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Abstract

A decade ago, 3D content was restricted to a few applications – mainly games, 3D graphics and
scientific simulations. Nowadays, thanks to the development cheap and efficient specialized rendering
devices, 3D objects are ubiquitous. Virtually all devices with a display – from a large visualization
clusters to smart phones – now integrate 3D rendering capabilities. Therefore, 3D applications are
now far more diverse than a few years ago, and include for example real-time virtual and augmented
reality, as well as 3D virtual worlds. In this context, there is an ever increasing need for efficient tools
to transmit and visualize 3D content.

In addition, the size of 3D meshes always increases with accuracy of representation. On one hand,
recent 3D scanners are able to digitize real-world objects with a precision of a few micrometers, and
generate meshes with several hundred million elements. On the other hand, numerical simulations
always require finer meshes for better accuracy, and massively parallel simulation methods now gen-
erate meshes with billions of elements. In this context, 3D data compression – in particular 3D mesh
compression – services are of strategic importance.

The previous decade has seen the development of many efficient methods for encoding polygonal
meshes. However, these techniques are no longer adapted to the current context, because they suppose
that encoding and decoding are symmetric processes that take place on the same kind of hardware.
In contrast, remote 3D content will typically be created, compressed and served by high-performance
machines, while exploitation (e.g. visualization) will be carried out remotely on smaller – possibly
hand held – devices that cannot handle large meshes as a whole. This makes mesh compression an
intrinsically asymmetric process.

Our objective in this dissertation is to address the compression of these large meshes. In particular
we study random-accessible compression schemes, that consider mesh compression as an asymmetric
problem where the compressor is an off-line process and has access to a large amount of resources,
while decompression is a time-critical process with limited resources. We design such a compression
scheme and apply it to interactive visualization.

In addition, we propose a streaming compression algorithm that targets the very large hexahedral
meshes that are common in the context of scientific numerical simulation. Using this scheme, we are
able to compress meshes of 50 million hexahedra in less than two minutes using a few megabytes of
memory.

Independently from these two specific algorithms, we develop a generic theoretical framework to
address mesh geometry compression. This framework can be used to derive geometry compression
schemes for any mesh compression algorithm based on a predictive paradigm – which is the case of the
large majority of compression schemes. Using this framework, we derive new geometry compression
schemes that are compatible with existing mesh compression algorithms but improve compression
ratios – by approximately 9% on average. We also prove the optimality of some other schemes under
usual smoothness assumptions.
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Résumé

Il y a une décennie, le contenu numérique virtuel était limité à quelques applications – majoritairement
les jeux vidéos, les films en 3D et la simulation numérique. Aujourd’hui, grâce à l’apparition de cartes
graphiques performantes et bon marché, les objets 3D sont utilisés dans de nombreuses applications.
A peu près tous les terminaux possédant des capacités d’affichage – des clusters de visualisation haute-
performance jusqu’aux smart phones – intègrent maintenant une puce graphique qui leur permet de
faire du rendu 3D. Ainsi, les applications 3D sont bien plus variées qu’il y a quelques années. On
citera par exemple la réalité virtuelle et augmentée en temps réel ou les mondes virtuels 3D. Dans ce
contexte, le besoin de méthodes efficaces pour la transmission et la visualisation des données 3D est
toujours plus pressant.

De plus, la taille des maillages 3D ne cesse de s’accrôıtre avec la précision de la représentation.
Par exemple, les scanners 3D actuels sont capables de numériser des objets du monde réel avec une
précision de seulement quelques micromètres, et génèrent des maillages contenant plusieurs centaines
de millions d’éléments. D’un autre côté, une précision accrue en simulation numérique requiert des
maillages plus fins, et les méthodes massivement parallèles actuelles sont capables de travailler avec des
milliards de mailles. Dans ce contexte, la compression de ces données – en particulier la compression
de maillages – est un enjeu important.

Durant la décennie passée, de nombreuses méthodes ont été développées pour coder les maillages
polygonaux. Néanmoins, ces techniques ne sont plus adaptées au contexte actuel, car elles supposent
que la compression et la décompression sont des processus symétriques qui ont lieu sur un matériel
similaire. Dans le cadre actuel, au contraire, le contenu 3D se trouve créé, compressé et distribué
par des machines de hautes performances, tandis que l’exploitation des données – par exemple, la
visualisation – est effectuée à distance sur des périphériques de capacité plus modeste – éventuellement
mobiles – qui ne peuvent traiter les maillages de grande taille dans leur intégralité. Ceci fait de la
compression de maillage un processus intrinsèquement asymétrique.

Dans cette thèse, notre objectif est d’étudier et de proposer des méthodes pour la compression
de maillages de grande taille. Nous nous intéressons plus particulièrement aux méthodes d’accès
aléatoire, qui voient la compression comme un problème intrinsèquement asymétrique. Dans ce
modèle, le codeur a accès à des ressources informatiques importantes, tandis que la décompression est
un processus temps réel (souple) qui se fait avec du matériel de plus faible puissance. Nous décrivons
un algorithme de ce type et l’appliquons au cas de la visualisation interactive.

Nous proposons aussi un algorithme streaming pour compresser des maillages hexaèdriques de très
grande taille utilisés dans le contexte de la simulation numérique. Nous sommes ainsi capables de
compresser des maillages comportant de l’ordre de 50 millions de mailles en moins de deux minutes,
et en n’utilisant que quelques mégaoctets de mémoire vive.

Enfin, nous proposons, indépendamment de ces deux algorithmes, un cadre théorique général
pour améliorer la compression de géométrie. Cet algorithme peut être utilisé pour n’importe quel
algorithme basé sur un paradigme prédictif – ce qui est la cas de la majorité des méthodes existantes.
Nous dérivons ainsi des schémas de prédictions compatibles avec plusieurs méthodes de la littérature.
Ces schémas augmentent les taux de compression de 9% en moyenne. Sous des hypothèses usuelles,
nous utilisons aussi ces résultats pour prouver l’optimalité de certains algorithmes existants.
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Introduction

A few years ago, multimedia content was mainly limited to audio (music) and video (movies). In the
same way records and movies have progressively provided better and better alternatives to traditional
concerts and theatre representations, virtual 3D content now credibly emulates real-world objects in
various contexts. 3D content is used in virtually every application that needs to provide a user with
an intuitive experience of a real-world or synthetic object. With the development of the Internet, this
content has been widely diffused to the public, with the result that most users of personal computers
can navigate within a 3D scene comfortably using common input devices such as mouse and keyboard.
One of the mainstream applications of virtual 3D content is entertainment, in particular the game
industry, and the global spendings in this field will shortly exceed that of other traditional media like
music 1.

Various Internet applications are progressively developing 3D services. Google augments geo-
graphic maps by rendering the terrain in 3D instead of using traditional isolevel curves. They also
integrate 3D models of important buildings directly on the map2. Individual users can even upload
their own models that are integrated into the database to be accessible to the community3. All these
services are accessible with any Internet browser. This shows that 3D content is really becoming
mainstream.

To provide even better immersion into the virtual world, more complex visualization devices such
as caves have been developed, where the user is surrounded by display walls. In this setting, haptic
devices replace the traditional mouse and keyboard, and provide force feedback to give virtual objects
mass and momentum. The user is then able to manipulate virtual objects as if they were real. Because
these 3D immersion systems are expensive, they mainly find applications in professional contexts like
Computer Assisted Design4 [Berta 1999] or Medicine (e.g. treatment of phobia [Garcia-Palacios et al.
2002]).

In the last decades, the various communities interested in 3D content – numerical simulation,
computer graphics, geometry processing, ... – have come to a consensus where any surface or vol-
ume dataset is represented as a piecewise linear approximation, or mesh. This representation has
the advantage of being discrete, and uses simple elements that computers can easily process. This
representation is so ubiquitous that specialized hardware with adapted architecture, called Graphic
Processing Units (GPUs), have been developed with the only goal of enabling the efficient visualiza-
tion of surface meshes. Due to the importance of virtual or digitized 3D content in today’s world,
virtually every recent electronic device with display capabilities is now equipped with GPUs, from
large visualization clusters to smart phones, also including commodity personal computers and game
consoles.

A few years ago, most digital 3D content used to be synthetic, the market being driven mainly by
applications like games and the film industry, and to a lesser extent numerical simulation. With the

1http://www.reuters.com/article/idUSN2132172920070621
2http://earth.google.com/plugin/
3http://sketchup.google.com/yourworldin3d/index.html
4Various firms now propose virtual reality services for engineering firms, e.g. http://www.virtalis.com/
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development of accurate acquisition hardware, 3D objects have found several new applications. In
particular, the growth of the Internet selling market has naturally led on-line stores to propose virtual
3D replicas of the products being sold, so that the customer can make a choice in complete confidence,
as if in a store. A recent trend is the use of augmented reality : a typical application uses an image of
the environment of the user – captured e.g. by a web cam – and integrates the virtual content inside
the scene. This way, the user can see the behaviour of the object in its environment. For example, a
company named FittingBox5 proposes a software solution that enables users to virtually try pairs of
glasses (see Figure 1).

Figure 1: The virtual mirror of FittingBox enables virtual try-on of glasses (Source: FittingBox5).

For larger adoption, such applications would ideally be able to run on consumer devices such as
smart phones, that are usually equipped with a camera and some (small) 3D rendering capabilities.
We use these devices as example to introduce several practical limits to what can be done in the field
of 3D visualization. First, storage on these devices is limited. It would be totally impossible to store
the complete collection of virtual objects that a store has to provide directly on the disk – usually a
FLASH memory – of the device. On the other hand, the network bandwidth is limited. Therefore,
keeping the collection on the remote server and downloading a new 3D model each time the user
requests a product leads to a large latency.

3D applications have traditionally dealt with these problems using compression. The first mesh
compression algorithms were designed to provide mesh representations that were as compact as pos-
sible, for efficient static storage. However, being able to store 3D models on a disk is not the ultimate
goal. The actual application has to be taken into account. In the previous example of augmented
reality, a nice feature of the compression algorithm would be progressiveness. A progressive decom-
pression algorithm would start displaying a rough approximation of the mesh as soon as the first
bytes of the model are received, somehow hiding the network latency to the user. In addition, in the
concept of a globalized world where several different actors will process the information, possibly in
a collaborative setting, compression/decompression algorithms must be able to handle the heteroge-
neous capabilities of the hardware of each user (see Table 1). For example, professional users like
research laboratories dealing with large-scale numerical simulations will usually possess supercomput-
ers with tremendous amounts of memory and computing power, and visualization clusters capable of
rendering millions of triangles per second on displays with several megapixels. On the other hand of
the spectrum, typical consumers will visualize 3D content with commodity hardware such as laptop
computers or smart phones. In an ideal setting, the same tools could be used to handle these various
systems. Therefore, compression/decompression algorithms should adapt to the various hardware
limitations, in terms of network bandwidth, storage capability, available memory, display size, etc.

There is another fundamental difference between mesh compression for consumer applications
and other professional contexts. In the first case, the only important thing is the visual aspect of the
model. The actual goal is not to visualize the mesh itself, but the surface of the underlying object.
In particular, the image must be devoid of discretization artefacts. Therefore, typical algorithms

5FittingBox, http://www.fittingbox.com/

http://www.fittingbox.com/
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Device Storage Core memory graphics memory GPU FLOPS Display resolution
(size/bandwidth) (size/bandwidth) (size/bandwidth) (Megapixels)

iPhone 8GB / ? 256MB / ? 24MB / 2GBps 6M 0.15
700 USD 300GB / 300MBps 4GB / 1GBps 512MB / 3GBps 400G 1
laptop (2010)
Visualization virtually unlimited 24MB per node 6GB / 12GBps 1T 13
cluster / 5GBps / 18GBps

Table 1: Typical capabilities of various devices in 2010.

used in consumer graphics (e.g. games) make heavy use of perceptual techniques like normal inter-
polation, bump maps, smoothing, making lossy compression and remeshing acceptable (see Figure
2). In the second case, the correctness of the representation matters more than a pleasing aspect.
In particular, in Computer Assisted Design (CAD), Medical or Numerical simulation applications,
compression artefacts may hide interesting phenomena or features, lead to an incorrect diagnosis, or
simply modify the results of a simulation. Therefore, most of these professional applications need
lossless mesh compression, in contrast to games where lossy compression is acceptable as long as
there is no perceptual modification.

Figure 2: Typical meshes used by consumer and professional applications. The picture on the left
shows the mesh used to represent a character of a video game. The mesh is very coarse and regular (left
part), and rendering makes heavy use of texturing and normal mapping to recreate the details of the
skin texture (right part). On the right, we show two simulation meshes, respectively a Computational
Fluid Dynamics mesh for flow simulation around a wing, and a Finite Elements mechanical simulation.
Structural details are captured by finer mesh elements adapted to the geometry. This disparity in
the size and type of the elements must be conserved by the compression process.

The work presented in this dissertation specifically targets compression and decompression of
meshes for interactive visualization. We do not consider mesh generation itself: the datasets can be
synthetic (simulation, CAD, games, . . . ) or result from acquisition of real-world objects (medical
data, heritage scanned objects6, terrain data, . . . ). We aim at developing algorithms that read the
input mesh, convert it to a compressed, read-only representation specifically designed so that it can
be efficiently visualized. In particular, the comfort of the user during visualization should not be
hindered by the size of the mesh. Frame rates should remain as high as possible, so that the user is
able to interact smoothly with the model. This is different in spirit to the first compression algorithms,

6See e.g. the Digital Michelangelo Project, http://graphics.stanford.edu/projects/mich/

http://graphics.stanford.edu/projects/mich/
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that targeted only efficient storage of the datasets, with no regard to their exploitation. Some of the
constraints of visualization have been addressed in the past, by providing compression services with
decompression progressiveness, in order to reduce latency. However, this approach is not suitable for
large meshes. The following section examines the specific problems posed by this type of meshes.

0.1 Large Meshes

Recent technological developments in various fields have given birth to various techniques that gen-
erate very large meshes:

• Improvements in optical telemetry using lasers have permitted the digitization of real-world
objects with a very fine precision. In particular, two applications have drawn the attention
of the graphics community: Digitized Heritage Objects such as the Digital Michelangelo7, and
terrain data acquired via LIDAR-equipped vehicles (see Figure 3).

• Thanks to algorithmic advances, it is now possible to generate triangle meshes from the very
large point clouds acquired with the previous techniques. For example, Isenburg et al. [Isenburg
et al. 2006b] generate meshes with 9 billion triangles in 5 hours using 11MB of memory.

• The rise in processing power of simulation clusters has enabled more accurate simulations that
require increasingly larger meshes.

Figure 3: Digitizing real-world objects with lasers: A laser scanner used to digitize heritage man-made
sculptures, here David’s Michelangelo (left), and terrain data acquired with the LIDAR technology
(right).

Most mesh representations require an amount of memory and processing power that is linear
in terms of number of elements. Therefore, it is important to note the a mesh is only large with
respect to the capabilities of the device that must handle it. In particular, the recent development of
small hand held devices with limited capabilities has introduced a fundamental asymmetry in the
compression/decompression process. On one hand, compression is usually carried out off-line on
regular machines using mains power, and thus benefiting from the full processing power of recent
performance-aimed technologies. On the other hand, mesh visualization can be made on any client
terminal, up to mobile devices where performance is measured more in terms of energy efficiency than
FLOPS. In this context, meshes that are small for the machine running the compressor may be very
large for the client terminal running the decompression – and visualization – software. For example,
a mesh of several million vertices will fit in-core on a large supercomputer with 16GB, however a
mesh as small as tens of thousands of vertices will seem large to a smart phone user. This situation
has renewed the interest for mesh compression given the importance of the consumer market.

7http://graphics.stanford.edu/projects/mich/

http://graphics.stanford.edu/projects/mich/
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The two different problems discussed above show that the stakes brought by large mesh compres-
sion are twofold:

1. Symmetric algorithms must be developed to address very large meshes with respect to state of
the art hardware in terms of performance. Here, both compressor and decompressor will have
difficulties in dealing with the size of the mesh.

2. Asymmetric algorithms will enable off-line compression of moderately sized models, but real-
time decompression for interactive visualization on lower-end devices.

In the following sections, we detail the various limitations brought by the hardware, and we show
what features compression/decompression algorithms can propose to deal with them.

0.1.1 Storage

The first works on mesh compression did not consider speed nor memory requirements. The problem
was to represent a mesh using the smallest possible amount of bits, for efficient storage on disk.
Before visualization, the mesh had to be decompressed off-line and stored inside a temporary in-core
memory structure, and only then be interactively visualized.

All these compression algorithms first load the whole mesh from the disk to the core memory, and
convert it to a mesh structure that enables traversing the mesh in any desired order. The elements
of the mesh are coded in a deterministic order chosen by the coder. During decompression, the mesh
is rebuilt from the compressed stream in the same order to another in-core mesh structure, that can
then be exploited for further processing. These algorithms are similar in spirit to popular general
compression schemes like ZIP, except that they are capable of exploiting the specific redundancy
found in meshes to achieve better compression rates. This helped reduce the amount of hard drive
space to store the meshes, and thus decrease the associated cost. This problem is less important now
that the price of hard drives has fallen.

0.1.2 Bandwidth

The previous algorithms designed for storage can also address the problem of efficient transmis-
sion through the network. Visualization often takes place in different places than mesh generation.
For example, the results of a simulation may be visualized in an engineering center very remote
from the cluster where the simulation was run. As network bandwidth is limited, compressing the
mesh before transmission enables faster transmission. This approach is efficient as long as compres-
sion/decompression speed is competitive with transmission, which is still –and even more – the case
now since processing power evolves faster than network bandwidth. The processing pipeline of this
technique is illustrated on Figure 4.

In the specific case of transmission, these algorithms are able to decrease the effects of the lim-
itation in network bandwidth. However, the user still has to wait for the end of the transmission
to be able to begin visualization. For example, transmitting the 128 million vertices “Lucy”8 model
through a typical 10 Mbps DSL link would take several minutes even in compressed form. Progres-
sive approaches represent the mesh as a coarse mesh approximating the original, and a sequence of
refinements that enable recovering the full resolution model. That way, the user can begin visualiz-
ing the model before the transmission is complete, effectively hiding the transmission latency. The
corresponding processing pipeline is shown in Figure 5.

8http://graphics.stanford.edu/data/3Dscanrep/

http://graphics.stanford.edu/data/3Dscanrep/
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Figure 4: The single-rate transmission pipeline: The mesh is created. A complete in-core representa-
tion is built, either from a file on disk or directly after creation. The mesh is squeezed to a compressed
file which is transmitted over the network. Once the file is received, it is decompressed to memory
and further processed (e.g. visualized).

Figure 5: The progressive transmission pipeline: The mesh is created. A complete in-core represen-
tation is built, and the compressor writes it to a compressed file, as a coarse mesh and a sequence
of details. The file is transmitted, and decompressed to memory as soon as the coarse mesh (i.e.
the beginning of the file) is received. At this point, the visualization process can begin, hiding the
latency to the user. The in-core mesh representation is then progressively refined as more details are
transmitted.
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This paradigm has another advantage: It enables adapting the mesh resolution to the capabilities
of the client. The user – or the program itself – can decide to ignore further refinements if the desired
quality has been reached or if the model becomes too complex for the hardware.

0.1.3 Memory

For very large meshes (or lower-end devices), the compression or decompression processes can be
hindered by still another limitation. Both approaches begin by building an in-core representation
of the mesh. As the size of datasets increase, this representation eventually becomes larger than
the available memory. The same problem appears at the decompression side. Letting the in-core
representation reside on the hard drive is not an option. Access times would be increased beyond
practical rates – the difference between hard drives and in-core memory are about 106 for latency and
10 for bandwidth. This would render the access with element granularity that is required by typical
compression algorithms several orders of magnitude slower.

0.2 Contributions

This dissertation presents our work on mesh compression during the three years at Ecole Centrale
Paris. The contributions are twofold:

• The first part of the thesis concentrates on geometry coding. As all compression algorithms
spend most of the bit budget on compressing the geometry of a mesh, i.e. the position of the
vertices, we tried to improve this aspect exclusively, without imposing any connectivity com-
pression constraint. This work was motivated by the fact that typical compression algorithms
do not derive geometry compression techniques from a formal and consistent approach, but the
coding rules are usually determined experimentally. We designed a generic approach to linear
geometry compression using prediction, based on smoothness assumptions.

• The second part of the thesis concentrates on handling large meshes. The most successful
previous method, called streaming, enables compression and decompression of arbitrary large
meshes, by reducing the amount of memory needed to handle them, and rendering processing
I/O efficient. However it imposes various constraints on the decoding process, in particular the
processing order. Therefore, it is not adapted to the case of visualization, where the user (and
therefore the decoder) chooses where to look – i.e. the region to decompress. We designed an
alternative approach that enables random-accessible decompression, where the decoder chooses
the part to decompress.

0.3 Overview

These two contributions are totally independent. The first one is more general, and can be applied to
traditional compression algorithms. Being local, it can also be used in either streaming or random-
accessible algorithms. Therefore, it is presented separately. The dissertation is organized as follows:

In Chapter 1, the various notions used throughout the dissertation are introduced. Then, we
give an overview of the various mesh compression approaches.

Chapter 2 presents our contributions on geometry prediction. This is a very general approach
that can be applied to any mesh compression methods, either the traditional algorithms of Chapter
1 or the specialized algorithms presented in the rest of the dissertation. Therefore, this section is
completely independent from the rest. In this chapter, we begin by analysing the most widely used
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linear prediction rules, and how they are determined. In particular, we present the spectral approach
used to derive some predictors. In a second part, we show that this approach cannot be used in all
generality in the context of irregular meshes. As an alternative, we propose a formalism that takes
mesh smoothness as a starting assumption to automatically derive coding rules that have a theoretical
background and work well in practice. This approach does not improve nor worsen speed or memory
usage. It only tries to further shrink the mesh representation, following traditional approaches.

Chapters 3 to 5 specifically address the compression of large meshes:

Chapter 3 details the specific problems posed by large meshes. We present the three major
paradigms used to deal with this problem and the associated algorithms. We also show the relation-
ships between these approaches.

Chapter 4 presents our contributions in the field of streaming compression. The ideas of
this chapter are not new, and are derived from the work of Isenburg and Lindstrom on stream-
ing meshes [Isenburg and Lindstrom 2005]. All previous work in streaming compression dealt with
simplicial complexes (triangle and tetrahedral meshes). We extend their ideas to meshes made of
elements of higher degree, that pose specific problems. We target hexahedral meshes, that are inter-
esting for scientific simulation, but the approach would be similar in the case of quad meshes. This
work was conducted with Martin Isenburg at the Lawrence Livermore National Laboratory.

Chapter 5 is about random-accessible compression. We present a totally novel compression
algorithm that enables the decompressor to query random parts of the mesh in a hierarchical fashion.
In contrast to previous random-accessible approaches that use traditional compression algorithms
as a basis, the compression algorithm presented here is new. We prove the concept by presenting
an interactive visualization application that is competitive with previous approaches although the
implementation is not optimized.



Chapter 1

State of the art in mesh

compression

In this chapter, we present the various concepts used throughout the manuscript. In particular, we
describe in details the notion of amesh which is the ubiquitous way of describing 3D objects. We detail
the specific aspects in which mesh processing differs from traditional structured signal processing like
image and sound, in particular the dissociation of connectivity and geometry information. Then, we
present the various methods used to represent meshes in a more compact way, either in a lossless
or lossy way. To keep the discussion general, we limit ourselves to the case of smaller meshes. The
specific problems raised by larger meshes are detailed later in Chapter 3.

Traditional media like sound or images have an intrinsically regular structure that naturally guides
the representation of the data. Most representations uniformly sample the signal values on a grid –
1D temporal grid for audio, 2D spatial grid for images. Therefore, the positions of the samples are
implicit – for example, audio is sampled at time t0, t1 = t0 + T, t2 = t0 + 2T, . . . – and only the value
of the signal at each sample has to be stored. For 1D signals, this provides a natural ordering to
process the data, inherited from the ordering of the set of natural numbers (the set of samples of a
signal of size S is in bijection with J1;SK ). For 2D signals, there is a large number of orderings to
choose from, but some orderings are more natural, for example scanline or z-order [Morton 1966].

3D objects are far more complex to describe than the aforementioned media types. First, complex
topologies prevent using a grid for sampling, therefore the positions of the samples must be specified
explicitly. Second, there is no more a natural processing order, since the set of samples is arbitrary.

1.1 Preliminaries

A volume mesh is a simple representation of a 3D object by a set of polyhedra, as on Figure 1.1.
It is composed of various elements, which are named cells, faces, edges, and vertices depending on
their dimension. A surface mesh is a volume mesh that has only one cell, and thus only represents
the surface of an object. Most computer graphics applications (animated movies, games) use surface
meshes, since the insides of an object are rarely visible, while scientific simulations may use surface
or volume meshes depending on the setting.

A mesh is described with two different components:

• The Geometry intuitively specifies the shape of a mesh. To each vertex is associated a position
(x, y, z) in 3D space. The function that maps the set of vertices V to R

3 and gives the position
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Figure 1.1: Example of a volume mesh with 6883 cells and 9218 vertices. The figure on the right
shows a cell (red), a face (green), an edge (yellow), and two vertices (purple). In this model, all the
cells are hexahedra, and all the faces are quads (degree 4). The vertices shown in purple have a degree
of 3 (left) and 6 (right, with an edge that goes inside the volume).
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of each vertex is called the geometry function. A mesh may also have additional properties
such as vertex normals or physical quantities that are attached to the vertices. The concept of
geometry function extends naturally to these situations by using a co-domain of higher dimen-
sion. Therefore, we usually use the term coordinate for both the positions and the properties
attached to the vertices. In addition, there may be properties attached to edges, faces or cells
(for example pressure or density attached to cells in a computational fluid dynamics simulation).

• The Connectivity describes the structure of the mesh, i.e. how the mesh elements are connected
to each other. The connectivity of a mesh can be seen as a graph. Two vertices are adjacent (or
neighbours) if they are connected by an edge. Two faces (resp. cells) are adjacent/neighbours
if they share an edge (resp. face). The degree (or valence) of a vertex is the number of adjacent
vertices. The degree (or valence) of a face (resp. cell) is the number of vertices it contains.
Some authors choose to use the term valence only for vertices, and reserve degree to faces and
cells. However, using the same term for both concepts enables more genericity when describing
algorithms (e.g. independence to dimension). The one-ring of an element is the set of all
adjacent elements of the same dimension.

The Figure 1.2 illustrates the difference between geometry and connectivity.

Figure 1.2: The two components of a mesh: connectivity and geometry. The leftmost image shows a
triangle mesh of a sphere. The center picture shows a surface mesh made of quadrilaterals that has a
different connectivity, but the same underlying geometry, while the right picture shows a mesh with
the same connectivity but a different geometry than the leftmost picture.

Most of the meshes found in typical applications use only one type of element. The vast majority
of surface meshes use triangular or quadrangular elements, while volume meshes usually employ
tetrahedral or hexahedral elements (see Figure 1.3). These meshes are called respectively triangle (or
triangular), quad, tetrahedron (tet) and hexahedron (hex) meshes. To designate a surface mesh with
mixed elements, the term polygon mesh is used.

A surface mesh is manifold when each edge is shared by one or two adjacent faces (one at bound-
aries) and the neighbourhood of each vertex is homeomorphic to a disk. A volume mesh is manifold
if the neighbourhood of each vertex is homeomorphic to a disk and the neighbourhood of each edge is
homeomorphic to a cylinder. Figure 1.4 shows typical non-manifold situations. A connected surface
manifold (or connected 2-manifold) mesh has genus g if it is possible to remove g closed loops without
loosing connectivity. For a volume mesh, this translates to making g cuts through closed loops in
the boundary. Intuitively, g is the number of handles that a mesh contains (see Figure 1.5). In a
2-manifold mesh with genus g, whose connectivity graph is planar in a surface of genus g, Euler’s
formula links the number of faces (Nf ), edges (Ne) and vertices (Nv):

Nf −Ne +Nv = 2 − 2g (1.1)
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Figure 1.3: The most common mesh elements. From left to right: triangle, quad, tetrahedron, and
hexahedron.

Figure 1.4: Typical non-manifold situations: On the left, in blue, three faces of a surface mesh share
an edge. On the right, in green, the vertex (resp. edge) neighbourhood is not homeomorphic to a
ball (resp. cylinder). The non-manifold elements are shown in red.

Figure 1.5: Manifold meshes with genus 0,1,3 (from left to right).

Regularity: One of the characteristics of a mesh which is of particular importance for mesh com-
pression is its regularity. The regularity of a mesh is a notion that is based on connectivity only, and
is measured by the deviation of the degrees of its vertices. A mesh with all its vertex degrees equal is
called regular. This would be the case of a triangle mesh with vertices of degree 6, a hexagon mesh
with vertices of degree 3, or a quad mesh with vertices of degree 4 (the latter mesh is said to have a
grid connectivity). A mesh that is not regular is irregular. These notions are illustrated on Figure 1.6.

Indexed Format: The most widely used format for storing a mesh in memory or on disk is the
indexed format. The geometry of the mesh is stored as an array of floating-point coordinates repre-
senting the position of each vertex. This introduces a natural numbering of the vertices: The index
of each vertex is its rank in the array of coordinates. The connectivity of the mesh is stored as an
array of integers representing the indices of the vertices of each face (resp cell) (see Figure 1.7). This
representation is very simple to manipulate and implement, and numerous interchange formats such
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Figure 1.6: Difference between regular (left) and very irregular (right) meshes. Note that the interior
vertices of a regular triangle mesh have degree 6.

as OBJ, PLY, VRML, OFF,... use it. On the other hand, it has numerous disadvantages, among
which the fact that it provides no means for adjacency queries. It is also not adapted to the repre-
sentation of large meshes, because the amount of memory used is tremendous. If each coordinate of a
triangle mesh is coded with a float (32 bits), then the number of bits required to store the geometry
is 32 × 3 ×Nv. To code the index of each vertex, log2(Nv) bits are needed. On the whole, as there
are twice as many faces as vertices, the total number of bits required is 3Nv(2log2(Nv) + 32). That
means that a computer with 4GB of memory will not be able to work with meshes larger than 50
million vertices.

Figure 1.7: Indexed mesh format: First, the position of each vertex is specified as a 3-tuple of
coordinates. This introduces a natural implicit vertex order (numbers in red on the left). Then, each
face is specified by referencing the index of each of its vertices. The corresponding implicit order is
given by the numbers in blue on the left.
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1.2 Coding Data with Few Bits

Information theory, and data compression in particular, are mature areas of computer science. Their
roots were set by Shannon in the middle of the last century, who first defined the notion of entropy as
the information content of a signal [Shannon 1948]. Our goal here is not to give a complete overview
of the domain, but just to quickly describe some basic notions that are needed to understand this
work.

The entropy of a source of symbols measures how many bits one needs to losslessly encode each
input symbol, and is defined by:

H = −
N

∑
i=1

pilog2(pi) (1.2)

where N is the number of different symbols, and pi is the probability of occurrence of symbol i.

Usually, the probabilities pi associated with the symbols output by the source are not known.
In that case, one may substitute the frequencies of each symbol in the message M to encode. The
entropy is then:

H(M) = −
N

∑
i=1

ni

Ns

log2( ni

Ns

) (1.3)

where Ns is the total number of symbols in M , and ni is the number of occurrences of the symbol i.

1.2.1 Transforming the input

It is important to note that entropy considers the symbols individually and is only a measure of the
information content in the raw message seen as a sequence of occurrences of a random variable. If
the successive symbols of the message are correlated, it may be possible to decrease the entropy of
the message by first applying an invertible transformation to reduce (or remove) redundancy.

To illustrate this idea, let us consider a simple source with two symbols a and b. After outputting a,
the source has 0.99 probability of outputting b, and 0.01 probability of outputting a. After outputting
b, the source has 0.99 probability of outputting a, and 0.01 probability of outputting b. Because of
symmetry, the source has an entropy of 0.5 bits per symbol. However, let us apply to the list of
symbols the transformation T ∶ {a, b}→ {0,1} defined by:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a↦ 0 if the previous symbol is a
a↦ 1 if the previous symbol is b
b↦ 0 if the previous symbol is b
b↦ 1 if the previous symbol is a

(1.4)

Then, the symbols 0 and 1 have respectively the probability 0.99 and 0.01 in T (M). This means that
T (M) has an entropy of 0.08 bits per symbol. For T to be invertible, only the first symbol has to be
stored, which uses 0.5 bits.

This simple example shows two things:

1. Transforming the input before coding may result in a large decrease in bitrate.

2. The efficiency of the transformation depends strongly on the existence of a model for a typical
message. In the previous example, the knowledge of the conditional probabilities p(Sn = s∣Sn−1 =
s̄) helped in defining the transformation T . A transformation that is very efficient for a set of
input messages may behave poorly for a broader or smaller set of input messages because of
the change in the probability distribution of messages within the set.
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Most mesh compression algorithms that we describe in the following chapters use this transform
coding paradigm, to represent both connectivity (e.g. degree-based approaches, Section 1.3.1.1) and
geometry (e.g. predictive or spectral approaches, Sections 1.3.1.3 and 2).

1.2.2 Coding

Huffman Coding: One of the most widely used methods to code a message was developed by
Huffman [Huffman 1952]. It is a statistical approach that maps symbols with higher probability of
occurrence to shorter codes and symbols that appear less frequently to longer symbols. This way, on
average, the shorter symbols are used more and the size of the message decreases. The only constraint
on the codes is that the decoder must be able to know the length of each code when decoding the
message. The use of prefix-free codes guarantees that a code cannot be a prefix of another, so that
there is no ambiguity during decoding. In addition to that, this method is easy to implement and
can benefit from optimizations that make decoding very fast [Moffat and Turpin 1997]. On the other
hand, as codes consist of an integer number of bits, the lower bound for entropy can not always be
attained depending on the symbol probability distribution.

Arithmetic Coding [Rissanen and Langdon 1979; Witten et al. 1987]: Instead of operating
in a per-symbol basis as Huffman’s algorithm, arithmetic coding compresses the entire message as a
single real number in the range [0,1[. This enables to overcome the integer length code limitation of
Huffman coding. Starting from [0,1[, the current interval I is progressively subdivided into several
subintervals Di each associated with a symbol si. The width of each interval Di is proportional to the
probability p(S = si). At each step, the subinterval corresponding to the actual symbol becomes the
current interval. At the end of a process, the current interval represents the message. This method
performs very well in a bitrate point of view, with compression ratios usually close to the lower bound.

Arithmetic coding may seem superior to Huffman coding because of the better compression ratios.
However, the latter is still used for various applications. In particular, it is a lot faster than arithmetic
coding, and will thus be preferred for compression algorithms with emphasis on speed. Furthermore,
the bit-aligned codes are not always a limitation. We will see in Chapter 5 how we can use this
property as a feature to enable random access.

1.2.3 Coding meshes

These previous coding methods have found a wealth of applications in audio and image coding. By
taking advantage of the natural ordering of the samples, typical compression algorithms scan the
signal, transform it to a stream of compressible symbols that are encoded.

