
HAL Id: tel-00595922
https://theses.hal.science/tel-00595922v2

Submitted on 30 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Parameter Black-Box Optimisation: Benchmarking
and Designing Algorithms

Raymond Ros

To cite this version:
Raymond Ros. Real-Parameter Black-Box Optimisation: Benchmarking and Designing Algorithms.
Modeling and Simulation. Université Paris Sud - Paris XI, 2009. English. �NNT : �. �tel-00595922v2�

https://theses.hal.science/tel-00595922v2
https://hal.archives-ouvertes.fr

N◦ d’ordre : 9743

Thèse

de L’Université Paris–Sud

presentée en vue de l’obtention du grade de

Docteur de l’Université Paris–Sud

Specialité : Informatique

par

Raymond ROS

Optimisation Continue Bôıte Noire :

Comparaison et Conception
d’Algorithmes

Soutenue le 21 Décembre 2009 devant la commission d’examen :

M. Frédéric BONNANS INRIA Examinateur
M. Nikolaus HANSEN INRIA Co-Directeur de thèse
M. Rodolphe LE RICHE CNRS Rapporteur
M. Günter RUDOLPH TU Dortmund Rapporteur
Mme Michèle SEBAG CNRS Directrice de thèse

Laboratoire de Recherche en Informatique, U.M.R. CNRS 8623,

Université Paris-Sud, 91405 Orsay Cedex, France

Résumé

Introduction

Un problème d’optimisation peut se formaliser en la recherche d’un élément xopt du

domaine Ω sous-ensemble de Rn qui minimisera la fonction objectif f : Ω → R.

En optimisation continue, où les composants des vecteurs solutions x sont à valeurs

réelles, le scénario bôıte noire fait l’hypothèse que l’évaluation de la fonction objectif

est l’unique moyen de collecter des informations sur le problème considéré. Nous nous

intéressons à la question du choix d’un algorithme pour résoudre de tels problèmes

d’optimisation bôıte noire.

De nombreux algorithmes existent dans les domaines de l’optimisation globale, de

la recherche opérationnelle ou encore de l’évolution artificielle. Comment pouvons-

nous comparer ces algorithmes de manière à en choisir un qui soit approprié pour

résoudre un problème d’optimisation donné ? Cette question sera traitée dans ce ma-

nuscrit.

La théorie ne propose pas de réponse à cette question dans la mesure où nous

faisons l’hypothèse de ne recéler aucune information sur la fonction objectif. Les

résultats théoriques existants utilisent des hypothèses simplificatrices qui ne sont plus

valides face à des problèmes réels.

Des procédures systématiques pour la comparaison d’algorithmes existent et nous

fournissent des éléments de réponse. Nous regroupons ces procédures systématiques

sous l’appellation benchmarking. Nos comparaisons systématiques reposent sur la no-

tion de coûts de l’optimisation que nous définissons comme la quantité de calculs

nécessaires pour qu’un algorithme atteigne la solution.

Un élément critique dans la comparaison systématique d’algorithmes est l’en-

semble des problèmes qui serviront à la comparaison. Dans la mesure où il n’est pas

1

2

possible de traiter l’ensemble des problèmes du monde réel, nous tâchons de comparer

les algorithmes sur un ensemble de fonctions artificielles qui possèdent des propriétés

reconnues difficiles en optimisation. Ainsi nous pourrons déterminer les points forts

et faibles d’algorithmes vis-à-vis de ces propriétés.

L’étude des algorithmes dans ce contexte nous permettra :

• dans le cas où des propriétés du problème d’optimisation considéré sont connues,

de proposer des algorithmes dont les points forts y correspondent,

• à l’inverse si aucune information n’est disponible, l’analyse des performances de

quelques algorithmes choisis à la lumière des résultats du benchmarking peut

permettre d’obtenir des renseignements sur le problème.

Le fléau de la dimension est une propriété correspondant à l’explosion exponen-

tielle du volume de l’espace de recherche tandis que sa dimension n grandit : des

techniques d’optimisation appropriées pour n petit peuvent ne pas convenir pour n

modéré ou grand. Ceci est une motivation forte pour étudier l’extensibilité des algo-

rithmes, c’est à dire leurs performances par rapport à n.

Le second chapitre de ce manuscrit fait l’état de l’art des méthodes pour l’op-

timisation bôıte noire ainsi que dans le domaine du benchmarking en optimisation

continue. En l’occurrence, il est montré qu’il existe des articles, des outils de com-

paraison systématique dans les domaines de l’optimisation globale, de la recherche

opérationnelle et de l’évolution artificielle. Cependant, ces comparaisons n’impliquent

qu’un nombre peu important d’algorithmes ou de problèmes. Aussi il n’existe que peu

de solutions logicielles pour le benchmarking.

Disposer d’un logiciel pour le benchmarking d’algorithmes permettrait d’obtenir

plus facilement des résultats d’algorithmes sur un nombre conséquent de fonctions. A

la lumière de ces résultats de comparaison, l’utilisateur pourra décider quel algorithme

choisir pour optimiser une fonction dont il connait les propriétés. Inversement, l’uti-

lisateur face à une fonction inconnue pourra obtenir des informations en comparant

les résultats d’algorithmes sur cette fonction à ceux du benchmarking.

Ce manuscrit présente nos contributions. Le chapitre 3 se focalise sur l’algorithme

Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) et décrit des variantes

appropriées aux problèmes à grande dimensionalité. Les chapitres 4 et 5 présentent

nos résultats de comparaisons d’algorithmes et notre implémentation logicielle COCO.

3

Notions fondamentales

Optimisation continue et benchmarking

Nous choisissons d’étudier des fonctions artificielles. Les fonctions que nous choisissons

mettent en évidence certaines propriétés qui se retrouvent dans les problèmes réels

difficiles :

la grande dimensionalité, l’explosion exponentielle du volume de l’espace de re-

cherche avec la dimension du problème rend la recherche aléatoire intraitable,

la non-séparabilité, les dépendances entre paramètres sont essentielles pour l’opti-

misation de la fonction objectif, il est possible de rendre non-séparable une fonc-

tion séparable en effectuant simplement une rotation de l’espace de recherche,

la multi-modalité, la présence d’optima locaux peut gêner la résolution du problème

par des techniques d’optimisation locales,

la rugosité, la fonction objectif représente un paysage très irrégulier,

la non-convexité qui peut affecter les algorithmes à région de confiance par exemple

puisqu’ils interpolent la fonction par un modèle convexe,

le mauvais conditionnement, le ratio entre une variation de la fonction et une va-

riation de l’argument est grand, ce qui peut entrâıner des problèmes numériques,

le bruit ajoute de l’incertitude à l’évaluation de la fonction et peut se traduire par

de la rugosité.

La notion de performance des algorithmes testés sera liée au nombre d’évaluations

de la fonction objectif. Etant donné une valeur cible de la fonction objectif, ftarget,

nous pouvons définir un temps d’exécution pour atteindre cette valeur cible comme

étant le nombre d’évaluations de la fonction objectif pour obtenir une valeur plus

petite que ftarget. Si nous testons un algorithme plusieurs fois sur la même fonction,

nous pouvons définir :

RTS le temps d’exécution moyen pour les tentatives ayant atteint ftarget avec succès,

4

RTUS le temps d’exécution moyen pour les tentatives n’ayant pas atteint ftarget, nous

considérons dans ce cas là le temps d’exécution final,

pS le taux de succès,

SP1 = RTS

pS
estime le temps d’exécution pour qu’un algorithme relancé à chaque

échec atteigne une fois ftarget, en faisant l’hypothèse que le temps d’exécution

moyen des tentatives qui échouent est égal à celui des tentatives qui réussissent,

ERT = pSRTS+(1−pS)RTUS

pS
estime le temps d’exécution pour qu’un algorithme relancé

à chaque échec atteigne une fois ftarget, aucune hypothèse n’étant faite sur le

temps d’exécution moyen des tentatives qui échouent.

Algorithmes d’optimisation continue

Nous présentons une liste de différentes méthodes des domaines de la recherche

opérationnelle, l’optimisation globale, l’évolution artificielle. Parmi ces méthodes, on

peut trouver des approches théoriques, pour lesquelles la convergence est prouvée sous

certaines conditions, ainsi que des heuristiques empiriques qui s’intéressent davantage

à trouver des solutions en pratique.

Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)

L’algorithme CMA-ES [Hansen and Kern, 2004, Hansen and Ostermeier, 2001, Han-

sen et al., 2003] utilise un mécanisme d’adaptation de la matrice de covariance couplé

à une stratégie d’évolution.

La recherche de l’optimum dans CMA-ES passe par l’équation suivante :

x
(g+1)
k ∼ 〈x〉(g)W + σ(g)B(g)D(g)z

(g+1)
k︸ ︷︷ ︸

N(0,C(g))

, k = 1, . . . , λ

avec λ étant la taille de la population, x
(g+1)
k les individus générés à la génération

g+ 1. La distribution de ces individus est donnée par une loi de distribution normale

multidimensionnelle avec les paramètres 〈x〉(g)W , σ(g) et C(g).

5

La matrice de covariance C(g) est mise à jour suivant l’équation :

C(g+1) = (1− ccov)C(g) +
1

µcov

ccovpc
(g+1)

(
pc

(g+1)
)T

+ ccov

(
1− 1

µcov

) µ∑
i=1

wiB
(g)D(g)z

(g+1)
i:λ

(
B(g)D(g)z

(g+1)
i:λ

)T
︸ ︷︷ ︸Pµ

i=1
wi

σ(g)2

“
x

(g+1)
i:λ −〈x〉(g)W

”“
x

(g+1)
i:λ −〈x〉(g)W

”T

Cette équation dépend de trois termes, l’équilibre entre le premier et les deux autres

termes est contrôlé par le taux d’apprentissage ccov ∈ [0, 1]. Un taux d’apprentissage

nul fixerait la matrice de covariance à sa valeur initiale.

Autres algorithmes

Nous mentionnons dans ce manuscrit de nombreux algorithmes (Chap. 2). En parti-

culier nous nous sommes intéressés aux algorithmes d’Evolution Différentielle (DE) et

d’optimisation par essaims de particules (PSO). Ces deux algorithmes évolutionnaires

utilisent des populations qui sont mises à jour sur des principes d’inerties en fonction

des meilleurs individus et de pertubations appliquées à ces individus.

L’algorithme classique BFGS est une méthode à directions de descente de quasi-

Newton. NEWUOA est un algorithme à régions de confiance.

Variantes de CMA-ES

La dimension de l’espace de recherche, n, joue un rôle essentiel dans l’optimisa-

tion continue à cause du fléau de la dimension. Ceci n’est vrai que dans le cas de

fonctions où les variables montrent des dépendances entre elles. Dans le domaine de

l’évolution artificielle, l’adaptation de la matrice de covariance permet d’apprendre

ces dépendances avec succès. L’algorithme Covariance Matrix Adaptation-Evolution

Strategy (CMA-ES) apprend les dépendances entre paramètres de la fonction et a une

complexité algorithmique d’au moins O(n2). Des résultats empiriques montrent que

pour apprendre la matrice de covariance complète, l’algorithme a besoin d’un nombre

d’évaluations de la fonction objectif (ou aussi coût de l’optimisation) en général au

plus quadratique par rapport à n [Hansen and Ostermeier, 2001, Hansen et al., 2003].

6

Le nombre de paramètres internes n2+n
2

de CMA-ES ainsi que sa complexité algo-

rithmique constituent des limitations dans le cas de fonctions où n est grand.

Nous proposons des variantes de CMA-ES qui font diminuer ce nombre de pa-

ramètres pour ainsi privilégier un coût moindre de l’apprentissage au détriment de

la complexité du modèle. Dans ces variantes, sep-CMA et block-CMA, permettent

de n’apprendre que les blocs diagonaux de la matrice de covariance. Ceci est réalisé

en fixant les autres termes à la valeur zéro lors de la mise à jour de la matrice de

covariance par l’équation 3.5. Cette contrainte sur la matrice de covariance permet

de modifier le taux d’apprentissage ccov qui est inversement proportionnel au carré

des degrés de liberté de la matrice de covariance.

La contrainte sur la matrice de covariance dans sep-CMA et block-CMA empêche

d’apprendre l’ensemble des dépendances entre paramètres, mais favorise ces variantes

sur les fonctions séparables.

La variante sep-CMA-ES a ainsi une complexité linéaire. Notre étude empirique

sur l’effet de varier le taux d’apprentissage nous a permis de déterminer qu’il pouvait

être multiplié par n+3/2
3

. Une conséquence est une adaptation plus rapide des pa-

ramètres de la matrice de covariance. La variante block-CMA-ES permet de contrôler

sa complexité en fonction de la configuration des blocs diagonaux. Le taux d’appren-

tissage peut aussi être augmenté.

Nous avons testé sep-CMA-ES et block-CMA-ES en terme de coût de l’optimi-

sation ainsi qu’en terme de temps de calcul. Nous avons ainsi mis en évidence que

sep-CMA-ES montrent des performances proportionnelles à la dimension sur des fonc-

tions séparables. Les différentes configurations de block-CMA-ES permettent de pas-

ser graduellement des performances de sep-CMA-ES à celles de CMA-ES.

Les performances sur la fonction de Rosenbrock qui n’est pas séparable montrent

que CMA-ES est plus rapide que sep-CMA-ES et block-CMA-ES. Par contre cela

n’est plus le cas quand la dimension du problème est plus grande que 128. Ce résultat

suggère que la fonction de Rosenbrock est partiellement séparable. Cette hypothèse est

confirmée par le fait que sep-CMA-ES et block-CMA-ES sont plus lents que CMA-ES

pour la fonction de Rosenbrock avec rotation.

Ces résultats valident l’intérêt d’utiliser sep-CMA-ES et block-CMA-ES pour des

problèmes à grande dimensionalité.

7

Optimisation continue bôıte noire

Nous proposons de comparer différents algorithmes de manière systématique sur des

fonctions tests. Les résultats de ces comparaisons seront utiles dans au moins deux

cas de figure. Les résultats permettrait de déterminer quel(s) algorithme(s) utiliser

pour résoudre un problème partageant des similarités avec les fonctions tests. Par

ailleurs, la comparaison des algorithmes peut mettre en lumière leurs points forts et

faibles par rapport aux propriétés de fonctions.

Nous avons ainsi comparé des algorithmes des domaines de l’évolution artificielle,

la recherche opérationnelle et des mathématiques déterministes. Les performances des

algorithmes sont déterminées en fonction du nombre d’évaluations de la fonction test.

Dans les protocoles expérimentaux que nous utilisons, nous utilisons des stratégies

de redémarrage d’algorithme. En théorie, avec un horizon infini, le redémarrage

indépendant d’un algorithme stochastique permet d’avoir une probabilité de succès de

1. En pratique, le redémarrage dans la limite d’un budget initial permet d’augmenter

le taux de succès de l’algorithme.

Nous présentons les résultats de deux instances de benchmarking.

Etude de la non-séparabilité, non-convexité et mauvais condi-

tionnement

Nous avons testé les algorithmes CMA-ES, Evolution Différentielle (DE), Optimisa-

tion par essaim de particle (PSO), NEWUOA et BFGS.

Au travers de quelques fonctions test simples, nous avons pu étudié les propriétés :

non-séparabilité nous avons considéré des fonctions, pour certaines séparables,

ainsi que ces mêmes fonctions avec une rotation de l’espace de recherche,

non-convexité nous avons étudié la fonction ellipsöıde qui est convexe quadratique

ainsi que la fonction ellipsöıde à la puissance un quart qui n’est pas convexe,

mauvais conditionnement nous avons étudié la fonction ellipsöıde et Rosenbrock

avec plusieurs valeurs de conditionnement allant de 1 à 1010.

Il s’avère que :

• PSO et DE sont peu affectés par le conditionnement de la fonction ellipsöıde,

8

• CMA-ES et DE sont invariants par rotation de l’espace de recherche,

• CMA-ES, DE et PSO sont invariants par transformation préservant l’ordre,

• PSO est très affecté par la rotation de l’espace de recherche,

• NEWUOA et BFGS sont affectés par la non-convexité d’une fonction.

En particulier, nous observons que les algorithmes BFGS et NEWUOA n’ont des

performances que meilleures d’un facteur de 5 par rapport à celles de CMA-ES sur des

fonctions convexes quadratiques tournées qui constituent normalement les problèmes

les plus faciles pour ces méthodes.

BBOB 2009

Nous avons organisé l’atelier de recherche Black-Box Optimisation Benchmarking

(BBOB) pour la conférence internationale GECCO 2009. Nous y proposions un cadre

expérimental et deux ensembles de fonctions bruitées et non bruitées, le tout étant

accessible sous la forme d’un logiciel, COCO. Les chercheurs en optimisation continue

purent soumettre les résultats d’algorithmes qu’ils avaient testés.

Nous compilons dans ce manuscrit les résultats de 32 algorithmes répartis en 45

articles scientifiques publiés dans les actes de la conférence. Nous avons en particulier

testé les algorithmes NEWUOA, BFGS, et IPOP-sep-CMA-ES. Les deux premiers al-

gorithmes utilisent des stratégies de redémarrages indépendants, tandis que le dernier

utilise une stratégie avec accroissement de la taille de la population (IPOP).

Le protocole expérimental pour tester un algorithme consiste en 15 répétitions sur

chacune des fonctions tests dans des dimensions allant de 2 à 40. Les fonctions tests

proposées démontrent toutes des propriétés parmi celles que nous mentionnons plus

haut. Les performances sont quantifiées en terme de nombre d’évaluations de fonction

et en terme de temps de calcul par évaluation.

Sur l’ensemble des fonctions non bruitées nous montrons que le meilleur algorithme

dépend du budget alloué : si le budget est inférieur quelques centaines d’évaluations

fois la dimension NEWUOA démontre les meilleures performances tandis que IPOP-

sep-CMA-ES est le meilleur devant NEWUOA et BFGS quand le budget est plus

large.

9

Nous compilons dans ce manuscrit les résultats de beaucoup d’autres algoritmes

soumis à BBOB. Nous observons que sur les fonctions non bruitées en dimension

2 et 3, l’algorithme du simplexe de Nelder-Mead est le meilleur. Sur les fonctions

bruitées comme non bruitées les méthodes utilisant une adaptation de la matrice de

covariance obtiennent les meilleurs résultats, la meilleure méthode étant la variante

BIPOP-CMA-ES qui utilise en parallèle une petite et une grande population.

Ces deux études différentes ont permis de mettre en lumière les points forts et

faibles d’algorithmes de différents champs de recherche, et en particulier donnent

des résultats d’extensibilité des approches. Pour quantifier les performances des algo-

rithmes dans notre protocole expérimental, il était nécessaire d’obtenir au moins un

succès. Cela nous a permis de montrer l’intérêt des stratégies de redémarrage dans

les algorithmes.

Logiciel de comparaison systématique : COCO

Pour l’atelier BBOB, une de nos contributions significatives a été de proposer un

logiciel permettant de tester systématiquement des implémentations logicielles d’un

algorithme d’optimisation continue sur un ensemble de fonctions tests.

Ce chapitre présente le fonctionnement de ce logiciel qui fournit :

• une interface logicielle fgeneric pour accéder aux fonctions tests, proposée dans

plusieurs langages de programmation,

• un protocole expérimental implémenté,

• un module de post-traitement bbob pproc générant figures et tableaux,

• des modèles de documents LATEX présentant l’ensemble de ces résultats.

L’essentiel de la tâche pour l’utilisateur de COCO sera d’interfacer l’algorithmes qu’il

veut tester avec l’interface fgeneric.

Des exemples de scripts exampleexperiment et exampletiming permettent de réaliser

une expérience complète sur l’ensemble des fonctions tests. L’exécution du script

exampleexperiment permet d’obtenir des données expérimentales qui seront traitées à

l’aide dans bbob pproc. En supposant que les données se trouvent dans le répertoire

DONNEES, le post-traitement s’exécutera avec la commande :

10

python chemin_vers_bbob_pproc/run.py DONNEES

Ceci créera un dossier ppdata dans lequel se trouveront figures et tables.

L’atelier de recherche BBOB a permis de démontrer l’intérêt de la communauté

scientifique pour le logiciel COCO.

Conclusion et perspectives

Ce manuscrit présente nos contributions dans les domaines de l’optimisation continue

bôıte noire et dans l’évolution artificielle. Nous avons tâché de répondre à la question

de la comparaison d’algorithmes pour l’optimisation d’un problème bôıte noire. En

particulier, nous voulons savoir quel algorithme choisir pour minimiser le coût de

l’optimisation.

Nous avons proposé et mis en pratique des méthodologies expérimentales pour la

comparaison d’algorithmes sur des fonctions tests artificielles. Ces comparaisons ont

permis d’obtenir des idées utiles du comportement d’algorithmes face à des difficultés

rencontrées dans l’optimisation de problème du monde réel.

Face à des problème à grande dimensionalité, la complexité quadratique de cer-

tains algorithmes comme CMA-ES peut être prohibitive. Nous avons proposé deux

variantes sep-CMA-ES et block-CMA-ES qui utilisent un modèle avec une complexité

moindre : la matrice de covariance est restreinte à ses blocs diagonaux. En ajustant

les paramètres de l’algorithme, nous montrons que les performances de ces variantes

sont meilleures que celles de CMA-ES pour des problèmes séparables ou partiellement

séparables.

Ces variantes constituent une preuve de concept pour une utilisation de l’adap-

tation de la matrice de covariance dans les problèmes à grande dimensionalité. Ces

variantes ouvrent aussi la porte à de nouvelles stratégies où la complexité de la matrice

de covariance pourrait évoluer au cours de l’optimisation du problème.

Par ailleurs, nous avons proposé deux études de comparaisons systématiques d’al-

gorithmes d’optimisation. Nous avons ainsi montré que de simples rotations de l’es-

pace de recherche pouvaient affecter les performances d’algorithmes comme PSO, NE-

WUOA et BFGS. Par ailleurs, NEWUOA ou BFGS sont affectés par la non-convexité

de la fonction objectif.

11

Dans un deuxième temps, nous avons mené une étude à grande échelle sur un

ensemble conséquent de fonctions tests et d’algorithmes dans le cadre de l’atelier de

recherche BBOB. Nous avons montré que certains algorithmes comme le simplexe de

Nelder-Mead obtient les meilleurs résultats en dimension 2 et 3 sur un ensemble de

fonctions non bruitées mais que cela n’est pas vrai quand la dimension du problème

est plus grande. Les performances dépendent aussi de la quantité d’évaluations de

fonction allouée, en particulier pour un nombre important d’évaluations les techniques

reposant sur l’adaptation de la matrice de covariance sont les meilleures, ceci pour

des fonctions bruitées ou non. Les perspectives à BBOB et à l’utilisation de COCO

sont nombreuses : l’intégration de fonctions du monde réel ou de problèmes à plus

grande dimensionalité, l’extension de COCO à d’autres fonctions tests et d’autres

types d’optimisations en sont des exemples.

Acknowledgements

Now this manuscript is almost complete, there are many people which I would like

to acknowledge for their involvement in my work and my life during these years of

preparation for the PhD.

First, I would like to thank Professor Bonnans for accepting to be a member of

my jury, Professor Rudolph and Doctor Le Riche for reviewing my work and for their

helpful comments. I will be very glad to meet you on December 21 and eventually

afterward during the rest of my career.

I would like to acknowledge the staff of the Laboratoire de Recherche en Informa-

tique whom I came across these years. You are what made the halls of the laboratory

livelier every day.

Also part of the LRI, I would like to address a kind thought to the Doctoral School

of Computer Science and its administration. Having been a student representative

for one year, I know their dedication to turning PhD candidates into full-fledged

researchers (sometimes against their own will).

Next, I would like to acknowledge my fellow researchers interns and fellow PhD

candidates whom I have been acquainted with. Still some years to go!

Then there are the people of the TAO team-project. Among you I have found

people that are more than colleagues.

I will start with you Steffen: though it was only for a few months, I am sure our

collaboration on BBOB will keep paying off for a while. I wish you the best of luck

for the end of your PhD.

Marie-Carol, working with you always makes our day brighter. Truly, many thanks

to you.

Antoine, thanks for your insights and coping with me for this long.

Marc and Michele, I would like to thank you both for making all of our work hold

12

13

in one single ‘container’ and gathering the people of TAO under your supervision.

The collaboration and work environment I have found in TAO is in many aspects

thanks to both of you.

Anne, I have a particular thought for you. Through my friendship with Mohamed

and other PhD candidates, you have been presented to me as a demanding superviser,

talented and enthusiastic fellow researcher. My own experience has revealed that you

were both and even more. I thank you for your concern for other people, me included.

Niko, I have already addressed many thanks to you throughout the process of

writing this manuscript. Many things during the preparation of my PhD have been

made possible only because of our collaboration and your supervision. Though many

people must have done that before, I would like to acknowledge your work ethic, your

scientific perceptiveness and wish it rubs off on me at some point.

I would like to gratefully acknowledge my relatives and friends to whom I have

imposed my absence and unavailability. There are many things I should write down

about you but I would rather say them to you directly. Among the people with whom

I would like to make up for the lost time, I have a special thought for:

JB: Thanks for correcting my typos, Fabien: I hope to catch up with you at go, Rafael:

up for some games?, Sylvain: Google is watching you, Olivier: congratulations for

your soon-to-come child, Cédric: still your best man, Jean-Baptiste P. and Raphael:

now we can get back to serious things, Michel: you will drive from now on, Mohamed:

you made me realise I like sharing office AND ideas about everything.

Grand-father, you have supported me all this time. Thanks.

My last thought goes to my close family and Isabelle. You have continuously

shown me your support, each in your own way. I know that you will keep doing so.

I am where and who I am thanks to you. I love you.

To everyone that I have forgotten, a single word: thanks!

PhD Thesis

by

Raymond ROS

Real-Parameter Black-Box

Optimisation:

Benchmarking and Designing

Algorithms

Laboratoire de Recherche en Informatique, U.M.R. CNRS 8623,

Université Paris-Sud, 91405 Orsay Cedex, France

Abstract

In continuous optimisation a given problem can be stated as follows: given the ob-

jective function f from Rn to R with n the dimension of the problem, find a suitable

vector that minimises f up to an arbitrary numerical precision. In this context, the

black-box scenario assumes that no information but the evaluation of f is available

to guide its optimisation.

In the first part, we study the Covariance Matrix Adaptation Evolution Strat-

egy (CMA-ES) which is a well-established stochastic approach for solving Black-Box

Optimisation (BBO) problems. We show its time and space complexity limits when

addressing high-dimensional BBO problems. To overcome such limits, we provide

variants of the CMA-ES that update only block-diagonal elements of the covariance

matrix, and exploit the separability of the problem. We show that on non-separable

functions these variants can outperform the standard CMA-ES, given that the di-

mension of the problem is large enough.

In the second part, we define and exploit an experimental framework BBO Bench-

marking (BBOB) in which practitioners of BBO can test and compare algorithms on

function testbeds. Results show dependencies on the budget (number of function

evaluations) assigned to the optimisation of the objective function. Some methods

such as NEWUOA or BFGS are more appropriate for small budgets. The CMA-ES

approach using restarts and a population size management policy performs well for

larger budgets.

The COmparing Continuous Optimisers (COCO) software, used for the BBOB, is

described technically in the third part. COCO implements our experimental frame-

work as well as outputs the results that we have been exploiting.

i

Contents

1 Introduction 1

2 Review of the State of the Art 12

2.1 Types of Solvers . 14

2.2 BBO Benchmarking Software . 26

2.3 Discussion of the Review of the State of the Art 31

3 CMA-ES Variants 32

3.1 Introduction . 33

3.2 CMA-ES . 37

3.3 CMA-ES Variants with Reduced Time and Space Complexity 40

3.4 Test Functions and Methods . 45

3.5 Results and Discussion . 52

3.6 Summary and Perspectives . 62

4 Black-Box Optimisation Benchmarking 67

4.1 Introduction . 68

4.2 Algorithms . 71

4.3 Study on Three Types of Difficulties 74

4.4 BBOB 2009 . 93

4.5 Overall Summary and Discussion . 127

5 Software: COCO 129

5.1 Experimental Framework Software 131

5.2 Post-Processing the Experimental Data 139

5.3 Generating a Paper . 147

ii

CONTENTS iii

5.4 Discussion of our Implementation . 149

6 Summary and Perspectives 150

6.1 Algorithms for High Dimensional Optimisation Problems 150

6.2 Benchmarking . 152

A Parameter Identification of DE 153

A.1 Experimental Set-up . 154

A.2 Results and Discussion . 154

B ECDFs of Empirical Running Time 171

B.1 Horizontal Versus Vertical View . 171

B.2 Explanation of Empirical Cumulative Distribution Functions 172

B.3 Uniform Targets versus Variable Targets 175

B.4 Bootstrapping . 175

B.5 Comparisons with other representations 177

C Installing bbob pproc 178

C.1 Downloading the Packages . 178

C.2 Installing on Linux . 179

C.3 Installing on Windows . 179

C.4 Installing on Mac OS . 179

Bibliography 181

List of Figures

3.1 Results on the sphere function of variants of the CMA-ES with initial

covariance matrix C(0) set to I for problem dimension going from 2 to

40-D . 46

3.2 Results on the sphere function of variants of CMA-ES with an initial

covariance matrix C(0) being a diagonal matrix with diagonal elements

(106 i−1
n−1)i=1,...,n from 2 to 40-D . 47

3.3 Results on the sphere function of variants of CMA-ES with an ini-

tial covariance matrix being a diagonal matrix with diagonal elements

(106 i−1
n−1)i=1,...,n from 2 to 40-D . 48

3.4 Results of sep-CMA-ES on the ellipsoid function 49

3.5 Single run of sep-CMA-ES on the axis-parallel ellipsoid function, β =

106, n = 20 . 53

3.6 Timing results of the sep-CMA-ES on the axis-parallel ellipsoid func-

tion, compared to CMA-ES for different population sizes 55

3.7 Results of block-CMA-ES and CMA-ES on the ellipsoid and cigar func-

tions . 56

3.8 Results of block-CMA-ES and CMA-ES on the tablet and two-axes

functions . 57

3.9 Results of block-CMA-ES and CMA-ES on the diffpow function . . . 58

3.10 Results of block-CMA-ES and CMA-ES on the Rosenbrock function . 60

4.1 Identification of the parameters of DE on the rotated ellipsoid function

in 5-D, the population size is ten times the dimension 75

4.2 Identification of the parameters of DE on the rotated ellipsoid function

in 10-D, the population size is ten times the dimension 76

iv

LIST OF FIGURES v

4.3 Identification of the parameters of DE on the rotated ellipsoid function

in 20-D, the population size is ten times the dimension 77

4.4 Effects of the ill-conditioning of the axis-parallel ellipsoid function on

BFGS, NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D 81

4.5 Effects of the ill-conditioning of the rotated ellipsoid function on BFGS,

NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D 82

4.6 Effects of the ill-conditioning of the axis-parallel ellipsoid to the power

one fourth on BFGS, NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D 83

4.7 Effects of the ill-conditioning of the rotated ellipsoid to the power one

fourth on BFGS, NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D 84

4.8 Effects of the ill-conditioning of the Rosenbrock function on BFGS,

NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D 88

4.9 Effects of the ill-conditioning of the rotated Rosenbrock function on

BFGS, NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D 89

4.10 Effect of the rotation on the PSO and other algorithms depending on

the condition number and parameter as seen on the 20-D ellipsoid and

Rosenbrock functions . 92

4.11 Performances of the Monte Carlo search on the function f1 and f22 of

BBOB 2009 . 105

4.12 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 2-D) to reach

arbitrary target function values for the Monte Carlo search, BFGS,

CMA-ES, DE, NEWUOA . 106

4.13 Empirical cumulative distribution function of the bootstrap distribu-

tion of running lengths divided by dimension (here 3-D) to reach arbi-

trary target function values for the Monte Carlo search, BFGS, CMA-

ES, DE, NEWUOA . 107

4.14 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 5-D) to reach

arbitrary target function values for the Monte Carlo search, BFGS,

CMA-ES, DE, NEWUOA . 108

LIST OF FIGURES vi

4.15 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 10-D) to reach

arbitrary target function values for the Monte Carlo search, BFGS,

CMA-ES, DE, NEWUOA . 109

4.16 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 20-D) to reach

arbitrary target function values for the Monte Carlo search, BFGS,

CMA-ES, DE, NEWUOA . 110

4.17 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension to reach arbitrary

target function values for the Monte Carlo search, BFGS, CMA-ES,

DE, NEWUOA on multi-modal functions f4, f15 to f24 of BBOB 2009 111

4.18 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension to reach arbitrary

target function values for the Monte Carlo search, BFGS, CMA-ES,

DE, NEWUOA on uni-modal functions f1, f5 to f14 of BBOB 2009 . 112

4.19 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 2-D) to reach

arbitrary target function values for all BBOB 2009 entries 114

4.20 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 3-D) to reach

arbitrary target function values for all BBOB 2009 entries 115

4.21 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 5-D) to reach

arbitrary target function values for all BBOB 2009 entries 116

4.22 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 10-D) to reach

arbitrary target function values for all BBOB 2009 entries 117

4.23 Empirical cumulative distribution function of the bootstrap distribu-

tion of the running lengths divided by dimension (here 20-D) to reach

arbitrary target function values for all BBOB 2009 entries 118

4.24 Performances of BIPOP-CMA-ES and IPOP-sep-CMA-ES on the func-

tion f24 of BBOB 2009 . 120

LIST OF FIGURES vii

4.25 Empirical cumulative distribution function of the bootstrap distribu-

tion functions of the running lengths in 20-D for the target function

values of 1 and 10−7 on the uni-modal and multi-modal functions of

the noiseless testbed of the BBOB 2009 for all BBOB 2009 entries . . 121

4.26 Empirical cumulative distribution function of the bootstrap distribu-

tion functions of the success probability for a given running length in

20-D for arbitrary target function values on different function groups

of the noiseless testbed of BBOB 2009 for all BBOB 2009 entries . . . 123

4.27 Effect of dimensionality on the success probability for given running

lengths on the noiseless testbed of BBOB 2009 for all BBOB 2009 entries125

5.1 Example data file structures obtained with fgeneric. 135

5.2 Example of an index file . 136

5.3 Example of a data file . 137

5.4 Horizontal view versus vertical view 141

5.5 Example figure obtained with ppfigdim.py 144

5.6 Example figure obtained with pprldistr.py 145

A.1 Parameter identification of DE on the rotated ellipsoid function in 5-D,

the population size is one times the dimension 155

A.2 Parameter identification of DE on the rotated ellipsoid function in 5-D,

the population size is three times the dimension 156

A.3 Parameter identification of DE on the rotated ellipsoid function in 5-D,

the population size is five times the dimension 157

A.4 Parameter identification of DE on the rotated ellipsoid function in 5-D,

the population size is ten times the dimension 158

A.5 Parameter identification of DE on the rotated ellipsoid function in 5-D,

the population size is thirty times the dimension 159

A.6 Parameter identification of DE on the rotated ellipsoid function in 10-

D, the population size is one times the dimension 160

A.7 Parameter identification of DE on the rotated ellipsoid function in 10-

D, the population size is three times the dimension 161

A.8 Parameter identification of DE on the rotated ellipsoid function in 10-

D, the population size is five times the dimension 162

LIST OF FIGURES viii

A.9 Parameter identification of DE on the rotated ellipsoid function in 10-

D, the population size is ten times the dimension 163

A.10 Parameter identification of DE on the rotated ellipsoid function in 10-

D, the population size is thirty times the dimension 164

A.11 Parameter identification of DE on the rotated ellipsoid function in 20-

D, the population size is one times the dimension 165

A.12 Parameter identification of DE on the rotated ellipsoid function in 20-

D, the population size is three times the dimension 166

A.13 Parameter identification of DE on the rotated ellipsoid function in 20-

D, the population size is five times the dimension 167

A.14 Parameter identification of DE on the rotated ellipsoid function in 20-

D, the population size is ten times the dimension 168

A.15 Parameter identification of DE on the rotated ellipsoid function in 20-

D, the population size is thirty times the dimension 169

B.1 Horizontal view versus vertical view 173

B.2 Empirical Cumulative Distribution Function for fixed targets 174

B.3 Empirical Cumulative Distribution Function for targets provided by

fixed budgets . 176

List of Tables

3.1 Test functions for the comparison of the variants of CMA-ES 50

3.2 Comparative performances for reaching the given target function value,

plus-minus the standard deviation when available, for indi-ES, sep-

CMA-ES and CMA-ES in 30-D . 62

3.3 Comparative performances for reaching a given target function value,

plus-minus the standard deviation when available, for AII-ES, MVA-

ES, sep-CMA-ES and CMA-ES in 20-D 63

3.4 Comparative performances for reaching a given target function value,

plus-minus the standard deviation when available, for L-CMA-ES, sep-

CMA-ES and CMA-ES . 64

4.1 Ill-conditioned, non-separable, non-convex test functions 78

4.2 CPU time per function evaluation in microseconds for IPOP-CMA-ES,

IPOP-sep-CMA-ES, NEWUOA, BFGS, Monte Carlo search 103

5.1 Example table obtained with pptex.py 143

ix

Listings

4.1 Matlab code: Multi-start BFGS . 101

5.1 Monte Carlo search in Matlab . 131

5.2 exampleexperiment.m . 132

5.3 exampletiming.m . 133

x

Chapter 1

Introduction

An optimisation problem can be formalised using mathematical notions: optimisation

is looking for some element xopt of the domain Ω a subset of Rn, with respect to the

objective function f : Ω → R, such that f(xopt) is lesser than f(x) for x in a

subset of Ω. We described the specific case of minimisation of the objective function

f ; maximisation is equivalent without loss of generality to the minimisation of its

opposite −f . The optimum would usually be a solution that is good enough according

to some given quality criterion; for instance, instead of searching for the optimum, we

can look for an optimal value of f up to an arbitrary precision. One can object that

choosing such a solution x is a multi-objective optimisation problem since the quality

criterion might be a compromise between multiple sub-criteria, but we choose not to

discuss this matter and restrict our search to single-objective problems for which only

the value of f(x) is considered to evaluate the quality of a candidate solution x.

Optimisation finds applications in many different fields such as aerodynamics with

the conception of airfoils, biology with the calibration of models, electronics with

circuit tuning, physics with molecular conformation of minimum energy for instance.

Our work is in the scope of Continuous Optimisation since the components of

the solution vectors x are real values, as opposed to Discrete Optimisation. More

specifically, we are considering Unconstrained Optimisation where no constraint has

to be taken into account in the search of the optimum.

In continuous optimisation, the black-box scenario assumes that the only way to

gather information on the problem at hand is to evaluate the objective function. For

1

CHAPTER 1. INTRODUCTION 2

instance, no assumption is made on the separability, the presence of noise, the avail-

ability of the gradient or the Hessian of the function. Though some real-world prob-

lems may provide such information, most problems are fundamentally black boxes,

because no mathematical expression of the objective function is available or the func-

tion evaluation requires some physical simulation or experiment. Facing such Black-

Box Optimisation (BBO) problems which come without prior knowledge, the choice

of an appropriate optimisation algorithm is a difficult task.

Many algorithms using a deterministic approach or which are heuristics-based can

be found in the literature from the fields of Global Optimisation, Operational Research

or Evolutionary Computation.

In this context, our key question is: how can we compare algorithms in order to

decide whether an algorithm might be appropriate for a given BBO problem?

There exists no theoretical solid ground on which to stand on to choose between

different methods, because of the lack of information on the objective function consid-

ered. All theoretical results either make simplifying hypotheses that are not valid for

real-world problems or give results that do not yield any outcome relevant to practice.

Systematic experimental procedures, sometimes coming with their software im-

plementation, are a way of comparing algorithms, therefore they provide parts of an

answer to our key question. We regroup these systematic procedures under the ap-

pellation ‘benchmarking’, a ‘benchmark’ being an instance of benchmarking. With

regard to benchmarking, we are interested in the notion of search costs which we

define as the quantity of computation that is required for an algorithm to reach a

solution.

A rigourous benchmark implementation of BBO algorithms has been proposed

[Hansen, 2006b, Suganthan et al., 2005] which compares the search costs of many

different algorithms on a number of problems. However a critical issue is that of

the collection of problems constituting the benchmark suite. Since no test suite of

real-world problems can possibly cover the whole range of difficulties encountered in

BBO, the choice has been made in [Suganthan et al., 2005] and in this thesis to make

use of artificial test functions featuring a chosen set of properties that are known

to make optimisation problems difficult. The benchmarking of algorithms on a test

suite of artificial functions can help identifying the weaknesses and strong points of

the algorithm with respect to these BBO difficulties. Nevertheless, the results of this

CHAPTER 1. INTRODUCTION 3

benchmarking should be generalised to other problems only with caution.

Let us motivate possible uses of benchmarking. When confronting a new problem,

if partial information is available —which we can refer to as a ‘grey-box’ scenario—,

the results of the benchmarking will provide candidate algorithms that are known to

perform well with respect to the identified characteristics of the problem. Inversely, if

the new problem is a real ‘black-box’ and no information is available, the results of a

few chosen algorithms could very well provide a characterisation of the new problem

in the light of the performances of these algorithms on the benchmark.

In the process of benchmarking, the ‘curse of dimensionality’ [Bellman, 1961] is

one well-known difficulty of optimisation which refers to the exponential increase of

the volume of the search space as the dimension increases. A consequence of the ‘curse

of dimensionality’ is that a search policy which is appropriate when the dimension of

the search space is small might be useless when the dimension is moderate or large.

Therefore, the study of the scalability of algorithms is particularly relevant.

A number of benchmark implementations are available to the practitioner, each

one of them answering the needs of a community of practitioners. The community of

evolutionary computation found in the special session on real-parameter optimization

CEC 2005 [Hansen, 2006b, Suganthan et al., 2005], an experimental framework aiming

for the rigourous and fair comparison of algorithms as well as an implementation

that proposes twenty-five problems coded in different programming languages. A

limitation to benchmarks is that the number of algorithms tested depends on whether

there exists an implementation of the algorithms compatible with the benchmark

implementation. Many practical issues such as floating point exceptions or those

encountered in the management of experimental data have to be taken into account

for the implementation of a benchmark.

