has practical
implications. Indeed, many quantum measurements cause a much stronger backaction
than required by the laws of quantum mechanics. Irreversible energy exchange and
heating typically results from this.
For the detection of single ions, the method most commonly used is the shelving

technique. It is based on the collection of resonance fluorescence emitted by the atom
excited by a laser. In this section, we will investigate the amount of scattering our
detection method causes, and compare the result to the shelving technique, and more
generally all free space detection methods using light. We give the factors that limit our
system and show how these limits could be overcome. Furthermore, we demonstrate a
quantum Zeno effect and show how it allows us to determine the minimum backaction a
measurement causes and how strongly each photon incident on the cavity collapses the
state of the atom.

5.1. Information gain and scattering in cavities and
in free space

5.1.1. The minimum detection error

It will be useful for the rest of the chapter to introduce a framework that allows to
determine the minimum error a certain measurement method is capable of, along with the
backaction it causes. We will concentrate on the measurement of a single atomic qubit. It
will become clear that what we consider to constitute a measurement is the establishment
of a correlation between the qubit and the environment such that it becomes possible to
deduce the qubit state with some accuracy when the state of the environment is known.
Note that what we are concerned with here is not the determination of the exact qubit

state α|0〉 + β|1〉. Quantum mechanics tells us that in order to precisely measure |α|
and |β| (supposing we are only interested in populations of the states, we neglect the
phase component), an infinite number of projective measurements are required, each of
which provides the experimenter with a binary result of either 0 or 1. The mean of the
measured values then gives an approximation to |α| resp. |β|. This argument assumes the

85



86 Chapter 5. Measurement backaction

complete projection of the qubit onto the eigenstates |0〉 and |1〉 by each measurement.
In actual experiments however, this projection in general is not perfect. Here, as in the
previous chapter, we are concerned with the quantification of the measurement error in
a single projective measurement, i.e. the error to measure the qubit in |1〉 even though
it was in |0〉, and vice versa. This error is accompanied by a non-perfect projection by
the measurement, as we will show in this section.
In the first step of a measurement, the qubit to be measured becomes entangled with

another quantum object. This object is often called the ’meter’, and we will use this
nomenclature even though the meter here is not necessarily macroscopic. In our case
for example, the meter is a photon field that may contain only a few photons. The
entanglement between the qubit and the meter is created by an interaction between the
two. We denote the meter state before the interaction as |Ψin〉, and its final state after
interaction as either |Ψ0〉 or |Ψ1〉 (depending on whether the qubit is in state |0〉 or |1〉).
An initial state (α|0〉+ β|1〉)⊗|Ψin〉 evolves into α|0〉⊗ |Ψ0〉+β|1〉⊗ |Ψ1〉. The readout
of the qubit state therefore amounts to distinguishing the meter states |Ψ0〉and |Ψ1〉. In
general, these states are nonorthogonal, and can therefore only be distinguished with
some detection error ε, where ε = (ε0 + ε1)/2, defined as in chapter 4. Again, we assume
no prior knowledge on the qubit state.
The minimum possible error εH when distinguishing two quantum states is given by

the Helstrom bound ([124]), defined as

εH =
1

2

(
1−

√
1− |〈Ψ0|Ψ1〉|2

)
(5.1)

Note that the Helstrom bound depends solely on the overlap of the two quantum states
to be distinguished. For zero overlap, the error goes to zero, whereas for states with
overlap approaching unity the minimum error approaches 1/2. ε = 1/2 is also the error
one can obtain from guessing the state. Here, we are concerned with the measurement
of a qubit by a coherent light pulse, such that |Ψin〉 is a coherent light pulse containing
n photons on average. To good approximation, the two final states |Ψ0〉 and |Ψ1〉 then
also consist of coherent states. As an example, consider the generic case of a qubit to
be measured using an ideal fluorescence scheme (see figure 5.1 c). The qubit has one
completely dark state |0〉 which does not interact with the incoming pulse |Ψin〉, and
one bright state |1〉 which scatters all photons. The final states of the light field after
interaction with the qubit therefore are |Ψ0〉 = |0〉S|n〉T and |Ψ1〉 = |

√
n〉S|0〉T . We use

the notation |
√
n〉 for a coherent pulse containing on average n photons, and subscripts

S and T to denote the scattered and transmitted light modes. The overlap |〈Ψ0|Ψ1〉|2 is
given by the formula valid for all coherent states |α〉 and |β〉 (with mean photon number
|α|2 and |β|2)

〈β|α〉 = e−
1
2(|α|2+|β|2−2αβ∗), (5.2)

and therefore
|〈Ψ0|Ψ1〉|2 = exp(−2n). (5.3)
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Figure 5.1.: Comparison of different qubit detection methods. a) The cavity detection,
using transmitted and reflected light. b)Shelving technique or fluorescence
imaging. When the atom is in the resonant state |1〉, some of the incoming
photons are scattered. Due to a limited collection efficiency, only a part
of the scattered photons are collected. c) Ideal shelving technique. Lenses
with a collection solid angle of 2π are used on both sides of the atom. Under
theses circumstances, the atom acts as a mirror when it is in the resonant
state. When the atom is in the off-resonant state, all light is transmitted.

The Helstrom bound for an ideal fluorescence measurement therefore is

εH =
1

2

(
1−
√

1− e−2n
)
n�1
≈ e−2n

4
(5.4)

The minimum detection error decreases exponentially with the number of photons in
the measurement pulse and quickly becomes small.