We have seen that in the case of a mesh, the set of samples lacks the simple structure found in
audio and image signals. In particular, the positions of the samples themselves are explicit. In the
case of the previous signals, the ordering itself is sufficient to encode the positions of the samples.
The position of the next sample can be deduced from the current one at no cost. For example, if an
image is processed in scanline order, the next sample is situated to the right of the current sample
if the row is not full, and at the beginning of the next row otherwise. Only the redundancy in the
signal values has to be removed. The fact that successive samples in processing order are neighbours,
and thus the signal value at these samples is usually correlated, makes this process easy.

In the case of a mesh, there is no natural processing order, and the adjacency information is found
in connectivity alone, and not in the order in which the vertices are given1. Therefore, the processing
order has to be invented by the compressor so that there is a strong correlation between successive

1This is not exactly true. In some cases, there is some adjacency information hidden in the vertex numbering. The
Hexzip [Lindstrom and Isenburg 2008] coder uses this information.
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samples. Thus, mesh compression algorithms are more complex than their counterparts for uniformly
sampled signals. The two following sections present the various classes of methods that are used for
mesh compression. The first one regroups connectivity-preserving algorithms, that use different ideas
than traditional signal coding schemes – although they largely borrow from them. The second one
contains connectivity-oblivious algorithms, that transform the connectivity of the mesh in order to
apply traditional compression algorithms.

1.3 Connectivity Preserving Compression

Most scientific applications require lossless coding. They cannot tolerate a loss in connectivity, since
this could destroy interesting features. In particular, lossy compression methods based on remeshing
(see Section 1.4) usually result in smoother meshes, effectively removing hard features in the model.
In general, lossless compression is the safe bet to ensure that further mesh processing will not be
hindered by compression artifacts.

We classify connectivity preserving compression algorithms in two groups, depending on whether
they are driven by the connectivity or geometry components of the mesh. Both kinds of approaches
yield similar results in term of bit rate.

1.3.1 Connectivity-driven algorithms

1.3.1.1 Single-Rate Mesh Compression

The first works that address succinct planar graph representation are due to Tutte. The goal was
mainly theoretical since this work was conducted before meshes found a large field of applications
in computer graphics and numerical simulation. Tutte enumerates all the possible distinct genus 0
surface manifolds (or planar graphs) [Tutte 1962; 1963], and he deduces that the connectivity of any
such mesh can be represented with 3.24 bits per vertex. However, the proof is enumerative rather
than constructive, so determining explicit algorithms to generate efficient encodings has remained
elusive until the work of Turan [Turan 1984], which was the first to propose an algorithm to encode
the connectivity of a planar graph using a constant number (12) instead of 6log2(Nv) bits per vertex
as in the indexed representation (see Section 1.1).

The importance of succinct mesh representation was introduced to the graphics community by
Deering [Deering 1995], when mesh compression became of practical importance due to the growth
of 3D models. The early work of Turan was brought to the attention of the computer graphics
community by Taubin and Rossignac [Taubin and Rossignac 1998], and these results were gradually
improved using various methods until Poulahon and Shaeffer [Poulalhon and Schaeffer 2003] proposed
an optimal method – in the worst case, but not very efficient on typical meshes – effectively reaching
Tutte’s bound.

In the following, we describe several classes of methods that were proposed to compress the
connectivity of surface and volume meshes. Although different methods have been proposed for mesh
compression [Bajaj et al. 1999a; Lindstrom and Isenburg 2008], most of them are strongly related to
Turan’s approach. Therefore, we first detail this method as a starting point. Then, most of the other
algorithms can be classified into the following categories:

• Label-based approaches which represent the mesh with a sequence of labels derived from a
depth-first traversal of the tree, and encode it in an efficient manner.

• Degree coders which represent the mesh as a sequence of vertex/edge/face degrees which are
entropy coded, plus a usually small number of split offsets.
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The algorithms for volume mesh compression are usually adapted from their earlier surface counter-
parts. Therefore, we emphasize the description of surface mesh coders, and then explain how the
algorithms were extended to volume meshes. Most of the algorithms in this category target manifold
meshes by design, with the exception of Hexzip[Lindstrom and Isenburg 2008], which is a totally
lossless and very fast coder, but can only compress quad (or hex) meshes, and TFAN [Mamou et al.
2009] which is a generalization of degree coders to non-manifold meshes.

Coding planar graphs using spanning trees The early work of Turan [Turan 1984] is based
on spanning trees of the connectivity graph. The algorithm first builds a vertex spanning tree (VST)
and its dual face spanning tree (FST). Turan remarks that coding both these trees is sufficient to
completely describe the connectivity of the mesh. To describe the trees in a succinct manner, the
vertex spanning tree is traversed in a depth-first manner. Two symbols are used to code the structure
of the VST: “+” and “−” respectively mean walk down and up the tree. The faces of the mesh are
coded in parallel by the symbols “(” and “)” that respectively indicate that a face is to be opened and
closed. These four symbols are sufficient to code both the VST and FST in an interleaved manner.
The Figure 1.8 illustrates this algorithm. The VST has Nv − 1 edges, each of which is walked once
down and once up, so there are Nv −1 “+” symbols and Nv −1 “−” symbols. There is also one pair of
symbols “(” “)” for each edge that is not in the VST, i.e. 2Ne − 2Nv + 2 pairs of parentheses. Turan
codes each symbol using 2 bits, therefore the algorithm uses 4Ne bits to code the mesh, or 12 bits
per vertex. Isenburg remarks that for triangle meshes, a slight modification of the algorithm halves
the bit rate [Isenburg and Snoeyink 2004].

Figure 1.8: Decoding a planar graph with Turan’s algorithm [Turan 1984]: The bold edges are the
edges of the VST. Decoded edges are red or black depending on whether they belong to the VST
or not. The edges that are not yet decoded are in light gray. The red vertex is the current vertex,
and green slots denote the open faces (“(” symbol) that are not yet closed (by a “)” symbol). The
bottom row shows the complete sequence to code the model, the darker symbols being the 8 stages
detailed on the first 2 rows.
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Label-based methods: Several other algorithms improve this approach by using a deterministic
approach to build the VST and FST [Keeler and Westbrook 1995; Rossignac 1999; Gumhold and
Strasser 1998; Isenburg and Snoeyink 2000; Li and Kuo 1998a; Ivrissimtzis et al. 2002]. In these
schemes, the spanning trees are not explicitly constructed. Instead, the algorithms progressively
grow a processed region from an initial seed face in the mesh – we call these methods conquest-based
or region-growing algorithms. The processed region is separated from the unprocessed region by one
or several closed boundary loops (see Figure 1.9). The boundary loops are placed on a stack and
processed one at a time. Each of these boundary loops has a focus element, which indicates where the
processing occurs. The focus element can be either a face ( [Gumhold and Strasser 1998; Rossignac
1999]) or an edge ( [Li and Kuo 1998a; Isenburg and Snoeyink 2000]). At each step of the algorithm,
the processed region is grown from the focus element towards the unprocessed region so that the focus
element passes inside the processed region. A label code is output that denotes how the boundary
was modified.

Figure 1.9: Illustration of a conquest-based mesh traversal using a face as focus element, at 4 different
steps of the algorithm. Starting from a root face (a, step 0), the processed region (in red) is grown
through the focus face (green). The processed region is separated from the unprocessed region by a
closed boundary loops (in blue). At some point in the conquest, the processed region folds on itself
(c), splitting the boundary in two (d).

As an example, we detail Rossignac’s EdgeBreaker [Rossignac 1999]. This algorithm works on
triangle meshes and uses faces as focus elements. Starting from an arbitrary root triangle, it grows the
processed region by recursively applying one of the 5 operations shown in Figure 1.10. The choice of
the operation to use depends on the processed state of the elements in the neighbourhood of the focus
triangle, as shown in Figure 1.10. This process traverses the mesh in a depth first, spiraling manner,
and codes a symbol for each operation (C,L,E,R,S). At each step, the processed region is augmented
with the focus triangle, and one of the adjacent faces is chosen as the new focus triangle. It may
happen that the processed region folds on itself (see Figure 1.9, c). In that case, a split symbol (S) is
issued, the boundary is split in two and one of the resulting parts is pushed on the stack. Processing
will resume by popping this boundary when an end (E) symbol is encountered. As vertices are only
introduced by the C operation, there are exactly Nv C symbols in the stream, i.e. half the symbols
are C. Therefore, the authors code the C symbol on one bit, and the remaining 4 symbols on 3 bits.
Thus, any mesh is guaranteed to be encoded using 2 bits per triangle (or 4 bits per vertex). The
symbol to code mapping and the algorithm itself were later modified to provide better compression
rates [King and Rossignac 1999a; Rossignac and Szymczak 1999]. More importantly, this method was
extended to handle meshes with an arbitrary number of holes and handles [Lopes et al. 2003] as well
as quad meshes [King and Rossignac 1999b] and tet volume meshes [Szymczak and Rossignac 1999].

The edge-based FaceFixer algorithm [Isenburg and Snoeyink 2000] works in a similar manner,
but uses an edge focus instead of a face. A more recent approach by Kälberer et al. [Kälberer et al.
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2005] uses a vertex focus that is picked among all possible focus vertices in the boundary according
to some local geometry criterion. This scheme greatly improves the compression rates of the previous
approaches on average and performs very well on regular meshes. Although this scheme looks like a
degree coder (next section), in the sense that it uses symbols representing vertex degrees, it is actually
a label-based method.

Two other algorithms [Gumhold and Strasser 1998; Li and Kuo 1998a], that respectively use face
and edge focus, use explicit split offsets to code where the split occurs in the boundary. These offsets,
which are redundant (i.e. provide no more information than the stream of symbols) use log2(Nb) bits,
where Nb is the size of the boundary. Therefore, they are a bit less efficient than their split offset-free
counterparts EdgeBreaker and FaceFixer. However, this enables one-pass encoding and decoding of
meshes, which can be an interesting feature.

Figure 1.10: Top: The five operations used by the EdgeBreaker algorithm [Rossignac 1999]. The
green triangle is the focus triangle. Red and white respectively denote visited and not visited trian-
gles/vertices. The arrow shows which triangle will be processed next. For the S operation, the yellow
triangle is pushed on a stack and will be popped after each E operation (that does not have a next
triangle). Bottom: a simple run of the algorithm, where the triangle spanning tree (blue) is a chain.

These approaches have later been extended to handle volume meshes, but only in the case of
tetrahedrals [Szymczak and Rossignac 1999].

Degree Coders The other major class of approaches for connectivity compression is called degree
coders. The original algorithm of Touma and Gotsman[Touma and Gotsman 1998] codes a triangle
mesh by using a region-growing paradigm like the other algorithms presented above. In this case, the
focus element is a vertex. Each vertex of the boundary stores the number of adjacent vertices that
are either unprocessed or in the boundary. Let vf be the focus vertex, ef the next boundary edge
adjacent to the focus vertex, and ff = ef ⊎ vo the face adjacent to ef that is not yet processed. Three
cases may arise, that are shown in Figure 1.11:

• (add) the last vertex vo of ff is not on the boundary. Then the processed region is grown to
include ff , and vf is now inside the boundary (Figure 1.11, (a)). To maintain the count of
adjacent vertices for vo, only its degree needs to be coded. The count of unprocessed adjacent
vertices of vf is decreased.

• (full) vo is full, i.e. its count of adjacent vertices is 0. This case can be solved without ambiguity
by adding ff to the processed region (Figure 1.11, (b)). No information needs to be coded. The
next vertex in the boundary becomes the focus vertex.
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• (split) the last vertex vo of ff is on the boundary. Then the processed region is grown to include
ff , and a split symbol is issued, and the boundary is split in two and one of the parts is pushed
on a stack (Figure 1.11, (c)). A split offset codes where the split occurs in the boundary.

When there are no vertices in the current boundary, the next boundary is popped from the stack.
When there are no more boundaries on the stack, the algorithm terminates.

Figure 1.11: Typical cases encountered in the traversal of a mesh by the algorithm of Touma-
Gotsman [Touma and Gotsman 1998]: vertex addition (a), full vertex (b), and split (c). The blue
vertex/edge are the focus vertex/edge, the yellow vertex will become the new focus vertex. The red
faces belong to the processed region.

Using this method, the mesh is represented by an ordered sequence of vertex degrees, along with
the usually small information required for splitting. Thus, most of the information is carried by the
list of degrees. For triangle meshes, the vast majority of vertices have degree 6, the degree of the
other vertices being tightly spread around this value (Figure 1.12). This enables entropy compression
of the sequence of vertices, with bitrates that depend directly on the regularity of the mesh, and can
amount to a fraction of a bit par vertex for very regular meshes.
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Figure 1.12: Histogram of vertex degrees for the Armadillo model (entropy 1.74) and the very regular
remeshed Igea model (entropy 0.05). µ and σ respectively give the expectancy and standard deviation
of the distributions.

Alliez and Desbrun [Alliez and Desbrun 2001b] have used an adaptative mesh traversal method
to decrease the number of splits and thus decrease the bitrate. To do that, the focus vertex is chosen
so that it minimizes the split likelihood. In addition, the split offset is given in the ordered list of
closest potential split candidates. This decreases the average number of bits to specify the offset.
The authors also study the optimality of their approach. They show that if the number of splits
is negligibly small, then degree coding is optimal is the sense that the entropy of vertex degrees
for meshes that respect Euler’s formula reaches the theoretical bound of Tutte. However, Gotsman
later found [Gotsman 2003] that their lower bound could be improved by adding constraints to the
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distribution of vertex degrees, falling strictly below Tutte’s bound if splits are negligible. Thus, there
must be some additional information needed to code a triangle mesh in addition to the sequence of
vertex degrees, and the question of the optimality of degree coding is still open.

The approach of Touma and Gotsman has later been generalized to polygon meshes by Kho-
dakovsky et al. [Khodakovsky et al. 2002] and Isenburg et al. [Isenburg 2002] by coding the degree
of faces along with that of vertices. For meshes with only triangles, this is essentially free since the
sequence of face degrees has zero entropy. For volume meshes, this approach has been extended to
code hex meshes respectively with edge degrees by Isenburg and Alliez [Isenburg and Alliez 2002a]
and vertex degrees by Krivograd et al. [Krivograd et al. 2008].

All the techniques presented here deal only with orientable manifold meshes. Mamou et al.
have extended the degree coding approach to non-manifold triangle meshes [Mamou et al. 2009].
Their TFAN algorithm grows a region by adding a new triangle fan to the current region at each
step of the algorithm. They identify that only 10 different triangle fan configurations can happen
(Figure 1.13). Depending on the configuration, they need to transmit additional information. The
first two configurations (Figure 1.13, (a) and (b)) are sufficient to compress oriented manifold meshes,
and correspond respectively to an add and split command in the algorithm of Touma and Gotsman.
The first configuration (a) requires coding the central vertex degree, while the second (b) requires
the central vertex degree and a split offset. The 8 other configurations enable the compression of
non-oriented and/or non manifold meshes. In addition to being generic, this method is also very
fast. However, this approach can only deal with triangle meshes and cannot easily be generalized to
polygon meshes since it relies on an extensive listing of all possible configurations. If the faces have
arbitrary degrees, there is no longer a small fixed number of configurations to choose from.

Figure 1.13: The 10 TFAN [Mamou et al. 2009] configurations. Grey vertices and triangles are being
added, and red triangles belong to the processed region. The first configuration corresponds to a
simple vertex addition in a degree coder, while the second corresponds to a split command. The
other enable handling of non oriented/manifold meshes.

Hexzip In all the previous approaches, the coder chooses the order in which it traverses the mesh.
This has two advantages: First, it greatly reduces the amount of information stored, since it destroys
vertex ordering. Second, it enables greater decorrelation of signal values, since the coder is free to
choose to have adjacent vertices appear contiguously in the compressed stream.

Recently, Lindstrom and Isenburg have introduced a completely new approach to quad/hex mesh
compression [Lindstrom and Isenburg 2008]. Their Hexzip algorithm departs from the traditional
spanning-tree approach and works directly on the indexed representation. They take advantage of
the fact that quad/hex meshes usually have a coherent numbering of vertices. They read elements
one at a time and predict their vertex indices using hash tables. Thus, they are able to transform the
indexed representation into a very redundant, byte-aligned list of symbols that can be compressed
very efficiently using conventional compressors (e.g. gzip). The geometry of vertices is predicted
using spectral prediction [Ibarria et al. 2007] (see Section 2.1). This approach is the most efficient in
terms of speed, and has the advantage that it is completely lossless, because it keeps both the vertex
and quad/hex order. Furthermore, it is manifoldness-oblivious, and compression rates can be very
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high when the input order is very coherent. The main drawback of this approach is that it is unable
to compress triangle and mixed meshes.

1.3.1.2 Progressive Mesh Compression

The single-rate methods described in the previous section target low bitrates (with the exception of
Hexzip that also optimizes speed). While this is very important for storage, these approaches are not
always adapted for transmission, because the user must load the whole mesh to be able to have a
global view of the model. On the other hand, progressive methods build successive approximations
of the mesh, that begin with a base coarse mesh that has few vertices and end with the mesh in full
resolution (Figure 1.14). The finer meshes are built from the coarser representations using algorithm-
specific refinement operations (usually either a vertex split [Hoppe 1996] or addition of a center
vertex [Alliez and Desbrun 2001a]). This way, the mesh can be globally visualized even if the full
compressed model has not yet been totally downloaded.

Figure 1.14: Progressive decompression of the cow model.

As a detailed knowledge of the inner workings of progressive compression schemes is not neces-
sary to understand the work presented in the following sections, we will not detail here the various
algorithms that exist for progressive mesh compression. There already exist detailed surveys on the
subject [Alliez and Gotsman 2005; Peng et al. 2005].

The compression performance of progressive algorithms is not as good as single-rate algorithms.
However, the total bitrate to encode a mesh is not the most relevant measure of the efficiency of a
progressive compression algorithm. What is desired is that the coarser approximations of the mesh
faithfully represent the surface, i.e. that decoding only the beginning of the bit stream still provides
a good idea of the shape of the model. Therefore, the performance is often given in the form of a of
Rate/Distortion (R/D) curve, which gives a measure of the error between the original model and the
model obtained by truncating the bitstream at a certain position. Usually, progressive algorithms
that have a fine granularity [Hoppe 1996; Popovic and Hoppe 1997; Li and Kuo 1998b] will perform
better at intermediate bitrates but will be less efficient at the full resolution than algorithms that
have larger granularity, e.g. those who make refinements in batches [Taubin et al. 1998; Bajaj et al.
1999b; Cohen-Or et al. 1999; Pajarola and Rossignac 2000a;b; Alliez and Desbrun 2001a; Valette and
Prost 2004; Lee et al. 2010a;b]. Ultimately, single-rate methods compress the mesh in a single batch.

1.3.1.3 Coding the geometry

The algorithms described above concentrate on connectivity coding, and consider geometry coding as
a subordinate task. These algorithms – both single rate and progressive – impose a natural traversal
order on the vertices, each vertex being added at a specific step of the algorithm. Most of them
choose to specify the position of a vertex at this moment. Directly specifying the vertex position as a
triplet (x, y, z) of floats costs 96 bits. This figure can be drastically reduced using two complementary
techniques:
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• Prediction: The position of the vertex can be predicted using the already decoded vertices
of the neighbourhood. If the mesh is smooth enough, then the prediction residuals, i.e. the
differences between the predicted and actual vertex positions, are small, and they are narrowly
spread around zero. This makes them good candidates for entropy coding. We review existing
predictive approaches in detail in Section 2.1.

• Quantization: The vertex positions are usually quantized to integers using a fixed number of
bits (usually 12). While this destroys the full floating point precision, it is usually sufficient for
applications that can tolerate slight loss (e.g. visualization), and enables entropy coding, leading
to good compression rates. Truly lossless compression is harder, since direct entropy coding of
the residuals is impossible. However, the representation of floating-point numbers is actually
discrete. Isenburg et al. have taken advantage of this property to propose a method suitable
for the compression of floating-point residuals [Lindstrom and Isenburg 2006b]. However, the
results are not as good as when a slight loss is tolerated. Another approach to quantization
is due to Sorkine et al. [Sorkine et al. 2003]. They remark that usual quantization introduces
high frequency errors that are visually very noticeable. To alleviate this problem, they propose
to apply the quantization step in a transformed δ-coordinates space obtained by applying an
invertible linear transformation to the vertices. They show that quantizing the δ-coordinates
concentrates the errors in the low frequencies, which enables aggressive quantization with less
visually noticeable artifacts (see Figure 1.15).

Figure 1.15: The δ-coordinates quantization to 5 bits/coordinate (left) introduces low-frequency
errors, whereas Cartesian quantization to 11 bits/coordinate (right) introduces noticeable errors. The
upper row shows the quantized model, and the bottom figures use color to visualize the corresponding
quantization errors. (Figure from [Sorkine et al. 2003])

Spectral coding: Mesh-JPEG Karni and Gotsman have successfully extended the very popular
JPEG compression scheme used for images to handle irregular meshes [Karni and Gotsman 2000].
Similarly to JPEG, they transform the geometry function that is defined on the vertices from the
spatial to the frequency (spectral) domain using a linear transformation (that can also be seen as a
change of basis). However, the Discrete Cosine Transform (DCT) used by JPEG cannot be directly
transposed to the irregular setting.
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Karni and Gotsman define their spectral transform by analogy with the DCT. As the basis vectors
of the DCT are the eigenvectors of the Laplacian of a 2D image, they use as spectral basis vectors
the eigenvectors of the mesh Laplacian L defined by:

Li,j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

degree(vi) if i=j
−1 if vi and vj are adjacent
0 else

(1.5)

The frequencies correspond to the eigenvalues associated with the eigenvectors. This basis has the
same properties as the DCT: for typical meshes, most of the energy is localized in the low frequencies,
which enables aggressive quantization and/or zeroing of the higher frequency coefficients with low
distortion (see Figure 1.16). Because extracting the eigenvectors of the Nv ×Nv Laplacian matrix
is a costly operation (in O(Nv

3)), the mesh is split in smaller independent patches which are com-
pressed independently. To further improve decompression speed, they later employed fixed spectral
bases [Karni and Gotsman 2001]. While being less efficient in terms of compression, this approach
avoids having to compute eigenvectors, which enables faster decompression.

Figure 1.16: Parallel between JPEG (left) and Spectral Geometry [Karni and Gotsman 2000] (right)
compression processes. JPEG cuts an image into blocks of 8×8 pixels, then uses the DCT to transform
the blocks in the spectral domain, and quantizes and entropy codes the resulting coefficients. Karni
and Gotsman cut the mesh into patches of around 500 vertices. For each patch, they compute the
associated spectral basis B from its connectivity, and transform the geometry to the spectral domain,
then quantize and trim the high frequencies. The Figure on the right gives the amplitude of coefficients
versus the frequency (log scale) for the x, y and z components of the geometry. For both methods,
most of the energy is localized in the low frequencies.

The spectral approach gives the best geometry compression results if a slight degradation of the
geometry is permitted. Ben-Chen and Gotsman even proved the approach to be optimal for a certain
class of meshes with a natural geometry distribution [Ben-Chen and Gotsman 2005].
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1.3.2 Geometry-driven algorithms

Purely connectivity-based approaches are combinatorial in nature, which is a property that some find
more elegant and attractive. However, this has two major drawbacks:

1. Mesh compression remains limited by geometry compression rates, which are limited by the
order in which the mesh is traversed. The geometry to connectivity bit rate ratio is usually
around 10. This is a good reason to try to design algorithms specifically to compress the
geometry of a mesh without constraints arising from connectivity coding, hopefully with results
that surpass those of connectivity-constrained geometry coding. The connectivity compression
is then subordinate to the geometry coding method.

2. The connectivity-based algorithms usually deal with meshes that are manifold and connected.
To deal with non-manifold elements, these elements usually have to be duplicated, which adds
compression overhead [Gueziec et al. 1998; 1999; Isenburg and Gumhold 2003]. In some cases,
the mesh to compress will be a triangle soup, i.e. a mesh highly non-manifold and non-connected.
Most connectivity-based algorithms do not deal efficiently with these situations. Geometry-
based algorithms, however, that do not traverse the mesh in the same way, usually handle this
situation nicely with no difference with a manifold mesh.

As in the case of connectivity-driven compression, both single-rate and progressive methods have
been proposed to deal with geometry-driven compression. On the one hand, constrained remeshing
single-rate methods start form a point cloud and succinctly encode the information that is needed to
constrain a meshing algorithm so that it outputs the original mesh. On the other hand, progressive
tree-based methods interleave point cloud and connectivity coding. In all cases, the basis is an
algorithm to encode a point cloud.

1.3.2.1 Coding point clouds

Interest in point clouds goes largely beyond mesh compression. Point clouds appear in various areas
of science, e.g. astrophysics, molecular dynamics, medical imaging,... In the field of visualization
we are interested in, a recent trend consists in directly visualizing point clouds instead of meshes
(see e.g. [Hopf and Ertl 2003; Rusinkiewicz and Levoy 2000]). Different algorithms for point cloud
compression have been designed to tackle the problems inherent to these domains [Gumhold et al.
2005; Schnabel and Klein 2006; Huang et al. 2006; 2008]. In the following, our goal is not to review all
these different methods. Instead, we introduce a particular kind of approaches that most geometry-
driven mesh compression algorithms and a lot of point cloud coding algorithms take as starting
point [Lewiner et al. 2005; Gandoin and Devillers 2002; Peng and Kuo 2005; Schnabel and Klein
2006; Huang et al. 2006; 2008; Marais and Gain 2007; Chaine et al. 2007]. Note, however, that
constrained remeshing algorithms do not postulate a particular point cloud compression algorithm,
and therefore any of the aforementioned algorithms can be used in conjunction.

Most approaches for point cloud compression use some kind of hierarchical subdivision of the
space, either kd-trees [Gandoin and Devillers 2002; Lewiner et al. 2005] or octrees [Peng and Kuo
2005; Schnabel and Klein 2006; Huang et al. 2006; 2008]. The tree is built by progressively subdividing
the space. Each non-empty node N in the tree with associated spatial domain DN has two children
NL and NR whose associated domains are obtained by splitting DN in two. The children nodes
are labeled with the number PNL

and PNR
of points that fall in DNL

and DNR
respectively (see

Figure 1.17). The process is stopped whenever the size of DN reaches the desired precision. Then the
tree exactly represents the point set. This approach is inherently progressive as on each level of the
tree, a coarse approximation of the dataset can be obtained by placing the PN points at the center
of the domain DN .
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Figure 1.17: Coding point clouds: The point cloud in red is represented using a spatial kd-tree. Using
the method of [Gandoin and Devillers 2002], the associated sequence of codes is {12,5,0,5,2, . . . }.
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Coding the point set is then a matter of efficiently coding the tree. In their kd-tree approach,
Gandoin and Devillers [Gandoin and Devillers 2002] code the tree in depth-first order. To code the
label of a nodeNL with parentN , only log2(PN+1) bits are required, since PNL

≤ PN . In addition, the
label PNR

of the other child of N can be deduced from that of the parent domain (PN = PNL
+PNR

),
therefore there is no need to code it explicitly. Another choice consists in coding an occupancy bit for
each child specifying whether it is occupied or empty [Lewiner et al. 2005; Schnabel and Klein 2006;
Huang et al. 2006; 2008]. Some methods decrease the bitrate further by using information from the
occupancy of the neighbourhood of a each node to predict occupancy for its children [Schnabel and
Klein 2006; Huang et al. 2006], based on the fact that the finer levels usually introduce changes of
small amplitude.

These schemes have a compression performance that depends on the distribution of the points
in space, with very non-uniform distributions resulting in the best compression ratios. For typical
point clouds representing surfaces, these methods achieve bit rates of around 10 to 16 bits per vertex
depending on the point density, which is more efficient that connectivity-driven geometry prediction.

1.3.2.2 Single-rate: Constrained Remeshing

Meshes representing scanned surfaces are usually generated from the sampled surface point cloud using
a deterministic method. Therefore, if both the point cloud representing a surface and the meshing
algorithm used to generate the connectivity are known, it is possible to code the mesh connectivity
using 0 bits. Constrained remeshing approaches use this idea to encode mesh connectivity. It is
obviously not possible to encode the algorithm used to generate the mesh, for several reasons. First, a
description of the algorithm may cost more than directly specifying connectivity – i.e. the Kolmogorov
complexity of the mesh connectivity may be higher that the connectivity compressed using a known
coder. Then, the meshing process may not be totally deterministic, for example if the connectivity
has been manually modified after automatic meshing, or if the mesh was built by a human modeler.
However, as the goal is usually to generate meshes with triangles of high quality, all the algorithms
that generate a mesh from a given point cloud will output meshes that are similar to a certain
extent. Constrained remeshing approaches exploit that property by coding how the connectivity of
the mesh to compress differs from that of a mesh generated from the same point cloud, but using
an arbitrary deterministic meshing algorithm. The efficiency of the compression will then depend on
how accurately this meshing algorithm is able to predict the connectivity of the mesh from the point
cloud. In the limit, if the connectivity of the input mesh corresponds exactly to the guess made by
the decompressor, then coding the connectivity will essentially be free.

There exist three constrained meshing compressors. All start from a point cloud V representing
the vertices of the mesh, but they use different remeshing algorithms, and specify differences between
the guessed and actual mesh connectivity in a different manner.

• GEncode [Lewiner et al. 2005] maintains a list of active edges which are the boundary edges
of a processed region. At each step, the algorithm will either attach a triangle to one of the
active edges, thus growing the processed region, or remove an active edge. First, the decoder
picks a focus edge e in the list of active edges in a deterministic way (e.g. the longest edge).
Then, it ranks the vertices v ∈ V in a list L, according to a certain geometric criterion G(e, v)
(e.g. circumradius, see Figure 1.18, top). The third vertex w of the triangle e + w to add to
the processed region can be determined by its rank in L. By a careful choice of the geometric
criterion, the distribution of ranks can be made to be heavily biased towards 0, resulting in a
very low entropy. To avoid having to rank all the vertices in V , Lewiner et al. transmit along
with the rank of w a range of admissible values for G(e,w). All vertices for which G(e, v) is
outside this range are not ranked. Connectivity compression ratios vary a lot depending on
the models, from nearly 0 to 6 bpv, with an average of 1.7 bpv. Because there are no specific
assumptions on the mesh, GEncode can deal with non-manifold meshes.
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• Marais and Gain [Marais and Gain 2007] use a similar approach, but they rank the vertices by
their distance to a prediction of w obtained from the triangle adjacent to e in the processed
region. The performance is similar to GEncode, with respectively 0.6 and 1.8 bpv on average
for very regular and irregular meshes.

• Convection reconstruction [Chaine et al. 2007] uses a different approach. Instead of growing a
processed region from an initial triangle, the algorithm maintains a surface S that is initially the
convex hull of the point set and evolves towards the input mesh. The process can be seen as a
progressive carving of the volume VS delimited by the surface S. The volume VS is tetrahedrized
using the Delaunay tetrahedrization of the point cloud. At each step, the algorithm picks a
triangle of S and removes the associated tetrahedron if and only if the associated Gabriel half-
sphere contains the fourth vertex of the tetrahedron (see Figure 1.18, bottom, for an illustration
in 2D). To make sure that S evolves towards the input mesh M , this algorithm must be guided
to sometimes force the removal of a tetrahedron that would not have been removed by the
convection process, or avoid removing a tetrahedron that would have been removed but whose
facet belongs to S. To do that, the coder encodes the steps at which such exceptions occur. As
this happens very rarely during the convection process, this represents a small amount of data.
As this process only works for manifold Delaunay meshes, the algorithm must be modified to
handle non-Delaunay and non-manifold meshes. The convection reconstruction algorithm can
achieve very low bitrates of around 0.1 bpv for very finely sampled meshes, and still performs
quite well in the general case (around 2 bpv). However, the algorithm remains slow (around
1000 vertices per second for both compression and decompression) and uses a large amount of
memory.

Figure 1.18: The two different kinds of constrained remeshing approaches: Gencode [Lewiner et al.
2005] (top) grows the boundary of a processed region by specifying which vertex forms a triangle
with the focus edge from a ranked list of best candidates. Convection reconstruction [Chaine et al.
2007] (bottom) carves the convex hull of the vertices to recover the original mesh (here with a curve
in 2D): (a) initial convex hull, (b) the curve locally evolves at the level of an edge iff the half-circle
associated with this edge is not empty, (c) result of the initial convection process, (d) the convection
process is locally enhanced to hollow a pocket out. Figures from [Lewiner et al. 2005] and [Chaine
et al. 2007].
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1.3.2.3 Tree-based Progressive coding

We have seen that most point cloud compression approaches use a tree-based hierarchical subdivision
of the space, and are thus progressive in nature. Gandoin and Devillers [Gandoin and Devillers
2002] have taken advantage of the inherent progressiveness of geometry coding and propose to add
connectivity information inside the tree used to represent geometry. They consider the subdivision
of a parent cell in two subcells as a vertex split. In contrast with traditional progressive approaches
based on vertex splits, where the position of the split vertices va and vb must be specified to the
decoder, here their position is known to the decoder (it is simply the center of each subcell). Hence,
only the connectivity refinement codes need to be transmitted to the decoder. For the typical edge
expansion operation (the inverse of the edge collapse operation), the connectivity information only
consists in the two split edges e1 and e2 that need to be expanded into faces. Because the position
of split vertices is known to the decoder, this information can be used to predict which of the edges
adjacent to the parent vertex v are the split edges. Using this scheme, an edge collapse operation is
coded using less that 3 bits per vertex.

As the edge collapse operation only enables compression of manifold meshes, they use a second
operation, generalized vertex split (inverse operation of vertex unification), to deal with non-manifold
situation. This is a more expensive operation that costs approximately 8 bits per vertex, but enables
the compression of any mesh – even triangle soups.

Peng and Kuo [Peng and Kuo 2005] have later improved this approach by using octrees, leading
to better compression rates for both connectivity and geometry, with a global improvement of 10 to
60% depending on meshes.

These methods have compression rates that are usually better than connectivity-driven progressive
approaches for both connectivity and geometry. However, meshes of intermediate level exhibit highly
visible quantization artifacts (Figure 1.19, left). The main advantage of these methods is that they
can deal with highly non-manifold meshes.

1.3.2.4 Incremental Parametric Refinement

The main problem with tree-based methods is that the hierarchical decomposition of the space in-
duces high quantization artifacts at lower bitrates, as seen in the previous section. Recently, Valette
et al. [Valette et al. 2009] remarked that the connectivity information of intermediate levels is mean-
ingless to the user, who is mainly interested in the geometric error compared to the original model.
However, for low bitrates, tree-based approaches spend most of the bit budget on connectivity. Thus,
they propose to transmit strictly no connectivity information until the last level, and let the decoder
itself decide where to refine the mesh based on some geometric criterion. The criterion that they use
is edge length: At each step, they pick the longest edge, split it in two, adding one vertex and two
triangles. Then, edges are locally flipped to satisfy a Delaunay connectivity. This way, the meshes of
intermediate level are always of very good quality. Only two pieces of information need to be trans-
mitted: the geometric information corresponding to the position of the newly introduced vertices,
and a split confirmation flag to indicate to the decoder whether the longest edge must be split or not.
At the beginning of the algorithm, the longest edge will be split nearly all the time, so the entropy of
the split confirmation flag is very low. At the end, a split is very rare, also leading to a small entropy.

