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NOMENCLATURE 

ɶb   - non-dimensional radius of the curvature at the top of the sample ( )=ɶ ab b r ;  

Bo   - non-dimensional Bond number ( )( )2= ⋅ ⋅l aBo g rρ γ ; 

l sc ,c   - specific heat in the liquid respectively solid  (J·kg
-1

·K
-1

); 

d ′ɶ    - non-dimensional bottom coordinate of the ampoule with respect to the   

    laboratory frame z O r′ ′ ′  ( );′ =ɶ
ad d r  

l
thD   - thermal diffusivity in the liquid ( )=l

th l l lD cλ ρ ; 

s
thD   - thermal diffusivity in the solid ( )=l

th l l lD cλ ρ ; 

ɶ
thD   - non-dimensional thermal diffusivity ( )=ɶ s l

th th thD D D ; 

eɶ   - non-dimensional thickness of the crystal-crucible gap ( );=ɶ ae e r  

f   - interface deflection (Chapter 3), also input oscillation frequency (Chapter 4); 

g   - gravitational acceleration (m·s
-2

); 

ɶ
lG   - non-dimensional thermal gradient in the liquid; 

ɶ
sG   - non-dimensional thermal gradient in the solid; 

hɶ   - non-dimensional meniscus height ( )ah h r=ɶ ; 

ɶ
aH  

 
- non-dimensional total length of the solid and melt ( )=ɶ

a a aH H r ; 

fHɶ
  

- non-dimensional furnace height ( )=ɶ
f f a

H H r ; 

H   - mean normal curvature; 

i   - input function (forcing term); 

I   - family of inputs; 

ɶk   - non-dimensional temperature gradient in the furnace ( )( )= ⋅ −ɶ ɶ ɶ f
a m ck k r T T ; 

lɶ   - interface coordinate with respect to the body frame zOr
 
( );=ɶ al l r ; 
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0Lɶ  
 

- non-dimensional seed length ( )0 0=ɶ
aL L r ; 

La   - non-dimensional Laplace number ( )( ); = − ⋅ c h aLa P P r γ  

cP
  

- gas pressure at the cold side (Pa); 

hP
  

- gas pressure at the hot side (Pa); 

m

hP
  

- pressure due to the meniscus at the top (Pa); 

P∆ ɶ   - non-dimensional  forcing term (total input); 

l
Pe   - Péclet number for the liquid ( )=l l

a a thPe v r D ; 

r      - radial coordinate (m); 

ɶ
ar     - non-dimensional ampoule/ crucible radius ( )1= =ɶ

a a ar r r ; 

ɶ
cr   - non-dimensional crystal radius ( )=ɶ

c c ar r r ; 

s     - arc length (m); 

St   - non-dimensional Stefan number ( )( );= − Λf
l m cSt c T T  

ɶt   - non-dimensional time variable, ( )2= ⋅ɶ l
th at t D r ; 

a

h
T   - temperature at the hot side of the ampoule (K);  

a

c
T   - temperature at the cold side of the ampoule (K);  

f

cT   - cold temperature of the furnace; 

f

hT   - hot temperature of the furnace (K);
 
 

ɶ
mT

  
- non-dimensional melting temperature ( ) ( )( )1= − − =ɶ f f

m m c m cT T T T T ;  

av
  

- pulling rate (m·s
-1

);  

cv
  

- solid-liquid interface velocity (m·s
-1

);  

z    - coordinate with respect to the body frame zOr (m); 

ɶz   - non-dimensional coordinate with respect to the body frame zOr ( );=ɶ az z r  
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eα
  

- growth angle;  

Φ   - heat flux; 

γ   - melt surface tension (N·m
-1

); 

lλ , sλ
  

 - thermal conductivities of the melt and solid (W·m
-1

·K
-1

); 

Λ   - latent heat of fusion (J·kg
-1

); 

cθ
  

- contact angle;  

l s,ρ ρ
  

- melt, respectively solid, density (kg·m
-3

);  

ψ    - angle between the tangent line to the meniscus free surface at the crystal-melt- 

    gas triple point and the horizontal axis Or; 

 

Subscripts 

a  - ampoule; 

c  - crystal; 

g  - gas; 

l  - liquid; 

m  - melting; 

s  - solid; 

v  - vapour. 
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CHAPTER 1: Introduction 

Crystals, used as sensors, as laser radiation sources or detectors or as solar cells, are essential 

components of many high technology apparatuses produced in the opto and electronic industries. 

The quality of these apparatuses depends, in a large part, on the quality of the crystals 

(compositional uniformity, perfection of the shape of the crystal, smoothness of the surface, 

structural defects such as mechanical residual stresses, dislocations or twins).  

Crystals can be obtained by different growth methods. When a crucible is used, the main 

problem is that during the solidification, the crystal usually sticks to the inner crucible wall 

because of the solid-solid interfacial energy. The crystal-crucible wall interaction leads to 

stresses in the crystal and to curvature of the solid-liquid interface: for a curved interface, the 

radial temperature gradient creates convection in the liquid which determines chemical 

segregation, and creates thermo-elastic stresses in the solid which determine defects, dislocations 

and grains. For these reasons those growth methods are preferred which does not use a crucible 

and allow obtaining the crystal with minimal defects. Techniques of crystal lateral surface 

shaping without contact with container wall are preferred: Czochralski, Floating-zone, Edge-

defined film-fed growth, Dewetted Bridgman. The absence of contact between the crystallizing 

substance and crucible walls allows improving crystal structures and decreasing the mechanical 

stress level.  

The II-VI compound semiconductors are technologically important as γ , X- ray and IR 

detectors. They are obtained typically by horizontal or vertical Bridgman crystal growth 

techniques. They cannot be obtained by the Czochralski or Floating-zone techniques because 

they cannot accept the relatively high thermal gradients involved in these processes. The 

classical Bridgman method involves heating a polycrystalline material above its melting point in 

a crucible and slowly cooling it from one colder end where an unmolten seed crystal is located 

(Figure 1.1(a)). Single crystal material is progressively formed along the length of the crucible. 

This method has the advantage of being simple on the technological point a view. The thermal 

gradients and the solid-liquid interface curvature can be easily adjusted by changing the 

temperatures at the ends of the sample. The disadvantage of this technique is that the crystal 

contacts the crucible wall, which generally results in increasing the mechanical stresses, impurity 

level, and defect density in the grown crystals. In order to manufacture high quality devices, the 
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semiconductors should have prescribed properties, which cannot be currently obtained with the 

classical Bridgman method. This disadvantage can, however, be overcome by the dewetting 

solidification technique. 

 

1.1. Definition and experimental studies of Dewetting 

 

The phenomenon of dewetting is characterized by the Bridgman growth of a crystal without 

contact with the crucible walls due to the existence of a liquid meniscus at the level of the solid-

liquid interface which creates a gap between the grown crystal and the inner crucible walls 

(Figure 1.1(b)). 

 

Figure 1.1 Schematic Bridgman (a), Dewetted Bridgman (b) crystal growth systems, and 

 photograph of a GaSb ingot showing attached and detached regions [Sylla 2008-2] (c) 

 

The dewetted Bridgman represents an exciting recent development for the growth of bulk 

single-crystals from the melt. One of the immediate consequences of this phenomenon is the 
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drastic improvement of the crystal quality. This improvement is essentially related to the absence 

of the interaction between the inner crucible wall and the grown crystal, so that no grain or twin 

spurious nucleation can occur (Fig. 1.2) and no differential dilatation stresses exist, which could 

generate dislocations (see Fig.1.3).  

 

Figure 1.2 CdTe sample processed with improved thermal conditions [Chevalier 2004]. 

The cleavage plane shows that a single crystal has been grown. 

 

 

Figure 1.3 Micrograph from the (a) detached-grown Ge crystals grown in pBN crucible and (b) 

attached-grown Ge crystals [Schweizer 2002-1]. The Etch Pit Dislocation density (EPD) is 

decreased by two orders of magnitude. 