The exact same results holds true for a cavity based detection scheme with resonant
light, as illustrated in figure 5.1 a). Here, photons reflected by the cavity take the
role of the scattered photons in ideal fluorescence imaging. In an ideal version of cavity
based detection, an atom in the non-resonant state |0〉 has negligible effect on the cavity,
and all photons from the incident mode are transmitted, such that |Ψ0〉 = |0〉R|

√
n〉T .

By contrast, an atom in the resonant state |1〉 detunes the cavity by more than its
linewidth and all photons are reflected, such that |Ψ1〉 = |

√
n〉R|0〉T . Equations 5.2 and

5.4 therefore are valid also for ideal cavity based detection schemes, and the minimum
detection error decreases exponentially with the number of photons.

This result is true not only for the ideal schemes considered so far. All schemes that use
coherent probe pulses that are redistributed into different modes by the interaction with
the atom show this exponential decrease in the Helstrom bound, albeit with different
decay rates. In general, the outgoing light field can be approximated by the tensor
product of coherent fields,

|Ψ0〉 =
⊗
m

|αm0
√
n〉 (5.5)

|Ψ1〉 =
⊗
m

|αm1
√
n〉, (5.6)

where |αmi |
2 is the fraction of photons redistributed into mode m after interaction with

the qubit state i. In analogy to equation 5.2, the overlap of the outgoing light field then
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is
|〈Ψ0|Ψ1〉|2 = e−ζn, ζ =

∑
m

(αm0 − αm1 )2 . (5.7)

The Helstrom information

Equation 5.7 tells us that in general, the minimum error that is possible in a measurement
decreases exponentially with the number of photons used for the measurement. This
leads to a heuristic definition of a quantity defined as the logarithm of ε,

I ≡ − ln 2ε. (5.8)

We will refer to this quantity as "information", since it increases as the uncertainty
about the measured state decreases. The maximum information Itot (or equivalently,
the minimum error) one can obtain from a measurement is related to the minimum
detection error as

Itot = IH ≡ − ln 2εH . (5.9)

This is the information that has leaked out of the system during the measurement as
a function of the photons used for the measurement. Itot constitutes an upper bound
to the information Iacc that an experimenter can actually obtain. In order to achieve
the detection error associated with Itot, one would need to have a means to precisely
measure the overlap of the final light state.
In the following, we use the notation of the "Helstrom information"

IH(ζn) = − ln
(

1−
√

1− e−ζn
)
n�1
≈ ζn. (5.10)

to define the information a measurement system delivers whose final light states have
an overlap of e−ζn.
The word "information" is used in the sense common in binary hypothesis testing [125].

It has a value between zero and infinity. The meaning of the word here is therefore quite
different from the more usual definition according to which there is exactly one classical
bit of information in a qubit.

5.1.2. Backaction and scattering

In many situations an experimenter not only wants to maximize his information gain (or
equivalently, his certainty about the state of the measured system), but also minimize
the backaction of the measurement on the system. Quantum mechanics requires that
the measured system becomes projected during the measurement, as can be seen easily
on the example considered just above. The interaction between the meter and the qubit
leads to an evolution of the total state as (α|0〉+ β|1〉)⊗|Ψin〉 → α|0〉⊗|Ψ0〉+β|1〉⊗|Ψ1〉.
The effect on the qubit itself is obtained by tracing over the meter after the measurement
interaction. The final state of the qubit described by its density matrix ρf then is

ρf =

(
|α|2 αβ∗〈Ψ0|Ψ1〉

α∗β〈Ψ1|Ψ0〉 |β|2
)

(5.11)
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This decrease in the coherence of the qubit is what is called the quantum state projection.
In an ideal measurement, |Ψ0〉 and |Ψ1〉 are orthogonal, and the measurement completely
annihilates the qubit’s coherence.

The Helstrom bound tells us that the total information extracted from the system
is ultimately limited by the overlap of the two possible meter output states. Equation
5.11 shows that the projection of the system is given by the same overlap, and there is
a direct relation between information obtainable by the experimenter, expressed by IH
in equation 5.9, and the projection of the qubit: The strength of the projection of the
atom increases when the total information extracted from the system increases.

The state projection required by quantum mechanics does not affect the system in
any way except by reducing its coherence. In particular, for a qubit encoded in the
internal state of an atom, no external degrees of freedom of the atom are necessarily
affected by the measurement. However, many experimental techniques actually lead to
a much higher, and often undesirable, effect on the atom. Unlike the intrinsic state pro-
jection, this additional backaction is not limited to the degrees of freedom that are being
measured. In the case of optical read-out schemes for atomic system, this additional
backaction typically is due to spontaneous emission of photons and leads to heating.

Spontaneous emission is easily quantifiable in the example of the ideal fluorescence
measurement considered above. By definition, each incident photon is scattered when
the atom is in the bright state. We can restate the Helstrom bound in terms of scattered
photons m by noting1 that in this case, n = m and therefore

Itot = IH(2m) ≈ 2m (5.12)

While this limit is no surprise for fluorescent detection, it also holds for a much larger
class of measurements. A general lower bound for spontaneous emission during opti-
cal detection of atoms was shown to exist by Hope in [126]: The information obtained
in either absorption or phase shift measurements are both equally limited by sponta-
neous emission, since no phase shift can be imprinted on the light without excited state
population. According to this result, equation 5.12 holds true as long as the following
conditions are fulfilled: The meter is a classical light source, and the light passes the atom
only once. We will refer to this sort of measurements as "free-space measurements", as
opposed to cavity measurements.

