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Résumé

Les techniques de refroidissement laser ont réalisé des progrés immenses
depuis le début des années 80. Affranchis de toutes les incertitudes in-
hérentes au mouvement thermique, les physiciens sont désormais en mesure
de réaliser des dispositifs de mesure toujours plus précis, tels des horloges ou
des gravimétres, en s’appuyant sur l'interaction parfaitement controlée entre
le champ électromagnétique et de simples nuages d’atomes. De plus en plus,
I'utilisation d’atomes ou d’ions comme ultime porteurs d’information appa-
rait comme une solution plausible a la réalisation d’ordinateurs quantiques.
Dans cette optique, de nombreux efforts sont consentis afin de miniaturiser,
de simplifier, et de rendre possible la production en masse de cette technologie
permettant de manipuler les atomes avec tant de précision. L’introduction
des puces a atomes a permis de réaliser un grand pas dans cette direction,
réduisant drastiquement ’encombrement et le cotit des expériences de re-
froidissement d’atomes. Désormais, la réalisation de dispositifs sur puce
permettant d’étendre les possibilités de manipulation des atomes piégés est
devenue un objectif majeur.

Dans ce travail de thése, nous avons réalisé le premier détecteur d’atomes
uniques piégés sur une puce a atomes, basé sur l'interaction avec un mode
de cavité optique dans le régime de couplage fort. La cavité optique est
directement intégrée a la puce a atomes. Fonctionnant dans le régime de dé-
tection dite "non-destructive", le dispositif de détection permet de préparer
de maniére déterministe un atome unique piégé dans un piége dipolaire, avec
une précision en position submicrométrique, et dans un état interne spéci-
fique. La détection en tant que telle permet de mesurer 1’état hyperfin de
I’atome, en perturbant son état externe nettement moins qu'un systéme de
détection fonctionnant en espace libre.

Ce nouveau dispositif de préparation et de mesure est utilisé dans une ex-
périence d’effet Zénon quantique, la premiére a étre effectuée avec des atomes
neutres individuels. Sous l'effet de la mesure, I'oscillation de Rabi entre les
deux sous-niveaux hyperfins |F' = 1) et |F = 2) du niveau fondamental de
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I’atome de Rubidium 87 est stoppée. L’expérience, effectuée a la fois dans
le régime continu et le régime pulsé, permet de montrer 'adéquation entre
le flux d’information extraite du systéme et le flux de photons traversant la
cavité optique de détection.



Abstract

In the three last decades, laser cooling techniques made a huge progress,
enabling the realization of high precision devices, such as atomic clocks and
gravimeters, based on a perfect control of the interaction between light and
matter. Single ions or atoms, in a well-controlled motional state, appear as
the ultimate carrier of information for a quantum computer. The road to
the quantum computer makes necessary the integration and miniaturisation
of the technology which allows to manipulate the atoms with such a high
precision. The atomchips represent a big step towards this goal, providing
a dramatic reduction to the requirements in terms of volume and cost of
laser cooling experiments. Current developments of atomchips technology
are largely focused on the realization of integrated devices which extend
capabilities in terms of atomic manipulation.

In this thesis, we demonstrate the first detector for trapped single atoms,
integrated to an atomchip. The detection device is a high finesse Fabry-Perot
optical cavity, in the strong coupling regime of cavity QED. The cavity allows
to perform a quantum-non-destructive measurement of the atomic hyperfine
number, and perturbs the atomic motional state much less than a free space
optical detector. We use this measurement device also to prepare a single
atom in a well-defined internal state.

Relying on the preparation and measurement of the atomic state with
the cavity, we carry out the first Quantum Zeno Effect experiment performed
with single, neutral atoms. Under continuous measurement, we show that
Rabi oscillations between hyperfine ground states are slowed down and even-
tually frozen. This experiment clearly proves that the decoherence induced
by a cavity-based detector is totally dominated by the leakage of cavity pho-
tons, and not the atomic spontaneous emission.
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Notations

Notation Description
P,p a simple probability
P(n) a discrete probability distribution
Prpoiss(n;7) the Poisson distribution with mean value 7
dP(x) a density probability distribution
Vect(|a), |b),...) | the subspace spanned by quantum states |a), [b),. ..
Pg the orthogonal projector on the subspace F
w, Q (angular) frequency
f ordinary frequency
JAND frequency detuning wy — wq
Wge frequency of the |g) — |e) transition
g atom-cavity coupling rate = half the vacuum-Rabi-splitting
K cavity field decay rate
vy atomic dipole decay rate = half the spontaneous emission rate
i cavity pumping rate
no = n*/K? steady-state cavity photon number for resonant pumping
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Introduction

A single atom interacting with a single mode of the light field is arguably one
of the simplest quantum systems one can imagine. The light field itself is a
quantum object, however it can be accurately described by a classical wave
as long as it does not interact with matter. On the counterpart, the atom
also possesses a quantum structure of levels, but only the interaction with
other systems, like the modes of the light field, can reveal it. The interaction
of the atom with each mode of the light field consists of elementary processes
of absorption and emission. These processes are coherent, in the sense that
if the atom is initially promoted to an excited state, the available energy
will oscillate between the atom to the light field, back and forth. If the
atom interacts with several light modes at the same time, the coherence is
blurred and the atom eventually loses all its energy to the light field. A
possible solution to overcome this problem is to place the atom in a cavity
(or optical resonator), which changes locally the structure of the light field.
This resonator defines a confined mode of the light field, which interacts much
stronger with the atom. This single atom-single mode interaction is described
in the framework of cavity quantum electrodynamics (cavity QED). If the
resonator quality is not very high, the first consequence is that the atomic
decay rate is enhanced by the interaction with the short-lived cavity mode
: this is the so called Purcell effect, discovered in 1946 by E.M. Purcell [1].
The observation of the coherent interaction between the atom and the field is
only possible with a sufficiently large resonator quality factor, obtained with
high reflectivity mirrors. This defines the regime of strong coupling, where
the coherent energy exchange takes place at a rate faster than any decay rate
of the system. This regime was first obtained in the 80’s with single Rydberg
atoms interacting with a microwave cavity |2, 3, 4], before it was observed in
the optical domain [5]. This conceptually simple system turned out to be an
experimental challenge.

From the optical point of view, the presence of a strongly coupled atom
changes the transmission spectrum of the weakly probed cavity, splitting
the resonance peak in two separate peaks. This effect is called Vacuum
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Rabi Splitting, since it is due to the interaction of a single photon. In the
optical domain, it was first observed with atomic beams [5, 6|. The cavity
transmission can be used as a detection signal for single atoms, or to measure
their internal state. In the strong coupling regime, the transmission almost
drops to zero at resonance when a resonant atom is in the cavity mode,
while a non-resonant atom has no effect on the transmission. Therefore, it is
possible with a cavity to obtain a detection signal, without inducing a large
backaction on the atomic motional and internal states.

Current research in cavity QED is largely devoted to applications to quan-
tum information. Used with or without a cavity, the single atom is a good
carrier of information. The quantum bit (qubit) can be stored in the hyper-
fine state, with a long coherence time. The cavity can be used as a coherent
coupler of the atomic state to the external field |7], which allows to carry the
information over long distances. A typical application is the generation of
single photons, by promoting the atom to the excited state using a so-called
m-pulse, and then waiting for the photon to escape from the cavity mode
[8, 9]. With some refinements, one can generate polarisation-entangled pairs
of photons [10]. Some proposals exist to couple two qubits in the cavity,
using the cavity field to create a switchable interaction, and realize two-
qubits gates [11, 12, 13]. The ingredients required for these applications are
generally always the same: a strong and well-defined coupling between the
atom(s) and the cavity. Experimentally, it is difficult to have both : a strong
coupling requires a small cavity mode, which increases the requirement on
the atomic localisation to obtain a well-defined coupling. Therefore, modern
cavity QED experiments rely on the controlled insertion of single atoms into
the cavity mode, using e.g. optical conveyor belts [14] or magnetic traps
[15]. The control over the quantum state of the atom is then determined by
the average kinetic energy of the atom in the trap. A perfect control would
therefore be obtained by preparing the atom in the vibrational ground state
of the trap. Two strategies are possible at that point: either loading the atom
directly in the ground state, or load a hot atom and then cool it down to the
ground state, using cooling mechanisms such as cavity cooling [16] or Raman
sideband cooling [17]. Until now, only the second strategy was pursued, and
lead to important breakthroughs but could not reach the 3D ground state
yet. In this work, we will investigate the first strategy, and rely on the cavity
detection which induces a minimum perturbation to prepare single atoms in
a low energy state.

An intracavity dipole trap is generally used to provide a confinement of
the atom in the region of the strongest coupling. This trap defines a lattice
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of possible trapping sites, distant by half a wavelength of the dipole trap
light. Each site has a slightly different coupling to the resonant cavity mode.
Ultimately, the accuracy of a coupling strength is therefore limited by the
uncertainty concerning in which site the single atom is loaded. Starting with
a magnetic trap with a strong confinement, it is possible to load a specific
site of the dipole trap to ensure a well-defined coupling to the mode [15].
This strong magnetic confinement is provided by the technology of atom-
chips, which has also made the manipulation of cold atoms much simpler.
Atomchips can be used for Bose-Einstein condensation [18, 19|, atomic in-
terferometers [20, 21] and clocks |22], coupling to nanoresonators [23]. In
the present work, we extend this already broad range of capabilities to the
preparation, manipulation and detection of single atoms, paving the way for
quantum information experiments with atomchips. Using an optical cavity
directly integrated to the atomchip, we demonstrate the first single atom
detector for atomchip experiments. This detector is able to perform a non-
destructive detection of the single atom hyperfine state, and can be used to
prepare it in a well-defined internal state.

QOutline of the thesis

The first chapter will be devoted to the theory of cavity QED. After a re-
view of the basic Jaynes and Cummings model, we will analyse the cavity as a
detection device and investigate the limitations of the minimum-perturbation
measurement picture. The second chapter is a description of the experimen-
tal apparatus. The third chapter presents an experiment of detection of
waveguided atoms and demonstrates a first signal of single atom detection,
but also shows the limitations of waveguided atoms for cavity QED. In the
fourth chapter, we turn to fully trapped atoms, and show that we can pre-
pare trapped single atoms and measure their internal state accurately with
a minimal perturbation of the motional state. In the fifth chapter, we apply
our preparation and detection schemes to measure a Quantum Zeno Effect
with a single atom.






Chapter 1

Theory

This chapter is devoted to a theoretical description of the atom-cavity sys-
tem. After a short introduction to the basic models of cavity QED (sections
1 and 2), we will focus on how a cavity QED setup can be used to detect sin-
gle atoms (section 3). We will always keep in mind that we want to achieve
an efficient detection of single atoms, while perturbing their internal and
motional state as little as possible. Therefore, and always considering our
experimental situation, we will estimate the effects of a continuous cavity
detection on the atomic motional state, characterized by a heating rate (sec-
tion 4) and on the internal state, characterized by a set of depumping rates
(section 5).

1.1 Cavity QED: a strongly coupled quantum
system

1.1.1 Enhancing light-matter interaction with a cavity

The interaction between light and neutral matter is generally dominated by
the coupling of the electric dipole with the electric field. The interaction
energy is then given by the scalar product —d - E. For atoms, the electric
dipole vanishes in the absence of electric fields. When an external electric
field is applied, it grows linearly with the field amplitude: d = aE. The
polarisability constant « is characteristic of the atomic species, and accounts
for basic optical phenomena such as refraction, absorption, etc. For dilute,
homogenous atomic gases, the polarisability is found to be strongly depen-
dent on light frequency w. In particular, dilute gases are particularly effi-
cient for absorbing light for a discrete set of frequencies (or lines), but they
are quasi-transparent to other frequencies. Lorentz developed a phenomeno-
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logical model which treats the atom as a damped harmonic oscillator, and
accounts for the sharp, Lorentz-shaped resonances that we can observe to-
day with high precision laser spectroscopy experiments. However, the major
breakthrough came from quantum mechanics theory, which attributes these
resonances to transitions between different levels of the discrete energy struc-
ture of atoms. This theory is far more satisfactory as it predicts not only the
discreteness of the spectrum, but also the position of the lines. The classical
atomic dipole has to be replaced by a quantum operator

d=Y"dula)(b (L1)

which connects the different discrete levels |a), |b), etc. The transition from
state |a) to state |b), with E, > F, comes with the absorption of a photon of
frequency wy, = (E, — E,)/h from the electromagnetic field, while the inverse
process corresponds to the emission of such a photon. A theory of quantum
electrodynamics (QED) is then required to account for light graininess, and
complete the transformation of the classical interaction —d.E into a fully
quantised Hamiltonian. The process of electromagnetic field quantisation is
described in large details in quantum mechanics textbooks, so we just remind
here that the electric field has to be decomposed into solutions of Maxwell
equations in the form E(()l)(r) exp(—iwt) before being quantised as

E(r) =Y E{(r)i + hc.. (1.2)

By enforcing the electromagnetic energy to be H = %eofEZ + B*dPr =
> Fiwd 'y, together with the bosonic commutation relations [dy, d;'] = 6,
we find the normalisation condition:

/ B, (1) B (1) dPr = 0 (1.3)
€0

If we define the mode volume V,,, by the equation [ [E{(r)|2d®r = V,,[E{ |2

max’?
the maximum field amplitude caused by a single photon in the mode [ is given

0 0 |Imazx \/ 2 0‘ rm

The electric field of a single photon in a given mode has therefore a larger
amplitude when the mode volume is small. For a stationary mode, this re-
quires to confine the light in a cavity, formed by mirrors which prevent the
light from getting out of a well-defined region of space. The cavity has a sec-
ond effect: it changes the continuous mode distribution into a discrete set of
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modes imposed by the boundary conditions. For example, in a Fabry-Perot
cavity formed with two concave mirrors, these are the Gaussian modes de-
noted TEM,, ; ;. », where the triplet (n,l,m) € N*xNxN, and p = 1, 2 stands
for the polarisation of the light field. The corresponding eigenfrequencies are
denoted by wy, ;m . The quantised electromagnetic field can be decomposed
as B = Em +Ecav, where E.,; include the contributions of free space modes,
and E.,, those of cavity modes. The Hamiltonian therefore splits in two
components:

~
Hcav = -

~

Hext = -

1.1.2 Jaynes-Cummings model

For the moment, we consider only the cavity contribution, and make an
additional assumption: there is only one pair of atomic levels |g) and |e), and
one cavity mode ¢ = (n,l, m, p) for which w, = w,e >~ w,. This corresponds to
the frequent experimental setting where the cavity is tuned near the atomic
transition |g) — |e).

This allows to drop the contributions of the non-resonant cavity modes
and reduces the Hamiltonian to:

H = ~dy EY (t)(6e + Geg)(ac +al), (1.7)

where 6, = |g)(e|] = ¢ is the "lowering" operator. The final step of the
treatment consists in removing the non-resonant terms 6a and 6fa’ (RWA
approximation) to finally obtain the Jaynes-Cummings Hamiltonian [24]:

H,c = hg(r)(6a" +6'a), (1.8)
which also defines the atom-cavity coupling frequency
g(r) = —d,.EY (r) /. (1.9)

Simple as it is, the Jaynes-Cummings Hamiltonian is the workhorse of the
cavity QED community since it describes the essential feature of matter-
light interaction in the quantum regime: coherent energy exchange between
light and matter, with light absorption processes (67a) and emission (6a').
The Hamiltonian therefore couples the bare states of the atom-cavity system
by pairs (le,n — 1), |g,n)) with a frequency gy/n (for n > 1), where |n)
denotes a cavity Fock state with n photons. The full Hamiltonian H =
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hw,ot6 + hw.ata + H Jo can then be exactly diagonalised. The eigenstates
|n, +) are called the dressed states since they are entangled states of the atom-
cavity system. As a function of the atom-cavity detuning A, = w, —w,, they
have the following expressions:

|n,+) = cosb,le,n —1)+sinb,|g,n), (1.10)
In,—) = sinfle,n — 1) — costhlg, n), (1.11)

where the angle 6, is defined by
Aca/2 _ 2 COS(ZQn)
( NG ) =V Au/4+g*n in(20,) (1.12)
and the eigenfrequencies are
1
onte = Tl + (Am + /AL 1 4g2n> . (1.13)

The spectrum is represented on Fig 1.1. Two striking features stand out
when the atom-cavity system is quasi-resonant, i.e. for A, < g. First, the
degeneracy of the uncoupled atom-cavity system at A., = 0 is lifted by an
amount 2g+/n: this effect is called vacuum-Rabi-splitting. Second, the cavity
becomes anharmonic when it is coupled to a single atom, which is essentially
an anharmonic system. By applying a monochromatic radiation at a given
frequency, one cannot climb the state ladder to large n values. In [25], the
authors used this effect to demonstrate field quantisation in the cavity. This
anharmonicity has also consequences on the statistics of transmitted light:
by exciting state |1, —), Birnbaum et al. showed that the output photon
flux is antibunched, since n = 2 states cannot be excited simultaneously
[26]. Conversely, Kubanek et al. were able to excite directly the state |2, —)
via a two-photon transition, and proved that the output flux was in that
case bunched [27]. At larger detunings, the dressed states approach the
eigenstates of the uncoupled system, although their energy is shifted by a an
amount depending on the photon number. This energy shift can be thought
as a means of measuring non-destructively the cavity photon number [28].

1.1.3 Master equation

A complete description of the atom-cavity system requires to take into ac-
count other processes than coherent interaction with the cavity field. The
main incoherent processes are the atomic decay (or spontaneous emission)
and the cavity decay. Besides, we need to include in our description the
probe field which injects photons in the cavity mode. The decay processes



1.1. Cavity QED: a strongly coupled quantum system 9

41 ]
ol i
~ -

’_\U I _——————/ i
8 © o - — B
< ——
s ——--=" ]

2, _

41 ]

| ‘ ‘ |

4 2 0 2 4
Aca /9

Figure 1.1: Spectrum of Jaynes-Cummings Hamiltonian. The eigenfrequen-
cies wy, + are depicted as a function of the atom-cavity detuning A.,, for
different degrees of excitation: n = 1 (full red line) and n = 2 (dashed blue
line). The bare spectrum is represented by black lines w — nw. = 0 and
W — Nwe = Neq-
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are incoherent, and have to be treated in the framework of the master equa-
tion for the density matrix p. The master equation takes the general linear
form d .
D i

L ery=_=

at "7 h

The linear operator L is called the Liouvillian. The brackets [-, -] denote the
matrix commutator. The term Lg..p includes decay terms that cannot be
cast into a commutator with a hermitian operator.

[H, p] + Edecpa (1'14)

Spontaneous emission

Spontaneous emission originates from the interaction of the atom with the ex-
ternal electromagnetic field. An atom excited to state |e) can emit a photon
of energy wy., and decay to the ground state |g). By tracing over exter-
nal electromagnetic modes!, the evolution of the atom-cavity density matrix
reads:

‘Cspp = P)/ (26—p6—T - {p> &T&}> ) (115)

where the brackets {-,-} denote the anticommutator. The spontaneous emis-
(JJ3 2 .

sion rate 2/ differs from the free space one 2y = 3;;’:;53 if the external field

mode structure is modified strongly by the presence of the cavity. This is
the case for example with a fully enclosed cavity with prevents the external
modes propagation to the cavity location. However, for an open axial cavity
which supports only quasi-planar modes propagating along the cavity axis,
as it is the case for our experimental setup, the spontaneous emission rate is
nearly unchanged and we will assume +' = ~ in what follows.

Cavity pumping and decay

The cavity mirrors can be pretty good, with a finesse up to a few millions in
the optical domain, however they always transmit some light and couple the
cavity modes to at least one external mode of the electromagnetic field. In
some sense it is good news, because otherwise we would not be able to send
light in the cavity. The cavity pumping and decay require then to be treated
simultaneously. The cavity decay is an incoherent process which causes the
loss of cavity photons to the outside world. It can be reprensented by the
Liouvillian

Ecavp =K (Q&p&T - {p> &T&}) ) (116)

defining the cavity decay rate 2x. The average lifetime of a single photon in
the cavity mode is then 1/2k.

'A complete derivation is given in [29, p.25].
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The pump term is a bit more problematical. The phenomenological so-
called Gardiner-Collett Hamiltonian [30]

H, = —ilnexp(iwt)a + h.c. (1.17)

accounts for a coupling with an external coherent field with a frequency w.
However this choice, although having a nice and short expression, is far from
being obvious. In particular the value of the parameter 7 is pretty hard to
derive directly from the incident field amplitude. Such a derivation is done
in [31], and in 32, p. 255] with a greater level of detail. It also explains the
linear form FE.,;.E.,, for the coupling. The main idea is the following: the
decomposition into eigenmodes of the electromagnetic field has to be done
taking into account cavity losses, and before field quantisation. The cavity
mode is then only part of a global mode of the field, and the linear coupling
of Eqn. 1.17 comes from the superposition of the external contribution and
the cavity contribution at the position of the mirrors. The evolution of a
pumped cavity (with no atom inside) can be exactly solved, changing to
the rotating frame with frequency w. The cavity state evolves at a rate
k towards a coherent steady state |a) with a = n/(iA. — k), where we
defined A. = w — w,. This result is consistent with the classical theory of
Fabry-Perot cavities, as it is expected for any quantum harmonic oscillator.
The intracavity field has a well-defined phase with respect to the pumping
field, and the photon number n = |a|? has a Lorentzian profile peaked at
resonance A, = 0, with a FWHM equal to 2k. The photon number on
resonance ng = n*/k? is a convenient alternative to n to describe the input
probe power.

To conclude, the dynamics of the atom-cavity system is given by the
Liouvillian A
Lp=—ilH,p|+ Lspp + Leavps (1.18)

where the Hamiltonian H is defined in the rotating frame by
H=—-A5'6 — Adita+ g(r)(a'6 + acT) — in(a — af), (1.19)

with the detunings A, = w — w,, Ar = W — we.

1.2 Optical response of the atom-cavity system

In this section we investigate the steady state of the system, in terms of
cavity field amplitude and atomic state. For this purpose we assume the
atom remains at a fixed position ry.
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First we will give an analytical solution to the problem, valid in the
limit of weak excitation. Then, we will discuss the exact validity of the
approximations we made.

1.2.1 Analytical solution to the master equation

In the limit of weak excitation, only three possible states of the system can be
populated: |g,0), |g,1) and |e,0). The Hamiltonian and all other operators
can therefore be truncated to this subspace of dimension 3. The master
equation is reduced to a linear problem dp/dt = Lp, where L is a 9x 9 matrix.
The steady state of the system is the solution to the equation Lp,s = 0. This
problem can be exactly solved. In [33], the authors used Ehrenfest equations
to rewrite it in terms of evolution of the average values of the operators a,
o, and products, allowing to calculate all the properties of the steady state
such as the mean cavity photon number (a'a) and the atomic excitation
probability (oTo).
With the definitions

A, A, + iy (1.20)
A, = A +ik (1.21)
A 7> — NA,, (1.22)

the steady state solution is given by:

(@ = 2 (1.23)
(B) = 9
o AP
@) = Lo
016 = T2
(616 = "Tjé“

We observe than the mean values of operator products factorise. As a conse-
quence, the solutions to these quantum equations are the same as the solu-
tions to the semiclassical? problem derived by Lugiato in his study of optical
bistability [34], although the assumptions we made here to derive them are

2In the semiclassical picture, only the field is treated classically.
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different. We can expand the solution for the number of photons in the cavity
mode 7., = (afd),s as:

n/k

2 27
1+ 92 1 + Ac _ g2 Da/y
kY 14+AZ /72 K kY 14+AZ /2

(1.24)

Neay =

which is exactly the result of Lugiato if we set the dimensionless cooperativity
factor to the value

o= 9 (1.25)

1.2.2 Limitations to the analytical solution

The equations 1.23 are very convenient, however one needs to be careful
when using them since the small parameter of the expansion is difficult to
identify precisely. We might be tempted to do the following statement: if the
populations in states |g; 1) and |e; 0) are small in the steady state, then there
is no chance to populate states like |e; 1) or |g;2). The small parameter of
the system is therefore max({a'a),s, (676)ss) ~ n?/g*. We will however show
here that this picture fails.

For that purpose, we write the master equation taking into account states
lg;n) and |e;n) forn = 0...n,,4, in a matrix form® and compute numerically
the steady state density matrix for different values of n,,,,. For that matter
we only need to solve a linear equation like Lp,s = 0. For n,,,, large enough,
the solution does not change anymore and can be considered exact. From
the calculated density matrix we can compute the expectation values for the
cavity photon number afa and the atomic excitation 676. On Fig.1.2, we
compare the results with those of Eqns 1.23. In the strong coupling regime
(large g), we find a large deviation for the cavity transmission, with a factor
of up to 100 for ny = n*/k?> = 107!, However, the value of n?/g* is then
~ 1072 and indicates that the analytical solution should hold for this probe
power. The value of ng in a typical experiment with a detected photon flux of
1 MCts/s is ng = 2.5 x 1072, so we have to take into account this correction
to the analytical solution to analyse our results. However, the estimation
of the atomic excitation is in good agreement with numerical solutions. A
conservative upper bound for the validity of the analytical solution is ng <
v?/g* ~ 107% In that case, the probe power is intrinsically too small to
excite the atom, even when light is fully transmitted through the cavity.

3We used the Quantum Optics Toolbox developed by S.M. Tan available online
http://www.qo.phy.auckland.ac.nz/qotoolbox.html.
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Figure 1.2: Comparison of numerical and analytical steady state solutions to
the master equation, on resonance (A, = A, = 0) for different probe powers
corresponding to ng = n*/x* = 107 (blue) , 1072 (green) , 10! (red) .

Left: cavity transmission nc,y /1o versus coupling g. Different probe powers
correspond to the different curves, the analytical solution (light blue) corre-
sponding to the low power limit.

Right: probability of atomic excitation (675),,. We compare the numerical
results (circles) with the analytical solution (lines).

This can be rewitten as 1*/¢g*> < 1/C?, a condition much more stringent
than the initial n?/¢* < 1.



1.3. The cavity as a single atom detector 15

1.3 The cavity as a single atom detector

In this section we show that a cavity can be used as a single atom detector.
We will compute the detection efficiency (or error probability) if the cavity is
used as a qubit measurement device, and compare it to a free space detector.
We will then show that the cavity may also be able to count small numbers
of non-resonant atoms.

1.3.1 Detection of a resonant single atom

We now consider the situation of a single atom resonant with the cavity,
Ay = 0.

When the single atom cooperativity factor is large, the transmission of
the cavity is strongly modified compared to the empty cavity value. This is
always the case in the strong coupling regime defined by g > x and g > ~.
In that regime, the transmission peak of the empty cavity is splitted into
two peaks corresponding to the frequencies of the dressed states, see Fig. 1.3
below.