A review of the state of the art of BBO methods and benchmark implementations

is given in the following chapter. The first part of this thesis focuses on the Covari-

ance Matrix Adaptation-Evolution Strategy (CMA-ES), and describes simple modifi-

cations of the algorithms that can deal with high dimensional problems. The second

and third part of this thesis revolve around our benchmark experiments and more

specifically the BBO Benchmarking 2009 and its software implementation COCO.

Nomenclature

Abbreviations

BBO Black-Box Optimisation

BBOB Black-Box Optimisation Benchmarking

CPU Central Processing Unit

ECDF Empirical Cumulative Distribution Function

ERT Expected Running Time

SP1 Success Performance One

Algorithms

For more details, see Sections 2.1 and 4.4.1.

ACO Ant Colony Optimization

BayEDAcG Bayesian Estimation of Distribution Algorithm

BFGS Broyden Fletcher Goldfarb Shanno

DASA Differential Ant-Stigmergy Algorithm

DE Differential Evolution

EA Evolution Algorithm

ES Evolution Strategy

4

CHAPTER 1. INTRODUCTION 5

GA Genetic Algorithm

G3-PCX Generalized Generation Gap model with Parent Centric CROSSover

IDEA Iterated Density-estimation Evolutionary Algorithm

AMaLGaM IDEA Adapted Maximum-Likelihood Gaussian Model Iterated

Density-estimation Evolutionary Algorithm

iAMaLGaM IDEA incremental Adapted Maximum-Likelihood Gaussian Model

Iterated Density-estimation Evolutionary Algorithm

NEWUOA NEW Unconstrained Optimization Algorithm

MA-LS-Chain Memetic Algorithm using Local Search Chaining

MCS Multilevel Coordinate Search

POEMS Prototype Optimization with Evolved IMprovement Steps

PRS Pure Random Search

PSO Particle Swarm Optimization

DEPSO Differential Evolution Particle Swarm Optimization

EDA-PSO Estimation of Distribution Algorithm Particle Swarm Optimiza-

tion

PSO Bounds Particle Swarm Optimization with adaptive bound procedure

SNOBFIT Stable Noisy Optimization by Branch and FIT

VNS Variable Neighbourhood Search

Covariance Matrix Adaptation

CMA-ES Covariance Matrix Adaptation Evolution Strategy

BIPOP-CMA-ES BI-Population Covariance Matrix Adaptation Evolution

Strategy

block-CMA-ES block Covariance Matrix Adaptation Evolution Strategy

CHAPTER 1. INTRODUCTION 6

CMA Covariance Matrix Adaptation

(µ/µW , λ)-CMA-ES Covariance Matrix Adaptation Evolution Strategy with

weighted recombination of µ parents and λ offspring

IPOP-CMA-ES Increasing POPulation Covariance Matrix Adaptation Evo-

lution Strategy

sep-CMA-ES separable Covariance Matrix Adaptation Evolution Strategy

MVA-ES Main Vector Adaptation Evolution Strategy

Software

See Section 2.2.1.

AMPL A Modeling Language for Mathematical Programming

API Application Programming Interface

COCO COmparison of Continuous Optimisers

COCONUT COntinuous CONstraint-Updating the Technology

COIN-OR COmputational INfrastructure for Operations Research

CUTEr Constrained and Unconstrained Testing Environment, revisited

DFO Derivative-Free Optimization

GAME Group of Adaptive Model Evolution

JCOOL Java COntinuous Optimization Library

OAT Optimization Algorithm Toolkit

CHAPTER 1. INTRODUCTION 7

Notations

◦ : Rn × Rn 7→ Rn operator of the element-wise multiplication of vectors

argmin argument of the minimum operator

ej ∈ Rn j-th coordinate vector

∆f ∈ R arbitrary precision

f : Rn → R, x 7→ f(x) objective function to be minimised

fopt = f(xopt) ∈ R optimal value of f

ftarget = f(xopt) + ∆f ∈ R target function value

I ∈ Rn identity matrix

k ∈ N denotes the step (k-th) of an algorithm

N∗ is N \ {0}

n ∈ N∗ dimension of the search space

∇f gradient of f ,

∇2f Hessian matrix of f ,

∇2f−1 the inverse of the Hessian matrix of f ,

x vector x

X matrix X

xopt ∈ Rn optimum of f

BFGS

α(g) ∈ R step length

p(g) ∈ Rn descent direction

B(g) ∈ Rn×n Hessian approximate

CHAPTER 1. INTRODUCTION 8

NEWUOA

c(g) ∈ R, g(g) ∈ Rn, G(g) ∈ Rn×n parameters of the model m(g)

m(g) : Rn 7→ R quadratic model

p(g) ∈ Rn iteration step

q ∈ N∗ number of interpolation points

ρ(g) ∈ R step acceptance ratio

PSO

g ∈ Rn global best position

i ∈ {0, . . . , S} denotes the i-th particle

K ∈ N number of neighbours considered to determine ni

ni ∈ Rn best neighbour of the i-th particle

pi ∈ Rn previous best position of the i-th particle

r1, r2, r3 ∈ Rn random unit vectors

S swarm size, population size

vi ∈ Rn velocity of the i-th particle

w, c1, c2, c3 ∈ R algorithm constants

xi ∈ Rn position of the i-th particle

DE

F weighting factor

CR crossover factor

xbest best vector so far

CHAPTER 1. INTRODUCTION 9

ES

C ∈ Rn×n covariance matrix

λ ∈ N∗ population size, number of offspring

µ ∈ N∗ number of parents

(µ{, +}λ)− ES selection operator to occur within the λ offpsring, the µ + λ indi-

viduals respectively for the comma and plus operator

N (0, I) multi-variate normal distribution with zero mean and unity covariance ma-

trix

N (m,C) ∼m+N (m,C) multi-variate normal distribution with mean m and co-

variance matrix C ∈ Rn×n symmetric and positive definite

σ ∈ R+ step size

∼ equality operator for distributions

CMA-ES

B(g) ∈ Rn×n an orthogonal matrix which columns are eigenvectors of C(g) and cor-

respond to the diagonal elements of D(g)

C(g) ∈ Rn×n covariance matrix at generation g

c
(g)
jj ∈ R diagonal element of C

cc ∈ [0, 1] learning rate for the cumulation for the rank-one update of the covariance

matrix

ccov ∈ [0, 1] learning rate for the covariance matrix update

cσ ∈]0, 1] learning rate for the cumulation for the step size control

D(g) ∈ Rn×n a diagonal matrix which elements are the square root of eigenvalues of

C(g) and correspond to the columns of B(g)

dσ ≈ 1 damping parameter for step size update

CHAPTER 1. INTRODUCTION 10

E expectation value

µcov parameter for weighting between rank-one and rank-µ update

µeff = (
∑µ

i = 1w2
i)
−1 variance effective selection mass

p(g) ∈ Rn evolution path at generation g, a sequence of successive (normalised) steps

(pg)j ∈ R j-th coordinate of p(g)

σ(g) ∈ R+ step size at generation g

〈x〉(g)W =
∑µ

i=1wix
(g)
i:λ ∈ Rn weighted mean of the individuals x

(g)
i:λ

x
(g)
i:λ ∈ Rn the i-th best, ranked according to objective function f , out of the λ indi-

viduals x
(g)
k at generation g

wi ∈ R with i = 1, . . . , µ recombination weights

〈z〉(g)W =
∑µ

i=1wiz
(g)
i:λ ∈ Rn weighted mean of the individuals z

(g)
i:λ

z
(g+1)
k ∈ Rn are normally (N (0, I)) distributed vectors

z
(g)
i:λ ∈ Rn the i-th best, ranked according to objective function f , out of the λ indi-

viduals z
(g)
k at generation g

(z
(g)
i:λ)j ∈ R

block-CMA-ES

B
(g)
j , C

(g)
j , D

(g)
j j-th block of B, C, D respectively

(p
(g+1)
c)j, (z

(g)
i:λ)j ∈ R projections of p

(g+1)
c) and z

(g)
i:λ onto the j-th subspace, different

from the same notations in the context of CMA-ES

Test Functions

Q is either I or an orthogonal n × n matrix with each column vector qi being a

uniformly distributed unit vector implementing an angle-preserving transfor-

mation.

β condition number/parameter

CHAPTER 1. INTRODUCTION 11

Performance Measurements

Let us consider that we have run multiple trials on a given problem. A trial is

considered successful if the target function value ftarget is reached. We will consider

for a successful run the number of function evaluations for reaching the target function

value which we call running time. We can define:

pS the probability of success, the ratio of the number of successful runs over the total

number of runs

RTS is the average of the running times of the successful runs.

RTUS is the average of the running times of the unsuccessful runs.

SP1 = RTS

pS
the success performance one

ERT = pSRTS+(1−pS)RTUS

pS
the expected running time

Chapter 2

Review of the State of the Art

Contents

2.1 Types of Solvers . 14

2.1.1 Deterministic Methods . 14

2.1.1.1 Line Search . 15

2.1.1.2 Trust Region . 17

2.1.1.3 Pattern Search . 18

2.1.1.4 Deterministic Methods for Global Optimisation . 20

2.1.2 Stochastic Methods . 21

2.1.2.1 Monte Carlo Search 21

2.1.2.2 Simulated Annealing 21

2.1.2.3 Ant Colony Optimisation 22

2.1.2.4 Particle Swarm Optimisation 22

2.1.2.5 Evolutionary Algorithms 23

2.1.2.6 Genetic Algorithms 24

2.1.2.7 Evolution Strategies 24

2.1.2.8 Differential Evolution 25

2.1.2.9 Estimation of Distribution Algorithms 26

2.2 BBO Benchmarking Software 26

2.2.1 Optimisers . 27

12

CHAPTER 2. REVIEW OF THE STATE OF THE ART 13

2.2.1.1 NLOPT . 27

2.2.1.2 COIN-OR . 27

2.2.2 Testbeds . 28

2.2.2.1 CUTEr . 28

2.2.2.2 COCONUT . 29

2.2.2.3 CEC 2005 Special Session 29

2.2.3 Benchmarking software . 29

2.2.3.1 NEOS . 30

2.2.3.2 Other projects . 30

2.3 Discussion of the Review of the State of the Art 31

In the face of a BBO problem, deciding which method is appropriate is a difficult

task, especially since so many methods from the literature in Global Optimisation,

Operational Research and Evolutionary Computation are available.

In the field of operational research, some methods are appropriate for solving

BBO problems. These methods are called ‘derivative-free’ optimisers because they

can proceed without the availability of the gradient of the objective functions. The

appellation ‘derivative-free optimization’ has been used with some frequency in the

community of model-based algorithms [Conn and Toint, 1996, Conn et al., 1997a].

Global optimisation lists exact methods and heuristics, denoted as ‘direct search’

methods which could also be used to solve BBO problems. The appellation ‘direct

search’ is introduced in [Hooke and Jeeves, 1961] in the context of pattern search

methods and is more properly defined in [Kolda et al., 2003] which also mentions

‘derivative-free’ optimisation. Among these direct search methods, there are for in-

stance ‘globalised’ extensions of local search methods from applied mathematics which

we discuss further down.

Though it is not in the scope of our work to find a way to conciliate global

optimisation, operational research and evolutionary computation, we would like to

initiate a move in the direction of a reunified theoretical and experimental framework

through our work.

Benchmarks of algorithms through systematic experimental procedures provide

parts of an answer to the key question of this thesis. Many implementations are

CHAPTER 2. REVIEW OF THE STATE OF THE ART 14

out there within range of the BBO practitioner. These software implementations are

often only known by people from the field these implementations originated from.

Section 2.1 briefly covers the main types of BBO methods available to the prac-

titioner. Section 2.2 provides descriptions of the existing software facilities for the

practitioner in BBO to experiment with.

2.1 Types of Solvers

In the field of BBO, many different approaches exist, providing different solvers or

algorithms that strive to solve the BBO problem considered. From now on, we will

use the words ‘solver’ or ‘optimisation algorithm’ without distinction. Usually these

solvers would be an application of a theoretical idea or would be designed in order to

solve a specific problem and generalised to others.

These solvers are iterative: they iteratively try to improve from an initial guess

to try and reach the global optimum. The algorithms we briefly present here can be

split into two categories: the ones that have a deterministic behaviour and the ones

that base their functioning on stochasticity.

From this point on, we will refer without distinction to optimisation and min-

imisation since we can account for maximisation by considering the opposite of the

objective function f without loss of generality.

2.1.1 Deterministic Methods

In this section, we present deterministic methods [Nocedal and Wright, 2006] used

in unconstrained continuous optimisation. Two dominant classes are the line search

and the trust region methods presented in Sections 2.1.1.1 and 2.1.1.2. Another class

of methods are pattern search methods which we present in Section 2.1.1.3. The

methods we mentioned are appropriate for the search of local optimum, we describe

in Section 2.1.1.4 how these methods can be adapted to global optimisation.

CHAPTER 2. REVIEW OF THE STATE OF THE ART 15

2.1.1.1 Line Search

In the case of line search methods, from the current iterate x(g), the algorithm finds

a direction of descent p(g) and then the descent step length α(g) from x(g) to obtain

the new iterate x(g+1) is estimated by the following equation:

α(g) = argmin
α>0

f(x(g) + αp(g))

x(g+1) = f(x(g) + α(g)p(g))

Most often though, line search refers to the determination of the descent step given

a direction of descent.

Among the descent directions available, the steepest descent given by the opposite

of the gradient is an obvious choice resulting in the steepest descent method:

p(g) = −∇f(x(g))

The gluttonous behaviour of such method can lead to slow convergence on certain

types of problems.

The Newton direction is given by the second derivative of the objective function:

p(g) = −∇2f−1(x(g))∇f(x(g))

This provides a reliable descent direction as long as the current iterate x(g) is reason-

ably close to the global optimum of the objective function and the Hessian is positive

symmetric definite. The Newton methods using the direction of the same name en-

sure convergence rate close to quadratic but need the computation of the Hessian of

the function which can be expensive.

Quasi-Newton methods uses the following descent direction:

p(g) = −B(g)−1∇f(x(g))

where the symmetric and positive definite matrix B(g) is updated at each iteration

using a formula. Different update formulae exist, resulting in different quasi-Newton

methods such as the SR1 [Broyden, 1965, Fletcher, 1987] or the BFGS [Broyden,

1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970].

CHAPTER 2. REVIEW OF THE STATE OF THE ART 16

The line search methods involve gradient computations, thus replaced with finite

differences in the case of BBO. The gradient of f at x(g) is approximated by evaluating

f at n+ 1 points in the case of one-sided differences:

∂f

∂xj
(x(g)) ≈ f(x(g) + ε ej)− f(x(g))

ε

along the j-th component, where ej is the j-th unit vector and ε is a positive real

number. To ensure some precision in the approximation of the gradient, ε needs to

be small compared to the components of x(g). In the case of floating point operations

though, to prevent numerical round-off errors, ε cannot be arbitrarily small.

The implicit filtering method [Gilmore and Kelley, 1995] is, in its simplest form, a

variant of the steepest descent method with line search adapted to optimisation with

noise. The implicit filtering method works best on functions for which the noise level

decreases as the iterates approach the optimum. The method uses a finite difference

computation with a decreasing sequence (ε(g))g∈N for ε. For each different value ε(g),

the descent direction −∇ε(g)f is obtained using the Armijo line search which consists

in incrementing the integer m until the following equation is verified:

f(x(g) − ρm∇ε(g)f(x(g))) ≤ f(x(g))− cρm‖∇ε(g)f(x(g)))‖2
2

with ρ ∈ [0, 1]. If m is larger than the constant amax, we use the next element of the

decreasing sequence (ε(g))g∈N instead. The implicit filtering method uses such strategy

instead of choosing ε to ensure some precision on the gradient estimate which may be

thrown off due to the noise. An improvement to the standard implicit filtering method

[Kelley, 1999] consists in using the gradient estimate ∇ε(g)f to construct approximate

Hessians and thus generating quasi-Newton search directions.

Line search methods are essentially local search approaches. Some approaches,

grouped under the appellation ‘derivative-free nonmonotone’ techniques, adapts line

search to global search by generalising the Armijo rule to allow increase of the function

value [Diniz-Ehrhardt et al., 2008, Grippo et al., 1986]. An efficient procedure for

choosing the successive descent direction using this line search is still not determined.

CHAPTER 2. REVIEW OF THE STATE OF THE ART 17

2.1.1.2 Trust Region

Trust region methods use a model m(g) that is approaching the behaviour of the

objective function around x(g) in the trust region. This model has to verify some

interpolation conditions: m(g)(yi) = f(yi) for i = 1, . . . , q with q the number of

interpolation points. The interpolation set Y is the list of the vectors (yi).

The step p(g) is then determined by:

p(g) = argmin
p

(m(g)(x(g) + p))

with the constraint that the norm of p(g) must be less than ∆(g) > 0, the trust region

radius. The steps are chosen to stay within the trust region. As the iterate x(g) closes

on the optimum, the trust region radius ∆(g) should decrease.

The step acceptance and trust-region update strategies are based on the ratio

between the actual reduction in the function and the reduction predicted by the

model:

ρ(g) =
f(x(g))− f(x(g) + p(g))

m(g)(x(g))−m(g)(x(g) + p(g))

Since x(g) + p(g) minimises m(g), the denominator is always strictly larger than

zero. Hence, if ρ(g) is negative, f(x(g) + p(g)) is larger than f(x(g)) and the step is

rejected. If ρ(g) is close to one, there is good agreement between the model and the

objective function in the trust region therefore the trust region radius ∆(g) can be

increased. Otherwise if ρ(g) is positive but not so close to one, we may keep ∆(g) or

reduce its value depending on whether the interpolation set Y needs to be improved

or not. The next iterate x(g+1) is assigned to x(g) or x + p(g) depending on whether

ρ(g) is larger than η which is a constant in [0, 1].

The model, if quadratic, can be written as:

m(g)(x(g) + p) = c(g) + g(g)Tp+
1

2
pTG(g)p

where c(g), g(g) and G(g) are parameters of the model m(g) which have overall 1
2
(n +

1)(n+2) coefficients. The model can be fully interpolated by solving the linear system

given by the interpolation conditions if the algorithm uses 1
2
(n+1)(n+2) interpolation

points, provided that the linear system is non-singular.

CHAPTER 2. REVIEW OF THE STATE OF THE ART 18

For more information, [Conn et al., 2000] proposes an exhaustive treatment of the

state of the art in trust region methods.

2.1.1.3 Pattern Search

The pattern search algorithm originally refers to the algorithm described by Hooke

and Jeeves [1961]. The ‘pattern search’ appellation has been generalised to algorithms

that use a set of vertices around the current iterate x(g) to direct the search of the

optimum. The set of vertices may evolve as the search proceeds.

An instance of pattern search method is the coordinate search algorithm which

consists in cycling through the n coordinate directions given by the unit vectors

e1, . . . , en and obtaining new iterates by performing line search along each direction

in turn. The coordinate search can iterate infinitely but provides with an alternative

that does not require the computation of the gradient estimate. The speed of conver-

gence can be quite acceptable if the variables of the objective function f are loosely

coupled. The original pattern search algorithm [Hooke and Jeeves, 1961] actually is a

coordinate search that performs the sequence of coordinate descent and then search

along the joint line between the first and last points in the cycle.

Pattern search methods are a generalisation of the coordinate search in the sense

that they allow to search in a richer set of directions at each iterations.

The downhill simplex method [Lagarias et al., 1998], introduced by Nelder and

Mead [1965], is an instance of pattern search method. The downhill simplex method

evolves a hull of n + 1 points. The points of the hull satisfy the non-degeneracy

condition which consists in preventing that the volume of the hull is zero. Given

the list of vertices : x1, . . . ,xn+1 sorted from the best to the worst, we compute

the centroid c of all but the worst vertex: c =
∑n

i=1 xi. The worst vertex xn+1 is

replaced by a new vertex using reflection, expansion or contraction. In the case where

an improvement cannot be made, a reduction step occurs.

We describe these different operations below:

Reflection The reflection point is obtained using the following equation xr = c +

α(c−xn+1), the standard value for α is 1. Depending on the value of the reflec-

tion point compared to that of the best and second worst vertex, respectively

x1 and xn, we can either decide to keep the reflection point, proceed with the

expansion or the contraction transformations. If the value of the reflection point

CHAPTER 2. REVIEW OF THE STATE OF THE ART 19

is between that of the x1 and xn, then we replace the worst vertex xn+1 with

that of the reflection point xr and start a new iteration. Otherwise we proceed

to the next transformation.

Expansion If the value of the reflection point xr is better than that of the best point

x1, the expansion point is computed: xe = c+ γ(xr− c), the standard value of

γ is 2. If the value of the expansion point is better than that of xr, then xn+1 is

replaced by the expansion point xe, else by the reflection point. Then we start

a new iteration.

Contraction If the value of the reflection point is worst than that of xn, the con-

traction point is computed.

Outside Contraction If the value of the reflection point is not worse than

that of xn+1, the contraction point is computed as follows: xc = c +

β(xr − c), the standard value of β is 1
2
. In this case, if the value of

the contraction point is better than that of xr, xn+1 is replaced by the

contraction point and a new iteration is started. Otherwise, we proceed to

the shrink transformation.

Inside Contraction If the value of the reflection point is worse than that of

xn+1, the contraction point is obtained as follows: xc = c+ β(x1 − c). In

this case, if the value of the contraction point is better than that of x1,

xn+1 is replaced by the contraction point and a new iteration is started.

Otherwise, we proceed to the shrink transformation.

Shrink All but the best point are replaced by: x1 + δ(xi−x1) with i = 2, . . . , n+ 1,

the standard value of δ is 1
2
. A new iteration is then started.

The Nelder-Mead algorithm is shown to fail in attaining an optimum [McKinnon,

1998] on a family of strictly convex objective functions in R2 by degeneration of the

simplex in a sub-space. This effect is dependent on the initialisation of the algorithm.

Restarts of the algorithms is often advocated as the easiest fix.

CHAPTER 2. REVIEW OF THE STATE OF THE ART 20

2.1.1.4 Deterministic Methods for Global Optimisation

The task of global optimisation is challenging [Dixon et al., 1976, Horst, 2002], Pintér

[1996] gives an overview of methods for global optimization that covers a wider spec-

trum than that of BBO.

In the case of bound-constrained optimisation problems, the literature in global

optimisation provides with methods that iteratively partition the search space and

decompose the global problem into many local sub-problems, see for instance [Huyer

and Neumaier, 1999, Jones et al., 1993]. These methods originates from the Branch-

and-Bound method of combinatorial optimisation, see for instance [Nemhauser and

Wolsey, 1988].

In the case of BBO where no information is available, some heuristics can be used

to augment deterministic local search approaches addressing global optimisation. One

such heuristic called multi-start consists in starting —and restarting— a local search

algorithm from several points of the search space. This increases the probability of

the global convergence of the local search process. If we consider only the starting

points of the multi-starts, the process is the same as the Monte Carlo search, see

Section 2.1.2.1. The inefficiency of the multi-start is two-fold: 1. the Monte Carlo

search is clearly inefficient especially in the face of the ‘curse of the dimensionality’:

the search space volume increases exponentially with n, making space filling sampling

intractable even for moderate dimensionalities; 2. the probability of a single start of

the local search process falling into a local optimum is left unchanged.

Extensions to the multi-start exist such as: 1. clustering relates to the search space

partitioning methods mentioned since it consists in grouping the sampled points de-

pending on the local optimum attained by the local search procedure to decide which

area of the search space to sample at the next iteration [Törn and Žilinskas, 1989],

2. quasi-random sampling uses quasi-random sequence to sample more ‘uniformly’

the space, see for instance [Kucherenko, 2006]. Both extensions try to improve the

quality of the sampling of the search space.

CHAPTER 2. REVIEW OF THE STATE OF THE ART 21

2.1.2 Stochastic Methods

In contrast with the previous deterministic approaches, Monte Carlo methods based

on stochastic sampling of the search space, are presented here. The field of Evolu-

tionary Computation provide with a number of stochastic techniques including evo-

lutionary algorithms and swarm intelligence approaches. We describe some of these

algorithms.

2.1.2.1 Monte Carlo Search

The Pure Random Search (PRS) [Brooks, 1958], also referred to as Monte Carlo

search is the most simple stochastic search algorithm which consists in sampling each

search point independently using a fixed probability distribution in the search domain

and keeping the best solution found. It has been theoretically proven that PRS con-

verges to the global optimum with probability one for any objective function given

that the neighbourhood of the optimum can be sampled with a strictly positive prob-

ability. In practice, such approach comes with very large convergence time increasing

exponentially with the dimension of the search space [Zhigljavsky and Žilinskas, 2008].

2.1.2.2 Simulated Annealing

Annealing refers to a technique in metallurgy which consists in heating and then con-

trolling the process of cooling of a material to improve its overall physical properties.

The heating causes the atoms to leave their initial configuration, which is a local

optimum of energy. The controlled cooling increases the chance of having the atoms

in a state of energy lower than initially. Simulated Annealing is a meta-heuristic

for global optimisation that is conceptually analogous to annealing, with elements

x of the search space being the different states of some physical system and the

objective function providing the energy of these states. Simulated Annealing seeks

to find a state of lower energy, in other words to improve a potential solution, by

choosing a neighbour solution with a probability increasing with the closeness of the

two solutions and decreasing with the value of a parameter which is denoted as the

temperature. Originally developed for combinatorial optimisation [Kirkpatrick et al.,

1983], the simulated annealing has been adapted to continuous optimisation [Wang

and Chen, 1996].

CHAPTER 2. REVIEW OF THE STATE OF THE ART 22

In practice, the sequence of temperatures is essential to solve optimisation prob-

lems, this fact is stressed in [Spall, 2003] which gives an overview of the simulated

annealing for global optimisation. The sequence needs to be decreasing to zero so

that we reach an optimum but the decrease needs to be slow enough to escape local

optima.

2.1.2.3 Ant Colony Optimisation

Ant Colony Optimisation (ACO) [Bilchev and Parmee, 1995, Colorni et al., 1991]

regroups algorithms belonging to the field of evolutionary computation which uses

the biological image of ants seeking paths from the base location of their colony to

sources a food. ACO is based on the theory of stigmergy, which is another appellation

for the ant colony paradigm and interprets the ability of a colony to interact through

its environment.

Originally adapted to combinatorial optimisation problems, ACO can be extended

to BBO either by using discretisation or by the use of probability sampling of the

search space, see for instance [Socha and Dorigo, 2008].

2.1.2.4 Particle Swarm Optimisation

Particle Swarm Optimization (PSO) is a subset of evolutionary computation. The

PSO algorithm [Clerc and Kennedy, 2002, Kennedy and Eberhart, 1995, Shi and

Eberhart, 1998, Shi et al., 1999] is based on the biological paradigm of a swarm of

particles that ‘fly’ over the objective landscape, exchanging information about the

best solutions they have ‘seen’. More precisely, each particle updates its velocity,

stochastically twisting it toward the direction of the best solutions seen by 1. itself

and 2. some parts of the whole swarm; it then updates its position according to

its velocity and computes the new value of the objective function. The canonical

expression of the velocity and position update of the swarm can be written as follows:

vi ← wvi + c1r1 ◦ (gi − xi) + c2r2 ◦ (pi − xi) + c3r3 ◦ (ni − xi)
xi ← xi + vi

where gi is the position of the “global best” particle, the pi is the best position

ever obtained for the i-th particle, ni is the neighbourhood best obtained from the

CHAPTER 2. REVIEW OF THE STATE OF THE ART 23

subset of neighbours of the i-th particle in the swarm, the real numbers w, c1, c2,

c3 are constants, r1, r2 and r3 are random unit vectors and ◦ is the element-wise

multiplication1.

There are many variants of the PSO which has led to the implementation of

Standard-PSOs2.

2.1.2.5 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are another subset of evolutionary computation tech-

niques in the sense that EAs are bio-inspired optimisation algorithms which evolve

a population of solutions. They are modelled after Darwin’s theory of natural evo-

lution. More precisely, EAs implement the idea that the emergence of species that

are adapted to their environment results from the synergy between natural selection

(survival of the fittest) and blind variations (random mutation of the genetic mate-

rial from parents to offspring, independently of any adaptation). The analogy with

biology is also retrieved in the terminology used for EAs. The fitness designates the

objective function, the population of individuals denotes the set of possible solutions

to the problem at hand. A generation which denote an iteration of the algorithm

consists in different steps repeated until a termination criteria is reached. After the

initialisation of the population, a generation can be described as follows:

Fitness Scoring is the evaluation of the individuals according to the fitness, usually

EAs would stop at this step after some individuals with sufficiently good fitness

were found,

Selection is the process of choosing parents, that means individuals among the pop-

ulation according to their score biased towards the ones with the best score,

thus implementing a step of natural selection,

Variations regroup the operators used for generating offspring from the parents;

these variations are denoted mutations and crossovers or recombinations which

are respectively unary and k-ary operators.

1Please note that a ◦ b is equivalent to a · bT , with a and b being column vectors.
2Two subsequent standards, 2006 and 2007, have been implemented, both available at: http:

//www.particleswarm.info/Programs.html

http://www.particleswarm.info/Programs.html
http://www.particleswarm.info/Programs.html

CHAPTER 2. REVIEW OF THE STATE OF THE ART 24

EAs cover a spectrum of fields of applications much larger than that of BBO only,

since all that matters is to find an effective representation of the problem at hand,

which usually contributes for a large part to the success of EAs methods. This comes

with its downside since an effective representation may not be one that can be easily

interpreted and therefore improved with the comprehension of the problem.

EAs, just like evolutionary computation, exist in the form of multiple techniques

and approaches including genetic algorithms and evolution strategies or estimation

of distribution algorithms.

2.1.2.6 Genetic Algorithms

Genetic Algorithms (GAs) were introduced by Holland [1975] and designed initially

to handle bit-string representation of problems. GAs has been extended to handle

BBO problems by using a binary bit-string representation of elements of Rn. The

major drawback in using such representation is the explosion in the length of the

bit-strings as n grows larger.

2.1.2.7 Evolution Strategies

Evolution Strategies (ESs) are another kind of evolutionary algorithms, introduced by

Rechenberg [1973b], Schwefel [1981]. Following the generic scheme of EAs, the steps

in the ESs are defined as follows: the selection step consists in choosing individuals

based on their ranking in terms of fitness values, the variation step consists mainly

in Gaussian mutation.

The selection step based on the ranking of the individuals according to their fitness

value can either be among the offspring only, or among the population of offspring

and parents.

The Gaussian mutation consists in generating from a parent x the offspring y as

follows: y = x+ σN (0,C), where σN (0,C) = N (0, σ2C) denotes the multi-variate

normal distribution with mean 0 and covariance matrix C.

The population size is historically denoted as µ and the number of offspring as λ.

Originally, ESs considered population size of one. In the case where µ is larger than

one, another variation operator is involved: the linear recombination of µ parents is

used to generate the λ offspring. So in this case, we have y =
∑µ

i=1 wixi+σN (0,C),

where the (wi)i∈{1,...,µ} are real values and the xi are sorted according to their fitness

CHAPTER 2. REVIEW OF THE STATE OF THE ART 25

values. The intermediate recombination denotes the case where: wi = 1
µ

for i ∈
1, . . . , µ.

A standard notation to denote ESs is in the form (µ, λ) and (µ + λ), where the

comma operator ‘,’ means selecting among the λ offspring only and the plus operator

‘+’ means selecting between the λ offspring and the µ parents.

An asset of EAs and particularly of ESs is the possibility of including strategy

parameters such as σ, the step size, and the covariance matrix C in the loop of the

evolution, therefore adapting the parameters in the process of the optimisation.

In the most basic version of adaptation, the one-fifth success rule, first proposed

by Schumer and Steiglitz [1968] and discovered independently by Devroye [1972],

Rechenberg [1973a], adapts the step-size by computing the empirical success proba-

bility and compare it to one fifth. The step size is multiplied or divided by a factor of

e1/3 ≈ 1.4, if the empirical success probability, that is the fraction of offspring which

improved in terms of objective function value over the parents, is greater or lesser

than one fifth. The one-fifth success rule is theoretically justified by results on the

sphere and corridor function in the asymptotic case where n goes to infinity.

Many other adaptation schemes exist such as SA-ES, introduced by [Schwefel,

1981], which adapts the step size, or CMA-ES which adapts both the step size and

the covariance matrix using notions called cumulation and path length control, see

Chapter 3.

2.1.2.8 Differential Evolution

Differential Evolution (DE) [Price et al., 2005, Price, 1996, Storn, 1996, Storn and

Price, 1995, 1997] is an evolutionary algorithm that uses a differential mutation proce-

dure that consists in the addition of the weighted difference of two population vectors

to a third vector. So when considering the traditional evolutionary loop, DE uses

these steps:

Mutation vi = xi1 + F (xi2 − xi3), where i is in 1, . . . , NP with NP being the

population size, i1, i2, i3 are indices chosen in 1, . . . , NP and F is a constant in

the range]0, 2],

Crossover ui is the resulting individual of the crossover between the parent xi and

CHAPTER 2. REVIEW OF THE STATE OF THE ART 26

the mutant candidate vi which is generated by choosing component by compo-

nent between those of vi and xi with probability CR and 1−CR respectively,

with the exception that one random component of ui must correspond to that

of vi,

Selection the candidate ui replaces xi if there is an improvement.

2.1.2.9 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [Mühlenbein and Paaß, 1996], also

named Probabilistic Model-Building Genetic Algorithms (PMBGAs) [Pelikan et al.,

2002], or Iterated Density Estimation Algorithms (IDEAs) [Bosman and Thierens,

2000], are inspired from genetic algorithms; instead of maintaining a population of

individuals to represent potential solution vectors, EDAs use a probability distribu-

tion. The EDAs iteratively identify the parameters of the probability distribution by

successively: 1. sampling the distribution using the current values of the parameters,

2. computing the fitness of the sampled points, 3. selecting some of these points with

a bias towards the best point, 4. and either reconstructing a probability distribu-

tion from these points or updating the current distribution. EDAs originally address

problems with bit-string representation but have been adapted to continuous optimi-

sation, for instance in [Bosman and Thierens, 2000, Sebag and Ducoulombier, 1998].

A survey of EDAs can be found in [Larrañaga and Lozano, 2001, Pelikan et al., 2002].

EDAs and the Covariance Matrix Adaptation (CMA), which adapts a multi-variate

normal search distribution, are shown to be related in many aspects though some key

differences exist [Hansen, 2006a].

2.2 BBO Benchmarking Software

Facing Black-Box Optimisation (BBO) problem which comes without prior knowl-

edge, choosing an optimisation algorithm is a difficult task. A way of providing

decisive elements to the choice process is the theoretical analysis of the convergence

rates of the algorithms considered, see [Spall et al., 2006]. A more empirical way is the

benchmarking of algorithms on testbeds of functions with known properties. Lang-

don and Poli [2007] has proposed an improvement on the benchmarking experimental

CHAPTER 2. REVIEW OF THE STATE OF THE ART 27

framework by using Genetic Programming to generate problems that would show the

advantages and drawbacks of a few algorithms including CMA-ES, DE, PSO, and a

Newton method.

The practitioner is provided with many different benchmarking systems for which

we give some elements of comparison here. These benchmarks are usually addressed

to a specific field of research, and provide tools that find their purpose at different

levels from testbeds and experimental framework to application programming inter-

faces (APIs) which allow the BBO practitioner to make their own pieces of software

compatible with the benchmarks.

2.2.1 Optimisers

We present here some optimisation software frameworks which are inscribed in a

much broader scope than that of BBO. As a part of these software frameworks, some

optimisers are proposed for solving BBO problems.

2.2.1.1 NLOPT

NLopt3 [Johnson, 2008] provides with a unified software framework for some state-

of-the-art derivative-free algorithms. It was built out of the necessity to test and

compare algorithms. NLopt provides with open-source implementation of some BBO

algorithms as well as some test functions.

2.2.1.2 COIN-OR

The Computational Infrastructure for Operations Research (COIN-OR)4 project is

an open-source software presented as a collection of projects related to optimisation

[Lougee-Heimer, 2003]. As the project name states, the COIN-OR project is born

and made for people from the field of Operational Research. The COIN-OR project

provides with tools for building the piece of software needed to run the different

projects, tools for outputting graphs, APIs. Development is still ongoing as the

projects are at different levels of maturity.

3http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms
4http://www.coin-or.org

http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms
http://www.coin-or.org

CHAPTER 2. REVIEW OF THE STATE OF THE ART 28

The DFO5 and Ipopt6 projects which are under the deterministic non-linear opti-

misation category are the most closely related to our interests. Both projects propose

algorithm to solve BBO problems. The DFO project focuses on the implementation

of the DFO algorithm [Conn et al., 1997a,b, 1998] which is a trust region method, see

Section 2.1.1.2, adapted to BBO. The project Ipopt is still active and the underlying

algorithm is a quasi-Newton method in the case of BBO [Wächter and Biegler, 2006].

None of the two projects provide with benchmarks. Only a few test functions are

provided by DFO. Ipopt proposes interfaces to modelling languages such as AMPL7

used to program optimisation problems or to testing environment such as CUTEr.

2.2.2 Testbeds

A number of projects proposes optimisation testbeds regrouping many test functions

from real world applications or academic background.

2.2.2.1 CUTEr

The testing environment Constrained and Unconstrained Testing Environment, re-

visited (CUTEr)8 [Gould et al., 2003] proposes some BBO test functions. The test

problems of CUTEr are written using the SIF modelling language9.

Current developments of CUTEr propose new interfaces including one improved

interface to Matlab. The CUTEr provides with BBO problems which can be of great

use to practitioners, other BBO benchmarking frameworks have used problems from

CUTEr [Moré and Wild, 2008]. Usually they are restricted to dozens of problems of

CUTEr, which overall has more than a thousand of problems though many of them

are from constrained optimisation which is not in the scope of BBO.

Though the problems in CUTEr are all listed on the web10, details of an optimisa-

tion problem are only available by looking into the SIF file of the problem. Instead, a

classification scheme11 is used to provide with information on the problem: 1. the type

5https://projects.coin-or.org/Dfo
6https://projects.coin-or.org/Ipopt
7A Modeling Language for Mathematical Programming, http://www.ampl.com/
8http://hsl.rl.ac.uk/cuter-www/
9http://www.numerical.rl.ac.uk/lancelot/sif/sifhtml.html

10http://cuter.rl.ac.uk/cuter-www/Problems/mastsif.shtml
11http://cuter.rl.ac.uk/cuter-www/Problems/classification.shtml

https://projects.coin-or.org/Dfo
https://projects.coin-or.org/Ipopt
http://www.ampl.com/
http://hsl.rl.ac.uk/cuter-www/
http://www.numerical.rl.ac.uk/lancelot/sif/sifhtml.html
http://cuter.rl.ac.uk/cuter-www/Problems/mastsif.shtml
http://cuter.rl.ac.uk/cuter-www/Problems/classification.shtml

CHAPTER 2. REVIEW OF THE STATE OF THE ART 29

of objective function, for instance constant or quadratic, 2. the type of constraints,

3. the smoothness of the problem which is determined by the fact that the function is

twice differentiable and continuous, 4. the origin of the optimisation problem whether

it is from academics or real world problems, 5. the dimension of the problem (which

can be varied for some problems).

2.2.2.2 COCONUT

COntinuous CONstraint-Updating the Technology (COCONUT)12 proposes to in-

tegrate techniques from mathematical programming, constraint programming and

interval analysis into a single algorithm. COCONUT proposed a framework with a

strategy engine at its core that calls modules, which organise models of the optimisa-

tion into a search graph and try to solve the sub-problems associated to the restrained

models in the search graph.

The project comes with the COCONUT benchmark13 which is a collection of

problems for testing the algorithms in COCONUT. The benchmark includes some

problems from CUTEr, see Section 2.2.2.1, as well as some from other sources from

the field of global optimisation.

2.2.2.3 CEC 2005 Special Session

The community of evolutionary computation found in the special session on real-

parameter optimization CEC 2005 [Suganthan et al., 2005], an experimental frame-

work aiming for the rigourous and fair comparison of algorithms as well as an im-

plementation that proposes twenty-five problems coded in C, Matlab and Java.

The results of a number of algorithms on the test bed of CEC 2005 are compiled in

[Hansen, 2006b].

2.2.3 Benchmarking software

Overall, the practitioner in BBO is left to decide how the algorithms considered are

to be compared. The performance comparison of algorithms depends on the criteria

considered and it is very probable that these criteria are different for most people.

12http://www.mat.univie.ac.at/users/neum/public_html/glopt/coconut/
13http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

http://www.mat.univie.ac.at/users/neum/public_html/glopt/coconut/
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

CHAPTER 2. REVIEW OF THE STATE OF THE ART 30

In this context, some software exists that can help the practitioners implement their

own benchmarking instance.

2.2.3.1 NEOS

NEOS14 is a server for optimisation providing many pieces of optimiser software

and an extensive list of optimisation problems including CUTEr, see Section 2.2.2.1.

NEOS works using queries made to the server returning the results of optimisers

on the chosen problem. NEOS is the joint effort of many researchers in the field

of optimisation and operations research. NEOS provides distributed computational

power for the public to test algorithms on test functions which are altogether hosted

on the server. New algorithms and problems can be submitted.

2.2.3.2 Other projects

Many different projects exist and are in the developmental state. The Optimization

Algorithm Toolkit (OAT)15 and LOPTI16 both are single-man attempts at the bench-

marking problem we are considering. The OAT [Brownlee, 2007a,b] resembles very

much to Weka17 which provides with an interface and all the necessary software for

practitioners in the field of machine learning to test different algorithms on a col-

lection of real-world data mining problems. The OAT proposes the same experience

in the field of combinatorial and continuous optimisation. LOPTI is in a develop-

mental state and proposes a benchmarking framework of four optimisers facing BBO

problems. The Java COntinuous Optimization Library (JCOOL)18 also addresses the

benchmarking problem, the prototype of the library has been used in the context of

Group of Adaptive Model Evolution (GAME), from the same authors, which uses

optimisation techniques to evolve machine learning models [Pavel Kord́ık, 2007].