 

This dewetting phenomenon was observed for the first time during space experiments of 

Bridgman solidification performed in Skylab-NASA mission-1973 [Witt 1975] and later in many 

experiments carried out in orbiting spacecraft on a wide variety of materials [Duffar 2004]. This 
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phenomenon was explained in the nineties by the Moving Meniscus Model (also called 

dewetting) in the case of rough crucibles [Duffar 1990] and later smooth crucibles [Duffar 1997]. 

This was confirmed through several experiments in Space [Duffar 1995, 1996, 1998].  Later it 

was proven that dewetting can be obtained on the Earth [Duffar 2000]. 

In the existent publications terms as “detached solidification”, “dewetted growth”, “detachment 

or dewetting” are used, but it must be emphasized that they refer to the same physical 

phenomenon that is defined and applied according to the criteria given in [Duffar 2010]: 

� the material studied are pure, doped or compounds semiconductors; 

� the growth procedure is based on the classical Bridgman technique; 

� the existence of a narrow and constant gap (a few micrometers) along several 

millimeters or centimeters should be achieved; 

� the crystal surface morphology is different from that of the crucible walls. 

Owing to these criteria, other material (metals) or the occurence of voids, bubbles or other 

specific contactless morphologies, are not taken in consideration. 

 

Dewetting in zero gravity condition 

 

The first detailed review of the detached solidification process under microgravity condition was 

published in 1998, [Wilcox 1998]. The experimental results were exposed with respect to the 

observation of reduced contact between the grown crystal and the crucible wall, and the 

influence of the detachment on the crystallographic perfection and the compositional 

homogeneity. In 2004, Duffar also published a general review that includes the study of the 

crystal-crucible adhesion, the dewetting of III-V and II-VI materials, the transport and 

segregation phenomena under microgravity condition [Duffar 2004]. 

The existence of the crystal-crucible gap, when dewetting has occurred, was clearly 

proved after solidification process by the easy removal of the crystals from the crucible. Even a 

gap thickness of a few micrometers can provide this fact.  

It was observed that most of the semiconductor crystals grown under microgravity conditions 

were characterized by the presence of microscopic irregularities, named ridges, when they grew 
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partially detached from rough or smooth crucibles [Witt, 1975]. After the analysis of crystals 

grown onboard Skylab IV [Witt, 1978] it was concluded that surface ridges appear when the 

crystal diameter increases and approaches the value of the internal diameter of the crucible. It is 

considered that the ridges result from a “partial” dewetting because in this case the detachment is 

local. In Figure 1.4 a typical ridge pattern on a crystal surface can be observed easily by the 

valleys formed on the surface that shows a local detachment. The shiny smooth surface shows 

places where the crystal was in contact with the crucible wall [Ostrogorsky 2009]. 

 

Figure 1.4 Picture of the surface of an InSb:Te ingot solidified on board the International Space 

Station during the SUBSA mission [Ostrogorsky 2009].  

 

On the surface of space-grown crystals and, commonly, in non-confined growth conditions such 

as in the Czochralski technique, the formation of peripheral facets is also observed. Faceted free 

surfaces changed the crystal shape and result from anisotropy effects due to crystallography of 

these samples. The presence of ridges and facets is obviously an indication of contactless growth 

conditions.  

 In [Duhanian 1997] the effect of the crystal-crucible interactions leading to dewetting 

during the LMS-AGHF-ESA8 mission onboard Spacelab has been studied. A pseudo-binary 

GaSb-InSb semiconductor crystal was grown in a crucible made of two different parts, one from 

silica and the other one from boron nitride (BN). The crystal surface showed ridges and facets on 

the BN side. What must be emphasized here are the influence of the melt-crucible contact angle 

and the first quantification of a constant crystal-crucible gap value along several centimeters due 
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to the dewetting occurrence. The contact angle of GaSb-InSb melt on BN is higher than on silica, 

respectively 135° and 120° [Harter 1993]. Dewetting occurred obviously only within the BN 

crucible. Therefore, a higher value of the melt contact angle enhances the dewetting occurrence. 

A gap 70 µm thick was remarkably constant along 4 cm in the BN part. This shows that the 

dewetting phenomenon is self-stabilizing. 

 

Figure 1.5 (a) Surface morphology of a GaSb-InSb polycrystal grown during the LMS-AGHF-

ESA8 mission. (b) Corresponding measurement of the surface profile [Duhanian 1997]. 

 

In a large number of microgravity experiments, the crystal surfaces were characterized by a dark 

and dull layer that is assumed to be an oxide layer and therefore, the chemical pollution in the 

growth environment is suspected to participate to the dewetting phenomenon. 

It must be emphasized that dewetting never occurred if the melt underwent an overpressure by a 

spring within a closed crucible. It was also shown that neither pressure difference nor the growth 

rate magnitudes have an effect on the dewetting phenomenon in microgravity [Duffar 2001-2]. 

It can be concluded that the main identified parameters that lead to the dewetting under 

microgravity conditions are the crucible roughness, the crucible material, the wetting properties 

of the melt and the chemical pollution. Apparently, the profile roughness (if any) should be 

sharp, the crucible material non adherent and the contact angle of the melt on the crucible high. 

In the case of semiconductor growth only, it is also expected that the growth angle, which is 

large for these materials, has an important role in the phenomenon. It is also important to 

underline that the dewetting is intrinsically stable, with the apparition of a constant crystal-

crucible gap along several centimeters. 
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Dewetting in normal terrestrial gravity 

 

The phenomenon of dewetting was later reproduced in normal terrestrial gravity [Duffar 2000, 

2001] with also an improvement of the crystal quality. On the ground the dewetting has been 

obtained by introducing gas pressures at the hot ( )hP  and cold ( )cP  parts of the sample with the 

aim to counteract the hydrostatic pressure and detach the solid away from the crucible wall. This 

method reproduces artificially the effect of microgravity condition. Different methods were 

developed to obtain effectively the dewetting in normal gravity. 

In the first method (Fig. 1.6 a) the pressure difference is applied using an accurate external 

controller that is connected to the two closed gas volumes at the ends of the sample. Fig. 1.6 b 

presents the second method that is similar to the first one; the external differential pressure 

system being more sophisticated and consists of differential and absolute pressure gauges with a 

vacuum/backfilling gas system, connected to both closed gas volumes separated by the melt. The 

third method (Fig. 1.6 c) aims to manipulate the thermal field inside the furnace or the closed 

crucible to decrease the hot pressure or increase the cold pressure. When the temperature is 

decreased in the hot part or increased in the cold part of the sample, the liquid is pushed away 

from the inner crucible wall. Controlling the pressure difference across the meniscus appeared to 

be a very effective way to produce the dewetting under normal gravity condition. 

 



14 

 

Figure 1.6 Vertical Bridgman configuration on the ground with different methods to control the 

pressure difference across the meniscus: (a) use of an external pressure controller [Duffar, 2000]; 

(b) pressure gauges with a vacuum/backfilling gas system [Palosz 2005]; (c) manipulating the 

thermal field inside the furnace or the closed crucible [Duffar, 2001-3]. 

 

Recent experiments performed by Sylla [Sylla 2008-2] permitted to validate a number of 

hypotheses, including the existence of the liquid meniscus (Fig. 1.7), at the level of the solid-

liquid interface, and its control by manipulating the gas pressure in the crucible (Fig. 1.6 c) 

which generally leads to the apparition of a constant gap thickness between the solid crystal and 

the inner crucible walls. 

 

Figure 1.7 Picture of experimental meniscus taken during dewetting experiments of GaSb in 

silica tube [Sylla 2008-2]. 

 

One of the important characteristics of dewetting in normal gravity is the self-stabilizing 

gas pressure difference: it was observed that, once the process has begun, it is no more necessary 

to adjust the pressure difference. As the hydrostatic pressure decreases during the growth, the 

pressure at the bottom decreases, or the pressure at the top increases, such that the liquid 

meniscus remains unchanged all along the growth [Sylla 2008, Duffar 2010]. The mechanism is 

not totally understood yet, but some observations permitted to see gas passing upwards between 

the liquid and the crucible, looking like a small gas layer rather than a gas bubble [Sylla 2008, 

Duffar 2010]. Hence, in practice, dewetting in terrestrial condition can be controlled by 
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monitoring the gas pressure in the crucible, and the applied pressure difference should be of the 

order of the hydrostatic pressure. 