= = = No atom Single atom

1 T T T T T T T
—_ 1)
S 0.8F 1) 1
S, |
- ]
o 0.6 ) ) ]
a \
R ]
g 04 ! \ 4
(2]
@
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Figure 1.3: Numerical steady state solution to the master equation in the
weak excitation regime, for a resonant atom cavity system A, = 0. The
cavity transmission is depicted as a function of the global detuning A, = A,
for an empty cavity (dashed red line) and a cavity with a single atom inside
with a coupling ¢ = 27 x 140 MHz. The other parameters are the ones
relevant to the experiment: x = 27 x 50 MHz, v = 27 x 3 MHz.
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We particularly find that in the resonant configuration A., = 0, the
cavity transmission is reduced by a huge factor (2C)% ~ 10* at the resonance
A. = 0, in the limit of weak excitation. Probing the cavity at resonance
therefore provides an excellent detection signal for single atoms: the cavity
transmission will be high if there is no atom inside, and low if there is (at
least) one atom.

1.3.2 Detection of non-resonant atoms

We can also consider the situation where the atom is far off resonant to the
cavity, precisely the limit A.a > ¢?/k. We will encounter this case in the
experiment, when a single atom is in the |F' = 1) hyperfine state, with the
cavity tuned to the |F' = 2) — |F’ = 3) transition. The cavity is therefore
detuned by an amount A.,, = Agrs = 27 x 6.8 GHz with respect to all
possible atomic transitions starting from state |F' = 1), see Fig. 1.4.

The field in the cavity is given in that case by

i
(—Xl - Ac> +ik
The effect of such a far detuned atom is then equivalent to a change of the
cavity resonance frequency by an amount §, = w. — w, = —¢?/A.. This

effect can be seen as a change of the refractive index of the medium inside
the cavity.

a= (1.26)

Compared to the resonant case, we have to consider the three possible
transitions |F' = 1) — |F’ = 0, 1,2) which all contribute to the cavity shift.
However, since the relative detunings between these transitions (~ 100 MHz)
is negligible compared to the ground state hyperfine splitting, the effect of
the three transitions simply add up in the coupling constant g;. The precise
value of g; can be computed from sum rules [35] and yields the formula

2 o+
a1 = 5922—>33 (1-27)

which connects the coupling factors of |F' = 1) and |F = 2) atoms. The
cavity shift is then d, = —¢?/Agrs. We can now compute numerically these
shift for our experimental setup: we find that for optimally coupled atoms,
the single atom shift is 27 x 4.3 MHz. Is therefore much smaller than the
linewidth x = 27 x 50 MHz and only reduces the transmission by a small
amount. For several atoms in the |F' = 1) state, single atom shifts add up
so that the global cavity shift is given by d, = —N;¢/Aprs, where Ny is
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Figure 1.4: Level scheme for the detection of non-resonant |F' = 1) atoms.
The cavity is tuned to |F' = 2) — |F’ = 3) transition.

the number of atoms. The shift of the cavity is therefore comparable to the
linewidth x for N; ~ 10. We can therefore determine the number of atoms
in the |F = 1) state by measuring the cavity transmission at resonance, and
compute the corresponding shift (see Fig. 1.5). We should notice here that
a phase measurement would be more appropriate in this regime if we wanted
to measure small number of atoms. It is however not compatible with the
experimental setup so we do not discuss it in detail.

1.3.3 Comparison between free space and cavity detec-
tion

We have seen previously that a cavity used in the resonant configuration can
be used to detect a single atom with an excellent signal, the transmission of
the cavity dropping almost to zero with an atom inside. We have also seen
that a single non-resonant atom (e.g. in the |F' = 1) state when the cavity
is resonant to the |F' = 2) — |F’ = 3) transition) has almost no effect on
the cavity transmission. The cavity can therefore be used as a measurement
device of the F' number of a single atom, for example for applications to
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Figure 1.5: Steady state solution to the master equation in the weak excita-
tion regime, for a non-resonant atom cavity system A., = Agpg = 27 X 6.8
GHz. The cavity transmission is depicted as a function of the cavity de-
tuning detuning A, for different atom numbers. The single atom effective
coupling is set to g; = 27w x 170MHz, corresponding to perfect coupling in
the experiment.

quantum information processing where the qubit is the atomic state. In this
section, we quantify the efficiency of the cavity as a measurement device.

The performance of any measurement device is characterised by the prob-
ability that the state inferred from its output corresponds to the real state,
called the fidelity . We define the error probability as P, = 1 — F. We
suppose that a single atom is trapped in the cavity mode, and can be in
two possible states |1) = |F = 2) and |0) = |F = 1) with equal probability.
This corresponds to the situation in quantum information processing where
we have a prior: no information about the state of the system before the
measurement.

To determine in which state the system is, we switch on the detection
light for a duration t;,, and detect N photons with the APD. From this
measurement, we have to make a guess of the state of the system:|0) or [1)7?
If the atom was in the |1) state, the transmission of the cavity is very small
and N = 0, if we suppose that the detection light pulse was brief. In the
atom was in the |1) state, the cavity transmits and the number of detected
photons is a Poissonian distribution with the mean value N,.; = 0 tint /K-
We therefore guess that the state is |1) when N = 0, and otherwise we guess
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that it is |0). The error probability is then

1
Perr - 5 exp(_Nref)‘ (128)
The most important feature of cavity detection is that the light is not
scattered by the atom, but rather reflected by the cavity.
Using the analytical solution to compute the spontaneous emission rate,

At a 2yn*g®  2yn?
Fsp = 2PY<O—T0—>SS = ‘A’Z =~ 92 9

(1.29)

we find that the fraction of scattered power Pyuy/ P =~ 1/C' is much smaller
than 1. The number of spontaneous emission events occurring during a single
atom detection can therefore be made very small. The error probability can
be rewritten as

Popr = %exp(—CNsp), (1.30)

where N, is the number of spontaneously emitted photons during the detec-
tion pulse, if the atom was present. This shows that we can achieve a very
efficient measurement, while at the same time having on average much less
than 1 spontaneous emission, when the cooperativity is much larger than 1.
Including an optical loss factor L < 1 for the detection of the transmitted
photons, the formula is changed to

1
Perr = §exp(—CNspL). (1.31)

Let us now compare with a free space detection scheme. A very efficient
free space scheme consists in exciting the atom, and then collecting the spon-
taneously emitted photons. Repeating this process n times, the number of
collected photons is on average nL if the atom was resonant?, and 0 other-
wise, while the number of spontaneous emissions is Ny, = n. Therefore the
error probability is

1
PIs = —exp(—N,,L). (1.32)

err 2

This shows that a cavity detection setup outperforms a free space detector
in terms of spontaneous emission by a factor C.

4We assumed here an equal loss factor L. This is true for the APD efficiency contribution
to the loss factor, but certainly not for the collection efficiency which is much smaller in
the case of fluorescence photons. We nevertheless assumed the same value to compare the
cavity detection with an ideal free space detector.



20 Chapter 1. Theory

However, it would be wrong to claim at this point that we can achieve a
perturbation-free measurement with a cavity, just by considering spontaneous
emission. The effect of intracavity light, as weak as it may be, can affect the
motional state of the atom, and also its internal state. These processes will
be described in Sect.1.4 and 1.5.

We can conclude from this section that the measurement of the cavity
transmission on resonance (A. = 0) can be used detect a single resonant
atom, or to measure small numbers of atoms in a non-resonant state. In the
experiments, we will take advantage of these two configurations to detect
atoms in |F = 2) state (usually resonant with the cavity) or in |F = 1)
state (non-resonant). The detection of a single resonant atom in a cavity
induces much less spontaneous emission as a free space detection with the
same efficiency, making it a useful device for the preparation of single atoms
in a low-energy state. The effect of the detection on motional and Zeeman
quantum numbers will be discussed in more detail in the next two sections.

1.4 Atomic motion in the cavity

The coupling g between the atom and the cavity depends on the position
of the atom in the cavity mode r. To obtain a large coupling, we trap
the atom at the position of the cavity field maximum using an intracavity
dipole far off resonant dipole trap. The dipole trap has mainly two effects: it
provides a conservative trapping potential, and shifts the atomic resonance
by an amount called lightshift. Besides, the light sent to detect the atom
also causes a light force. This force fluctuates, and manifests as a heating
mechanism which tends to move the atom away from the dipole trap bottom,
where the coupling to the detection light mode (called cavity mode until now)
is also maximum. As a consequence, the coupling decreases and the detection
gets less efficient.

In this section, we will describe first the intracavity dipole trap and esti-
mate the light shift. Then we will compute the forces and heating rate acting
on the atom. Finally we will estimate the consequences of this heating mech-
anism on the detection of the atom, by evaluating the cavity transmission
for different atomic "temperatures".

1.4.1 Intracavity dipole trap and light shift

In the experiment, a dipole trap is generated by pumping a second cavity
mode far off-resonant to atomic transitions. Since the dipole trap is not
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resonant to a specific atomic transition, we have to write the interaction
between the atom and the dipole trap field in the most general form and
take into account all possible atomic states |i):

Hyp = —d.Egy, (1.33)

with Edip = Eédip )(r)B + h.c.. This Hamiltonian couples non resonantly the
bare states |i;n) with states |j;n + 1) or |j;n — 1). Applying second order
perturbation theory, this generates a shift of the bare state energy &; by an
amount:

n+1)|d;|? (n)|dy;]?
— (‘:j — ﬁwdip 5Z — gj + hwdip’

AE; = hAy = [ES™ (@)Y 5( (1.34)
j (3

where E{"(r) = E\")(r)eq;, and di; = (i|d.eqs|7). In the previous sum,
only states |j) with frequencies &; ~ &; £ hwg;, contribute significantly.

To be more specific, we now consider the states relevant to our experi-
ment: a ground state |g) in the 5S;/, multiplet and an excited state |e) in
the 5P3/, multiplet. We also set the dipole trap light wavelength to 830nm.

For the state |g), the dominant contributions come from transitions to
5P,/ states (D1 line at 795nm) and 5P/, states (D2 line at 780nm). Due
to symmetry properties, the sums Zje5P1/2 |di;|*> = d%, and Zje5P3/2 |dy|? =
d%, are independent of the particular state |i) when the light polarisation
eqip is linear. Their values can be related to the decay rate of the 5P levels
I' = 2y = 27 x 6 MHz and the 55 — 5P transition frequency w, by the
relations [36]:

himeoc T

&2, = % = 2.1 x 1077 (?m? (1.35)
OhimencT

&2, = %:2%1 (1.36)

The ground state energy is then shifted downwards by:
1 2

+
hwaip — hwpr — hwaipy — Mwpo

i di
AE = hAL = |ES™) (0) g, d?, ( ) , (1.37)
where ng;, is the number of photons in the dipole trap cavity mode. The
effect of dipole trap light is then to generate a trapping potential Uy, =
RAY for ground state atoms. This potential scales like the light intensity
~ |ES) (1) |2ng:,, and it has the same geometry as the mode. For a standing
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wave mode as we have in the experiments, it generates a 1D array of equally
spaced traps along the cavity axis. The potential has a minimum where
|EP)(r)| is maximum, i.e. at the field antinodes.

For the excited state |e) in the 5P;/» multiplet, the leading contribution
is due to the coupling to the ground state, which yields a positive shift, with
smaller contributions coming from several transitions to higher excited states
[37, 38]. Contrary to the ground state levels, the exact value of the light
shift depends on the specific Zeeman state considered and the dipole trap
polarisation. We can nevertheless compute the sign and order of magnitude
with the knowledge of the lifetimes of the excited states and the transition
wavelengths:

Transition initial 5Sis2 | 5Ps2 | 5Ps2 | 5Ps2 | 5P3)9
and final state 5P3/2 5D5/2 651/2 4D5/2 751/2
Wavelength [nm)| 780 | 775 | 1360 | 1475 | 740
Relative light shift | +1 -0.1 | +0.15 | +0.3 | -0.1

We can conclude from these figures that excited atoms excited feel a
repulsive potential, which is of the same order of magnitude as ground state
atoms, but with the opposite sign.

We can finally rewrite the atomic term in the Hamiltonian as
o = —Du5'5 + Ale)lel + A%lg) (9] = AL = Dgegsote,  (138)
which defines the (position-dependent) effective detuning
ANperr =0 + AL —AG=A, — Aps. (1.39)

In addition to the trapping potential for the ground state, the dipole trap
also shifts the atomic transition frequency by the lightshift Ay = A§ — A,

1.4.2 Cavity force

In the previous section, we assumed that the atom remains at a fixed position
ro and took a constant atom-cavity coupling g = g(rp) to compute the cavity
transmission and the spontaneous emission rate. This approximation is valid
as long as the atom-cavity coupling ¢(r(t)) stays approximately constant for
the time the cavity field and the atomic internal state need to reach their
steady state value. This timescale is given here by 1/k. With an atom-cavity
coupling of the form g(r) = gy cos(ky) exp(—r? /w?), the coupling changes on
a typical timescale 1/(kv). We can therefore separate the internal dynamics
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of the atom (coupled to the cavity) from its external dynamics when v <
k. In the experiment, this condition will always be satisfied. We will also
suppose that v < v\, which allows to neglect the Doppler effect. Also, we
will neglect the quantisation of the atomic motion in the coupling with cavity
light: this requires the atomic wavepacket to spread over a negligible fraction
of the wavelength. In this quasi-classical picture®, the operators r and p can
be replaced by their classical values, with a stochastic evolution with a mean
force field F and a momentum diffusion matrix D;;. The derivation of the
Fokker-Planck equation describing this stochastic evolution was done in [39]
with a classical light field, and in [40| for a quantised light field. The small
parameter enabling this quasi-classical treatment is hk?/m~y.

A huge amount of publications concern the calculations of these forces and
momentum diffusion matrices, not to mention the cavity cooling force. In
this section, we will briefly give the expressions for the forces and momentum
diffusion which are relevant to our experiment, and point out the appropriate
references we used.

At the zeroth order in vk /), the force can be computed from the steady
state density matrix as:

~

F = (F) = (-VH),,. (1.40)

The contribution of the atom-cavity coupling reads in the weak excitation
regime [33]:

2’ AugVg

AP

The probe light therefore attracts the atom to the region of strong coupling
when A, < 0. The contribution of the dipole trap is given by:

F.p = (1.41)

n%g?

Fdip - h (—VA% - VALSW) 5 (142)
and is dominated by the first term since the atom spends most of its time in
the ground state.

1.4.3 Momentum diffusion

The fluctuations of both the atomic state and the light fields induce a fluc-
tuation of the force operator. In a fully classical picture, corresponding to
our treatment of the atomic position and momentum, the force fluctuation

5The quasiclassical picture corresponds to the classical treatment of the atomic motion,
but a quantised treatment of the internal state.
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generates a momentum diffusion process on a timescale much longer than
the force autocorrelation time. Here, the correlation time is of the order of
1/k. Following [41], we define the momentum diffusion constants D;; for
1,] =x,Y, 2 as

d — —
@(Pz’ —Di)(p; — ;) = 2Dy, (1.43)
where ¥ denotes here a classical ensemble average. If the atom is trapped, this
can be seen as a heating process with a heating rate dF/dt = TrD/m. The
momentum diffusion coefficients can be calculated from the general formula

D, = /OO dt <<E(0).Fj(t)>ss - FF]) . (1.44)

In the force operator F, we have to consider the contribution of the cou-
pling to the external modes (spontaneous emission term), and the coupling
to the cavity modes (cavity term).

Contribution of spontaneous emission

The contribution of the spontaneous emission to the momentum diffusion
matrix is a well-known calculation and the result reads [41]:

2.2

1 eg
D,, = Asp(hk)%rsp = A, (hk)? VR (1.45)

where A, is the dipole emission pattern, a symmetric matrix with Tr(A,,) =
1, and depends on the cavity field polarisation. This expression corresponds
to the intuitive picture of a diffusion driven by random recoils of momentum
hk, occurring at a rate I'y,.

Contribution of cavity modes

The contribution of the cavity modes can be computed analytically with the
help of the quantum regression theorem (see for example [29]) in the weak
excitation limit. The diffusion is mainly concentrated along the cavity axis,
and corresponds to random absorption and reemission of cavity photons in
opposite directions. When the light shift is not negligible as it the case in
our experiment (Ayg ~ ¢) and depends on the position, the expression is
somehow lengthy and can only be found in [38, App. B] to our knowledge.

We can add up the two contributions to estimate the global heating rate
of the atom Tr(Ds, + D.q)/m for our experimental setting, averaged over
a thermal position distribution. The result is plot on Fig. 1.6, for various
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detunings A, and temperatures 7. The average heating rate is below 100
pK /ms for a probe light power corresponding to ng = 2.5 x 1072 (®,.p = 1.2
MCts/s), as long as the temperature is low enough. The average heating
rate increases with the temperature, since the atom can then reach regions of
weaker coupling. The dependence on the probe-atom detuning is quite weak,
although the minimum heating rate corresponds also here to A, .sr >~ 0. We
can estimate the typical time needed to reach a temperature of 1 mK is of
the order of 100 ms at this detection power. At 100 uK and A, = 0,
the heating rate is approximately 2.5 pK/ms along the cavity axis, and 0.8
pK/ms along each transverse axis, if we take an emission pattern Ay, =
[1/3;1/3;1/3].

Average heating rate [uK/ms]
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Figure 1.6: Average heating rate induced by detection light. Parameters
are ng = 2.5 x 1072, g9 = 27 x 160 MHz, A, = 0, Uy, = ky X 2.6 mK,
ALS,O = 2Ud2p/h = 27 x 110 MHz.

Heating rate of the dark dipole trap

Until now, we treated the intracavity dipole trap exactly as a position-
dependent light shift. Although being far off resonant, the atom can absorb
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and reemit light from the dipole trap beam. The scattering rate is propor-
tional to dipole trap light intensity and the ratio depends on the detuning
A: hl'y, = 29U4,/A. With a detuning corresponding to approximately 50
nm, the scattering of dipole trap photons leads to heating with a typical time
to reach the trap depth 74, s = mA/(4yhk3) ~ 40 s at 830nm. However,
for an intracavity dipole trap, the heating rate is enhanced by the cavity.

We can go one step backward in our description of the dipole trap, and
treat the interaction between the atom and the dipole trap light in the Jaynes-
Cummings picture (Eqn. 1.33). For that matter, we need to specify a two-
level system. We suppose here that the dipole trap light does not resolve the
hyperfine splitting between 5P/, and 5P5/, states (15nm). Therefore, we can
define a two-level system coupled by a dipole element d ;s = \/d%), + d%, =

dg;_>33. The coupling g4 in the Jaynes-Cummings Hamiltonian is therefore
equal to the coupling of an an atom in the state |F' = 2;mp = 2) with
a circularly polarised cavity field, since the mode volume for 780nm and
830nm are approximately equal. We can the use the equations for momentum
diffusion given in [33], and take the limit A, — oo:

R kiyn5,93
o ipJd
Dy = AL (1.46)
B2 (Vga)*ng, 4g2
Dewy = P (1 4], 1.47
AZR] (+7f€d> (147)

The spontaneous emission term Dy, is therefore unchanged compared to a
free space dipole trap of the same magnitude. The first term in Dy, is
equivalent to the free space momentum diffusion associated with absorption
of the light. On average, g*> ~ (Vg/k)? in a standing wave and this terms
contributes equally as spontaneous emission. The second term in D, is
specific to cavity heating, and turns out to be the largest contribution in
the strong coupling regime. The ratio between the cavity-enhanced heating
rate and the free space heating, for the same trap depth, is of the order of
293/ (kqy) ~ 150, taking here g5 = Zga(r = 0)? and k4 = 27 x 130 MHz.
However, this enhanced heating only takes place when the atom is not so
well localised, since Vg, vanishes at the trap centre. Therefore, we have once
more a position-dependent heating, which we can evaluate as a function of
temperature, see Fig. 1.7. Starting at T = 100uK, the typical time to reach
a temperature of 1 mK is of the order of 2s.
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Figure 1.7: Average heating rate in the dark dipole trap, as a function of
temperature (red line). The dashed blue line shows the heating rate of a
corresponding free space dipole trap. We take Uy, = 2.6 mK.

1.4.4 Cavity transmission vs atom position

The optical response of the cavity depends on the position of the atom via
both the coupling factor g(r) and the position-dependent light-shift A g(r).
With a TEMO0O geometry for both the probe light mode and the dipole light
mode, these functions can be written as:

g(r) = gocos(kyy)exp(—r7 /w?), (1.48)
Aps(r) = Apgocos(kqy)? exp(—2r3 /w?), (1.49)

where the wavevectors k, and k,; stand for probe light and dipole trap light,
and we assumed that both modes have equal waists w, and the antinodes
coincide at y = 0. Assuming a thermal distribution for the atomic position
r centered at r = 0, we can compute the average relative cavity transmission
for different temperatures. The results are shown on Fig. 1.8, for typical
experimental parameters. At very low temperature, the cavity transmis-
sion is minimum for A, ~ Arg, corresponding to A, s >~ 0. For larger
temperatures, the optimum detection point moves towards smaller values of
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A,. We also see on this graph that the detection of relatively hot atoms
(T ~ Tyeptn/2) is possible with the right choice of detuning. The main ef-
fect of the heating is then the possible loss of the atom, occurring when the
temperature exceeds the trap depth.

Average relative transmission
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w A A o
© o o o

N
o

=
o

200 400 600 800 1000
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Figure 1.8: Average relative cavity transmission 7" versus temperature. Pa-
rameters are ng = 2.5 x 1072, go = 27 x 160 MHz, A, = 0, Uy, = kp x 2.6
HlK, ALS,O = 2Ud1p/h = 27 x 110 MHz.
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1.5 Multilevel structure and depumping effects

We shall investigate in this section the limits to the two-level treatment of the
single atom in its interaction with the cavity mode. Basically, the two-level
picture is completely rigorous when the two states considered form a stable
subspace for the interaction with both the cavity light field and the external
light field (spontaneous emission). If we consider the complete Zeeman sub-
structure of the 8"Rb atom, we notice that this is only possible for the two
pairs of states |g) = |F = 2;mp = £2) and |e) = |F = 3;mp = £3), when
the cavity polarisation is . Unfortunately, we can cannot achieve this
regime experimentally because the cavity eigenmodes are linearly polarised.
We therefore need to consider a more complicated atomic structure than the

simple two-level picture.

Cavity QED experiments with multilevel atoms have been performed pre-
viously, like for example the measurement of a Vacuum Rabi splitting with
a single atom and a linear polarisation [42], and numerical simulations were
performed to account for the differences to the two-level picture [43, Chap.
6].

In this section we will present a theory to describe the multilevel atom
structure. We will insist on the similarities between the multilevel and the
two-level picture, and see how a multilevel atom can be described using an
effective coupling, in order to validate the predictions made in the previous
section in terms of detection signal and heating rates. We will then apply
the theory to the estimations of the depumping rates which are relevant to
the experiments of Chap. 3 and 4. When the atom is magnetically trapped
(Chap. 3), the observation time of a single atom is limited by the depumping
to the magnetically untrapped Zeeman states. When there is a dipole trap
instead (Chap. 4), the critical process is the depumping to the Hyperfine
states which are non-resonant to the cavity mode.

We proceed in two steps. First, we limit the atomic structure to the
|F' = 2) and |F’ = 3) states, including the Zeeman structure. We will show
that in this picture, the atomic state diffuses in the Zeeman substructure.
This diffusion process is characterised by a set of depumping rates which we
will evaluate for the different polarisations. When the steady state is reached,
the system is equivalent to a two-level atom coupled to the cavity with an
effective coupling rate depending on the polarisation. Then, we will consider
the depumping to other Hyperfine states which occurs on longer timescales.
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1.5.1 Zeeman diffusion and effective coupling

Let us first consider the atomic structure restricted to |F' = 2) and F’ = 3
levels. If an atom is excited to the F’ = 3 levels, it can only fall back to the
|F' = 2) levels. In a first approximation, we can therefore consider that that
the atomic state stays in the |F' = 2) and F’ = 3 multiplets. We shall now
study this dynamics restricted to this closed subspace.

We denote a generic atom cavity state by a product state |i; mpg; n), where
|i) is either |g) = |F' = 2) or |e) = |F = 3). The coupling to the cavity mode
of polarisation e = (e_;ep;e,) can be written in terms of the transition

strengths ¢ o, S
Hint = gm Z Z Conpsmp +q€q00 |mp) (mp + ¢| + h.c. (1.50)
mrp q=-—1,0,1

The maximum coupling g,, corresponds to the cycling transition for which
¢ = 1. The transition strengths for the other transitions are displayed on
Fig. 1.9. The spontaneous emission is modelised by the Liouvillian

1
Lp=) CypCi—5{p.CiC;}. (1.51)
q

with the three collapse operators

Cy = Z Q’ym%_}m%_qcﬂm'F — q)(m|, (1.52)

mp

corresponding to the emission of a free space photon of polarisation ¢ =

—1,0,1 with a rate QVM%HM%,(]. This rate is related to the transition strengths

by Vi —ml—q = 'yci,F gl The normalisation of the transition strengths
2

was chosen such that » ¢ -y

decay rate of an excited atom is always 2.

= 1 independently of m/,, and the total

The case of m-polarised light

We investigate first the case of m-polarised light, i.e. when the cavity field
polarisation is parallel to the external magnetic field.

If we consider for example the state |g) = |F = 2;mp = 0) and 7-
polarised cavity light, it is coupled vertically via the cavity mode to the
excited state |e) = |F’" = 3;mp = 0). When a spontaneous photon is emitted,
the atom falls back in one of the three possible states |F' = 2;mp = —1,0,1).



1.5. Multilevel structure and depumping effects 31

F=3;mi'= -3 -2 -1 0 1 2 3
| N / | N /
A
VI LXL P~
I A IO R A W
A VA

F=2; mr= -2 -1 0 1 2

Figure 1.9: Transition strengths c2, oy, for 7 transitions (black lines) and

ot (red lines) between |F = 2) and |F’ = 3) states of Rubidium 87. From
[35].

The spontaneous emission process is incoherent, and the polarisation of the
spontaneous photon indicates in which state the atom is. The coherences
between general atom-cavity states with different m g values therefore vanish.
We can then write the density matrix of the system as a sum:

p=">_ P me)(mel. (1.53)

mp

In the following, we will derive a master equation for the reduced density
matrices p™#. We will then be able to compute the steady state properties
of the system, and connect them with the two-level picture. Finally, we will
compute the depumping rates to the different Zeeman and hyperfine states
which are relevant for the perturbation-free detection we want to achieve
with the cavity.

Master equation for the reduced density matrices

In the first place, we take advantage from the "vertical" coupling to write
the Hamiltonian as H = |[mp)(mp|H,,, with

H,, = —Apr6te — Aala + gmempm, (676 + a6t) —in(a — a').  (1.54)

After some algebra, the master equations for the reduced density matrices
read: dm
P -
[th = Loypp™" + 5™, (1.55)
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where EmF is the Liouvillian for a two-level atom-cavity system, with a cou-
pling g, an atomic decay rate v and a cavity decay rate x:

Lonpp = —i[Hpp, pl +  (2apal — {a'a, p}) +~ (26p6" — {676, p}) . (1.56)

and the source terms S™F arise from depumping induced by spontaneous
emission from the other mp states:

S™F = —29]g)(gl(elp™ |€) + D 2Vmpsm9) (gl (€] 077 €). (1.57)

!
mp

Approzimate rate equations

In the set of master equations, the evolution due to the sources terms
is slow compared to the evolution induced by the diagonal terms L,,,. We
denote by p7'F the steady state of this evolution: £,,,p"F = 0, with Trpl'F =
1.