When all vertices have been introduced, the algorithm rebuilds the original connectivity by di-
recting a deterministic edge-flipping algorithm so that it converges to the correct connectivity. This
process uses around 3 bits per vertex.

On average, this approach is approximately as efficient as other progressive approaches. However,
rate/distortion is drastically better than other methods (Figure 1.20), and visual quality is excellent
at low bitrates (Figure 1.19, right). The main drawback of this approach is that there is no guaranteed
convergence of the final edge-flipping algorithm. In addition, it can only deal with manifold meshes.
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Figure 1.19: Visual comparison of progressive compression artifacts at low bitrates. The left and
right images show the rabbit model compressed down to 1 bit per original vertex respectively with
Octree [Peng and Kuo 2005] and Incremental parametric Refinement [Valette et al. 2009]. The middle
model was compressed using wavemesh [Valette and Prost 2004] at 1.4 bpv. (Image from [Valette
et al. 2009])

Figure 1.20: Rate/Distortion curves (RMS error vs bitrate) for the rabbit model compressed
with Octree [Peng and Kuo 2005], Incremental parametric Refinement [Valette et al. 2009] and
wavemesh [Valette and Prost 2004]. (Figure from [Valette et al. 2009])
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1.4 Connectivity-Oblivious Compression

The connectivity-preserving schemes of the previous section are well adapted to scientific visualization,
where in addition to the actual signal value, the mesh connectivity itself is of interest. For some other
computer graphics applications, the mesh is only a necessary means for representing a surface, and
the connectivity has no particular interest to the user. Only the geometry matters. In games, for
example, the mesh is used by the 3D artist to define a character, but for actual rendering, any mesh
can be used as long as there are no visual artifacts. In this situation, it is natural to choose a mesh
connectivity that is best suited to the envisioned application. The process of modifying the mesh
connectivity while keeping a good approximation of its geometry is called remeshing [Alliez et al.
2007].

Because mesh compression applications try to shrink the size of a mesh as much as possible, they
naturally choose to remesh surfaces with connectivities that contain the smallest possible amount of
information. The ideal case is a totally regular remeshing. Then, no connectivity at all needs to be
transmitted. However, in most cases having only regular vertices is impossible – as can be shown by
applying Euler’s formula – and connectivity-oblivious compression algorithms strive to introduce the
least possible irregularity during remeshing.

Note that connectivity-oblivious algorithms are not only lossy in terms of connectivity, but also in
geometry. Indeed, in order to achieve a high regularity, remeshing algorithms usually also resample
the signal. Therefore, the geometry of the mesh is also modified, in the sense that vertex positions
are modified. The performance of lossy compression algorithms is measured with respect to the
approximation error compared to the original. However, one must keep in mind that the original
mesh is already an approximation of the surface. Therefore, this approximation error is not an
accurate measure of the error with respect to the original continuous surface. It is only used for lack
of a better tool, since the actual geometry of the original surface is not known.

There exist several connectivity-oblivious algorithms, that employ different remeshing methods to
remove connectivity information. The following sections detail these techniques, roughly from most
to least regular.

1.4.1 Geometry images

The most obvious type of connectivity that is completely implicit is a regular connectivity, i.e. a mesh
where all (interior) vertices have the same valence. Gu et al. remesh the input mesh using a regular
quadrilateral grid [Gu et al. 2002]. First, the input mesh is cut to make it homeomorphic to a disk
and enable a “good parametrization” of the resulting mesh. To determine a good parametrization
that will result in an as-uniform-as-possible sampling, the authors try to minimize the geometric
stretch [Sander et al. 2002]. The mesh geometry and the normals are then sampled on the grid to
form a geometry image (see Figure 1.21) and a normal map that are compressed using standard image
compression techniques (Gu et al. use wavelets, but any image compression scheme could be used).
To ensure seamless stitching at the cuts, the cut topology is stored alongside the geometry image.

This technique has very good compression ratios and enables efficient rendering because of its
inherent cache coherence. In addition, compression is straightforward and efficient using highly op-
timized image compression algorithms. However, it introduces numerous visual artifacts due to the
discontinuity of the information at the cuts and the possibly non-uniform sampling if the parametriza-
tion is too stretched. To overcome this problem, various approaches have proposed to decompose the
mesh into several charts that are independently mapped and compressed using geometry images, in
a uniform [Sander et al. 2003] or adaptative [Yao and Lee 2008] way. These approaches typically im-
prove PSNR by 10 dB for low bitrates compared to the original geometry images. The mapping has
also been improved to reduce error for genus 0 meshes [Praun and Hoppe 2003]. This approach was
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Figure 1.21: Geometry images: the three images alongside each model respectively represent the x,
y and z components of the geometry, regularly sampled onto a grid.
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further extended to produce smooth genus 0 surfaces by taking advantage of the regular quadrilateral
parametrization to apply b-spline subdivision to the resulting mesh [Losasso et al. 2003].

1.4.2 Subdivision Wavelets

The previous geometry image approach takes advantage of the existence of efficient mathematical tools
for the analysis of tensor product spaces (e.g. Fourier/wavelet transforms). The main disadvantage of
this approach is that it requires remeshing the surface with a connectivity which may not be adapted
to its geometry. Therefore, there has been some effort to extend these tools to handle irregular
connectivities. We have already seen in section 1.3.1.3 the extension of the Fourier transform to
irregular meshes, that is quite efficient but computationally expensive. The efficiency of wavelets
to decorrelate signals defined on grids has motivated their extension to meshes. The mesh wavelet
schemes that have been developed deal with semi-regular meshes, where nearly all vertices are regular.
This means that the original surface has to be remeshed with a mesh having subdivision connectivity.

A semi-regular or subdivision mesh is a mesh that is constructed by recursively subdividing the
faces of an irregular base mesh M0. There exists several subdivision schemes, the most popular being
4-to-1 subdivision. At each level, a finer mesh M i+1 is constructed from M i by adding new vertices
at the middle of each edge, and triangulating the resulting hexagonal faces as in figure 1.22. The
newly added vertices will have degree 6. Therefore, in a mesh M i, all the vertices will be regular,
except the vertices of M0. The mesh on the right of Figure 1.22 has a semi-regular connectivity.

Figure 1.22: Recursive 4-to-1 subdivision of a coarse irregular mesh (left) to obtain a semi-regular
mesh (right). The interpolation scheme used here is the modified butterfly scheme [Zorin et al. 1996a],
and all the wavelet coefficients of this mesh are 0.

As in the tensor product case, there exist both classical filter-bank [Strang and Nguyen 1996] and
lifted [Sweldens 1998] wavelets. In the first case, the position of the vertices pi+1 of M i+1 is computed
from the vertices pi of M i and the wavelet coefficients di using two synthesis filters:

pi = [P Q] [ pi

di ] (1.6)

where P is dependent on the subdivision scheme and Q can be derived from P . The analysis phase
of the wavelet transform requires the inversion of the previous system, which can be computationally
expensive. A more efficient approach uses the lifting scheme [Sweldens 1998]. During synthesis, the
position of each new vertex is predicted from the vertices of a given neighbourhood in M i. This step
constitutes the predict step of the wavelet scheme, and the wavelet coefficients are the differences
between the actual and predicted positions. The wavelet is then lifted by updating the positions of
the vertices of M i using the vertices of M i+1 −M i. This reduces aliasing and ensures that each of
the intermediate meshes M i provides a good approximation of the final mesh. The analysis process
simply reverses the two steps. Therefore, no linear system inversion is necessary and the analysis as
well as the synthesis can be made in linear time.
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Khodakovsky et al. have applied these approaches to surface compression [Khodakovsky et al.
2000]. They have used both lifted wavelets built from the butterfly scheme [Dyn et al. 1990; Zorin
et al. 1996a] and classical wavelets derived from the Loop subdivision scheme [Loop 1987]. They
found that both approaches yielded approximately the same rate/distortion performance. The Loop
scheme has the advantage of better visual results, but this comes at the cost of a longer analysis
phase because it uses classical filter wavelets, and thus requires linear system inversion.

The new prediction method exposed in Section 2.3 can be used to derive subdivision schemes.
While we obtain the same weights as the subdivision schemes used here, the approach is different and
gives another insight on these schemes. Also, we found that some of the subdivision schemes [Labsik
and Greiner 2000] are not optimal with respect to the support of the prediction filter, and we use our
method to derive a subdivision scheme with the same smoothness of the limit surface, but smaller
support (see Section 2.3.5.2).

1.4.3 Normal Meshes

In the wavelet schemes presented above, wavelet coefficients consist in a three-dimensional vector. It
may be expressed in a global or local frame, but the coder needs to transmit a normal and tangential
component for each vertex. Guskov et al. have proposed another approach, that minimizes the
tangential component of the wavelet coefficients [Guskov et al. 2000; Friedel et al. 2004]. They dub
their representation Normal Mesh, because most detail coefficients only lie in the normal direction.
This reduces the information to just one coefficient per vertex, drastically reducing the number of
bits required to represent the surface [Khodakovsky and Guskov 2003; Payan and Antonini 2005].
However, using normal coefficients prevents the use of lifting: If an update step modifies the position
of neighbouring vertices, then the normal to the surface will be modified, and the wavelet coefficients
will no longer lie in the normal direction. Thus, the most efficient scheme uses the unlifted butterfly
wavelet, which is an interpolating scheme: As there is no update step, M i+1 interpolates M i.

1.4.4 Remeshing to optimize connectivity-aware compression

We have seen in Section 1.3.1.1 that most compression methods represent connectivity with a bit rate
that directly depends on the regularity of the mesh. Based on this property, a number of methods
remesh the surface so that the resulting mesh is as regular as possible, either globally [Surazhsky
and Gotsman 2003; Alliez et al. 2005; 2002] or in a piecewise manner [Attene et al. 2003; Szymczak
et al. 2002]. In contrast to previous methods, the connectivity is not implicit, and has to be specified
to the decoder. However, this may be done very efficiently is the mesh is regular enough. In prac-
tice, global remeshing using [Surazhsky and Gotsman 2003] enables bit rates of around 15 − 17 bpv
with an error that is less than 0.1% (with less than 1 bpv for connectivity). For piecewise remesh-
ing, Szymczak et al. report bitrates of 4 bpv with 0.02% error on average [Szymczak et al. 2002],
while SwingWrapper [Attene et al. 2003] yields the best results, that are competitive with wavelet
approaches.

1.4.5 Discussion

The above schemes can be classified into three groups, depending on which information they code:

• Wavelet schemes [Khodakovsky et al. 2000; Guskov et al. 2000] only transmit the connectivity
of the base mesh. Because the connectivity of the successive subdivided meshes is implicit,
these schemes can save some bit budget by not transmitting it. However, they still transmit
geometry and parameter information because the position of each vertex is represented by three
coefficients.
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• Single-rate remeshing approaches try to minimize connectivity information, however they still
transmit connectivity in a global, single rate manner, in contrast with wavelet methods. There-
fore, they are usually less effective than the latter. SwingWrapper [Attene et al. 2003] is an
exception, because it does not code parametric (or tangential) information, but only transmits
one coefficient per vertex. This enables it to beat wavelet schemes (Figure 1.24). However, al-
though this method has better rate/distortion performance than subdivision wavelet methods,
it fails to provide the attractive progressivity which enables the decoder to choose the quality
of approximation.

• Geometry Images [Gu et al. 2002] and Normal Meshes [Guskov et al. 2000] both save on connec-
tivity and parametric information. Normal meshes can be specified with only the connectivity
of the base mesh, and no parameter information since nearly all coefficients are in the normal
direction. Geometry images have both implicit connectivity and parametric information, and
thus only transmit geometry. Both approaches are progressive (by mipmapping geometry im-
ages), but normal meshes have the advantage of adaptivity and more uniform error, as well
as slightly better rate/distortion (figure 1.23). On the other hand, geometry images can take
advantage of the structure of graphics devices to enable efficient rendering.

Figure 1.23: Comparison of the rate/distortion performance of Geometry Images [Gu et al. 2002] and
Subdivision Wavelets [Khodakovsky et al. 2000]. (Figure from [Gu et al. 2002])

1.5 Discussion

Connectivity vs. Geometry: In this chapter, we have seen that in the last fifteen years, mesh
compression has been the target of a lot of research effort. Various approaches have been proposed
to represent meshes in a very succinct way. Most of the work was oriented towards reducing the size
of the connectivity information, that represents the highest cost in a traditional indexed structure.
Pure connectivity compression algorithms have reached a mature state where virtually all meshes
– from very regular subdivision meshes to triangle soups – can be compressed using a very small
number of bits per vertex. Geometry compression schemes are drastically less efficient, and most of
the bit budget is now dedicated to the representation of geometry – and other data associated with
vertices. The ratio between geometry and connectivity in a typical compressed mesh is usually about
ten to one. Obviously, geometry should now be the target of further effort to decrease bit rates. In
this dissertation, we propose two different approaches to compress mesh geometry. In Chapter 2,
we remain within the classical linear prediction paradigm that nearly all the compression methods
presented in this Chapter use, but we give a rationale for choosing prediction weights. When designing
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Figure 1.24: Comparison of the rate/distortion performance of SwingWrapper [Attene et al. 2003]
and Normal Meshes [Khodakovsky et al. 2000]. (data from [Attene et al. 2003] and [Khodakovsky
and Guskov 2003])

the random-accessible scheme presented in Chapter 5, we have used a geometry coding method that
departs from the approaches presented here, since we use prediction within chains of vertices. This
approach had only been used for point cloud compression [Gumhold et al. 2005]. However, although
these methods are quite efficient, geometry remains the most important part of the information.

Lossless vs lossy: By remeshing, some algorithms are able to provide far better compression rates.
They increase the regularity of the mesh – and therefore decrease the coding cost – by removing the
connectivity information. But remeshing has another very important side effect on geometry: It
removes parameter information (i.e. the components of a vertex position that lie in the tangent
direction of the surface). That also reduces the cost for geometry coding – but still this component
remains predominant in the bit budget.

Although its results in terms of compression rates are more appealing, lossy compression does
not fit every application. There is no doubt that both lossy and lossless compression approaches
will subsist in the future, in the same way as the efficiency of lossy image compression schemes like
JPEG did not kill lossless coding. The introduction of compression artifacts is the main reason – for
example, lossy wavelet compression has the tendency to smooth out models, which is a problem in
the case of CAD models with sharp features. But there are several other cases where lossless instead
of lossy compression will be chosen. In particular, lossy compression poses the problem of generation
loss – i.e. how meshes behave when they are compressed and decompressed a large number of times,
as is the case when an artist designs a computer graphics mesh. In that case, lossless compression is
the option to choose. In the work presented here, we choose to address only lossless coding, as this
is the safest and most general approach.

Triangle vs Polygon compression: A lot of mesh compression approaches only deal with triangle
(resp. tetrahedral) meshes. Their argument is that any polygon (resp. polyhedral) mesh can be
triangulated (resp. tetrahedralized) and thus these compression methods are general. However,
Isenburg has shown [Isenburg 2005] that compressing polygon meshes in their original form can lead
to higher compression ratios, for two different reasons. First, no information needs to be stored
to code how to retrieve the polygon mesh from the triangulated version. Second, polygon flatness
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and regularity can be exploited to improve geometry compression. This is particularly true for
hexahedral (volume) meshes, that can sometimes be compressed using only a few bits per vertex
including geometry, as we will see in Chapter 4. In addition, we would say that being able to directly
handle polygon meshes without having to go through a triangularization step is a very interesting
feature as far as software engineering is concerned. Therefore, we have striven to design algorithms
that are as generic as possible in the way in which they handle polygon meshes. Apart from our
streaming compressor (Chapter 4), that only handles hexahedra, the two other algorithms that we
propose for geometry prediction (Chapter 2) and random-accessible compression (Chapter 5) handle
general meshes.

Large meshes: The main focus of this dissertation is large meshes. In this Chapter, we have
deliberately chosen to ignore the problems posed by mesh size, and we have supposed that meshes
could be fully loaded in memory. This way, the various problems posed by mesh compression could
be presented in a simple manner. When this assumption no longer holds, the algorithms described
in this chapter cannot be used. We dedicate the Chapter 3 to the study of the schemes that handle
large meshes. In addition, we propose two schemes for the compression of large meshes. Chapter 4
presents a hexahedral mesh compressor capable of compressing and decompressing meshes on the
order of several million hexahedra in a few minutes using only a few megabytes of memory. On the
other hand, we present in Chapter 5 a surface mesh compression method that addresses efficient
decompression of meshes too large to fit in the memory of the client device.
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Chapter 2

Improved Prediction for Geometry

Compression

In an indexed representation of a mesh, the connectivity accounts for a bigger part of the bit bud-
get than the geometry information. However, typical compression algorithms do a far better work
at compressing connectivity, resulting in connectivity sizes that are usually a fraction of geometry
bitrates. For example, degree coders offer a compression performance that is around 1.5 − 3 bits per
vertex for connectivity, but raises to roughly 16 bits per vertex to represent the geometry for the same
models. Therefore, compressing the geometry of meshes remains at stake for mesh compression.

We have seen in Section 1.3.1.3 that most connectivity-driven compression methods use prediction
to compress the geometry of the mesh. Among the great classes of methods for geometry compression,
the only ones that do not use the predict/correct paradigm are the spectral methods based on the
work of Karni and Gotsman ([Karni and Gotsman 2000], Section 1.3.1.3) and the tree-based point
cloud compression techniques ([Gandoin and Devillers 2002], Section 1.3.2.

The vast majority of the predictors used are linear, which means that the predicted position of
the new vertex is a linear combination of the positions of neighbour vertices. This includes virtually
all region-growing (single-rate), as well as progressive methods based on both edge collapse/vertex
split and vertex decimation. Wavelet methods also use linear prediction. Some approaches use more
sophisticated non-linear prediction schemes (e.g. [Marais and Gain 2007; Lee 2002; Gumhold and
Amjoun 2003]), but this comes at the cost of increased complexity with no clear advantage [Lee 2002].

Linear schemes are attractive for several reasons:

• Speed: Linear prediction requires few arithmetic operations, namely n multiplications and n−1
additions if n is the number of neighbour vertices used for prediction. In comparison, non-linear
predictive methods are a lot more expensive.

• Simplicity: For the same reasons, these schemes are very easy to implement.

• Inversion: A linear prediction scheme can be easily inverted by solving a linear system. For
classical (non-lifting-scheme) wavelet schemes, this is a very important property, because the
analysis phase is based on an inversion of the prediction scheme used during the synthesis
phase [Khodakovsky et al. 2000].

In the following sections, we first detail the various approaches used to predict a vertex from
its known neighbours. Then, we extend to the irregular case the spectral approach of Ibarria et
al. [Ibarria et al. 2007] that has been used to derive very efficient predictors in the regular grid and
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polygonal case. We show that this extension can perform well in some specific cases, but generally
fails to provide good extrapolation results. Then, we introduce a new formalism based on the local
Taylor expansion of the geometry of the mesh. We show that this method can be used to derive
various existing linear predictors in a generic way, and we improve upon some of them.

2.1 Linear Prediction

2.1.1 Parallelogram Rule and Extensions

For single-rate compression, the Parallelogram Prediction (PP) of Touma and Gotsman [Touma and
Gotsman 1998] is the most widely used prediction. The position of a vertex is predicted as completing
the parallelogram containing the three vertices of an already decoded adjacent triangle. A residual
vector (i.e. the difference between the actual and predicted position) is stored, that can be expressed
either in a global [Touma and Gotsman 1998; Alliez and Desbrun 2001b] or local [Alliez and Desbrun
2001a; Lee et al. 2002; 2010a] reference frame. This residual is usually small and can be compressed
using an entropy coder. This method typically results in compression ratios of about 16− 18 bits per
vertex at 12 bits quantification. It has the advantages of simplicity and speed (it only requires one
addition and one subtraction), which makes it and its derivatives the most widely used methods for
single-rate geometry compression.

The parallelogram rule can be seen as a linear predictor which assigns the weights {−1,1,1} to
three already visited vertices of the neighbourhood which form a triangle (Figure 2.1, top left). It is
easy to verify that these prediction weights are optimal (in the least square sense): finding the weights
that minimize the 2-norm of the prediction residuals is a simple linear problem. In our experiments,
the optimal weights were constantly {−1,1,1} for all our test meshes.

The prediction error of the parallelogram rule is highly dependent on the order in which the
mesh is traversed. Various methods [Kronrod and Gotsman 2002; Chen et al. 2005] have applied the
parallelogram rule along a geometry-driven traversal of the mesh to reduce this error. They obtain
32% improvement on average.

Some linear predictors use different neighbourhoods. Sim et al. [Sim et al. 2003] introduce the dual
parallelogram prediction (DPP). When possible, they predict the position of a vertex as the average
of two parallelogram predictions (Figure 2.1, top center). Approximately 75% of the vertices of their
test meshes can be predicted this way. This improves compression ratios by 3% over simple PP.

In a later work, Kälberer et al. use the same neighbourhood but average three parallelogram
rules [Kälberer et al. 2005], the first two being the previous parallelogram rule, and the third being
applied across a virtual edge joining the two outer vertices (dashed line on Figure 2.1, top right). We
call this rule Freelence Dual Parallelogram Prediction (fDPP). They report improved compression
rates compared to applying a simple parallelogram rule for prediction, but they only compare with
the parallelogram rule (we will see later in this chapter that their scheme also performs better than
the DPP). They also discuss another stencil which would take into account the last vertex of the one
ring of the center vertex of the DPP neighbourhood if that vertex is of degree 6. They experimentally
determine weights for this neighbourhood, and conclude that these weights depend on the type of
model (irregular, subdivision, CAD). They do not give any method to derive these weights in a
theoretical, consistent manner.

Cohen-Or et al. [Cohen-or et al. 2002] take the parallelogram averaging idea one step further by
using all possible parallelogram predictions around a vertex. They proceed in two steps. The first
one starts with the connectivity of the mesh and the position of a small number of vertices. The mesh
is processed using several passes. Each pass predicts each vertex using the average of all the possible
parallelogram predictions around this vertex (Average Parallelogram Prediction or APP), assuming
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that the displacement is zero. This predictor is shown on the bottom left of Figure 2.1. A smooth
approximation to the mesh is thus obtained. In a second step, they apply a scheme similar to [Sim
et al. 2003] that uses a dual parallelogram rule to correct the position of the vertices. This scheme
gives the best result for lossless single-rate geometry compression.

Sorkine et al. use a global optimization approach to reduce the visibility of coordinates quan-
tization by applying quantization in the prediction residual space (delta coordinates) instead of the
original coordinates space [Cohen-or et al. 2002]. This results in quantization errors that are mostly
in the low frequencies (see Section 1.3.1.3). They predict the position of a vertex as the average of the
positions of the vertices in the one-ring. However, they also study the reduction in prediction error
when using the average of all parallelogram predictions and reach the same conclusions as [Cohen-or
et al. 2002].

For progressive compression, Pajarola and Rossignac remarked that the APP did not give the
best results [Pajarola and Rossignac 2000a]. They use a variation of it (that we call CPM after the
name of their compressor) where they use the weights − α

K
and 1+α

K
instead of simply − 1

K
and 2

K

(where K is the number of parallelogram predictions). They experimentally determined that α = 0.15
performed well on average (Figure 2.1, center right).

Figure 2.1: Linear prediction rules, in reading order: PP [Touma and Gotsman 1998] , DPP [Sim
et al. 2003], FreelenceDPP [Kälberer et al. 2005], APP [Cohen-or et al. 2002], CPM [Pajarola and
Rossignac 2000a], and Barycentric [Alliez and Desbrun 2001a] . The vertices of the triangles in blue
are known to the decoder.

2.1.2 Polygon meshes

Isenburg and Alliez [Isenburg and Alliez 2002b] have successfully extended the use of the parallelogram
rule to compress quad meshes. They even improve the compression ratios (by about 10 to 40%)
compared to triangulated versions of the same quad meshes by applying the parallelogram rule within
rather than across quads. This works because quads are generally flat.

In a later work, Isenburg et al. extend this idea to predict the geometry of polygons of higher
degree [Isenburg et al. 2005a]. They suppose that in a polygon of degree K, there are N vertices
whose positions are already known (v1, . . . , vN ), and want to predict the position of the (N + 1)-th
vertex as a linear combination of these N vertices. They first introduce the fourier basis (bi)i∈J1;KK
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Figure 2.2: Example of linear prediction rules for high degree polygons with the method of [Isenburg
et al. 2005a]. The vertices in red are known to the decoder, and the vertex in black is being predicted.
The weights are given in the center of each polygon.

of the polygon, and represent the vertex geometry v as a linear combination of the Fourier basis
vectors:

v =
K

∑
i=1

cib
i (2.1)

Then, they determine the coefficients (ci) such that:

1. Equation (2.1) is verified.

2. The energy of the geometry is localized in the low frequencies.

As there are N fixed vertex positions, the first N lowest frequency coefficients c1, . . . , cN are fixed, and
the rest are 0. The non-null, low frequency coefficients can be determined using the equation (2.1):

∀j ∈ J1;NK, vj =
K

∑
i=1

cib
i
j =

N

∑
i=1

cib
i
j (2.2)

This is a linear system of size N ×N , and we let ci = ∑N
j=1 κi,jvj its solution. Then, the (N + 1)-th

line of equation (2.1) can be expanded as:

vN+1 = ∑K
i=1 cib

i
N+1

= ∑N
i=1 cib

i
N+1

= ∑N
i=1∑N

j=1 κi,jvjb
i
N+1

= ∑N
j=1∑N

i=1 κi,jb
i
N+1vj

(2.3)

The above equation gives the prediction weights αj = ∑N
i=1 κi,jb

i
N+1. We did not consider here the

case when basis vectors bN and bN+1 are associated with the same frequency, which, for symmetry
reasons, prevents discarding either one of the two vectors. Isenburg et al. deal with this problem by
determining prediction rules when N − 1 vertices are known, and then using a linear combination of
the two prediction rules when either vertices (2, . . . ,N) or (1, . . . ,N −1) are known. The coefficient λ
of this linear combination is chosen such that the norm ∥λα1 + (1 − λ)α2∥ of the resulting prediction
weights is smallest.

This method results in small prediction residuals. However, we will see in section 2.3.4.4 that our
method can result in even smaller prediction error.



2.1. LINEAR PREDICTION 59

2.1.3 Prediction for Regular Grids

Mesh and image compression traditionally have a lot of ideas in common. Prediction is widely used
for image compression, and the parallelogram rule finds its regular counterpart in the JPEG-LS
predictor [Weinberger et al. 2000]. It is thus very tempting to adapt other predictors used for image
compression.

For prediction on regular grids (e.g. images), a wealth of predictors exist, because the neighbour-
hood of a specific sample always has the same structure. Recently, Ibarria et al. [Ibarria et al. 2007]
have introduced a spectral interpolation method which enables prediction when an irregular set of
the 3x3 stencil of neighbouring samples is known. This is the case, for example, during scanline or
progressive transmission. Similarly to [Isenburg et al. 2005a], they decompose the stencil on the 9
vectors of the Discrete Cosine Transform basis. If there are k unknown samples, they set the k highest
frequencies to 0, and solve the resulting system analytically. Thus, they determine the weights to
predict one unknown sample from the known samples.

Their approach finds the weights that give the smoothest prediction (in terms of frequency) that
fits the known samples. They have computed a lookup table that gives the weights for a given stencil
configuration. However, this approach is not directly applicable in the case of mesh compression,
because the connectivity itself of the neighbourhood changes from vertex to vertex, and not just the
number of known and unknown samples. We will see in Section 2.2 that it can be extended to deal
with general meshes, but with limited success.

2.1.4 Prediction for Subdivision Meshes: Building Wavelets

Wavelet-based approaches intrinsically use linear prediction to define their filters. To reconstruct the
final mesh, a base (usually irregular) coarse mesh M0 is progressively subdivided. At each subdivi-
sion level, a finer mesh M i+1 is constructed from M i by adding new vertices, either at the middle
of each edge [Dyn et al. 1990; Zorin et al. 1996a; Loop 1987; Kobbelt 1996] or at the center of
each face [Kobbelt 2000; Labsik and Greiner 2000]. The position of each new vertex is predicted
linearly from the vertices of a given neighbourhood in M i. Among these techniques, interpolat-
ing wavelets [Zorin et al. 1996a; Labsik and Greiner 2000] are of particular interest, because they
enable building non-lifted wavelets suitable for the very efficient normal mesh representation (see
Section 1.4.3).

A necessary condition for C2 smoothness of the limit surface of interpolating subdivision process
is that the wavelet prediction step reproduces polynomials of degree 2 [Warren 1995], i.e. if the points
used for prediction are samples of a polynomial of degree 2, then the predicted point will also be a
sample of the same polynomial. A detailed explanation on how this property can be used to derive
prediction weights is given in [Zorin et al. 1996b].

Most of the tools used to prove results in the subdivision field are based on the concept of
subdivision matrix, therefore we briefly define it here. For more details, the reader can refer to [Zorin
et al. 1996b]. A K-regular mesh is a triangulation M i of the plane where all vertices are regular
(in valence) except one (we will call that vertex v0), that has valence K, and all the triangles are
similar. In the following, we will take K = 5 (Figure 2.3), but the construction is similar for other
values of K. The result Mi+1 of applying one step of the subdivision process of the modified butterfly
scheme [Zorin et al. 1996a] is shown in the center of Figure 2.3. Because the prediction of each new
vertex is linear, there exists a linear operator Sinf (of infinite dimension) such that the points P i+1

of M i+1 can be expressed as a function of the points P i of the original mesh M i as:

P i+1 = SinfP
i (2.4)

Note that the new vertices are regular, and the new mesh is a simple shrinking of the original mesh
by a factor 2. We call invariant neighbourhood the smallest symmetric neighbourhood (non reduced
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to {v0}) N i(v0) of v0 in M i such that there exists a matrix S verifying

N i+1(v0) = SN i(v0) (2.5)

In the case of the modified butterfly scheme, N i(v0) is the 2-neighbourhood of v0 (in green and red
on Figure 2.3), and

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
a0 a1 a2 a3 a3 a2
a0 a2 a1 a2 a3 a3
a0 a3 a2 a1 a2 a3
a0 a3 a3 a2 a1 a2
a0 a2 a3 a3 a2 a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.6)

where a0, a1, a2 and a3 are the prediction weights (because of symmetry, there are only 4 weights).
These weights are determined by ensuring the necessary polynomial-reproducing condition, which
yields a0 = 3

4
and aj = 1

5
(1
4
+ cos (2πj

5
) + 1

2
cos (4πj

5
)) in the case of a 5-regular neighbourhood.

Figure 2.3: A 5-regular mesh (left) and the same mesh after one subdivision step (center). Superim-
posed are the corresponding invariant neighbourhoods N i(v0) (red) and N i+1(v0) (green). On the
right, the numbering used in equation 2.6.

Note that this is only a necessary condition, and the prediction weights thus determined must be
subjected to the following sufficient condition [Reif 1995]:

If λ1, . . . , λK+1 are the eigenvalues of the subdivision matrix, sorted in by decreasing magnitude,
then the limit surface is C1 if:

{ λ1 = 1 > ∣λ2∣ > ∣λ4∣
λ2 = λ3

(2.7)

2.1.5 Determining Prediction Weights

The linear predictors described above mainly use two different approaches to determine weights.
On one hand, the spatial approach considers prediction as a geometric problem. For example, the
parallelogram rule predicts that adjacent triangles are geometrically similar. Average Parallelogram
Prediction uses the point closest to all different parallelogram predictions. On the other hand, spectral
methods work in the frequency domain. This is the idea of [Isenburg et al. 2005a] and [Ibarria
et al. 2007], but is also true in the case of wavelets. The wavelet coefficients used by Khodakovsky
and Guskov [Khodakovsky and Guskov 2003] are determined using a spectral approach very similar
to [Ibarria et al. 2007] (this approach had already been used, and is presented in more details, in [Zorin
et al. 1996b]). While the spatial and spectral methods use different arguments, we will see in sections
2.3.5.1 and 2.3.4 that they are sometimes equivalent.
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2.2 Local Spectral Prediction

Ibarria et al. use a spectral approach [Ibarria et al. 2007] to derive prediction weights on grids, i.e.
regular quad meshes. We have extended this approach to the case of irregular polygon meshes, with
variable success. The predictors that we obtain perform very well for interpolation, but extrapola-
tion remains problematic. In the following sections, we first describe the algorithm that we use to
determine prediction weights. Then, we evaluate the resulting predictor and discuss its strengths and
weaknesses.

2.2.1 Determining Prediction Weights

The idea of our approach is to predict the geometry of a vertex as the position which makes its
neighbourhood as smooth as possible with respect to its connectivity. By smooth, we mean that
the high-frequency content, in the sense of [Ibarria et al. 2007], of the neighbourhood is as small as
possible.

Let v0 be the vertex whose geometry is to be predicted, v1, . . . , vn the vertices of the neighbour-
hood, and (vix, viy, viz) the position of vi. In the following, because all coordinates are similar, we
only consider vi

x. We suppose that k vertices of the neighbourhood are known (v1, . . . , vk), and we
define the local Laplacian L0 of the mesh around v0 as the Laplacian of the neighbourhood considered
as a separate mesh, that is:

L0
i,j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣{vk ∣vk and vi are adjacent}∣ , if i = j
−1, if vi and vj are adjacent

0 otherwise

(2.8)

The eigenvectors of L0 constitute the local spectral basis of the neighbourhood. If E is the orthog-
onal matrix of eigenvectors (one per column) ordered by ascending eigenvalue magnitude, then the
vector S defined by:

ES =
⎛⎜⎝
v0

x

⋮
vn

x

⎞⎟⎠ = V x (2.9)

is the local spectral decomposition of the neighbourhood.

As we want the prediction to result in the smoothest possible neighbourhood geometry, we look
for S such that the n − k highest frequencies (Sk+1, . . . , Sn) are 0. This is equivalent to finding
the predictor that reproduces the Fourier basis vectors of lower frequency. The predictor p(v0) =
∑k

i=1 αivi
x reproduces the basis vector E∶,m if:

E1∶k,m
T .αi = E0,m (2.10)

Progressively adding equations arising from the reproduction of basis vectors of increasing frequency
allows us to build a matrix A and a vector B such that the condition Aα = B is equivalent to
reproducing the maximum number of basis vectors of low frequency. Each time a new basis vector
E∶,m is to be added to the current set of l < k equations, two situations can arise:

1. E∶,m is associated with a simple eigenvalue. Then if the vector E1∶k,m is linearly independent

from Ai, i ∈ J1, lK, we set Al+1 = E1∶k,m
T and Bl+1 = E0,m. Else E∶,m is dropped.