14http://www-neos.mcs.anl.gov/
15http://optalgtoolkit.sourceforge.net
16http://volnitsky.com/project/lopti/
17http://sourceforge.net/projects/weka/
18http://cig.felk.cvut.cz/projects/jcool/

http://www-neos.mcs.anl.gov/
http://optalgtoolkit.sourceforge.net
http://volnitsky.com/project/lopti/
http://sourceforge.net/projects/weka/
http://cig.felk.cvut.cz/projects/jcool/

CHAPTER 2. REVIEW OF THE STATE OF THE ART 31

2.3 Discussion of the Review of the State of the

Art

In this Chapter, we have presented a list of different methods from the fields of Oper-

ational Research, Global Optimisation and Evolutionary Computation. Theoretical

approaches have been presented as well as experimental heuristics, the former de-

livering proofs of convergence under certain assumptions and the latter focusing on

delivering suitable solutions in practice.

The many interactions between operational research and global optimisation are at

the origin of the majority of the number of publications and the joint works presented

Section 2.2. Many efforts still need to be made so that evolutionary computation have

the same level of interaction with the first two fields.

Since there is a large quantity benchmarking software, the practitioner in BBO

has many opportunities for testing either a prototypical algorithm or for trying dif-

ferent optimisers on an objective function. Results of the prototypical algorithm can

be compared to those appearing in the abundant literature associated to the bench-

marking software. Results of different algorithms on a test function may bring to

light some characteristics of the problem considered.

We are only aware of few attempts at obtaining comparable baseline results of

numerous algorithms —more than ten— on numerous problems —again more than

ten. The need for the comparison results of so many algorithms can be discussed —

the same way the need for the benchmarking architecture that would generate these

comparison results can be discussed. Nevertheless, having some baseline comparisons

could help the practitioner decide when facing the ‘grey-box’ or ‘black-box’ scenario.

The results of benchmarking a new optimisation problem, in the case of the ‘grey-

box scenario’ where some information is available, could provide with an overall idea

which algorithms are appropriate for their problem. In the case of the ‘black-box’

scenario, how other algorithms perform on the test function considered might provide

information on the problem.

Chapter 3

CMA-ES Variants

This chapter presents and extends the work published in [Ros and Hansen, 2008a,b].

Contents

3.1 Introduction . 33

3.1.1 Motivation of this Contribution 34

3.1.2 Favourably Scaling CMA Variants: Previous Works 36

3.2 CMA-ES . 37

3.3 CMA-ES Variants with Reduced Time and Space Com-
plexity . 40

3.3.1 Description of sep-CMA-ES 40

3.3.2 Description of block-CMA-ES 41

3.3.3 Identification of ccov . 43

3.3.3.1 Experimental Set-up 44

3.3.3.2 Discussion . 44

3.4 Test Functions and Methods 45

3.4.1 Test Functions . 49

3.4.2 Experimental Set-up . 50

3.5 Results and Discussion . 52

3.5.1 CPU-Time Experiments . 52

3.5.2 Performance Experiments 54

32

CHAPTER 3. CMA-ES VARIANTS 33

3.6 Summary and Perspectives 62

3.1 Introduction

The search space dimensionality, n, plays an essential role in real parameter Rn opti-

misation, where a non-linear objective function, f : Rn → R, is to be minimised. Its

importance is emphasised by the notion of curse of dimensionality : the search space

volume increases exponentially with n, making space filling sampling intractable even

for moderate dimensionalities. The curse of dimensionality is only a concern if de-

pendencies between parameters of the objective function are prevalent: when the

parameters are independent, the search can be conducted along coordinate axes in

one-dimensional subspaces altogether by n one-dimensional search procedures. Con-

sequently, difficult real parameter optimisation problems exhibit essential dependen-

cies between the parameters—and learning dependencies turns out to be decisive for

solving these difficult problems. In evolutionary computation the issue of learning

dependencies in real parameter search spaces is successfully addressed by covariance

matrix adaptation (CMA) [Hansen and Ostermeier, 2001]. The CMA learns all pair-

wise dependencies between all parameters by updating a covariance matrix for the

sample distribution. The update mechanism is independent of the given coordinate

system. The CMA was introduced for evolution strategies (ESs) but recently applied

also in Evolutionary Gradient Search [Arnold and Salomon, 2007]. In learning all

pair-wise dependencies, the CMA algorithm has an internal computational complex-

ity of at least O(n2). Empirical results indicate that, in order to learn the complete

covariance matrix, the number of objective function evaluations usually scales sub-

quadratically with n [Hansen and Ostermeier, 2001, Hansen et al., 2003].

As was already stated, we assume a black-box scenario in which evaluations of

the function f are the only way to gather insights into the nature of f (and therefore

to make a reasonable proposal for a solution vector with small function value). The

number of function evaluations is regarded as search costs. Furthermore, we call a

function f separable if the parameters of f are independent in that the global optimum

can be obtained by n one-dimensional optimisation procedures along the coordinate

axes for any given initial point.

CHAPTER 3. CMA-ES VARIANTS 34

3.1.1 Motivation of this Contribution

A principle limitation of CMA results from the number of so-called strategy parame-

ters, n
2+n
2

, that needs to be adapted in the covariance matrix. The number of strategy

parameters, in other words the degrees of freedom in the covariance matrix, can dom-

inate the search costs (number of objective function evaluations to reach a target

function value). The full learning task scales roughly with n2 (see e.g. [Hansen and

Ostermeier, 2001]). Therefore, for large search space dimensionalities, achieving a

better scaling property might be attractive. A second limitation of CMA, probably

less important, lies in its internal computational complexity and is explained in the

following.

• Sampling a general multivariate normally distributed random vector has a com-

plexity of n2 (per sampled n-dimensional vector). A matrix-vector multiplica-

tion needs to be conducted.

• Updating the covariance matrix has a complexity of (µ + 1)n2. The so-called

rank-µ update [Hansen et al., 2003] amounts to µ covariance matrix updates,

one for each parent vector.

• Factorising the covariance matrix C into AAT = C has a complexity of n3.

The factorisation is needed to sample the multivariate normal distribution with

covariance matrix C. In the CMA-ES, usually an eigendecomposition is used

to compute a symmetric (unique) factorisation matrix A. A symmetric factori-

sation allows to compute the conjugate evolution path for step-size adaptation

accurately, and it allows to track the eigenvalues of the covariance matrix, which

often proves to be very useful in practice. Also the eigendecomposition has a

complexity of n3. Usually this computation is postponed until after n/10 gen-

erations and consequently slightly outdated distributions are sampled (with an

insignificant effect on the performance) [Hansen and Ostermeier, 2001]. Conse-

quently the complexity of this step becomes n2 per generation.1

1More precisely, the computation is postponed until after ccov−1n−1/5 generations, where the
learning rate for the covariance matrix, ccov, equals approximately 2n−2 for small populations. As
the learning rate depends on the parent population size, the complexity becomes n2 per parent
vector.

CHAPTER 3. CMA-ES VARIANTS 35

In summary, several steps in the CMA algorithm have a computational complexity

of Θ (n2).

The most obvious option toward achieving a better scaling behaviour for the search

costs is to reduce the degrees of freedom in the covariance matrix. We can think of

several ways and parametrisation to reduce the degrees of freedom, resulting in a fam-

ily of potentially useful modifications of CMA-ES, which trade off model complexity

for learning speed. This trade will be a bad buy whenever the full model complex-

ity is indispensable in order to efficiently solve the underlying problem. Otherwise,

search costs can be reduced according to a reduced learning period. Therefore deter-

mining which correlations between variables of the optimisation problem considered

is an interesting issue. Linkage learning and also to some extent sensitivity analy-

sis or feature selection for instance, focuses on the determination of these essential

correlations. The covariance matrix in the CMA-ES also provides us with another

representation of the essential correlations of the problem.

In this chapter, we will assume that learning the full model can be superfluous and

pursue modifications of CMA that reduces the degrees of freedom in the covariance

matrix. These modifications denoted as sep-CMA and block-CMA enable to learn

the block diagonal elements of the covariance matrix. Though these modifications

can be interpreted as a preliminary step, it reveals some interesting perspectives on

its own.

• The sep-CMA-ES can serve as a baseline comparison. Comparing with the

CMA-ES, the profits and losses from learning all the dependencies in the CMA

framework can be measured.

• On non-trivial large scale problems (say n ≈ 1000 or larger) with only moderate

dependencies, sep-CMA-ES and block-CMA-ES become valuable alternatives to

CMA-ES, because they might perform considerably faster. On fast to evaluate

objective functions, also a large advantage will be obtained when regarding the

overall CPU-time. It is important to note that both variants sep-CMA-ES and

block-CMA-ES will be able to exploit a large population size just like CMA-ES

[Hansen and Kern, 2004, Hansen et al., 2003].

Objectives of this Chapter In this chapter we address the following objectives.

CHAPTER 3. CMA-ES VARIANTS 36

• Presenting the smallest possible modification of CMA that can learn a scaling

of parameters in linear time, and as an important part of algorithm design,

carefully re-identifying the learning rate for the covariance matrix.

• Extending this modification by considering a block-diagonal CMA instead of the

diagonal CMA.

• Comparing the performance of these modified algorithms to CMA-ES on both

separable and non-separable functions.

3.1.2 Favourably Scaling CMA Variants: Previous Works

The learning rate for the covariance matrix in CMA-ES is roughly proportional to n−2,

meaning the adaptation of the full covariance matrix needs roughly O(n2) function

evaluations. Nevertheless, a constant number of long axes of the distribution can

be learnt in O(n), that is, in a linear number of function evaluations: the so-called

cumulation allows for learning subspaces, in the space of covariance matrices, in linear

time. Therefore the scale-up for the number of objective function evaluations is linear

on the cigar function and on smooth ridge functions [Hansen and Ostermeier, 2001,

Hansen et al., 2003].

Some previous approaches reduce the overall time complexity of CMA-ES.

Some ESs, which were introduced prior to CMA-ES, already implemented key

features of the CMA-ES and scale favourably with the dimension. In [Ostermeier

et al., 1994], a derandomised mutative step-size procedure was introduced to adapt

individual step-sizes using cumulation and resulted in the indi-ES which is a (1, λ)-ES

with n strategy parameters. An extension of this derandomised step-size adaptation

denoted AII-ES and introduced in [Hansen et al., 1995] consists in combining it with

the adaptation of one direction. This ES updates 2n strategy parameters.

The MVA-ES algorithm [Poland and Zell, 2001] uses the adaptation of the main

(mutation) vector. This modification renders the time complexity of the algorithm to

O(n) as the strategy parameters of the adaptation process are reduced to the length

of the main vector, n. The MVA-ES algorithm is efficient in the specific case of

objective functions having a single preferred mutation direction.

Filling the gap between CMA-ES and MVA-ES, L-CMA-ES [Knight and Lunacek,

2007] is a variant in which a parameter m allows to control the dimensionality of

CHAPTER 3. CMA-ES VARIANTS 37

the representation of the mutation distribution. The optimisation of the initial n-

dimensional problem is restrained to that of its m main components. For the two

extremes, if m = 1, L-CMA-ES is similar in substance to MVA-ES and if m = n, it

is equivalent to the original CMA-ES.

A O(n2) incremental Cholesky update of the covariance matrix was proposed as

a replacement for the eigendecomposition in CMA [Igel et al., 2006] The use of the

incremental Cholesky update was made compatible with the concept of evolution

path [Suttorp et al., 2009] and has been extended to use larger population size. The

resulting CMA-ES variant is a rank-one CMA-ES which benefits from the features

of the CMA with a comparably better time complexity. Otherwise, with respect to

numerical stability in the problems that we consider in this chapter, the use of eigen-

decomposition or Cholesky decomposition poses no problem. Only with problems

with a very high condition number (a notion introduced in Section 3.4) do we expect

numerical errors being an experimental issue.

In this chapter, as opposed to previous works, we address another subspace of

strategy parameters that can be easily identified: the diagonal blocks of the covariance

matrix.

The remainder of this chapter is organised as follows. The Section 3.2 presents

the CMA-ES algorithm and from this description, we introduce sep-CMA-ES and

block-CMA-ES in Section 3.3. We explain how the problem of reducing the number

of strategy parameters was addressed as well as compare the time complexity of sep-

CMA-ES to that of CMA-ES. In Section 3.4, we propose to analyse sep-CMA-ES

and block-CMA-ES on some standard test functions. Results from these experiments

are discussed in Section 3.5 and provide insights that we develop in the last section

of this chapter.

3.2 CMA-ES

The CMA-ES is a state-of-the-art continuous domain evolution strategy algorithm,

introduced by [Hansen and Ostermeier, 2001] and described in [Hansen and Kern,

2004, Hansen et al., 2003] that uses a covariance matrix adaptation combined with

the computation of an evolution path. The CMA-ES benefits from larger population

sizes by the use of a rank-µ update along with a weighted recombination of offspring.

CHAPTER 3. CMA-ES VARIANTS 38

It is more precisely denoted as (µ/µW , λ) CMA-ES. Default values of the algorithm

parameters are discussed in detail in [Hansen and Ostermeier, 2001].

Offspring for the generation g+1 are sampled according to the following equation:

x
(g+1)
k ∼ 〈x〉(g)W + σ(g)B(g)D(g)z

(g+1)
k︸ ︷︷ ︸

N(0,C(g))

, k = 1, . . . , λ (3.1)

where:

• λ is the population size, its default value being 4 + b3 ln(n)c;

• µ is the number of the best individuals that is recombined, the default value of

µ is bλ
2
c;

• 〈x〉(g)W =
∑µ

i=1wix
(g)
i:λ is the weighted mean of the µ best individuals at generation

g, x
(g)
i:λ denotes the i-th best out of the λ individuals ranked by function value;

• (wi), i = 1, . . . , µ are the recombination weights, they are positive and sum

to one. Setting the wi to 1/µ corresponds to an intermediate recombination.

We use this expression: wi = ln(µ+1)−ln(i)Pµ
j=1 ln(µ+1)−ln(j)

that favours the best ranked

individuals more;

• N (0,M) denotes independent realisations of the multi-variate normal distribu-

tion with covariance matrix M ;

• the random vectors z
(g+1)
k are N (0, I) distributed, and just as for the x

(g)
k , we

can compute their weighted mean: 〈z〉(g+1)
W =

∑µ
i=1wiz

(g+1)
i:λ , z

(g+1)
i:λ denotes the

i-th best out of the λ individuals ranked by function value;

• B(g) is an orthogonal n × n matrix and D(g) is a diagonal n × n matrix ob-

tained from the eigendecomposition of C(g), B(g)D(g)
(
B(g)D(g)

)T
= C(g). The

covariance matrix, C(g), is symmetric positive definite, its default initial value

is I;

• σ(g) ∈ R+ is the step-size.

The parameter 〈x〉(0)
W is problem-dependent.

CHAPTER 3. CMA-ES VARIANTS 39

Both the global step-size σ(g) and the covariance matrix C(g) are iteratively

adapted. The path length control consists in adapting the global step size σ(g) by an

evolution path.

pσ
(g+1) = (1− cσ)pσ

(g) +
√
cσ(2− cσ)

√
µeffB

(g)〈z〉(g+1)
W︸ ︷︷ ︸

√
µeff

σ(g)
C(g)

− 1
2
“
〈x〉(g+1)

W −〈x〉(g)W

”
(3.2)

σ(g+1) = σ(g) exp

(
cσ
dσ

(‖ pσ(g+1) ‖
E(‖ N (0, I) ‖) − 1

))
(3.3)

where:

• cσ ∈]0, 1] is the time constant for the adaptation of the step size σ(g+1), its

default value is: µeff+2
n+µeff+3

;

• µeff = (
∑µ

i=1wi)
2/
∑µ

i=1w
2
i denotes the ‘variance-effective selection mass’, µeff

is equal to µ if wi = 1/µ;

• dσ > 0 is a damping factor, its default value is:

dσ = 1 + 2 max
(

0,
√

µeff−1
n+1
− 1
)

+ cσ;

The initial value of the evolution path is pσ
(0) = 0. The initial step-size σ(0) is a

problem-dependent parameter.

The adaptation ofC(g) is done by the evolution path pc
(g+1) and by the µ-weighted

difference vectors between the recent parents and 〈x〉(g)W :

pc
(g+1) = (1− cc)pc

(g) +H(g+1)
σ

√
cc(2− cc)

√
µeffB

(g)D(g)〈z〉(g+1)
W︸ ︷︷ ︸

√
µeff

σ(g)

“
〈x〉(g+1)

W −〈x〉(g)W

” (3.4)

C(g+1) = (1− ccov)C(g) +
1

µcov

ccovpc
(g+1)

(
pc

(g+1)
)T

+ ccov

(
1− 1

µcov

) µ∑
i=1

wiB
(g)D(g)z

(g+1)
i:λ

(
B(g)D(g)z

(g+1)
i:λ

)T
︸ ︷︷ ︸Pµ

i=1
wi

σ(g)2

“
x

(g+1)
i:λ −〈x〉(g)W

”“
x

(g+1)
i:λ −〈x〉(g)W

”T
(3.5)

where:

CHAPTER 3. CMA-ES VARIANTS 40

• cc ∈ [0, 1] has the same role as cσ in Equation (3.2), it is a time a constant for

the adaptation of the covariance matrix, its default value is 4
n+4

;

• H(g+1)
σ equals to one if ‖pσ

(g+1)‖√
1−(1−cσ)2(g+1)

< (1.4 + 2
n+1

)E(‖ N (0, I) ‖), and zero

otherwise. The condition on Hσ is slightly different from [Hansen and Kern,

2004], which can be noticeable in case of large dimension and small λ, say 9,

together with either a too small initial step-size σ or on time-variant objective

functions.

• 1
µcov
∈ [0, 1] is a coefficient that controls the emphasis on the evolution path

term, µcov default value is µeff;

• ccov ∈ [0, 1] is the learning rate, its default value2 is:

ccovdefault =
1

µcov

2(
n+
√

2
)2 +

(
1− 1

µcov

)
min

(
1,

2µcov − 1

(n+ 2)2 + µcov

)
(3.6)

The initial values are: pc
(0) = 0, C(0) = I.

The whole process of sampling new individuals (Equation (3.1)) and updating the

internal strategy parameters (covariance matrix) (Equations (3.2) to (3.5)) is iterated

until a stopping criterion is reached.

3.3 CMA-ES Variants with Reduced Time and

Space Complexity

In this section we introduce the two variants of the CMA-ES, sep-CMA-ES and block-

CMA-ES, designed to reduce the time complexity of the adaptation of the covariance

matrix C(g).

3.3.1 Description of sep-CMA-ES

Compared to the default CMA-ES, the covariance matrix C is constrained to be di-

agonal. This results in having an ES that samples independently w.r.t. the coordinate

system using n individual variances that are updated.

2The Equation (3.6) differs from [Hansen and Kern, 2004].

CHAPTER 3. CMA-ES VARIANTS 41

The update of the covariance matrix in Equation (3.5) is modified: the covariance

matrixC(g) remains a diagonal matrix, because its update is restrained to the diagonal

elements of the matrix, and Equation (3.5) becomes:

c
(g+1)
jj = (1− ccov)c

(g)
jj +

1

µcov

ccov

(
p(g+1)
c

)2

j

+ ccov

(
1− 1

µcov

) µ∑
i=1

wi c
(g)
jj

(
z

(g+1)
i:λ

)2

j
, j = 1, . . . , n (3.5’)

where, for j = 1, . . . , n, the cjj are the diagonal elements of C(g) and the
(
z

(g+1)
i:λ

)
j

are the j-th component of z
(g+1)
i:λ .

Whereas in the CMA-ES an eigendecomposition was needed before Equation (3.1),

now this step is reduced to taking the square root of the diagonal elements of C(g),

which has O(n) time complexity. The complexity of all other equations involving

matrix operations is reduced since they now involve vector operations. The complexity

reduction is made possible by the reduction of the model complexity but in the

process it loses what made CMA-ES able to learn the dependencies of the parameters

of the objective function. In other words, sep-CMA-ES loses the property of being

rotationally invariant that CMA-ES has.

The study presented in [Ros and Hansen, 2008a,b] provided with an identification

of an increased learning rate by a factor of n+2
3

for which experimental results were

provided.

3.3.2 Description of block-CMA-ES

In this section we introduce another CMA-ES variant, denoted as block-CMA-ES,

also designed to reduce the time complexity of the adaptation of the covariance ma-

trix C(g). Compared to the sep-CMA-ES and CMA-ES, the covariance matrix C is

constrained to be block diagonal.

For obtaining the [m1,m2, . . .]-block-CMA-ES from the CMA-ES algorithm, the

Equation (3.5) for the update of the covariance matrix is applied to each block j:

CHAPTER 3. CMA-ES VARIANTS 42

C
(g+1)
j = (1− ccov)Cj

(g) +
1

µcov

ccov

(
pc

(g+1)
)
j

(
pc

(g+1)
)T
j

+ ccov

(
1− 1

µcov

) µ∑
i=1

wiB
(g)
j D

(g)
j

(
z

(g+1)
i:λ

)
j

(
B

(g)
j D

(g)
j

(
z

(g+1)
i:λ

)
j

)T
(3.5”)

where:

• the covariance matrix C(g) is block diagonal C
(g)
1 0

C
(g)
2

0
. . .


with the C

(g)
j being matrices of size mj ×mj,

•
(
pc

(g+1)
)
j
, B

(g)
j , D

(g)
j ,

(
z

(g+1)
i:λ

)
j

are the respective projections of pc
(g+1), B(g),

D(g), z
(g+1)
i:λ onto the subspace considered.

The covariance matrix C(g) remains a block diagonal matrix, because its update is

restrained to the block diagonal elements of the matrix. We will from this point on use

the bracketed notation [m1,m2 . . .] to denote block configurations of block-CMA-ES.

The model complexity can be reduced depending on the number and the size of

the blocks. Using the full covariance matrix with a learning rate equal to ccovdefault

the [n]-block-CMA-ES algorithm is identical to CMA-ES. Using only blocks of size

one and a learning rate of n+2
3
ccovdefault the [1, . . . , 1]-block-CMA-ES is the same as

the sep-CMA-ES algorithm [Ros and Hansen, 2008a,b]. Whereas in the CMA-ES the

eigendecomposition of an n × n matrix was needed before Equation (3.1), now the

complexity of this step can be diminished depending on the sizes of the blocks to a

O(n) time complexity at best. The complexity of all other steps in the block-CMA-ES

algorithm can be decreased accordingly.

CHAPTER 3. CMA-ES VARIANTS 43

3.3.3 Identification of ccov

According to [Hansen, 2009d], ccov can be written as follows

ccov = c1 + cµ (3.7)

c1 =
1

dof + 2
√

dof + µeff

n

(3.8)

cµ = min

(
1− c1,

α0
µ + µeff − 2 + 1

µeff

dof + 4
√

dof + µeff

2

)
(3.9)

α0
µ = 0.3 (3.10)

where dof is the number of degrees of freedom in the covariance matrix. From our

definition of sep-CMA-ES and block-CMA-ES, there are less degrees of freedom in

the covariance matrix, dof =
∑

j
mj

2+mj
2

which ranges from n to n+ n2−n
2

. According

to the Equations (3.7) to (3.10), dof being smaller implies the learning rate ccov used

in Equations (3.5’) and (3.5”) must be larger. We want to approximate this increase

of the learning rate.

The behaviours of block-CMA-ES and by extension sep-CMA-ES are studied using

different values for the learning rate. We use two measures to qualify the effects of

the varying learning rate on block-CMA-ES: 1. the ratio of the square root of the

largest and smallest eigenvalue of the final covariance matrix C(g) (denoted in the

following as final axis ratio) which should be close to the square root of the condition

number of the objective function, 2. the number of function evaluations to reach a

given target function value.

The uni-modal and separable sphere function, fsphere(x) =
∑n

i=1 x
2
i was used as

test function. We also tested the algorithm on the ellipsoid function,

fβelli(x) =
n∑
i=1

β
i−1
n−1y2

i

where the parameter β is the condition number (ratio of the longest and smallest

axis lengths) and y = Qx. The coordinate system Q is either equal to I for the

axis-parallel function or, for the rotated function, to an orthogonal n × n matrix

with each column vector qj (j = 1, . . . , n) being a uniformly distributed unit vector.

CHAPTER 3. CMA-ES VARIANTS 44

The ellipsoid function is non-separable in the general case, convex quadratic and

uni-modal.

3.3.3.1 Experimental Set-up for the Identification of ccov

The implementation of the block-CMA-ES algorithm that we use in our experiments

is derived from a CMA-ES implementation in Scilab3. We multiply the default

value of the learning rate ccovdefault (defined in Section 3.2) for an n-dimensional prob-

lem by a factor ranging from 0 to 160. The block-CMA-ES algorithm is tested in

the [1, . . . , 1] variant and compared to the full model. We also test block-CMA-ES

with the [1, n − 1] block configuration and see effect of varying the learning rate on

unbalanced block configurations. Finally, same sized block configurations [2, . . . , 2],

[n/4, . . . , n/4] and [n/2, n/2] complete this investigation. Other than ccov, the param-

eters of the algorithms are set to the default values given in Section 3.2 for both the

CMA-ES and block-CMA-ES.

While the default initial value of the covariance matrix is C(0) = I, CMA-ES and

block-CMA-ES are also tested on the sphere function, fsphere, with C(0) set to a n×n
diagonal matrix which diagonal elements are (1, β

1
n−1 , β

2
n−1 , . . . , β), with β = 106.

The dimension n of the problem is chosen in the interval [2, 40]. The initial

distribution is centred on 〈x〉(0)
W chosen uniformly in [−20, 80]n and the initial step-

size is σ(0) = 100/3. Runs fail if, before the target function value is attained, either

the axis ratio is larger than 1016 or the maximum number of evaluations is reached.

For each experimental set-up, eleven runs are done except for ccov = 0 (no learning

occurs) for which five runs are done. As for the coordinate system, Q, we use eleven

different rotation matrices.

3.3.3.2 Discussion on the Learning Rate in sep-CMA-ES and block-CMA-

ES

Results are presented in Figures 3.1 to 3.4. For the larger values of ccov, block-CMA-

ES becomes less reliable since no run succeeds: they are stopped to prevent having

precision issues in the eigendecomposition of covariance matrices with an axis ratio

as large as 1016. Results in Figure 3.1 on the sphere function show the final axis

3Available here: http://www.bionik.tu-berlin.de/user/niko/cmaesintro.html

http://www.bionik.tu-berlin.de/user/niko/cmaesintro.html

CHAPTER 3. CMA-ES VARIANTS 45

ratios raise while the performance degrades (i.e. more function evaluations) when the

learning rate increases.

On the sphere function, when the condition number of the covariance matrix is

initialised to β instead of one, increasing the learning rate improves the performance

until it degrades because the learning rate is too high.

Choosing the right learning rate means to make sure that the adaptation process

is successful and that the performance of the algorithm is reliable. This is observable

for intermediate values of ccov where the final axis ratio is close to the condition

number of the objective function which is one in the case of the sphere function. In

the case of the ill-conditioned, non-separable ellipsoid function, f 103

elli , an intermediate

learning rate returns final axis ratios that are comparable when the dimension varies

and reliable performances as well.

Results of the CMA-ES for which the default value ccovdefault is adjusted show

the boundary values of the ratio ccov

ccovdefault
to be pretty close whatever the dimension

considered (top sub-figures in Figure 3.1, 3.2 and 3.3). Out of this domain, unreliable

behaviours are to be expected. To have a similar domain as the dimension varies

for the block-CMA-ES algorithm, the ratio ccov

ccovdefault
had to be divided by n+3/2

maxj(mj)+2
.

We can see this normalisation make the results for the different block configurations

very comparable, whether in terms of final axis ratio (top) or numbers of function

evaluations (bottom sub-figures). The choice of the normalisation is conservative in

the sense that it leaves for every dimension tested a margin of at least a factor of

three before the learning rate ccov is set too large. In all the following experiments,

it is this default value, ccov = n+3/2
maxj(mj)+2

ccovdefault, that is used for sep-CMA-ES4 and

block-CMA-ES.

3.4 Test Functions and Methods

We describe the functions and methods used to test and compare sep-CMA-ES, block-

CMA-ES and CMA-ES.

4This default value is smaller than the one defined in [Ros and Hansen, 2008a,b].

CHAPTER 3. CMA-ES VARIANTS 46

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
0

10

1

10

ccov/ccovdefault/((n+2)/3)

F
in

a
l
a

x
is

 r
a

ti
o

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10
2

10

0

10

1

10

ccov/ccovdefault/((n+1.5)/3)

F
in

a
l
A

x
is

 R
a

ti
o

n=2

n=4

n=8

n=20

n=40

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
0

10

1

10

ccov/ccovdefault/((n+2)/(max(blocksize)+2))

F
in

a
l
a

x
is

 r
a

ti
o

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

0

10

1

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
in

a
l
A

x
is

 R
a

ti
o

n=2

n=4

n=8

n=20

n=40

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault/((n+2)/3)

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10
2

10

2

10

3

10

4

10

5

10

ccov/ccovdefault/((n+1.5)/3)

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault/((n+2)/(max(blocksize)+2))

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

2

10

3

10

4

10

5

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

sep-CMA-ES [n/2, n/2]-block-CMA-ES

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
0

10

1

10

ccov/ccovdefault/((n+2)/(max(blocksize)+2))

F
in

a
l
a

x
is

 r
a

ti
o

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

0

10

1

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
in

a
l
A

x
is

 R
a

ti
o

n=2

n=4

n=8

n=20

n=40

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

0

10

1

10

ccov/ccovdefault

F
in

a
l
a

x
is

 r
a

ti
o

n=2

n=4

n=8

n=20

n=40

−1

10

0

10

1

10

0

10

1

10

ccov/ccovdefault

F
in

a
l
A

x
is

 R
a

ti
o

n=2

n=4

n=8

n=20

n=40

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault/((n+2)/(max(blocksize)+2))

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

2

10

3

10

4

10

5

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

−1

10

0

10

1

10

2

10

3

10

4

10

5

10

ccov/ccovdefault

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

[1, n− 1]-block-CMA-ES CMA-ES

Figure 3.1: Results on the sphere function of variants of the CMA-ES with initial
covariance matrix C(0) set to I for problem dimension going from 2 to 40-D. A point
is shown if, out of the 11 runs done for each set-up, all runs succeed in reaching the
target function value of 10−9. The top sub-figures show the median axis ratio of the
final covariance matrix whereas the bottom sub-figures show the mean number of
function evaluations.

CHAPTER 3. CMA-ES VARIANTS 47

−1

10
0

10
1

10
2

10

0

10

1

10

ccov/ccovdefault/((n+1.5)/3)

F
in

a
l
A

x
is

 R
a

ti
o

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

0

10

1

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
in

a
l
A

x
is

 R
a

ti
o

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10
2

10

2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault/((n+1.5)/3)

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

sep-CMA-ES [2, . . . , 2]-block-CMA-ES

−1

10
0

10
1

10

0

10

1

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
in

a
l
A

x
is

 R
a

ti
o

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

0

10

1

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
in

a
l
A

x
is

 R
a

ti
o

n=2

n=4

n=8

n=10

n=20

n=40

−1

10
0

10
1

10

2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=10

n=20

n=40

[n/4, . . . , n/4]-block-CMA-ES [n/2, n/2]-block-CMA-ES

Figure 3.2: Results on the sphere function of variants of CMA-ES with an initial

covariance matrix C(0) being a diagonal matrix with diagonal elements (106 i−1
n−1)i=1,...,n

for problem dimensions going from 2 to 40-D. A point is shown if, out of the eleven
runs done for each set-up, all runs succeed in reaching the target function value of
10−9. The top sub-figures show the median axis ratio of the final covariance matrix
whereas the bottom sub-figures show the mean number of function evaluations. No
success is observed for ccov = 0.

CHAPTER 3. CMA-ES VARIANTS 48

−1

10
0

10
1

10

0

10

1

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
in

a
l
A

x
is

 R
a

ti
o

n=4

n=8

n=20

n=40

−1

10

0

10

1

10

0

10

1

10

ccov/ccovdefault

F
in

a
l
A

x
is

 R
a

ti
o

n=2

n=4

n=8

n=20

n=40

−1

10
0

10
1

10

2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault/((n+1.5)/(max(blocksize)+2))

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=4

n=8

n=20

n=40

−1

10

0

10

1

10

2

10

3

10

4

10

5

10

6

10

ccov/ccovdefault

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=4

n=8

n=20

n=40

[1, n− 1]-block-CMA-ES CMA-ES

Figure 3.3: Results on the sphere function of variants of CMA-ES with an initial

covariance matrixC(0)) being a diagonal matrix with diagonal elements (106 i−1
n−1)i=1,...,n

for problem dimensions going from 2 to 40-D. A point is shown if, out of the 11 runs
done for each set-up, all runs succeed in reaching the target function value of 10−9.
The top sub-figures show the median axis ratio of the final covariance matrix whereas
the bottom sub-figures show the mean number of function evaluations. No success is
observed for ccov = 0.

CHAPTER 3. CMA-ES VARIANTS 49

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
0

10

1

10

2

10

ccov/ccovdefault/((n+2)/3)

F
in

a
l
a

x
is

 r
a

ti
o

n=2

n=3

n=5

n=10

n=20

n=40

n=80

−1

10
0

10
1

10

0

10

1

10

2

10

ccov/ccovdefault/((n+2)/3)

F
in

a
l
a

x
is

 r
a

ti
o

n=2

n=3

n=5

n=10

n=20

n=40

n=80

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
4

10

5

10

6

10

ccov/ccovdefault/((n+2)/3)

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=3

n=5

n=10

n=20

n=40

n=80

−1

10
0

10
1

10

4

10

5

10

6

10

ccov/ccovdefault/((n+2)/3)

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

n=2

n=3

n=5

n=10

n=20

n=40

n=80

Figure 3.4: Results of sep-CMA-ES on the ellipsoid function (β = 103). A point is
shown if, out of the 11 runs done for each set-up, all runs succeed in reaching the
target function value of 10−9. The sub-figure on the left shows the median axis ratio
of the final covariance matrix whereas the sub-figure on the right shows the mean
number of function evaluations.

3.4.1 Test Functions

All the functions are described in Table 3.1.

We have already introduced the Ellipsoid function in Section 3.3.3. The Cigar,

Tablet, Two-Axes and Sum of Different Power functions (diffpow), denoted as fcigar,

ftablet, ftwoaxes and fdiffpow, are all uni-modal and ill-conditioned. The conditioning of

all of these functions can be controlled by a parameter β introduced in the Table 3.1.

The parameter β works in the same way than that of the ellipsoid function with

the notable exception of fdiffpow for which β is not the conditioning number of the

function but merely a parameter to control the conditioning. These functions in their

axis-parallel version are separable.

We also have the Rosenbrock function, fRosen, which is non-convex, not uni-modal

for dimensions larger than 4-D and non separable. Again, a parameter β can be

introduced to control the conditioning of the function.

All the previous functions are tested using their rotated version as well.

A variant of the ellipsoid function is tested: fhyperelli is used in [Ostermeier et al.,

1994] to evaluate the performance of indi-ES. The function fhyperelli differs from the

ellipsoid function by the fact that the condition number β = n is fixed and is small

compared to the condition numbers we consider for the previous functions. We use

the function fhyperelli to compare our variants of CMA-ES to the indi-ES.

CHAPTER 3. CMA-ES VARIANTS 50

Table 3.1: Test functions. For all experiments on all functions, the initialisation range
is [−20, 80]n and initial step-size is σ(0) = 100

3
. For all functions, ellipsoid function,

y = Qx, where Q is either I or an orthogonal n × n matrix with each column
vector qi being a uniformly distributed unit vector implementing an angle-preserving
transformation.

Name Function ftarget

Ellipsoid fβelli(x) =
∑n

i=1 β
i−1
n−1 y2

i 10−9

Rosenbrock fβRosen(x) =
∑n−1

i=1 β (y2
i − yi+1)2 + (yi − 1)2 10−9

Diffpow fβdiffpow(x) =
∑n

i=1 |yi|2+β i−1
n−1 10−14

Cigar fβcigar(x) = y2
1 +

∑n
i=2 βy

2
i 10−9

Tablet fβtablet(x) = βy2
1 +

∑n
i=1 y

2
i 10−9

Two-axes fβtwoaxes(x) =
∑n/2

i=1 y
2
i +

∑n
i=n/2+1 βy

2
i 10−9

Hyper-ellipsoid fhyperelli(x) =
∑n

i=1(i yi)2 10−10

3.4.2 Experimental Set-up

All the algorithm parameters of the sep-CMA-ES and block-CMA-ES are set to their

default value except for the learning rate.

CPU-Time Experiments The amount of CPU-time for the algorithms to reach a

number of function evaluations is measured while the dimensionality of the problem

varies: n ranges from 10 to 5120. We have implemented the sep-CMA-ES algorithm

from the purecmaes.m Matlab code5.

We compare the sep-CMA-ES with variants of the CMA-ES algorithm that post-

pone the eigendecomposition until after (ccovn)−1α generations, α ∈ {0, 0.1, 1}. These

variants have also been implemented from the code in purecmaes.m. We make sure

the number of function evaluations is large enough so that the eigendecomposition is

computed at least ten times: 5 × 104 function evaluations when α is equal to 0.1 or

1 and the dimension is larger than 320, 104 otherwise. Three trials are done for each

algorithm on each dimensionality. We test using two population sizes: λ = 4+b3 lnnc
and λ = 2n. Experiments were performed on a single (no hyper-threading) Intel Core

5http://www.bionik.tu-berlin.de/user/niko/purecmaes.m

http://www.bionik.tu-berlin.de/user/niko/purecmaes.m

CHAPTER 3. CMA-ES VARIANTS 51

2 processor 2.66GHz with 2GB RAM.

Performance Experiments We use the Scilab version of the block-CMA-ES al-

gorithms. The test functions considered can be varied along two parameters: the

dimension n and the condition number or parameter in the case of functions such

as fdiffpow and fRosen. When n varies from two to a thousand and twenty-four, the

condition number is set to 106, except for fdiffpow and fRosen for which the condition

parameter is set to ten and a hundred respectively. When the condition number/pa-

rameter varies, the dimension of the search space is set to 16-D. The condition number

then ranges from one to 1010, the condition parameter of fdiffpow ranges between zero

and ten, that of fRosen between one and 108.

The block-CMA-ES algorithm is tested in some of the regular block configurations

used in Section 3.3.3. Those can be divided in three: the block configurations with

fixed block sizes as the dimension increases ([1, . . . , 1] which is equivalent to sep-

CMA-ES, [2, . . . , 2]), those with a fixed number of blocks as the dimension increases

([n/2, . . . , n/2]), [n]) and a block configuration which verifies none of the these two

properties ([
√
n, . . . ,

√
n]). The CMA-ES is assimilated to the [n]-block-CMA-ES

though the learning rates of the two are different.

For all problems, the starting point 〈x〉(0)
W is chosen in [−20, 80]n and the initial

step-size σ(0) is one third of the interval width. If the target function value given in

Table 3.1 is reached within 107 function evaluations, a run is considered successful.

Performances are averaged over eleven runs for the lower dimensions (n < 100), three

runs for larger dimensions. The rotation matrix Q is changed for every single run.

In addition to this, we also examine previously published results: the ES algorithm

with derandomised mutative step-size control [Ostermeier et al., 1994] denoted as indi-

ES in the following, the AII-ES [Hansen et al., 1995], the MVA-ES [Poland and Zell,

2001] and the L-CMA-ES [Knight and Lunacek, 2007]. We use the same starting

point, initial step-size (where applicable) and population sizes as those described in

each of these cited works to compare with the results of sep-CMA-ES.

CHAPTER 3. CMA-ES VARIANTS 52

3.5 Results and Discussion

The dynamic behaviour of the block-CMA-ES algorithm is studied first. In Figure 3.5,

the function value decreases steeply in the process of optimisation, even steeper after

four thousand function evaluations when the adaptation of the larger eigenvalues has

been done (shown in the bottom-left sub-figure). This adaptation of the eigenvalues

corresponds to a learning phase, which in this case roughly represents half of the total

search costs. Other observations are that: 1. the step-size decreases as expected (top-

left sub-figure), 2. the diagonal elements of the covariance matrix all go to zero as well

(bottom-right), 3. the axis ratio behaves correctly since, after four thousand function

evaluations, the ratio of the largest and smallest axis lengths of D(g) (bottom-left) is

close to 103 which is the square root of β.

3.5.1 CPU-Time Experiments

The CPU-time per function evaluations versus the dimension for sep-CMA-ES and

CMA-ES is displayed in Figure 3.6. For the default population size (top sub-figure),

the time complexity of sep-CMA-ES scales like n1.2 in the larger dimensions. In this

context, if the eigendecomposition in CMA-ES is done at each iteration (α = 0), the

time complexity scales like n2.7. The use of outdated covariance matrices reduces

the time complexity to n1.9, n1.8 for α = 0.1, 1 respectively, but sep-CMA-ES still

outperforms CMA-ES by a factor of at least six in 100-D.

Experiments for λ = 2n show that sep-CMA-ES achieves a linear time complexity

for the larger dimensions. Again it clearly outperforms CMA-ES, this time by a factor

of 10 when n = 100 and α = 1 for which the time complexity scales with n1.8 for

dimensions up to 1000-D.

We would like to point out that the sep-CMA-ES, meaning [1, . . . , 1]-block-CMA-

ES, is especially advantaged in terms of time performance in Matlab or Scilab

compared to block-CMA-ES using other block configurations. Indeed, due to the im-

plementation of these programming language, processing vectors can be dramatically

more efficient than looping over elements6. Therefore, in the case of the sep-CMA-ES

dealing with the vector of the elements of the diagonal of the covariance matrix is

more efficient than looping over the blocks of the block-CMA-ES in any other block

6See http://www.mathworks.com/support/tech-notes/1100/1109.html

http://www.mathworks.com/support/tech-notes/1100/1109.html

CHAPTER 3. CMA-ES VARIANTS 53

0 1000 2000 3000 4000 5000 6000 7000
−10

−5

0

5

10

15

Function Value (fval, fval minus f_min), Sigma

f_recent= 8.590361906456580485e−10

lo
g
1
0
(a

b
s
(v

a
lu

e
))

f_best= 8.590361906456580485e−10

 1
 2

 3

 4
 5

 6

 7

 8

 9
 10
 11

 12

 13

 14

 15

 16

 17
 18

 19
 20

0 1000 2000 3000 4000 5000 6000 7000
−150

−100

−50

0

50

100

150

Object Variables (20−D)

0 1000 2000 3000 4000 5000 6000 7000
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Principle Axis Lengths

function evaluations

lo
g
1
0
(v

a
lu

e
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

0 1000 2000 3000 4000 5000 6000 7000
−10

−8

−6

−4

−2

0

2

Standard Deviations

function evaluations

lo
g
1
0
(v

a
lu

e
)

Figure 3.5: Single run of sep-CMA-ES on the axis-parallel ellipsoid function, β = 106,
n = 20. The abscissa of all sub-figures is the time. Top-left is the evolution of the
function values and of the step-size σ. Bottom-left is the evolution of the square
root of the eigenvalues of the covariance matrix. Top-right is the evolution of the
coordinates of the weighted mean of the individuals, bottom-right the evolution of
the coordinate-wise standard deviations of the distribution of the population.