We can therefore apply a first-order perturbation theory, treating the
source term as a perturbation. To the first order in v/ we have p"F =

PmEpmEwhere the P™F obey the rate equations (see App. A):

dPm# . .
mp
with the rates
Prpome = 2o Tt (527 19) gl el e} ) (1.59)
>~ 2V mp 1T ((elﬁ?ﬁ‘”\@) : (1.60)

Steady state and effective coupling

The stationary populations in the different subspaces P.F satisfy the
normalisation condition »_ ~PIF =1 and the equilibrium condition

ZFmF%m};P:;F = Zrm%—wnp :;F- (1.61)
m m

F

The steady state is perfectly characterised by the knowledge of each den-

sity matrix pii¥, which can be computed either numerically, or using the

weak excitation analytical expression. This allows then to compute the
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depump rates I'y, ., , and finally we solve the linear rates equations. For
gm = 2m x 210 MHz, we find the steady state populations PY, = 51%,
PEL = 23%, PE2 = 1.5%. Neglecting the contribution of mp = £2 states,
we furthermore observe that the transition strengths for m-transitions are
very similar for mp = 0 (0.77%) and mp = +1 (0.73%), leading to a maximum
coupling of gy >~ 27 x 160 MHz. Therefore, all the properties of the system
can then be computed directly in the two-level picture with this value of the
coupling rate, for example the heating rate and the average cavity transmis-
sion. We have performed numerical simulations of the cavity transmission to
verify this assertion.

Depumping dynamics

We now consider the following experimental situation: the single atom is
initially in the |F' = 2;mp = 0) state and we switch on detection light. How
long does it take to depump it to the other Zeeman levels? Can we detect
the atom before this depumping occurs?

The dynamics of the system is characterised by the rate equations Eqn.
1.58, which we solve for typical experimental parameters on Fig. 1.10. The
initial depumping rate is defined by

Z —
Falepump - dt . (162)
For a reference power ng = 2.5 x 1072, we obtain Fgepump = 3.5 kHz for the

optimum detection parameters A, = A, = 0, assuming a perfectly localised
atom at the position of maximum coupling.
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Figure 1.10: Solution to the rate equations for an atom initially prepared in
|FF = 2;mp = 0). Parameters are: ng = 2.5 x 1073, g, = 27 x 210 MHz,
A, =A.=0.
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Other polarisations

The picture presented above only holds when the cavity polarisation is aligned
with the magnetic field. Otherwise, we have to solve the atom-cavity prob-
lem taking into account the coupling to all possible states at the same time.
As this cannot be done analytically, we turn to numerical simulations for the
global density matrix p, which we can perform for arbitrary cavity field po-
larisation and magnetic field. We write the Liouvillian in the basis |F; mp)
for the atomic states, with a quantisation axis parallel to the magnetic field.
Taking into account all atomic states |F' = 2;mp) and |F’ = 3;mp), and re-
stricting the photon number to 0 and 1, the Liouvillian is a 242 x 242 sparse
matrix, with approximately 3600 nonvanishing terms. We did not consider
the effect of the dipole trap light which mixes up all the m/, states when
the polarisation is not m. The steady state of the system can be computed,
and we can extract the populations P™# of the different |F = 2;mp) states
(see Fig. 1.11 Top), for different angles 6 between cavity polarisation and
magnetic field.

To estimate the depumping rate, we need to calculate the time evolution
of the density matrix, which is computationally intensive. We therefore re-
strict ourselves to short evolutions. The depumping rate is found to depend
quite strongly on the polarisation, and is minimum for # = 0 (see Fig. 1.11
Bottom). The computed value at § = 0 is in perfect agreement with the "ana-
lytical" solution presented in the previous section (3.5 kHz). The depumping
rate is maximum at € = 7/2, which corresponds also to the situation where
the steady state population in mp = 0 is minimum. The depumping rate is
then estimated at 15 kHz, for a magnetic field of 4G.

The steady state density matrix has very small coherence terms between
different mp ground states. We can therefore attempt to find an effective
coupling g.¢s to match the properties of the system with those of a two-level
system. A natural candidate is chosen by analogy with the m-polarisation
case:

1/2
Jeff = Gm <Z P:;Fcizpﬁm%=q+MF€2> s (163)

mFp,q

where e, is the component of the cavity polarisation in the (¢7;7;0%) basis.
For § = /2, we find g.rs = 0.7g,, and the system properties are globally in
good agreement with the two-level picture in terms of cavity transmission and
atomic excitation (thus spontaneous emission), see Fig. 1.12. The two-level
approximation fails when the cavity and the probe are tuned close to the |F =
2;mp = 0) — |F" = 3;mp = 0) transition, as the probe field is now able to
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selectively excite multiple, non-degenerate Zeeman states. The discrepancy
is the largest at the exact resonance where the cavity transmission has a local
maximum, whereas the two-level approximation predicts a minimum.

1.5.2 Depumping to other Hyperfine states

In the last section we have seen that in the multilevel picture reduces in many
cases to a two-level picture, for the specific |F' = 2) — |F’ = 3) transition.
We have seen that the Zeeman state of the atom changes very rapidly, with a
timescale given by the spontaneous emission rate. However, all the possible
states |F' = 2;mp) are coupled with the cavity (no dark states), and since
the coupling ¢ is always large compared to Zeeman splittings, the cavity
transmission remains low as long as the atom is inside. The depumping
to the Zeeman states is therefore not a limit to the observation of a single
atom when it is trapped independently of its mp state. This is the case
in a dipole trap, but not in a pure magnetic trap where only states with
mp > 0 are trapped. In a dipole trap, the limitation to the observation
time (besides the heating rate) is due by the depumping the other hyperfine
state |FF = 1). This process involves necessary a transition via the non-
resonant state |F’ = 2), followed by a spontaneous emission since the cavity
is too far off resonance with respect to the |F' = 1) — |F’ = 2) transition.
Furthermore, the symmetry of the dipole operator implies that an atom in
the |F' = 2;m/;) states decays with equal probability to the |F' = 1) and to
the |F' = 2) states |35]. As a consequence, the depumping rate to the |[F' = 1)
state is simply given by

o = Tr(p|F = 2)(F =2|). (1.64)

depump

The density matrix p has to be computed with an atomic structure including
states |F' = 2;mp), |F' = 2;ml) and |F’ = 3;m/.). The dynamics in this
subspace is very fast compared to the depumping rate T/LF . so we just need
to know the steady state pss. The calculation is done in a similar fashion as in
Sect. 1.5.1. The depumping rate is displayed on Fig. 1.13 for various values
of the detuning A, and coupling g,,, with ng = 2.5x1072 and 7-polarisation®.
We find that the depumping rate is the largest on the red detuning side, since
we get more resonant to the transition |F' = 2) — |F’ = 2) which depumps
efficiently to |F' = 1). With a blue detuning, the depumping rate is in the
kHz range, and gets smaller as the coupling increase. The depumping rate

is minimum near resonance, with a value of the order of 0.1 kHz.

6Compared to depumping in the Zeeman states described previously, we choose a larger
value for ng since hyperfine depumping process is much slower. This also corresponds
better to the experimental settings of Sect. 4.4.2.
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Figure 1.11: Numerical simulations of atom-cavity system with arbitrary
polarisation. Common parameters are ng = 2.5 x 1073, |B| = 4G, ¢,, =
2w x 210 MHz.

Top: Population in the different levels |F' = 2;mp) at steady state, versus
the angle 6 between polarisation and magnetic field. The quantisation axis
is the magnetic field direction.

Bottom: Initial depumping rate from the |F' = 2;mp = 0) state (blue) and
from the |F' = 2;mp = 2) state (red, dashed).
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Figure 1.12: Accuracy of the effective coupling picture. We computed the
atomic excitation (Left) and the cavity transmission (Right) for different
couplings ¢,, (colours), using the steady state solution to the master equation
(circles) or the effective two-level picture (lines). We took 6 = 7/2,|B| = 4G,
no = 2.5 x 1073 and Gesr = 0.7gm.
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Figure 1.13: Depumping rate to the Hyperfine F' = 1 level, for different
values of the coupling g,, and the probe-atom detuning A,. The cavity
is pumped on resonance (A. = 0), with a reference number of intracavity
photons ng = 2.5 x 1072, The cavity polarisation is .

1.6 Conclusion

Let us summarise the results obtained in this chapter. We have shown that a
resonant cavity can be used as a detector of single atoms, or to measure a sin-
gle atom hyperfine number F'. Compared to a free space detection, the cavity
detection scheme induces much less spontaneous emission, thereby allowing
a better detection efficiency before the atom is lost. We have characterised
the three possible processes which limit the measurement time of a single
atom in the experiment: heating due to light forces fluctuations, depumping
to the Zeeman states, and depumping to the Hyperfine states. The Zee-
man depumping is the fastest process, but does not limit the observation
of atoms that are trapped in a dipole trap, since the system can be accu-
rately described by an effective coupling rate including Zeeman depumping.
The measurement time of trapped single atoms is ultimately limited by the
Hyperfine depumping since heating effect can be made irrelevant by using a
deep trap.






Chapter 2

Experimental setup

The present chapter is devoted to the description of the experimental appa-
ratus, used to perform all the experiments described in this thesis.

The core of the apparatus is the atomchip, used for the manipulation
of cold atoms with magnetic fields. On top on the atomchip is mounted
a Fabry-Perot cavity used for single atom detection. The cavity is made
from two optical fibres facing each other, with their tips processed for high
reflectivity and large curvatures to form a stable, high-finesse optical cavity,
together with a small mode volume. The chip and the cavity are located in a
ultra-high-vacuum chamber. Optical systems provide the various light beams
required for laser cooling, and also to inject the cavity and stabilise its length.
The transmission of the cavity is measured with an avalanche photodiode
(APD). Constant bias fields are generated by coils located around the glass
cell, and radiofrequency and microwave fields are coupled to the atoms via
antennas. DC currents running in the coils and in the chip wires are provided
by low noise current sources, while the rf and mw have specific sources. Of
course, almost all this equipment is controlled by a computer interface.

Most of this experimental apparatus was built during the thesis of my
predecessor Tilo Steinmetz, and is fully described in his thesis [44]. It has
been now running continuously was about 4 years, and has suffered no appar-
ent ageing. In particular, the finesse of the cavity did not drop, the quality
of the vacuum remained good enough for BEC. The intrinsic capabilities of
the system turned out to be large enough to require no major changes of the
setup during the last 4 years. In this chapter, we will give anyway a com-
plete picture of the system, but focus only on the changes we have performed
during my thesis. They include a new design for the cavity stabilisation and
dipole trap, an addition of a microwave system to drive hyperfine transitions
of single atoms, and a microcontroller-based interface to enable real-time
control of the experiment in the critical phase of single atom preparation.

41
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The chapter is split in different sections corresponding to the building
blocks of the experiment. The first section will be devoted to the cold atoms
setup. The second section concerns the high-finesse cavity, and we shall insist
here on the stabilisation system and the characterisation of the intracavity
dipole trap. The microwave source and its characterisation is the object of
the third section. Finally, we will describe the experimental interface in the
fourth section.

2.1 Setup for cold atoms

We describe in this section a typical atomchip setup to obtain a Bose-Einstein
condensate. It includes the descriptions of the vacuum system, of the optical
system for laser cooling and of the atomchip used for magnetic trapping. We
will conclude it by explaining a typical sequence to obtain a BEC.

2.1.1 Vacuum cell and external coils

The vacuum chamber (p < 107? mbar) is terminated by a glass cell in its
upper part, while the pump system is located in the bottom of the chamber.
The atomchip is in fact the ceiling of the cell. The schematic of the vacuum
cell, along with the connection to the vacuum chamber, is depicted on Fig.
2.1.

The vacuum cell' has a cubic shape (inner dimension: 30 mm, outer 35
mm). It is closed at the top by the atom chip, and connected at the bottom
to a glass/metal transition? via a circular hole of diameter 27 mm. The
vacuum seal is ensured at both locations by vacuum and high temperature
compatible epoxy glue®*. The vacuum chamber is pumped by a Ion-getter
pump?, while a Ti-sublimation pump is also present but not used since the
vacuum is good enough with the ion pump alone. At the bottom of the
chamber (~ 30 cm below the cell) are located two Rubidium dispensers®,
one of which we operate continuously at approximately I = 3.3A when the
experiment is running, the other one being here for redundancy. The quality
of the vacuum is characterised by the lifetime in the magnetic trap (~ 1.4s).
A compromise has to be reached between the number of atoms is the MOT
(increases with the 37Rb pressure as pgy) and the lifetime in magnetic trap

!Hellma 704.001-OG, with externally AR coated windows.
2Caburn DN40CF

3Epotek 353ND.

“Meca2000 25L/s.

5SAES RB-NF-3.4-12FT10-+10
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Figure 2.1: Schematic of the vacuum cell. Electric connections to the chip
on the right side is not depicted. The z-axis is along gravity.

(decreases as 1/(pro + Pother))- The figure of merit is typically the number of
atoms we can get in the BEC at the final trap location.

The vacuum cell is enclosed by 4 sets of coils pairs. The coils are rect-
angular and of typical dimensions of 6 to 10 cm. Three pairs - one for each
axis x,y,z - are in Helmholtz configuration to generate uniform magnetic bias
fields up to 60G. One pair is in anti-Helmholtz configuration to generate a
magnetic field gradient in the z-direction. Above the atomchip is glued a
thick (2mm) U-shaped piece of copper to generate a quadrupole magnetic
field for the MOT phase. The heat generated during the MOT phase, along
with the heat generated by the atomchip during the rest of the experiment,
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is collected by a copper block of approximately 1 cm thickness, in which a
water-cooling circuit runs constantly. The heat flow between the chip and
the U, on the one side, and the water-cooled piece of copper on the other
side, is controlled by a Peltier element placed in between to suppress the long
term drift of the chip temperature. Temperature regulation is crucial for the
experiment as the cavity length drifts due to the thermal expansion of the
mount.

2.1.2 Optical system for cold atoms

We shall describe here our optical setup for the production of cold atoms.
The glass cell provides optical access for several light beams used for laser
cooling, optical pumping and absorption imaging. These light beams are
derived from a laser system consisting in several laser-diodes at 780nm. The
basic requirements are the same for all 8’Rb experiments which operate the
laser cooling on the D2 transition (A = 780nm). The level structure imposes
the use of several laser beams: MOT beams (or cooling beams), repumper
beam, pump beam and imaging beam (see Fig. 2.2).

F=3
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5P32 ,  F=2 : ‘
‘ 156.9 MHz
F=1
72.2 MHz
= F'=0 1
2 3 g e
g 5 S ks) S
z O] (g0} >
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551/2 ¥ 6834.7 MHz
F=1

Figure 2.2: Hyperfine level structure of 8"Rb and position of the various
beams

The laser cooling procedure requires six beams (MOT beams) propagating
in all directions of space and crossing at the position of the zero of the
magnetic field during the MOT phase. For the molasses phase, in which the
magnetic field in zeroed, the polarisations of the 6 beams have to be circular
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and the same® (here o~) for the Sisyphus cooling to operate. The cooling
light is slightly red detuned to the cyclic transition F' = 2 — F' = 3, by 5y
in the early MOT phase to 30 v in the molasses phase. During the MOT, the
atoms might get depumped to the |F' = 1) "dark" state, so we use a repumper
beam on the F' = 1 — F’ = 2 transition to pump them back to |F' = 2).
After the molasses, and before the transfer to the magnetic trap, the atoms
are pumped to the extreme state |F' = 2;mpr = 2) by a pump beam for which
|F = 2;mp = 2) is a dark state: therefore this beam has to be o polarised”,
and tuned to the |F' = 2) — |F’ = 2) transition. Finally, we will detect
the atoms on the cycling transition |F' = 2;mp = 2) — [F' = 3;m), = 3),
which requires one more ot beam. This one has to be tuned exactly on
the Zeeman-shifted transition to ensure the absorption is maximum and to
remove dispersion effects which lead to image aberrations.

Laser system for cold atoms production

We describe here the laser system developed to obtain all these beams. The
workhorse of the laser system is a customary diode-laser operating at 780
nm, mounted an an external cavity configuration to decrease the natural
linewidth. The external cavity is formed by the endfacet of the laser diode®
and a grating with reflects the -1 order back to the diode (Littrow configu-
ration). The angle of the grating is actuated by a piezo with allows precise
wavelength tuning. We use two copies of this system, plus one without the
external cavity. The first one ("master laser") is locked to the crossover
between the |F' = 2) — |F’ = 2) and |F = 2) — |[F' = 3) transitions.
The lock is obtained by means of saturated absorption spectroscopy, with a
RF-modulation of the laser diode current, and the correction signal is fed to
the piezo controlling the grating angle. From this laser we derive two lines:
one line is frequency-shifted with an acousto-optic modulator (AOM) used in
double-pass "cat’s eye" configuration, to obtain the pump beam. The second
line is frequency-shifted by another cat’s eye AOM, before injecting a second
laser. The second laser (which has no external cavity) is again split in two
lines, from which we obtain the MOT beams, and the imaging beam, using
here again two AOMs to frequency-shift the lines and provide short switching
times. A third laser is locked on the crossover between |F' = 1) — |F' = 1)

6From the optical point of view. From the atomic point of view, the polarisations of a
given pair of counterpropagating beams are o™ and o~ if the quantisation axis is taken
along the propagation axis of one of the two beams.

"Here from the point of view of the atoms, which requires the magnetic field to be
parallel and in the same direction as the propagation of the pump beam.

8Sharp GH781JA2C (discontinued).
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and |F = 1) — |F' = 2) transitions, then frequency-shifted with an AOM
to obtain the repumper beam. All these different beams can be switched
on and off by way of home-built mechanical shutters made from high power
mechanical electric switches and pieces of still-camera diaphragms.

Optics around the cell

Pump&y-Imaging
X y-MOT(1) X

atomchip surface Pol.BS
I(S;jg:\s 3)&( (w/ dielectric coating) ® z
|z
gy ——— QWP Y
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Figure 2.3: Schematic of the various beams around the cell.

Left: Side view of the MOT beams. The darkest zone corresponds to the
crossing zone of the 6 effective beams, thus to the cooling zone.

Right: Top view of the other beams. The chip position is marked with dashed
lines. The beams are separated for clarity. QWP= quarter-wave-plate, Pol.
BS= polarising beam-splitter.

Light produced as explained above is brought near the vacuum cell by
means of polarisation maintaining single mode fibres, then expanded with
lenses. Using waveplates, we can then achieve the desired polarisation for
each beam. Let’s start with the MOT beams. A MOT requires usually 6
beams, one for each direction of space. Due to the presence of the chip, it
is however not possible to send light along the vertical axis. The mirror-
MOT technique was developed in the early chip experiment to circumvent
the problem. It relies on the reflection on the chip surface to obtain 6 effective
beams from only 4 (see Fig. 2.3 Left). The reflected beams are tilted by 45 °,
and are slightly more powerful than the non-reflected ones. One of the two
45° beams share its fibre with the repumper beam. The other beams lie in
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the horizontal plane (see Fig. 2.3 Right). We use two imaging beams, along
with two cameras® for imaging in the x and y direction. The = beam is tilted
by approximately 30 ° to avoid the electric connectors located on both sides
of the chip. Details about the lenses system can be found in [44, p. 50].

2.1.3 Chip and magnetic traps

In an inhomogeneous magnetic field, atoms feel a potential U = —uB where
@ is the magnetic moment. For atoms in the low-field seeking states (1 < 0),
the atoms can be trapped at a minimum of the magnetic field. The trapping
frequency will be proportional to the curvature of the magnetic field at its
minimum. For 8"Rb atoms in the 5S1/2 multiplet, the trappable states
are |[F' = 2;mp = 1,2) and |F = 1;mp = —1). Magnetic potentials may
be generated by coils, but advanced manipulations typically require several
tunable traps and as many coils. Furthermore, the further the coil is away
from the atom, the weaker the confinement it can provide. The technology of
atom chips was developed to overcome this limitations, and greatly simplify
cold atoms setups. The requirement on the quality of the vacuum decrease
as the manipulation time decreases, and with a stronger confinement, one
can typically obtain a Bose-Einstein condensate in less than 10 seconds. The
principle of the atomchip is a bidimensional structure of wires, in which one
can run currents to create magnetic potentials. If the chip is close to the
trapping zone, the confinement obtained is stronger. Typically, the chip is
put directly in the vacuum chamber, or is part of it as it is the case in our
experiment. The distance between the trap centre and the chip surface can
be made as small as 10 gm or so. The chip technology was extended to
realize more general potentials, like rf potentials [20] or mw potentials [45].
The atomchip used in this experiment consists in a bidimensional struc-
ture of gold wires deposited on a insulating substrate of Al-N. It was fab-
ricated at the LMU in Munich, using microlithography techniques. Details
about the chip fabrication process can be found in [46], where they used the
same recipe for chip fabrication. With current microlithography techniques,
micrometre-thick wires can be realized, and hundreds of them can be com-
bined on the same chip, using multiple layers if necessary. There is almost no
limitation to the variety of traps one can obtain by combining currents in the
different, wires, see for example [47, 48| for an overview. The trap parameters
can be computed by solving the Biot-Savard equations. We shall however give
here the physical insight which guides the user to design a trap. Consider a
single wire (orientated along x) in which we drive a current I,,. The magnetic

9JAI-CV-M50-IR.
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field is given by B = 1ol /(271)eq, in the cylindrical coordinates of axis x. If
we add an external uniform bias field B¢"* = B¢'e, +B", the perpendicular
component compensates the wire field along one line, parallel to the z-axis,
at a distance ro = pol /(2w B$*"), where the resulting magnetic field magni-
tude is minimum. A single wire combined to a magnetic bias field therefore
realizes already a 2D trap or "waveguide". The trap curvature is the same
in both transverse directions, and is given by B/ = (B$*")?/(|B&*!|r2). Most
traps are variations to this waveguide trap, done by adding a confinement
(generally weaker) in the third direction.

The chip used here has 48 independent connectors, and features wires
with a width down to 50um. It is made with two layers, the bottom layer
being used only for a single phase of the experiment, the upper layer has the
smallest wires and is depicted on Fig. 2.4. The connectors to the current
sources are located on the left and the right side of the lower layer. The
connection between the layers is provided by small bonding wires.

Figure 2.4: Bottom view of the chip upper layer. The dimensions are 25 x 28
mm.

As an example of a trap we realize during the experiment, other than the
waveguide, we consider the trap generated by the P-shape structure Fig. 2.5.
If the external magnetic field is directed along x, it compensates the P field
at the position marked in blue on the left figure, where the wire is directed
towards —y. Therefore, the P wire is locally equivalent to a straight wire
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directed along y, and the confinement is strong in the x and z directions.
If we rotate the magnetic field, the position of the trap also rotates, which
allows us to bring the atoms near the waveguide line depicted in green on
the right figure.

®z

’ y l Bext
Bext

X

Figure 2.5: Geometry of the rotatable P-Trap. The position of the cloud is
depicted in blue.

2.1.4 From the MOT to the BEC

A typical experimental sequence for cold atoms starts with a MOT, obtained
by switching on the current in the quadrupole U and applying cooling light
and repumper light during approximately 5 seconds. Then comes the mo-
lasses phase: the quadrupole field is switched off and cooling light is applied
for a brief period (typ. 3 ms). The mechanism of Sisyphus cooling allows
here to obtain an ultracold atomic cloud, with a typical atom number of
40 x 10° and a temperature of 14uK. At this point, we apply a short pulse
of pump light to optically pump the atoms to the magnetically trappable
state |F' = 2;mp = 2). We are then able to transfer the cloud to a first
magnetic trap generated by the P-structure as explained above. The atoms
are then transferred to a series of different magnetic traps, to reach to po-
sition where we want to manipulate them. For each transfer to a different
trap, the currents in the chip wires and the magnetic bias field are ramped
from an initial to a final value. Bose-Einstein condensation is only performed
at the final trap, because the BEC is sensitive to heating and survives for
approximately 100 ms. To reach BEC, we apply a radiofrequency ramp on a
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typical timescale of 1s or less, depending on the final trap frequencies. The
larger the confinement, the shorter the ramp. We routinely obtain quasi-
pure BEC with approximately 1,000 atoms. This is the starting point for
our experiments.
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2.2 High finesse Fabry-Perot cavity

The Fabry-Perot cavity used in this work for single atom detection is made
from two optical fibres facing each other'. The endfacets of the fibres are
processed for high reflectivity, which yields a large finesse of 36,000.

Used in combination with atom chips, these fibre-based Fabry-Perot (FFP)
cavity have strong advantages over standard, macroscopic high-finesse Fabry-
Perot cavities:

e The cavity length, of the order of 40 pum is small, which allows to use
strongly-curved mirrors while staying in the stability range of the cav-
ity. Therefore the mode-waist (~ 4um here) is small, and the strong
coupling regime can be reached without requiring a very large finesse.
As a result, the condition for cavity stabilisation are less stringent com-
pared to longer cavities.

e The cavity mode is very close to the surface of the chip (~ 150um
here), which allows a stronger confinement with magnetic traps, and
good control of the atomic position. For instance, it is possible to load
atoms in a single antinode of the cavity mode [15].

e The system is scalable. In the experiment we have two cavities (we
only use one for the moment), but it is in principle possible to use as
many as desired with the same atom chip.

And compared to other kind of resonators such as photonic crystal cavities,
or microspheres and microtoroids, it is still easier to bring the atoms in the
cavity mode, although these designs have certainly a strong advantage in
terms of scalability and integration to a chip.

The fabrication process consists in two steps. In the first step, the fibre
tips are shaped to form a concave surface by means of CO2 laser ablation.
This process is described in [49, 50]. This allows to reach radii of curvature
in the 100-500m range, while enabling a smooth surface on the fibre tips. In
our experiment the radii of curvature are Ry = 450um, Ry = 150um. Then,
the fibre tips are coated with a HR coating!'!. The coatings have a specified
transmission 7" = 31 ppm and loss L = 56 ppm at 780 nm. Each fibre is glued

10The input fibre is a single-mode fiber with mode field diameter matching the cavity
mode diameter at the mirror position. The output fibre is a multimode fibre in order to
loosen the alignment constraints for efficient output light collection. More details about
alignment procedure can be found in [44].

L,ZH Hannover: the fibres are directly coated there, there is no transfer process.
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in a V-groove holder, mounted on a shear piezo'?, which allows to tune the
cavity length by approximately 1um. It is therefore always possible to find a
TEMOO resonance within the actuation range. The piezos are mounted on a
ceramic bridge. The alignment of the cavity is done on the ceramic bridge,
before it is glued on the atomchip (see Fig. 2.6). The input fibre of the cavity
is a single mode, non-polarisation maintaining fibre, while the output fibre
is a multimode one. With a multimode fibre at the output, the requirements
for the alignment procedure are weaker. There is no further adjustment to
do later on, excepted the cavity length. The thickness of the bridge is chosen
to have a minimum distance between the chip surface the cavity mode axis,
150pm in our experiment.

resonator mount

Figure 2.6: Photographs of the integrated atom-cavity setup. The right
picture is a zoom of the two fibre-cavities.