2. E∶,m and E∶,m+1 are associated with a double eigenvalue. The subspace Span (E1∶k,m,E1∶k,m+1)
associated with this eigenvalue is either totally, partially or not linearly independent from
Ai, i ∈ J1, lK, which will result in the addition of respectively 2, 1 or 0 equations to A and B, as
in [Ibarria et al. 2007].
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K tip crease
3 -.470 .800
4 -.250 .500
5 -.146 .346
6 -.094 .260
7 -.064 .207
8 -.047 .172

Table 2.1: Spectral prediction weights for the K-star case. Crease and tip respectively denote the
weights for the inner ring (one-ring) and outer ring of the star-shaped stencil.

Finding the weights is then a simple matter of solving a linear system of size k×k. It is interesting
to note that the first eigenvector [1, . . . ,1] of the Laplacian has an eigenvalue of 0, which is always
simple. Therefore, it is always added to the set of equations. This ensures the condition ∑αi = 1 and
makes the scheme affine invariant.

2.2.2 Compression

To evaluate our new spectral prediction method, we have computed weights for several different
configurations classically used for compression, in particular the Parallelogram Rule of Touma and
Gotsman. The spectral method yields the same weights {−1,1,1}.

We have seen in Section 2.1.1 that more sophisticated approaches [Pajarola and Rossignac 2000a;
Cohen-or et al. 2002; Sim et al. 2003] have used an average of several parallelogram predictions. This
results in a predictor that is also linear, and that led to the expected decrease in prediction error and
residual entropy. However, in some cases the results achieved by the spectral approach are better
than a simple average of parallelogram predictions.

The weights derived using our spectral approach are given in Figure 2.4 and Table 2.1. In the
case of the K-star neighbourhood, that is used in the first step of [Cohen-or et al. 2002] and [Pajarola
and Rossignac 2000a], the predictor is interpolating (it knows a complete neighbourhood around the
vertex to predict). In that case, the spectral method is very efficient, and reduces the error from 13
to 48%, as seen in Table 2.2.

However, the spectral weights for the DPP stencil (Figure 2.4) are far worse than an average
of two parallelogram rules. The predictor even makes a systematic prediction error if the mesh is
regular, by predicting the missing vertex at the center vertex of the configuration. This is a major
problem with the spectral approach, that can often be found when the predictor is extrapolating. We
will discuss this in further details in a following section (2.2.3).

Least square weights A naturally good set of weights for a linear predictor is the set of weights
that minimizes the norm of the residuals for a given mesh. We call this predictor the Least Squares
Predictor (LSP). By definition, the LSP has the best prediction performance in terms of mean square
error.

As all predictors that are based on a varying neighbourhood, a set of weights has to be computed
for each given vertex neighbourhood. For irregular meshes, the neighbourhood information can vary
a lot between two vertices. As the weights of the LSP depend on the mesh, that means that to use it,
an algorithm must store along with the mesh data the sets of weights for all possible neighbourhood
configurations.
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Figure 2.4: Some examples of prediction weights determined by our spectral approach, with several
prediction stencils: Starting from the top left, in clockwise order: Parallelogram, Dual Parallelogram,
6-star (APP) and 5-star (APP). The numbers between parentheses are the Average Parallelogram
weights. For symmetry reasons, the vertices with the same colors have the same weights. Note that
the parallelogram predictor is a particular case of the algorithm.
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Model vs. Vertex Degree Total
3 4 5 6 7 8

armadillo (138) 100 93 84 87 75 87
guardian 128 100 87 84 84 88 86
gipshand * (100) 90 60 83 99 64
max planck (136) 100 90 79 90 96 86
neptune * (100) 58 57 72 * 59
(uniform)
guardian * * 56 51 * * 52
(uniform)

Table 2.2: Prediction error of our spectral approach relative to Average Parallelogram Prediction for

K-star neighbourhoods (in percents, i.e. 100× Espectral

EAPP
). We only give details for K ≤ 8, but the total

in the last column takes into account all possible K, weighted by their respective importance (there
are far more 6-stars than other degrees). Parentheses denote statistically doubtable results (for which
there were less than 50 occurrences). The asterisk denotes absence of data.

In comparison, the weights computed by the spectral approach are independent of the mesh, and
thus do not require any other information to be stored along with the mesh data. However, the
experimental results show that for the K-star configuration, the spectral weights are close to the LSP
weights on average. This can explain the good performance of the spectral predictor for these predic-
tion stencils. Table 2.3 gives the LSP weights for the most common 5- and 6-star neighbourhoods.

Model 6-Star 5-Star
eight -.084, .251 -
venus -.054, .221 -.046, .246
cow -.094, .261 -.109, .309
femur -.056, .223 -.062, .2630
shark -.129, .297 -.120, .320
sphere -.111, .278 -
horse -.058, .225 -.049, .249
dino -.043, .210 -.044, .244
armadillo -.061, .227 -.108, .308

Average LS -.077, .243 -.077, .277

Spectral -.094, .260 -.146, .346

APP -.166, .333 -.200, .400

Table 2.3: Best weights in terms of least squares error for the most common 5- and 6-star neighbour-
hood, spectral weights, and APP weights. The weights are respectively those of the tips and creases
of the stars.

2.2.3 Discussion

Systematic Extrapolation Error: The spectral method is often subject to a systematic predic-
tion error when extrapolating, i.e. when the vertex to predict is at the boundary of the neighbourhood.
This problem is visible in the case of the Dual Parallelogram Stencil weights derived via the spectral
method: The vertex is predicted systematically and erroneously at the center vertex of the configura-
tion. This problem is related to the properties of the local Laplacian, that tends to shrink a mesh at
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boundaries. To illustrate it, let us consider a triangle mesh with an ear configuration (i.e. a degree
2 boundary vertex). Smoothing the mesh (i.e. applying the Laplacian to the mesh) collapses the
ear, shrinking the mesh. Another way of seeing the same problem is that the Laplacian of a mesh
measures how much a vertex fails to be at the center of gravity of its one-ring neighbours. Therefore,
it works when there exists a complete one-ring around a vertex, which is not the case at boundaries.

To alleviate this problem, it is possible to add virtual vertices to the neighbourhood, such that
the virtual neighbourhood is rotation-invariant (Figure 2.5). These vertices will not take part in the
prediction but their connectivity will modify the local Laplacian. This avoids the harmful boundary
effects and yields new weights that are exempt of systematic error (Figure 2.5). However, these new
weights are usually large, which is bad for prediction: If we consider a triangle mesh M that is
regular in both connectivity and geometry, and a predictor p with weights (α1, . . . , αN) that has no
systematic error. If M is perturbed by adding a white noise ǫ with variance σǫ

2, then the variance of
the residual is:

V ar (v0
x − p(v0)) = V ar (v −∑vi∈N(v0) αi (vi

x + ǫ(vi)))
= V ar (∑vi∈N(v0) αiǫ(vi))
= ∑αi

2V ar (ǫ(vi))
= ∥α∥σǫ

2

(2.11)

This shows that although adding virtual vertices prevents the systematic prediction error, it is not
very efficient because it also decreases robustness to noise. Therefore, extrapolation remains a problem
with this approach.

Figure 2.5: Adding virtual vertices avoids systematic prediction error: the original stencil (left), and
the new stencil with virtual vertices in yellow (right). The green vertex is being predicted.

Deriving subdivision schemes: Interestingly, if we try to use spectral prediction to derive pre-
dictors for subdivision surface wavelets, it is possible to obtain the same predictors as the usual
subdivision wavelets for regular settings (linear, butterfly, loop, and

√
3). One has to take care,

however, of the boundary effects. Because of that, we embed the prediction stencil inside a regular
mesh made of virtual vertices, far from boundaries. The neighbourhoods that we used are shown in
Figure 2.6. We have verified experimentally that the approximation of the weights drew closer to the
actual wavelet prediction weights as the virtual mesh grew. Currently, we cannot explain why this
behaviour is observed, but we find that it was interesting enough to be mentioned here. Also, the
butterfly weights for the irregular case cannot be obtained using this method.

Numerical cost: The symbolic computation of eigenvectors for neighbourhoods with more than
a few vertices is too computationally expensive to be practical. Therefore, all computations are
numerical. This may pose some problems when determining linear dependance. However, in our
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Figure 2.6: Deriving an approximation of typical wavelet prediction schemes using irregular spectral
prediction: Butterfly (left), Loop (middle), and

√
3 (right). The top row shows the neighbourhood

the we used. The yellow vertices are virtual vertices, the red vertices are the known vertices, and the
green vertex is being predicted. The bottom row shows the prediction stencils (coarser mesh) and
associated weights. The actual weights are given between parentheses for reference.

tests, we have never encountered such a situation, even for the larger neighbourhoods used in the
previous paragraph, where numerical errors could accumulate.

Computational cost: While this approach is appealing for interpolation, there remains a major
practical problem: computation time. Computing the eigenvectors of the neighbourhood Laplacian
is a very costly operation. While determining weights for small neighbourhoods (tens of vertices)
will be very fast (hundreds of milliseconds), the larger neighbourhoods used for example to derive
subdivision weights result in several seconds of computation. This problem is emphasized by the fact
that the method needs larger neighbourhoods to yield best results, for example when adding virtual
vertices.

2.3 Taylor Prediction

The major drawback of the local spectral approach presented in the previous section is its inability
for extrapolation. The dummy stencil extension method that we suggested to alleviate this problem
is not very satisfying because it drastically increases the computational complexity. The inability
of the spectral prediction to extrapolate originates in the fact that the Laplacian operator uses a
combinatorial description of the neighbourhood: The link between the positions of two vertices is
based on their adjacency relationship. We tried to alleviate this problem by using a parametric
description of the neighbourhood. In this description, the links between the position of two vertices
are expressed in terms of their relative position in the local parameter space of a canonical geometric
configuration of the neighbourhood. The main difference between the two approaches is that the
latter considers the mesh as an approximation of a surface, while the former works exclusively on the
mesh connectivity, especially on the adjacency between vertices. This makes the spectral approach
very sensitive to the way a surface is meshed. In particular, the spectral method is sensitive to the
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presence of vertices even if they do not participate in the prediction (this is the case, for example, of
virtual vertices). On the other hand, the Taylor prediction method we present here only considers the
vertices that will be used for prediction, and is somehow oblivious to their adjacency relationships.

2.3.1 Setup

In the following, M is a differentiable 2-manifold defined by the vector-valued function:

f(u, v) = (x(u, v), y(u, v), z(u, v))
where (u, v) spans a certain subdomain D of R2. x, y and z are the coordinates of the points of M .
For the sake of clarity, we only consider surfaces, but the method generalizes seamlessly to the case
of volumes defined by three parameters (u, v,w) ∈ R3.

Definition 1. M is 2-smooth if f is C2-differentiable on all but a finite number of points p1, . . . pN .

Around these points, f can be expanded using the second-order Taylor approximation:

∀u ∈D − {p1, . . . pN},
f(u + du) = f(u) + duT .(∇f)(u) + 1

2
duT .(∇2f)(u).du + o(duT .du) (2.12)

where ∇f and ∇2f are respectively the Gradient and Hessian of f .

The mesh G that we are studying can be seen as an piecewise linear approximation of such a
surface M . Let us suppose that the positions of some vertices of G are known. This means that we
know the value of f at the parameter values corresponding to these vertices. In the following, we show
how to derive a linear predictor to compute the position of an unknown vertex v ∈ V (G) at parameter(u, v) from k vertices of the neighbourhood. We denote by αi the coefficients of the prediction:

Definition 2. Let u1, . . . ,uk ∈Dk. Then a linear prediction of f(u) is :

f(u) = k

∑
i=1

αif(ui). (2.13)

2.3.2 Prediction

If f is 2-smooth, then we can approximate the value of f at u1, . . . ,uk in the prediction definition
(2.13) using equation (2.12):

0 = [(∑k
i=1 αi) − 1] .f+ [∑k

i=1 αi(ui − u)] ∂f
∂u
+ [∑k

i=1 αi(vi − v)] ∂f
∂v+ 1

2
[∑k

i=1 αi(ui − u)2] ∂2f
∂u2

+ 1
2
[∑k

i=1 αi(vi − v)2] ∂2f
∂v2

+ [∑k
i=1 αi(ui − u)(vi − v)] ∂2f

∂u∂v+ o ((ui − u)2 + (vi − v)2 + (ui − u)(vi − v))
. (2.14)

We can see that if the predictor is to generate constant surfaces (f is not zero, but ∇f and ∇2f
are), then the condition (∑k

i=1 αi)−1 = 0 must be verified. This property also makes the scheme affine
invariant.

If surfaces with local zero curvature (∇2f = 0) are to be predicted exactly, then the coefficients
of ∂f

∂u
and ∂f

∂v
must be zero. By repeating this process, the predictor weights can be determined by

solving the linear system arising from the reproduction of polynomials of increasing degree, until we
have a sufficient number of equations to determine all the weights.
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Polynomial basis point of view: This approach is similar to the spectral approach. The poly-
nomials of increasing degree can be seen as a local basis on which we decompose the geometry of
the neighbourhood of v in M . In the spectral case, we zeroed the high frequency coefficients. In
the spatial case presented here, the position of v is predicted as that which zeroes the high-degree

coefficients (i.e. ∂(i+j)f
∂ui∂uj for larger i + j). Therefore, degree in our spatial approach plays the same

role as frequency in spectral schemes. We will see in Section 2.3.4.5 that for some neighbourhoods,
the spectral basis and the basis of polynomials sampled at locations {ui}1≤i≤k ∪ {u} are actually the
same, leading to an equivalence between the spectral and spatial approaches.

Dealing with over/under-constrained systems: In the spectral case, multiple eigenvectors of
the spectral basis were sometimes associated with the same eigenvalue. In that case, removing the
highest frequency could lead to an under-constrained system, while selecting both eigenvectors would
over-constrained the system. This is also true in the case of the current spatial approach. We choose
to deal with it in the spatial domain by making assumptions on the geometry of M . This was not
possible with the spectral approach because the description of the neighbourhood was combinatorial
and not parametric. This approach is also more intuitive because those assumptions can be directly
interpreted as local symmetries of f .

To fix ideas, let us consider the case where there are not enough equations to uniquely determine
the weights at expansion order d. Determining the weights by expanding the function to order d + 1
might be impossible for two reasons: First, one may not be willing to make the assumption that f is(d + 1)-smooth. Then, the equations at order d + 1 may be incompatible with the ones from orders
0 to d. We devised two different ways of dealing with an over-constrained system, depending on the
assumptions one is willing to make about the geometry of M .

1. Weights Norm Minimization: In the case where f is not (d+1)-smooth, then the Taylor ex-
pansion will obviously not yield additional constraints. In that case we use a different heuristic.
It consists in choosing, among the weights that verify the under-constrained set of equations,
the weights of smaller amplitude (i.e. for which the norm of the weights vector ∥α∥ = ∑k

i=1 αi
2

is smallest). Isenburg et al. [Isenburg et al. 2005a] already noted that in the absence of other
assumptions, this heuristic helps spread the dependency of the prediction on all the points by
avoiding giving too much importance to a single one. This heuristic is also efficient because it is
the most robust choice of weights with respect to noise. Consider a function f for which a given
predictor with weights α is exact. If f is perturbed by adding a white noise ǫ with variance σǫ

2,
then the variance of the residual f(u, v) − pα(u, v) is:

V ar (f(u, v) − pα(u, v)) = V ar (f(u, v) −∑αi (f(ui, vi) + ǫi))
= V ar (∑αiǫi)
= ∑αi

2V ar (ǫi)
= ∥α∥σǫ

2

(2.15)

It is clear that the heuristic minimizes the prediction error in the presence of noise, and is thus
optimally robust to white noise. This heuristic is actually used (although not in this form) to
determine the weights of nearly all subdivision schemes. This is discussed in the next sections.

2. Variance Minimization: This applies to the case where f is (d + 1)-smooth, but the set of
equations from order d + 1 are not compatible with those from orders ≤ d. Although it may
be impossible to zero the (d + 1)-order term in the Taylor expansion, it is possible to find the
weights α that minimize its variance E(α) over the set of possible functions:

E(α) = V ar ( d+1
∑
m=0
(d + 1

m
) [∑αi.dui

m.dvi
d+1−m] ∂d+1F

∂um∂vd+1−m
) (2.16)
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If we set ⎧⎪⎪⎨⎪⎪⎩
bm+1(α) = (d+1

m
) [∑αi.dui

m.dvi
d+1−m](∂d+1f)

m+1 = ∂d+1f

∂um∂vd+1−m

(2.17)

then the equation above can be written:

E(α) = b(α)TV ar (∂d+1F)b(α), (2.18)

and the optimal weights are:

α = argmin b(α)TV ar (∂d+1F)b(α). (2.19)

It is easy to see that the optimal weights depend on the covariance matrix V ar (∂d+1F) of
the partial derivatives vector. To avoid breaking the line of thoughts, we delay the study of
this matrix to a later section (2.3.3). The only important thing to note is that since the partial
derivatives vector ∂d+1F is independent of α and the covariance matrix is positive semi-definite,
the function α ↦ E(α) is a convex bilinear form. Therefore, it has a global minimum and we
can derive new linear equations to determine α from the first-order conditions:

0 = ∂E
∂αi

= ∂
∂αi

b(α)TV ar (∂d+1F)b(α) (2.20)

The covariance matrix V ar (∂d+1F) can be derived from a simple statistical model of possible
functions (Section 2.3.3). This provides as many equations as needed to correctly constrain the
system.

2.3.3 A study on the variance of ∂
i+j

F

∂u
i
∂v

j

We have seen that Variance Minimization is one of the useful approaches to deal with an overdeter-
mined system. However, the evaluation of the variance of the partial derivatives of f is crucial since
the equations derived from Variance Minimization depend on the covariance matrix of the partial
derivatives. In this section, we introduce a simple statistical model for possible geometry functions
which enables us to estimate the value of V ar (∂dF).

In fact, the value of the matrix need only be determined up to a multiplicative constant, since
only the ratio of its elements appear in the Variance Minimization process. We choose to scale the
matrix so that the top-left element is 1, by setting:

Σd
i,j = V ar (∂dF) /V ar (∂dF

∂ud
) = Cov ( ∂dF

∂u(i−1)∂v(d+1−i)
,

∂dF

∂u(j−1)∂v(d+1−j)
)/V ar (∂dF

∂ud
) (2.21)

To compute this value, we consider the geometry of a mesh as an outcome of a random variable
F(u, v) = (X(u, v), Y (u, v), Z(u, v)). To simplify the demonstration, we work in the Frenet frame
of the mesh (eu,ev,en = eu × ev), and we consider only the normal component of the geometry:
N(u, v) = F(u, v).en. Also, we only consider derivatives up to the second order (d ≤ 2), because a
2-smoothness is usually sufficient for most surfaces.

Locally, the geometry can be approximated by a second-order polynomial N̄ in (u, v):
N̄a(u, v) = a1u2 + a2uv + a3v2 + a4u + a5v + a6 (2.22)

where (a1, a2, . . . ) are approximations of (∂2N
∂u2 ,

∂2N
∂u∂v

, . . . ).
If the mesh is sufficiently densely sampled, then a good approximation of the parameters (a1, . . . , a6)

can be obtained by using only the one-ring neighbourhood of a vertex. In the following, we consider



70 CHAPTER 2. IMPROVED PREDICTION FOR GEOMETRY COMPRESSION

Figure 2.7: The numbering of the one-ring used in the proof.

a vertex of degree 6 and its neighbours, numbered as shown in Figure 2.7. The best approximation
of N by N̄ in the least squares sense is found by minimizing:

H(a) = 6

∑
k=0
[N̄(uk, vk) −N(uk, vk)]2 (2.23)

Minimizing H(a) is a linear problem M.a = b with:

⎧⎪⎪⎨⎪⎪⎩
Mi,j = ∑6

k=0
∂N̄a

∂ai
(uk, vk).∂N̄a

∂aj
(uk, vk)

bi = ∑6
k=0

∂N̄a

∂ai
(uk, vk).N(uk, vk) (2.24)

Using the neighbourhood of Figure 2.7 yields

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
4

0 3
4

0 0 3
0 3

4
0 0 0 0

3
4

0 9
4

0 0 3
0 0 0 3 0 0
0 0 0 0 3 0
3 0 3 0 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.25)

and therefore

a =M−1b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1+N4

2
−N0√

3
3
(N6 −N5 +N3 −N2)−N1+N4

6
+ 1

3
(N6 +N5 +N3 +N2) −N0

N1−N4

3
+ 1

6
(N6 −N5 −N3 +N2)√

3
6
(−N6 −N5 +N3 +N2)

N0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.26)

The covariance of the partial derivatives of N can be derived from this expression:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
V ar (∂2N

∂u2 ) = V ar (a1) = V ar (N1+N4

2
−N0)

V ar (∂2N
∂v2 ) = V ar (a3)

. . .

(2.27)

Thus, the covariance of partial derivatives can be expressed as linear combinations of terms V ar(Ni)
and Cov(Ni,Nj). To simplify the problem, we make an additional assumption on the mesh, that
has been introduced and discussed by Ben-Chen and Gotsman[Ben-Chen and Gotsman 2005]: We
suppose that the covariance of two vertices that are not adjacent is 0, or more formally:

Cov (Ni,Nj ∣Nk = nk, k ∉ {i, j}, (i, j) ∉ E) = 0. (2.28)
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Model Σ2
1,2 Σ2

1,3 Σ2
1,1

armadillo 0.00 0.38 1.27
guardian -0.66 -0.02 1.68
gipshand 0.00 0.42 1.15
Max Planck 0.00 0.12 0.57
Neptune (uniform) -0.01 0.36 1.30
guardian (uniform) 0.00 0.34 1.35

our theoretical model 0 0.33 1.33

Table 2.4: Covariances of partial derivatives measured on our test meshes.

Furthermore, because of symmetry, all variances are equal, and we note σ2
s = V ar(Ni). For the same

reason, the covariances of the positions of adjacent vertices are equal, and we note σ2
n = Cov(Ni,Nj)

for (i, j) ∈ E.

This yields: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V ar(a1, a1) = V ar(a3, a3) = 3
2
σ2
s − 2σ2

n

V ar(a2, a2) = 4
3
(σ2

s − σ2
n)

Cov(a1, a3) = 5
6
σ2
s − 4

3
σ2
n

Cov(a1, a2) = Cov(a2, a3) = 0
(2.29)

On the other hand, since the value of the derivatives of N should not be dependent on a global
translation of all the vertices (uk, vk), we can choose a6 = 0, i.e. Cov(N0,Ni) = 0 ∀i ∈ [0,6]. This
yields: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V ar(a1, a1) = V ar(a3, a3) = 1
2
σ2
s

V ar(a2, a2) = 4
3
(σ2

s − σ2
n)

Cov(a1, a3) = −1
6
σ2
s + 2

3
σ2
n

Cov(a1, a2) = Cov(a2, a3) = 0
(2.30)

Combining equations (2.29) and (2.30), we can deduce that σ2
s = 2σ2

n. Putting back this value
in (2.29) or (2.30) shows that the normalized variance/covariance matrix of the partial derivatives is:

Σ2 =
⎡⎢⎢⎢⎢⎢⎣
1 0 1

3
0 4

3
0

1
3

0 1

⎤⎥⎥⎥⎥⎥⎦
(2.31)

Using the same process, we can compute:

Σ1 = [ 1 0
0 1

] (2.32)

We confronted these theoretical values with experiments. Table 2.4 gives the measured covari-
ances 1 on our set of test meshes. We can see that the results agree very well with the theoretical
results, except for the guardian and Max Planck models. We cannot currently explain why our model
fails on these meshes, however we conjecture that this may come from the fact that they have a high
number of very distorted triangles (see Figure 2.10).

1To estimate the value of the partial derivatives, we used a finite difference scheme on the one-ring of each vertex
with arbitrary eu, ev.
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2.3.4 Predictors for connectivity-driven compression

We now apply the theoretical framework presented above to the derivation of prediction weights in
various settings.

2.3.4.1 Parallelogram Rule:

The parallelogram rule, used by nearly all predictors, is a special case of our approach. For symmetry
reasons, it has only two different weights shown in Figure 2.8 (a). Because the number of weights is
small, expanding equation (2.14) to the first order is sufficient to constrain them:

0 = [2α1 + α3 − 1]f −√3[α1 + α3] ∂f∂u
dl + o(dl)

⇒ { α1 = 1
α3 = −1

(2.33)

Figure 2.8: Prediction stencils traditionally used for compression: Parallelogram (left), Dual Paral-
lelogram (center) and K-star (right, K = 6).

2.3.4.2 Dual Parallelogram Prediction:

We have seen in previous sections that it was possible to average several applications of the parallel-
ogram rule to decrease the prediction error, and that the weights derived from the spectral approach
performed even better. However, it is usually possible to further reduce the error by using other
prediction weights derived from our spatial approach. Applying (2.14) to the DPP stencil yields the
following equation:

0 = [α1 + 2α2 + 2α4 − 1] f− [α1 + α2 + 3α4] ∂f
∂u+ [α1

2
+ α2

4
+ 9

4
α4] ∂2f

∂u2 + 3
4
[α2 + α4] ∂2f

∂v2

(2.34)

The first order expansion imposes that:

{ α1 = −1 − 4α4

α2 = 1 + α4
(2.35)
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Model Classical Optimal ∆R/R
armadillo 7.40 6.67 10 %
guardian 6.85 5.95 13 %
gipshand 5.54 4.66 16 %
Max Planck 4.54 3.46 24 %
Neptune (uniform) 4.43 3.55 20 %
guardian (uniform) 6.39 5.65 12 %

Table 2.5: Comparison of the original DPP prediction scheme of [Cohen-or et al. 2002; Sim et al. 2003]
and the optimal Freelence approach [Kälberer et al. 2005]. The two first columns are the entropy
of residuals, in bits per vertex, for an original quantization of 12 bpv (14 bpv for the finer Neptune
mesh). The last column shows the improvement using the optimal weights.

We can easily verify that the DPP weights α1 = 1, α2 = 1
2
, α4 = −1

2
fulfill these requirements.

However, substituting these weights into (2.34) yields:

0 = −1
2

∂2f

∂u2
dl2 + o(dl2). (2.36)

This means that the DPP weights force a zero curvature along the u direction. This makes sense
if the mesh is aligned with the features of the surface it represents. This is the case for some CAD
models when the designer has taken into account the anisotropy of the model. However, for most
triangle meshes, there is no reason why the mesh should have such properties, so it is more natural to
avoid privileging a direction. For this reason, under the usual assumption of a 2-smooth surface, we
use Variance Minimization to determine the weights. The energy E(α) = b(α)TΣ2b(α) to minimize
is defined by:

b =
⎡⎢⎢⎢⎢⎢⎣

1
2
α1 + 1

4
α2 + 9

4
α4

0
3
4
[α2 + α4]

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
−1

4
+ 1

2
α4

0
3
4
+ 3

2
α4

⎤⎥⎥⎥⎥⎥⎦
(2.37)

from which we can derive the following first order condition:

∂E

∂α4
= 2 + α4 (5 + 3σ2

0,2) = 0 (2.38)

And the corresponding weights are:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α1 = 3(1−σ2

0,2)
5+3σ2

0,2

= 1
3

α2 = 3(1+σ2

0,2)
5+3σ2

0,2

= 2
3

α4 = − 2
5+3σ2

0,2

= −1
3

(2.39)

This shows that the Freelence weights are optimal for smooth meshes, in the sense that they
provide the smallest prediction error for all possible meshes.

To show the difference between the DPP and optimal weights in terms of compression rate, we
implemented a Dual Parallelogram Compressor similar to Freelence [Kälberer et al. 2005]. In our
experiments, we used both irregular and uniform meshes. They are illustrated in Figure 2.10. The
table 2.5 compares the entropy of residuals for the DPP and Freelence predictors. The experiments
show a constant improvement of around 16% using the optimal weights.
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2.3.4.3 Average Parallelogram Prediction

We also computed the weights for K-star. Because of symmetry, there are only two different weights,
one for the creases (αc) of the star and the other for the tips (αt). There is another degree of freedom
regarding how far the tip vertices (respectively the crease vertices) are from the center. Let RT (K)
be the ratio between the distance from a tip vertex to the center and that from a crease vertex to the
center for a given vertex degree K. Then, the neighbourhood has the following geometry:

{ ui+1 = (u + cos (2πi
K
)dl, v + sin (2πi

K
)dl)

uK+i+1 = (u +RT (K)cos (2πiK
+ π

K
)dl, v +RT (K)sin (2πiK

+ π
K
)dl) (2.40)

Using this neighbourhood, equation (2.14) at order 2 yields the following equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αc + αt = 1

K

αc∑K−1
i=0 cos2 (2πi

K
) + [RT (K)]2αt∑K−1

i=0 cos2 (2πi
K
+ π

K
) = 0

αc∑K−1
i=0 sin2 (2πi

K
) + [RT (K)]2αt∑K−1

i=0 sin2 (2πi
K
+ π

K
) = 0

(2.41)

and the K-star weights are: ⎧⎪⎪⎨⎪⎪⎩
αt = 1

K
1

1−[RT (K)]2

αc = 1
K
(1 − 1

1−[RT (K)]2 ) (2.42)

Depending on the assumptions on the mesh, several canonical values exist for RT (K), which
determine the shape of the canonical neighbourhood. We experimented with 2 configurations, that
are shown in Figure 2.9:

• Symmetric triangles : All the triangles of the neighbourhood are the same. Or equivalently, the
tip vertices are mirror images of the center vertex with respect to the edges joining two crease
vertices. In that case, RT (K) = 2cos ( π

K
).

• Equilateral tip triangles : The tip triangles are equilateral, and RT (K) = cos ( π
K
) +√3sin ( π

K
).

This approach is usually better than the previous one, and (expectedly) a lot better for uniform
meshes.

Figure 2.9: Geometry of canonical K-star neighbourhood configurations: symmetric triangles (top)
and equilateral tip triangles (bottom).

In our experiments, we used both irregular and uniform meshes. They are illustrated in Fig-
ure 2.10.
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Model vs. Vertex Degree Total
3 4 5 6 7 8

armadillo ( 46) 66 92 83 88 83 86
guardian 81 78 81 82 86 90 83
gipshand * ( 98) 93 57 84 87 61
max Planck ( 49) 77 85 77 92 97 83
Neptune * ( 81) 50 62 58 * 60
(uniform)
guardian * * 51 56 * * 55
(uniform)

Table 2.6: Prediction error of our method (with equilateral tip triangles) relative to Average Paral-
lelogram Prediction for K-star neighbourhoods (in percents, i.e. 100 × Enew

EAPP
). We only give details

for K ≤ 8, but the total if for all K. Parentheses denote statistically doubtable results (for which
there were less than 50 occurrences). The asterisk denotes absence of data. Our method constantly
diminishes the prediction error, especially for uniform meshes.

We first evaluate prediction error. Tables 2.6 and 2.7 summarize the results. We can see that
the new predictors are far better than the traditional Average Parallelogram Predictor for all K.
Compared to the approach of [Pajarola and Rossignac 2000a], the new predictors are roughly as
efficient for general meshes, but win by a large margin for uniform meshes. If the mesh to compress is
known to be mostly irregular, then the topological distance approach may be more efficient. If nothing
is known about the mesh a priori, then the equilateral tip triangles strategy is the best approach. It
is interesting to note that for K-star configurations, the Taylor approach also yields weights that are
close to the least square weights (Table 2.3), even closer than the spectral weights.

Figure 2.10: Some of the meshes used in our experiments, with close-up views to show their regularity.
From left to right: armadillo [173 kv], guardian [656 kv], guardian (uniform) [153 kv], gipshand [137
kv], max Planck [199 kv], Neptune (uniform) [1.6 Mv].

We also compared the efficiency of the prediction schemes in terms of actual entropy, which gives
a better measure of the efficiency of prediction weights. To compare the three different schemes
(APP, CPM and ours), we implemented a geometry compression scheme similar to that of [Pajarola
and Rossignac 2000a], where the original CPM predictor is presented. We only slightly modified the
quantization scheme: Instead of a global quantization, we apply quantization in a local frame, as in
Freelence [Kälberer et al. 2005]. The results are given in Table 2.8. We can see that even if Taylor
and CPM weights were approximately as efficient in terms of prediction error, our Taylor predictor
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Model vs. Vertex Degree Total
3 4 5 6 7 8

armadillo (121) (105) 94 98 98 113 97
guardian 96 100 96 102 100 101 101
gipshand * ( 96) 87 106 97 73 102
Max Planck (118) 103 98 106 101 100 102
Neptune * (103) 57 53 45 * 52
(uniform)
guardian * * 54 49 * * 49
(uniform)

Table 2.7: Prediction error of our method relative to CPM prediction [Pajarola and Rossignac 2000a],
for the equilateral triangles canonical neighbourhood geometry.

Model APP CPM Taylor ∆R/R
armadillo 15.83 13.10 10.67 18%
guardian 13.28 12.31 11.94 3%
gipshand 11.16 8.86 7.61 14%
Max Planck 10.59 8.32 7.76 7%
Neptune (uniform) 8.06 6.32 5.74 9%
guardian (uniform) 14.27 12.87 12.25 5%

Table 2.8: Comparison of the APP, CPM and Taylor (equilateral) prediction schemes, when applied
to the geometry compression method described in [Pajarola and Rossignac 2000a], modified to use
local quantization. The three first columns are the entropy of residuals, in bits per vertex, using a
quantization of 14 bpv. The last column shows the improvement using the Taylor weights instead of
CPM.

consistently improves compression compared to CPM, which is in turn superior to APP.

2.3.4.4 High Degree Polygon Prediction:

The Taylor approach can also be used to derive weights to predict polygon geometry as in [Isenburg
et al. 2005a]. To determine their prediction weights, Isenburg et al. also have to deal with an over-
constrained system. Their heuristic is to use weights norm minimization. However, we found that
making the assumption that f was smooth and using variance minimization instead usually resulted
in better prediction.

Figure 2.11 gives the prediction weights for the spectral method of Isenburg et al. [Isenburg et al.
2005a] and our spatial approach. In most situations, the weights are the same for the two methods.
Such polygons are shown in blue on Figure 2.11. In some cases, however, the weights are different
(polygons in green and red). For odd number of known points and for cases where only one vertex
is missing, the system is simply constrained and there is no need for variance or weights norm
minimization.

We have repeated the experiment conducted in [Isenburg et al. 2005a], and compared the results
with our method. For a variety of models, we have computed the prediction error given by the weights
from [Isenburg et al. 2005a] and the weights using our method. As these weights are the same as
those of Isenburg et al. for pentagons, table 2.9 only report results for hexa-, hepta- and octagons.
We can see that in nearly all cases, the prediction error was reduced. In the case where there are
4 known points of the octagon, results are heterogeneous. Although the error reduction is usually
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biggest for higher degree polygons, the improvements in weights are most useful for the hexagon: For
the meshes we use, approximately 70% of the vertices are predicted using hexagon rules, and 25% of
the total number of vertices are predicted using the rule hexagon/v4. The problem noted by Isenburg
et al. [Isenburg et al. 2005a] remains: It is sometimes better to use the octagon/v3 rule instead of
octagon/v5 and octagon/v6 rules.