Duffar and Sylla concluded in [Duffar 2010] that the main parameters identified to 

enhance the dewetting occurrence, under normal gravity conditions, are the following: the 

crucible material and the wetting properties of the melt, the value of the applied pressure 

difference across the meniscus, the sample and growth procedure, the growth atmosphere and 

polluting gases such as oxygen, growth velocity, surface morphology and the interface shape. 

Sessile drop measurements [Harter 1993] have shown that the values of the contact angle of the 

III-V, II-VI and Ge materials increase respectively with the following crucible materials: SiO2, 

C, BN and p-BN. Therefore, the experiments carried out on the ground using p-BN crucible 

material led to the dewetting. Values of the apparent contact angle, higher than 170° were 

measured by Kaiser [Kaiser 2001] for Ge on p-BN. Single crystals of CdTe, Ge, Ge1-xSix, GaSb 

and InSb were grown thanks to a total dewetting.  

 Another critical wetting parameter is the growth angle that corresponds to the contact 

angle of a melt on its own solid under dynamic growth condition (see [Eustathopoulos 2010]). 

The growth angle, eα , defines the point, on the meniscus line, where the meniscus joins the solid-

liquid interface (see Fig. 1.8). The growth angle is a thermodynamic parameter of the material 

and values for semiconductors are between 7° and 30° (cf. [Eustathopoulos 2010]). 

 

Figure 1.8 Schematic representation of the growth angle. 

 

 The growth atmosphere is a critical factor in the crystal growth process since its 

interaction with the solid and liquid phases influences the melt properties (wetting and growth 

angles) and the stoichiometry of the grown crystals. The purity of the growth atmosphere is 

another critical parameter. Some experiments performed under normal gravity conditions proved 

the involvement of oxygen activity in enhancing the dewetting process [Duffar 2000; Balikci 
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2004; Sylla 2008-1]. During the growth of Ge in graphite crucibles under various Ar atmosphere 

and gas flows ([Balikci 2004]) it was clearly reported non adhesion (or dewetting) under 

oxidizing conditions and attachment under high Ar flow rate, when oxidation was unlikely to 

occur.  

The experiments performed by Sylla [Sylla 2008-2] showed that the presence of small or 

important amounts of oxygen promoted dewetting in the GaSb-SiO2 system. The thermodynamic 

equilibrium analysis of the chemical compounds likely to exist in the quaternary Ga-Sb-Si-O 

system concluded that the gallium oxide acting as a layer on the meniscus increases the apparent 

contact angle and promotes dewetting. 

  

1.2. Theoretical models of Dewetting  

 

The different configurations leading to dewetting are presented in Figure 1.9 and their theoretical 

explanation has been proposed by Duffar and Sylla [Duffar 2010]. 
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Figure 1.9 Classification of the different configurations leading to the dewetted Bridgman 

process. 

 

Their classification is firstly based on the nature of the crucible that forms two groups: crucibles 

with a macroscopic roughness and smooth crucibles. This latter group is subdivided into two 

groups that are differentiated by the sum of the Young or apparent contact angle, θY or θapp, with 

the growth angle, eα , of the semiconductor. The notations 1g and 0g =  refer to the presence or 

absence of the gravitational acceleration (i.e. experiments on the Earth or in Space). All models 

are based on the idea of Zemskov who postulated the existence of a liquid meniscus between the 

solid-liquid interface and the crucible in order to explain the decrease of crystal diameter that he 

observed after a space experiment [Zemskov 1983].  

 

Model 1: Rough crucibles 

In this model the explanation of dewetting involves the concepts of roughness, wetting angle and 

growth angle and was developed in [Duffar 1990]. 

 

Figure 1.10 Composite wetting in the case of sharp roughness [Duffar 1990]. 

 

 Dewetting can occur when the necessary condition of composite wetting is satisfied 

between the melt and the crucible roughness, i.e. when the cavities of the rough crucible surface 

are not penetrated by the melt. Figure 1.10 shows this wetting behavior where the roughness is 

simulated by a saw-tooth curve (sharp peaks). The radius of the liquid surface curvature, R, is 

given by the Laplace equation: 
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R
P

γ
=

∆
 

where P∆ represents the pressure difference and γ  is the surface tension. 

In normal gravity conditions, the hydrostatic pressure gives:  

l l

R
gH

γ

ρ
=  

where lρ  and lH  are respectively the density and the height of the liquid. As in microgravity the 

hydrostatic pressure is negligible, a very large radius of curvature is assumed compared to the 

characteristic roughness dimensions (R>>x) and then the liquid surface is assumed to be flat. 

Referring to Figure 1.10, the condition of composite wetting is satisfied by: 

( )2cos c

x

R
θ ε≤ − − �

where x  is the distance separating the liquid-crucible punctual contacts.  

In microgravity, due to the relative large value of R the above relation becomes: 

2
c

π
ε θ≤ − ��

In the hypothesis of a planar front solidification and a constant growth angle between the solid 

and the liquid, it was found that the solidification trajectory corresponds to the equation of an 

infinite spiral for sharp peaks in polar coordinates under microgravity as well in normal gravity 

conditions. 

 It was concluded that, once the composite wetting conditions are satisfied, detachment of 

the melt takes place regardless of the growth angle value.  

 The theoretical predictions of the model 1 are in good agreement with the results of the 

space experiments TEXUS 31 and 32, Spacelab D2 and EURECA [Duffar, 1995, 1996, 1998]. 

This configuration was not widely used on Earth because the hydrostatic pressure forces the melt 

into the crucible wall cavities. Therefore it is not considered in this work. 

 

Model 2: Contamination in a smooth crucible under microgravity 

Under microgravity conditions, the melt free surface has a convex shape, viewed from the crystal 

side, because the melt contact angle is higher than 90°. This curvature fixes the pressure inside 

the liquid and the same curvature of the liquid meniscus joining the crystal-melt-gas and the 
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crucible-melt-gas triple lines. Because of the negligible hydrostatic pressure, the meniscus is then 

convex, that imposes the geometrical condition 180c eθ α+ > ° . From sessile drop measurements 

[Harter 1993] it is known that no semiconductor has a Young contact angle higher than 150° at 

equilibrium. Moreover, the growth angle values of semiconductor melts are between 7° and 30°. 

Therefore, when the equilibrium wetting parameters are considered it is impossible to satisfy the 

geometrical configuration 180c eθ α+ > ° . The concept of this second model relies on this 

inconsistency.  

Duffar and co-authors suggested a possible effect of the chemical contamination that modifies 

the contact angle by increasing it artificially [Duffar 1997]. Therefore, analysing the space 

experimental results under microgravity conditions, they have proposed a theoretical explanation 

about the dewetting occurrence in smooth crucibles [Duffar 1997]. The major assumptions about 

model 2 are the following: i) the dewetting phenomenon results from the common formation of a 

constant crystal-crucible gap thickness, e, and a liquid meniscus joining the two triple lines 

(crucible-liquid-gas and crystal-liquid-gas); ii) both triple lines move at the same velocity during 

the contactless growth.  

 

Figure 1.11 Growth configuration under microgravity condition. 

 

 This model aims to predict the crystal-crucible gap thickness e as a function of the 

different geometrical and physical parameters. In this model, both gas volumes are connected, 

for example the crucible is opened, such that the gas pressure at the hot side is equal to the gas 
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pressure at the cold side of the sample h cP P= .  According to the Figure 1.11, the gap thickness 

is given by 

cos cos
.

cos

e c

a

c

e r
α θ

θ

+ 
=     

It appears that the gap thickness value is proportional to the crystal radius. Studying the variation 

of e as function of the wetting parameters cθ  and eα  for a GaSb crystal, the authors assumed 

that the dewetting of a crystal in an open crucible, in microgravity, is possible only when the 

contact angle is artificially increased. In order to explain the dewetting occurrence under these 

specific conditions, they suggested that the chemical pollution is the source of increased cθ . 

