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Introduction

Contents

1.1 Texture Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 What is a Texture? . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Texture Synthesis Algorithms . . . . . . . . . . . . . . . . . . 2

1.1.3 Procedural Texture Synthesis . . . . . . . . . . . . . . . . . . 4

1.2 Germ-Grain Models and Texture Synthesis . . . . . . . . . . 4

1.3 Functional Spaces and Texture Models . . . . . . . . . . . . 5

1.4 Main Contributions of the Thesis . . . . . . . . . . . . . . . . 7

1.5 Detailed Outline of the Thesis . . . . . . . . . . . . . . . . . . 8

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

This thesis is a study of stochastic image models with a view toward texture

synthesis. Most of the stochastic texture models under investigation are germ-grain

models.

In the first part of the thesis, texture synthesis algorithms relying on the shot

noise model are developed. The subject of the second part is to introduce and

study a new germ-grain model involving a transparency principle. Finally, in the

third part of the thesis, general results on random fields of bounded variation are

established. As particular cases of interest, these general results permit the compu-

tation of the mean perimeter of random sets and of the mean variation of classical

germ-grain models.

Before describing in further details the contributions of the thesis, general facts

on texture synthesis and germ-grain models are recalled.

1.1 Texture Synthesis

1.1.1 What is a Texture?

There is no clear definition of textures as image models. A minimal definition of a

texture image is an “image containing repeated patterns” [152], where the family

of patterns reflects a certain amount of randomness depending on the nature of

the texture. Among the family of textures, one discriminates two main subclasses.

First, the micro-textures, also called stochastic textures, typical examples of which

are images of sand, clouds, or a water surface. The second main family of textures
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(a) Pebbles micro-texture (b) Pebbles macro-texture (c) Some pebbles

Figure 1.1: Micro-texture and macro-texture: Three different scales of observation taken

from a single high-resolution image of pebbles (there is a scale factor of 3 from one image

to the other). This example illustrates that the nature of a texture is highly dependent of

the scale of observation: seen from a long distance, the pebbles form a micro-texture, as

one gets closer they become a macro-texture, whereas at a very short distance individual

pebbles are perceived as individual objects and are no more grouped together.

are the macro-textures, that is textures which are constituted of several small but

discernible objects. Let us observe that the delimitation between the micro-textures

and the macro-textures does not only depend on the nature of the observed objects

but also on the scale of observation. As an illustration, Fig. 1.1 displays three differ-

ent images extracted from the same high resolution picture of pebbles. Depending

on the viewing distance, the same objects are perceived as either a micro-texture,

a macro-texture or a collection of individual objects.

1.1.2 Texture Synthesis Algorithms

Texture synthesis1 consists in reproducing a texture from one sample. More pre-

cisely, the texture synthesis problem can be formulated as follows: Given an input

texture image, produce an output texture image being both visually similar to and

pixel-wise different from the input texture. As illustrated by the abstract represen-

tation of Fig. 1.2, the output image should ideally be perceived as another part of

the same large piece of homogeneous material the input texture is taken from.

One can roughly separate the existing texture synthesis methods in two fam-

ilies. The one which has been very popular over the last decade is the family of

1In computer graphics one may speak of example-based texture synthesis or texture synthesis

by example to differentiate from the generation of texture from procedural noise functions (see the

next section).
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Figure 1.2: Texture synthesis: Given an input texture, a texture synthesis algorithm

should ideally provide an output texture image perceived as another part of the same large

piece of material.

neighborhood-based synthesis algorithms. These algorithms are non parametric

Markovian methods: they assume a Markov random field model for the textures

but do not rely on an explicit model, contrary to former approaches, e.g. [38]. They

synthesize the output texture image by sequentially copying pixels or patches of the

input texture. At each step, a pixel or a patch of the input image is chosen among

the ones which have their neighborhood similar to the corresponding neighborhood

in the output texture. These methods were first developed by Efros and Leung [51]

and Wei and Levoy [153] for one-pixel-at-a-time synthesis, and by Efros and Free-

man [50] and Kwatra et al. [94] for patch-based methods. We refer to [152] for a

complete state of the art on the subject.

The second main approach to texture synthesis algorithms is based on texture

modeling by statistical constraints. These algorithms typically consist in estimating

a set of statistical constraints from the input texture, and then produce an output

texture as a random image satisfying these statistical constraints [125]. As a seminal

example, Heeger and Bergen [74] introduced an algorithm for which the constraints

are the histogram of colors and the ones of wavelet coefficients of the input texture.

Several improvements of this method have been proposed [41, 125, 124, 128], involv-

ing higher-order statistics between coefficients and more evolved decompositions of

images.

Neighborhood-based algorithms are the ones which produce the most impressive

results since they are able to synthesize a large class of textures, and notably many

structured macro-textures. Yet, the quality of the output textures depends on

several parameters which must be carefully chosen for each input texture, and some

of the methods can produce erratic results [51]. On the opposite, algorithms based

on statistical constraints are only able to reproduce a certain subclass of textures,

but produce visually stable results: all the output textures obtained from the same
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input texture are visually similar.

The random phase noise algorithm, initially introduced by van Wijk [146] and

further developed in Chapter 2 of this thesis to enable the synthesis of realistic

textures, belongs to this second family of algorithms. Indeed, it is defined as follows:

conserve the constraints given by the Fourier modulus of the input texture and

replace the phase by a random phase (see Chapter 2 for details).

1.1.3 Procedural Texture Synthesis

In computer graphics, textures are most of the time designed from procedural noise

functions [49, 95]. The main practical interest of these noise functions is precisely

that they are procedural, that is defined by an algorithm which can be evaluated at

any point at a fixed computational cost, and thus they are ideal tools for texturing

3D objects in virtual environments (animation movies, video games, etc.) [49]. Yet,

one should mention that some elaborated neighborhood-based methods share most

of the assets of procedural noise functions, notably local evaluation and real-time

synthesis [101, 45].

The first author who defined a procedural noise function and demonstrated its

interest was Perlin [123]. Albeit Perlin noise is still very popular today, over the

last few years several new procedural noise functions have been proposed by the

computer graphics community to cope with the shortcomings of this model: wavelet
noise [36], anisotropic noise [65], and lastly Gabor noise [96].

Even though procedural noise functions are the ideal technical tool for comput-

ing textures for virtual environments, determining the parameters of a procedural

noise which would produce a given texture is not an easy task. Indeed it requires

an acquaintance with the model, not to mention some artistic skills. Hence, an

important practical problem is to derive procedural texture models from input

texture images. This is a relatively new problem, precisely formulated in the re-

cent paper [99], even though previous works have already tackled this problem,

e.g. [44]. One of the contribution of this thesis is the elaboration of a procedural

example-based texture synthesis algorithm based on the recent Gabor noise model

(see Chapter 4). Although the early results that will be presented are limited to

textures in 2D, this new algorithm would potentially enable the synthesis of a large

class of micro-textures directly on 3D surfaces.

1.2 Germ-Grain Models and Texture Synthesis

As mentioned above the main contribution of the first part of this thesis is the

elaboration of texture synthesis algorithms relying on shot noise models. As we will

see, shot noise models are limited to micro-textures, and therefore it is of interest

to investigate other germ-grain models as generic models for textures.

The formal definition of germ-grain models is delayed to Chapter 5. For now let

us just say that a germ-grain model defines a random field by combining a family

of colored random sets, called grains, according to some interaction principle. For
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example, the shot noise model is the germ-grain model for which the interaction

principle is addition. Other classical germ-grain models include the Boolean random

field model, the dead leaves model, and colored tessellations. The corresponding

interaction principles of these models are respectively supremum, occultation, and

juxtaposition.

Apart from shot noise models, other classical germ-grain models have appeared

in texture modeling and texture synthesis, although more exceptionally. Tessella-

tions models have been studied by Ahuja and Rosenfeld [3], and Poisson-Voronoi

tessellations are at the center of the cellular texture methods developed by Wor-

ley [156, 49] for solid texture synthesis, i.e. synthesis of volumetric textures. In an-

other direction, a texture synthesis algorithm inspired from the dead leaves model

has been proposed by Gousseau [66].

One of the main motivation for the study of the dead leaves model is that it

is solely based on the occultation principle, a central principle in natural image

formation [18, 68]. Another principle which is at stake in the formation of natural

images is transparency. The transparency phenomenon may also be encountered

in other imaging modality where images are obtained through successive reflexion-

transmission steps, as in microscopy or ultrasonic imaging. In addition, in computer

graphics, the simulation for certain material such as hair or foliage relies on the su-

perimposition of numerous transparent objects [52]. Transparency is an interesting

interaction principle since it is non linear, as is occultation in the dead leaves model.

On the other hand, similarly to the addition in shot noise models, the final color

which results from the superposition of several transparent objects depends on the

color of all the superposed objects.

This motivates the definition of a new germ-grain model where the random

objects are superimposed by transparency. The study of this model, called the

transparent dead leaves (TDL) process, is the subject of the second part of the

thesis. Our main result shows that the TDL process is a transition model between

two classical models, the dead leaves model and the Gaussian limit of high intensity

shot noises, as illustrated by Fig. 1.3. Indeed, varying the transparency of the

random objects from opaque to total transparency, the TDL process varies from

the colored dead leaves model to the Gaussian random field which is the limit of

the high intensity shot noise having the same grain distribution.

1.3 Functional Spaces and Texture Models

As mentioned above, a class of texture synthesis algorithms is based on a set of

statistical constraints estimated from the input texture sample [146, 74, 125]. More

generally, in image processing an image model is often given as a functional space

for the image to live in. Classical image models are Besov spaces [46, 31, 35] or the

space of functions of bounded variation [133, 6, 7, 32]. In fact, statistical constraints

used for texture synthesis are often implicitly related to some particular functional

spaces. For example, in conserving the modulus of the Fourier coefficients of an
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(a) Shot noise (b) Transparent dead leaves

process

(c) Dead leaves model

Figure 1.3: Realizations of three different germ-grain models having the same grain

distribution: shot noise, transparent dead leaves process (see Chapter 6), and dead leaves

model. The transparent dead leaves model is a transition model between the Gaussian limit

of high intensity shot noises and the dead leaves model.

image, the output textures are in the same Sobolev space as the input image,

whereas conserving the first-order distributions of wavelet coefficients at each scale

is related to Besov spaces.

An alternative widespread model initially proposed by Meyer [112] is to decom-

pose an image into the sum of two functions, one cartoon part and one texture part.

The chosen functional space for the cartoon part is generally the space of functions

of bounded variation whereas the texture part belongs to a functional space in

which oscillatory images have a low norm (see e.g. [148, 8, 9, 23]). The correspond-

ing functional space is thus wider than the space of functions of bounded variation

which is not appropriate to fully represent the details of natural images [67]. Notice

that the cartoon plus texture model explicitly assumes that the textures present in

natural images are not of bounded variation, or at least that their total variation

is very high, which is confirmed by the multifractal analysis of some textures (see

e.g. [154] and the references therein).

Hence the total variation of textures is generally considered to be high or even

infinite. However, simple geometric texture models which do not contain oscillations

turn out to be of bounded variation. For example, dead leaves models are piecewise

constant random images, and thus they are intuitively of bounded variation when

the size and shape of the grains are regular enough, as in the example of Fig. 1.3(c).

Yet the total variation of the dead leaves model is infinite when the size of grains

are distributed according to a scaling law, as shown by Gousseau and Roueff [68].

Determining if a stochastic texture model is of bounded variation and computing

its mean total variation is the main motivation of the third part of this thesis. In

this third part, the general study of random fields of bounded variation will be

developed. Our main result provides a general expression for the mean variation per

unit volume of a stationary random field. In the special case of germ-grain models,

the obtained expression makes explicit the somewhat intuitive relation between the

geometry of the grains and the variation per unit volume.
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1.4 Main Contributions of the Thesis

• In Chapter 2, two texture synthesis algorithms are elaborated, namely the

asymptotic discrete spot noise (ADSN) and the random phase noise (RPN).

A theoretical and experimental study clarifies their properties as well as the

links between these two models previously defined by van Wijk for data vi-

sualization [146]. Our main contribution is to make the algorithms work for

realistic textures. First, an extension of both algorithms to color images is

given. Second, the artifacts due to the non-periodicity of real-world texture

samples are eliminated. This is done by replacing the input texture samples

by their periodic component, as defined by Moisan [113]. Third, a method

for synthesizing output textures of arbitrary size is proposed. The resulting

algorithms are robust and fast, as demonstrated by an on-line demo of the

RPN algorithm [60]. Numerous experiments show that both algorithms pro-

duce visually similar textures and that they reproduce satisfyingly well a large

class of micro-textures.

• Chapter 3 is devoted to the study of the normal convergence of Poisson shot

noise and its application to procedural texture synthesis. Following the ap-

proach of Heinrich and Schmidt [75], the normal convergence rate of a Poisson

shot noise is controlled by the Berry-Esseen theorem for Poisson shot noise.

Our main theoretical contribution is to give a new sharp upper bound of

the Berry-Esseen constant for Poisson shot noises. In addition, experiments

demonstrate that from the upper bound provided by the Berry-Esseen theo-

rem one can determine the good order of magnitude for the intensity which

corresponds to the beginning of the “visual convergence” of the shot noise to

the limit Gaussian texture.

• In Chapter 4, a new algorithm for procedural texture synthesis by example re-

lying on the recent Gabor noise model [96] is presented. This algorithm coined

Gabor noise by example makes use of the contributions of both Chapter 3 and
Chapter 2: control of the normal convergence, extension to color images, and

replacement of the sample by its periodic component. The presented early re-

sults demonstrate that the computed procedural textures reproduce the same

class of textures than the RPN algorithm of Chapter 2. Thus the proposed al-

gorithm should enable the synthesis of a large class of micro-textures directly

on 3D surfaces by using the surface noise procedure for Gabor noise [96].

• Chapter 6 is devoted to the study of the transparent dead leaves (TDL) pro-

cess, a new germ-grain model based on transparency. Properties of this new

model are established and a simulation algorithm is proposed. In particular

the covariance of the TDL process is computed using a generalization of the

no memory property of one-dimensional Poisson processes, as an alternative

to Palm calculus. Our main result is to show that, when varying the trans-

parency of the grains, the TDL process provides a family of models varying
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from the dead leaves model to a Gaussian random field.

• In Chapter 7, general results on random fields (r.f.) of bounded variation are

established. Our main result shows that the mean variation of a stationary r.f.

f is equal to a constant θV (f), called the variation intensity of f , times the

Lebesgue measure, and a practical expression of θV (f) is established. More

precisely, the derived expression of θV (f) only involves the limits of mean

absolute difference quotients of f , and in particular it only depends on the

family of second-order distributions of f .

• Several applications of the general results of Chapter 7 are developed. As

shown in Chapter 8, when restricted to the case of random sets, the estab-

lished results lead to rigorous generalizations of formulas for the mean perime-

ter of random sets initially stated by Matheron [107]. To return to our initial

motivation and to illustrate that the derived formulas are generic, the vari-

ation intensities of Gaussian random fields and classical germ-grain models

are computed in Chapter 9. For germ-grain models, the obtained expressions

make explicit the intuitive relation between the geometry of the grains and

the total variation of the random fields.

1.5 Detailed Outline of the Thesis

This section provides a detailed and illustrated outline of the thesis. The brief

paragraphs summarizing each chapter will be largely used for the abstracts and

introductions of the corresponding chapters.

Part I: Shot Noise and Texture Synthesis

The main subject of the first part of this manuscript is the use of the shot noise

model for texture synthesis.

Chapter 2: Random Phase Textures: Theory and Synthesis

This first chapter explores the mathematical and algorithmic properties of two

sample-based texture models: random phase noise (RPN) and asymptotic discrete
spot noise (ADSN). Given a texture sample h, the RPN associated with h is the

random image obtained by replacing the phase of the discrete Fourier transform

(DFT) of h by a random phase, whereas the ADSN associated with h is the Gaus-

sian limit of the discrete spot noises obtained in summing independently randomly

translated copies of h.

Both models arguably derive from linearized versions of two early Julesz texture

discrimination theories, and they both permit to synthesize random phase textures,
that is textures which are visually robust to randomization of their DFT phase.

These algorithms have been initially introduced by van Wijk [146] to synthe-

size various textures from simple geometric patterns for the purpose of scientific
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visualization. Contrarily to van Wijk statements, it is shown that RPN and ADSN

are different stochastic processes. Nevertheless, numerous experiments suggest that

the textures obtained by RPN and ADSN algorithms from identical samples are

perceptually similar. This shows that the theoretical differences between the two

processes, that is the multiplication of the DFT modulus by a Rayleigh white noise,

has no influence on the perception of random phase textures, a perceptual result

that, to the best of our knowledge, is new.

In addition to this comparative study of the RPN and ADSN algorithms, our

main contribution is to provide solutions to obstacles that prevented the use of

RPN or ADSN to emulate textures. First, RPN and ADSN algorithms are ex-

tended to color images. The extensions of both algorithms to color images lead

to the following observation: conserving the phase displacements between color

channels permits to respect the color range of random phase textures. Second, a

preprocessing technique is proposed to avoid artifacts due to the non-periodicity

of real-world texture samples. This preprocessing consists in replacing the texture

sample by its periodic component as defined by Moisan [113]. Finally, the method

is extended to synthesize textures with arbitrary size from a given sample.

The resulting color ADSN and RPN algorithms are fast algorithms which pro-

duce textures of any given size, as illustrated by Fig. 1.4. An additional noticeable

properties of these algorithms is that they produce visually stable results, in the

sense that all the textures obtained from the same sample are visually similar. In

comparison with neighborhood-based methods [51], the developed ADSN and RPN

algorithms only reproduce a restricted range of textures, but they are fast and

robust, as demonstrated by the on-line demo of the RPN algorithm [60].

Chapter 3: Poisson Shot Noise

The ADSN algorithm developed in Chapter 2 illustrates the interest of the Gaus-

sian limit of discrete shot noise models for image texture synthesis. The aim of this

second chapter is to study the corresponding shot noise model defined on the con-

tinuous domain, and more particularly its convergence to a Gaussian random field

(r.f.). We focus on shot noise processes driven by independently marked Poisson

point processes2. These shot noise models, called Poisson shot noises, are defined
by

f(x) =
∑

(xj ,κj)∈Π
h(x − xj , κj), x ∈ Rd,

where h is a measurable function and Π is an independently marked Poisson process

over Rd × K, K being the mark space.

The Poisson shot noise model is extensively used in procedural texture syn-

thesis [102, 123, 146, 96, 95], where it is often called sparse convolution model in
reference to the work of Lewis [102]. The fundamental reason why shot noise mod-

els are used in procedural texture synthesis is that, as for the discrete shot noise

2Appendix B recalls basic definitions and properties of Poisson point processes.
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(a) Original sample h (b) RPN associated with h

Figure 1.4: Example of texture synthesis with the RPN algorithm from a wood

texture sample. Notice that the size of the output texture is larger than the size of

the original sample.

model, the Poisson shot noise tends to a Gaussian r.f. when increasing the intensity

of impulses [119, 75].

Hence to simulate a Gaussian texture, one can use a Poisson shot noise with

high intensity. However the computational cost of shot noise simulation algorithms

is typically linearly proportional to the impulse intensity λ. One must therefore

find a trade-off between the quality of the Gaussian approximation and the compu-

tational cost. The main motivation of this chapter is to demonstrate that one can

automatically determine a value for the intensity λ which would satisfy this trade-

off in estimating the normal convergence rate of the Poisson shot noise. Following

the approach of Heinrich and Schmidt [75], the shot noise normal convergence is

estimated from the upper bound given by the Berry-Esseen theorem for Poisson

shot noises. Our main theoretical contribution is to show that the Berry-Esseen

constant for Poisson shot noises is the same as the Berry-Esseen constant for Pois-

son random sums. As a consequence, thanks to a recent result due to Korolev and

Shevtsova [92], we reduce by a factor seven the upper bound of the Berry-Esseen

constant for Poisson shot noises previously derived in [75].

An experimental section completes the theoretical study of the normal con-

vergence of Poisson shot noise. It is mainly shown that the Berry-Esseen bound

provides the good order of magnitude for the beginning of the “visual convergence”

to the limit Gaussian texture. This observation might enable procedural texture

synthesis software relying on shot noise models to automatically evaluate a range

of interest for the value of the intensity parameter.
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Chapter 4: Gabor Noise by Example

This chapter tackles the problem of procedural texture synthesis from a sample
texture using the recent Gabor noise model [96]. The Gabor noise model is a

particular Poisson shot noise model with Gabor kernels as impulse functions. More

precisely, a Gabor noise is a random function of the form

f(y) =
∑

(xj ,wj ,ωj ,θj)∈Π
wje−πa2‖y−xj‖2 cos (2π〈y − xj , ωj〉+ θj) ,

where the random marks wj , ωj and θj are independent and respectively follow

some probability distributions. These probability distributions are the parameters

of the Gabor noise model. Since it determines the frequency content of the noise,

the main parameter of the Gabor noise model is the probability distribution Pω of

the frequencies ωj .

Given a texture sample h, an automatic solution is provided for determining

Gabor noise parameters such that the procedural texture is visually similar to h.

The developed algorithm for Gabor noise by example relies on a rather simple idea:

the probability distribution Pω associated with h is given by the normalized power

spectrum of the texture sample h. In other words, the frequencies ωj are drawn

according to their relative importance in the spectrum of the discrete sample h.

The complete elaboration of Gabor noise by example makes use of three con-

tributions of Chapter 2 and Chapter 3. First the Gaussian convergence of the high

intensity Gabor noise is controlled by the Berry-Esseen bound derived in Chapter 3.

Second, as for the random phase noise (RPN) algorithm of Chapter 2, the periodic

component of h [113] is used in place of the original texture sample h, in order to

obtain a discrete Fourier transform without cross structure. Third, as for the color

RPN algorithm, the phase displacements between RGB color channels is enforced

in order to ensure color consistency when extending the Gabor noise to the case of

color textures.

Numerical experiments show that the procedural models obtained by the de-

veloped algorithm for Gabor noise by example produce textures that are visually

similar to the output of the RPN algorithm (see Fig. 1.5), and thus enables to re-

produce any texture sample which is well-reproduced by the RPN algorithm. The

main advantage of the Gabor noise by example over the algorithms of Chapter 2

is of course the locality of its basic elements, offering the possibility to synthesize

aliasing-free textures on arbitrary surfaces [96].

Part II: The Transparent Dead Leaves Process: a New

Germ-Grain Model

The first part of the thesis shows that shot noise models are good models for micro-

textures, but are limited to this class of textures. To overcome this limitation, it is

natural to turn to other models relying on non linear procedures, in particular to

germ-grain models. As illustrated in the second part of the thesis, one of the interest
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(a) Original image h (b) RPN

Figure 1.5: Illustration of the convergence of the color Gabor noise by example: Top row

original leather texture sample and its associated RPN (as defined in Chapter 2); Middle

row and bottom row: Gabor noises associated with h. From one Gabor noise to the other

the number of Gabor kernels is multiplied by a factor 10. The last example corresponds to

the bound derived from the Berry-Esseen theorem (see Chapter 3). The size of the image

is 340× 340 and the radius of the Gabor kernels is 20.
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of germ-grain models is that they permit to investigate separately the interaction

principles involved in natural image formation.

Chapter 5: Classical Germ-Grain Models

The main object of this chapter is to define and illustrate several classical germ-

grain models. It does not expose new results, but presents these models in a unified

framework. The considered germ-grain models are Poisson shot noises of random

sets, Boolean models, colored dead leaves models, and colored tessellations. Each

one of these models combine random colored sets, called grains, according to an

interaction principle. The respective interaction principles are addition for shot

noise, supremum for Boolean random fields (which generalizes the set union used

for Boolean random sets), occultation for the dead leaves model, and, arguably,

juxtaposition for colored tessellations. Numerical simulations show that only vary-

ing this interaction principle produces geometric images with very different visual

aspects.

This introductory chapter on germ-grain models is followed by Chapter 6 which

introduces the transparent dead leaves process, a new germ-grain model for which

the interaction principle is transparency. The variation intensities, that is the mean

variation per unit volume, of all the mentioned germ-grain models will be computed

in Chapter 9.

Chapter 6: The Transparent Dead Leaves Process

This chapter introduces a new-germ grain model which is based on an elementary

operation involved in natural image formation: the transparency.

The motivation for defining this new germ-grain model is threefold: First, it

permits to study the properties of images solely constructed with the transparency

principle, a principle which is at stake in natural image formation as well as in other

image modalities such as microscopy or ultrasonic imaging. Second, superimpos-

ing semi-transparent objects is done in practice in computer graphics to simulate

material such as hair or foliage [52], but the corresponding limit process has never

been studied. Third, as our main result rigorously shows, transparency appears as

an intermediate interaction principle between the occultation principle of the dead

leaves model and the addition principle of the shot noise model.

The transparent dead leaves (TDL) process is defined as the germ-grain model

obtained in sequentially superimposing transparent objects, called leaves in this

context. The TDL process has already been informally introduced and illustrated by

Fig. 1.3(b). In Chapter 6, a simulation procedure for the TDL process is proposed,

and several properties of the process are established. In particular, we compute

the covariance of the process in making use of a generalization of the no memory

property of Poisson processes, which provides an alternative to Palm calculus in

this context.

An important parameter of the TDL process is the transparency coefficient
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α ∈ (0, 1] associated with the colored leaves. When α = 1, that is when the leaves

are opaque, the TDL process is the colored dead leaves model. On the other extreme

case, the main result of Chapter 6 establishes that, when properly normalized, the

TDL process tends to a Gaussian random field when the leaves tend to be fully

transparent, this Gaussian random field being the limit of the high intensity shot

noise having the same grain distribution. Hence, by varying the transparency of

the grain from opacity to total transparency, the TDL process ranges from the dead

leaves model to a Gaussian random field.

Part III: Variation of Random Fields

Even though the total variation of textures is generally considered to be high or

even infinite, to the best of our knowledge little is known on the total variation

of classical texture models such as Gaussian random fields, shot noises, or other

classical germ-grain models presented in Chapter 5. However the random geometric

images corresponding to germ-grain models are clearly images of bounded variation

when the grains are regular enough, and intuitively their total variation depends

on the geometry of the grains. It is therefore natural to address the computation

of the mean total variation of the germ-grain models presented in Chapter 5.

This is the goal of the third part of the thesis. To enable such computations,

we had to formulate the general definition of a random field of bounded variation,

a notion that is hardly touched in the literature.

Chapter 7: Random Fields of Bounded Variation

This chapter presents a general framework for the study of random fields (r.f.)

of bounded variation defined over Rd. Our general strategy is first to deal with

directional variations |Duf |, u ∈ Sd−1 and then to integrate these over all directions
u ∈ Sd−1 to obtain results on the variation |Df |. The advantage of dealing with

directional variations is first that it yields simple expressions and second that it

provides information on the anisotropy of the r.f. f .

The first section of this chapter recalls classical results from the theory of func-

tions of bounded directional variation. Relations between the directional variation

|Duf | of a function f and the integral of its difference quotients are emphasized,

yielding to the fundamental relation

|Duf |
(
Rd

)
= lim

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx,

a relationship that happens to be known by the geometric measure theory commu-

nity but is not stated in the literature. After this preliminary study of deterministic

functions of bounded directional variation, random fields of (locally) bounded (di-

rectional) variation are defined and characterized. In particular, one defines the

directional variation intensity measure ΘVu(f, ·) of a r.f. f as the expectation of
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the directional variation of f , and, in the case where the r.f. f is a.s. of bounded

variation over the whole space Rd, it is shown that

ΘVu

(
f,Rd

)
= E

(
|Duf |

(
Rd

))
= lim

r→0

∫

Rd

E (|f(x+ ru)− f(x)|)
|r| dx.

A particular interest is then given to stationary r.f. f of locally bounded (direc-

tional) variation. If f is such a r.f., it is proved that the mean directional variation

of f on every domain U is proportional to the Lebesgue measure of U . The constant

of proportionality is called the directional variation intensity of the stationary r.f.

f and is denoted θVu(f). Along with the definition of θVu(f), a practical formula is

derived:

θVu(f) = lim
r→0

E(|f(ru)− f(0)|)
|r| .

In particular, the directional variation intensity θVu(f) only depends on the family

of second-order distributions of the stationary random field f .

Chapter 8: Variation of Random Sets

This chapter focuses on the mean directional and non directional variations of ran-

dom sets. Applying the results of Chapter 7, one proves several formulas which

equate the directional variations of random sets to the directional derivatives at

the origin of functions related to the second-order property of random sets, namely

the mean covariogram for random sets with finite mean Lebesgue measure and the

variogram for stationary random sets. These formulas show that classical results

on the mean perimeter of random closed sets due to Matheron [107, 110] extend

rigorously to any measurable random set, provided the perimeter is understood as

the variational perimeter.

In a last part, one also establishes a coarea formula for variation intensities: the

mean total variation of a r.f. is equal to the integral of the mean perimeter of its

excursion sets.

Chapter 9: Applications: Variation Intensities of Classical Germ-

Grain Models

The aim of this chapter is to compute the variation intensities of various stationary

r.f. models by applying the results of Chapter 7 and Chapter 8. The considered

stationary r.f. are Gaussian r.f., Poisson shot noise of random sets, Boolean models,

colored dead leaves, transparent dead leaves, and colored tessellations.

For germ-grain models, the obtained expressions make explicit the somewhat

intuitive relation between the geometry of the grains and the total variation. In

particular, for all the considered germ-grain models they show that there are only

two geometric features influencing the mean total variation of the germ-grain r.f.:

the mean perimeter and Lebesgue measure of the grains.
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1.6 Publications

The works presented in this thesis have lead to the following publications and

prepublications:

• The results of Chapter 2 have been published in the journal IEEE Transactions

on Image Processing [61].

• An on-line demo of the random phase noise algorithm defined in the same

chapter has been submitted to Image Processing on Line [60].

• Most of the results of Chapter 8 can be found in the paper [58], accepted for

publication in Image Analysis and Stereology. The proofs presented in this

paper do not rely on the results of Chapter 7 (which were not written at that

time).

• The study of the transparent dead leaves process presented in Chapter 6 is

the subject of the preprint [59], submitted to the journal Advances in Applied

Probability.

• The developed algorithm for Gabor noise by example gave rise to an ongoing

collaboration with A. Lagae, S. Lefebvre and G. Drettakis, three of the authors

of the original Gabor noise paper [96].
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Abstract: This chapter explores the mathematical and algorithmic

properties of two sample-based texture models: random phase noise
(RPN) and asymptotic discrete spot noise (ADSN). These models per-
mit to synthesize random phase textures. They arguably derive from

linearized versions of two early Julesz texture discrimination theories.

The ensuing mathematical analysis shows that, contrarily to some state-

ments in the literature, RPN and ADSN are different stochastic pro-

cesses. Nevertheless, numerous experiments also suggest that the tex-

tures obtained by these algorithms from identical samples are perceptu-

ally similar. The relevance of this study is enhanced by three technical
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contributions providing solutions to obstacles that prevented the use of

RPN or ADSN to emulate textures. First, RPN and ADSN algorithms

are extended to color images. Second, a preprocessing is proposed to

avoid artifacts due to the non-periodicity of real-world texture samples.

Finally, the method is extended to synthesize textures with arbitrary

size from a given sample.

The content of this chapter is mostly from [61].

2.1 Introduction

2.1.1 Texture Perception Axioms and their Formalization

Oppenheim and Lim [118] state that “spectral magnitude and phase tend to play dif-

ferent roles” for digital images and that, in some situations, the phase contains many

of the important features of images. This is suggested by the classic experiment

which consists to exchange the Fourier modulus and phase of two images [118, 126].

However when it comes to textures, perception theory suggests that some of the

main texture characteristics are contained in their Fourier magnitude. In his early

work on texture discrimination Julesz [85] demonstrated that many texture pairs

having the same second-order statistics could not be discerned by human preat-

tentive vision. This hypothesis is referred to as the first Julesz axiom for texture

perception [85]. As a consequence, textures having the same second-order statis-

tics share a common auto-covariance and therefore a common Fourier magnitude.

Even though counterexamples to the first Julesz axiom exist [85, 87, 158], it is

believed that Fourier magnitude is more important than phase for the perception

of textures [86]. This conclusion is still considered valid by several more recent

contributions [144, 151]. For example, working on texture classification, Tang and

Stewart [144] conclude that “the Fourier transform magnitudes contain enough tex-

ture information for classification” whereas “the Fourier phase information is a noise

signal for texture classification.”

Thus, a weak form of the first Julesz assumption is that the perception of a tex-

ture is characterized by its Fourier modulus. Under this assumption, its perception

should not vary when the texture phase is randomized. This fact turns out to be

true for a large class of textures which we shall call in the sequel micro-textures.
More generally, any two images obtained by randomizing the phase of any given

sample image are perceptually very similar. As the experiments displayed here

show, this is true regardless of whether the sample image is a texture or not. We

shall call in the sequel random phase texture any image that is obtained by a phase
randomization.

The second Julesz approach to texture preattentive discrimination theory intro-

duced the notion of textons (blobs, terminators, line crossings, etc.) [87]. The texton

theory assumes that the density of local indicators (the textons) is responsible for

texture preattentive discrimination: images with the same texton densities should

not be discriminated. A main axiom of the texton theory is that texture perception
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Figure 2.1: Some examples of micro-textures taken from a single image (water with sand,

clouds, sand, waves with water ground, pebbles). The emplacements of the original textures

are displayed with red rectangles. Each micro-texture is displayed together with an outcome

of the RPN algorithm to its right. These micro-textures are reasonably well emulated by

RPN. Homogeneous regions that have lost their geometric details due to distance are often

well simulated by RPN.

is invariant to random shifts of the textons [87]. The shift invariance of this second

Julesz theory can be made into a synthesis algorithm building a texture from initial

shapes by random shifts. In the Julesz toy algorithm used in his discrimination ex-

periments, this construction was a mere juxtaposition of simple shapes on a regular

grid, with random shifts avoiding overlap. This random shift principle can be used

to make realistic textures provided a linear superposition is authorized, by which

the colors of overlapping objects are averaged. Textures obtained by the combined

use of random shifts and linear superposition will be called random shift textures.
We shall discuss thoroughly their relation to random phase textures.

Random phase and random shift textures belong to a linear world where the

superposition principle dominates. A sound objection is that linear superposition is

not always adapted for natural image formation. Several authors prefer an occlusion

principle yielding the stochastic dead leaves model [108, 137, 18]. Indeed, most

visible objects do not add up visually in the image ; they hide each other.

However, thin, small, or semitransparent objects obey an additive superposi-

tion principle due to the blur inherent to image formation. More generally, all

homogeneous image regions made of small objects, when seen at a distance where

individual shapes vanish, obey the linear superposition principle. Indeed, when

individual texture constituents are close to pixel size, the camera blur linearly su-

perposes their colors and geometric features. Thus, many homogeneous regions
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in any image should be micro-textures obeying the linear superposition principle

and the random shift principle. Fig. 2.1 shows an example. Five rectangles be-

longing to various homogeneous regions were picked in a high resolution landscape

(1762 × 1168 pixels). These textures are displayed in pairs where on the left is

the original sub-image and on the right is a simulation obtained by the random
phase noise (RPN) algorithm elaborated in this chapter. These micro-textures are

reasonably well emulated by the RPN algorithm. This success encourages RPN

simulation attempts on the homogeneous regions of any image. Yet, many images

or image parts usually termed textures do not fit to the micro-texture requisites.

Typically, periodic patterns with big visible elements, such as brick walls, are not

micro-textures. More generally, textures whose building elements are spatially or-

ganized, such as the branches of a tree, are not micro-textures (see Fig. 2.15). In

addition, random phase textures don’t contain clear edges, and more generally, ac-

cording to the global phase coherence indicator introduced by Blanchet, Moisan

and Rougé [17], random phase textures have a poor sharpness. Nonetheless, each

textured object has a critical distance at which it becomes a micro-texture. For

instance, as illustrated in Fig. 2.2, tiles at a close distance are a macro-texture, and
are not amenable to phase randomization. The smaller tiles extracted from the

roofs in Fig. 2.18 can instead be emulated.

2.1.2 Random Phase and Random Shift Algorithms

The two texture models under study have been used either to create new textures

from initial spots, or to analyze texture perception. Emulating real texture samples

by these algorithms requires the solution of several technical obstacles which will

be treated in Section 2.5. Here, we first sketch the mathematical and algorithmic

discussion.

Random phase textures are produced by random phase noise (RPN) which is

a very simple algorithm performing phase randomization. Random shift textures

correspond to a classical model in signal processing called shot noise [39]. Spot
noise, the two-dimensional shot noise, was introduced in computer graphics by van
Wijk [146, 42] to create new textures from simple spot images (Fig. 2.3). In this

chapter we call discrete spot noise (DSN) the corresponding discrete model.
Van Wijk [146] claimed that the asymptotics of discrete spot noise (DSN) is

obtained by uniformly randomizing the phases of all Fourier coefficients. In short,

it is claimed that the DSN asymptotic process is the random phase noise (RPN).

Our first result here is that the limit of DSN is not RPN but is another process,

which we shall call asymptotic discrete spot noise (ADSN). The difference between
the two models lies in the modulus of the Fourier transform of their outcomes. For

RPN, it is given by the Fourier magnitude of the spot whereas for ADSN, it is

subject to pointwise multiplication by a Rayleigh noise.

It will be shown that ADSN and RPN, in spite of their theoretical differences,

give perceptually similar results and therefore justify van Wijk’s approach [146] (see

Fig. 2.5 and 2.10). These experiments show that the perception of random phase
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(a) Input (b) RPN ×1.5

(c) Input (d) RPN ×1.5

(e) Input (f) RPN ×1

Figure 2.2: The first two inputs are rectangles taken from the tiled roofs in Fig. 2.18.

The third input is again a piece of tiled roof taken at a shorter distance. RPN does well

on tiles viewed at a distance at which they make a micro-texture. RPN fails instead on the

third sample, which is a macro-texture.
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textures is actually robust to the pointwise multiplication of the Fourier magnitude

by a Rayleigh noise. By contrast, natural images containing macroscopic structures

are in no way robust to this same perturbation (Fig. 2.18). Hence the perceptual

invariance of random phase textures to a multiplicative noise on their magnitude

possibly characterizes this kind of texture.

In short, mathematical arguments clarify the asymptotics of DSN and also es-

tablish a link between Julesz’s first and second texture perception theories: their

linearized versions give perceptually equivalent textures.

This mathematical and experimental study is completed by three important

improvements of the texture synthesis algorithms that stem from both considered

randomization processes. The ADSN and RPN algorithms are first extended to

color images. The study of the color ADSN shows that this extension should be

performed by preserving the phase coherence between color channels (Fig. 2.6).

Second, artifacts induced by the non periodicity of the input sample are avoided

by replacing the input sample with its periodic component [113]. Eventually, a

natural extension of the method permits to synthesize RPN and ADSN textures

with arbitrary size.

The resulting algorithms are fast algorithms based on fast Fourier transform

(FFT). They can be used as powerful texture synthesizers starting from any input

image. Both these claims are asserted by the companion online demo [60] which

enables to test the RPN texture synthesis algorithm. As explained above, the

algorithms under consideration do not reproduce all classes of textures: they are

restricted to the so-called micro-textures. Exemplar-based methods like those of [51]

and the numerous variants that have followed, see e.g. [152], successfully reproduce a
wide range of textures, including many micro- and macro-textures. However, these

methods are also known to be relatively slow, highly unstable, and to often produce

garbage results or verbatim copy of the input (see Fig. 2.16). In contrast, RPN and

ADSN are limited to a class of textures, but are fast, non iterative and parameter

free. They are also robust, in the sense that all the textures synthesized from the

same original sample are perceptually similar. Speed and stability are especially

important in computer graphics, where the classical Perlin noise model [123] has
been massively used for 25 years. Similarly to ADSN, the Perlin noise model (as

well as its numerous very recent variants [36, 65, 96, 95]) relies on stable and fast

noise filters.

The plan of this chapter is as follows. The two discrete mathematical mod-

els corresponding to Julesz first and second axioms are presented in Sections 2.2

and 2.3. The mathematical difference between these two processes is emphasized in

Section 2.4. The corresponding micro-texture synthesis algorithms are introduced

in Section 2.5, and their performance illustrated in Section 2.6.
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(a) n = 10 (b) n = 102 (c) n = 103 (d) n = 104 (e) n = 105

Figure 2.3: Outcomes of the DSN associated with the binary image of a small disk for

different values of n. As n increases the random images fn converge towards a stationary

texture.

2.2 Asymptotic Discrete Spot Noise

2.2.1 Discrete Spot Noise

We consider the space RM×N of discrete, real-valued and periodic rectan-

gular images. The components of an image f ∈ RM×N are indexed

on the set Ω = {0, . . . , M − 1} × {0, . . . , N − 1}, and by periodicity

f(x) = f(x1 mod M, x2 mod N) for all x = (x1, x2) ∈ Z2.

Let h be a real-valued image and let Xp, p = 1, 2, . . . be independent identically

distributed (i.i.d.) random variables (r.v.), uniformly distributed on the image

domain Ω. We define the discrete spot noise (DSN) of order n associated with the

spot h as the random image

fn(x) =
n∑

p=1

h(x − Xp), x ∈ Ω. (2.1)

Fig. 2.3 shows several realizations of the DSN for different values of n where the

spot h is the binary image of a small disk. It appears clearly that as n increases

the random images fn converge towards a texture-like image. Our purpose is to

rigorously define this limit random texture and determine an efficient synthesis

algorithm.

2.2.2 Definition of the Asymptotic Discrete Spot Noise

In order to define an interesting limit to the DSN sequence we need to normalize

the images fn. As fn is the sum of n i.i.d. random images, the normalization is

given by the central limit theorem. This limit will be called the asymptotic discrete
spot noise (ADSN) associated with h.

Let X be a uniform r.v. on Ω and let H(x) = h(x − X). A direct computation

shows that the expected value of H is E(H) = m1 where m denotes the arithmetic

mean of h and 1 is the image whose components are all equal to 1. Similarly the

covariance of the random image H is shown to be equal to the autocorrelation of
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h, that is for all (x, y) ∈ Ω2

Cov (H(x), H(y)) = Ch(x, y),

where

Ch(x, y) =
1

MN

∑

u∈Ω
(h(x − u)− m) (h(y − u)− m) . (2.2)

The central limit theorem ensures that the random sequence n−1/2 (fn − nm1)

converges in distribution towards the MN -dimensional normal distribution

N (0, Ch), yielding the following definition.

Definition 2.1 (Asymptotic discrete spot noise). With the above notations, the
asymptotic discrete spot noise (ADSN) associated with h is the normal distribution
N (0, Ch).

2.2.3 Simulation of the ADSN

It is well known that applying a spatial filter to a noise image results in synthesizing

a stochastic texture, the characteristic features of which are inherited from the

filter and from the original noise [157, 53]. In this section we show that the ADSN

associated with h can be simulated as a convolution product between a normalized

zero-mean copy of h and a Gaussian white noise. We recall that the convolution of

two (periodic) images f, g of RM×N is defined by

(f ∗ g) (x) =
∑

u∈Ω
f(x − u)g(u), x ∈ Ω.

Theorem 2.1 (Simulation of ADSN). Let Y ∈ RM×N be a Gaussian white noise,
that is, a random image whose components are i.d.d. with distribution N (0, 1). Let
h be an image and m be its arithmetic mean. Then the random image

1√
MN

(h − m1) ∗ Y (2.3)

is the ADSN associated with h.

Proof. Denote

h̃ :=
1√

MN
(h − m1)

and Z := h̃ ∗ Y the random image defined by Equation (2.3). Since the convolution

product is a linear operator, Z is Gaussian and E(Z) = h̃ ∗ E(Y ) = 0. Besides, for

all (x, y) ∈ Ω,

Cov (Z(x), Z(y)) = E (Z(x)Z(y))

= E





∑

u∈Ω
h̃(x − u)Y (u)





∑

v∈Ω
h̃(y − v)Y (v)







=
∑

u∈Ω
h̃(x − u)h̃(y − u),
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since E (Y (u)Y (v)) = 1 if u = v and 0 otherwise. Using Equation (2.2) and the

definition of h̃, we obtain Cov (Z(x), Z(y)) = Ch(x, y). Hence Z is Gaussian with

distribution N (0, Ch).

2.3 Random Phase Noise

In this section we analyze a stochastic process, the random phase noise (RPN) which
was used by van Wijk and his co-workers as a technique to synthesize stationary

textures [146, 77]. Using a random phase to obtain a texture from a given Fourier

spectrum was first evoked by Lewis [102].

The RPN associated with a discrete image h is a random real image that has

the same Fourier modulus as h but has a random phase. We first define a uniform

random phase, which is a uniform random image constrained to be the phase of a

real-valued image.

Definition 2.2 (Uniform random phase). We say that a random image θ ∈ RM×N

is a uniform random phase if:

1. θ is odd: ∀x ∈ Ω, θ(−x) = −θ(x).

2. Each component θ(x) is either uniformly distributed on the interval (−π, π]

if x /∈
{
(0, 0) ,

(
M
2 , 0

)
,
(
0, N

2

)
,
(

M
2 , N

2

)}
, or uniform on the set {0, π} other-

wise.

3. For every subset S of the Fourier domain which does not contain distinct
symmetric points, the family of r.v. {θ(x)|x ∈ S} is independent.

Definition 2.3 (Random phase noise). Let h ∈ RM×N be an image. A random
image Z is a random phase noise (RPN) associated with h if there exists a uniform
random phase θ such that

Ẑ(ξ) = ĥ(ξ)eiθ(ξ), ξ ∈ Ω.

It is equivalent to define RPN as the random image Z such that Ẑ(ξ) =∣∣∣ĥ(ξ)
∣∣∣ eiθ(ξ), where θ is a uniform random phase. This is because if φ is the phase

of a real-valued image and θ is a uniform random phase then the random image

(θ + φ) mod 2π is also a uniform random phase. One of the assets of this second

definition is to emphasize that the RPN associated with an image h only depends

on the Fourier modulus of this image. However, as developed in Section 2.5.1, the

first definition permits to extend RPN to color images.

2.4 Spectral Representation of ADSN and RPN

The ADSN associated with an image h is a convolution of a normalized zero-mean

copy of h with a Gaussian white noise whereas the RPN is obtained by multiplying

each Fourier coefficient of h by a uniform random phase.
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(a) Gaussian spot (b) ADSN (c) (d)

Figure 2.4: ADSN 2.4(b) associated with a Gaussian spot 2.4(a) and their respective

Fourier modulus 2.4(d) and 2.4(c) represented on logarithmic scale. The modulus of the

ADSN is the pointwise multiplication of the modulus of h by a white Rayleigh noise.

ADSN is easily described in the Fourier domain. A Gaussian white noise image

has a uniform random phase, its Fourier modulus is a white Rayleigh noise and

its Fourier phase and modulus are independent [120, Chapter 6]. Consequently,

the convolution theorem ensures that the phase of the ADSN is a uniform random

phase whereas its Fourier modulus is the pointwise multiplication of the Fourier

modulus of h by a Rayleigh noise.

Thus the phases of ADSN and RPN are both uniform random phases. However,

the Fourier modulus of the two processes have different distributions: The Fourier

modulus of the RPN is by definition equal to the Fourier modulus of the original

image h whereas the Fourier modulus of the ADSN is the modulus of h degraded by a

pointwise multiplication by a white Rayleigh noise (see Fig. 2.4). This characteristic

of the limit process is clearly visible on Fig. 12 of the recent paper [95] where the

noisy Fourier spectra of some spot noise textures are displayed.
To highlight the differences between ADSN and RPN, consider the effect of both

processes on a single oscillation h(x) = sin(λx1 + µx2). Because of the phase shift,

the RPN associated with h is a random uniform translation sin(θ + λx1 + µx2)

of h whereas the ADSN associated with h is a random uniform translation of h

multiplied by a random Rayleigh amplitude R that is R sin(θ + λx1 + µx2). In the

same way, if h is the sum of two oscillations then the RPN is still a translation of h

whereas the ADSN may favor one of the two frequencies as illustrated by Fig. 2.5.

2.5 Texture Synthesis Algorithms

Theorem 2.1 and Definition 2.3 yield two fast synthesis algorithms based on FFT.

To preserve the mean of outcomes, the mean value m of the input image is added to

the ADSN outcomes, while for RPN, the condition θ(x) = 0 is enforced if x = (0, 0).

Observe that both processes can produce values outside the initial range. These

values are usually very few and are simply cut off. An alternative yielding visually

similar results is to stretch the histogram of outcomes.
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(a) Input (b) RPN (c) ADSN (d) ADSN

Figure 2.5: Differences between the outcomes of the RPN and the ADSN associated

with the bisinusoidal image 2.5(a). The RPN 2.5(b) is always a translation of the original

image 2.5(a) whereas the ADSN randomly favors one of the two frequencies (two different

realizations are displayed in 2.5(c) and 2.5(d)).

Two important practical points for the simulation of ADSN and RPN associated

with non periodic color images are addressed next, and then we consider the issue of

synthesizing ADSN and RPN textures having larger size than their initial sample.

2.5.1 Extension to Color Images

Color ADSN First observe that the definition of the discrete spot noise (DSN) is

easily extended to color images by summing colored spots, that is by using vector-

valued spots h = (hr, hg, hb) in Formula (2.1). This operation is performed in the

RGB space that roughly corresponds to the frequency content of images. This

obviously induces correlations between the color channels of the resulting image.

Henceforth, the color ADSN is defined as the limit of the normalized DSN, as in

Section 2.2. The central limit theorem then applies as before and the limit is a

Gaussian multivariate field, with covariance matrix

Ch(x, y) =
1

MN

∑

u∈Ω
(h(x − u)− m)T (h(y − u)− m) ,

where as before m = (mr, mg, mb) is the arithmetic mean of h. Theorem 2.1

straightforwardly generalizes to this setting, and the limit is obtained as

1√
MN

(h − m1) ∗ Y, (2.4)

where as before Y is a scalar Gaussian white noise of dimension M × N .

In other words, the color ADSN is obtained by convolving each color channel

with the same realization of a Gaussian white noise. Note that this procedure is

much simpler than a classical approach to color texture synthesis relying on a PCA

transform of the color space [74, 53]. As will be illustrated in the experimental sec-

tion, this procedure permits to preserve the color content of the input image. This

provides an interesting alternative to the use of color lookup tables, the standard

way to obtain colored noises in computer graphics [123, 49, 96].
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(a) Input (b) RPN (c) Wrong RPN

(d) Input (e) RPN (f) Wrong RPN

Figure 2.6: RPN associated with color images. Images 2.6(a) and 2.6(d): input RGB

images; Images 2.6(b) and 2.6(e): associated color RPN, obtained by adding the same

random phase to each phase of the three color channels. In contrast, if one imposes the

same random phase to each color channel one obtains images 2.6(c) and 2.6(f), the colors

of which are not consistent with the original images.

Color RPN The mathematical extension of the RPN to the color case is less clear

than for ADSN. The question is how to define a random phase in the vector-valued

case. First observe that the phase of each channel of the color ADSN is a scalar

random phase, as in Definition 2.2. Moreover, Formula (2.4) and the convolution

theorem implies that the same random phase is added to the phase of each color

channel of h. By analogy, the color RPN is defined by adding the same random

phase to the phase of each color channel of the spot. Recall that in the gray level

case, as explained at the end of Section 2.3, adding a random phase to the phase

of the spot is equivalent to replacing the phase of the spot by a random phase. In

the color setting, this second option (replacing the phase of each color channel by

a random phase) would yield false colors, as illustrated by Fig. 2.6. In contrast,

adding the same random phase to the original phases of each color channel preserves

the phase displacements between channels, which is important for color consistency

(see Fig. 2.6).

2.5.2 Avoiding Artifacts Due to Non Periodicity

Since both ADSN and RPN are based on FFT the periodicity of the input sample

is a critical requirement. A digital image can always be considered as a periodic
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image but this results in creating artificial discontinuities at its boundary. In our

case it is not possible to avoid this problem using a symmetrization of the image

because this would change the features of the output, for example by creating new

characteristic directions.

The goal here is to slightly change the input sample h to enforce its periodicity.

This is done by replacing h with its periodic component p = per(h) as introduced

by Moisan in [113]. In the original paper [113], p is defined as the solution of a

variational problem. As shown in the Appendix A, p can also be defined as the

unique solution of the Poisson problem




∆p = ∆ih

mean(p) = mean(h)
(2.5)

where ∆ is the usual discrete periodic Laplacian and ∆i is the discrete Laplacian

in the interior of the domain. For a periodic image f , these discrete operators are

defined by

∆f(x) = 4f(x)−
∑

y∈Nx

f(y)

and

∆if(x) = |Nx ∩ Ω| f(x)−
∑

y∈Nx∩Ω
f(y),

where Nx ⊂ Z2 denotes the 4-connected neighborhood of x and |Nx ∩ Ω| the number
of those neighbors that are in Ω. Note that ∆f and ∆if only differ at the boundary

of the image domain. As a consequence (2.5) ensures that p and h have a similar

behavior inside the image domain. In particular if h is constant at its boundary we

have p = h.

In the general case p is computed directly by the classical FFT-based Poisson

solver [127] since in the Fourier domain (2.5) becomes





(
4− 2 cos

(
2ξ1π
M

)
− 2 cos

(
2ξ2π

N

))
p̂(ξ) = ∆̂ih(ξ), ξ ∈ Ω,

p̂(0) = ĥ(0).

The definition of p given by (2.5) is preferable, in the context of this chapter, to

the original one of [113]. Indeed it enables the direct computation of the discrete

Fourier transform of p, which is useful in view of the synthesis algorithm.

Using the periodic component p in place of the initial image h permits to avoid

strong artifacts due to the non periodicity of the input samples, as illustrated by

Fig. 2.7. From now on, this preprocessing will be used in all numerical experiments.

Observe that other solutions exist in the literature for finding a “good” periodic

representative of h, especially for solving the periodic tiling problem (see [121] for

example). Nevertheless the periodic component p is particularly adapted to our

problem since it has been defined to eliminate the “cross structure” present in the

discrete Fourier transform [113].
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(a) Input h (b) p (c) s +mean(h)

(d) ADSN(h) (e) ADSN(p) (f) s+ADSN(p)

Figure 2.7: First row: periodic and smooth component of the input sample h = p + s

[113]. The mean of h is added to the smooth component s for visualization. Second row:

ADSN associated with the original texture sample h and ADSN associated to its periodic

component p. In 2.7(d) the vertical stripes are due to the change of lighting between the left

and the right sides of the input sample 2.7(a). When using the preprocessed decomposition

(2.7(e)) this artifact due to the non periodicity of the input sample does not appear (results

are similar for the RPN algorithm). Note that for rendering purpose one can add back the

smooth component s to the ADSN associated with p 2.7(f).
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Figure 2.8: Cross section and gray-level representation of the smooth transition function

ϕα used to attenuate the spot along the border of the image. On the interval [0, α] the func-

tion varies as the primitive of the standard C∞ function t Ô→ exp
(
−1/

(
1− (2t/α − 1)2

))
,

and it is symmetrically defined on the interval [1 − α, 1]. To preserve the variance of the

spot, ϕα is normalized so that its L2-norm equals 1.