Figure 2.11: Polygon prediction weights. The black vertex is being predicted using the geometry of
the red vertices. Blue polygons have the same prediction weights as [Isenburg et al. 2005a]. Other
colours denote cases where the new weights perform always better (green) or sometimes better and
sometimes worse (red) than [Isenburg et al. 2005a].

2.3.4.5 Equivalence with Spectral Prediction for 3x3 Stencils:

Although developed for meshes in the irregular setting, our method can also be used to determine
prediction weights on regular grids. In the following, we show that our method is actually equivalent
to that of Ibarria et al. [Ibarria et al. 2007] on 3 × 3 stencils.

The spectral method of Ibarria et al. consists in finding the prediction that zeroes the high
frequency content of the discrete cosine transform of f . This is equivalent to finding the prediction
that reproduces the basis vectors Bi of the DCT for low frequencies, i.e. the prediction weights αi,
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Model hexa hepta octa

v3 v4 v5 v3 v4 v5 v6 v3 v4 v5 v6 v7

armadillo I 630 577 1 1249 1266 810 351 3335 3054 4923 2879 3

VM 545 1173 3335 3939 2795

guardian I 9 8 1 66 67 43 19 151 158 177 107 6

VM 8 62 151 146 104

fertility I 753 690 1 1522 1528 1025 445 2827 2677 3621 2347 3

VM 652 1425 2827 3212 2279

gipshand I 371 340 1 1294 1359 694 301 2608 2994 6537 1385 9

VM 321 1230 2608 1895 1344

max I 126 116 1 1081 1060 789 342 3187 3156 4326 2485 8

Planck VM 109 1004 3187 3400 2412

Table 2.9: Average prediction error when predicting the missing vertices of polygons. For each
polygon of degree K, we computed the error when 3 to K − 1 vertices were known. The figures have
been scaled per model, 1 corresponding to the smallest error. For every model, each row respectively
gives the results of [Isenburg et al. 2005a] (I), our method (VM). As the weights differ only for hexa-,
hepta- and octagons, we only give the results for these polygons. (Note: The Max Planck model we
used is finer than that of [Isenburg et al. 2005a], so the numerical results differ.)

i ∈ [1,8] are such that:
Bi.α = Bi,u (2.43)

where u is the index of the sample to predict, and A is the matrix A without its u-th row.

In the case of the 3 × 3 stencil, the basis vectors of the DCT are the same as the ’basis vectors’
of our method, which are the polynomials in du and dv. The Figure 2.12 shows the correspondence
between the DCT basis and the values of f that generate the same vectors. This shows that for
the 3 × 3 neighbourhood, spatial smoothness (small high-order terms in the Taylor expansion) and
spectral smoothness (small high-frequency content) are equivalent.

Figure 2.12: The nine basis vectors of the DCT used in [Ibarria et al. 2007] and the corresponding
values of f .

2.3.5 Subdivision

Most subdivision schemes use linear prediction to define refinement operations. Therefore, our method
can be used to compute refinement operators for various subdivision schemes [Zorin et al. 1996a; Loop
1987; Kobbelt 1996; Dyn et al. 1987; Labsik and Greiner 2000]. Although our approach does not give
new predictors to be used in place of existing ones, it gives an alternate, spatial way of determining
prediction weights, whereas other methods transfer the problem in the spectral setting. As the
derivation is similar for all these methods, we only show how to derive the modified butterfly scheme
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using our approach. In addition, we propose a new predictor for one of these methods [Labsik and
Greiner 2000], that has smaller support but the same smoothness of limit surfaces.

2.3.5.1 Modified Butterfly Scheme

The modified butterfly scheme [Zorin et al. 1996a] presented in Section 2.1.4 uses two different stencils
depending on the regularity of the mesh around each newly added vertex (Figure 2.13), the regular case
being the same as in the original butterfly scheme [Dyn et al. 1990]. The authors note that polynomial
reproduction up to degree n is a necessary condition for n-smoothness of the limit surface. They use
the fact that the neighbourhood is symmetric to use the Discrete Fourier Transform (DFT). They
translate the polynomial reproduction condition to the spectral domain, which, for polynomials of
degree 2, constrains five of the eigenvalues of the subdivision matrix (see Section 2.1.4). The weights
are determined by taking the inverse DFT of the vector of eigenvalues of the subdivision matrix,
where these constraints have been met. They are given on Figure 2.13.

It is to be noted that these constraints are sometimes not sufficient to completely determine the
weights, and sometimes too strong. In the case of an extraordinary vertex of degree K (Figure 2.13,
right), the polynomial reproduction condition fixes the second and K-th eigenvalues to 1/2 and the
first, third and (K − 1)-th eigenvalues to 1/4. In the case when K = 3, the constraints for the first
and second eigenvalues are incompatible. When K > 5, there are eigenvalues that are not fixed. Both
these situations need additional assumptions to uniquely determine the weights. We discuss them
later in this section.

Because both spectral and Taylor approaches rely on polynomial reproduction to determine the
weights, the Taylor prediction approach is equivalent to the modified butterfly scheme. However we
do not transfer the problem from the spatial to the spectral domain. While we do not derive new
weights for this subdivision scheme, the spatial domain approach can help justify in a more intuitive
manner some of the choices made when all constraints cannot be met (e.g. at extraordinary vertices
when K = 3) or when there remain some degrees of freedom (K ≥ 7). Therefore, we show below how to
compute the modified butterfly weights using the spatial approach, in the ordinary and extraordinary
case.

For ordinary vertices, the modified butterfly scheme uses the first stencil of Figure 2.13. Note
that because of symmetry, α1 = α2, α3 = α4 and α5 = α6 = α7 = α8. In the regular setting, let dl be
the length of edges. Affine invariance enables us to choose u = (0,0) and {u1, . . . ,uk} equal to:

u1 = (u + dl
2

, v )
u2 = (u − dl

2
, v )

u3 = (u , v + √3
2
dl )

u4 = (u , v − √3
2
dl )

u5 = (u + dl , v + √3
2
dl )

u6 = (u − dl , v + √3
2
dl )

u7 = (u + dl , v − √3
2
dl )

u8 = (u − dl , v − √3
2
dl )

(2.44)

Then by applying equation 2.14, we have:

0 = [2α1 + 2α3 + 4α5 − 1]f+ 0 × ∂f
∂u

dl + 0 × ∂f
∂v

dl

+ 0 × ∂2f
∂u∂v

dl2 + 1
4
[α1 + 8α5] × ∂2f

∂u2 dl
2

+ 3
4
[α3 + 2α5] × ∂2f

∂v2 dl
2 + o(dl2)

(2.45)
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Figure 2.13: Prediction stencils of the modified butterfly scheme, around ordinary vertices (left), and
extraordinary vertices (right). The vertex to predict is drawn in black, and identical colours indicate
similar weights. K is the valence of the extraordinary vertex.

From this equation, we can immediately see that to reproduce all polynomials of degree 2, the
following conditions must be met:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α1 + 2α3 + 4α5 = 1
α1 + 8α5 = 0
α3 + 2α5 = 0

⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α1 = +1
2

α3 = +1
8

α5 = − 1
16

(2.46)

The two approaches being equivalent, these weights are the same as those of the butterfly scheme.

Around extraordinary points, the modified butterfly scheme uses the vertices of the 1-ring of the
irregular vertex of degree K. The corresponding stencil is shown in Figure 2.13. This time, the
neighbourhood is defined by:

{ u1 = (u − dl
2
, v)

ui+2 = (u + (−1
2
+ cos (2πi

K
))dl, v + sin (2πi

K
)dl) (2.47)

Expanding to the second order gives the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 +∑k≥2 αk = 1

∑k≥0 αk+2.cos (2kπK
) = 1

2

∑k≥0 αk+2.sin (2kπK
) = 0

∑k≥0 αk+2.sin
2 (2kπ

K
) = 0

α1 = 3
4

∑k≥0 αk+2.sin (4kπK
) = 0

(2.48)

These conditions are met by the weights of the modified butterfly scheme, except for K = 3. In
this particular case, the resulting system is under-constrained for a first order Taylor expansion, but
over-constrained at order 2:

0 = [α1 + α2 + 2α3 − 1]f+ [−α1

2
+ α2

2
− 2α3] ∂f∂u

dl

+ [α1

8
+ α2

8
+ α3] ∂2f

∂u2 dl
2 + 3

4
α3

∂2f
∂v2 dl

2

+ o(dl2)
(2.49)

The first order expansion imposes that:

{ α1 = 1
2
− 3α3

α2 = 1
2
+ α3

(2.50)
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To determine α3 in the system above, an additional constraint is needed, that is derived from
the second order reproduction constraint. In their scheme, Zorin et al. [Zorin et al. 1996a] manually
pick the constraints that are ignored. In the spatial domain, it is possible to better justify the choice
that we make. While it is not possible to zero the second order term in the expansion, it is possible
to minimize it by using the Variance Minimization approach presented before. The quantity to be
minimized is E(α) = b(α)TΣ2b(α), where

b =
⎡⎢⎢⎢⎢⎢⎣

1
8
α1 + 1

8
α2 + α3

0
3
4
α3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
8
+ 3

4
α3

0
3
4
α3

⎤⎥⎥⎥⎥⎥⎦
(2.51)

In that particular case, we have

E(α) = (1
8
+ 3

4
α3)2 + 9

16
α3

2 + 3

32
σ2
0,2α3 (1 + 12α3) (2.52)

The first order condition is ∂E
∂α3

= 3
16
(1 + 12α3)(1 + σ2

0,2) = 0. The optimal weights do not depend on

σ2
0,2, and α3 = − 1

12
, α1 = 3/4, α2 = 5/12, which are the same weights as in the scheme of Zorin et al..

In the cases K = 4 and K = 5, the system obtained via the spatial approach is consistent, and
yields once again the same weights as the modified butterfly scheme.

For K >= 7, the system is under-constrained for polynomial reproduction at order 2. To fix the
remaining weights, Zorin et al. choose to take the non-constrained eigenvalues equal to zero. They
justify the choice by the simplicity of the approach. In the spatial domain, however, it is easier to
find a rationale for this choice. As the desired smoothness (order 2) is already reached, Variance
Minimization does not help here, but Weights Norm Minimization can be used. This technique, that
is initially valid only in the spatial domain, can be used retroactively to justify the choice made by
Zorin et al.. Because the (inverse) DFT is a unitary transformation, the norm of the weights vector
is the same as the norm of the vector of eigenvalues. Making the remaining eigenvalues zero actually
minimizes the norm of the vector of eigenvalues, thus also minimizing the norm of the weights. In
this case, it the norm is:

∥α∥2 = (3
4
)2 + 1

K
∥1
4
,
1

2
,
1

4
,0, . . . ,0,

1

4
,
1

2
∥2 = 1

16
(9 + 11

K
) . (2.53)

Although we presented here only the example of modified butterfly subdivision, the process that
we use to derive subdivision weights is general. Since a lot of subdivision schemes use the polynomial
reproduction condition to derive their weights (e.g. [Zorin et al. 1996a; Loop 1987; Kobbelt 1996;
Dyn et al. 1987]), our method can also be used to derive their weights.

2.3.5.2 Interpolating
√
3 subdivision

The previous subdivision schemes (modified butterfly, loop, b-spline) split each edge in two and each
face in 4 subfaces. In contrast to this approach, Kobbelt [Kobbelt 2000] proposed a subdivision
method that converged slower than traditional 1-to-4 subdivision. At each subdivision step, a vertex
is added at the center of each face, and the face is split in 3 subfaces. Then, edges are flipped
to rebuild a regular triangulation. His method is factored into a prediction step which is a simple
average rule with weights {1

3
, 1
3
, 1
3
}, and an update step which uses the one-ring neighbourhood

pn+1 = (1 − αK)pn + αK

K ∑q∈OneRing(p) q. αK is determined so that the subdivision matrix has the

correct sufficient eigenstructure that guarantees C1 smoothness of the limit surface according to the
criterion of [Reif 1995].
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Labsik and Greiner [Labsik and Greiner 2000] later proposed an interpolating (non-lifted) scheme
based on the same subdivision process. They determined the weights using the same approach
as [Zorin et al. 1996a] that is discussed above. They use the predictors of Figure 2.14. The weights
for these predictors are derived from the usual polynomial reproducing necessary condition, and thus
our method gives the same results. Labsik and Greiner also show that their scheme has C1 limit
using the subdivision matrix eigenstructure.

Figure 2.14: Prediction stencils of the interpolating
√
3 scheme of Labsik and Greiner [Labsik and

Greiner 2000], around ordinary vertices (left), and extraordinary vertices (right). The vertex to
predict is drawn in black, and identical colours indicate similar weights. K is the valence of the
extraordinary vertex.

However, we found that it was possible to derive another interpolating prediction scheme, which
is a lot simpler, but nevertheless also guarantees convergence to C1 limit surfaces. This scheme has
a smaller support (the prediction neighbourhood has 6 vertices instead of 12) and thus enables faster
iteration with barely noticeable difference (see Figure 2.16). The prediction scheme uses the stencil
of Figure 2.15. The convergence analysis can be found in Appendix 7.6.

Figure 2.15: Prediction stencils of our interpolating
√
3 scheme, around ordinary vertices (left), and

extraordinary vertices (right). The stencil is smaller than for the scheme of Labsik and Greiner [Labsik
and Greiner 2000] (Figure 2.14), but also guarantees C1 smoothness.

2.4 Conclusion

In this chapter, we have presented two approaches to improve geometry prediction. Both remain
within the predict and correct paradigm used by nearly all mesh compression methods. This paradigm
has the advantage of simplicity and computational efficiency (only a few elementary operations are
needed), and will therefore probably remain a widely made choice when implementing compression
algorithms.
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Figure 2.16: Subdivision results for our approach (left) and that of Labsik and Greiner (right). The
left subdivision scheme has a twice smaller support.

Spectral approaches had already been used to derive prediction weights in the case of grid settings
(i.e. images) [Ibarria et al. 2007]. We have extended this approach to irregular settings found in meshes
and shown that although this technique performed well in some cases, it could not be reliably used
for extrapolation. In particular, it results in a systematic prediction error in the widely used average
parallelogram predictor. This failure shows that a method for deriving prediction weights should take
into account the geometry of the neighbourhood instead of being purely based on its combinatorial
properties.

Then, we have proposed another completely different approach. Instead of considering spectral
smoothness (i.e. predicting small high frequency content) like previous methods [Isenburg et al.
2005a; Ibarria et al. 2007], we have considered smoothness in a spatial context, by using the Taylor
expansion of the local geometry function, and predicting this time small high order content. We
have shown that this method did not have the drawbacks of the spectral approach and could handle
extrapolation very well. We have provided three examples – Dual and Average Parallelogram and
High Degree prediction – where the Taylor weights were better than usual weights derived from
experience of spectral approaches.

It is important to keep in mind that this approach is limited by the well known Runge phe-
nomenon [Runge 1901]. For larger neighbourhoods, increasing the interpolation order by further
expanding the Taylor approximation can lead to large oscillations. In these cases, a better approach
consists in stopping the expansion at a lower order, which constrains prediction weights, but leaves
an under-determined system. A unique solution can then be determined by minimizing the norm of
the prediction weights.

The spatial approach is appealing since it provides a completely generic way of deriving linear
prediction weights for a large spectrum of mesh processing methods. In addition, the assumptions are
very simple, and theoretical results are therefore quite easy to obtain. The genericity of the technique
could find several applications in mesh processing. As an example, we have used our method to derive
wavelet coefficients, but we think that it can be used in various other environments.
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Chapter 3

Handling Large Meshes: State of

the Art

Most of the mesh compression algorithms presented in Sections 1.3 and 1.4 assume that the entire
mesh fits in main memory. This poses a problem for very large meshes, since typical representations
for these meshes are very large, eventually becoming bigger than the available main memory. For
example, using a halfedge [Campagna et al. 1998] mesh representation uses 480 bits per vertex. The
186 million vertices “Michelangelo’s St. Matthew”1 model uses 11 GB of memory, which is beyond
the reach of typical desktop computers.

In some cases, compression can be carried out with large computing resources. However, the
end user – who will need to decompress the mesh – usually has smaller available resources, namely
a desktop workstation. Therefore, for meshes of intermediate size, the problem is asymmetric, i.e.
algorithms may use larger resources for compression than for decompression. For very large meshes,
however, it is desirable to compress a mesh that resides on a disk rather than inside the core memory.
Algorithms that have this property are named Out-Of-Core (OOC).

Three solutions have been proposed to compress large meshes. The following sections detail each
of these approaches.

• Some methods cut the mesh into smaller pieces and compress them one by one [Ho et al. 2001]
or employ external memory structures that page mesh parts from disk when needed [Isenburg
and Gumhold 2003]. These methods are typical examples of Out-Of-Core processing.

• The streaming paradigm is a kind of OOC method that represents the mesh as a stream of
interleaved vertices, elements, and finalization tags. A few compression methods have been
designed that can encode such streaming meshes [Isenburg and Lindstrom 2005] on-the-fly as
they stream in [Isenburg et al. 2005b; 2006a].

• Random-accessible methods enable efficient decompression, by providing a compressed mesh
data structure from which the decompressor can query only the parts it is interested in [Choe
et al. 2009; Yoon and Lindstrom 2007; Kim et al. 2010; 2006; Du et al. 2009; Jamin et al. 2009].

1http://graphics.stanford.edu/data/mich/
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3.1 Out Of Core

The earliest attempts at the compression of large meshes used the OOC paradigm. Because the
available amount of core memory was limited, these algorithms simply chose to keep the whole mesh
on the disk and work on smaller pieces that could be loaded from disk and would fit in memory (see
Figure 3.2).

Ho et al. [Ho et al. 2001] split a large mesh M into N pieces of approximately the same size, using
a graph cutting approach. They make an initial pass on the mesh to compute the mesh bounding box.
Then, they build a coarse weighted graph G in one pass over the mesh. They divide the bounding
box into a grid of size D ×D ×D, with D = 64 or D = 128. Then, they traverse the mesh triangles.
For each vertex of a triangle t, they compute in which grid cell C it falls, and create a node for G at
the center of C if there is no such node yet (the node has a weight of 0). If the three vertices of t fall
within the same cell, they increase the cell weight by 1. If t has two vertices in one cell CA and one
vertex in cell CB , then the weight of edge (CA,CB) is increased by 1 (the edge is created if it does
not exist). This process results in a graph G, that is hopefully small enough to fit in-core. Each node
(resp. edge) of G has a weight that represents how many triangles of the original mesh are mapped
to it.

Ho et al. then use METIS [Karypis and Kumar 1998] to find a balanced partition (in terms of
weights) (Pi)i=1...N of G with small edge cuts. This partition of G induces a partition (P ′i)i=1...N of
M that has the following properties:

• P ′ is balanced – in terms of number of triangles per piece – since the sum of the weights of the
vertices in each Pi represents exactly the number of triangles in P ′i.

• P ′ has a simple boundary structure, i.e. there are few triangles that span two mesh pieces. This
results from the small edge cuts of P .

• The pieces P ′i are spatially coherent, since they result from snapping vertices onto a grid.

After the mesh has been partitioned, the compression process uses N further passes over the mesh.
For each pass i, the method extracts the triangles of Pi by repeating the above vertex grid snapping
process, keeping triangles that snap to grid cells associated with the nodes of Pi. This way, it builds
an in-core mesh that is compressed using a single-rate in-core algorithm [Touma and Gotsman 1998].

To deal with the boundary of the pieces, they propose two alternatives:

• The first one is to code the pieces in a totally independent manner, by duplicating the vertices
shared by several pieces. This has the advantage of being very easy to implement, but the
obvious drawback is that there can be a large overhead associated with the duplicated vertices
– up to 50% of the vertices can be coded twice. However, a careful choice of the partitioning
algorithm results in less than 1% of duplicated vertices in most cases.

• When the exact connectivity of the original mesh must be recovered – i.e. duplicating vertices
is not an option – they provide a gluing process that stitches vertices across adjacent partitions.
At any time in the decoding process, the algorithm maintains a list CL of boundary vertices
that have not yet been glued to. This list is organized in strips of consecutive boundary vertices.
When the connectivity of a piece S of the mesh is fully decoded, its boundary vertices can be
glued to the vertices of CL. The algorithm first identifies one vertex v in CL that corresponds
to the first vertex in the boundary BS of S. This is done by explicitly specifying the index of
v in CL and BS . Then, the correspondence between the other vertices of BS and those of CL

can be specified at minimal cost by zippering the vertices of BS with those of CL starting from
v (see Figure 3.1). Only the zippering direction and the number of vertices to be glued need to
be given. When all the gluing is done, the geometry of the remaining vertices is decoded.



3.1. OUT OF CORE 87

Figure 3.1: The boundary gluing process using zippering. CL is drawn in bold, S is the red part,
and the previously decoded – and released – part is in light blue. (a) The correspondence between v1
and v′1 is given by specifying the index of v1 (resp. v′1) within CL (resp. BS) . Then, the zippering
directions are given (arrows). Finally, the number of vertices to glue are specified (green arrows). (b)
This is enough information to glue a strip of vertices. (c) This step is repeated to glue a second part.

Figure 3.2: The Out-Of-Core compression pipeline: The mesh is split into smaller pieces that can be
handled by a traditional compression algorithm.
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Later, Isenburg and Gumhold presented another method also based on a partition of the input
mesh in a set of clusters [Isenburg and Gumhold 2003] using a graph partitioning method similar to
that of the previous approach. Then, instead of making N passes over the mesh that each builds an
in-core cluster and compresses it on the fly, they do only two passes over the mesh and sort the vertices
and faces of the mesh in several files, each of which represents a single cluster in an out-of-core way.
Then, they apply two additional passes to ensure that each of these files can be loaded as an in-core
mesh, by creating the necessary adjacency relationships between vertices and faces in each cluster.
Thus, they have a complete out-of-core representation of the mesh that provides transparent access
to its elements.

In a second phase – and only after all the clusters have been fully created – they apply a region-
growing compression process similar to that of Touma and Gotsman [Touma and Gotsman 1998]. Only
the clusters that are being traversed by the active region boundary are kept in-core (see Figure 3.3).
In contrast to [Ho et al. 2001], there is no need to explicitly handle cluster boundaries, since everything
functions as if clusters did not really exist. However, great care must be taken in order to minimize
cache misses, that occur whenever an element is processed that is not in one of the clusters that are
stored in-core. When the latter happens, a new cluster is loaded from the disk, which is an expensive
operation. Isenburg and Gumhold use two complementary methods to ensure this:

• When a specific gate of the boundary has been processed, the next gate is chosen so that
it minimizes the chance of triggering a cache miss. In practice, the more remote along the
boundary the next gate is, the greater the chance of it being within another cluster, and therefore
the higher the probability of a cache miss. Therefore, where optimizing the compression bit rate
would drive them to choose as next gate a zero-slot gate [Isenburg 2002], the authors choose
to limit the search to a distance of +/- 10 gates along the boundary (starting from the current
gate). If there is no such gate, they stay at the current position, lest choosing a better gate
costs a cache miss.

• When a split operation occurs (see Section 1.3), they process the shorter of the two resulting
boundary loops first. This improves the locality of references and reduces the memory footprint.

Using this technique enables making compression in only one pass once the OOC representation has
been built, as in the original algorithm of Touma and Gotsman [Touma and Gotsman 1998]. This
enables 100 times faster decompression than the algorithm of Ho et al. [Ho et al. 2001]. In addition,
the bit rates are approximately 25% better.

The latter algorithm prefigures the streaming paradigm that we will describe in the next section.
During the compression process, once the active boundary has left a cluster, this cluster will not
be used again (except if another boundary of the stack uses it). Everything works as if the cluster
had been finalized. The streaming paradigm takes this idea one step further by explicitly specifying
finalization and using actual faces instead of face clusters.

3.2 Streaming

In the streaming paradigm [Isenburg and Lindstrom 2005], the mesh is represented as an interleaved
sequence of vertices, triangles, and finalization tags (Figure 3.5). A vertex is introduced just before
the first triangle that references it, and is released just after the last face that references it (see
Figure 3.4 for an example). Finalization tags specify when a vertex is referenced for the last time.
This information enables the compressor to continuously release and reuse data structures, making
it possible to compress gigantic meshes which cannot be handled by non-streaming algorithms. For
example, the streaming triangle mesh compressor of Isenburg et al. [Isenburg et al. 2005b] encodes
the 186 million vertices “St. Matthew” model using less than 5 MB of main memory. Note that in
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Figure 3.3: Out-of-core compression of the “Lucy” model with the approach of [Isenburg and Gumhold
2003]. The left picture shows the partition of the mesh. The right picture illustrates the compression
process. The already compressed clusters are rendered as points, while the rest is rendered as triangles.
The cached clusters are coloured. The boundary of the active region is drawn in green. (Figure taken
from [Isenburg and Gumhold 2003]).

Figure 3.4: The simple example mesh of Figure 1.7, specified as a streaming mesh. The crossed
vertices denote finalization tags.
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order to have a streaming decompression, the compressor must transmit the finalization tags to the
decompressor (else, the decompressor cannot release finalized elements). This adds some (usually
small) overhead compared to non-streaming approaches.

Figure 3.5: The streaming compression pipeline: The mesh is fed to the compressor as an interleaved
sequence of vertices, triangles and finalization tags.

The compression process is simple: The coder maintains an active boundary, that consists in the
vertices and edges that have been introduced but not yet finalized. Each time a new face is read,
the coder specifies to which of the active vertices or edges this face is adjacent. The face may be
adjacent in 8 different ways to the active boundary (see Figure 3.6). These 8 situations correspond to
the 8 connectivity compression symbols that are entropy coded. If the face introduces new vertices,
the position of these vertices is predicted and residual coded. The coder then writes finalization
information and releases finalized vertices.

The memory footprint of the compressor/decompressor is directly linked to how long the vertices
remain in memory. A mesh with local references will use less memory than one where vertices remain
active during a long time. To illustrate the quality of a streaming mesh, Isenburg and Lindstrom
use two-dimensional layout diagrams [Isenburg and Lindstrom 2005]. The vertices are indexed along
the vertical axis, in the order in which they appear in the input file. The cells are indexed on the
horizontal axis, in the same order. The vertices of the i-th cell are drawn as points on the i-th column,
and a vertical line connects them. Intuitively, the length of this line indicates the locality of vertex
references (see Figure 3.7). Similarly, a horizontal line is drawn for each j-th vertex which connects
all cells that reference it. Thus, the layout diagram gives a visual understanding of the coherence of
a mesh: The closer the points and lines group around the diagonal, the more coherent the layout is,
and the more efficient compression is – in terms of both memory consumption and bit rates.

Several methods naturally generate streaming meshes [Lorensen and Cline 1987; Silva and Mitchell
1998; Bernardini et al. 1999; Ju et al. 2002; Mascarenhas et al. 2004; Isenburg et al. 2006b]. They
have either been designed to provide this feature [Mascarenhas et al. 2004; Isenburg et al. 2006b], or
just happen to generate coherently organized elements [Lorensen and Cline 1987; Silva and Mitchell
1998; Bernardini et al. 1999; Ju et al. 2002]. In the latter case, algorithms can be modified to
interleave elements and provide finalization information. On the other hand, existing models must
be converted to the streaming format. If the mesh is coherent enough, this can be done efficiently via
vertex compaction [Isenburg and Lindstrom 2005]. When this is not the case, Isenburg and Lindstrom
have designed several methods to reorder meshes and provide more coherent layouts [Isenburg and
Lindstrom 2005].

Because the faces of the mesh are compressed as they stream in, the order in which they appear is
preserved. This means that in addition to the adjacency relationships stored by traditional compres-
sion algorithms, streaming compressors compress an additional information: face order. Therefore,
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Figure 3.6: The eight possible adjacency configurations between the written triangle and the active
vertices and half-edges maintained by the compressor of [Isenburg et al. 2005b]: a startx triangle
is not adjacent to any active half-edge, but may be adjacent to zero, one, two, or even three active
vertices; an add triangle is only adjacent to one active half-edge, with the third vertex being newly
introduced; for the similar join configuration this third vertex is already active; a fill triangle is
adjacent to two half-edges and an end triangle is adjacent to three half-edges. The small boxes show
the triangle count and number of active half-edges. (Figure from [Isenburg et al. 2005b]).

Figure 3.7: Streaming layout diagrams for various reorderings of the “dragon” model. From left to
right: depth-first, breath-first, z-order, spatial sort, spectral sequencing. (Figure from [Isenburg and
Lindstrom 2005]).
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streaming compressors usually have a worse compression ratio than traditional methods. To alleviate
this problem, Isenburg et al. have proposed to use a delay buffer [Isenburg et al. 2005b] to cache a
fixed number of faces. By reordering the faces within this buffer, they are able to increase compres-
sion rate by loosening the ordering constraint to the cost of increased memory consumption during
encoding.

In addition to using drastically less memory than traditional compression methods, streaming
compressors are also very fast because they can interleave I/O and computations. They also benefit
from better memory locality. The authors have later generalized their streaming triangle compressor
to tetrahedral volume meshes [Isenburg et al. 2006a]. In Chapter 4, we propose two methods for
streaming compression of hexahedral meshes. One is inspired from the triangle mesh compressor of
Isenburg et al. [Isenburg et al. 2005b], and the other is a simple modification of the non-streaming
Hexzip [Lindstrom and Isenburg 2008] compressor to enable streaming compression.

3.3 Random Access

In the previous section, we have presented the streaming mesh paradigm, which enables handling
large meshes by algorithms that process the whole mesh. This approach is useful for algorithms that
traverse the mesh and use a small neighbourhood around the current element. In the context of mesh
compression, this is the case as long as the order in which the decompressor traverses the mesh can be
fixed by the coder, and this is what most mesh compression methods in the literature have assumed.
However, there are various situations in which this is not the case. A program may only need to
access a certain part of a mesh, either because the algorithm is designed that way, or because the
user himself is only interested in a small part of the mesh.

In the context of interactive visualization of large meshes, being able to decode only a part of a
mesh is a required feature. Indeed, visualization is inherently a time-critical process. Each frame
must be rendered in an appropriate time frame. As the amount of available processing power is
limited, there is a limit to the number of primitives that can be processed during the time available
to compute a frame. If a model is too large to fit in memory, the rendering must be done from
the compressed version. The streaming approach described in the previous section makes it possible
to realize on-the-fly decompression and rendering, however the whole mesh would have to transit
through the decompressor. For very large meshes, this will be too long to render the frame in timely
manner. Therefore, interactive visualization algorithms require individual access to only parts of a
mesh.

Data structures that have the property of enabling individual access to their elements without
decoding the rest of the structure (there may exist a small sub-linear overhead) are said to be random-
accessible. For example, the simple indexed triangle mesh representation of Section 1.1 enables
random access to any element by its index: triangles being stored contiguously in memory on a
constant number of bytes, decoding the i-th triangle of the mesh can be done in O(1) by reading the
3 vertex indices at position 3i in the array of faces, and then reading the coordinates of the three
associated vertices in the vertex table. Note that the random accessibility property that holds for
triangle meshes does not extend to polygon meshes with mixed face elements, since the offset is no
longer a multiple of the face index. To be able to determine the offset of a face of index i, one must
know the degree of all faces of index j < i, and the overhead is no longer sub-linear. Therefore the
indexed polygon mesh structure is not random accessible.

Although interest for random access in meshes is quite recent [Choe et al. 2004], random access
is a common feature found in many other signal processing applications. For example, the MPEG
standards for sound and video coding enable random access by the means of a index table that
specifies memory offsets that serve as entry points in the compressed stream. This enables the user
to skip to any part of the file without having to wait for a full decoding of the stream. This is
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particularly important for video decoding: Decompression performance for h.264 High Definition is
typically around 60 frames per second – a few times real time performance. This means that without
random accessibility, a user who wants to skip to the middle of a two hours movie would have to wait
for several minutes, as if he was using a video tape ! Note that most random accessible decompression
algorithms only deal with one-dimensional data. In the case of video, only the time dimension is
random accessible. In contrast, providing random accessibility in the case of multi-dimensional data,
as images or volumes, is a harder problem that has found only a few solutions [Ihm and Park 1999;
Rodler 2001; Lefebvre and Hoppe 2007].

Random accessibility is defined relatively to an access means. In the indexed structure above, the
elements are accessed through their index. Mesh processing algorithms usually do not rely on indices
to access elements. Generally, they will randomly pick elements through adjacency or geometric
criteria. Data structures that enable random access with respect to one means of access will generally
not provide this service for other means. For example, indexed meshes enable random access in O(1)
through indices, but they do not provide any mechanism to randomly query adjacent elements given
an element, or request all elements at a specified position – both are in O(n).

We classify random accessible mesh structures in three categories (that are not exclusive), de-
pending on the type of random accessibility that they provide:

• Index-based Queries: Like the indexed triangle mesh data structure presented above, el-
ements are randomly accessed through the use of their indices. As this information cannot
generally be linked to the connectivity or geometry of the mesh, this property is generally of
limited interest.

• Connectivity Queries: These structures enable randomly querying the adjacent elements of
an element. This type of random accessibility is required by plenty of mesh processing algorithms
(e.g. Laplacian smoothing). In most mesh processing libraries (VTK, CGAL, OpenMesh, ...),
this feature is implemented through the use of pointers to adjacent elements, which is very
efficient in terms of speed, but makes the representation redundant [Weiler 1985; Guibas and
Stolfi 1985; Campagna et al. 1998; Weiler 1988; Kettner 1998]. A compact data structure with
this property was designed by Yoon and Lindstrom [Yoon and Lindstrom 2007], that enables
around 20 ∶ 1 compression with O(1) adjacency queries. They even demonstrate improved speed
for some algorithms because of the reduced bandwidth use associated with data compaction.

• Geometric Queries: Some algorithms require a random access to the primitives lying in a
given geometric domain. For example, ray tracing algorithms need to determine which prim-
itives cross the path of a ray. This is usually achieved using a bounding volume hierarchy
(BVH) [Rubin and Whitted 1980; Lin and Manocha 2003; Teschner et al. 2005], using bounding
spheres [Hubbard 1993], axis-aligned boxes [Bergen 1997], or other domains [Gottschalk et al.
1996; Klosowski et al. 1998]. However, the additional data used to provide random access adds
a large overhead to the raw mesh data. It is generally possible to trade granularity for size: the
two limit cases would be on one hand a bounding volume hierarchy with only one bounding
domain containing the whole mesh, that has virtually no overhead for storing the bounding vol-
ume hierarchy but poor random access performance; and on the other hand a hierarchy where
each leaf domain contains only one element, with minimum granularity but a large memory
overhead.