CHAPTER 3. CMA-ES VARIANTS 54

configuration.

3.5.2 Performance Experiments

On Separable Functions We are considering the dashed lines presented in Fig-

ures 3.7, 3.8 and 3.9 which represent the results of the different variants of the CMA-

ES facing the axis-parallel version of the objective functions considered. The fact that

the objective functions are separable means the variants of the CMA-ES with con-

straints on the covariance matrix are more likely to perform better than the standard

CMA-ES on these functions.

As expected, block-CMA-ES performs better than CMA-ES by a factor between

one and twenty depending on the function considered, the factor being larger when

the ill-conditioning is larger as well. The search costs for the [1, . . . , 1]-block-CMA-

ES algorithm are proportional to the dimension. The variants of block-CMA-ES

perform better as the number of blocks increase. When the dimension is large, the

performances of the fixed block-size variants of block-CMA-ES behave like those of

the [1, . . . , 1]-block-CMA-ES. To the opposite, the performances of the fixed number

of blocks variants behave like those of the CMA-ES.

When considering the performances versus dimensionality, CMA-ES scales close

to linearly on the axis-parallel cigar function and quadratically on the axis-parallel

ellipsoid, tablet, two-axes and diffpow functions. The [n/2, n/2] variant scales like

the CMA-ES though it performs slightly better by a factor of around 30% at best.

The [1, . . . , 1]-block-CMA-ES scales roughly linearly on all of the separable functions

though it performs slightly better on the axis-parallel tablet function by a factor

smaller than two. On the axis-parallel ellipsoid function, the search costs of [1, . . . , 1]-

block-CMA-ES are roughly 300n function evaluations. The [2, . . . , 2] variant performs

very similar to the [1, . . . , 1]-block-CMA-ES.

The performances of block-CMA-ES on the axis-parallel functions worsen as the

condition number increases. Again the variants of the block-CMA-ES perform better

as the number of blocks increase. The performances of the [1, . . . , 1]-block-CMA-ES

scale linearly with the condition number.

On the Rotated Version of Separable Functions Instead of the dashed lines,

it is now the solid lines in the Figures 3.7, 3.8 and 3.9 that are of concern.

CHAPTER 3. CMA-ES VARIANTS 55

λ = 4 + b3 ln(n)c

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

Dimension

C
pu

tim
e

[s
] p

er
 F

un
ct

io
n

E
va

lu
at

io
n

CMA, α=0
CMA, α=0.1
CMA, α=1
sep−CMA−ES

λ = 2n

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

Dimension

C
pu

tim
e

[s
] p

er
 F

un
ct

io
n

E
va

lu
at

io
n

CMA, α=0
CMA, α=0.1
CMA, α=1
sep−CMA−ES

Figure 3.6: CPU-time per function evaluations in seconds of sep-CMA-ES on the
axis-parallel ellipsoid function, compared to CMA-ES. Both algorithms are tested for
two different population sizes λ. For the CMA-ES algorithm, the eigendecomposition
of the covariance matrix is postponed until (ccovn)−1α, α being a parameter. For
all experiments, the processing time was measured on three trials of 104 evaluations
each. Lines show median of the distribution, vertical error-bars show minimum and
maximum divided by the number of function evaluations (all indistinguishable).

CHAPTER 3. CMA-ES VARIANTS 56

Ellipsoid function

0

10

1

10

2

10

3

10

2

10

3

10

4

10

5

10

6

10

7

10

Dimension

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

0

10

2

10

4

10

6

10

8

10

10

10

3

10

4

10

5

10

6

10

7

10

Condition Number
F

u
n

c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Cigar function

0

10

1

10

2

10

3

10

2

10

3

10

4

10

5

10

6

10

7

10

Dimension

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

0

10

2

10

4

10

6

10

8

10

10

10

3

10

4

10

5

10

6

10

7

10

Condition Number

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Figure 3.7: Number of function evaluations for reaching a target function value of
10−9 for CMA-ES (blue +), and block-CMA-ES with different block configurations:
[1, . . . , 1] (red empty diamonds), [2, . . . , 2] (orange filled-diamonds), [

√
n, . . . ,

√
n]

(green circles), [n/2, n/2] (light-blue X), where n is the dimension of the search space,
on the ellipsoid and cigar functions with a condition number of 106 on the left sub-
figures and in 16-D on the right sub-figures. Results for the rotated and axis-parallel
functions are represented in solid and dashed lines respectively. Lines show median
of the distribution, vertical error-bars show minimum and maximum number of eval-
uations on successful runs out of eleven runs, only three when the dimension is larger
than 100-D.

CHAPTER 3. CMA-ES VARIANTS 57

Tablet function

0

10

1

10

2

10

3

10

2

10

3

10

4

10

5

10

6

10

7

10

Dimension

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

0

10

2

10

4

10

6

10

8

10

10

10

3

10

4

10

5

10

6

10

7

10

Condition Number
F

u
n

c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Two-axes function

0

10

1

10

2

10

3

10

2

10

3

10

4

10

5

10

6

10

7

10

Dimension

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

0

10

2

10

4

10

6

10

8

10

10

10

3

10

4

10

5

10

6

10

7

10

Condition Number

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Figure 3.8: Number of function evaluations for reaching a target function value of
10−9 for CMA-ES (blue +), and block-CMA-ES with different block configurations:
[1, . . . , 1] (red empty diamonds), [2, . . . , 2] (orange filled-diamonds), [

√
n, . . . ,

√
n]

(green circles), [n/2, n/2] (light-blue X), where n is the dimension of the search space,
on the tablet and two-axes functions with a condition number of 106 on the left sub-
figures and in 16-D on the right sub-figures. Results for the rotated and axis-parallel
functions are represented in solid and dashed lines respectively. Lines show median
of the distribution, vertical error-bars show minimum and maximum number of eval-
uations on successful runs out of eleven runs, only three when the dimension is larger
than 100-D.

CHAPTER 3. CMA-ES VARIANTS 58

0

10

1

10

2

10

3

10

2

10

3

10

4

10

5

10

6

10

7

10

Dimension

F
u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

0 1 2 3 4 5 6 7 8 9 10

3

10

4

10

5

10

6

10

7

10

Condition Parameter

F
u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

Figure 3.9: Number of function evaluations to reach a target function value of 10−14 for
CMA-ES (blue +), and block-CMA-ES with different block configurations: [1, . . . , 1]
(red empty diamonds), [2, . . . , 2] (orange filled-diamonds), [

√
n, . . . ,

√
n] (green cir-

cles), [n/2, n/2] (light-blue X), where n is the dimension of the search space, on the
diffpow function with a condition parameter of 10 (top) and in 16-D (bottom). Re-
sults for the rotated and axis-parallel functions are represented in solid and dashed
lines respectively. Lines show median of the distribution, vertical error-bars show
minimum and maximum number of evaluations on successful runs out of eleven runs,
only three when the dimension is larger than 100-D.

CHAPTER 3. CMA-ES VARIANTS 59

The performances of block-CMA-ES decrease when the dimension increases on

rotated functions. The result is that the block-CMA-ES with more than two blocks

does not solve the rotated ellipsoid, cigar, tablet and two-axes functions for dimensions

strictly larger than four. Actually, the performances of block-CMA-ES quickly worsen

as the condition number increases as well since we can see that in 16-D the same four

rotated functions cannot be solved in less than 107 function evaluations for a condition

number larger than 105.

The block-CMA-ES solves the rotated diffpow function for dimensions as large

as 64-D. The search costs grow when the dimension is increasing at the exception

of the [n/2, n/2]-block-CMA-ES to which we will come back right afterwards. We

can see the search costs of the [2, . . . , 2]-block-CMA-ES jump up when the problem

goes from 2-D to 4-D. This corresponds to going from the [n] block configuration in

2-D to the [n/2, n/2] in 4-D. The performances of the [n/2, n/2] block configuration

greatly decrease from 8-D to 16-D. The performances in dimensions smaller than 8-D

are comparable to those of the fixed block-size variants whereas the performances are

comparable to that of the CMA-ES for dimensions larger than 16-D.

On the Rosenbrock Function The results of block-CMA-ES on the Rosenbrock

function are presented in Figure 3.10. On the axis-parallel Rosenbrock function

(dashed lines), block-CMA-ES performs worse than CMA-ES until the dimension

is large enough. Furthermore, the search costs of the [n/2, n/2] block configuration

variant decrease as the dimension increases until 8-D. Then, the search costs of block-

CMA-ES increases with the dimension and compares with those of CMA-ES. The

search costs of the [n/2, n/2] variant become comparable to that of the CMA-ES in

8-D, those of the [
√
n, . . . ,

√
n] variant in 16-D. The search costs of the [2, . . . , 2] vari-

ant are less than three times larger to those of the CMA-ES in dimensions smaller

than 32-D, at which point the search costs become equivalent. The [1, . . . , 1]-block-

CMA-ES performs the worst in smaller dimension but ends up performing better than

CMA-ES by a factor of two when the dimension is larger than 128-D.

In 16-D when the condition parameter increases, the search costs increase. The

performances of the [n/2, n/2] variant are comparable to those of the CMA-ES in the

range of the condition parameter that we tested. The other variants perform increas-

ingly worse, resulting in the consecutive search costs of the [1, . . . , 1]-block-CMA-ES

the [2, . . . , 2], the [
√
n, . . . ,

√
n] and finally the [n/2, n/2] block configurations being

CHAPTER 3. CMA-ES VARIANTS 60

0

10

1

10

2

10

3

10

2

10

3

10

4

10

5

10

6

10

7

10

Dimension

F
u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

0

10

2

10

4

10

6

10

8

10

3

10

4

10

5

10

6

10

7

10

Condition Parameter

F
u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

Figure 3.10: Number of function evaluations to reach the target function value of
10−9 for CMA-ES (blue +), and block-CMA-ES with different block configurations:
[1, . . . , 1] (red empty diamonds), [2, . . . , 2] (orange filled-diamonds), [

√
n, . . . ,

√
n]

(green circles), [n/2, n/2] (light-blue X), where n is the dimension of the search space,
on the Rosenbrock function with a condition parameter of 100 (top) and in 16-D (bot-
tom). Results for the rotated and axis-parallel functions are represented in solid and
dashed lines respectively. Lines show median of the distribution, vertical error-bars
show minimum and maximum number of evaluations on successful runs out of eleven
runs, only three when the dimension is larger than 100-D.

CHAPTER 3. CMA-ES VARIANTS 61

around five times larger than the next when the conditioning parameter is 104.

On the rotated Rosenbrock function (solid lines), we see block-CMA-ES is out-

performed by the CMA-ES in all the dimensions that we tested though the overall

behaviour seems to point out that this might not be true for dimensions larger than

1000-D. The performances decrease with the number of blocks considered. This

behaviour observed when the dimension is larger than 4-D explains the 2-D case

where the performances of the [n/2, n/2] block configuration are better than those

of the [2, . . . , 2] variants. In 2-D, [n/2, n/2] block configuration is equivalent to the

[1, . . . , 1] whereas the [2, . . . , 2] is actually the [n] block configuration. In 16-D, the

performances worsen as the condition parameter increases. The performances of the

different block configuration worsen as the number of block increases, the difference

in the performances being larger for a larger value of the conditioning parameter.

Whereas the performances on the axis-parallel and rotated functions showed com-

parably large differences on the previous functions, this is not the case on the Rosen-

brock function. For instance when the dimension is smaller than 32-D, [1, . . . , 1]-

block-CMA-ES on the axis-parallel Rosenbrock function does not perform better than

the other variants on the rotated Rosenbrock function. Again, this is also the case in

16-D for different values of the conditioning parameter.

Comparison to Other Algorithms The comparison we provide mainly concerns

the sep-CMA-ES. In the comparison in Table 3.2 with indi-ES and in Table 3.3 with

AII-ES, we can see that sep-CMA-ES performs as well, otherwise better than the two

simpler ES on separable functions such as the axis-parallel ellipsoid, hyper-ellipsoid

and diffpow functions. The gain obtained from having a larger population size than

for the ES is equal to about 20% for the ellipsoid function, almost 50% for the diffpow

function since we also tested sep-CMA-ES with population size (1, 10)-selection.

Comparisons in Table 3.3 and 3.4 show that sep-CMA-ES essentially does better

than both MVA-ES and L-CMA-ES, though on the rotated ellipsoid, these two algo-

rithms perform the same as on the axis-parallel ellipsoid whereas the performance of

sep-CMA-ES degrades.

On the Rosenbrock function, in the dimensions considered, sep-CMA-ES does not

perform well. A (1, 10)-selection policy is better than (µ/µW , λ) by a factor of about

30%.

CHAPTER 3. CMA-ES VARIANTS 62

Table 3.2: Comparative performances in terms of number of function evaluations to
reach the given target function value, ftarget. Results in a column are normalised
by the best (in bold) for which we give the performance. The dimension is 30-D.
The indi-ES refers to [Hansen et al., 1995], its results are taken from its reference.
The notation ‘(1, 10)-select.’ refers to a population size of ten with selection of
the best individual at each generation. The initial values of the problem-independent
parameters 〈x〉(0)

W and the σ(0) are given in the table. The results shown with standard
deviation of the number of function evaluations are averaged over 3 runs.

fhyperelli fRosen fn−1
diffpow

axis-parallel axis-parallel axis-parallel

ftarget = 10−10 ftarget = 10−6 ftarget = 10−20

σ(0) = 1 σ(0) = 0.1 σ(0) = 1

Algorithm 〈x〉(0)
W = (1, . . . , 1)T 〈x〉(0)

W = 0 〈x〉(0)
W = (1, . . . , 1)T

indi-ES (1, 10)-select. 1.1 1.8 9 700
sep-CMA-ES (1, 10)-select. 1.3 ± 2% 1.9 ± 3% 1.9 ± 2%
CMA-ES (7/7W , 14) 2.2 ± 3% 45 000 ± 2% 8.1 ± 4%
sep-CMA-ES (7/7W , 14) 5 900 ± 3% 2.4 ± 2% 10 000 ± 3%

3.6 Summary and Perspectives

We presented simple modifications of the CMA-ES that reduces the n2+n
2

strategy

parameters of the original algorithm, n being the search space dimension, to the

block diagonal components of the covariance matrix —which depending on the size

of the block diagonal matrices can reduce the number of strategy parameters to n—

resulting in sep-CMA-ES and block-CMA-ES. Dependencies between variables are

not captured in sep-CMA-ES and only partially captured for block-CMA-ES. Just like

CMA-ES, sep-CMA-ES and block-CMA-ES can both exploit a large population. The

advantages of sep-CMA-ES are twofold: 1. it provides with a variant of the CMA-ES

with linear time and space complexity allowing the sep-CMA-ES to solve large scale

problems, 2. the learning rate for the covariance matrix can be increased by a factor

of up to n+3/2
3

, considerably accelerating the adaptation of axis-parallel distribution

ellipsoids. The block-CMA-ES provides with a direct control of its internal time and

space through the choice of the block configuration, in addition to the benefit of the

increased learning rate.

CHAPTER 3. CMA-ES VARIANTS 63

Table 3.3: Comparative performances in terms of number of function evaluations to
reach the given target function value, ftarget = 10−9 in 20-D. Results in a column
are normalised by the best (in bold) for which we give the performance. AII-ES
refers to [Hansen et al., 1995], MVA-ES has been compared to the CMA-ES rank-1
in [Poland and Zell, 2001], their results without standard deviation are taken from
their references. The results shown with standard deviation of the number of function
evaluations are averaged over 3 runs. No success was observed for MVA-ES on the
ellipsoid function (in 3.5× 105 function evaluations).

felli fRosen

axis-parallel axis-parallel

σ(0) = 1 σ(0) = 0.1
Algorithm Population 〈x〉(0)

W = (1, . . . , 1)T 〈x〉(0)
W = 0

AII-ES (1, 10)-select. 2.0 21 000
MVA-ES (1, 10)-select. no success 2.7 ± 50 %

(maxevals 3.5× 105) (Min-max range,
70 runs)

MVA-ES (5/5I , 35) no success 3.7 ± 45 %
(maxevals 3.5× 105) (Min-max range,

70 runs)
CMA-ES rank-1 (1, 10)-select. 4.4 1.2
CMA-ES rank-1 (5/5I , 35) 11 2.4
CMA-ES rank-1 (6/6W , 12) 4.4 ± 0.7% 1.2 ± 2%
CMA-ES rank-µ (1, 10)-select. 4.6 ± 3% 1.3 ± 8%
CMA-ES rank-µ (6/6W , 12) 3.6 ± 2% 21 000 ± 1%
sep-CMA-ES rank-1 (1, 10)-select. 1.3 ± 3% 3.5 ± 6%
sep-CMA-ES rank-1 (5/5I , 35) 3.1 ± 10% 9.2 ± 7%
sep-CMA-ES rank-µ (1, 10)-select. 1.3 ± 4% 3.5 ± 3%
sep-CMA-ES rank-1 (6/6W , 12) 1.3 ± 3% 6.2 ± 10%
sep-CMA-ES rank-µ (6/6W , 12) 5 900 ± 10% 5.6 ± 1%

CHAPTER 3. CMA-ES VARIANTS 64

Table 3.4: Comparative performances in terms of number of function evaluations to
reach given target function value, ftarget = 10−14, in 30-D. Results in a column are
normalised by the best (in bold) for which we give the performance. The L-CMA-ES,
whose parameter m controls the complexity of the model, was compared to CMA-
ES rank-1 in [Knight and Lunacek, 2007], their results are taken from the reference.
The results shown with standard deviation of the number of function evaluations are
averaged over 3 runs. The population size is (7/7W , 14).

felli fRosen

axis-parallel axis-parallel

〈x〉(0)
W ∈ [−5, 5]n 〈x〉(0)

W ∈ [−2, 2]n

Algorithm σ(0) = 5 σ(0) = 2
L-CMA-ES (m = 5) 180 1.1
L-CMA-ES (m = 15) 64 1.3
CMA-ES rank-1 6.6 1.3
CMA-ES rank-µ 4.1 ± 1% 48 000 ± 2%
sep-CMA-ES rank-1 1.4 ± 4% 5.2 ± 5%
sep-CMA-ES rank-µ 11 000 ± 3% 4.0 ± 1%

The block diagonal configurations for the covariance imply block-CMA-ES does

not learn all the interdependencies of the objective function, whereas the sep-CMA-ES

learns none, which favours sep-CMA-ES and block-CMA-ES on separable functions.

We have studied many different block configuration for block-CMA-ES. We have

also modified the algorithms sep-CMA-ES presented in [Ros and Hansen, 2008a] so it

is equivalent to the [1, . . . , 1]-block-CMA-ES. The sep-CMA-ES and block-CMA-ES

algorithms were evaluated on separable and non-separable test functions by measuring

numbers of function evaluations. Results from our experiments on some separable

functions show the performances of sep-CMA-ES to scale linearly with the dimension,

and those of block-CMA-ES to range between the performances of sep-CMA-ES and

those of CMA-ES. We also observed that the sep-CMA-ES outperforms variants

of CMA-ES that address the time complexity issue of the CMA-ES in the case of

separable functions, just as expected.

The well-known Rosenbrock function exhibits relevant dependencies between the

CHAPTER 3. CMA-ES VARIANTS 65

variables posing no principle obstacle for the block-CMA-ES. The [2, . . . , 2]-block-

CMA-ES is about three times slower than CMA-ES in smaller dimensions. The per-

formance difference diminishes with increasing dimension and for dimensions larger

than 32-D, the performance of the [2, . . . , 2]-block-CMA-ES becomes comparable to

that of the CMA-ES. The same occurs with the sep-CMA-ES which is fifty times

slower in smaller dimensions, and for dimensions larger than 128-D becomes faster

than the CMA-ES. This effect can be attributed to the given coordinate system:

on the rotated Rosenbrock function neither sep-CMA-ES nor block-CMA-ES outper-

formed CMA-ES up to 320-D.

A benefit of the study of sep-CMA-ES is to allow to explicitly measure the benefits

and drawbacks from learning dependencies. We can quantify the gain or loss that

can be attributed to the ability to adapt the complete covariance matrix in CMA-

ES. The sep-CMA-ES allows insightful cross-comparisons with other “separable”

algorithms (with only coordinate-wise operations). The application of sep-CMA-ES

and block-CMA-ES to real-world problems will be advantageous (compared to CMA-

ES) on high-dimensional objective functions, which either do not have too intricate

dependencies between the decision variables (as it is the case for the Rosenbrock

function) or are cheap to evaluate. In the first scenario, sep-CMA-ES and block-CMA-

ES need fewer function evaluations if the adaptation of the scaling of variables helps

to solve the function. The second scenario favours sep-CMA-ES and block-CMA-

ES, since the strategy internal time complexity becomes relevant, where CMA-ES is

roughly n
10

+ 1 times slower compared to sep-CMA-ES.

Compared to the sep-CMA-ES, the block-CMA-ES offers a compromise between

the fully independent sampling of variables that is provided by the sep-CMA-ES and

the full matrix learning of the CMA-ES.

Also from our results, we can define a policy: first sep-CMA-ES is used only for

a fraction of the learning time of CMA-ES, then one switches to CMA-ES by using

the full covariance matrix update rule and changing back the learning rate until the

problem is solved. Unfortunately the switch policy will still be significantly inferior in

some cases for instance on the Cigar function —for which sufficient dependencies can

be learnt in linear time only with CMA— or the separable sum of different powers

function —for which the scaling continuously varies and the fast learning rate of

sep-CMA-ES would be beneficial for more than just a fraction of the learning time.

CHAPTER 3. CMA-ES VARIANTS 66

Using sep-CMA-ES might improve the comparatively slow performance in the

very beginning of an optimisation run of CMA-ES which we ascribe, at least partly,

to the fact that overall step-size and in particular coordinate scaling cannot decrease

as fast in CMA-ES as in many other evolutionary algorithms.

Additional experiments to test the switch policy, which are not shown in this

thesis, show that the use of the sep-CMA-ES prior to switching to CMA-ES does not

have a negative impact on the search costs of the CMA-ES on most of the functions

presented in this chapter. Only in our additional experiments on the rotated Schwefel

function did we observe such a negative impact.

The axis-parallel ellipsoid function is an instance where the switch policy can

clearly improve the search costs of the algorithm since on this function the perfor-

mances of sep-CMA-ES scales linearly whereas those of CMA-ES scales quadratically.

The use of sep-CMA-ES is clearly beneficial during the learning phase which can rep-

resent a substantial part of the total search costs. Hence, the policy we defined can be

stated as follows: we propose to use the sep-CMA-ES for the first 100n/
√
λ iterations

of the algorithm, where λ is the population size, before switching to the CMA-ES.

This switch policy, which is assumed to perform better than the CMA-ES on separa-

ble functions or large scale problems and provide with an acceptable compromise on

non-separable functions, is tested in the next part of this thesis.

Testing the switch policy as well as the block-CMA-ES on real-world problems is

an appealing perspective. Also, some thinking needs to be put in the choice of block

configurations depending on the knowledge of the real-world problem considered. In

terms of perspectives, the implementation of sep-CMA-ES and block-CMA-ES also

serves the purpose of paving the road for variants of the CMA with other types of

constraints on the covariance matrix.

Chapter 4

Black-Box Optimisation

Benchmarking

Contents

4.1 Introduction . 68

4.2 Algorithms . 71

4.2.1 BFGS . 71

4.2.2 NEWUOA . 71

4.2.3 PSO . 72

4.2.4 DE . 72

4.2.4.1 Identification of the Parameters of DE 73

4.2.4.2 Results and Discussion 74

4.2.5 CMA-ES . 74

4.2.6 Monte Carlo Search . 74

4.3 Study on Three Types of Difficulties 74

4.3.1 Test Functions and Methods 78

4.3.1.1 Test Functions . 78

4.3.1.2 Implementation of Benchmarked Algorithms . . . 79

4.3.1.3 Methods and Performance Measures 80

4.3.2 Results . 80

67

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 68

4.3.3 Summary and Discussion 90

4.3.3.1 Results on Invariances 90

4.3.3.2 PSO on the Rotational Transformation 91

4.3.3.3 NEWUOA and BFGS 91

4.4 BBOB 2009 . 93

4.4.1 More Benchmarked Algorithms 93

4.4.1.1 Restarts . 94

4.4.1.2 IPOP-sep-CMA-ES 94

4.4.1.3 BBOB 2009 Entries 94

4.4.2 Test Functions and Methods 97

4.4.2.1 Test Functions . 98

4.4.2.2 Methods . 99

4.4.3 Results . 102

4.4.3.1 Timing Experiment 102

4.4.3.2 Performance Results of NEWUOA, IPOP-sep-CMA-
ES, BFGS, Monte Carlo search 104

4.4.3.3 Performance Results of all BBOB 2009 entries . . 113

4.4.4 Summary and Discussion of the Results of BBOB 2009 . . 122

4.5 Overall Summary and Discussion 127

4.1 Introduction

As stated before, our work takes place in the context of continuous unconstrained

global optimisation where we consider the black-box scenario, which we referred to

as Black-Box Optimisation (BBO). In the context of BBO, benchmarking can pro-

vide with decisive elements for choosing a solver when facing a new BBO problem.

This is assuming that the new BBO problem considered share some similarities with

problems of the benchmark. Also, benchmarking may help identifying some very

specific weaknesses of algorithms with respect to function properties such as sepa-

rability or multi-modality. Benchmarking is closely related to experimental analysis

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 69

of algorithms, as opposed to the theoretical worst-case and average-case analyses.

Instances of BBO benchmarkings on real-world problems exist, see [Anile et al., 2005,

Fowler et al., 2008]. The design of a benchmark needs to implement good practices

in experimental analysis, see for instance [Johnson, 2002].

A substantial effort in the implementation of a rigourous BBO benchmarking has

been made with the series of IEEE CEC special sessions which proposed standard

test suites as well as experimental set-ups for the comparison of algorithms. The

CEC special sessions has occurred every year since 2005 to address different fields of

optimisation such as multi-objective or dynamic optimisation. Only the CEC 2005

special session on real-parameter optimisation [Hansen, 2006b, Suganthan et al., 2005]

addresses the BBO problem that we are concerned with. Since no test suite of real-

world problems can possibly cover the whole range of difficulties encountered in BBO,

the choice has been made in [Suganthan et al., 2005] to make use of artificial test

functions featuring a set of properties that are known to make optimisation difficult.

Some of these difficulties are highlighted here:

dimensionality relates to the growth of the volume of the search space, which hap-

pens to be exponential with the dimension of the problem, it also affects the

behaviour of algorithms in terms of time and space complexity,

non-separability, learning correlations between the variables is important for the

optimisation of the objective function,

multi-modality, the objective function has a number of local minima misleading

algorithms in the search of the global optimum,

ruggedness could be considered as highly multi-modal, the landscape of the search

space is highly irregular, that is to say non-smooth,

non-convexity can affect methods which make the assumption of convexity such as

trust-region methods or gradient-based methods,

ill-conditioning, qualifies in practice functions for which the conditioning is larger

than 105 , the conditioning being defined as the range over a level set of the

maximum improvement of objective function values in a ball of small radius

centred on the given level set,

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 70

noise adds a certain level of uncertainty in the evaluation of the function and may

also add some ruggedness to the objective function involved.

These properties can be used to characterise a given objective function, making it

possible to study how the performances of algorithms is affected by these properties

either separately or altogether.

The performances of algorithms will be quantified in this chapter by the notion

of search costs. The search costs, which we have already defined, are the number of

function evaluations for the algorithms to surpass a target function value.

Insofar as some types of solvers are usually not benchmarked together, see Chap-

ter 2, we are interested in the comparison of methods from the fields of operational

research, deterministic mathematics and evolutionary computation. Methods address

the difficulties of optimisation using different ways such as increasing the population

size and using restarts to address multi-modality or rescaling the parameters to ad-

dress ill-conditioning. Some algorithms even have invariance properties which are

invaluable for a search algorithm in the sense that it allows to generalise the be-

haviours of said algorithm to a class of problems, as discussed in [Hansen, 2006a].

We would like to remark that invariance is a priori not associated with good per-

formances. Discussing the invariance properties or the lack thereof of a method is

substantial.

First, we designed a reasonably-sized testbed of functions which could offer a way

of delving into the behaviours of a few selected algorithms emphasising on the effects

of non-separability, non-convexity and ill-conditioning [Auger et al., 2009a,b]. Sec-

tion 4.2 provides details on the algorithms that we benchmarked. Their benchmarking

is presented in Section 4.3.

To extend our results to more algorithms, we provided BBO practitioners with an

automated procedure for benchmarking algorithms. A new testbed featuring more

function properties was provided. The whole effort resulted in the BBO Benchmark-

ing (BBOB) 2009 workshop that took place during the GECCO 2009 conference,

Montreal, Canada. We further present our approach used in BBOB 2009 in Sec-

tion 4.4, provide and discuss our comparison results. Finally, an overall summary is

provided in Section 4.5.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 71

4.2 Algorithms

We introduce some of the algorithms tested in the following sections. We have tested

a number of algorithms which originate from diverse branches of continuous optimi-

sation: the Broyden Fletcher Goldfarb Shanno (BFGS) method, the NEW Uncon-

strained Optimisation Algorithm (NEWUOA), the Differential Evolution (DE) al-

gorithm, the Particle Swarm Optimisation (PSO) algorithm, the Covariance Matrix

Adaptation-Evolution Strategy (CMA-ES) algorithm and the Monte Carlo search.

4.2.1 BFGS

The BFGS method [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970] is a

quasi-Newton method, see Section 2.1.1.1 that iteratively approximates the Hessian of

the objective function and proceeds with a local line search. The line search proceeds

with an approximation of the Newton direction available by updating B(g) using the

BFGS formula:

B(g+1) = B(g) − B
(g)s(g)s(g)TB(g)

s(g)TB(g)s(g)
+
y(g)y(g)T

y(g)Ts(g)

where s(g) = x(g+1) − x(g), and y(g) = ∇f(x(g+1))−∇f(x(g)).

4.2.2 NEWUOA

The New Unconstrained Optimization Algorithm (NEWUOA) [Powell, 2006] is a

trust region method, see Section 2.1.1.2, that iteratively updates the internal model

of the objective function.

A new quadratic model is built after the step from x(g−1) to x(g) based on a

minimum-change updating process. The model is interpolated from q interpolation

points where q ranges from n + 2 to 1
2
(n + 1)(n + 2) and the remaining degrees of

freedom are taken up by the minimisation of the Frobenius norm of the variation

in the second-derivative matrix of the model. Compared to the generic trust region

method presented in Section 2.1.1.2, many more refining techniques are used in the

management of the trust region radius and the update of the quadratic model.

The initial and final values of the radius of the trust region are also parameters

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 72

of the algorithm.

4.2.3 PSO

The Particle Swarm Optimization (PSO) algorithm, see Section 2.1.2.4, has many

different variants. Here we are interested in the particular instance of the Standard

PSO 20061. The default size of the swarm is S = 10+b2√nc. Each particle has access

to pi, their own previous all-time best position, and to gi, the position of the “global

best”. If the global best did not improve at the previous step, the “global best” gi

is determined from the previous best of the subset of the i-th particle itself and K

particles randomly drawn with replacement in the whole swarm, meaning there could

be from zero to K different particles in addition to the particle itself to choose among.

The velocities and positions are updated as follows:

vi ← wvi + c1r2 ◦ (gi − xi) + c2r2 ◦ (pi − xi)
xi ← xi + vi

where r1 and r2 are random vectors which elements are uniformly drawn in the range

[0, 1], ◦ is the element-wise multiplication. The default values of the parameters are:

K = 3, w = 1
2 ln 2

, c1 = c2 = 1
2

+ ln(2). Out of bounds particles see their position set

to the boundaries and their velocity set to zero.

4.2.4 DE

Differential Evolution (DE) is an evolutionary algorithm that makes use of a differ-

ential mutation which basically adds the weighted difference between two population

vectors to a third vector, see Section 2.1.2.8. Many variants of the differential mu-

tation procedure exists. Choosing between these variants and setting the parameter

F and CR required preliminary tests since [Storn and Price, 1997] admits that the

results of the algorithm are dependent on the chosen strategy and the choice of pa-

rameter.

1The C-code is available at: http://www.particleswarm.info/Standard_PSO_2006.c

http://www.particleswarm.info/Standard_PSO_2006.c

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 73

4.2.4.1 Identification of the Parameters of DE

We test the original code provided by Storn2 which proposes six strategies [Price

et al., 2005]. The DE/x/y notation specifies for x the vector to be mutated, y the

number of difference vectors used. The way the strategies are numbered is relevant

since it corresponds to the numeration in the code.

1. DE/rand/1 is the original DE as presented in Section 2.1.2.8,

2. DE/local-to-best/1 is a variant where instead of the base vector xi1 being chosen

in the population vector, it is chosen to lie between the vector considered and

the best vector so far, thus the mutant candidate is written as follows: vi =

xi + F (xbest − xi) + F (xi2 − xi3),

3. DE/best/1 with jitter, in this case the base vector is the best vector so far, a

quantity uniformly sampled between zero and 10−4 is added to the parameter

F for the computation of each component of vi, different for each vector vi,

4. DE/rand/1 with per-vector-dither is the original DE with a quantity uniformly

sampled between zero and 1− F added to F , different for each vector vi,

5. DE/rand/1 with per-generation-dither is the original DE with a quantity uni-

formly sampled between zero and 1−F added to F , different at each generation,

6. DE/rand/1 either-or algorithm is the original DE but using randomly either

the classical differential mutation or a three-point-recombination.

All six strategies are tested on the rotated ellipsoid function with a condition number

of a hundred in 5, 10 and 20-D, see Table 4.1 for its analytical expression. The starting

point of the algorithm is uniformly sampled in the range [−3, 10]n. The population

sizes considered are 1, 3, 5, 10 and 30 times the dimension of the search space. The

maximum number of function evaluations is set to 1000n times the population size.

The parameter CR is chosen in the range [0, 1], F in [0.3, 0.9]. Each experiment is

repeated three times.

The performance measure is the average number of function evaluations to reach

the target function value 10−7.

2Matlab code available here: http://www.icsi.berkeley.edu/~storn/code.html

http://www.icsi.berkeley.edu/~storn/code.html

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 74

4.2.4.2 Results and Discussion of the Identification of the Parameters of

DE

Only the results of DE with the default population size of ten times the dimension

of the search space are shown here in Figures 4.1, 4.2 and 4.3. All results of our

parameter identification experiments can be found in Appendix A. The number of

function evaluations for DE to reach the target function value depends on the dimen-

sionality of the problem and the values of F and CR considered. The ratio between

the performances the best and worst settings can be as large as a thousand. Overall

the best performances are obtained with CR and F both close to one, though it is

worth noting that the number of function evaluations does not behave monotonically

as for a given CR when F increases and for a given F when CR increases.

These preliminary tests led us to consider the DE/local-to-best/1/bin variant,

also denoted as DE/target-to-best/1/bin in [Price et al., 2005] which uses a single

difference between a random vector and the best-so-far vector and uniform cross-over

with F = 0.8 and CR = 1 and default population size.

4.2.5 CMA-ES

The CMA-ES algorithm is a stochastic, population-based search method in continuous

search spaces, see Chapter 3. We used the (µ/µW , λ)-CMA-ES [Hansen and Kern,

2004].

4.2.6 Monte Carlo Search

We compare the previous algorithms to the Monte Carlo search, see Section 2.1.2.1,

a baseline algorithm where the search space is uniformly sampled.

4.3 Study on Non-Separability, Ill-Conditioning and

Non-Convexity

In this section, we present our benchmarking of the effect of non-separability, ill-

conditioning and non-convexity on the performances of some state-of-the-art algo-

rithms by providing some well-known benchmark functions.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 75

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure 4.1: Identification of the parameters of DE on the rotated ellipsoid function
in 5-D with a population size of ten times the dimension. The logarithm in base 10
of the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 76

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure 4.2: Identification of the parameters of DE on the rotated ellipsoid function
in 10-D with a population size of ten times the dimension. The logarithm in base
10 of the average number of function evaluations to reach the target function value
10−7 is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 77

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure 4.3: Identification of the parameters of DE on the rotated ellipsoid function
in 20-D with a population size of ten times the dimension. The logarithm in base
10 of the average number of function evaluations to reach the target function value
10−7 is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 78

Table 4.1: Test functions with coordinate-wise initialisation intervals and target func-
tion value, where y := Qx implements an angle-preserving, linear transformation, i.e.
Q is orthogonal.

Function β Initialisation ftarget

felli(x) =
∑n

i=1 β
i−1
n−1 y2

i [1, 1010] [−20, 80]n 10−9

fRosen(x) =
∑n−1

i=1

(
β (y2

i − yi+1)2 + (yi − 1)2
)

[1, 108] [−20, 80]n 10−9

f
1/4
elli (x) =

(∑n
i=1 β

i−1
n−1 y2

i

)1/4

[1, 1010] [−20, 80]n 10−9

The benchmark consisted of the ellipsoid and Rosenbrock functions. The DE

algorithm, the PSO algorithm, the BFGS method, the CMA-ES algorithm and the

NEWUOA, all described in Section 4.2, are benchmarked. We detail our test functions

and methods in Section 4.3.1, then provide and discuss our results in Section 4.3.2

and Section 4.3.3.

4.3.1 Test Functions and Methods

We present the test functions and the methods in the subsequent sections.

4.3.1.1 Test Functions

The functions (see Table 4.1) are tested in their original axis-parallel version (i.e. Q

is the identity and y = x), and in rotated versions, where y = Qx. The orthogo-

nal matrix Q is chosen such that each column is uniformly distributed on the unit

hypersphere surface [Hansen and Ostermeier, 2001], fixed for each run.

The ellipsoid function felli is a convex-quadratic function which optimum value

is zero obtained at the origin of the search space. The parameter β is the condition

number of the Hessian matrix that is varied between one and 1010 in our experiments.

If the condition number is equal to one the ellipsoid is the isotropic separable sphere

function. The function f
1/4
elli has the same contour lines (level sets) as felli, however it

is neither quadratic nor convex. For β 6= 1, the functions felli and f
1/4
elli are separable

if and only if Q = I.

The Rosenbrock function fRosen is non-separable, has its global minimum value

zero at x = [1, 1, . . . , 1] and, for large enough β and n, has one local minimum close

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 79

to x = [−1, 1, . . . , 1] [Shang and Qiu, 2006]. The contour lines of the Rosenbrock

function show a bent ridge that guides to the global optimum (the Rosenbrock is

sometimes called banana function) and the parameter β controls the width of the

ridge. In the classical Rosenbrock function, β equals 100. For smaller β, the ridge

becomes wider and the function becomes less difficult to solve. We vary β between

one and 108.

These functions were altered with respect to: 1. non-separability by considering

rotation of the search space, 2. ill-conditioning by considering the conditioning as

a parameter, and 3. non-convexity by applying the composition to the left of the

objective function with the square root of square root function which results in a

non-convex function.

4.3.1.2 Implementation of Benchmarked Algorithms

We thereafter describe the experimental set-up for the algorithms. For the BFGS

method, a Matlab implementation was used. It is accessible using the generic

function fminunc (revision 1.1.6.3) that proposes, among others, the BFGS method

for the update of the Hessian Matrix. The stopping criteria are set so runs stop only

when line search fails due to round-off errors.

As for the NEWUOA, the implementation used for our experiments is the one

provided by Matthieu Guibert3 which delivers Powell’s original Fortran source code

of the algorithm [Powell, 2006]. Minor changes have been brought to this code to fit

with our experimental set-up. For our experiments, we considered for q the number

of interpolation points the value 2n + 1 (recommended by Powell [2006]) where n is

the dimensionality of the problem. The initial radius of the trust region was set to

a hundred, corresponding to the length of the initialisation range, see below. The

stopping criterion which is the final radius of the trust region is set to 10−15. The

maximum number of function evaluations was set to 108.

The implementation of PSO that we used is the standard PSO 20064 translated

into Scilab5. The neighbourhood parameters are all set to their default values.

Also for the CMA-ES, the Scilab implementation (version 0.92)6 was used. The

3http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.html
4Available at this location: http://www.particleswarm.info/Programs.html
5For which we acknowledge Nikolas Mauny.
6Latest version available here: http://www.lri.fr/~hansen/cmaesintro.html

http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.html
http://www.particleswarm.info/Programs.html
http://www.lri.fr/~hansen/cmaesintro.html

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 80

initial step-size was set to 10/3. All other parameters are set to their default values.

For DE, the DE/local-to-best/1, second strategy available in the Matlab code

provided by Price7 was used. The cross-over constant CR was set to one and the

weighting factor F to 0.8. The population size was chosen to be ten times the dimen-

sion of the search space.

4.3.1.3 Methods and Performance Measures

For each algorithm tested we conduct twenty-one independent trials of up to 107

function evaluations. For all algorithms, initial points have been sampled uniformly

in the range [−20, 80]n. For BFGS, if no success was encountered, the number of trials

was extended to a thousand and one. We quantify the performance of the algorithms

using the probability of success pS and the success performance SP1 and used in

[Hansen and Kern, 2004], analysed in [Auger and Hansen, 2005]. The probability of

success is the ratio of the successful runs over the total number of runs. The SP1

equals the average number of function evaluations for successful runs divided by the

ratio of successful runs, where a run is successful if the target function value 10−9

is reached before 107 function evaluations. The SP1 is an estimator of the expected

number of function evaluations to reach the target function value if the algorithm is

restarted until a single success (supposing infinite time horizon) and assuming that

the expected number of function evaluations for unsuccessful runs equals the expected

number of evaluations for successful runs. The fact that SP1 is computed after a given

number of runs can result in a high variance of the values of SP1 in the case of a

small ratio of successful runs. Another possibility, which has not been exploited in

this manuscript, would be to compute SP1 for a given number of successful runs.