2.5.3 Synthesizing Textures With Arbitrary Sizes

So far both discussed algorithms synthesize output textures which have the same

size as the original input sample. However, an important issue in texture synthesis

is to synthesize textures with arbitrary large size from a given sample. In this

section we propose a practical method which solves this problem for ADSN and

RPN textures simply by extending the spot (see Fig. 2.9).

Given a spot h of size M1× N1 and an output size M2× N2, with M2 > M1 and

N2 > N1, we synthesize ADSN (resp. RPN) textures of size M2× N2 by computing

the ADSN (resp. RPN) associated with an extended spot h̃ ∈ RM2×N2 which

represents suitably the original spot h ∈ RM1×N1 . The extended spot h̃ ∈ RM2×N2

is constructed by pasting a normalized copy of the periodic component p of h in

the center of an image constant to m. More precisely:

h̃(x) = m +

√
M2N2

M1N1
(p(x) − m) R1(x), (2.6)

where R1 denotes the indicator function of R1, the centered rectangle of size M1×
N1 included in Ω2 = {0, . . . , M2−1}×{0, . . . , N2−1}. As defined by Equation (2.6),
h̃ has the same mean and variance as p, and the autocorrelation of both spots is

close for small distances. However h̃ has discontinuities along the border of R1
which is undesirable since, as illustrated by Fig. 2.7, those discontinuities can lead

to artifacts after randomization.

In order to wear off this brusque transition the inner spot p − m is progressively

attenuated at its border. This is done by multiplying p − m by a smooth transition

function ϕα. The function ϕα, which is precisely described in Fig. 2.8, is constant

at the center of the domain and decreases smoothly to zero at the border. All

experiments in this chapter are performed using α = 0.1.
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(a) Spot h (b) Extended Spot h̃

(c) RPN(h) (d) RPN
(
h̃
)

Figure 2.9: Spot extension technique: the original spot h 2.9(a) is extended into the

spot 2.9(b) by copying its periodic component p in the center, normalizing its variance

(see Equation (2.6)), and smoothing the transition at the border of the inner frame by

multiplying by the function ϕα (here α = 0.1). The RPN associated to the extended spot

is visually similar to the RPN associated with the original spot and has an higher size.

Results are similar for the ADSN algorithm.
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The resulting spot extension technique is illustrated in Fig. 2.9. Again, in this

example α = 0.1. Experiments show that the value of this parameter is not critical

and that for most images α = 0.1 seems a good compromise between wave artifact

correction and information loss.

Summary of the synthesis method: To conclude this section we summarize the

whole procedure for both ADSN and RPN texture synthesis algorithms. The input

of both algorithms is a color input sample h of size M1 × N1, the size M2 × N2

of the output texture and (optionally) a value for the parameter α involved in the

smooth transition function ϕα.

1. Compute the periodic component p of h.

2. Extends p into h̃ using Equation (2.6) and the pointwise multiplication by the

smooth transition function ϕα.

3. • ADSN: Simulate a Gaussian white noise Y and return Z = m +
1√

M2N2

(
h̃ − m

)
∗ Y , the convolution being applied to each color channel

of h̃ − m.

• RPN: Simulate a random phase θ with θ(0) = 0 and compute Z by

adding θ to the phase of each color channel of h̃.

Note that step 1) and step 3) are based on FFT whereas step 2) has linear com-

plexity. Eventually both algorithms have a complexity of O (M2N2 log (M2N2)).

The slight advantage of RPN is that it only necessitates the generation of about
M2N2
2 uniform variables versus the M2N2 Gaussian variables necessary for the

ADSN. Moreover, with RPN the Fourier modulus of the original sample is con-

served. As already mentioned, an online demo [60] enables the interested reader to

test the RPN texture synthesis algorithm.

2.6 Numerical Results

2.6.1 Perceptual Similarity of ADSN and RPN

Even though the two processes ADSN and RPN have different Fourier modulus

distributions (see Section 2.4), they produce visually similar results when applied

to natural images as shown by Fig. 2.10. In order to better illustrate this perceptual

similarity, we display for each input image the corresponding ADSN and RPN to

which the same uniform random phase was imposed. Recall that it was shown in

Fig. 2.5 that perceptual similarity does not hold in the case of images having a

sparse Fourier spectrum.

2.6.2 RPN and ADSN as Micro-Texture Synthesizers

This section investigates the synthesis of real-world textures using RPN. As men-

tioned above, ADSN produces visually similar results.
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Figure 2.10: ADSN (middle) and RPN (right) associated with several input textures

(left): stone, carpet, pink concrete, and moss. In order to compare the results the same

uniform random phase is imposed to both ADSN and RPN. Observe that there is nearly no

perceptual difference between the outcome of both algorithms. This perceptual similarity

has been observed for every ADSN and RPN outcomes associated with natural textures,

showing that random phase and random shift textures are perceptually the same class of

texture.
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Figure 2.11: Examples of well-reproduced textures of walls: RPN (right) associated with

different input textures (left). All these textures are satisfyingly reproduced by the RPN

algorithm, which indicates that they are random phase textures. Observe that some local

details are lost for the last texture. See also the next three figures (Fig. 2.12, Fig. 2.13, and

Fig. 2.14) as well as the online demo webpage [60] for more examples of successful synthesis.
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Figure 2.12: Examples of well-reproduced wood textures: RPN (right) associated with

different input textures (left). Again all these textures are satisfyingly reproduced by the

RPN algorithm, which indicates that they are random phase textures.

Figure 2.13: Examples of well-reproduced textures of fabrics and carpets: RPN (right)

associated with different input textures (left).
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Figure 2.14: Examples of well-reproduced miscellaneous textures (sand, water, and paint

on canvas): RPN (right) associated with different input textures (left).

The series of figures from Fig. 2.11 to Fig. 2.14 show that the RPN algorithm

can be used to synthesize various micro-textures similar to a given original sample.

Indeed the RPN algorithm can reproduced satisfyingly well textures of wallpaper,

marble and concrete (Fig. 2.11), as well as wood textures (Fig. 2.12), fabric and

carpet textures (Fig. 2.13), water, sand, and paint on canvas (Fig. 2.14).

However, as illustrated by Fig. 2.15, the RPN algorithm gives poor results with

macro-textures. For this kind of texture, resampling algorithms (e.g. [51] or [50])
can give impressive results if the parameters (window or patch size, initialization,

scanning order, . . . ) are well-chosen for each input image. However, as said in

the introduction, these algorithms are also known for their tendency to sometimes

produce erratic results or to excessively use verbatim copying (see Fig. 2.16), not to

mention their computational cost. Recent inpainting algorithms [122, 152] partially

solve these issues, but instabilities remain in the case of texture synthesis.

In contrast RPN (as well as ADSN), despite being limited to the synthesis of

specific textures, is parameter-free and non iterative. Besides, it is very fast with a

complexity of O(MN log(MN)). Last but not least, RPN (as well as ADSN) pro-

duces visually stable results: for any given image it always produces perceptually

similar results, as illustrated by Fig. 2.17. As said in the introduction, this prop-

erty is important in view of an automatic use in the context of computer graphic

applications and explain why older and very simple synthesis procedures such as

Perlin noise [123], also relying on noise filtering, are still popular today [36, 65, 96].

2.6.3 A Perceptual Robustness of Phase Invariant Textures

In Section 2.4 we showed that the ADSN associated to a spot can be obtained

from its RPN by a pointwise product of the Fourier modulus with a Rayleigh noise.
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Figure 2.15: Examples of failures: RPN (right) associated with different input textures

(left): cat fur, salmon, thuja, and bricks. All input textures are, to some extent, not well

reproduced by the RPN algorithm and therefore are not random phase textures. On the

third and fourth line are displayed two highly structured textures to which the algorithm

is clearly not adapted. See [60] for more examples of failures.
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(a) Input

image

(b) w = 9 (c) w = 15 (d) w = 21 (e) RPN

Figure 2.16: Illustrations of the limitations of exemplar-based algorithms. The pinewood

texture 2.16(a) of size 256×256 pixels was used to synthesize twice larger textures using the
Efros-Leung algorithm [51] with several values for the window width w (2.16(b), 2.16(c),

and 2.16(d)). These algorithms are prone to grow garbage at times, as well as to produce

verbatim copies of the input textures. In contrast, as illustrated by 2.16(e), the RPN

algorithm is stable.

Figure 2.17: Several outcomes of the RPN associated with the same input image (top

left). RPN (as well as ADSN) is a visually stable algorithm: indeed even though the output

images are locally quite different they are always visually similar.
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Figure 2.18: Effect of the pointwise multiplication of the Fourier modulus by a Rayleigh

noise. The non random phase images (left and middle) are damaged whereas the random

phase texture (right) is perceptually robust to this transformation.

Hence the observed visual similarity of the outcomes of the ADSN and the RPN

(see Fig. 2.10) leads us to claim that the perception of random phase or random

shift textures is actually robust to pointwise multiplication of the Fourier modulus

by a Rayleigh noise.

One can wonder wether this robustness is also observed for every image. The

answer is no and Fig. 2.18 illustrates that non random phase images are damaged

by this multiplication. Thus, the perceptual invariance of random phase textures

to a multiplicative noise on their magnitude may be a characteristic of this kind of

texture.

2.7 Conclusion

This chapter presented a mathematical analysis of spot noise texture models and
synthesis methods. Two texture perception models stemming from Julesz’s theories

were recalled. The first one is the random phase model, which leads exactly to the

RPN algorithm. The second one is the shift invariant texton model. When applied

in conjunction with the superposition principle, we have seen that this last model

yields a stationary texture model which we called ADSN. Experimental evidence

has shown that random phase textures and random shift textures generated from
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the same sample are indistinguishable. Consequently, an unexpected additional

perceptual invariance property of random phase textures was uncovered: random

phase textures are perceptually invariant under a multiplicative noise on the Fourier

modulus. To the best of our knowledge, this surprising fact had never been pointed

out.

As for the texture synthesis algorithms, three significant technical points have

been developed permitting the synthesis of textures from real-world texture sam-

ples. The first was the extension of ADSN and RPN to color images in preserving

the phase displacement between the DFT of color channels. The second was the

replacement of the original texture sample by its periodic component in order to

avoir artifacts due to non periodicity. The third was a practical solution to synthe-

size ADSN and RPN textures of arbitrary large size. Numerical results have shown

that ADSN and RPN reproduce satisfyingly well a relatively large range of textures,

namely the micro-textures. The algorithms are ideally fast and produce visually

stable results, two properties which are crucial for computer graphics applications.

Several perspectives open up. First, one should investigate if the technical

methods developped for ADSN and RPN can be applied to other texture synthesis

algorithms based on Fourier analysis. Chapter 4 will show that the extension to

color images as well as replacing the sample by its periodic component enable pro-

cedural texture synthesis from sample using the state of the art model, namely the

Gabor noise model [96]. Second, a similar study should be conducted on perceptu-

ally based texture synthesis methods relying on wavelet decompositions, following

the seminal work of [74].

To conclude let us mention that a strong limitation of the models discussed

here is the exclusive use of a linear superposition principle. It would therefore be of

interest to investigate asymptotic properties of more elaborate generative texture

models involving an occlusion principle or random transparent templates. This will

be the object of Chapter 6 of this thesis where we will introduce the transparent

dead leaves model.
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Abstract: The ADSN algorithm developed in Chapter 2 illustrates the

interest of the Gaussian limit of discrete shot noise models for image tex-

ture synthesis. This chapter deals with the Poisson shot noise model,

the continuous counterpart of the discrete shot noise. This model is of-

ten used in procedural texture synthesis, mainly because it converges to

a Gaussian random field when the impulse intensity increases. Focus is

put on this normal convergence for which classical results are recalled,

notably the Berry-Esseen theorem for Poisson shot noise. Our main

theoretical contribution is to significantly improve the upper bound of

the Berry-Esseen constant for Poisson shot noise. It is also shown that,

under additional hypotheses, multiplying the impulses of the shot noise

by random weights accelerates the normal convergence. As a practical

contribution to procedural texture synthesis, experiments show that the

Berry-Esseen bound provides the good order of magnitude for the “vi-

sual convergence” to the limit Gaussian texture. However, multiplying

the impulses by random weights does not seem to accelerate the visual

convergence.
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3.1 Introduction

The previous chapter has illustrated the interest of the Discrete Spot Noise (DSN)

model for texture synthesis (See Chapter 2). The developed ADSN algorithm relies

on the limit Gaussian process of the DSN sequence when the number of impulses

tends to infinity.

The goal of this chapter is to define and study the corresponding shot noise

model defined on the continuous domain, and more particularly its convergence to

a Gaussian random field (r.f.) (in this theoretical chapter, the general terminol-

ogy shot noise will be used in place of the terminology spot noise which is only

encountered for texture synthesis [146]). The family of shot noise models is very

large, including several degrees of complexification. As a common characteristic,

all shot noise models are made of the sum of several (possibly random) functions

translated by random vectors scattered all over the space. Here we focus on shot

noise processes driven by independently marked Poisson point processes1. Hence

the studied model, called Poisson shot noise, takes the form

f(x) =
∑

(xj ,κj)∈Π
h(x − xj , κj), x ∈ Rd,

where h is a measurable function and Π is an independently marked Poisson process

over Rd ×K, K being the mark space. This means that to each point xj is attached

a random mark κj following some probability distribution Pκ. One should think of

the mark κj as a random parameter to select the impulse function among a family

of functions {y Ô→ h(y, κ), κ ∈ K}. For example the random mark κj may encode

a random amplitude, random orientation, scale, frequency, indicator of random set,

etc.

The Poisson shot noise model is used in many different areas. For examples,

it has been used to model current through some electronic device [39], Internet

traffic [12], as well as the roughness of paper [22, 84]. It is also a classical model in

geostatistics (see the random token model in [100] and the references therein).

The Poisson shot noise model has also been and is still extensively used in

procedural texture synthesis [102, 123, 146, 96, 95], where it is often called sparse

convolution model in reference to the work of Lewis [102]. The main practical

reason why shot noise models are used as procedural noise functions is that, when

the impulses have a compact support, the shot noise f can be evaluated at any

point x for a fixed computational cost. This is done by only simulating the impulses

influencing the noise at the point x. From a theoretical point of view, shot noise

models are used in procedural texture synthesis since, as for the discrete shot noise

model, when increasing the intensity of impulses the Poisson shot noise tends to

a Gaussian r.f. Hence if the intensity of the Poisson shot noise is high enough, it

is an approximation of a Gaussian r.f. which is defined on the whole continuous

domain. Note that the fact that the r.f. is defined and computable on every

1Appendix B recalls basic definitions and properties of Poisson point processes.
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point of the continuous domain is an important requirement for computer graphics

applications such as texturing objects of a 3D virtual environment [95]. This is a

main difference with the ADSN model of Chapter 2 as well as the classical exact

simulation algorithms for Gaussian r.f. [155, 43] based on FFT: they only permit

to simulate a Gaussian r.f. on a finite grid.

Hence to simulate a Gaussian texture, one can use a Poisson shot noise with high

intensity. However the computational cost of shot noise simulation algorithms is

typically linearly proportional to the impulse intensity λ. One must therefore find a

trade-off between the quality of the Gaussian approximation and the computational

cost. Determining automatically a value for the intensity λ which would satisfy this

trade-off is a crucial problem. The main practical contribution of this chapter is

to demonstrate that this problem can be solved by using a classical result from

probability theory, namely the Berry-Esseen theorem for Poisson shot noise [119,

75].

After recalling the general properties of Poisson shot noise, its convergence to-

ward a Gaussian r.f. is studied in detail in this chapter. Known theoretical results

on the rate of the normal convergence are recalled [119, 75]. Our main contribution

on the subject is to show that the Berry-Esseen constant for Poisson shot noises

is the same as the Berry-Esseen constant for Poisson random sums. As a conse-

quence, thanks to a recent result due to Korolev and Shevtsova [92], we reduce by a

factor seven the upper bound of the Berry-Esseen constant for Poisson shot noises

previously derived by Heinrich and Schmidt [75].

The Berry-Esseen theorem provides a bound which tends to zero proportionally

to λ−12 , where λ is the intensity of the Poisson point process. As an attempt to reach

a faster rate of convergence, we also investigate conditions for which the normal

convergence is of order 1 instead of order 1
2 . It is demonstrated that, under broad

hypotheses, an asymptotic normal convergence rate of order 1 is always achieved in

multiplying the random impulses h(xj , κj) by i.i.d. random weights wj .

The theoretical study of the normal convergence of Poisson shot noise is com-

pleted with an experimental section. Its goal is to determine whether the theoretical

results on the normal convergence rate have applications for procedural texture syn-

thesis based on shot noise models. First, it is shown that the Berry-Esseen bound

provides the good order of magnitude for the “visual convergence” to the limit

Gaussian texture. This might be integrated in procedural texture synthesis soft-

ware relying on shot noise models to propose a range of interest for the value of

the intensity λ. Second it is shown that, unfortunately, multiplying the impulses

by random weights does not seem to accelerate the “visual convergence” of the shot

noise sequence. Hence our result permitting to reach a normal convergence rate

of order 1 would be interesting in practice only if some high statistical precision is

needed, which is a priori not the case in computer graphics.

The plan of this chapter is as follows. Section 3.2 defines the Poisson shot

noise model and gives its covariance and power spectrum. Section 3.3 recalls and

proves the normal convergence of Poisson shot noise with increasing intensity. The
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rate of this normal convergence is then studied in detailed in Section 3.4. In par-

ticular the two above mentioned theoretical contributions are stated and proved.

Finally, applications to procedural texture synthesis are discussed and illustrated

in Section 3.5.

3.2 Mean, Covariance, and Power Spectrum of Poisson

Shot Noise

We consider an independently marked Poisson process2 Π = {(xj , κj)} ⊂ Rd × K

having intensity measure λLd ⊗ Pκ, where λ > 0 is the intensity of the station-

ary unmarked Poisson process {xj} and Pκ is a probability distribution. We also

consider a measurable function h : Rd × K → R which will be called the impulse
function.

Definition 3.1 (Poisson shot noise). The shot noise associated with the indepen-
dently marked Poisson process Π = {(xj , κj)} ⊂ Rd × K and the impulse function
h : Rd × K → R is the random field f defined by

f(x) =
∑

(xj ,κj)∈Π
h(x − xj , κj).

Let us introduce some notation. The expectation with respect to the distribution

of Π is denoted by E whereas the distribution with respect to Pκ is denoted by E.

h̃ denotes the function defined by h̃(y, κ) = h(−y, κ). In addition, ĥ denotes the

Fourier transform of h with respect to the spatial variable y, that is

ĥ(ξ, κ) =

∫

Rd
h(y, κ)e−2iπ〈ξ,y〉dy.

Since it will always be assumed that

∫

Rd×K
|h(y, κ)| dyPκ(dκ) < +∞,

Fubini’s theorem ensures that the function ĥ is Pκ-a.s. defined.

Proposition 3.1 (Mean, covariance and power spectrum of the shot noise process).

Suppose that ∫

Rd×K
|h(y, κ)|k dyPκ(dκ) < +∞

for k = 1 and k = 2. Then for all x ∈ Rd, the sum f(x) is a.s. absolutely convergent
which ensures that f is well-defined. f is a stationary random field and it has a
finite variance. Its expectation is given by

E(f(x)) = λ

∫

Rd×K
h(y, κ)dyPκ(dκ),

2Appendix B recalls basic definitions and properties of Poisson point processes.
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while its covariance function C is given by

C(τ) := Cov(f(x+τ), f(x)) = λ

∫

Rd×K
h(y+τ, κ)h(y, κ)dyPκ(dκ) = E

(
h̃ ∗ h(τ, κ)

)
.

The power spectrum S of the shot noise f is equal, up to a factor λ, to the mean
power spectrum of the random integrable function h(·, κ), that is

S(ξ) :=

∫

Rd
C(τ)e−2iπ〈ξ,τ〉dτ = λE

(∣∣∣ĥ(ξ, κ)
∣∣∣
2
)

.

Proof. We provide the proof of these standard results for the sake of completeness.

For all x ∈ Rd, we can apply Campbell’s theorem (see Theorem B.2) with the

Poisson process Π and the function hx : (y, κ) Ô→ h(x − y, κ). The hypothesis of

integrability ensures that hx is integrable and thus the sum

f(x) =
∑

(xj ,κj)∈Π
h(x − xj , κj) =

∑

(yj ,κj)∈Π
hx(yj , κj)

is a.s. absolutely convergent and

E(f(x)) = λ

∫

Rd×K
h(x − y, κ)dyPκ(dκ) = λ

∫

Rd×K
h(y, κ)dyPκ(dκ).

For all τ ∈ Rd and x ∈ Rd, by hypothesis hx+τ and hx are square-integrable with

respect to the intensity measure, hence Corollary B.1 ensures that

C(τ) = Cov(f(x+ τ), f(x))

= λ

∫

Rd×K
h(x+ τ − y, κ)h(x − y, κ)dyPκ(dκ)

= λ

∫

Rd×K
h(z + τ, κ)h(z, κ)dzPκ(dκ).

Using Fubini’s theorem one remarks that

C(τ) = λ

∫

K

(∫

Rd
h(y − τ, κ)h(y, κ)dy

)
Pκ(dκ) = λE

(
h̃ ∗ h(−τ, κ)

)
= λE

(
h̃ ∗ h(τ, κ)

)
.

To compute the power spectrum S of f we first use Fubini’s theorem

S(ξ) =

∫

Rd
C(τ)e−2iπ〈ξ,τ〉dτ = λE

(∫

Rd
h̃ ∗ h(τ, κ)e−2iπ〈ξ,τ〉dτ

)
= λE

(
̂̃h ∗ h(ξ, κ)

)
.

Since the convolution theorem ensures that ̂̃h ∗ h(ξ, κ) =
∣∣∣ĥ(ξ, κ)

∣∣∣
2
we have

S(ξ) = λE

(∣∣∣ĥ(ξ, κ)
∣∣∣
2
)

.
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3.3 Normal Convergence of High Density Shot Noise

In this section we establish the convergence of the normalized Poisson shot noise

to a Gaussian random field when the intensity λ tends to +∞. The proof follows

the outline given by [131, p. 558]. This result extends to more general shot noise

models involving non Poisson point processes [75].

We consider a family of independently marked Poisson processes Πλ ⊂ Rd × K,

λ > 0, each Poisson process having intensity measure λLd ⊗ Pκ. The considered

shot noise processes are

fλ(x) =
∑

(xj ,κj)∈Πλ

h(x − xj , κj),

where h : Rd × K → R is a measurable function which is both integrable and

square-integrable.

Centering and normalizing the processes fλ we define the family of normalized

shot noise

gλ(x) =
fλ(x)− E(fλ)√

λ
.

The expectation of gλ(x) is zero and its covariance, which does not depend on λ, is

Cov(gλ(x+τ), gλ(x)) =
1

λ
Cov(fλ(x+τ), fλ(x)) =

∫

Rd×K
h(y+τ, κ)h(y, κ)dyPκ(dκ)

Theorem 3.1 (Normal convergence of high density shot noise). Suppose that

∫

Rd×K
|h(y, κ)|k dyPκ(dκ) < +∞

for k = 1 and k = 2. Then, as λ tends to +∞, the family of random fields
(gλ)λ∈]0,+∞[ converges in the sense of finite dimensional distributions to a stationary
Gaussian random field having null expectation and covariance function

C(τ) =

∫

Rd×K
h(y + τ, κ)h(y, κ)dyPκ(dκ), τ ∈ Rd.

The proof of Theorem 3.1 is divided in two parts. First it is shown that each

r.v. gλ(x) converges in distribution to a normal distribution. Second this result is

extended to any linear combination
∑p

k=1wkgλ(xk).

Lemma 3.1. For all x ∈ R and for all n ∈ N we have

∣∣∣∣∣e
ix − 1− ix − · · · − (ix)n−1

(n − 1)!

∣∣∣∣∣ ≤ |x|n
n!

.
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Proof. This elementary lemma stated in [119] is easily proved by induction. Indeed,
for n = 0,

∣∣eix
∣∣ ≤ 1 is always true. If the inequality is true at rank n, then

∣∣∣∣e
ix − 1− ix − · · · − (ix)n

n!

∣∣∣∣ =
∣∣∣∣∣

∫ x

0
ieitdt −

∫ x

0
idt − · · · −

∫ x

0
i
(it)n−1

(n − 1)!
dt

∣∣∣∣∣

≤
∫ x

0

∣∣∣∣∣e
it − 1− · · · − (it)n−1

(n − 1)!

∣∣∣∣∣ dt

≤
∫ x

0

|t|n
n!

dt

≤ |x|n+1
(n+ 1)!

.

Lemma 3.2 (Normal convergence of the first-order distribution). Under the as-
sumptions of Theorem 3.1, for all x ∈ Rd, the family of r.v. (gλ(x))λ converges in
distribution to a normal r.v. with null expectation and variance

∫

Rd×K
h(y, κ)2dyPκ(dκ).

Proof. By definition

gλ(x) =


 ∑

(xi,κi)∈Πλ

1√
λ

h(x − xi, κi)


 − λ

∫

Rd×K

1√
λ

h(x − y, κ)dyPκ(dκ).

Hence gλ(x) is the difference between a particular shot noise and a constant. By

Campbell’s theorem, the characteristic function of gλ(x) is for all t ∈ R

log
(
E

(
eitgλ(x)

))

=

∫

Rd×K

(
e

it 1√
λ

h(x−y,κ) − 1

)
λdyPκ(dκ)− itλ

∫

Rd×K

1√
λ

h(x − y, κ)dyPκ(dκ)

=

∫

Rd×K
λ

(
e

it 1√
λ

h(y,κ) − 1− it
1√
λ

h(y, κ)

)
dyPκ(dκ).

Let us compute the limit of this last integral as λ → +∞ using the Lebesgue

convergence theorem. First note that for all (y, κ) ∈ Rd × K we have

lim
λ→+∞

λ

(
e

it 1√
λ

h(y,κ) − 1− it
1√
λ

h(y, κ)

)
= − t2

2
h(y, κ)2.

Besides using Lemma 3.1 we have the inequality

λ

∣∣∣∣e
it 1√

λ
h(y,κ) − 1− it

1√
λ

h(y, κ)

∣∣∣∣ ≤ t2

2
h(y, κ)2.

Since by hypothesis the right-hand side is integrable, we can apply the dominated

convergence theorem to get

lim
λ→+∞

log
(
E

(
eitgλ(x)

))
= − t2

2

∫

Rd×K
h(y, κ)2dyPκ(dκ).
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This limit is precisely the logarithm of the characteristic function of a normal distri-

bution having the announced parameters. Lévy’s theorem ensures the convergence

in distribution.

We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Let x1, . . . , xp be points in Rd and let w1, . . . , wp be real

numbers. To prove the result we have to show that

Zλ =
p∑

k=1

wkgλ(xk)

converges in distribution to a Gaussian distribution having null expectation and

variance
p∑

k=1

p∑

l=1

wkwlC(xk − xl).

Now remark that the linear combination of a particular shot noise can be seen as

the value in x = 0 of another shot noise:

p∑

k=1

wkfλ(xk) =
∑

(xj ,κj)∈Πλ

p∑

k=1

wkh(xk − xj , κj) =
∑

(xj ,κj)∈Πλ

H(0− xj , κj),

where H is the measurable function

H : (y, κ) Ô→
p∑

k=1

wkh(y + xk, κ).

By linearity H has the same integrability properties as h. Hence Lemma 3.2 applies

to Zλ: Zλ converges in distribution to a Gaussian with null expectation and variance

σ2 given by

σ2 =

∫

Rd×K
H(y, κ)2dyPκ(dκ) =

p∑

k=1

p∑

l=1

wkwlC(xk − xl).

3.4 Rate of Normal Convergence

In all this section σ is defined by

σ2 =

∫

Rd×K
h(y, κ)2dydκ

and it is assumed that 0 < σ < +∞, which means that the shot noise with impulse

function h is non null and has a finite variance. For any fixed x ∈ Rd we define

Yλ =
fλ(x)− E(fλ)

σ
√

λ
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(note that the distribution of Yλ does not depend on x, thanks to the stationarity

of the shot noise fλ). Theorem 3.1 shows that (Yλ)λ>0 converges in distributions

to the normal distribution N (0, 1). The goal of this section is to provide some

estimations of the rate of this convergence (under additional hypotheses).

Following [119] and [75], the deviation between the distribution of the nor-

malized shot noise and the standard normal distribution is measured using the

Kolmogorov-Smirnov distance, as it is usual for Berry-Esseen theorems (which are

recalled in Section 3.4.2).

3.4.1 Measuring the Deviation From Gaussianity: Kolmogorov-

Smirnov Distance

Definition 3.2 (Kolmogorov-Smirnov distance). Let P1 and P2 be two distributions
of some r.v. X1 and X2, and let F1 and F2 be their respective cumulative distribution
functions. The Kolmogorov-Smirnov distance between the distributions P1 and P2
is defined as

dKS(P1, P2) = sup
u∈R

|F1(u)− F2(u)| = ‖F1 − F2‖∞ .

By convention, if X1 ∼ P1 and X2 ∼ P2 are two r.v., then dKS(X1, X2) denotes

dKS(P1, P2). Convergence for the Kolmogorov-Smirnov distance implies conver-

gence in distribution. Indeed, if (Xn) and X are such that dKS(Xn, X) → 0, then

for all x ∈ R Fn(x) → F (x). In particular, this is true in all point of continuity of

F , and thus Xn converges in distribution to X.

A fundamental and practical result for the estimation of Kolmogorov-Smirnov

distances is Esseen’s inequality (see e.g. [57, Lemma 2 p. 538] or [104, p. 297]). Here

we recall this inequality in the case where one of the distributions is the standard

normal distribution.

Lemma 3.3 (Esseen’s inequality for normal distribution). Let P be a distribution
with null expectation, and let ϕ be its characteristic function. Then for all a > 0,

dKS (P, N (0, 1)) ≤ 2

π

∫ a

0

∣∣∣ϕ(t)− exp
(
− t2

2

)∣∣∣
t

dt+
24

π
√
2πa

.

This lemma is the key argument of the classical proof of the Berry-Esseen the-

orem, which we recall in the next section.

3.4.2 Two Berry-Esseen Theorems

Let us recall the classical Berry-Esseen theorem which provides a bound for the

rate of normal convergence for the central limit theorem in the case where the i.i.d.

r.v. have a finite third moment (see e.g. [57, p. 542] or [104, p. 300]).



54 Chapter 3. Poisson Shot Noise

Theorem 3.2 (Berry-Esseen theorem). Let (Xn) be a sequence of i.i.d. r.v. such
that E(X1) = 0, E

(
X2
1

)
> 0, and E

(|X1|3
)

< +∞. Let (Yn) be the normalized
sequence

Yn =
X1 + · · ·+Xn√

E
(
X2
1

)
n

.

Then there exists a universal minimal constant ΓBE > 0 (called the Berry-Esseen
constant) such that

dKS(Yn, N (0, 1)) ≤ ΓBE
E

(|X1|3
)

E(X2
1 )
3
2
√

n
.

Here the expression “universal constant” means that the constant ΓBE does not

depend on the the distribution of X1. The exact computation of the Berry-Esseen

constant ΓBE is an open problem. Estimation of this constant has received and still

receive a lot of attention, as the recent paper [145] and the references therein show.

According to [145] the last to date estimation of ΓBE is 0.409 ≤ ΓBE ≤ 0.4785.

The Berry-Esseen theorem can be generalized in several ways. As it will be

demonstrated in the next section, one case of interest for the Poisson shot noise is

the Berry-Esseen theorem for Poisson random sums. We refer to [93] and [92] for

historical references on this result as well as to [92] for the last to date upper bound

of the corresponding universal constant.

Theorem 3.3 (Berry-Esseen theorem for Poisson random sums). Let (Xn) be a
sequence of i.i.d. r.v. such that E

(
X2
1

)
> 0, and E

(|X1|3
)

< +∞. Let Nλ be an
independent Poisson r.v. with parameter λ > 0. Define

Sλ =
Nλ∑

k=1

Xk.

Then E(Sλ) = λE(X1), and Var(Sλ) = λE
(
X2
1

)
. Define Tλ as the normalized

sequence associated to Sλ,

Tλ =
Sλ − λE(X1)√

λE
(
X2
1

) .

Then there exists a universal minimal constant ΓP RS > 0 such that

dKS(Tλ, N (0, 1)) ≤ ΓP RS
E

(|X1|3
)

E(X2
1 )
3
2
√

λ
.

Besides ΓP RS ≤ 0.3051 [92].

3.4.3 The Berry-Esseen Theorem for Poisson Shot Noises

As defined at the beginning of this section,

Yλ =
fλ(x)− E(fλ)

σ
√

λ
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for some x ∈ Rd. We first state the Berry-Esseen theorem for Poisson shot noises

established by Heinrich and Schmidt [75, Theorem 7], the proof of which relies on

Lemma 3.3.

Theorem 3.4 (Berry-Esseen theorem for Poisson shot noises). Suppose that the
measurable function h : Rd × K → R satisfies

∫

Rd×K
|h(y, κ)|k dyPκ(dκ) < +∞

for k = 1, k = 2, and k = 3. Write

σ2 =

∫

Rd×K
h(y, κ)2dyPκ(dκ) > 0 and E3 =

∫

Rd×K
|h(y, κ)|3 dyPκ(dκ).

Then there exists a universal minimal constant ΓP SN > 0 such that

dKS(Yλ, N (0, 1)) ≤ ΓP SN
E3

σ3
√

λ
.

This theorem was first established, in a less general framework, by Pa-

poulis [119], with the bound ΓP SN ≤ 4
3

√
2π ≤ 3.35. The upper bound given

by Heinrich and Schmidt [75, Theorem 7] is ΓP SN ≤ 2.21. Our first contribution

concerning the normal convergence of Poisson shot noises is to provide the sharper

bound ΓP SN ≤ 0.3051, thanks to the recent result of Korolev and Shevtsova [92]

(see Theorem 3.3).

Proposition 3.2. The Berry-Esseen constant for Poisson shot noises is equal to
the Berry-Esseen constant for Poisson random sums:

ΓP SN = ΓP RS .

As a consequence, ΓP SN ≤ 0.3051.

Proof. Let us begin with the easiest inequality: ΓP SN ≥ ΓP RS . Let (Xn) be any

sequence of i.i.d. r.v. with distribution Q and such that E
(
X2
1

)
> 0, and E

(|X1|3
)

<

+∞. Let Nλ be an independent Poisson r.v. with parameter λ, and define Sλ and

Tλ as in Theorem 3.3. Let us show that the distribution of Sλ is the first-order

distribution of some Poisson shot noise. Consider Πλ a Poisson point process over

Rd × R with intensity measure λLd ⊗ Q, and define fλ as the shot noise associated

to Πλ and the impulse function h(y, κ) = κ [0,1]d(y), that is the shot noise

fλ(x) =
∑

(xj ,κj)∈Πλ

κj [0,1]d (x − xj) .

Then for all x ∈ Rd, fλ(x) is the sum of a random number of i.i.d. r.v. having dis-

tribution Q, and this random number follows a Poisson distribution with parameter

λ
∫
Rd  [0,1]d(x − y)dy = λ. Hence fλ(x) has the same distribution as Sλ. Since

σ2 =

∫

Rd×R

κ2 [0,1](y)dyQ(dκ) =

∫

R

κ2Q(dκ) = E
(
X2
1

)
,
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and similarly E3 = E
(|X1|3

)
, by Theorem 3.4

dKS(Tλ, N (0, 1)) ≤ ΓP SN
E

(|X1|3
)

E(X2
1 )
3
2
√

λ
,

which shows that ΓP SN ≥ ΓP RS .

Let us now turn to the reverse inequality. Let us first restrict to the case where the

impulse function h has compact spatial support: there exists a compact set A ⊂ Rd

such that y /∈ A ⇒ h(y, κ) = 0 for all κ ∈ K. Let us fix a point x ∈ Rd and consider

the distribution of

fλ(x) =
∑

(xj ,κj)∈Πλ

h(x − xj , κj).

Then, xj /∈ x ⊕ Ǎ ⇒ h(x − xj , κj) = 0. Consequently, we can restrict the sum

defining fλ(x) to the restriction of Πλ to the set x ⊕ Ǎ × K. Πλ ∩
(
x ⊕ Ǎ × K

)
is a

finite Poisson process and its cardinal follows a Poisson distribution with parameter

λLd
(
x ⊕ Ǎ

)
= λLd (A). Besides, given that #

{
Πλ ∩

(
x ⊕ Ǎ × K

)}
= n ≥ 1, the

points (xj , κj) ∈ Πλ ∩
(
x ⊕ Ǎ × K

)
are i.i.d. with distribution Unif

(
x ⊕ Ǎ

)
⊗ Pκ.

Hence, for each point (xj , κj) of the considered restriction of Πλ, h(x − xj , κj) is

a r.v. with distribution Q, say, the push-forward measure of Unif
(
x ⊕ Ǎ

)
⊗ Pκ

by the measurable function h. To sum up, fλ(x) is the sum of a Poisson random

number of parameter λLd (A) of i.i.d. r.v. of distribution Q, that is fλ(x) is a

Poisson random sum. Write H a r.v. with distribution Q. We have

E(H) =
1

Ld (A)

∫

x⊕Ǎ×K
h(x − y, κ)dyPκ(dκ) =

1

Ld (A)

∫

Rd×K
h(y, κ)dyPκ(dκ).

Similarly,

E (|H|p) = 1

Ld (A)

∫

Rd×K
|h(y, κ)|pdyPκ(dκ),

for p = 2 and p = 3. By the Berry-Esseen theorem for Poisson random sums

(Theorem 3.3) we have

dKS(Yλ, N (0, 1)) ≤ ΓP RS
E

(|H|3)

E (H2)
3
2

√
Ld(A)λ

= ΓP RS
Ld(A)−1E3

(Ld(A)−1σ2)
3
2

√
Ld(A)λ

= ΓP RS
E3

σ3
√

λ
.

In conclusion, the class of Poisson shot noises having an impulse function of compact

support satisfies the Berry-Esseen inequality with a constant less than ΓP RS . To

conclude the proof we need to show that this last inequality is true for any Poisson

shot noise. This is done in approximating any shot noise by a shot noise having
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compact support. More precisely, let us now consider a general Poisson shot noise fλ

with impulse function h. For all R > 0, let BR denote the ball of center 0 and radius

R. Define hR(y, κ) =  y∈BR
h(y, κ), as well as fλ,R the shot noise associated to hR

and the Poisson process Πλ. Then, by Proposition 3.1 the difference fλ(x)−fλ,R(x)

is a shot noise with variance

λ

∫

Rd×K
 y /∈BR

h2(y, κ)dyPκ(dκ),

and this variance tends to 0 as R tends to +∞ by dominated convergence. Hence

fλ,R(x) converges to fλ(x) in L2, as well as the corresponding normalized r.v. Yλ,R

and Yλ. In particular Yλ,R converges to Yλ in distribution. Let us note Fλ,R, Fλ,

and Φ the cumulative distribution functions of Yλ,R, Yλ, and N (0, 1). For all u ∈ R,

and R > 0,

|Fλ(u) − Φ(u)| ≤ |Fλ(u) − Fλ,R(u)| + |Fλ,R(u) − Φ(u)|.

Let E3,R and σ2R denote the corresponding moments of hR. As shown above, since

hR has compact support

|Fλ,R(u) − Φ(u)| ≤ ΓP RS
E3,R

σ3R
√

λ
.

Clearly, as R → +∞, E3,R → E3 and σR → σ. Hence, from the convergence in

distribution, letting R → +∞ we obtain that for all continuity point u of Fλ,

|Fλ(u) − Φ(u)| ≤ ΓP RS
E3

σ3
√

λ
.

But since Fλ is right-continuous and Φ is continuous, the above inequality is valid

for all u ∈ R. This shows that ΓP SN ≤ ΓP RS and concludes the proof.

3.4.4 Reaching Normal Convergence of Order One

The Berry-Esseen theorem for Poisson shot noises provides an error control for

approximating the limit Gaussian random field by the shot noise of intensity λ. It

might be used in practice to simulate an approximation of the limit Gaussian r.f.

However the error bound only decreases according to λ−12 , which might prohibit

high precision approximation.

In this section we investigate conditions for which the normal convergence is of

order 1 instead of order 12 . It is demonstrated that as soon as the impulse function

h has finite moments up to order four, an asymptotic normal convergence rate of

order 1 is achieved by multiplying the random impulses h(xj , κj) by i.i.d. random

weights wj .

First let us demonstrate a technical lemma.
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Lemma 3.4. Suppose that the measurable function h : Rd × K → R satisfies
∫

Rd×K
|h(y, κ)|k dyPκ(dκ) < +∞

for k = 1, k = 2, k = 3, and k = 4. In addition suppose that
∫

Rd×K
h(y, κ)3dyPκ(dκ) = 0. (3.1)

Note

σ2 =

∫

Rd×K
h(y, κ)2dyPκ(dκ) and E4 =

∫

Rd×K
h(y, κ)4dyPκ(dκ).

Besides let ϕ(t) be the characteristic function of the shot with impulse function h
σ

and intensity λ = 1, that is

ϕ(t) = exp

(∫

Rd×K

(
ei

th(y,κ)
σ − 1

)
dyPκ(dκ)

)
.

Let

q = sup



|ϕ(t)| , t ≥

√
6σ4

E4



 .

Then we have for all λ ≥ E4
6σ4

dKS(Yλ, N (0, 1)) ≤
(
2

3π
+

4

π
√
2π

)

︸ ︷︷ ︸
≤0.721

E4
σ4

1

λ
+
1

π
ln

(
6σ4

E4
λ

)
qλ.

In particular, if q < 1, dKS(Yλ, N (0, 1)) = O
(
1

λ

)
.

Proof. The proof of this lemma is close to the one of Theorem 3.4 given in [75, p.

726]. In our case the hypothesis (3.1) of vanishing third moment enables to use

Lemma 3.1 with an higher order. To obtain an error bound term in 1
λ we follow the

method to establish Edgeworth expansions in Feller’s textbook [57, (4.14) p. 541].

Fix x ∈ Rd. Let Yλ = fλ(x)−E(fλ)

σ
√

λ
, and let Fλ(u) = P (Yλ ≤ u) and ϕλ(t) =

E
(
eitYλ

)
be respectively the cumulative distribution function and the characteristic

function of Yλ. Recall that from Campbell’s theorem (see Theorem B.2) we have

log (ϕλ(t)) = λ

∫

Rd×K

(
exp

(
it

σ
√

λ
h(y, κ)

)
− 1− it

σ
√

λ
h(y, κ)

)
dyPκ(dκ).

Now remark that one can write

t2

2
= λ

∫

Rd×K
−1

2

(
it

σ
√

λ
h(y, κ)

)2
dyPκ(dκ).



3.4. Rate of Normal Convergence 59

Besides from the hypothesis (3.1) we have

∫

Rd×K

(
it

σ
√

λ
h(y, κ)

)3
dyPκ(dκ) = 0.

Hence

log (ϕλ(t)) +
t2

2
= λ

∫

Rd×K
exp

(
it

σ
√

λ
h(y, κ)

)
− 1− it

σ
√

λ
h(y, κ)− . . .

. . .
1

2

(
it

σ
√

λ
h(y, κ)

)2
− 1

6

(
it

σ
√

λ
h(y, κ)

)3
dyPκ(dκ).

Hence applying Lemma 3.1 with x = t
σ

√
λ

h(y, κ) and n = 4 we get

∣∣∣∣∣log (ϕλ(t)) +
t2

2

∣∣∣∣∣ ≤ λ

∫

Rd×K

1

24

(
t

σ
√

λ
h(y, κ)

)4
dyPκ(dκ) =

t4E4
24σ4λ

.

Using the inequality |ez − 1| ≤ |z|e|z| we have
∣∣∣∣∣ϕλ(t)− exp

(
− t2

2

)∣∣∣∣∣ =
∣∣∣∣∣exp

(
log (ϕλ(t)) +

t2

2

)
− 1

∣∣∣∣∣ exp
(

− t2

2

)

≤
∣∣∣∣∣log (ϕλ(t)) +

t2

2

∣∣∣∣∣ exp
(∣∣∣∣∣log (ϕλ(t)) +

t2

2

∣∣∣∣∣ − t2

2

)

≤ t4E4
24σ4λ

exp

(∣∣∣∣∣log (ϕλ(t)) +
t2

2

∣∣∣∣∣ − t2

2

)
.

Let us define the constant

C =

√
6σ4

E4

and note L = L(λ) = C
√

λ. Then for all |t| ≤ L = C
√

λ we have
∣∣∣∣∣log (ϕλ(t)) +

t2

2

∣∣∣∣∣ − t2

2
≤ t4E4
24σ4λ

− t2

2
≤ L2

t2E4
24σ4λ

− t2

2
≤ t2

4
− t2

2
≤ − t2

4
.

Hence for all |t| ≤ L = C
√

λ
∣∣∣∣∣ϕλ(t)− exp

(
− t2

2

)∣∣∣∣∣ ≤ t4E4
24σ4λ

exp

(
− t2

4

)
. (3.2)

From now on we suppose that L ≥ 1, that is λ ≥ E4
6σ4

. Let us now apply Lemma 3.3

with the interval of integration [0, L2]. We have

dKS(Yλ, N (0, 1)) ≤ 2

π

∫ L2

0

∣∣∣ϕλ(t)− exp
(
− t2

2

)∣∣∣
t

dt+
24

π
√
2πC2λ

.

Let us divide in two parts the integral on the right-hand side.

∫ L2

0

∣∣∣ϕλ(t)− exp
(
− t2

2

)∣∣∣
t

dt =

∫ L

0

∣∣∣ϕλ(t)− exp
(
− t2

2

)∣∣∣
t

dt+

∫ L2

L

∣∣∣ϕλ(t)− exp
(
− t2

2

)∣∣∣
t

dt.
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Using Inequality (3.2), we have

∫ L

0

∣∣∣ϕλ(t)− exp
(
− t2

2

)∣∣∣
t

dt ≤
∫ L

0

t3E4
24σ4λ

exp

(
− t2

4

)
dt.

Now ∫ L

0
t3 exp

(
− t2

4

)
dt ≤

∫ +∞

0
t3 exp

(
− t2

4

)
dt = 4.

Hence
∫ L

0

∣∣∣ϕλ(t)− exp
(
− t2

2

)∣∣∣
t

dt ≤ E4
6σ4λ

.

Let us now bound the integral over [L, L2] (recall that L = C
√

λ). First we simply

decompose the integral

∫ L2

L

∣∣∣ϕλ(t)− exp
(
− t2

2

)∣∣∣
t

dt. ≤
∫ L2

L

|ϕλ(t)|
t

dt+

∫ L2

L

1

t
exp

(
− t2

2

)
dt.

We have ∫ L2

L

1

t
exp

(
− t2

2

)
dt ≤

∫ +∞

L

t

t2
exp

(
− t2

2

)
dt

≤ 1

L2

∫ +∞

L
t exp

(
− t2

2

)
dt

≤ 1

L2
exp

(
−L2

2

)

≤ 1

L2
.

The upper bound of the integral of
|ϕλ(t)|

t
is more delicate. First remark that we

have

ϕλ(t) =

(
ϕ

(
t√
λ

))λ

,

where ϕ is the function defined in the proposition (ϕ is the characteristic function

of the shot noise with impulse
h

σ
and intensity λ = 1). Hence, using the change of

variable u =
t√
λ
we have

∫ L2

L

|ϕλ(t)|
t

dt =

∫ C2λ

C
√

λ

∣∣∣ϕ
(

t√
λ

)∣∣∣
λ

t
dt =

∫ C2
√

λ

C

|ϕ (u)|λ
u

du.

Introducing q = sup
t∈[C,+∞[

|ϕ(t)| ≤ 1, we have

∫ C2
√

λ

C

|ϕ (u)|λ
u

du ≤ qλ
∫ C2

√
λ

C

1

u
du = qλ ln

(
C

√
λ

)
=
1

2
qλ ln

(
C2λ

)
.
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Eventually adding all the established upper bounds and replacing L by its expression

we obtain that for all λ ≥ E4
6σ4

dKS(Yλ, N (0, 1)) ≤
(
2

3π
+

4

π
√
2π

)

︸ ︷︷ ︸
≤0.721

E4
σ4

1

λ
+
1

π
ln

(
6σ4

E4
λ

)
qλ.

Lemma 3.4 above only applies if the shot noise has a null third order moment and

is only interesting if the supremum q is less than 1. However, as the next proposition

shows, given any Poisson shot noise the impulse function of which has finite moments

up to order k = 4, one can easily derive another shot noise process converging to

the same Gaussian process and satisfying all these technical conditions. The new

shot noise process is simply obtained by multiplying each random impulses h(·, κj)

by some random weight wj which follows some symmetric distribution. In short,

multiply the impulses by random weights permits to ensure the convergence rate

of order one towards the targeted Gaussian random field. Hence, in most cases,

multiply the impulses by random weights accelerates the normal convergence of

shot noise processes.

As above consider a shot noise fλ with Poisson point process Πλ of intensity

λLd ⊗ Pκ and impulse function h. Let Pw be a probability distribution over R. Let

us define

fw
λ (x) =

∑

(xi,κi,wi)∈Πw
λ

wih(x − xi, κi)

the corresponding randomly weighted shot noise with weight distribution Pw, that

is the shot noise with Poisson process Πw
λ ⊂ Rd × K ×R of intensity λLd ⊗ Pκ ⊗ Pw

and impulse function hw : (y, κ, w) Ô→ wh(y, κ).

Proposition 3.3 (Normal convergence rate for randomly weighted shot noises).

Suppose that the measurable function h : Rd × K → R satisfies
∫

Rd×K
|h(y, κ)|k dyPκ(dκ) < +∞

for k = 1, k = 2, k = 3, and k = 4, and note

σ2 =

∫

Rd×K
h(y, κ)2dyPκ(dκ) and E4 =

∫

Rd×K
h(y, κ)4dyPκ(dκ).

Suppose also that the weight distribution Pw has a density and is such that E(w4) <

+∞, E(w) = E(w3) = 0, and E(w2) = 1. Then, as λ tends to +∞, the normalized
sequence of r.f.

(
x Ô→ fw

λ
(x)√
λ

)
converges to the same Gaussian random field as the

sequence
(
x Ô→ fλ(x)−E(f)√

λ

)
. Besides, for all x ∈ Rd, the convergence rate of

(
fw

λ
(x)

σ
√

λ

)

is of order one, that is

dKS

(
fw

λ (x)

σ
√

λ
, N (0, 1)

)
= O

λ→+∞

(
1

λ

)
.
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Proof. Remark that for k = 1, . . . , 4,

Ew
k :=

∫

Rd×K×R

|hw(y, κ, w)|k dyPκ(dκ)Pw(dw)

= E(|w|k)
∫

Rd×K
|h(y, κ)|k dyPκ(dκ) < +∞.

Besides,
∫

Rd×K×R

(hw(y, κ, w))3 dyPκ(dκ)Pw(dw) = E(w3)

∫

Rd×K
h(y, κ)3dyPκ(dκ) = 0.

Hence Lemma 3.4 applies to the shot noise fw
λ . To conclude the proof it only remains

to show that the constant q of Lemma 3.4 is less than one. Here the function ϕ is

ϕ(t) = exp

(∫

Rd×K×R

(
ei

twh(y,κ)
σ − 1

)
dyPκ(dκ)Pw(dw)

)
,

and

q = sup {|ϕ(t)| , t ≥ C} ,

where C denotes the constant
√

6σ4

E(w4)E4
. In what follows we note ψ(t) = ln(ϕ(t)).

Since |ϕ(t)| = exp(Re (ψ(t))), to show that q < 1 it is enough to show that

sup {Re (ψ(t)) , t ≥ C} < 0.

As noted by several authors [70, 14], the characteristic function ϕw of the random

weights wj appears naturally in the characteristic function of the randomly weighted

shot noise. Indeed, by Fubini’s theorem

ψ(t) =

∫

Rd×K

(
ϕw

(
th(y, κ)

σ

)
− 1

)
dyPκ(dκ).

For all u > 0, define

Mw(u) = sup {|ϕw(t)|, t ≥ u} .

By hypothesis Pw has a density, hence by Riemann-Lebesgue lemma (see e.g. [57,

Lemma 4 p. 514]),

lim
t→+∞

ϕw(t) = 0.

By [57, Lemma 4 p. 501], this implies that for all u > 0, Mw(u) < 1. Let us now

bound Re (ψ(t)).

Re (ψ(t)) =

∫

Rd×K
Re

(
ϕw

(
th(y, κ)

σ

)
− 1

)
dyPκ(dκ)

≤
∫

Rd×K
−1 +

∣∣∣∣ϕw

(
th(y, κ)

σ

)∣∣∣∣ dyPκ(dκ).

Let u > 0. Using the bound

∣∣∣∣ϕw

(
th(y, κ)

σ

)∣∣∣∣ ≤




Mw(u) if
∣∣∣ th(y,κ)

σ

∣∣∣ ≥ u,

1 otherwise,
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we obtain

Re (ψ(t)) ≤ (−1 +Mw(u))Ld ⊗ Pκ

({
(y, κ), |h(y, κ)| ≥ uσ

t

})
.

As a consequence, for all t ≥ C > 0, we have

Re (ψ(t)) ≤ (−1 +Mw(u))Ld ⊗ Pκ

({
(y, κ), |h(y, κ)| ≥ uσ

C

})
.

As u tends to 0, Ld ⊗Pκ
({
(y, κ), |h(y, κ)| ≥ uσ

C

})
tends to +∞. Hence there exists

some u > 0 such that the above term is positive. But then for this value of u,

sup {Re (ψ(t)) , t ≥ C} ≤ (−1 +Mw(u))Ld ⊗ Pκ

({
(y, κ), |h(y, κ)| ≥ uσ

C

})
< 0,

which concludes the proof.

3.5 Applications to Texture Synthesis

As mentioned in the introduction of this chapter, shot noise models are used in

procedural texture synthesis to approximate Gaussian r.f. [102, 146, 96, 95]. In

this section we investigate the potential applications of the results of Section 3.4 for

controlling the visual convergence of shot noise toward their limit Gaussian texture.