Designing compression algorithms that result in random accessible structures is not an easy task.
We have seen above that to provide random accessibility other than index-based queries, additional
information must be stored that inflates data size and introduces redundancy. In addition, all com-
pression methods use some kind of code length reduction process which results in symbols being coded
on a variable (integer or rational) number of bits. Therefore, the position of a specific element in
memory does not only depend on its index, but also on the compressed size of all previous elements in
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memory. Hence, the only possible options are (1) to decode all the previous elements, which is what
traditional compression algorithms do; or (2) to store additional information to determine where in
memory the compressed data for the element resides. This overhead information must be small – else
compression will not be efficient – and random accessible – else the problem has just been displaced.

All existing random accessible mesh compression algorithms (with the exception of [Piperakis
and Kumazawa 2001], that uses a radically different approach that can hardly be considered mesh
compression) choose to provide block random accessibility. As for traditional compression, there exist
both single-rate and progressive approaches, that we present in the following sections.

3.3.1 Single-rate

The simplest way of providing random-accessible compression is to split the mesh into several parts
that are compressed independently. Within each part, a traditional compression algorithm is used,
that does not provide random accessibility. The overhead information, stored in the file header,
consists in storing in which part the elements of interest are to be found.

Choe et al. have applied this idea to the compression of triangle meshes [Choe et al. 2004; 2009].
They split the mesh in relatively flat charts that are coded independently. To generate the charts,
the authors use a method that departs from that used by out-of-core approaches (see Section 3.1).
Starting from several seed faces uniformly distributed on the mesh, each defining a chart, they use a
region growing process using a cost function that favours as-flat-as-possible, balanced charts. Once
growing is finished, they reposition the seed faces towards the centroids of the charts and iterate the
growing process until the chartification converges. At the end of this process, they obtain a partition
with reasonably flat and balanced charts.

As in the approach of Ho et al. [Ho et al. 2001] (see Section 3.1), naively compressing charts
in an independent manner would result in multiple coding of the vertices of the chart boundaries.
Therefore, the authors encode these vertices independently in the file header, using the concept of
wire-net mesh (see Figure 3.8). In the wire-net mesh, each chart C is represented by a polygonal
face fC . The vertices of the original mesh that are shared by more than two charts are the vertices
of the wire-net mesh. The sequence of vertices of the original mesh that are shared by exactly two
charts CA and CB are assigned to the edge adjacent to faces fCA

and fCB
. This sequence of vertices

is called a wire.

Using these concepts, a mesh is represented by three things:

1. The wire-net mesh, which is compressed using a single-rate coder. As the faces of the wire-net
mesh are polygons, possibly with high degree, a polygon mesh compressor must be used. The
authors have chosen to use that of Khodakovsky et al. [Khodakovsky et al. 2002]. We would
like to point out a minor improvement that could be made to their geometry compression
scheme. To code the vertex positions of the wire-net mesh, Choe et al. predict the position b̄

of the barycentre of each face using parallelogram prediction (by mirroring the barycentre of
an adjacent face). Then, they predict the position of each vertex of the face as b̄, and code the
residual. This suffers from a systematic prediction error, as already noted in [Isenburg et al.
2005a], and may certainly be improved by using the approach of [Isenburg et al. 2005a] or by
using Taylor prediction (Section 2.3).

2. The wires of vertices corresponding to the edges of the wire-net mesh. Storing the connectivity
of the wires is free since they are a simple sequence of connected vertices. Therefore, only the
geometry of the wires has to be stored.

3. The charts corresponding to the faces of the wire-net mesh. The authors note that the only
primitives that cannot be shared among charts are faces. Using a face-based connectivity com-
pression algorithm thus enables coding charts in a completely independent manner. Therefore,
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Choe et al. use the Angle Analyzer algorithm [Lee et al. 2002] to code the connectivity of the
charts. They also enhance the coding efficiency using two complementary methods:

• Angle Analyzer is a region-growing method, and is usually initialized by choosing a seed
triangle as conquered region, and by using its three edges as active boundary. Choe et al.
note that using the chart boundary as starting active boundary (and considering that the
chart exterior is the conquered region) has two benefits. First, the boundary is already
decoded, hence no information needs to be stored to initialize the traversal. Then, they
show that traversing the chart inwards leads to less symbol dispersion than outwards
traversal, and thus smaller file size.

• The coder makes use of geometry information to predict the next connectivity symbol, as
in the Freelence approach [Kälberer et al. 2005]. The authors report an improvement of
about 5-10% in compression ratio using this technique.

This technique is very efficient as far as compression rates are concerned, since it uses a single-
rate coder and has a small overhead as long as the number of charts is small. However, the overhead
increases with granularity, which limits the number of charts for efficient compression. Since the
charts are entirely decoded, and the wire-net mesh stores the adjacency between charts, the algorithm
enables random adjacency queries. There is also a geometric random accessibility, which is
linear in the number of charts: All the polygons of the wire-net mesh are tested for intersection with
the requested domain, and the intersecting charts are decoded. However, this approach can fail in
certain cases (see Figure 3.9). For example, if the query domain does not intersect any face of the
coarse mesh (Figure 3.9, center), then there is no way to determine whether or not the domain is
empty. Although the search is linear in the number of charts, the algorithm enables random access
in the sense that geometric random access uses only K operations, where K is the number of charts
and is small (usually around 100).

Figure 3.8: The random accessible framework of Choe et al. (Figure taken from [Choe et al. 2009]).

The compression algorithm of Yoon and Lindstrom [Yoon and Lindstrom 2007] combines the
benefits of a streaming coder (Section 3.2) with that of block-wise random access. They compress
the mesh as it streams in using the compressor of Isenburg et al. [Isenburg et al. 2005b], but split
the mesh in clusters having the same number Sc of triangles each. In contrast to the previous chart-
based approach of Choe et al., they cannot choose the shape of the clusters, since they pack the mesh
elements together as they stream in. Therefore, the shape of the clusters depends on the layout of
the streaming mesh, and can be totally different from one layout to another (see Figure 3.10). In
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Figure 3.9: Geometric random accessibility for chart-based methods [Choe et al. 2004; 2009]. The
mesh is a sphere, and the left picture shows the associated chartification (colours). The query domain
is the yellow box, and the dotted circle shows the silhouette of the original sphere. From left to right,
we show a successful query (the green and red charts are decoded), a negative failure (the blue chart
is not decoded since the wire-net mesh does not intersect the domain, but the sphere intersects it),
and a positive failure (the blue chart is decoded since it intersects the domain, however the original
sphere does not intersect it). Note that a positive failure is acceptable, since it only occurs at the cost
of additional processing time: By decompressing the chart, the algorithm can see that the mesh does
not really intersect the domain. On the other hand, the negative failure is a problem: The chart is
not decoded, therefore the algorithm cannot correct the error, and the results may become incorrect.

particular, compared to the previous approach, there is no guarantee that the resulting clusters will
be geometrically compact.

Figure 3.10: Clusters of [Yoon and Lindstrom 2007] for different layouts. From left to right: Cache-
oblivious, z-order, spectral, depth-first and breadth-first layouts. This figure highlights clusters of
8K consecutive triangles for different layouts of the Puget Sound terrain simplified to 512K triangles.
The cluster colours smoothly vary with the sequential layout from red to yellow to green, and the
brightness alternates between each consecutive pair of clusters. The cache-oblivious mesh layout has
high spatial coherence, leading to well-shaped clusters with short boundaries and few inter-cluster
references. As a result, it yields the highest compression ratio and best runtime performance. Figure
from [Yoon and Lindstrom 2007].

To enable random access, a header stores the position of each cluster in memory. Note that
because they use the streaming compressor of Isenburg et al. [Isenburg et al. 2005b], they preserve
the original ordering of the mesh. This enables providing index-based random accessibility.
Is is easy to see that the i-th triangle can be found in the ⌊ i

Sc
⌋-th cluster, whose position can be

found in the header. Hence, only this cluster must be decompressed, and the requested triangle is
the (imod Sc)-th in the cluster. The algorithm also enables random adjacency queries. Each
time a triangle is read from a cluster, the whole cluster is kept in memory in a halfedge structure,
enabling O(1) access to adjacent elements. The only difficulty is at boundaries, because the vertices
at a cluster boundary can be stored in another cluster (in they are adjacent to a triangle with lower
index). To deal with this problem, Yoon and Lindstrom also store in the header the index of the
first vertex of each cluster. Therefore, when a boundary vertex is queried that does not reside in the
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current cluster, the decompressor can locate and decompress the cluster that contains this vertex.
Order-preserving compression has another advantage: if the mesh has a cache-coherent layout, the
compressed structure is also cache-coherent. This enables algorithms to run from the compressed
version efficiently. Yoon and Lindstrom apply their technique to isocontouring of terrain data and
obtain speed-ups of around 2.5 compared to the uncompressed version.

The approach of Yoon and Lindstrom has very recently been extended to provide geometric
random access [Kim et al. 2010]. First, the mesh is stored using the original mesh compression
scheme. In addition, a hierarchy of axis-aligned bounding boxes (AABB) is computed, such that each
box has two child boxes, and its leaves are individual triangles. Each box is defined by its extents
in the x, y and z direction. To compactly encode them, the extents of the box in each direction are
quantized with respect to the extents of the parent box. The hierarchy of AABBs is then compressed
using the same cluster-based approach originally used to compress the mesh [Yoon and Lindstrom
2007], except that they cluster the nodes of the AABB tree instead of vertices and faces. The position
(in memory) of each AABB tree node cluster is indexed in the header. Coding the structure and
geometry of the AABB hierarchy uses 50 to 100 bits per vertex, roughly multiplying the total data size
needed to represent the mesh by 3 compared to the original approach ([Yoon and Lindstrom 2007]).
Even if it is not very efficient as far are compression rates are concerned, it is the only scheme that
enables all three random access queries (indexed, adjacency and geometric). However, the efficiency
of geometric random access will be greatly conditioned by the original mesh layout. Because clusters
may not be localized in the spatial domain (e.g. in the case of a spectral, depth-first or breadth-first
layouts), decoding a few spatially close elements may result in a lot of thrashing.

3.3.2 Progressive Meshes

In the previous section, we presented several algorithms which tackled the problem of random access
by splitting the mesh in blocks. By using traditional single-rate compression algorithms, they reduced
the difficulty to handling chart/cluster boundaries. Providing progressive random accessibility is a
harder problem.

Progressive meshes based on the edge collapse/vertex split algorithm are not locally refinable: At
decoding time, splitting a given vertex may require a large number of parent splits to recover the
correct neighbourhood to make the split. In the worst case, the progressive mesh may even have to
be refined to the original mesh [Kim and Lee 2001]. This goes against random access. Ideally, any
vertex of a random accessible progressive mesh would be splittable without having to split any other
vertex. Kim and Lee have designed a selective refinement scheme that has the property that splitting
an arbitrary vertex of the mesh can be done without triggering a full chain of vertex splits [Kim and
Lee 2001]. Additionally, the vertex split only modifies the mesh in the vicinity of the split vertex.
Therefore, the levels of detail of the mesh can change abruptly between two regions of the mesh (see
Figure 3.11).

They later proposed a compression approach based on this refinement scheme [Kim et al. 2006],
that enables connectivity random access (any vertex can be split at any time) and a sort of geometric
random access (the mesh can be refined within a certain domain until the original mesh is reached).
They code the hierarchy of vertex splits in a concise manner that we will not detail here. We only
note that they also resort to blockwise coding to represent the hierarchy of vertices. Each sub-block
is coded using arithmetic coding and a header stores the position of the sub-blocks, as in the single-
rate approaches of the previous sections. As in previous approaches, the random access granularity
is the size of a block. They obtain compression rates of around 11 bpv for connectivity and 21
bpv for geometry. Although very interesting from a theoretical point of view, this scheme cannot
achieve interactive performance for large models. It also suffers from the same drawback as the
single-rate scheme of Choe et al. [Choe et al. 2004] for geometric random access, but on an extended
scale. Starting from the base mesh, and given a space domain, only refining the intersecting faces
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Figure 3.11: Selective refinement of the Buddha model using the methods of [Xia and Varshney
1996], [Hoppe 1997] and [Kim and Lee 2001] (from left to right). The latter algorithm enables faster
transition between levels of detail. (Figure from http://home.kookmin.ac.kr/~junho/).

of the base mesh does not guarantee that all the faces that fall within the query domain will be
decompressed, because refining other faces may result in new vertices that fall within the viewport.
Also, if the query domain does not intersect any face of the coarse mesh, there is no way to determine
whether or not the domain is empty, and if it is not the case, which vertices must be split to recover
the queried elements.

Recently, Du et al. have proposed a geometry-driven random-accessible scheme [Du et al. 2009]
based on the work of Gandoin and Devillers [Gandoin and Devillers 2002]. They split the kd-tree
in two layers. The first layer consists of the top A of the tree, from the root to a certain level L.
The second layer consists in the 2L+1 subtrees rooted in the leaves of A. Each of these trees is coded
independently as a block, and the boundaries between blocks are also coded independently. As in
other approaches, a header indexes the position of each block. During decoding, the first layer A is
always decoded, providing a coarse approximation to the mesh. Once the coarse mesh is decompressed
to its finest level, each block of the second layer can be decoded to any level, enabling different levels
of detail in different regions of the space. To resolve dependency at the boundary between adjacent
blocks, a boundary is decoded if one of the blocks that use it is decoded at any level. In this case, the
boundary is always fully decoded. The authors apply this technique to view-dependent visualization
(Figure 3.12), to refine only the part that falls within the viewport. Note that this approach can
compress non-manifold meshes, since it uses the compressor of [Gandoin and Devillers 2002].

Another independent scheme, named CHuMI viewer, uses the approach of Gandoin and Devillers
to design a random-accessible compressed mesh structure [Jamin et al. 2009]. In contrast to the
previous approach, they do not divide the kd-tree in two layers. Instead, they build a more complete
hierarchy of so-called nSP-blocks that are the individual random-accessible elements in the compressed
file. The hierarchy is a tree where each node (nSP-block) is split n times in all three dimensions (x,
y, z), and its children are the resulting n3 nSP-block. The authors choose n as a power of 2 (n = 2pl).

http://home.kookmin.ac.kr/~junho/
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Figure 3.12: Geometry-driven, random-accessible progressive compression using the approach of Du
et al.. Only the head of the “David” model is decompressed fully, while the rest of the model remains
at the coarse resolution level of A. (Figure from [Du et al. 2009]).
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This way, pl bits of precision are gained at each level of the tree. The value of n for the root node
is chosen separately, using a larger number of precision bits: nr = 2pr . Typical parameter values are
pl = 4 and pr = 7, which means that a precision of p = 15 = 7+4×2 bits will be reached with a random
access tree having 5 levels. Within each block, the mesh is coded using the algorithm of Gandoin
and Devillers [Gandoin and Devillers 2002], and the binary data for all the blocks is aggregated in
breadth-first order in the compressed file. Using this scheme alone would result in a complete tree.
As the density of primitives per cell of the kd-tree usually varies with the position on space, Jamin et
al. only split a nSP-block if the number of primitives it contains is above a threshold Nmin (whose
value is typically on the order of a few thousands). This enables more granularity in areas where there
are a lot of mesh elements, and also decreases the random access overhead in regions with smaller
primitive density – by disabling random access where it is least useful. Note that this results in a
non-complete tree.

In order to enable random access, the algorithm stores in the file header the structure of the nSP-
block tree, where each node stores a pointer to the beginning of the associated nSP-block data. That
way, the decompressor can decompress any part of the mesh with the granularity of an nSP-block (see
Figure 3.13). The boundaries are dealt with by duplicating the data, which leads to a compression
rate overhead, but greatly simplifies the compressor and decompressor. The latter can just ignore
boundary problems until the selected part of the mesh is decompressed. The discrepancy in precision
between adjacent blocks is removed by simply deleting the duplicate vertices with lower geometric
precision. Compared to [Du et al. 2009], this approach enables a more efficient decompression in
terms of speed. In addition, the algorithm provides an implicit bounding volume hierarchy with the
granularity of the nSP tree, which enables random geometric queries without the drawbacks of failed
refinement, as the single-rate approach of Choe et al. [Choe et al. 2004; 2009] and the progressive one
of Kim and Lee [Kim et al. 2006].

Figure 3.13: Comparison of the block layouts of the random-accessible progressive compression meth-
ods of [Du et al. 2009] (left) and [Jamin et al. 2009] (right). In the former approach, the structure
of the random access tree is fixed to a two-level complete tree, and stores boundary elements at the
beginning of each block. The latter has a more general random access tree, and blocks are totally in-
dependent since shared (boundary) elements are duplicated. On the right, we show a simple example
where n = 2, p = 3, pr = 1, and pl = 1.

3.3.3 Discussion

All the previous approaches to random accessible compression, both single-rate and progressive, use
block-based coding to enable random access. This limits granularity to the size of a block. Also,
as they all use some kind of header to index the position of the blocks in memory, there is a strong
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dependency between the number of blocks and the size of the resulting compressed data structure.
Therefore, there is always a trade-off between granularity and file size.

In addition, we note that only one of the single-rate schemes for mesh compression explicitly uses
a bounding volume hierarchy [Kim et al. 2010]. In the other algorithms, geometric random access is
always performed by linearly traversing the blocks. As long as the number of blocks remains small,
this is not a problem since the linear search will remain very fast. However, as models get bigger,
number of blocks will increase if granularity is to remain the same. Therefore, we think that designing
more efficient, sub-linear schemes is interesting. We show in Section 5 that increasing the number
of charts in the previous approaches results in a granularity and random access times that are both
in O(√Nv). However, this choice may drastically increase file size. As an alternative, we present a
hierarchical scheme that uses a bounding volume hierarchy and has inherently

√
Nv granularity and

random access time.

The major problem when dealing with random-accessible mesh compression is the handling of
boundaries between blocks/charts/clusters/pieces. Algorithms deal with this problem either by repli-
cating the data (which decreases compression efficiency), or independently compressing the boundaries
and specifying which block makes use of which boundary. This poses another problem, concerning
dimensional scaling of random accessible compression algorithms. For a mesh of dimension d, the

amount of data on the boundary is proportional to Nv
1− 1

d . As d increases, the amount of data on
the boundary grows, making boundary handling an even more important problem.

Evaluating progressive random accessible compression methods is difficult. The usual rate/ dis-
tortion approach used in the case of classical compression is of no use here, since the decompression
process can no longer be seen as simply decoding a stream up to a certain point. Random access
exactly strives to avoid sending data as a stream, but provides ways to directly skip to the interesting
data. Any evaluation of a random accessible scheme will necessarily be subjective. In particular,
metrics must integrate how much the user cares for the region of interest compared to the rest of
the mesh. If only the requested part is of interest, then a measure of the efficiency may be the
ratio between the number of elements of the requested part and the total number of decoded mesh
elements. However, having a coarse representation of the mesh, as in progressive approaches [Kim
et al. 2006; Du et al. 2009; Jamin et al. 2009] (and to a lesser extent [Choe et al. 2009]), is useful in
some applications. Therefore, performance metrics may want to take this feature into account.

We also want to mention a radically different approach, that uses neural networks to compress
oriented manifolds without boundary [Piperakis and Kumazawa 2001]. This method has nothing to
do with all other methods: it compresses neither connectivity nor geometry, but only represents an
approximation to a surface. It provide answers to a single type of geometric query: Given a point in
3D space, the answer is a value between −1 and 1 that indicates whether this point is inside (1) or
outside (−1) the volume delimited by the mesh. This type of compression provides extremely compact
representation of the mesh (only the neural net structure and its weights have to be stored) – usually
on the order of hundreds of bytes. In addition, the access is truly random: Every query is answered
in constant time. The only drawback of this approach is the training time of the neural network: the
authors report compression times ranging from days to weeks.
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Chapter 4

Streaming Compression of

Hexahedral Meshes

Numerical scientific simulation aims at describing the physical processes of the real world with as
much precision as possible. To achieve this goal, and converge to a result closer to the actual solution,
the space is discretized using finer and finer elements, leading to increasingly larger datasets. Most
simulated spatial domains are either 2D domains embedded in R

2, or 3D domains within R
3; surfaces

in R
3 are seldom used, since they do not represent general real-world objects. In this section, we

address the more challenging case of volume meshes (i.e. 3D domains within R
3). Indeed, the number

of elements of these meshes roughly increases as 1
p3 , where

1
p
is the required precision, whereas surface

meshes have approximately 1
p2 elements. Because of this property, it is no longer uncommon to see

meshes with tens to thousands million elements in 3D scientific simulations (see e.g. Figure 4.15).
Processing these meshes is a challenge even with powerful computers.

Although mixed element meshes are sometimes used, most meshes only have a single cell type:
For 3D problems these are either tetrahedra or hexahedra, because this simplifies the implementation
of numerical solvers. Hexahedral meshes have received a lot of attention because of several desirable
properties: they usually enable building meshes with fewer elements and exhibit better numerical
behavior in various problems [Benzley et al. 1995]. Although the automatic generation of hexahe-
dral meshes tends to be more difficult than that of tetrahedral meshes, there are now a number of
algorithms [Blacker 1996; Muller-Hannemann 2001; Staten et al. 2005] that can generate high-quality
hexahedral meshes (see Figure 4.1) with little or no user intervention.

Figure 4.1: Some examples of high-quality hex meshes generated with the TrueGrid software
(http://www.truegrid.com).
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The main field of application of unstructured hexahedral meshes is scientific simulations – the
graphics community often resorts to ray-traced structured voxel grids or “onion peeled” transparent
surfaces when dealing with volume data. Because of that, there are often mesh attributes (e.g. pres-
sure, temperature or velocity values) attached to the vertices or cells of the dataset. The attributes
attached to the vertices can be compressed using the same prediction methods used for vertex posi-
tions; however there is currently no way of dealing with cell attributes, for reasons that will be made
clear in Section 4.2.3. Yet as there may be several such attributes (our test dataset “Cedre” contains
12 quantities attached to the cells) the total bit budget dedicated to them can be very high. There-
fore, we devised a compression scheme specifically targeted towards cell data, specifically designed so
that it does not hinder streamability.

This chapter introduces two streaming methods and compares them to existing methods for the
compression of hexahedral meshes:

• In Section 4.1, we review existing techniques: Degree coders choose how they traverse the
mesh and code the sequence of vertex or edge degrees. They inherently destroy vertex and cell
ordering. Hexzip [Lindstrom and Isenburg 2008] is a completely lossless coder that preserves
both the vertex and cell order.

• Then, Section 4.2 describes how to design a streaming hexahedral mesh coder. This coder is an
intermediate between the two previous methods (i.e. degree coding and Hexzip). Its preserves
the global cell order but not that of the vertices.

• We also explain (Section 4.3) how to modify the Hexzip coder to trade compression speed for
memory efficiency by introducing streamability.

• In a fourth section (4.4), we detail the implementation of a streaming hex mesh generator based
on the transfinite method used by the open-source mesher GMSH 1. This enables the genera-
tion of already compressed meshes that have never transited in uncompressed form through a
temporary (e.g. Hard Drive) storage.

• Finally, we show the advantages of the streaming approaches when compressing very large
meshes with several million hexahedra.

4.1 Existing Hexahedral Mesh Compression Schemes

Only three algorithms have been published specifically on the subject of hexahedral mesh compres-
sion [Isenburg and Alliez 2002a; Krivograd et al. 2008; Lindstrom and Isenburg 2008]. Isenburg
and Alliez [Isenburg and Alliez 2002a] extend the concept of degree coding (see Section 1.3.1.1) to
compress the connectivity of hexahedral meshes. Their algorithm uses a region-growing approach
that traverses the connectivity graph one hexahedron at a time. They record the degree of all new
edges (and a few special symbols) which allows the decoder to replay this traversal. Since hexahedral
meshes are very regular, this method is extremely efficient, and entropy coding of edge degrees results
in connectivity compression rates that range from 1.55 bph (bits per hexahedron) down to 0.18 bph
on our test set.

The algorithm of Krivograd et al. [Krivograd et al. 2008] is based on the same idea, but uses vertex
instead of edge degrees. They first compress the quadrilateral boundary surface of the volume mesh
which becomes the initial hull. This hull is then grown as in Isenburg and Alliez’s method [Isenburg
and Alliez 2002a], but inwards, until there are no more cells left. They obtain rates similar to [Isenburg
and Alliez 2002a] on regular grids but are worse on irregular models. Also, their method is more
complex to implement because they have to deal with numerous special cases.

1http://www.geuz.org/gmsh

http://www.geuz.org/gmsh
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Lindstrom and Isenburg [Lindstrom and Isenburg 2008] recently proposed the Hexzip compressor
that we evoked in Section 1.3.1.1. This compressor uses a radically different approach that neither re-
orders vertices nor hexahedra and is therefore completely lossless. It also handles non-manifold meshes
or degenerate elements. They compress connectivity directly in its indexed form by predicting the
eight indices of a hexahedron from preceding ones. This works because hexahedral meshes found in
practice tend to have regular strides between indices of subsequent hexahedra. Their algorithm is
an order of magnitude faster and has lower memory consumption than [Isenburg and Alliez 2002a]
because it does not reconstruct and traverse the mesh connectivity. Instead, the cells are compressed
as soon as they are read, and they are destroyed immediately after they have been output to the com-
pressed stream. This enables very efficient input/output and local memory access. The connectivity
compression rates of this method strongly depend on regularities in the indexing and are as high as
20.4 bph on our test set.

In addition to these three schemes, that are specialized for the treatment of hex meshes, Prat
et al. [Prat et al. 2005] have developed an algorithm to compress arbitrary manifolds – including
hexahedral meshes. The genericity of their method negatively impacts compression rates (+400% on
average compared to [Isenburg and Alliez 2002a]) making it uncompetitive compared to a dedicated
hexahedral mesh compressor.

4.2 Streaming Compressor

All the algorithms presented in the previous section are only able to compress relatively small datasets.
Indeed, they all begin by loading the whole mesh in memory, which limits the size of the meshes that
can be compressed. In order to overcome this problem, we use the streaming paradigm presented in
Section 3.2. Our compressor requires streaming input: an interleaved sequence of vertices, hexahedra,
and finalization tags. Mesh generators can easily be modified to produce meshes in a streaming format
(we give such an example in Section 4.4). Existing meshes in non-streaming formats need to be
converted. For coherent meshes this conversion can easily be done with vertex-compaction [Isenburg
and Lindstrom 2005].

Most tetrahedral meshing techniques intrinsically produce poor streaming meshes. For example,
the widely used Delaunay refinement operation starts from a base tetrahedrization of a reduced
point set and randomly adds points, splitting cells until some property is verified [Dey 2009]. This
produces meshes with very poor coherence. On the other hand, hexahedral meshes tend to have
very coherent layouts, because they are mainly generated using advancing-front techniques [Blacker
1996; Muller-Hannemann 2001; Staten et al. 2005]. Figure 4.2 compares the layout coherence of
typical tetrahedral and hexahedral meshes. After vertex-compaction the width (i.e. the maximum
number of simultaneously active vertices) of our hexahedral models is around 2− 5% of their size. In
comparison, tet meshes generally have a width of 80− 100% of their size [Isenburg et al. 2006a]. This
makes streaming ever more attractive for hexahedral meshes than for tetrahedral meshes.

Our compressor starts encoding the mesh as soon as the first hexahedron and its eight vertices
are received. It always encodes if and how the current hexahedron is adjacent to previously encoded
hexahedra, compresses all new vertices that are referenced for the first time, and then deallocates the
data structure associated with all vertices that are referenced for the last time (i.e. that are finalized).
As only the active vertices have to be stored in memory, the width of the streaming mesh determines
the maximum memory consumption. In the following sections, we detail the compression of the three
components of a mesh: connectivity, geometry (and vertex attributes), and cell attributes.
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Figure 4.2: Comparison of layout quality for typical tetrahedral (brain, top left), triangular (armadillo,
bottom left) and hexahedral (blade, right) models.

4.2.1 Compressing Connectivity

Like Isenburg et al. [Isenburg et al. 2006a], we maintain an active surface, a half-edge structure com-
posed of active vertices and quadrilateral faces (see Figure 4.3). A vertex of the current hexahedron is
added to the active surface when it is referenced for the first time and removed when it is finalized (see
Figure 4.4). A face of the current hexahedron is added to the active surface when it was previously
not part of it and removed otherwise. Faces are also removed after all their vertices are finalized (i.e.
boundary faces).

The ten ways in which a hexahedron can be face-adjacent to the active surface are illustrated
in Figure 4.5. The vertices shown in red for the START, HUT, STEP and CORNER configuration
are usually new and will be compressed (see Section 4.2.2). Occasionally, however, these vertices are
already part of the active surface. Such joined vertices are specified using dynamic indexing [Isenburg
et al. 2005b] with log2(number of active faces) bits.

For coding efficiency we rotate the current hexahedron into a canonical configuration. For the
BRIDGE configuration, for example, the active faces will always be f0, f1 and f3 after rotating (see
Figure 4.6). Then we only need to code the configuration type and the following information:

• START: We code for all 8 vertices if they are new or joined. For coherent meshes there is usually only
one START per component.

• HUT: We specify the face f0 on the active surface the hexahedron is adjacent to and we code whether
the 4 vertices are new or joined.

• ROOF: We specify f0 on the active surface, code v4 with dynamic indexing, and code which of v4’s
adjacent faces is f5.

• STEP: After we specify f0 we can find face f1 incident to the shared edge (which is known due to the
canonical order). There is often only one candidate so that specifying face f1 is in most cases free. For
2 vertices we code if they are new or joined.

• BRIDGE: We proceed as for STEP to specify f1 and f3.

• CORNER: We code a STEP and let the decoder deduce the following: if there exists an active face
which contains vertices v1,v0,v4 then the operation is a CORNER and this face is f2. This works in
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Figure 4.3: A snapshot of the streaming compression process for the Blade model. The active surface
is blue, and resides in memory within a halfedge structure. The yellow cells have been released since
they are finalized. The red cell is being compressed.

Figure 4.4: Adding a hexahedron to the active hull: The two vertices and the four faces in red are
new and will be added to the active surface. At the same time, two interior faces will be removed
from it.
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Figure 4.5: The ten possible canonical hexahedron configurations: green faces and vertices are active,
and red vertices are either new or joined. At the bottom, the three most frequent operations HUT,
STEP and CORNER in context. Together with the START operation, they are sufficient to encode
a regular grid in scanline order.
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all but one very special case illustrated in Figure 4.8. Here the face exists but is not f2. To assure
the decoder makes the correct decision, we output a confirmation symbol. This special case is rare and
happens only once in all our test models. Thus, the confirmation symbol is nearly always the same and
adds almost nothing to the bit budget. We also code if the last vertex is new or joined.

• TUNNEL: We code a BRIDGE and let the decoder deduce that this is in fact a TUNNEL operation
whenever there exists an active face with vertices v4,v5,v6,v7. There is no ambiguity in this case.

• GAP: We code a STEP and first let the decoder deduce that it is a CORNER and then—with the
same reasoning—that it is a GAP.

• PIT: We code a STEP and let the decoder deduce a GAP and then—again with the same reasoning—
that it is a PIT.

• DEN: We take the reasoning of PIT one step further.

Figure 4.6: Going from a randomly oriented BRIDGE configuration (left) to a canonical BRIDGE
configuration (right). On the right, the vertices have been rotated such that the active faces are f0,
f1 and f3.

To summarize: the coder will only distinguish between START, HUT, ROOF, STEP or BRIDGE.
Everything else is deduced by the decoder. Each operation except START has to specify the face f0
on the active surface. Doing this each time with dynamic indexing [Isenburg et al. 2005b] would be
very costly.

When consecutive hexahedra share a face we can specify face f0 very efficiently by caching the 6
faces of the previous hexahedron. If we find face f0 in the cache we can code it with log2(6) instead of
log2(number of active faces) bits (see Figure 4.7). Using context-based entropy coding we can further
decrease these costs as different configurations share faces with similar regularity. When face f0 is
not in the face cache we use the same idea with an edge cache and finally a vertex cache. We only
resort to dynamic indexing [Isenburg et al. 2005b] when this all fails.

In Table 4.2 we list the compression rates of our scheme on different models and compare them to
those of [Isenburg and Alliez 2002a], [Krivograd et al. 2008] and [Lindstrom and Isenburg 2008]. As
expected, our rates are worse than those of degree-based methods since we compress the hexahedra in
their original order. Unsurprisingly, our method outperforms the lossless coder that does not reorder
vertices as we do and also preserves the original orientation of hexahedra. The penalty for streaming
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Figure 4.7: Reducing the cost of specifying f0 within the active surface: Successive hexahedra will
usually be adjacent. By caching the faces of the last hexahedron (yellow), we can specify f0 (red) at
reduced cost (left). When f0 is not in the cache, we resort to dynamic indexing (right).

Figure 4.8: Special CORNER case: the bottom face is active and shares three vertices with the
current hexahedron. The confirmation bit is set to 1, and the operation is a CORNER. However, the
top face should no be shared. Thus, the second confirmation bit set to 0, meaning that the operation
is not a GAP.
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is highest for meshes with global regularity (e.g. “block” or “cylinder”) that our compressor cannot
exploit. Overall however, after also compressing geometry and attributes, the connectivity accounts
for a comparatively small amount of the total bit budget.

4.2.1.1 Local Reordering

Locally, hexahedral meshes tend to have the connectivity of a grid whose cells are often specified in
scanline order (see Figure 4.9). There will be a cache miss (i.e. two non-adjacent hexahedra) for each
scanline as soon as the scanlines are longer than two hexahedra. We can avoid this cache miss if we
locally reorder the hexahedra.

Figure 4.9: A closeup on the shaft model, original order (top) and reordered using a buffer of three
hexahedra (bottom). The original order causes a cache miss every three hexahedra, the new order
has no cache misses.

Also, on more irregular connectivities, we get fewer cache misses and better compression rates
when we buffer a number of hexahedra from which we then greedily pick “the best” hexahedron and
feed it to the compressor. Using a fixed-size delay buffer we tried a number of strategies with an
emphasis on speed and simplicity. We describe here the simple spiraling reorderer that performed
well in our experiments and that we use in the results that we report.

We label the active faces of the hexahedron in cache with front, left, right, top, and bottom. When
we pick a new hexahedron among those waiting in the buffer, that has one of its faces in the cache,
there are three possibilities for the label L of this face:

• L is left or right : We set C(horizontal) = L and Dlast = horizontal.

• L is top or bottom: We set C(vertical) = L and Dlast = vertical.

• L is front : Nothing changes.

To pick the next hexahedron we consider in decreasing priority among the hexahedra in the buffer:

• the hexahedron that shares the face C(Dlast) with the currently cached hexahedron,

• the hexahedron that shares the face C( ¯Dlast), where ¯Dlast is vertical ifDlast is horizontal, and horizontal

else,

• the hexahedron that shares the face front,

• the hexahedron that shares one of the the other faces,

• the oldest hexahedron in the buffer.
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Figure 4.10: The spiraling reorderer running on an example mesh. The blue, red and white hexahedra
are respectively visited, in cache, and waiting in the buffer. A green arrow denotes the first possible
choice in order of priority, red arrows choices that would have had a higher priority but for which
there was no corresponding hexahedron in the buffer. We suppose that the starting configuration is
Dlast = horizontal, C(horizontal) = right, and C(vertical) = bottom.