 

Model 3: Pressure difference in a smooth crucible 

Case 0g =  

Considering the configuration schematized in Fig. 1.11, where the gas free volumes are 

disconnected, i.e. h cP P≠ , where hP  is the gas pressure at the hot side and cP  the gas pressure at 

the cold (crystal) side, the following expression of the gap thickness [Duffar 1997] was obtained: 
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 Studying the variation of the pressure difference ( )h cP P−  for a given gap thickness in 

the case of an 11 mm diameter GaSb crystal under microgravity, the authors obtained a concave 

meniscus (viewed from the grown crystal side) when 180c eθ α+ < °  and the gap thickness 

increases when the pressure cP  decreases. In the case 180c eθ α+ > °  they found that the 

meniscus is convex (viewed from the grown crystal side) and the gap thickness increases with 

increasing ( )h cP P− . 

There was found a region of intermediate ( )h cP P−  values that is characteristic of a convexo-

concave meniscus. The meniscus adopts an “S” shape (Figure 1.12). The value of e decreases 

drastically with increasing ( )h cP P− , for a given cθ . 



21 

 

 

Figure 1.12 Meniscus shapes during dewetting in a smooth crucible with different values of 

( )h cP P−  and c eθ α+ .  

 

 It was concluded that the dewetting in the case 180c eθ α+ < °  imposes increasing the gas 

pressure at the cold side cP  (negative values of ( )h cP P− ) in order to obtain values of the gap 

thickness comparable to those measured experimentally (e<100 µm). When 180c eθ α+ > °  

(model 1), the pressure difference must be equal to the hydrostatic pressure or slightly larger. 

Therefore, when the pressure difference is not controlled, dewetting occurs more easily with a 

high contact angle. 

Case 0g ≠  

In normal gravity condition, different methods have been used experimentally in order to 

counterbalance the hydrostatic pressure and create a stable meniscus. 

 Duffar and co-authors [Duffar 2000] have calculated the meniscus shape by solving 

numerically the Laplace differential equation representative of the dewetting phenomenon on the 

ground. The calculations performed for InSb crystals showed that the absolute calculated 

pressure difference ( )h cP P−  is very close to the value of the hydrostatic pressure. 

 Later, Palosz and co-authors have also used this model in order to explain the dewetting 

of Ge in SiO2, BN and p-BN crucibles [Palosz 2005]. The experimental results are in good 

agreement with the model. 
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Model 4: Residual Gases: “Detached” Growth 

Wilcox and co-workers [Wilcox 1995] have introduced another model that involves also the gas 

pressures as the previous model, but it further assumes that the excess pressure at the cold side is 

coming from the residual gases present in the crucible. Their explanation is based on the release 

of dissolved gas between the crucible and the sample at the level of the solid-liquid interface. 

This configuration has been named “detached solidification”. 

This model is based on physical parameters (segregation, diffusion and Henry coefficients of 

gases in semiconductors) that are unknown. When approximated values are used, this gives 

always too large crystal-crucible gap thicknesses and a dependence on the growth rate that is not 

in agreement with the experimental observations. This model can be applied only to closed 

crucibles and then cannot explain the results obtained in open crucibles, where the gas pressures 

are equal on both sides of the sample. Considering its specificity and weaknesses, it will not be 

considered in this work. 

 The main conclusion concerning the theoretical models is that all existing models involve 

a liquid meniscus joining the solid-liquid interface to a liquid-crucible triple line, with an equal 

velocity of both triple lines. As the liquid meniscus remained hypothetical until the experimental 

results obtained by Sylla [Sylla 2008-2], it is now accepted that dewetting is linked to the 

existence of the liquid meniscus.  

On the basis of the theoretical physical models 2 and 3 it is possible to use mathematical tools in 

order to better understand and analyse the dewetted Bridgman process. In the literature there are 

two kinds of mathematical description of the dewetted Bridgman growth process: 

(i). One is originated from Tatartchenko’s work on shaped crystal growth process 

[Tatartchenko 1993], and consists in finding and analysing a simplified autonomous 

nonlinear system of differential equations describing the evolution of the crystal radius, 

crystallization-front level and possibly other process parameters (see [Duffar 1997, 2000; 

Bizet 2004; Fiederle 2004-1; Palosz 2005; Balint 2008-2; Braescu 2008]). The advantage 

of such modelling is that the number of the model variables is reduced (often two, the 

crystal radius and the crystallization front position) and the mathematical apparatus 

which treats the system of differential equations satisfied by these variables is well-

developed (there are general theorems of existence, uniqueness, dependence on the 
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parameter and initial conditions, stability and schemes for the numerical approximation 

of the solutions). The drawback of this modelling is that it does not give information 

about the possible flows that occur in the melt, the shape of the crystallization front and 

the dopant repartition. 

(ii). The other type of mathematical description is originated from the Bridgman growth 

analysis initiated by R.A. Brown [Chang 1983; Adornato 1987] and it consists in finding 

the numerical solution of the nonlinear system of partial differential equations including 

fluid-flow, heat and mass transport, and meniscus shape, in order to be able to simulate 

the dynamics of the dewetted Bridgman process for testing mechanical instabilities (see 

for example [Stelian 2009-1, 2009-2]). The advantage of this modelling is that it offers 

also information about the possible flows which appear in the melt, about the 

crystallization front shape and the dopant repartition. The major drawback of this 

modelling is linked to the fact that for the system of nonlinear partial differential 

equations and the free boundary conditions (which must be satisfied by the model 

variables) there are no general theorems concerning the existence, the uniqueness, the 

dependence on the parameter and the initial conditions, the stability of the solution. For 

this reason the legitimacy of the numerical results, obtained by different numerical 

schemes used for solving these problems, becomes questionable.   

In this thesis both approaches and other mathematical tools will be used. 

 

1.3. Stability analysis of Dewetted Bridgman: state of the art 

 

As it was already explained in the previous section, the occurrence of the dewetting phenomenon 

is due to the existence of a liquid meniscus at the level of the solid-liquid interface. If there exists 

a meniscus such that its total free energy is minimum, then the meniscus is called statically stable 

(i.e., the meniscus is kept in equilibrium for any small perturbations occurring in the system 

[Braescu 2010-1]). 

 Dynamic stability is one of the most important parameters necessary for a successful and 

easy growth. Stability is necessary to achieve consistency, repeatability and uniformity - the keys 

to successful crystal growth in the laboratory and in industrial production.  
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It must be emphasized here that the dewetted growth process is stable only when both, static 

stability and dynamic stability are verified. 

 Recently, in [Braescu 2009-1, 2010-1] static stability of the menisci was investigated for 

crystals grown by dewetted Bridgman method in uncoated crucibles, and coated crucibles or 

pollution, via the conjugate point criterion of the calculus of variations. The main conclusion of 

this work consists in gap thickness limitations for which the menisci are statically stable. The 

mathematical and numerical investigations developed for InSb crystals grown in terrestrial 

conditions in uncoated crucible, showed that concave menisci (seen from the gas side) are 

statically stable and, for Ge crystals grown in pBN sleeve, globally convex and concave-convex 

menisci are statically stable.  

The existing dynamic stability analysis of dewetting, as for all other capillary-based 

growth processes, is based on Tatartchenko’s work [Tatartchenko 1993]. The objective of the 

analysis is to establish the necessary operating conditions in order to get a stable dewetting, i.e. a 

stable crystal diameter, or gap thickness when small perturbations occur during the solidification 

process. 

A first study of the stability of dewetted Bridgman process under zero gravity conditions 

was based on simple geometrical assumptions and only the capillary effects were taken into 

account [Duffar 1997]. A very important hypothesis in this study was that the growth angle is a 

constant fixed by thermodynamic and then, the only point to take into account is the concavity or 

the convexity of the meniscus at the triple line with the solid-liquid interface.  