2.2.1 Length stabilisation

In this section we describe the stabilisation scheme of the cavity length.

Principle

The cavity stabilisation is realized with the help of a second resonance line
at 830 nm. The double resonance condition at 780 nm and 830 nm for the

12P[-Ceramic shear plate, dimension 5 mm(active) x5 mmx 1 mm.
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TEMOO mode can be written in the equivalents forms:

{wmo = nggo2me/ Lrso or { Aso = Lrso/Mrso

2.1
Wgsp = n83027TC/ Lgso Ag30 = L830/n830 ( )

where Lrzggg30 > 2d are the cavity "effective" lengths at 780nm and 830nm,
including mirror phase shifts, and which we assume to be almost the same.
An approximate value for the effective lengths comes from the measurement
of the FSR which gives L ~ 78um. The mode number for a wavelength of
780 nm is then nzgg >~ 100. From the equations Eqn. 2.1 we extract the
mode number for light at 830 nm: ngsp — n7s0 ~ L(1/As30 — 1/ A780) =~ —6.02,
but from the integerness of n, we can conclude that

ng3o = Nrso — 6. (2.2)

The two modes having the same parity, they coincide in the centre of the
cavity, in agreement with the observations [15]. For a cavity locked to a

spectroscopy-stabilised laser at A = 780.24 nm, the measurement of the
830nm wavelength with a 6-digit wavelength-metre!® yields A\g3p = 830.10
nm. Using the exact equation ngzy — nrsg = —6, we compute the cavity ef-

fective lengths Lrgg and Lgsy for different guesses of nrgy around 100. The
difference | L7g0— Lgso| has a clear minimum for nzgg = 100, a strong indication
for this value of the mode number!'*. We finally extract the cavity effective
lengths at 780 nm and 830 nm: Lrgp = 78.024um and Lgzy = 78.029um. The
difference of 5 nm can be explained by the properties of the coatings which
are optimised for 780 nm.

This preliminary work done, we now proceed to the locking scheme. The
goal is to fix the position of the 780 nm resonance at a desired value w. 750 =
we + A, without sending light at this frequency. Instead, we want to use
830 nm to lock the cavity, but the precise value of the wavelength cannot be
controlled with a high precision, because there are no spectroscopic references
at 830.10 nm.

For that matter, we derive two other beams at 780 nm (the 780’ beam)
and 830 nm (the 830’ beam) which are frequency-shifted from the 830 nm
of the FFP cavity (830 beam) and a spectroscopy-stabilised reference laser
at 780 nm (which we assume here for simplicity being exactly at the atomic
resonance Wy ): Whey = Wa + Aguz, Whgg = wsso + Agszo. Then, we use a second
Fabry-Perot cavity of length L’ (transfer cavity) to transfer the frequency
accuracy of the spectroscopy-stabilised 780 nm light to the 830 nm light. We

13High-Finesse WS6, courtesy of F. Gerbier team.
14This value differs from [44].
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inject both the 780" and the 830’ beams in this transfer cavity. We now write
the double resonance condition for the transfer cavity with a free spectral
range denoted by FSR' = 2m¢/L:

{w,?SO = N FSR (2.3)

/ _ / !
Wgzg = TNggoE'SR

Enforcing now the lock condition ws3y = ng30F'SR, we now find the position
of the 780 nm resonance for the FFP cavity

/
_ TNsoTig3o

[

A
: - 830 A830 + Aaux — wa —|— AO + Aaux (24)
N830M780 A780

where the coefficient "1" in front of A,,, is precise to 107° when we limit
the detunings A to <1 GHz. We can therefore scan the cavity resonance,
by scanning the value of A,,,, while keeping Agsy constant and the reso-
nance condition enforced. The value of the initial detuning depends on the
mode numbers n7g g5y and has to be calibrated by looking at the cavity
transmission. It changed from one double resonance (n4g); ngs,) to the next
(nfgo + 15 o 4 1) by an amount §(Ag) = FSR'(220 — 1) = ZFSR’. Equiv-
alently, we obtain the same detuning on the FFP cavity if we change at the
same time the value of Ay, by an amount §(Ag,,) = FSR'(1 — 7™2). The
resonance condition w. = w, can therefore be only for a finite set of values

of Ay, which allows us to identify to mode number n/g,.

Aue(k) = A® 4+ EFSR/(1 — 780) (2.5)

auxr
1830

where k € Z.

Experimentally, we proceed the following way: the detuning Agsg is set to
a reference value which is always the same. The 830 laser is approximately
tuned to be obtain a double resonance on the FFP cavity. Then we scan
the transfer cavity and tune A,,, to obtain a double resonance also on the
transfer cavity. The value of A,,. is then compared to the possible values,
and then locked to the closest one. Similarly as with the FFP cavity, the po-
sition of the double resonance allows to identify on which modes the transfer
cavity is locked.

Implementation

Let us now discuss the implementation, which corresponds approximately to
the upper half of Fig. 2.7.
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Figure 2.7: Laser system for the cavity. The different beams are depicted
with different colours, thicker lines indicate superimposed beams.

Not shown: optical isolators; filters for the AOM zero-order output; lenses
for mode-matching at fibre-couplers and transfer cavity input, focusing onto
the AOM and photodiodes apertures; HWP in front of PBS.



56 Chapter 2. Experimental setup

The transfer cavity is a simple symmetric concave cavity with mirrors
of curvature R = 10 cm and diameter 0.5". The body of the cavity is
a single piece of Aluminium of approximative length 10 cm, which yields a
free-spectral-range of FSR' = 27 x 1.5 GHz. The longitudinal positions of the
mirrors are adjusted by coarse screws, and one of the mirror is mounted on
a piezo stack. The mirrors have an intrinsic measured finesse of 2000, which
corresponds to a linewidth of 0.75 MHz (FWHM). When used in the confocal
configuration, the linewidth increases to approximately 2 MHz (FWHM) due
to non-perfect frequency superimposition of the various transverse modes.
The stability of the final lock is however limited by the linewidth of the
FFP cavity, which is much larger. The confocal configuration has the strong
advantage to realize a stable injection even when the beams are not perfectly
mode-matched to the TEMOO mode. In our case, we use two beams with a
large wavelength difference, and it is difficult to achieve a satisfactory mode-
matching with both wavelengths at the same time. Other experimental works
reported similar results [51].

The FSR in the confocal configuration is measured at FSR’ = 27 x 745(3)
MHz, corresponding to an effective length L' = 43 c¢m, 4 times the distance
between the mirrors. This relatively small FSR allows us to reach a resonance
from any initial frequency with a maximum detuning of less than 400 MHz.
At the same time, the value of the discrete step between double resonances
is not to small: 6(Ag) = FSR/(; — 1) = 27 x 47.5 MHz, which permits to
identify quite easily the mode number.

The transfer cavity is temperature-stabilised to obtain a stable effective
length L'. The goal of the temperature stabilisation is double here: first, we
need to be able to lock the cavity for hours on the same line within the piezo
range (as usual for a cavity), but also we want to be able to identify from one
day to the other on which double resonance set we are tuned, and optimally
to lock the cavity always on the same double resonance. The requirement is
then that the long term length drift is smaller than a few wavelengths (the
piezo range is approximately 3 FSR). The temperature fluctuation leads to a
drift of AL’ /AT = 10pum/K 3, which put the requirements on the long-term
temperature stability at a level of 0.1 K, while the temperature in the room
fluctuates by 1.5K on a 15-min time scale. The temperature stabilisation
system is simple. First, the cavity is enclosed in a cardboard box, filled with
some foam to block the air flow. Then, a thin copper wire of resistance 42
is rolled around the cavity, while the temperature of the cavity mount is
measured with a thermistor located between the copper wire and the mount.
We apply an active feedback on the current running in the wire with an inte-

15Computed from Al thermal expansion coefficient and checked experimentally
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gration time constant of approximately 1 minute. The resulting temperature
fluctuation is measured at 0.005K on a one hour timescale, which shows that
the feedback efficiently suppresses the room temperature fluctuation by a fac-
tor >100. One a day timescale, we observe a fluctuation of the cavity length
with an amplitude ~ 0.2um, not correlated to the room temperature. We
attribute it to pressure changes in the room (Ap = 10 hPa— AL’ = 1um).
Therefore we conclude that the temperature stabilisation is good enough for
our purpose, and that the use of expensive materials with smaller thermal
expansion coefficients (invar, ULE glass) is not necessary here.

The auxiliary beam at frequency wig, is obtained from an auxiliary laser at
780 nm. To get the condition whg, = we+Agus, with a tunable, well controlled
Ay we implement a beat lock with the master laser, using a fast photodi-
ode'®, a DC - 1GHz amplifier'”, and a 50 - 1100 MHz frequency-to-voltage
converter'®. The value of A,,, is locked to the desired value by applying a
feedback signal to the grating piezo. The long term drift is < 250 kHz/h.
The 830’ nm beam is produced from a 830 nm laser diode!®, mounted in the
usual external cavity configuration. Approximately 100 pW of this beam is
superimposed to the auxiliary beam at 780 nm on a non-polarising beamsplit-
ter cube. The resulting beam is mode filtered before being phase-modulated
at frod = 17.9 MHz with an electro-optic phase modulator?(EOM-A), and
finally injected in the transfer cavity. The reflections on the transfer cav-
ity are separated by an interference filter’® and measured with two 150MHz
amplified photodiodes?? (PhD A-780 and A-830). The intensities are demod-
ulated to obtain two independent Pound-Drever-Hall lock signals [52], one for
the 780" beam, one for the 830’ beam. The first signal is used to compensate
the transfer cavity length fluctuations, the second one acts on the grating
piezo to set the frequency of the 830’ beam.

The rest of the 830 nm laser beam is frequency shifted by a double pass
AOM (AOMS830) to obtain the detuning Agsy and set the beam power at
the input of the FFP cavity. It is phase-modulated at 1.7 GHz with a fibre-
EOM?, before being injected in the input cavity fibre. The reflection signal
is filtered at 830 nm, then measured with a 1-2.8 GHz photodiode?* and

16Hamamatsu MSM G4176-03, with SMA connector

1"Minicircuits MCL-ZFL-1000LN

18 Home-built, courtesy of the atomchip clock team of SYRTE.

19Sanyo DL 8032-01

20Qubig EO-F20L, with a 3 mm aperture.

21Semrock BL-786.

22Thorlabs PDA-10.

23EOSPACE PM-0K5-10-PFA-PFA-800-UL.

24Hamamatsu MSM G4176-03, amplified by 2 x Kuhne KU LNA BB 2000 LSF-SMA
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demodulated to obtain a Pound-Drever-Hall signal which is fed to the cavity
piezo.

Performance

With this setup, we obtain a stable lock of the cavity at any user-defined
detuning. We can perform scans of the cavity resonance frequency of ampli-
tude approximately 1GHz. The lock of the cavity has a bandwidth of 5 kHz,
mainly limited by the piezo resonance at 12.5 kHz.

Scan of the cavity with the transfer lock scheme

We can perform a scan of the cavity resonance frequency by scanning the
frequency of the auxiliary laser A,,,. The transmission is measured with the
APD, when the probe beam is locked to a Rubidium resonance. We obtain
a Lorentz-shaped transmission curve with a linewidth 2k = 105 MHz (see
Fig. 2.2.1Top), approximately the same value as if we perform a scan of the
probe laser frequency.

Cavity frequency noise

We performed a measurement of the cavity transmission noise, using a
probe frequency wy = w, and for two possible settings of the cavity trans-
mission w, = w, and w. = w, + x. The noise spectrum is computed from the
APD trace with an integration time constant of 40 us corresponding to 80
counts/bin. The results are shown on Fig. Bottom. Some peaks are present
only at w. = w, + k which indicates they correspond to frequency fluctu-
ations, with typical frequencies 2.5 kHz and 12.5 kHz which are the piezo
resonance frequencies.

2.2.2 Optical setup for probing the cavity and measur-
ing the transmission

This corresponds to the lower part of Fig. 2.7. The cavity is probed with
a 780 nm laser, beat-locked to the master laser. The power of the beam is
controlled by two AOMs (AOM1, AOM2) to obtain an extinction ratio of
> 10°. It is then superimposed to the 830 nm beam, and injected to the
cavity. At the output of the cavity, the 780 nm is separated from the 830 nm
with two interference filters, and then the photon flux is measured with an
APD?,

with Bias-T option.
25Perkin-Elmer SPCM-AQR-14.
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Figure 2.8: Top: Scan of the cavity. The green curve is a Lorentz fit with 105
MHz FWHM. Bottom: Noise spectrum of the cavity. The cavity frequency
is set at A. = & (blue) or A, = 0 (red).

We measured a loss factor of np = 0.8 between the output of the multi-
mode fibre and the input of the APD. Taking into account the losses at the
output mirror of the cavity, we can estimate the number of photons in the
cavity mode with the measured photon flux & with the formula

d =nk nenapp = nk X 0.16, (2.6)

T+ L

with the numeric values T' = 31 ppm, L = 56 ppm for the mirror coeffi-
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cients?®, napp = 0.55 for the APD quantum efficiency?’.

26These are the manufacturer values. Only the finesse F = 74T can be measured
experimentally, and is in a good agreement with the specifications.
2TManufacturer value. Without a single photon source, only the count rate can be

measured for a given beam power, and the ratio in good agreement with the specifications.
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2.2.3 Cayvity specifications for QED

The cavity has a measured linewidth (FWHM) 2x = 27 x 104 MHz and a
free-spectral-range of 'SR = 27w x3.85 THz (~ 8 nm), which corresponds to a
cavity "physical" length d ~ 39um. The finesse is therefore [’ = FSR/(2k) ~
37000.

The expression for a TEMO0OO mode in a spherical-spherical resonator is
given by the standard formula for Gaussian beams [53]

cos | ky + szg%y) - \If(y)] exp L;(g)] , (2.7)

w(y)

where the parameters are

E:EO

w’(y) = wy(l+ (y/y)?) (2.8)
Rly) = y+ui/y (2.9)
U(y) = tan"'(y/yo) (2.10

Yo = Twi/\ (2.1

)
1)
We find the value of the beam waist wq by matching the wave curvature R(y)
with the curvature of the mirrors R(y,) = Rs, R(y;) = —R;, imposing at the

same time y, — y; = d, the fixed distance between the mirrors. The solution
for the waist reads [54]:

wy = (% {d(Rl —d)(Ry —d)(Ry + Ry — d)} ) (212)

(R; + Ry — 2d)2

which, computed for our cavity parameters d = 39um, Ry = 450um, Ry =
150p, yields wy = 3.9um at A = 780 nm. The mode volume can be exactly
computed from V,,Ef = [ d*rE(r)*> = Ejmwid/4, therefore we obtain

2
Twid

Vin = 1

(2.13)

From the mode volume, we compute the maximum coupling g, of the |F =
2;mp = 2) = |F' = 3;mlz = 3) ot-transition with the formula

gm =V hw2€0de22_,33/h ~ 21 x 210 MHZ, (214)

and the single-atom maximum cooperativy for the same transition

g2
C,, === ~150. (2.15)
2Ky
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The cavity exhibits birefringence with separated peaks corresponding to
two orthogonal input polarisations. The splitting dw, = 27 x 400 £+ 20 MHz
is very small compared to the FSR and both peaks can be attributed to
the same longitudinal and transverse too mode number. The origin of this
birefringence is probably related to the deposition process of the HR coating:
the surface to coat is strongly curved, and it is slightly asymmetric, which
defines two principal axis with different radii of curvature. During the coating
process, it is likely that the stress on the coating material is not the same
for the two axis, inducing a small birefringence for the resulting mirror. The
relative phase shift due to this birefringence is of the order of 2rndwy,/w ~
1073 rad. Therefore, the eigenpolarisations of the cavity are almost linear,
provided the birefringence itself is linear. However, because of the fibres, we
cannot measure this polarisation precisely. The experience of "macroscopic"
cavity QED groups tells us that the birefringence induced by stress on the
mirror coatings is linear |55, 56]. Nevertheless, the typical phase shift in
their situations seems to be much smaller (~ 1079 [56]). With the large
curvatures of our mirrors, a larger value was anyway to be expected. This
birefringence is always an issue since it forbids to drive the cycling transition
|F'=2;mp = 2) — |F' = 3;m}, = 3) which has the strongest coupling rate.

2.2.4 Dipole trap characterisation

The cavity stabilisation light at 830 nm is also used in the experiment to
generate a dipole trap. The shape of the dipole trap potential is given by

2 2
V = —U cos(kssoy)? exp (—%) (2.16)
Wg30

The frequencies are computed by expanding the potential near the minimum
at (y=0;r; =0):

2U k2

wy, = % (2.17)
4U

w, = - (2.18)
Mwgsg

The ratio between the trap frequencies is then given by

wyw, = kssowsso/V2 =~ 21 with wsgy = 4.0 pm. The value of the trap
depth U is difficult to estimate from the cavity transmission at 830 nm since
the coating specifications at 830 nm are not provided. We therefore need to
perform a calibration of U versus the 830 nm power, by measuring directly
the trap frequency.
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We measure the trap frequency f, = w,/27 with a parametric heating
experiment performed on a shallow dipole trap. The 830 nm laser-diode cur-
rent is modulated at a frequency f,,.q, which induces fluctuations of the trap
depth at frequency f,0q (and multiples). A cloud of approximately 100 atoms
is loaded in a weak modulated dipole trap, where its stays for 50 ms before it
is imaged with the camera. The number of remaining atoms is measured as
a function of the modulation frequency (Fig. 2.9 Top.). The losses are max-
imum for two possible modulation frequencies fy041 and foed2 > fmod1 X 2.
According to previous experiments [57|, we attribute these loss processes to
trap shaking (fieda1 = f,) and parametric heating (froa2 = 2f,). We mea-
sure the trap frequency f, for various dipole laser power and observe the
fy ~ VU scaling law (see Fig. 2.9 Bottom.). This experiment provides a
calibration of the dipole trap depth and frequencies, which is valid for any
dipole trap power.
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Figure 2.9: Calibration of the dipole trap frequency f,.

Top: Remaining atoms as a function of trap modulation frequency f o4
Bottom: Modulation frequency for the two loss peaks, for different dipole
trap depths. The frequency of the second peak is divided by two. The full
line is a square-root fit.
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2.3 Microwave source

In the experiment, we intend to drive Rabi oscillations between ground state
levels |F' = 1) and |F = 2), which are approximately separated by 6.8 GHz.
The hyperfine and Zeeman structure is depicted on Fig. 2.10. These tran-
sitions are of the magnetic-dipole type, and must satisfy the selection rules
Amp = 0,£1. Due to the great stability of ground state levels (lifetime ~
minutes), the microwave frequency has to be tuned very close to the reso-
nance. The Zeeman sublevels are sensitive to the magnetic field to the first
order, excepted for the mp = 0 levels, with a Landé factor gp—; = —1/2 and
gr—2 = 1/2. The linear shift is given by

Ap.m, = ppgrmp ~ £(B/1G) x mp x 0.70 MHz. (2.19)

The resonance frequency of the transition |F' = 1;mp) — |F = 2;mp,) is
therefore given by

fmplwmw2 (B) = foso+ pus/2h(mp, —mpg,) (2.20)
~ 6834.682 + (B/1G) x (mp, — mpg,) x 0.70 MH%2.21)

_l_f=0.7MHz/G
F=2 1 — -f - — —
N -2
=
o §
X
o <
X
Iz
F=1 L — _l_ - —

—T—f:O.7 MHz/G

Figure 2.10: Level diagram of the 5S1/2 multiplet. The red lines are the
transitions we drive in the experiment.
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2.3.1 Design and performance

A single tone, frequency-tunable microwave is generated by the microwave
chain described on Fig. 2.11 Top. The microwave signal is obtained by the
mixing of a radiofrequency and a microwave of in a single sideband (SSB)
mixer?®, which takes for input a microwave and two radiofrequencies of fre-
quency f shifted by 90°. The microwave component at f,,, o = 6800 MHz is
generated by a yttrium-iron-garnet oscillator?. The radiofrequency is gen-
erated by a 4-output direct-digital-synthetiser (DDS)3°, which is interfaced
to the computer via a USB connection. Up to 4 different frequencies can
programmed, and then switched during the experiment. Both the DDS and
the mw oscillator are phase-locked to a common frequency reference at 100
MHz, which is derived from an oven-controlled ultrastable quartz oscillator
at 10 MHz3'. The output of the SSB mixer at f = fwo + [ is fed to
an amplification chain®? of global gain 51dB to obtain a 15W microwave sig-
nal. The output of the last amplifier is connected® to a coaxial-waveguide
adaptor®* which acts as an antenna, located approximately 50 cm away the
vacuum cell, and directed towards it. The amplifier is protected from the
reflections on the antenna by a mw circulator®>. The microwave output is
switched on and off by a TTL-controlled mw switch®®, with a specified rise
time below 10 ns, which allows to work in the pulsing regime.

The frequency stability of the mw output signal is characterised by a
phase noise curve, displayed on Fig. 2.11 Bottom. The phase noise curve is
measured with the help of an Agilent N9010A signal analyser, and compared
to a reference mw signal generator Agilent E8257D. The custom-made MW
chain performs almost as well as the reference generator in terms of phase
noise.

28Pulsar Microwave IMOH-03-458

Z9Microlambda wireless M2PE-1285

30 Analog Devices AD9959, with evaluation board. The evaluation board was modified
to enable real-time switching of the output frequency and phase reset with TTL signals

3110 MHz oscillator: Oscilloquartz OCX08789
100 MHz phase-locked oscillator: Wenzel Associates 501-10137

329 x Kuhne KUPA682-TR-UM, then Kuhne KUPA682-XH-UM

33Cable: C&C connectique CSU528AA

34Pasternack PE-9830

35 Aerotek H16-1FFF

36Miteq S136-BDMO, discontinued
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Figure 2.11: MW chain design and performance.

Top: Schematic of the microwave chain.

Bottom: Phase noise of the microwave chain (black curve). The red curve is
a reference curve taken with an Agilent E8257D signal generator.
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2.3.2 Measurement of Rabi frequencies

As a preliminary work for experiments with single atoms, we measure the
resonance frequencies and the Rabi frequencies for the transitions we need for
the experiment, which are depicted in red on the level diagram (Fig. 2.10).
We start with the transition |F' = 1;mp = 1) — |F' = 2;mp = 2). Because of
remnant field gradients always present in the experiment and inhomogeneous
mw power, we have to measure the characteristics of the transition at the
position we want to drive it, i.e. in the intracavity dipole trap. We use the
dipole trap depth which maximises the number of atoms we can load inside.
It corresponds approximately to the weakest trap we can achieve without
losing the cavity length stabilisation. To obtain the transition frequency
at any dipole trap depth, we have to correct for the so-called differential
light shift: the light shift experienced by F' = 2 atoms is slightly larger in
absolute value than for the /' = 1 atoms, because of the different detunings.
The transition frequency is reduced for stronger dipole traps, by an amount
dw = 3.5 x 107* x U, where U is the dipole trap depth.

Starting from a BEC of |F = 2;mpr = 2), we load approximatively 250
atoms in the dipole trap, and then switch off the magnetic trap while keeping
a magnetic bias field of about 4G. Then, we apply the mw for a duration
tmw, and measure the number of atoms which remained in the |F' = 2) state
by absorption imaging. If the mw source is tuned close enough to resonance
(frw ~ fo = fmFlzlﬁmeg), the Rabi oscillations are observed (see Fig.
2.12 Top). The "effective" Rabi frequency f and the contrast C of these
oscillations are given by the equations:

Fo= It U — fo)? (2.22)

f#

¢ fIQ% + (fmw - f0)27 (2.23)
where fg is the resonant Rabi frequency (or Rabi frequency when there is
no ambiguity), and is proportional to the microwave field amplitude. From
the observed dependence f(f.), we extract accurately the resonant Rabi
frequency fr = 290(3) kHz and the position of the resonance fo = 6842575(5)
kHz (see Fig. 2.12 Bottom). As expected, the contrast is maximal when the
effective Rabi frequency is minimal. The contrast peaks at 0.75, a value
limited by the imaging noise. We can observe Rabi oscillations on a duration
which is larger than 1 ms, but we did not measure precisely the coherence
time.

The measurement of a single transition frequency allows to calibrate the
magnetic field magnitude with a relative precision of approximately 1073, We
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Figure 2.12: Rabi oscillations on the |F' = 2;mp = 2) — |F = 1;mp = 1)
transition.

Top: The population in the initial state (|F' = 2)) is depicted as a function
of microwave pulse duration, at resonance (fpn., = fo). The red curve is a
cosine fit with a contrast of 0.75 and a frequency of 290 kHz.

Bottom: Frequency (left axis) and contrast (right axis) of the Rabi oscilla-
tions, for different microwave frequency f,,.,. The red dashed curve is a fit
to the effective Rabi frequency, and yields the resonant Rabi frequency and
the position of the resonance fy (used for the upper plot). The fit results
are used to compute the expected contrast (black dashed curve), which we
correct by a factor 0.75 to account for detection noise.
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can then compute the frequencies of all the other transitions we are interested
in with the help of the formula Eqn. 2.20 3". We just need then to measure
the Rabi frequencies of the transitions |F' = 1;mp = 1) — |F = 2;mp = 0)
and |F' = 1;mp = 0) — |F = 2;mp = 0). For the first, we transfer the
atoms in the |F' = 1;mp = 1) state by applying a "#"-pulse of duration
tr = 1/(2fr11-22), then switch the microwave source frequency to the ex-
pected value for the |F' = I;mp = 1) — |F = 2;mp = 0) transition, and
we observe the Rabi oscillations as previously. For the last transition (the
"clock" transition), we have to apply two m-pulses and change the mw fre-
quency twice. For a magnetic field B.,; = 3.690 G x (cos(30°)e,+sin(30°)e,),
and a microwave power reduced compared to the previous experiment, we
found the following values for the resonant Rabi frequencies:

Transition | Rabi frequency
(me — mpe) | |kH]
1—2 115(1)
1—0 34(1)
0—0 69(1)

The ratio between the Rabi frequencies of the different transitions depend
on the microwave polarisation, and was found to be stable for months, even
when the experimental setup was "tuned" (not to close to the cell though).
This was not obvious from the beginning since the microwave polarisation
at the position of the atoms is the result of the superposition of multiple
reflected waves due to the presence of metallic surfaces all around the cell.