Scattering-free detection in a cavity

A cavity is not a single-pass device. In a simple picture of a Fabry-Pérot cavity, a photon
passes an atom in the cavity F times before it is lost through the cavity mirrors. This
allows a cavity-based detection scheme to overcome the limit from equation 5.12. In the
cavity-based scheme, an atom in the resonant state |1〉 prevents the light from entering
the cavity. This reduces the intracavity intensity by a factor 1/4C2 compared to the

1Since we neglect scattering from the off-resonant dark state, we quantify scattering in terms of photons
scattered when the atom is in the bright state, the quantity we denote by m. Under the assumption
that the qubit is with equal probability in |0〉 or |1〉, the average number of scattered photons in a
measurement is m/2.
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Figure 5.2.: The Helstrom bound of free-space and cavity based detection. The black
curve is the Helstrom bound for free-space (e.g. fluorescence) detection.
The green, orange and purple curves correspond to the Helstrom bound for
a cavity-based scheme with varying cooperativity of C = 5, 20, 110. The left
axis shows the total information extracted, the right axis is the associated
detection error. Note the inverted axis for the detection error. All curves
assume that the non-resonant dark state does not contribute to scattering.

empty cavity value, as we have calculated in the theory chapter (equation 1.28). This
drastically reduces the scattering rate of the atom, a phenomenon already considered
in the theory of optical bistability [65]. In the context of single atom detection, it was
shown in [127] that an atom strongly coupled to a cavity scatters a fraction 1/C of the
incident light power, a result also derived here (equation 1.30). In our terminology, we
therefore have m = n/C. The total information per scattered photon is C times larger
than in the free-space situation:

Itot = IH(2Cm) ≈ 2Cm (5.13)

The cooperativity C can become arbitrarily large, such that cavity based detection in
principle can completely avoid spontaneous scattering. Figure 5.2 shows a comparison
of the Helstrom bound for free-space and cavity qubit detection in terms of scattering
probability.
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Figure 5.3.: The field modes into which the measurement light is redistributed. Due to
the birefringence of the cavity mirrors, the field inside the cavity populates
both the main (resonant) and the orthogonally polarized, detuned mode.
Accordingly, the outgoing light is characterized by the coupling factors to
the different modes, α ∈ {Tm, Rm, Sm, Td, Rd, Sd}, where α depends on the
qubit state. Here, scattering by the atom is neglected.

5.2. Non-ideal cavities and measurements

The Helstrom bound determines the minimum backaction the measurement has on the
qubit, and it gives a lower bound to the detection error an experimenter can hope to
achieve. So far, we only considered idealized measurement situations that do not directly
correspond to actual implementations. In the following, we address the different factors
that lead to reductions in the total information due to the characteristics of our cavity.
Furthermore, some of the information contained in the Helstrom bound is not accessible
to the experimenter. The accessible information Iacc is smaller than Itot, and we will
characterize which factors limit Iacc.

5.2.1. Helstrom bound for our cavity

The total information Itot is reduced when using realistic cavities due to finite intra-
cavity intensities even when the qubit is in the resonant state |1〉, as well as due to
non-perfect mirrors. In our cavity, the second polarization mode also has to be taken
into account. Due to these effects, the outgoing field can be written as a tensor product of
six coherent fields (see equation 5.5), accounting for the components of the loss channels
and the second cavity mode. The outgoing fields have amplitudes αi

√
n, where the

subscript i denotes the qubit state. α ∈ {tm, rm, sm, td, rd, sd} completely identifies the
outgoing mode. m and d designate the main (resonant) and detuned cavity mode, and
t, r, and s are the mode coupling factors for transmitted, reflected and scattered light.
Figure 5.3 gives an illustration of the outgoing field modes.
The overlap of the outgoing field then is calculated according to equation 5.7, leading

to a total information IH(ζn). In our case, the phase shift between the states |Ψ1〉 and
|Ψ0〉 can be neglected and the amplitude coupling factors {αi} can be considered real.
The power coupling factors {α2

i } in our case are (in percent) {α2
0} = {12.7, 41.4, 45.9, 0, 0, 0}

when the atom is in |0〉 and {α2
1} = {0.1, 99, 0.4, 0.1, 0.1, 0.4} when it is in |1〉. The val-

ues for {α2
0} are just the empty cavity transmission T0, reflection R0 and losses L0. They

are given by the mirror transmission Tmir = 31 ppm and scattering losses Lmir = 56
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ppm by the formulas

T0 =
T 2
mir

T 2
mir + L2

mir

, R0 =
L2
mir

T 2
mir + L2

mir

, S0 = 1− T0 −R0 (5.14)

The power coupling factors {α2
1} follow from the intracavity photon number in the two

modes for an atom in |1〉. The total intracavity photon number is obtained from the
measured cavity transmission for an atom in |1〉. The solution to the full master equation
predicts an approximately equal population of the two cavity modes. Transmission and
scattering of both modes are therefore equal and given by the mode population and Tmir
Lmir.
From {α0} and {α1}, we deduce ζ = 0.62, such that we expect our cavity to extract

a total information of Itot = IH(0.62n) ≈ 0.62n. This corresponds to roughly one third
of the ideal cavity case of IH(2n) ≈ 2n.
Of the total information Itot, only a part is contained in the light modes that are

accessible, i.e. in the optical fibers. The mode corresponding to scattering by the
mirrors is lost. The accessible portion of the light is therefore characterized by α′i ∈
{tm, rm, td, rd}, and the Helstrom bound corresponding to these outgoing light modes is
Iacc = IH(0.23n) ≈ 0.23n. However, we can not obtain all of this information, since this
would require to measure the complete quantum state of the outgoing fields.