3.5.1 Determining the Value of the Intensity λ

When approximating some Gaussian r.f. by a Poisson shot noise, the problem of

determining a good value for the intensity λ is critical. Indeed, on one hand, if

there are too few impulses the quality of the texture would be poor (or at least

not Gaussian enough), whereas, on the other hand, the more impulses there are

the more computation time is needed. Hence choosing the value for the intensity

λ is really a trade-off between computation speed and visual quality, as expressed

in [96].

Here we demonstrate with two experiments that the Berry-Esseen bound for

Poisson shot noises of Theorem 3.4 can be used to determine a good value for the

intensity λ. More precisely, we use the bounds

dKS(Yλ, N (0, 1)) ≤ ΓP SN
E3

σ3
√

λ

and ΓP SN ≤ 0.3051 of Theorem 3.4 and Proposition 3.2 to obtain a value for

the intensity λ. One issue is to decide which bounding value of dKS(Yλ, N (0, 1))

should be required. We chose dKS(Yλ, N (0, 1)) ≤ 2.5% which implies that the

probability of the normalized shot noise to be in any given interval is equal to the

corresponding probability for the standard normal distribution with a margin of

5%. The corresponding value for λ is thus

λBE(2.5%) :=
E2
3

σ6
0.30512

0.0252
. (3.3)
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Fig. 3.1 shows four different examples with varying intensity of Poisson shot

noises where the impulse function is the indicator of a disc. One observes that

for the intensity λ = λBE(2.5%) the individual discs start not to be discriminable.

Hence in this example the intensity derived from the Berry-Esseen bound provides

the good order of magnitude for the beginning of the “visual convergence” to the

limit Gaussian texture.

Fig. 3.2 presents the same experiments but with the isotropic Gabor noise [96].

This shot noise is obtained as the sum of Gabor kernels which all have the same

frequency and a random orientation [96]. The corresponding limit Gaussian r.f.

is the same as the one associated with the Poisson shot noise of the non random

impulse function represented by Fig. 3.2(b) (this function is called isotropic Gabor

kernel in [98] where it is shown to be the product between a Gaussian kernel and

the Bessel functions J0). Hence the corresponding Gaussian r.f. is easily simulated

on a grid using the ADSN algorithm (see Chapter 2).

With Fig. 3.2, one observes that the intensity λ = λBE(2.5%) derived from

the Berry-Esseen bound provides again a good order of magnitude for the “visual

convergence”. Contrary to the case of discs, the isotropic Gabor noise texture with

ten times less kernels (Fig. 3.2(d)) already have a satisfying quality. Intuitively

this might be explained by the fact that in this second case the impulse function

is more regular3. This example permits to recall that the Berry-Esseen theorem

is a “worst case theorem”: for some cases of interest, the bound might be a crude

overestimation, as suggested by Proposition 3.3.

To conclude our observations, we have shown that the bound provided by the

Berry-Esseen theorem for Poisson shot noises can be used to determine the order of

magnitude of the intensity λ for which the “visual convergence” to the limit Gaus-

sian texture occurs. This might be used by procedural texture synthesis software

relying on shot noise models to automatically compute an interesting range of value

for the intensity λ.

3.5.2 Accelerating the Convergence with Random Weights?

Our next experiment is an attempt to use the convergence acceleration procedure

suggested by Proposition 3.3, that is, multiplying each impulse by a random weight.

However as it will be shown and discussed, the conclusions of this experiment are

negative.

Fig. 3.3 shows side by side the four shot noises of Fig. 3.1 and four realiza-

tions of the corresponding randomly weighted shot noise with uniformly distributed

weights. Contrary to what might have been expected, the “visual convergence” of

the randomly weighted sequence is not faster than the one of the original sequence.

Even worse, observing the textures 3.3(e) and 3.3(f) for which λ = λBE(2.5%), one

3It would require further investigation to see if the normal convergence rate is faster when the

impulse function is “regular”. A first result in this sense is due to Papoulis [119] who showed that

the Berry-Esseen bound can be improved when restricting to band-limited impulse functions.
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(a) Impulse function: a disc (b) λ = 0.01λBE(2.5%)

(c) λ = 0.1λBE(2.5%) (d) λ = λBE(2.5%)

(e) λ = 10λBE(2.5%) (f) Limit Gaussian r.f.

Figure 3.1: Four different realizations of Poisson shot noises with discs, and their common
limit Gaussian r.f. From one realization to the next, the intensity λ is increased by factor

10. One observes that λ = λBE(2.5%) roughly corresponds to the beginning of the “visual

convergence” to the limit Gaussian r.f. 3.1(f). Indeed, with ten times less discs, individual

discs are visible whereas with ten times more discs the texture looks very similar to the

limit Gaussian r.f. 3.1(f).
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(a) A Gabor kernel (b) Isotropic Gabor

kernel

(c) λ = 0.01λBE(2.5%)

(d) λ = 0.1λBE(2.5%) (e) λ = λBE(2.5%)

(f) λ = 10λBE(2.5%) (g) Limit Gaussian r.f.

Figure 3.2: Four different realizations of isotropic Gabor noise [96], and the limit Gaussian
r.f. Each Gabor noise is the sum of several Gabor kernels such as 3.2(a) and having a random

orientation. The corresponding Gaussian r.f. is the one associated to the isotropic Gabor

kernel 3.2(b) (see [98] for more details). As for Fig. 3.1, each Gabor noise has a different

intensity λ. In this example, the visual criterion for estimating the quality of the Gaussian

approximation is the anisotropy of the texture. Here the Berry-Esseen bound provides an

intensity for which the “visual convergence” seems to be reached, but even with ten times

less kernels the quality of the texture is satisfying.
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observes that the randomly weighted shot noise presents more contrasted disconti-

nuities.

Let us clarify that this last observation is not in contradiction with the previous

section, since the bound given by the Berry-Essen theorem is not the same for the

randomly weighted shot noise than for the non-weighted one (in Formula (3.3),

the moment E3 should be multiplied by the factor E(w3) = 4.5, which roughly

multiplies the intensity λBE(2.5%) by 20). And as the image 3.3(h) shows, with

more impulses the quality of the Gaussian approximation is satisfying.

In conclusion, Fig. 3.3 suggests that the asymptotic normal convergence accel-

eration of the randomly weighted sequence is of no interest for reaching the “visual

convergence”. Hence the result of Proposition 3.3 would be interesting in practice

only if some high statistical precision is needed. A priori this would never be the

case in texture synthesis for computer graphics.

3.6 Conclusion and Perspectives

This chapter presented a systematic study of the normal convergence of high inten-

sity Poisson shot noise. A new sharper upper bound of the Berry-Esseen constant

for Poisson shot noises have been established. It has also been shown that, under

broad additional assumptions, multiply each impulse by a random weight ensures

a normal convergence rate of order one. Applications of these results to texture

synthesis have also been discussed. In particular it has been demonstrated that the

Berry-Esseen bound provides a good order of magnitude for the beginning of the

“visual convergence” to the limit Gaussian texture.

The results of this theoretical and experimental study will be applied in Chap-

ter 4 to a recent shot noise model developed for procedural texture synthesis: the

Gabor noise model [96].

As mentioned in the introduction, Poisson shot noise are only a peculiar model of

the family of shot noise processes. It would certainly be of interest to investigate the

possible applications in texture synthesis of other shot noise models. For example,

when introducing some scaling laws, non Gaussian limit regimes exist for the Poisson

shot noise (see e.g. [15, 88, 16] and the references therein). Another direction to

more general models would be to discard the Poisson assumption on the point

process [131, 75, 116]. For example the use of cluster point processes [21] might

yield to different textures.

To finish let us say that even though the general statistics of Poisson shot noises

are well-known, understanding the geometry of these random fields is not an easy

problem, even in dimension 1 as shown by the recent paper [14]. In the last part of

this thesis, the problem of evaluating the mean total variation per unit volume of

Poisson shot noises will be tackled (see Chapter 9).
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(a) λ = 0.01λBE(2.5%) (b) λ = 0.01λBE(2.5%), r.w.

(c) λ = 0.1λBE(2.5%) (d) λ = 0.1λBE(2.5%), r.w.

(e) λ = λBE(2.5%) (f) λ = λBE(2.5%), r.w.

(g) λ = 10λBE(2.5%) (h) λ = 10λBE(2.5%), r.w.

Figure 3.3: Comparison of the four realizations of Poisson shot noises with discs of Fig. 3.1
(left) and their corresponding randomly weighted (r.w.) shot noises (right). The weights are

uniformly distributed over [−
√
3,

√
3]. The “visual convergence” of the randomly weighted

sequence is not faster. On the contrary, a detailed observation of the two textures 3.3(e)

and 3.3(f) shows that the randomly weighted shot noise presents more contrasted disconti-

nuities.
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Abstract: This chapter tackles the problem of procedural texture syn-

thesis from sample using the recent Gabor noise model [96]. Given a

texture sample, an automatic solution is provided for determining Ga-

bor noise parameters such that the procedural texture is visually similar

to the sample. The developed algorithm relies on three contributions
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from Chapter 2 and Chapter 3 of this manuscript: First the Gaus-

sian convergence of the high intensity Gabor noise is controlled by the

Berry-Esseen bound derived in Chapter 3, second, the periodic com-

ponent [113] is used in place of the original texture sample in order

to obtain of a discrete Fourier transform without cross structure as in

the random phase noise (RPN) algorithm of Chapter 2, and third, as

for color RPN, the phase displacements between RGB color channels is

enforced in order to ensure color consistency. Numerical results show

that the procedural models given by our algorithm produce texture vi-

sually similar to the output of the RPN algorithm, and thus it enables

to reproduce any texture sample which is well-reproduced by the RPN

algorithm.

The work presented in this chapter has not been submitted and requires

further developments. In particular we do not present examples of color

Gabor noise textures on 3D surface, even though this is the main tar-

geted application of this work. The early results presented here yielded

to an ongoing collaboration with three of the authors of the original

Gabor noise paper [96], namely A. Lagae, S. Lefebvre and G. Drettakis.

4.1 Introduction

Procedural noise functions are the basic tool in computer graphics to synthesize

textures on the surface of 3D objects [95]. Ever since the seminal work of Per-

lin [123], several procedural noise functions have been proposed: wavelet noise [36],
anisotropic noise [65], and lastly Gabor noise [96].

Even though procedural noise functions are used to design textures, manually

tuning the parameters of a procedural texture model in order to synthesize a given

natural texture requires both a perfect knowledge of the model as well as ad hoc

techniques [49]. In entertainment companies, this task is reserved to the so-called

texture artists. To add to the difficulty of the task, producing different kind of tex-
tures usually necessitates to use different procedural algorithms relying on different

sets of parameters [49].

Since all the users of procedural texture softwares are not as trained and skilled

as professional texture artists, it is of practical importance to provide automatic

tools for determining the parameters of a procedural texture model which permit to

reproduce a given texture sample. Contrary to image texture synthesis by example

(see e.g. [152] and the references of Chapter 2), there is very few literature on pro-

cedural texture synthesis by example. The problem of procedural texture synthesis

by example has recently been clearly formulated and addressed in [99]. As for the

short list of related previous works, let us mention [44] and refer to [99] for a more

complete bibliography.

The algorithm developed in [99] determines the parameters of a wavelet noise [36]

from a given texture sample. Since wavelet noise is an isotropic procedural noise
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function [36], one of the main drawback of this method is that it only deals with

isotropic and structureless textures. In this chapter we provide an automatic so-

lution for selecting the parameters of the recent Gabor noise model [96] in order

to reproduce a micro-texture from one sample. While working on the content of

this chapter, a short paper also addressing Gabor noise texture synthesis by ex-

ample has been published [64]. Let us clarify however, that the solution proposed

in this short paper is completely different from our approach. Indeed, the method

developed in [64] simplifies drastically the frequency content of the texture sample,

reducing it to a dozen of frequencies. This results in a very compact representation

of the procedural texture, which is obtained from a crude and questionable spec-

tral decomposition of the texture sample [64, Section 3]. The price to pay for this

compact representation is that the output textures does not really look realistic.

On the opposite the method that we develop here does not provide a compact rep-

resentation of the procedural texture, but is much more faithful to the frequency

content of the original sample. As a result, we are able to reproduce complex natural

micro-textures.

Let us now describe more precisely the content of this chapter. The first part is a

general study of the Gabor noise model. From a theoretical point of view, the Gabor

noise model is a Poisson shot noise with random Gabor kernels as impulse functions.

Based on the classical results on Poisson shot noises recalled in Chapter 3, we derive

general properties of the model. In particular we study the Gaussian convergence

of the Gabor noise model and we show how to control the normal convergence of

high intensity Gabor noise. It is also observed that the power spectrum of the

limit Gaussian r.f. of a Gabor noise is determined by the probability distribution of

the frequencies of the Gabor kernels. Note that it is really similar to the classical

spectral method of Shinozuka for Gaussian r.f. simulation [139, 140, 100], where

sums of cosine waves are used in place of sums of Gabor kernels.

In a second part, the problem of Gabor noise by example for gray-level textures is

tackled. Quite naturally we propose to determine the probability distribution of the

frequencies of the random Gabor kernels from the discrete spectrum of the texture

sample. As for the ADSN and RPN algorithms of Chapter 2, we demonstrate that

a practical key point is to replace the texture sample with its periodic component

in order to obtain a discrete Fourier transform without cross structure [113].

In the last section, the proposed algorithm for Gabor noise by example is ex-

tended to reproduce color texture samples. In procedural texture synthesis, color

textures are most of the time obtained in applying a non linear color map to a

gray-level procedural noise function, that is in associating an RGB color to a gray-

level [123, 49, 97], whereas in the two previous works on procedural texture synthesis

by example [99, 64], color textures are synthesized using a PCA decomposition of the

color space, similarly to the Heeger-Bergen image texture synthesis algorithm [74].

Here we propose a simpler and more realistic alternative where color Gabor noises

are directly defined in the RGB space. Our key insight is to use the observation

uncovered in Chapter 2: Fourier phase displacements between color channels are

related to the color range of random phase textures.
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Results show that the proposed color Gabor noise by example reproduces any

texture sample that is also well-reproduced by the RPN algorithm presented in

Chapter 2, that is a large class of micro-textures. In fact, given any texture sample,

the color Gabor noise by example provides a procedural model visually similar to

the RPN associated with the texture sample. Let us precise that this similarity

with the results of the RPN algorithm does not reduce the interest of the developed

method. Indeed, color Gabor noises are procedural texture models, as recalled in

Section 4.3 below, and they potentially could be used to render any 3D surface

with the texture they reproduce [96]. Another advantage of the proposed algorithm

is that the whole process is linear, consequently enabling to use the intrinsic anti-

aliasing of the Gabor noise model [96]. On the opposite, as mentioned in [96], once

a non-linear color map has been applied to a gray-level Gabor noise, the intrinsic

anti-aliasing scheme of Gabor noise is not rigorously well-funded. Filtering the

resulting texture then necessitates additional techniques (e.g. [73]).

The plan of this chapter is as follow. Section 4.2 gives the definition and general

properties of the Gabor noise model [97]. In particular, the normal convergence

of high intensity Gabor noise models is highlighted. Section 4.3 briefly recalls

the procedural evaluation algorithm of Gabor noise model. The algorithm is then

described for gray-level texture samples in Section 4.4 and extended to color texture

samples in Section 4.5. Finally, Section 4.6 summarizes the results presented in this

chapter and precises several guidelines for improving the proposed algorithm.

4.2 The Gabor Noise Model

In all this chapter we work on the two-dimensional space R2, the targeted ap-

plication being 2D texture synthesis. However, all the results are valid in the

d-dimensional space Rd for all d ≥ 1. In particular they are valid for d = 3 and

therefore provide theoretical insight for solid texture synthesis.

4.2.1 Gabor Kernels

A Gabor kernel is a function g : R2 → R of the form

g(x) = we−πa2‖x‖2 cos (2π〈x, ω〉+ θ) ,

where w ∈ R, a > 0, ω ∈ R2, and θ ∈ (−π, π]. The Fourier transform ĝ of a Gabor

kernel g is

ĝ(ξ) =
w

2a2

(
e− π

a2
‖ξ−ω‖2eiθ + e− π

a2
‖ξ+ω‖2e−iθ

)
, ξ ∈ R2. (4.1)

The role of each parameter is the following:

• w is the amplitude or weight of the kernel.

• a−1 represents the width of the Gaussian envelope (a is the width of the

Gaussian envelopes in the Fourier domain).
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• ω ∈ R2 is the frequency of the Gabor kernel.

• θ is the phase of the kernel.

In the following we will consider a Poisson shot noise the impulse functions of

which are Gabor kernels with different parameters. The width a will be the same

for all the kernels, whereas the other parameters will be chosen randomly. Hence

we note

g(x;w, ω, θ) = we−πa2‖x‖2 cos (2π〈x, ω〉+ θ) .

4.2.2 Definition of the Gabor Noise Model

The Gabor noise model of [96] is a peculiar Poisson shot noise with Gabor kernels

as impulse functions.

Let a > 0 be a real number. Let Π be an independently marked Poisson process1

Π = {(xj , wj , ωj , θj)} ⊂ R2 × R × R2 × (−π, π]. The unmarked Poisson process

{xj} ⊂ R2 is stationary and has intensity λ. The marks (wj , ωj , θj) are mutually

independent and

• wj ∈ R are i.i.d. real r.v. with distribution Pw.

• ωj ∈ R2 are i.i.d. random points distributed according to a distribution

Pω symmetric with respect to the origin, that is for all Borel set B ⊂ R2,

Pω(B) = Pω(−B).

• θi are i.i.d. r.v. uniformly distributed over the interval (−π, π].

For the sake of convenience, and in accordance with the notation of Chapter 3,

the mark space R × R2 × (−π, π] will be denoted by K, a mark (wj , ωj , θj) will be

sometimes denoted by κj , and the mark distribution Pw ⊗ Pω ⊗ Pθ will be denoted

Pκ.

Definition 4.1 (Gabor noise model). The Gabor noise model associated with the
independently marked Poisson process Π = {(xj , wj , ωj , θj)} is the Poisson shot
noise

f(x) =
∑

(xj ,wj ,ωj ,θj)∈Π
g(x − xj ;wj , ωj , θj),

where g : R2 × K → R is the Gabor kernel

g(x;w, ω, θ) = we−πa2‖x‖2 cos (2π〈x, ω〉+ θ) .

Remark. In the original model of [96] θj = 0. As it will be shown in Section 4.5,

this new random phase parameter is of capital importance to synthesize color Gabor

noise textures since it permits to introduce phase shift displacements between color

channels. Another difference with the original model is that we do not impose that

1Let us remind that Appendix B recalls basic definitions and properties of Poisson point pro-

cesses.
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the r.v. wj have mean zero. As next proposition shows, this is because the uniform

distribution of the random phases θj already ensures that the Gabor noise model

has mean zero (see Proposition 4.1 below).

4.2.3 Power Spectrum and Covariance of the Gabor Noise

Since the Gabor noise is a peculiar Poisson shot noise, Proposition 3.1 gives its

expectation, covariance function and power spectrum.

Proposition 4.1 (Power spectrum and covariance of the Gabor noise). Suppose
that the random weights wi are r.v. with finite variance, that is E(w2) < +∞. Then
the Gabor noise f is a well-defined stationary random field, f has finite variance,
and E(f) = 0. The power spectrum S of f is equal to

S(ξ) = λ
E(w2)

2a4

∫

R2
e− 2π

a2
‖ξ−ω‖2Pω(dω), ξ ∈ R2.

The covariance function C of f is given by

C(τ) = λ
E(w2)

4a2

∫

R2
e− πa2

2
‖τ‖2 cos (2π〈τ, ω〉)Pω(dω), τ ∈ R2.

In particular the variance of f is

C(0) = λ
E

(
w2

)

4a2
.

Proof. For k = 1 and k = 2,

∫

R2×K
|g(x;κ)|k dxPκ(dκ) =

∫

R2×K

∣∣∣we−πa2‖x‖2 cos (2π〈x, ω〉+ θ)
∣∣∣
k

dxPκ(d(w, ω, θ))

≤
∫

R2×K
|w|ke−kπa2‖x‖2dxPw(dw)

≤ 1

ka2
E

(
|w|k

)
.

Hence as soon as E
(
w2

)
< +∞ the Gabor noise satisfies the hypothesis of Propo-

sition 3.1. Hence f is a well-defined stationary random field, and integrating with

respect to θ,

E(f) =

∫

R2×K
we−πa2‖x‖2 cos (2π〈x, ω〉+ θ) dxPκ(dκ) = 0.

By Proposition 3.1,

S(ξ) = λE
(
|ĝ(ξ, κ)|2

)
.

By the expression of the Fourier transform ĝ (see Equation (4.1)),

|ĝ(ξ;w, ω, θ)|2 = w2

4a4

∣∣∣e− π

a2
‖ξ−ω‖2eiθ + e− π

a2
‖ξ+ω‖2e−iθ

∣∣∣
2

.
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Integrating with respect to w gives a factor E(w2). Using the formula∣∣∣r1eiθ + r2e
−iθ

∣∣∣
2
= r21 + r22 + 2r1r2 cos(2θ),

1

2π

∫ π

−π

∣∣∣e− π

a2
‖ξ−ω‖2eiθ + e− π

a2
‖ξ+ω‖2e−iθ

∣∣∣
2

dθ = e− 2π

a2
‖ξ−ω‖2 + e− 2π

a2
‖ξ+ω‖2 .

Hence

S(ξ) = λ
E(w2)

4a4

∫

R2

(
e− 2π

a2
‖ξ−ω‖2 + e− 2π

a2
‖ξ+ω‖2) Pω(dω).

Finally, by symmetry of the distribution Pω
∫

R2
e− 2π

a2
‖ξ+ω‖2Pω(dω) =

∫

R2
e− 2π

a2
‖ξ−ω‖2Pω(dω),

and thus

S(ξ) = λ
E(w2)

2a4

∫

R2
e− 2π

a2
‖ξ−ω‖2Pω(dω).

Fubini’s theorem shows that the integral of the power spectrum S is finite:
∫

R2
S(ξ)dξ = λ

E(w2)

2a4

∫

R2

(∫

R2
e− 2π

a2
‖ξ−ω‖2dξ

)
Pω(dω)

= λ
E(w2)

2a4

∫

R2

a2

2
Pω(dω)

= λ
E(w2)

4a2
< +∞.

Hence the covariance function C is integrable as well as its Fourier transform S.

The inversion theorem (see e.g. [62]) ensures that C is equal to the inverse Fourier

transform of S,

C(τ) =

∫

R2
S(ξ)e2iπ〈τ,ξ〉dτ

= λ
E(w2)

4a4

∫

R2

(∫

R2

(
e− 2π

a2
‖ξ−ω‖2 + e− 2π

a2
‖ξ+ω‖2) e2iπ〈τ,ξ〉dξ

)
Pω(dω)

= λ
E(w2)

4a4

∫

R2

a2

2
e− πa2

2
‖τ‖22 cos (2π〈τ, ω〉)Pω(dω)

= λ
E(w2)

4a2

∫

R2
e− πa2

2
‖τ‖2 cos (2π〈τ, ω〉)Pω(dω).

Remark that the Power spectrum of f

S(ξ) = λ
E(w2)

2a4

∫

R2
e− 2π

a2
‖ξ−ω‖2Pω(dω)

is equal to the variance C(0) times the convolution between the two probability

distributions Pω and 2
a2

e− 2π

a2
‖ξ‖2dξ. Hence the power spectrum of the Gabor noise f

is a kind of regularized version of the probability distribution Pω. Note that in the

classical spectral method of Shinozuka [139, 140, 100], where cosine waves are used

in place of Gabor kernels, there is a strict equality between the power spectrum of

the simulated random field and the frequency distribution.



76 Chapter 4. Gabor Noise by Example

4.2.4 Normal Convergence of the Gabor Noise Model

In this section we consider a family of Gabor noise models (fλ)λ>0 which share the

same parameters (i.e. having same kernel width a and same distributions Pw and

Pω) except for their intensity λ. The next proposition shows that the normalized

Gabor noise models fλ√
λ
converges in distribution towards a Gaussian random field.

Proposition 4.2 (Normal convergence of Gabor noise models). If E(w2) < +∞
then as λ tends to +∞ the normalized sequence of Gabor noises

(
fλ√

λ

)
λ>0

converges
in distribution towards a stationary Gaussian random field having null expectation
and power spectrum S given by

S(ξ) =
E(w2)

2a4

∫

R2
e− 2π

a2
‖ξ−ω‖2Pω(dω).

Proof. Apply Theorem 3.1 to the considered shot noise.

As it has been discussed in Chapter 3, the upper bound given by the Berry-

Esseen theorem provides the good order of magnitude for the beginning of the

“visual convergence” of Poisson shot noise toward the limit Gaussian texture. The

next proposition makes explicit the Berry-Esseen bound in the case of Gabor noise.

Proposition 4.3 (Berry-Esseen bound for Gabor noise). Suppose that E
(|w|3) <

+∞. Then for all y ∈ R2,

dKS

(
fλ(y)√

λ
, N (0, 1)

)
≤ ΓP SN

32E
(|w|3)

9πE (w2)
3
2

a√
λ

,

where ΓP SN ≤ 0.3051.

We first compute the integral of the powers of Gabor kernels.

Lemma 4.1. For any k ∈ N,

Ek :=

∫

R2×K
|g(y;w, ω, θ)|k dyPκ(d(w, ω, θ)) =

2

π

(∫ π
2

0
cosk θdθ

)
E

(
|w|k

)

ka2
.

In particular, E2 =
1

4

E
(
w2

)

a2
and E3 =

4

9π

E
(|w|3)

a2
.

Proof.

Ek =

∫

R2×K
|w|ke−kπa2‖y‖2 |cos (2π〈y, ω〉+ θ)|k dyPκ(d(w, ω, θ)).

Integrating with respect to w gives a factor E
(
|w|k

)
. A simple change of variable

shows that
1

2π

∫ π

−π
|cos (2π〈y, ω〉+ θ)|k dθ =

2

π

∫ π
2

0
cosk θdθ.
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As a consequence, the integration with respect to ω becomes trivial. Hence

Ek =
2

π

(∫ π
2

0
cosk θdθ

)
E

(
|w|k

) ∫

R2
e−kπa2‖y‖2dy =

2

π

(∫ π
2

0
cosk θdθ

)
E

(
|w|k

)

ka2
.

Using Wallis cosine formulas we obtain the algebraic expressions of Ek.

Proof of Proposition 4.3. Apply the Berry-Esseen theorem for Poisson shot noises

(see Theorem 3.4) to the Gabor noise model. Recall that ΓP SN ≤ 0.3051 by Propo-

sition 3.2.

As in Section 3.5.1, we derive the following intensity λBE(2.5%) from Proposi-

tion 4.3:

λBE(2.5%) =
1

0.0252


ΓP SN

32E
(|w|3)

9πE (w2)
3
2

a



2

≃ 190
E

(|w|3)2

E (w2)3
a2. (4.2)

As it will be justified in Section 4.4, the random weights w will typically be

chosen to be constant. Hence the ratio of the moments of w would cancel out in

the above formula. Besides, in practice, the Gabor kernels will be truncated to 0

outside the disc of radius a−1, as in the original Gabor noise paper [96]. With this

approximation, the mean number of Gabor kernels influencing the value of fλ(y) is

λ2πa−2. For the above value λBE(2.5%) this gives a mean number of approximately

1200 Gabor kernels of influence per point.

The normal convergence of a Gabor noise model has already been illustrated

with Fig. 3.2 in Chapter 3. Fig. 4.1 presents another example.

4.3 Procedural Evaluation of a Gabor Noise Model

The Gabor noise model is a procedural noise function [49, 95], that is a random

function described by a computational process and not by some data structure.

An ideal procedural noise function should fulfill several requirements such as being

compact, i.e. requiring little memory, being defined on the whole plan, or also

being non periodic [95]. In practice, one of the more important requirements for

a procedural noise function is to be randomly accessible, that is that “it can be

evaluated in a constant time, regardless of the location of the point of evaluation,

and regardless of previous evaluations” [95, Section 2.3].

In this section we recall in detail how a given Gabor noise model is evaluated

at any point y ∈ R2. The main reference of this section is the original paper [96]

and no new result is presented here.

We suppose that a Gabor noise model is given and that procedures to simulate

r.v. following the distributions Pw and Pω from a pseudo random number generator

are known.
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(a) λ = 0.01λBE(2.5%) (b) λ = 0.1λBE(2.5%)

(c) λ = λBE(2.5%) (d) λ = 10λBE(2.5%)

Figure 4.1: Four different realizations of Gabor noises with various intensities λ. The

random weight wj are constant to 1 and the frequencies are uniformly distributed over

a thick ring of the spectral plane. From one realization to the next, the intensity λ is

increased by a factor 10. For λ = 0.01λBE(2.5%), individual Gabor kernels are visible, for

λ = 0.1λBE(2.5%) individual Gabor kernels are no more visible but the texture is locally

less isotropic than the following realizations. The case λ = λBE(2.5%) corresponds to the

beginning of the “visual convergence”: there is no difference with the next realization for

which λ = 10λBE(2.5%).



4.3. Procedural Evaluation of a Gabor Noise Model 79

4.3.1 Truncation of the Gabor Kernels

Theoretically, since the support of any Gabor kernel is the whole space R2, the

value f(y) of a Gabor noise at any point y ∈ R2 is a sum of infinitely many Gabor

kernels. In practice the Gaussian envelope of each Gabor kernel is truncated so that

the kernels have compact support. In [96], the considered compact support is the

disc B(0, a−1) of radius a−1. At the boundary of this disc the Gaussian envelope

equals e−π ≃ 0, 043 which is considered negligible.

A precise analysis of the error induced by this truncation is provided in the

technical report [98, Section 4.1]. The authors establish a formula relating the

truncation radius rt and the corresponding relative noise error. In all the experi-

ments of this chapter, we simply used rt = 1/a as in the original paper [96].

4.3.2 Grid Partition and Pseudo-Random Number Generator Ini-

tialization

Thanks to the truncation of the Gabor kernels, the simulation of the r.v.

f(y) becomes easy: It consists in simulating the finite number of points Π =

{(xj ;wj , ωj , θj)} such that xj is in the disc B(y, a−1) and add all the corresponding
Gabor kernels. Up to the error induced by the kernel truncation, this sketched

algorithm would provide a simulation of f(y). However a major difficulty remains:

once f(y) is computed, how can we simulate the value f(z) at another point z ∈ R2

of the same realization f of the Gabor noise model?

The underlying problem is to ensure that the simulated points {(xj ;wj , ωj , θj)}
are from the same realization of Π when rerunning the algorithm for another point

z close to y. In general, in order to obtain twice the same random objects with an

algorithm, one needs to call the same pseudo-random number generator (PRNG)

with the same seed s. We recall that for any integer s, a PRNG provides a sequence

(un(s))n∈N of pseudo-random numbers uniformly distributed in [0, 1]. In addition,

here it is required that the restriction on any disc B(y, a−1) of the realization of the
Poisson process Π can be simulated at will.

To fulfill this requirement, a classical solution [49, 96] consists in partitioning

the plane R2 in square cells with corners in a−1Z2, that is

R2 =
⋃

(k,l)∈Z2

Ck,l,

where Ck,l = [a
−1k, a−1(k+ 1))× [a−1l, a−1(l+ 1)). This partition is referred to as

a grid. Given a grid, one associates a seed s(k, l) to each cell Ck,l using an injective

map s : Z2 → N (see [96, Section 4] for details). To simulate the restriction

of Π to the cell Ck,l, one initializes a PRNG with the cell seed s(k, l) and then

draw the points and their marks. There are two key points here: first for any cell

the same seed is used to draw the points, ensuring that the same random points

{(xj ;wj , ωj , θj)} will be drawn at each evaluation, second, each cell has a different
seed, ensuring that the set of points in each cell is different.
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To finish remark that any point y ∈ R2 belongs to a unique cell C(y) := Ck,l

of the grid, and the disc B(y, a−1) is contained in the union of C(y) and the eight

neighboring cells of C(y). This observation is at the center of the procedural eval-

uation algorithm detailed in the next section.

4.3.3 Procedural Evaluation Algorithm

Below is the detailed algorithm for the evaluation of a Gabor noise model. As

already mentioned, we suppose that procedures to simulate r.v. following the dis-

tributions Pw and Pω from the PRNG are known.

The input of the algorithm is any point y ∈ R2.

1. Initialization: f(y) ← 0.

2. Determination of the set C of cells of interest:

(a) C ← {C(y)} where C(y) is the cell containing y.

(b) For each cell C of the 8 neighboring cells of C(y): if C ∩ B(y, a−1) Ó= ∅,
C ← C ∪ {C}.

3. Iterative sums of Gabor kernels: for each cell C ∈ C:

(a) Initialize the PRNG with the seed s(k, l) of the cell C = Ck,l.

(b) Draw N ∼ P(λa−2) the number of points of Π in C.

(c) For j = 1 to N :

i. Draw a point xj uniformly distributed in C.

ii. Draw a random weight wj ∼ Pw.

iii. Draw a random phase θj ∼ Unif (−π, π).

iv. Draw a random frequency ωj ∼ Pω.

v. Add the truncated Gabor kernel: if |xj − y| ≤ a−1,

f(y) ← f(y) + g(y − xj ;wj , ωj , θj).

4. Return f(y).

Thanks to the superposition property of independent Poisson processes (see

e.g. [11, p. 18]), if f1 and f2 are two independent outcomes of the same Gabor noise

model with respective intensities λ1 and λ2, then the sum f = f1+f2 is an outcome

of the considered Gabor noise model with intensity λ = λ1+λ2. This property can

be used to ensure the convergence towards the Gaussian distribution: if the output

texture quality is not satisfying due to a poor intensity, it can still be used as an

initialization for the simulation of a Gabor noise with higher intensity.
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4.4 Texture Synthesis from Samples Using Gabor Noise

4.4.1 Problem Statement

As mentioned in the introduction, the goal of this chapter is to tackle the following

problem: given a discrete texture sample h of size M × N can we find adapted

Gabor noise parameters such that the Gabor noise looks like the sample texture h?

To begin let us note that the problem is ill-posed. First, as always the

notion of texture sample is not clear. Second, we are trying to construct a

random function defined on the whole space R2 from just one discrete sample

h = {h(m, n)|(m, n) ∈ J0, M − 1K × J0, N − 1K}. Nevertheless as it will be shown,

we can give a solution to this problem when restricting to samples of random phase

textures as defined in Chapter 2.

In this section, in accordance with Definition 4.1, we only consider the case of a

gray-level Gabor noise. The proposed method will then be extended to color images

in Section 4.5.

Hence given a discrete gray-valued texture image

h = {h(m, n), (m, n) ∈ J0, M − 1K × J0, N − 1K}

we want to derive Gabor noise parameters such that the normalized Gabor noise

mean(h) +
f√
λ

is visually similar to the original texture sample h. Recall that the parameters of

the Gabor noise model are:

• The kernel intensity λ.

• The kernel width a.

• The probability distribution of the weights Pw.

• The probability distribution of the frequencies Pω.

We first suppose that the parameter a is given (the influence of this parameter

will be illustrated in Section 4.5.4). Besides, given the parameters a and Pw and

using Equation (4.2), the intensity λ will be always chosen high enough so that the

Gabor noise is close to its associated limit Gaussian texture.

In the following of this section we tackle the two remaining problems: determine

Pw and Pω from the discrete gray-valued texture h. In the first place however, let

us clarify the range of textures which might be reproduced by high intensity Gabor

noise.
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(a) λ = 0.01λBE(2.5%) (b) Associated RPN

(c) λ = λBE(2.5%) (d) Associated RPN

Figure 4.2: Two Gabor noise textures of Fig. 4.1 and a realization of their associated

RPN (see Chapter 2). Observe that both the RPN textures are visually similar to the

high intensity Gabor noise. Hence high intensity Gabor noise textures are random phase

textures.

4.4.2 High Intensity Gabor Noise Textures are Random Phase

Textures

As all the procedural noise models, a Gabor noise is an approximation of a Gaussian

random field [95]. By Proposition 4.2, the approximation is better when the inten-

sity of kernels λ is high. Since Gaussian random fields are uniquely determined by

their power spectra, high density Gabor noise textures sharing the same parameters

are visually similar (see bottom row of Fig. 4.1).

In Chapter 2 it has been demonstrated that Gaussian textures could not be

discriminated from their associated random phase noise2 (RPN). As illustrated by

Fig 4.2, discrete images obtained in properly sampling high density Gabor noise

textures are visually similar to their associated RPN, whereas this is not the case

for low density Gabor noise. One concludes that high intensity Gabor noise textures

are random phase textures.

2We recall that the RPN algorithm consists in randomizing the phase of the discrete Fourier

transform (DFT) of the discrete input image.
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Therefore if a sample texture is reproducible by a high intensity Gabor noise

model, it is also reproducible by the RPN algorithm. This observation suggests

that given any sample image h, the best result that one can reach is to synthesize a

Gabor noise texture visually similar to the RPN texture associated with the sample

h (see Chapter 2). One might think that this remark would reduce the interest of

Gabor noise by example. However this is not the case since, as mentioned in the

introduction, RPN and Gabor noise belong to two distinct classes of algorithms: the

first is an image texture synthesis algorithm whereas the second one is a procedural

texture synthesis algorithm. Besides, Gabor noise enables the synthesis of a texture

directly on a 3D surface [96] whereas RPN only produces flat texture images.

4.4.3 Distribution of the Random Weights

In the original paper [96], the distribution Pw of the weights wj has been fixed to

a uniform distribution over [−1, 1]. In fact the uniform distribution was chosen so

that the Gabor noise f was centered. Here, thanks to the use of the uniformly

distributed random phases θj , E(f) = 0 is ensured for any choice of distribution

Pw.

As suggested by the experiments of Section 3.5.2 in the previous chapter, despite

multiplying the impulses of a Poisson shot noise by a random weight does not

generally improve the visual convergence to the limit Gaussian texture. Fig. 4.3

illustrates that this conclusion is also valid for the Gabor noise model. Hence,

in order to save calls to the random number generator, the random weights wj

are chosen to be constant to a value w > 0 (But any distribution Pw such that

E
(|w|3) < +∞ could be used).

It remains to determine the constant value w of the weights wj . Let

σ2h :=
1

MN

M−1∑

m=0

N−1∑

n=0

(h(m, n)−mean(h))2

denotes the sample variance of h. Since we want the normalized Gabor noise

mean(h) + f√
λ
to be visually similar to the original texture sample h, it is natural

to enforce that mean(h) + f√
λ
has the same variance than h. By Proposition 4.1,

this means that
E

(
w2

)

4a2
= σ2h.

Hence, the weights wj must be constant to w = 2aσh.

4.4.4 Distribution of the Frequencies

The distribution Pω of the frequencies ωj is the most critical parameter of the Gabor

noise model. By proposition 4.1, the power spectrum S of f is given by

S(ξ) = λσ2h

∫

R2

2

a2
e− 2π

a2
‖ξ−ω‖2Pω(dω), ξ ∈ R2,
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(a) λ = 0.01λBE(2.5%) (b) Same λ, r.w.

(c) λ = 0.1λBE(2.5%) (d) Same λ, r.w.

(e) λ = λBE(2.5%) (f) Same λ, r.w.

(g) λ = 10λBE(2.5%) (h) Same λ, r.w.

Figure 4.3: Four pairs of realizations of Gabor noise models similar to the ones of Fig. 4.1
with various intensities λ. On the left the weights of the Gabor noise model are constant to

1 whereas on the right they are uniformly distributed over [−
√
3,

√
3]. For each intensity

λ the two textures are visually similar. Hence the Gaussian convergence is not faster when

multiplying by random weights. In order to save calls to the random number generator, in

the following of this chapter we will only use constant weights.
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assuming that E(w2) = 4a2σ2h. From this expression one sees that the distribution

Pω gives the individual weights of each frequency ω, and that this weight is locally

averaged according to a Gaussian convolution with kernel 2
a2

e− 2π

a2
‖ξ−ω‖2 (note that

this Gaussian kernel has a L1-norm equal to 1).

Roughly speaking we would like the power spectrum of the Gabor noise to be

close to the power spectrum of the non random discrete sample h. First let us

clarify what is the power spectrum in the continuous domain of a non random

discrete image.

In the discrete setting, the power spectrum of the discrete image h is sim-

ply its discrete Fourier transform (DFT) modulus to the square. Note ĥ ={
ĥ(k, l), (k, l) ∈

q
−M
2 , M

2 − 1
y

×
q
−N
2 , N

2 − 1
y}

the DFT of h. In the continuous

domain, h can be interpolated by its associated trigonometric polynomial

Ph(x) =

M
2

−1∑

k=− M
2

N
2

−1∑

l=− N
2

ĥ(k, l)e2iπ〈( k
M

, l
N ),x〉,

where we assume that M and N are both even integers. Recall that Ph is a real-

valued function if and only if

∀l ∈
s

−N

2
,
N

2
− 1

{
, ĥ

(
−M

2
, l

)
= 0 and ∀k ∈

s
−M

2
,
M

2
− 1

{
, ĥ

(
k, −N

2

)
= 0.

From now on this condition is supposed to be satisfied (in practice this condition

must be imposed to the discrete sample h). Ph is not an integrable function over R
2.

However it is a tempered distribution and its Fourier transform P̂h is well-defined

(see e.g. [62]) and given by

P̂h(ξ) =

M
2

−1∑

k=− M
2
+1

N
2

−1∑

l=− N
2
+1

ĥ(k, l)δ( k
M

, l
N )(ξ),

where δ is the Dirac delta function. Hence the power spectrum of Ph is

∣∣∣P̂h(ξ)
∣∣∣
2
=

M
2

−1∑

k=− M
2
+1

N
2

−1∑

l=− N
2
+1

∣∣∣ĥ(k, l)
∣∣∣
2

δ( k
M

, l
N )(ξ).

Actually the power spectrum of Ph is the discrete power spectrum
∣∣∣ĥ(k, l)

∣∣∣
2
of h

distributed over the frequencies
(

k
M , l

N

)
.

The expression we propose for the probability distribution Pω naturally derives

from the one of the power spectrum
∣∣∣P̂h(ξ)

∣∣∣
2
. From now on we suppose that the

sample texture h has mean zero and that its associated trigonometric polynomial

is real, that is 



ĥ(0, 0) = 0,

ĥ
(
−M
2 , l

)
= 0, l ∈

q
−N
2 , N

2 − 1
y

,

ĥ
(
k, −N

2

)
= 0, k ∈

q
−M
2 , M

2 − 1
y

.

(4.3)
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In practice Conditions (4.3) are imposed on the sample h. Under Conditions (4.3),

Parseval’s identity becomes

σ2h =
1

MN

M−1∑

m=0

N−1∑

n=0

h(m, n)2 =

M
2

−1∑

k=− M
2
+1

N
2

−1∑

l=− N
2
+1

∣∣∣ĥ(k, l)
∣∣∣
2

,

where σ2h denotes the sample variance of h. The probability distribution of the

frequencies Pω is defined as the discrete distribution

Pω (ω = ξ) =





|ĥ(k,l)|2
σ2

h

if ξ =
(

k
M , l

N

)
, (k, l) ∈

q
−M

2 + 1, M
2 − 1

y
×

q
−N

2 + 1, N
2 − 1

y
,

0 otherwise.

(4.4)

Note that Pω is symmetric since (k, l) Ô→
∣∣∣ĥ(k, l)

∣∣∣
2
is even. With this choice for the

distribution Pω, the power spectrum becomes

S(ξ) = λ

M
2

−1∑

k=− M
2
+1

N
2

−1∑

l=− N
2
+1

∣∣∣ĥ(k, l)
∣∣∣
2 2

a2
e− 2π

a2
‖ξ−( k

M
, l

N )‖2 . (4.5)

Hence S(ξ) is the convolution between the discrete power spectrum of h and a

Gaussian kernel 2
a2

e− 2π

a2
‖ξ‖2 . Our choice for Pω is very natural since the power

spectrum of the Gabor kernel is close to the power spectrum of the sample.

Note that the parameter a controls the dilation effect over the power spectrum.

For small values of a the power spectrum S of the Gabor noise is really close to the

power spectrum of the sample h, whereas for large values of a the energy of various

distinct frequencies contributes to S(ξ). As always, there is a competition between

localization in the Fourier domain and localization in the spatial domain: for small

values of a, the Gabor kernels have a large support in the spatial domain, which

should be proscribed to enable the synthesis of Gabor noise textures on surfaces.

Indeed, for Gabor noise on surfaces the spatial width a−1 is assumed to be small in

comparison with the radius of curvature of the surface [96].

Remark. Note that there is a clear control of the bandwidth of the Gabor noise:

the support of the spectrum is mainly contained in the dilation by a disc of radius

a of the support of the continuous spectrum of the discrete sample. Hence, if the

input texture image is band-limited then the output texture is also band-limited.

This property is essential for procedural texture synthesis [95].

4.4.5 Extracting a Quality Power Spectrum from the Input Tex-

ture Sample

As seen above, the probability distribution Pω associated with the sample texture h

uses the DFT modulus
∣∣∣ĥ

∣∣∣ to determine the relative importance of each frequencies
of the Gabor noise model. Hence it is implicitly assumed that all the frequencies for
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which the DFT modulus
∣∣∣ĥ

∣∣∣ is high are important frequencies for the texture image.
Experiments show that this assumption is in general true, with the exception of the

horizontal and vertical frequencies present in the cross structure inherent to any

DFT modulus [113].

One of the main features of the periodic component p = per(h) defined by

Moisan [113] is that the DFT p̂ is obtained in filtering out the cross structure

of the DFT ĥ of h (both the DFT modulus and DFT phase does not have cross

structure). In the case where the image h is a texture, the horizontal and vertical

frequencies present in its DFT cross-structure are only due to border effects and

does not correspond to proper frequencies of the texture. However, the frequencies

which are active in the DFT p̂ of the periodic component p only correspond to inner

frequencies of the texture (see the two first rows of Fig. 4.4).

As in Chapter 2 for the ADSN and RPN algorithms, a natural solution to avoid

problems due to the cross-structure of the DFT modulus
∣∣∣ĥ

∣∣∣ is to replace the DFT
ĥ by the DFT p̂ of the periodic component3 p = per(h) in the definition of the

probability distribution Pω (see Equation (4.4)). Of course before defining Pω,

Conditions (4.3) are enforced on p̂.

Fig. 4.4 illustrates that replacing h by p is relevant: in the displayed example

the Gabor noise associated with h suffers from oscillation artifacts due to horizontal

and vertical frequencies present in its power spectrum, whereas the Gabor noise

associated with p does not present these artifacts. In the remaining of this chapter,

the texture sample h will always be replaced by its periodic component p in order

to define the distribution Pω, and the Gabor noise model associated with h will

refer to the Gabor noise model associated with p = per(h).

The wood texture of Fig. 4.4 is relatively well-reproduced by the Gabor noise

model associated with its periodic component. Before presenting further results,

let us extend the Gabor noise by example method to color textures.

4.5 Color Gabor Texture Synthesis From Samples

4.5.1 Introduction and Notation

In procedural texture synthesis, designed color textures are generally obtained in

applying a non linear color map to a gray-level procedural noise function, that is in

associating an RGB color to a gray-level. In [99, 64], color textures are synthesized

using a PCA decomposition of the color space, similarly to the Heeger-Bergen image

texture synthesis algorithm [74]. In this section we propose a third alternative: a

color Gabor noise is defined directly in the RGB space by enforcing some coherency

between the color channels. Our key insight is to use the observation uncovered in

Chapter 2: Fourier phase displacements between color channels are related to the

3We recall that it is shown in Appendix A that the DFT p̂ can be computed with only one call

to the FFT algorithm.
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(a) Image h (b) Image p = per(h) (c) Image mean(h) + s

(d) DFT modulus
∣∣ĥ

∣∣ (e) DFT modulus |p̂| (f) DFT modulus |ŝ|

(g) Gabor noise(h) (h) Gabor noise(p) (i) Gabor noise(s)

Figure 4.4: Gabor noise and periodic plus smooth decomposition. First row: Original

image h, its periodic component p and its smooth component s (the mean is added for

visualization purpose). Second row: Respective DFT moduli of the images of the first

row. Third row: Gabor noise associated with each image of the first row. The image

size is 768 × 512, the kernel size of the Gabor noises is a−1 = 200 and the intensity is

λ = 2λBE(2.5%). Observe that, the cross structure present in the DFT modulus of the

original image h is not present in the Fourier modulus of the periodic component p [113].

Due to this cross structure, the probability distribution Pω associated with h defined by

Equation (4.4) activates several horizontal and vertical frequencies. As a consequence the

Gabor noise associated with h contains some horizontal and vertical oscillations, especially

visible for the low frequencies in this example. On the opposite, these oscillation artifacts

are not present in the Gabor noise associated with p. The Gabor noise associated with

the smooth component reveals the artifacts which are removed from the Gabor noise when

replacing the discrete sample h by its periodic component p.
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color range of random phase textures.

The considered problem is the following: Given an RGB color texture sample

hRGB = (hR, hG, hB)

of size M × N we would like to define an associated color Gabor noise

fRGB = (fR, fG, fB)

which is visually similar to the texture sample hRGB.

Clearly fR, fG and fB should be gray-valued Gabor noises with parameters

depending on the sample images hR, hG and hB. In addition there must have

some dependency relation between the three random color channels since the color

channels of any natural texture are strongly correlated.

The dependence structure between the color channels of the proposed color

Gabor noise model involves the three significant parameters of the Gabor kernels,

that is the position xj , the frequency ωj and the phase. For each of these parameters,

the enforced coherency is the following:

• Position coherency: The emplacements xj of the Gabor kernels are the same

for the three color channels fR, fG and fB, that is to say that the color Gabor

noise is a three-dimensional shot noise of three-dimensional Gabor kernels.

• Frequency coherency: The frequency in each channel of the three dimensional

Gabor kernels is the same for the three channels. The probability distribution

of the random frequencies takes into account the total energy of each frequency

in the three color channels of the texture sample hRGB.

• Phase coherency: The extension to color images of the RPN algorithm pro-

posed in Chapter 2 highlighted a link between color consistency and phase

displacements between color channels. This observation leads to enforce the

phase displacements of the color channels of the sample h to each three-

dimensional Gabor kernel (see below for details).

Before rigorously defining the color Gabor noise model associated with a color

texture sample hRGB = (hR, hG, hB), one needs to introduce several notation. We

recall that hRGB = (hR, hG, hB) has size M × N , where M and N are supposed to

be even. In addition, it is assumed that each color channel hR, hG, and hB satisfies

Conditions (4.3). We denote by SR
h , SG

h and SB
h the respective power spectrum of

the discrete images hR, hG, and hB in the continuous domain, that is

SC
h (ξ) =





∣∣∣ĥC(k, l)
∣∣∣
2

if ξ =
(

k
M , l

M

)
,

0 otherwise,

where the index C denotes any of the three channels R, G, B (this notation will be

used in all that follows). Besides we note SRGB
h the function

SRGB
h (ξ) = SR

h (ξ) + SG
h (ξ) + SB

h (ξ).
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The quantity SRGB
h (ξ) represents the total amount of energy of the image h at

frequency ξ. Similarly σR
h , σG

h , σB
h denote the standard deviations of the color

channels of h and (
σRGB

h

)2
=

(
σR

h

)2
+

(
σG

h

)2
+

(
σB

h

)2
.

Note that
(
σRGB

h

)2
is the L1-norm of SRGB

h . Eventually φR
h , φG

h and φB
h denote the

respective Fourier phase of hR, hG, and hB, that is

φC
h (ξ) =




arg

(
ĥC(k, l)

)
if ξ =

(
k
M , l

M

)
,

0 otherwise,

where C denotes R, G or B.

4.5.2 Definition of the Color Gabor Noise Model

Definition 4.2 (Color Gabor noise model). The color Gabor noise model associated
with the discrete color image hRGB = (hR, hG, hB), with intensity λ and kernel width
a is the shot noise

fRGB
h (x) =

∑

(xj ,wj ,ωj ,θj)∈Π
gRGB

h (x − xj ;wj , ωj , θj),

where Π = {(xj , wj , ωj , θj)} is an independently marked Poisson process such that

• {xj} is a stationary Poisson process over R2 with intensity λ,

• the r.v. wj are constant to 2aσRGB
h ,

• the r.v. ωj are distributed according to the density associated with SRGB
h , that

is

Pω(ω = ξ) =
SRGB

h (ξ)
(
σRGB

h

)2 ,

• the r.v. θj are uniformly distributed over (−π, π],

and gRGB
h : R2 × K → R3 is the measurable function defined by

gRGB
h (x;w, ω, θ) = we−πa2‖x‖2




√
SR

h
(ω)

SRGB
h

(ω)
cos

(
2π〈x, ω〉+ θ + φR

h (ω)
)

√
SG

h
(ω)

SRGB
h

(ω)
cos

(
2π〈x, ω〉+ θ + φG

h (ω)
)

√
SB

h
(ω)

SRGB
h

(ω)
cos

(
2π〈x, ω〉+ θ + φB

h (ω)
)




.

Let us briefly justify this definition. Except for some additional details, the

definition of the color Gabor noise is similar to the one of the Gabor noise associated

with a gray-valued sample image: it is a shot noise with a Gabor kernel as impulse
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function and with an independently marked Poisson process which depends on

hRGB.

Here the distribution Pω is chosen so that the probability of occurrence of a

frequency ω is proportional to the total power of this frequency among the three

color channels of the sample hRGB. Of course, for each color channel this probability

is unbalanced since a frequency ω can be more influent in one channel than in the

others. This imbalance is corrected in multiplying by the term

√√√√ SC
h (ω)

SRGB
h (ω)

.

Eventually the addition of the phases φR
h (ω), φG

h (ω), φB
h (ω) is intended to con-

serve the Fourier phase displacements between the color channels of hRGB, since it

has been demonstrated in Section 2.5.1 that conserving these phase displacements

helps preserving the color consistency of the sample color image hRGB.

4.5.3 Power Spectrum of the Color Gabor Noise

Proposition 4.4. The color Gabor noise fRGB
h =

(
fR

h , fG
h , fB

h

)
is a well-defined

stationary three-dimensional random field. Its has null expectation and is square-
integrable. Besides, for all channel C ∈ {R, G, B}, the power spectrum SC

f of fC
h is

given for all ξ ∈ R2 by

SC
f (ξ) = λ

M
2

−1∑

k=− M
2
+1

N
2

−1∑

l=− N
2
+1

∣∣∣ĥC(k, l)
∣∣∣
2 2

a2
e− 2π

a2
‖ξ−( k

M
, l

N )‖2 .