2.4 Experimental interface

The experiment is controlled by a computer equipped with analog and digital
output PClI-cards®®. The sequence consists in a source file containing a list of
events when at least one value of the output cards changes. A program is used
to convert this list into a table containing the values of the outputs at each
time step. This table is then read by the driver of the analog/digital output
cards. A sequence is defined once and for all by the initial source file, and
cannot react to events occurring during the experiment. We have therefore
slightly modified the system to enable this possibility. For that matter, we

3TWe can also take into account the second order correction using Breit-Rabi formula -
this leads to a difference of about 10 kHz here for a 4G magnetic field.
38National Instruments
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installed a microcontroller®® which is able to read some input values (mainly
digital, but there are also some analog inputs and a digital counter) and
react according to their values. The microcontroller performs very well at
digital tasks, with a reaction time of approximately 1 us for the simplest
tasks. Because of the small number of outputs available, the microcontroller
we use cannot replace the computer cards, and we have to interface it with
the computer. This is done in the following way, and summarised on Fig.
2.13:

1. Initially, the microcontroller is in a "copy mode". It reads the val-
ues of its inputs, and copy them to its outputs. The existence of the
copy mode is mandatory since we want some output to be alternatively
controller by the computer and the microcontroller.

2. When the control has to be given to the microcontroller, a signal is
sent, by the computer cards to one specific input of the microcontroller,
called the trigger input. At this point, the microcontroller leaves the
"copy mode" for the "autonomous mode".

3. The microcontroller executes its sequence. This sequences involves
reading some values coming from the experiment, computing and ap-
plying the desired outputs, executing loops. In a single atom prepara-
tion scheme, the typical tasks are: changing the mw frequency, applying
a mw pulse, applying a detection pulse, reading the number of APD
counts.

4. When the sequence is done, the microcontroller returns to the "copy
mode", until it is triggered again.

39 ADWIN Llte, with digital input/output extension card.
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Computer
uController :
1 0 1
Experiment
Copy mode Autonomous mode

Figure 2.13: Control flow of the experimental interface. On the left is the
microcontroller copy mode, on the tight the autonomous mode.



Chapter 3

Detection of single atoms in a
waveguide

The calibration of a single atom detector is a difficult task, since it requires
to achieve independently a reliable preparation of single atoms. In the first
experiment which demonstrated single atom detection with optical cavities,
an ultracold atomic cloud is dropped from a MOT located above the cavity
[58]. The atoms, freely falling towards the cavity mode, cause a transmission
drop when they enter it. The flux of atoms entering and leaving the cavity
can be made small enough in order to avoid the presence of multiple atoms
in the cavity mode at the same time. Most of the time, the cavity is empty
and has a large transmission, and from time to time, a single atom enters
the cavity mode, inducing a drop of the cavity transmission before it leaves
and the transmission recovers its reference value. The transmission signal
has therefore a telegraph-signal shape, with transmission "dips" associated
with single atom transits. The observation of single atom transits, by the
way of telegraph signals, is a direct proof of single atom detection. Contrary
to indirect methods developed in [59, 60|, it does not rely on statistical as-
sumptions on atoms and photons statistics and provides a visual evidence
that the setup is sensitive enough to see detect single atoms.

In such an experiment, the detection efficiency is usually limited by the
spatial overlap between the expanding cloud and the cavity mode. A majority
of atoms never reach the centre of the cavity mode where the coupling is
maximum, and therefore cause a shallow dip which may not be detected.
An efficiency of about 25 % was obtained with an "atom laser" which has a
minimum transverse expansion [61|. In our experiment, we add a transverse
confinement by the way of a magnetic bidimensional trap (or "waveguide")
which guides the expanding cloud towards the cavity mode centre.

73
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This chapter is separated in two sections: first, we describe the experiment
which leads to the observation of single atom transits. Then, we analyse the
properties of the detection in terms of detection efficiency and bandwidth.

3.1 Observation of single atom transits

The experiment is performed in two steps. The principle is summarised
in Fig. 3.1. First, a quasi-pure condensate of about 1,000 or less |F =
2;mp = 2) atoms is prepared in a 3D trap located 1.25 mm away from the
cavity mode. Then, it is transferred to the waveguide trap which enables
the propagation of the atoms towards the cavity mode. By monitoring the
cavity transmission with the APD, we detect single atoms as they cross the

cavity mode.
Probe laser

el
e é ' -
P

Probe laser

chip

Initial trap

Waveguide é
APD transmission " Y ‘{

Figure 3.1: waveguide detection sketch with axis Schematic of the detection
of waveguided atoms. On the left picture, the atoms are held trapped away
from the cavity mode. On the right picture, the longitudinal confinement is
release, and the atoms are detected by the cavity as they enter the cavity
mode, leading to dips in the transmission signal.

APD transmission

3.1.1 Initial trapping and transfer to the waveguide

Efficient transfer of 3D-trapped atoms to a waveguide trap was demonstrated
in [62]. Waveguide traps integrated to atom chips were realized in the first
atom chips experiments [63]. Here, we implement a waveguide trap which
runs through the cavity mode, and describe how we transfer atoms from a
3D trap to the waveguide.
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Requirements

With a large number of wires, and the capability to drive them with indepen-
dent currents, magnetic traps with almost any geometry can be realized on
an atom chip. For this experiment, we need a 3D trap, that can be contin-
uously changed into a 2D trap (waveguide). The geometry of the waveguide
is imposed by the position of the cavity: the centre of the cavity is located
at the position x = 0, y = 0, 2z = 2y = 150pum. The waveguide has to be
aligned with the z-axis, otherwise the atoms would hit the mirrors while en-
tering the cavity mode. The geometry of the initial trap is constrained by the
waveguide: the transverse confinement has to be similar to the waveguide,
and the longitudinal confinement has to be tunable so that we are able to
continuously decrease it to zero to realize the transfer to the waveguide trap.
The position along the z-axis is chosen such as the expansion time is large
enough to decrease the cloud density to the single atom regime.

Trap design

Am} IX EE Aext Ix

N '

ly Sl :__:

Figure 3.2: Atom chip wires and external bias field orientation for the dimple
trap (left) and the waveguide trap (right). The cavity position is marked as
a dashed rectangle.

The design of the waveguide trap is fairly straightforward: it requires only
one atomchip wire in the z direction (located at y = 0) in which we run a DC
current I, and a magnetic bias field B“" = B¢'e, + B¢*'e, generated by
external coils (see Fig. 3.2). The y-component compensates exactly the wire
field on the line (2 = z;y = 0), where z; is defined by pol,/27z = Bg™.
The z-component sets the magnetic field minimum to |B&**|. With I, = 3A,
Bg*t = 40G, and Bg"'—1G, we realize a 2D trap at zo—150 pm. The field
curvature B = 7 x 10* G/mm? gives a trap frequency f; = 3.4 kHz for
atoms in state |F' = 2;mp = 2).
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The 2D trap is changed into a 3D trap by adding a z-dependence in the
magnetic field. For that matter, we run a small current I, = —«l, in a chip
wire perpendicular to the waveguide axis, located at © = x4 = —1.25mm (see
Fig. 3.2 Left). Together with the external field z-component Bg* = SB™, it
generates a dimple trap with a slow axis along x, symmetric in the yz-plane.
The centre of the trap is at (z = x4; y = 0; 2 = 2). The distance between
this trap and the cavity is then 1.25mm. With B;** = 40 G, a = 0.02,
f = 0.04, the resulting trap frequencies are (f,; f.) = (100;3500) Hz, and
the trap bottom is 0.8 G.

The dimple can be continuously changed into the waveguide by ramping
the values of I, and B

Release in the waveguide trap

After BEC preparation in the dimple trap, the axial confinement is abruptly
removed by switching off the current in the dimple trap. At the same time,
the external magnetic field is adjusted in order to keep constant the magnetic
field magnitude at the trap bottom. This is done in a 1ms timescale, chosen
to stay adiabatic only for the transverse direction and ensure that the cloud
expands quickly in the axial direction. In the waveguide, the condensate
propagates but it is extremely sensitive to any parasitic magnetic potential
AB(z) of a few mG. Origins and effects of potential corrugation have been
extensively studied in the atom chip community. In the simplest trap on a
chip, the Z-trap, the parasitic potential is directly linked to wire imperfections
(|64]), and leads to BEC fragmentation when the chip-trap distance decreases
below typical values of the order of 100um (|65], [66]). In our experiment,
however, we are limited by the existence of wire crossings along the waveguide
axis in which the current flow strongly deviates from the straight line. In
addition, there might be small remnant currents running in perpendicular
wires, since the current sources are not completely floating. As a consequence,
the expanding BEC does not cover the 1.25mm distance to the detector
position. To overcome the problem, we add a magnetic field gradient in the
axial direction to force the BEC to expand and move towards the detector.
We use a pair of chip wires perpendicular to the waveguide, located at x =
-Imm (push wire) and x = 3 mm (pull wire), in which we run a DC current.
A magnetic field in the zz plane is generated, and while the z component
leads only to a slight displacement of the waveguide axis, the x component
generates a valley potential (see Fig. 3.3)

polwzo

Ba(x) = 21((x — )%+ 25)

(3.1)
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Figure 3.3: Magnetic potential valley generated by the push and pull wires,
with Ip,s, = 200 mA, I,,; = —1000 mA. Positions of initial dimple trap and
cavity detection are marked.

Following this potential, the atoms typically need 100 ms to reach the detec-
tor position located 1.25mm away.
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3.1.2 Observation of telegraph signals

The waveguide is aligned and optimised to intersect the cavity mode in its
centre. For a thermal cloud with a temperature of 7" = 1uK, the transverse
RMS size is given by a; ~ 0.5um, compared to a cavity waist of 4um.
Therefore, for a fairly large range of temperatures, all atoms should enter
the cavity mode when they reach the position x = 0.

The cavity is kept locked with a weak 830 nm laser, and is continuously
probed with the 780 nm laser, on resonance with the cavity and red-detuned
from the atomic resonance by an amount A, = w — w, = —77. The probe
power is set in order to obtain a reference detected photon flux ®,.; = 2
MCits/s.

With an initial condensate of about 200 atoms, we measure a typical
telegraph signal for the transmission shown on Fig. 3.4. The atoms reach
the detector after a mean expansion time of about 100ms, which manifests on
the detector signal as a maximum density of dips (Fig.3.4 Top). This value
is in agreement with what we expect for the classical motion of the cloud
centre-of-mass in the tilted waveguide. Moreover, we can estimate the mean
velocity of the atoms at the position of the detector to be v, ~ 20mm/s.

Looking at a time window where the atomic flux is smaller (Fig.3.4 Bot-
tom), we experimentally confirm that we are in the single atom detection
regime: the typical transit time (< 50us) is found to be much smaller than
the waiting time between two transits (~ lms).
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Figure 3.4: Observation of a telegraph signal. The cavity is probed at A, =
—77v, A. = 0 and with a reference power ®,.r =2 MCts/s. The output rate
is integrated with a 20 us time constant and depicted as a function of time
after release in the waveguide. The lower plot is a zoom on the low density
region.
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3.2 Detector performance

The observation of telegraph signals in the regime of small atomic density
proves that the cavity has the capability to detect single atoms. Nevertheless,
this does not mean that all atoms are detected. Some atoms lead to trans-
mission dips shallower than others, and some might not even be detected at
all.

In this section we analyse the performances of the detector, and investi-
gate the processes limiting them.

3.2.1 Signal analysis

To perform a systematic analysis of the telegraph signals, we have to define
precisely the notion of detection event. The cavity output flux is continuously
monitored by the APD, and counts are grouped into time bins

Bi = [iTyin; (i + 1) Toin) (3.2)

of duration 7;, = 20 us. n; is the number of counts that happen during this
time bin. A detection event consists in a set of IV, consecutive time bins for
which the number of counts drops below a threshold value ny,.. It correspond
therefore to a time interval [t1;t5], with to — t1 = NyTpin.

For each detection event, we define the signal minimum m = minn,,
where ¢ runs though the bin numbers of the particular detection event. Single
atoms entering the cavity mode and approaching the centre see an increasing
coupling to the mode g which induces an increasing drop of the cavity trans-
mission. The value of the signal minimum m is then related to the maximum
coupling the atom reaches during its transit through the cavity mode. The
distribution of values of m, plotted on Fig.3.5 (Left), is peaked at m = 0,
which indicates that most detected atoms are detected with a large signal
to noise. However, the distribution continuously drops to 0 as m approaches
Nn¢nr, Which shows that some atoms are only hardly detected and indicates
certainly that some atoms are not detected at all.

We can also define the signal duration N, X 7, for each detection event.
The distribution of signal durations (see Fig.3.5 Right) shows that most
atoms stay less than 100us in the cavity mode, with a mean signal duration
of about 40us. Compared to the expected transit time w/v, =~ 200us, this
value is significantly smaller.
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Figure 3.5: Statistics of detection events on a 10ms time window. If the
number of detection events in this time window exceeds 40, the experimental
run is discarded. Total number of detection events is 1200. The probe power
is given by ®,.; = 1.5 MCts/s, and the threshold is set to ng, = 12 in a
20pus time bin.

Left: Distribution of the detection signal minima m.

Right: Distribution of the detection signal duration.
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3.2.2 Detection efficiency

The detection efficiency (or quantum efficiency) of our cavity-based detec-
tion is the probability that a single atom sent into the waveguide induces a
transmission dip large enough to be detected. It therefore depends on the
detection threshold and integration time we set, which are related to the
false detection rate we can accept. To ensure this false detection rate stays
negligible, we choose a detection threshold n;,, = 10 and an integration time
such that n,.; = 30. We can estimate using Poissonian statistics the false
detection rate to be about 1 Hz and check it experimentally with a refer-
ence experiment without atoms. The detection efficiency also depends on
the initial motional state of the atoms: here the atoms enter the cavity with
an average velocity of v, ~ 20mm/s. Their transverse distribution in the
waveguide trap is not precisely known, but it is not so critical here given the
strong transverse confinement.

The detection efficiency for single atoms is difficult to calibrate since it
is not possible to prepare deterministically a single atom running into the
cavity mode. A first estimate comes from the comparison between the num-
ber of detection events and the number of atoms measured by absorption
imaging, which are roughly the same for a given atom preparation. With
the large uncertainty attributed to absorption imaging figures, and assuming
that atoms are only detected once, this provides a conservative lower bound
of about 60 % for the detection efficiency. The main limitation to detec-
tion efficiency in a pure magnetic trap comes from transitions from trapped
states to un-trapped or anti-trapped Zeeman states. The typical rate of this
depumping process is the spontaneous emission rate. This process is quite
fast (see Sect. 1.5.1 for theory and Sect.4.5.2 for other experiments) and oc-
curs preferentially in the region of intermediate coupling (for C' ~ 1). In that
case, the atom is rapidly repelled from the waveguide axis before reaching
the strong coupling regime, and is consequently not detected. In addition,
the atom is also heated up by detection light. This process therefore limits
the observed transit time for atoms that are detected (Fig. 3.5 Right).

To investigate these effects, we measure the number of detection events
as a function of probe light detuning A,, while keeping the cavity resonant to
probe light (A. = 0). The number of atoms measured by absorption imaging
is of the order of 200 and fluctuates by about 20% from run to run. The
variation of the number of detection events follows then approximately the
detection efficiency. Is is measured to be strongly dependent on the choice
of the detuning A,, as shown on Fig. 3.6. For blue detuned probe light
(A, > 0), the number of detected atoms is extremely small, whereas for
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red detuned light, it has a peak-like behaviour near A" = —7~. This can
be interpreted as the effect of the dipole force generated by probe light in
the cavity, which attracts the atom towards the strong coupling area for red
detunings, independently of my value. A similar value (A = —67) was
obtained on a very different experimental setup [55].

We can compare the experimental results for the detection efficiency with
Monte Carlo simulations of a single atom in a waveguide. All external degrees
of freedom are treated classically. Initially, the atom is located outside the
cavity mode, at a position x = —4w, and moves with a velocity v, = 20mm/s.
Transverse position and velocity are generated randomly from a Gaussian
distribution corresponding to a temperature 7. We treat the depumping to
the Zeeman state the following way: initially, the atom is in the mp = 2 state.
At every time step, a random number is generated to determine if the atom
is depumped to another Zeeman state according to depumping probabilities,
and to which state it is depumped. The atomic motion is then simulated,
taking into account the Zeeman state-dependent magnetic force, cavity-light-
induced forces and momentum diffusion. Once the trajectory is simulated,
the APD output is generated with the knowledge of ¢(t), and averaged over
20pus time bins like in the experiment. We apply finally the same treatment
to the simulated signal to determine the number of detections, which might
be 0, 1, or even larger than 1. The comparison with experimental data shows
a reasonable agreement on Fig.3.6. Cavity light forces seem to be the most
important factor to reach a large detection efficiency, with a broad optimum
in the region of red-detunings. With a very abrupt change at A, = 0, any
frequency fluctuations of the laser or the cavity in the experiment causes a
dramatic decrease of the detection efficiency when A, is chosen near 0. This
might explain why the measured optimum is located a bit more red-detuned.
The simulated detector response peaks at 0.9 detection events per atom, for
the simulation at 1uK. In terms of detection efficiency, the probability to
have at least one event is about 75%. An increase of the temperature to
10uK has only a small effect on the detection efficiency.

3.2.3 Double counts

In the experiment, a single atom may enter several times the region of strong
coupling, generating a dip of the transmission signal each time. This can
happen for example when the atom spends some time in a probe light node
near the cavity axis, or when it oscillates with a large amplitude along the
vertical axis due to heating. In the simulation, these events are not very
frequent as the average number of detection events generated by a single
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Figure 3.6: Average number of detection events per run, for variable detuning
A,. The threshold is set to ng, = 0.3n,¢f, for n,.; ~ 30. In the experiment,
nyer fluctuates slightly because of frequency-dependent coupling to optical
fibres. The threshold is adjusted to ensure a constant ratio n, /.

The average atom number according to absorption imaging is about 200.
We depict here the number of individual detections events (black curve with
markers, left y-axis).

The simulation is performed with a single atom moving in the waveguide
with initial velocity v, = 20 mm/s. We plot here the mean number of
detection events per atom (right y-axis). For each detuning, the simulation
is repeated 1000 times with different initial transverse positions and velocities
according to a thermal distribution with temperature 7" = 1K (full red line)
or T'= 10K (dashed blue line).
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detected atom is about 1.2. However, these multiple detections are correlated
in time, and appear in the transmission traces as successive dips. If the
atomic density is low enough, we can distinguish them from other detections
by their bunching behaviour. We investigate here the correlation properties
of the detection signal. Denoting by t; the time of the k™ detection event
(precisely, we choose t as the centre of the detection signal ¢, = 1/2(tx1 +
tr.2)), we measure the distribution of the waiting times 6t = t;11 — t; on a
set of 100 runs with a number of detections comprised between 50 and 100.
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Figure 3.7: Distribution of waiting time dt between successive detections.
The average number of detections per run is 70. The solid line is an expo-
nential fit to the distribution for ¢ > 150us, with an average waiting time of
300 ps. Inset: fit residuals show missing counts due to atoms transit time,
and excess counts due to double detections.

The measured distribution P(dt) is compared to the expected exponential
distribution for non-correlated atoms detected at a rate ®:

P..,(0t) = Aexp(—Pdt) (3.3)

We find a large deviation at short times.
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For 6t < 50us, P ~ 0 since 50us is a typical duration of a detection
signal. On the contrary, for 50us < dt < 100us, we have an excess of detec-
tions compared to exponential distribution, which we attribute to multiple
detections of the same atom. We also find, on this delay timescale, that it
is more likely to have my > m; rather than m; > my (60% vs 40%), where
my o are the detection signal minima of the two successive events. This is
in agreement with some heating which took place during the first detection,
or that the atom was for example depumped to the weakly trapped mp =1
state. The second detection dip is then on average not as deep as the first,
and shorter.

In the distribution of the waiting times we can also read the probability
of having a double detection: it is simply the probability to observe one of
these excess detections for 50us < o0t < 100us, instead of seeing the next
atom. From the data, we estimated this probability to be about 20%. It is
in agreement with the value calculated with the simulation.

From this analysis, we can extract the bandwidth of the detector. The
transit duration (~ 50us) and multiple counts define a dead time of the de-
tector of the order of 200us. Furthermore, we can correct the first estimate
of detection efficiency by taking into account multiple detections which ar-
tificially increase the number of detections. It decreases the lower bound of
the detection efficiency to about 50%.

3.3 Conclusion

The observation of single atom transits reported here provides a direct evi-
dence that our cavity-based detector can detect single atoms. This experi-
ment is the first performed on a atom chip to reach this single atom detection
regime. We estimate the detection efficiency to be above 50%. This value
is in agreement with numerical simulations. We attribute the missed detec-
tions to atoms that are heated up or depumped before reaching the strong
coupling regime. The measured optimum detuning A, = —7 is consistent
with this picture, since the light forces generated for red detunings attract
the atom to the regions of large coupling.

We can therefore safely claim that atoms located in the strong coupling
region are much more likely to be detected with this detector. We expect
then a much larger detection efficiency in a configuration where the atoms
are independently and tightly trapped in the region of strong coupling. This
will be the object of Chap. 4.



Chapter 4

Preparation and detection of
trapped single atoms

This chapter contains the most important work of this thesis which is the
preparation and detection of single trapped atoms. The introductory section
gives the motivations to realize the preparation of trapped single atoms, and
reviews the different possible strategies to achieve it, including the one we
will pursue. In the second section, we describe the implementation of our
strategy to obtain a deterministic preparation of single atoms. In the third
section, we characterise our preparation by a lifetime in the dipole trap, and
a kinetic energy distribution. In the fourth section, we evaluate with which
efficiency we can measure the single atom internal state. Finally the fifth
section is devoted to the measurement back-action on the atomic internal
state.

4.1 Introduction

4.1.1 A well-controlled system

A single atom inside a high-finesse cavity is the textbook example for an ideal
light-matter coupled quantum system [67]. Single atoms of a given chemical
species are all identical, with an internal structure fully characterised once
and for all. The high-finesse cavity acts as a filter for the electromagnetic
field, and in many cases only one mode of the cavity field is coupled to one
possible transition of the atom, and the physics of the system is reduced to
the ideal Jaynes-Cummings interaction. With such a small number of degrees
of freedom, this system can be simulated without any numerical complexity
and the results can be precisely compared with the experiment. However,

87
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experimentally, a large uncertainty in the system originates from the posi-
tioning of the atom in the cavity mode, since the coupling g(x) changes from
its maximum value to zero on a distance A/2 ~ 0.4um along the cavity axis,
and a few microns (mode radius) transversally. In early CQED experiments,
single atoms with a small velocity were randomly sent into the cavity mode,
and only those hitting the cavity mode centre were efficiently detected [68].
Using the position-dependence of the coupling to the cavity mode, it was pos-
sible to reconstruct the atom trajectory as a trap was switched on upon atom
detection [69]. However, most recent CQED experiments intend to bring in
single atoms or ultracold clouds using movable traps, in order to achieve
deterministic, maximum coupling to the cavity [70, 15, 14]. Moreover, the
presence of a trap allows to maintain the atom in the cavity mode for long
durations, and use the atom-cavity system as a toolbox for applications.

4.1.2 Different strategies to prepare single atoms

To prepare a single atom in the cavity in an efficient manner, we cannot rely
on usual cold-atoms evaporation techniques, both for theoretical reasons (if
the atoms do not interact very strongly, the number of atoms at the end of
the evaporation ramp fluctuates), and above all for technical reasons (espe-
cially noise in the magnetic fields). To overcome this limitation, two possible
strategies exist: increasing the interactions between atoms, or applying active
feedback on the atom number.

Mott transition

The first strategy requires a lattice, or array of neighbouring traps, and is re-
lated to the superfluid-insulator transition (the Mott transition). Increasing
the interaction energy between atoms to forbids the presence of two atoms
or more in the same trap, and forces them to redistribute equally between all
traps. Initial Poissonian fluctuations of the atom number are therefore sup-
pressed. This can be realized in an optical lattice by raising the depth of the
lattice, i.e. light intensity. Initially a large number of wells are loaded with
a small, but fluctuating atom number, and atoms can easily hop between
neighbouring wells. As the lattice depth increases, the atomic wavefunction
spread in the trap gets smaller, thereby decreasing the hopping energy J
and increasing the two-body interaction energy U. Provided this is done
adiabatically and below condensation temperature, the atoms will tend to
distribute uniformly over all the lattice wells to stay in the collective lowest
energy state. Eventually, all lattice sites are populated with the same atom
number, and one can achieve a massive parallel single atom preparation in
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thousands of individual traps. This effect was first observed with cold atoms
in [71] and subsequently used as a preparation tool for quantum gates in [72].
Let us investigate the feasibility of observing Mott transition in our intra-
cavity 1D dipole trap. Interaction and tunnelling energies U and J can be
computed as a function of the trap depth only with a simple band structure
calculation, as explained in [73]. The transition occurs for U/J ~ 12 in a 1D
geometry [74]. For our experimental parameters, the transitions takes place
at a trap axial frequency f, = 35kHz and a tunnelling energy J = hx10
Hz. Whereas this trap frequency lies well inside our experimental range, the
main difficulty arises from the low tunnelling energy at the phase transition,
which is the typical timescale for the redistribution of the atoms in the dif-
ferent wells. It imposes stringent conditions on the trap stability and noise
to ensure adiabatic ramping of the trap on a timescale of 1s. Compared to
the 3D case, the interaction energy is smaller due to the weaker transverse
confinement (the trap aspect ratio is 1:20), which makes the experiment very
challenging with our current experimental setup.

Active feedback on the atom number

A second possibility consists in monitoring the atom population of a small
trap during the loading phase, until there is a single atom inside the trap.
This was done first in Caltech with a MOT of Cs atoms, using small diameter
cooling beams [75]. When optically cooled, each atom typically diffuses ~ 0.1
pW of cooling light, which be can detected efficiently with the help of good
collection optics and an avalanche photodetector. When the atom number
in the trap changes, the fluorescence signal changes by discrete steps, and
one can monitor in real time the actual number of atoms in the trap. This
technique was adapted for direct loading of a dipole trap from a MOT [76] or
a Zeeman-slowed atomic beam [77]. In the case of a tight, but shallow dipole
trap (obtained in this latter experiment by strongly focusing the dipole trap
laser beam), the inelastic atomic collisions prevent two atoms to be stored
simultaneously in the dipole trap and help to achieve efficient single atom
preparation in this experiment.

Our strategy: picking a single atom from a condensate

The strategy pursued in this experiment to prepare single atoms also relies on
active feedback on the atom number. The principle is depicted on Fig. 4.1.
Initially, a small cloud of atoms in the |’ = 1;mp = 1) hyperfine state (quasi-
transparent to the cavity) is placed inside the cavity mode. Weak pulses of
resonant microwave are applied to the condensate, randomly transferring
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atoms to the |F' = 2;mp = 0) state. The cavity is then used as a detector of
|F' = 2) atoms, and microwave pulses are repeated until there is a single atom
in the |F' = 2) state. Compared to other single atom preparations based on
atom counting, this experiment is similar in principle but the implementation
strongly differs. Instead of being spatially separated, the reservoir and the
prepared single atom have different internal states. The reservoir itself is not
the background gas in the cell, but an atom cloud with the lowest possible
temperature we can achieve, and positioned in the centre of the cavity in
a well-defined dipole trap site. The detection process is designed to keep
light absorption and emission as low as possible. All these modifications are
introduced in order to keep the temperature of prepared single atoms as low
as possible.