5.2.2. Photon counting and the Chernoff information

We use photon counting on the transmitted and reflected light, which is not an optimal
strategy to distinguish |Ψ0〉 and |Ψ1〉. Iacc is therefore reduced even further. The infor-
mation accessible through photon counting is given by the overlap of the two (classical)
probability distributions P0 and P1, where P0 (P1) is the probability distribution of de-
tected counts if the atom is in |0〉 (respectively |1〉). The detection error is then given
by the distance between the two distributions

εD =
1

2
(1− ‖P0 − P1‖1) (5.15)

where the distance ‖P0 − P1‖1 is defined as

‖P0 − P1‖1 =
∑

x∈(cR,cT )

|P0(x)− P1(x)|
2

. (5.16)

We would like to express εD (and Iacc) as a function of n in order to be able to compare
it to εH (and Itot). According to Chernoff([125]), the error εD decays exponentially with
n in the limit of large n, such that

εD ≈ QC ≡ exp(−ξCBn), (5.17)

where QC is the Chernoff coefficient given by

QC = min
0≤s≤1

 ∑
x∈(cR,cT )

P0(x)sP1(x)1−s

 . (5.18)
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For the double Poissonian distributions P0 and P1 ξCB can be calculated to be
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Figure 5.4.: The accessible information Iacc as a function of incident photon number
n for two different ranges of incident photons.. The blue circles (left) and
blue line (right) show the numerical solution corresponding to Poisson count
distributions in transmission and reflection. The red line is the approxima-
tion Iacc = − log(1− (

√
1− exp(−ξCBn))) that asymptotically corresponds

to the Chernoff bound Iacc ≈ exp(−ξCBn). Note that the proposed function
Iacc fits well also for small n.

ξCB = − min
0≤s≤1

[
T s0T

s−1
1 +Rs

0R
1−s
1 − s(T0 +R0)− (1− s)(T1 +R1)

]
. (5.19)

Chernoff’s result shows that, in the limit of large n, the information accessible by photon
counting increases linearly with the number of incident photons. This is identical to the
behavior of Itot obtained from the Helstrom bound.

What about the behavior for small n? The distance ‖P0 − P1‖1 is well approximated
by
√

1−QC even for small n. Figure 5.4 shows the numerically calculated Iacc alongside
the function IH(ξCBn), and it shows good agreement between the two curves. To a good
approximation, we can write

εD =
1

2

(
1−

√
1−QC

)
. (5.20)

Comparing this to equation 5.1, we see that in the case of photon counting, the Chernoff
coefficient QC has the role of the state overlap in the Helstrom bound. We conclude
that Iacc behaves the same way as Itot as a function of n, allowing us to compare the
two measures.

In the ideal case of no cavity losses and infinite cooperativity, ξCB = 1. Counting
therefore allows to obtain at most half of the total information given by the Helmstrom
bound. The detection error can not be smaller than e−n, which is just the probability
that the coherent probe pulse does not contain a photon.

In our regime of parameters, the minimum in equation 5.19 is obtained for s ≈ 0.5,
leading to

ξCB = (T0 + T1 +R0 +R1)/2−
√
T0T1 −

√
R0R1 = 0.11. (5.21)
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Using perfectly lossless optics and photodetectors in both transmission and reflection, we
should thus be able to measure the qubit state with a detection error εD corresponding
to the information Iacc = IH(0.11n). In our experiment, we have losses in optics and
the APD’s leading to total photon detection efficiencies of 47% in transmission and 31%
in reflection. Taking these losses into account, we expect our detection method to yield
Iacc = IH(4.6× 10−2n).

5.2.3. Scattering in non-ideal cavities

Scattering of the resonant qubit state in our cavity differs from the ideal cavity due to
two reasons: Losses due to imperfect cavity mirrors and mode-coupling, and the presence
of the second cavity mode.
Mirror losses are accounted for in the empty cavity transmission T0. The resonant,

empty intra-cavity power is reduced by the factor
√
T0 (assuming the input and output

mirrors are identical). In the weak-pumping limit, the same reduction applies to the
intra-cavity power with the qubit present. The ratio of incoming to scattered photons,
which is C in an ideal cavity, therefore increases to n/m = C/

√
T0.

In order to determine the impact of the second cavity mode, we analyze the effect
of the probe light on the atom. Pumping the system with π polarized detection light
populates the excited state |F ′ = 3,mF = 0〉. This state has two decay channels: spon-
taneous emission into free space with a rate Γ and emission into the second, orthogonally
polarized cavity mode which is detuned by ∆bi = 540MHz. The emission into the sec-
ond cavity mode is enhanced by the Purcell effect and happens at a rate ΓP . The effect
of the second cavity mode is too strong to be treated as perturbation. We therefore
numerically solve the full master equation to obtain the ratio of decay between the two
decay channels. As result, we get ΓP = 2.6Γ. The total scattering rate is therefore 3.6Γ,
3.6 times higher than in a single-mode cavity. The finally expected ratio of incoming
to scattered photons therefore is n/m = C/3.6

√
T0. Figure 5.5 presents an overview

of the main differences between our cavity and an ideal cavity regarding Itot and Iacc.
Note that Itot as a function of m for our cavity is limited primarily by the presence of
the second mode. The accessible information on the other hand is reduced due to both
optical losses and the second cavity mode compared to the ideal cavity case.