That is to say that for each color channel C ∈ {R, G, B} the power spectrum of fC
h

is the same as the power spectrum of the Gabor noise associated with the gray-valued
image hC (see Equation (4.5)).

Proof. By Proposition 3.1,

SC
f (ξ) = λE

(∣∣∣ĝC
h (ξ;w, ω, θ)

∣∣∣
2
)

.

The Fourier transform of gC
h is given by

ĝC
h (ξ;w, ω, θ) =

w

2a2

√√√√ SC
h (ω)

SRGB
h (ω)

(
e− π

a2
‖ξ−ω‖2ei(θ+φC

h
(ω)) + e− π

a2
‖ξ+ω‖2e−i(θ+φC

h
(ω))

)
.

We now follow the same step of computation as in the proof of Proposition 4.1.

Integrating with respect to w and θ we have

SC
f (ξ) = λ

E(w2)

4a4

∫

R2

SC
h (ω)

SRGB
h (ω)

(
e− π

a2
‖ξ−ω‖2 + e− π

a2
‖ξ+ω‖2) Pω(dω).
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Using that E(w2) = 4a2
(
σRGB

h

)2
as well as the expression and the symmetry of

Pω we get

SC
f (ξ) = 2λ

(
σRGB

h

)2

a2

M
2

−1∑

k=− M
2
+1

N
2

−1∑

l=− N
2
+1

SC
h ((

k
M , l

N ))

SRGB
h (( k

M , l
N ))

e− π

a2
‖ξ−( k

M
, l

N
)‖2 SRGB

h (( k
M , l

N ))(
σRGB

h

)2 .

The enunciated formula is obtained in simplifying this last expression.

Remark that the probability distribution of a channel fC
h of the color Gabor

noise fRGB
h is not the same as the probability distribution of the Gabor noise asso-

ciated with the gray-valued image hC . Nevertheless both random fields share the

same power spectrum and thus converge in distribution towards the same Gaussian

random field when the intensity λ increases to +∞ (see Theorem 3.1).

4.5.4 Numerical Results

This section presents several results of successful synthesis obtained with the pro-

posed algorithm for color Gabor noise by example. As discussed in Section 4.4.2,

the synthesis is restricted to micro-textures which are well-reproduced by the RPN

algorithm, and for every texture sample we display its associated RPN as a refer-

ence result for the Gabor noise. Experiments show that failure examples for the

RPN are also failure examples for the Gabor noise model.

Let us first illustrate the convergence of the algorithm. Fig. 4.5 shows several

Gabor noises associated with a leather texture having different intensities λ. When

the intensity increases, the Gabor noise texture tends to its limit Gaussian textures

which, for this example, is visually similar to the input .

For all the subsequent examples of this section, the intensity λ will be set to

λ = 10λBE(2.5%), where λBE(2.5%) is the intensity derived from the Berry-Esseen

bound (see Equation (4.2)). This ensures that the synthesized textures are visually

visually similar to the limit Gaussian texture.

Let us first discuss the influence of the parameter a (recall that a−1 is the

spatial width of the Gabor kernels). Experiments show that this parameter is

especially important for isotropic textures containing long oscillations such as wood

or fabric textures. In order for the Gabor noise model to capture the long range

correlation structures of these textures, the spatial width a−1 of the Gabor kernels
must necessary be large. This is not surprising since if the distance between two

points y and z is larger than 2a−1 then the Gabor noise values f(y) and f(z) are

independent. The influence of the parameter a−1 is illustrated by Fig. 4.6 and

Fig. 4.7. Fig. 4.6 shows that as the spatial width a−1 of the Gabor kernels increases
the wood texture produces by the Gabor noise is more and more structured. On

the opposite, for the structureless isotropic leather texture of Fig. 4.7, the value of

a−1 has no influence on the quality of the result.

To complete this section, Fig. 4.8 and Fig. 4.9 show several examples of textures

which are well-reproduced by the color Gabor noise. As for Fig. 4.6 and Fig. 4.7, for
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(a) Original image h (b) RPN

Figure 4.5: Illustration of the convergence of the color Gabor noise by example: Top row

original leather texture sample and its associated RPN; Middle row and bottom row: Gabor

noises associated with h. From one Gabor noise to the other the number of Gabor kernels

is multiplied by a factor 10. The intensity λ of the last example is λ = λBE(2.5%) (see

Equation (4.2)). The size of the image is 340 × 340 and the radius of the Gabor kernels is

20.
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(a) Original image (459 × 283) (b) RPN

(c) Gabor noise, a−1 = 20 (d) Gabor noise, a−1 = 50

(e) Gabor noise, a−1 = 100 (f) Gabor noise, a−1 = 250

Figure 4.6: Influence of the spatial width a−1 of the Gabor kernels: As the spatial width

a−1 increases the Gabor noise texture is more and more structured. This is justified by the

fact that large Gabor kernels enable longer range dependencies. Hence the parameter a is

especially important for oscillating textures such as wood or fabric. However for isotropic

micro-textures increasing a does not necessary yields to better results (see Fig. 4.7).



4.5. Color Gabor Texture Synthesis From Samples 95

(a) Original image (340 × 340) (b) RPN

(c) Gabor noise, a−1 = 20 (d) Gabor noise, a−1 = 50

(e) Gabor noise, a−1 = 100 (f) Gabor noise, a−1 = 250

Figure 4.7: Influence of the spatial width a−1 of the Gabor kernels: Contrary to the wood

texture of Fig. 4.6, this leather texture is well reproduced with any size of Gabor kernels.

Hence using large Gabor kernels in the spatial domain is only important for textures having

elongated structures.
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each examples the kernel size 20, 50, 100 and 250 were tested, and the best result

of the four has been selected. On the examples of Fig. 4.8 and Fig. 4.9 where there

are slight differences between the original texture and its associated RPN, observe

that the Gabor noise texture is always visually more similar to the RPN texture

than to the original one.

In conclusion, the algorithm for color Gabor noise by example developed in this

chapter provides a procedural texture model which is visually similar to the RPN

texture associated with the discrete sample. In particular it permits to have a faith-

ful procedural representation of all the micro-textures which are well-reproduced by

the RPN algorithm of Chapter 2.

Another advantage of the color Gabor noise by example that has not been

discussed yet is that the whole process is linear. As a consequence, it enables

to use the intrinsic anti-aliasing of the Gabor noise model [96]. On the opposite,

when applying a non-linear color map to a gray-level Gabor noise, the intrinsic

anti-aliasing scheme of Gabor noise is not rigorously well-funded and filtering the

resulting texture necessitates additional techniques [96, 73].

4.6 Conclusion and Future Works

This chapter introduced a new algorithm to derive a color Gabor noise model from

a given texture sample. Relying on the general results on Poisson shot noises

recalled or established in Chapter 3, properties of the Gabor noise model have been

derived, with a particular emphasis on the normal convergence of high intensity

Gabor noises.

As shown by the experiments, high intensity Gabor noise textures are visually

reproducible by the RPN algorithm of Chapter 2. Conversely, using the same meth-

ods as for the RPN algorithms, that is replacing the texture sample by its periodic

component and enforcing the phase displacement between the color channels of the

sample to the Gabor kernels of the color Gabor noise, a color Gabor noise model

visually similar to the RPN of the sample has been defined. Again let us clarify

that the similarity of the results between Gabor noise by example and the RPN

algorithm does not limit the interest of the methods. Indeed they are two differ-

ent kind of algorithms. RPN is an algorithm which synthesizes numerical images,

whereas Gabor noise by example defines a procedural texture model to be used in

computer graphics softwares for rendering 3D surfaces.

As mentioned in the abstract, the content of this chapter yielded an ongoing col-

laboration with three of the authors of the original Gabor noise paper [96], namely

A. Lagae, S. Lefebvre and G. Drettakis. A GPU implementation of the presented

algorithm for color Gabor noise by example is being developed. The first version

of this GPU implementation already enables to synthesize a whole image within a

second, instead of several minutes for the Matlab implementation used to obtain

the results presented in this chapter. Contrary to the performance of the Gabor

noise model of [96], this first GPU implementation is not real-time. The main
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(a) Original image (350 × 258) (b) Gabor noise, a−1 = 50 (c) RPN

(d) Original image (247 × 250) (e) Gabor noise, a−1 = 50 (f) RPN

(g) Original image (300 × 300) (h) Gabor noise, a−1 = 50 (i) RPN

(j) Original image (300 × 300) (k) Gabor noise, a−1 = 250 (l) RPN

Figure 4.8: Several examples of fabric textures well-reproduced by the color Gabor noise

algorithm. For each example the size of the image is specified as well as the spatial width

of the Gabor kernels (chosen by hands in the cases). Note that for the blue fabric texture

the kernel size is relatively large in order to reproduce the long waves of the texture.
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(a) Original image (340 × 340) (b) Gabor noise, a−1 = 20 (c) RPN

(d) Original image (512 × 512) (e) Gabor noise, a−1 = 100 (f) RPN

(g) Original image (459 × 253) (h) Gabor noise, a−1 = 100 (i) RPN

(j) Original image (340 × 340) (k) Gabor noise, a−1 = 50 (l) RPN

Figure 4.9: Same presentation as Fig. 4.8 with miscellaneous texture samples: mossy rock,
sand, wood, and painted concrete.
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reason is that, as discussed in Section 4.2.4, Gabor noise by example requires a

really high intensity of Gabor kernels (typically two thousands of kernels for each

point). Another issue is that the probability distribution for the frequency, as well

as the phase displacements do not have a compact representation, in the sense that
they require the memory space of a full discrete image. This is problematic for the

GPU implementation since memory access are slow in comparison to computation

cycles [95].

The Gabor noise by example model presented in this chapter also faces issues

which are not purely computational. The main one is the fixed kernel width a,

which has been shown to be sensible for oscillatory textures. For such textures large

Gabor kernels are needed to reproduce oscillatory patterns whereas for structureless

micro-textures small Gabor kernels are sufficient. In fact, as it is currently being

investigated, it may certainly be more judicious to adapt the kernel radius for each

frequency of the power spectrum of the texture sample: if the frequency is an

isolated pick in the spectrum it might necessitates large Gabor kernels, whereas if

the frequency lives in a flat zone of the power spectrum it can be mixed with the

neighboring frequencies and small Gabor kernels might be used. A natural solution

would be to decompose the power spectrum in two parts, quite similarly to 2D Wold

decomposition (see e.g. [103]).

To finish, let us mention that one could make use of the locality of the Gabor

noise model to develop a procedural texture mixing algorithm, enabling a continuous

variation from one texture to the other [98].

As a general conclusion, a challenging problem would be to develop procedural

texture synthesis methods able to reproduce textures being more structured than

the random phase textures. To design such procedural texture methods from Gabor

noise model would necessary involve to enforce some constraints on the phase of

the Gabor kernels. Hence a direction for future work is to investigate the structure

present in the phase of non random phase textures.
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Abstract: This chapter presents different classical germ-grain random

fields, namely shot noises of random sets, Boolean models, colored dead

leaves models, and colored tessellations. These models all combine dif-

ferent colored random sets according to various interaction principles.

The chapter also illustrates the wide range of images that are obtained

by varying this interaction principle.

Let us precise that this introductory chapter to germ-grain models does

not contain any contribution.

5.1 Introduction

This short chapter introduces and illustrates several classical germ-grain models.

Each considered germ-grain model defines a random field by combining colored

random sets according to an interaction principle. This interaction principle is

addition for shot noise models, supremum for Boolean random fields (which gener-

alizes set union for Boolean random sets), occultation for the dead leaves model,

and, arguably, juxtaposition for colored tessellations.

The purpose of this chapter is threefold. First, it illustrates the wide range of

images that are obtained by only varying the interaction principle. Second, it intro-

duces germ-grain models sharing similarities with the new germ-grain model that

will be introduced in the next chapter, namely the transparent dead leaves process,

for which the interaction principle is transparency (see Chapter 6). Finally, under

certain conditions, all the germ-grain models defined in this chapter are non trivial

examples of random fields of bounded variation. Their mean total variation per
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unit volume will be computed in Chapter 9 by making use of the formal definitions

given in this chapter.

Germ-grain models rely on theoretical tools from stochastic geometry, namely

point processes marked by random sets1 [142, 136]. More precisely, in the simplest

cases, a germ-grain model is constructed from a point process {(xj , Xj)} taking

value in Rd × F , where F = F
(
Rd

)
denotes the set of closed sets of Rd. The

random sets Xj are called the grains of the model, and the points xj are the germs.
A germ-grain models is then constructed in the following way: each grain Xj is

placed at the germ xj to form the set xj + Xj , and the different translated grains

xj + Xj are combined according to an interaction principle. For example, the

interaction principle of the shot noise model is addition, which leads to the r.f.

f(y) =
∑

(xj ,Xj)

 (y ∈ xj +Xj), y ∈ Rd.

More generally, the random grains Xj can be “colored”: to each random grain

Xj is associated an intensity (or gray-level) ai ∈ R. In this case the underlying

point process takes the form {(xj , Xj , aj)} ⊂ Rd × F × R. In the example of the

shot noise model, the corresponding random field would naturally be

f(y) =
∑

(xj ,Xj ,aj)

aj (y ∈ xj +Xj), y ∈ Rd.

Even more generally, the grains can be chronologically ordered by a time ti, the

point process having the form {(tj , xj , Xj , aj)} ⊂ (−∞, 0)×Rd×F×R. For example,

this ordering is necessary for the dead leaves model for which the interaction prin-

ciple is occultation: a grain (tj , xj , Xj , aj) is placed above the grains (tk, xk, Xk, ak)

such that tk < tj and below the grains such that tk > tj (see Section 5.4 for details).

Even though the different germ-grain models are constructed according to the

same scheme, the corresponding r.f. present different features determined by the

interaction principle. For example, since high intensity shot noise tends to Gaussian

random fields (see Chapter 3), the geometrical shape of the grains are not discernible

in their realizations. On the opposite, the geometrical shapes of the grains are

clearly discernible in Boolean random fields or dead leaves models. In fact, as it

will be illustrated with various simulations2, combining the same random sets with

different interaction principles yields to very different kind of random geometric

images.

All the presented germ-grain models have applications in a large variety of do-

mains dealing with spatial data. Let us mention geostatistics, modeling of material,

astrophysics, meteorology, or communication network (see e.g. [142] and the refer-

ences therein). As for image models, tessellations models have been studied by

Ahuja and Rosenfeld [3], and Poisson-Voronoi tessellations are at the center of the

1Basic definitions of point processes are recalled in Appendix B.
2We refer to the book of Lantuéjoul [100] for the description of the simulation algorithms of the

considered models, as well as for further illustrations.
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Figure 5.1: Representation of the three grain distributions used for the simulations of

Poisson shot noises, Boolean random fields, and colored dead leaves models (see Fig. 5.2,

Fig. 5.4, and Fig. 5.5). Left: a disc having a radius uniformly distributed over an interval

[0, rmax]; Middle: a rectangle randomly oriented according to a uniform distribution over

[0, π]; Right: fixed set constituted of two disjoint ellipses.

cellular texture methods developed by Worley [156, 49] for the synthesis of volu-

metric textures. In another direction, an example-based texture synthesis algorithm

inspired from the dead leaves model has been proposed by Gousseau [66].

5.2 Poisson Shot Noise of Colored Sets

As defined in the above introduction, the Poisson shot noise of colored random sets

is the random field fP SN obtained in summing the color aj of each translated grain

xj +Xj . More formally,

fP SN (y) =
∑

(xj ,Xj ,aj)∈Φ
aj (y ∈ xj +Xj),

where, similarly to the case of Boolean random fields, Φ = {(xj , Xj , aj)} is a Poisson
process of Rd × F × R the intensity measure of which is λLd ⊗ PX ⊗ Pa.

As mentioned in Chapter 3, the statistics of fP SN are known thanks to Camp-

bell’s theorem which provides an expression of the characteristic function of fP SN (x)

(see Theorem B.2).

As said above, the main goal of this section is to illustrate and compare different

germ-grain models. In particular we will show realizations of four germ-grain models

using the same grain distributions PX . These grain distributions are explicitly

described in Fig. 5.1.

Fig. 5.2 shows several realization Poisson shot noises having the grain distribu-

tions described by Fig. 5.1. Note that with this model it is the accumulation of

several objects which is highlighted. In particular, for high enough intensity the

original shapes of the grains are not easily distinguished.
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Figure 5.2: Realizations of three different Poisson shot noises with uniformly distributed

gray-levels. The grain distributions are the one presented in Fig. 5.1.

Figure 5.3: Realizations of three different boolean random sets for which the grain distri-

butions are the one presented in Fig. 5.1.

5.3 Boolean Models

Let us first introduce the Boolean random set [142, 136], a random set model which

was first introduced by Matheron [107, 110, 143] and which combines the translated

grains xj +Xj by union. The (homogeneous) Boolean random set with intensity λ

and grain distribution PX is the stationary random closed sets (RACS) ZB defined

by

ZB =
⋃

j∈N

xj +Xj ,

where {(xj , Xj)} is an independently marked stationary Poisson process in the

space Rd × F having intensity measure λLd ⊗ PX , λ ≥ 0. Three examples of

Boolean models constructed with the grain distributions described by Fig. 5.1 are

represented in Fig. 5.3.

Several random field models can be considered as generalizations of Boolean

random functions [138]. Here we consider a simple example called random Boolean

islands. Let Φ = {(xj , Xj , aj)} be an independently marked Poisson process taking

values in Rd × F × [0,+∞) and having intensity measure λLd ⊗ PX ⊗ Pa, λ ≥ 0.

We define the Boolean random field fB associated to this process by

fB(y) = sup ({0} ∪ {aj , y ∈ xj +Xj}) .

Note that if aj = 1 a.s., then fB is the indicator function of the Boolean random
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Figure 5.4: Realizations of three different Boolean random fields with uniformly dis-

tributed gray-levels. The grain distributions are the one presented in Fig. 5.1.

set ZB. More generally, remark that the upper-level sets of fB are Boolean random

sets: indeed, for all t ≥ 0,

{y, fB(y) > t} = {y, ∃(xj , Xj , aj) ∈ Φ, y ∈ xj +Xj and aj > t}
=

⋃

Φ∩Rd×F×(t,+∞)

xj +Xj ,

that is to say {y, fB(y) > t} is the Boolean model associated with the Poisson

process
∑
Φ  (aj > t) δxj ,Xj

.

As explained in the introduction, the main goal of this chapter is to illustrate and

compare different germ-grain models. In particular we will show realizations of three

of these models using the same grain distributions PX . These grain distributions

are explicitly described in Fig. 5.1. Three examples of Boolean random fields having

these grain distributions are represented by Fig. 5.4. Remark that with this model,

the colored random sets are superimposed according to a hierarchy: the lighter sets

are placed above the darker ones.

5.4 Colored Dead Leaves Model

The dead leaves model [37, 82, 18], also initially introduced by Matheron [108], is a

germ-grain model where the interaction rule is occultation, that is where the grains

xj + Xj hide each other. As mentioned in the introduction, for this germ-grain

model the grains are chronologically ordered by a time tj ∈ (−∞, 0), called falling
time.

More precisely the leaves are the points of the Poisson process

Φ = {(tj , xj , Xj , aj)} ⊂ (−∞, 0)× Rd × F × R

with intensity measure L1⊗Ld ⊗PX ⊗Pa. For each leaf (tj , xj , Xj , aj), the random

set xj +Xj is partially or totally hidden by its subsequent leaves, that is the leaves

which fall after t = tj . In the end, at time t = 0 the only remaining part of xj +Xj
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Figure 5.5: Realizations of three different colored dead leaves r.f. with uniformly dis-

tributed gray-levels. The grain distributions are the one presented in Fig. 5.1.

is the visible part Vj , that is the set
3

Vj = (xj +Xj) \

 ⋃

(tk,xk,Xk,ak)∈Φ, tk>tj

xk +Xk


 .

Let us precise that as soon as E(Ld(X)) > 0, then all the Euclidean space Rd is

covered by the random sets xj + Xj , and consequently each point y ∈ Rd belongs

to a unique visible part.

The colored dead leaves r.f. fCDL is the r.f. defined in assigning to each y ∈ Rd

the color aj of the unique visible part Vj such that y ∈ Vj . More formally, fCDL is

defined by

fCDL(y) =
∑

(tj ,xj ,Xj ,aj)∈Φ
aj (y ∈ Vj),

but note that for each point y the sum has only one non null term.

As for the two previous models, three examples of colored dead leaves r.f. having

the grain distributions described by Fig. 5.4 are shown in Fig. 5.5. Even though

occultation between objects is also observable with Boolean r.f., remark that colored

dead leaves r.f. vary from this first model. Indeed here the ordering of the objects is

not related to their gray-level, and the whole domain is totally covered by objects.

5.5 Colored Tessellations

A colored tessellation is the random field obtained in assigning a random color to

each subset of a random partition of the plane. The interaction principle which is

at work for colored tessellations is arguably juxtaposition. We introduce below the

formal definitions of the considered objects as they will be needed in Chapter 9.

A (random) tessellation is a random partition
⋃

j Cj = Rd of the Euclidean

space Rd, the sets Cj being called cells of the tessellation. Even though random

tessellations have been widely studied, there lacks a general acknowledged definition.

3Our definition of the visible parts Vj is slightly different from the one of [18]. This is because

we do not enforce the visible parts to be closed sets.
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This is principally because most studied tessellation models only involve convex

cells [142, 136, 27]. Nevertheless, tessellations can be constituted of non convex (and

even non connected) cells, such as the tessellation corresponding to the dead leaves

model defined in [18]. Following [141, 18], we consider a quite general definition: A

(random) tessellation is a point process T =
∑

j δCj
taking values in the set K′ of

non empty compact sets and which satisfies the following additional properties:

• For all compact set K, the number of sets Ci intersecting K is finite.

• For all j Ó= k, intCj ∩ intCk Ó= ∅.

• ⋃
j Ck = Rd.

• For all j, Ld (∂Cj) = 0.

With these conditions, a.e. point x ∈ Rd belongs to a unique cell Cj . We will

only consider stationary tessellations, that is tessellations such that for all x ∈ Rd,
∑

j δx+Cj

d
=

∑
j δCj

. Thanks to the stationarity, for these tessellations every point

x ∈ Rd a.s. belongs to a unique cell Cj .

Given a stationary tessellation T =
∑

j δCj
one defines a stationary random field

fT by associating a random intensity aj ∈ R to each cell Cj . The real r.v. aj are i.i.d.

with common distribution Pa. More formally, the colored tessellation Tc associated

to the tessellation T and with color distribution Pa is the independently marked

point process Tc =
∑

j δ(Cj ,aj), where the marks aj have common distribution Pa. If

µ denotes the intensity measure of the point process
∑

j δCj
, then Tc =

∑
j δ(Cj ,aj)

has intensity measure µ ⊗ Pa. Its associated random field fT is defined as follows:

fT (x) = aj where aj is the color of the a.s. unique cell Cj containing x. Note that

fT can also be defined as a sum over the marked point process:

fT (x) =
∑

j

aj (x ∈ Cj) .

An example of a colored Poisson-Voronoi tessellation is reproduced in Fig. 5.6.

Given a Poisson point process Π = {xj}, the cells {Cj := C(xj)} of this tessellation
are defined by

C(xj) =
{

y ∈ Rd, |y − xj | ≤ |y − xk| for all xk ∈ Π
}

.

We refer to [142, 136, 27] for further properties and references on Poisson-Voronoi

tessellations.

5.6 Conclusion

Four different germ-grains models have been defined and illustrated. The interac-

tion principle for these different models are supremum, addition, occultation and

juxtaposition. Of course this list is not exhaustive. For example we could have

mentioned multiplication for compound Poisson cascades [13, 29]. Moreover, in
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Figure 5.6: A realization of a colored Poisson-Voronoi tessellation with uniformly dis-

tributed gray levels. The points of the underlying Poisson point process are displayed in

black.

the next chapter we will define and study a new germ-grain model for which the

interaction principle is transparency (see Chapter 6).

Intuitively the realization of the germ-grain models defined in this chapter are

functions of bounded variation when the grains have finite perimeter. This will be

rigorously shown in Chapter 9 where the mean total variation per unit volume of

all these germ-grain model will be computed.

As always, the presented models can be generalized in different ways. For ex-

ample non Poisson point processes could be used. Besides, all the models can be

generalized to the case where a random function is associated to each grain Xj in

place of a constant color, as proposed by Jeulin [81, 82, 83].
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Abstract: This chapter introduces the transparent dead leaves (TDL)

process, a new germ-grain model in which the grains are combined ac-

cording to a transparency principle. Informally, this model may be

seen as the superimposition of infinitely many semi-transparent objects.

Properties of this new model are established and a simulation algorithm

is proposed. A central limit theorem is then proved, showing that when

varying the transparency of the grain from opacity to total transparency,

the TDL process ranges from the dead leaves model to a Gaussian ran-

dom field.

The work presented in this chapter is from the submitted paper [59].

6.1 Introduction

The main contribution of this chapter is the introduction and study of a new germ-

grain model in which the grains are combined according to a transparency prin-

ciple. To the best of our knowledge, this type of interaction between grains has

not been studied before. As mentioned in the previous chapter (see Chapter 5),
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(a) A disc (b) Initial scene (c) Resulting scene

Figure 6.1: Addition of a transparent object. The transparency coefficient of the disc is
α = 0.5.

classical interaction principles between grains include addition for shot-noise pro-
cesses [131, 75], union for Boolean models [142, 143, 136], occultation for dead leaves
models [108, 82, 18] or multiplication for compound Poisson cascades [13, 29].
The proposed process, that we call transparent dead leaves (TDL), is obtained

from a collection of grains (random closed sets) indexed by time, as for the dead

leaves process of G. Matheron. We assume that each grain is given a random gray

level (intensity). Informally, the process may be seen as the superimposition of

transparent objects associated with the grains. Each time a new grain is added,
new values are obtained as a linear combination of former values and the intensity

of the added grain, as illustrated in Fig. 6.1. That is, when adding a grain X with

gray level a, the current process f : R2 → R is modified into g, defined for each

y ∈ R2 as

g(y) =





αa+ (1− α)f(y) if y ∈ X,

f(y) otherwise,
(6.1)

where α ∈ (0, 1] is a transparency coefficient. The process is then defined as the

sequential superimposition of grains of a suitable Poisson process
∑

i δ(ti,xi,Xi,ai).

The main motivation to define such a model originates from vision. Indeed, nat-

ural images are obtained from the light emitted by physical objects interacting in

various ways. In the case of opaque objects, the main interaction is occlusion. That

is, objects hide themselves depending on their respective positions with respect to

the eye or the camera. A simple stochastic model for occlusion is given by the dead

leaves model, which is therefore useful for the modeling of natural images [68, 28].

When objects are transparent, their interaction may be modeled by Formula (6.1).

This is well known in the field of computer graphics, see e.g. [52] where the same

principle is used for the creation of synthetic scenes. In this case, transparency

is a source of heavy computations, especially in cases where objects are numerous

(typically of the order of several thousands), e.g. in the case of grass, fur, smoke,

fabrics, etc. The transparency phenomenon may also be encountered in other imag-
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ing modality where images are obtained through successive reflexion-transmission

steps, as in microscopy or ultrasonic imaging. A related non-linear image formation

principle is at work in the field of radiography. In such cases, it is useful to rely on

accurate stochastic texture models in order to be able to detect abnormal images.

The TDL may be an interesting alternative to Gaussian fields that are traditionally

used, see e.g. [69, 132].

In this paper, we first define the transparent dead leaves model in Section 6.2 and

give some elementary properties in Section 6.3, where we also address the problem

of simulating the process and show some realizations. The TDL covariance is then

computed in Section 6.4. Eventually, it is shown in Section 6.5 that the normalized

TDL converges, as α tends to zero, to a Gaussian process having the same covariance

function as the shot noise associated with the grain X and with intensity one. Thus

the TDLs with varying transparency coefficient α provide us with a family of models

ranging from the dead leaves model to Gaussian fields.

6.2 Definition of the TDL Process

As explained in the introduction, the TDL process is obtained as the superimpo-

sition of transparent shapes. Formally it is defined from a marked Poisson point

process, in a way similar to the dead leaves model (see Section 5.4 or [18]). Let F
denote the set of closed sets of Rd. On the state space

S := (−∞, 0)× Rd × F × R,

we define the point process1

Φ :=
∑

i

δ(ti,xi,Xi,ai), (6.2)

where

• {(ti, xi)} is a stationary Poisson point process of intensity 1 in the half space
(−∞, 0)× Rd,

• (Xi)i is a sequence of i.i.d. random closed sets (RACS) with distribution PX

which is independent of the other random objects,

• (ai)i is a sequence of i.i.d. real random variables (r.v.) with distribution Pa

which is also independent of the other random objects.

Equivalently, by Theorem B.4, Φ is a Poisson point process with intensity measure

µ := λ ⊗ Ld ⊗ PX ⊗ Pa, where λ denotes the restriction of the one-dimensional

Lebesgue measure over (−∞, 0) and Ld denotes the d-dimensional Lebesgue measure

over Rd.

1Appendix B recalls basic definitions and properties of Poisson point processes useful for this

chapter.
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Each point (ti, xi, Xi, ai) ∈ Φ is called a leaf. Having fixed a transparency

coefficient α ∈ (0, 1], the TDL process f is defined by sequentially combining the

elements of Φ according to Formula (6.1).

Definition 6.1 (Transparent Dead Leaves process). The Transparent Dead Leaves
process with transparency coefficient α associated to the Poisson process Φ defined
by Equation (6.2) is the random field f : Rd → R defined by

f(y) =
∑

i∈N

 (y ∈ xi +Xi)αai (1− α)

(∑
j∈N

 (tj∈(ti,0) and y∈xj+Xj)

)
. (6.3)

Let us justify that Formula (6.3) agrees with the informal description of the

TDL process. Let y be a fixed point in Rd, and let (ti, xi, Xi, ai) be any leaf of the

Poisson process Φ. If y /∈ xi + Xi the contribution to f(y) of the random shape

xi +Xi is clearly 0. Otherwise, if y ∈ xi +Xi the contribution to f(y) of the leaf

(ti, xi, Xi, ai) is αai multiplied by (1− α) to the number of leaves fallen on the point

y after the leaf (ti, xi, Xi, ai), that is after time t = ti. This number is exactly the

exponent of (1− α) in Equation (6.3):
∑

j∈N

 (tj ∈ (ti, 0) and y ∈ xj +Xj) .

Remark (Variable transparency). For the sake of simplicity, the transparency pa-

rameter α is assumed to be the same for all objects. However, one may attach a

random transparency αi to every objects in Definition 6.1 and generalize the results

of Sections 6.3 and 6.4, as will be briefly commented thereafter.

Since the distribution of the Poisson process Φ is invariant under shifts of the

form (t, x, X, a) Ô→ (t, x+ y, X, a), the TDL process f is strictly stationary. Before

establishing further properties of the TDL process f , let us introduce some notation

and specify several assumptions.

Notations: Define β := 1− α and let X and a denote respectively a RACS with

distribution PX and a r.v. with distribution Pa which are both independent of all

the other random objects. The expectation with respect to the distribution of Φ is

denoted by E (e.g. E (f(y)) whereas the expectation with respect to the distribu-

tions PX ⊗Pa of the marks (X, a) is denoted by E (e.g. E
(
Ld(X)

)
, E(a)). Finally,

γX denotes the mean covariogram of the RACS X, that is the function defined

by γX(τ) = E
(
Ld(X ∩ τ +X)

)
, τ ∈ Rd (we refer to Section 8.4 of Chapter 8 for

properties of the mean covariogram; see also [110, 100]).

Assumptions: Throughout the chapter, it is assumed that

0 < E
(
Ld(X)

)
< +∞.

This hypothesis ensures that each point y ∈ Rd is covered by a countable infinite

number of leaves of Φ, whereas the number of leaves falling on y during a finite

time interval [s1, s2] is a.s. finite. We also assume that E(|a|2) < ∞.
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6.3 First-Order Distribution and Simulation of the

TDL Process

In this section the distribution of the r.v. f(y) is given and a simulation procedure

is presented and illustrated.

6.3.1 The Poisson Process of the Leaves Intersecting a Set

As one can observe from Equation (6.3), the only leaves which have a contribution

to the sum defining f(y) are the leaves (ti, xi, Xi, ai) such that y ∈ xi +Xi. When

considering the restriction of f to a Borel set G the only leaves of interest are

the ones intersecting G, i.e. the leaves (ti, xi, Xi, ai) such that xi + Xi ∩ G Ó= ∅.
The next proposition gives the distribution of such leaves, a result to be used

further in this chapter. We first recall two notation: if A and B are two Borel sets

then Ǎ = {−x : x ∈ A} and A ⊕ B = {x + y : x ∈ A and y ∈ B}. Remark that

x + X ∩ G Ó= ∅ ⇐⇒ x ∈ G ⊕ X̌.

Proposition 6.1 (The Poisson process of the leaves intersecting a Borel set). Let
G ⊂ Rd be a Borel set such that 0 < E

(
Ld

(
X ⊕ Ǧ

))
< +∞ and let Φ be the

Poisson process on S = (−∞, 0)×Rd × F ×R with intensity measure µ = λ ⊗ Ld ⊗
PX ⊗ Pa. Denote by ΦG the point process of the leaves of Φ which intersect G, that
is

ΦG = {(t, x, X, a) ∈ Φ : x + X ∩ G Ó= ∅} ,

and let us note AG ⊂ Rd × F the set AG = {(x, X) : x + X ∩ G Ó= ∅}. Then ΦG is
a Poisson process on S with intensity measure

µG = λ ⊗
(
Ld ⊗ PX

)
xAG

⊗ Pa.

It is an independently marked Poisson process with ground process ΠG ={
t : (t, x, X, a) ∈ ΦG

}
, an homogeneous Poisson process on (−∞, 0) of intensity

E
(
Ld

(
X ⊕ Ǧ

))
, and with mark distribution

1

E
(
Ld

(
X ⊕ Ǧ

))
(
Ld ⊗ PX

)
xAG

⊗ Pa.

Proof. ΦG is the restriction of the Poisson process Φ to the measurable set
{
(t, x, X, a) ∈ (−∞, 0) × Rd × F × R : (x, X) ∈ AG

}
,

thus ΦG is a Poisson process and its intensity measure µG is the restriction of µ to the

above set (see Proposition B.3). As for the interpretation of ΦG as an independently

marked one-dimensional Poisson process, it is based on the factorization of the

intensity measure µG (see Corollary B.2 or [11, Section 1.8], [136, Section 3.5]).

Indeed we have

0 < Ld⊗PX

(
AG

)
=

∫

F

∫

Rd
 

{
y ∈ G ⊕ Y̌

}
Ld(dy)PX(dY ) = E

(
Ld

(
X ⊕ Ǧ

))
< +∞,
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and thus we can write

µG = E
(
Ld

(
X ⊕ Ǧ

))
λ ⊗


 1

E
(
Ld

(
X ⊕ Ǧ

))
(
Ld ⊗ PX

)
xAG

⊗ Pa


 ,

where the measure between square brackets is a probability distribution.

6.3.2 First-Order Distribution

Proposition 6.2 (First-order distribution). Let y be a point in Rd. Then there
exists a subsequence (a(y, k))k∈N of i.i.d. r.v. with distribution Pa such that

f(y) = α
+∞∑

k=0

a(y, k)βk.

In particular we have E(f(y)) = E(a) and Var (f(y)) =
α

2 − α
Var(a).

Proof. According to Proposition 6.1 the point process Φ{y} of the leaves which

cover y is an independently marked Poisson process, the ground process of which

is a Poisson process on (−∞, 0) with intensity E(Ld(X)) < +∞. Hence the falling

times of the leaves of Φ{y} are a.s. distinct and we can number the leaves

(t(y, k), x(y, k), X(y, k), a(y, k)), k ∈ N,

according to an anti-chronological order:

0 > t(y, 0) > t(y, 1) > t(y, 2) > . . . .

Proposition 6.1 also gives the distribution of the marks (x(y, k), X(y, k), a(y, k)),

and in particular it shows that the r.v. a(y, k), k ∈ N are i.i.d. with distribution

Pa. As already mentioned, the only leaves involved in the sum which defines f(y)

are the leaves of Φ{y}. Besides, using the above numbering we have for all k ∈ N

∑

(tj ,xj ,Xj ,aj)∈Φ
 (tj ∈ (t(y, k), 0) and y ∈ xj + Xj) = k.

Hence Equation (6.3) becomes

f(y) = α
+∞∑

k=0

a(y, k)βk,

and the result follows.

Remark (Influence of the transparency coefficient α). Let us write fα for the

TDL process with transparency coefficient α ∈ (0, 1]. Proposition 6.2 shows that

the expectation of fα does not depend on α. As for the variance, Var (fα(y)) =
α

2 − α
Var(a) decreases as α decreases. Besides Var (fα(y)) tends to 0 as α tends
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to 0 (recall that the model is not defined for α = 0). However, a central limit

theorem for random geometric series [20] shows that for all y ∈ Rd the family of r.v.(
fα(y)− E (fα)√

Var (fα)

)

α

converges in distribution to a standard normal distribution as α

tends to 0. This pointwise convergence result will be extended in Section 6.5, where

it will be shown that the family of normalized random fields

(
y Ô→ fα(y)− E (fα)√

Var (fα)

)

α
converges in the sense of finite-dimensional distributions.

6.3.3 Simulation of the TDL Process

In this section we draw on Proposition 6.2 to obtain a simulation algorithm for the

restriction of the TDL process f to a bounded domain U ⊂ Rd. The algorithm is

based on a coupling from the past procedure, as the algorithm developed by Kendall

and Thönnes [90] for simulating the dead leaves model (see also [82, 100]). This

algorithm consists in sequentially superimposing transparent random objects but,

contrary to the forward procedure described by Equation (6.1), each new object is

placed below the former objects. In the case of the dead leaves model, this yields

a perfect simulation algorithm. For the TDL process f , simulation is not perfect

since the values f(y) are the limits of convergent series. Nevertheless, supposing

that the intensities ai are bounded, we propose for any ε > 0 an algorithm which

produces an approximation f̃ of f . This approximation satisfies

P

(
sup
y∈U

∣∣∣f(y) − f̃(y)
∣∣∣ ≤ ε

)
= 1

therefore providing a kind of perfect simulation with precision ε > 0.

In the remaining of this section we suppose that the colors ai are a.s. bounded

by A > 0. The control of the precision is based on the following elementary lemma.

Lemma 6.1 (Precision associated to the leaves layer). Let y ∈ Rd and let

f̃n(y) = α
n−1∑

k=0

a(y, k)βk

be the restriction of the sum defining f(y) to the n latest leaves which have fallen
on y. Then ∣∣∣f(y) − f̃n(y)

∣∣∣ ≤ Aβn.

Lemma 6.1 shows that to approximate f(y) with a tolerance ε > 0 it is enough

to cover the point y with (at least) N(ε) leaves, where N(ε) is the smallest integer n

such that Aβn ≤ ε, that is N(ε) =

⌈
log (ε/A)

log(β)

⌉
. This yields the following algorithm.

Algorithm 6.1 (Simulation of the TDL process with tolerance ε > 0). Let U ⊂ Rd

be a bounded set such that 0 < E
(
Ld

(
X ⊕ Ǔ

))
< +∞ and let ε > 0. Given a

precision ǫ > 0, an approximation f̃ of the TDL process f is computed by controlling
the number of leaves L at each point:
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• Initialization: For all y ∈ U , f̃(y) ← 0; L(y) ← 0;

• Computation of the required number of leaves: N(ε) =

⌈
log (ε/A)

log(β)

⌉
;

• Iteration: While
(
inf
y∈U

L(y) < N(ε)

)
add a new leaf:

1. Draw a leaf (x, X, a) hitting U :

(a) Draw X ∼ PX ;
(b) Draw x uniformly in U ⊕ X̌;
(c) Draw a ∼ Pa;

2. Add the leaf (x, X, a) to f̃ : for all y ∈ U , f̃(y) ← f̃(y) +

 (y ∈ x + X)αaβL(y);

3. Update the leaves layer L: for all y ∈ U , L(y) ← L(y) +

 (y ∈ x + X) ;

Clearly Algorithm 6.1 a.s. converges if every point of U is covered by N(ε) leaves

in an a.s. finite time. This is always the case if U is a discrete set, since E
(
Ld(X)

)
>

0. It is also true for any bounded set U if there exists a non empty open ball B

such that E
(
Ld (X ⊖ B)

)
> 0 [18], where X ⊖ B = {x ∈ X, x + B ⊂ X} is the

erosion of X by B [110, 100].

Several realizations of some TDL processes are represented in Fig. 6.2. Remark

that as soon as α < 1, the TDL process is not piecewise constant: any region is

intersected by the boundaries of some leaves, producing discontinuities.

6.4 Covariance of the TDL Process

This section is devoted to the computation of the covariance of the TDL. A classical

way to achieve this would be to rely on Palm calculus, yielding relatively heavy

computations in this case. Instead, we chose an alternative way relying on some no-

memory property of the TDL, as explained below. For comparison, the computation

of the TDL covariance using Palm calculus is reproduced in the companion appendix

on the TDL process (see Section D.2 of Appendix D).

The following proposition is an extension of the fact that if 0 > t0 > t1 >

t2 > . . . is an homogeneous Poisson process on (−∞, 0) then the shifted process

0 > t1 − t0 > t2 − t0 > t3 − t0 > . . . is also a Poisson process with the same

distribution [91, Chapter 4]. The proof of this proposition is given in Section B.2.2

of Appendix B.

Proposition 6.3 (Last hitting leaf and the Poisson process preceding the last hit).

Let Ψ be a Poisson process in (−∞, 0)×E with intensity measure of the form λ⊗µ

where λ is the one-dimensional Lebesgue measure on (−∞, 0) and µ is a measure
on E. Let A ⊂ E be a measurable set such that 0 < µ(A) < +∞. Define

t0 = sup {ti|(ti, yi) ∈ Ψ ∩ ((−∞, 0)× A)} ,
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(a) Original shape (b) α = 1 (occlusion) (c) α = 0.7

(d) α = 0.4 (e) α = 0.05 (f) α = 0.05, enhanced con-

trast

Figure 6.2: TDL realizations with various transparency coefficients α. The RACS Xi

are all obtained from the original shape of Fig. 6.2(a) in applying a rotation of angle

θ ∼ Unif(0, 2π) and a homothety of factor r ∼ Unif(0, 1), and Pa = Unif(0, 255). For

α = 1, one obtains a colored dead leaves model. As soon as the leaves are transparent

(α < 1), one can distinguish several layers of leaves and not only the leaves on top. For

α = 0.05, the variance of the TDL process is nearly 0 (see Proposition 6.2). Enhancing the

contrast of the image (Fig.6.2(f)) reveals the structure of the image.
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y0 the a.s. unique y ∈ E such that (t0, y) ∈ Ψ ∩ ((−∞, 0)× A), and

Ψt0 =
∑

(ti,yi)∈Ψ
 (ti < t0) δ(ti−t0,yi).

Then

• t0, y0, and Ψt0 are mutually independent.

• −t0 has an exponential distribution with parameter µ(A).

• y0 has distribution QA defined for all B ∈ B(E) by QA(B) =
µ(B ∩ A)

µ(A)
.

• Ψt0 is a Poisson process with intensity measure λ ⊗ µ, i.e. Ψt0 has the same
distribution as Ψ.

In the following of this section, Proposition 6.3 will be applied to the Poisson

process Φ of the colored leaves to compute some statistics of the TDL process f .

As a first example, let us reobtain the expectation of f by using Proposition 6.3.

Let y ∈ Rd and let us note (t0, x0, X0, a0) the leaf which hits y at the maximal time

t0. Then one can decompose f(y) into

f(y) = αa0 + βft0(y), (6.4)

where ft0 is the TDL process associated to the time-shifted point process Φt0 . Ac-

cording to Proposition 6.3, a0 has distribution Pa and both point processes Φ and

Φt0 have the same distribution. Consequently, f(y) and ft0(y) also have the same

distribution, and in particular the same expectation. Hence the above decomposi-

tion of f(y) yields to the equation

E (f(y)) = αE(a) + βE (f(y)) ,

which gives E (f(y)) = E(a), in accordance with Proposition 6.2.

The very same method is used below to compute the covariance of f . Besides,

this method will be applied in Section D.1.3.1 to derive a decomposition of the

multivariate characteristic function of the TDL process. The same method will also

be applied in Chapter 9 to compute the mean total variation of the TDL process

(see Section 9.6).

Recall that γX(τ) = E
(
Ld(X ∩ τ +X)

)
is the mean covariogram of X.

Proposition 6.4 (Covariance of the TDL process). The TDL process f is a square-
integrable stationary random field and its covariance is given by

Cov(f)(τ) =
αγX(τ)

2E(Ld(X))− αγX(τ)
Var(a), τ ∈ Rd.
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Proof. Let y and z be such that z − y = τ . Let us note (t0, x0, X0, a0) the last leaf

which hits y or z at the maximal time t0, and let Φt0 be the corresponding time-

shifted Poisson process. According to Proposition 6.3, (x0, X0, a0) is independent of

Φt0 . In addition Φt0
d
= Φ, and consequently, noting ft0 the TDL associated with Φt0 ,

(ft0(y), ft0(z))
d
= (f(y), f(z)). Proposition 6.3 also shows that a0 has distribution

Pa. As for the distribution of (x0, X0), a straightforward computation shows that

Ld⊗PX ({(x, X), {y, z} ∩ x+X Ó= ∅}) = E
(
Ld (X ⊕ {−y, −z})

)
= 2γX(0)−γX(τ)

and

Ld ⊗ PX ({(x, X), {y, z} ⊂ x+X}) = E
(
Ld (−y +X ∩ −z +X)

)
= γX(τ).

Hence we have

P ({y, z} ⊂ x0 +X0) =
Ld ⊗ PX ({(x, X), {y, z} ⊂ x+X})

Ld ⊗ PX ({(x, X), {y, z} ∩ x+X Ó= ∅}) =
γX(τ)

2γX(0)− γX(τ)
,

(6.5)

and by symmetry and complementarity

P (y ∈ x0 +X0 and z /∈ x0 +X0) = P (z ∈ x0 +X0 and y /∈ x0 +X0) =
γX(0)− γX(τ)

2γX(0)− γX(τ)
.

As a shorter notation we write m = E(a) = E(f). We have to compute

Cov (f(y), f(z)) = E ((f(y)− m) (f(z)− m)). Conditioning with respect to the

coverage of the last leaf (t0, x0, X0, a0) we have

E ((f(y)− m) (f(z)− m))

= E ((f(y)− m) (f(z)− m) |{y, z} ⊂ x0 +X0 )
γX(τ)

2γX(0)− γX(τ)

+ E ((f(y)− m) (f(z)− m) |y ∈ x0 +X0 and z /∈ x0 +X0 )
γX(0)− γX(τ)

2γX(0)− γX(τ)

+ E ((f(y)− m) (f(z)− m) |z ∈ x0 +X0 and y /∈ x0 +X0 )
γX(0)− γX(τ)

2γX(0)− γX(τ)
.

By symmetry it is clear that the two last terms of the above sum are equal. On the

event {{y, z} ⊂ x0 +X0} we have

f(y)−m = α(a0−m)+β (ft0(y)− m) and f(z)−m = α(a0−m)+β (ft0(z)− m) ,

so that

(f(y)− m) (f(z)− m) = α2(a0 − m)2 + β2 (ft0(y)− m) (ft0(z)− m)

+ αβ(a0 − m) ((ft0(y)− m) + (ft0(z)− m)) .

By Proposition 6.3, a0, (x0, X0), and (ft0(y), ft0(z)) are mutually independent,

hence
E ((f(y)− m) (f(z)− m) |{y, z} ⊂ x0 +X0 )

= α2E
(
(a0 − m)2

)
+ β2E ((ft0(y)− m) (ft0(z)− m))

= α2Var(a) + β2Cov (f(y), f(z)) .
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On the event {y ∈ x0 +X0 and z /∈ x0 +X0} we have

f(y)− m = α(a0 − m) + β (ft0(y)− m) and f(z)− m = ft0(z)− m.

Using the above arguments,

E ((f(y)− m) (f(z)− m) |y ∈ x0 +X0 and z /∈ x0 +X0 ) = β Cov (f(y), f(z)) .

Coming back to the above decomposition of E ((f(y)− m) (f(z)− m)), one obtains

an equation involving the covariance Cov (f(y), f(z)), the values γX(0) and γX(τ)

of the mean covariogram of X, and the variance Var(a). Simplifying this equation

one obtains the enunciated formula.

Remark (Variable transparency and second order property). The technique used

in this section enables to generalize second order formulas to the case where the

transparency parameter α is assumed to be different for each object, that is, when

it is assumed that each object Xi is assigned a transparency αi distributed as a

random variable α and independent of other objects. First, it is straightforward to

show that in this case we still have E(f(y)) = E(a). Then, a simple application of

Formula (6.4) yields Var (f(y)) = E(α2)Var(a)(2E(α)− E(α2))−1. Observe that a
direct computation starting from the definition of f would be much more painful.

Eventually, applying the same technique enables to show that the covariance of the

model with variable transparency satisfies, for τ ∈ Rd,

Cov(f)(τ) =
E(α2)γX(τ)

2E(α)E(Ld(X))− E(α2)γX(τ)
Var(a).

6.5 Gaussian Convergence as the Objects Tend to Be

Fully Transparent

Recall that the TDL process with transparency coefficient α is denoted fα.

Theorem 6.1 (Normal convergence of the TDL process). Suppose that Var(a) > 0.
Then, as the transparency coefficient α tends to 0, the family of random fields(

fα − E (fα)√
Var (fα)

)

α

converges in the sense of finite-dimensional distributions to a cen-

tered stationary Gaussian random field with covariance function

C(τ) =
γX(τ)

E(Ld(X))
=

γX(τ)

γX(0)
.

The proof of Theorem 6.1 is postponed to the companion appendix (see Sec-

tion D.1 of Appendix D). It relies on on a the method of moments for convergence in

distribution and, as for the computation of the covariance of the TDL process (see

Proposition 6.4), it involves a conditioning with respect to the coverage of a last

hitting leaf. This theorem involves families of r.v. having a controlled dependency
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(a) α = 1 (b) α = 0.5 (c) α = 0.2

(d) α = 0.1 (e) α = 0.01 (f) Limit Gaussian r.f.

Figure 6.3: From colored dead leaves to Gaussian random fields: Visual illustration of the

normal convergence of the normalized TDL processes

(
fα − E (fα)√
Var (fα)

)

α

(see Theorem 6.1).

As α decreases to 0 the normalized TDL realizations look more and more similar to the

Gaussian texture 6.3(f).

structure. Here this control is basically obtained from the obvious observation that

a leaf covers at most once each considered points (see Section D.1 for the details).

The normal convergence of the normalized family of r.v.

(
fα − E (fα)√
Var (fα)

)

α

is il-

lustrated by Fig. 6.3. The five first images are normalized TDL realizations obtained

from the same random colored leaves but with various transparency coefficients α.

The last image is a realization of the limit Gaussian random field given by Theo-

rem 6.1. Observe that this Gaussian field is also the limit of the normalized shot

noise associated with the grain distribution PX when the intensity of germs tends

to infinity (see Theorem 3.1 or [75]).

6.6 Conclusion

The transparent dead leaves model has been introduced and studied. It has been

shown that, when varying the transparency coefficient α, the TDL process provides

a family of r.f. which ranges from the colored dead leaves r.f. to Gaussian r.f.

The presented study of the TDL process might be extended in several ways. In

Chapter 9, relying on the method introduced for the computation of the TDL covari-

ance, the mean variation of the TDL process will be computed (see Section 9.6). It
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might also be of interest to study the properties of the TDL model when the size of

the grains varies according to a scaling law since, for both the dead leaves model and

the shot noise model, scaling laws yield non Gaussian limit regimes [68, 15, 88, 16].

Another direction would be to investigate for possible applications of this theoreti-

cal study in computer graphics where the superimposition of numerous transparent

objects is used to simulate certain materials [52].
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General Introduction of Part III: Variation of Random

Fields

Functions of bounded variation are an important model in image processing. Ever

since the seminal paper of Rudin, Osher and Fatemi [133], the total variation has

been widely used for various tasks such as denoising with the TV −L2 and TV −L1

models [133, 30, 117, 7, 32], zooming [71] or also deconvolution [33].

Concerning textures, the total variation generally appears in the problem of

decomposing on image in a cartoon part (or geometric part) and a textural part

following the framework proposed by Meyer [112]. For this problem it is considered

that the total variation of a textural part should be high or even infinite, whereas

the total variation of the cartoon part should be low, in comparison with another

norm adapted to oscillatory images [112, 148, 8, 9, 23]. Another work which relates

total variation and textures is the texture synthesis method proposed by Fadili and

Peyré [55]. Their algorithm, which belongs to the general framework described

in [125], consists in projecting a texture image on the set of images {f, TV (f) ≤ c}
while preserving the histogram of the initial texture (by alternate projections).

Starting from white noise, this procedure permits to generate generic piecewise

smooth textures presenting sharp edges [55].

Even though the total variation of textures is generally considered to be high

or even infinite, to the best of our knowledge little is known on the total variation

of classic texture models such as Gaussian random fields, shot noises, or the other

germ-grain models presented in Chapters 5 and 6. However, the random geometric

images displayed in Chapter 5 are images of bounded variation, and intuitively their

total variation depends on the geometry of the grains. Hence it is natural to ask

the following question: What is the mean total variation of the germ-grain

models presented in Chapters 5 and 6?

Even though the above question is intuitively simple, provide a solution to the

problem raised by this question necessitates the development of several theoretical

results, and it will be a central subject of the last three chapters of this thesis.

To the best of our knowledge random fields (r.f.) of bounded variation over

Rd have never been studied for d ≥ 2, with the exception of the short paper [80].

The object of Chapter 7 is to properly define random fields of bounded variation,

to give practical necessary and sufficient conditions characterizing r.f. of bounded

variation, as well as to establish simple expression for their mean total variation.

Let us recall that, by definition, the variation of an indicator function is its

perimeter [6, 54]. Hence as a particular case of our results on the mean varia-

tion of r.f., one obtains formulas for the mean perimeter of random sets. These

formulas extend known results from the theory of random sets which are due to

Matheron [107, 110, 100]. In order to focus on the specificities of random sets

as well as to discuss the links with the rich literature on the subject, a separated

chapter is devoted to the variation of random sets (Chapter 8).