In the same publication, the effect of pressure fluctuations on growth stability has also been 

studied under microgravity conditions. The authors have first considered the simple case where 

the pressure fluctuations are related to fluctuations of the gas volume by the ideal gas law. It 

follows that such fluctuations are not likely to destabilize a stable dewetting, however the 

analysis is simplified and further studies are necessary to ascertain this point.  

A contribution to the stability analysis of the dewetting process [Bizet 2004] has been 

developed by taking into account both geometrical and thermal effects. This study was done also 

using the Lyapunov’s method in the case of an open smooth crucible configuration under 

microgravity conditions, with the hypothesis that the liquid-crucible triple line of the meniscus is 

anchored by some hysteresis wetting. The study is restricted to the cases where an analytical 
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solution exists under various thermal boundary conditions. It has been shown that in the case of a 

sample without lateral thermal exchange the system is always stable on the geometrical and heat 

transfer point of view. In the approximation of a solid laterally insulated from its surrounding 

(for example by the gap caused by dewetting from the crucible) it was shown that thermal 

exchange through the liquid lateral surface does not change significantly the conclusion: if the 

liquid is long enough (semi-infinite) the system is always stable and if the liquid is of finite 

length with an imposed temperature at the top, stable solutions may exist. 

Following this analysis, it appears that under microgravity conditions, there is only one variable 

parameter, the gap thickness, because the heat transfer cannot change the pressure in the 

meniscus (or only very marginally through modification of capillary parameters: melt surface 

tension,γ , and contact angle, cθ ) and then has no effect on the meniscus shape and then on the 

gap. Therefore only one equation is needed, which is Young-Laplace’s equation. 

 Later, in [Duffar 2000] the capillary stability problem in normal gravity conditions was 

partly studied numerically, by solving Young-Laplace’s equation when changing the parameters 

of the problem. The principle is identical to that used for microgravity conditions and based on 

Lyapunov’s method giving the stability criterion on the sign of the meniscus curvature. The 

calculations obtained by the authors allowed plotting a diagram giving the pressure difference 

values as a function of the crucible radius, that furthermore fulfill the capillarity stability criteria 

of the meniscus (Fig.1.13). In the case of an InSb crystal, the absolute calculated pressure 

difference ( )h cP P−  is very close to the value of the hydrostatic pressure. 
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Figure 1.13 Stability diagram for the growth of InSb crystals in a silica crucible [Duffar 2000]. 

 

 However the capillary stability presented here is only a particular case of the dynamic 

stability and further studies are needed in order to fully solve the stability problem in dewetting, 

especially on the Earth where it is of practical interest, and find, for all configurations, which are 

the stable conditions for dewetting phenomenon. 

 

1.4. Objectives and organization of the thesis 

 

The experimental observations under microgravity conditions have shown that the dewetting 

phenomenon is intrinsically stable with the formation of a constant crystal-crucible gap along 

several centimetres due to the existence of a moving liquid meniscus linking the crucible-melt-

gas and crystal-melt-gas triple points. The main identified parameters that lead to this 

phenomenon are the crucible material, the crucible roughness, the wetting properties of the melt 

and the chemical pollution.  

 Also, the experiments performed under normal gravity conditions confirmed the 

existence of the liquid meniscus and its control by manipulating the gas pressure in the crucible 
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which generally leads to the apparition of a constant gap thickness between the grown crystal 

and the inner crucible walls. �

 As one of the immediate consequences of the dewetting phenomenon is the drastic 

improvement of the crystal quality, by this thesis work we want to give answers to the following 

questions: 

- What is the crystal-crucible gap thickness, therefore the crystal radius? 

- What is the shape of the liquid meniscus? This shape being related to the stability of 

the process. 

- What is the influence of each process parameter on the stability of the growth 

process?  

- What are the optimal process parameters able to control the crystal diameter? 

 Therefore, in order to bring crucial information concerning dewetted phenomenon, 

detailed theoretical results and numerical simulations are necessary, on the basis of the 

mathematical models able to reflect better the real phenomena which should include all essential 

processes appearing during the growth. The phenomenon complexity (which implies 

mathematical, computational, physical and chemical knowledge) emphases the needs of more 

theoretical explanations, careful comparisons between the theoretical and computational 

information with results extracted from experiments, and following feedback of the experimental 

data to identify the experimental set-up in terrestrial condition and the optimal process 

parameters. Moreover, the theoretical studies are essential into more exploitation of the 

experiments performed under microgravity conditions. 

The main problem of the dewetting growth and the related improvements of the material 

quality is the stability of the growth process. Even if extensive work on the stability of the 

phenomenon was done by Duffar et al. and Wilcox et al., further work must be done in the 

important area of theoretical study of perturbation effect on the stability. 

 In this context, the main purpose of the present work is to perform analytical and 

numerical studies for capillarity, heat transfer and stability problems of the dewetted Bridgman 

process. For the calculation of the meniscus shape, its surface ( ),z z x y=  will be given by the 

Young-Laplace equation describing the equilibrium under pressure. This equation will be 

transformed in a nonlinear system of differential equations. From qualitative and numerical 
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studies of the solution, the dependence of the meniscus shape (convex, concave, convex-

concave) on the pressure difference and other parameters of the process will be determined. For 

studying the dynamic stability of the system, the crystal-crucible gap thickness and the solid-

liquid interface position are variables of the problem and hence two equations will be needed, 

namely the Young-Laplace equation and the heat balance at the solid-liquid interface. 

Therefore, the present work is organized as follows: 

Recent contributions to the modelling of some capillarity problems are presented in the 

second chapter, starting with the mathematical formulation of the capillary problem governed by 

the Young-Laplace equation. Analytical and numerical studies for the meniscus equation are 

developed for the cases of zero and normal terrestrial gravity. 

The third chapter deals with contributions to the modeling of heat transfer problems. 

Thus, analytical and numerical studies for the non-stationary one-dimensional heat transfer 

equation are performed in order to find analytical expressions of the temperature distribution and 

the temperature gradients in the melt and in the solid. The melt-solid interface displacement 

equation is also derived from the thermal energy balance at the level of the interface.  

Further, the effect of the crystal-crucible gap on the curvature of the solid-liquid interface 

is studied for a set of non-dimensional parameters representative of classical semiconductor 

crystal growth. An analytical expression for the interface deflection, based on simple heat flux 

arguments is reported. In order to check the accuracy of the obtained analytical formula and to 

identify its limits of validity, the heat transfer equation is solved numerically in a 2D axial 

symmetry, stationary case, using the finite elements code COMSOL Multiphysics 3.3. 

The last chapter is fully dedicated to the stability analysis. First, different concepts of 

Lyapunov stability which can occur in shaped crystal growth: classical, uniform, asymptotic, and 

exponential Lyapunov stabilities of a steady-state; partial Lyapunov stability of a steady-state; 

and the same types of Lyapunov stabilities for time-dependent regimes, are presented. In what 

follows, after the introduction of the concept of practical stability over a bounded time period, 

analytical and numerical investigations of the practical stability over a bounded time period of 

the nonlinear system of differential equations describing the melt-solid interface displacement 

and the gap thickness evolution for dewetted Bridgman crystals grown in terrestrial conditions 

are developed. 
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Finally, the general conclusions and perspectives of this work are exposed. 

 All the numerical computations will be made for the case of the semiconductors InSb or 

GaSb whose thermophysical properties are given in Table 1.1. 