5.3. Experimental results: Scattering and accessible
information

In this section, we experimentally measure the relation between the accessible informa-
tion Iacc and the number of scattered photons m for a single atom coupled to the cavity.
We start by showing how we experimentally implement a well-defined qubit in our sys-
tem by achieving control over the Zeeman state of the atom. We then go on to measure
the scattering rate of the atom under the action of probe light. Even though we have
no access to the fluorescence photons, we can nevertheless measure the scattering rate
by relating it to the rate of Zeeman state depumping. Finally, we are able to relate the
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Figure 5.5.: Itot (a) and Iacc (b) when APDs are used in ideal cavities and how losses
and the second cavity mode influence the two quantities. The two top rows
show results as a function of n, the bottom row as a function of m. All
numbers are theoretical values.

detection fidelity of our qubit read-out, and therefore Iacc, to the number of scattered
photons.

5.3.1. Experimental parameters

The qubit is implemented in the two states |1〉 = |F = 2,mF = 0〉 and |0〉 = |F =
1,mF = 0〉. The MW transition between the two states is insensitive to magnetic field
fluctuations since neither state has a first-order Zeeman shift. For all measurements in
this chapter, the higher frequency cavity polarization mode is tuned on resonance with
the |F = 2,mF = 0〉 → |F ′ = 3,mF = 0〉 transition. A bias magnetic field on the order
of 1G is applied parallel to this polarization. Probe light is resonant to the cavity and
atomic resonance, ωp = ωc = ωa. Both probe and dipole trap light are linearly polarized
parallel to the resonant cavity mode’s polarization. The probe light therefore resonantly
drives π transitions between |F = 2,mF = 0〉 and |F ′ = 3,mF = 0〉 (see figure 5.6).
The coupling constant of this transition is g/2π = 185MHz. With κ/2π = 53MHz and
γ/2π = 3MHz, this leads to a cooperativity of C = 107 for an atom in |1〉.
Unlike the experimental parameters used in chapter 4, these setting do not lead to an

optimum hyperfine state detection error. Here, we use them because these settings allow
us to measure the scattering rate of the atom via the depumping rate from mF = 0, as
shown in the next section. Additionally, the clock states are not subject to magnetic
field fluctuations and therefore are an ideal candidate as a qubit.
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Figure 5.6.: Level scheme for the measurements presented in this chapter. The
qubit is formed by the two clock states of the hyperfine ground state
of 87Rb. The qubit can be driven by resonant MW radiation. Both
the cavity resonance and the π polarized probe laser are resonant to the
|F = 2,mF = 0〉 → |F ′ = 3,mF = 0〉 transition.

5.3.2. Measurement of Zeeman state diffusion and scattering
rate

A measurement of the scattering rate by collection of fluorescence photons would be
difficult in our experiment since the atom is trapped at the center of the cavity mode,
leaving only a small opening angle through which to collect light. Also, background
contributions would be important due to the small expected fluorescence rate. We
therefore measure the depumping rate from |1〉 caused by probe light, from which we
can directly deduce the scattering rate.
We measure the rate of depumping from |1〉 as follows. After the preparation of a

single atom in |1〉, we turn on a "depump pulse", i.e. probe light for a variable time. We
then determine whether the atom has remained in |1〉 or has been depumped by using
a Zeeman state sensitive detection. This uses the same principles as the Zeeman state
preparation: We apply a π-pulse on the clock transition followed by a detection pulse.
Only if the atom was in |1〉 before the π-pulse will the atom be found in F = 1 during
the detection pulse. The transfer probability to |0〉 is therefore equal to the population
remaining in |1〉 after the "depump" pulse.
We find that this survival probability decays exponentially with the number of incident

photons at an initial rate ν, where ν−1 = 142±25 photons (see figure 5.7). Note that the
measured initial population of state |1〉 is 95%. The missing 5% arise from a combination
of preparation and detection errors.
In order to determine the spontaneous scattering rate from the depumping rate, we

analyze the effect of the probe light on the atom. We have discussed above the two decay
channels of the state excited by the probe light, |F ′ = 3,mF = 0〉: spontaneous emission
into free space with a rate Γ and emission into the second, orthogonally (σ+ + σ−)
polarized cavity mode which is detuned by ∆bi = 540MHz, with a rate ΓP = 2.6Γ.
Spontaneous emission into free space is governed by the Clebsch-Gordan coefficients of
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Figure 5.7.: Measurement of the Zeeman state diffusion rate out of state
|1〉 = |F = 2,mF = 0〉 under the action of probe light. The probability to
detect an atom in state |1〉 decays exponentially with the number of photons
in the probe pulse with an initial rate ν, where ν−1 = 142± 25.

the respective transitions. The decay into the second cavity mode always leads to a
change of the atomic Zeeman state, while for the decay into free space the probability
to fall back into the original state |1〉 is 3/5. Therefore, we obtain the ratio of incident
photons to scattered photons as n/m = ν−1× (ΓP + 2ΓP/5)/(ΓP + Γ) = 118± 20. This
is compatible with the theoretical prediction of m = n/83 for our cavity system.

5.3.3. Detection error vs. scattering

We measure the detection error, and therefore Iacc, using the same thresholding method
as discussed in chapter 4. Using different detection times at the same pump power, we
determine the behavior of the detection error as a function of the number of incident
photons. Using the measured scattering rate, we can then draw the detection error (or
actually obtained information Iacc) as a function of the mean number of scattered pho-
tons. Figure 5.8 shows the measured Iacc alongside the curve expected from theory and
the measured scattering rate, IH((5.4±0.9)m). Additionally, the information attainable
in an ideal free-space measurement is shown. Unlike the theory curve, the measured
detection error saturates for high n due to quantum jumps between the two hyperfine
states which we neglected in the theory. The minimum detection error is around 9×10−3,
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Figure 5.8.: The measured detection error and Iacc (blue circles), expected behavior
of the accessible information as Iacc = IH(5.4m) (dashed blue line), and
the detection error attainable for free-space measurements (grey area). The
upper x-Axis shows the number of incident photons n, the lower x-Axis the
number of scattered photons m. The deviation of the measured detection
efficiencies from the theory curve is due to hyperfine changing scattering
events.

larger then the one obtained in chapter 4. This is due to the non-optimum parameters
used here, in particular the π polarized probe light and the magnetic field orientation
along the probe light polarization.