Finally, in Chapter 9, we will demonstrate the interest of the general results of
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Chapters 7 and 8 in computing the mean variation of various random field models,

namely Gaussian random fields, the germ-grain models presented in Chapter 5, as

well as the transparent dead leaves model introduced in Chapter 6.
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Abstract: The main purpose of this chapter is to define random fields

of bounded variation and to study their mean total variation. Simple

formulas are obtained for the mean total directional variation of random

fields, based on known formulas for the directional variation of deter-

ministic functions. It is also shown that the mean variation of stationary

random fields is proportional to the Lebesgue measure. An expression of

the constant of proportionality, called the variation intensity, is estab-
lished. This expression shows in particular that the variation intensity

only depends on the family of two-dimensional distributions of the sta-

tionary random field.
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7.1 Introduction

This chapter is devoted to the general study of random fields (r.f.) of bounded

variation. To avoid difficulties related to boundary conditions and since we are

mostly interested into stationary r.f., we restrict ourselves to the case of r.f. defined

on the whole space Rd.

For a r.f. f , our general strategy is first to deal with directional variations |Duf |,
u ∈ Sd−1 and then integrate over all directions u ∈ Sd−1 to obtain results on the
variation |Df |. The advantage of dealing with directional variations is that it yields
simple expressions and also provides information on the anisotropy of the r.f. f .

The first section of this chapter is devoted to functions of bounded directional

variation. Relations between the directional variation |Duf | of a function f and

the integral of its difference quotients are emphasized, yielding to the fundamental

relation

|Duf |
(
Rd

)
= lim

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx.

Since the stated results are not found in the reference textbooks on the subject

(e.g. [6, 54]), they are presented with a complete proof.

After this preliminary study of deterministic functions of bounded directional

variation, random fields of (locally) bounded (directional) variation are defined and

characterized. In particular, one defines the directional variation intensity measure
ΘVu(f, ·) of a r.f. f as the expectation of the directional variation of f , and, in the

case where the r.f. f is a.s. of bounded variation over the whole space Rd, it is

shown that

ΘVu

(
f,Rd

)
= E

(
|Duf |

(
Rd

))
= lim

r→0

∫

Rd

E (|f(x+ ru)− f(x)|)
|r| dx.

A particular interest is then given to stationary r.f. f of locally bounded (direc-

tional) variation. If f is such a r.f., it is proved that the mean directional variation

of f on every domain U is proportional to the Lebesgue measure of U . The constant

of proportionality is called the directional variation intensity of the stationary r.f.

f and is denoted θVu(f). Along with the definition of θVu(f), a practical formula is

derived:

θVu(f) = lim
r→0

E(|f(ru)− f(0)|)
|r| .

In particular, the directional variation intensity θVu(f) only depends on the family

of two-dimensional distributions of the stationary random field f .

As mentioned above, we are aware of only one general result on the variation

of r.f. which is due to Ibragimov [80]. Ibragimov’s theorem shows that if a r.f. is

Lipschitz in mean, that is if there exists K > 0 such that for all x, h ∈ Rd,

E(|f(x+ h)− f(x)|) ≤ K|h|,

then f has a.s. bounded variation. After recalling this theorem, we establish an

equivalent of Ibragimov’s theorem for r.f. of bounded directional variation. Besides,
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we demonstrate that the converse of Ibragimov’s theorem holds when the r.f. are

stationary: a stationary r.f. has bounded variation with a finite variation intensity

if and only if it has finite expectation and is Lipschitz in mean.

The plan of this chapter is as follows. In Section 7.2, several results from the

theory of functions of bounded directional variation are recalled. Random fields of

bounded (directional) variation are then defined in Section 7.3, and characterization

theorems for these r.f are established. Finally, in Section 7.4 a special interest

is given to stationary r.f. of bounded variation for which the variation intensity

measure is shown to be proportional to the Lebesgue measure.

7.2 Functions of Bounded Directional Variation and

Difference Quotients

This section gathers several necessary results from the theory of functions of

bounded variation, with a particular interest in functions of bounded directional

variation. For a general treatment of the subject we refer to the textbook of Am-

brosio, Fusco and Pallara [6]. In a first part, some basic definitions are recalled.

In a second part, relations between the directional variation of a function and the

integral of its difference quotients are emphasized. Although the stated results are

well-known in the calculus of variations community1, they are not, to the best of

our knowledge, presented in any reference textbooks on the subject (e.g. [6, 54]).

This is why each result of this second part is presented with a complete proof.

7.2.1 Functions of Bounded Variation

For any open subset U ⊂ Rd, B(U) denotes the set of Borel subsets of U , and we

write V ⊂⊂ U if V ⊂ U is open and relatively compact in U .

Definition 7.1 (Functions of bounded variation). Let U be an open set of Rd. We
say that f ∈ L1 (U) is a function of bounded variation in U if the distributional
derivative of f is representable by a finite Radon measure, i.e. if there exists a
Rd-valued Radon measure2, noted Df = (D1f, . . . , Ddf), such that |Df |(U) < +∞
and for all ϕ = (ϕ1, . . . , ϕd) ∈ C∞

c (U,Rd)

∫

U
f(x) divϕ(x)dx = −

d∑

i=1

∫

U
ϕi(x)Dif(dx).

The vector space of all functions of bounded variation in U is denoted by BV (U).
A function f ∈ L1loc (U) has locally bounded variation in U if f ∈ BV (V ) for

all open set V ⊂⊂ U . The space of functions of locally bounded variation in U is
denoted by BVloc(U).

1Luigi Ambrosio, personal communication.
2The definition of vector-valued Radon measures is recalled in Appendix C.
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In what follows, Sd−1 denotes the unit Euclidean sphere in Rd. If ϕ ∈ C1 (U,R)

and u ∈ Sd−1, we write

∂ϕ

∂u
(x) = 〈∇ϕ(x), u〉 , x ∈ Rd,

for the directional derivative of ϕ in the direction u.

Definition 7.2 (Functions of bounded directional variation). Let U be an open set
of Rd and let u ∈ Sd−1. f ∈ L1 (U) is a function of bounded directional variation in
U in the direction u if the directional distributional derivative of f in the direction
u is representable by a finite Radon measure, i.e. if there exists a signed Radon
measure3, noted Duf , such that |Duf |(U) < +∞ and for ϕ ∈ C∞

c (U,R)

∫

U
f(x)

∂ϕ

∂u
(x)dx = −

∫

U
ϕ(x)Duf(dx).

The corresponding space is denoted by BVu(U).
The space BVu,loc(U) is defined as the subspace of functions f ∈ L1loc (U) such

that f ∈ BVu(V ) for all open set V ⊂⊂ U .

If f ∈ BV (U) then |Df |(U) is called the variation of f in U . Similarly, if

f ∈ BVu(U), |Duf |(U) is called the directional variation of f in the direction u in

U .

In what follows, Hd−1 denotes the Hausdorff measure of index d − 1.

Proposition 7.1 (Variation and directional variations). Let U be an open set of
Rd and let f ∈ L1(U). Then, the three following assertions are equivalent:

(i) f ∈ BV (U).

(ii) f ∈ BVu(U) for all u ∈ Sd−1.

(iii) For all vector ei of the canonical basis, f ∈ BVei
(U).

In addition, if f ∈ BV (U) we have for all measurable set A ∈ B(U),

Duf(A) = 〈Df(A), u〉 =
d∑

i=1

uiDif(A), u = (u1, . . . , ud) ∈ Sd−1,

and

|Df |(A) = 1

2ωd−1

∫

Sd−1
|Duf |(A)Hd−1(du), (7.1)

where ωd−1 denotes the Lebesgue measure of the unit ball in Rd−1.

3The definition of signed Radon measures is recalled in Appendix C.
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Proof. This proposition is mostly from [34]. It is reproduced for the convenience of

the reader. Clearly, Assertion (ii) implies Assertion (iii). Let us show that (i) implies

(ii). Let f ∈ BV (U), let Df = (D1f, . . . , Ddf) be the Radon measure representing

its distributional derivative, and let u ∈ Sd−1. Then 〈Df, u〉 := ∑d
i=1 uiDif is

a signed Radon measure which represents the directional derivative of f in the

direction u, and by the Cauchy-Schwarz inequality

|〈Df, u〉| (U) ≤
d∑

i=1

|ui||Dif |(U) ≤ |u||Df |(U) = |Df |(U) < +∞.

Hence f ∈ BVu(U). Let us now show that (iii) implies (i). For all vector ei of

the canonical basis, f ∈ BVei

(
Rd

)
and there exists a signed Radon measure Dei

f

which represents the distributional partial derivatives of f . But then one easily

checks that (De1f, . . . , Ded
f) is a Rd-valued finite Radon measure which represents

the distributional derivative of f , and thus f ∈ BV (U). As for the two announced

equalities, note that we have already shown that Duf = 〈Df, u〉. To finish let us

show Formula (7.1). Let f ∈ BV (U) and let A ∈ B(U). By the polar decomposition
theorem [6, Corollary 1.29] there exists a unique |Df |-integrable function σ : U →
Sd−1 such that Df = σ|Df |. With this notation, observe that for all u ∈ Sd−1

Duf(A) = 〈Df, u〉(A) =
∫

A
〈σ(x), u〉|Df |(dx).

Hence, by [6, Proposition 1.23]

|Duf |(A) =
∫

A
|〈σ(x), u〉| |Df |(dx).

For all ν ∈ Sd−1 we have the following well-known identity
∫

Sd−1
|〈ν, u〉| Hd−1(du) = 2ωd−1.

Hence by Fubini’s theorem

∫

Sd−1
|Duf |(A)Hd−1(du) =

∫

A

(∫

Sd−1
|〈σ(x), u〉| Hd−1(du)

)
|Df |(dx)

= 2ωd−1|Df |(A).

7.2.2 Directional Variation and Difference Quotients

In this section we enunciate characterization theorems for functions of bounded

variation in terms of difference quotient. To ensure that the difference quotients x Ô→
f(x+ru)−f(x)

r are well-defined, we restrict ourselves to the case where the function f

is defined over the whole Euclidean space Rd. Since stationary random fields are

by definition defined over Rd, this restriction is of no consequence for the targeted

applications.
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Theorem 7.1 (Characterization of functions of bounded directional variation in

terms of difference quotient). Let f ∈ L1loc

(
Rd

)
, and let u ∈ Sd−1. Then, the three

following assertions are equivalent:

(i) f ∈ BVu,loc

(
Rd

)
.

(ii) For all U ⊂⊂ Rd, the family of functions

x Ô→ f(x+ ru)− f(x)

r
, r Ó= 0,

is uniformly bounded in L1 (U) as r tends to 0.

(iii) For all U ⊂⊂ Rd, there exists a sequence (rn), rn Ó= 0, converging to 0 such
that the sequence of functions

x Ô→ f(x+ rnu)− f(x)

rn
, n ∈ N,

is uniformly bounded in L1 (U).

Proof. Clearly (ii) implies (iii). Let us show that (i) implies (ii). Let f ∈
BVu,loc

(
Rd

)
, let (ρε)ε>0 be a family of mollifiers, for all ε > 0 define fε = f ∗ ρε,

and let U ⊂⊂ Rd. Since fε ∈ C1loc
(
Rd,R

)
, for all x ∈ Rd and r Ó= 0,

fε(x+ ru)− fε(x) =

∫ 1

0

∂fε

∂u
(x+ tru)rdt.

Hence ∫

U

|fε(x+ ru)− fε(x)|
|r| dx ≤

∫

U

∫ 1

0

∣∣∣∣
∂fε

∂u
(x+ tru)

∣∣∣∣ dtdx

≤
∫ 1

0

∫

tru+U

∣∣∣∣
∂fε

∂u
(x)

∣∣∣∣ dxdt

≤
∫ 1

0
|Dufε| (tru+ U) dt

≤ |Dufε| (U ⊕ B(0, |r|)) ,

where in the last step we used that tru + U ⊂ U ⊕ B(0, |r|) for all t ∈ [0, 1].

According to [6, Theorem 2.2 p. 42] for all open set G ⊂ Rd,

|Dufε| (G) ≤ |Duf | (G ⊕ B(0, ε)) .

From this property we obtain

|Dufε| (U ⊕ B(0, |r|)) ≤ |Duf | (U ⊕ B(0, |r|+ ε)) .

Hence we have shown that
∫

U

|fε(x+ ru)− fε(x)|
|r| dx ≤ |Duf | (U ⊕ B(0, |r|+ ε)) .
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Letting ε tends to zero, we first get, since fε converges to f in L1loc

(
Rd

)
,

lim
ε→0

∫

U

|fε(x+ ru)− fε(x)|
|r| dx =

∫

U

|f(x+ ru)− f(x)|
|r| dx.

Moreover, since by hypothesis |Duf | is a Radon measure,

lim
ε→0

|Duf | (U ⊕ B(0, |r|+ ε)) = |Duf |
( ⋂

ε>0

U ⊕ B(0, |r|+ ε)

)

= |Duf |
(
U ⊕ B(0, |r|)

)
.

Hence for all r Ó= 0 and for all U ⊂⊂ Rd,

∫

U

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
U ⊕ B(0, |r|)

)
(7.2)

Since |Duf |
(
U ⊕ B(0, |r|)

)
is a non-increasing function of r, the integrals of the

difference quotients are uniformly bounded in r as r tends to 0.

To conclude the proof let us now show that (iii) implies (i). Let f ∈ L1loc

(
Rd

)

and u ∈ Sd−1. Let U ⊂⊂ Rd and let us show that f ∈ BVu(U). By hypothesis,

there exists a sequence (rn), rn Ó= 0, converging to 0 such that the sequence of

functions

x Ô→ f(x+ rnu)− f(x)

rn
, n ∈ N,

is uniformly bounded in L1 (U). For all n ∈ N, denote by µn the signed Radon

measure on U

µn : A Ô→
∫

A

f(x+ rnu)− f(x)

rn
dx, A ∈ B(U).

For all n ∈ N, the total variation of µn is

|µn|(U) =
∫

U

|f(x+ rnu)− f(x)|
|rn| dx,

and thus by hypothesis sup {|µn|(U), n ∈ N} < +∞. By weak∗ compactness4 (see
Theorem C.2 or [6, Theorem 1.59 p. 27]), there exists a subsequence (rnk

) such that

(µnk
) weakly∗ converges to a Radon measure µ. Hence for all function ψ ∈ C0c (U,R),

we have

lim
k→+∞

∫

U
ψ(x)

f(x+ rnk
u)− f(x)

rnk

dx =

∫

U
ψ(x)µ(dx).

On the other hand, for all k ∈ N and for all ϕ ∈ C∞
c (U,R),

∫

U
ϕ(x)

f(x+ rnk
u)− f(x)

rnk

dx =

∫

U

ϕ(x − rnk
u)− ϕ(x)

rnk

f(x)dx,

4The definition of weak∗ convergence signed Radon measures as well as weak∗ compactness are

recalled in Appendix C.
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and by dominated convergence,

lim
k→+∞

∫

U

ϕ(x − rnk
u)− ϕ(x)

rnk

f(x)dx = −
∫

U

∂ϕ

∂u
(x)f(x)dx.

All in all, we have for all ϕ ∈ C∞
c (U,R),

∫

U
ϕ(x)µ(dx) = −

∫

U

∂ϕ

∂u
(x)f(x)dx.

Hence the distributional directional derivative of f over U is representable by the

Radon measure µ. Besides, by lower semicontinuity of the total variation over open

sets with respect to the weak∗ convergence (see Corollary C.1),

|µ|(U) ≤ lim inf
k→+∞

|µnk
|(U) < +∞.

Hence f ∈ BVu (U). This is true for any U ⊂⊂ Rd and thus concludes the proof.

The remaining of this section consists of a series of corollaries of Theorem 7.1,

which would eventually yield to the identity (see Corollary 7.4)

|Duf |
(
Rd

)
= lim

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx.

This identity will be central in our study of random fields of bounded variation.

Corollary 7.1. Let f ∈ L1loc

(
Rd

)
and u ∈ Sd−1. Then f ∈ BVu,loc

(
Rd

)
if and

only if for all U ⊂⊂ Rd,

lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx < +∞.

Proof. By Theorem 7.1, if f ∈ BVu,loc

(
Rd

)
then

∫
U

|f(x+ru)−f(x)|
|r| dx is uniformly

bounded as r tends to 0, and thus it has a finite lim inf. Conversely, suppose that

for all U ⊂⊂ Rd

lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx < +∞.

Let U ⊂⊂ Rd. Then there exists a sequence (rn) converging to 0 such that

lim
n→+∞

∫

U

|f(x+ rnu)− f(x)|
|rn| dx = lim inf

r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx.

Since a convergent sequence is bounded, there exists a constant C such that

∫

U

|f(x+ rnu)− f(x)|
|rn| dx ≤ C, n ∈ N.

Hence for all U ⊂⊂ Rd, there exists a sequence (rn) converging to 0 such that the

functions x Ô→ f(x+rnu)−f(x)
rn

are uniformly bounded in L1(U). By Theorem 7.1,

f ∈ BVu,loc

(
Rd

)
.
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Corollary 7.2 (local weak∗ convergence of difference quotients). Let f ∈ L1loc

(
Rd

)
,

and let u ∈ Sd−1. For all r Ó= 0, denote µr the signed Radon measure

µr : A Ô→
∫

A

f(x+ ru)− f(x)

r
dx, A ∈ B

(
Rd

)
.

Then f ∈ BVu,loc

(
Rd

)
if and only if the family of measures (µr) locally weakly∗

converges to some signed Radon measure µ, and in this case Duf = µ.

Proof. First a preliminary remark: By dominated convergence, for all ϕ ∈
C∞

c

(
Rd,R

)
,

lim
r→0

∫

Rd
ϕ(x)µr(dx) = lim

r→0

∫

Rd

ϕ(x − ru)− ϕ(x)

r
f(x)dx = −

∫

Rd

∂ϕ

∂u
(x)f(x)dx.

Let us suppose that (µr) locally weakly∗ converges to µ. By definition of the

local weak∗ convergence, for all ϕ ∈ C0c
(
Rd,R

)
,

lim
r→0

∫

Rd
ϕ(x)µr(dx) =

∫

Rd
ϕ(x)µ(dx).

Hence for all ϕ ∈ C∞
c

(
Rd,R

)
,

∫

Rd
ϕ(x)µ(dx) = −

∫

Rd

∂ϕ

∂u
(x)f(x)dx,

that is f ∈ BVu,loc

(
Rd

)
and Duf = µ.

Let us now turn to the converse implication. Suppose that f ∈ BVu,loc

(
Rd

)
.

Let (rn) be some sequence converging to 0 and note µn = µrn . Then, according

to Theorem 7.1, for all open set U ⊂⊂ Rd, |µn|(U) is uniformly bounded. But

then, for any compact set K ⊂ Rd, |µn|(K) is also uniformly bounded and thus

sup {|µn|(K), n ∈ N} < +∞. By local weak∗ compactness (see Corollary C.1)

there exists a subsequence (rnk
) of (rn) such that µnk

locally weakly∗ converges to

some signed Radon measure µ. Hence for all ϕ ∈ C∞
c

(
Rd,R

)
,

∫

Rd
ϕ(x)µ(dx) = lim

k→+∞

∫

Rd
ϕ(x)µnk

(dx) = −
∫

Rd

∂ϕ

∂u
(x)f(x)dx,

that is f ∈ BVu,loc

(
Rd

)
and Duf = µ. Besides, according to the preliminary

remark, for all ϕ ∈ C∞
c

(
Rd,R

)
,

lim
r→0

∫

Rd
ϕ(x)µr(dx) =

∫

Rd
ϕ(x)µ(dx).

By the density of C∞
c

(
Rd,R

)
in C0c

(
Rd,R

)
for the uniform convergence, the above

equality extends to all ϕ ∈ C0c
(
Rd,R

)
, which shows that the whole family (µr)

locally weakly∗ converges to µ.
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The next corollary uses arguments from the proof of Theorem 7.1 to establish

useful inequalities involving the directional variation and the integral of difference

quotients.

Corollary 7.3. Let f ∈ BVu,loc

(
Rd

)
and u ∈ Sd−1. For all U ⊂⊂ Rd and for all

r Ó= 0, ∫

U

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
U ⊕ B(0, |r|)

)
.

Besides the following chain of inequalities holds:

|Duf | (U) ≤ lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx

≤ lim sup
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
U

)
.

Proof. Let U ⊂⊂ Rd and r Ó= 0. Then Equation (7.2) in the proof of Theorem 7.1

ensures that
∫

U

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
U ⊕ B(0, |r|)

)
.

Since

lim sup
r→0

|Duf |
(
U ⊕ B(0, |r|)

)
= |Duf |

(
U

)
,

we deduce that

lim sup
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
U

)
.

To conclude, by Corollary 7.2, the signed Radon measures

µr : A Ô→
∫

A

f(x+ ru)− f(x)

r
dx, A ∈ B

(
Rd

)
,

locally weakly∗ converge to Duf . But since the application ν Ô→ |ν|(U) is lower-
semicontinuous with respect to the local weak∗ convergence (see Corollary C.1) we
have

|Duf | (U) ≤ lim inf
r→0

|µr|(U) = lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx.

For functions of bounded directional variation in Rd, Corollary 7.3 yields to a

new practical expression for the total directional variation |Duf |
(
Rd

)
.

Corollary 7.4 (The directional variation is the limit of the integrated difference

quotient). Let f ∈ L1
(
Rd

)
and u ∈ Sd−1. Then the following assertions are

equivalent:

(i) f ∈ BVu

(
Rd

)
.
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(ii) lim inf
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx < +∞.

(iii) lim
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx exists and is finite.

If any of these assertions holds, then for all r Ó= 0,
∫

Rd

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
Rd

)
,

and

|Duf |
(
Rd

)
= lim

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx. (7.3)

Besides, Formula (7.3) is also valid in the degenerate case: if f is not in BVu

(
Rd

)
,

then

lim
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx = +∞.

Proof. First remark that (iii) ⇒ (ii) is trivial. Let us show that (i) ⇒ (iii). Let

f ∈ BVu

(
Rd

)
. By Corollary 7.3, for all U ⊂ Rd,

|Duf | (U) ≤ lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx ≤ lim inf

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx.

Letting U tends to Rd shows that

|Duf |
(
Rd

)
≤ lim inf

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx.

On the other hand, still by Corollary 7.3, for all U ⊂ Rd,

∫

U

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
U ⊕ B(0, |r|)

)
≤ |Duf |

(
Rd

)
.

Thus letting U tends to Rd,

∫

Rd

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
Rd

)
,

and in particular

lim sup
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
Rd

)
.

Hence the limit of the integrated difference quotients exists and equals |Duf |
(
Rd

)
.

Let us now show that (ii) ⇒ (i). Suppose that f ∈ L1
(
Rd

)
satisfies (ii). Then, by

Corollary 7.1 f ∈ BVu,loc

(
Rd

)
. Besides, the above argument shows that

|Duf |
(
Rd

)
≤ lim inf

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx < +∞,
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and thus f ∈ BVu

(
Rd

)
. To conclude, let us deal with the degenerate case. Remark

that it is enough to show that

lim inf
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx = +∞. (7.4)

First, if f /∈ BVu,loc

(
Rd

)
, then by Corollary 7.1 there exists U ⊂⊂ Rd such that

lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx = +∞,

which ensures (7.4). Second, if f ∈ BVu,loc

(
Rd

)
but not in BVu

(
Rd

)
, then neces-

sarily, |Duf |
(
Rd

)
= +∞. Besides, by Corollary 7.3, for all U ⊂⊂ Rd,

|Duf | (U) ≤ lim inf
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx.

Letting U tends to Rd, one obtains (7.4).

7.3 Random Fields of Bounded Variation

7.3.1 Measurable Random Fields

Following the generally approved definition, a random field (r.f.) of Rd is a a family

of random variables ξx : (Ω, A) → (R, B(R)) indexed by x ∈ Rd (see e.g. [47, p. 46]

or [63, p. 41]). The study of the variation of a r.f. requires an additional hypothesis,

namely that the r.f. is measurable.

Definition 7.3 (Measurable random field). Let (Ω, A,P) be a probability space. A
(jointly) measurable random field of Rd is a (jointly) measurable function

f :
(
Ω× Rd, A ⊗ B

(
Rd

))
→ (R, B(R)).

Let us recall that if a r.f. ξx is continuous in probability, then there exists a

jointly measurable version f(ω, x) of ξx(ω) (see [47, p. 61] or [63, p. 171]). In

our context the measurability assumption is necessary to ensure that the weak

derivatives of f , that is the integrals of the form
∫

Rd
f(ω, x)ϕ(x)dx, ϕ ∈ C0c

(
Rd,R

)
,

are well-defined random variables. Indeed, if the restrictions of f on the sets Ω×U ,

U ⊂⊂ Rd are integrable, this is a direct consequence of Fubini’s theorem [63, p. 173].

Hence in what follows all the considered random fields will be supposed to

be measurable. When needed, random fields in the sense of the usual definition

will be denoted by ξx (and not by f), and they will be referred to as (non necessarily

measurable) random fields. Let us mention that the measurability assumption is

also made in the recent paper [135] to study r.f. having sample paths in Sobolev

spaces of index p = 2.
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7.3.2 Definition of Random Fields of Bounded Variation

Definition 7.4 (Random field of bounded variation). Let U ⊂ Rd be an open set.
An a.s. integrable random field f : Ω×U → R is a random field of bounded variation

in U if there exists some random Rd-valued Radon measure Df = (D1f, . . . , Ddf)

such that |Df |(U) is a.s. finite and for all ϕ = (ϕ1, . . . , ϕd) ∈ C∞
c

(
U,Rd

)
,

∫

Rd
f(x) divϕ(x)dx = −

d∑

i=1

∫

Rd
ϕi(x)Dif(dx) a.s..

An a.s. locally integrable r.f. f : Ω× U → R is a r.f. of locally bounded variation

in U if for all V ⊂⊂ U the restriction of f to Ω× V is a r.f. of bounded variation
in V .

Definition 7.5 (Variation intensity measure). Let U ⊂ Rd be an open set
and f be a r.f. of locally bounded variation in U . Then the intensity measure of
the variation |Df |, that is the measure A Ô→ E (|Df |(A)), is called the variation
intensity measure of f and is denoted ΘV (f, ·).

The variation intensity measure is an important characteristic of a r.f. f of

bounded variation: for all measurable set A, ΘV (f, A) is the mean variation of f in

A. The mean variation ΘV (f, U) on the whole domain U will be called the mean
total variation of f .

Definition 7.6 (Random field of bounded directional variation). Let U ⊂ Rd be
an open set and let u ∈ Sd−1. An a.s. integrable random field f : Ω × U → R is a
r.f. of bounded directional variation in U if there exists some random signed Radon
measure Duf such that |Duf |(U) is a.s. finite and for all ϕ ∈ C∞

c (U,R),
∫

Rd
f(x)

∂ϕ

∂u
(x)dx = −

∫

Rd
ϕ(x)Duf(dx).

An a.s. locally integrable r.f. f : Ω× U → R is a r.f. of locally bounded directional
variation in U if for all V ⊂⊂ U the restriction of f to Ω× V is a r.f. of bounded
variation in V .

Definition 7.7 (Directional variation intensity measure). Let U ⊂ Rd be an
open set, let u ∈ Sd−1, and let f be a r.f. of locally bounded directional varia-
tion in U . Then the intensity measure of the variation |Duf |, that is the measure
A Ô→ E (|Duf |(A)), is called the directional variation intensity measure of f in the
direction u and is denoted ΘVu(f, ·).

ΘVu(f, U) will be called the mean total directional variation of f in the direction

u. One easily establishes the analog of Proposition 7.1 for the case of r.f. of bounded

variation. In particular we have the following formula.

Proposition 7.2 (Integral geometric formula for directional variation intensity

measures). Let U ⊂ Rd be an open set, and let f be a r.f. of bounded variation
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in U . Then f is a r.f. of bounded directional variation in U for all directions
u ∈ Sd−1, and for all A ∈ B (U),

ΘV (f, A) =
1

2ωd−1

∫

Sd−1
ΘVu(f, A)du.

Proof. As for Proposition 7.1, if Df is a random Rd-valued Radon measure repre-

senting the distributional derivative of f then 〈Df, u〉 is a random signed Radon

measure which represents the directional distributional derivative of f . Hence f is

a r.f. of bounded directional variation in U for all directions u ∈ Sd−1. The integral
geometric formula is obtained in applying Fubini’s theorem to Formula (7.1).

We conclude this section in showing that the proposed definition of r.f. of

bounded variation is equivalent with a more instinctive one: a r.f. has bounded

variation if its sample paths have a.s. bounded variation.

Proposition 7.3 (Sample paths of r.f. of bounded variation). Let f ∈ L1loc

(
Rd

)

a.s. and let u ∈ Sd−1. Then f is a r.f. of locally bounded directional variation
in the direction u (in the sense of Definition 7.6) if and only if the sample paths
x Ô→ f(ω, x) are in BVu,loc

(
Rd

)
for P-a.e. ω ∈ Ω. Similarly, f is a r.f. of locally

bounded directional variation in Rd if and only if the sample paths x Ô→ f(ω, x) are
in BVloc

(
Rd

)
for P-a.e. ω ∈ Ω. If in addition f ∈ L1

(
Rd

)
, then f is a r.f. of

bounded directional variation in the direction u (resp. of bounded variation) if and
only if its sample paths are a.s. in BVu

(
Rd

)
(resp. in BV

(
Rd

)
).

Proof. Let us first show the equivalence for r.f. of locally bounded directional

variation. The direct sense is immediate from the definition: since Duf is a.s. a

Radon measure, the sample paths are a.s. in BVu,loc

(
Rd

)
. Conversely, note Ω′ ⊂ Ω

the set of ω ∈ Ω for which x Ô→ f(ω, x) are in BVu,loc

(
Rd

)
. Then, for all ω ∈ Ω′,

there exists a signed Radon measure µ(ω, ·) such that for all ϕ ∈ C∞
c

(
Rd,R

)
,

∫

Rd
f(ω, x)

∂ϕ

∂u
(x)dx = −

∫

Rd
ϕ(x)µ(ω, dx).

The only difficulty is to ensure that ω Ô→ µ(ω, ·) is a well-defined signed random
measure, that is a measurable map. Let (rn) be a sequence converging to 0. Accord-

ing to Corollary 7.2, for all ω ∈ Ω′, µ(ω, ·) is the local weak∗ limit of the sequence
of signed Radon measures

µn(ω, A) =

∫

A

f(ω, x+ rnu)− f(ω, x)

rn
dx, A ∈ B

(
Rd

)
.

Hence by Proposition C.1 in Appendix C, µ is measurable since it is the a.s. limit

of the weakly∗ convergent sequence of random signed Radon measures (µn)n∈N.

The corresponding equivalence for r.f. of locally bounded variation is straight-

forward using the fact that f(ω, ·) ∈ BVloc
(
Rd

)
if and only if BVloc,ei

(
Rd

)
for all

ei in the canonical basis (see Proposition 7.1).
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To conclude let us quickly deal with the case of r.f. of bounded variation.

Suppose that f ∈ L1
(
Rd

)
. As before, if f is a r.f. of bounded variation, then as

a consequence of Definition 7.4 its sample paths are a.s. in BV
(
Rd

)
. Conversely,

if the sample paths are a.s. in BV
(
Rd

)
⊂ BVloc

(
Rd

)
, then the first part of the

proof ensures that f is a r.f. of locally bounded variation. Besides, since the sample

paths are a.s. in BV
(
Rd

)
, |Df |

(
Rd

)
is a.s. finite, and thus f is a r.f. of bounded

variation. The case of r.f. of bounded directional variation is similar.

Remark (Notation). Thanks to Proposition 7.3 we can use the notation f ∈
BV

(
Rd

)
a.s., f ∈ BVu,loc

(
Rd

)
a.s., etc. to express that a r.f. f has bounded

variation, locally bounded directional variation, etc.

7.3.3 Characterization in Terms of Difference Quotient

Proposition 7.4 (Characterization of r.f. of locally bounded directional variation).

Let f ∈ L1loc

(
Rd

)
a.s. and u ∈ Sd−1. Then f ∈ BVu,loc

(
Rd

)
a.s. if and only if for

all U ⊂⊂ Rd,

lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx < +∞ a.s.

Proof. Note that this proposition is an adaptation of Corollary 7.1 for random fields.

If f ∈ BVu,loc

(
Rd

)
a.s. then by Corollary 7.1, for all U ⊂⊂ Rd,

lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx < +∞ a.s..

Conversely, suppose that for all U ⊂⊂ Rd,

lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx < +∞ a.s..

For all n ≥ 1 note Bn the ball of center 0 and of radius n, define

An =

{
ω ∈ Ω : f(ω, ·) ∈ L1loc

(
Rd

)
and lim inf

r→0

∫

Bn

|f(ω, x+ ru)− f(ω, x)|
|r| dx < +∞

}
.

and denote by A the intersection A =
⋂

n≥1An. Clearly An+1 ⊂ An and by hy-

pothesis P(An) = 1, and consequently P(A) = 1. Remark that for all ω ∈ A,

f(ω, ·) ∈ L1loc

(
Rd

)
and for all open set U ⊂⊂ Rd,

lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx < +∞,

since U ⊂ Bn for some n ∈ N. Hence for all ω ∈ A Corollary 7.1 applies to f(ω, ·)
and thus for all ω ∈ A, f(ω, ·) ∈ BVu,loc

(
Rd

)
.

In the case where the r.f. has bounded directional variation, one obtains an

integral expression of the mean total directional variation ΘVu

(
f,Rd

)
.
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Proposition 7.5 (Characterization of r.f. of bounded directional variation). Let
f ∈ L1

(
Rd

)
a.s. and u ∈ Sd−1. Then the three following assertions are equivalent:

(i) f ∈ BVu

(
Rd

)
a.s.

(ii) lim inf
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx < +∞ a.s.

(iii) lim
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx exists and is finite a.s.

If any of these conditions holds, then

ΘVu

(
f,Rd

)
= lim

r→0

∫

Rd

E (|f(x+ ru)− f(x)|)
|r| dx. (7.5)

Proof. This proposition is a transcription of Corollary 7.4 to the case of r.f. of

bounded variation. The equivalence is straightforward thanks to Proposition 7.3.

By Corollary 7.4

lim
r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx = |Duf |

(
Rd

)
a.s.,

and ∫

Rd

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
Rd

)
a.s..

Hence if the r.v. |Duf |
(
Rd

)
is integrable, Formula (7.5) is obtained by dominated

convergence and Fubini’s theorem. If E
(
|Duf |

(
Rd

))
= ΘVu

(
f,Rd

)
= +∞, then

Formula (7.5) is still valid since by Fatou’s lemma

+∞ = ΘVu

(
f,Rd

)
= E

(
lim inf

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx

)

≤ lim inf
r→0

E

(∫

Rd

|f(x+ ru)− f(x)|
|r| dx

)
.

Remark (Degenerate case). Formula (7.5) can be extended to the degenerate case

where the limit on the right-hand side is infinite. However let us precise that this

degenerate case is more subtle than in the deterministic case (see Corollary 7.4).

Indeed there are two different cases for which the limit of Formula (7.5) is infinite:

either the r.f. f is not of bounded variation or f is of bounded variation but its

total variation |Duf |
(
Rd

)
has infinite expectation. In both cases, it is coherent to

say that the mean total variation of the process is infinite. This convention will be

used in Chapter 8 where the mean perimeter of random sets will be computed (see

Section 8.4).
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7.3.4 A Sufficient Condition for Locally Bounded Directional Vari-

ation

As mentioned in the introduction, we are aware of only one result dealing with

the variation of random fields defined over Rd for d ≥ 2. This result, which is

reproduced below, is due to Ibragimov [80] and it gives a sufficient condition for a

r.f. to be of bounded variation. We will later demonstrate in Section 7.4 that this

sufficient condition is also necessary for stationary r.f. (see Theorem 7.4).

Theorem 7.2 (Ibragimov’s theorem [80]). Let U ⊂⊂ Rd and let f : Ω × U → R

be a measurable and separable random field. Suppose that there exists x0 ∈ U such
that E (f(x0)) < +∞ and that there exists K > 0 such that for any x, y ∈ U

E (|f(x)− f(y)|) ≤ K|x − y|.

Then the realizations of f are a.s. in BV (U), and there is a constant C > 0 such
that for all A ∈ B(U)

ΘV (f, A) ≤ CLd(A).

In the remaining of this section we will establish results similar to Ibragimov’s

theorem for both r.f. of bounded variation and r.f. of bounded directional variation.

However we restrict ourself to random fields defined on the whole space Rd. This

is motivated by three reasons. First, this hypothesis yields to a simple proof which

does not involve extensions of random fields, contrary to the proof of Ibragimov’s

theorem [80]. Second, in this framework we are able to give an optimal upper bound

of the mean directional variation of any open subset of Rd. Third, in the following

we will be mainly interested in the study of stationary random fields of bounded

variation which are consistently defined over the whole space Rd.

Proposition 7.6 (A sufficient condition for locally bounded directional variation).

Let f ∈ L1loc

(
Rd

)
a.s., and let u ∈ Sd−1. Suppose that there exists a constant

K > 0 such that for all x ∈ Rd and for all r ∈ R,

E (|f(x+ ru)− f(x)|) ≤ K|r|. (7.6)

Then f is a r.f. of locally bounded directional variation in the direction u and for
all U ⊂⊂ Rd,

ΘVu(f, U) ≤ KLd(U).

Proof. Let U ⊂⊂ Rd. By Fatou’s lemma and Fubini’s theorem

E

(
lim inf

r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx

)
≤ lim inf

r→0
E

(∫

U

|f(x+ ru)− f(x)|
|r| dx

)

≤ KLd(U) < +∞.

In particular, lim inf
∫

U
|f(x+ru)−f(x)|

|r| dx < +∞ a.s. This is valid for all U ⊂⊂ Rd,

and thus by Proposition 7.4, f ∈ BVu,loc

(
Rd

)
a.s. To finish, let us establish the
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upper bound on ΘVu(f, U). By Corollary 7.3,

|Duf |(U) ≤ lim inf
r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx,

and thus by Fatou’s lemma

ΘVu(f, U) ≤ lim inf
r→0

E

(∫

U

|f(x+ ru)− f(x)|
|r| dx

)
≤ KLd(U).

In the following, Property (7.6) will be referred to as Lipschitzness in mean in
the direction u. Let us precise that the upper bound given in Proposition 7.6 is

optimal. Indeed, as it will be shown later (see Theorem 7.4), any stationary r.f. f

of bounded directional variation satisfies (7.6) for some constant K, and in the case

where K is minimal ΘVu(f, U) = KLd(U).

The previous proposition can be adapted to deal with r.f. of bounded variation.

It gives a new version of Ibragimov’s theorem, with an optimal upper bound on

the variation intensity. However, as previously noted, the result is restricted to r.f.

defined over the whole space Rd.

Proposition 7.7 (A sufficient condition for locally bounded variation). Let f ∈
L1loc

(
Rd

)
a.s. Suppose that there exists a constant K > 0 such that for all x and

h ∈ Rd,

E (|f(x+ h)− f(x)|) ≤ K|h|.

Then f is a r.f. of locally bounded variation, and for all U ⊂⊂ Rd,

ΘV (f, U) ≤ dωd

2ωd−1
KLd(U).

Proof. By Proposition 7.6, f has a.s. bounded directional variation in the d direc-

tions of the canonical basis, and thus f ∈ BV
(
Rd

)
a.s. (see Proposition 7.1 or [6,

Section 3.11]). In addition, Proposition 7.6 shows that for all U ⊂⊂ Rd and for all

u ∈ Sd−1, ΘVu(f, U) ≤ KLd(U). Hence, by Proposition 7.2, for all U ⊂⊂ Rd,

ΘV (f, U) =
1

2ωd−1

∫

Sd−1
ΘVu(f, U)Hd−1(du) ≤ dωd

2ωd−1
KLd(U),

where we used that Hd−1
(
Sd−1

)
= dωd.

Similarly to the case of Proposition 7.6, the upper bound of the variation inten-

sity of Proposition 7.7 is shown to be optimal for stationary and isotropic r.f. of

locally bounded variation.
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7.4 Stationary Random Fields of Bounded Variation

7.4.1 Stationary Measurable Random Fields

A r.f. is said to be stationary if its finite dimensional distributions are invariant by

translation, that is for all x1, . . . , xn and y ∈ Rd

(f(y + x1), . . . , f(y + xn))
D
= (f(x1), . . . , f(xn)).

The following proposition shows that the sample paths of a stationary random

field having finite expectation are a.s. locally integrable.

Proposition 7.8 (Integrability of stationary measurable random fields). Let f be
a stationary and measurable random field. If E(|f(x)|) < +∞, then f ∈ L1loc

(
Rd

)

a.s.

Proof. Let Bn = B(0, n). By Fubini’s theorem,

E

(∫

Bn

|f(x)|dx

)
=

∫

Bn

E (|f(x)|) dx = E(|f(0)|)Ld(Bn) < +∞.

Thus f is a.s. integrable over Bn. Since R
d =

⋃
n Bn, f is a.s. integrable over every

bounded open set U ⊂ Rd, that is to say f ∈ L1loc

(
Rd

)
a.s.

7.4.2 Definition and Computation of the Variation Intensities of

Stationary Random Fields

The next theorem defines and gives an expression of the directional variation inten-

sity θVu(f) of a stationary r.f. f . This is the main result of this chapter.

Theorem 7.3 (Definition and computation of the directional variation intensity of

a stationary r.f.). Let f : Ω×Rd → R be a stationary r.f. with finite expectation and
let u ∈ Sd−1. Then f ∈ BVu,loc

(
Rd

)
a.s. with a locally finite directional variation

intensity measure ΘVu (f, ·) if and only if the limit

lim
r→0

E(|f(ru)− f(0)|)
|r|

exists and is finite. In this case the directional variation intensity measure ΘVu (f, ·)
is proportional to the Lebesgue measure, and the constant of proportionality θVu(f)

is given by

θVu(f) = lim
r→0

E(|f(ru)− f(0)|)
|r| .

The constant θVu(f) is called the directional variation intensity of f in the
direction u. It is the mean amount of directional variation of f per unit volume.

Instead of proving directly Theorem 7.3, we enunciate and prove the following

proposition which is slightly more complete.
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Proposition 7.9. Let f : Ω × Rd → R be a stationary r.f. with finite expectation
and let u ∈ Sd−1. The following assertions are equivalent:

(i) f ∈ BVu,loc

(
Rd

)
a.s. and its directional variation intensity measure ΘVu (f, ·)

is locally finite.

(ii) f ∈ BVu,loc

(
Rd

)
a.s. and there exists a constant θVu(f) ≥ 0 such

that ΘVu (f, ·) = θVu(f)Ld(·), that is for all A ∈ B
(
Rd

)
, ΘVu (f, A) =

θVu(f)Ld(A).

(iii) lim inf
r→0

E(|f(ru)− f(0)|)
|r| < +∞.

(iv) lim
r→0

E(|f(ru)− f(0)|)
|r| exists and is finite.

If any of the above assertions holds, then

θVu(f) = lim inf
r→0

E(|f(ru)− f(0)|)
|r| = lim

r→0
E(|f(ru)− f(0)|)

|r| .

Proof. We will show the following chain of implications:

(i) ⇒ (iv) ⇒ (iii) ⇒ (i) ⇔ (ii).

First remark that (iv) ⇒ (iii) and (i) ⇐ (ii) are trivial. Now let us prove that

(iii) ⇒ (i). By stationarity of f , for all U ⊂⊂ Rd,

E

(∫

U

|f(x+ ru)− f(x)|
|r| dx

)
=

E(|f(ru)− f(0)|)
|r| Ld(U).

Hence, by Fatou’s lemma,

E

(
lim inf

r→0

∫

U

|f(x+ ru)− f(x)|
|r| dx

)
≤ lim inf

r→0
E(|f(ru)− f(0)|)

|r| Ld(U) < +∞.

In particular, for all U ⊂⊂ Rd lim inf
∫

U
|f(x+ru)−f(x)|

|r| dx is a.s. finite, and by

Proposition 7.5 f ∈ BVu,loc

(
Rd

)
a.s. In addition, by Corollary 7.3 for all U ⊂⊂ Rd

ΘVu (f, U) ≤ lim inf
r→0

E(|f(ru)− f(0)|)
|r| Ld(U) < +∞,

which shows that ΘVu (f, ·) is locally finite.
To conclude the proof it remains to show that (i) ⇒ (iv) and (i) ⇒ (ii). Hence

let us suppose that f ∈ BVu,loc

(
Rd

)
a.s. and that ΘVu (f, ·) is locally finite. Let

B = B(y, ρ) be any open ball of Rd. By Corollary 7.3,

lim sup
r→0

∫

B

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
B

)
a.s..
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Besides, still by Corollary 7.3, for |r| ≤ R the integrals
∫

B
|f(x+ru)−f(x)|

|r| dx are

dominated by |Duf |
(
B ⊕ B(0, R

)
, which by hypothesis is a L1-r.v. Hence, one can

apply the reverse Fatou lemma, and using the stationarity of f ,

lim sup
r→0

E (|f(ru)− f(0)|)
|r| Ld(B) = lim sup

r→0
E

(∫

B

|f(x+ ru)− f(x)|
|r| dx

)

≤ E

(
lim sup

r→0

∫

B

|f(x+ ru)− f(x)|
|r| dx

)

≤ E
(
|Duf |

(
B

))

= ΘVu

(
f, B

)
< +∞.

lim sup E(|f(ru)−f(0)|)
|r| is thus finite, and consequently lim inf E(|f(ru)−f(0)|)

|r| is also

finite. But then, as shown in the proof of (iii) ⇒ (i), for all ε > 0,

ΘVu (f, B(y, ρ+ ε)) ≤ lim inf
r→0

E(|f(ru)− f(0)|)
|r| Ld(B(y, ρ+ ε)).

We deduce that for all ε > 0,

lim sup
r→0

E (|f(ru)− f(0)|)
|r| ≤ lim inf

r→0
E(|f(ru)− f(0)|)

|r|

(
1 +

ε

|r|

)d

.

Letting ε tends to 0 shows that the lim sup is less than the lim inf, hence the limit

exists and Assertion (iv) is proved. Let us note C = lim E(|f(ru)−f(0)|)
|r| . We have

shown that for all 0 < ε < ρ,

CLd(B(y, ρ − ε)) ≤ ΘVu (f, B(y, ρ)) ≤ CLd(B(y, ρ+ ε)).

Letting ε tends to 0 one obtains

ΘVu (f, B(y, ρ)) = CLd(B(y, ρ)).

This identity extends to all Borel sets, which proves both Assertion (ii) and the

formula

θVu(f) = lim inf
r→0

E(|f(ru)− f(0)|)
|r| = lim

r→0
E(|f(ru)− f(0)|)

|r| .

The proof is complete.

Remark (Degenerate Case). As for Proposition 7.5, one extends the definition of

θVu(f) to the degenerate case where lim
E(|f(ru)−f(0)|)

|r| = +∞.

Remark (Random fields with stationary increments). Let us observe that the key

point of the proof of Proposition 7.9 is not the stationarity of the r.f. f but rather

the stationarity of the r.f. x Ô→ f(x+ ru)− f(x) for all r ∈ R. Hence Theorem 7.3

straightforwardly extends to r.f. with stationary increments having integrable sam-

ple paths.
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Integrating over all the directions, one obtains the equivalent of Theorem 7.3

for non directional variation.

Corollary 7.5 (Definition and computation of the variation intensity of a stationary

r.f.). Let f : Ω × Rd → R be a stationary r.f. with finite expectation. Then f ∈
BVloc

(
Rd

)
a.s. with a locally finite variation intensity measure ΘV (f, ·) if and only

if for all u ∈ Sd−1 the limit

lim
r→0

E(|f(ru)− f(0)|)
|r|

exists and is finite. In this case the variation intensity measure ΘV (f, ·) is propor-
tional to the Lebesgue measure, and the constant of proportionality θV (f) is given
by

θV (f) =
1

2ωd−1

∫

Sd−1
θVu(f)Hd−1(du) (7.7)

=
1

2ωd−1

∫

Sd−1
lim
r→0

E (|f(ru)− f(0)|)
|r| Hd−1(du)

= lim
r→0

1

2ωd−1

∫

Sd−1

E (|f(ru)− f(0)|)
|r| Hd−1(du).

The constant θV (f) is called the variation intensity of f .

Proof. The results are straightforward consequences of Theorem 7.3 and the integral

geometric formula of Proposition 7.2 which becomes Formula (7.7) in this context.

The fact that the limit and the integral commute follows from the bounded conver-

gence theorem using the bound

E (|f(ru)− f(0)|)
|r| ≤ θVu(f)

Ld (B(0, 1 + r))

Ld(B(0, 1))
≤ θVu(f)(1 +R)d, r ∈ (0, R],

given by Theorem 7.3 and Corollary 7.3.

Let us remark that the directional variation intensities θVu(f), u ∈ Sd−1, as well
as the variation intensity θV (f) only depend on the two-dimensional distributions

of the stationary r.f. f . Note that these second order distributions do not depend

on the version of the r.f. f . More generally, if a (non necessarily measurable) r.f.

ξx satisfies

lim
r→0

E (|ξru − ξ0|)
|r| < +∞

for all u ∈ Sd−1, then it is continuous in probability and thus it admits a measurable
version (see [47, p. 61] or [63, p. 171]). By Corollary 7.5, this measurable version is

necessarily a r.f. of bounded variation. This shows that the measurability assump-

tion for the random fields f does not exclude any case of interest when dealing with

stationary r.f.



7.4. Stationary Random Fields of Bounded Variation 151

7.4.3 Characterization via Directional Lipschitzness in Mean

In this last section, it is shown that the directional Lipschitzness in mean introduced

in Section 7.3.4 is a necessary and sufficient condition for stationary r.f. having finite

directional variation intensity.

Lemma 7.1 (Directional Lipschitzness in mean of stationary r.f.). Let u ∈ Sd−1 and
let f be a stationary r.f. having finite expectation and being a.s. in BVu,loc

(
Rd

)
.

Then for all x ∈ Rd and all r ∈ R,

E (|f(x+ ru)− f(x)|) ≤ θVu(f)|r|.

Proof. First recall that by stationarity for all x ∈ Rd and r ∈ R,

E (|f(x+ ru)− f(x)|) = E (|f(ru)− f(0)|). Let ρ > 0 and r Ó= 0. By Corollary 7.3,
∫

B(0,ρ)

|f(x+ ru)− f(x)|
|r| dx ≤ |Duf |

(
B(0, ρ+ |r|)

)
a.s..

Hence, by Fubini’s theorem

E (|f(ru)− f(0)|)
|r| ωdρd ≤ θVu(f)ωd(ρ+ |r|)d,

that is

E (|f(ru)− f(0)|) ≤ θVu(f)|r|
(
1 +

|r|
ρ

)d

.

Letting ρ → +∞ we obtain the result.

Combining the results of Proposition 7.6 and Lemma 7.1 we obtain that a sta-

tionary random field has finite directional variation intensity if and only if it is

directionally Lipschitz in mean.

Theorem 7.4 (Characterization of stationary r.f. with locally bounded directional

variation via directional Lipschitzness in mean). Let f : Rd → R be a stationary
r.f. with finite expectation and let u ∈ Sd−1. The three following assertions are
equivalent:

(i) f has locally bounded variation in the direction u and its directional variation
intensity θVu(f) is finite.

(ii) There exists a constant K > 0 such that

E (|f(x+ ru)− f(x)|) ≤ K|r|, x ∈ Rd, r ∈ R.

(iii) There exists a constant K > 0 and a real R > 0 such that

E (|f(ru)− f(0)|) ≤ K|r|, r ∈ [0, R).

Besides the directional variation intensity θVu(f) is the least constant K such
that (ii) and (iii) hold.
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Proof. (i) ⇒ (ii) has already been shown with Lemma 7.1: if f has locally bounded

variation in the direction u with a finite directional variation intensity θVu(f)

then (ii) holds with K = θVu(f). Clearly (ii) implies (iii). To finish, if (iii) holds,

then

lim inf
r→0

E(|f(ru)− f(0)|)
|r| ≤ K < +∞,

and by Proposition 7.9 f has locally bounded variation and θVu(f) ≤ K.

As already mentioned in Section 7.3.4, Theorem 7.4 shows that the upper bound

of Proposition 7.6 (resp. Proposition 7.7) becomes an equality for any stationary

r.f. of bounded directional variation having a finite directional variation intensity

(resp. any stationary and isotropic r.f. of bounded variation having a finite variation

intensity).

7.5 Conclusion

In this chapter, general definitions and results related to random fields of (locally)

bounded (directional) variation were presented. Our main result is Theorem 7.3

which shows that the directional variation intensity measure of any stationary r.f.

f is equal to a constant, called the directional variation intensity θVu(f), times the

Lebesgue measure. This constant θVu(f) is the mean directional variation of f per

unit volume, and it is given by

θVu(f) = lim
r→0

E(|f(ru)− f(0)|)
|r| .

In the next chapter, we will show that when restricting to the case of random

sets, the results established in this chapter yield to rigorous generalizations of well-

known results regarding the perimeter of random sets (see Chapter 8). Besides,

it will be shown in Chapter 9 that the practical expression of θVu(f) enables to

compute the directional and non directional variation intensities of various classic

r.f. models.

Several natural complements could enhance our results. First, as remarked

earlier, the developed results for stationary r.f. are valid for r.f. with stationary

increments. Second, one should be able to derive an expression of θVu(f) from just

one realization of f in the case where the stationary r.f. f is ergodic (in some sense

to be made precise). Third, following [19, 40], one might use regularized difference

quotients for the expression of θVu(f).

As a starting point of our study of r.f. of bounded variation, the emphasis was

on the mean variation of r.f. It might also be of interest to study the stochastic

counterparts of the well-known geometric structures carried by any functions of

bounded variation [6]. For example one might study the random set induced by the

jumps of a r.f. of bounded variation.
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Related to random fields of bounded variations are random fields with sample

paths in Sobolev spaces. The recent paper [135] gives sufficient conditions for a

second order r.f. to be in a Sobolev space W s,2
loc

(
Rd

)
, s > 0. Using the same

strategy as in this chapter, one might be able to establish necessary and/or sufficient

conditions for stationary r.f. whose sample paths are inW 1,p
loc

(
Rd

)
, p > 1, and which

have a finite mean Sobolev semi-norm.
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Abstract: This chapter focuses on the mean directional and non di-

rectional variations of random sets. Applying the results of Chapter 7,

one proves several formulas which equate the directional variations of

random sets to the directional derivatives at the origin of functions re-

lated to the second-order property of random sets, namely the mean

covariogram for random sets with finite mean Lebesgue measure and

the variogram for stationary random sets. These formulas show that

classical results on the mean perimeter of random closed sets due to

Matheron [107, 110] extends rigorously to any measurable random set,

provided that the perimeter is understood as the variational perimeter.