4.2 Preparation of trapped single atoms

In this section, we describe the experiments we performed to prepare single
atoms trapped in the centre of the cavity mode. We will show first how we
can prepare the small reservoir of cold atoms in the |F = 1) state required
for our preparation strategy. Then we will explain how we can transfer atoms
to the |F' = 2) state with microwave pulses, and detect them with the cavity.
By choosing weak microwave pulses, we prove that we can obtain a reliable
and deterministic preparation of single atoms.

4.2.1 Preparation and characterisation of the reservoir
From the condensate to the small reservoir

The preparation of the cold atom reservoir is intended to take place as close
as possible to the cavity mode. However, we cannot prepare the condensate
right into the cavity mode because of the influence of cavity stabilisation
light which generates a dipole trap. Therefore radiofrequency evaporation is
performed in a dimple trap generated by currents running in the waveguide
wire and in a dimple wire located exactly above the cavity mode, and a
magnetic bias field in the xy plane (see Fig. 4.2 Left). The geometry of the
trap is similar to the initial trap used in the waveguide experiment, apart
from its position. The trap centre lies between the chip surface and the cavity
mode, 20 pum above the cavity mode centre (see Fig. 4.2 Right). The trap
frequencies are (f,; f1) = (270;4100) Hz, with the slow axis parallel to the
waveguide and perpendicular to the cavity axis. Radiofrequency evaporation
is performed with a 500 ms ramp, and results in a quasi-pure condensate with
Ny = 600 — 1000 atoms in state |F' = 2;mp = 2). Anisotropic expansion
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Figure 4.1: Zeeman states involved in the single atom preparation scheme.
We start with a reservoir of atoms in the |F' = 1;mp = 1) state. Resonant
mw pulses are used to transfer atoms to the state |F' = 2;mp = 0), with a
very low efficiency. The cavity, resonant to the F' =2 — F’ = 3 transition,
is used to detect if a single atom was transferred to state |F' = 2;mp = 0).

cannot be observed in this configuration, but we can rely on experiments
with a rotated trap of similar frequencies to estimate when the condensate
appears by measuring its size after time-of-flight expansion.

As we will see later, the ideal atom number for the reservoir is of the order
of 10. To reach such a small atom number with a good reproducibility, the
best method proved to be surface-evaporation on the fibre tips. Approached
to a distance of about 1 um to the fibre tip, atoms feel a combination of
Casimir-Polder and Van der Waals-London forces due to the presence of the
dielectric coating and atoms adsorbed on the surface. This leads to an al-
teration of the trapping potential depicted on Fig. 4.3 Right). Apart from
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Figure 4.2: Left: Atom chip wires used for the dimple trap. The cavity
position is marked.
Right: Initial position of the condensate, 20 ym above the cavity mode.

a slight displacement of the trap centre, and decrease of the trap frequency
(measured in [78]), the main effect of the surface interaction is to open up
a loss channel on the fibre-side of the magnetic trap, with a tunable energy
barrier height depending on the surface-trap separation. Experimentally,
the condensate is brought to the desired position for surface-evaporation by
ramping the z-component of the magnetic bias field, which translates the
trap along the y-direction, see Fig. 4.3 Left. The trap position is kept for
10ms, then the trap is moved back to its initial position. The fraction of
remaining atoms changes smoothly from 100% to 0% when the trap-fibre
distance changes by 1um. After surface-evaporation, the cloud size after ex-
pansion stays the same and no traces of atoms depumped to other Zeeman
states are visible. However, we cannot check experimentally that this still
holds for final atom numbers as small as 10, because of imaging limitations
at small atom numbers. Compared to decreasing the final evaporation ra-
diofrequency, this technique proved to be more efficient and stable to reach
small atom numbers. We obtain routinely atomic clouds of 5-10 atoms with
a success rate better than 50%.

Following surface-evaporation, the y-component of the magnetic bias is
decreased in a 30ms ramp, which moves the small atom cloud down to the
cavity axis. During this ramp, the cavity stabilisation light is switched off.
On short timescales, cavity length fluctuations are induced by currents run-
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ning in the atomchip wires and are mostly reproducible. By measuring the
cavity length variations during that ramp, we can compute the correction
voltage we have to apply to the cavity piezo. This procedure allows to keep
the cavity resonance frequency within a linewidth during the whole ramp.
Once the cloud is positioned in the cavity mode centre, the stabilisation light
is switched back on, with a 15ms ramp. It generates a dipole trap for the
cloud, with a depth U=2.6 mK and trapping frequencies (f,; f1) = (900;45)
kHz. The magnetic trap is then disabled on a timescale of 20 ms, and re-
placed by a constant magnetic bias field of magnitude ~4G to maintain
atom polarisation. In the linearly polarised dipole trap, all states of the
ground state 55/, ground state multiplet feel the same trapping potential,
and atoms can be transferred to the |F' = 1;mpr = 1) state without losses.
This is performed using a resonant microwave m-pulse. We therefore obtain
the reservoir of |F' = 1) atoms required for our preparation scheme.

Measurement of the reservoir atom number

The preparation of the small atom reservoir cannot be characterised by means
of absorption imaging, due to the very low atom number. Since the reservoir
is precisely positioned in the cavity mode, we can measure the cavity trans-
mission, tuned to the transition |F' = 2) — |F’ = 3), to estimate the number
of non-resonant |F' = 1) atoms.

Following the results of Sect. 1.3.2, we know that the effect of |F =
1) atoms on the cavity transmission are equivalent to a shift of the cavity
resonance by an amount

Se = —N19}/Anrs = —(2m)Ny x 3.8 MHz, (4.1)

which gets comparable in magnitude to the linewidth for N; ~ 10.

If the reservoir population is larger than 15, the transmission level at
the position of the initial resonance (w = w.) drops below 50%, indicating
that the reservoir preparation was wrong: either too many atoms in the
|F' = 1) state, or at least one atom remaining in the |F' = 2) state after the
microwave pulse. Experimentally, the transmission is measured for every run
with a 150us light pulse, with a reference output rate of 1.5 MCts/s. From
the distribution of transmission values (Fig. 4.4 Left), one can extract an
estimation of the reservoir atom number distribution (Fig. 4.4 Right). Apart
from a peak for P(N; > 20), partly corresponding to remaining |F = 2)
atoms, the distribution is similar to a Poissonian distribution with mean value
(N1) ~ 9=+ 2. In particular, in about 50% of the runs, the reservoir atom
number lies between 5 and 10, which we consider as a successful reservoir
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preparation. Otherwise, we restart the experiment from the beginning and
prepare a new reservoir.

4.2.2 Probabilistic transfer of a single atom

Upon successful preparation of the reservoir, we now turn to the preparation
of a single atom in the |F' = 2) state. To achieve this, we repeatedly try to
extract a single atom from the reservoir using a weak mw-pulse to transfer
the atom to the |F' = 2;mp = 0) state. Due to the external magnetic
bias field, the different Zeeman states are easily resolved (see Fig. 4.1). By
tuning the microwave source to the appropriate frequency, one can selectively
transfer the atoms to the |F' = 2;mp = 0) state. The key idea for single
atom preparation is to transfer inefficiently atoms to this state, using a weak
microwave pulse, in order to keep the relative probability for a 2-atom transfer
small. The Rabi frequency of this transition is ;1,90 = 27 x 34 + 3kHz,
measured with a large reservoir located at the same position and with the
same magnetic bias field (see Sect. 2.3.2). For the weak extraction, we
apply a resonant microwave pulse, with a square shape and a duration t, =
1.6pus. For each atom in the reservoir, the probability to be transferred is
small and given by p = sin*(Qt,/2) ~ 0.03. After the microwave pulse, we
measure if an atom was eventually transferred to the |F' = 2) state. For that
matter, we switch on the cavity probe light for a duration of t;,;, = 20us,
with a measured empty cavity transmission count rate ®,.; =1.5 MCts/s,
and detunings (w;, = w, = w, + 2rx100MHz). This pulse is quasi-resonant
to the light-shifted atomic transition. During the detection pulse, photons
transmitted through the cavity are detected and counted using the APD,
which is connected to a digital counter. The number of detected photons is
then compared to a threshold value, which we set to 5 (the reference count
number for no atoms in the cavity is 30, with the reservoir this value drops to
15 in the worst case because of the cavity shift). A transmission of 5 photons
or less indicates therefore a successful transfer of an atom.

The preparation sequence consists in repeating this pattern "microwave
transfer, then atom detection", until the number of detected photons in found
to be smaller than the threshold value (see Fig. 4.5). We consider then that
the preparation is successful. Since the digital counter is attached to the
microcontroller and the cycles involves only digital input/output operations
and few calculations, the cycle time is very small, t. = 26us, and can be
repeated up to 100 times in a single experimental run.
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4.2.3 Analysis of detection pulses

We investigate now the results of the detection pulses in more detail. After
each microwave transfer pulse, the number of photons N transmitted through
the cavity during the detection pulse of duration ¢;,, = 20us is recorded
with the APD. Collecting the data for 130 experimental runs, and restricting
ourselves to the first 15 microwave pulses, we compute the distribution of
the number of detected photons N. The histogram shown on Fig. 4.6 has
a clearly resolved double-peak structure which are well separated by the
threshold value Ny, = 5.

We perform a fit of the histogram with a bi-Poissonian distribution which
separates the contribution of unsuccessful and successful transfers:

P(N) == nPPoiss(N; cbreftintT> + (1 - n)PPoiss(N; (I)reftint>a (42)

where n = Njp stands for the probability to transfer an atom, and 7' is the
relative transmission corresponding to a successful transfer, compared to the
transmission of the cavity with the reservoir inside. The results of the fit
give n = 5.6%, T = 1.4% and ®,.; = 1.25 MCts/s.!

Compared to the waveguide experiment, we find that single atoms are
detected with a much higher efficiency (>0.9), since there are no traces in
the histograms of badly coupled atoms which lead to shallow dips in the
waveguide experiment. The measured relative cavity transmission of 1.4%
is in agreement with the theoretical value at this detuning for a single atom
with a kinetic energy ~ 100uK (see Sect. 4.3.2 for the measurement of the
temperature, and Sect. 1.4.4 for the expected transmission).

However, the histogram data might be polluted by multiple atoms prepa-
rations. Especially, when the atom preparation stops after a small number of
microwave pulses, it indicates that the transfer probability was not so small,
and that there is a sizeable chance that two atoms were transferred at the
same time. To investigate the influence of these events, we compare the his-
tograms of the first 5 mw pulses to those of the last 10 mw pulses. Visually,
the histograms are similar. The fits to the bi-Poissonian distribution give the
following results:

Pulse index range | Statistics | 7 T | D, [MCts/s|
1<n<5H 570 9.0% | 1.4% 1.30
5<n<15 740 3.0% | 1.3% 1.20
Alltogether 1310 5.6% | 1.4% 1.25

!The fitted value for ®,.f differs from the empty cavity value 1.5 MCts/s due to the
presence of the reservoir which slightly shifts the cavity resonance.
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The transfer efficiency of the first pulses is found to be larger. This
is expected, since the existence of the last 10 pulses is conditioned to the
failure of the first 5, and indicates that the reservoir atom number is small.
In terms of cavity transmission 7', the two datasets share approximately the
same value T = 1.4%. Since the likelihood of a pair transfer in the first
dataset is larger, we can conclude that either single atoms and pairs lead
to the same transmission level, or that in both datasets the probability of
transferring a pair is smaller than 10%.

4.2.4 Probability of preparing a pair of atoms

The object of this section is to estimate precisely the probability of preparing
pairs of atoms when we observe a successful transfer.

Now that we know that single atoms can be detected with a high ef-
ficiency, we can analyse the transfer probability of the mw pulses. It is
basically characterised by the number n, of microwave pulses it takes before
we detect an atom in |F = 2). Theoretically, after each microwave pulse,
atoms from the reservoir are independently transferred to the |F' = 2) state
with a probability p. The number of transferred atoms N, therefore follows
a binomial distribution P(Nz), with a mean value (Ns) = pN;, where N is
the number of atoms in the reservoir. The measured distribution of n, can
reproduced with a numerical simulation, assuming perfect detection of single
atoms (and pairs), a given distribution P(N;) for the reservoir atom number
and a transfer efficiency p. The results are shown on Fig. 4.7.

The agreement between theory and experiment is good, provided p is
set to 0.02 in the simulation (0.03 was expected). This discrepancy can be
attributed to an overestimation of the average atom number in the reservoir.
Besides, the simulation results only weakly depend on the exact shape of the
reservoir distribution.

We can now estimate the probability of preparing pairs instead of single
atoms. For a given microwave pulse, the probability of transferring a pair
supposing at least one atom is transferred reads:

P(NQ = 2) Nlp

Pair: ~

(4.3)

An absolute, very conservative upper bound on this probability is obtained
by setting N; = 15 (maximum reservoir atom number) and p = 0.03, and
gives Pe? = 0.18. A more realistic value can be computed from the results
of the simulations, assuming either flat or Poissonian reservoir distribution,

and gives P29 = (0.06. The probability to obtain three atoms or more can
g pair
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be estimated in a similar fashion, and is found to be completely negligible
(<0.5 %).

We can therefore conclude from this section that our preparation scheme
allows to prepare trapped single atoms, with a small probability to prepare
more than one atom (<10%). Furthermore, this error probability could be
reduced to a smaller value if we decrease the mw power. This might be
relevant for experiments in the future which would require it. Also, we found
that the detection efficiency with a 20us probe pulse was close to unity, with
a detection signal allowing to distinguish clearly whether there is one atom
or not in the cavity mode.
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Figure 4.3: Left: Surface evaporation and positioning in the cavity mode.
Right: Effect of Van der Waals forces (V ~ 1/d?) on the trapping potential.
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Figure 4.4: Preparation of the |F' = 1) reservoir.

Left: Distribution of measured transmission levels following reservoir prepa-
ration. The peak at 77 = 0 indicates remaining atoms in |F' = 2).

Right: Distribution of reservoir atom number, extracted from the left figure.
The dashed line is a Poissonian distribution with (Ny)=9.
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Figure 4.5: Traces of microwave power, cavity probe power, and cavity trans-
mission, used for single atom preparation. In this example, the fifth prepa-
ration cycle was successful, and the sequence was therefore stopped.
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Figure 4.6: Distribution of counts number after each microwave pulse, for the
first 15 microwave pulses. Experimental data (bars) is fit to a bi-Poissonian
distribution (Eqn.4.2), with the two contributions plotted separately in blue
and red dashed lines.
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Figure 4.7: Distribution of the number of microwave pulses required to pre-
pare a single atom. The bars are the experimental data for 1.6us microwave
pulses. The lines are the results of the simulation, assuming single atom
transfer probability p = 0.02. The red line is obtained assuming a Poisson
distribution for the reservoir atom number, with (N;) = 8. The blue line
assumes a flat atom number distribution between 0 and 15.
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4.3 Characterising the atom preparation

Single atoms can be used as a tool for many applications in cavity QED or in
other domains. When prepared in the dipole trap, the single atom has a finite
lifetime, due to various loss processes. This lifetime limits the complexity of
the sequence of manipulations we can perform with a given single atom. The
measurement of this lifetime is therefore essential for applications.

We started the preparation with a BEC, aiming for a preparation of
single atoms with the lowest possible kinetic energy. A small kinetic energy
allows a more precise control on the atom-cavity coupling, which is relevant to
applications like single-photon sources, or to the efficiency of cavity detection.
Furthermore, some applications such as controlled collisions require a control
of the motional state of the atom at the quantum level. We will therefore
investigate the energy distribution of trapped single atoms.

4.3.1 Lifetime in the dipole trap

In our experiment, we can attribute losses from the dipole trap without
detection light to three possible processes.

The first possible loss process is the collisions with background gas atoms,
and is inherent to all cold atoms experiments. In our experiment, the back-
ground gas pressure leads to a loss time constant of 7, = 1.4 s. We measured
this time constant with an atomic cloud of about 10,000 atoms in a pure mag-
netic trap for which collisions with the background gas dominate over 2-body
and 3-body collisions between trapped atoms.

A second possible loss channel originates from parametric heating induced
by dipole trap fluctuations, and was investigated in earlier cavity QED ex-
periments [79],[80]. Following [81], dipole trap power fluctuations at twice
the trap frequency induce an exponential growth of the average atom energy
with a time constant

Toar = (T f2apS[UON 2 rap)) (4.4)

where U is the dipole trap depth, fi,,, its frequency, and SJ.| stands for the
power spectral density. Due to the quadratic dependance on f,,,, paramet-
ric heating is probably much stronger in our experiment along the cavity
direction, rather than along transverse directions. Unfortunately, we did not
try to measure accurately the dipole trap power fluctuations with a MHz-
bandwidth.

A last possible heating process is scattering of dipole trap light. Although
dipole trap light is far off resonance, the momentum diffusion is enhanced by
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the cavity cooperativity factor and lead to a lifetime T7rorr = 2 s (see Sect.
1.4.3).

Experimental determination of the dipole trap lifetime is conceptually
simple. Following the single atom preparation, we switch off detection light
for a variable duration t,,.;, then we perform a new atomic detection. The
probability to re-detect the atom is simply equal to the survival probability
in the dark dipole trap. For each value of the waiting time t,,,;;, we repeat the
experiment 40 times. The results, displayed on Fig. 4.8, are consistent with
an exponentially distributed lifetime with an average value 74, = 320 +
50ms. This value indicates that the three possible loss processes presented
above contribute.

1
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Figure 4.8: Single atom lifetime in the dipole trap. Markers are experimental
data, with statistical error bars (70% confidence interval). The full line is an
exponential decay fit with 744, = 320ms.

4.3.2 Single atom energy distribution

As shown in the introduction, the knowledge of the single atom external state
is important for many applications. We use a "release and recapture" method
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to characterise the energy distribution of a single atom analog to [82] for single
atoms trapped in optical tweezers. The principle is the following: after the
preparation, we switch off abruptly the dipole trap for a variable duration
torf, then switch it back on, and finally perform a new single atom detection
after an extra waiting time ¢,,,;; = 200us. During the release phase, the atom
moves according to its initial kinetic energy, and when the trap is switched on
again, the atom may be retrapped or not depending on its final position. The
waiting time before redetection allows to get rid of untrapped atoms before
the detection is performed. The probability to recapture in trap decays as
the release phase duration increases or the initial energy increases, thereby
allowing to reconstruct the initial energy distribution. Results displayed on
Fig. 4.9 show that the release-recapture probability decays with two different
timescales. On short timescales (¢,7s ~ 1us), the atom reaches the potential
barrier between neighbouring lattice sites due to its large velocity in the axial
direction, and further propagation in the axial direction has no effect on the
release-recapture probability. This leads to a plateau at Prr ~ 0.85. For
longer timescales (t,7s ~ 50us), the atom leaves the trap in the transverse
direction or hits the mirrors, and the recapture probability finally drops to
0. To extract the initial energy distribution from the experimental data, we
compare it with a Monte-Carlo simulation based on a classical model for
atomic motion. Initial atomic position and velocity are randomly generated
according to Boltzmann distribution with temperature T’

dP(r,v) = N exp(—LUup(r)) exp(—%ﬁva)drdv, (4.5)

where A is a normalisation constant and 5 = 1/k,T.

During the trap release, the atom position moves at constant velocity v
(we neglect here gravity and possible parasitic forces), and its energy when
the trap is switched back on simply reads E = Uy, (r + Viorr) + %va. The
probability to redetect the atom is given by Prr = P(E < 0). Experimental
results are in a good agreement with the simulation, and lead to a tempera-
ture estimation of 7" = 80£20uK. We can emit a few comments regarding this
observed temperature. First, we can compare it to the BEC transition tem-
perature in the magnetic trap, multiplied by the compression factor between
the dipole trap and the magnetic trap. This yields an adiabatic temperature
Tod = Te X Waip/Wmag ~ 0.6uKx70 ~ 50uK (@ denotes geometric averages of
the 3 frequencies). The observed difference can be due to non-adiabatic load-
ing to the dipole trap (adiabatic loading could only be checked for shallower
dipole trap due to collision losses), heating during transport or surface evap-
oration, and heating during detection. We should remark that with this last
heating cause, it is certainly not obvious that axial and radial temperature
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are equal, since cavity heating is stronger along the cavity axis. The trap is
quasi-harmonic and there is no rethermalisation mechanism to redistribute
evenly the kinetic energy along all axis. However, experimental data is not
accurate enough to perform a two-parameter fit. At last, we notice that
the ratio k,T'/hw, ~ 2 is too small to neglect external motion quantisation
along the cavity axis. The experimental determination of the population of
different axial vibrational states would therefore a quantised model, along
with more experimental statistics for short timescales. On the contrary, the
classical model is certainly valid for the transverse degrees of freedom, and
leads to an accurate estimation of the (transverse) temperature.

4.3.3 Summary

We investigated two important properties of our preparation of single atoms:
the lifetime in the dipole trap and the temperature. The observed lifetime of
320 £50ms is close to the theoretical limit imposed by photon scattering and
background gas collisions, and proves that the cavity stabilisation is good
enough to ensure a small parametric heating. The measured temperature
T = 80£20uK is consistent with the measurement of the cavity transmission
with a single atom inside. It corresponds to a position uncertainty of o, = 15
nm RMS along the cavity axis, and o; = 290 nm RMS in the transverse
directions.
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Figure 4.9: Single atom temperature estimation with a release-and-recapture
experiment. The release-and-recapture probability is measured for two dif-
ferent timescales, relevant for transverse motion (f,;f = 0 - 250 s, upper
plot) and axial motion (t,s; = 0 - 10 us, lower plot). Error bars are statisti-
cal. Experimental data is compared with classical Monte-Carlo simulations,
with a set of different temperatures.
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4.4 High efficiency single atom detection

We shall describe in this section the detection process. As we have seen in a
previous section, a single atom trapped in the cavity mode can be detected
with a high efficiency with a short light pulse. In this section, we try to get
a precise estimate of the detection efficiency we can reach. The optimum de-
tection efficiency is limited by the amount of time we can switch on detection
light without losing the atom. We will start by performing a measurement
of this lifetime, which is shortened by the effect of detection light. We will
also investigate the exact processes limiting it. From this, we will determine
the optimum detection parameters and compute the detection efficiency.

4.4.1 Single atom lifetime during detection
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Figure 4.10: Measurement of the detection lifetime for a single experimental
run. After the atom preparation, probe light is switched on at ¢ = 0 with
constant power and detuning. The output photon rate (blue line with circles)
is measured with the APD and integrated on 40 us time bins. The lifetime
7 is defined by a transmission threshold (red dashed line) set to 50% of the
normal transmission value.

When the atom preparation is successful, the cavity transmission is re-
duced from its peak value to a small fraction of it (typically a few percent),
provided the detuning A, is chosen small enough. If the cavity is continu-
ously probed at constant power right after the atom preparation, the photon
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output rate monitored by the photon counter is initially very small and stays
at a small level for some time (see Fig. 4.10). Eventually, the output rate
returns to its normal, empty-cavity value after a duration 7, which we define
as the atom detection lifetime. This finite lifetime is due to absorption and
re-emission of probe light photons, and is 2 orders of magnitude shorter than
the lifetime in the "dark" dipole trap. A precise definition of the lifetime is
given by setting a relative transmission threshold 7}, and a signal integra-
tion time %;,;. The atom is said to "leave" the cavity at time 7 when the
integrated count number N = f:+ti"t ddt gets larger than the threshold value
Niny = @reftindTine for the first time. A typical value for the relative trans-
mission threshold is T3, = 50%, and the integration time is set in order to
have ®,.¢t;,; > 10 and suppress influence of shot noise on the results. With
®,.r ~ 1 Mcts/s, we can still afford a very good time resolution of about 10
ps. In most experimental runs, the change of transmission is very fast (rise
time <10 pus) and the precise values of the threshold and integration time
are not critical for the determination of the lifetime.

The distribution of observed lifetimes, measured for ®,.; = 1.5 MCts/s,
A, = 21 x 160 MHz, Ug;, = ky x 2.6 mK and 110 successful atom prepara-
tions, follows approximately an exponential distribution with a mean value
Taet = (T) = 1.2 ms (see Fig. 4.11 Left). During this lifetime, the cavity
transmission is reduced on average to about 2.5% of the reference value. It
is twice the transmission observed on the first 20 ps, but still very small. We
take advantage of this lifetime measurement to confirm that the probability
of preparing multiple atoms in the |F' = 2) state, instead of single atoms,
is small. Although atom ensembles cannot be distinguished optically from
single atoms because of the already very low transmission value, their life-
times are longer since the light intensity in the cavity is smaller and they
can scatter more light before being all pumped to the |F' = 1) state. As
seen before, the likelihood of multiple atoms preparations decreases as the
number of required mw pulses increases. In the experiment, the average life-
time shows no visible dependence on the number of mw pulses (See Fig. 4.11
Right). In particular, the average lifetime of the 50 atoms that took at least
10 pulses to be prepared is measured to be 1.4 ms, compared to 1.0 ms for
those that took less than 10 pulses. We get therefore a confirmation that the
preparation of pairs is unlikely.

4.4.2 Lifetime vs detuning

To get a better understanding of the processes that limit the detection life-
time, we investigate its dependence on the probe-atom detuning A, (see
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Figure 4.11: Single atom lifetime during detection. Experimental lifetimes
are extracted from 110 successful atom preparations, with a cavity light power
®,.r = 1.5 MCts/s and a detuning A, = 27 x 160MHz ~ 507.

Left: Distribution of measured single atom lifetimes (bars). The red, dashed
line in an exponential fit with a mean value 74, = 1.2 ms.

Right: Average lifetime dependence on the number of mw pulses cycles re-
quired to get the preparation done. The stars represent the mean values, and
the error bars two standard deviations. The curve shows no clear increase or
decrease.



4.4. High efficiency single atom detection 111

Fig. 4.12). We find that the average lifetime peaks for a positive detuning
A, >~ 507, that is, blue-detuned from the estimated maximally light-shifted
atomic transition A7'§* ~ 30y. A comparison with the calculated depump-
ing time to |F' = 1) due to the residual light in the cavity (see Sect. 1.5.2),
both in terms of curve shape and order of magnitude, indicates that the
lifetime here is limited by this loss process. However, the depumping rate
depends on the atom position via the coupling g(r) and the effective de-
tuning A, .r¢(r) = A, — Azg(r), and the atomic motion has to be taken
into account to calculate the instantaneous depumping rate. Therefore, we
have performed Monte-Carlo simulations of the atom-cavity system. For each
single atom trajectory, the initial atomic position and velocity is randomly
generated according to the single atom preparation measured temperature.
The atom is initially located in the central antinode of the cavity, correspond-
ing to a maximum coupling to both probe light and dipole trap light. Cavity
transmission and depumping rates are calculated once and for all by solving
master equation for specific values of g and A,, and interpolated for actual
values of gerr(t) and A, ff(t) encountered on the trajectory. Light forces
are calculated using approximate analytical expressions (see Sect. 1.4), tak-
ing g(r) = geff(r) = 0.7g;,(r). The simulation is stopped when either the
transmission threshold is reached, or when the atom is depumped to |F' = 1).
For the detunings we used in the experiment, the depumping is clearly the
dominant limiting factor. Results of the experiment and the simulation are
in a good qualitative agreement in terms of curve shape and order of mag-
nitude, although the position of the optimum detuning differs by about 20~.
According to the simulation, the optimum detuning should be close to the
maximum light shift. This discrepancy is not understood at the moment.
However, the depumping to F' = 1 seems to be the dominant loss term,
responsible for the finite lifetime.
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Figure 4.12: Lifetime dependence on probe-atom detuning. Experimental
data (blue line with stars) is obtained by repeating successful single atom
preparation and lifetime measurement 100 times for each detuning. The
probe input power is such that ®,.; = 1.5 MCts/s. The empty cavity is
always kept resonant with probe light (A, = 0). Simulation (green line with
circles) are performed with matching parameters, except for detunings which
are regularly spaced between A, = —20 v and +80 . For each value of the
detuning, 100 single atom trajectories are simulated.