C(horizontal), C(vertical) and Dlast are then updated according to this choice. The Figure 4.10
illustrates this process. This method has the advantage that the added hexahedra closely “stick” to
the active surface. For example, in the case of a regular grid originally given in scanline order, the
spiraling reorderer will result in a zigzagging pattern similar to Figure 4.9. There will not be cache
misses within a slice as long as the buffer size is larger than the scanline size.

The curves shown in Figure 4.11 plot the compression rate versus the delay buffer size for several
models. Increasing the delay to more than a couple hundred hexahedra usually does not improve
the compression rate any further, because the greedy strategy then shows its limits. A global strat-
egy could potentially overcome this drawback, but it would also greatly decrease the speed of the
compressor—eventually making it equivalent to a non-streaming compressor.

4.2.2 Compressing Vertex Geometry and Properties

Each time a new vertex is added (this can happen only during START, HUT, STEP and CORNER
operations), we predict its position and code the difference between the predicted and actual value.

We use a spectral/Taylor predictor (see Chapter 2) – these approaches are equivalent in the hex
case. We list the prediction rules we use in Table 4.1. They work extremely well on hexahedral
meshes that tend to be geometrically smooth.

Our implementation has two modes of operation: it can either uniformly quantize the vertices
prior to compression, perform all predictions in integer arithmetic, and entropy code the resulting
integer residuals or it can avoid quantization, perform all predictions in floating-point arithmetic, and
compress the residuals with the method of Isenburg and Lindstrom [Lindstrom and Isenburg 2006a].
In Table 4.2 we list our geometry compression rates across our set of test meshes side by side with
those of the other methods [Isenburg and Alliez 2002a; Lindstrom and Isenburg 2008; Krivograd et al.
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Figure 4.11: Connectivity compression (bph) versus delay buffer size for several models. Local re-
ordering is usually very efficient, but further increasing the delay shows the limits of greedy strategies.

Vertex Prediction
v0 last vertex
v1 v0

v2 v1

v3 v0 + v2 − v3

v4 v0

v7 v3 + v4 − v0

v5 v1 + v4 − v0

v6 v0 − v1 + v2 − v3 − v4 + v5 + v7

Table 4.1: Spectral/Taylor prediction rules. The vertices appear in the order they are predicted, i.e.
for any given vertex on line i of the table, the vertices of all previous lines are known.
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2008]. We use an updated version of [Isenburg and Alliez 2002a] that also uses spectral prediction.
The implementation of [Lindstrom and Isenburg 2008] natively uses spectral prediction.

The degree coder [Isenburg and Alliez 2002a] uses more information to predict v4 in HUT con-
figurations by mirroring the adjacent hexahedron. This gives slightly better compression ratios.
However, most predictions (typically around 90-95%) are made using the efficient Lorenzo predictor
(see Table 4.1, last row), so this will always remain a very small improvement.

vertices hexas Connectivity (bph) Geometry (bpv) Total (bph)
A B HZ Ours A HZ Ours A HZ Ours

(Q) (L) (Q) (L) (Q) (L) (Q) (L)
block 101,401 93,750 0.07 * 0.07 0.55 (1.00) 0.05 0.2 0.05 2.8 0.1 0.3 0.6 3.6
c1 78,618 71,572 0.59 0.56 1.50 0.94 (1.24) 3.4 14.8 3.2 9.3 4.3 17.8 4.5 10.2
cylinder 500,055 482,900 0.22 0.30 3.01 1.66 (1.91) 0.3 1.8 0.3 1.9 0.5 4.9 2.0 3.6
fru 5,124 4,360 0.97 0.98 3.06 2.20 (2.42) 16.5 55.7 17.4 35.8 20.3 68.5 22.6 44.3
grid 4,096 3,375 0.29 0.4 0.21 1.35 (1.93) 0.4 0.3 0.4 19.5 0.8 0.6 1.8 25.0
hutch 8,790 8,172 0.30 0.48 8.68 2.56 (2.91) 8.5 26.8 7.8 24.9 9.4 37.5 10.9 29.3
mdg-1b 4,510 3,710 0.77 0.93 7.81 2.98 (3.35) 2.8 9.3 2.8 28.7 4.2 19.1 6.4 37.9
shaft 9,218 6,883 1.70 * 18.55 4.04 (5.63) 16.5 42.3 17.4 30.0 23.8 75.2 27.3 44.2
steven 96,030 81,832 0.05 * 1.96 1.04 (1.00) 3.3 14.7 3.7 9.7 3.9 19.2 5.4 12.4
test 3,198 2,386 0.87 1.09 20.40 2.53 (4.02) 4.5 10.8 5.7 34.0 6.9 34.9 10.2 48.1
ucd3d 2,646 2,000 0.47 * 0.30 2.52 (4.50) 1.9 4.67 2.0 29.9 3.0 6.4 5.2 42.1

Table 4.2: Compression rates of existing methods for various models: A, B, HZ respectively denote
the methods of [Isenburg and Alliez 2002a], [Krivograd et al. 2008], and Hexzip. For our algorithm, we
give the compression rates without reordering (between parentheses) and with a reordering buffer of
50 hexahedra, which is an effective buffer size on average. For comparison, note that [Lindstrom and
Isenburg 2008] preserves the order of both vertices and cells, our method preserves cell order (up to
local reordering) but reorders vertices within a cell, and [Isenburg and Alliez 2002a; Krivograd et al.
2008] do not preserve order at all. For geometry compression, we give rates using 16-bits quantization
(Q) and lossless (32-bit floating-point) compression (L). The method of [Krivograd et al. 2008] does
not support geometry compression. We denote with * the models for which the software provided by
Krivograd et al. did not work.

Connectivity (bph) Geometry Prediction
config. cache dyn. cand. final join rest last edge para. lorenzo

block 0.024 0.456 0.017 0.003 0.033 0.019 0.001 1 224 8,050 93,126
c1 0.085 0.504 0.093 0.005 0.054 0.198 0.002 4 521 14,413 63,680
cylinder 0.091 0.796 0.510 0.068 0.014 0.183 0.000 32 2,604 54,189 443,230
fru 0.273 0.941 0.070 0.020 0.237 0.644 0.024 1 81 1,390 3,652
grid 0.147 0.834 0.045 0.014 0.247 0.033 0.031 1 45 675 3,375
hutch 0.348 1.791 0.113 0.027 0.141 0.126 0.014 3 196 2,154 6,437
mdg-1b 0.356 1.943 0.224 0.050 0.300 0.080 0.028 1 122 1,417 2,970
shaft 0.769 1.897 0.195 0.050 0.497 0.618 0.017 18 608 3,404 5,188
steven 0.114 0.606 0.202 0.015 0.077 0.033 0.001 6 905 15,664 79,455
test 0.453 1.375 0.077 0.023 0.503 0.057 0.044 4 114 849 2,231
ucd3d 0.272 1.652 0.084 0.020 0.392 0.052 0.052 1 46 619 1980

Table 4.3: Compression details for the models of Table 4.2, with the same delay buffer of 50 hexahedra.
The bit budget is broken down into its configuration, cache, dynamic indices, candidates, vertex
finalization, and the rest, which includes header information and confirmation bits. For geometry
prediction, last refers to the coding for v0, edge for v1, v2, v4, parallelogram for v3, v5, v7, and lorenzo
for v6 (table 4.1).

4.2.3 Compressing Cell Properties

Ideally we would like to compress cell data with the same strategy that has already proven success-
ful for vertex data. Hence, the prediction would be made using the already processed cells of the
neighbourhood with a spectral predictor on the dual of the mesh. However, two problems arise:
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1. The dual of a hexahedral mesh is generally not a hexahedral mesh itself (except in the case of a
grid). Thus, the configuration of the neighbourhood can vary a lot between hexahedra as shown
in Figure 4.12. It would be expensive, if not impossible to store the prediction weights for every
possible configuration of the neighbourhood. Alternatively the compressor and decompressor
could determine the configuration of the neighbourhood and compute the weights with respect
to this configuration on-the-fly.

2. However, using the complete hexahedron neighbourhood requires additional storage: We would
have to store the cell data for all processed hexahedra that still have one or more unfinalized
vertices (shown as grey and blue cells in Figure 4.12). This goes against our objective to keep
the memory footprint of our algorithm as small as possible.

Figure 4.12: Examples of possible neighbourhoods for prediction, for a CORNER on a grid (left), the
CORNER configuration of Figure 4.8 (center), and a GAP configuration with irregular neighbourhood
(right). For readability, we show the dual of the mesh. Hexahedra are represented as colored cubes
(red: new hexahedron, blue: active hexahedra, gray: hexahedra that are in the neighbourhood but
may no longer be active).

For these reasons we use a simpler prediction scheme that is faster and more memory efficient.
We predict cell data using only the hexahedra that are face-adjacent to the current hexahedron
(illustrated by blue cells in Figure 4.12). These hexahedra have at least the corresponding active
face (but usually a few more) on the active surface. We simply store copies of the cell data of a
hexahedron with each of its active face on the active surface. When these faces become inactive and
are removed from the active surface the cell data is released along with the face.

Another benefit of this scheme is that there are only 10 possible neighbourhood configurations,
which correspond to the 10 connectivity operations. This enables us to precompute the weights and
store them in a lookup table, shown in Figure 4.13. For the HUT, ROOF, STEP, CORNER, TUNNEL
and DEN, the weights can be determined by symmetry (they are the same and add up to 1). We
tried three different approaches to determine the weights for the non-symmetric BRIDGE, GAP and
PIT. All these methods give the same result.

• We used the spectral method of [Ibarria et al. 2007] with a 3× 3× 3 grid. The running time for
this method is on the order of hours (under Mathematica).

• We computed the Taylor weights using a regular neighbourhood. We give here a brief derivation
of the weights for the GAP case, but the two other cases are similar. Because of symmetry, the
GAP case only has two weights. Let α be the weight of left and right cells of the canonical con-
figuration of Figure 4.5, and β that of the front and bottom cells. These cells have respectively
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parameter coordinates (u, v,w) = {(−1,0,0), (1,0,0), (0,1,0), (0,0,1)}. Then the zero and first
order conditions give:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2α + 2β = 1

0 = 0 (∂f
∂u

)

β = 0 (∂f
∂v

)

β = 0 ( ∂f

∂w
)

(4.1)

The symbolic computation of the weights (using Mathematica) takes a few seconds.

• We also computed the least squares weights on the Blade model. The results were the same to
a precision of 10−3.

Figure 4.13: Cell data prediction weights for the different configurations. The red hexahedron is
the new cell whose data is to be predicted. Blue hexahedra are the active ones that are used for
prediction.

It may be noted that all the weights are positive. That means that the result of the prediction
will always lie within the convex hull of the values of all the cells used for prediction. That usually
results in a systematic prediction error, because the predictor is unable to accurately extrapolate, for
example in the typical case of a locally monotonic scalar field. Because of this, we use a second-order
predictor.

Let c1, . . . , ck be the data at known cells of the neighbourhood, and w1, . . . ,wk the weights used
to predict the unknown value cu. The first-order prediction of cu and the prediction residual are:

⎧⎪⎪⎨⎪⎪⎩
c̄u = ∑k

i=1wk.ck

ru = cu − c̄u (4.2)
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Quantity 12 bits 16 bits Lossless
K 1.83 4.44 18.1
L 1.99 5.17 11.6
P 2.39 5.35 10.8
T 2.32 5.20 16.0
Vx 2.74 6.05 23.3
Vy 2.68 5.94 23.2
Vz 1.97 4.66 16.4
YCH4

1.39 3.47 14.4
YCO2

2.28 5.17 15.1
YH2O 2.28 5.18 14.9
YN2

1.48 3.67 12.2
YO2

1.94 4.19 14.7

Table 4.4: Cell data compression rates, in bits per hexahedron, for the twelve attributes of the “cedre”
model.

We simply use the same prediction rule to predict the residual from the residuals of neighbour cells
r1, . . . , rk, and code the difference r2u between the real and expected residuals:

⎧⎪⎪⎨⎪⎪⎩
r̄u = ∑k

i=1wk.rk

r2u = ru − r̄u (4.3)

The decoder can then retrieve the original value as c̄u + r̄u + r2u. Coding the second-order residual
r2u instead of the first order residual ru drastically reduces the entropy. For our test models, the
second order scheme halved the entropy of residuals on average for 12 bits quantization.

Table 4.4 gives the bitrates achieved using our algorithm on the “cedre” dataset. This model
comes from a computational fluid dynamics combustion simulation made at ONERA2 with twelve
attributes attached to the cells (see Figure 4.15, right).

4.3 Streaming HexZip

The non-streaming Hexzip coder of Lindstrom and Isenburg [Lindstrom and Isenburg 2008] has a
structure such that it can be easily modified to enable streaming compression. The original im-
plementation reads the whole vertex geometry and cell indices tables, and then traverses the cells
predicting and coding indices. This enables very fast access to vertices. We modified the original
implementation by exchanging the dense table of vertex geometry with a hash table of vertices from
which the vertices are removed as soon as they are finalized. This trades speed for memory efficiency:
On one hand, the compressor uses less memory since only active vertices have to be stored. On the
other hand, the compressor is slower, because the access to an element of a hash table is far slower
than a simple indirection (see Table 4.5).

This simple change does only that. It does not change compression rates for either geometry or
connectivity, since the cells and vertices are still processed in the same order.

4.3.1 Providing streaming decompression

One may note that only streaming compression is provided. To enable streaming decompression, one
has to transmit finalization tags, and there is currently no available way of transmitting finalization
information. However, this compressor specifically addresses hex and quad meshes. It would be
possible to take advantage of this fact to add another stream of byte-aligned finalization tags along

2The French Aerospace Lab, http://www.onera.fr

http://www.onera.fr
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Model compression time (ms) memory footprint (MB)
non-streaming streaming non-streaming streaming

Block 17 140 15.6 3.9
c1 24 120 12.4 4.0
cylinder 67 650 97.2 14.9

Table 4.5: Speed/Memory trade-off for streaming HexZip. Note that implementations for both
methods are totally different, so these numbers should only be taken as a trend and not accurately
compared. Also note that reading timings are included for the streaming version, since reading and
compression are interleaved.

connectivity and geometry. Indeed, writing a bit for each vertex of a cell, set to 1 if the vertex must
be finalized, and to 0 if it is to be kept, natively takes 1 byte per cell for a hexahedral mesh, and 1
byte per two cells for quad meshes. In addition to that, if the mesh layout is regular enough, there
will be an important redundancy in the byte stream. This would enable efficient transmission of
finalization information, while remaining within the original frame of efficient byte-aligned coding.
Yet, we do not currently have experiments that prove the efficiency of this idea.

4.4 Generating Already Compressed Meshes

Traditional methods first generate a mesh that is kept in a temporary storage, either in memory or
on disk. In a second stage, the mesh is read and compressed. In contrast, the streaming paradigm
enables pipelining of several processing tasks. In particular, this can be used to directly generate
compressed streaming meshes, by plugging the output of the mesher to the compressor. Compression
will begin as soon as meshing begin, and the mesh will never be stored on the disk in an uncompressed
form.

The following section gives an example of such a compressed mesh generator. We re-implemented
the transfinite meshing approach of the open-source hex mesher GMSH3 as an input module to Isen-
burg’s streaming API4. The modules reads a GMSH geometry file and outputs a stream of interleaved
vertices/cells and finalization tags.

4.4.1 GMSH’s transfinite mesher

GMSH uses several different techniques for hexahedral mesh generation. The simplest among them
is the transfinite approach. The input mesh is specified as a coarse non piecewise-linear hexahedral
mesh (NPL mesh). The elements of this mesh are cells that must have 8 vertices, 12 edges, and 6
faces. However they are not hexahedra in the sense that the edges are not line segments. Instead,
the edges can be any 3D curve. GMSH comes with a user interface (Figure 4.14, left) that helps
specify these curves as a combination among a choice of primitives: line segments, circular/elliptic
arcs, splines, . . .

To build a hexahedral mesh from these control curves, three steps are applied:

1. The control curves (edges of the NPL mesh) are discretized. The sampling can be either uniform
or come from a metric. The sampling is also constrained such that two opposite edges of any
face of the NPL mesh have the same number of samples.

3http://geuz.org/gmsh
4http://www.cs.unc.edu/~isenburg

http://geuz.org/gmsh
http://www.cs.unc.edu/~isenburg
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2. The faces of the NPL mesh are discretized. As the sampling is similar for each pair of opposite
NPL edges, the connectivity can be that of a grid. The geometry of a vertex at discrete
parameter coordinates (u, v) in the N ×M surface is built from that of the four projections on
the surface boundary:

p(u, v) = 1

2
[M − v

M
.p(u,0) + v

M
.p(u,N − 1) + N − u

N
.p(0, v) + u

N
.p(0,M − 1)] (4.4)

3. The cells of the NPL mesh are then discretized using the same process, but using this time a
3D grid and using 6 surface points for geometry.

An example is given in Figure 4.14.

Figure 4.14: An example of transfinite hexahedral mesh. The control curves are on the left, and
consist in line segments, circles and b-splines. The control points of these primitives are in red, and
the dashed lines indicate transfinite surfaces. On the right, the output of the algorithm.

The transfinite algorithm bears some resemblance to a subdivision scheme: most vertices are
regular, and interior vertices are interpolated from control curves. However, it is not a subdivision
algorithm, because it can have an arbitrary (and different) number of samples in each direction.
Meshes generated with this algorithm are intrinsically very redundant in both connectivity (they are
piecewise grids) and geometry (the interpolation scheme is very smooth). Therefore, they compress
very well.

4.4.2 Streaming transfinite mesh generation

The implementation of a streaming generator for the meshing scheme described above is nearly
trivial. Interior vertices are independent from one block to another. Therefore, the streaming mesher
considers each cell of the NPL mesh in turn, and outputs the vertices using a front advancing parallel
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to one of its faces. To compute finalization information, each active vertex maintains a count of its
available cell slots. Initially, a vertex of a control curve has as many slots as neighbour cells in the
NPL mesh. Interior vertices of a boundary face of the NPL have a slot count of 4, and all other
vertices have a slot count of 8. Each time a cell is output, the slot counts of all the vertices it
references are decreased by 1. Then, these 8 vertices are tested for a 0 slot count, finalization tags
are output according to the result of the test, and the vertices with a slot count of 0 are destroyed.

4.5 Compressing large models

The big advantage of our streaming method compared to other non streaming methods is for the
compression of large meshes. As we release the mesh structures as they become finalized, the memory
footprint of our compressor stays very low. Table 4.6 compares the memory consumption of the two
streaming approaches that we introduced with that of the degree coder of Isenburg and Alliez [Isenburg
and Alliez 2002a]. For fair comparison, we have obtained from the authors of [Isenburg and Alliez
2002a] an implementation that has been optimized to run faster while reducing memory consumption.
The tests were run on an Intel core 2 duo running at 2.66GHz (our implementation uses only one
core). We do not compare with [Krivograd et al. 2008], because their software is optimized neither
for speed nor for memory efficiency.

Compared to our approach, the streaming Hexzip scheme is simpler, and thus the modified coder is
faster than ours, even if it is slower than the original Hexzip. It also has a smaller memory footprint,
because its structure for representing the mesh is simpler (approximately 4 times more compact).
However, the compression rate is a bit lower, and, more importantly, it cannot compress cell data.

Our streaming compressor greatly outperforms the degree coder with a memory footprint orders
of magnitude smaller. Using the non-streaming coder, most machines with 32-bits operating systems
would not even be able to compress the crank dataset without swapping, because they would not
support enough RAM to accommodate the memory needed by the compressor.

Figure 4.15: The blade and crank models used in table 4.6.



4.6. CONCLUSION 121

Vertices Hexas Width Connectivity (bph) Geometry (bpv) Memory (MB) Time (s)
(%) CHVM SHZ Ours CHVM SHZ Ours CHVM SHZ Ours CHVM SHZ Ours

blade 479k 456k 1.17 0.02 0.85 0.78 (0.45) 16.8 20.8 16.7 (16.8) 273.8 1.8 4.2 2.0 0.6 0.7 (1.0)
crank 2M 2M 0.90 0.98 0.82 (0.46) 12.3 9.1 (9.1) 3.2 12.4 3.0 3.4 (5.3)
crank 49M 48M 0.35 0.36 0.48 (0.28) 10.7 6.3 (6.3) 16.5 67.5 72 95 (142)

Table 4.6: Comparison of the state-of-the-art non-streaming degree coder [Isenburg and Alliez 2002a]
(CHVM ) and our modification of Hexzip (SHZ ) with our streaming approach on large models. The
given memory footprint is the peak heap usage as reported by GNU memusage. The time for [Isenburg
and Alliez 2002a] does not include reading. The time for the streaming methods include reading, since
reading and compression are interleaved. The geometry rates are given for lossless compression. For
our algorithm, we give the figures without delay buffer, and with a delay of 50 (between parentheses).
The rates for the modified version of Hexzip do not include finalization information.

4.6 Conclusion

In this Chapter, we have presented several contributions to the streaming compression of hexahedral
meshes. We have shown how to extend the triangle and tetrahedral (i.e. simplicial complex) streaming
compressors to hexahedral meshes – but the ideas presented here can also be applied to quad meshes
as well. We have also shown how to generate compressed transfinite streaming hexahedral meshes
directly without ever writing the mesh in uncompressed form. Because hexahedral meshes – and
especially large ones – are very coherent, the price to pay for streaming compression is not very high,
compared to the triangle/tetrahedral case. All our large meshes were compressed to less than one bit
per hexahedron for the connectivity. Therefore, we think that the streaming paradigm is specially
well adapted to hexahedral mesh processing.

The main drawback of our streaming compressor is that it will fail if the mesh is not made of
only hexahedra. However, some hexahedral meshes sometimes include a very small number of other
elements (wedges, tetrahedra) to “glue” different parts together. In that case, the streaming version of
Hexzip [Lindstrom and Isenburg 2008] that we have presented in Section 4.3 will be a better choice,
since it can handle these degenerate elements. In addition, it will usually be faster that the first
compressor.

While the streaming compression methods presented here enable the compression/decompression
of very large hexahedral meshes, we are still limited by the problems that we have detailed in Sec-
tion 3.3: The models that we compress with our algorithm can only be processed using streaming
algorithms. In particular, they cannot be visualized interactively.
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Chapter 5

Hierarchical Random Accessible

Compression

In the previous section, we have presented a symmetric streaming method suitable for the compression
of very large meshes. However, the streaming paradigm is useful for algorithms that require a global
access to the mesh during decompression. In the context of interactive visualization of large meshes,
there is rarely the need to decompress the whole mesh, for several reasons:

1. The limited computing resources make it impossible to render the whole model on time. For
interactive visualization of the model, users will generally not tolerate a frame rate that is less
than approximately 1 frame per second. For a visualization terminal with a limited graphics
rendering performance, this imposes an upper bound on the complexity (number on polygons)
of the model to be rendered. The streaming approach is not sufficient here, since even if it
enables a rendering of the model, it will not be done in a timely manner.

2. Even if the computational power is such that the model can indeed be rendered in time, there
is still a display resolution problem. Let us consider a triangle mesh with Nf triangles. If the
display has a resolution of w × h pixels, and the model is visualized globally, then the size of
each primitive will be on the order of w×h

Nf
pixels. For a typical desktop display of 1600 × 1200

pixels, this means that a model with more than 2 million faces will be rendered with sub-pixel
primitives. In order to be able to see fine local behaviour, the user has to zoom in several times,
which means that only a small part of the model will be visible. Everything that is compressed
but falls outside the viewport can be considered as unnecessary overhead.

3. In addition to these two technical reasons, scientific data exploration naturally leads users to
consider specific regions of interest – e.g. zones where interesting phenomena appear in the
result of a simulation.

To tackle this problem, recent approaches have proposed random-accessible compression, as al-
ready mentioned in Chapter 3. This technique enables to select the interesting parts of the mesh
without decompressing too much of the rest of the mesh (see Section 3.3).

In this chapter, we present a new contribution in the field of random-accessible compression.
Classical methods provide random access by simply splitting the mesh in several pieces that are com-
pressed independently using a single-rate or progressive coder (see Chapter 3). While this approach
has proved quite efficient, it still has drawbacks. On a practical point of view, using single-rate algo-
rithms to compress the charts means that in order for the algorithm to be efficient, each chart must be
sufficiently large so that the compressor has some regularity to work with. This limits the granularity

123
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of the random access to a few thousands of vertices. Also, the compressed random-accessible file stores
a header with some information on how to stitch the charts together (this information corresponds to
the elements shared by several charts). This means that the overhead is proportional to the number
of charts. As the size of the models increases, the user must choose between keeping the number of
charts constant and loosing granularity, or keeping the same granularity, but increasing the number
of charts, negatively impacting the compression rate (a more quantitative study of these phenomena
is given in Section 5.3). In practice, for reasonable compression rates, the existing algorithms have
to keep the number of charts small.

We depart from these approaches by using a hierarchical chartification approach. Instead of having
the user specify the number of charts to be used, we recursively split the mesh in two balanced charts,
which are progressively subdivided until individual faces are reached. The information to stitch the
charts together is stored in a novel succinct way, which enables the approach to work without relying
on any singe-rate compression algorithm. This new approach is totally different from usual single-
rate compression methods, but still results in reasonable compression rates. Emphasis is put on
the decompression efficiency : The compression/decompression process is asymmetric. In addition,
having an intrinsically hierarchical representation of the mesh enables us to embed a Bounding Volume
Hierarchy (BVH) within the compressed mesh with minimal overhead. Where a previous approach
required 50 to 100 bits per vertex to store the BVH, we are able to do it with only 2 bits per vertex.

Surprisingly, the divide-and-conquer approach has found very few applications in mesh compres-
sion. Only two such approaches have been proposed. The first, due to Ivrissimtzis et al. [Ivrissimtzis
et al. 2002], finds triangle strips that cut the mesh into smaller meshes. However, this approach does
not depart from the traditional approaches. It is actually a label-based method similar to Edge-
Breaker [Rossignac 1999], but that traverses the mesh using the order in which the triangle strips
are generated. The second one is very different. Starting from a triangle mesh, Aleardi et al. use
a three-level chartification to succinctly represent a mesh [Aleardi et al. 2005]. They compress the
lowest level by enumerating all possible triangulations with the same number of vertices (which is
small), and code the actual mesh as a dictionary entry in this indexed set. Their compression method
is therefore not based on the hierarchical subdivision itself, but resembles that of Choe et al. [Choe
et al. 2009], although their goal is to provide fast neighbourhood queries rather than geometric random
accessibility. Also, they do not target large meshes.

In this chapter, we present a new mesh compression method that has the following properties:

• Hierarchical: Our method is built on a recursive split of the mesh into two balanced indepen-
dent parts.

• Random Accessible: The recursive partitioning allows the reconstruction of any requested
part of the mesh without decoding other, less interesting parts.

• Polygonal: We are able to compress meshes with arbitrary polygons instead of only triangles.

• Simplicity: Our scheme is very simple to implement.

This chapter is organized as follows. The first part presents the hierarchical chartification process,
connectivity and geometry coding, as well as how random accessibility is provided. This provides
the main frame for our compression algorithm. In a second part, we show how this compression
algorithm can be used for interactive visualization of very large models, by embedding a bounding
volume hierarchy that only marginally increases the file size. Finally, we compare our approach with
the other random accessible methods.
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5.1 The algorithm

5.1.1 Hierarchical Chartification

The way we represent a mesh bears some resemblance with the approach of Choe et al. [Choe et al.
2009], in the sense that we also use the concept of wire to describe the mesh. However, in contrast to
their approach, our charts are defined recursively such that each level n of subdivision has 2n charts
with size proportional to Nv

2n
(where Nv is the number of vertices in the mesh), that can be decoded

independently. Therefore, where their approach has a fixed granularity that depends on the number
K of charts they use, the granularity of our method can be decided by the decoder. We begin by
giving a formal definition of what we call a wire before proceeding to the description of the mesh
representation in itself.

5.1.1.1 Wires

Let G be a 2-manifold mesh of genus 0. We define a wire as a sequence of connected vertices (i.e.
vertices that are joined by an edge) of G such that any vertex appears at most once (Figure 5.1,(a)). A closed wire is a wire whose first and last vertices are connected. A wire that is not closed
is an open wire. If the mesh has a boundary, a boundary wire (or simply boundary) is a closed wire
containing all the vertices on the boundary (and only them) (Figure 5.1, (b)). A wire C is a cut wire
(Figure 5.1, (c)) if it joins two vertices vA and vB in the same boundary wire W such that either:

• vA and vB are not adjacent within W

• vA and vB are adjacent and C has at least one vertex in addition to vA and vB (in the case
illustrated in Figure 5.1, (d)).

In addition, if two wires WA and WB share one endpoint but have no other vertex in common,
we define the wire WA +WB as the wire which contains all the vertices of WA and WB (and shares
one endpoint with WA in the case there are several candidates, i.e. for a closed wire).

A wire is very easy to compress because it has implicit connectivity. Thus, the connectivity can
be coded using only its number of vertices. Because adjacent vertices in the wire are connected in
the mesh, it also exhibits good geometric correlation. Our algorithm uses the concept of wire as a
basis for representing the mesh.

5.1.1.2 Representing the mesh as a tree of charts

To take advantage of good compression ratios brought by wires, we store the mesh G as a tree of
wires (or equivalently, as a tree of charts). We begin by extracting a boundary wire BG of G (if the
mesh has no boundary, we remove a random face of the mesh, and use the resulting boundary). Then
G is split into two independent meshes GL and GR (see Figure 5.2). It is easy to see that the vertices
that belong to both GL and GR form a cut wire. Let C be this cut wire, and vA and vB the end
vertices of the cut wire. Note that vA and vB belong to BG. Therefore we can partition BG in two
wires WA and WB such that BG =WA +WB , BGL

=WA +C and BGR
=WB +C.

C as well as the indices iA and iB of vA and vB in BG are stored in the root node. Then the
above process is applied recursively to GL and GR until only a face is left. The output of this process
is a tree where each node stores a cut wire and two indices representing where this cut wire attaches
in the parent boundary. The leaves of the tree are individual polygons. This defines a tree of charts
as illustrated in Figure 5.3.
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Figure 5.1: An open wire ((a), blue), a boundary wire ((b), red) and a cut wire ((c), (d), green).

Figure 5.2: One step of the algorithm: splitting the mesh G and its boundary. C (green) is the cut
wire, GL and GR are the two submeshes, and the original boundary BG is split into WA (red, dashed
and dotted) and WB (blue, dashed).
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Figure 5.3: The tree of charts resulting from the recursive chartification process.

5.1.1.3 Decoding an element of the mesh

Let us suppose that BG is known. The process begins at the root of the tree: iA, iB and C define
two regions bounded by WA + C and WB + C. We choose the region corresponding to the element
to be decoded (★), and proceed recursively (Figure 5.4). Determining whether (★) is in the left or
right region of the graph depends on the intended application. One example will be discussed in
Section 5.2.

5.1.2 Coding Connectivity and Geometry

The above representation requires storing for each cut wire:

• The length SC of the cut wire (number of vertices),

• The indices iA and iB of the vertices vA and vB ,

• The position of each of the vertices of the cut (except vA and vB).

Coding the geometry of the cut wire is straightforward: we apply a simple linear predictor on the
sequence of cut vertices, followed by an entropy coding of the residuals. Using only the two last vertices
for prediction is sufficient. The case of connectivity is more interesting: As there are approximately
as many cut wires as faces in the mesh, this means that a naive storage of the cut wires will use
96 bits per face (if the length and indices are stored using 32 bit integers) for connectivity. This is
equivalent to 192 bpv for triangle meshes and 96 bpv for quad meshes. However, this figure can be
drastically reduced by using several techniques that we detail in the following paragraphs.
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Figure 5.4: Decoding the element ★: We begin by numbering the root boundary, which has 14
vertices, from 0 to 13. We retrieve vA and vB from iA = 2 and iB = 9. We can then rebuild C (here
adding 3 vertices). We choose the left region (which contains the ★), and define the new boundary
as W[0,2] +C +W[9,13]. We proceed recursively, until we hit an unsplittable polygon.
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5.1.2.1 Compressing cut wire lengths

The distribution of SC is very biased towards zero. Most of the final cuts will have a length of zero
(not including the two end vertices). More generally, for a mesh of Nv vertices, we can expect the
size of a cut to be approximately

√
Nv. If the tree of charts is balanced, there will be 2

n charts with a

size of around Nv

2n
vertices, and thus approximately 2n cut wires with length

√
Nv( 1√

2
)n. Hence, the

distribution of SC will be roughly geometric, and therefore SC is suitable for entropy coding. Figure
5.5 shows the typical distribution of the cut wire lengths, that has an entropy of around 1.6 bits per
cut wire.

Figure 5.5: Distribution of the lengths of the cut wires for the armadillo model (log scale). Entropy
is 1.6 bits per cut.

5.1.2.2 Compressing indices

Similarly to the length of the cut wire, the size of the boundary decreases according to a geometric
distribution. For each submesh with n vertices, the indices iA and iB are uniformly distributed in[0,√n]. Therefore, they can also be compressed with entropy coding. The resulting bit rates are on
the order of 2.5 bpv for each index, which is not very satisfying (see Figure 5.6).

However, it is possible to greatly improve the compression of the indices by introducing two notions
that we call opposite vertex and context-dependent numbering.

We remark that the cuts that are well suited to building a balanced tree, i.e. cuts that split
the mesh into submeshes with similar number of vertices, also tend to separate the boundary in a
balanced manner. We take advantage of this property. Instead of coding iA and iB separately, we
code iA and δB . δB is the difference in the position of vB in the boundary between the actual cut
and the balanced cut (that is, the cut that would result in WA and WB having the same number of
vertices). Given vA, we call the vertex vB that would cut the boundary in a balanced manner the
opposite vertex of vA, noted o(vA). By favouring cuts that tend to link a vertex to its opposite, we
are able to obtain entropies of around 0.5 bits for δB (see Figure 5.7), versus 2.5 bits for iB .

As we know how to succinctly code iB , most of the bit budget is now allocated to coding iA. The
only available context data known at the time of decoding is the boundary information. Therefore,
a scheme to code iA should only rely on this information. The numbering of the boundary vertices
comes from the context of the parent subdivision in the subdivision tree, and is therefore arbitrary in
the current context. Thus, all the values for iA are equiprobable, preventing us from decreasing the
entropy below the geometric distribution of Figure 5.6. Our scheme uses the geometric information
of the boundary to renumber the vertices of the boundary (the Section 5.1.2.3 details how this is
done), and uses the cut with smallest index iA. Hence, the probability density of iA is not constant
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Figure 5.6: Distribution of the indices iA and iB for the armadillo model (log scale). Entropy is 2.5
bits per index.