In a last part, one also establishes a coarea formula for variation inten-

sities: the mean total variation of a r.f. is equal to the integral of the

mean perimeter of its excursion sets.

Most of the results of this chapter can be found in the accepted pa-

per [58]. However the proofs presented in this paper do not rely on the

results of Chapter 7 (which were not written at that time).

8.1 Introduction

When restricting to random sets, the general results on the mean variation of ran-

dom fields established in Chapter 7 yield to identities for the mean directional vari-
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ation and mean perimeter. The object of this chapter is to demonstrate that these

identities provide rigorous generalization of well-known formulas of mathematical

morphology due to Matheron [107, 110, 100]. The strength of the mean (varia-

tional) perimeter is that it provides formulas which are valid for any random set.

In comparison, all the generalizations of Matheron’s results for which the Steiner

formula is involved rely on geometrical or topological hypotheses on the considered

random sets.

The object of study of the first section of this chapter is the covariogram1 gA of

a deterministic measurable set A ⊂ Rd, that is the function defined for all y ∈ Rd

by gA(y) = Ld (A ∩ (y +A)).

Given the covariogram gA of an unknown set A, a general inverse problem is

to determine the geometric information on A that gA contains. As an important

example, Averkov and Bianchi have recently established Matheron’s conjecture:

up to a translation and a reflexion, convex bodies of R2 are fully determined

by their covariogram (see [10] and the references within). Contrary to the above

mentioned results, we focus on geometric information which is shown to be contained

in the covariogram gA of any measurable set A: the directional variations and the

perimeter of A.

As our first main result will demonstrate, the right notion of perimeter which

can be computed from the covariogram is the one from the theory of functions of

bounded variation [6]. Let us recall that the perimeter Per(A) of a measurable set

A is defined as

Per(A) =





|D A|
(
Rd

)
if  A ∈ BV

(
Rd

)
,

+∞ otherwise.

Similarly the directional variation Vu(A) in the direction u ∈ Sd−1 of A is

Vu(A) =





|Du A|
(
Rd

)
if  A ∈ BVu

(
Rd

)
,

+∞ otherwise.

Let us also recall that if A is a compact set with Lipschitz boundary (e.g. A is a

convex body), then Per(A) = Hd−1 (∂A), whereas in the general case we only have

Per(A) ≤ Hd−1 (∂A) [6, Proposition 3.62]. However there is an alternative notion of

boundary, the essential boundary ∂eA, which is in accordance with the variational

perimeter. Let us refer to [6, 54] for the definition of the essential boundary ∂eA and

recall that ∂eA ⊂ ∂A, and Per(A) = Hd−1 (∂eA), that is the variational perimeter

is the d − 1-Hausdorff measure of the essential boundary. This fundamental result

shows that the variational perimeter is in accordance with the common notion of

“perimeter”.

We prove that for every measurable set A of finite Lebesgue measure,

lim
r→0

gA(0)− gA(ru)

|r| =
1

2
Vu (A) , u ∈ Sd−1. (8.1)

1Note that some authors prefer the terms set covariance or covariance function [25, 26, 129].
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In addition, noting (gu
A)

′ (0) := lim
r→0+

gA(ru)− gA(0)

r
the directional derivatives at

the origin of the covariogram, it is shown that

Per(A) = − 1

ωd−1

∫

Sd−1
(gu

A)
′ (0)Hd−1(du). (8.2)

Hence, for any measurable set A, the perimeter Per(A) can be computed from the

directional derivatives at the origin of the covariogram gA. As a by-product, it is

also shown that a measurable set A has finite perimeter if and only if its covariogram

gA is Lipschitz, and in this case the Lipschitz constant is given by

Lip (gA) =
1

2
sup

u∈Sd−1
Vu(A).

Formula (8.1) has already been proved for certain classes of sets. It was well-

known by the mathematical morphology school [106, 72, 110, 111] that the direc-

tional derivative at the origin of the covariogram gA of a convex body is equal to

the opposite of the length of the orthogonal projection of the set A. The convexity

assumption was relaxed in [129] where Rataj extends the result to compact sets in

UP R satisfying a condition of full-dimensionality, UP R being the family of locally

finite unions of sets with positive reach such that all their finite intersections also

have positive reach2. In this more general framework, the length of the orthogonal

projection is replaced by the total projection TPu(A). One can easily verify that

Vu(A) = 2TPu(A) by using a recent result due to Ambrosio, Colesanti and Villa [5]:

a full-dimensional compact set with positive reach A satisfies Per(A) = 2Φd−1(A) [5,
Theorem 9], where Φd−1(A) denotes the (d − 1)-total curvature of A [56]. Since

Formula (8.1) is valid for any measurable set A such that Ld(A) < +∞, we claim

that the directional variation is the relevant general concept when it comes to the

derivative at the origin of the covariogram.

Formula (8.2) has been widely stated in the mathematical morphology litera-

ture [72, 110, 137, 100]. We rigorously show that it is valid for any measurable set

A having finite Lebesgue measure, provided the perimeter Per(A) is understood as

the variation of A (and not as Hd−1(∂A)).

The Lipschitzness of the covariogram seems to have received less attention in

the literature. It is stated in [111] that the covariogram of a compact convex set

is Lipschitz. The given upper bound of the Lipschitz constant is twice the actual

Lipschitz constant.

The second section of this chapter (Section 8.4) transposes the above mentioned

results to the case of random sets of finite mean Lebesgue measure. In this context,

one defines the mean covariogram of a random set X as the function γX(y) =

E
(
Ld (X ∩ y +X)

)
. The mean covariogram of a random set X is of particular

importance in stochastic geometry since it is related to the probability that two

2We refer to [56] and [130] for definitions and results regarding sets with positive reach and

UP R-sets respectively
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given points belong to X according to the following relation

γX(y) =

∫

Rd
P (x ∈ X and x+ y ∈ X) dx.

As a consequence the mean covariogram is systematically involved in second order

statistics of the classical germ-grain models presented in Chapter 5. This is also

the case for the transparent dead leaves model introduced in Chapter 6.

All the established properties of covariograms of deterministic sets extend to the

case of mean covariograms of random sets. In particular, the stochastic equivalent

of (8.1) and (8.2) show that the expectations of the variations of a random set X

are proportional to the directional derivatives of its mean covariogram γX .

The following part of this chapter (Section 8.5) deals with the variation of sta-

tionary random sets. To be coherent with previous works [136], the directional vari-

ation intensity θVu(X) of a random set X is also called specific directional variation,
and similarly for the variation intensity θV (X) which is called specific variation. For
a stationary random set X, the second-order function which is related to its varia-

tion is the variogram νX , that is the function defined by νX(y) = P (y ∈ X, 0 /∈ X).

Our second main result shows that for any stationary random set X,

θVu(X) = 2 lim
r→0

νX(ru)

|r| .

Again, noting (νu
X)

′ (0) = lim νX(ru)
|r| and integrating over all directions u, one ob-

tains an expression of the specific variation θV (X) of X

θV (X) =
1

ωd−1

∫

Sd−1
(νu

X)
′ (0)Hd−1(du).

Like Formula (8.2), the above formula has been stated in the early works of Math-

eron [107, p. 30] [100, p. 26], but it was given without much detail on its validity.

It should be emphasized that the specific variation is well-defined for any stationary

random set, and that it can be easily computed as soon as one knows the proba-

bilities P (ru ∈ X, 0 /∈ X). As an illustration, the specific directional variations and

the specific variation of homogeneous Boolean models will be computed in the next

chapter (see Section 9.4). Because it is well-defined for any stationary RACS and

easily computable, we claim that the specific variation is an interesting alterna-

tive to the usual specific surface area [136] when one deals with non Ld-negligible

random sets.

In the last part of this chapter, mean coarea formulas for mean total variation

are established. In particular it is shown that the variation intensity of a stationary

r.f. f is equal to the integral over t of the specific variation of its excursion sets

{f > t} := {y ∈ Rd, f(y) > t}, that is

θVu (f) =

∫ +∞

−∞
θVu({f > t})dt.

The plan of this chapter is as follows. Section 8.2 deals with covariograms of

deterministic measurable sets and establishes the identities between the directional
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derivative at the origin of covariogram and the directional variation. Then, in

Section 8.3 our definition of (jointly) measurable sets and its link with the usual

definition of random closed sets are discussed. Section 8.4 generalizes the results of

Section 8.2 to the case of random sets with finite mean Lebesgue measure. Formulas

for the specific directional and non directional variation of stationary random sets

are established in Section 8.5, and its differences with the usual specific area is

discussed. Finally, the mean coarea formulas for the total variation of random

fields and for the variation intensity of stationary r.f. are proved in Section 8.6.

8.2 Covariogram of Measurable Sets and Variation

8.2.1 Covariogram of a Measurable Set

Definition 8.1 (Covariogram of a measurable set). Let A ⊂ Rd be a Ld-measurable
set of finite Lebesgue measure. The covariogram of A is the function gA : Rd →
[0,+∞[ defined for all y ∈ Rd by

gA(y) = Ld (A ∩ (y +A)) =

∫

Rd
 A(x) A(x+ y)dx.

As initially noted by Matheron [106], the covariogram of A can be expressed as

the convolution of the indicator functions of A and its symmetric Ǎ = {−x | x ∈ A}:

gA =  A ∗  Ǎ.

As illustrated in the following proposition, this point of view is useful to establish

some analytic properties of gA.

Proposition 8.1. Let A ⊂ Rd be a Ld-measurable set of finite Lebesgue measure
and gA be its covariogram. Then

1. For all y ∈ Rd, 0 ≤ gA(y) ≤ gA(0) = Ld(A).

2. gA is even: for all y ∈ Rd, gA(−y) = gA(y).

3.
∫

Rd
gA(y)dy = Ld(A)2.

4. gA is uniformly continuous over Rd and lim
|y|→+∞

gA(y) = 0.

Proof. The three first points are elementary proved. The fourth property is obtained
in applying the Lp-Lp′

-convolution theorem to gA =  A ∗  Ǎ (see [1, Chapter 2] for

example).

It is well-known that the covariogram is a positive-definite function [106, p.

22], [100, p. 23]. The next proposition improves slightly this result. In particular,

it shows that for all x Ó= 0, gA(x) < gA(0).
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Proposition 8.2 (Strict positive-definiteness of the covariogram). Let A be a Ld-
measurable set such that 0 < Ld(A) < +∞. Then its covariogram gA is a strictly
positive-definite function, that is, for all p ∈ N∗, for all p-tuple (y1, . . . , yp) of
distinct vectors of Rd, and for all (w1, . . . , wp) ∈ Rp \ {0} we have

p∑

j,k=1

wjwkgA(yk − yj) > 0.

Proof. By Lemma 8.1 below, the function x Ô→
p∑

j=1

wj A(x + yj) is not a.e. equal

to zero. Hence

p∑

j,k=1

wjwkgA(yk − yj) =
p∑

j,k=1

wjwk

∫

Rd
 A(x) A(x+ yk − yj)dx

=
p∑

j,k=1

wjwk

∫

Rd
 A(x+ yj) A(x+ yk)dx

=

∫

Rd




p∑

j=1

wj A(x+ yj)



2

dx > 0.

Lemma 8.1 (The translations of an integrable function are linearly independent).

Let f be a non null function of L1
(
Rd

)
and let y1, . . . , yp be p distinct vectors of

Rd. Then the functions x Ô→ f(x + yj), j = 1, . . . , p, are linearly independent in

L1
(
Rd

)
.

Proof. Let (w1, . . . , wp) ∈ Rp be such that
p∑

j=1

wjf(x + yj) = 0 for a.e. x ∈ Rd.

Applying the Fourier transform we have



p∑

j=1

wjei〈ξ,yj〉


 f̂(ξ) = 0 for all ξ ∈ Rd.

Since f is non null and integrable, f̂ is non null and continuous. Hence there exists

ξ0 ∈ Rd and r > 0 such that for all ξ ∈ B (ξ0, r), f̂(ξ) Ó= 0, and thus ∀ξ ∈ B (ξ0, r),

S(ξ) :=
p∑

j=1

wjei〈ξ,yj〉 = 0. One easily shows that the sum S(ξ) is null for all ξ ∈ Rd

in considering the one-dimensional restriction of S on the line containing ξ and ξ0:

by the identity theorem, this one-dimensional function is null since it is analytic

and null over an open interval. Applying the inverse generalized Fourier transform

to S = 0 shows that
p∑

j=1

wjδyj
= 0. This implies that w1 = · · · = wp = 0, since by

hypothesis the vectors yj are distinct.
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Proposition 8.3. Let A ⊂ Rd be a Ld-measurable set of finite Lebesgue measure
and let gA be its covariogram. Then for all y, z ∈ Rd

|gA(y)− gA(z)| ≤ gA(0)− gA(y − z).

Proof. First let us show that for all measurable sets A1, A2, and A3

Ld(A1 ∩ A2)− Ld(A1 ∩ A3) ≤ Ld(A2 \ A3) = Ld(A2)− Ld(A3 ∩ A2). (8.3)

We have

Ld(A1 ∩ A2)− Ld(A1 ∩ A3) ≤ Ld(A1 ∩ A2)− Ld(A1 ∩ A2 ∩ A3)

≤ Ld((A1 ∩ A2) \ (A1 ∩ A2 ∩ A3)).

Now using that (A1 ∩ A2) \ (A1 ∩ A2 ∩ A3) is included in the set A2 \ A3, (8.3) is

proved. Applying (8.3) to the sets A1 = A, A2 = y +A and A3 = z +A we get

gA(y)− gA(z) = Ld (A ∩ (y +A))− Ld (A ∩ (z +A))

≤ Ld(y +A)− Ld ((y +A) ∩ (z +A))

≤ Ld(A)− Ld (A ∩ ((z − y) +A))

≤ gA(0)− gA(z − y).

Remark. The weaker inequality

|gA(y)− gA(z)| ≤ 2(gA(0)− gA(y − z))

was established by Matheron [111, p. 1].

Observe that the inequality of Proposition 8.3 shows that the Lipschitzness of

the covariogram only depends on the behavior of the function at 0.

8.2.2 Directional Variation, Perimeter and Covariogram of Mea-

surable Sets

Our main results relating the directional derivatives at the origin of the covariogram

and the directional variation are established in this section (see Theorem 8.1 and

Theorem 8.2).

Lemma 8.2 ([111]). Let A be a Ld-measurable set having finite Lebesgue measure
and let gA be its covariogram. Then for all y ∈ Rd

gA(0)− gA(y) =
1

2

∫

Rd
| A(x+ y)−  A(x)| dx.

Proof.
∫

Rd
| A(x+ y)−  A(x)| dx =

∫

Rd
( A(x+ y)−  A(x))

2 dx = 2 (gA(0)− gA(y)) .
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The identity of Lemma 8.2, which is due to Matheron [111], is the key point

to apply the results from the theory of functions of bounded directional variations

enunciated in Section 7.2.2. Especially of interest is Corollary 7.4 which ensures

that for any f ∈ L1
(
Rd

)

|Duf |
(
Rd

)
= lim

r→0

∫

Rd

|f(x+ ru)− f(x)|
|r| dx.

First, one establishes Formula (8.1) and obtains a characterization of sets of

finite directional variation. Recall that the directional variation Vu(A) of a set A is

defined by

Vu(A) =





|Du A|
(
Rd

)
if  A ∈ BVu

(
Rd

)
,

+∞ otherwise.

Theorem 8.1 (Directional variation and covariogram of measurable sets). Let A

be a Ld-measurable set having finite Lebesgue measure, let gA be its covariogram,
and let u ∈ Sd−1. The following assertions are equivalent:

(i) A has finite directional variation Vu(A).

(ii) lim
r→0

gA(0)− gA(ru)

|r| exists and is finite.

(iii) The one-dimensional restriction of the covariogram gu
A : r Ô→ gA(ru) is Lips-

chitz.

In addition,

Lip (gu
A) = lim

r→0
gA(0)− gA(ru)

|r| =
1

2
Vu (A) ,

the second equality being valid both in the finite and infinite case.

Proof. Since from Lemma 8.2,

gA(0)− gA(ru)

|r| =
1

2

∫

Rd

| A(x+ ru)−  A(x)|
|r| dx,

by applying Corollary 7.4 with f =  A one obtains the equivalence of (i) and (ii)

as well as the formula lim
r→0

gA(0)− gA(ru)

|r| =
1

2
Vu (A).

Let us show that (i) implies (iii). By Proposition 8.3, for all r and s ∈ R

|gA(ru)− gA(su)| ≤ gA(0)− gA((r − s)u) =
1

2

∫

Rd
| A(x+ (r − s)u)−  A(x)| dx.

Applying the inequality of Corollary 7.4 with f =  A,

|gA(ru)− gA(su)| ≤ 1

2
|r − s|

∫

Rd

| A(x+ (r − s)u)−  A(x)|
|r − s| dx ≤ 1

2
Vu(A)|r − s|.

Hence gu
A is Lipschitz and Lip (gu

A) ≤ 1
2Vu(A).
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Let us now show that (iii) implies (i). For all r Ó= 0 we have

Lip (gu
A) ≥ gA(0)− gA(ru)

|r| =
1

2

∫

Rd

| A(x+ ru)−  A(x)|
|r| dx.

By Corollary 7.4 the right-hand side tends towards 12Vu(A) as r tends to 0. Hence

A has finite directional variation in the direction u and Lip (gu
A) ≥ 1

2Vu(A). All in

all we have shown that (i) and (iii) are equivalent and that Lip (gu
A) =

1
2Vu(A).

Considering all the possible directions u ∈ Sd−1, the results of the previous

theorem yield to Formula (8.2) (reproduced below as Formula (8.4)) and a charac-

terization of sets of finite perimeter.

Theorem 8.2 (Perimeter and covariogram of measurable sets). Let A be a Ld-
measurable set having finite Lebesgue measure, and let gA be its covariogram. The
following assertions are equivalent:

(i) A has finite perimeter Per(A).

(ii) For all u ∈ Sd−1, (gu
A)

′ (0) := lim
r→0+

gA(ru)− gA(0)

r
exists and is finite.

(iii) The covariogram gA is Lipschitz.

In addition the following relations hold:

Lip (gA) =
1

2
sup

u∈Sd−1
Vu(A) ≤ 1

2
Per(A)

and
Per(A) = − 1

ωd−1

∫

Sd−1
(gu

A)
′ (0)Hd−1(du), (8.4)

this last formula being valid both in the finite and infinite case.

Proof. The equivalence of (i) and (ii) as well as the integral geometric formula (8.4)
derive from the integral geometric formula

Per(A) =
1

2ωd−1

∫

Sd−1
Vu(A)Hd−1(du)

(see Proposition 7.1) and the identity

(gu
A)

′ (0) = lim
r→0+

gA(ru)− gA(0)

r
= −1

2
Vu (A) .

Let us now show that (i) implies (iii). Let y, z ∈ Rd. Denote by u the direction of

Sd−1 such that y − z = |y − z|u. By Proposition 8.3 and Theorem 8.1

|gA(y)− gA(z)| ≤ gA(0)− gA(y − z) ≤ 1

2
Vu(A)|y − z| ≤

(
1

2
sup

u∈Sd−1
Vu(A)

)
|y − z|.
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Hence gA is Lipschitz and Lip (gA) ≤ 1
2 supu Vu(A). As for the converse implication

and inequality, for all u ∈ Sd−1,

Lip (gA) ≥ lim
r→0

gA(0)− gA(ru)

|r| =
1

2
Vu(A).

Hence for all u ∈ Sd−1, Vu(A) < +∞ and Lip (gA) ≥ 1
2 supu Vu(A). This concludes

the proof.

Remark (Extension to the covariogram of functions?). One natural question is

whether Formula (8.4) extends to the case of functions. The answer to this question

is negative. Indeed, if one considers a smooth function f ∈ C1c
(
Rd

)
, then its

covariogram gf (y) =
∫
Rd f(x + y)f(x)dx is well-defined and is differentiable in 0.

But since gf is even, its derivative at the origin equals zero, and thus the variation

of f is not equal to the integral of the directional derivatives of the covariogram gf .

8.3 Measurable Random Sets

Definition 8.2 (Random sets). A random set X is a measurable subset of the
measurable space

(
Ω× Rd, A ⊗ B

(
Rd

))
.

The realizations of X are the sets X(ω) :=
{

x ∈ Rd, (ω, x) ∈ X
}
. One identifies

a random set X with the measurable random indicator function  X : (ω, x) Ô→
 X(ω)(x).

The above definition of random sets is the one evoked in [115, p. 41]. It

is different and less standard than the one of random closed sets (RACS) [110,

115, 136]. Jointly measurable random sets are different than RACS since they

are possibly non-closed sets. Let us precise that any RACS X defines a jointly

measurable random set. Let (F , B(F)) denotes the set of random closed sets of Rd

equipped with the hit-or-miss topology, and let X be a RACS, that is a measurable

map X : (Ω, A) → (F , B(F)). Then the map

(
Ω× Rd, A ⊗ B

(
Rd

))
→ (R, B(R))

(ω, x) Ô→  X(ω)(x)

is measurable. Indeed it is the composition of the function

(
Ω× Rd, A ⊗ B

(
Rd

))
→

(
F × Rd, B(F)⊗ B

(
Rd

))

(ω, x) Ô→ (X(ω), x),

which is trivially measurable, and the function

(
F × Rd, B(F)⊗ B

(
Rd

))
→ (R, B(R))

(X, x) Ô→  X(x),
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which is also measurable as proved in [115, p. 59]. To conclude, measurable random

sets are more general than RACS, and any RACS defines a measurable random

set. In particular all the following definitions and results which involve measurable

random sets are also valid for RACS.

Let us also precise that dealing with this general definition for random sets is

of interest. For example, an important class of generally not closed random sets

are the level sets of a measurable random field f , that is the sets {f > u} ={
(ω, x) ∈ Ω× Rd, f(ω, x) > u

}
, u ∈ R.

Definition 8.3 (Random sets of finite perimeter). A random set X is a random

set of finite perimeter if the random indicator function  X : (ω, x) Ô→  X(ω)(x) has
a.s. finite bounded variation (as defined by Definition 7.4).

One defines similarly random sets of finite directional variation, as well as ran-
dom set of locally finite perimeter and random sets of locally finite directional vari-

ation. If X has locally finite variation, then we write ΘV (X, ·) := ΘV ( X , ·) for its
variation intensity measure. Similarly, for random sets of locally finite directional

variation one writes ΘVu(X, ·) := ΘVu( X , ·).

8.4 Mean Covariogram and Variation of Random Sets

In this section we will consider random sets X for which E(Ld(X)) < +∞. We

will introduce the mean covariogram of random sets and generalize the results of

Section 8.2 to the case of random sets.

Definition 8.4 (Mean covariogram of a random closed set). Let X be a random
closed set (RACS) of Rd having finite mean Lebesgue measure, that is E

(
Ld (X)

)
<

+∞. The mean covariogram γX of X is the function γX : Rd → [0, ∞[ defined by

γX(y) = E
(
Ld (X ∩ (y +X))

)
=

∫

Ω×Rd
 X(ω)(x) X(ω)(x+ y)P(dω)dx.

All the results established for covariograms of deterministic sets can be adapted

for mean covariograms of random sets.

Proposition 8.4 (Properties of mean covariograms). Let X be a random set of Rd

satisfying E
(
Ld(X)

)
< +∞ and let γX be its mean covariogram. Then

1. For all y ∈ Rd, 0 ≤ γX(y) ≤ γX(0) = E
(
Ld(X)

)
.

2. γX is even.

3. γX(y) =

∫

Rd
P (x ∈ X and x+ y ∈ X) dx.

4.
∫
Rd γX(y)dy = E

(
Ld(X)2

)
∈ [0,+∞].

5. If E
(
Ld(X)

)
> 0, then γX is a strictly positive-definite function.



166 Chapter 8. Variation of Random Sets

6. For all y, z ∈ Rd, |γX(y)− γX(z)| ≤ γX(0)− γX(y − z).

7. γX is uniformly continuous over Rd and lim
|y|→+∞

γX(y) = 0.

The proofs are omitted since they mostly consist in integrating the results of

Section 8.2.1 with respect to ω.

As in the deterministic case, the directional derivatives of the mean covariogram

of a random set are related to its mean directional variations.

Proposition 8.5 (Mean covariogram and mean variation). Let X be a random set
of Rd satisfying E

(
Ld(X)

)
< +∞ and let γX be its mean covariogram. Then for

all u ∈ Sd−1,

lim
r→0

γX(0)− γX(ru)

|r| =
1

2
E (Vu(X)) ,

and, noting (γu
X)

′ (0) = lim
r→0+

γX(ru)− γX(0)

r
,

− 1

ωd−1

∫

Sd−1
(γu

X)
′ (0)Hd−1(du) = E (Per(X)) .

Proof. By Lemma 8.2,

γX(0)− γX(ru)

|r| =
1

2
E

(∫

Rd

| X(x+ ru)−  (x)|
|r|

)
,

hence the first formula is just a transcription of the identity of Proposition 7.5

ΘVu

(
f,Rd

)
= lim

r→0

∫

Rd

E (|f(x+ ru)− f(x)|)
|r| dx,

with f =  X . The second formula is obtained by integration over all the directions

u ∈ Sd−1 and by applying the dominated convergence theorem, since by Corol-

lary 7.4 ∣∣∣∣
γX(ru)− γX(0)

r

∣∣∣∣ ≤ 1

2
E (Vu(X)) .

8.5 Variogram and Specific Variation of Stationary

Random Sets

A random set X is said to be stationary if its associated r.f.  X : (ω, x) Ô→  X(ω)(x)

is stationary. Again, let us precise that if X is a stationary RACS (in the sense

that for all y ∈ Rd, y +X and X have the same distribution over (F , B(F))) then
its associated measurable random field  X : (ω, x) Ô→  X(ω)(x) is stationary.

A stationary random set is said to be of locally bounded variation if the sta-

tionary random field  X : (ω, x) Ô→  X(ω)(x) is of locally bounded variation, and

random sets of locally bounded directional variation. One writes θV (X) := θV ( X)
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which is referred to as the variation intensity or the specific variation of the station-
ary random set X. Similarly, θVu(X) := θVu( X) is called the directional variation
intensity or the specific directional variation in the direction u.

Definition 8.5 (Variogram of a stationary random set). Let X be a stationary
random set. The variogram νX of X is the function νX : R

d → R defined by

νX(y) = P (y ∈ X, 0 /∈ X) .

Clearly νX(0) = 0 and the variogram νX is even: indeed, by stationarity

νX(−y) = P (0 /∈ X)−P (−y /∈ X, 0 /∈ X) = P (0 /∈ X)−P (0 /∈ X, y /∈ X) = νX(y).

Besides, νX can be shown to be conditionally negative definite (see [100, Section

3.2] for details). As the next proposition shows, the variogram νX(y) plays the same

role for stationary random sets as the difference γX(0)− γX(y) for random sets of

finite mean Lebesgue measure.

Proposition 8.6 (Specific variations and variogram). Let X be a stationary ran-
dom set and let νX be its variogram. Then for all u ∈ Sd−1 the limit

(νu
X)

′ (0) := lim
r→0

1

|r|νX(ru) ∈ [0,+∞]

exists, and the specific directional variation θVu(X) is given by

θVu(X) = 2 (ν
u
X)

′ (0) = 2 lim
r→0

1

|r|P (ru ∈ X, 0 /∈ X) .

In other words, the specific directional variation is twice the directional derivative of
the variogram at the origin. Integrating over all directions, one obtains the specific
variation of X:

θV (X) =
1

ωd−1

∫

Sd−1
(νu

X)
′ (0)Hd−1(du). (8.5)

Proof. Since X is a random set | X(ru)−  X(0)| ∈ {0, 1}, hence for all r ∈ R,

E(| X(ru)−  X(0)|) = P(ru ∈ X, 0 /∈ X) + P(ru /∈ X, 0 ∈ X) = 2νX(ru).

By Theorem 7.3, the limit limr→0 1
|r|νX(ru) exists and

θVu(X) = 2 lim
r→0

1

|r|νX(ru),

and the formula of θV (X) is given by Corollary 7.5.

Let us now discuss the terminology specific variation of X for the constant

θV (X). Eq. (8.5) is exactly the formula given in [100, p. 26] and which originates

from Matheron [107, p. 30]. In these references, the constant corresponding to

the variation intensity θV (X) is called the specific (d − 1)-volume of X (specific
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perimeter if d = 2, specific surface area if d = 3). However, in the later works

of Matheron [110] as well as on recent reference textbooks [142, 136], the specific
surface measure refers to the surface measure that derives from Steiner’s formula.

This measure has different names, depending on its normalization and the degree

of generalization: intrinsic volume of index d − 1 and Minkowski’s content of in-

dex 1 for convex sets [136], total curvature of index d − 1 for sets with positive

reach and UP R-sets [56, 130], or also in a more general setting outer Minkowski

content [5, 149]; see also [79]. Even though the (variational) perimeter of a set and

this notion of surface measure agree for convex sets [5], the distinction is important.

Indeed their extensions to non convex sets have different behaviors. For example,

the outer Minkowski content counts twice the isolated fine parts of a set having a

bounded and (d −1)-rectifiable topological boundary, whereas these fine parts have
no influence on the perimeter [149, Proposition 4.1] (here “isolated fine parts” de-

notes the part of the boundary which has Lebesgue density 0). In order to make a

clear distinction between the (variational) perimeter and the surface measure from

Steiner’s formula, the constant θV (X) is named the specific variation of X and not

its “specific perimeter”.

As mentioned in the introduction, one should notice that, contrary to the spe-

cific surface area [136], the specific variation θV (X) is well-defined for any mea-

surable random set, and in particular for any stationary RACS. Besides, Proposi-

tion 8.6 shows that the specific directional variations θVu(X) and the specific vari-

ation θV (X) are easily computed as soon as one knows the variogram of X. This

will be illustrated in the next chapter where the specific variations of homogeneous

Boolean models are computed (see Section 9.4). However, we have to point out one

limitation of the specific variation: it can only deals with d-dimensional random

sets. This is a consequence of the fact that Ld(A) = 0 implies Per(A) = 0. On the

opposite, the specific surface area derived form Steiner formula are adapted to deal

with random sets of Hausdorff dimension lower than d (see e.g. [136, 4, 150] and

the references therein).

8.6 Random Excursion Sets and Coarea Formula for

Mean Variations

First let us recall the coarea formula for deterministic functions. In what follows,

U is an open subset of Rd. Recall that for any measurable set A, one defines the

perimeter of A in U as the variation of the indicator function  A in U , and one

writes Per(A, U) := |D A|(U). Similarly, one defines Vu(A, U) := |Du A|(U) the
directional variation of A in U .

If f : U → R is a measurable function and t ∈ R, {f > t} denotes the set

{x ∈ U, f(x) > t} .

{f > t} is called the upper level set of level t.
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Proposition 8.7 (Coarea formula). Let f ∈ L1(U). Then f ∈ BV (U) if and only
if the sets {f > t} are of finite perimeter for L1-a.a. t ∈ R, and in this case

|Df |(U) =
∫ +∞

−∞
Per ({f > t}, U) dt.

We refer to [6, p. 145] for the proof of the coarea formula. Let us mention

that the coarea formula remains valid if the upper level sets are replaced by other

level sets: {f ≥ t}, {f < t} or {f ≤ t}. Besides, a coarea formula also holds for

directional variation:

|Duf |(U) =
∫ +∞

−∞
Du ({f > t}, U) dt, u ∈ Sd−1.

If f is a stationary random fields then its excursion sets {f > t} are stationary

random sets. Using the coarea formula (see Proposition 8.7), one obtains a relation

between the variation intensity of f and the variation intensity of its level sets. Let

us recall that by definition,

ΘVu

(
f,Rd

)
= E

(
|Duf |

(
Rd

))
.

Proposition 8.8. (Coarea formula for total variation intensity) Let f be a r.f.
a.s. in L1

(
Rd

)
, and let u ∈ Sd−1. Then f ∈ BVu

(
Rd

)
a.s. with finite mean total

directional variation ΘVu

(
f,Rd

)
if and only if for L1-a.e. t ∈ R its level sets {f >

t} have a.s. finite directional variation in the direction u and t Ô→ ΘVu

(
{f > t},Rd

)

is in L1(R), and in this case

ΘVu

(
f,Rd

)
=

∫ +∞

−∞
ΘVu

(
{f > t},Rd

)
dt.

Similarly, f ∈ BV
(
Rd

)
a.s. with finite mean total variation if and only if for L1-

a.e. t ∈ R its level sets {f > t} have a.s. finite variation and t Ô→ ΘV

(
{f > t},Rd

)

is in L1(R), and in this case

ΘV

(
f,Rd

)
=

∫ +∞

−∞
ΘV

(
{f > t},Rd

)
dt.

Proof. The proof consists in apply Fubini’s and Lebesgue’s theorem. First, let us

justify that the function

g : Ω× Rd × R → {0, 1}
(ω, x, t) Ô→  {f>t}(ω, x)

is measurable. Let (tn)n∈N be a dense sequence of R, then one easily checks that

g−1(1) =
⋃

n∈N

{(ω, x), f(ω, x) > tn} × (tn,+∞),
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which is in the product σ-algebra A⊗B
(
Rd

)
⊗B (R). Second, we have the following

elementary identity

|f(ω, x+ ru)− f(ω, x)| =
∫ +∞

−∞

∣∣∣ {f>t}(ω, x+ ru)−  {f>t}(ω, x)
∣∣∣ dt.

Hence, by Fubini’s theorem

∫

Rd
E (|f(x+ ru)− f(x)|) dx =

∫ +∞

−∞

∫

Rd
E

(∣∣∣ {f>t}(x+ ru)−  {f>t}(x)
∣∣∣
)

dxdt.

Let us now suppose that for L1-a.e. t ∈ R the level sets {f > t} have a.s. finite

directional variation in the direction u and that t Ô→ ΘVu

(
{f > t},Rd

)
is in L1(R).

Then, by Proposition 7.5,

lim
r→0

∫

Rd

E
(∣∣∣ {f>t}(x+ ru)−  {f>t}(x)

∣∣∣
)

|r| dx = ΘVu

(
{f > t},Rd

)
for L1-a.e. t,

and by Corollary 7.3

∫

Rd

E
(∣∣∣ {f>t}(x+ ru)−  {f>t}(x)

∣∣∣
)

|r| dx ≤ ΘVu

(
{f > t},Rd

)
∈ L1(R).

Hence the Lebesgue theorem applies and

lim
r→0

∫

Rd

E (|f(x+ ru)− f(x)|)
|r| dx =

∫ +∞

−∞
ΘVu

(
{f > t},Rd

)
dt < +∞.

By Proposition 7.5 one deduces that f has a.s. bounded directional variation and

that

ΘVu

(
f,Rd

)
=

∫ +∞

−∞
ΘVu

(
{f > t},Rd

)
dt.

Let us now prove the converse implication. Let f ∈ BVu

(
Rd

)
a.s. with

ΘVu

(
f,Rd

)
< +∞. Then, by Fatou’s lemma and Fubini’s theorem

∫ +∞

−∞
lim inf

r→0

∫

Rd

E
(∣∣∣ {f>t}(x+ ru)−  {f>t}(x)

∣∣∣
)

|r| dxdt

≤ lim inf
r→0

∫

Rd

E (|f(x+ ru)− f(x)|)
|r| dx

= ΘVu

(
f,Rd

)
< +∞.

In particular, for L1-a.e. t ∈ R,

lim inf
r→0

∫

Rd

∣∣∣ {f>t}(x+ ru)−  {f>t}(x)
∣∣∣ dxdt < +∞ a.s.
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and Proposition 7.4 ensures that, for L1-a.e. t ∈ R, {f > t} has a.s. locally bounded
variation. Besides, as shown in the proof of Proposition 7.5 we have

ΘVu

(
{f > t},Rd

)
≤ lim inf

r→0

∫

Rd

E
(∣∣∣ {f>t}(x+ ru)−  {f>t}(x)

∣∣∣
)

|r| dx,

and thus the above inequalities show that ΘVu

(
{f > t},Rd

)
∈ L1(R). To conclude,

the case of non directional variation easily follows from the integral geometric for-

mula of Proposition 7.2 and Fubini’s theorem.

Proposition 8.9. (Coarea formula for variation intensity of stationary r.f.) Let
f be an integrable r.f. and let u ∈ Sd−1. Then f ∈ BVu,loc

(
Rd

)
a.s. with finite

directional variation intensity θVu(f) if and only if for L1-a.e. t ∈ R its level
sets {f > t} have a.s. locally finite directional variation in the direction u and
t Ô→ θVu({f > t}) is in L1(R), and in this case

θVu (f) =

∫ +∞

−∞
θVu({f > t})dt.

Similarly, f ∈ BV
(
Rd

)
a.s. with finite mean total directional variation θV (f) if

and only if for L1-a.e. t ∈ R its level sets {f > t} have a.s. finite variation and
t Ô→ θV ({f > t}) is in L1(R), and in this case

θV (f) =

∫ +∞

−∞
θV ({f > t}) dt.

Proof. The proof of this proposition is similar to the previous one (Proposition 8.8),
except that the dominated condition is replaced by

E
(∣∣∣ {f>t}(ru)−  {f>t}(0)

∣∣∣
)

|r| ≤ θV ({f > t}) (1 +R)d, |r| < R,

as in the proof of Proposition 7.9.

8.7 Conclusion

Several formulas relating the directional variation of random sets to the directional

derivatives at the origin of their covariogram or their variogram have been estab-

lished. It has been shown that they rigorously generalize classical results only

established in restricted cases.

The relevance of these formulas will be illustrated in the next chapter (Chap-

ter 9) where the variation intensities of the different germ-grain models presented

in Chapter 5 will be computed.

This chapter has also introduced the notion of specific variation θV (X) of a sta-

tionary random set X as the variation intensity of the indicator stationary r.f.  X .

The main advantage of the specific variation in comparison with the specific area
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measure which stems from Steiner formula is that it is defined for any measurable

random set, and in particular for any random closed set. Besides the directional

and non directional specific variations are easily computed once the variogram of

the stationary random set is known. Hence the specific variations are an interest-

ing alternative to the usual specific area measure when dealing with d-dimensional

random sets.

The good properties of the specific variation θV (X) of a stationary random set X

opens new perspectives. As expressed in [150], a problem of interest in stochastic

geometry is to define local mean surface densities for inhomogeneous (i.e. non

stationary) random sets. The local surface densities introduced by Matheron [110,

p. 50] and recently studied by Villa [150] is defined by

σ(X, y) := lim
r→0+

P (y ∈ X ⊕ B(0, r) \ X)

r
, y ∈ Rd,

whenever the limit exists. Clearly, from Proposition 8.6, we should propose the

alternative directional variation densities

σVu(X, y) := lim
r→0

E (| X(y + ru)−  X(y)|)
|r| = lim

r→0
P (y ∈ X∆(−ru+X))

|r| , y ∈ Rd,

where ∆ denotes the symmetric difference, and the non directional variation density

σV (X, y) :=
1

2ωd−1

∫

Sd−1
σVu(X, y)Hd−1(du),

whenever these limits exist.

Another possible direction for further developments is to investigate the behavior

of the variation of a set around its mean. An interesting particular case might be

the behavior of the perimeter of excursion sets around their mean. A central limit

theorem has recently been proved for the Lebesgue measure of excursion sets of

certain Gaussian r.f. and shot noises [24], where the targeted application is a

Gaussianity test for the surface of paper. As the author mention in conclusion, it

might be of interest to investigate other “Minkowski’s functionals” of the excursion

sets, such as the perimeter.
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Abstract: Relying on the results of Chapter 7 and Chapter 8, the

variation intensities of various stationary random field (r.f.) models

are computed. In order of presentation, the considered stationary r.f.

are: Gaussian r.f., Poisson shot noise of random sets, Boolean models,

colored dead leaves r.f., transparent dead leaves process, and colored

tessellations. In particular it is shown that if the sample paths of a

stationary Gaussian r.f. are a.s. of bounded variation, then they are a.s.

in the Sobolev space W 1,1
loc

(
Rd

)
. Let us also mention that the derived

formula for the specific variation of homogeneous Boolean random sets

is valid for any grain distribution, and it generalizes known results in

the case where the grains are convex sets.

9.1 Introduction

The goal of this chapter is to illustrate the results of Chapters 7 and 8 by computing

the directional and non directional variation intensities of several stationary r.f.

models. It particular an answer of the question “What is the mean total variation

of the germ-grain models presented in Chapters 5 and 6?” raised in the general

introduction of the present part of the thesis is provided.
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We first study the variation of stationary Gaussian r.f. It is shown that a

Gaussian r.f. fG has finite variation intensity if and only if the one-dimensional

restrictions of its covariance are twice differentiable at 0. According to [135], this

condition also implies that the sample paths of fG are a.s. in the Sobolev space

W 1,1
loc

(
Rd

)
, and in particular the variation |DfG| is a.s. absolutely continuous with

respect to the Lebesgue measure.

The section on Gaussian r.f. is followed by a sequence of sections where the

directional and non directional variation intensities are computed for the germ-

grain r.f. of Chapter 5 and Chapter 6. In order of presentation, these r.f. models

are: Poisson shot noise of random sets, Boolean models, colored dead leaves r.f.,

transparent dead leaves process, and colored tessellations.

Thanks to the results of Chapters 7 and 8, all the derived formulas for the spe-

cific variation of germ-grain models are established under very broad assumptions

on the grain distribution. In particular, we provide a formula for the specific vari-

ation of homogeneous Boolean random sets that is valid for any grain distribution.

This formula generalizes the corresponding classical result for Boolean random sets

having convex grains [136].

For germ-grain models, the obtained formulas explicitly clarifies the somewhat

intuitive relation between the geometry of the grains X and the total variation

of the germ-grain r.f. Moreover, they show that for all the considered germ-grain

models, there are only two geometric features of influence on the total variation

of the germ-grain r.f.: the mean perimeter and the mean Lebesgue measure of the

grains.

9.2 Gaussian Random Fields

A random field fG is a stationary Gaussian r.f. with mean µ ∈ R and covariance

function C : Rd → R if for all p ∈ N, for all x1, . . . , xp ∈ Rd, and for all w1, . . . , wp ∈

R the r.v.
p∑

i=1

wifG(xi) is normal with mean
p∑

i=1

wiµ and variance
p∑

i,j=1

wiwjC(xj −

xi).

In what follows we will only consider stationary Gaussian r.f. whose covariance

function is regular at the origin. Let us recall that as soon as the covariance func-

tion C is continuous in 0, the r.f. is continuous in probability and thus it has a

measurable version (see [47, p. 61] or [63, p. 171]).

The computation of the directional and non directional variation intensities of

fG follows from the following lemma.

Lemma 9.1. Let fG be a stationary Gaussian r.f. with mean µ and covariance
function C. Then for all u ∈ Sd−1 and r ∈ R,

E (|fG(ru)− fG(0)|) =
2√
π

√
C(0)− C(ru).
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Proof. We recall that if a r.v. Y has distribution N (
0, σ2

)
then E(|Y |) =

√
2
π σ.

Let fG be a stationary r.f. with mean µ and covariance function C. Then for all

u ∈ Sd−1 and r ∈ R, fG(ru)− fG(0) follows a normal distribution with mean 0 and

variance 2(C(0)− C(ru)). Hence

E (|fG(ru)− fG(0)|) =
√
2

π

√
2(C(0)− C(ru)) =

2√
π

√
C(0)− C(ru).

Proposition 9.1 (Variation intensity of stationary Gaussian r.f.). Let fG be a
stationary Gaussian r.f. with mean µ and covariance C, and let u ∈ Sd−1. Then fG

has finite directional variation intensity θVu(fG) in the direction u if and only if the
one-dimensional restriction of the covariance Cu : r Ô→ C(ru) is twice differentiable

at 0, and in this case, noting C ′′
u(0) the second derivative in 0 of Cu,

θVu(fG) =

√
−2C ′′

u(0)

π
.

Consequently, fG has finite variation intensity θV (fG) if and only if for all u ∈
Sd−1 the one-dimensional restrictions of the covariance Cu : r Ô→ C(ru) are twice

differentiable at 0, and in this case,

θV (fG) =
1

2ωd−1

∫

Sd−1

√
−2C ′′

u(0)

π
Hd−1(du).

Proof. This is a straightforward application of Theorem 7.3. By Lemma 9.1,

lim
r→0

E (|fG(ru)− fG(0)|)
|r|

exists if and only if C(0)−C(ru)
r2

admits a limit in 0, that is if and only if Cu : r Ô→
C(ru) is twice differentiable at 0 with C ′

u(0) = 0. But since Cu is even, if it is

differentiable at 0 then necessarily C ′
u(0) = 0. As for the expression of θVu(fG),

note that

lim
r→0

C(0)− C(ru)

r2
= −C ′′

u(0)

2
,

hence by Theorem 7.3 and Lemma 9.1,

θVu(fG) = lim
r→0

E (|fG(ru)− fG(0)|)
|r| =

√
−2C ′′

u(0)

π
.

The case of non directional variation follows from Corollary 7.5.

It is worth noticing that the necessary and sufficient condition for a stationary

Gaussian r.f. to be of locally bounded variation implies a stronger regularity on the

sample paths than just being of locally bounded variation. First, the differentiability
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at the origin of the covariance implies that there exists ρ > 0 and K > 0 such that

for all x ∈ B(0, ρ)

C(0)− C(x) ≤ K

|x| .

In particular, there exists α > 0 and K ′ > 0 such that for all x ∈ B(0, ρ)

C(0)− C(x) ≤ K ′

| log(|x|)|(1+α)
,

and thus, according to Adler and Taylor [2, Theorem 1.4.1 p. 20], f has a.s. contin-

uous sample paths. In addition, according to the recent paper of Scheuerer [135],

the sample paths of a stationary Gaussian r.f. fG are a.s. in the Sobolev space

W 1,2
loc

(
Rd

)
if and only if the covariance function C is twice differentiable at the

origin in every direction. Hence by Proposition 9.1 we have

fG ∈ BVloc
(
Rd

)
a.s. ⇔ fG ∈ W 1,2

loc

(
Rd

)
a.s.

In particular if fG ∈ BVloc
(
Rd

)
a.s., then fG ∈ W 1,1

loc

(
Rd

)
a.s., and consequently

its variation intensity measure is absolutely continuous with respect to the Lebesgue

measure. Hence, if fG ∈ BVloc
(
Rd

)
a.s. then it is a “smooth” function among the

functions of bounded variation since its variation measure DfG has neither a jump

part nor a Cantor part (see [6, Section 3.9] for more details on the decomposition

of the variation measure Df of functions of bounded variation).

We conclude this section in computing the specific perimeter of the excursion

sets of stationary Gaussian r.f. For all t ∈ R, we consider the random set {fg > t}
and we note νt its variogram, that is the function defined for all y ∈ Rd by

νt(y) = P (fG(y) > t, fG(0) ≤ t) .

As stated in [100, p. 207] and initially shown by Matheron [109],

νt(y) =
1

π

∫ arcsin

(√
C(0)−C(y)

2

)

0
exp

(
− t2

2

(
1 + tan2 s

))
ds. (9.1)

From this expression Lantuéjoul asserts that the excursion sets of fG have finite

“specific perimeter” if and only if C(0)− C(y) is proportional to |y|2 [100, p. 207].
Our next proposition completes this observation in computing the expression of the

specific variations of the Gaussian excursion sets {fG > t}.

Proposition 9.2 (Specific variation of Gaussian excursion sets). Let fG be a sta-
tionary Gaussian r.f. with mean µ and covariance C, let t ∈ R, and let u ∈ Sd−1.
Then {fG > t} has finite specific directional variation in the direction u if and only
if the one-dimensional restriction Cu of the covariance is twice differentiable at 0,

and in this case,

θVu({fG > t}) = 1

π

√
−C ′′

u(0) exp

(
− t2

2

)
.
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Consequently, {fG > t} has finite specific variation in the direction u if and only
if for all u ∈ Sd−1 the one-dimensional restrictions Cu : r Ô→ C(ru) are twice
differentiable at 0, and in this case,

θV ({fG > t}) = 1

2πωd−1

(∫

Sd−1

√
−C ′′

u(0)dHd−1(du)

)
exp

(
− t2

2

)
.

Proof. By Proposition 8.6,

θVu({fG > t}) = 2 lim
r→0

νt(ru)

|r| .

The function

h : x Ô→ 1

π

∫ arcsin(x)

0
exp

(
− t2

2

(
1 + tan2 s

))
ds

is C1 at x = 0 and we have

h′(0) = arcsin′(0)
1

π
exp

(
− t2

2

(
1 + tan2(arcsin(0))

))
=
1

π
exp

(
− t2

2

)
.

Hence, thanks to Formula (9.1) one deduces that

lim
r→0

νt(ru)

|r| =
1

π
exp

(
− t2

2

)
lim
r→0

√
C(0)− C(ru)

2r2
.

As shown in the proof of Proposition 9.1, the limit on the right-hand side is finite

if and only if Cu is twice differentiable, and in this case

lim
r→0

√
C(0)− C(ru)

2r2
=
1

2

√
−C ′′

u(0).

The result follows.

Remark (Coarea formula). Note that for all t ∈ R we have

θVu({fG > t}) = θVu(fG)
1√
2π
exp

(
− t2

2

)

and

θV ({fG > t}) = θV (fG)
1√
2π
exp

(
− t2

2

)
.

In particular one checks that the coarea formula of Proposition 8.9 is satisfied.
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9.3 Poisson Shot Noise

Let us now consider the Poisson shot noise model introduced in Chapter 3. Re-

call that the Poisson shot noise associated with the independently marked Poisson
process Π = {(xj , κj)} ⊂ Rd × K and the impulse function h : Rd × K → R is the

random field fSN defined by

fSN (x) =
∑

(xj ,κj)∈Π
h(x − xj , κj),

where Π = {(xj , κj)} ⊂ Rd × K is an independently marked Poisson process having

intensity measure λLd ⊗ Pκ, λ > 0 and Pκ is the probability distribution of the

marks. The impulse function h : Rd × K → R is supposed to be Ld ⊗ Pκ-integrable,

which ensures that fSN is integrable by Campbell’s theorem (see Theorem B.2).

We first show that if the impulse function h has a finite mean total variation

then the shot noise fSN has bounded variation and its variation intensity is finite.

Proposition 9.3 (Bound on the variation intensities of Poisson shot noises). Let
u ∈ Sd−1 and suppose that h(·, κ) ∈ BVu

(
Rd

)
Pκ-a.s. with E

(
|Duh(·, κ)|

(
Rd

))
<

+∞. Then the shot noise fSN has locally bounded directional variation in the
direction u and

θVu(fSN ) ≤ λE
(
|Duh(·, κ)|

(
Rd

))
.

Consequently, if h(·, κ) ∈ BV
(
Rd

)
Pκ-a.s. and E

(
|Dh(·, κ)|

(
Rd

))
< +∞ then

fSN has locally bounded variation and

θV (fSN ) ≤ λE
(
|Dh(·, κ)|

(
Rd

))
.

Proof. Let u ∈ Sd−1 and r ∈ R. Then

|fSN (ru)− fSN (0)| ≤
∑

(xj ,κj)∈Π
|h(ru − xj , κj)− h(−xj , κj)| .

By Campbell’s theorem (see Theorem B.2),

E (|fSN (ru)− fSN (0)|) ≤ λ

∫

Rd×K
|h(ru − x, κ)− h(−x, κ)| dxPκ(dκ)

≤ λE

(∫

Rd
|h(ru − x, κ)− h(−x, κ)| dx

)
.

By Corollary 7.3, Pκ-a.s.
∫

Rd
|h(ru − x, κ)− h(−x, κ)| dx ≤ |Duh(·, κ)|

(
Rd

)
|r|.

Hence

E (|fSN (ru)− fSN (0)|) ≤ λE
(
|Duh(·, κ)|

(
Rd

))
|r|,

that is fSN is directionally Lipschitz in mean. By Theorem 7.4, one concludes that

fSN is a.s. in BVu,loc

(
Rd

)
and θVu(fSN ) ≤ λE

(
|Duh(·, κ)|

(
Rd

))
. The upper

bound on θV (fSN ) is obtained in integrating over all directions u ∈ Sd−1.
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Biermé and Desolneux [14] recently studied one-dimensional Poisson shot noise

models of the form

fλ(x) =
∑

xj∈Πλ

h(x − xj), x ∈ R,

where h : R → R is a deterministic C2 function such that h, h′ and h′′ are in

L1(R), and Πλ is a Poisson process over R of intensity λ. Among other results,

they established that the variation intensity of these particular shot noises has the

following asymptotic behavior [14, Corollary 3 p. 23]:

θV (fλ)√
λ

=

√
2C ′′(0)

π
+Oλ→+∞

(
1√
λ

)
,

where C ′′(0) is the second derivative in 0 of the common covariance of the shot

noises fλ√
λ
, that is

C : y Ô→
∫

R

h(x+ y)h(x)dx.

First remark that this result is in accordance with the normal convergence of the

Poisson shot noise (see Theorem 3.1): Indeed, the limit of the variation intensity

is equal to the variation intensity of the limit Gaussian random field (see Proposi-

tion 9.1). Second, observe that in this case the upper bound given by Proposition 9.3

is really pessimistic when λ increases. This is due to the fact that the variations

of the various smooth functions h(· − xj) have locally opposite sign. Hence the

variations does not simply add but rather compensate each other.

On the opposite, the next proposition shows that when the functions h are

indicator functions of sets of finite perimeter, the upper bound of Proposition 9.3 is

reached. Hence the upper bound of Proposition 9.3 cannot be improved in general.

Proposition 9.4 (Variation of shot noises of random indicator functions). Consider
a shot noise of the form

f(x) =
∑

(xj ,Xj)∈Π
 (x ∈ xj +Xj),

where the Poisson process Πλ has intensity measure λ⊗PX , λ ≥ 0, PX a probability
distribution over the set F of closed subsets of Rd. Suppose that the RACS X ∼ PX

is such that:

• There exists a ball B such that E
(
Ld (X ⊕ B)

)
< +∞.

• Ld(∂X) = 0 PX-a.s.

• E(Per(X)) < +∞.

Then f has a.s. bounded variation and θV (f) = λE(Per(X)).
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Proof. First, since E(Per(X)) < +∞ by Proposition 9.3 f has a.s. bounded varia-

tion and θV (f) ≤ λE(Per(X)). Let B be a ball such that E
(
Ld (X ⊕ B)

)
< +∞.

Recall that

B ∩ xj +Xj Ó= ∅ ⇐⇒ xj ∈ B ⊕ X̌.

Let us note ΠB the restriction of Π defined by

ΠB = {(xj , Xj), B ∩ xj +Xj Ó= ∅} .