4.4. High efficiency single atom detection 113

4.4.3 Computing detection efficiency

The knowledge of the atom lifetime during detection allows to compute opti-
mum integration time and detection efficiency. In this section we generalise
the treatment of Sect. 1.3.3, and find the best integration time to obtain
the minimum error probability for the measurement of the atomic hyperfine
state.

In this section, we consider the performance of our detection setup oper-
ated in a one-shot detection mode. We suppose that a single atom is trapped
in the cavity mode, and can be in two possible states? |1) = |F = 2) and
|0) = |F = 1) with equal probability. To determine in which state the sys-
tem is, we switch on the detection light for a duration t;,; and detect N
photons with the APD. From this measurement, we have to make a guess of
the state of the system:|0) or |1)? To make the best guess, i.e. to maximise
the probability that the guess is true, we have to know the conditional distri-
butions of the output signal N depending on the actual state of the system,
denoted by Py(N) = P(N|0) and P;(N) = P(N|1). These distributions can
be measured by preparing the atom in a well-known state and performing a
detection. We assume here that these distributions are well-known.

Suppose we obtain a detection signal N. The probability that the state
was |0) is given by Bayes inversion formula

P(O&N) P(N|0)P(0) B P(N|0)
P(N) — P(N|0)P(0) +P(N|L)P(1)  P(N|0)+P(N|1)’
(4.6)
since we have P(0) = P(1). Therefore P(0|N) > 1/2 when P(N|0) >
P(N|1), and we have to make the guess |0) in that case. The probability to
make a mistake is then given in general by:

min(P(N|0), P(N|1))
P(N|0) + P(N|1)

P(O|N) =

P(error|N) = (4.7)

Average over all possible measurement outcomes, we obtain the global error
probability of the measurement:

P (error) Z min(P(N|0), P(N|1)). (4.8)

This error probability is then minimised when the conditional distributions
have the smallest possible overlap. Detection parameters, such as probe light
power, duration t;,; and the various detunings have to be chosen accordingly.

2We use quantum notations for the states, but the theory does not require a quantum
system.
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In our case, the |0) state is completely equivalent to an empty cavity (a
single atom in the |F = 1) state detunes the cavity by a tiny fraction of the
linewidth, and has nearly no effect on the transmission at A. = 0). The
cavity response function is then

7)O(]V) - 7)Poiss(jv; q)reftint)a (49)

a Poissonian distribution with mean value ®,.¢t;y;.

When the atom is initially in the |F' = 2) state, the cavity output will
differ whether the atom stays in the |F' = 2) state for a duration longer than
the measurement time or not. The cavity output will then be reduced by a
factor T for the time the atom spends in the |F' = 2) state. Assuming an
exponential distribution for the lifetime 7, with mean value 74, we end up
with the following expression for P;:

tint d tzn
731(]\7):/ exp (— T )731(]\7\7') T + exp (— t)P1(N|T>tmt),
0

Tdet Tdet Tdet
(4.10)
where we defined the auxiliary distributions
Pl (N‘T > tint) = PPoiss(N; (I)reftintT) (411)

Pl (N’T) = PPoiss(N§ (I)refTT + cbref(tmt — ’7')) (4.12)

With the values measured previously at A, = 50, we can compute the
optimum integration time that leads to a minimum error probability, assum-
ing here that initially the atom has equal probability of being in the |0) or
|1) state. The results, displayed on Fig. 4.13 Left, state that the optimum
integration time is about 9us for a detection power of ®,.; = 1.5 MCts/s.
The computed error probability is 0.3%. The result is somehow contrary to
intuition, since one would expect that taking advantage of a long lifetime
would require a longer integration time. In fact, for longer integration times
the error probability is dominated by the increasing probability that the atom
initially in |1) is depumped during the detection. Should the average life-
time be increased above current value®, the optimum error probability would
decrease approximately as 1/74e.

30r equivalently, the detection rate ®,.; could be increased while keeping the average
lifetime constant: in fact, only the product ®,.; X 74 is relevant in the determination
of the detector performance. This could be done by decreasing the optical losses at the
output mirror of the cavity, using HR coatings with lower losses.
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Figure 4.13: Optimisation of the integration time for single atom detection.
Left: Detection error probability as a function of integration time. Param-
eters are those measured for A, = 50y: ®,.p = 1.5 MCts/s, T" = 0.025,
Taget = 1.2 ms.

Right: We plot here the error probability assuming different parameters,
after optimisation of the integration time.

We have demonstrated in this section that our detector can reach ex-
tremely high detection efficiencies, with an error probability estimated at
0.3% for optimum parameters. We have also seen that the main limitation
is the depumping to |F' = 1) states.
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4.5 Towards a perturbation-free measurement

In the experiment, the use of a cavity for detection purposes is not only in-
tended to achieve a large detection efficiency (free space detectors can reach
sensitivity levels that enable single atom counting), but also to minimise the
measurement backaction on the atomic properties which we do not measure,
namely the Zeeman state and the external state. In this section, we will inves-
tigate the measurement back-action on the detected atoms, and to determine
to which extent this measurement approaches an ideal measurement.

4.5.1 QND and ideal quantum measurements

The singularity of quantum theory mainly lies behind Heisenberg’s uncer-
tainty principle: for each quantum system, there is (at least) a pair of physi-
cal properties a and b than cannot be measured simultaneously. For example,
if we perform a measurement of a and find the result a = a;, then a mea-
surement of b and find b = by, a new measurement of a might give a different
value a = as # ay. However, if we do not perform the measurement of b,
a second, immediate measurement of a gives the result a = ay = a; with
certainty. In other words, the measurement of b perturbs the system and
rules out the prediction we could have made on it. Quantum mechanics the-
ory was developed to account for this peculiarity, and it turned out to be
exempt from any failures until now. In its modern formulation, the state of
the system is described by a single, normalised vector ¥ in a Hilbert space
‘H, and system variables a,b, ... are described by linear hermitian opera-
tors a, 13, ... For a measurement of the variable a, the probability of getting
the outcome a; is given by Born’s rule P(a;) = |P(a1)¥|?, where P(a;) is
the projector on the subspace ker(a — a;). Following this measurement, the
state of the system is changed to W' = P(ay)¥/|P(a;)V¥|, which lies in the
subspace ker(a — ali). This projection postulate ensures that any repeated
measurement of the same variable a will always give the same result.

Experimentally, ideal measurements are difficult to achieve on quantum
systems, since it is challenging to couple a microscopic system to a macro-
scopic system (the metre) without disturbing or destroying it. In fact, a
measurement, process that satisfies the repeatability criterion is already an
important achievement in quantum mechanics. It is called a Quantum-Non-
Demolition (QND) measurement [83, 84]. The first QND measurements on
simple quantum systems were performed on the internal structure of trapped
ions with the technique of electron shelving [85, 86, 87|. Later, a lot of experi-
mental work was focused on QND measurement of light fields, aiming to "see
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a photon without destroying it" by coupling it dispersively with an atomic
sample [88, 89]. In the last two decades, huge progress was made, enabling
the possibility to measure a single photon 500 times without losing it |28, 90].
Currently, experiments are focused on QND measurements of new quantum
systems for quantum information (quantum dots [91], superconducting cir-
cuits [92, 93]). A second important goal is to achieve preparation of pure
quantum states by measuring a system initially in a classical mixture of pos-
sible quantum states, and projecting it in a particular quantum state. This
way, one can achieve the preparation of Fock states |94], or Schroedinger cat
states [95]. For atomic ensembles samples, the preparation of spin-squeezed
(entangled) states in a major goal since these states have applications in
interferometers and clocks [96, 97]. By combining QND measurements and
feedback, the preparation can be made deterministic [98, 99].

An ideal measurement is only an example of a possible QND measure-
ment. The difference between an ideal and a QND measurement is the mea-
surement backaction on other variables of the system. Let a and b be two
commuting variables, and consider the measurement sequence a, b, a. After
the first measurement with the outcome a = a;, V¥ is projected to the sub-
space ker(a — a;1). Since ker(a — a;1) is stable for b, it is also stable for the
projection mapping W — W' = P(b)¥/|P(b;)¥| consequent to the measure-
ment of b = b;. Therefore, ¥ € ker(d — a;1) and the last measurement of
a outputs as = a;. For a QND measurement, the mapping ¥ — ¥’ does
not necessarily commute with a, and the last measurement outcome is not

predetermined.

In the experiment presented in the previous section, our measurement of
the single atom internal structure is QND since the measured observable F
can be measured repeatedly about 100 times (7g; ~ 100t2%5) before its value
changes. However, the state of the system is described by the knowledge
of the complete set of commuting variables (F, mp, n2®, ni™, n%®), all of
which commute with the Hamiltonian and can be in principle measured si-
multaneously. In this section, we will investigate how we can measure the
mp value, and to which extent the backaction perturbs the atomic external

state described by the triplet of variables (nJ?, ny™, n®).

4.5.2 Measurement of Zeeman diffusion

When the atom-cavity system is probed with quasi-resonant light, absorption
and re-emission of cavity photons induce fast dynamics in the Zeeman level
structure. For a cavity probe power corresponding to a reference output rate
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of ®,.r =1 MCts/s, the typical timescale of the Zeeman diffusion is of the
order of 5 us, according to calculations of Sect. 1.5.1. We describe here an
experiment which allows to measure this diffusion rate.

Preparation of specific Zeeman states

To measure the diffusion rate, we first need to prepare the atom in a well
defined Zeeman state.

Detection pulses used in our preparation and detection scheme, with a
duration longer than 10us, lead to a large redistribution in the different
myp states when the single atom is in the |F' = 2) hyperfine state. On the
contrary, an atom in the |F' = 1) state scatters no light, and its Zeeman state
is preserved. We can therefore imagine a preparation scheme which relies on
this property:

1. We prepare a single atom in the |F' = 2) state as described in Section
4.2.

2. We apply a microwave 7 pulse resonant to the |F' = 2;mp = 0) — |F =
I;mp = 0) transition. The microwave power is chosen low enough to
ensure that atoms in the |F' = 2;mp # 0) are not transferred to any
|FF = 1) state®. At that step, the single atom internal state is either
|FF=2;mp #0) or |F =1;mp =0).

3. We perform a new measurement of F'. If we find that the atom is in
the |F = 1) state, we know for sure that it is the mp = 0 Zeeman state.
Otherwise, it can be in any |F = 2) state, and we restart from step 2.

4. The single atom is in the |F' = 1;mp = 0) state. We can transfer it
back to |F' = 2;mp = 0) with another m-pulse.

Measurement of specific Zeeman states

With similar ideas in mind, one can design measurement schemes that are
sensitive to the Zeeman sublevel by combining two measurements of I (de-
noted by the symbol F;) with resonant microwave pulses on the clock tran-
sition |F' = 2;mp = 0) — |F = 1;mp = 0) (denoted by the symbol 7). In
the experiments, we use the schemes @ — [} — 7 — F5 and Fy, — m — F5, with
the following truth tables:

“For a non-resonant Rabi oscillation between ground states, the transfer probability is
of the order of 0%, /A? ~ 1072, when the detuning A ~ 1 MHz is induced by a magnetic
field bias of a few Gauss.
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Scheme: m — F} — 1w — F} Results
State F1 FQ
|F' = 2;mp =0) 1 2
|FF=2;mp #0) or |F=1;mp=0) 2 | any
|F = 1;mp #0) 1 1
Scheme: F; — 7w — F} Results
State F | F
|F=1;mp =0) 1 2
|F' = 2;mp) 2 | any
|FF=1;mp #0) 1|1

With the measurement scheme m— F| —m—F3, we can therefore distinguish
the specific Zeeman state |F' = 2;mp = 0) from other |F = 2) states.

Measurement of Zeeman diffusion

With the preparation and detection scheme described above, we are now able
to investigate the depumping effects caused by detection light. Experimen-
tally, we prepare a single atom in the |F' = 2;mp = 0) state. Then we
apply a low power resonant light pulse (®,.r = 100 kCts/s) with a variable
duration ¢, which induces diffusion in the Zeeman levels of the |F' = 2) hyper-
fine state. We measure the effect of this perturbation pulse by performing a
m— Fy —m— F, detection scheme. If the detection results are (Fy = 1; Fy = 2),
the atom stayed in the mp = 0 state. Otherwise, we usually obtain (F} = 2),
which indicates that the atom was depumped out of mp = 0 during the
perturbation pulse. The last possible result (F; = 1; F» = 1), indicating
that the atom is either lost or depumped to |F = 1), is very unlikely and
corresponding events are ignored. In a single experimental shot, the same
atom is recycled up to 20 times to increase the statistics. For each value of
the duration t,, we average over 50 successful preparations and detections to
obtain the probability P,,,.—o. From the experimental results, displayed on
Fig. 4.14, it is found to decay as:

Prp=o(tp) = Prrp—o + (1 = Pri—o) exp(—t,1'z), (4.13)

where P2* _, = 0.25+0.05 is the steady state value of P,,,.—¢ (optical pump-

F

ing Zeeman distribution) and I'y = 30 £ 5 kHz is the observed decay rate.
The experiment was performed at A, = 30y and A, = 507 and lead to very
similar results.

The initial depumping rate I'"? —dPopo/dtplt,—0 = (1=P% _)T7 =

depump = mp=0

2215 kHz and the steady state value P;° _, = 0.25+0.05 can be compared

F
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with the theoretical values calculated in Sect. 1.5.1. Both depend on the
angle 6 between the external magnetic field (which is perpendicular to the
cavity axis) and the polarisation in the cavity, which we cannot measure in-
dependently. For # = 0 (7 polarisation), we expect an initial depumping rate
of I} pump = 3.5 kHz and a steady state population of 51% in the |mp = 0)
state. For @ = m/2, we expect a depumping rate of ngp%p =15kHz and
a steady steady population of 1%. For intermediate angles, the expected
values lie in between. We therefore find that the experimental value for the
depumping rate is larger than we expected, by a factor of at least 2. A pos-
sible explanation is that the output losses of the cavity are underestimated,
and that the intracavity light intensity is larger than what we expect from
the coating specifications and the measured finesse.

We investigated the dependence on the cavity polarisation by measuring
the steady state value P’ _, for different angles of the magnetic field, but
found no evidence of an increase of P’ _, for a specific orientation which
would correspond to the cavity polarisation. Nevertheless, this experiment
provides a direct measurement of the Zeeman diffusion. With a diffusion rate
of 22 + 5 kHz at a reference power of ®,.; = 100 kCts/s, we can perform
a measurement with a 10us light pulse which depumps the atom to mpg #
0 with a probability of 20%, and has an error probability of about 20%.
The error probability could be made smaller by observing both the cavity

transmission and reflection.

4.5.3 Estimation of backaction on the external state

Since the depumping rate to the Zeeman states is proportional to spontaneous
emission, we can see the Zeeman diffusion as an experimental measurement
of the spontaneous emission rate. We are then able to compute the average
mechanical energy increase induced by the measurement backaction, with the
help of the theory of Sect. 1.4.3. The momentum diffusion coefficients are
averaged over a Boltzmann position distribution at 7" = 100uK, correspond-
ing to the measured atom temperature, and for A, = 507. We correct these
formulaes by the worst-case factor I'gl /T ump ~ 5, where TGZ0 | is the
measured Zeeman diffusion rate and I';,,,,,, the theoretical one. Written in
terms of vibrational quantum numbers n, , ., the estimated heating rates are
dn,/dt < 250 quanta/s and dn,/dt = dn,/dt < 1750 quanta/s, for a probe
power of ®,.r = 100 kCts/s. We can therefore perform a very efficient detec-
tion of 10 signal-photons (100us) without a significant change of the external

state: (An,) < 0.025 and (An,) = (An,) < 0.175.

The figure of merit of the detector is then summarised on Fig. 4.15, which



4.5. Towards a perturbation-free measurement 121

0.9tP

0.8

e
=

0.7

0.6

0.5

o
o
o

0.4

Probability to stay in mF=O

0.3

T%¢%

0.2

0.1+ ' %

0 50 100 150 200
Detection pulse duration [us]

Figure 4.14: Zeeman state diffusion induced by the measurement process.
The probability to stay in the initial Zeeman state |mp = 0) is depicted
as a function of the detection pulse duration, for a probe light power of
®,.r = 100 kCts/s and a light-atom detuning A, = 30y. Experimental data
is plot in blue, with statistical error bars. The red line is the result from the
exponential decay fit.
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shows the backaction effects on all atomic variables.
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Figure 4.15: Figure of merit of the detection. We depict here all the effects
of the measurement, as a function of the integration time, for a cavity light
power ®,.r = 100 kCts/s and short integration time. Detection error proba-
bility (blue) is computed as explained in Sect. 4.4.3. Depumping probability
(green) is computed from the fit of the Zeeman diffusion experiment. Aver-
age axial (red) and transverse (light blue) vibrational levels changes An are
represented in dashed lines.
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4.6 Conclusion

Let us summarise here the results obtained in this work concerning single
atom detection. With a long detection time (typically 20 signal photons),
we achieved a high-fidelity (error probability ~ 3 x 1073), repeatable mea-
surement of a single atom hyperfine quantum number F'. This measurement
being non-destructive, it can be applied in a deterministic single atom prepa-
ration scheme, and used as a tool for single-atom based experiments. Such an
experiment is described in Chap. 5, and other possibilities were mentioned
in the introduction.

We have also measured the measurement backaction on the other variables
of the system. During the detection of a |F = 2) atom, the Zeeman state
was found to be strongly perturbed by detection light. The initial knowledge
of the Zeeman state is completely lost after about 50 ps at ®,., = 100
kCts/s, or 5 signal-photons. This poses a severe restriction on the maximum
detection efficiency we can achieve without changing the Zeeman state. The
variables describing the motional state of the atom in the trap were found
to be weakly disturbed by the measurement. This is mainly due to the large
trapping frequencies of the dipole trap, which put the system in the Lamb-
Dicke regime.






Chapter 5

Quantum Zeno effect with a
single atom

This chapter described a Quantum Zeno Effect experiment which we realize
with single atoms prepared with our apparatus. The effect is measured on
microwave Rabi oscillations between the hyperfine states of the single atom.
The cavity is used as a measurement apparatus of the atomic state, either in
a continuous or a pulsed regime. The chapter is divided in four sections. The
first section gives an introduction to the Quantum Zeno Effect. The second
section explains how the cavity works as a measurement device, and give the
expected decay rate of the atomic coherences. The third section describe the
experimental results. The fourth section is proposal to extend the effect to
multiple atoms and generate entangled states.

5.1 Introduction and basic theory

The Greek philosopher Zeno was famous for his paradoxes, which mainly
dealt with the infinite divisibility of time and space into shorter, or point-like,
elements. One of them is called the Arrow’s paradox, and was formulated
the following way by Aristotle in his Physics [100]:

"If everything when it occupies an equal space is at rest, and if
that which is in locomotion is always occupying such a space at
any moment, the flying arrow is therefore motionless."

In a seminal paper [101], Misra and Sudarshan introduced a "Quantum
Zeno Paradox" by considering the decay of an unstable particle under con-
tinuous monitoring (or measurement, to use a quantum mechanics vocable),
and found that the decay was slowed down and eventually stopped. Denoting

125
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by |e) the initial unstable state of the particle, and by |i) the initial environ-
ment state (the environment would be here the quantised radiation field for
example), the coupled system state evolves as:

|U(t)) = exp(—iHt/h)|Ty), (5.1)

where H is the complete Hamiltonian and | W) = |e)|i). Setting H = (H)o-+
AH. The probability that the particle did not decay at time ¢t < h/AH is
given by the approximate expression

Po(t) = [(T(8)|To) | ~ |1 — (AH?)ot? /282 ~ exp(—(AH?)ot?/1?). (5.2)

We decompose the system evolution during a duration 7" into /N evolutions
of durations ¢ = T'/N, and assume that the system state is measured after
each of these short evolutions at time ¢; = i - ¢, for integer i. The probability
that the system has not decayed after time 7' is just the probability that at
every measurement ¢, the system is found not to have decayed is the time
interval [t;_1;¢;]. It is therefore the product of the individual conditional
probabilities

P; = P(No decay in [t;_1;t;]|No decay before t;) = Py(t =T/N), (5.3)

since the projection postulate implies that the system state is projected the
initial state |Wy) if no decay was observed. The global non-decay probability
is therefore:

PNon—deca.y(T) = PO(T/N)N - eXp(—<Af{2>0T2/NFL2) (54)

In the limit NV — oo, T' constant, this probability tends to unity. The decay
is then suppressed. We can therefore conclude that continuous observation
of a quantum system freezes its dynamics. The effect originates mainly from
the t? behaviour of the decay probability at short times. A physical insight is
provided by considering the simple case where the particle can only decay to
a single ground state |g) with a well-defined energy. Before the population
is effectively transferred to the ground state, a coherence has to build up
between states |g) and |e). This can be seen with the help of Bloch equations
which describe Rabi oscillations between states |e) and |g):

dpgq dpee
= Ozl = —— .
dt RiMPeg at (55)
dpe .QR
dtg = 1 9 (pee - pgg)' (5'6)
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When the populations of the two states are measured, for example by the
radiated field, the average populations are preserved but coherences are de-
stroyed, thereby restarting the oscillation from scratch. Contrary to the clas-
sical Zeno paradox, the quantum Zeno paradox can certainly be accounted
by the dynamical effect of the measurements. It was therefore renamed to
"Quantum Zeno effect" (QZE) by the community.

The first observation of the QZE was done at NIST [102]. In this experi-
ment, a Rabi oscillation between two stable states of about 5000 trapped Be™
ions was induced by a resonant radiofrequency wave. By applying regularly
spaced pulses of light, resonant with one of the two states, one can design a
measurement, process although scattered light is not actually monitored by
the experimentator. The authors showed that the transfer efficiency of the
radiofrequency dropped as the measurement rate increased, in agrement with
predictions of the QZE.

The interpretation of the experiment was however subject to some debate
[103, 104]. In particular, the very notion of measurement was questioned as
the probe light pulses scattering was not recorded and therefore the mea-
surement process did not involve a state change for a macroscopic "meter".
It is worth noting here that the QZE does not need in theory a macroscopic
measurement, but simply a correlation between the system and the environ-
ment states large enough to distinguish the system state by the knowledge of
the environment state (even if the latter is not measured, or "amplified"). In
mathematical terms, the global state must evolve during the measurement
process as

(ale) + Blg))li) — ale)|fe) + Blg)| fo), (5.7)

where |f.) and |f,) are the two possible final states of the environment. The
density matrix describing the state of the atom after the measurement is

given by:
2 *

Coherences are therefore suppressed as the scalar product S = (f,|f.) gets to
0, and the final density matrix approaches the ideal measurement result p,; =
le)(e|pat(0)]e){e] + |9)(g]pat(0)|g)(g|. For non-vanishing S, the measurement
only brings partial information about the system state, giving rise to a partial
QZE as explained in [105].

In a very similar experiment, a quantum Zeno effect for a single Be™
ion was demonstrated in [106]. Quantum Zeno effect has been since demon-
strated in a variety of systems, such as optically pumped atoms and ions
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[107, 108], photons in a microwave cavity [109], Bose-Einstein condensates
[110], or on the motional states of optically trapped atoms [111]. This latter
experiment stands out as the only one where the initial state is coupled with
a continuum of states, and not with a single discrete state. Therefore, the
decay is only quadratic in time in a very brief period following the prepara-
tion of the state, after which it becomes linear due to the dephasing between
the possible final states. Besides these proof-of-principles experiments, ap-
plications, especially in quantum computing, are actively searched and some
proposals already exist [112, 113, 114, 115, 116]. The main idea behind these
schemes is to take advantage of the Zeno effect to forbid the occupation of
states subject to decoherence. By monitoring continuously the populations
of these decohering states, the dynamics is restricted to decoherence-free-
subspaces. A general theory for the dynamics in this subspaces is developed
in [117, 118].

5.2 Quantum Zeno effect induced by the cavity

5.2.1 Pulsed mode

As seen in the previous chapter, the knowledge of the cavity transmission
on resonance allows to infer in which state [0) = |F = 1) or |1) = |F =
2) the single atom is. We have now to quantify the measurement process
in terms of suppression of the coherences between |0) and |1). Using the
general framework introduced above, we consider the atom-cavity system in
the input-output formalism. The environment state |f) is the product of the
final internal state |mp), the motional state [],_, , . [ni;) and the light field
state |P).

We consider the following time-dependent modes for the light field, de-
picted on Fig. 5.1:

e An input mode |in), defined as a propagating square pulse in the input
fibre, mode-matched with the cavity mode, with a duration ¢, > 1/k.

e An output mode |out), defined as the mode of the light leaking from
the cavity by the output mirror!.

!'We shall emphasise here that this mode also include the losses at the cavity output
mirror. This light cannot be detected, but still contributes to the collapse of the atomic
coherences.
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Figure 5.1: Description of atomic and light field modes.

e A reflected mode |ref), defined similarly as the output mode but with
the input mirror?.

e To ensure photon number conservation, we have to add another mode
|other) which includes contributions of directly reflected light, orthog-
onal to the mode |ref), and light possibly scattered by the atom.

In a simple picture, the evolution of a coherent pulse of light initially in
the incoming mode in given by

|Qin) = |Qout)|Qtrer) |Other) (5.9)

When the atom is in the |1) state, the cavity does not transmit any light and
al,: >~ 0. When the atom is in the |0) state, the cavity is resonant and the
photon number in the cavity builds up to n,.; during the pulse. The number
of leaked photons in the output fibre is then [a0,,|* = n,.;kt, = n*t,/k, with
the usual notations of Sect. 1.1.3. The value of the reflected field depends on
the cavity transmission-to-losses ratio, but we can see that the reflected fields
in the case of states |0) and |1) differ by the contribution of light transmitted
through the input mirror when the atom is in |0). Therefore we can conclude
that |a)),; —a} | = |ag,| = \/n?t,/k. In the Jother) modes, the contribution
of directly reflected light is the same for the two possible atomic states, and
the contribution of scattered light is negligible as we shall see later.