  Material 

Thermophysical properties InSb GaSb 

Melting point Tm (K) 800 979 

Latent heat of solidification Λ (J·kg
-1

) 2.01·10
5 

3.14·10
5 

Thermal conductivity in liquid λl (W·m
-1

·K
-1

) 9.23 10.24 

Thermal conductivity in solid λs (W·m
-1

·K
-1

) 4.57 6.43 

Specific heat in the liquid cl  (J·kg
-1

·K
-1

) 263 330 

Specific heat in the solid cs  (J·kg
-1

·K
-1

) 260 304 

Density of the liquid ρl (kg·m
-3

) 6.47·10
3
 6.06·10

3
 

Density of the solid ρs (kg·m
-3

) 5.76·10
3
 5.60·10

3
 

Surface tension γ (N·m
-1

) 0.42 0.45 

Young contact angle θc on SiO2 (degrees) 112 121 

Young contact angle θc on BN (degrees) 134 132 

Growth angle αe (degrees) 25 31 

Length of the liquid and solid Ha (m) 8·10
-2

 

Seed length L0 2·10
-2

 

SiO2 Ampoule radius ra (m) 5.5·10
-3

 

  

Table 1.1 Thermophysical properties of InSb and GaSb and other input parameters used in all 

numerical simulations of this thesis 
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CHAPTER 2: Modeling of capillarity problems in dewetted 

Bridgman process�

In the first chapter it has been explained that the dewetted Bridgman process is one of the crystal 

growth processes based on capillarity. Acting on the small liquid meniscus that joins the liquid 

surface in the crucible to the solid crystal side, capillarity has an important role in the problem of 

crystal diameter control. 

Therefore, the first section of this chapter deals with a mathematical formulation of the 

capillarity problem governed by the Young-Laplace equation that relates the pressure inside and 

outside the liquid to the normal curvature of the liquid surface, called meniscus, and then allows 

computing the shape of liquid menisci involved in the crystal growth processes. Young-

Laplace’s equation is expressed using the principal normal curvatures of a surface in order to 

avoid the discussions concerning the sign that are required when the problem is expressed using 

the radius of curvature. 

Once the mathematical formulation of the capillary problem is established, analytical and 

numerical studies for the meniscus surface equation are performed in the second section, for the 

case of dewetted Bridgman process in zero and normal gravity. In zero gravity, the analytical 

study leads to the formulas of the non-dimensional crystal-crucible gap thickness which are in 

agreement with those reported in dimensional form in [Duffar 1997].  The case of normal gravity 

involves qualitative studies for the meniscus shape using Taylor polynomial approximation, 

similar to those presented in [Balint 2008] and [Braescu 2008], and without approximation as in 

[Braescu 2009-2]. 

In the last section of this chapter a parametric study is presented in order to show the dependence 

of the crystal-crucible gap thickness on the relevant parameters of the dewetted Bridgman 

process (results published in [Epure 2010-2]).  

 

2.1. Mathematical formulation of the capillarity problem: Young-Laplace’s equation 

 

Historically, the shape of a liquid meniscus was among the first phenomena studied in capillarity 

[Hauksbee 1709]. The first formal law concerning the free surface of the meniscus was given by 

Laplace [Laplace 1806], in terms of the mean normal curvature H defined as the average of the 
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principal normal curvatures [Young 1805]. In what follows, the mean normal curvature is 

presented with the notation of [Finn 1986] and the Young-Laplace equation is given in 3D and 

2D axi-symmetric cases.  

 

2.1.1. Mean normal curvature 

 

In the case of a smooth surface S, it is known that through a point M of S, there exists a tangent 

plane, 1π , and a normal line, NM (i.e. a perpendicular line to the plane 1π ). On the normal line 

NM  there are two vectors, 1n , 2n , also known as versors, having their origin at the point M and 

opposite orientations (see Fig. 2.1), called unit normal vectors. 

 

Figure 2.1 Normal section to S at the point M and the versors 1n , 2n . 

 

If ( ),u v are coordinates in a parametric space D and (x, y, z) represents the coordinates in 3
ℝ , 

then a regular parametrization of the surface S is a 3
C - class one-to-one function 

3:r D S→ ⊂ ℝ , ( ),r r u v=  so that 0u vr r× ≠  for some open set 2
D ⊂ ℝ , where u

r
r

u

∂
=

∂
 and 
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v

r
r

v

∂
=

∂
. At the point ( )0 0,M r u v= , the tangent plane of S is spanned by ur  and vr  (evaluated 

in ( )0 0,u v ) i.e. , ,u vw r rα β α β= ⋅ + ⋅ ∈ℝ . 

For the given regular parametrization r , it is known that the cross-product (called also vector 

product) u vr r×  is a normal vector to the tangent plane. Dividing this vector by its length yields to 

one of the unit normal vector (versor) of the parametrized surface: 

 u v

u v

r r
n

r r

×
=

×
 (2.1) 

The second normal vector orthogonal to the tangent plane of S at M, is n−  . Referring to Fig. 

2.1, the versors 1n , 2n are: 

 1
u v

u v

r r
n

r r

×
=

×
 and 2

u v

u v

r r
n

r r

×
= −

×
. (2.2) 

If ( ) ( ) ( )( ),r s r u s v s=  (s - the arc length) is a curve,C , on the parametrized surface S with 

( ) ( )0 0 0,r s r u v M= = , then the tangent vector to C  at M  is the corresponding linear 

combination ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0 0 0 0 0 0, ,u vw s u s r u s v s v s r u s v s= ⋅ + ⋅ɺ ɺ . 

Considering the curve C of the intersection of S with the plane 2π , containing the normal line NM  

through the point M of S, the curvature of  C  with respect to 1n  is defined by 

 ( ) 1
1, ,

dndr
k n M

ds ds
= − ⋅C  (2.3) 

 where ( ) ( ) ( )( )1 1 ,n s n u s v s= . Because 2 1n n= − , the normal curvature with respect to 2n of the 

curve C  at the point M verifies the relation ( ) ( )2 1, , , ,k n M k n M= −C C (see [Finn 1986]). 

Introducing the following notations: 

 1 1 1 1
II II II, , , 2 ,

n n n ndu du r r r r
u v E F G

ds ds u u u v v u v v

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ 
= = = − ⋅ = − ⋅ + ⋅ = − ⋅ 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ɺ ɺ  (2.4) 

the normal curvature ( )1, ,k n MC can be written as: 

 ( )1, ,k n M =C
2 2

II II II2E u F u v G v⋅ + ⋅ ⋅ + ⋅ɺ ɺ ɺ ɺ . (2.5) 
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The normal curvature ( )1, ,k n MC can be positive or negative (it is positive when the curve is 

convex when it is seen in the direction of 1n )  but its absolute value is positive and gives the 

curvature of the curve C at the point M. 

Different planes 2π  containing the normal line NM , called normal slices intersect the surface S 

giving different curves C  which have different normal curvatures ( )1, ,k n MC . Among these 

normal curvatures at the point M, there is one which is minimal and one which is maximal, 

known as the principal normal curvatures of S corresponding to the curves 1C  and 2C , and are 

denoted by: ( )1 1, ,k n MC and ( )1 2, ,k n MC  respectively, i.e.  

( ) ( ) ( )1 1 1 1 2, , , , , ,k n M k n M k n M≤ ≤C C C  

The mean normal curvature of the surface S at the point M with respect to 1n , ( )1,n MH , is 

defined as the average of the principal normal curvatures of S: 

 ( ) ( ) ( )( )1 1 1 1 2

1
, , , , ,

2
n M k n M k n M= +H C C  (2.6) 

A formula of the mean normal curvature ( )1,n MH  with respect to 1n   can be written, using the 

elements defining the surface, as follows: 

 ( )1,n M =H

( )
I II I II I II

2
I I I

2

2

E G F F G E

E G F

⋅ − ⋅ + ⋅

⋅ −
 (2.7) 

where 
2

I uE r= , I u vF r r= ⋅ , 
2

I vG r=  are the coefficients of the first fundamental form of the 

surface S and IIE , IIF , IIG  are given by (2.4) and represent the coefficients of the second 

fundamental form of the surface S. According to [Finn 1986], for a surface given in explicit form 

(the considered parametrization is ,u x v y= = ) 

 ( )
( )

2, ,

,

x x

y y x y D

z z x y

=
= ∈ ⊂ =

ℝ  

these coefficients are given by: 

2

I 1
z

E
x

∂ 
= +  

∂  ,  I

z z
F

x y

∂ ∂
= ⋅

∂ ∂
,  

2

I 1
z

G
y

 ∂
= +  

∂  , 
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II
22

1

z

xE

z z

x y

∂

∂=

 ∂ ∂ 
+ +   

∂ ∂   
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2

II
22

1

z

x y
F

z z

x y

∂

∂ ∂
=

 ∂ ∂ 
+ +   ∂ ∂   

,  

2

2

II
22

1

z

y
G

z z

x y

∂

∂
=

 ∂ ∂ 
+ +   ∂ ∂   

, 

and hence, the mean normal curvature with respect to 1n   becomes  

 ( )

2 22 2 2

2 2

1 3
22 2

1 2 1

1
,

2

1

z z z z z z z

y x y x y xx y
n M

z z

x y

    ∂ ∂ ∂ ∂ ∂ ∂ ∂  + − + +   
∂ ∂ ∂ ∂ ∂ ∂∂ ∂       =

  ∂ ∂  + +   ∂ ∂    

H . (2.8) 

The mean normal curvature with respect to 2n  is ( ) ( )2 1, ,n M n M= −H H . 