By Proposition B.5, the expected number of point of ΠB is E
(
Ld

(
B ⊕ X̌

))
< +∞,

and the distribution of the points of ΠB under the events #ΠB = n is known.

Clearly, the only random sets of influence for the variation of f on the set B are

the random sets xj +Xj such that (xj , Xj) ∈ ΠB. We have

Df(B) =
∑

(xj ,Xj)∈ΠB

D xj+Xj
(B).

To conclude we have to show that the different total variations |D xj+Xj
| are al-

most surely mutually singular. First, recall that for all set of finite perimeter Y ,

|D Y |(A) ≤ Hd−1(∂Y ∩ A), A ∈ B
(
Rd

)
. In particular, |D Y |

(
Rd \ ∂Y

)
= 0.

Hence to show that the measure |D Y | and another measure µ are mutually sin-

gular it is enough to show that µ(∂Y ) = 0. Here we are interested in the measures

|D xj+Xj
|xB. We will show that for any finite Radon measure µ,

µ(xj + ∂Xj ∩ B) = 0 a.s.

Let (xj , Xj) be a point of ΠB given that #ΠB ≥ 1. Let us recall that all the

points of ΠB are i.i.d. Let us also recall that if ν is a finite Radon measure and

A ∈ B(R) then, by Fubini’s theorem, the following translative integral geometric

formula holds [136, Theorem 5.2.1 p. 181]:
∫

Rd
ν(x+A)dx = Ld(A)ν

(
Rd

)
.

Noting γ = E
(
Ld

(
B ⊕ X̌

))
,

E (µ(xj + ∂Xj ∩ B)) =
1

γ

∫

X∈F

∫

x∈B⊕X̌
µ(x + ∂X ∩ B)dxPX(dX)

=
1

γ

∫

X∈F

∫

x∈Rd
µ(x + ∂X ∩ B)dxPX(dX)

=
1

γ

∫

X∈F
Ld(∂X)µ(B)PX(dX)

=
1

γ
E

(
Ld(∂X)

)
µ(B)

= 0.

From this, thanks to the independence of the points of ΠB, we deduce that if (xj , Xj)

and (xk, Xk) are two distinct points then

E (|D xk+Xk
| (xj + ∂Xj ∩ B)) = 0,
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and thus the two measures
∣∣∣D xj+Xj

∣∣∣xB and |D xk+Xk
|xB are mutually singular.

As a consequence, under the event
{
#ΠB = n

}
, n ≥ 1,

|Df |(B) =
n∑

k=1

|D xk+Xk
| (B).

Let us compute the expectation of any of the terms |D xk+Xk
| (B).

E(|D xk+Xk
| (B)) = 1

γ

∫

X∈F

∫

x∈B⊕X̌
|D x+X | (B)dxPX(dX)

=
1

γ

∫

X∈F

∫

x∈Rd
|D X | (−x+B)dxPX(dX)

=
1

γ

∫

X∈F
Ld(B) |D X |

(
Rd

)
PX(dX)

=
1

γ
Ld(B)E (Per(X)) .

To conclude,

E (|Df |(B)) =
+∞∑

n=1

E
(
|Df |(B)

∣∣∣#ΠB = n
)
P

(
#ΠB = n

)

=
+∞∑

n=1

n

γ
Ld(B)E (Per(X))

λnγn

n!
e−λγ

= λLd(B)E (Per(X))
+∞∑

n=1

λn−1γn−1

(n − 1)!
e−λγ

= λLd(B)E (Per(X)) .

Since E (|Df |(B)) is by definition equals to θV (f)Ld(B), this concludes the proof.

9.4 Boolean Models

We now turn to the computation of the variation intensities of the Boolean models

introduced in Section 5.3. Recall that the homogeneous Boolean random set with
intensity λ and grain distribution PX is the stationary random closed sets (RACS)

ZB defined by

ZB =
⋃

j∈N

xj +Xj ,

where {(xj , Xj)} is an independently marked stationary Poisson process in the space
Rd × F having intensity measure λLd ⊗ PX , λ ≥ 0.

The avoiding functional of the Boolean model ZB is well-known: for any compact

K ⊂ Rd we have

P (ZB ∩ K = ∅) = exp
(
−λE

(
Ld

(
X ⊕ Ǩ

)))
, (9.2)
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where X denotes a RACS with distribution PX (see e.g. [142, p. 65] or [100, p.

164]). Starting from the general Formula (9.2), which determines the distribution of

ZB, one easily derives the expression of the variogram νZB
of ZB. Indeed, specified

for K = {0}, Formula (9.2) becomes

q := P (0 /∈ ZB) = exp
(
−λE

(
Ld (X)

))
,

For K = {0, −ru}, r ∈ R and u ∈ Sd−1, remark that we have

Ld
(
X ⊕ Ǩ

)
= Ld (X ∪ ru + X) = 2Ld(X) − Ld (X ∩ ru + X) .

Hence in this case E
(
Ld

(
X ⊕ Ǩ

))
= 2E

(
Ld (X)

)
− γX(ru). As a result the

variogram νZB
is equal to [142, p. 68], [100, p. 165]

νZB
(ru) = P (−ru ∈ ZB and 0 /∈ ZB) = P (0 /∈ ZB) − P (ZB ∩ {0, −ru} = ∅)

= q − exp
(
−λ

(
2E

(
Ld (X)

)
− γX(ru)

))

= q − q exp (−λ (γX(0) − γX(ru))) .

Thanks to Proposition 8.6, one easily computes the specific variation intensities of

ZB from the expression of its variogram.

Proposition 9.5 (Specific variations of Boolean random sets). Let ZB be the
Boolean random set with Poisson intensity λ and grain distribution PX , and let
X be a RACS with distribution PX . Then for all u ∈ Sd−1,

θVu(ZB) = λE (Vu(X)) exp
(
−λE

(
Ld (X)

))

and
θV (ZB) = λE (Per(X)) exp

(
−λE

(
Ld (X)

))
. (9.3)

Proof. By Proposition 8.6 and Proposition 8.5,

θVu(ZB) = 2
(
νu

ZB

)′
(0) = 2qλ (γu

X)′ (0) = qλE (Vu(X)) ,

and the result follows in replacing q by its expression. θV (ZB) is obtained in inte-

grating over all directions u.

Let us emphasize that Equation (9.3) is valid for any grain distribution PX and

that it generalizes known results for Boolean models with convex grains [136, p.

386]. Similar generalizations involving intensity of surface measures deriving from

Steiner’s formula have recently been established [79, 150], under some technical

hypotheses on the RACS X. As already stressed out, our result is similar but not

identical since the outer Minkowski content of a set differs from its (variational)

perimeter [149].

Boolean random sets can be seen as a particular example of Boolean random

fields also introduced in Section 5.3. Recall that a Boolean random field fB is

defined by

fB(y) = sup ({0} ∪ {aj , y ∈ xj + Xj}) ,
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where Φ = {(xj , Xj , aj)} be a Poisson process on Rd × F × [0,+∞) with intensity

measure λLd ⊗ PX ⊗ Pa, λ ≥ 0.

As already mentioned in Section 5.3, the upper-level sets of fB are Boolean

random sets: indeed, for all t ≥ 0,

{y, fB(y) > t} = {y, ∃(xj , Xj , aj) ∈ Φ, y ∈ xj +Xj and aj > t}
=

⋃

Φ∩Rd×F×(t,+∞)

xj +Xj ,

that is to say {y, fB(y) > t} is the Boolean model associated with the Poisson

process
∑
Φ  (aj > t) δxj ,Xj

. Relying on this observation, by the coarea formula for

variation intensities (see Proposition 8.9), one deduces an expression of the variation

intensities of Boolean random fields.

Proposition 9.6 (Variation intensities of a Boolean random fields). Let fB be the
Boolean random field with Poisson intensity λ, grain distribution PX , and gray-
level distribution Pa. Let X denote a RACS with distribution PX and a a r.v. with
distribution Pa. Then for all u ∈ Sd−1,

θVu (fB) = λE (Vu(A))

∫ +∞

0
Pa({a > t}) exp

(
−λE

(
Ld (X)

)
Pa({a > t})

)
dt

and

θV (fB) = λE (Per(A))

∫ +∞

0
Pa({a > t}) exp

(
−λE

(
Ld (X)

)
Pa({a > t})

)
dt.

Proof. {y, fB(y) > t} is the Boolean model associated with the Poisson process∑
Φ  (aj > t) δxj ,Xj

. This Poisson process has grain distribution PX and intensity

λPa({a > t}). Hence by Proposition 9.5

θVu ({fB > t}) = λE (Vu(A))Pa({a > t}) exp
(
−λE

(
Ld (X)

)
Pa({a > t})

)
.

By the coarea formula for variation intensity (see Proposition 8.9)

θVu (fB) = λE (Vu(A))

∫ +∞

0
Pa({a > t}) exp

(
−λE

(
Ld (X)

)
Pa({a > t})

)
dt.

9.5 Colored Dead Leaves Model

This section establishes the expression of the variation intensities of colored dead

leaves random fields. Let Φ = {(tj , xj , Xj , aj)} be a Poisson point process of

(−∞, 0) × Rd × F × R with intensity measure L1 ⊗ Ld ⊗ PX ⊗ Pa. Recall that

for each leaf (tj , xj , Xj , aj), one defines the visible part Vj by

Vj = (xj +Xj) \

 ⋃

(tk,xk,Xk,ak)∈Φ, tk>tj

xk +Xk


 ,
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and that the colored dead leaves r.f. fCDL is defined by

fCDL(y) =
∑

(tj ,xj ,Xj ,aj)∈Φ
aj (y ∈ Vj).

The next proposition gives the variation intensities of this r.f. model.

Proposition 9.7 (Variation intensities of the colored dead leaves r.f.). Suppose
that 0 < E(Ld(X)) < +∞ and that a ∈ L1. Let a1 and a2 be two independent r.v.
with distribution Pa. Then for all u ∈ Sd−1,

θVu (fCDL) = E(|a1 − a2|)
E (Vu(X))

E (Ld(X))
,

and

θV (fCDL) = E(|a1 − a2|)
E (Per(X))

E (Ld(X))
.

Proof. Let us first compute the expectation E (|fCDL(ru)− fCDL(0)|) for r ∈ R and

u ∈ Sd−1. If ru and 0 are in the same visible part Vj , then fCDL(ru) = fCDL(0).

Otherwise, if ru and 0 are in different visible parts, then both fCDL(ru) and fCDL(0)

have distribution Pa and they are independent. Hence,

E (|fCDL(ru)− fCDL(0)|) = E (|a1 − a2|)P ({ru and 0 belong to different visible parts}) .

Now, 0 and ru belong to different visible parts if the last leaf covering either ru or

0 does not cover both points. Hence, the probability

P ({ru and 0 belong to different visible parts})

has already been computed in Chapter 6 using Proposition 6.31. More precisely,

noting x0 +X0 the last leaf covering either 0 or ru, we have by Equation (6.5),

P ({ru and 0 belong to different visible parts}) = 1− P ({ru, 0} ⊂ x0 +X0)

= 1− γX(ru)

2γX(0)− γX(ru)

= 2
γX(0)− γX(ru)

2γX(0)− γX(ru)
.

Hence, by Theorem 7.3 and Proposition 8.5,

θVu (fCDL) = lim
r→0

E (|fCDL(ru)− fCDL(0)|)
|r|

= E (|a1 − a2|) lim
r→0

2
γX(0)− γX(ru)

|r|
1

2γX(0)− γX(ru)

= E(|a1 − a2|)
E (Vu(X))

E (Ld(X))
.

1Up to our slightly different definition of the visible parts, this probability is also given by the

general Formula (12) of [18].
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The expression of the variation intensity

θV (fCDL) = E(|a1 − a2|)
E (Per(X))

E (Ld(X))
.

is in accordance with our expectation: Indeed, E(|a1 − a2|) is the mean contrast

between two distinct visible parts, whereas the ratio
E (Vu(X))

E (Ld(X))
is known to be

the mean length of cell boundary per unit area when the RACS are random poly-

gons [37].

9.6 Transparent Dead Leaves Process

As for the colored dead leaves model, the transparent dead leaves (TDL) process

presented in Chapter 6 is obtained from the Poisson process Φ = {(tj , xj , Xj , aj)}
taking values in the state space (−∞, 0)×Rd ×F ×R and having intensity measure

L1 ⊗ Ld ⊗ PX ⊗ Pa. Given Φ, the TDL process fT DL of transparency coefficient

α ∈ (0, 1] is defined by

fT DL(y) =
∑

(tj ,xj ,Xj ,aj)∈Φ
 (y ∈ xj +Xj)αaj (1− α)(

∑
k∈N

 (tk∈(tj ,0) and y∈xk+Xk)) .

To compute the variation intensity of the TDL process we will use the same

tools as for the computation of the TDL covariance (see Proposition 6.4), that is we

will consider two points y and z = y+ru and use a conditioning with respect to the

coverage of the last leaf x0 +X0 hitting either y or z. Let us recall the properties

which are essential for the above proof. Let y, z ∈ Rd and let us note ru = z − y.

Consider the restriction Φ{y,z} of the leaves of Φ which hit the set {y, z}, that is

Φ{y,z} = {(tj , xj , Xj , aj) ∈ Φ, xj +Xj ∩ {y, z} Ó= ∅} .

According to Proposition 6.12, Φ{y,z} is an independently marked Poisson process
with ground process

{
t, (t, x, X, a) ∈ Φ{y,z}

}
of intensity 2γX(0) − γX(ru) and

marks (xj , Xj , aj). The marks aj are i.i.d. with distribution Pa, and are inde-

pendent of (xj , Xj). As for the distributions of the marks (xj , Xj) we are only

interested in the following probabilities.

P ({y, z} ⊂ xj +Xj) =
Ld ⊗ PX ({(x, X), {y, z} ⊂ x+X})

Ld ⊗ PX ({(x, X), {y, z} ∩ x+X Ó= ∅}) =
γX(ru)

2γX(0)− γX(ru)
.

By symmetry and complementarity we have

P (y ∈ xi +Xi and z /∈ xi +Xi) = P (z ∈ xi +Xi and y /∈ xi +Xi) =
γX(0)− γX(ru)

2γX(0)− γX(ru)
.

Let us note (t0, x0, X0, a0) the last leaf of Φ
{y,z}, that is the leaf such that

t0 = sup
{

tj , (tj , xj , Xj , aj) ∈ Φ{y,z}
}

.

2A proof of Proposition 6.1 is given in Section B.2.2 of Appendix B.
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Then according to Proposition 6.3, (x0, X0, a0) has the same distribution as any

mark (xj , Xj , aj) of Φ
{y,z}, the shifted Poisson process

Φt0 = {(t − t0, x, X, a), (t, x, X, a) ∈ Φ and t < t0}

has the same distribution as Φ, and (x0, X0, a0) and Φt0 are independent.

Proposition 9.8 (Variation intensities of the TDL process). Suppose that 0 <

E
(
Ld(X)

)
< +∞ and a ∈ L1. Then for all u ∈ Sd−1,

θVu(fT DL) = Cα
E (Vu(X))

E (Ld(X))
,

where Cα is the mean contrast between an independent leaf color and the TDL
process, that is

Cα = E(|a − fT DL(0)|) = E

(∣∣∣∣∣a −
+∞∑

k=0

αakβk

∣∣∣∣∣

)
,

where the r.v. a and (ak)k∈N are i.i.d. with distribution Pa. Consequently,

θV (fT DL) = Cα
E (Per(X))

E (Ld(X))
.

Proof. To abbreviate notation, we note f = fT DL within this proof. As said above,

we consider two points y and z = y+ ru. First we give a lower and an upper bound

of the expectation

E (|f(z)− f(y)|) .

One decomposes this expectation in conditioning with respect of the coverage of

the last leaf x0 +X0 hitting either y or z,

E (|f(z)− f(y)|) = E (|f(z)− f(y)| |{y, z} ⊂ x0 +X0 )
γX(ru)

2γX(0)− γX(ru)

+ E (|f(z)− f(y)| |y ∈ x0 +X0 and z /∈ x0 +X0 )
γX(0)− γX(ru)

2γX(0)− γX(ru)

+ E (|f(z)− f(y)| |z ∈ x0 +X0 and y /∈ x0 +X0 )
γX(0)− γX(ru)

2γX(0)− γX(ru)
.

By symmetry the two last terms of the above sum are equal. As in Chapter 6, let

us note β = 1 − α and ft0 the TDL process associated with the Poisson process

Φt0 . Since Φt0 and Φ have the same distribution, ft0 and f also have the same

distribution. On the event {{y, z} ⊂ x0 +X0} we have

f(y) = αa0 + βft0(y) and f(z) = αa0 + βft0(z),

so that

E (|f(z)− f(y)| |{y, z} ⊂ x0 +X0 ) = βE (|ft0(z)− ft0(y)|) = βE (|f(z)− f(y)|) .
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On the event {y ∈ x0 +X0 and z /∈ x0 +X0} we have

f(y) = αa0 + βft0(y) and f(z) = ft0(z).

Hence
|f(z)− f(y)| = |ft0(z)− αa0 − βft0(y)|

= |α (ft0(z)− a0) + β (ft0(z)− ft0(y))| .

Using the triangular inequality we have

α |ft0(z)− a0|−β |ft0(z)− ft0(y)| ≤ |f(z)− f(y)| ≤ α |ft0(z)− a0|+β |ft0(z)− ft0(y)| .

Now let us note Cα = E (|f(0)− a|). We have, in taking expectation in the previous

inequalities

E (|f(z)− f(y)| |y ∈ x0 +X0 and z /∈ x0 +X0 ) ≤ αCα + βE (|f(z)− f(y)|)
and

E (|f(z)− f(y)| |y ∈ x0 +X0 and z /∈ x0 +X0 ) ≥ αCα − βE (|f(z)− f(y)|) .

Let us now establish the upper bound of E (|f(z)− f(y)|). From the initial decom-

position of E (|f(z)− f(y)|) and the previous inequality,

E (|f(z)− f(y)|)

≤ βE (|f(z)− f(y)|) γX(ru)

2γX(0)− γX(ru)
+ 2 (αCα + βE (|f(z)− f(y)|)) γX(0)− γX(ru)

2γX(0)− γX(ru)
.

Rearranging the terms we get

E (|f(z)− f(y)|) ≤ Cα
2 (γX(0)− γX(ru))

2γX(0)− γX(ru)
.

Similarly we obtain the following lower bound

E (|f(z)− f(y)|) ≥ Cα
2α (γX(0)− γX(ru))

(4− 2α)γX(0)− (4− 3α)γX(ru)
.

Recall that z = y + ru. By Theorem 7.3, the directional variation intensity of the

TDL process is equal to

θVu(f) = lim
r→0

E (|f(y + ru)− f(y)|)
|r| .

On the other hand, by Proposition 8.5,

lim
r→0

γX(0)− γX(ru)

|r| =
1

2
E (Vu(X)) .

Using this last property, observe that the two bounds of E(|f(y+ru)−f(y)|)
|r| both tends

to Cα
E(Vu(X))

γX(0)
as r tends to 0. Hence

θVu(f) = Cα
E (Vu(X))

E (Ld(X))
.

Integrating this equality over all directions, one computes the variation intensity

θV (f).
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Remark (Occlusion case). Observe that when α = 1, that is when the transparent

leaves are opaque, the formulas of the variation intensities of the TDL process

given by Proposition 9.8 boils down to the formulas of the variation intensities of

the colored dead leaves r.f. given by Proposition 9.7.

9.7 Colored Tessellations

In this section we compute the variation intensities of colored tessellations. Not

surprisingly, the variation intensity is proportional to the ratio mean perimeter

over mean area of the typical cell.

Recall that given a stationary tessellation T =
∑

j δCj
one constructs a station-

ary random field fT by associating i.i.d. r.v. aj to each cell Cj , and defining fT (x)

as the color aj of the a.s. unique cell Cj containing x (see Section 5.5).

Before establishing the expression of variation intensities of fT we need to intro-

duce the fundamental notion of typical cell. First, one interprets a stationary tessel-

lation as a point process in Rd marked with random sets by introducing a centroid

map. Recall that K′ denotes the set of non empty compact sets of Rd. A centroid
map is a measurable application z : K′ Ô→ Rd such that z(x+C) = x+z(C). Second,

given a centroid map z, any stationary tessellation T =
∑

j δCj
is decomposed into

the stationary marked point process
∑

j δ(z(Cj),Cj−z(Cj)). According to [136, Section

4.1], one deduces that for any stationary tessellation T there exists a constant λ > 0

and a distribution Q over K′
0 = {K ∈ K′, z(K) = 0} such that for all measurable

function f : K′ Ô→ R+,

E


∑

j

f(Cj)


 = λ

∫

K0

∫

Rd
f(x+K)dxQ(dK). (9.4)

λ is the intensity of the point process of cell centroids
∑

j δz(Cj), and, by definition,

Q is the distribution of the typical cell of T denoted by C. Applying (9.4) with

f : K Ô→ Ld
(
K ∩ [0, 1]d

)
shows that λ is equal to

1

E (Ld(C)) .
The key result to compute the variation intensity of randomly colored stationary

tessellations is the following proposition.

Proposition 9.9 (Stationary tessellations and mean covariogram). Let T =
∑

j δCj

be a stationary tessellation and let γC : h Ô→ E (C ∩ h+ C) be the mean covariogram
of its typical cell C. Then for all h ∈ Rd,

P ({0 and h belong to the same cell}) = γC(h)
γC(0)

.

Remark. Proposition 9.9 is stated without proof in [100]. The proof reproduced

below is due to Calka3.

3Personal communication. The author is thankful to Pierre Calka for his help for establishing

this proof.
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Proof of Proposition 9.9. Denote ρ(h) = P ({0 and h belong to the same cell}).
First, by stationarity ρ(h) = P ({−h and 0 belong to the same cell}). Second, re-

mark that for all C ∈ K, {0, −h} ⊂ C ⇐⇒ 0 ∈ C ∩ h + C. Hence applying

Formula (9.4) with K Ô→  (0 ∈ K ∩ h+K),

ρ(h) = E


∑

j

 (0 ∈ Cj ∩ h+ Cj)




=
1

E (Ld(C))

∫

K0

∫

Rd
 (0 ∈ (x+K) ∩ h+ (x+K)) dxQ(dK)

=
1

γC(0)

∫

K0

∫

Rd
 (−x ∈ K ∩ h+K) dxQ(dK)

=
1

γC(0)

∫

K0
Ld(K ∩ h+K)Q(dK)

=
γC(h)
γC(0)

.

Proposition 9.10 (Variation intensities of colored tessellations). Let Tc =∑
j δ(Cj ,aj) be a randomly colored stationary tessellation, let fT be its associated

stationary random field, and denote by C the typical cell of T . Let a1 and a2 be
i.d.d. r.v. with distribution Pa. For all u ∈ Sd−1,

θVu (fT ) = E (|a1 − a2|)
1

2

E (Vu(C))
E (Ld(C)) ,

and

θV (fT ) = E (|a1 − a2|)
1

2

E (Per(C))
E (Ld(C)) .

Proof. Let us compute E (|fT (ru)− fT (0)|). We have

|fT (ru)− fT (0)| =




|ak − aj | if 0 ∈ Cj and ru ∈ Ck with j Ó= k,

0 if 0 and ru belong to the same cell.

By Proposition 9.9, and since for j Ó= k, aj and ak are independent,

E (|fT (ru)− fT (0)|) = E (|a1 − a2|)P ({0 and ru are in different cells})

= E (|a1 − a2|)
γC(0)− γC(h)

γC(0)
.

By Proposition 8.5,

lim
r→0

γC(0)− γC(h)
|r| =

1

2
E (Vu(C)) .

Hence, by Theorem 7.3,

θVu (fT ) = lim
r→0

E (|fT (ru)− fT (0)|)
|r| = E (|a1 − a2|)

1

2

E (Vu(C))
E (Ld(C)) .

Integrating over all directions one obtains the expression of the variation intensity

θV (fT ).
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Observe that the formula

θV (fT ) = E (|a1 − a2|)
1

2

E (Per(C))
E (Ld(C)) .

of Proposition 9.10 is in accordance with our expectation: Indeed, E (|a1 − a2|) is
the mean contrast between two adjacent cells whereas 12

E(Per(C))
E(Ld(C)) is known to be the

mean length of tessellations boundary per unit area [136, Section 10.1].

9.8 Conclusion

This chapter illustrated the results of Chapter 7 and Chapter 8 in computing the

directional and non directional variation intensities of several stationary r.f. mod-

els. For germ-grain models, it formulates explicitly the intuitive relation between

the geometry of the grains and the total variation. It is worthy to note that for

all the studied models, there are only two geometric features of influence on the

total variation of the germ-grain r.f.: the mean perimeter and the mean Lebesgue

measure of the grains. Besides, for the colored dead leaves r.f., the transparent

dead leaves r.f. and the colored tessellations, the mean variation is proportional

to the ratio
E(Per(X))

E (Ld(X))
. It is well-known that this ratio perimeter/area is related

to the notion of scale (see e.g. [105, 48] and the references therein). Our formulas

for the mean variation of these three germ-grain models are in accordance with the

above statement: for a high perimeter/area ratio of the grains, the total variation

of the concerned germ-grain r.f. is high and thus the r.f. corresponds to a texture,

whereas for a low perimeter/area ratio of the grains the r.f. might not be perceived

as a texture but rather as a piecewise constant image containing large objects.

All the r.f. models studied in this chapter are stationary. As mentioned in

Chapter 7, the variation intensities can also be defined for r.f. with stationary

increments. As a particular example of further developments, one might be able

to extend to r.f. over Rd some results of Vervaat [147] where the variation of the

sample paths of self-similar one-dimensional stochastic processes with stationary

increments is studied.

As mentioned in the conclusion of Chapter 7, a problem of interest in stochastic

geometry is to define local densities for inhomogeneous random sets, and the results

of Chapter 7 lead to propose a definition for directional and non directional variation

densities. As an important example, following the recent work of Villa [150], one

could try to derive local variation densities of certain inhomogeneous Boolean mod-

els. This should yield to a local version of the expression of the variation intensities

of homogeneous Boolean random sets established in this chapter.
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This brief appendix shows that the periodic and the smooth component of a

discrete image defined by Moisan [113] are both the unique solution of a discrete

Poisson problem. As a consequence they both can be computed using the classic

FFT-based Poisson solver [127, Section 20.4].

For the computation of the smooth component s, this boils down exactly to

Moisan’s original algorithm (see the megawave modulus perdecomp.c of [114],

based on [113, Theorem 2]). For the periodic component p the advantages of this

point of view are double. First it justifies that the periodic component p has locally

the same behavior as the original image u. Indeed, it shows that both images

have the “same” Laplacian, the only difference residing in the computation of the

Laplacian at the boundary. This is a slightly more precise formulation of [113,

Theorem 3 (ii)]. Second, and more importantly, it gives an algorithm to compute

directly the DFT p̂ of p in using only one call to the FFT algorithm. In comparison

with the original algorithm proposed in [113, page 9], this saves one FFT call.

The proposed algorithm for the computation of the periodic component p and

its DFT is the one which has been implemented for the on-line demo [60] of the

random phase noise algorithm of Chapter 2. It is also used in the Gabor noise by

example algorithm presented in Chapter 4. Documented ANSI C source codes are

available on-line [60].
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via Discrete Poisson Problems

A.1 Variational Definition of the Periodic plus Smooth

Decomposition

As in Chapter 2, we work on the space RM×N of discrete, real-valued and periodic

rectangular images. The components of an image f ∈ RM×N are indexed on the set

Ω = {0, . . . , M − 1} × {0, . . . , N − 1}, and by periodicity f(x) = f(x1 mod M, x2
mod N) for all x = (x1, x2) ∈ Z2.

We reproduce below Theorem 1 of [113] that defines the periodic plus smooth

decomposition.

Theorem A.1 (Definition of the periodic+smooth decomposition). Let u ∈ RM×N

be a discrete gray-level image. There exists a unique couple of images (p, s) ∈(
RM×N

)2
that minimizes

E(p, s) =
∑

x∈Ω, y∈Z2\Ω, |x−y|=1
(p(x)− p(y))2 +

∑

x∈Ω, y∈Ω, |x−y|=1
(s(x)− s(y))2

under the constraint
u = p+ s and

∑

x∈Ω
s(x) = 0.

p is called the periodic component of u and s the smooth component of u.

A.2 Periodic and Smooth Components as Solutions of

Discrete Poisson Problems

In this section we prove that the periodic component p and the smooth component

s are each the unique solution of a discrete Poisson problem. First let us define the

discrete Laplacian operators.

Definition A.1 (Discrete Laplacians). Let u ∈ RM×N . The discrete Laplacian ∆
of u is defined as

∆u(x) =
∑

y∈Nx

(u(y)− u(x)) = −4u(x) +
∑

y∈Nx

u(y), x ∈ Ω,

where Nx ⊂ Z2 denotes the 4-connected neighborhood of x. The Laplacian ∆ is
split in two operators ∆ = ∆i+∆b, where ∆i contains only the differences between

direct neighbors and ∆b the differences between neighbors arising from periodization

(i refers to interior and b to boundary). More precisely, the interior Laplacian of u

is

∆iu(x) =
∑

y∈Nx∩Ω
(u(y)− u(x)) = − |Nx ∩ Ω| u(x) +

∑

y∈Nx∩Ω
u(y), x ∈ Ω,

where |Nx ∩ Ω| denotes the number of neighbors of x that are in Ω.
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Theorem A.2 (Periodic and Smooth Components as Solutions of Poisson Prob-

lems). Let u ∈ RM×N , and let p and s be respectively its periodic and smooth
component. Then the image p is the unique solution of the Poisson problem




∆p = ∆iu,

mean(p) = mean(u),
(A.1)

where ∆ is the usual discrete periodic Laplacian and ∆i is the discrete Laplacian
in the interior of the domain. Similarly the image s is the unique solution of the
following Poisson problem 



∆s = ∆bu,

mean(s) = 0.
(A.2)

Remark. Note that System (A.1) is just a slightly more precise formulation of [113,

Theorem 3 (ii)]. However, as discussed in the next section, System (A.1) provides

an algorithm to compute the DFT of p with only one call to the FFT.

The proof of Theorem A.2 relies on elementary relations between the discrete

Laplacian operators and the corresponding gradient operators. It also provides a

proof of Theorem A.1. Let us now precisely define the considered gradient operators.

Definition A.2 (Discrete gradients). Let u ∈ RM×N . Note e1 = (1, 0) and e2 =

(0, 1). The discrete gradient ∇ : RM×N → (
R2

)M×N is defined by

∇u(x) = (u(x+ e1)− u(x), u(x+ e2)− u(x)) .

As for the Laplacian, the gradient ∇ is spit in two disjoint operators ∇ = ∇i +

∇b, where ∇i contains only the differences between direct neighbors and ∇b the

differences between neighbors arising from periodization. More precisely, for x =

(x1, x2) ∈ Ω, we have

∇iu(x) =





(u(x+ e1)− u(x), u(x+ e2)− u(x)) if x1 Ó= M − 1 and x2 Ó= N − 1

(u(x+ e1)− u(x), 0) if x1 Ó= M − 1 and x2 = N − 1

(0, u(x+ e2)− u(x)) if x1 = M − 1 and x2 Ó= N − 1

(0, 0) if (x1, x2) = (M − 1, N − 1)

and

∇bu(x) =





(0, 0) if x1 Ó= M − 1 and x2 Ó= N − 1

(0, u(x+ e2)− u(x)) if x1 Ó= M − 1 and x2 = N − 1

(u(x+ e1)− u(x), 0) if x1 = M − 1 and x2 Ó= N − 1

(u(x+ e1)− u(x), u(x+ e2)− u(x)) if (x1, x2) = (M − 1, N − 1)

.

Some elementary properties of the gradient and Laplacian operators are listed

below.
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Lemma A.1. The gradient and Laplacian operators satisfy the following properties:

1. ∇∗
i ∇b = 0 and ∇∗

b∇i = 0, and thus ∇∗∇ = ∇∗
i ∇i +∇∗

b∇b.

2. ∇∗∇ = −∆, ∇∗
i ∇i = −∆i and ∇∗

b∇b = −∆b,

3. ker∆ is the one-dimensional subspace of constant images,

4.

Im∆ =



u ∈ RM×N :

∑

x∈Ω
u(x) = 0



 ,

5. Im∆i ⊂ Im∆.

We can now prove Theorem A.2.

Proof of Theorem A.2. First remark that

E(p, s) = ‖∇bp‖22 + ‖∇is‖22 .

Define

F (p) = E(p, u − p) = ‖∇bp‖22 + ‖∇i(u − p)‖22 .

(p, s) is solution of the constraint optimization problem if and only if s = u − p and

p minimizes F under the constraint mean(p) = mean(u).

The functional p Ô→ F (p) is convex and C1 so that p minimizes F (without

constraint) if and only if the differential DF (p) = 0. By Lemma A.1,

DF (p) = 2∇∗
b∇bp+ 2∇∗

i ∇i(p − u)

= 2 (∇∗
b∇b +∇∗

i ∇i) p − 2∇∗
i ∇iu

= −2∆p+ 2∆iu.

Hence DF (p) = 0 ⇐⇒ ∆p = ∆iu. Now since Im∆i ⊂ Im∆, the sets of images

p satisfying ∆p = ∆iu is a one-dimensional affine subspace with direction ker∆.

Since ker∆ is the subspace of constant images, there is one and only one image in{
p ∈ RM×N : ∆p = ∆iu

}
such that mean(p) = mean(u). If we note p this uniquely

defined image, the resulting couple (p, u − p) is the solution to the initial problem.

Thus p is the unique solution of System (A.1), and by linearity s = u − p is the

unique solution of System (A.2).

Remark (Direct definition of s). According to Theorem A.2, s is the unique so-

lution of System (A.2). Computing explicitly the second member ∆bu = −∇∗
b∇bu

shows that ∇∗
b∇bu is precisely the “boundary function” which is computed in the

megawave modulus perdecomp.c of [114]. Indeed, for all (v, u) ∈ (
R2

)M×N ×
RM×N ,

〈v, ∇bu〉 =
M−1∑

k=0

(u(k, 0)−u(k, N−1))v1(k, N−1)+
N−1∑

l=0

(u(0, l)−u(M−1, l))v2(M−1, l).



A.3. FFT-based Poisson Solver 197

Thus for all v ∈ (
R2

)M×N

∇∗
bv(x) =





v1(x1, N − 1) if x2 = 0

−v1(x1, N − 1) if x2 = N − 1
0 otherwise

+





v2(M − 1, x2) if x1 = 0

−v2(M − 1, x2) if x1 = M − 1
0 otherwise

.

Hence we have

∇∗
b∇bu =





u(x1, 0)− u(x1, N − 1) if x2 = 0

u(x1, N − 1)− u(x1, 0) if x2 = N − 1
0 otherwise

+




u(0, x2)− u(M − 1, x2) if x1 = 0

u(M − 1, x2)− u(0, x2) if x1 = M − 1
0 otherwise

.

One can check that this is the “boundary function” which is computed in the

megawave modulus perdecomp.c of [114].

A.3 FFT-based Poisson Solver

The periodic component p and the smooth component s are both the unique solution

of a discrete Poisson problem of the form




∆f = g,

mean(f) = m,
(A.3)

where ∆ is the discrete periodic Laplacian, g ∈ Im∆ ={
u ∈ RM×N :

∑
x∈Ω u(x) = 0

}
, and m ∈ R. This problem can be solved di-

rectly by the classic FFT-based Poisson solver [127, Section 20.4] since in the

Fourier domain System (A.3) becomes





(
−4 + 2 cos

(
2ξ1π
M

)
+ 2 cos

(
2ξ2π

N

))
f̂(ξ) = ĝ(ξ), ξ ∈ Ω \ {0},

f̂(0) = m.

This yields an algorithm that computes directly the DFT of p and of s in using

only one call to the FFT algorithm for each component. For example, for the

periodic component p the algorithm is the following:

1. Compute ∆u the discrete Laplacian of u.

2. Compute m = mean(u).

3. Compute ∆̂u the DFT of ∆u using the forward FFT.
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4. Compute p̂ defined by





p̂(ξ) = ∆̂u(ξ)

−4+2 cos
(
2ξ1π

M

)
+2 cos

(
2ξ2π

N

) for ξ Ó= 0

p̂(0) = m

5. Compute p using the backward FFT (if necessary).

Note that at the end of Step 4 of the above algorithm the DFT p̂ of the periodic

component p is computed with only one call to the FFT algorithm. In comparison

the algorithm proposed in [113, page 9] uses two FFT calls to compute p̂.
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This appendix recalls basic definitions and properties regarding point processes

and Poisson processes that have been used in one of the preceding chapters. Af-

ter defining point processes and stating general properties of Poisson processes, a

particular emphasis is given to marked Poisson processes upon which rely both the

Poisson shot noise model of Chapters 3 and 4 and the germ-grain models of Chap-

ters 5, 6 and 9. Except for the last section, the content of this chapter is taken from

several reference textbooks, mostly [136], but also [89, 91, 11].

B.1 Poisson Point Processes

B.1.1 Framework and Notation

We will consider random measures and point processes defined on a space S called

state space. Following [136, 89], this state space S is supposed to be a locally

compact, second countable, and Hausdorff separable topological space. This means

that every point in S has a compact neighborhood, that S has a countable base,

and that distinct points of S may be separated by disjoint neighborhoods [89, p.

108]. Let us refer to such spaces as admissible state spaces. We will not discuss the

necessity of these technical hypotheses. Let us just make three observations which

are of interest for the following:

• The Euclidean space Rd is an admissible state space.
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• The space F = F
(
Rd

)
of the closed subsets of Rd embedded with the hit

or miss topology, also called the Fell topology, is also an admissible state

space [110, 136].

• If S1 and S2 are two admissible state spaces, then the product space S1 × S2
embedded with the product topology is also an admissible state space. In

particular, Rd × F is an admissible state space.

In all the remaining of this appendix, S will denote an admissible state space

and B(S) the set of Borel subsets of S. M
+ = M

+(S) denotes the set of positive

Radon measures1, that is the set of positive measures ν on (S, B(S)) such that

ν(K) < +∞ for all relatively compact set K ⊂ S. M
+ is supplied with the σ-

algebra M+ generated by the evaluation maps ν Ô→ ν(A), A ∈ B(S). As a special
subclass of M

+, N denotes the set of counting measures, that is the measures such
that ν(A) ∈ N ∪ {+∞} for all A ∈ B(S). The trace σ-algebra of M+ on N is

denoted by N . A counting measure ν is said to be simple if ν({x}) ∈ {0, 1} for all

x ∈ S. The set Ns of simple counting measures is a measurable subset of N [136,

p.51]. It is equipped with Ns, the trace σ-algebra of N on Ns.

B.1.2 Point Processes

Definition B.1 (Random measure). A random measure Φ on S is a measurable
map from some probability space (Ω, A,P) into the measurable space

(
M
+, M+

)

of locally finite Borel measures. The distribution of a random measure Φ is the
probability measure PΦ on M+ defined by

PΦ(B) = P (Φ ∈ B) , B ∈ M+.

Definition B.2 (Point process). A point process is random measure which is al-
most surely concentrated on the set N of counting measure. A point process is said
to be simple if it is a.s. in Ns.

For all x ∈ S, δx denotes the Dirac measure at point x, that is the measure

defined for all A ∈ B(S) by δx(A) = 1 if x ∈ A and 0 otherwise. The following

proposition shows that a point process can be represented as a sum of random Dirac

measure.

Proposition B.1 (Representation of a point process). Let Φ be a point process on
S. Then there exists a sequence of random variables x1, x2, . . . such that

Φ(ω, .) =

Φ(ω,S)∑

i=1

δxi(ω)(.), ω ∈ Ω.

1Definitions relative to Radon measures are recalled in Chapter C where real-valued and vector-

valued Radon measures are considered. However in this chapter the term measure implicitly refers

to a positive measure.
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References for the proof. It is a straightforward application of [136, Lemma 3.1.3

p. 49].

Thanks to the above proposition, a point process Φ can be viewed as a random

measure Φ =
∑

i δxi
but also as a (possibly redundant) random set of points Φ =

{xi}.
One can apply several natural operations to point processes. For example, if Φ

and Ψ are two point processes, then the superposition Φ+Ψ is also a point process.

For all A ∈ B(S), the restriction ΦxA of a point process Φ is also a point process.

In several case of interest, point processes Φ can be translated by vector x ∈ Rd

into shifted point processes x + Φ (e.g. when S = Rd or S = F the set of closed

subsets of Rd). A point process Φ is said to be stationary if Φ
D
= x + Φ for all

x ∈ Rd.

Definition B.3 (Intensity measure). The intensity measure of random measure Φ
(and in particular of a point process) is the measure µ defined by

µ(A) := E (Φ(A)) , A ∈ B(S).

The intensity measure is always defined but may be infinite. If Φ is stationary,

its intensity measure is translation invariant. In particular, if S = Rd, then there

exists a constant λ ∈ [0,+∞) such that µ = λLd. λ is called the intensity of the
stationary point process.

B.1.3 Poisson Distribution

This brief section recalls the definition of a Poisson distribution.

Definition B.4 (Poisson distribution). A random variable X has a Poisson dis-
tribution with parameter λ ∈ (0,+∞) if

∀n ∈ N, P(X = n) =
λne−λ

n!
.

This distribution is denoted by P(λ).

The family of Poisson distributions is extended to the degenerate cases λ = 0

and λ = +∞: for λ = 0, X = 0 a.s. and for λ = +∞, X = +∞ a.s.

Proposition B.2 (Generating function of a Poisson distribution). Let λ ∈ (0,+∞)

and X ∼ P(λ). The generating function of X is

Gλ(s) = E
(
sX

)
= eλ(s−1), s ∈ R.

Proof.

E
(
sX

)
=
+∞∑

k=0

skP (X = k) =
+∞∑

k=0

sk λk

k!
e−λ = eλ(s−1).
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B.1.4 Poisson Point Processes

Definition B.5 (Poisson point process). Let Φ be a point process on S and let µ

be its intensity measure. Φ is a Poisson (point) process on S if:

(i) For any disjoint measurable subsets A1, A2, . . . , An of S, the random variables
Φ(A1),Φ(A2), . . . ,Φ(An) are mutually independent.

(ii) For all measurable subset A ⊂ S, Φ(A) has the Poisson distribution with
parameter µ(A) ∈ [0,+∞], that is Φ(A) ∼ P(µ(A)).

First let us remark that the restriction of a Poisson process is a Poisson process.

Proposition B.3 (Restriction of a Poisson process). Let Φ be a Poisson of measure
µ and let A ∈ B(S). Then the restriction ΦxA of Φ to the set A is a Poisson process
with intensity measure µxA.

Proof. This is straightforward from the definition.

Now we turn to the fundamental result which establishes the existence and

uniqueness of Poisson point processes.

Theorem B.1 (Existence and uniqueness of Poisson process). Let µ be a locally
finite measure without atoms on S. Then there exists a unique Poisson process in
S with intensity measure µ. Besides, this Poisson point process is simple.

References for the proof. This theorem regroups Lemma 3.2.1 p. 59 and Theorem

3.2.1 p. 60 of [136].

Proposition B.4 (Simplicity of Poisson processes). A Poisson process is simple if
and only if its intensity measure has no atoms.

References for the proof. This is a weaker version of [136, Lemma 3.2.1 p. 59].

As a consequence of the two above results, any simple Poisson process is char-

acterized by its intensity measure. In the remaining of this chapter we will

always suppose that the considered intensity measures µ are locally finite

and without atoms, that is that the corresponding Poisson processes are simple.

The next proposition provides a better understanding of the randomness struc-

ture of Poisson processes (see [136, Theorem 3.2.2 (b) p. 62-63]).

Proposition B.5. Let Φ be a Poisson in S with intensity measure µ. Let A ⊂ S

be a Borel set such that 0 < µ(A) < +∞, and let k ∈ N. Then

P (ΦxA ∈ · |Φ(A) = k ) = P

(
k∑

i=1

δξi
∈ ·

)

where ξ1, . . . , ξk are independent, identically distributed random points in S with
distribution

Pξ :=
µxA

µ(A)
.
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We conclude this section with two elementary lemmas regarding the generating

function of the counting variables NΦ(A) which will be useful in Appendix D.

Lemma B.1. Let Φ be a Poisson process on a state space S with intensity measure
µ. Let A ⊂ S be a measurable subset such that 0 < µ(A) < +∞. Then for every
s ∈ R,

E
(
sNΦ(A)

)
= e(s−1)µ(A).

Proof. E
(
tNΦ(A)

)
is the generating function of the r.v. NΦ(A) ∼ P (µ(A)). The

result follows from Proposition B.2.

Lemma B.2. Let Φ be a Poisson process on a state space S with intensity measure
µ. Let A, B ⊂ S be two measurable subsets such that 0 < µ(A) < +∞ and 0 <

µ(B) < +∞. Then for every s ∈ R,

E
(
sNΦ(A)+NΦ(B)

)
= e(s−1)(µ(A)+µ(B))+(s−1)2µ(A∩B).

Proof. Introduce the sets A1 = A \ B and B1 = B \ A and remark that

NΦ(A) +NΦ(B) = NΦ(A1) +NΦ(B1) + 2NΦ(A ∩ B).

As the sets A1, B1 and A∩B are disjoint, the r.v. NΦ(A1), NΦ(B1) and NΦ(A∩B)

are independent. Thus using Lemma B.1 we get

E
(
sNΦ(A)+NΦ(B)

)
= E

(
sNΦ(A1)

)
E

(
sNΦ(B1)

)
E

(
s2NΦ(A∩B)

)

= e(s−1)µ(A1)e(s−1)µ(B1)e(s
2−1)µ(A∩B)

= e(s−1)(µ(A)+µ(B))+(s−1)2µ(A∩B),

where in the last step we used µ(A1) + µ(B1) = µ(A) + µ(B)− 2µ(A ∩ B).

B.1.5 Sums over Poisson processes: Campbell’s Theorem

The results of this section are taken from [91, Section 3.2]. Several of these results

generalize to the case of non Poisson point processes (see e.g. [136, Theorem 3.1.2

p. 54] and [136, Theorem 3.1.3 p. 55]).

Theorem B.2 (Campbell’s Theorem). Let Φ be a Poisson process on the state
space S with mean measure µ, and let f : S → R be a measurable function. Then
the sum

Σ =
∑

X∈Φ
f(X)

is absolutely convergent with probability 1 if and only if
∫

S
min (|f(x)|, 1)µ(dx) < +∞. (B.1)
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If this condition holds, then

E
(
eθΣ

)
= exp

(∫

S

(
eθf(x) − 1

)
µ(dx)

)

for any complex θ for which the integral on the right converges, and in particular
whenever θ is pure imaginary. Moreover

E (Σ) =

∫

S
f(x)µ(dx) (B.2)

in the sense that the expectation exists if and only if the integral converges, and they
are then equal. If (B.2) converges, then

Var(Σ) =

∫

S
f(x)2µ(dx),

finite or infinite.

Corollary B.1 (Covariance of two sums over the same Poisson process). If
f1, f2, . . . , fp are measurable functions satisfying Hypothesis (B.1), so that the sums

Σj =
∑

X∈Φ
fj(X), j = 1, . . . , p,

converge with probability 1, then

E
(
eit1Σ1+···+itpΣp

)
= exp

(∫

S

(
eit1f1(x)+···+itpfp(x) − 1

)
µ(dx)

)
.

In addition if the functions fj satisfy
∫

S
fj(x)

2µ(dx) < +∞,

then
Cov (Σj ,Σk) =

∫

S
fj(x)fk(x)µ(dx).

B.1.6 Laplace Transform of Random Measures

This section introduces the concept of Laplace transform of random measures [89].

Definition B.6 (Laplace transform of a random measure). Let Φ be a random
measure. The Laplace transform of Φ is the functional LΦ

f Ô→ LΦ(f) := E

(
exp

(
−

∫

S
f(x)Φ(dx)

))
,

where f describes the set of non negative measurable functions defined over S.

The Laplace transform of a random measure is an important analytic tool since,

like the Laplace transform of a random variable, it characterizes the distribution of

a random measure.
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Theorem B.3 (Laplace transform and equality in distribution). Let Φ and Ψ be
two random measures. Then the following assertions are equivalent:

(i) Φ D
= Ψ.

(ii) LΦ(f) = LΨ(f) for all non negative measurable functions f : S Ô→ [0,+∞).

(iii) LΦ(f) = LΨ(f) for all non negative and compactly supported continuous func-
tions f : S Ô→ [0,+∞).

References for the proof. (i) ⇒ (ii) ⇒ (iii) is straightforward. (iii) ⇒ (i) is a part

of [89, Theorem 3.1].

Proposition B.6 (Laplace transform of a Poisson process). Let Φ be a Poisson
process on the state space S with mean measure µ. Then for all non negative
measurable functions f : S Ô→ [0,+∞),

LΦ(f) = exp
(

−
∫

S

(
1− e−f(x)

)
µ(dx)

)
.

Proof. Apply Campbell’s theorem (Theorem B.2) to
∑

xi∈Φ f(xi) and specify the

formula of the characteristic function in θ = −1.

B.2 Independently Marked Poisson Processes

B.2.1 Independently Marked Point Processes

Within this section M denotes a locally compact and separable topological space

with a countable base and the state space S is the product space Rd × M provided

with the product σ-algebra B
(
Rd

)
⊗ B(M). Our main reference is [136, Section

3.5]

Definition B.7 (Marked point process). A marked point process in Rd with mark
space M is a simple point process Φ in Rd × M with intensity measure µ satisfying

µ (C × M) < +∞ for all compact set C ⊂ Rd.

Definition B.8 (Ground process). If Φ is a marked point process in Rd with mark
space M , then the image p(Φ) of Φ under the projection p : (x, m) Ô→ x is a point
process in Rd called the unmarked point process or ground process of Φ.

By Proposition B.1 a marked point process Φ in Rd with mark space M can be

represented in the form

Φ =

Φ(Rd×M)∑

i=1

δ(xi,mi), (B.3)

where (xi, mi)i is a sequence of random variables in Rd × M . In general, the mark

mi may depend on the position xi or even on the whole process
2 Φ. In the following

we will restrict to the case where the marks are independent.

2This is for example the case with the particle process
∑

i
δ(xi,Ki), Ki ∈ K′

0, of Section 9.7

which defines a random tessellation (see [136, Section 10.1]).
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Definition B.9 (Independently marked point process). A marked point pro-
cess in Rd with mark space M is independently marked if it has a represen-
tation (B.3) where the random marks (mi)i∈N are i.i.d. and independent of(
(xi)i∈N,Φ(Rd × M)

)
. The common distribution Q of the r.v. mi is then called

the mark distribution of Φ.

With this definition it might not be easy to show that a marked point process is

independently marked. However when the ground process of Φ is a Poisson process

we have the following characterization theorem.

Theorem B.4 (Characterization of independently marked Poisson processes). Let
µ be the intensity measure of a Poisson process in Rd, Q be a probability distribution
over M and Φ be a marked point process in Rd with mark space M . Then the
following assertions are equivalent :

1. Φ is independently marked with mark distribution Q and its ground process
p(Φ) is a Poisson process with intensity measure µ.

2. Φ is a Poisson process in Rd × M with intensity measure µ ⊗ Q.

Bibliographic references for the proof. This theorem is stated in [11, Section 1.8]

without proof. The implication (1)⇒(2) is given in the proof of [136, Theorem

3.5.7 p. 88]. The reverse is shown in slightly modifying the proof of [136, Theorem

3.5.8 p. 89], as the authors explain in the remark following the proof.

Theorem B.4 is very useful because, as the next corollary explicitly shows, it

permits to interpret some Poisson processes taking values in a product space as

independently marked point processes.

Corollary B.2 (Decomposition of a Poisson process into an independently marked

Poisson process). Let Φ be a Poisson process in Rd × M with intensity measure
µ = µ1 ⊗ µ2, where µ1 is a measure over Rd without atoms and µ2 is a measure
over M . If 0 < µ2(M) < ∞, then Φ is an independently marked Poisson process
in Rd with mark distribution 1

µ2(M)µ2 and ground Poisson process with intensity
measure µ2(M)µ1.

Proof. Write

µ1 ⊗ µ2 = µ2(M)µ1 ⊗ 1

µ2(M)
µ2

and use Theorem B.4.

We conclude this general section in evoking stationary marked point processes.

By definition, a marked point process is stationary if its ground process is sta-

tionary. It turns out that all stationary marked Poisson processes are necessarily

independently marked.
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Proposition B.7 (Stationary Poisson processes are independently marked). Let Φ
be a stationary Poisson process in Rd × M with intensity measure satisfying

µ (C × M) < +∞ for all compact set C ⊂ Rd.

Then Φ is necessarily independently marked.

Reference for the proof. This is [136, Theorem 3.5.8 p. 89].

B.2.2 The Poisson Process Preceding the Last Hit

The goal of this section is to prove Proposition 6.3 (reproduced below) which was

been used in Chapter 6 to compute the covariance of the TDL process. It is an

extension of the fact that if 0 > t0 > t1 > t2 > . . . is an homogeneous Poisson

process on (−∞, 0) then the shifted process 0 > t1 − t0 > t2 − t0 > t3 − t0 > . . . is

also a Poisson process with the same distribution [91, Chapter 4].

Until the end of this section E denotes a locally compact and separable topo-

logical space with a countable basis.

Proposition 6.3 (Last hitting leaf and the Poisson process preceding the last hit).

Let Ψ be a Poisson process in (−∞, 0)×E with intensity measure of the form λ⊗µ

where λ is the one-dimensional Lebesgue measure on (−∞, 0) and µ is a measure
on E. Let A ⊂ E be a measurable set such that 0 < µ(A) < +∞. Define

t0 = sup {ti|(ti, yi) ∈ Ψ ∩ ((−∞, 0)× A)} ,

y0 the a.s. unique y ∈ E such that (t0, y) ∈ Ψ ∩ ((−∞, 0)× A), and

Ψt0 =
∑

(ti,yi)∈Ψ
 (ti < t0) δ(ti−t0,yi).

Then

• t0, y0, and Ψt0 are mutually independent.

• −t0 has an exponential distribution with parameter µ(A).

• y0 has distribution QA defined for all B ∈ B(E) by QA(B) =
µ(B ∩ A)

µ(A)
.

• Ψt0 is a Poisson process with intensity measure λ ⊗ µ, i.e. Ψt0 has the same
distribution as Ψ.

To prove Proposition 6.3 we first deals with the case where the time-shift is a

r.v. independent of the Poisson process.