The contribution of the light field |®) to the scalar product S = (fy|f1)

involved in the decay of the atomic coherences is then

(ol ®1)| = (e lome ) (@ourlatgued | = [{0]agu) |* = exp(=nt, /) (5.10)

2Because of losses of the input mirror, this mode does not coincide with the geometrical
reflection of the input mode.
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The coherence decay rate due to the light field ?/x has to be compared with
the spontaneous emission rate which is the typical rate of processes affect-
ing the Zeeman state and the vibrational states, giving additional contribu-
tions to the atomic coherence decay rate. Since we have ['y, = 2yn?/g* =
1/C x n*/k < n?/k, the effect of these processes on the atomic coherence is
negligible compared to the effect of the light field.

5.2.2 Continuous measurement with the cavity

In the original paper, the authors considered the situation of instantaneous
measurements. In our experimental setup, this would correspond to infinitely
brief and intense pulses of detection light. Due to technical limitations on
the probe light power?, we cannot realize this situation experimentally. In-
stead, we operate the cavity in a continuous measurement setting, sending
a constant light power in the input fibre. For the atom-cavity system, the
dynamics is very fast, being determined by the coupling rate ¢ = 27 x 170
MHz and the relaxation rate xk = 27 x 50 MHz. Therefore, the value of the
intracavity field quickly adjusts to the equilibrium value (which depends on
the state of the atom), on a timescale 1/kx. The decoherence of the system
is due to the leakage of the cavity photons, with a typical rate n%/k. Since
n < K, it is therefore much slower than the relaxation rate . More precisely,
the decoherence is described in the master equation by the Liouville term

d 1
o _ L(p) =2k [ apa’ — ={a'a, p} (5.11)
dt 2

Replacing the cavity field operator a by its state-dependent value a = «|0) (0],
where o = 1/k, and tracing over cavity variables yields the incoherent dy-
namics induced on the atomic state?:

2

£ =2 (000l - 50001 ) 612

This dynamics is equivalent to a continuous measurement of the system state,
with a rate ', = 1?/k. Expanding the master equation in the (|0) ,|1)) basis,
we find the equations for the diagonal and off-diagonal terms

dp
“Foo _ 5.13
dt M ( )
dpf 7’

= 1 .. 5.14
dt Kplo ( )

3The limitation is due to the maximum photon flux the APD can stand.
1A similar treatment is applied in [119]; however, it concerns the bad cavity limit k > g
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This last equation predicts an exponential decay of the atomic coherences,
with a rate T',, = n*/k, in agreement with the input-output model of the
previous section. We shall nevertheless confirm the rather crude approxi-
mation a = alPy. For that purpose, we perform a full numerical simulation
of the master equation, taking into account the two possible ground states
|0) and |1), an excited state |e) equally coupled to both ground states with
a coupling constant ¢, and a cavity field with can take the two possible
states |n = 0) and |n = 1). The 6* x 6* operator £ is numerically diago-
nalised. The time evolution of any initial density matrix py, can be computed
as p(t) = exp(Lt)po. We choose the initial condition py = |¥¢)(Vy|, where

|Wo) = \/g(\0>+\1>)\n = 0). From the computed solution p(t) we can observe
the two important phenomena, critical for the analysis done above. First, we
can observe the correlation that progressively builds up between the atomic
state and the photon state (See Fig. 5.2 Left). It is characterised by the
density matrix elements (0;n = 1|p|0;n = 1) and (1;n = 1|p|1;n = 1) which
reach their steady state value on a short timescale 1/k. Then, on a longer
timescale, we can observe the progressive decay of the atomic coherence |pd|.
The agreement with the exponential decay at a rate n?/r is excellent (See
Fig. 5.2 Right).

5.3 Frozen Rabi oscillations with a single atom

The two possible atomic states |0) = |F' = 1) and |1) = |F' = 2) are stable
states. Therefore, to observe a Zeno effect with this system, we have to
make them "unstable" by adding a resonant microwave field which induces
transitions between the two states. The experimental setting is completely
similar to the original experiment of Itano et al. Besides the fact that it
is the first Zeno experiment to be performed with single neutral atoms, the
originality of this experiment lies in the measurement process: here, the
measurement is not caused by absorption and re-emission of probe light, but
rather by the change of the cavity transmission induced by the presence of the
atom in a particular state. Furthermore, the decoherence rate n*/x does not
depend on the exact value of the atom-cavity coupling, provided the system
is in the strong coupling regime C' > 1. It is just equal to the photon flux
leaking from the cavity, so that a single photon leaving the cavity provides
the bit of information needed to deduce the atomic state.

The effect of continuous measurement on Rabi oscillations can be calcu-
lated by adding the contribution of the measurement (Eqns. 5.13) to basic
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Figure 5.2: Numerical simulation of the cavity master equation, with the
atom initially in the superposition state |¥g) = \/g(\0> +1]1)). The cavity
probe power is set at ®,.r = 1 MCts/s, with detunings A, = A, = 0.

Left: From the complete density matrix p, we can compute the cavity photon
number distribution, conditional to the atomic state. The mean value is
plotted here for the two possible atomic states |0) (full blue line) and |1) (red
dashed line), shortly after probe light is switched on. We observe the typical
timescale to reach the equilibrium.

Right: The reduced atom density matrix is obtained by tracing over the
cavity states. The evolution of the off-diagonal terms (blue stars) is compared
to an exponential decay |pdt| = 0.5 exp(—n*t/k) (green line).
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Figure 5.3: Effect of a continuous measurement on Rabi oscillations. The

transfer efficiency is depicted as a function of time for various measurement
rates I',,,/Qr = 0 (blue), 1 (magenta), 10 (yellow), 50 (green).

Bloch equations (Eqns. 5.5). The equation for the population and coherence
can be combined in a single 2nd order differential equation for the population:

Prth | dosy

|
75 i + Q5 = 593% (5.15)

For I, /g < 2, Rabi oscillations are still present but exponentially damped
with a rate I',,/2. For T',,/Qr > 2, the oscillations are suppressed. The
equation can be solved analytically, and results for various measurement
rates I',,, are displayed on Fig. 5.3. For increasing values of I',,, the transfer
efficiency of a m-pulse (Qrt = 7) drops from 1 to 0.

5.3.1 Single atom Rabi oscillations

We shall start by the observation of undamped Rabi oscillations with a single
atom, when the measurement is switched off during the mw pulse.

Using the techniques described in Chap. 4, we can prepare single atoms
in the state |1) = |F = 2;mp = 0). By switching on the resonant microwave
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field, we induce Rabi oscillations between states |0) = |F' = 1;mp = 0) and
|1). After a duration ¢, the system is in the coherent superposition of states:

2t

|W(t)) = cos |1) + sin %\O% (5.16)

where (2 is the microwave Rabi frequency. If a state measurement is per-
formed, the transfer probability is given by P;(t) = sin? % To measure the
state of the system, we simply shine resonant light with a reference power of
®,.r ~ 1 Mcts/s, and look at the detected counts for 20 us. We do not need

to perform a complete state measurement.

By repeating the experiment, and averaging the results of the measure-
ment, we can measure the transfer probability as a function of the mw pulse
duration ¢. Results displayed on Fig. 5.4 show Rabi oscillations with a con-
trast of about 80% and a Rabi period T = 27/Qg = 10.7 £+ 0.2us. The
observed reduced contrast is in fact partly due to the limited transfer effi-
ciency of the mw m-pulse already required to prepare the single atom in the
|F' = 2) state. It is therefore consistent with a maximum transfer efficiency
of about 90% for a m-pulse.
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Figure 5.4: Single atom Rabi oscillations on the |F' = 2;mp = 0) — |F =
1;mp = 0) transition. For each MW pulse duration, the transfer probability
(blue circles) is inferred from the measurement of the atom final state with
15 successful single atom preparations. The error bars are statistical. The
full line is the expected sinusoidal behaviour for T = 10.7us.

5.3.2 Observation of a Quantum Zeno effect

The section is devoted to the observation of this damping and freezing of
the Rabi oscillations, in the regime of continuous measurement and pulsed
measurements.

Continuous Quantum Zeno effect

The quantum Zeno effect is best observed with a microwave m-pulse. The
transfer probability is then expected to drop from its maximum value ~
90% to 0 as the measurement rate is increased. The QZE is expected to
occur for T',, = n?/k ~ Qg, which corresponds to a reference output rate
®,.r =~ 100 kCts/s, easily achievable experimentally. Once the single atom
preparation in the state |F' = 2;mp = 0) is done, the probe light power is
adjusted with the help of a voltage-controlled RF attenuator which limits
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the diffraction efficiency of the acousto-optical modulator AOM2 (See Sect.
2.2.2). The control voltage is provided by the microcontroller. A delay of
100us is added to allow the microcontroller analog output and the RF power
to stabilise, before the probe light ("Zeno light") is eventually switched on.
After another short delay of 2us, the microwave field is switched on for a
duration of 7,,, = 5.5us, approximately corresponding to a m-pulse. Zeno
light is then switched off, and the rf power restored to its original value
suitable for state measurement. The final state measurement is performed as
usual with a duration of 20us at a reference power of ®,.r = 1 Mcts/s. We
only measure the value of F.

This experiment can be performed equally well with single atoms start-
ing out in state |0) or |1). Although the measurement process seems to be
asymmetric, the cavity being resonant only with state |1), it is completely
equivalent to measure the final state population or the initial state popu-
lation. We therefore expect the same results for the two possible prepared
states. Experimental results are displayed on Fig. 5.5 (Top). The agree-
ment with theory is noteworthy, since there are no adjustable parameters
in theory. The effect of depumping to other Zeeman states should be taken
into account for large measurement rates when the initial state is [1). In
particular, for Ny,.s > 30, the transfer to state |0) is not only prevented by
Zeno effect, but also by trivial depumping to other |F' = 2;mp) states which
are non-resonant with the microwave field, because of Zeno light. However,
this effect only occurs when the Zeno effect is already strong enough to sup-
press almost completely Rabi oscillations, and it is not the main effect. The
experiments performed starting in state |0) confirms it.

Pulsed partial Quantum Zeno effect

The experiment described above can be slightly modified to investigate the
pulsed regime of Quantum Zeno effect, closer to the original proposal. Zeno
light is sent in short pulses of typical duration ¢,, which can be considered as
instantaneous measurements when ¢, < Tx. The efficiency of this elementary
measurement is characterised by the effect on the density matrix described
by Eqn. 5.8. To obtain a significant coherence decay, the brevity of the light
pulse has to be compensated by a large peak power to ensure nt,/r > 1.
Experimentally, we have to reach a compromise since the maximum power
is limited by the photon counter which we cannot shut down in such a short
notice. After the atom preparation, we adjust the probe light power to
the maximum allowed value ®,.; = 5.5 MCts/s with the help of the RF
attenuator. Light pulses are generated with a pulse generator which controls
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the RF switch. Due to the AOM finite response time, the optical response
to a square, 130 ns long electric pulse is a quasi-Gaussian optical pulse,
with an amplitude of about 70% of base power and a duration of 30 ns
FWHM. We precisely calibrate the pulse photon number with the photon
counter and find the equivalent photon number n, = f n*/kdt = 1.1. The
effect of such a measurement pulse is characterised by the scalar product
S = (Pg|P1) = exp(—n,) = 0.3. The coherences are then reduced by a factor
3 after each measurement pulse.

The experiment is performed with 0 to 20 measurement pulses, with an
initial atom preparation in state |1). Experimental results are shown on
Fig. 5.5 (Bottom). The theory for a partial Zeno effect in the pulsed regime
is given in [105]. The main parameter of the theory is the scalar product
S = (®y|Py) which characterises the effect a single pulsed partial measure-
ment on the coherence of the system. Experimental results are in agreement
with the theory with a different value of the fitting parameter Sy; = 0.55,
corresponding to a pulse photon number n, r;; = 0.6. Discrepancy with the
expected value S = 0.33 can be at least partly explained by spectral broad-
ening of the measurement pulse, since 1/t, ~ 30 MHz, a value comparable
to the cavity linewidth and larger than atomic linewidth.

In this section, we have reported the first QZE experiments with single
neutral atoms. We have verified that in the cavity QED strong coupling
regime, the effective continuous measurement rate of the system was given
by the reference photon output rate n?/r excluding losses. If we compare this
rate to spontaneous emission rate measured by the Zeeman diffusion experi-
ment (see Sect. 4.5.2), we find that the measurement rate is approximately
20 times larger than the spontaneous emission rate at a given probe power.
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Figure 5.5: Quantum Zeno effect with a single atom. The probability that
the atoms stays in its initial state after a mw m-pulse is depicted as a function
of the Zeno light power, expressed in terms of number of equivalent measure-
ments N,,es.

Top: Continuous measurement regime. Here N,,., = I',,7T,. Experi-
mental data for initial atom preparation in state |0) (resp. [1)) is plotted
with blue circles (resp. red stars), along with statistical error bars. Theory
derived from Eqn. 5.15 is the green line.

Bottom: Pulsed, partial measurement regime. Here N,,., is the number
of measurement pulses. The theory curve (red dashed line) is computed with
the fitting parameter Sy; = 0.55 (see text).
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5.4 A proposal for QZE entanglement genera-
tion

In the experiments described above, and in other work done previously, the
QZE manifests itself as a freezing of the system dynamics. When the mea-
surement outcome allows to identify precisely the quantum state, the system
state is projected back to its initial value, and the state does not evolve. The
physics of the QZE is then somehow limited.

However, this situation is not general: if several quantum states yield the
same measurement outcome, the state is projected to the eigenspace spanned
by these quantum states. Therefore, the dynamics in this "Zeno subspace" is
not impeded. Theoretical studies of this topic lead to the notion of "Quantum
Zeno dynamics" (QZD), and recent proposals of applications for QZE take
advantage of that.

In this section, we will give a brief introduction to QZD theory, and discuss
an application to the preparation of entangled states, within the reach of our
experimental apparatus.

5.4.1 Quantum Zeno dynamics

The theory of QZD is a sizeable mathematical subject and we certainly do
not intend to bring here large mathematics developments, but rather take
the point of view of the physicist. In fact, the original paper by Misra and
Sudarshan already rose the critical question: is the dynamics unitary in
the Zeno subspaces? For infinite-dimension Hilbert space, the answer is
in general negative, although it is true for some particular cases (see for
example [117] for the motion of a free particle under continuous position
measurement). In a finite-dimension Hilbert space, the answer is positive,
and the dynamics is governed by an effective Hamiltonian in the different
Zeno subspaces. A clean mathematical proof is given in [120]. We shall
rederive it here, using a physics approach. Let us consider the evolution of a
quantum system described by a density matrix p, with a general Hamiltonian
H, and subject to continuous measurement of a given variable x. We suppose
here that the variable x can only take two possible values 1 and 2. The
projectors on the eigenspaces F, and FEs of x are denoted by P; and Ps.
A single measurement projects the density matrix p following the mapping
p — P1pPy + PypP,. If we assume that the system is continuously measured,
then we have at any time p = Py pP; +PypP5. As a consequence we can derive
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the following properties for the density matrix:

]P)lp]P)l = Plp:ppl (518)

The first equation means that the coherence between states lying in different
Zeno subspaces all vanish, due to continuous measurement. The evolution of
the density matrix during an elementary time step dt is the combination of
an Hamiltonian evolution p — U(dt)pU'(dt), where U(dt) = exp(—idtH) =
1 —idtH + O(dt?), and a measurement process p — Py pP; +PypPs. Therefore
we can write at the first order in dt:

p(t+dt) = Py(1—iHdt)p(l+iHdt)Py + Py(1 — iHdt)p(1 + iHdt)Py
= PpP; + PypPy + Py (—iHdt)plPy + Py p(i Hdt)P,
+Py(—i Hdt)pPy + Pop(i Hdt)Py
= p+ P (—iHdt)Pp + pP,(iHdt)P,
+Py(—i Hdt)Pyp + pPy(i Hdt)Py
= p+[p, Hzlidt, (5.19)

where the Zeno Hamiltonian is simply defined by H; = P HP; +PyHP;. For
a system initially prepared in a pure state |¥U;) € E}, eigenstate for the mea-
sured variable z, the evolution is hamiltonian and |V(t)) = exp(—iH zt)|Vy).

5.4.2 Partial measurement with the cavity

As we have seen with previous experiments, the cavity transmission drops to
a small value when there is at least a single atom in the cavity in the state |1)°.
However, the cavity does not distinguish accurately whether there is exactly
one atom in state |1), or several. Suppose we prepare two atoms, strongly
coupled to the cavity, both of which can be either in state |0) or |1), and
perform a measurement of the cavity transmission. In an idealised picture,
the measurement has only two possible outcomes "the cavity transmits" or
"the cavity does not transmit". The Zeno subspaces for this measurement
are:

Ei = Vect(|0)|0)) (5.20)
Ey = Vect(|1)|0); |0)[1); [1)]1)) (5.21)
= Vect(|07); |[WF); [1)]1)), (5.22)

®We consider here the usual setting, with the cavity and probe light resonant with the
|F = 2) — |F' = 3) transition.
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where we defined the Bell states |U) = \/g(|10> +101)).

(1)

We consider the effect of a Hamiltonian H = ¢(6\y + 65) + g(6%2 +
(2)

gy, ) acting separately on the two atoms via the single particle operators
c}g-“). If the measurement is switched off, the effect of this interaction is an
independent rotation of the two spins. When the measurement is switched
on, and the system starts out in the state |11), the QZE prevents the system
from reaching the state |00). In particular, when one particle is in the state
|0), the second one has to be in state |1). Therefore, the measurement induces
a correlation between the atoms. Using the QZD theory, we can study the

dynamics in the FE, subspace. The effective Hamiltonian is conveniently
rewritten in the (|¥~);|WT);|1)]|1)) basis:

Hy = gV2 (5.23)

O O O
_ o O
o = O

The evolution of a pair of atoms initially prepared in the state |11) is then
a Rabi oscillation between the states |11) and |¥U™) with a collective Rabi
frequency Q0 = V20 = g/v/2:

111) — cos(gv/2t)[11) — isin(gv/2t)| ) (5.24)

If the evolution is stopped after a time t = 7/(2v/2g), corresponding to
a W/\/ﬁ—pulse for a single atom, the system ends up in the entangled state
|U). In [121, 122], the authors demonstrated a similar preparation scheme to
prepare a |UT) state with a fidelity of 75%. In this experiment, transitions to
state |00) are prevented by large dipole-dipole interaction between Rydberg
states. Here, the interaction is instead provided by the cavity measurement.

5.4.3 Experimental details and numerical simulations

We shall discuss here to which extent this preparation can be applied to
our current cavity experiment. First, we need a pair of single atoms in the
state |1) to start with. The atoms do not need to be positioned in the
same dipole trap site, since the coupling to the cavity mode changes only
slightly from one site to the next. With the help of an external magnetic
field gradient oriented along the cavity axis, we can single out specific sites
for microwave transitions that are sensitive to magnetic field, such as the
transition |F' = 1;mp = 1) — |[F = 2;mp = 0) involved in single atom
preparation. Running current in a chip wire located 150 um above, one can
reasonably achieve a magnetic field gradient of about 0.1G/um in the cavity
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mode. With dipole trap sites separated by about 0.4 um (A/2), the order of
magnitude of the relative detuning between the two sites would be around
50 kHz, which is large enough to prevent almost completely Rabi oscillations
in one site when they are resonant for the next site®.

We start with a reservoir of |F' = 1;mp = 1) atoms delocalised over
at least two neighbouring dipole trap sites called 1 and 2. Using the pulse
scheme, we prepare a single atom in state |F' = 2;mp = 0) in site 1, which we
hide in state |F' = 1;mp = —1) by using again a field-dependent microwave
transition. This single atom has a small effect on the cavity transmission,
just as if it were in the reservoir state. We can then prepare a single |F =
2;mpr = 0) atom in site 2. The preparation is then completed by performing
a last microwave m-pulse on transition |F' = 1;mp = —1) — |F = 2;mp = 0)
on site 1. Although it requires careful control over all these microwave pulses,
this preparation scheme should be within experimental reach.

We now turn to cavity detection issues. In the idealised picture presented
above, the cavity measurement has only two possible outcomes, whereas in
reality has at least three possible transmission values 7j ; o for the three pos-
sible number of atoms in state |1). However, the transmission is very low for
both Ny =1 and N; = 2, which means that we have to send many photons
to detect whether we have 1 or 2 atoms in state |1), whereas we need only a
few photons to know whether N; = 0 or not. We can therefore consider that
the system undergoes two different types of continuous measurements: the
first is very fast (rate I',,) and crude in the sense it can only distinguish state
|00) from other states; the second is slower (rate I/ ) and finer as it distin-
guishes |00), |11) from other states. For I/, > Qp, the entanglement scheme
described in previous section collapses, as the dynamics of the initial state
|11) is also frozen. For Qg > T, the effect of the measurement is to small to
prevent the normal dynamics, and the system state is always separable for
any interaction time. The regime I/ < Qp < T',, is the interesting one: the
dynamics in the E5 subspace in still possible, while the crude measurement,
is efficient enough to forbid transfers to state |00).

This qualitative analysis needs to be confirmed by a numerical simulation.
The single atoms are described by a three level structure (|0), |1), |e)) and are
independently coupled to the cavity field a by H) = ¢@¢Wat 4+ g @505,

and to the microwave field by H\, = QR(t)/2(&§Q + c}(()il)). We assume here

6This would also require to decrease the Rabi frequency down to 5 kHz or so, which is
of course possible by decreasing the mw power. Measured coherence times for Rabi oscil-
lations (see Sect. 2.3.2) are compatible with high efficiency Rabi pulses with frequencies
in the kHz range
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that the microwave field is resonant to both atoms (since the clock transition
is field-insensitive) and that the amplitude and phase are the same (since
d12 < Amw)- The effect of spontaneous emission can be modelised in different
ways:

e Independent By two independent collapse operators C'¥) = \/ﬂ(fﬁ).
Doing this, we assume that the environment (or electromagnetic field)
distinguishes spontaneously emitted light from the two atoms. This
corresponds to the limit ds > A.

e Super-radiant With a single collapse operator C' = \/27(6&) + 6@).

This corresponds to the opposite limit djo < A [123].

e General case With collective collapse operators
C(k) = /27AK)(exp(ik.r1)6\Y + exp(ik.r)s'”), where A(k) is the
dipole far-field emission pattern [124]. This approach covers both the
super-radiant and the independent limits, but is computationally more
intensive, so we discarded it.

Spontaneous emission has to be taken care of seriously since it induces tran-
sitions to other mpg states. The cavity field pump and decay is treated
as usual, although we use a pulsed pump to end in the |n = 0) cavity
state. The evolution of p(t) is obtained by solving numerically the mas-
ter equation. The fidelity of the preparation is defined by the scalar product
F = (U p%,alP"). The evolution of I is displayed on Fig. 5.6 Top. As
expected, the maximum fidelity is obtained with a microwave pulse duration
of T/v/2. We optimise the measurement rate I',, = 7%/k by maximising
the figure of merit M = F — Ny, where Ngpoy = [ T'pdt is the mean
cumulated number of spontaneous emissions. The optimum measurement
rate for g = ¢® = 27 x 140 MHz and Qx = 27 x 50 kHz is approximately
I',, = 5Qg, and leads to the following results:

Model F | Ny | M
Super-radiant | .83 | .19 | .64
Independent | .79 | .14 | .65

We can deduce from these figures that the fidelity of the preparation
is severely impacted by spontaneous emission. In the super-radiant model,
the fidelity can be increased to 0.90 for I',, = 10€Q2g, but at the cost of a
larger spontaneous emission. It is worth noticing that the scheme is robust
to variations of the amplitude and phase of the coupling constants ¢ and
¢@, and therefore does not require perfect atom localisation, nor preparation
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of pairs of atoms in the same site (which would require a more complicated
protocol than the one presented above).

To measure the final state, we can perform independent measurements of
the two atomic states, using hiding pulses similar to the ones necessary for
the pair preparation. Combining these measurements with global microwave
pulses is in principle sufficient to perform the complete tomography of the
system [125, 122]. Given the figure of merit of the scheme, and unavoidable
technical problems such as initial state preparation, measurement errors,
pulse shape inaccuracy, it is not clear whether the final measured fidelity
will exceed 1/2, the minimum value to characterise quantum entanglement.
However, by simply measuring the states of the atom as a function of Rabi
pulse duration, it should be possible to observe the collective Rabi oscillations
for (N,), with a frequency Qg x v/2 characteristic of Quantum Zeno dynamics
(see Fig. 5.6 (Bottom)).

5.5 Conclusion

The Quantum Zeno effect is a dramatic manifestation of the fundamental fea-
ture of quantum mechanics theory: measuring a system perturbs it. There-
fore, it is always very instructive to measure it with a new system, and it is
an excellent application to the single atom preparation scheme described in
the previous chapter. Moreover, the QZE experiments reported here show
that in the setting of cavity QED, the measurement rate is enhanced by
the strong coupling with the cavity mode, and that the environment mea-
sures the state of the atom without inducing a spontaneous emission 95% of
the time. Hence, this experiment is an example of a quasi perturbation-free
measurement realized with a cavity.

In a second part, we have presented an introduction to QZD theory which
aims to bring promising applications of the QZE to quantum information
science. We have also proposed a QZD-based protocol to generate entangled
states of two atoms trapped in the cavity mode at two different sites. We
discussed the feasibility of an experimental realization with our current setup.
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Figure 5.6: Numerical simulation of entanglement generation by QZD. Simu-
lation parameters are ¢() = ¢ = 27 x140 MHz, A, = A, = 0, Qr = 27 x50
kHz.

Top: Microwave and measurement are pulsed, with 7., = 15/ V2. The mea-
surement rate is set to the optimum value I'),, = 5Q5.

Left: Pulses profiles, normalised to their maximum value, for measurement
light amplitude 1 (dashed red line) and Rabi frequency Qg (full blue line).
Right: Fidelity of the state preparation, for independent collapse model (full
blue line) and super-radiant model (red dashed line).

Bottom: Effect of measurement light on Rabi oscillations, in the continu-
ous regime and with independant spontaneous emission from the two atoms.
Rabi oscillations are depicted for different values of the measurement rate






Appendix A

Derivation of the rate equations

First, we group the equations 1.55 in the global form

D~ L) = £p) + (), (A1)

emphasising the operator form of £ and S. The density matrix p can be
seen as a vector in a Hilbert space defined by the scalar product (pq,p2) =
Tr(plpy). The Liouvillian and the source term can be seen as self-adjoint
operators. We can therefore apply the usual perturbation theory.
We write p = > P"F i |mp)(mp| +6p =3, P"Fen, + dp, where dp
is perpendicular to E = Vect (e,,,,,mp = —2...2). dp and d/dtP,,,. are first
order terms in the small parameter «y/x. The rate equations can be computed
as

deF = (emF,£p> = (emF,S(ZPmFemF)> (A.2)

mpg

which yields Eqn. 1.59. The time evolution of dp is given by

% = L(6p) + mZPmFS(emF) — dz#emlp (A.3)
= L(0p) + K(t) (A.4)

dp is confined to the subspace E*, where L is upper-bounded by —k. The
order of magnitude of K(t) is I' = ymax,,, Tr(P.ey,). Solving for dp we
find

5p(t) = exp(L£)p(0) + /0 du exp (E(t—u)) K(u), (A.5)

which shows that the order of magnitude of dp(t) is T'/x < v/k.
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