Figure 5.7: Distribution of δB for the armadillo model (log scale). Entropy is 0.5 bits per index.
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anymore, but has a small variance around 0. This way, the entropy of iA drops from 2.5 to 0.5 bits,
with the distribution shown in Figure 5.8.

Figure 5.8: Distribution of iA after renumbering for the armadillo model (log scale). Entropy is 0.5
bits per index.

5.1.2.3 Cut Selection

The compression ratio for a given cut depends on the length of the wire, the smoothness of its geom-
etry, the closeness of vB to o(vA), and a good renumbering of the boundary vertices for compressing
iA. Thus, finding the best cut wire with respect to compression ratio is too slow for practical use. We
must find heuristics to provide an efficient cut. A good cut wire should have the following properties:

1. Be short, so that the number of vertices in C is small (to enable better entropy coding).

2. Cut the boundary in two parts as equal as possible, so that δB is biased towards zero (to enable
better entropy coding).

3. Be smooth, to provide good correlation between the geometry of adjacent vertices.

In addition, the heuristic should not be too complex to compute, to reduce the time needed for
compression.

We use the following heuristic to determine the best cut: For each index i in the boundary, we
note vi the i-th vertex, and o(i) the index of o(vi). For all i, we compute the Euclidean distance
between vi and o(vi). Let i0 be the index such that this distance is smallest (Figure 5.9). In case of
a tie, we use the first smallest distance pair. We then renumber the vertices on the boundary away
from i0 in each direction. We denote the original numbering by a superscript and the renumbering
by a subscript. Thus vi0 becomes v0. This new order is known to both coder and decoder.

If there exists a cut wire from v0 to vo(0), then δB = 0 and iA = 0. Else1, we check if there is a cut
wire (v0 → vo(0)−1); if there exists one, δB = −1 and iA = 0, else we proceed with (vk → vo(0)−l) with
increasing k + l until a cut wire is found (see Figure 5.10). The actual information that we store is
not iA and δB , but the rank R of the first suitable cut wire found, which enables to code both indices
with one single index.

To find the actual vertices of the cut wire, we grow GR and GL from the newly determined WA

and WB until all the vertices in G are visited (We call growing the process of augmenting a submesh
Gsub with the unvisited vertices of G that have neighbours in Gsub). The resulting cut wire is the

1See for example the case of Figure 5.1, (d).
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Figure 5.9: Finding the basis vertices for renumbering: The opposite vertices with shortest euclidean
distance are picked (here 2-9). The resulting renumbering is in green.

Figure 5.10: The cut wire selection process. We try to find cut wires from vk to v13−l, with increasing
k + l. R denotes the rank of the trial. A suitable cut wire is usually found for R = 0.
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shortest path through the vertices that have neighbours in both GL and GR. The Figure 5.11 shows
a simple example of the growing process.

Figure 5.11: The growing process.

As we visit vertices further from the original guess (which is balanced) in increasing order, property(2) is verified. We use the smallest geometric distance, therefore the resulting cut is generally short,
and thus property (1) is verified. The smoothness of the geometry of the cut wire depends on
the regularity (in terms of vertex degree) of the mesh because of the use of the growing algorithm.
Because we select the shortest path within the vertices that have neighbours in both GL and GR, the
cut wire will usually avoid zigzagging, since this would result in a longer path; therefore property (3)
is generally verified (Figure 5.12). The heuristic is in O(N 3

2 ) in the worst case, but often becomes
O(N) practically as a path usually exists for the original guess.

Figure 5.12: Some of the cuts determined by the proposed heuristic on the Venus model. The cut
wires are in green, the boundary wires in red. Red points indicate the starting vertex of the boundary
wire, and dashed edges close the boundaries. Note that the subdivision is balanced, and the cuts are
short and reasonably smooth.

One may argue that using the shortest path between vA and vB instead of the growing algorithm
would result in a cut that would better address properties (1) and (3). We experimented with this
approach, however it has two major drawbacks. First, this approach is slower that growing. Second,
and more importantly, it results in very unbalanced chartification. It is very easy to be convinced of
this by looking at Figure 5.13.
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Figure 5.13: The shortest path approach to chart subdivision usually results in very badly balanced
chartifications. The Venus model has been cut using the growing (green cut) and shortest path
(yellow cut) algorithms. The latter results in an unbalanced cut. In addition, recursively subdividing
the right part will once again yield a bad cut, resulting in a comb tree.
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5.1.2.4 Initial boundary selection

We use as initial boundary wire the largest available boundary. If the mesh has no boundary, we
remove a random face of the mesh, and use the resulting boundary. The heuristic described above
then results in a balanced cut, as shown in Figure 5.14.

Figure 5.14: Handling meshes without boundaries: A random face is removed and its vertex loop is
used as initial boundary. The proposed heuristic then splits the mesh in a balanced manner.

5.1.3 Providing Random Accessibility

Previous random-accessible methods used an indexing structure in the file header to enable individual
access to the charts. Departing from this approach, we embed the indexing structure inside the tree
of subdivisions. This means that the random accessibility information itself is random accessible.
Where Choe et al. [Choe et al. 2009] have to first reconstruct the wire-net mesh of the whole mesh,
our method enables to only build the wire-net mesh of the part that is requested. This way, we are
able to determine the path to follow to decode only the required part of the mesh without decoding
other parts of the tree, thus enabling random access.

If the goal of the algorithm was to achieve the best possible compression, the best way would be to
compress the bit stream resulting from the above compression process using an entropy coding method
(e.g. arithmetic coding). However, such a method is unable to provide random accessibility in the bit
stream. This comes from the fact that an arithmetic encoder does not use an integer number of bits to
store each symbol. This property enables better compression rates compared to Huffman coding, but
in the context of random access, this is actually a drawback. Providing random accessibility means
that the compression algorithm must be able to skip a certain quantity of information and resume
decoding at a specific point in the file. Using arithmetic coding to encode the bit stream would mean
that the coder has to make a jump in memory of a rational number of bits, which does not make
sense.

Our random access scheme is based on the tree of charts representation of the mesh built earlier.
The tree is stored in a depth-first manner, which uses 2 bits per node in general (see e.g. [Jacobson
1989]). The data at the nodes is entropy coded using a scheme which enables individual symbol
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decoding (we used Huffman coding). For more efficiency at lower levels, the tree is coded in an
autumnal fashion [Fabbrini and Montani 1986].

While storing the tree uses 2 bits per node if a uniform distribution of trees is considered, we were
able to reduce this value by taking advantage of the properties of the special structure of the tree in
our case. Because the tree is well balanced, approximately half the nodes have two children that are
leaves (we note this situation C◻,◻), and one quarter have two children that are internal nodes (C∧,∧).
Another quarter have either a leaf on the left and a internal node on the right (C◻,∧), or an internal
node on the left and a leaf of the right (C∧,◻). Figure 5.15 illustrates these situations. This enables
to use the prefix-free codes 1, 01, 000 and 001 to code each of these cases (Figure 5.15, bottom left),
with an average code length of 1

2
+ 2

4
+ 3

8
+ 3

8
= 1.75 instead of 2. If the mesh has holes, we must

add the cases where there is a hole (or non-face) leaf on the left, and an internal node on the right
(C⊠,∧), and its symmetric case (C∧,⊠). On manifold meshes, the case with two non-face leaves does
not happen. There are usually a small number of holes in the mesh, so the probabilities for these
symbols are negligible. However, they still modify the previous prefix-free codes by lengthening one
of the most current codes (1, 01, 0001 and 001, Figure 5.15, bottom right), leading to an average
code length of 1

2
+ 2

4
+ 3

8
+ 4

8
+ αǫ = 1.875 + αǫ.

Figure 5.15: The 8 different types of nodes in a tree of charts, with associated probabilities (top).
Blue denotes faces, white signals holes in the mesh. For the last two types, we did not represent the
symmetric configurations. A mesh without holes can be represented using only the 4 first configura-
tions. For this kind of meshes, we can use the Huffman tree on the bottom left, with codes 1, 01, 001
and 000. For meshes with holes, we need the tree on the bottom right.

To provide random accessibility, in addition to the cut wire data, we store in each node of the tree
the information needed to reach the left and right children. This enables jumping to the right (resp.
left) submesh without having to decode the left (resp. right) one. In a typical application without
size constraints, this is typically done using two pointers, one to the left subtree, and another to the
right subtree. As we have a continuous memory layout of the tree, we can use relative indexing and
only give memory offsets for the children. Furthermore, because the tree is laid out in memory in
depth-first order, the offset for the left subtree is 0, and that of the right child corresponds to the size
of the left subtree, so only one of the offsets needs to be stored.
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A naive implementation would therefore use 32 bits per node (one integer offset pointer). However,
this information can be stored in a more efficient way (see Figure 5.16). Consider a node G in the
tree, let DG be the size (in bits) of the tree of root G and DC the size of the cut wire data stored
at node G. We know that the left subtree has a size DGL

which is smaller than DG −DC , so only
log2(DG) bits are enough to code DGL

. We can also retrieve the size of the right subtree DGR
as

DG −DC −DGL
− log2(DG). This way, at each node, the left and right children nodes can be decoded

independently, by offsetting the memory pointer of 0 bits (left child) or DGL
bits (right child). A

leaf is simply a node of size zero. This storage method enables random access with around 40%
overhead on our test meshes. If one considers that the storage of the structure of the tree counts as
connectivity, and that only the random access pointers are overhead, then the overhead is around
20% on average.

Figure 5.16: Comparison of a naive implementation (left) of a random accessible chartification and
our proposed approach (right), for the mesh in the top left corner. Node colours refer to coloured cuts
in the mesh. For simplicity, we suppose that there are no holes, so we are able to use the encoding of
Figure 5.15, bottom left. Also, we assume that storing the indices uses a constant number of 3 bits,
and storing the cut wire length uses 2 bits.

5.1.4 Compression rates

Table 5.1 details the compression rates for our scheme. Compression rates are better for quad than
for triangle meshes, typically 19 versus 26 bits per vertex. This is because there are roughly as many
cut wires as faces, but there are twice as many polygons in a triangle mesh than in a quad mesh
with the same number of vertices. Our coder uses about 3 bits per polygon for connectivity (without
taking into account the encoding of the structure of the tree, which counts for both connectivity,
geometry and random access, and that we consider as overhead). Hence, the ratios for connectivity
are roughly 6 bits per vertex for triangle meshes and 3 bpv for quad meshes. Also, as we use Huffman
coding in our memory layout to enable random access, the average code length cannot drop below 1
bit per symbol. We include corresponding entropies for reference.
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Model #V cut wire indices geom. overhead total
length (bpv)

Igea 130k 1.44 1.16 13.88 42% 27.2
(T) (1.19) (0.64) (13.82)
Ramses 160k 1.83 1.51 10.18 31% 17.7
(Q) (1.76) (1.35) (10.08)
Armadillo 170k 1.44 1.11 11.48 49% 24.7
(T) (1.21) (0.47) (11.45)
Buste 255k 1.76 1.75 10.73 36% 19.4
(T/Q) (1.67) (1.60) (10.51)
Eros 476k 1.43 1.32 12.23 45% 25.8
(T) (1.16) (1.01) (12.20)
Neptune 3.7M 1.83 1.54 17.31 21% 24.9
(Q) (1.73) (1.39) (17.23)

Table 5.1: Compression results for various models (T denotes models having mostly triangles, Q
models having mostly quads). Note that cut wire length and indices are given in bits per cut wire. The
total compression ratio is given in bits per vertex and includes the overhead induced by the random
accessible memory layout. Numbers between parentheses are entropies. Geometry is quantized to 12
bits. The Neptune and Eros models are quantized to 16 and 14 bits respectively since they have finer
resolution.

5.2 Interactive Visualization

To illustrate the significance of our approach, we implemented as an example a view-dependent
rendering framework. This approach is useful when the model is so large that rendering the whole
mesh is too time consuming, or even impossible because the model does not fit into main memory.
Using the random accessibility provided by our compression method, we can render only the portion
of the model which is of interest to the user without decompressing the whole model. Thus, we
decrease the time between request and actual display.

View frustum culling [Clark 1976] is often used to enable view-dependent rendering. The method
consists of building a hierarchy of bounding volumes. If a bounding volume does not intersect the
view frustum, then all its children will not lie inside the frustum. Else, the hierarchy is searched
one level deeper (Figure 5.18). We can take advantage of the hierarchical representation provided
by our method, by slightly modifying the compression process. For each submesh in our hierarchical
representation, a bounding sphere is computed. Its center is the center of mass of the boundary,
because this is the only information available to the decoder (see Figure 5.17). At the time of
decoding, only a quick frustum/sphere intersection test needs to be carried out to decide whether
refinement is necessary or if the whole submesh can be discarded.

The radius of the bounding sphere is stored along with the cut wire, and can be aggressively
quantized since precision is not very important. The radius gets smaller in lower and more populated
levels, therefore its entropy is very low. As we want to guarantee that a face that falls inside the
viewport is always rendered, the radius is quantized by excess. Therefore, there is a trade off between
more aggressive quantization, that enables better compression but reduces the granularity of random
access, and finer quantization, that increases the size of the file but enables more precise intersection
tests. Figure 5.20 illustrates this trade-off. We found that using a number of quantization bits larger
than 8 usually does not provide better granularity. Also, because we are using Huffman coding, the
average code length for the radius cannot drop below 1 bit. Therefore, quantization levels below
6 bits do not decrease file size, even though they decrease entropy of the quantized radius. In our
experiments, we used the conservative value of 8 bits. The radius code lengths and the associated file
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Figure 5.17: Some bounding spheres of the hierarchical chartification of the Venus model.

Figure 5.18: Hierarchical frustum culling in 2D: the children of a node are searched only if their
bounding circle intersects the frustum.
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Figure 5.19: View-dependent rendering using a cube-shaped frustum. The green box represents what
the user sees. The black wires are the overhead wires that need to be decoded.

sizes are shown in table 5.3.

Figure 5.20: Effect of the radius quantization depth on the granularity of random accessibility. The
query domain is the green box. The faces that are classified as inside the query domain by the sphere
intersection test, but that are actually outside are shown in red. From left to right, the radius is
respectively quantized to 6, 7, 8 and 10 bits. The corresponding average Huffman code lengths are
1.02, 1.06, 1.52 and 1.80.

The random access capability of our method enables interactive visualization of large models. As
only the portion of the model that falls into the viewport is fully decompressed, the parts of interest
can be decompressed and displayed very quickly, resulting in interactive frame rates as long as the
part of interest is not too big. Table 5.2 gives the timings and memory footprints for rendering
typical images like those on figure 5.19. Note that to demonstrate the decompression efficiency, our
approach does not cache anything from one frame to the other. At each frame, the tree is traversed
from the root and the search stops as soon as there are no nodes with bounding spheres intersecting
the frustum. When a face is decoded, it is drawn but not stored. Each time we walk up from a node
to its parent, all the associated structures are released. This way, memory consumption is kept to a
minimum, since the part of the mesh that is displayed is never loaded into the memory as a whole.

5.3 Comparison with previous approaches

In [Choe et al. 2004; 2009], Choe et al. use their algorithm for view-frustum culling. To enable this,
they must entirely decode the wire-net mesh to test whether each face intersects the viewport. Then,
they decode the visible charts. As they use the Angle Analyser algorithm [Lee et al. 2002] to encode
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Model # faces visible # polygons per second
Igea 1300 (0.5%) 640k (max fps)

24k (9%) 1100k (max fps)
238k (89%) 1200k (5 fps)

Ramses 5600 (3%) 700k (max fps)
60k (37%) 900k (14 fps)

163k (100%) 900k (5 fps)
Armadillo 1700 (0.5%) 590k (max fps)

42k (12%) 1100k (25 fps)
345k (100%) 1100k (3 fps)

Buste 5200 (2%) 660k (max fps)
51k (19%) 900k (17 fps)

269k (100%) 900k (3 fps)
Eros 9200 (1%) 1000k (max fps)

146k (15%) 1200k (8 fps)
953k (100%) 1200k (1 fps)

Neptune 31k (1%) 520k (17 fps)
510k (14%) 900k (2 fps)
3.7k (100%) 900k (0.23 fps)

Table 5.2: Performance results for view-dependent rendering of various models. For each model, a part
of the mesh was rendered, as in figure 5.19. The table summarizes the random-access decompression
and rendering times for parts of various size. The performance is computed by dividing the total
time needed to decompress and draw the visible faces (including the overhead of decoding the wires
that lie outside the viewport, but were needed for decompression) by the number of displayed faces.
max fps means that the frame rate is limited by the display capabilities (60 fps in our case), and not
by the decoding speed.

Model #V radius total
(bpv)

Igea 130k 1.51 30.4
(T) (1.26)
Ramses 160k 1.23 19.0
(Q) (0.83)
Armadillo 170k 1.28 27.4
(T) (0.96)
Buste 255k 1.38 21.0
(T/Q) (1.11)
Eros 476k 1.01 28.0
(T) (0.09)
Neptune 3.7M 1.02 25.9
(Q) (0.12)

Table 5.3: Effects of embedding the quantized radius on the bit rate. The center column gives the av-
erage Huffman code length and the entropy of the quantized radius (on 8 bits). The rightmost columns
gives the total size of the interactive-visualization-enabled mesh, in bpv, including all overheads.
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the charts, each chart must be either fully decoded or not decoded at all. Therefore, there is a large
decoding overhead when only a small part of a chart is visible. On the other hand, as the charts are
encoded independently, they can decode a chart, draw it, then release the memory used for decoding,
and move to the other chart. However, the wire-net mesh must be maintained in memory at all times.
In contrast, our method decodes wires when it needs them and releases them as soon as they are not
needed anymore. The difference in the pattern of the overhead is shown in Figure 5.21.

Figure 5.21: Difference in overhead patterns for the method of Choe et al (top), and our method
(bottom). For our method, the overhead is the wires shown in black. For the approach of Choe et
al., the overhead consists in the wire-net mesh, the associated wires, and the parts of the charts that
are decoded but not visible.

In the following, we evaluate the complexity of the two approaches, in a memory and complexity
point of view. The memory footprint needed for the view-dependent rendering method of Choe et al.
is

mc(n,K) = O(K + T ) = O(K + n

K
) (5.1)

where n = K × T is the number of vertices in the global mesh, K the number of charts and T the
number of vertices per chart. The associated best case time complexity is

tc(n,K) = O(K + ⌈αn
T
⌉T ) = O(K + ⌈αK⌉n

K
) (5.2)

where α is the proportion of vertices that fall into the viewport.

On the other hand, in the same case, we use

mo(n) = O(log2(n)∑
i=0

√
n

2i
) = O(√n) (5.3)
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because we offer random access with polygon granularity. The corresponding time complexity is

to(n) = O(log2(n)−log2(αn)∑
i=0

√
n

2i
+ αn) = O(√n × (1 −√α) + αn) (5.4)

When main memory availability becomes a problem, the equation 5.1 suggests that the best choice
for K is

√
n, in which case the memory complexity of both algorithms are roughly equivalent. In

that case, our algorithm has a small time complexity advantage. The results given in [Choe et al.
2004; 2009] favor high compression ratios and speed of decompression over memory usage by using
small values for K (100 ≪ √n). Therefore, we cannot fairly compare compression ratios with their
scheme because the compression ratios for their method increase with K. However, by extrapolating
on their results, we can suppose that their scheme is better for triangle meshes.

As far as compression ratios are concerned, our method seems better than that of Choe et al. on
quad or higher degree polygonal meshes. As they use the single-rate compression scheme of [Lee et al.
2002] to compress the charts [Choe et al. 2004], we can expect their rates to be roughly the same
for higher degree polygons as for triangles. However, our scheme is more efficient on higher degree
polygons, because the vertices/faces ratio is lower. This is confirmed experimentally as quad meshes
are compressed to 20 bpv instead of 27 for triangle meshes.

Once again, it is difficult to compare our view-dependent rendering times with the ones in [Choe
et al. 2009] fairly, as the overhead for their method depends on K. Choe et al. render a vertex in
1.35 microseconds, not including the overhead of decoding the vertices that lie outside the viewport
but inside the partially visible charts. For reference, our algorithm renders approximately 1 million
faces per second, including overhead, i.e. a vertex every 2 microseconds for triangle meshes, or
every 1 microsecond for quad meshes.

Another concern, as evoked before, is that the algorithm of Choe et al. sometimes results in
incorrect answers to geometric queries, because the geometric random access criterion is based on
the intersection of the wire-net mesh faces with the viewport. As the charts are not perfectly planar,
some queries can return no answers whereas there were actually polygons inside the viewport (see
Figure 3.9). On the other hand, our algorithm guarantees no false negatives, because an empty
intersection between the viewport and a bounding sphere means that all the child charts are outside
the viewport.

We do not compare our results with those of Yoon and Lindstrom [Yoon and Lindstrom 2007],
because their method is very different since it does not provide the same type of random accessibility
– they address indexed and adjacent RA.

Compared to the only other method that explicitly codes a bounding volume hierarchy [Kim
et al. 2010] to enable random access, our method is able to embed the BVH within the compressed
mesh. Therefore, there is a very small overhead for the BVH: Where the approach of Kim et al.
uses approximately 100 bpv and triples the bit rate for mesh representation alone, the overhead of
embedding the BVH in our method is usually less than 2 bpv. This demonstrates the advantage of
using an intrinsically hierarchical representation of the mesh for geometric random access.

Note that the kd-tree based method of Du et al. provides a kind of BVH in the sense that it is
possible to use the kd-tree as an acceleration structure for geometric queries [Du et al. 2009]. However,
as they only provide random accessibility with a block granularity, the hierarchy stops as soon as the
L-th level is reached. Also, the decompression timings are worse than our method: They decompress
around 150k vertices per second – not including overhead – to visualize 300k vertices of a mesh that
has 3.4M vertices, which is roughly 3 times less efficient than our method (we decompress and render
around 900k faces, or 450k vertices, per second). The decompression speed of CHuMI viewer [Jamin
et al. 2009] is roughly equivalent to [Du et al. 2009]: The authors report a decompression performance
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of up to 300k triangles (i.e. 150k vertices) per second. Note that the hardware used for benchmarks
in both articles is better than ours, so the difference should be even more pronounced.

An interesting feature of the algorithms of Choe et al., Du et al. and CHuMI viewer is that they
provide an actual coarse polygon mesh that can be used as a guide for the view-dependent exploration
of the mesh. In contrast, our method only has a wireframe mesh that is less comfortable to work with.
It would be possible to fill this wireframe mesh with as-flat-as-possible polygons, but this would not be
efficient in terms of rendering speed. As a future work, we would like to investigate a complementary
scheme that would replace these high-degree polygons by good low-degree approximations.

5.4 Discussion

There is a limitation to the categories of meshes on which our algorithm applies. When chartifying
the mesh, we suppose that each cut splits the mesh in two parts. It is easy to see that this will not
be the case for meshes with handles (see Figure 5.22 for an example). In these cases, there will be
some cuts that only remove a handle, but the associated node in the tree of charts will only have
one child. We propose to deal with this problem by introducing a ninth tree structure code for the
removal of a handle (C↺). The probability of this symbol will depend of the genus g of the surface.
For usual meshes, g is small, thus the addition of this symbol does not change the codes for the 4
more frequent symbols, thus not impacting compression rate. We did not yet implement this method
in our prototype, so we cannot give experimental results for this approach.

Figure 5.22: A cut through a mesh with genus 2 does not split the mesh in two, but only removes a
handle.

Another limitation of this approach is that it cannot be extended to 3D or higher-dimensional
meshes. The efficiency of our method for surface meshes comes from the fact that we found a very
succinct way of coding the cut wires, given that they have essentially a free connectivity. In the d-D
case, the cuts would be (d − 1)-D meshes with arbitrary connectivity. In addition to the fact that
coding the connectivity of meshes would require additional space, random accessibility would also be
impaired. Instead of having a number of vertices on the order of

√
n, the cuts would contain n(1−

1

d
)

vertices, leading to a very large decompression overhead. Note that this problem is not specific to
our algorithm, since nearly all random-accessible compression algorithms (with the exception of [Kim
et al. 2006]) have to deal with boundaries.

Despite these limitations, our mesh compression method has some advantages apart from random
accessibility. Because it uses an approach that totally departs from traditional methods, its efficiency
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is not linked to the mesh regularity. However, for the same reason, it it very hard to find theoretical
results concerning its bit rate.

There are still a lot of aspects that can be improved. For example, in our current implementation,
a new wire is allocated each time we go down a node in the tree, and released when we walk up
from the node. Decompression could be made drastically more efficient by reusing these structures
(similarly to the streaming approaches) instead of constantly allocating and freeing them. An other
necessary improvement would be to introduce an out-of-core compression scheme. Currently, only the
decompression algorithm if efficient, but compression of huge meshes remains problematic. Also, it
should not be too difficult to make the compression process run in parallel, since random accessibility
inherently makes the compression of charts independent from each other. In addition, compression
rates could be improved by using local quantization for wire geometry instead of first uniformly
quantizing to model.
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General conclusion

Large meshes: In this dissertation, we have presented two approaches specifically targeted to-
wards the compression of large meshes. On the one hand, we added a tool to the streaming arsenal.
This tool compresses hexahedral meshes, where the existing tools could only deal with simplicial
complexes (i.e. triangle and tetrahedral meshes). As with other streaming tools, this enables fast
compression of huge meshes using commodity hardware. On the other hand, we proposed a random-
accessible algorithm for cases where the stream processing is not adapted (e.g. visualization). The
latter algorithm essentially emancipates the decoder from following the strict ordering imposed by
the compressor. In contrast, in the streaming paradigm, both compressor and decompressor blindly
follow the ordering of the mesh generation process.

Geometry compression: In addition, we presented a completely generic way of deriving efficient
prediction weights for linear prediction, with tokens of optimality given some smoothness assumptions.
These weights perform well in practice, and the formalism retroactively supports some previous
experimental predictors. For example, we were able to theoretically back up the weights used by the
Freelence approach [Kälberer et al. 2005]: We have shown that these weights were actually optimal
if the input meshes were 2-smooth. In addition, we have derived new weights that can be used e.g.
for progressive compression, that improve geometry compression ratios of about 9%

As evoked in Chapter 2, Taylor prediction is limited by the Runge phenomenon. Therefore, it is
doubtable that making the assumption of higher order smoothness will bring further improvement of
prediction weights. In practice, our experiments show that making the assumption of 2-smoothness
is generally sufficient to determine efficient weights. Therefore we recommend to either use small
stencils – to limit the number of interpolation weights – or limit the interpolation order to 2 and
using another method such as minimizing the norm of the weights to further constrain the weights.

Publications: The three main contributions presented in this dissertation have been published –
or will shortly appear – in international conferences and journals [Courbet and Hudelot 2009; Courbet
and Isenburg 2010; Courbet and Hudelot].

Implementation: During the three years of my PhD, I spent a non-negligible time implementing
the various ideas I had to confront them with experiments. For the evaluation of algorithms, I will
now take into account another criterion: easiness of implementation. Designing generic compression
algorithms can be hindered by the complexity of the implementation. For example, the source for
streaming compression of hexahedral meshes has several thousands of lines (of C++ code) just for
the hex compression part (i.e. without all the streaming mesh code). Dealing with mixed tet/hex
meshes was not implemented – not because of theoretical problems, nor efficiency, but only because
the implementation would have grown drastically in complexity. This would have been the case,
too, for handling general polygon meshes. Therefore, I will now take into account this aspect when
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rating an algorithm. In that respect, the random accessible algorithm presented in Chapter 5 handles
gracefully meshes with mixed elements.

6.5 Future work

Short term:

Out-of-core compression: The major drawback of my current implementation of the hi-
erarchical random access compressor is the fact that it is not out-of-core. As of now, the growing
algorithm requires that the whole mesh be loaded in-core. However, the growing algorithm is es-
sentially a region-growing algorithm where all processing occurs along two vertex fronts advancing
towards the cut wire. Therefore, it is possible to use the out-of-core technique presented in [Isenburg
and Gumhold 2003] to implement an out-of-core compressor, without having to modify the core of
the method.

Progressive random access: Adrien Maglo of Ecole Centrale Paris is currently investigating
a random-access compression scheme based on a chartification approach similar to that of Choe et
al. [Choe et al. 2009], but compressing the charts using progressive compression [Lee et al. 2010a].
In order to address the compression of general polygon meshes, we are investigating a progressive
polygon compression scheme. Preliminary results are encouraging (see Figure 6.23).

Figure 6.23: Preliminary results for progressive polygon compression.

Longer term:

Beyond blockwise access: Although quite efficient at decompressing arbitrary parts of a
mesh, random-accessible approaches still have a fairly large overhead in terms of how much more of
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the mesh has to be decompressed. Another (but somehow related) concern I have is the inelegance
of random-accessible approaches. All methods use more or less a split-and-independently-compress-
blocks paradigm, with explicit pointers stored in a header. This limits the number of blocks used
for compression lest the header becomes too large, and therefore granularity. In the hierarchical
approach presented in Chapter 5, I tried to depart as much as possible from the blockwise approach.
I achieved a much finer granularity, and succeeded in interleaving random-accessible information and
mesh data with limited overhead. However, for efficient coding the algorithm still relies on encoding
a non-negligible amount of data in batches (here provided by wires). I wonder if it be possible to
develop methods that are not based on a blockwise compression. In particular, there are no stochastic
approaches to random accessible compression. In all random-accessible approaches, the decoder first
figures out where to jump in memory from explicit memory pointers – either stored in the header
in previous approaches, or interleaved with compressed data in our algorithm. One of the things
I would like to investigate, that is yet a very vague idea, would be based on a probabilistic auto-
correcting traversal of the compressed mesh representation, that does not need explicit pointers.
The mesh would be stored in a spatially sorted way such that the compressor can know when it
decodes a specific element whether the required element is placed before or after the current position
in memory. Judging from the difference in position, the decompressor would make a new memory
position estimate and make a new try. The main problem of this approach is ensuring that an element
can be decoded unambiguously given any of the possible ways of reaching it via a sequence of guessed
memory positions. The latter problem is similar in spirit to that found in [Kim et al. 2006] for
geometry coding.

Compression via learning: In Chapter 3, we have briefly described a random-accessible
method based on neural network modelling of the input mesh [Piperakis and Kumazawa 2001]. This
approach is very interesting because it enables incredibly efficient geometric random access. Although
the idea of representing a surface as a compressed implicit surface is very interesting, we think that
the choice of classical neural networks is not very well adapted to mesh compression. Piperakis
and Kumasawa use the sigmoid f(x) = 1/[1 + exp(−σx)] activation function, which is the most
commonly used activation function for neuron networks. However, this function is not well localized
in space, which is obviously not well adapted to the case of real-world objects, which have limited
extents. Therefore, more compact functions as Radial Basis Function [Buhmann 2003] may be more
adapted, either using neural networks or Support Vector Machines. We have begun conducting some
experiments in this respect, and preliminary results indicate that these functions are well adapted
to representing curves in 2D. We still have to extend these results in 3D and compare them with
the approach of Piperakis and Kumasawa. However, even if this approach is efficient in terms of
compression rates and random access, it has the drawback that the surface is not given in the usual
mesh representation that most computer graphics algorithms natively use. Converting from implicit
surface to mesh representation is too expensive to be a credible solution. Therefore, if this approach
is to be used, algorithms to efficiently display the resulting compressed implicit surface remain to be
developped. These algorithms would ideally run on GPU hardware for fast rendering.

Volume meshes: As noted before, none of the existing approaches – including ours – can be
generalized to volume meshes. Indeed, as boundaries are always shared between blocks, the data must
be either coded independently at a higher level – as chosen by most algorithms – or simply duplicated
– this is the solution of CHuMI viewer [Jamin et al. 2009]. Doing things this way is not possible in

dimension d higher than 2, since the boundaries have size n(1−
1

d
). Therefore, handling boundaries

this way would result in a very high overhead in decompression time and bit rate. Random access
for volume meshes remains an open problem.
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Evaluation: Another important issue raised in Chapters 3 and 5 is the evaluation of random-
accessible approaches. There is currently no objective criterion to compare methods. To evaluate
our approach, we have computed the complexity of decoding a part of the mesh, and the associated
overhead in terms of how much more of the mesh is decoded when requesting a given part. Another
important – and somehow related – criterion is random access granularity. Algorithms that typically
decode parts that are small compared to the size of the mesh need higher granularity if overhead
is not to become the largest computational load. All compression algorithms trade granularity for
bit rate efficiency, so the latter criterion is of lesser importance when evaluating random-accessible
methods than when comparing traditional compression algorithms. Because different applications
have very different memory access patterns, it is doubtable whether it will be possible to come up
with an objective evaluation scheme fitting a large panel of applications. Even in the limited scope of
visualization applications, it is hard to evaluate the overhead of a method. When visualization targets
a part of a mesh, decoding other parts of the mesh may be considered overhead by some applications;
however in the case of progressive approaches, this overhead includes the coarser approximation that
helps navigating within the model. In this respect, part of the overhead is actually useful and must
not be regarded as being irrelevant.
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Appendix

7.6 Analysis of the small support
√

3 interpolating subdivi-

sion scheme.

In the following, we prove that the
√
3 interpolatory subdivision scheme that we proposed in Sec-

tion 2.3.5.2 has C1 limit surfaces. Around extraordinary points, we use the same weights as Labsik
and Greiner, therefore the scheme is also C1 around extraordinary points. Therefore, we only need
to consider ordinary points.

Using the vertex numbering of Figure 7.24, the subdivision matrix is:

S = 1

9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 0 0 0 0 0 0 0 0 0 0 0 0
4 4 4 −1 0 0 −1 −1 0 0 0 0 0
4 −1 4 4 −1 0 0 0 −1 0 0 0 0
4 0 −1 4 4 −1 0 0 0 −1 0 0 0
4 0 0 −1 4 4 −1 0 0 0 −1 0 0
4 −1 0 0 −1 4 4 0 0 0 0 −1 0
4 4 −1 0 0 −1 4 0 0 0 0 0 −1
0 0 9 0 0 0 0 0 0 0 0 0 0
0 0 0 9 0 0 0 0 0 0 0 0 0
0 0 0 0 9 0 0 0 0 0 0 0 0
0 0 0 0 0 9 0 0 0 0 0 0 0
0 0 0 0 0 0 9 0 0 0 0 0 0
0 9 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.5)

The neighbourhood is 2-step invariant, meaning that the set of vertices in blue on Figure 7.24 is
mapped to the set of vertices in red in two subdivision steps, with a rotation of π

6
, by the matrix

S̃ = RS2, where:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.6)
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Figure 7.24: 2-step invariant neighbourhood of a regular vertex for the reduced-support interpolating√
3 subdivision scheme.

The eigenvalues of S̃ are :

[1, 1
3
,
1

3
,
1

9
,
1

9
,
1

9
,
1

9
,−1

9
,−1

9
,
1

9
,
1

9
,
1

27
,
1

27
] (7.7)

They verify the sufficient condition for C1 smoothness (λ1 = 1 > ∣λ2∣ > ∣λ4∣, λ2 = λ3), and therefore
the limit surface is C1 around ordinary points.
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