 

2.1.2. Young-Laplace’s equation 

 

In the case of a capillary surface in equilibrium separating two regions containing fluids and 

whose shape is determined by the pressures in the two regions, Laplace [Laplace 1806] showed 

that the mean normal curvature with respect to 1n  of the free surface is proportional to the 

pressure change across the surface: 

 ( )12 ,n M⋅ =H ( )
1

i oP P
γ

−  (2.9) 

where iP  represents the pressure of the fluid in the region for which 1n  is inner normal and oP  

represents the pressure of the fluid in the region for which 1n  is outer normal (see Figure 2.2). 

The proportionality coefficient is 
1

γ
 where γ  represents the melt surface tension. 
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Figure 2.2 (a) Sessile or pendant drop; (b) External meniscus. iP  is chosen in the side of the 

curve where the normal points toward 0z > . 

 

Let’s consider the example of a gas bubble inside an incompressible ideal fluid [Frolov 2005]. 

The gas bubble can be represented as a liquid-free volume between two surfaces (see Fig. 2.3). 

The shape of the bubble is determined by the solution of (2.9). In the case of a slowly rising gas 

bubble in an incompressible ideal fluid, Eq. (2.9) can be written as: 

 - for the upper surface (Fig. 2.3 (a)): ( )1 12 ,n M⋅ =H ( )1

1
gasP P

γ
− , 

 - for the lower surface (Fig. 2.3 (b)): ( )2 12 ,n M⋅ =H ( )2

1
gasP P

γ
−  

where 1P  and 2P  are the corresponding pressures on the upper and lower surfaces of the bubble, 

respectively. The pressure gasP  denotes the gas pressure inside the bubble. In these two 

equations, 1H  and 2H  are the mean curvature of the upper and lower surfaces, respectively. 

If the bubble is small or 0g = then 1 2P P= . It follows, from the mathematical description of the 

mean normal curvature, that the curvature of the two hemispheres are equal but of opposite signs 

and the two equations are needed to describe the bubble. The physicists do not accept that two 
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equations are needed for a sole given phenomenon. They consider that the curvature of the 

bubble is constant everywhere and use only one equation. This is a matter of convention that 

very often led to misunderstandings.  

 

Figure 2.3 Geometrical representation of a gas bubble inside an incompressible fluid: (a) the 

upper surface of the bubble, (b) the lower surface of the bubble, and (c) the gas bubble.  

 

It must be noted that there exist several expressions of the Young-Laplace equations. Turning to 

relations (2.8) and  (2.9) the following equality known as Young-Laplace’s equation must hold: 

 

2 22 2 2

2 2

3
22 2

1 2 1

.

1

i o

z z z z z z z

y x y x y xx y P P

z z

x y

γ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂  + − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂      −   =

  ∂ ∂  + +   ∂ ∂    

 (2.10) 

When axi-symmetric solution are searched for the Young-Laplace equation (2.10) then, 

using cylindrical polar coordinates 

[ ]

( )

cos

sin , 0, 0, 2

x r

y r r

z z r

β

β β π

 =
= > ∈
=

 

it is obtained that these type of solutions verifies the equation 
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22

2

3
2 2

1
1

1

i o

d z dz dz

r dr drdr P P

dz

dr

γ

  
+ +    −   =

  
+     

. (2.11) 

Here the solution ( )z z r=  is sought depending on the radial coordinate. Another form of the Eq. 

(2.11) putting in evidence the principal normal curvatures is the following: 

 

2

2

3 1
2 22 2

1

1 1

i o

d z dz

P Pdr r dr

dz dz

dr dr

γ

−
+ =

      
+ +               

 (2.12) 

Here 

2

2

3
2 2

1

d z

dr

dz

dr

=

  
+     

( )1 1, ,k n MC  and 
1

2 2

1

1

dz

r dr

dz

dr

⋅
=

  
+     

( )1 2, ,k n MC .  

The most used form of the axi-symmetric Young-Laplace equation is: 

 

3
2 22 2

2

1
1 1i oP Pd z dz dz dz

dr r dr drdr γ

   −    
= + − +               

. (2.13) 

This is a nonlinear second order differential equation and for obtaining a specified solution 

( )z z r=  two conditions are needed, which, associated to Eq. (2.13), gives an Initial Value 

Problem (IVP) when these conditions are given at the same point or a Boundary Value Problem 

(BVP) when these conditions are given at different points. In general, because of its nonlinearity, 

the problem does not have an explicit (analytical) solution. For solving the IVP (or BVP) it is 

necessary to perform its qualitative analysis and to develop specific numerical tools.  

In order to make easier the analytical and numerical analysis, a dimensionless form of 

equation (2.13) is preferred. Considering a characteristic length L dimension of the problem and 

scaling: 

 ;
r z

r z
L L

= =ɶ ɶ  (2.14) 
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leads to: 

 

( )
( )

2 2

2 2

,

1 1
.

d z Ldz dz

dr d r L dr

d z d dz d dz d z

dr dr L dr dr Ldr dr

⋅
= =

⋅

   
= = =      

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ

 (2.15) 

Replacing the dimensional variables in the equation (2.13) with their non-dimensional 

equivalents (2.14) and (2.15) gives: 

 

3
2 22 2

2

1
1 1
      

= − + − +               
ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ

d z dz dz dz
La

dr r dr drdr
 (2.16) 

where   
( )o iP P L

La
γ

− ⋅
=  represents the Laplace number. 

Introducing the new unknown function ψ defined by:   

 tan
dz

dr
ψ= ±

ɶ

ɶ
 (2.17) 

equation (2.16) is transformed into the system: 

 

tan

1 1
tan

cos


= ± = ⋅ −

ɶ

ɶ

∓
ɶ ɶ

dz

dr

d
La

dr r

ψ

ψ
ψ

ψ

. (2.18) 

The initial or/and boundary conditions required for solving the axi-symmetric Young-

Laplace equation are determined by the structural features of each specific configuration. The 

features corresponding to typical boundary conditions of the capillary problem are: the catching 

and wetting boundary conditions and the growth angle achievement [Tatartchenko 2010].  
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Figure 2.4 (a) Catching condition: the contact point M is fixed and the contact angle is 

unknown; (b) Wetting condition: the contact angle 
cθ  is fixed but the contact point coordinate is 

unknown. 

 

The difference between the catching and wetting boundary conditions consists in: for the 

catching condition the contact point of the meniscus on the shaper is fixed (Fig. 2.4. (a)), but the 

contact angle (angle between the tangent to the meniscus and the tangent to the shaper surface) is 

free and is determined by the solution of the problem. On the contrary, for the wetting condition, 

the contact point can move along the shaper surface, but the contact angle (called wetting angle) 

is fixed by the shaper surface (Fig. 2.4. (b)). 

The catching boundary condition (Fig. 2.5 (a)) is used for example in the case of E.F.G. 

technique where the counter line of the meniscus surface is fixed by the internal or external edge 

counter. 

 

Figure 2.5 (a) Wettable shaper materials and (b) Non-wettable shaper materials. 
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The wetting boundary condition known also as the angle of fixation boundary condition 

(the contact angle 
cθ  is fixed but the contact point coordinate is unknown), is specific for non-

wettable shaper materials (
2

c

π
θ >  as in Fig. 2.5 (b)) as well as for wettable ones (

2
c

π
θ < ), and 

for pulling up as well as for lowering down shaped crystal growth (for more details see also 

[Tatartchenko 2010]).  