In the regime m � 1, where the detection error is not limited by depumping, we
find good agreement with the theoretical curve IH(5.4m). In spite of experimental
imperfections, the information accessible to us is a factor of 2.7 higher than possible in an
ideal fluorescence measurement. This translates to more than two orders of magnitudes
compared to state of the art fluorescence experiments ([128]).
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5.4. Measurement of the Helstrom bound of the
atom-cavity system

In this section, we show how we measure the quantity of the total information extracted
by the measurement. We present the relationship between the quantum Zeno effect and
the Helstrom bound, and how we use this relation to measure Itot.

5.4.1. The quantum Zeno effect

The quantum Zeno effect was first described by Sudarshan and Misra [129], under the
title of quantum Zeno paradox. In the original form, it refers to the situation of an
unstable particle under continuous observation. According to Misra and Sudarshan, the
particle will never decay in these conditions, i.e. in the limit of infinitely frequent mea-
surements. The resolution to the paradox that unstable particles do indeed decay when
observed for example in a bubble chamber lies in the insufficiently frequent interactions
between the particle and its environment.

The quantum Zeno effect has since enjoyed significant interest in both theoretical and
experimental work. In experiments, the quantum Zeno effect is usually demonstrated
not by inhibiting the decay of an unstable particle (since the quadratic part of the evolu-
tion ends prohibitively fast), but by preventing a Rabi oscillation imposed externally. As
in a spontaneous decay, the state population dynamics in a Rabi oscillation is initially
quadratic, such that the same formalism can be used. The first experimental observa-
tion of the Zeno effect was achieved on an ensemble of trapped ions ([130]), using the
fluorescence detection method as measurement device. Since then, the effect has been
observed on a number of systems, including single ions ([131]), neutral atoms ([132]),
microwave photons in a cavity ([133]) and Bose-Einstein condensates ([134]). The exper-
iment described in ([135]) is the only one achieved so far where the original proposition
of Misra and Sudarshan of the Zeno effect on an unstable quantum state was observed.

5.4.2. Zeno effect on a single atom coupled to the cavity

Here, we are interested in the quantum Zeno effect on a single atom strongly coupled
to our cavity. Consider the following situation: An atom in either |0〉 or |1〉 is prepared
in the cavity. A MW pulse is then applied on the |0〉 ↔ |1〉 transition. While the MW
is turned on, we simultaneously apply detection light with variable pump strength η.
The incident light measures the atomic state as described before. When the incident
light power is strong enough, a significant Zeno effect occurs and prevents the Rabi
oscillations induced by the microwave radiation.

To describe this system, we use the formalism of Bloch equations (BE), i.e. a master
equation for the reduced atomic (or qubit) density matrix ρA. In the absence of probe
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Figure 5.9.: Illustration of the Zeno effect, here seen as an effect of measurements on a
driven Rabi oscillation. Measurements are distributed randomly over time
with a rate Γm. The measurements rate are Γm/Ω = 0 (blue), 1/3 (red),
3 (green), 30 (light blue). The Zeno effect is most easily seen for a π-pulse
(t=0.5), where the measurements drastically decrease the transfer probabil-
ity to the second qubit state.

light, the evolution of the qubit state is described by simple Rabi oscillations:

dρ00

dt
= ΩR(ρ10 − ρ∗10) (5.22)

dρ10

dt
= i

ΩR

2
(ρ00 − ρ11) (5.23)

To integrate the effect of the probe light on the evolution, we consider the master equa-
tion of the whole system, and in particular the Liouville term originating from cavity
leakage (see [136])

dρ

dt
= Lκ(ρ) = 2κ

(
aρa† − 1

2

{
a†a, ρ

})
. (5.24)

Assuming that the qubit state |1〉, which is resonant to cavity and probe light, completely
blocks the probe light, we put a = α〈0|0〉, where α = η/κ (it can be verified that this
approximation leads to the same results as numerical calculations of the full master
equation, see [66, 136]). The evolution of the atomic part of the density matrix is
obtained by tracing over the cavity variables, yielding

Lκ(ρA) = 2
η2

κ

(
|0〉〈0|ρA|0〉〈0| −

1

2
{|0〉〈0|, ρA}

)
(5.25)
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Expressing this equation in the qubit base, we get the term to be added to the coherent
evolution expressed in equation 5.22:

dρ10

dt
= −Γmρ10 (5.26)

where Γm = η2/κ. The effect of the probe light is therefore an exponential decay of the
qubit coherence with a decay constant of Γm. The complete Bloch equations therefore
are

dρ00

dt
= ΩR(ρ10 − ρ∗10) (5.27)

dρ10

dt
= i

ΩR

2
(ρ00 − ρ11)− Γmρ10 (5.28)

Figure 5.9 shows the evolution of the qubit populations for different intensities of the
probe light. For measurement rates above Ω, the Rabi oscillations are suppressed. Note
how the transfer efficiency of a MW π-pulse goes from one to zero with increasing
measurement rate.