Lemma B.3 (Independent time shift). Let Ψ be a Poisson process in (−∞, 0)× E

with intensity measure of the form λ ⊗ µ where λ is the one-dimensional Lebesgue
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measure on (−∞, 0) and µ is a measure on E. Let T be a random variable inde-
pendent of Ψ. Then the point process

ΨT =
∑

(ti,yi)∈Φ
 (ti < T ) δ(ti−T,yi)

is a Poisson process with intensity measure λ⊗µ, i.e. ΨT has the same distribution
as Ψ. Besides ΨT and T are independent.

Proof. For all non negative measurable function f , let us write

LΨ(f) := E


exp


−

∑

(t,y)∈Ψ
f(t, y)







the Laplace transform of Ψ, and for all s ∈ [0,+∞),
LT (s) := E (exp(−sT ))

the Laplace transform of T ∈ (−∞, 0). As Ψ is a Poisson process with intensity

measure λ ⊗ µ, by Proposition B.6

LΨ(f) = exp
(

−
∫

(−∞,0)×E

(
1− e−f(t,y)

)
dtµ(dy)

)

for all non negative measurable function f . By Theorem B.3 and following [91,

Chapter 4], to prove that ΨT has the same distribution as Ψ and is independent of

T , it is sufficient to prove that for all f and s we have

E


exp


−sT −

∑

(t,y)∈ΨT

f(t, y)





 = LT (s)LΨ(f). (B.4)

Let f be any non negative measurable function, and s be any non negative real.

We have

E


exp


−sT −

∑

(t,y)∈ΨT

f(t, y)





 = E


exp


−sT −

∑

(t,y)∈Ψ
 (t < T ) f(t − T, y)





 .

Since T is independent of Ψ, using Fubini theorem we can compute the last expec-

tation in first integrating with respect to the distribution of Ψ and then integrating

with respect to the distribution of T . Let us fix T and compute the integral

IT =

∫

N((−∞,0)×E)
exp


−sT −

∑

(t,y)∈φ

 (t < T ) f(t − T, y)


 PΨ(φ).

Introducing the function gT : (t, y) Ô→  (t < T ) f(t − T, y) we see that IT =

exp(−sT )LΨ(gT ). By Proposition B.6

LΨ(gT ) = exp

(
−

∫

(−∞,0)×E

(
1− e− (t<T )f(t−T,y)

)
dtµ(dy)

)

= exp

(
−

∫

(−∞,T )×E

(
1− e−f(t−T,y)

)
dtµ(dy)

)
.
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By the change of variable u = t − T we get

LΨ(gT ) = exp

(
−

∫

(−∞,0)×E

(
1− e−f(u,y)

)
duµ(dy)

)
= LΨ(f).

Hence IT = exp(−sT )LΨ(f). Integrating IT with respect to the distribution of T

we obtain Equation (B.4), which concludes the proof.

Proof of Proposition 6.3. Note ΨA = {(ti, yi) ∈ Ψ : yi ∈ A} = Ψ ∩ ((−∞, 0)× A).

By Proposition B.3, ΨA is a Poisson process with intensity measure λ ⊗ (µxA).

Since 0 < µ(A) < +∞ we can write

λ ⊗ (µxA) = µ(A)λ ⊗ QA,

where QA is the probability measure defined in the proposition. By Theorem B.4,

ΨA is an independently marked Poisson process and its ground process is a one-

dimensional homogeneous Poisson process on (−∞, 0) with intensity µ(A). This

Poisson process on the line can be enumerated in decreasing order t0 > t1 > t2 >

. . . , along with the corresponding marks y0, y1, y2, . . . −t0 is the length of the in-

terval between 0 and the first point of this one-dimensional Poisson process. It is

well-known that −t0 has an exponential distribution with parameter µ(A) and that

the shifted random set {ti−t0, i ≥ 1} is a Poisson process with intensity µ(A) which

is independent of the original process {ti, i ≥ 0} (see, for example, [91, Chapter

4]). Since ΨA is independently marked, the mark y0 is independent of t0 and has

distribution QA. Besides, for the same reason, the process

Ψt0,A := Ψt0 ∩ ((−∞, 0)× A) = {(ti − t0, yi), i ≥ 1}

is an independently marked Poisson process with intensity measure µ(A)λ ⊗ QA.

Let us now conclude the proof in considering the whole shifted point process

Ψt0 =
∑

(ti,yi)∈Ψ
 (ti < t0) δ(ti−t0,yi).

Decompose Ψ in Ψ = ΨA ∪ ΨAc , where ΨAc = Ψ ∩ ((−∞, 0)× Ac), and use the

same decomposition for Ψt0 = Ψt0,A ∪ Ψt0,Ac . We have already shown that Ψt0,A

has the same distribution as ΨA. Since Ψ is a Poisson process, ΨA and ΨAc are

independent. Consequently the couple (t0, y0) is independent of ΨAc . Since t0 is

independent of ΨAc , Lemma B.3 ensures that the shifted point process

Ψt0,Ac =
∑

(ti,yi)∈ΨAc

 (ti < t0) δ(ti−t0,yi)

has the same distribution as ΨAc and is independent of t0. Besides Ψt0,A and Ψt0,Ac

are independent: Indeed by definition Ψt0,Ac only depends of ΨAc and t0, and Ψt0,A

is independent of the couple (t0,ΨAc). Eventually, the couple (Ψt0,A,Ψt0,Ac) has the

same distribution as the couple (ΨA,ΨAc), and so Ψt0 = Ψt0,A ∪Ψt0,Ac has the same

distribution as Ψ = ΨA ∪ ΨAc . As for the mutual independence of t0, y0 and Ψt0 ,

Ψt0 is independent of t0 and y0 is clearly independent of the couple (t0,Ψt0).
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This chapter gathers necessary results related to signed and vector valued mea-

sures. Important examples of such measures are the weak derivatives of functions

of bounded directional variation and functions of bounded variation respectively

(see Section 7.2). First the definitions of signed Radon measures and vector-valued

Radon measures are recalled. A second section deals with the notion of weak∗ con-
vergence of signed Radon measure as well as the compactness for weak∗ convergence.
To finish the definition of random signed measures is given. These random measures

are at stake in the definition of random fields of bounded directional variation (see

Chapter 7).

C.1 Definitions of Signed and Vector-Valued Measures

In this section we recall the definitions of signed and vector-valued Radon measures.

Our reference is [6, Chapter 1]. In all the section (X, A) denotes a measurable space.

Definition C.1 (Positive measures). A set function µ : A :→ [0,+∞] is a positive
measure if

• µ(∅) = 0.

• µ is additive: for all A, B ∈ A,

A ∩ B = ∅ =⇒ µ(A ∪ B) = µ(A) + µ(B).

• µ is σ-subadditive: for all A, (An)n∈N ∈ A,

A ⊂
+∞⋃

n=0

An =⇒ µ(A) ≤
+∞∑

n=0

µ(An).
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µ is said to be finite if µ(X) < +∞. A ∈ A is said to be σ-finite with respect to µ

if A is the union of an increasing sequence of sets An such that µ(An) < +∞.

Remark (σ-additivity). It is straight forward to show that a set function µ : A :→
[0,+∞] is a measure if and only if µ is σ-additive, that is for any sequence of

(An)n∈N of pairwise disjoint elements of A,

µ

(
+∞⋃

n=0

An

)
=
+∞∑

n=0

µ(An).

It is this property which permits to define real and vector-valued measures.

Definition C.2 (Real and vector-valued measures). A set function µ : A → Rm,
m ≥ 1, is a measure if

• µ(∅) = 0.

• For any sequence of (An)n∈N of pairwise disjoint elements of A,

µ

(
+∞⋃

n=0

An

)
=
+∞∑

n=0

µ(An).

If m = 1 µ is a real measure or signed measure, and if m > 1 µ is a vector measure.

Let us remark that according to this definition, for all A ∈ A, |µ(A)| < +∞,

and all the series
∑+∞

n=0 µ(An) are necessarily absolutely convergent since the union

of sets does not depend on the order of its terms [6, p. 3]. In particular, note that

a positive measure is not necessarily a real measure.

Let us now define the important notion of total variation of a real or vector-

valued measures.

Theorem C.1 (Total variation). Let µ be a signed or vector measure over (X, A).
The total variation |µ| of µ is the set function defined for all A ∈ A by

|µ|(A) = sup
{
+∞∑

n=0

|µ(An)|, (An)n∈N ∈ A pairwise disjoint and A =
+∞⋃

n=0

An

}
.

The total variation |µ| is a positive and finite measure on (X, A).

Reference for the proof. This is [6, Theorem 1.6 p. 5].

We now turn to the definition of Borel and Radon measures which are measures

defines on the Borel σ-algebra of a metric space. In the remaining of this section

(S, d) denotes a locally compact and separable metric space1, and B(S) denotes its
Borel σ-algebra, that is the σ-algebra generated by the open sets for the topology

induced by the distance d.

1Let us precise that if S is an admissible state space in the sense of Appendix B, that is a locally

compact, second countable, and Hausdorff separable topological spaces, then it can be equipped

with a distance d such that (S, d) is a locally compact and separable metric space [89, p. 168].
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Definition C.3 (Borel measure and positive Radon measure). A positive measure
on the measurable space (S, B(S)) is called a Borel measure. If a Borel measure is
finite on the compact sets, it is called a positive Radon measure.

Definition C.4 (Real and Vector Radon measure). A real or vector-valued set
function µ defined on the relatively compact Borel subsets of S which is a measure
on (K, B(K)) for every compact set K ⊂ S is called a real or vector Radon measure
on S. If µ : B(S) → Rm is a real or vector-valued measure, then we say that µ is a
finite real or vector Radon measure.

Real Radon measures are also called signed Radon measures. We denote by

M(S) (resp. MF (S)) the space of signed Radon measures (resp. finite signed

Radon measures).

C.2 Weak∗ Convergence of Signed Radon Measures

This section recalls the definition of the weak∗ convergence of signed Radon mea-

sures, as well as the fundamental results of weak∗ compactness. All the above

results extend to the case of vector-valued measure [6, p. 26-27].

As in the previous section, (S, d) is a locally compact and separable metric

space (although we only use these results for S = Rd), and M(S) and MF (S)

denote respectively the space of signed Radon measures and the space of finite

signed Radon measures.

In what follows Cc(S) denotes the set of continuous functions ϕ : S → R having

compact support, and C0(S) denotes the closure of Cc(S) for the sup norm.

Definition C.5 (Weak∗ convergence). We say that a sequence (µn)n∈N ∈ M(S)

locally weakly∗ converges to µ ∈ M(S) is for every ϕ ∈ Cc(S),

lim
n→+∞

∫

S
ϕ(x)µn(dx) =

∫

S
ϕ(x)µ(dx).

In the case where the Radon measures are finite, we say that a sequence (µn)n∈N ∈
MF (S) weakly∗ converges to µ ∈ MF (S) is for every ϕ ∈ C0(S),

lim
n→+∞

∫

S
ϕ(x)µn(dx) =

∫

S
ϕ(x)µ(dx).

Theorem C.2 (Weak∗ compactness). If (µn)n∈N is a sequence of MF (S) such
that sup {|µn|(S) < +∞, n ∈ N} < +∞ then (µn)n∈N has a weakly∗ converging
subsequence. Moreover, the map µ Ô→ |µ|(S) is lower semicontinuous with respect
to the weak∗ convergence.

Reference for the proof. This is [6, Theorem 1.59 p. 26].

Corollary C.1 (Local weak∗ compactness). Let (µn)n∈N is a sequence of M(S)

such that sup {|µn|(K) < +∞, n ∈ N} < +∞ for every compact K ⊂ S. Then
(µn)n∈N has a locally weakly∗ converging subsequence. Moreover, for every open set
U ⊂ S, the map µ Ô→ |µ|(U) is lower semicontinuous with respect to the local weak∗
convergence.
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C.3 Random Signed Measures

As in the previous section, (S, d) is a locally compact and separable metric space

(although we only use these results for S = Rd). M := M(S) and MF := MF (S)

denote respectively the space of signed Radon measures and the space of finite

signed Radon measures.

In this section the formal definition of a random signed (Radon) measure is

recalled as well as the fact that the total variation of a random signed Radon

measure is a well-defined random positive Radon measure.

Following the usual construction of random objects, a random signed measure

will be defined as a measurable function from a probability space (Ω, A,P) to the

space M of signed Radon measures equipped with an appropriate σ-algebra M.

Following [76], the σ-algebra M is defined in the same way as the σ-algebra M+ on

the space M
+ (S) of positive Radon measures (see Section B.1.1 or [89, 136, 76]).

More precisely, M is the smallest σ-algebra for which the maps

µ Ô→ µ(A), A ∈ B(S) relatively compact,
are measurable.

Definition C.6 (Random signed (Radon) measures). Let (Ω, A,P) be a probability
space. A random signed measure is a measurable map

µ : (Ω, A) −→ (M, M) .

By [89, Lemma 1.3 p. 12], for all ϕ ∈ Cc(S), the map

µ Ô→
∫

S
ϕ(x)µ(dx)

is measurable. Besides, by [89, Lemma 1.4 p. 12], the σ-algebra M is generated by

all the maps of this form. From this we deduce the following proposition.

Proposition C.1 (Almost sure weak∗ convergence). Let (µn)n∈N be a sequence
of random signed measures such that for P-almost all ω ∈ Ω, µn(ω) is weakly∗

convergent to a measure µ(ω). Then, the map ω Ô→ µ(ω) is measurable, that is to
say, µ is a well-defined random signed measure.

Proof. Let Ω′ be a measurable subset of Ω such that P(Ω′) = 1 and for all ω ∈ Ω′

µn(ω) weakly
∗ converge to some measure µ(ω). Extend the definition of µ(ω) to

µ(ω) = 0 if ω /∈ Ω′. Since M is generated by the maps µ Ô→ ∫
S ϕ(x)µ(dx), to show

that the map ω Ô→ µ(ω) is measurable it is enough to show that for all ϕ ∈ Cc(S),

ω Ô→
∫

S
ϕ(x)µ(ω, dx)

is measurable. Now by hypothesis for all ϕ ∈ Cc(S) and ω ∈ Ω′,

lim
n→+∞

∫

S
ϕ(x)µn(ω, dx) =

∫

S
ϕ(x)µ(ω, dx).

Hence the map ω Ô→ ∫
S ϕ(x)µ(ω, dx) is measurable since it is the a.s. limit of a

sequence of measurable maps.
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We now consider the total variation of random signed measures.

Proposition C.2 (Measurability of the total variation). Let µ : (Ω, A) → (M, M)

be a random signed measure. Then the total variation of |µ| : ω Ô→ |µ(ω)| is a
random positive Radon measure.

References for the proof. By Theorem C.1, for all ω, the total variation |µ(ω)| is
a positive Radon measure. The difficulty is to show that ω Ô→ |µ(ω)| is measur-
able. This has been proved by Horowitz [78, Theorem 1.1 p. 216] using Hahn’s

decomposition theorem [134].
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This appendix presents technical proofs related to the study of the transparent

dead leaves (TDL) process developed in Chapter 6.

The first section provides a fully detailed proof of the Gaussian convergence of

the TDL process as the objects tend to be fully transparent (see Theorem 6.1). Our

proof is based on a the method of moments for convergence in distribution.

The second section proposes an alternative proof for the computation of the

covariance (see Proposition 6.4) based on Palm calculus. The lengthy computations

demonstrate the utility of our alternative strategy based on the conditioning with

respect to the coverage of the last hitting leaf.

D.1 Proof of the Normal Convergence Theorem

This section provides the proof of Theorem 6.1 stated in Chapter 6. This theorem

establishes the normal convergence of the TDL process as the objects tend to be

fully transparent, as precisely recalled below.

Theorem 6.1 (Normal convergence of the TDL process). Suppose that Var(a) > 0.
Then, as the transparency coefficient α tends to 0, the family of random fields
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(
fα − E (fα)√
Var (fα)

)

α

converges in the sense of finite-dimensional distributions to a cen-

tered stationary Gaussian random field with covariance function

C(τ) =
γX(τ)

E(Ld(X))
=

γX(τ)

γX(0)
.

D.1.1 Some Classical Results of Probability Theory

This section gathers the several classic theoretical results needed do prove Theo-

rem 6.1. All these results are related to the method of moments to demonstrate a

convergence in distribution.

D.1.1.1 Moments and Convergence in Distribution

Proposition D.1 (Moments and convergence in distribution). Let (fn) be a se-
quence of centered random fields having finite moments of all order and let fG be a
centered stationary Gaussian r.f. with covariance function C. If for all p ∈ N, for
all (non necessarily distinct) y1, . . . , yp ∈ Rd,

lim
n→+∞

E




p∏

j=1

fn(yj)


 = E




p∏

j=1

fG(yj)


 ,

then (fn) converges to fG in the sense of finite-dimensional distributions.

D.1.1.2 A Recurrence Relation for the Moments of a Multivariate Nor-

mal Distribution

Explicit expressions for the moments of a multivariate normal distribution are given

by Isserlis’ theorem recalled below.

Theorem D.1 (Isserlis’ theorem). Let Y1, . . . , Y2N+1, N ≥ 1, be normalized, jointly
Gaussian r.v. (i.e. E(Yi) = 0 and Var(Yi) = E(Y 2i ) = 1). Then

E(Y1Y2 . . . Y2N ) =
∑ ∏

E(YiYj) =
∑ ∏

Cov(Yi, Yj),

and

E(Y1Y2 . . . Y2N+1) = 0,

where the notation
∑ ∏

means summing over all distinct ways of partitioning the set
{Y1, . . . , Y2N } into N pairs {Yi, Yj} and take the product of the N terms E(YiYj) =

Cov(Yi, Yj).

From Isserlis’ theorem one deduces a recurrence relation for the moments of a

multivariate normal distribution.
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Proposition D.2 (A recurrence relation for the moments of a multivariate normal

distribution). Let Y = (Y1, . . . , Yp), p ≥ 2, be a normalized Gaussian vector (i.e.
E(Yi) = 0, and Var(Yi) = E(Y 2i ) = 1). Then,

E




p∏

j=1

Yj


 =

2

p

∑

{j,k}⊂{1,...,p}
Cov(Yj , Yk)E


 ∏

l∈{1,...,p}\{j,k}
Yl


 .

Proof. If p ≥ 2 is odd, then by Isserlis’ theorem the above formula is trivial. Hence,

in the following we suppose that p is even. First let j ∈ {1, . . . , p}. Factorizing with
all the pairs containing j in Isserlis’ identity, one obtains

E




p∏

j=1

Yj


 =

p∑

k=1
k Ó=j

Cov(Yj , Yk)E


 ∏

l∈{1,...,p}\{j,k}
Yl


 .

The above identity is valid for all j ∈ {1, . . . , p}. Summing these p identities gives

E




p∏

j=1

Yj


 =

1

p

p∑

j=1

p∑

k=1
k Ó=j

Cov(Yj , Yk)E


 ∏

l∈{1,...,p}\{j,k}
Yl


 .

Now remark that in this double sum over (j, k), the terms Cov(Yj , Yk)E (
∏

l Yl)

only depend on the pair {j, k} but not on the order. Hence, the above expression

simplifies to

E




p∏

j=1

Yj


 =

2

p

∑

{j,k}⊂{1,...,p}
Cov(Yj , Yk)E


 ∏

l∈{1,...,p}\{j,k}
Yl


 .

D.1.1.3 Moments and Partial Derivatives of the Characteristic Function

If a random vector (Y1, . . . , Yp) has finite moments of all order, then its characteristic

function

φ : (t1, . . . , tp) Ô→ E
(
ei(t1Y1+···+tpYp)

)

is C∞ and the multivariate moments of (Y1, . . . , Yp) are proportional to the partial

derivatives of φ in (0, . . . , 0). Since this result will be used later, let us introduce

notation for the partial derivatives of a function f : (t1, . . . , tn) Ô→ f(t1, . . . , tn). In

what follows, for every subset I = {i1, . . . , ik} ⊂ {1, . . . , p}, we write #I = k for

the cardinal number of I, and we adopt the short notation

∂kf

∂tI
(t1, . . . , tp) :=

∂kf

∂ti1∂ti1 . . . ∂tik

(t1, . . . , tp).

With these notation, one has

∂kφ

∂tI
(0, . . . , 0) = ikE


∏

j∈I
Yj


 .
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As it will be needed later on, let us introduce further notation relative to partial

derivatives. For I ⊂ {1, . . . , p}, Ic denotes the complementary set of indices Ic :=

{1, . . . , p} \ I. Then, when differentiating a product f(t) = g(t)h(t) we have the

following formula

∂pf

∂t1 . . . ∂tp
(t1, . . . , tp) =

p∑

k=0

∑

I⊂{1,...,p}
#I=k

∂kg

∂tI
(t1, . . . , tp)

∂p−kh

∂tIc

(t1, . . . , tp).

D.1.2 Notation and Plan of the Proof of Theorem 6.1

Let s be a real number such that 0 < s < 1
6 (this choice for s will be become clear

later). For all α ∈ (0, 1], one defines the truncation operator

Tα(b) =





b if b ∈ [−α−s, α−s],

α−s if b > α−s,

−α−s if b < −α−s.

For all α ∈ (0, 1], fα denotes the TDL process with transparency coefficient α

and

gα(y) =
fα(y)− E(a)√
Var(fα)

denotes its normalization. For all α ∈ (0, 1], fT
α denotes the TDL process with

transparency coefficient α associated to the Poisson process

ΦT = {(ti, xi, Xi, Tα(ai)), (ti, xi, Xi, ai) ∈ Φ},

that is the TDL process obtained by truncating the colors ai of the leaves of Φ with

the truncation operator Tα. We have

E(fT
α ) = E(Tα(a)) and Var(fT

α ) =
α

2− α
Var(Tα(a)).

As for the TDL fα, one defines

gT
α (y) =

fT
α (y)− E(Tα(a))√

Var(fT
α )

.

Thanks to the truncation, fT
α is bounded by α−s. In particular, for all α ∈ (0, 1],

fT
α and gT

α have finite moments of all order.

We will note fG a centered stationary Gaussian random field with covariance

function C : τ Ô→ γX(τ)
γX(0)

.

The proof of Theorem 6.1 is in two parts:

1. One shows that the normalized TDL with truncated colors gT
α converges in

distribution to fG by the method of moments. More precisely the sufficient

condition of Proposition D.1 will be shown to be true by induction over the

number of points p.
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2. One shows that the family gα − gT
α converges to 0 in L2.

By Slutsky’s theorem, these two properties ensures that gα converges in distri-

bution to fG.

D.1.3 Normal Convergence of the Normalized TDL Having Trun-

cated Colors

With the above notation, by Proposition D.1, it is enough to show the following

lemma.

Lemma D.1 (Convergence of Moments). For all p ∈ N, for all (non necessarily
distinct) y1, . . . , yp ∈ Rd,

lim
α→0

E




p∏

j=1

gT
α (yj)


 = E




p∏

j=1

fG(yj)


 .

We will show this lemma by induction over p. First note that, by definition of

gT
α (yj), the statement is true for p = 0 and p = 1, and one easily checks that it is

also true for p = 2 (but this is not necessary for the above proof).

For the proof by induction we now consider an integer p ≥ 2 and p points

y1, . . . , yp of Rd, and we suppose that the convergence of moments holds for all

moments of order k < p.

D.1.3.1 Decomposition of the Multivariate Characteristic Function by

Conditioning with Respect to the Coverage of the Last Hitting

Leaf

We consider the random vector

(
gT

α (y1), . . . , gT
α (yp)

)
=

(
fT

α (y1)− E(Tα(a))

σT
α

, . . . ,
fT

α (yp)− E(Tα(a))

σT
α

)
,

where σT
α =

√
Var(fT

α ). One denotes by φα(t1, . . . , tp) the multivariate characteris-

tic function of this random vector, that is

φα(t1, . . . , tp) = E
(
ei(t1gT

α (y1)+···+tpgT
α (yp))

)
.

One denotes by ψα the characteristic function of the random variable Tα(a) −
E(Tα(a)) where a follows the color distribution Pa, that is

ψα(t) = E
(
eit(Tα(a)−E(Tα(a)))

)
.

In addition, we introduce the short notation Y for the set Y = {y1, . . . , yp}.
In what follows we apply Proposition 6.3 in considering the leaves of ΦT which

hit the set Y. Hence let (t0, x0, X0, Tα(a0)) denote the last leaf covering at least
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one point of Y, and let us note gT
α,t0 the corresponding time-shifted random field.

Then for all yj ∈ Y, one has the decomposition

gT
α (yj) =





αTα(a0)−E(Tα(a))
σT

α
+ βgT

α,t0(yj) if yj ∈ x0 +X0,

gα,t0(yj) otherwise,

which can also be written as follows

gT
α (yj) = α (yj ∈ x0 +X0)

Tα(a0)− E(Tα(a))

σT
α

+ β (yj∈x0+X0)gT
α,t0(yj).

Besides, by Proposition 6.3, gT
α,t0 , (x0, X0) and a0 are mutually independent.

To obtain a decomposition of the characteristic function φα we will condition

with respect to the coverage of the last leaf x0 +X0. Hence, for all subset X ⊂ Y,
X Ó= ∅, let us note AX ⊂ Ω the event

AX = {(x0 +X0) ∩ Y = X }

and

pX = P (AX ) .

The events AX , X Ó= ∅, form a partition of the probability space Ω, and in particular

∑

X ⊂Y,X Ó=∅
pX = 1.

Remark that on the event AX , the above decomposition of gT
α (yj) becomes

gT
α (yj) = α (yj ∈ X )Tα(a0)− E(Tα(a))

σT
α

+ β (yj∈X )gT
α,t0(yj).

Hence, using the mutual independence of the different random variables,

φα(t1, . . . , tp) = E
(
ei(t1gT

α (y1)+···+tpgT
α (yp))

)

=
∑

X ⊂Y
X Ó=∅

E
(

ei(t1gT
α (y1)+···+tpgT

α (yp))
∣∣∣ AX

)
pX

=
∑

X ⊂Y
X Ó=∅

ψα


 α

σT
α

p∑

j=1

 (yj ∈ X )tj


 φα

(
β (y1∈X )t1, . . . , β (yp∈X )tp

)
pX .

(D.1)

The next step of the proof consists in deriving the above decomposition of the

multivariate characteristic function in order to obtain a recurrence relation for the

moments of
(
gT

α (y1), . . . , gT
α (yp)

)
.
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D.1.3.2 A Recurrence Relation for the Moments of gT
α

We refer to Section D.1.1.3 for short notation for partial derivatives and the cor-

responding formula for partial derivatives of a product function. Here to compute
∂pφα

∂t1...∂tp
(t1, . . . , tp) from Equation (D.1), one needs to derive with respect to each

variable tj the functions of the form

FX (t1, . . . , tp) := ψα


 α

σT
α

p∑

j=1

 (yj ∈ X )tj


 φα

(
β (y1∈X )t1, . . . , β (yp∈X )tp

)
.

We have

∂pFX
∂t1 . . . ∂tp

(t1, . . . , tp)

=
p∑

k=0

∑

I⊂{1,...,p}
#I=k

∂k

∂tI


ψα


 α

σT
α

p∑

j=1

 (yj ∈ X )tj





 ∂p−k

∂tIc

[
φα

(
β (y1∈X )t1, . . . , β (yp∈X )tp

)]

=
p∑

k=0

(
α

σT
α

)k ∑

I⊂{1,...,p}
#I=k

(∏

i∈I
 (yi ∈ X )

)
ψ(k)α


 α

σT
α

p∑

j=1

 (yj ∈ X )tj




( ∏

i∈Ic

β (yi∈X )
)

∂p−k

∂tIc

φα

(
β (y1∈X )t1, . . . , β (yp∈X )tp

)
.

Summing over all subsets X , one has the identity

∂pφα

∂t1 . . . ∂tp
(t1, . . . , tp)

=
p∑

k=0

(
α

σT
α

)k ∑

I⊂{1,...,p}
#I=k

∑

X ⊂Y
X Ó=∅

(∏

i∈I
 (yi ∈ X )

)
ψ(k)α


 α

σT
α

p∑

j=1

 (yj ∈ X )tj




( ∏

i∈Ic

β (yi∈X )
)

∂p−k

∂tIc

φα

(
β (y1∈X )t1, . . . , β (yp∈X )tp

)
pX .

Evaluating in (t1, . . . , tp) = (0, . . . , 0), this gives

∂pφα

∂t1 . . . ∂tp
(0, . . . , 0)

=
p∑

k=0

(
α

σT
α

)k ∑

I⊂{1,...,p}
#I=k

∑

X ⊂Y
X Ó=∅

(∏

i∈I
 (yi ∈ X )

)
ψ(k)α (0)

( ∏

i∈Ic

β (yi∈X )
)

∂p−k

∂tIc

φα (0, . . . , 0) pX

=
p∑

k=0

(
α

σT
α

)k

ψ(k)α (0)
∑

I⊂{1,...,p}
#I=k

∂p−k

∂tIc

φα (0, . . . , 0)




∑

X ⊂Y
X Ó=∅

(∏

i∈I
 (yi ∈ X )

) ( ∏

i∈Ic

β (yi∈X )
)

pX


 .
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In the above sum, remark that for k = 0, I = ∅ and thus all the terms are propor-

tional to ∂pφα

∂t1...∂tp
(0, . . . , 0). Besides, since Tα(a)−E(Tα(a)) is centered, ψ

(1)
α (0) = 0,

and thus for k = 1 all the terms are null. Hence we have the following equation

∂pφα

∂t1 . . . ∂tp
(0, . . . , 0)


1−

∑

X ⊂Y
X Ó=∅




p∏

j=1

β (yj∈X )


 pX


 (D.2)

=
p∑

k=2

(
α

σT
α

)k

ψ(k)α (0)
∑

I⊂{1,...,p}
#I=k

∂p−k

∂tIc

φα (0, . . . , 0)




∑

X ⊂Y
X Ó=∅

(∏

i∈I
 (yi ∈ X )

) ( ∏

i∈Ic

β (yi∈X )
)

pX


 .

D.1.3.3 Recurrence Relation for the Limit of the Moments

The next step of the proof consists in dividing by α and let α tends to 0 in Equa-

tion (D.2) above. First, recalling that β = 1 − α, and using that
∑

pX = 1, one

has

1−
∑

X ⊂Y
X Ó=∅




p∏

j=1

β (yj∈X )


 pX =

∑

X ⊂Y
X Ó=∅

pX −
∑

X ⊂Y
X Ó=∅

β#X pX =
∑

X ⊂Y
X Ó=∅

(
1− (1− α)#X

)
pX .

Hence

lim
α→0

1

α

∑

X ⊂Y
X Ó=∅

(
1− (1− α)#X

)
pX =

∑

X ⊂Y
X Ó=∅

(#X )pX .

Now by definition of pX ,

∑

X ⊂Y
X Ó=∅

(#X )pX = E (# ((x0 +X0) ∩ Y)) = E




p∑

j=1

 (yj ∈ x0 +X0)


 = p

E
(
Ld(X)

)

E
(
Ld

(
Y ⊕ X̌

)) Ó= 0.

Let us now turn to the limit of the right-hand side of Equation (D.2) when dividing

by α and letting α tends to 0. First let us show that all the terms for which k ≥ 3

will tend to 0. By induction for all k ≥ 2, the terms ∂p−k

∂tIc
φα (0, . . . , 0) have a finite

limit when α tends to 0. Besides, for all k ≥ 3,
∣∣∣ψ(k)α (0)

∣∣∣ =
∣∣∣ikE

(
(Tα(a) − E(Tα(a)))

k
)∣∣∣ ≤ E

(
|Tα(a) − E(Tα(a))|k

)
≤ 2kα−sk.

Hence, since

σT
α =

√
α

2 − α
Var(Tα(a)) ∼

α→0

√
Var(a)

2
α
1
2 ,

for all k ≥ 3,

1

α

(
α

σT
α

)k

ψ(k)α (0)
∑

I⊂{1,...,p}
#I=k

∂p−k

∂tIc

φα (0, . . . , 0)




∑

X ⊂Y
X Ó=∅

(∏

i∈I
 (yi ∈ X )

) ( ∏

i∈Ic

β (yi∈X )
)

pX




= O
α→0

(
α
1
2k−sk−1

)
.
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But since s < 1/6, the above exponent 12k − sk − 1 is positive for all k ≥ 3. Hence

all the terms for which k ≥ 3 tends to 0.

Now for k = 2, we have ψ
(2)
α (0) = i2Var(Tα(a)). Besides, by induction, noting

I = {j1, j2} a subset I ⊂ {1, . . . , p} of cardinal number 2,

lim
α→0

∂p−2

∂t{j1,j2}c

φα (0, . . . , 0) = (i)p−2E




p∏

l∈{1,...,p}\{j1,j2}
fG(yl)


 .

Hence

lim
α→0

1

α

(
α

σT
α

)2
ψ(2)α (0)

∑

I⊂{1,...,p}
#I=2

∂p−2

∂tIc

φα (0, . . . , 0)




∑

X ⊂Y
X Ó=∅

(∏

i∈I
 (yi ∈ X )

) ( ∏

i∈Ic

β (yi∈X )
)

pX




= (i)p2
∑

{j1,j2}⊂{1,...,p}
E




p∏

l∈{1,...,p}\{j1,j2}
fG(yl)







∑

X ⊂Y
X Ó=∅

 (yj1 ∈ X ) (yj2 ∈ X )pX


 .

In addition remark that

∑

X ⊂Y
X Ó=∅

 (yj1 ∈ X ) (yj2 ∈ X )pX = P ({yj1 , yj2} ⊂ x0 +X0) =
γX(yj1 − yj2)

E
(
Ld

(
Y ⊕ X̌

)) .

Coming back to Equation (D.2), one sees that ∂pφα

∂t1...∂tp
(0, . . . , 0) admits a finite

limit when α tends to 0. Noting (i)pL this finite limit so that

L = lim
α→0

E




p∏

j=1

gT
α (yj)


 ,

we have

L =
E

(
Ld

(
Y ⊕ X̌

))

pE (Ld(X))
2

∑

{j1,j2}⊂{1,...,p}
E




p∏

l∈{1,...,p}\{j1,j2}
fG(yl)


 γX(yj1 − yj2)

E
(
Ld

(
Y ⊕ X̌

))

=
2

p

∑

{j1,j2}⊂{1,...,p}

γX(yj1 − yj2)

E (Ld(X))
E




p∏

l∈{1,...,p}\{j1,j2}
fG(yl)


 .

This is exactly the recursive formula for the moments of a Gaussian vector given

by Proposition D.2. Hence,

L = lim
α→0

E




p∏

j=1

gT
α (yj)


 = E




p∏

j=1

fG(yj)


 ,

which concludes the proof by induction of Lemma D.1.
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D.1.4 Convergence in L
2 of the Difference of the Normalized Pro-

cesses

At this stage to conclude the proof of Theorem 6.1 we have to demonstrate the

following lemma.

Lemma D.2 (Convergence to 0 in L2 of gα − gT
α ). Let gα and gT

α be respectively
the normalized TDL process and the normalized TDL process with truncated colors.
Then for all y ∈ Rd,

gα(y)− gT
α (y)

L2−→
α→0

0.

Proof. Since a ∈ L2(Ω) and for all b ∈ R, |Tα(b)| ≤ b and limα Tα(b) = b, by

dominated convergence

lim
α→0

Var(a − Tα(a)) = 0,

and in particular

lim
α→0

Var(Tα(a)) = Var(a).

Let y ∈ Rd. Recall that

Var(fα) =
α

2− α
Var(a) and Var(fT

α ) =
α

2− α
Var(Tα(a)).

Let us write

gα(y)− gT
α (y) =

fα(y)− E(a)√
Var(fα)

− fT
α (y)− E(Tα(a))√

Var(fT
α )

=
fα(y)− E(a)√

Var(fα)
− fT

α (y)− E(Tα(a))√
Var(fα)

+
fT

α (y)− E(Tα(a))√
Var(fα)

− fT
α (y)− E(Tα(a))√

Var(fT
α )

=
fα(y)− fT

α (y)− E(a − Tα(a))√
Var(fα)︸ ︷︷ ︸
I1(α)

+




√
Var(fT

α )√
Var(fα)

− 1


 gT

α (y)

︸ ︷︷ ︸
I2(α)

.

Let us note I1(α) and I2(α) the two terms above. Remark that the numerator of

I1(α) is a TDL process with color distribution a − Tα(a)−E(a − Tα(a)). Hence we

have

E(I1(α)
2) =

α
2−α Var(a − Tα(a))

α
2−α Var(a)

=
Var(a − Tα(a))

Var(a)
−→
α→0

0.

In addition,

E(I2(α)
2) =




√
Var(fT

α )√
Var(fα)

− 1



2

=

(√
Var(Tα(a))√
Var(a)

− 1

)2
−→
α→0

0.

Hence, gα(y) − gT
α (y) is the sum of two r.v. which tends to 0 in L2(Ω), which

concludes the proof.
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D.2 Computation of the Covariance of the TDL Pro-

cess by Slivnyak-Mecke Formulas

In this section an alternative proof for the computation of the TDL covariance is

proposed. It makes use of Palm calculus tools, more precisely the Slivnyak-Mecke

formula [136, p. 67-68]. One would remark that the usage of this general technique

yields to more painful computations than the method exposed in Section 6.4 and

which consists in conditioning with respect to the coverage of the last hitting leaf.

The plan of this section is as follows. First, we recall the Slivnyak-Mecke for-

mulas. Second, we first apply this formula to compute the expectation, which is an

easier task to begin with. Finally, the covariance is computed using the Slivnyak-

Mecke formula.

D.2.1 Slivnyak-Mecke Formulas

We reproduce here the Slivnyak-Mecke theorem of order one and two (see [136, p.

67-68] for a formulation for all order n ≥ 1).

In this section we consider general point processes having values in a state space

S being a locally compact and separable topological space with a countable basis.

As in appendix B, the set of point processes over S is denoted by N. Besides, if Ψ

is a point process we note

Ψ2Ó= = {(x, y) ∈ Ψ×Ψ : x Ó= y} .

Theorem D.2 (Slivnyak-Mecke formula). Let Ψ be a Poisson process on S with
intensity measure Θ.

• (Oder one) For all measurable function g : S × N → R we have

E


∑

x∈Ψ
g(x,Ψ)


 =

∫

S
E (g (x,Ψ+ δx))Θ(dx)

as soon as the integral on the right hand side is well-defined.

• (Order two) For all measurable function g : S × S × N → R we have

E




∑

(x,y)∈Ψ2Ó=

g(x, y,Ψ)


 =

∫

S

∫

S
E (g (x, y,Ψ+ δx + δy))Θ(dx)Θ(dy)

as soon as the integral on the right hand side is well-defined.

Let us mention that the Slivnyak-Mecke formula of order one is also refereed to

as Mecke theorem [136, p. 67].
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D.2.2 The Intensity Measure of Peculiar Sets

Following the notation of Chapter 6, µ denotes the intensity measure of the Poisson

process of leaves, that is µ = λ ⊗ Ld ⊗ PX ⊗ Pa over the state space S = (−∞, 0)×
Rd ×F ×R. In the following we would need to compute the measure µ(A) of certain

subsets A ⊂ S.

Lemma D.3 (Leaves intersecting a point y after time t). For any point y ∈ Rd

and any time t ∈ (−∞, 0), let Ay(t) denote the set

Ay(t) = (t, 0)×
{

y + X̌ × {X} |X ∈ F
}

× R ⊂ S.

We have
µ (Ay(t)) = −tE

(
Ld(X)

)
.

Proof. We have

µ (Ay(t)) =

∫ 0

t
du

(∫

F

∫

Rd
 

{
y ∈ y + Y̌

}
Ld(dy)PX(dY )

) ∫

R

Pa(db)

= −tE
(
Ld(y + X̌)

)

= −tE
(
Ld(X)

)
.

Recall that γX(τ) := E
(
Ld(X ∩ τ + X)

)
denotes the mean geometric covari-

ogram of the RACS X.

Lemma D.4 (Two different points during two different periods). Let y1, y2 ∈ Rd

and t1, t2 ∈ (−∞, 0) and consider both sets Ay1(t1) and Ay2(t2). Then we have

µ(Ay1(t1) ∩ Ay2(t2)) = min(−t1, −t2)γX(y2 − y1).

Proof. We have

Ay1(t1) ∩ Ay2(t2) = (max(t1, t2), 0) ×
{(

y1 + X̌ ∩ y2 + X̌
)

× {X} |X ∈ F
}

× R

thus

µ(Ay1(t1) ∩ Ay2(t2)) = min(−t1, −t2)E
(
Ld

(
y1 + X̌ ∩ y2 + X̌

))
.

By the invariance properties of the Lebesgue measure, we have

Ld
(
y1 + X̌ ∩ y2 + X̌

)
= Ld (X ∩ y2 − y1 + X)

which shows that

E
(
Ld

(
y1 + X̌ ∩ y2 + X̌

))
= γX(y2 − y1).
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D.2.3 Computing the TDL Expectation Using Mecke Theorem

It has already been shown two times in Chapter 6 that E(f) = E(a) (See Proposi-

tion 6.2 and Section 6.4). Here we give another proof of this result in using Mecke

theorem [136, p. 67]. The only interest of this third proof is to introduce the tools

and notation that are necessary to compute the covariance of the TDL process by

the Slivnyak-Mecke formula (see Section D.2.4).

Recall that the TDL process f is defined for all y ∈ Rd by

f(y) =
∑

(ti,xi,Xi,ai)∈Φ
 (y ∈ xi +Xi)αaiβ

∑
(tj ,xj ,Xj ,aj)∈Φ

 (tj∈(ti,0) and y∈xj+Xj)
,

where β = 1−α. Here the state space is S = (−∞, 0)×Rd ×F ×R. For any y ∈ Rd

define the function gy : S × N(S) → R by

gy((t, x, X, a), ψ) =  

(
x ∈ y + X̌

)
αaβNψ(Ay(t))

where, as in Lemma D.3, Ay(t) ⊂ S equals

Ay(t) = (t, 0) ×
{

y + X̌ × {X} |X ∈ F
}

× R.

With these notations we have

f(y) =
∑

(t,x,X,a)∈Φ
gy((t, x, X, a),Φ).

The Slivnyak-Mecke formula of order one (see Theorem D.2 or [136, p. 67]) ensures

that1

E(f(y)) =

∫

S
E

(
gy

(
(t, x, X, a),Φ+ δ(t,x,X,a)

))
µ(d(t, x, X, a)).

Remark that for any (t, x, X, a) ∈ S, (t, x, X, a) /∈ Ay(t), hence for any ψ ∈ N(S)

gy

(
(t, x, X, a), ψ + δ(t,x,X,a)

)
= gy((t, x, X, a), ψ).

For any (t, x, X, a) ∈ S, we have

E (gy((t, x, X, a),Φ)) =  

(
x ∈ y + X̌

)
αaE

(
βNΦ(Ay(t))

)
.

By Lemma D.3 we have µ(Ay(t)) = −tE
(
Ld (X)

)
and by Lemma B.1 we get

E
(
βNΦ(Ay(t))

)
= e(β−1)µ(Ay(t)) = etαE(Ld(X)),

1To be totally rigorous one should first show that the considered function ((t, x, X, a),Φ) Ô→

gy

(
(t, x, X, a), ψ + δ(t,x,X,a)

)
is integrable with respect µ ⊗ PΦ. This is easily shown in replacing

gy by its absolute value |gy| and following exactly the same steps as for the actual computation of

the integral. This remark is also valid for the next section.
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since α = 1− β. Hence integrating with respect to µ we get

E(f(y)) =

∫

S
 

(
x ∈ y + X̌

)
αaetαE(Ld(X))µ(d(t, x, X, a))

= αE(a)E
(
Ld

(
y + X̌

)) ∫ 0

−∞
etαE(Ld(X))dt

= αE(a)E
(
Ld (X)

) 1

αE (Ld (X))

= E(a).

D.2.4 Computing the TDL Covariance by Slivnyak-Mecke Formu-

las

With Proposition 6.4 it has been established that

Cov(f)(τ) =
αγX(τ)

2E(Ld(X))− αγX(τ)
Var(a), τ ∈ Rd.

Below we propose a new proof of this result based on Slivnyak-Mecke formulas of

order one and two (see Theorem D.2 or [136, p. 68]).

Recall that for all y ∈ Rd,

f(y) =
∑

(t,x,X,a)∈Φ
gy((t, x, X, a),Φ),

where gy : ((t, x, X, a), ψ) Ô→  

(
x ∈ y + X̌

)
αaβNψ(Ay(t)), Ay(t) ⊂ S being the set

(t, 0)×
{

y + X̌ × {X} |X ∈ F
}

× R.

From now on fix any couple (y, z) ∈
(
Rd

)2
. We have

f(y)f(z) =


 ∑

(t,x,X,a)∈Φ
gy((t, x, X, a),Φ)





 ∑

(t,x,X,a)∈Φ
gz((t, x, X, a),Φ)




=
∑

((t1,x1,X1,a1),(t2,x2,X2,a2))∈Φ2
gy((t1, x1, X1, a1),Φ)gz((t2, x2, X2, a2),Φ)

=
∑

(t,x,X,a)∈Φ
gy((t, x, X, a),Φ)gz((t, x, X, a),Φ)

+
∑

((t1,x1,X1,a1),(t2,x2,X2,a2))∈Φ2Ó=

gy((t1, x1, X1, a1),Φ)gz((t2, x2, X2, a2),Φ).

The expectation of both sums in the last equality can be computed in using the

Slivnyak-Mecke formulas of order 1 and 2.
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First let us compute

I := E


 ∑

(t,x,X,a)∈Φ
gy((t, x, X, a),Φ)gz((t, x, X, a),Φ)


 .

Mecke theorem ensures that

I =

∫

S
E

(
gy

(
(t, x, X, a),Φ+ δ(t,x,X,a)

)
gz

(
(t, x, X, a),Φ+ δ(t,x,X,a)

))
µ(d(t, x, X, a)).

As (t, x, X, a) /∈ Ay(t) and (t, x, X, a) /∈ Az(t) for all (t, x, X, a) ∈ S we have

gy

(
(t, x, X, a),Φ+ δ(t,x,X,a)

)
= gy ((t, x, X, a),Φ)

and

gz

(
(t, x, X, a),Φ+ δ(t,x,X,a)

)
= gz ((t, x, X, a),Φ) .

Hence we need to compute E (gy ((t, x, X, a),Φ) gz ((t, x, X, a),Φ)). For all t ∈
(−∞, 0) Lemmas D.3 and D.4 show that

µ(Ay(t)) = µ(Az(t)) = −tE(Ld(X)) = −tγX(0)

and

µ(Ay(t) ∩ Az(t)) = −tγX(z − y).

Applying Lemma B.2 we get

E (gy ((t, x, X, a),Φ) gz ((t, x, X, a),Φ))

=  

(
x ∈ y + X̌

)
 

(
x ∈ z + X̌

)
α2a2E

(
βNΦ(Ay(t))+NΦ(Ay(t))

)

= α2a2 
(
x ∈ y + X̌ ∩ z + X̌

)
e(β−1)(µ(Ay(t)+µ(Az(t)))+(β−1)2(µ(Ay(t)∩Az(t)))

= α2a2 
(
x ∈ y + X̌ ∩ z + X̌

)
etα(2E(Ld(X))−αγX(z−y)).

Finally

I =

∫

S
α2a2 

(
x ∈ y + X̌ ∩ z + X̌

)
etα(2E(Ld(X))−αγX(z−y))µ(d(t, x, X, a))

= α2E(a2)E
(
Ld

(
y + X̌ ∩ z + X̌

)) ∫ 0

−∞
etα(2E(Ld(X))−αγX(z−y))dt

= α2E(a2)γX(z − y)
1

α (2E(Ld(X))− αγX(z − y))

=
αγX(z − y)

2E(Ld(X))− αγX(z − y)
E(a2).

Let us now compute the second expectation

J := E




∑

((t1,x1,X1,a1),(t2,x2,X2,a2))∈Φ2Ó=

gy((t1, x1, X1, a1),Φ)gz((t2, x2, X2, a2),Φ)


 .
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To simplify the notations let us note s1 = (t1, x1, X1, a1) and s2 = (t2, x2, X2, a2).

Applying the Slivnyak-Mecke formula of order two we have

J =

∫

S×S
E (gy (s1,Φ+ δs1 + δs2) gz (s2,Φ+ δs1 + δs2))µ(ds1)µ(ds2).

As above, since s1 = (t1, x1, X1, a1) /∈ Ay(t1),

gy (s1,Φ+ δs1 + δs2) = gy (s1,Φ+ δs2) .

Besides,

NΦ+δs2
(Ay(t1)) =





NΦ(Ay(t1)) + 1 if s2 = (t2, x2, X2, a2) ∈ Ay(t1),

NΦ(Ay(t1)) otherwise,

hence

gy (s1,Φ+ δs2) = β ((t2,x2,X2,a2)∈Ay(t1))gy (s1,Φ)

= β (t2∈(t1,0) and x2∈y+X̌2)gy (s1,Φ) .

By symmetry, we also have

gz (s2,Φ+ δs1 + δs2) = β (t1∈(t2,0) and x1∈z+X̌1)gz (s2,Φ) .

Thus,

E (gy (s1,Φ+ δs1 + δs2) gz (s2,Φ+ δs1 + δs2))

= β (t2∈(t1,0) and x2∈y+X̌2)β (t1∈(t2,0) and x1∈z+X̌1)E (gy (s1,Φ) gz (s2,Φ))

= α2a1a2β
 (t2∈(t1,0) and x2∈y+X̌2)β (t1∈(t2,0) and x1∈z+X̌1)

×  

(
x1 ∈ y + X̌1

)
 

(
x2 ∈ z + X̌2

)
E

(
βNΦ(Ay(t1))+NΦ(Ay(t2))

)
.

Recalling that from Lemma D.4 we have µ(Ay(t1)∩Az(t2))) = min(−t1, −t2)γX(z−
y) and applying Lemma B.2 we obtain

E
(
βNΦ(Ay(t1))+NΦ(Ay(t2))

)
= e(β−1)(µ(Ay(t1)+µ(Az(t2)))+(β−1)2(µ(Ay(t1)∩Az(t2)))

= et1αE(Ld(X))et2αE(Ld(X))emin(−t1,−t2)α2γX(z−y).

At this step we obtain the following expression for J

J = α2
∫

S×S
a1a2β

 (t2∈(t1,0) and x2∈y+X̌2)β (t1∈(t2,0) and x1∈z+X̌1)
 

(
x1 ∈ y + X̌1

)

×  

(
x2 ∈ z + X̌2

)
et1αE(Ld(X))et2αE(Ld(X))emin(−t1,−t2)α2γX(z−y)dµdµ.

Next we divide S × S in two disjoint domains D1 and D2 where over D1 we have

t1 ≤ t2 and over D2 we have t1 > t2. This partition of S × S yields a decomposition

of J = J1 + J2. By symmetry one easily shows that J1 = J2 so that J = 2J1.
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Besides, J1 is easy to compute. Indeed, we have, after integrating with respect to

a1 and a2

J1 = α2E(a)2
∫ 0

t2=−∞

∫ t2

t1=−∞

∫

X1,X2,x1,x2
β (x2∈y+X̌2)

 

(
x1 ∈ y + X̌1

)
 

(
x2 ∈ z + X̌2

)

× et1αE(Ld(X))et2αE(Ld(X))e−t2α2γX(z−y)Ld(dx1)Ld(dx2)PX(dX1)PX(dX2)dt1dt2.

Integrating with respect to t1, x1 and X1 we get

J1 = α2E(a)2
1

αE(Ld(X))
E(Ld(X))

∫ 0

t2=−∞

∫

X2,x2
β (x2∈y+X̌2)

 

(
x2 ∈ z + X̌2

)

× et2(2αE(Ld(X))−α2γX(z−y))Ld(dx2)PX(dX2)dt2.

Then simplifying and integrating with respect to t2 gives

J1 = αE(a)2
1

α (2E(Ld(X)) − αγX(z − y))

×
∫

X2,x2
β (x2∈y+X̌2)

 

(
x2 ∈ z + X̌2

)
Ld(dx2)PX(dX2).

This last integral is easy to compute as the integrand takes only the three values 0,

β and 1.

∫

X2,x2
β (x2∈y+X̌2)

 

(
x2 ∈ z + X̌2

)
Ld(dx2)PX(dX2)

=

∫

X2
βLd

(
(z + X̌2) ∩ (y + X̌2)

)
+ Ld

(
(z + X̌2) \ (y + X̌2)

)
PX(dX2)

= E(Ld(X)) − αγX(z − y),

where we used Ld
(
(z + X̌2) \ (y + X̌2)

)
= Ld

(
(z + X̌2)

)
−

Ld
(
(z + X̌2) ∩ (y + X̌2)

)
. Finally,

J = 2
E(Ld(X)) − αγX(z − y)

2E(Ld(X)) − αγX(z − y)
E(a)2.

To conclude this proof write

Cov(f(y), f(z)) = E(f(x)f(y)) − E(a)2

= I + J − E(a)2

=
αγX(z − y)

2E(Ld(X)) − αγX(z − y)

(
E

(
a2

)
− E(a)2

)

=
αγX(z − y)

2E(Ld(X)) − αγX(z − y)
Var(a).
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Stochastic Image Models and Texture Synthesis

Abstract:

This thesis is a study of stochastic image models with applications to texture

synthesis. Most of the stochastic texture models under investigation are germ-grain

models.

In the first part of the thesis, texture synthesis algorithms relying on the shot

noise model are developed. In the discrete framework, two different random pro-

cesses, namely the asymptotic discrete spot noise and the random phase noise, are
theoretically and experimentally studied. A fast texture synthesis algorithm rely-

ing on these random processes is then elaborated. Numerous results demonstrate

that the algorithm is able to reproduce a class of real-world textures which we call

micro-textures. In the continuous framework, the Gaussian convergence of shot

noise models is further studied and new bounds for the rate of this convergence are

established. Finally, a new algorithm for procedural texture synthesis from example

relying on the recent Gabor noise model is presented. This new algorithm permits

to automatically compute procedural models for real-world micro-textures.

The second part of the thesis is devoted to the introduction and study of the

transparent dead leaves (TDL) process, a new germ-grain model obtained by su-

perimposing semi-transparent objects. The main result of this part shows that,

when varying the transparency of the objects, the TDL process provides a family

of models varying from the dead leaves model to a Gaussian random field.

In the third part of the thesis, general results on random fields with bounded

variation are established with an emphasis on the computation of the mean total

variation of random fields. As particular cases of interest, these general results

permit the computation of the mean perimeter of random sets and of the mean

total variation of classical germ-grain models.

Keywords: covariogram, functions of bounded variation, Gabor noise, germ-

grain models, random fields, random phase, shot noise, texture synthesis, trans-

parency