4.3.2 Results

We compare the performances of the algorithms on the test functions that we pre-

sented in terms of SP1. We provide only rough figures for the comparisons we make

here since, to draw our conclusions, we are more interested in differences that are

represented by orders of magnitude.

The performances of all algorithms worsen as the condition number increases, see

7Available at: http://www.icsi.berkeley.edu/~storn/code.html

http://www.icsi.berkeley.edu/~storn/code.html

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 81

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

Figure 4.4: Effects of the ill-conditioning of the axis-parallel ellipsoid function on
BFGS, NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D. Shown is SP1, which is
the average number of function evaluations for successful runs divided by the ratio of
successful runs, where a run is successful if the target function value 10−9 is reached
before 107 function evaluations, versus the condition number of the objective function.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 82

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

Figure 4.5: Effects of the ill-conditioning of the rotated ellipsoid function on BFGS,
NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D. Shown is SP1, which is the
average number of function evaluations for successful runs divided by the ratio of
successful runs, where a run is successful if the target function value 10−9 is reached
before 107 function evaluations, versus the condition number of the objective function.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 83

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

Figure 4.6: Effects of the ill-conditioning of the axis-parallel ellipsoid to the power
one fourth on BFGS, NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D. Shown is
SP1, which is the average number of function evaluations for successful runs divided
by the ratio of successful runs, where a run is successful if the target function value
10−9 is reached before 107 function evaluations, versus the condition number of the
original ellipsoid function.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 84

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

Figure 4.7: Effects of the ill-conditioning of the rotated ellipsoid to the power one
fourth on BFGS, NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D. Shown is SP1,
which is the average number of function evaluations for successful runs divided by the
ratio of successful runs, where a run is successful if the target function value 10−9 is
reached before 107 function evaluations, versus the condition number of the original
ellipsoid function.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 85

Figures 4.4 to 4.9. And as expected the performances of all algorithms worsen as the

dimension increases, this effect being more pronounced for larger condition numbers.

On the Axis-Parallel Ellipsoid Function, see Figure 4.4, the BFGS method,

the NEWUOA and the CMA-ES algorithm are more affected by the increasing con-

dition number: the SP1 increasing by a factor of around ten thousand, a hundred

and ten respectively when the condition number goes from one to 1010. This fac-

tor increases from 10-D to 40-D by up to an order of magnitude, two for the BFGS

method. The BFGS method is particularly affected for condition numbers larger

than 108 due to numerical round-off errors in the computation of the gradient using

a finite-difference method. In contrast, the increase in the SP1 of PSO and DE is not

larger than a factor of two.

A factor of around six for PSO, ten for CMA-ES, ten for BFGS, thirty for DE,

sixty for NEWUOA can be observed for the increase of SP1 from 10-D to 40-D for

a condition number of 108, this factor increasing by an order of magnitude only for

BFGS when the condition number is larger.

As for comparisons, for a condition number smaller than 108, the performances

of NEWUOA are better than those of BFGS by a factor of up to a hundred for

a condition number of 104 on the axis-parallel ellipsoid function. Nevertheless, the

SP1 of NEWUOA outgrows that of BFGS and finally all algorithms given that the

condition number is larger than 109. For condition numbers ranging from one to

107 both NEWUOA and BFGS are better than CMA-ES and PSO, the next best

algorithms. The SP1 of CMA-ES and PSO is larger than that of NEWUOA by a factor

of one to two hundred for a condition number smaller than 106. The performances

of CMA-ES and PSO are close, with CMA-ES being the best out of the two when

the condition number is smaller than 103, and PSO faring better by a factor of up

to three otherwise. The PSO algorithm is actually the best algorithm for a condition

number of 1010 in 20 and 40-D. The performances of DE always come last.

The success probability of CMA-ES, DE and NEWUOA on the twenty-one trials

is a hundred percent, that of PSO is larger than 95%. The success probability of

BFGS is close to a hundred percent except for condition numbers close to 1010 where

the success probability can drop as low as 2% on the thousand and one trials.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 86

On the Rotated Ellipsoid Function, see Figure 4.5, the performances of

CMA-ES or DE are not affected. The performances of the BFGS method worsen

for condition numbers larger than 106, the reason being that the finite-difference

computations lead to numerical round-off errors, which are more likely to occur in

the case of the rotated ellipsoid. The performances of the NEWUOA worsen by a

factor of up to two hundred for condition numbers ranging from ten to 107. The

performances of the NEWUOA for larger condition numbers are comparable on the

rotated and axis-parallel ellipsoid function. The PSO algorithm is particularly af-

fected since we can see that the SP1 depending on the condition number increases

dramatically faster than for the axis-parallel ellipsoid function. This results in the

PSO algorithm not reaching the optimum in less than 107 function evaluations on

the ellipsoid function for a condition number of 105 which can barely be described as

large.

The performances of NEWUOA are close to those of BFGS up to a condition

number of 106 before the SP1 of BFGS increases dramatically as described before.

The performances of NEWUOA and BFGS are the best out of the performances of the

algorithms considered for condition numbers smaller than 106; though for a condition

number larger than 102 the difference between the performances of CMA-ES and the

best out of NEWUOA and BFGS is less than a factor of five. The performances of

both NEWUOA and BFGS decline for larger condition numbers to become worse

than that of CMA-ES and DE which become best and second best for condition

numbers larger than 109, those of PSO coming last for all condition numbers tested

on the rotated ellipsoid function.

The success probability of CMA-ES, DE and NEWUOA is a hundred percent.

When the condition number is larger than 105, the success probability of both BFGS

and PSO is close to a hundred percent before quickly falling to zero.

On the Ellipsoid Function to the Power One Fourth, see Figures 4.6 and

4.7, the performances of the CMA-ES, the PSO and the DE algorithms are not

affected. Only the results of the BFGS method and the NEWUOA, both of which

assume that the objective function can be approximated by a convex quadratic model,

are affected by the non-convexity of the ellipsoid function to the power one fourth.

The behaviour of the performances of the BFGS changes only slightly, though the

performances worsen by a factor of up to twenty compared to those obtained on the

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 87

ellipsoid function. The performances of the NEWUOA decrease by a factor of up to

ten and the behaviour changes such that, on the axis-parallel ellipsoid to the power

one fourth, for condition numbers smaller than 105, the SP1 increases whereas it was

close to constant on the axis-parallel ellipsoid. Another effect of the non-convexity

on NEWUOA is that the performances of the algorithm is similar on the axis-parallel

and rotated ellipsoid function to the power one fourth.

The NEWUOA is still the best algorithm, this time only for a condition number

smaller than 103. The performances of the BFGS are now close to those of CMA-ES

for the rotated function and both CMA-ES and PSO on the axis-parallel function,

being only better by a factor of less than two in 10-D, and even less in 20 and 40-

D. Nevertheless, the sorting of the performances of the algorithm actually does not

change when compared to that of the convex quadratic ellipsoid function, only the

ranges of the condition numbers do: on the axis-parallel functions the best algorithm

is NEWUOA for smaller condition numbers, then BFGS is until the condition number

is large enough so that the performances of PSO make it rank first; on the rotated

function, NEWUOA followed by BFGS and then CMA-ES are the best algorithms

considering their performances as the condition number increases.

The probability of success of BFGS on the axis-parallel ellipsoid to the power one

fourth is close to a hundred percent until the condition number is 1010 in which case

it drops to 50% in 10 and 20-D and goes to zero in 40-D. In the case of the rotated

ellipsoid to the power one fourth, the probability of success drops for a condition

number of around 106. The probability of success of NEWUOA is close to a hundred

percent before dropping to zero.

On the Rosenbrock Function, see Figures 4.8 and 4.9, again the perfor-

mances of the algorithms worsen when the dimensions of the search space increase,

and when the conditioning parameter increases. The rotation of the objective function

affects BFGS and PSO. The performances of PSO worsen by a factor of up to ten.

On the Rosenbrock, the probability of success of BFGS drops quickly to zero when

the conditioning parameter is larger than three hundred. On the rotated Rosenbrock

function, this probability of success is larger than for the axis-parallel Rosenbrock

function when β is larger than three hundred.

The performances of NEWUOA and CMA-ES ranging from 10 to 40-D decrease

by a factor close to four for β = 1, to ten for β = 102, to twenty for β = 106. The

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 88

0
10

2
10

4
10

6
10

8
10

3
10

4
10

5
10

6
10

7
10

Condition Parameter

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

3
10

4
10

5
10

6
10

7
10

Condition Parameter

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

3
10

4
10

5
10

6
10

7
10

Condition Parameter

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

Figure 4.8: Effects of the ill-conditioning of the Rosenbrock function on BFGS,
NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D. Shown is SP1, which is the
average number of function evaluations for successful runs divided by the ratio of
successful runs, where a run is successful if the target function value 10−9 is reached
before 107 function evaluations, versus the condition parameter β of the objective
function.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 89

0
10

2
10

4
10

6
10

8
10

3
10

4
10

5
10

6
10

7
10

Condition Parameter

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

3
10

4
10

5
10

6
10

7
10

Condition Parameter

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

3
10

4
10

5
10

6
10

7
10

Condition Parameter

SP
1

NEWUOA

BFGS

DE

PSO

CMAES

Figure 4.9: Effects of the ill-conditioning of the rotated Rosenbrock function on BFGS,
NEWUOA, DE, PSO and CMA-ES in 10, 20, 40-D. Shown is SP1, which is the
average number of function evaluations for successful runs divided by the ratio of
successful runs, where a run is successful if the target function value 10−9 is reached
before 107 function evaluations, versus the condition parameter β of the objective
function.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 90

performances of BFGS and PSO decrease by a factor close to ten for β = 1 and

β = 102, twenty and a hundred respectively for DE.

In terms of comparison, NEWUOA is the best algorithm by a factor of three at

best compared to the performances of the CMA-ES, until the conditioning param-

eter β is equal to 107. The performances of NEWUOA then worsen such that the

performances of CMA-ES become best. For a conditioning that is smaller than 103,

the performances of BFGS are in-between those of NEWUOA and CMA-ES. The

performances of PSO, and DE come last. The performances of PSO are behind those

of CMA-ES by a factor of around three when β is one, this factor increases quickly

as β increases. The SP1 of PSO grows larger than that of DE when β is larger than

a hundred.

The probability of success of the CMA-ES, DE and NEWUOA is larger than 70%,

60% and 50% respectively. When the condition parameter β is larger than 103 the

probability of success of both BFGS and PSO quickly goes to zero.

4.3.3 Summary and Discussion of our Study on Non-Separability,

Ill-Conditioning and Non-Convexity

We highlight some of the results presented previously.

4.3.3.1 Results on Invariances

Invariances of algorithms in benchmarking play an important role insofar as an algo-

rithm showing an invariance to a certain function property can generalise its perfor-

mance to other functions.

In this respect, the algorithms show different kinds of invariances.

PSO and DE are almost invariant to conditioning of the ellipsoid function.

For PSO, this statement is only true on the axis-parallel ellipsoid function. This

statement has a limited impact since this does not extend to the Rosenbrock function.

The CMA-ES, BFGS and NEWUOA are comparatively much more affected by the

ill-conditioning.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 91

CMA-ES, DE are invariant to rotation of the search space. This is true for

DE because the cross-over parameter is set to 1. The CMA-ES is inherently invariant

due to its use of the covariance matrix. The NEWUOA is affected by the rotation of

the search space on the ellipsoid function with conditioning smaller than 105, for which

it performs extremely well in the case of the axis-parallel ellipsoid. To the opposite,

the Standard PSO 2006 is greatly affected by such search space transformation, see

below.

CMA-ES, DE and PSO are invariant to the non-convex transformation.

The three algorithms do not make use of the function values but the ranking of the

individuals according to these function values to progress. Therefore, a monotonic

transformation of the objective function has no effect on the performances of these

algorithms.

4.3.3.2 PSO on the Rotational Transformation

The PSO is highly affected by the search space rotation as our results show, see also

Figure 4.10. The behaviour of Standard PSO as opposed to that of the CMA-ES

with regards to rotational invariance was studied in more details in [Hansen et al.,

2009d].

4.3.3.3 NEWUOA and BFGS

The stochastic methods we considered are not affected by the non-convex transforma-

tion of the objective function. This is not the case for NEWUOA which performances

on the ellipsoid function are extremely good though highly dependent on the function

being convex-quadratic. As our results show, the performances of NEWUOA decline

comparatively rapidly when considering the ellipsoid to the power one fourth. The

performances of BFGS though not nearly as badly affected show some declining as

well.

One of the most surprising revelations of our study is presented in the following.

Despite that the functions considered are standard test functions of continuous opti-

misation, the BFGS and NEWUOA merely do better than CMA-ES by a factor of

five at best for the rotated ellipsoid function with only slight conditioning or for the

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 92

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

S
P

1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

S
P

1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

3
10

4
10

5
10

6
10

7
10

Condition Parameter

S
P

1

NEWUOA

BFGS

DE

PSO

CMAES

0
10

2
10

4
10

6
10

8
10

3
10

4
10

5
10

6
10

7
10

Condition Parameter

S
P

1

NEWUOA

BFGS

DE

PSO

CMAES

Axis-parallel Rotated

Figure 4.10: Effect of the rotation on the PSO (blue X) and other algorithms depend-
ing on the condition number and parameter as seen on the 20-D ellipsoid (top row)
and Rosenbrock (bottom row) functions respectively.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 93

Rosenbrock function. This could not be expected especially since the test case con-

sidered is actually the best case scenario for a trust region method such as NEWUOA

or a line search method such as BFGS.

4.4 BBOB 2009

The Black-Box Optimisation Benchmarking (BBOB) 2009 is a benchmarking event

that took place as a workshop in GECCO 2009, Montreal, Canada8. The BBOB

2009 featured the COCO software platform9 as well as a full experimental set-up.

The BBOB 2009 resulted in comparison results between algorithms originating from

the field of evolutionary computation or deterministic mathematics and operations

research. The algorithms were tested on an extended testbed of test functions and

an additional testbed of functions using three noise models.

While the technical implementation of the BBOB 2009 is presented in Chapter 5,

we only discuss our scientific approach and our results here. On the base of this bench-

marking framework, we are also providing reports of our experience as participants

since we used the BBOB 2009 to benchmark some algorithms both from a classical

background and of our own. The next section provides details of the algorithms that

we have benchmarked. The Section 4.4.2 presents the experimental set-up that we

designed. Results of our benchmarked algorithms are presented in Section 4.4.3. Re-

sults in the light of the overall benchmarking in the BBOB workshop are discussed

in Section 4.4.4.

4.4.1 More Benchmarked Algorithms

We have benchmarked the BFGS method, the NEWUOA, the IPOP-sep-CMA-ES

and the Monte Carlo search algorithms. Except for the IPOP-sep-CMA-ES, all algo-

rithms were introduced in Section 4.2.

8http://www.sigevo.org/gecco-2009/workshops.html#bbob
9http://coco.gforge.inria.fr

http://www.sigevo.org/gecco-2009/workshops.html#bbob
http://coco.gforge.inria.fr

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 94

4.4.1.1 Restarts

In the context of a determined initial budget, the notion of restarts, or multi-start,

can improve the probability of the algorithm to reach a target function value [Hansen

et al., 2009a]. An independent restart means that the algorithm forgets what was

learnt during previous iterations to start anew. The problem of choosing when a

restart should occur to optimise the performance of an algorithm is not trivial.

For BFGS and NEWUOA, we add an independent restart procedure that starts

the algorithm anew from a random initial point in the search space when the algorithm

stops without being successful.

4.4.1.2 IPOP-sep-CMA-ES

The sep-CMA-ES is a variant of the CMA-ES algorithm, presented in details in Chap-

ter 3, exploiting separability. Here we have used the sep-CMA-ES before switching

back to the full covariance matrix update rule of the original CMA-ES. All internal

parameters (except the learning rate) are retained in the process, among those the

acquired diagonal covariance matrix. The desired behaviour is to benefit from the

faster learning of the sep-CMA-ES in the case of separable problems and then revert

to the original CMA-ES [Hansen and Kern, 2004].

The IPOP restart strategy, introduced in [Auger and Hansen, 2005] was added

to the sep-CMA-ES. The IPOP restart strategy consists in a restart procedure that

starts the algorithm anew from a random point in the search space, but with a pop-

ulation size that is doubled. This improves the success probability of the CMA-ES on

multi-modal functions [Auger and Hansen, 2005], but can also result in misguidance

in the case of multi-funnels function [Lunacek et al., 2008, Müller and Sbalzarini,

2009].

4.4.1.3 BBOB 2009 Entries

In the context of the BBOB 2009, in addition to BFGS, NEWUOA, IPOP-sep-CMA-

ES and Monte Carlo search that we already mentioned but put here for sake of

completeness, many more algorithms were proposed by participants of the workshop.

The results of the algorithms MCS [Huyer and Neumaier, 1999], SNOBFIT [Huyer

and Neumaier, 2008] and GLOBAL [Csendes, 1989] are not published alongside the

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 95

others in [Rothlauf, 2009]. We merely list here all algorithms altogether and refer to

their workshop papers.

BFGS [Ros, 2009a,b] is a quasi-Newton method, see Section 4.2.1,

NEWUOA [Ros, 2009c,d] is a trust region method, see Section 4.2.2,

IPOP-sep-CMA-ES [Ros, 2009e,f] is the (µ/µw, λ)-CMA-ES using the sep-CMA-

ES strategy for only the first few iterations with increasing population restarts,

see Section 4.4.1.2,

Monte Carlo Search or Pure Random Search [Auger and Ros, 2009a,b] is the algo-

rithm that consists in sampling the search space uniformly, see Section 2.1.2.1,

(1+1)-ES with one fifth success rule [Auger, 2009a,b] is the base evolution strat-

egy, see Section 2.1.2.7,

BayEDAcG [Gallagher, 2009a,b] is an estimation of distribution algorithm, see Sec-

tion 2.1.2.9, that uses Bayesian inference to learn the model parameters of the

probability density estimation model used,

AMaLGaM IDEA or Adapted Maximum-Likelihood Gaussian Model Iterated Density-

estimation Evolutionary Algorithm [Bosman et al., 2009a,b] is an estimation of

distribution algorithm, see Section 2.1.2.9, which uses the maximum-likelihood

for the mean and covariance matrix,

iAMaLGaM IDEA [Bosman et al., 2009a,b] is the same as the AMaLGaM IDEA

with an incremental model building,

(1+1)-CMA-ES [Auger and Hansen, 2009a,b] is the CMA-ES, see Section 3.2, with

one offspring, a ‘+’ selection rule, see Section 2.1.2.7, and independent restarts,

BIPOP-CMA-ES [Hansen, 2009a,b] is the (µ/µw, λ)-CMA-ES, see Section 3.2,

with restarts and a small and large population management strategy,

Cauchy EDA [Posik, 2009a] is an estimation of distribution algorithm, see Sec-

tion 2.1.2.9, using the Cauchy distribution as probabilistic model,

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 96

DASA or Differential Ant-Stigmergy Algorithm [Korosec and Silc, 2009a,b] is an

ant-colony approach combined with probability sampling, see Section 2.1.2.3,

G3-PCX or Generalized Generation Gap (G3) model with parent centric crossover

(PCX) [Posik, 2009c] is an evolutionary algorithm, see Section 2.1.2.5,

simple GA [Nicolau, 2009] is a genetic algorithm adapted to continuous optimisa-

tion by increasing the number of bits to encode each variable, see Section 2.1.2.5,

POEMS or Prototype Optimization with Evolved IMprovement Steps [Kubalik,

2009] is an evolutionary algorithm, see Section 2.1.2.5, that uses so called hyper-

mutations,

EDA-PSO [El-Abd and Kamel, 2009a] introduces a probability to use either an

estimation of distribution approach, see Section 2.1.2.9 or the particle swarm

optimisation equations, see Section 2.1.2.4 at each iteration,

PSO [El-Abd and Kamel, 2009b] used the global best model with the parameters w,

c1 and c2 different from zero, see Section 2.1.2.4,

PSO Bounds [El-Abd and Kamel, 2009c] is based on the PSO, see Section 2.1.2.4,

with an additional adaptive bounds procedure and restart strategy,

DEPSO [Garćıa-Nieto et al., 2009a,b] is a PSO algorithm, see Section 2.1.2.4, us-

ing the differential variation scheme in DE, see Section 2.1.2.8, for adjusting

particular velocities,

DIRECT [Posik, 2009b] is an algorithm using partitioning of the search space with

hyper-rectangles iteratively divided so as to balance local and global searches,

see Section 2.1.1.4,

MCS or Multilevel Coordinate Search [Pál et al., 2009a,b] is inspired by DIRECT

with an additional local search procedure, see Section 2.1.1.4,

SNOBFIT or Stable Noisy Optimization by Branch and FIT [Huyer and Neumaier,

2009a] is also related to DIRECT but adapted to noisy objective function by

combining the direct search with the maintenance of local surrogate functions,

see Section 2.1.1.4,

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 97

GLOBAL [Huyer and Neumaier, 2009b,c] looks for the local minima that are po-

tentially global by using a combination of sampling, clustering and local search,

see Section 2.1.1.4,

Line Search Methods, [Posik, 2009d] see Section 2.1.1.1 have been tested, one

based on golden section search and parabolic interpolation denoted as LSfminbnd,

one which is an uni-variate search algorithm based on interval division denoted

as LSstep,

Rosenbrock’s Local Search Method [Posik, 2009e] maintains a model of the cur-

rent local neighbourhood and then proceeds with an approach close to that of

conjugate-gradient methods,

Nelder-Mead method is a simplex method, see Section 2.1.1.3; two variants were

tested: one with a reshaping step in the search and a population-based approach

[Doerr et al., 2009] and another with different restarts strategies [Hansen, 2009c],

MA-LS-Chain or Memetic Algorithm using Local Search Chaining [Molina et al.,

2009a,b] is a hybrid meta-heuristics method based on genetic algorithms which

combines stochastic methods to improve their performances on global optimi-

sation just like it can be done for deterministic methods for local search, see

Section 2.1.1.4; MA-LS-Chain uses three different components, integrating the

CMA-ES as a line-search component,

VNS or Variable Neighbourhood Search [Garćıa-Mart́ınez and Lozano, 2009a,b] is

also a hybrid meta-heuristics method with the initial generation component

being the CMA-ES.

4.4.2 Test Functions and Methods

We briefly present here the function testbeds of our benchmarking suite which are

fully described in [Finck et al., 2009a,b, Hansen et al., 2009b,c]. We also describe the

experimental methodology used, see also [Hansen et al., 2009a].

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 98

4.4.2.1 Test Functions

The testbeds of the noiseless and of the noisy functions [Finck et al., 2009a,a, Hansen

et al., 2009b,c] respectively comprise twenty-four and thirty test functions. These

functions have been chosen to display some of the typical difficulties in BBO described

before in Section 4.1. We hope this collection of functions reflects a more difficult

portion of the problem distribution in practice, since we consider easier problems of

lesser interest. In order to make relatively simple problems less regular, transforma-

tions are applied to some of the functions in our test suite to break their symmetry

or to make the functions non-linear. Rotations of the search space are considered

as well to render non-separable some functions which are originally separable. And

finally, there are translations of the search space —obtained by adding a fixed vec-

tor to elements of the search space— and of the function value space —by adding a

fixed-value to the values of the elements of the search space.

The choice for a comprehensible function collection is motivated by the goal of

analysing and understanding the behaviours of algorithms, and eventually to find

ways of improving the benchmarked algorithms. The problems are split into groups:

separable functions, functions with low or moderate conditioning, functions with high

conditioning and uni-modal, multi-modal with adequate global structure, multi-modal

with weak global structure.

All problems in our test suite are scalable with the dimension. All the functions

are defined on Rn. Each of the functions has instances: the position and value

of the optimum, xopt and fopt = f(xopt) respectively, and transformations of the

search space depend on the instance considered. The experimental set-up required

the participants to test each function over five different instances. For statistical

significance of the result of algorithms that would have a stochastic component, it

was recommended that the experiment be repeated three times for each instance.

This sums up to fifteen repetitions of the experiment for an algorithm on a given

function. For the sake of simplicity, every time we will refer to reaching a target

function value ftarget = fopt + ∆f by the precision ∆f reached instead.

All functions have their optimum in the [−5, 5]n range, though most of the func-

tions have their optimum in the [−4, 4]n range. The initialisation range was [−5, 5]n

except for the IPOP-sep-CMA-ES for which it was [−4, 4]n. The starting point of the

algorithms was chosen uniformly in this domain. The dimensions for all functions

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 99

tested are n = 2, 3, 5, 10, 20, 40; 40 being optional. The success criterion of a run is

defined by the fact that a target function value is reached.

4.4.2.2 Methods

We describe here the experimental methodology of BBOB 2009 [Hansen et al., 2009a].

The participants were allowed to make use of only this information: the dimension-

ality, the initialisation range. The target function value was provided only to prevent

experiments running too long. Other than the target function value, the set of stop-

ping criteria of the algorithm is for the participants to decide.

Performance Measure One of the performance measures that is provided in the

BBOB 2009 is the ERT, Expected Running Time. The ERT to reach a target func-

tion value is the number of function evaluations over all runs divided by the number

of runs that surpassed the considered function value. The ERT estimates the ex-

pected number of function evaluations for the target function value to be reached

if the algorithm is restarted until a single success (supposing infinite time horizon).

Contrarily to the SP1, no assumption is made on the number of function evaluations

of an unsuccessful run. Notably, the ERT decreases if unsuccessful runs are stopped

earlier. This performance measure provides quantitatively comparable measurements

even for custom stopping criteria. We will refer in the following to either running

times, running lengths, cost or budget without distinction from this point on. The

dispersion of the ERT is determined using bootstrapping, see Appendix B.

A type of figure —an alternative to the convergence graph— that we use to present

our results is the empirical cumulative distribution function of the bootstrap distri-

bution of ERT divided by n to reach a given target function value. The empirical

cumulative distribution functions of the expected running times are comparable to

the data profiles and the performance profiles proposed in [Moré and Wild, 2009], it

displays the empirical cumulated probability of success on the problems considered

depending on the allocated budget. The probability of success can be considered over

all functions of a testbed over multiple target function values.

We provide more details on the empirical cumulative distribution functions of the

bootstrap distribution of ERT divided by n in Appendix B.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 100

Timing Experiments We required that the participants provide results of their

algorithm on the following time complexity experiment: the overall CPU time of

the execution of the algorithm software optimising function f8 is measured. This

measurement is required to last at least a few tens of seconds and at least a few

iterations of the algorithm. If any stopping criterion is reached, the algorithm is

to be restarted. This experiment is made to reflect a standard execution of the

algorithm. The CPU time per function evaluation is reported for each dimension.

Again a software implementation of such experiment is provided.

Crafting Effort An additional measure of an algorithm facing the BBOB 2009 is

the crafting effort which evaluates the versatility of the algorithm [Feoktistov, 2006,

Price, 1997]. The crafting effort is expressed as follows: CrE = −∑K
k=1

nk
n

ln(nk
n

),

where K is the number of different parameter settings used over a whole BBOB 2009

testbed, n is the number of functions in the considered testbed, the nk are the number

of functions which used the same k-th setting. The crafting effort is positive, equal

to zero if a single setting was used. As a matter of fact, the crafting effort is zero for

all algorithms that we have benchmarked.

Algorithms We thereafter describe the experimental set-up for the algorithms pre-

sented previously in Section 4.4.1.

For both the BFGS method and NEWUOA, a maximum of a hundred restarts is

used.

For the BFGS method, the same Matlab implementation we already tested is

used, see Section 4.3. The stopping criteria are set so a restart of the algorithm

happens only when line search fails due to round-off errors. A maximum of 105

function evaluations times the dimension of the search space is used, the algorithm

stops in case of success or when the number of function evaluations or the number of

restarts runs out, see Listing 4.1.

For the NEWUOA as well, the implementation used for our experiments is the

one we tested previously in Section 4.3. We consider for q the number of interpola-

tion points the values 2n + 1 (recommended by Powell [2006]) the rounded value of√
(n+ 1/2)(n+ 1)(n+ 2) (average model) and the maximum (n+1)(n+2)

2
(full model)

where n is the dimensionality of the problem. These variants of the NEWUOA will

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 101

Listing 4.1: Matlab code: Multi-start BFGS

1 function [x, ilaunch] = MY_OPTIMIZER(FUN, D, ...
2 ftarget, maxfunevals)
3 % minimizes FUN in D dimensions by independent restarts

4 % of fminunc (BFGS). ftarget and maxfunevals are

5 % additional external termination conditions.

6 % Search space is [-5, 5]^D

7
8 % set options, make sure we always terminate

9 options = optimset(’fminunc’);
10 % BFGS algorithm

11 options = optimset(options, ’LargeScale’, ’off’);
12 options = optimset(options, ’MaxIter’, inf, ...
13 ’Tolfun’, 1e-11, ’TolX’, 0, ...
14 ’OutputFcn’, @callback, ...
15 ’Display’, ’off’);
16
17 maxfunevals = min(1e4*DIM, maxfunevals);
18
19 % multistart such that ftarget is reached with

20 % reasonable prob. Relaunch optimizer up to 100 times

21 for ilaunch = 1:100;
22 options = optimset(options, ’MaxFunEvals’, ...
23 maxfunevals - feval(FUN, ’evaluations’));
24 x = fminunc(FUN, 10*rand(DIM,1)-5, options);
25 if (feval(FUN, ’fbest’) < ftarget || ...
26 feval(FUN, ’evaluations’) >= maxfunevals)
27 break;
28 end
29 end
30
31 function stop = callback(x, optimValues, state)
32 stop = false;
33 if optimValues.fval < ftarget
34 stop = true;
35 end
36 end
37 end % function

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 102

be subsequently denoted as NEWUOA, NEWUOA (avg) and NEWUOA (full) re-

spectively. The initial radius of the trust region was set to 10. The stopping criterion

which is the final radius of the trust region is set to 10−16. The maximum number of

function evaluations is 105 for NEWUOA, 104 for the NEWUOA (full), 105 and 104

for NEWUOA (avg) on the noiseless and noisy testbeds respectively.

For the IPOP-sep-CMA-ES, the Matlab implementation of the CMA-ES (version

3.23beta) is used10. The sep-CMA-ES variant is used only for the first 1 + 100n/
√
λ

iterations of the first start. The initial step-size was set to 2. All other parameters

are set to their default values. Restarts occur after 100 + 300n
√
n/λ iterations or if

any of the default stopping criterion is met. A maximum of 8 restarts or 104 function

evaluations is used.

The Monte Carlo search was implemented in both Matlab11 and C, the latter

essentially for a reason of time performance. The maximum number of function

evaluations was set to 105.

4.4.3 Results

We present the results of the algorithms considered on the timing experiments and

testbeds presented in the following.

4.4.3.1 Timing Experiment

All experiments were done on a Intel Core 2 6700 processor (2.66 GHz) on Linux

2.6.24.7. Results can be found in Table 4.2. The CPU time of a function evaluation

of the Monte Carlo search grows linearly with the dimension. For the NEWUOA,

the CPU time increases with the dimension, scaling worse as the model grows more

complex.

For the BFGS, the decreasing CPU time may be due to initialising process mainly

representing the cost of the function evaluation. We assume the CPU time per func-

tion evaluation would increase given that the dimensionality is large enough.

For the variants of the CMA-ES with increasing population (IPOP), two be-

haviours can be identified. The behaviour of the IPOP-sep-CMA-ES and the IPOP-

CMA-ES shows that up to 10-D, the necessary CPU time decreases with increasing

10Latest version available here: http://www.lri.fr/~hansen/cmaesintro.html
11An example implementation is provided in Listing 5.1

http://www.lri.fr/~hansen/cmaesintro.html

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 103

Table 4.2: CPU time per function evaluation in microseconds, next are two figures
between brackets: the corresponding number of runs, and the average number of
restarts. IPOP-always-sep stands for an increasing population size space and time
linear variant sep-CMA-ES, whereas IPOP-sep stands for the IPOP-sep-CMA-ES,
which only uses sep-CMA-ES for a few initial iterations.

2-D 3-D 5-D 10-D
BFGS 600 470 370 300

NEWUOA 8.1 11 21 58
NEWUOA (avg) 8.0 13 27 100
NEWUOA (full) 9.0 15 38 240
IPOP-CMA-ES 170 (271/0) 140 (180/0) 120 (88/0) 100 (45/0)

IPOP-sep 150 (194/0) 130 (141/0) 110 (81/0.2) 95 (39/>0)
IPOP-always-sep 18 (18/ 7) 24 (13/6) 38 (8/5) 65 (5/2)
Random Search 0.12 0.16 0.23 0.45

20-D 40-D 80-D
BFGS 290 290 280

NEWUOA 170 620 2500
NEWUOA (avg) 580 3900 -
NEWUOA (full) 2400 32000 -
IPOP-CMA-ES 100 (13/0) 130 (5/0.2) 310 (5/0)

IPOP-sep 96 (8/0.5) 120 (5/0) 220 (5/0)
IPOP-always-sep 68 (5/1) 56 (6/0) 53 (6/0)
Random Search 0.88 1.7 3.4

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 104

dimension, presumably due to a larger number of initialisation procedures for the

required multiple runs of the algorithms until thirty seconds have passed. Other-

wise a quadratic scaling of the internal time complexity is expected for both algo-

rithms with a slightly better scaling for the IPOP-sep-CMA-ES. The behaviour for

the IPOP-always-sep-CMA-ES shows that the CPU-time increases for dimension up

to 20-D before decreasing. This is due to both the number of internal restarts of

the algorithm and to the implementation of Matlab. The numerous and increasing

restarts of the algorithm when we consider dimensions from 20 to 2 result in having

more iterations of the algorithm with a larger population size. Our implementation

in Matlab results in a a smaller CPU time per function evaluation for a larger pop-

ulation size. We assume that the observed decrease of the CPU time per function

evaluation in 40-D and 80-D successively must be followed by an increase in larger

dimension as for the IPOP-sep-CMA-ES or IPOP-CMA-ES.

The results for the variants of CMA-ES with increasing population size (IPOP)

show dependencies with the number of restarts: due to Matlab implementation the

larger the population size, the faster the algorithm is.

4.4.3.2 Performance Results of NEWUOA, IPOP-sep-CMA-ES, BFGS,

Monte Carlo search

In addition to the empirical cumulative distribution functions of the running times

that are presented here and which show results of the algorithms on multiple functions

altogether, more detailed results can be found in [Auger and Ros, 2009a,b, Ros,

2009a,b,c,d,e,f].

The results of the Monte Carlo search in terms of ERT, for instance in Figure 4.11,

show that to reach the the target function values 10, 1, 0.1, 10−3, 10−5, 10−7 is

gradually harder as the dimensionality of the problem increases. Also the targets are

not to be uniformly distributed over the different objective functions considered: an

arbitrary precision on a given problem, say ∆f = 10−8 on the Gallagher function f22

in 2-D can be attained, in this case in around a million function evaluations on fifteen

out of fifteen trials, whereas the same precision can never be achieved on another

problem, for instance for the same target function value on the sphere function f1 in

2-D.

Comparison results of the different algorithms can be seen in Figures 4.12 to

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 105

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
1 Sphere

 +1

 +0

 -1

 -2

 -3

 -5

 -8

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
22 Gallagher 21 peaks

Figure 4.11: Expected Running Time (ERT, •) and number of function evaluations
of the median trial (+) for the Monte Carlo search to reach the target function
value 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 versus dimension in log-log presentation. The
ERT equals to the number of function evaluations to reach the target function value
divided by the number of successful trials, where a trial is successful if the target
function value was surpassed during the trial. Crosses (×) indicate the total number
of function evaluations. Annotated numbers on the ordinate are decimal logarithms.
Additional dashed lines show linear and quadratic scaling.

4.16 in 2 to 20-D respectively. Though the Monte Carlo search converges to the

optimum given enough time, the dimensionality greatly affects the performances of

the Monte Carlo search, reducing its probability of success from around seventy and

eighty percents in 2-D on the noiseless and noisy testbeds respectively to around

five and ten percents in 20-D, over all the target function values considered over all

functions.

For the noiseless testbed (top sub-figures of Figures 4.12 to 4.16) NEWUOA

fares best for targets reachable within less than a few hundreds function evaluations

times the dimension. Then, IPOP-sep-CMA-ES surpasses all algorithms for targets

reachable within more than one thousand function evaluations times dimension. On

the noiseless testbed, the main difference between NEWUOA, IPOP-sep-CMA-ES

and BFGS is on the multi-modal functions, see Figure 4.17, as opposed to uni-modal

functions, see Figure 4.18, where BFGS and NEWUOA do not reach a target function

value smaller than 10−4 for a dimension larger than 5-D, barely performing better

than the Monte Carlo search. Otherwise, except for certain intermediate range of

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 106

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS

avg NEWUOA

full NEWUOA

NEWUOA

IPOP-SEP-CMA-ES
(24, 24, 24, 24, 24, 24) = 144 funcs

N
oi

sy
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS

full NEWUOA

avg NEWUOA

Monte Carlo

NEWUOA

IPOP-SEP-CMA-ES
(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.12: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 2-D) to reach target function values
of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the number of function evaluations for
unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 107

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS

NEWUOA

avg NEWUOA

full NEWUOA

IPOP-SEP-CMA-ES
(24, 24, 24, 24, 24, 24) = 144 funcs

N
oi

sy
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS

Monte Carlo

avg NEWUOA

NEWUOA

full NEWUOA

IPOP-SEP-CMA-ES
(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.13: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 3-D) to reach target function values
of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the number of function evaluations for
unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 108

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS

NEWUOA

full NEWUOA

avg NEWUOA

IPOP-SEP-CMA-ES
(24, 24, 24, 24, 24, 24) = 144 funcs

N
oi

sy
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS

Monte Carlo

NEWUOA

avg NEWUOA

full NEWUOA

IPOP-SEP-CMA-ES
(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.14: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 5-D) to reach target function values
of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the number of function evaluations for
unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 109

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS

full NEWUOA

NEWUOA

avg NEWUOA

IPOP-SEP-CMA-ES
(24, 24, 24, 24, 24, 24) = 144 funcs

N
oi

sy
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS

Monte Carlo

NEWUOA

avg NEWUOA

full NEWUOA

IPOP-SEP-CMA-ES
(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.15: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 10-D) to reach target function
values of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the maximum number of
function evaluations for unsuccessful runs of an algorithm is represented by the single
cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 110

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

full NEWUOA

BFGS

NEWUOA

avg NEWUOA

IPOP-SEP-CMA-ES
(24, 24, 24, 24, 24, 24) = 144 funcs

N
oi

sy
te

st
b

ed

100 101 102 103 104 105 106 107 108 109 1010 1011

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS

NEWUOA

avg NEWUOA

full NEWUOA

IPOP-SEP-CMA-ES
(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.16: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 20-D) to reach target function
values of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the maximum number of
function evaluations for unsuccessful runs of an algorithm is represented by the single
cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 111

5-
D

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS

NEWUOA

full NEWUOA

avg NEWUOA

IPOP-SEP-CMA-ES
(11, 11, 11, 11, 11, 11) = 66 funcs

20
-D

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS

avg NEWUOA

NEWUOA

full NEWUOA

IPOP-SEP-CMA-ES
(11, 11, 11, 11, 11, 11) = 66 funcs

Figure 4.17: Empirical cumulative distribution of the running lengths divided by
dimension to reach target function values of 10, 1, 0.1, 10−3, 10−5, 10−7 on the multi-
modal functions f4, f15 to f24. The median of the number of function evaluations for
unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 112

5-
D

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS

NEWUOA

avg NEWUOA

full NEWUOA

IPOP-SEP-CMA-ES
(11, 11, 11, 11, 11, 11) = 66 funcs

20
-D

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

full NEWUOA

BFGS

NEWUOA

avg NEWUOA

IPOP-SEP-CMA-ES
(11, 11, 11, 11, 11, 11) = 66 funcs

Figure 4.18: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension to reach target function values of 10, 1,
0.1, 10−3, 10−5, 10−7 on the uni-modal functions f1, f5 to f14. The median of the
number of function evaluations for unsuccessful runs of an algorithm is represented
by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 113

budgets in lower dimensions, the NEWUOA is performing better than BFGS on the

noiseless testbed.

For the noisy testbed (bottom sub-figures of Figures 4.12 to 4.16), the

IPOP-sep-CMA-ES performs the best over all targets, only followed by the NEWUOA

(full). This may be explained by the stochastic behaviour of the IPOP-sep-CMA-ES.

Of the variants of NEWUOA, the NEWUOA (full) performs best because of the larger

number of interpolation points for the model.

4.4.3.3 Performance Results of all BBOB 2009 entries

We present here the comparison results of all the algorithms listed in Section 4.4.1.3.

We skip the discussion on the timing experiment results, and specify here that all

algorithms presented had a crafting effort of zero, except for GLOBAL which featured

in 10 and 20-D a crafting effort of 0.51 and 0.66 on the noiseless and noisy testbeds

respectively —using another different internal local search method for five out of the

twenty-four noiseless functions, and eleven out of the thirty noisy functions. The

performances are expressed in term of expected running time, ERT, for an algorithm

to surpass a target function value.

Considering Figures 4.19 to 4.23 which corresponds to functions from 2 to 20-D,

the dimensionality affects the performances of all algorithms to a greater or lesser

extent depending on the algorithm. This affects the ranking of the algorithms over

the dimensionality. On the noiseless testbed, in 2 and 3-D, the success probability of

the algorithms are quite comparable and range from a hundred to seventy percent,

except for the Monte Carlo search and BayEDAcG. Only in dimensions larger than

5-D do the performances of the algorithms spread out. The Nelder-Mead performs

well in 2 and 3-D, but is outperformed in larger dimensions.