The physical interpretation of the decay term in the density matrix’s coherence is
straightforward. Bloch equations like 5.27 have been shown ([137]) to be equivalent to
a wave-function evolution with stochastically distributed perfect state projections. In
this picture, the qubit evolves unitarily according to equations 5.22, but this evolution
is interrupted at random times with a rate Γm. At these random times, the coherence of
the qubit is set to zero, i.e. a perfect measurement of the qubit state occurs. This is the
quantum Zeno effect for randomly distributed measurement intervals. The measurement
rate η2/κ is just the rate at which photons couple to the cavity, whereas spontaneous
emission plays no role. In the above reasoning, the Liouville term for spontaneous
emission can be neglected as long as γ � κ. Instead of spontaneously emitted photons,
photons impinging onto the cavity lead to the measurement backaction on the qubit
coherence.

We are now in a situation to establish the link between the Zeno effect and the
Helstrom bound. For a measurement pulse of a given length td, the Bloch equations
5.27 predict a decay of the qubit’s coherence by exp(−Γmtd). Here, Γmtd = ñ is the
average number of projective measurements occurring during the measurement time td.
We have shown above (equation 5.11) that the coherence of the qubit is reduced by a
factor corresponding to the overlap of the final light states 〈Ψ1|Ψ0〉. We thus have

〈Ψ1|Ψ0〉 = exp(−ñ). (5.29)

Measuring the strength of the Zeno effect therefore allows us to measure the overlap
〈Ψ1|Ψ0〉, and thereby the Helstrom bound Itot of our detection method.

5.4.3. Zeno effect for a single atom

To observe the quantum Zeno effect, we perform the following experiment: We prepare
an atom in either |0〉 or |1〉 coupled to the cavity. We apply a microwave π-pulse of
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τπ = 8.8µs duration on the |0〉 ↔ |1〉 transition. During the π-pulse of duration τ , we
apply detection light of variable intensity. We then measure the final state of the atom,
and thereby the probability of the π-pulse to have transferred the atom to the other
clock state.
The measured transfer probability of the π-pulse as a function of the mean number

of photons incident on the cavity is shown in figure 5.10 a). The measured transfer
probability when no probe light is turned on is 95% for both initial states, limited
by preparation and detection efficiencies. With increasing probe power, the transfer
probability decreases to below 5%.
An anomaly can be seen for atoms initially in |1〉 for high probe powers. When pump

strength increases to above 300 photons/τ , the atom-cavity system starts to saturate,
and the cavity transmission increases. As a consequence, the atom scattering rate is
strongly increased until the atom is pumped to the off-resonant F = 1 hyperfine state
during the π-pulse.
A given number of probe photons give rise to certain reduction in transfer probability.

Using the model of the system (equations 5.27), we determine the number of projective
measurements necessary to obtain this reduction in transfer probability. Figure 5.10 b)
shows the relation between incident photons n and the number of projective measure-
ments ñ. As expected, the relationship is linear, with a fit yielding ñ = 0.37n. This
shows that every incident photon leads to a significant decrease in the qubit state’s co-
herence. It is interesting to note that for F = 2 atoms, a strong quantum Zeno effect
occurs for a negligible intracavity photon number.

5.4.4. The Helstrom bound

The measured projection rate from the Zeno effect allows us to obtain the Helstrom
bound of our detection scheme. In terms of incident photons, the Helmtrom bound is
Itot = IH(2ñ) = IH((0.74 ± 0.04)n). Given the measured scattering rate m/n = 1/118,
this is equivalent to IH((87 ± 17)m). Figure 5.11 shows this result (green curve). The
right-hand y-axis in figure 5.11 shows the detection error we could obtain if we had
access to all of Itot. As an example, it would be possible to detect the qubit state
with an error of 1% with less than 0.03 photons scattered on average. In reality, the
accessible information Iacc = IH((5.4± (0.9)n) is small compared to the total extracted
information.
How much can this situation be improved? The orange curve in figure 5.11 shows the

accessible information we could obtain if we had a lossless detection of all photons in
the reflected and transmitted light modes without any change to the cavity itself. This
would lead to approximately Iacc = 14m.

5.5. Conclusion

In this chapter, we have analyzed our detection scheme in terms of scattering caused
during the detection. A measurement of the scattering rate induced by the probe light
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Figure 5.10.: Observation of the quantum Zeno effect. A MW π-pulse is applied to
an atom initially in |1〉 (blue dots) or |0〉 (red circles). a) Data points
show the transfer efficiency of the π-pulse as function of the number of
photons incident on the cavity during the pulse. We model the qubit
dynamics as described in the text. The bright blue points deviate from the
theoretical curve because of depumping into state F = 1 for that happens
for strongly saturating pump power. b) The average number of projective
measurements ñ we deduce for each data point from our model; the solid
line is a linear fit, yielding ñ = (0.37 ± 0.02)n. The solid line in a) shows
the prediction of the model supposing this linear relation.

showed that a read-out of the qubit state with an error below 10% is possible with less
than a single spontaneously emitted photon. We then presented a quantum Zeno type
experiment to quantify the projection caused by the incident photons.

Together, these results constitute a full experimental characterization of a quantum
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Figure 5.11.: Detection error and information versus the number of scattered photons.
The gray are is the range accessible to free-space detection schemes. The
green line is the total information Itot extracted by the cavity measurement,
deduced from the data from the Zeno effect (figure 5.10). The orange dotted
line is the information accessible in our experiment using perfect photon
counters to detect reflected and transmitted photons. Blue dots and dotted
line are as in figure 5.8.

measurement in the energy exchange free regime below a single spontaneous emission
event. Besides its fundamental interest, the scheme could lead to significant simplifi-
cation for proposed neutral atom computation schemes. Furthermore, it may enable
sensitive detection of molecules and atoms lacking closed transitions.
For future implementations, the cavity could quite easily be improved. Cavity losses

can be reduced by at least a factor of four ([69]) simply by using state of the art mirror
coatings in an otherwise identical fiber cavity.
Furhtermore, the closely spaced second cavity is a limiting factor since it leads to

increased scattering. By making the birefringence that causes it much larger than g0

(∆bi � g0), the second mode could be made far-detuned to the atom. In the limit of
a far-detuned mode, the Purcell-enhanced atomic decay rate is 2g2

dκ/∆
2
bi, where gd is

the coupling between the atom and the detuned mode. With a birefringence increased



5.5. Conclusion 105

by a factor of 4 from the current value of 540MHz, this scattering would be made
negligible. With these improvements and a photon detection efficiency of 70%, the
accessible information would increase to Iacc ≈ IH(110m).





6. Conclusion and Outlook

The experiments presented in this thesis demonstrate an unprecedented control over the
external and internal state of a single atom on an atom chip. We have presented a com-
plete set of techniques allowing the preparation of an ultracold atom at the exact center
of a miniature high-finesse cavity, leading to a deterministic strong coupling between
the atom and the cavity light mode. Since the single atom preparation starts with a
Bose-Einstein condensate, the method presents a new way to obtain ground state single
atoms that does not require cooling methods such as resolve sideband cooling that are
difficult to implement for neutral atoms.
The regime of very high cooperativity that is realized in the atom-cavity system en-

ables us to implement a hyperfine state read-out that surpasses previous neutral atom
detection methods in both fidelity and detection time. We presented two methods to
read out the hyperfine state of the atom based on cavity reflection and transmission. We
reached a read-out fidelity of 99.93% in a detection time of 100µs, and 99.4% in 2µs.
The fidelities obtained are as good as those reached in the best ion trap experiments.

Our cavity-based detection method does not rely on spontaneous emission, as we have
shown by measuring the scattering rate of the atom during detection. A state read-out
with less than one spontaneous emission event is therefore possible. Together with the
measurement of the atomic state collapse induced by single photons incident on the
cavity, our result constitute a full experimental characterization of a measurement in
the energy exchange free regime.

Due to the combination of outstanding capabilities, the presented state detection could
lead to a variety of applications. For quantum information purposes, the possibility of
high-fidelity state detection while staying in the ground state of the trap removes the
necessity of recooling after read-out. A drastic improvement in the cycling time of atom-
based quantum computing schemes could therefore be obtained. In view of recently
realized state-dependent microwave potentials [138], the elements for chip-based two-
qubit gates with neutral atoms have now been demonstrated. An atom chip combining
a microwave stripline and a fiber cavity could enable the realization of a collisional phase
gate [139, 140].

Instead of single atoms, we can also prepare small ensemble of atoms, all of which
identically couple to the cavity. Experiments in the little explored regime of tens of
atoms are therefore possible. Using off-resonant probe light, the non-destructive obser-
vation of Rabi oscillations of these small ensembles are possible [141]. An interesting
possibility would be the measurement of the onset of the quantum Zeno effect by in-
creasing the measurement strength while decreasing the atom number, thereby mapping
out a transition from a classical measurement regime to a regime dominated by quantum
state projection.

107
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Exciting a single atom from a reservoir into a different state, in the way presented
in this thesis, leads to the creation of a symmetrical Dicke state [142], since the flipped
spin is shared among all atoms. A tomography of the state can be implemented in a
straightforward manner using microwave induced state rotations and the cavity-based
hyperfine state detection.



A. Appendix

A.1. Rubidium data

A.1.1. Physical properties

Atomic Number Z 37
Total nucleons Z+N 87
Relative natural abundance 27.83%
Nuclear spin I 3.2
Atomic mass M 86.9092 u
Vacuum wavelength D1 transition λD1 794.979 nm
Vacuum wavelength D2 transition λD2 780.246 nm
Lifetime 52P1/2 τD1 27.70 ns
Lifetime 52P3/2 τD2 26.24 ns
Natural line width D1 transition ΓD1 2π × 5.746(8)MHz
Natural line width D2 transition ΓD2 2π × 6.065(9)MHz
Ground state hyperfine splitting νHFS 6834.68MHz
D2 transition recoil velocity vR 5.885mm/s
D2 transition recoil temperature TR 361.95 nK
D2 transition Doppler velocity vD 11.75 cm/s
D2 transition Doppler Temperature TD 146µK
D2 transition dipole matrix element 〈J |d̂|J ′〉 3.584(4)× 10−29 Cm
Saturation intensity
52S1/2, F = 2,mF = ±2→ Isat 1.67mW/cm2

52P3/2, F = 3,mF = ±3

Table A.1.: Physical properties of 87Rb. From [143]

109
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A.1.2. Hyperfine structure

Figure A.1.: 87Rb hyperfine structure of the D1 and D2 transitions. From [143]
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Figure A.2.: The APD correction factor as a function of count rate. Saturation is
reached for around 15× 106 counts/s.
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A.3. Publications

Publications related to this thesis:

• Cavity-Based Single Atom Preparation and High-Fidelity Hyperfine State Readout
Roger Gehr, Jürgen Volz, Guilhem Dubois, Tilo Steinmetz, Yves Colombe, Ben-
jamin L. Lev, Romain Long, Jérôme Estève, and Jakob Reichel
Phys. Rev. Lett. 104, 203602 (2010)

• Measuring the internal state of a single atom without energy exchange
Jürgen Volz, Roger Gehr, Guilhem Dubois, Jérôme Estève, and Jakob Reichel
accepted for publication in Nature
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