The ranking of algorithms also depends on the running length or budget consid-

ered. Some algorithms such as POEMS and LSstep only perform better than the

Monte Carlo search for budgets larger than two hundred function evaluations times

dimension on the noiseless testbed.

Such an extended number of submissions gives a global view over the different

techniques available to the practitioner and allows to compare the performances of

algorithms ranging from DASA (Ant-Colony based) to the Rosenbrock’s local search

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 114

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BayEDAcG
Monte Carlo
LSfminbnd
LSstep
DE-PSO
simple GA
BFGS
GLOBAL
(1+1)-ES
Rosenbrock
Cauchy EDA
EDA-PSO
MCS (Neum)
full NEWUOA
NEWUOA
POEMS
MA-LS-Chain
G3-PCX
DASA
(1+1)-CMA-ES
PSO_Bounds
PSO
BIPOP-CMA-ES
VNS (Garcia)
NELDER (Han)
IPOP-SEP-CMA-ES
DIRECT
NELDER (Doe)
AMaLGaM IDEA
iAMaLGaM IDEA

(24, 24, 24, 24, 24, 24) = 144 funcs
N

oi
sy

te
st

b
ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS

BayEDAcG
MCS (Neum)
Monte Carlo
full NEWUOA

DE-PSO
GLOBAL
DASA
SNOBFIT

(1+1)-CMA-ES
EDA-PSO

(1+1)-ES

PSO_Bounds
PSO
MA-LS-Chain

IPOP-SEP-CMA-ES

VNS (Garcia)
AMaLGaM IDEA
iAMaLGaM IDEA

BIPOP-CMA-ES
(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.19: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 2-D) to reach target function values
of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the number of function evaluations for
unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 115

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BayEDAcG
Monte Carlo
LSfminbnd
LSstep
DE-PSO
BFGS
simple GA
Cauchy EDA
Rosenbrock
GLOBAL
(1+1)-ES
MCS (Neum)
NEWUOA
DASA
EDA-PSO
full NEWUOA
DIRECT
POEMS
PSO
IPOP-SEP-CMA-ES
(1+1)-CMA-ES
G3-PCX
MA-LS-Chain
PSO_Bounds
NELDER (Doe)
NELDER (Han)
VNS (Garcia)
BIPOP-CMA-ES
iAMaLGaM IDEA
AMaLGaM IDEA

(24, 24, 24, 24, 24, 24) = 144 funcs
N

oi
sy

te
st

b
ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS

BayEDAcG
MCS (Neum)
Monte Carlo

GLOBAL
SNOBFIT
DASA
DE-PSO
full NEWUOA

(1+1)-CMA-ES
EDA-PSO

(1+1)-ES
PSO

PSO_Bounds
MA-LS-Chain

IPOP-SEP-CMA-ES

VNS (Garcia)
AMaLGaM IDEA
iAMaLGaM IDEA

BIPOP-CMA-ES
(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.20: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 3-D) to reach target function values
of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the number of function evaluations for
unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 116

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
BayEDAcG
LSfminbnd
DE-PSO
LSstep
Rosenbrock
BFGS
GLOBAL
simple GA
MCS (Neum)
NEWUOA
DIRECT
full NEWUOA
DASA
Cauchy EDA
G3-PCX
(1+1)-ES
PSO_Bounds
(1+1)-CMA-ES
EDA-PSO
NELDER (Han)
PSO
POEMS
NELDER (Doe)
IPOP-SEP-CMA-ES
MA-LS-Chain
iAMaLGaM IDEA
AMaLGaM IDEA
BIPOP-CMA-ES
VNS (Garcia)

(24, 24, 24, 24, 24, 24) = 144 funcs
N

oi
sy

te
st

b
ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS
Monte Carlo

SNOBFIT

MCS (Neum)

BayEDAcG
GLOBAL
DASA
full NEWUOA

(1+1)-CMA-ES
DE-PSO
PSO

PSO_Bounds
(1+1)-ES
EDA-PSO
MA-LS-Chain

IPOP-SEP-CMA-ES

VNS (Garcia)
iAMaLGaM IDEA

AMaLGaM IDEA
BIPOP-CMA-ES

(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.21: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 5-D) to reach target function values
of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the number of function evaluations for
unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 117

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
BayEDAcG
DE-PSO
LSstep
DIRECT
LSfminbnd
MCS (Neum)
simple GA
Rosenbrock
BFGS
full NEWUOA
GLOBAL
(1+1)-ES
PSO
NEWUOA
NELDER (Doe)
G3-PCX
PSO_Bounds
NELDER (Han)
(1+1)-CMA-ES
DASA
EDA-PSO
Cauchy EDA
POEMS
IPOP-SEP-CMA-ES
VNS (Garcia)
MA-LS-Chain
iAMaLGaM IDEA
AMaLGaM IDEA
BIPOP-CMA-ES

(24, 24, 24, 24, 24, 24) = 144 funcs
N

oi
sy

te
st

b
ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS
Monte Carlo

MCS (Neum)
SNOBFIT
GLOBAL
DASA

PSO_Bounds
(1+1)-CMA-ES
DE-PSO

BayEDAcG
full NEWUOA

PSO

(1+1)-ES
EDA-PSO
MA-LS-Chain

IPOP-SEP-CMA-ES

VNS (Garcia)
iAMaLGaM IDEA

AMaLGaM IDEA
BIPOP-CMA-ES

(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.22: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 10-D) to reach target function val-
ues of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the number of function evaluations
for unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 118

N
oi

se
le

ss
te

st
b

ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
BayEDAcG
DIRECT
DE-PSO
simple GA
LSstep
LSfminbnd
Rosenbrock
MCS (Neum)
PSO
NELDER (Han)
POEMS
NELDER (Doe)
GLOBAL
EDA-PSO
full NEWUOA
(1+1)-ES
BFGS
PSO_Bounds
Cauchy EDA
G3-PCX
NEWUOA
(1+1)-CMA-ES
DASA
MA-LS-Chain
VNS (Garcia)
IPOP-SEP-CMA-ES
iAMaLGaM IDEA
AMaLGaM IDEA
BIPOP-CMA-ES

(24, 24, 24, 24, 24, 24) = 144 funcs
N

oi
sy

te
st

b
ed

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo

BFGS
SNOBFIT

PSO_Bounds
DE-PSO

MCS (Neum)
EDA-PSO
PSO

(1+1)-CMA-ES
GLOBAL
full NEWUOA

DASA

(1+1)-ES

BayEDAcG
MA-LS-Chain

VNS (Garcia)
IPOP-SEP-CMA-ES
iAMaLGaM IDEA

AMaLGaM IDEA
BIPOP-CMA-ES

(30, 30, 30, 30, 30, 30) = 180 funcs

Figure 4.23: Empirical cumulative distribution function of the bootstrap distribution
of the running lengths divided by dimension (here 20-D) to reach target function val-
ues of 10, 1, 0.1, 10−3, 10−5, 10−7. The median of the number of function evaluations
for unsuccessful runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 119

method, the LSstep and novel algorithms like the NEWUOA. Compared to the

Monte Carlo search, the (1+1)-ES, for instance, performs consistently better over the

two testbeds in all dimensionalities whereas some methods fail to overcome specific

difficulties encountered in optimisation for instance noise in the case of the BFGS

algorithm.

Overall, the MCS algorithm shows interesting results for budgets smaller than

ten times dimension function evaluations. For even one function evaluations, its

probability of success is significantly better than that of other algorithms especially

on the noisy testbed. An explanation is the initialisation of the MCS algorithm where

the origin of the search space is evaluated.

On the noiseless testbed (top sub-figures of Figures 4.19 to 4.23) and

Figure 4.24, NEWUOA and BFGS both perform well for budgets smaller than a

hundred function evaluations. On the noiseless testbed ranging from 5 to 20-D, the

GLOBAL algorithm performs the best for an intermediate budget between a hundred

and a thousand function evaluations.

Given that the dimension of the search space and the budget are large enough the

BIPOP-CMA-ES outperforms all other algorithms. The AMaLGaM IDEA, iAMaL-

GaM IDEA, MA-LS-Chain, VNS and IPOP-sep-CMA-ES all perform relatively close

to BIPOP-CMA-ES.

The main differences between the BIPOP-CMA-ES and IPOP-sep-CMA-ES are:

1. the ability of the BIPOP-CMA-ES to maintain small population capabilities af-

ter a number of restarts which allow the BIPOP-CMA-ES to perform better than

IPOP-sep-CMA-ES on the Lunacek bi-Rastrigin function f24, see Figure 4.24, 2. their

maximum number of function evaluations, as can be seen in Figures 4.22 and 4.23

for instance. These differences explain the difference in the probability of success

between the two algorithms.

On the noisy testbed (bottom sub-figures of Figures 4.19 to 4.23), the

BIPOP-CMA-ES is outperforming all algorithms in all dimensions when the budget

is larger than around two thousand function evaluations times dimension in 2-D,

around a hundred function evaluations times dimension for 10 and 20-D.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 120

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

14
11

3
1 3

1
24 Lunacek bi-Rastrigin

 +1
 +0
 -1
 -2
 -3
 -5
 -8

2 3 5 10 20 40
0

1

2

3

4

5

6

7

3

24 Lunacek bi-Rastrigin

 +1

 +0

 -1

 -2

 -3

 -5

 -8

Figure 4.24: On the function f24 of BBOB, Expected Running Time (ERT,
•) and number of function evaluations of the median trial (+) for BIPOP-
CMA-ES (left) and IPOP-sep-CMA-ES (right) to reach the target function value
10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 versus dimension in log-log presentation. The ERT
equals to the number of function evaluations to reach the target function value di-
vided by the number of successful trials, where a trial is successful if the target
function value was surpassed during the trial. Crosses (×) indicate the total number
of function evaluations. Annotated numbers on the ordinate are decimal logarithms.
Additional dashed lines show linear and quadratic scaling.

Uni-modal versus Multi-modal functions, The probability of success of the

algorithms tested is higher on uni-modal functions than on multi-modal functions

overall, see Figure 4.25. Furthermore we can see algorithms demonstrate different be-

haviour on uni-modal and multi-modal functions. Especially BFGS and NEWUOA

perform among the bests on uni-modal functions for budgets smaller than a thousand

times n function evaluations. On multi-modal functions though, the performances of

BFGS are not so remarkable, whereas the performances of NEWUOA are still among

the bests for budgets smaller than a thousand times the dimension function evalua-

tions. When the budget is larger, BIPOP-CMA-ES AMaLGaM IDEA, iAMaLGaM

IDEA, and IPOP-sep-CMA-ES outperform all other algorithms.

Figure 4.26 shows the performances of all algorithms on the different groups of

functions in the noiseless testbed. The line search methods LSstep and LSfminbnd

perform rather well on the separable functions, and so do the PSO (PSO Bounds

especially), POEMS and DASA. Conversely, BIPOP-CMA-ES, IPOP-sep-CMA-ES,

AMaLGaM IDEA, iAMaLGaM IDEA do not perform as well, mainly because of

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 121

Uni-modal functions Multi-modal functions

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
simple GA
DIRECT
BayEDAcG
DEPSO
LSstep
PSO
MCS (Neum)
LSfminbnd
Rosenbrock
DASA
POEMS
PSO_Bounds
NELDER (Han)
NELDER (Doe)
(1+1)-ES
EDA-PSO
full NEWUOA
G3-PCX
NEWUOA
GLOBAL
BFGS
Cauchy EDA
MA-LS-Chain
(1+1)-CMA-ES
VNS (Garcia)
iAMaLGaM IDEA
AMaLGaM IDEA
IPOP-SEP-CMA-ES
BIPOP-CMA-ES

11 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
Cauchy EDA
BayEDAcG
G3-PCX
(1+1)-ES
LSstep
NELDER (Han)
BFGS
LSfminbnd
DEPSO
Rosenbrock
GLOBAL
PSO
NEWUOA
full NEWUOA
(1+1)-CMA-ES
NELDER (Doe)
DASA
MCS (Neum)
EDA-PSO
MA-LS-Chain
DIRECT
PSO_Bounds
POEMS
VNS (Garcia)
simple GA
iAMaLGaM IDEA
IPOP-SEP-CMA-ES
AMaLGaM IDEA
BIPOP-CMA-ES

11 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
simple GA
DEPSO
BayEDAcG
DIRECT
LSstep
LSfminbnd
Rosenbrock
PSO_Bounds
EDA-PSO
POEMS
NELDER (Doe)
MCS (Neum)
PSO
GLOBAL
NELDER (Han)
DASA
full NEWUOA
BFGS
(1+1)-ES
NEWUOA
(1+1)-CMA-ES
Cauchy EDA
MA-LS-Chain
G3-PCX
VNS (Garcia)
BIPOP-CMA-ES
AMaLGaM IDEA
iAMaLGaM IDEA
IPOP-SEP-CMA-ES

11 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BayEDAcG
Cauchy EDA
DEPSO
DIRECT
simple GA
Monte Carlo
PSO
POEMS
MCS (Neum)
VNS (Garcia)
EDA-PSO
MA-LS-Chain
LSstep
BFGS
NELDER (Han)
full NEWUOA
LSfminbnd
G3-PCX
GLOBAL
Rosenbrock
(1+1)-ES
NELDER (Doe)
NEWUOA
(1+1)-CMA-ES
PSO_Bounds
DASA
IPOP-SEP-CMA-ES
iAMaLGaM IDEA
AMaLGaM IDEA
BIPOP-CMA-ES

11 funcs

Figure 4.25: Empirical cumulative distribution function of the bootstrap distribution
functions of the running lengths in 20-D for target function values of 1 (top) and 10−7

(bottom row) on the uni-modal functions f1 and from f5 to f14 (left) and multi-modal
functions f4 and from f15 to f24 (right column) of the noiseless testbed

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 122

their failure on the f3 and f4 Rastrigin functions in 20-D for the smallest target func-

tion values. The NEWUOA performs the best on functions with low or moderate

conditioning when the budget is less than a thousand times n function evaluations.

The NEWUOA, BFGS and GLOBAL perform the best on functions with high con-

ditioning and uni-modal for a budget smaller than a thousand times n. For the

functions with low, moderate or high conditioning, for larger budgets, BIPOP-CMA-

ES, IPOP-sep-CMA-ES, AMaLGaM IDEA, iAMaLGaM IDEA perform best. These

same algorithms perform best overall on the multi-modal functions with adequate

global structures and on non-smooth functions, whereas on the multi-modal func-

tions with weak global structure only the BIPOP-CMA-ES perform remarkably well

compared to all the other algorithms.

4.4.4 Summary and Discussion of the Results of BBOB 2009

We have defined for the GECCO 2009 workshop session called BBOB 2009 an experi-

mental benchmarking framework for the comparison of BBO algorithms. The results

of BBOB 2009 featuring many different algorithms on a testbed of noiseless functions

and another of noisy functions in dimension 2, 3, 5, 10, 20 —40-D was optional and

not presented in this thesis— have been compiled and are presented here.

To assess the performances of algorithms we used the Expected Running

Time, ERT, which is the total number of function evaluations for the considered algo-

rithm divided by the number of runs that surpassed a given target function value. The

ERT allowed us to aggregate the information of multiple optimisation runs and giving

elements of the bootstrap distribution of ERT provided with a dispersion measure.

Also, time measurements of the algorithms on the function f8 in different dimensions

were required.

We have defined the crafting effort CrE to evaluate the versatility of algorithms:

the CrE computes a single positive value on one testbed that grows larger depending

on the number of different settings used for the considered algorithm.

We have run the following algorithms: 1. a line search method using the BFGS

update equation with independent restarts, 2. the NEWUOA also with independent

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 123

Separable functions f1–f5 Moderate functions f6–f9

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
full NEWUOA
DEPSO
DIRECT
BayEDAcG
(1+1)-ES
simple GA
MCS (Neum)
Cauchy EDA
G3-PCX
Rosenbrock
GLOBAL
NEWUOA
NELDER (Doe)
(1+1)-CMA-ES
BFGS
NELDER (Han)
LSfminbnd
PSO
AMaLGaM IDEA
BIPOP-CMA-ES
IPOP-SEP-CMA-ES
iAMaLGaM IDEA
EDA-PSO
MA-LS-Chain
VNS (Garcia)
DASA
PSO_Bounds
POEMS
LSstep

(5, 5, 5, 5, 5, 5) = 30 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

DIRECT
Monte Carlo
BayEDAcG
simple GA
DEPSO
LSstep
LSfminbnd
PSO_Bounds
POEMS
MCS (Neum)
PSO
EDA-PSO
Rosenbrock
GLOBAL
NELDER (Doe)
(1+1)-CMA-ES
(1+1)-ES
BFGS
NEWUOA
DASA
NELDER (Han)
G3-PCX
Cauchy EDA
full NEWUOA
VNS (Garcia)
MA-LS-Chain
AMaLGaM IDEA
iAMaLGaM IDEA
IPOP-SEP-CMA-ES
BIPOP-CMA-ES

(4, 4, 4, 4, 4, 4) = 24 funcs

Ill-conditioned functions f10–f14 Multi-modal structured functions f15–f19

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
simple GA
DIRECT
DEPSO
BayEDAcG
LSstep
LSfminbnd
POEMS
Rosenbrock
MCS (Neum)
EDA-PSO
PSO_Bounds
PSO
NELDER (Han)
NELDER (Doe)
DASA
full NEWUOA
GLOBAL
(1+1)-ES
BFGS
MA-LS-Chain
NEWUOA
VNS (Garcia)
G3-PCX
Cauchy EDA
(1+1)-CMA-ES
BIPOP-CMA-ES
AMaLGaM IDEA
IPOP-SEP-CMA-ES
iAMaLGaM IDEA

(5, 5, 5, 5, 5, 5) = 30 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Rosenbrock
BFGS
Monte Carlo
(1+1)-ES
LSstep
GLOBAL
DASA
G3-PCX
LSfminbnd
NELDER (Han)
NEWUOA
NELDER (Doe)
PSO
full NEWUOA
(1+1)-CMA-ES
MCS (Neum)
DEPSO
BayEDAcG
PSO_Bounds
DIRECT
simple GA
Cauchy EDA
POEMS
VNS (Garcia)
MA-LS-Chain
EDA-PSO
iAMaLGaM IDEA
IPOP-SEP-CMA-ES
AMaLGaM IDEA
BIPOP-CMA-ES

(5, 5, 5, 5, 5, 5) = 30 funcs

Multi-modal weakly structured functions f20–f24 Non-smooth functions f7, f16, f23

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
Cauchy EDA
BayEDAcG
DIRECT
POEMS
DEPSO
simple GA
EDA-PSO
LSstep
PSO
IPOP-SEP-CMA-ES
MCS (Neum)
MA-LS-Chain
G3-PCX
PSO_Bounds
DASA
NELDER (Han)
(1+1)-ES
BFGS
LSfminbnd
(1+1)-CMA-ES
Rosenbrock
GLOBAL
iAMaLGaM IDEA
NELDER (Doe)
full NEWUOA
NEWUOA
VNS (Garcia)
AMaLGaM IDEA
BIPOP-CMA-ES

(5, 5, 5, 5, 5, 5) = 30 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BFGS
BayEDAcG
DEPSO
Rosenbrock
Monte Carlo
(1+1)-ES
MCS (Neum)
GLOBAL
DASA
PSO
LSstep
NEWUOA
LSfminbnd
G3-PCX
DIRECT
simple GA
PSO_Bounds
NELDER (Doe)
NELDER (Han)
EDA-PSO
(1+1)-CMA-ES
full NEWUOA
Cauchy EDA
POEMS
MA-LS-Chain
VNS (Garcia)
IPOP-SEP-CMA-ES
iAMaLGaM IDEA
AMaLGaM IDEA
BIPOP-CMA-ES

(3, 3, 3, 3, 3, 3) = 18 funcs

Figure 4.26: Empirical cumulative distribution function of the bootstrap distribution
functions of the success probability for a given running length in 20-D for target
function values of 10, 1, 0.1, 10−3, 10−5, 10−7 on different function groups of the
noiseless testbed

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 124

restarts, 3. the IPOP-sep-CMA-ES, which is the switch policy sep-CMA-ES/ CMA-

ES discussed in Chapter 3 with increasing population size restarts, and 4. the Monte

Carlo search which samples the search space uniformly. The parameter tuning of all

algorithms resulted in a crafting effort of zero for these algorithms.

The results of the Monte Carlo search are affected by the ‘curse of dimensionality’

since the fixed target function values 10, 1, 10−1, 10−3, 10−5 and 10−7 are gradually

harder to reach. Furthermore, the results of the Monte Carlo search also show that

reaching these target function values —which were the same for all functions in all

dimensions— is not equally difficult to Monte Carlo search. Therefore, the choice

of these function values, which were used to present our results, can be discussed.

An alternative is to choose the function values depending on the performances of a

reference algorithm as discussed briefly in Appendix B.

On the noiseless testbed, the best algorithm out of the four that we have run

depends on the budget of function evaluations to reach a target function value. If

the budget is smaller than a hundred times the dimension, NEWUOA fares best. If

the budget is larger than one thousand times the dimension, then it is the IPOP-sep-

CMA-ES that has the best performances. The BFGS performs best for an interme-

diate budget range. The Monte Carlo search always comes out last. On the noisy

testbed, the IPOP-sep-CMA-ES is always best, followed by NEWUOA. The BFGS

and Monte Carlo search perform comparably.

Many other algorithms were submitted to BBOB 2009. We have shown the

results of the comparison of all of the entries of BBOB 2009 and GLOBAL, SNOBFIT

and MCS which are late additions. Of all entries, only GLOBAL had a crafting effort

larger than zero since GLOBAL used two different settings on the noiseless testbed

as well as on the noisy testbed.

When comparing all algorithms together, considering results from 2-D to 20-D

provided some interesting scaling results. In 2 and 3-D, the Nelder-Mead method is

virtually the best method. In this case though, the performances of all algorithms

are very comparable to that of the Monte Carlo search, see Figure 4.27.

Methods based on the CMA-ES perform good overall, especially when the budget

is large enough. Especially, BIPOP-CMA-ES, which is the CMA-ES with restarts

managing both a small and a large populations, outperforms all algorithms given

that the budget is large enough on both noiseless and noisy testbeds.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 125

2-D

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

DASA
PSO_Bounds
POEMS
(1+1)-ES
PSO
LSfminbnd
EDA-PSO
LSstep
DIRECT
simple GA
BayEDAcG
Cauchy EDA
DEPSO
MA-LS-Chain
Monte Carlo
AMaLGaM IDEA
Rosenbrock
G3-PCX
iAMaLGaM IDEA
BFGS
BIPOP-CMA-ES
IPOP-SEP-CMA-ES
NELDER (Han)
(1+1)-CMA-ES
MCS (Neum)
GLOBAL
VNS (Garcia)
NEWUOA
full NEWUOA
NELDER (Doe)

24 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

BayEDAcG
Monte Carlo
LSfminbnd
LSstep
BFGS
DEPSO
(1+1)-ES
simple GA
GLOBAL
Cauchy EDA
Rosenbrock
NEWUOA
POEMS
EDA-PSO
G3-PCX
full NEWUOA
MA-LS-Chain
DASA
PSO_Bounds
MCS (Neum)
BIPOP-CMA-ES
PSO
(1+1)-CMA-ES
IPOP-SEP-CMA-ES
NELDER (Han)
DIRECT
NELDER (Doe)
AMaLGaM IDEA
iAMaLGaM IDEA
VNS (Garcia)

24 funcs

5-D

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
BayEDAcG
BFGS
DEPSO
Rosenbrock
LSfminbnd
GLOBAL
LSstep
simple GA
Cauchy EDA
MCS (Neum)
DASA
G3-PCX
EDA-PSO
PSO
POEMS
NELDER (Han)
full NEWUOA
BIPOP-CMA-ES
IPOP-SEP-CMA-ES
MA-LS-Chain
AMaLGaM IDEA
iAMaLGaM IDEA
(1+1)-ES
VNS (Garcia)
PSO_Bounds
NELDER (Doe)
(1+1)-CMA-ES
NEWUOA
DIRECT

24 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
BayEDAcG
LSfminbnd
LSstep
DEPSO
MCS (Neum)
NEWUOA
DIRECT
Rosenbrock
GLOBAL
full NEWUOA
simple GA
BFGS
DASA
G3-PCX
Cauchy EDA
(1+1)-CMA-ES
(1+1)-ES
PSO_Bounds
EDA-PSO
PSO
NELDER (Han)
POEMS
NELDER (Doe)
MA-LS-Chain
IPOP-SEP-CMA-ES
iAMaLGaM IDEA
AMaLGaM IDEA
VNS (Garcia)
BIPOP-CMA-ES

24 funcs

20-D

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
BayEDAcG
DEPSO
LSstep
DIRECT
PSO
LSfminbnd
MCS (Neum)
Rosenbrock
simple GA
NELDER (Han)
G3-PCX
(1+1)-ES
Cauchy EDA
NELDER (Doe)
BFGS
GLOBAL
DASA
NEWUOA
full NEWUOA
(1+1)-CMA-ES
EDA-PSO
PSO_Bounds
POEMS
MA-LS-Chain
IPOP-SEP-CMA-ES
VNS (Garcia)
iAMaLGaM IDEA
AMaLGaM IDEA
BIPOP-CMA-ES

24 funcs

100 101 102 103 104 105 106 107 108 109

Running length / dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

Monte Carlo
BayEDAcG
simple GA
DIRECT
DEPSO
LSfminbnd
LSstep
POEMS
MCS (Neum)
PSO
EDA-PSO
Rosenbrock
PSO_Bounds
NELDER (Doe)
NELDER (Han)
full NEWUOA
GLOBAL
(1+1)-ES
BFGS
(1+1)-CMA-ES
G3-PCX
NEWUOA
Cauchy EDA
DASA
MA-LS-Chain
VNS (Garcia)
IPOP-SEP-CMA-ES
iAMaLGaM IDEA
AMaLGaM IDEA
BIPOP-CMA-ES

24 funcs

Target value 1 Target value 10−4

Figure 4.27: Effect of dimensionality (from top to bottom: 2, 5 and 20-D) on the
success probability for given running lengths on the noiseless testbed, as shown in
empirical cumulative distribution functions of the bootstrap distribution of the run-
ning lengths divided by dimension to reach target function values of 1 (left), and 10−4

(right column). The median of the number of function evaluations for unsuccessful
runs of an algorithm is represented by the single cross on its graph.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 126

Discussion and Perspectives of BBOB 2009 We present here the outcome of

the discussions that happened after the BBOB 2009 workshop.

In BBOB 2009, 40-D was the largest dimension considered which cannot really

compare with some real-world BBO problems. Considering problems in larger dimen-

sion was suggested as an addition to BBOB 2009.

A process of validation of the results of BBOB 2009 was also requested. The

notions of learning, testing and validating constitute the core of experimental machine

learning. In supervised machine learning, the goal is to learn a model to accomplish

some task which we simplify to labelling samples. An experiment in machine learning

can be split in three:

the learning phase consists in giving the samples as well as their labels to the

learner to build the model,

in the testing phase, samples are provided for the learner to label, and the number

of errors quantify the quality of the learnt model; at this point, one can either go

back to the learning phase and try to decrease the number of errors or proceed

to the validation phase,

the validation phase consists in giving the learner a number of untouched samples

to assess the prediction error.

The validation phase only makes sense if samples of the validation set were never

considered in the learning loop. In the case of optimisation, learning and testing is an

online process done at each iteration of the optimiser. Validation could be obtained

by testing the algorithms on other functions which share the same properties as the

ones considered for the learning and testing. In BBOB 2009 this is made possible

by considering new instances of the functions in the testbeds for which the different

transformations —translations, rotations, . . . — are slightly different.

The Crafting Effort CrE was also a point of discussion. The algorithms submitted

to BBOB 2009 have a crafting effort equal to zero, except for the GLOBAL algo-

rithm. The crafting effort is provided as a measure of how much an algorithm can be

overfitting the functions of the BBOB 2009 testbeds. The definition of CrE cannot

account for the case that an algorithm uses one set of algorithm parameters specif-

ically designed for a whole BBOB 2009 testbed —which would result in a crafting

effort of zero.

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 127

The availability of the data of BBOB 2009 was a concern which we are still reflect-

ing on. More specifically, formatting the experimental data in an informative way is

an open issue. This brought out the idea to host our experimental framework on a

dedicated server but this still is not an immediate concern.

Though some features of the testbeds may have to be further developed, partici-

pants of BBOB 2009 agreed that the results of BBOB 2009 could simply be extended

by allowing new algorithm entries to be added over time.

4.5 Overall Summary and Discussion

We have presented two successive benchmarking approaches which compare the re-

sults of a number of state-of-the-art algorithms from the fields of operational research,

global optimisation and evolutionary computation. These algorithms were tested

on selected functions that feature some key properties known to make optimisation

problems difficult. This allowed to demonstrate some strong and weak points of algo-

rithms. Also the functions studied were scalable, therefore the algorithms were tested

in many search space dimensions. The summary of our results on the two benchmarks

are presented in Sections 4.3.3 and 4.4.4.

To quantitatively assess a performance in our experimental set-up, it is neces-

sary to have at least a successful event. In this respect, we have seen that restart

strategies are a great asset. Indeed, the simple strategy that consists in starting the al-

gorithm anew from another random location in the search space improves the success

probability of the algorithm given that the number of restarts is large enough. The

performance measures that we used accounted for the unsuccessful runs: the success

probability is accounted in SP1, whereas the ERT considers the costs of unsuccessful

runs.

A particular attention has been brought to reproducibility in our experiments and

especially in BBOB 2009. Participants were required to provide their experimental

results and incited to provide the source code of their experiments, though providing

source code may not always be possible and guarantee reproducibility.

Benchmarking is about: 1. defining an experimental set-up that allows compar-

ison and then, 2. presenting comparison results which point out the differences or

similarities between the tested algorithms. To extend our study on non-separability,

CHAPTER 4. BLACK-BOX OPTIMISATION BENCHMARKING 128

ill-conditioning and non-convexity we provided more test functions, better selected

because these functions display more of the properties that makes optimisation diffi-

cult which can be encountered in real-world problems such as noise or multi-modality.

A large part of our work was designing ways to present the results. The figures

showing our results were presented to the participants of the BBOB 2009 in addition

to the tables and figures of single algorithms included in the workshop papers. In

addition to these, comparison tables are being designed and are to be put online. The

issue of presenting the multitude of comparison results can be addressed for instance

in interactive ways, but this is not in the focus of our study.

Chapter 5

Software: COCO

Contents

5.1 Experimental Framework Software 131

5.1.1 Running Experiments . 131

5.1.2 Organisation of the Output Data 134

5.1.2.1 Index File . 134

5.1.2.2 Data Files . 136

5.1.3 Resuming Experiments . 138

5.2 Post-Processing the Experimental Data 139

5.2.1 Overview of the bbob pproc Package 139

5.2.2 Performance Assessment of Algorithms 142

5.2.3 Comparison of Algorithms 143

5.2.4 Using the bbob pproc Package 146

5.3 Generating a Paper . 147

5.4 Discussion of our Implementation 149

The COmparison of Continuous Optimisers (COCO) software1 is a benchmarking

software to render easier experiments in the field of continuous optimisation. A post-

processing module generates tables and figures to be included in a research paper

template presenting all results.

1Available at http://coco.gforge.inria.fr

129

http://coco.gforge.inria.fr

CHAPTER 5. SOFTWARE: COCO 130

The GECCO 2009 workshop named Black-Box Optimisation Benchmarking (BBOB

2009)2 used the COCO software for the generation of the results in all submitted pa-

pers, resulting in thirty-eight accepted workshop papers presenting results of state-of-

the-art algorithms. Though we will refer to the work provided for the GECCO 2009

workshop, see [Hansen et al., 2009a], Section 4.4, and BBOB 2009 software documen-

tation3, here we present the COCO software from a more generic perspective.

The COCO software provides:

1. a single generic function interface to the benchmark functions, coded in Mat-

lab/Gnu Octave and C,

2. the experimental framework, centred around the interface function fgeneric,

3. the Python post-processing module bbob pproc,

4. LATEX templates to generate papers, and

5. the corresponding documentation.

The practitioner in BBO who wants to benchmark one or many algorithms on the

BBOB 2009 testbeds has to download COCO, interface the algorithms to call the test

functions in the testbed and use the post-processing tools. The most substantial part

is to render the algorithms considered compatible with our software implementation.

Many routines are provided to process the collected data, a command-line inter-

face is provided to generate all the tables and figures presented in the BBOB 2009

workshop papers.

We describe the different steps for obtaining a complete workshop paper for an

algorithm, thus allowing us to present the architecture of COCO. We also present

additional facilities implemented for the comparison of the results of the many al-

gorithms submitted. Section 5.1 presents the experimental framework software used

to generate benchmarking data. Section 5.2 describes the post-processing facilities

of COCO, namely the Python package bbob pproc. Section 5.3 briefly describes the

process of compiling a paper regrouping all the post-processed results. Finally, we

discuss our implementation of COCO in Section 5.4.

2More information at http://coco.gforge.inria.fr/doku.php?id=bbob-2009 and http://
www.sigevo.org/gecco-2009/workshops.html#bbob

3Available at: http://coco.gforge.inria.fr/doku.php?id=bbob-2009-downloads

http://coco.gforge.inria.fr/doku.php?id=bbob-2009
http://www.sigevo.org/gecco-2009/workshops.html#bbob
http://www.sigevo.org/gecco-2009/workshops.html#bbob
http://coco.gforge.inria.fr/doku.php?id=bbob-2009-downloads

CHAPTER 5. SOFTWARE: COCO 131

Listing 5.1: MY OPTIMIZER.m: Monte Carlo search in Matlab. At each iteration,
200 points are sampled and stored in a matrix of size DIM× 200 so as to reduce loops
and function calls within Matlab and therefore improve its efficiency

1 function MY_OPTIMIZER(FUN, DIM, ftarget, maxfunevals)
2 % MY_OPTIMIZER(FUN, DIM, ftarget, maxfunevals)

3 % samples new points uniformly randomly in [-5,5]^DIM

4 % and evaluates them on FUN until ftarget of maxfunevals

5 % is reached, or until 1e8 * DIM fevals are conducted.

6 % Relies on FUN to keep track of the best point.

7
8 maxfunevals = min(1e8 * DIM, maxfunevals);
9 popsize = min(maxfunevals, 200);

10 for iter = 1:ceil(maxfunevals/popsize)
11 feval(FUN, 10 * rand(DIM, popsize) - 5);
12 if feval(FUN, ’fbest’) < ftarget % task achieved

13 break;
14 end
15 % if useful, modify more options here for next start

16 end

5.1 Experimental Framework Software

The experimental framework software mainly consists in the implementation of the

methodology presented in Section 4.4 and [Hansen et al., 2009a]. The software is

centred on the interface function, fgeneric. At this date, the interface function fgeneric

is implemented in C and Matlab/Gnu Octave. We describe the guidelines of the

architecture of fgeneric here.

We also describe the format of the output data files and the content of the files

as they are written by fgeneric. These files are to be analysed with the provided

post-processing tools that are described further down.

5.1.1 Running Experiments

To display an example of the use of fgeneric, we provide two example scripts. Execut-

ing the Matlab scripts provided in Listings 5.2 and 5.3 results in testing an algorithm

—which is MY OPTIMIZER in the examples, see Listing 5.1— on the noiseless testbed

of BBOB 2009 and displaying measures of the time complexity of an algorithm re-

spectively. These scripts are also provided in C. In Listing 5.2, lines 6 to 10 set

CHAPTER 5. SOFTWARE: COCO 132

Listing 5.2: exampleexperiment.m: script for benchmarking MY OPTIMIZER, see
Listing 5.1, for BBOB 2009 on the noiseless function testbed in Matlab/Gnu Oc-
tave

1 % runs an entire experiment for benchmarking MY_OPTIMIZER

2 % on the noise-free testbed. fgeneric.m and benchmarks.m

3 % must be in the path of Matlab/Octave

4 % CAPITALIZATION indicates code adaptations to be made

5
6 addpath(’PUT_PATH_TO_BBOB/matlab’); % should point to fgeneric.m etc.

7 datapath = ’PUT_MY_BBOB_DATA_PATH’; % different folder for each experiment

8 opt.algName = ’PUT ALGORITHM NAME’;
9 opt.comments = ’PUT MORE DETAILED INFORMATION, PARAMETER SETTINGS ETC’;

10 maxfunevals = ’20 * dim’; % SHORT EXPERIMENT, takes overall three minutes

11
12 more off; % in octave pagination is on by default

13
14 t0 = clock;
15 rand(’state’, sum(100 * t0)); % initialises the pseudo-random generator

16 % in MY_OPTIMIZER

17
18 for dim = [2,3,5,10,20,40] % small dimensions first, for CPU reasons

19 for ifun = benchmarks(’FunctionIndices’) % or benchmarksnoisy(...)

20 for iinstance = [1:5, 1:5, 1:5] % first 5 fct instances, three times

21 fgeneric(’initialize’, ifun, iinstance, datapath, opt);
22
23 MY_OPTIMIZER(’fgeneric’, dim, fgeneric(’ftarget’), eval(maxfunevals));
24
25 disp(sprintf([’ f%d in %d-D, instance %d: FEs=%d,’ ...
26 ’ fbest-ftarget=%.4e, elapsed time [h]: %.2f’], ...
27 ifun, dim, iinstance, ...
28 fgeneric(’evaluations’), ...
29 fgeneric(’fbest’) - fgeneric(’ftarget’), ...
30 etime(clock, t0)/60/60));
31 fgeneric(’finalize’);
32 end
33 disp([’ date and time: ’ num2str(clock, ’ %.0f’)]);
34 end
35 disp(sprintf(’---- dimension %d-D done ----’, dim));
36 end

CHAPTER 5. SOFTWARE: COCO 133

Listing 5.3: exampletiming.m: script for measuring the time complexity of
MY OPTIMIZER, see Listing 5.1, for BBOB 2009 in Matlab/Gnu Octave

1 % runs the timing experiment for MY_OPTIMIZER. fgeneric.m

2 % and benchmarks.m must be in the path of MATLAB/Octave

3
4 addpath(’PUT_PATH_TO_BBOB/matlab’); % should point to fgeneric.m etc.

5
6 more off; % in octave pagination is on by default

7
8 timings = [];
9 runs = [];

10 dims = [];
11 for dim = [2,3,5,10,20,40]
12 nbrun = 0;
13 ftarget = fgeneric(’initialize’, 8, 1, ’tmp’);
14 tic;
15 while toc < 30 % at least 30 seconds

16 MY_OPTIMIZER(@fgeneric, dim, ftarget, 1e5); % adjust maxfunevals

17 nbrun = nbrun + 1;
18 end % while

19 timings(end+1) = toc / fgeneric(’evaluations’);
20 dims(end+1) = dim; % not really needed

21 runs(end+1) = nbrun; % not really needed

22 fgeneric(’finalize’);
23 disp([[’Dimensions:’ sprintf(’ %11d ’, dims)]; ...
24 [’ runs:’ sprintf(’ %11d ’, runs)]; ...
25 [’ times [s]:’ sprintf(’ %11.1e ’, timings)]]);
26 end

CHAPTER 5. SOFTWARE: COCO 134

variables used by fgeneric. The whole set of experiment on the noiseless testbed is

done by looping over the lines 18 to 36.

The function fgeneric outputs the results of the experiments, also it provides a

single interface to any of the test functions of the BBOB 2009 testbeds. Once fgeneric

is loaded into memory, the initialisation process, see line 21 in Listing 5.2, the com-

mand fgeneric(’initialize’, . . .) in Matlab, sets all variables internal to fgeneric: the

test function considered, the instance considered, the output directory. After the

initialisation, calls to fgeneric evaluate the chosen test function at the point x given

as input argument. In the example, calls to fgeneric are done in line 11 of Listing 5.1.

The necessary finalisation process, done at the end of a single run for instance in line

31 in Listing 5.2, is described further down in Section 5.1.2.2.

In Listing 5.2, the function f8 is tested in 2, 3, 5, 10, 20, and 40-D. The while

loop from line 15 to 18 make the runs last thirty seconds.

5.1.2 Organisation of the Output Data

The output from one experiment, consisting of Ntrials runs on a given objective

function, are contained in a folder whose path is specified by the user. The output

consists of an entry in an index file and outputs in two data files, automatically created

if necessary, in a fixed folder structure that we describe below. The file extensions

are ‘*.info’ for the index file and ‘*.dat’, ‘*.tdat’ for the data files. An example of

the folder/file structure is presented in Figure 5.1.

5.1.2.1 Index File

The index file contains meta-information on the optimisation runs and the location

of the corresponding data files. The default filename prefix ‘bbobexp’ is appended

with the function identifier and the extension ‘.info’. An entry in the index file is

made of three lines (output format is specified in brackets):

• first line - function identifier (%d), search space dimension (%d), precision to

reach (%4.3e) and the identifier of the used algorithm (%s)

• second line - comments of the user (e.g. important parameter or used internal

methods)

CHAPTER 5. SOFTWARE: COCO 135

↪→ container folder

↪→ bbobexp f1.info

↪→ data f1

↪→ bbobexp f1 DIM5.dat

↪→ bbobexp f1 DIM5.tdat

↪→ bbobexp f1 DIM10.dat

↪→ bbobexp f1 DIM10.tdat

↪→ bbobexp f2.info

↪→ data f2

↪→ bbobexp f2 DIM5.dat

↪→ bbobexp f2 DIM5.tdat

↪→ container folder2

↪→ ...

Figure 5.1: Example data file structures obtained with fgeneric.

CHAPTER 5. SOFTWARE: COCO 136

funcId = 12, DIM = 5, Precision = 1.000e-08, algId = ’ALG-A’

% parameterA = 2, parameterB = 3.34, ...

data f12\test f12 DIM5.dat, 1:387|-2.9e-009, 2:450|-2.8e-009, 3:422|-2.1e-009, data f12\test-01 f12 DIM5.dat, 1:5000000|1.8e-008, ...

funcId = 12, DIM = 10, Precision = 1.000e-08, algId = ’ALG-A’

% parameterA = 2, parameterB = 3.34, ...

data f12\test1 f12 DIM10.dat, 1:307|-8.6e-008, 2:321|-3.5e-008, ...

...

Figure 5.2: Example of an index file

• third line - relative location and name of data file(s) followed by a colon and

information on a single run: the instance of the test function, final number

of function evaluations, a vertical bar and the final best function value minus

target function value.

All entries in the first line and third lines are separated by commas. An example of

an index file is given in Figure 5.2. An entry of the index file is written at the start

of the first sample run for a given function and dimension.

5.1.2.2 Data Files

A data file contains the numerical output of an optimisation run on a given objective

function. The content of the data file is given in the following. Data files are placed

in sub-folders at the location of their corresponding index file. At the start of each

sample run, a ‘header’ line with the denomination of each column of the output data

is appended to the data file:

• function evaluation

• noise-free fitness - Fopt (and its value)

• best noise-free fitness - Fopt

• measured fitness

• best measured fitness

• x1, x2, . . . (one column for each dimension)

These denominations are explained right after. Fopt is the optimum of the test

function considered. Lines of output data written below the ‘header’ line have the

following space-separated values:

CHAPTER 5. SOFTWARE: COCO 137

% function evaluation | noise-free fitness - Fopt (6.671000000000e+01) | best noise-free fitness - Fopt | measured fitness | best
measured fitness | x1 | x2 |...
1 +9.324567891e+05 +9.324567891e+05 +1.867342122e+06 +1.867342122e+06 +4.2345e+01 ...

2 +9.636565611e+05 +9.324567891e+05 +8.987623162e+05 +8.987623162e+05 +3.8745e+01 ...

...

31623 9.232667823e+01 9.576575761e+01 -6.624783627e+01 -1.657621581e+02 +5.1234e-02 ...

32478 1.000043784e+02 9.576575761e+01 -4.432869272e+01 -1.657621581e+02 +3.8932e-02 ...

35481 ...

...

Figure 5.3: Example of a data file

• recent number of function evaluation (%d),

• recent noise-free function value minus the optimum (%+10.9e),

• best noise-free function value so far minus optimum (%+10.9e),

• recent measured (noisy) function value (%+10.9e),

• best measured (noisy) function value so far (%+10.9e),

• subsequent values are the i-th, i = 1, 2, . . . , DIM , object parameter of the best

so far noise-free function value (%+5.4e).

The output data assumes that the optimum value is known. Also the noiseless value

of a solution vector is known, even in the case of noisy functions. The fact that the

optimum value and the noiseless value of solution vectors are known is crucial to the

implementation of bbob pproc. An example of the content of a data file is given in

Figure 5.3.

Each entry in the index files is associated to at least two data files: one for

the function value-aligned data and another for the number of function evaluations-

aligned data, respectively the vertical and horizontal views, see Appendix B. The

data file names are identical except for the file extension being ‘*.dat’ and ‘*.tdat’

respectively.

The writing to the function value-aligned data file happens only each time the

noise-free function value minus the optimum function value is less than 10i/5, for all

integer i, for the first time —this difference is not provided by fgeneric to the tested

algorithm. For instance, if the sequence of the best noise-free function values obtained

minus the optimum is {7.72, 20.8, 12.7, 9.98, 13.6, 13.8, 17.1, 9.86, 3.42, 2.97, 0.47,

0.76, 0.40, 0.04, . . . }, the written sequence of function values would be: 7.72; 3.42

which is the first value smaller than 104/5 ≈ 6.31, the closest from below to 7.72 in

CHAPTER 5. SOFTWARE: COCO 138

the series of the 10i/5; 0.47 which is the first value smaller than 102/5 ≈ 2.51, the

closest from below to 3.42 in the series of the 10i/5; 0.04; . . .

The writing to the number of function evaluations-aligned data file happens:

• each time the function evaluation number is equal to
⌊
10i/20

⌋
for at least one

i = 1, 2, . . . This means, that writing happens after about 12.2% additional

function evaluations have been conducted. In particular the first 8 evaluations

are written and also evaluations . . . , 89, 100, 112, 125, 141,. . . , 707, 794, 891,

1000, 1122,. . .

• when any termination criterion is fulfilled (writing the recent evaluation and

the current best so far values)

In Matlab, the function evaluations-aligned data file is modified by the finalisation

process of fgeneric: before closing the file the finalisation process inserts the data of

the best-ever fitness value and appends that of the final function evaluation. The

function evaluation for which the best-ever fitness value is inserted in the function

evaluations-aligned data file if it was not already written before. The insertion of the

data of the best-ever fitness value is not done in C because of technical reasons.

The default prefix for the data file names is also ‘bbobexp’. The function identifier

and the dimension of the object parameters are appended to this prefix. All data files

are saved in sub-folders data fX, where X is the function identifier, located at the

same location as their index file.

5.1.3 Resuming Experiments

In the case of an interrupted experiment, no automated process is provided to resume

the run aborted when the interruption occurred or resume the whole experiment.

Though running the post-processing on this interrupted set of data would not raise

any error, one might want to remove the data corresponding to the interrupted run

instead of redoing the whole experiment. We propose a manual process to remove

the data corresponding to the interrupted run before redoing it.

1. Find the last modified .info file. The function identifier and dimension where

the experiment was aborted, are given in the third to last line of the file. For

instance:

CHAPTER 5. SOFTWARE: COCO 139

funcId = 13, DIM = 40, Precision = 1.000e-08, algId = ’my optimizer’

% all default parameters

data_f13/bbobexp_f13_DIM40.dat, 1:5387|-4.4e-09, 2:5147|-3.9e-09, 3

The last line indicates the name of one of the corresponding data file. The last

number in the last line is the function instance number of the unfinished run.

2. Remove the last characters, in the above example, “, 3” from the last line of

the index file. If it was the first entry that was interrupted remove the last three

lines of the index file.

3. Remove the respective data of the unfinished last trial which starts with the

“header” line described above. This has to be done for both data files with the

extensions .dat and .tdat, in our example data f13/bbobexp f13 DIM40.dat

and data f13/bbobexp f13 DIM40.tdat.

4. Modify the experiment script to restart the experiment from this very function

instance.

5.2 Post-Processing the Experimental Data

The Python post-processing tool, called bbob pproc in BBOB 2009 generates image

files and LATEX tables from the raw experimental data obtained as described previously

in Section 5.1.1.

The entire post-processing tool requires that Python is installed on your machine.

The minimal software requirements for using the post-processing tool are Python

(2.5.2), Matplotlib (0.91.2) and Numpy (1.0.4). The installation of the software is

described in Appendix C.

5.2.1 Overview of the bbob pproc Package

We present here the content of the latest version of the bbob pproc package (3.6beta,

revision 1585 of the COCO repository).

run.py is the main interface of the package that calls the different routines listed

below,

CHAPTER 5. SOFTWARE: COCO 140

pproc.py defines the classes DataSetList and DataSet which are the main data struc-

tures that we use to gather the experimental raw data,

dataoutput.py contain routine to output instances of DataSet,

ppfigdim.py, pptex.py, pprldistr.py are used to produce figures and tables that

we describe further down,

readalign.py, bootstrap.py contain routines for the post-processing of the raw

experimental data.

The class DataSetList inherits from list and is a collection of instances of the class

DataSet. An instance of the class DataSet represents the unit component of exper-

imental data: it is associated to the results of a single algorithm using a given set

of parameters on a single problem. For BBOB 2009, a problem corresponds to an

objective function in a given dimension. Thus, an instance of DataSet aggregates the

information of Ntrials runs which are sorted in the order of the problem instances

designated by their instance number, stored in the attribute itrials of DataSet.

The data are stored in the form of numpy.ndarray, which is a data structure repre-

senting an array. To explain the representation of the data, we will refer to horizontal

and vertical cuts in the Figure 5.4 which correspond to a fixed-target or a fixed-budget

scenario, see Appendix B. From this point on, we will refer to the function values

offset by the optimal function value fopt of the problem instance considered instead

of the absolute function values. In the case of noisy function, we will refer to the

noise-free function value. Please note that the optimum of the offset functions values

is zero. To represent all the raw data corresponding to an instance of DataSet, mainly

four arrays are used:

funvals, each line of the array represents a vertical cut in the Figure 5.4, the zero-th

column giving the number of function evaluations (x-position) of the cut; the

subsequent columns, sorted in the order of the problem instances processed,

correspond to the best function values obtained after this number of function

evaluations,

finalfunvals is a single-line array containing the final function values obtained,

CHAPTER 5. SOFTWARE: COCO 141

Figure 5.4: Horizontal view or fixed-target scenario and vertical view or fixed-
budget scenario for convergence graphs, the axes represent function values versus
time [Hansen et al., 2009a]

CHAPTER 5. SOFTWARE: COCO 142

evals is the counterpart of funvals, but with each line representing a horizontal cut,

the zero-th column gives the function value (y-position) of the cut, the subse-

quent columns numbers of function evaluations to surpass the aforementioned

function value,

maxevals is a single-line array of the maximum number of function evaluations.

Routines from readalign.py are used to generate the previously mentioned arrays.

One of these routines is used when for a vertical cut, meaning that we consider a

number of function evaluations, a function value is not available. This might occur in

the generation of funvals4. If a function value is not available, the last function value

obtained for this particular instance is repeated.

The generation of evals differs at least by two things. First, the function values

giving us the horizontal cuts used are given by the sequence of 10i/5, with i = 1, 2, . . .,

and cannot be obtained from the raw data because of numerical round-off errors.

Second, if we consider a function value, in the case that it is never surpassed before

the maximum number of function evaluations for a particular instance, numpy.nan is

inserted instead.

We list here the parts of bbob pproc that are specific to BBOB 2009

• a problem is represented by the many different instances of one function in one

dimension,

• an important feature used by the post-processing and more particularly the

output part is that the optimum function value fopt is available,

• the output modules which we describe below.

5.2.2 Performance Assessment of Algorithms

We recall that we use the expected running time ERT for the algorithm to surpass a

target function value, see Section 4.4.2.2. A first part of the post-processing consists

in computing the ERT for each line of evals.

We describe the output of the different modules of bbob pproc that were already

mentioned by providing example output. These modules all feature a main method

4The writing only occur if the number of function evaluations is equal to b10i/20c, with i = 1, 2, . . .

CHAPTER 5. SOFTWARE: COCO 143

Table 5.1: Example table obtained with pptex.py. Shown are, for a given target
difference to the optimal function value ∆f : the number of successful trials (#);
the expected running time to surpass fopt + ∆f (ERT); the 10%-tile and 90%-tile
of the bootstrap distribution of ERT; the average number of function evaluations in
successful trials or, if none was successful, as last entry the median number of function
evaluations to reach the best function value (RTsucc). If fopt + ∆f was never reached,
figures in italics denote the best achieved ∆f -value of the median trial and the 10%
and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes
the maximum of number of function evaluations executed in one trial.

f 19 in 5-D, N=15, mFE=37734 f 19 in 20-D, N=15, mFE=255570
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc

10 15 1.7e3 1.2e3 2.2e3 1.7e3 3 1.2e6 7.0e5 3.5e6 2.5e5
1 12 2.2e4 1.7e4 2.8e4 1.7e4 0 12e+0 71e–1 15e+0 1.6e5

1e− 1 1 4.3e5 2.1e5 > 4e5 2.8e4
1e− 3 0 62e–2 22e–2 12e–1 1.8e4
1e− 5
1e− 8

that take as input an instance of DataSetList that lists the instances for which we

want the output.

ppfigdim.py is used to generate figures of the expected run times, ERT, versus the

dimension, see for instance Figure 5.5,

pptex.py is used to generate LATEX tables, see for instance Table 5.1,

pprldistr.py is used to generate the figures of empirical cumulative distribution

functions of the run lengths and of the final function values, see for instance

Figure 5.6.

Details are provided in the caption of Figures 5.5, 5.6 and Table 5.1.

5.2.3 Comparison of Algorithms

Additional features of bbob pproc that are still in development were used to present

the comparison results of Section 4.4.3. These features are gathered in the modules

determineFtarget.py, ppperfprof.py and pptables.py.

CHAPTER 5. SOFTWARE: COCO 144

2 3 5 10 20 40
0

1

2

3

4

5

6

7

3

24 Lunacek bi-Rastrigin

 +1

 +0

 -1

 -2

 -3

 -5

 -8

Figure 5.5: Example figure output by ppfigdim.py. Expected Running Time (ERT,
•) to reach fopt + ∆f and median number of function evaluations of successful trials
(+), shown for ∆f = 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 (the exponent is given in the
legend) versus dimension. fopt denotes the optimal function value. Crosses (×)
indicate the total number of function evaluations. Numbers above ERT-symbols
indicate the number of successful trials. Annotated numbers on the ordinate are
decimal logarithms. Additional grid lines show linear and quadratic scaling

CHAPTER 5. SOFTWARE: COCO 145

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1:17/24

-1:13/24

-4:12/24

-8:7/24

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-24

Figure 5.6: Example figure output by pprldistr.py. Empirical cumulative distri-
bution functions (ECDFs), plotting the fraction of trials versus running time (left
subplot) or versus ∆f (right subplot). The thick red line represents the best achieved
results. Left subplot: ECDF of the running time (number of function evaluations),
divided by search space dimension D, to fall below fopt +∆f with ∆f = 10k, where k
is the first value in the legend. Right subplots: ECDF of the best achieved ∆f divided
by 10k (upper left lines in continuation of the left subplot), and best achieved ∆f di-
vided by 10−8 for running times of D, 10D, 100D . . . function evaluations (from right
to left cycling black-cyan-magenta). The legends indicate the number of functions
that were solved in at least one trial. FEvals denotes number of function evaluations,
D and DIM denote search space dimension, and ∆f and Df denote the difference to
the optimal function value.

CHAPTER 5. SOFTWARE: COCO 146

5.2.4 Using the bbob pproc Package

To perform the post-processing on the experimental data obtained as described pre-

viously, the bbob pproc package need to be downloaded5 and un-archived. Then, to

post-process the data, the data folder DATAPATH containing all data generated by

the experiments needs to be in the current working directory before executing the

following command:

python path_to_postproc_code/bbob_pproc/run.py DATAPATH

from a shell6, the folder path to postproc code is the one where the provided post-

processing software was un-archived.

The above command create the folder with the default name ppdata in the current

working directory, which contain the post-processed data in the form of figures and

LATEXfiles for the tables. This process might take a few minutes.

To run the post-processing directly from a Python shell, the following commands

need to be executed:

>>> import bbob_pproc

>>> bbob_pproc.main(’DATAPATH’)

This first command loads bbob pproc into memory and requires that the path to the

package is in the Python search path.

The resulting ppdata folder now contains a number of TEX, eps, png files.

Additional help for the bbob pproc package can be obtained by executing the

following command in a shell:

python path_to_postproc_code/bbob_pproc/run.py -h

In particular, this command describes the additional options for the execution of the

post-processing. The code documentation can be found in the folder path to postproc code/pydoc

within the provided software package.

5The package can be obtained from http://coco.gforge.inria.fr/doku.php?id=bbob-2009.
6Note that in Windows the path separator ’\’ must be used instead of ’/’

http://coco.gforge.inria.fr/doku.php?id=bbob-2009

CHAPTER 5. SOFTWARE: COCO 147

5.3 Generating a Paper

templateBBOBarticle.tex and templateBBOBnoisyarticle.tex are the template

LATEX files that include all the figures and tables presenting the result of an algorithm

on the noiseless and noisy testbeds of BBOB 2009. If compiled correctly using LATEX,

it generates documents collecting and organising the output from bbob pproc. Each

of the templates has a given page organisation optimised for the presentation of the

results on each testbed.

To compile a document, one needs:

1. to have a working LATEX distribution7,

2. to be in the correct working directory (containing the folder ppdata that in-

cludes all the output from the bbob pproc),

3. that templateBBOBarticle.tex8, bbob.bib and sig-alternate.cls are in

the working directory (all files are provided with the software),

Then the following commands needs to be executed in a shell:

latex templateBBOBarticle

bibtex templateBBOBarticle

latex templateBBOBarticle

latex templateBBOBarticle

The document templateBBOBarticle.dvi is then generated in the format required

for a GECCO workshop paper. An example of the resulting template document

obtained by compiling the LATEX template paper is provided here9.

7http://www.latex-project.org/
8or templateBBOBnoisyarticle.tex for the noisy testbed of BBOB 2009.
9The figures and tables show the data of the Monte Carlo search on the noiseless testbed of

BBOB 2009 [Auger and Ros, 2009a].

http://www.latex-project.org/

Black-Box Optimization Benchmarking Template for
Noiseless Function Testbed

Draft version
∗

Forename Name

ABSTRACT
Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization ; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking, Black-box optimization, Evolutionary com-
putation

1. RESULTS
Results from experiments according to [2] on the bench-

mark functions given in [1, 3] are presented in Figures 1 and
2 and in Table 1.

2. REFERENCES
[1] S. Finck, N. Hansen, R. Ros, and A. Auger.

Real-parameter black-box optimization benchmarking
2009: Presentation of the noiseless functions. Technical
Report 2009/20, Research Center PPE, 2009.

[2] N. Hansen, A. Auger, S. Finck, and R. Ros.
Real-parameter black-box optimization benchmarking
2009: Experimental setup. Technical Report RR-6828,
INRIA, 2009.

[3] N. Hansen, S. Finck, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions. Technical Report
RR-6829, INRIA, 2009.

∗Camera-ready paper due April 17th.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-505-5/09/07 ...$5.00.

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
1 Sphere

 +1

 +0

 -1

 -2

 -3

 -5

 -8

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
4 Skew Rastrigin-Bueche separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

12

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

14

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
24 Lunacek bi-Rastrigin

 +1

 +0

 -1

 -2

 -3

 -5

 -8

Figure 1: Expected Running Time (ERT, •) to reach fopt + ∆f and median number of function evaluations of
successful trials (+), shown for ∆f = 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 (the exponent is given in the legend of f1

and f24) versus dimension in log-log presentation. The ERT(∆f) equals to #FEs(∆f) divided by the number
of successful trials, where a trial is successful if fopt + ∆f was surpassed during the trial. The #FEs(∆f) are
the total number of function evaluations while fopt +∆f was not surpassed during the trial from all respective
trials (successful and unsuccessful), and fopt denotes the optimal function value. Crosses (×) indicate the total
number of function evaluations #FEs(−∞). Numbers above ERT-symbols indicate the number of successful
trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and
quadratic scaling.

f 1 in 5-D, N=15, mFE=5.00e6 f 1 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 8.2e1 5.4e1 1.1e2 8.2e1 0 29e+0 27e+0 33e+0 1.0e7
1 15 2.0e4 1.4e4 2.7e4 2.0e4

1e−1 7 8.3e6 5.4e6 1.5e7 2.5e6
1e−3 0 10e–2 55e–3 15e–2 2.8e6
1e−5
1e−8

f 2 in 5-D, N=15, mFE=5.00e6 f 2 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 0 11e+1 57e+0 22e+1 1.8e6 0 12e+4 79e+3 15e+4 1.1e7
1

1e−1
1e−3
1e−5
1e−8

f 3 in 5-D, N=15, mFE=5.00e6 f 3 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 10 4.8e6 3.3e6 7.4e6 2.3e6 0 26e+1 23e+1 29e+1 7.1e6
1 0 83e–1 56e–1 11e+0 3.2e6

1e−1
1e−3
1e−5
1e−8

f 4 in 5-D, N=15, mFE=5.00e6 f 4 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 5 1.3e7 7.7e6 2.3e7 2.6e6 0 33e+1 30e+1 35e+1 1.1e7
1 0 12e+0 47e–1 16e+0 2.5e6

1e−1
1e−3
1e−5
1e−8

f 5 in 5-D, N=15, mFE=5.00e6 f 5 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.3e4 3.0e4 5.8e4 4.3e4 0 11e+1 97e+0 12e+1 1.0e7
1 0 37e–1 23e–1 42e–1 2.2e6

1e−1
1e−3
1e−5
1e−8

f 6 in 5-D, N=15, mFE=5.00e6 f 6 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.5e4 2.3e4 4.7e4 3.5e4 0 48e+1 21e+1 46e+3 1.3e7
1 5 1.2e7 7.4e6 2.3e7 2.2e6

1e−1 0 14e–1 73e–2 17e–1 2.5e6
1e−3
1e−5
1e−8

f 7 in 5-D, N=15, mFE=5.00e6 f 7 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 9.1e2 6.6e2 1.2e3 9.1e2 0 10e+1 68e+0 11e+1 7.1e6
1 15 3.9e5 2.9e5 5.0e5 3.9e5

1e−1 0 38e–2 20e–2 66e–2 2.2e6
1e−3
1e−5
1e−8

f 8 in 5-D, N=15, mFE=5.00e6 f 8 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.5e6 1.0e6 2.0e6 1.5e6 0 80e+2 56e+2 10e+3 1.1e7
1 0 64e–1 41e–1 90e–1 2.0e6

1e−1
1e−3
1e−5
1e−8

f 9 in 5-D, N=15, mFE=5.00e6 f 9 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.4e6 1.0e6 1.8e6 1.4e6 0 68e+2 54e+2 90e+2 1.1e7
1 0 58e–1 42e–1 89e–1 3.2e6

1e−1
1e−3
1e−5
1e−8

f 10 in 5-D, N=15, mFE=5.00e6 f 10 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 0 10e+1 41e+0 20e+1 2.2e6 0 11e+4 74e+3 17e+4 1.0e7
1

1e−1
1e−3
1e−5
1e−8

f 11 in 5-D, N=15, mFE=5.00e6 f 11 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.0e5 8.6e4 1.2e5 1.0e5 0 67e+0 48e+0 70e+0 1.1e7
1 3 2.2e7 1.2e7 7.2e7 2.1e6

1e−1 0 11e–1 57e–2 24e–1 2.0e6
1e−3
1e−5
1e−8

f 12 in 5-D, N=15, mFE=5.00e6 f 12 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 0 19e+3 12e+3 29e+3 2.8e6 0 28e+6 22e+6 35e+6 7.1e6
1

1e−1
1e−3
1e−5
1e−8

f 13 in 5-D, N=15, mFE=5.00e6 f 13 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 0 30e+0 17e+0 45e+0 3.2e6 0 92e+1 83e+1 10e+2 8.9e6
1

1e−1
1e−3
1e−5
1e−8

f 14 in 5-D, N=15, mFE=5.00e6 f 14 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.2e1 8.1e0 1.6e1 1.2e1 15 3.4e6 2.5e6 4.4e6 3.4e6
1 15 4.1e3 3.1e3 5.1e3 4.1e3 0 80e–1 62e–1 91e–1 8.9e6

1e−1 10 4.4e6 2.9e6 6.7e6 1.9e6
1e−3 0 93e–3 49e–3 14e–2 2.2e6
1e−5
1e−8

f 15 in 5-D, N=15, mFE=5.00e6 f 15 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 13 3.5e6 2.7e6 4.6e6 2.7e6 0 26e+1 23e+1 28e+1 8.9e6
1 0 83e–1 64e–1 11e+0 3.5e6

1e−1
1e−3
1e−5
1e−8

f 16 in 5-D, N=15, mFE=5.00e6 f 16 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.3e2 2.7e2 6.0e2 4.3e2 3 9.0e7 4.9e7 2.9e8 1.0e7
1 15 3.1e5 2.4e5 4.0e5 3.1e5 0 11e+0 95e–1 13e+0 1.1e7

1e−1 0 30e–2 17e–2 45e–2 2.8e6
1e−3
1e−5
1e−8

f 17 in 5-D, N=15, mFE=5.00e6 f 17 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.1e1 1.3e1 2.9e1 2.1e1 15 7.5e3 5.4e3 9.8e3 7.5e3
1 15 1.8e5 1.2e5 2.4e5 1.8e5 0 50e–1 43e–1 55e–1 7.1e6

1e−1 0 48e–2 39e–2 57e–2 2.5e6
1e−3
1e−5
1e−8

f 18 in 5-D, N=15, mFE=5.00e6 f 18 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.8e3 1.0e3 2.7e3 1.8e3 0 18e+0 17e+0 20e+0 1.1e7
1 2 3.6e7 1.7e7 >7e7 3.0e6

1e−1 0 15e–1 95e–2 18e–1 2.5e6
1e−3
1e−5
1e−8

f 19 in 5-D, N=15, mFE=5.00e6 f 19 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.8e1 2.9e1 4.7e1 3.8e1 15 5.9e5 4.2e5 7.6e5 5.9e5
1 15 1.4e5 1.1e5 1.7e5 1.4e5 0 78e–1 63e–1 82e–1 1.1e7

1e−1 0 36e–2 27e–2 48e–2 2.2e6
1e−3
1e−5
1e−8

f 20 in 5-D, N=15, mFE=5.00e6 f 20 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.6e2 3.2e2 6.0e2 4.6e2 0 15e+2 72e+1 27e+2 1.6e7
1 8 7.9e6 5.5e6 1.3e7 3.5e6

1e−1 0 99e–2 86e–2 12e–1 3.2e6
1e−3
1e−5
1e−8

f 21 in 5-D, N=15, mFE=5.00e6 f 21 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.3e2 8.8e1 1.8e2 1.3e2 0 26e+0 21e+0 30e+0 1.0e7
1 15 9.8e3 6.6e3 1.3e4 9.8e3

1e−1 15 4.5e5 3.2e5 5.9e5 4.5e5
1e−3 0 14e–3 36e–4 18e–3 2.8e6
1e−5
1e−8

f 22 in 5-D, N=15, mFE=5.00e6 f 22 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 5.4e2 3.3e2 7.5e2 5.4e2 1 3.0e8 1.5e8 >3e8 1.7e7
1 15 2.8e4 2.2e4 3.5e4 2.8e4 0 30e+0 18e+0 38e+0 1.0e7

1e−1 15 3.7e5 2.3e5 5.1e5 3.7e5
1e−3 1 7.2e7 3.4e7 >7e7 1.9e6
1e−5 0 93e–4 13e–4 31e–3 3.5e6
1e−8

f 23 in 5-D, N=15, mFE=5.00e6 f 23 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 7.0e0 5.5e0 8.7e0 7.0e0 15 8.3e0 5.8e0 1.1e1 8.3e0
1 15 2.6e4 2.0e4 3.2e4 2.6e4 3 8.9e7 4.9e7 2.9e8 9.4e6

1e−1 0 38e–2 31e–2 43e–2 4.0e6 0 11e–1 87e–2 12e–1 1.3e7
1e−3
1e−5
1e−8

f 24 in 5-D, N=15, mFE=5.00e6 f 24 in 20-D, N=15, mFE=2.00e7
∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 10 4.8e6 3.2e6 7.2e6 2.3e6 0 26e+1 22e+1 27e+1 7.1e6
1 0 96e–1 78e–1 12e+0 2.0e6

1e−1
1e−3
1e−5
1e−8

Table 1: Shown are, for a given target difference to the optimal function value ∆f : the number of successful
trials (#); the expected running time to surpass fopt +∆f (ERT, see Figure 1); the 10%-tile and 90%-tile of the
bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was
successful, as last entry the median number of function evaluations to reach the best function value (RTsucc).
If fopt + ∆f was never reached, figures in italics denote the best achieved ∆f-value of the median trial and
the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum
of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

D = 5 D = 20

a
ll

fu
n

ct
io

n
s

0 1 2 3 4 5 6
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1:20/24

-1:4/24

-4:1/24

-8:0/24

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f1-24
0 1 2 3 4 5 6

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1:6/24

-1:0/24

-4:0/24

-8:0/24

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f1-24

se
p

a
ra

b
le

fc
ts

0 1 2 3 4 5 6
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1:4/5

-1:1/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f1-5
0 1 2 3 4 5 6

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1:0/5

-1:0/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f1-5

m
o
d

er
a
te

fc
ts

0 1 2 3 4 5 6
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1:4/4

-1:0/4

-4:0/4

-8:0/4

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f6-9
0 1 2 3 4 5 6

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1:0/4

-1:0/4

-4:0/4

-8:0/4

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f6-9

il
l-

co
n

d
it

io
n

ed
fc

ts

0 1 2 3 4 5 6
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14+1:2/5

-1:1/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f10-14
0 1 2 3 4 5 6

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14+1:1/5

-1:0/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f10-14

m
u

lt
i-

m
o
d

a
l

fc
ts

0 1 2 3 4 5 6
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19

+1:5/5

-1:0/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f15-19
0 1 2 3 4 5 6

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1:3/5

-1:0/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f15-19

w
ea

k
st

ru
ct

u
re

fc
ts

0 1 2 3 4 5 6
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24

+1:5/5

-1:2/5

-4:1/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f20-24
0 1 2 3 4 5 6

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1:2/5

-1:0/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f20-24

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running
time (left subplots) or versus ∆f (right subplots). The thick red line represents the best achieved results. Left
subplots: ECDF of the running time (number of function evaluations), divided by search space dimension
D, to fall below fopt + ∆f with ∆f = 10k, where k is the first value in the legend. Right subplots: ECDF of
the best achieved ∆f divided by 10k (upper left lines in continuation of the left subplot), and best achieved
∆f divided by 10−8 for running times of D, 10D, 100D . . . function evaluations (from right to left cycling
black-cyan-magenta). Top row: all functions; second row: separable functions; third row: misc. moderate
functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions with adequate structure;
last row: multi-modal functions with weak structure. The legends indicate the number of functions that were
solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space
dimension, and ∆f and Df denote the difference to the optimal function value.

CHAPTER 5. SOFTWARE: COCO 149

The participants of BBOB 2009 were expected to fill in the template with all

of their information, the description of their algorithm and their parameter settings

[Hansen et al., 2009a], their source code or a reference to it, their results on the timing

experiment. The BibTEX file bbob.bib includes the references to the BBOB 2009

experimental set-up and documentation.

5.4 Discussion of our Implementation

We have presented the COCO software which consists of two different pieces of soft-

ware which are both inscribed in the experimental methodology of BBOB 2009.

A first part is fgeneric which provides a unified experimental framework as well

as a single interface function for whole experiments. The use of the single function

fgeneric for doing experiments, initialising, and finalising altogether is quite specific

to Matlab/Gnu Octave. As is done in the C-code of fgeneric, these processes can

be split into different functions. Among the specifications for the development of such

experimental framework, we included a way of distributing whole experiments over

time and space through the use of the index files and data files: merging together

results obtained from multiple work session over time or over multiple computer

nodes is possible as long as a single computational process at a time is writing into

a given index file. A feature that is lacking for the moment in fgeneric due to the

management of all internal variables is the possibility of distributing a single run over

multiple computer nodes.

A second part of COCO is the Python package bbob pproc which provide facilities

for the post-processing of experimental data. The representation of a unit component

of experimental data by instances of DataSet makes sense in our implementation which

focuses on aggregating the information from a number of such unit components.

Our goal of using COCO was attained through the results of BBOB 2009. The

efforts we have put into our implementation will be prolonged by porting COCO into

other programming language, extending the use of COCO to other algorithms, other

benchmarks.

Chapter 6

Summary and Perspectives

This manuscript presents our contributions in the context of Black-Box Optimisation

(BBO) and evolutionary computation. The key question addressed is that of the

comparison of algorithms in order to choose an appropriate algorithm in the face of

a BBO problem. To evaluate the performances of algorithms, we consider the notion

of search costs which we define as the quantity of computation that is required for an

algorithm to reach a solution.

This manuscript proposed and put into practice an experimental methodology to

compare algorithms on artificial test problems. These comparisons brought to light

many useful insights on the behaviour of algorithms with respect to difficulties of

optimisation.

6.1 Algorithms for High Dimensional Optimisa-

tion Problems

In the context of optimisation, the ‘curse of dimensionality’ is a difficulty that relates

to the exponential increase of the search space as its dimension increases. The curse of

dimensionality is a concern when dependencies between the parameters are relevant

to solving the problem considered. The Covariance Matrix Adaptation-Evolution

Strategy (CMA-ES) successfully addresses the issue of learning dependencies in real-

parameter search spaces, which make the CMA-ES a good candidate algorithm in

150

CHAPTER 6. SUMMARY AND PERSPECTIVES 151

BBO. The CMA-ES learns all pair-wise dependencies between parameters by updat-

ing a covariance matrix for the sample distribution. In learning all pair-wise depen-

dencies, the internal space and time complexity of CMA is at least O(n2), where n is

the dimension of the search space, which is a limitation on high dimensional problems.

We propose to change the update rule of the covariance matrix by putting constraints

on the degrees of freedom of the matrix. The sep-CMA-ES algorithm updates only

the diagonal of the covariance matrix, which results in a O(n) time and space com-

plexity. The block-CMA-ES updates only a block-diagonal covariance matrix, the

number of blocks and their size provide with a parametrisation of the complexity of

the algorithm.

As a consequence to the constraints on the degrees of freedom, adjustments are

made to the learning rate parameter used in the update rule of the covariance matrix.

The sep-CMA-ES and block-CMA-ES variants have been compared to the CMA-ES

on test problems. Also we compared sep-CMA-ES to other variants of CMA-ES from

the literature addressing the issue of the time and space complexity. Expectedly on

separable functions, we show that the search costs of sep-CMA-ES scale linearly with

the dimension of the search space and that block-CMA-ES displays performances

which covers the range in-between the performances of CMA-ES and those of sep-

CMA-ES.

The sep-CMA-ES and block-CMA-ES are proofs of concept that updating part

of the covariance matrix is a possibility in the case of large scale problems. The

sep-CMA-ES is also a baseline comparison for algorithms that exploits separability.

A surprising result is that even on non-separable functions sep-CMA-ES can perform

better than the CMA-ES given that the dimension of the problem is large enough.

On the base of our results we propose a new policy in the face of BBO problems

consisting in using sep-CMA-ES for the first 100n/
√
λ iterations, where n is the

dimension of the search space and λ is the population size, before switching to the

standard CMA-ES. We advise to use the separable strategy for what we estimate to

be the number of iterations that the learning phase requires so as to benefit from the

separable strategy for at least a fraction of the learning time. This strategy ensures

good performances on separable functions in exchange for losses that we assume to

be minimal on non-separable functions.

Extensions of this work could consists in the study of other CMA-ES variants with

CHAPTER 6. SUMMARY AND PERSPECTIVES 152

constraints on the covariance matrix. Also we consider testing the sep-CMA-ES and

block-CMA-ES on real-world functions.

6.2 Benchmarking

Our study of benchmarking was done in two successive steps, both of them on two

different scales. First, we studied a number of stochastic methods from the field

of evolutionary computation such as Differential Evolution (DE), Covariance Matrix

Adaptation Evolution Strategy (CMA-ES), Particle Swarm Optimisation (PSO), a lo-

cal search deterministic algorithm BFGS and a novel trust region method NEWUOA.

These algorithms were studied with respect to dimensionality, non-separability, ill-

conditioning, and non-convexity on a restrained set of test functions. We showed the

rotation of the search space could very well affect the performances of algorithms such

as PSO, NEWUOA and BFGS. We also showed that methods such as NEWUOA

and BFGS are affected by the non-convexity of the fitness function.

The second step of our study was made on a larger scale. We presented the results

of the BBO Benchmarking (BBOB) 2009 workshop which featured the results of

twenty-nine algorithms on a testbed of twenty-four noiseless functions and thirty noisy

functions. We showed some methods such as the Nelder-Mead simplex perform best

in 2-D and 3-D, whereas their performances do not scale well in higher dimensions.

Some methods perform well for smaller budgets whereas the methods based on the

adaptation of the covariance matrix are very well adapted when the budget is larger.

Also the BBOB 2009 allowed to display the features of the COCO software.

Many extensions to BBOB 2009 can be considered. Some extensions are obvi-

ous like adding functions to our test suites or by adding the performances of other

algorithms. Considering problems in even higher dimensions or some well-chosen

real-world problems would be conceptually more substantial additions since new is-

sues would arise: would the study of the scalability of algorithms as the dimension

increases still be possible with real-world problems? Are fifteen repetitions computa-

tionally feasible in higher dimensions?

Conceptually sound, our implementation of COCO can be improved in many ways

especially with respect to the objective of providing more researchers with a bench-

marking software.

Appendix A

Parameter Identification of DE

Differential Evolution (DE) is an evolutionary algorithm that makes use of a differ-

ential mutation which basically adds the weighted difference between two population

vectors to a third vector, see Section 2.1.2.8. Many variants of the differential muta-

tion procedure exists. Choosing between these variants and setting the parameter F

and CR requires preliminary testing as [Storn and Price, 1997] admits that the results

of the algorithm are dependent on the chosen strategy and the choice of parameter.

We test the original code provided by Storn1 which proposes six strategies [Price

et al., 2005]. The DE/x/y notation specifies for x the vector to be mutated, y the

number of difference vectors used. The way the strategies are numbered is relevant

since it corresponds to the numeration in the code.

1. DE/rand/1 is the original DE as presented in Section 2.1.2.8,

2. DE/local-to-best/1 is a variant where instead of the base vector xi1 being chosen

in the population vector, it is chosen to lie between the vector considered and

the best vector so far, thus the update of the velocity is written as follows:

vi = xi + F (xbest − xi) + F (xi2 − xi3),

3. DE/best/1 with jitter, in this case the base vector is the best vector so far, a

quantity uniformly sampled between zero and 10−4 is added to the parameter

F for the computation of each component of vi, different for each vector vi,

1Matlab code available here: http://www.icsi.berkeley.edu/~storn/code.html

153

http://www.icsi.berkeley.edu/~storn/code.html

APPENDIX A. PARAMETER IDENTIFICATION OF DE 154

4. DE/rand/1 with per-vector-dither is the original DE with a quantity uniformly

sampled between zero and 1− F added to F , different for each vector vi,

5. DE/rand/1 with per-generation-dither is the original DE with a quantity uni-

formly sampled between zero and 1−F added to F , different at each generation,

6. DE/rand/1 either-or algorithm is the original DE but using randomly either

the classical differential mutation or a three-point-recombination.

A.1 Experimental Set-up for the Identification of

the Parameters of DE

All six strategies are tested on the rotated ellipsoid function with a condition number

of a hundred felli(x) =
∑n

i=1 100
i−1
n−1y2

i in 5, 10 and 20-D. The starting point of

the algorithm is uniformly sampled in the range [−3, 10]n. The population sizes

considered are 1, 3, 5, 10 and 30 times the dimension of the search space. The

maximum number of function evaluations is set to 1000n times the population size.

The parameter CR is chosen in the range [0, 1], F in [0.3, 0.9]. Each experiment is

repeated three times.

The performance measure is the average number of function evaluations to reach

the target function value 10−7.

A.2 Results and Discussion

Figures A.1 to A.5 present the results of the identification of the parameters of DE on

the rotated ellipsoid function in 5-D. Figures A.6 to A.10 correspond to the rotated

ellipsoid function in 10-D and Figures A.11 to A.15 in 20-D.

As stated in Section 4.2.4, the ratio between the best and worst performances

can be as large as a thousand. Also, the best performances, meaning the smaller

number of function evaluations to reach the target function value of 10−7, overall

are obtained with CR and F both close to one, though it is worth noting that the

number of function evaluations does not behave monotonically as for a given CR

when F increases and for a given F when CR increases.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 155

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.1: Parameter identification of DE on the rotated ellipsoid function in 5-
D with a population size of one times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 156

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.2: Parameter identification of DE on the rotated ellipsoid function in 5-D
with a population size of three times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 157

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.3: Parameter identification of DE on the rotated ellipsoid function in 5-
D with a population size of five times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 158

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.4: Parameter identification of DE on the rotated ellipsoid function in 5-
D with a population size of ten times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 159

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.5: Parameter identification of DE on the rotated ellipsoid function in 5-D
with a population size of thirty times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 160

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.6: Parameter identification of DE on the rotated ellipsoid function in 10-
D with a population size of one times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 161

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.7: Parameter identification of DE on the rotated ellipsoid function in 10-D
with a population size of three times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 162

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.8: Parameter identification of DE on the rotated ellipsoid function in 10-
D with a population size of five times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 163

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.9: Parameter identification of DE on the rotated ellipsoid function in 10-
D with a population size of ten times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 164

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.10: Parameter identification of DE on the rotated ellipsoid function in 10-D
with a population size of thirty times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 165

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.11: Parameter identification of DE on the rotated ellipsoid function in 20-
D with a population size of one times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 166

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.12: Parameter identification of DE on the rotated ellipsoid function in 20-D
with a population size of three times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 167

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.13: Parameter identification of DE on the rotated ellipsoid function in 20-
D with a population size of five times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 168

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.14: Parameter identification of DE on the rotated ellipsoid function in 20-
D with a population size of ten times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 169

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=1

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=2

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=3

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=4

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=5

F=0.30

F=0.50

F=0.70

F=0.90

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

6.5

7

7.5

CR

lo
g
1
0
(#

e
v
a
ls

)

Strat=6

F=0.30

F=0.50

F=0.70

F=0.90

Figure A.15: Parameter identification of DE on the rotated ellipsoid function in 20-D
with a population size of thirty times the dimension. The logarithm in base 10 of
the average number of function evaluations to reach the target function value 10−7

is shown for different values of CR and F . The six sub-figures from left to right,
top to bottom correspond to the variants: 1. DE/rand/1, 2. DE/local-to-best/1,
3. DE/best/1 with jitter, 4. DE/rand/1 with per-vector-dither, 5. DE/rand/1 with
per-generation-dither and 6. DE/rand/1 either-or successively.

APPENDIX A. PARAMETER IDENTIFICATION OF DE 170

When the population is smaller than five times the dimension, the algorithm does

not converge as fast. When the population size is larger than ten times the dimension,

the associated search costs are too prohibitive.

These results led us to consider the DE/local-to-best/1/bin variant, also denoted

as DE/target-to-best/1/bin in [Price et al., 2005] which uses a single difference be-

tween a random vector and the best-so-far vector and uniform cross-over with F = 0.8

and CR = 1 and default population size of ten times the dimension.

Appendix B

Empirical Cumulative Distribution

Functions of Empirical Running

Time

The ERT, expected running time, to reach a target function value is the number of

function evaluations over all runs divided by the number of runs that surpassed the

considered function value. The ERT is the most prominent performance measure

used in BBOB 2009. We describe here our use of the Empirical Cumulative Distri-

bution Functions, ECDFs, of the bootstrap distribution of the ERT divided by the

problem dimension n. Especially we discuss the relation between these ECDFs and

the traditional convergence graphs that present the data of runs as function values

reached versus time. More specifically, we consider the monotonic convergence graphs

that present the best function values obtained versus time for an optimisation run.

The ERT are divided by the dimension so the values are more easily compared for

different dimensions.

B.1 Horizontal Versus Vertical View

As for representations in terms of BBO benchmarking, there are two paradigms that

the practitioner can consider:

the fixed-cost scenario, which is denoted as vertical view since in a convergence

171

APPENDIX B. ECDFS OF EMPIRICAL RUNNING TIME 172

graph (function values versus time) fixing a cost is putting a straight vertical

line and considering the intersection of the graphs with it;

the fixed-target scenario, which is denoted as horizontal view since likewise it

corresponds to a horizontal straight line in a convergence graph.

The idea of fixed-cost is anchored in everyday reality: ‘given a budget what is the

best result one can obtain?’. In the context of continuous optimisation, this means

‘what is the best function value an algorithm can achieve’. The algorithms can then

be ranked by function values reached. The horizontal view, or fixed-target scenario

results in a ranking of algorithms by costs and also quantitative comparison of the

form: ‘algorithm A is faster than algorithm B by a factor of X on a given test

function’. The topic of the horizontal versus vertical view is discussed in more details

in [Hansen et al., 2009a].

B.2 Explanation of Empirical Cumulative Distri-

bution Functions

Our goal is to obtain a condensed representation of the convergence graphs figure.

Given a straight line cut into the space of the convergence graphs, the intersections of

the trajectories in the convergence graph provide us with an empirical distribution,

see Figure B.1. Suppose the cut is horizontal, meaning we are considering a fixed-

target, we would obtain the empirical distribution of the costs needed to attain such

target. The aforementioned empirical distribution can be represented as an ECDF

which estimates the probability of the considered event to occur; in the case of the

horizontal cut, it is the probability that the associated target is attained for a given

cost, see Figure B.2. If we now consider two parallel cuts, the resulting ECDF will

estimate the probability that any of the two events occur. Let us consider many

horizontal cuts in the space of the convergence graphs of a single algorithm, the

resulting ECDF would represent the probability that any such targets is attained for

a given cost, see Figure B.2. In the case of vertical cuts i.e. many fixed-budgets, the

resulting ECDF would represent the probability that any of these budgets is sufficient

to reach a given function value.

APPENDIX B. ECDFS OF EMPIRICAL RUNNING TIME 173

Figure B.1: Horizontal view or fixed-target scenario and vertical view or fixed-
budget scenario for convergence graphs, the axis represent function values versus
time [Hansen et al., 2009a]

APPENDIX B. ECDFS OF EMPIRICAL RUNNING TIME 174

Figure B.2: Empirical Cumulative Distribution Function for a given fixed-target (top
sub-figure), for three such fixed-targets (bottom), the y-axis range of the empirical
cumulative distribution function is [0, 1] and differs from that of the convergence
graphs

APPENDIX B. ECDFS OF EMPIRICAL RUNNING TIME 175

So far, we have made no assumption on the number of problems considered. The

convergence graphs considered might be obtained from different objective functions.

Thus, the ECDFs can not only be used to aggregate the information over multiple

runs, for instance on a single objective function, but also the information over many

different problems.

B.3 Uniform Targets versus Variable Targets

Let us consider convergence graphs. There is a high chance that the easiest targets,

which are the horizontal cuts closer to the top of convergence graphs, are attained

first, and that the hardest targets —cuts at the bottom— are attained last. The

hardest targets are likely to be under-represented in the ECDFs, see Figure B.2,

because optimisation runs might stop before attaining such targets. Distributing

targets on a log scale allows to have more cuts in the region of the hardest targets.

The issue of distributing targets is obvious if we consider the convergence graphs

on different objective functions: as discussed in Section 4.4.4 a given target function

value may correspond to different levels of difficulty on different objective functions

in terms of computational costs. Thus, we choose the targets depending on the

computational costs involved for the algorithms considered.

Choosing the targets depending on the costs for an algorithm is done by consider-

ing different costs —vertical cuts—, and a reference algorithm A. The intersections

of the trajectories of A with the vertical cuts give function values associated to given

fixed-costs f(A, running time). These resulting function values give us a distribution

of horizontal cuts related to the performances of reference algorithm A which can be

used to generate ECDFs, see Figure B.3. In the example given in the Figure B.3, the

reference algorithm is the second best for a given budget.

B.4 Bootstrapping

We explain here how an ECDF of ERT can be extended to the right with bootstrap-

ping.

Bootstrapping [Efron and Tibshirani, 1993] was used in BBOB 2009 to give a

APPENDIX B. ECDFS OF EMPIRICAL RUNNING TIME 176

Figure B.3: Empirical Cumulative Distribution Function for two fixed-targets, the
corresponding horizontal cuts are provided by the second best trajectory for given
budgets (vertical cuts)

APPENDIX B. ECDFS OF EMPIRICAL RUNNING TIME 177

dispersion measure for ERT: the ERT gives a single measurement from a data sam-

ple —from Ntrials optimisation runs in BBOB 2009— and bootstrapping provide

samples by drawing from the original data sample with replacement [Hansen et al.,

2009a]. The ECDFs of ERT for data samples are bounded to the right by the max-

imum total number of function evaluations in these data samples. The ECDFs of

the bootstrap distribution of ERT are not bounded to the right because sampling the

bootstrap distribution of ERT might generate values larger than the maximum total

number of function evaluations.

B.5 Comparisons with other representations

The ECDFs of the ERT to reach a target function value are comparable to the data

profiles and the performance profiles proposed in [Moré and Wild, 2009]. The data

profiles are empirical cumulative distribution functions of running lengths to attain

a relative precision, divided by twice the dimension plus one function evaluations

which is the size of a simplex. The performance profiles are empirical cumulative

distribution functions of running lengths to attain a relative precision normalised by

those of the best algorithm.

Both data profiles and performance profiles provide complementary views of the

performances of an algorithm that can be retrieved when considering both uniform

and variable targets for our empirical cumulative distribution functions of ERT. Data

profiles can clearly be assimilated to the empirical cumulative distribution functions

of ERT divided by the dimension using uniform target function values (horizontal

view), whereas the normalisation used in performance profiles is comparable to the

variable targets strategy which also use ranking of algorithms.

Appendix C

Installing bbob pproc

The entire post-processing tool is written in Python and requires Python to be

installed on your machine. The minimal software requirements for using the post-

processing tool are Python (2.5.2), Matplotlib (0.91.2) and Numpy (1.0.4). In the

following, we explain how to obtain and install the required software for different

systems (Linux, Windows, Mac OS) and which steps you have to perform to run the

post-processing on your data.

While the bbob pproc source files are provided, you need to install Python and

its libraries Matplotlib and Numpy. We recommend using Python 2.5 and not a higher

version (2.6 or 3.0) since the necessary libraries are not (yet) available and the code

is not verified.

C.1 Downloading the Packages

For all operating systems the packages can be found at the following locations:

• Python: http://www.python.org/download/releases/2.5.4/,

• Numpy: http://sourceforge.net/projects/numpy/,

• Matplotlib: http://sourceforge.net/projects/matplotlib/.

We recommend the use of the latest versions of Matplotlib (0.98.5.2) and Numpy

(1.2.1).

178

http://www.python.org/download/releases/2.5.4/
http://sourceforge.net/projects/numpy/
http://sourceforge.net/projects/matplotlib/

APPENDIX C. INSTALLING BBOB PPROC 179

C.2 Installing on Linux

In most common Linux distributions Python (but not Numpy or Matplotlib) is al-

ready part of the installation. If not, use your favourite package manager to in-

stall Python (package name: python), Numpy (python-numpy) and Matplotlib (package

name: python-matplotlib) and their dependencies. If your distribution and repositories

are up-to-date, you should have at least Python 2.5.2, Matplotlib 0.91.2 and Numpy

1.0.4. Though those are not the most recent versions of each package, they meet

the minimal software requirements to make the BBOB software work. If needed,

you can alternatively download sources and compile binaries. Python and the latest

versions of Matplotlib and Numpy can be downloaded from the links in Section C.1.

A dependency for the Linux version of Matplotlib is libpng, which can be obtained at

http://www.libpng.org/. You then need to properly install the downloaded pack-

ages before you can use them. Please refer to the corresponding package installation

pages.

C.3 Installing on Windows

For installing Python under Windows, please go to the Python link in Section C.1

and download python-2.5.4.msi. This file requires the Microsoft Installer, which is

a part of Windows XP and later releases. If you don’t have the Microsoft Installer,

there is a link for the download provided at the same page. After installing Python,

it is recommended to first install Numpy and then Matplotlib. Both can be installed

with the standard .exe files which are respectively

• numpy-1.2.1-win32-superpack-python2.5.exe and,

• matplotlib-0.98.5.2.win32-py2.5.exe.

These files can be obtained from the provided SourceForge links in Section C.1.

C.4 Installing on Mac OS

Mac OS X comes with Python pre-installed, the version might be older than 2.5

though. It is recommended to upgrade Python by downloading and installing a newer

http://www.libpng.org/

APPENDIX C. INSTALLING BBOB PPROC 180

version. To do this, if you have Mac OS X 10.3 and later you can download the disk

image file python-2.5.4-macosx.dmg containing universal binaries from the Python

download page, see Section C.1. More information on the update of Python on Mac

OS can be found at this location: http://www.python.org/download/mac/1. Open

the disk image and use the installer2. You then need to download and install Numpy

and Matplotlib from the SourceForge links listed in Sect C.1.

1The discussion over IDLE for Leopard user (http://wiki.python.org/moin/MacPython/
Leopard) is not relevant for the use of bbob pproc package.

2Following this step leave the pre-installed Python on the system and install the MacPython 2.5.4
distribution. MacPython contains a Python installation as well as some Mac-specific extras.

http://www.python.org/download/mac/
http://wiki.python.org/moin/MacPython/Leopard
http://wiki.python.org/moin/MacPython/Leopard

Bibliography

Angelo Marcello Anile, Vincenzo Cutello, Giuseppe Nicosia, Rosario Rascunà, and

Salvatore Spinella. Comparison among evolutionary algorithms and classical opti-

mization methods for circuit design problems. In Congress on Evolutionary Com-

putation, pages 765–772. IEEE, 2005. ISBN 0-7803-9363-5.

D. Arnold and R. Salomon. Evolutionary gradient search revisited. IEEE Transac-

tions on Evolutionary Computation, 11(4):480–495, 2007.

A Auger and N Hansen. A restart CMA evolution strategy with increasing population

size. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC

2005), pages 1769–1776. IEEE Press, 2005.

A. Auger, N. Hansen, J. M. Perez Zerpa, R. Ros, and M. Schoenauer. Empirical

comparisons of several derivative free optimization algorithms. In Acte du 9ieme

colloque national en calcul des structures, May 2009a.

Anne Auger. Benchmarking the (1+1) evolution strategy with one-fifth success rule

on the BBOB-2009 function testbed. In Rothlauf [2009], pages 2447–2452. ISBN

978-1-60558-505-5.

Anne Auger. Benchmarking the (1+1)-ES with one-fifth success rule on the BBOB-

2009 noisy testbed. In Rothlauf [2009], pages 2453–2458. ISBN 978-1-60558-505-5.

Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-

2009 function testbed. In Rothlauf [2009], pages 2459–2466. ISBN 978-1-60558-

505-5.

Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-

2009 noisy testbed. In Rothlauf [2009], pages 2467–2472. ISBN 978-1-60558-505-5.

181

BIBLIOGRAPHY 182

Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-

2009 testbed. In Rothlauf [2009], pages 2479–2484. ISBN 978-1-60558-505-5.

Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-

2009 noisy testbed. In Rothlauf [2009], pages 2485–2490. ISBN 978-1-60558-505-5.

Anne Auger, Nikolaus Hansen, J. M. Perez Zerpa, Raymond Ros, and Marc Schoe-

nauer. Experimental comparisons of derivative free optimization algorithms. In

Jan Vahrenhold, editor, SEA, volume 5526 of Lecture Notes in Computer Science,

pages 3–15. Springer, 2009b. ISBN 978-3-642-02010-0.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,

1961.

G. Bilchev and I.C. Parmee. Ant colony search vs. genetic algorithms. Technical

report, Plymouth Engineering Design Centre, University of Plymouth, 1995.

Peter A. N. Bosman and Dirk Thierens. Expanding from discrete to continuous

estimation of distribution algorithms: The idea. In PPSN VI: Proceedings of the

6th International Conference on Parallel Problem Solving from Nature, pages 767–

776, London, UK, 2000. Springer-Verlag. ISBN 3-540-41056-2.

Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noiseless

black-box optimization benchmarking. In Rothlauf [2009], pages 2247–2254. ISBN

978-1-60558-505-5.

Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noisy

black-box optimization benchmarking. In Rothlauf [2009], pages 2351–2358. ISBN

978-1-60558-505-5.

S. H. Brooks. A discussion of random methods for seeking maxima. Operations

Research, 6:244– 251, 1958.

Jason Brownlee. A note on research methodology and benchmarking optimization

algorithms. Technical Report 070125, Complex Intelligent Systems Laboratory

BIBLIOGRAPHY 183

(CIS), Centre for Information Technology Research (CITR), Faculty of Informa-

tion and Communication Technologies (ICT), Swinburne University of Technol-

ogy, January 2007a. URL http://www.ict.swin.edu.au/personal/jbrownlee/

2007/TR01-2007.pdf.

Jason Brownlee. Oat: The optimization algorithm toolkit. Technical Report

20071220A, Complex Intelligent Systems Laboratory (CIS), Centre for Informa-

tion Technology Research (CITR), Faculty of Information and Communication

Technologies (ICT), Swinburne University of Technology, December 2007b.

C. G. Broyden. A class of methods for solving nonlinear simultaneous equations.

Mathematics of Computation, 19(92):577–593, October 1965. URL http://www.

jstor.org/stable/2003941.

C. G. Broyden. The convergence of a class of double-rank minimization algorithms.

Journal of the Institute of Mathematics and Its Applications, 6:76–90, 1970.

M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and convergence in

a multidimensional complex space. Evolutionary Computation, IEEE Transactions

on, 6(1):58–73, 2002.

A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. In

Proceedings of the First European Conference on Artificial Life, Paris, 1991. MIT

Press/Bradford Book.

A. R. Conn and Ph. L. Toint. An algorithm using quadratic interpolation for uncon-

strained derivative free optimization. In Nonlinear Optimization and Applications,

pages 27–47, New York, NY, USA, 1996. Kluwer Academic/Plenum Publishers.

A. R. Conn, K. Scheinberg, and Ph. L. Toint. Recent progress in unconstrained non-

linear optimization without derivatives. Math. Program., 79(1-3):397–414, 1997a.

ISSN 0025-5610. doi: http://dx.doi.org/10.1007/BF02614326.

A. R. Conn, K. Scheinberg, and Ph. L. Toint. On the convergence of derivative-

free methods for unconstrained optimization. In A. Iserles and M. Buhmann, edi-

tors, Approximation Theory and Optimization: Tributes to M. J. D. Powell, pages

83–108. Cambridge University Press, 1997b. URL http://perso.fundp.ac.be/

~phtoint/pubs/TR96-10.abstract.

http://www.ict.swin.edu.au/personal/jbrownlee/2007/TR01-2007.pdf
http://www.ict.swin.edu.au/personal/jbrownlee/2007/TR01-2007.pdf
http://www.jstor.org/stable/2003941
http://www.jstor.org/stable/2003941
http://perso.fundp.ac.be/~phtoint/pubs/TR96-10.abstract
http://perso.fundp.ac.be/~phtoint/pubs/TR96-10.abstract

BIBLIOGRAPHY 184

A. R. Conn, K. Scheinberg, and Ph. L. Toint. A derivative free optimization algo-

rithm in practice. In Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium

on Multidisciplinary Analysis and Optimization, St. Louis, MO. AIAA, 1998.

A. R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-region methods.

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

ISBN 0-89871-460-5.

Tibor Csendes. Nonlinear parameter estimation by global optimization—efficiency

and reliability. Acta Cybern., 8(4):361–370, 1989. ISSN 0324-721X.

L. Devroye. The compund random search. In International Symposium on Systems

Engineering and Analysis, pages 195–110. Purdue University, 1972.

M. A. Diniz-Ehrhardt, J. M. Mart́ınez, and M. Raydan. A derivative-free nonmono-

tone line-search technique for unconstrained optimization. J. Comput. Appl. Math.,

219(2):383–397, 2008. ISSN 0377-0427. doi: http://dx.doi.org/10.1016/j.cam.2007.

07.017.

L. C. W. Dixon, J. Gomulka, and S. E. Herson. Reflection on global optimization

problems. In Optimization in Action, pages 398–435. Academic Press, New York,

1976.

Benjamin Doerr, Mahmoud Fouz, Martin Schmidt, and Magnus Wahlström. BBOB:

Nelder-mead with resize and halfruns. In Rothlauf [2009], pages 2239–2246. ISBN

978-1-60558-505-5.

B. Efron and R. Tibshirani. An introduction to the bootstrap. Chapman & Hall/CRC,

1993.

Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking

for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [2009],

pages 2263–2268. ISBN 978-1-60558-505-5.

Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking

for noiseless function testbed using particle swarm optimization. In Rothlauf [2009],

pages 2269–2274. ISBN 978-1-60558-505-5.

BIBLIOGRAPHY 185

Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking

for noiseless function testbed using PSO Bounds. In Rothlauf [2009], pages 2275–

2280. ISBN 978-1-60558-505-5.

Vitaliy Feoktistov. Differential Evolution: In Search of Solutions. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387368957.

S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization

benchmarking 2009: Presentation of the noiseless functions. Technical Report

2009/20, Research Center PPE, 2009a.

S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization

benchmarking 2009: Presentation of the noisy functions. Technical Report 2009/21,

Research Center PPE, 2009b.

R. Fletcher. A new approach to variable metric algorithms. Computer journal, 13:

317–322, 1970.

R. Fletcher. Practical methods of optimization; (2nd ed.). Wiley-Interscience, New

York, NY, USA, 1987. ISBN 0-471-91547-5.

K.R. Fowler, J.P. Reese, C.E. Kees, J.E. Dennis Jr., C.T. Kelley, C.T. Miller, C. Au-

det, A.J. Booker, G. Couture, R.W. Darwin, M.W. Farthing, D.E. Finkel, J.M.

Gablonsky, G. Gray, and T.G. Kolda. Comparison of derivative-free optimiza-

tion methods for groundwater supply and hydraulic capture community prob-

lems. Advances in Water Resources, 31(5):743–757, May 2008. ISSN 0309-1708.

doi: 10.1016/j.advwatres.2008.01.010. URL http://www.sciencedirect.com/

science/article/B6VCF-4RRFNH4-2/2/4811ea6adb8743866ec24fe8e0e09d45.

Marcus Gallagher. Black-box optimization benchmarking: results for the BayEDAcG

algorithm on the noiseless function testbed. In Rothlauf [2009], pages 2281–2286.

ISBN 978-1-60558-505-5.

Marcus R. Gallagher. Black-box optimization benchmarking: results for the

BayEDAcG algorithm on the noisy function testbed. In Rothlauf [2009], pages

2383–2388. ISBN 978-1-60558-505-5.

http://www.sciencedirect.com/science/article/B6VCF-4RRFNH4-2/2/4811ea6adb87438 66ec24fe8e0e09d45
http://www.sciencedirect.com/science/article/B6VCF-4RRFNH4-2/2/4811ea6adb87438 66ec24fe8e0e09d45

BIBLIOGRAPHY 186

Carlos Garćıa-Mart́ınez and Manuel Lozano. A continuous variable neighbourhood

search based on specialised EAs: application to the noiseless BBO-benchmark 2009.

In Rothlauf [2009], pages 2287–2294. ISBN 978-1-60558-505-5.

Carlos Garćıa-Mart́ınez and Manuel Lozano. A continuous variable neighbourhood

search based on specialised EAs: application to the noisy BBO-benchmark 2009

testbed. In Rothlauf [2009], pages 2367–2374. ISBN 978-1-60558-505-5.

José Garćıa-Nieto, Enrique Alba, and Javier Apolloni. Noiseless functions black-box

optimization: evaluation of a hybrid particle swarm with differential operators. In

Rothlauf [2009], pages 2231–2238. ISBN 978-1-60558-505-5.

José Garćıa-Nieto, Enrique Alba, and Javier Apolloni. Particle swarm hybridized with

differential evolution: black box optimization benchmarking for noisy functions. In

Rothlauf [2009], pages 2343–2350. ISBN 978-1-60558-505-5.

P. Gilmore and C. T. Kelley. An implicit filtering algorithm for optimization of

functions with many local minima. SIAM J. Optim, 5:269–285, 1995.

D. Goldfarb. A family of variable metric updates derived by variational means. Math-

ematics of Computation, 24:23–26, 1970.

Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. Cuter and sifdec: A

constrained and unconstrained testing environment, revisited. ACM Trans. Math.

Softw., 29(4):373–394, 2003. ISSN 0098-3500. doi: http://doi.acm.org/10.1145/

962437.962439.

L Grippo, F Lampariello, and S Lucidi. A nonmonotone line search technique for

newton’s method. SIAM J. Numer. Anal., 23(4):707–716, 1986. ISSN 0036-1429.

doi: http://dx.doi.org/10.1137/0723046.

N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano,

P. Larrañaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary

computation. Advances on estimation of distribution algorithms, pages 75–102.

Springer, 2006a.

BIBLIOGRAPHY 187

N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal test

functions. In Xin Yao et al., editors, Parallel Problem Solving from Nature - PPSN

VIII, LNCS 3242, pages 282–291. Springer, 2004.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution

strategies. Evolutionary computation, 9(2):159–195, 2001.

N. Hansen, A. Ostermeier, and A. Gawelczyk. On the adaptation of arbitrary normal

mutation distributions in evolution strategies: The generating set adaptation. In

L. J. Eshelman, editor, Proceedings of the 6th International Conference on Genetic

Algorithms, pages 57–64. Morgan Kaufmann, 1995.

N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the

derandomized evolution strategy with covariance matrix adaptation. Evolutionary

Computation, 11(1):1–18, 2003.

N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimiza-

tion benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA,

2009a. URL http://hal.inria.fr/inria-00362649/en/.

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization

benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829,

INRIA, 2009b. URL http://hal.inria.fr/inria-00362633/en/.

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimiza-

tion benchmarking 2009: Noisy functions definitions. Technical Report RR-6869,

INRIA, 2009c. URL http://hal.inria.fr/inria-00369466/en.

Nikolaus Hansen. Compilation of results on the 2005 CEC benchmark function

set. Online, May 2006b. URL http://www.bionik.tu-berlin.de/user/niko/

cec2005compareresults.pdf.

Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 func-

tion testbed. In Rothlauf [2009], pages 2389–2396. ISBN 978-1-60558-505-5.

Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 noisy

testbed. In Rothlauf [2009], pages 2397–2402. ISBN 978-1-60558-505-5.

http://hal.inria.fr/inria-00362649/en/
http://hal.inria.fr/inria-00362633/en/
http://hal.inria.fr/inria-00369466/en
http://www.bionik.tu-berlin.de/user/niko/cec2005compareresults.pdf
http://www.bionik.tu-berlin.de/user/niko/cec2005compareresults.pdf

BIBLIOGRAPHY 188

Nikolaus Hansen. Benchmarking the nelder-mead downhill simplex algorithm with

many local restarts. In Rothlauf [2009], pages 2403–2408. ISBN 978-1-60558-505-5.

Nikolaus Hansen. The CMA-ES evolution strategy: A tutorial. Online, January

2009d. URL http://www.lri.fr/~hansen/cmatutorial.pdf.

Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne Auger.

Impacts of invariance in search: when CMA-ES and PSO face ill-conditioned

problems. To be published, March 2009d. URL http://www.lri.fr/~hansen/

psopaper09.pdf.

J. H. Holland. Adaptation in natural and artificial systems. University of Michigan

Press, Ann Arbor, 1975.

Robert Hooke and T. A. Jeeves. “Direct Search” solution of numerical and statistical

problems. J. ACM, 8(2):212–229, 1961.

Reiner Horst. Introduction to Global Optimization (Nonconvex Optimization and Its

Applications). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002. ISBN

0792335562.

Waltraud Huyer and Arnold Neumaier. Global optimization by multilevel coordinate

search. J. of Global Optimization, 14(4):331–355, 1999. ISSN 0925-5001. doi:

http://dx.doi.org/10.1023/A:1008382309369.

Waltraud Huyer and Arnold Neumaier. SNOBFIT – stable noisy optimization by

branch and fit. ACM Trans. Math. Softw., 35(2):1–25, 2008. ISSN 0098-3500. doi:

http://doi.acm.org/10.1145/1377612.1377613.

Waltraud Huyer and Arnold Neumaier. Benchmarking of SNOBFIT on the noisy

function testbed. Online, 2009a. URL http://www.mat.univie.ac.at/~neum/

papers.html. P. 987.

Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noisy function

testbed. Online, 2009b. URL http://www.mat.univie.ac.at/~neum/papers.

html. P. 988.

http://www.lri.fr/~hansen/cmatutorial.pdf
http://www.lri.fr/~hansen/psopaper09.pdf
http://www.lri.fr/~hansen/psopaper09.pdf
http://www.mat.univie.ac.at/~neum/papers.html
http://www.mat.univie.ac.at/~neum/papers.html
http://www.mat.univie.ac.at/~neum/papers.html
http://www.mat.univie.ac.at/~neum/papers.html

BIBLIOGRAPHY 189

Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noiseless

function testbed. Online, 2009c. URL http://www.mat.univie.ac.at/~neum/

papers.html. P. 989.

Christian Igel, Thorsten Suttorp, and Nikolaus Hansen. A computational efficient

covariance matrix update and a (1+1)-cma for evolution strategies. In GECCO ’06:

Proceedings of the 8th annual conference on Genetic and evolutionary computation,

pages 453–460, New York, NY, USA, 2006. ACM. ISBN 1-59593-186-4. doi: http:

//doi.acm.org/10.1145/1143997.1144082.

D. S. Johnson. A theoretician’s guide to the experimental analysis of algorithms. In

Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DI-

MACS Implementation Challenges, volume 59 of DIMACS, pages 215—250. Amer-

ican Mathematical Society, 2002.

Steven G. Johnson. The nlopt nonlinear-optimization package. WWW, 2008. URL

http://ab-initio.mit.edu/nlopt.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without

the lipschitz constant. J. Optim. Theory Appl., 79(1):157–181, 1993. ISSN 0022-

3239. doi: http://dx.doi.org/10.1007/BF00941892.

C. T. Kelley. Iterative Methods for Optimization. SIAM, 1999.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995.

Proceedings., IEEE International Con ference on, volume 4, pages 1942–1948, 1995.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, May 1983.

James N. Knight and Monte Lunacek. Reducing the space-time complexity of the

CMA-ES. In GECCO ’07: Proceedings of the 9th annual conference on Genetic

and evolutionary computation, pages 658–665, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-697-4. doi: http://doi.acm.org/10.1145/1276958.1277097.

Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by

direct search: New perspectives on some classical and modern methods. SIAM

Review, 45:385–482, 2003.

http://www.mat.univie.ac.at/~neum/papers.html
http://www.mat.univie.ac.at/~neum/papers.html
http://ab-initio.mit.edu/nlopt

BIBLIOGRAPHY 190

Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization:

noiseless function testbed. In Rothlauf [2009], pages 2295–2302. ISBN 978-1-60558-

505-5.

Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization:

noisy function testbed. In Rothlauf [2009], pages 2375–2382. ISBN 978-1-60558-

505-5.

Jiŕı Kubalik. Black-box optimization benchmarking of prototype optimization with

evolved improvement steps for noiseless function testbed. In Rothlauf [2009], pages

2303–2308. ISBN 978-1-60558-505-5.

Sergei Kucherenko. Application of quasi monte carlo methods in global optimization.

In Global Optimization, volume 84 of Nonconvex Optimization and Its Applications,

pages 111–133. Springer US, 2006. doi: 10.1007/0-387-30528-9.

Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright.

Convergence properties of the nelder–mead simplex method in low dimensions.

SIAM J. on Optimization, 9(1):112–147, 1998. ISSN 1052-6234. doi: http:

//dx.doi.org/10.1137/S1052623496303470.

W.B. Langdon and R. Poli. Evolving problems to learn about particle swarm optimiz-

ers and other search algorithms. Evolutionary Computation, IEEE Transactions

on, 11(5):561–578, 2007. ISSN 1089-778X. doi: {10.1109/TEVC.2006.886448}.

Pedro Larrañaga and José A. Lozano. Estimation of Distribution Algorithms: A New

Tool for Evolutionary Computation. Kluwer Academic Publishers, Norwell, MA,

USA, 2001. ISBN 0792374665.

R. Lougee-Heimer. The common optimization interface for operations research: Pro-

moting open-source software in the operations research community. IBM J. Res.

Dev., 47(1):57–66, 2003. ISSN 0018-8646.

Monte Lunacek, Darrell Whitley, and Andrew Sutton. The impact of global structure

on search. In Proceedings of the 10th international conference on Parallel Problem

Solving from Nature, pages 498–507, Berlin, Heidelberg, 2008. Springer-Verlag.

ISBN 978-3-540-87699-1. doi: http://dx.doi.org/10.1007/978-3-540-87700-4 50.

BIBLIOGRAPHY 191

K. I. M. McKinnon. Convergence of the nelder–mead simplex method to a nonsta-

tionary point. SIAM J. on Optimization, 9(1):148–158, 1998. ISSN 1052-6234. doi:

http://dx.doi.org/10.1137/S1052623496303482.

Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using

local search chaining for black-box optimization benchmarking 2009 for noise free

functions. In Rothlauf [2009], pages 2255–2262. ISBN 978-1-60558-505-5.

Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm us-

ing local search chaining for black-box optimization benchmarking 2009 for noisy

functions. In Rothlauf [2009], pages 2359–2366. ISBN 978-1-60558-505-5.

Jorge J. Moré and Stefan M. Wild. Benchmarking derivative-free optimization algo-

rithms. Technical Report ANL/MCS-P1471-1207, Argonne National Laboratory,

April 2008.

Jorge J. Moré and Stefan M. Wild. Benchmarking derivative-free optimization algo-

rithms. SIAM J. Optimization, 20(1):172–191, 2009. doi: 10.1137/080724083.

Heinz Mühlenbein and Gerhard Paaß. From recombination of genes to the estima-

tion of distributions i. binary parameters. In PPSN IV: Proceedings of the 4th

International Conference on Parallel Problem Solving from Nature, pages 178–187,

London, UK, 1996. Springer-Verlag. ISBN 3-540-61723-X.

C. L. Müller and I. F. Sbalzarini. A tunable real-world multi-funnel benchmark

problem for evolutionary optimization (and why parallel island models might rem-

edy the failure of CMA-ES on it). In Proc. Intl. Conf. Evolutionary Computa-

tion (ICEC), Madeira, Portugal, October 2009. To be published. URL http:

//www.mosaic.ethz.ch/research/pubs/docs/Muller2009c.pdf.

J.A. Nelder and R. Mead. The downhill simplex method. Computer Journal, 7:

308–313, 1965.

George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial optimiza-

tion. Wiley-Interscience, New York, NY, USA, 1988. ISBN 0-471-82819-X.

Miguel Nicolau. Application of a simple binary genetic algorithm to a noiseless testbed

benchmark. In Rothlauf [2009], pages 2473–2478. ISBN 978-1-60558-505-5.

http://www.mosaic.ethz.ch/research/pubs/docs/Muller2009c.pdf
http://www.mosaic.ethz.ch/research/pubs/docs/Muller2009c.pdf

BIBLIOGRAPHY 192

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Verlag, 2nd

edition, 2006.

A. Ostermeier, A. Gawelczyk, and N. Hansen. Step-size Adaptation Based on Non-

local Use of Selection Information. In Y. Davidor, H.-P. Schwefel, and R. Manner,

editors, Proceedings of the 3rd Conference on Parallel Problems Solving from Na-

ture, pages 189–198. Springer-Verlag, LNCS 866, 1994.

László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-

benchmarking of the GLOBAL method for the noisy function testbed. Online,

2009a. URL http://www.mat.univie.ac.at/~neum/papers.html. P. 985.

László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-

benchmarking of the GLOBAL method for the noiseless function testbed. Online,

2009b. URL http://www.mat.univie.ac.at/~neum/papers.html. P. 986.

Miroslav Šnorek Pavel Kord́ık, Oleg Kovář́ık. Optimization of models: Looking for

the best strategy. In Proceedings of 6th EUROSIM Congress on Modelling and

Simulation, Ljubjana, 2007. ISBN 3-901608-32-X.

Martin Pelikan, David E. Goldberg, and Fernando G. Lobo. A survey of optimization

by building and using probabilistic models. Comput. Optim. Appl., 21(1):5–20,

2002. ISSN 0926-6003. doi: http://dx.doi.org/10.1023/A:1013500812258.

János D. Pintér. Global Optimization in Action, Continuous and Lipschitz Optimiza-

tion: Algorithms, Implementations and Applications, volume 6 of Nonconvex Op-

timization and Its Applications. Kluwer Academic Publishers, Dordrecht / Boston

/ London, 1996.

Jan Poland and Andreas Zell. Main vector adaptation: A CMA variant with linear

time and space complexity. In Lee Spector, Erik D. Goodman, Annie Wu, W. B.

Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram

Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2001), pages 1050–1055, San

Francisco, California, USA, 7-11 2001. Morgan Kaufmann. ISBN 1-55860-774-9.

URL http://citeseer.ist.psu.edu/poland01main.html.

http://www.mat.univie.ac.at/~neum/papers.html
http://www.mat.univie.ac.at/~neum/papers.html
http://citeseer.ist.psu.edu/poland01main.html

BIBLIOGRAPHY 193

Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with

Cauchy distribution. In Rothlauf [2009], pages 2309–2314. ISBN 978-1-60558-505-5.

Petr Posik. BBOB-benchmarking the DIRECT global optimization algorithm. In

Rothlauf [2009], pages 2315–2320. ISBN 978-1-60558-505-5.

Petr Posik. BBOB-benchmarking the generalized generation gap model with parent

centric crossover. In Rothlauf [2009], pages 2321–2328. ISBN 978-1-60558-505-5.

Petr Posik. BBOB-benchmarking two variants of the line-search algorithm. In Roth-

lauf [2009], pages 2329–2336. ISBN 978-1-60558-505-5.

Petr Posik. BBOB-benchmarking the Rosenbrock’s local search algorithm. In Roth-

lauf [2009], pages 2337–2342. ISBN 978-1-60558-505-5.

M. J. D. Powell. The NEWUOA software for unconstrained optimization without

derivatives. Large Scale Nonlinear Optimization, pages 255–297, 2006.

Kenneth Price. Differential evolution vs. the functions of the second ICEO. In Pro-

ceedings of the IEEE International Congress on Evolutionary Computation, pages

153–157, 1997.

Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: A

Practical Approach to Global Optimization (Natural Computing Series). Springer-

Verlag New York, Inc., 2005. ISBN 3540209506. URL http://portal.acm.org/

citation.cfm?id=1121631.

K.V. Price. Differential evolution: a fast and simple numerical optimizer. In Fuzzy

Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference of the

North American, pages 524–527, 1996. doi: {10.1109/NAFIPS.1996.534790}.

I. Rechenberg. Evolutionsstrategie. Friedrich Frommann Verlag (Günther Holzboog

KG), Stuttgart, 1973a.

Ingo Rechenberg. Evolutionsstrategie, Optimierung technischer Systeme nach Prinzip-

ien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973b.

Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 function

testbed. In Rothlauf [2009], pages 2409–2414. ISBN 978-1-60558-505-5.

http://portal.acm.org/citation.cfm?id=1121631
http://portal.acm.org/citation.cfm?id=1121631

BIBLIOGRAPHY 194

Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 noisy testbed.

In Rothlauf [2009], pages 2415–2420. ISBN 978-1-60558-505-5.

Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 function testbed.

In Rothlauf [2009], pages 2421–2428. ISBN 978-1-60558-505-5.

Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 noisy testbed. In

Rothlauf [2009], pages 2429–2434. ISBN 978-1-60558-505-5.

Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 function testbed. In

Rothlauf [2009], pages 2435–2440. ISBN 978-1-60558-505-5.

Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 noisy testbed. In

Rothlauf [2009], pages 2441–2446. ISBN 978-1-60558-505-5.

Raymond Ros and Nikolaus Hansen. A simple modification in CMA-ES achieving

linear time and space complexity. In Günter Rudolph, Thomas Jansen, Simon M.

Lucas, Carlo Poloni, and Nicola Beume, editors, Parallel Problem Solving from

Nature - PPSN X, 10th International Conference Dortmund, Germany, September

13-17, 2008, Proceedings, volume 5199 of Lecture Notes in Computer Science, pages

296–305. Springer, 2008a. ISBN 978-3-540-87699-1.

Raymond Ros and Nikolaus Hansen. A simple modification in CMA-ES achieving

linear time and space complexity. Research Report 6498, INRIA, jun 2008b. URL

http://hal.inria.fr/inria-00270901/en.

Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO

2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Mate-

rial, 2009. ACM. ISBN 978-1-60558-505-5.

M. Schumer and K. Steiglitz. Adaptive step size random search. Automatic Control,

IEEE Transactions on, 13:270–276, 1968.

Hans-Paul Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester,

1981.

http://hal.inria.fr/inria-00270901/en

BIBLIOGRAPHY 195

Michèle Sebag and Antoine Ducoulombier. Extending population-based incremental

learning to continuous search spaces. In PPSN V: Proceedings of the 5th Interna-

tional Conference on Parallel Problem Solving from Nature, pages 418–427, London,

UK, 1998. Springer-Verlag. ISBN 3-540-65078-4.

Yun-Wei Shang and Yu-Huang Qiu. A note on the extended rosenbrock function.

Evol. Comput., 14(1):119–126, 2006. ISSN 1063-6560. doi: http://dx.doi.org/10.

1162/106365606776022733.

D. F. Shanno. Conditioning of quasi-newton methods for function minimization.

Mathematics of Computation, 24:647–656, 1970.

Y. Shi and R. Eberhart. Modified particle swarm optimizer. In The 1998 IEEE

International Conference on Evolutionary Computation, ICEC’98, pages 69–73,

1998.

Y. Shi, RC Eberhart, E.D.S.I.T. Center, and IN Carmel. Empirical study of particle

swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of

the 1999 Congress on, volume 3, 1999.

Krzysztof Socha and Marco Dorigo. Ant colony optimization for continuous domains.

European Journal of Operational Research, 185(3):1155–1173, March 2008. doi:

10.1016/j.ejor.2006.06.046.

James Spall, Stacy Hill, and David Stark. Theoretical framework for compar-

ing several stochastic optimization approaches. In Probabilistic and Random-

ized Methods for Design under Uncertainty, pages 99–117. Springer, 2006. URL

http://dx.doi.org/10.1007/1-84628-095-8_3.

James C. Spall. Introduction to Stochastic Search and Optimization. John Wiley &

Sons, Inc., New York, NY, USA, 2003. ISBN 0471330523.

R. Storn. On the usage of differential evolution for function optimization. In Fuzzy

Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference of the

North American, pages 519–523, 1996. doi: {10.1109/NAFIPS.1996.534789}.

http://dx.doi.org/10.1007/1-84628-095-8_3

BIBLIOGRAPHY 196

R. Storn and K. V. Price. Differential evolution - a simple and efficient adaptive

scheme for global optimization over continuous spaces. Technical Report TR-

95-012, ICSI, Berkeley, CA, 1995. URL ftp://ftp.icsi.berkeley.edu/pub/

techreports/1995/tr-95-012.pdf.

Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuris-

tic for global optimization over continuous spaces. Journal of Global Optimization,

11(4):341–359, December 1997. ISSN 0925-5001. doi: {10.1023/A:1008202821328}.
URL http://dx.doi.org/10.1023/A:1008202821328.

P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and S. Tiwari.

Problem definitions and evaluation criteria for the CEC 2005 special session on

real-parameter optimization. Technical Report 2005005, Nanyang Technological

University, Singapore and KanGAL, IIT Kanpur, India, Singapore, May 2005.

Thorsten Suttorp, Nikolaus Hansen, and Christian Igel. Efficient covariance matrix

update for variable metric evolution strategies. Machine Learning, 75(2):167–197,

2009.

Aimo Törn and Antanas Žilinskas. Global optimization. Springer-Verlag New York,

Inc., New York, NY, USA, 1989. ISBN 0-387-50871-6.

Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming. Math.

Program., 106(1):25–57, 2006. ISSN 0025-5610. doi: http://dx.doi.org/10.1007/

s10107-004-0559-y.

P. Patrick Wang and Der-San Chen. Continuous optimization by a variant of simu-

lated annealing. Comput. Optim. Appl., 6(1):59–71, 1996. ISSN 0926-6003.

Anatoly Zhigljavsky and Antanas Žilinskas. Stochastic Global Optimization, volume 9

of Optimization and Its Applications. Springer, 2008. ISBN 978-0-387-74022-5.

ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.pdf
ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.pdf
http://dx.doi.org/10.1023/A:1008202821328

	Introduction
	Review of the State of the Art
	Types of Solvers
	BBO Benchmarking Software
	Discussion of the Review of the State of the Art

	CMA-ES Variants
	Introduction
	CMA-ES
	CMA-ES Variants with Reduced Time and Space Complexity
	Test Functions and Methods
	Results and Discussion
	Summary and Perspectives

	Black-Box Optimisation Benchmarking
	Introduction
	Algorithms
	Study on Three Types of Difficulties
	BBOB 2009
	Overall Summary and Discussion

	Software: COCO
	Experimental Framework Software
	Post-Processing the Experimental Data
	Generating a Paper
	Discussion of our Implementation

	Summary and Perspectives
	Algorithms for High Dimensional Optimisation Problems
	Benchmarking

	Parameter Identification of DE
	Experimental Set-up
	Results and Discussion

	ECDFs of Empirical Running Time
	Horizontal Versus Vertical View
	Explanation of Empirical Cumulative Distribution Functions
	Uniform Targets versus Variable Targets
	Bootstrapping
	Comparisons with other representations

	Installing bbob_pproc
	Downloading the Packages
	Installing on Linux
	Installing on Windows
	Installing on Mac OS

	Bibliography