In crystal growth, once the meniscus shape is obtained (global convex, global concave, 

convexo-concave or concave-convex, see [Braescu 2008]) the growth angle criterion must be 

imposed. This growth angle condition is expressed as follows: 

2c
er r

π
ψ α

=
= −

ɶ ɶ
, 

where crɶ  represents the non-dimensional crystal radius.  

 

Even if the initial value problem of the Young-Laplace equation has a unique solution, however 

it is possible that this solution does not satisfy the condition of the growth angle achievement and 

a crystal cannot be grown. If this condition is satisfied then a crystal having a radius crɶ can be 

obtained (for more details see [Braescu 2010-2]). 

 

2.2. Analytical and numerical studies for the meniscus surface equation in the case of 

dewetted Bridgman process 

 

As it was shown in the first chapter, the pressure difference between the cold and hot sides of the 

sample determines the meniscus shape and size. Thus, for a better understanding of the dewetted 

Bridgman process, analytical and numerical studies of the axi-symmetric Young-Laplace 

equation describing the meniscus shape must be performed and the dependence of the meniscus 

shape and size on the pressure difference must be established. For this aim, we start from the 

Young-Laplace equation of a capillary surface (2.12) written in agreement with the configuration 

presented in Figure 2.6:  
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2

2

3 1
2 22 2

1

1 1

i o

d z dz

P Pdr r dr

dz dz

dr dr

γ

−
+ =

      
+ +               

. 

 

Figure 2.6 Schematic dewetted Bridgman technique. 

 

In this case, the external pressure on the surface is o cP P=   and the internal pressure applied on 

the surface, iP  is defined as: 

2
i h l a lP P gH gz

b

γ
ρ ρ= + − +  

where hP   and cP  are the gas pressures at the hot and cold sides of the sample, and b is the radius 

of curvature at the apex of the liquid. Thus Young-Laplace’s equation can be written as follows: 
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( )

2

2

3 1
2 22 2

1

2

1 1

l a

d z dz
g H z Pdr r dr

b
dz dz

dr dr

ρ

γ

⋅ − − ∆
+ = +

      
+ +               

 (2.19) 

where c hP P P∆ = −  represents the gas pressure difference between the cold and hot sides of the 

sample, Ha - the total length of the melt and solid, lρ - the density of the liquid, g - the 

gravitational acceleration,  γ - the surface tension of the melt and the term 2 b  is due to the 

curvature at the top, depending on the wetting angle cθ  and on the crucible radius ar  [Duffar 

1997]. 

For writing the Young-Laplace equation in the non-dimensional form, the following non-

dimensional numbers (obtained by using the ampoule radius ar  as length scale) are used: 

 , , , , 1a a
a a

a a a a a

H rr z b
r H z b r

r r r r r
= = = = = =ɶɶɶ ɶɶ  (2.20) 

leading to 

( )
( )

a

a

d z rdz dz

dr d r r dr

⋅
= =

⋅

ɶ ɶ

ɶ ɶ
 

2 2

2 2

1 1

a a

d z d dz d dz d z

dr dr r dr dr rdr dr

   
= = =      

ɶ ɶ

ɶ ɶ ɶ
. 

Then, the non-dimensional form of Young Laplace’s equation in the case of dewetted Bridgman 

process is: 

 ( )

2

2

3 1
2 22 2

1

2

1 1

a

d z dz

dr r dr Bo H z La
b

dz dz

dr dr

+ = − − +

      
+ +               

ɶ ɶ

ɶ ɶ ɶ ɶ ɶ
ɶ

ɶ ɶ

ɶ ɶ

. (2.21) 

where 
( ) 2

,
c h a l a

P P r gr
La Bo

ρ

γ γ

−
= = . 
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2.2.1. Analytical and numerical solutions for the meniscus equation in zero gravity 

 

Under zero gravity conditions 0Bo =  and then, the non-dimensional Young-Laplace equation 

(2.21) becomes: 

 

2

2

3 1
2 22 2

1

2cos

1 1

c

d z dz

dr r dr La

dz dz

dr dr

θ+ = − −

      
+ +               

ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

 (2.22) 

where the term ( )2 cos cθ− ⋅  is due to the curvature at the top (
1

cos c
b

θ= −
ɶ

 [Duffar 1997]). 

The solution ( )z z r= ɶɶ ɶ  of (2.22) represents the meniscus surface if it satisfies the wetting 

boundary condition: 

 ( ) ( )1 ; 1 tan ; ,
2 2

c c

dz
z l h

dr

π π
θ θ π
   

= + = − ∈      
ɶ

ɶ ɶɶ
ɶ

 (2.23) 

where 0
a

h
h

r
= >ɶ , 0

a

l
l

r
= >ɶ  are the non-dimensional meniscus height, crystallization front 

respectively ( 0l l>ɶ ɶ , 0
0 0

a

l
l

r
= >ɶ - the crystallization front at the beginning of the solidification 

process). 

A crystal of radius crɶ  is obtained by the dewetted Bridgman method, if the condition of the 

growth angle achievement is satisfied: 

 ( ) ( ); tan .
2

c c e

dz
z r l r

dr

π
α

 
= = −  

ɶ
ɶɶ ɶɶ

ɶ
 (2.24) 

For the determination of the meniscus equation we remark that Eq. (2.22) can be written as 

( )

22

2

3
2 2

1

2cos

1

c

d z dz dz
r

dr drdr
La r

dz

dr

θ

  
+ +      = − +

  
+     

ɶ ɶ ɶ
ɶ

ɶ ɶɶ

ɶ

ɶ

ɶ

 

that is equivalent to 
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( )
2

2cos

1

c

dz
r

d dr La r
dr dz

dr

θ

   
= − +   

+     

ɶ
ɶ

ɶ
ɶ

ɶ
ɶ

ɶ

 

i.e., by integration  

( )
2

1
2

2cos
2

1

c

dz
r

rdr La c

dz

dr

θ= − + +

 
+   

ɶ
ɶ

ɶɶ

ɶ

ɶ

. 

The constant 1c  is determined from the boundary condition ( )1 tan
2

c

dz

dr

π
θ
 

= −  
ɶ

ɶ
 leading to: 

 ( )
2

2
2cos

2 2
1

c

dz
r

r Ladr La

dz

dr

θ= − + +

 
+   

ɶ
ɶ

ɶɶ

ɶ

ɶ

. (2.25) 

Because 
2

0

1

r

dz

dr

>

 
+   

ɶ

ɶ

ɶ

, the sign of the derivative 
dz

dr

ɶ

ɶ
 depends on the sign of the right hand 

side of Eq. (2.25):  

 ( )
2

( , ) 2cos
2 2

c

r La
E r La La θ= − + +

ɶ
ɶ . (2.26) 

Therefore, the following cases can exist: 

a) ( , ) 0E r La >ɶ  and 0
dz

dr
>

ɶ

ɶ
 for:  a1) ( );0La ∈ −∞  and ;1

2cos c

La
r

La θ

 
∈  + 
ɶ   

or   a2) [ )0,La ∈ ∞  and ( )0;1r ∈ɶ ; 

b) ( , ) 0E r La <ɶ  and 0
dz

dr
<

ɶ

ɶ
 for ( );0La ∈ −∞  and 0;

2cos c

La
r

La θ

 
∈  + 
ɶ . 

Imposing to have the same sign for both sides of the relation (2.25), by squaring, gives: 
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2
2 2

2

2
2 2 2

cos
2 2

cos
2 2

c

c

La La
r r

dz

dr La La
r r r

θ

θ

 
− − +    =    

− − − +  

ɶ ɶ
ɶ

ɶ
ɶ ɶ ɶ

 

from where is obtained 

( )

2 2

2
2 2 2

cos
2 2

cos
2 2

c

c

La La
r r

dz
r

dr La La
r r r

θ

θ

− − +
= ±

 
− − − +  

ɶ ɶ
ɶ

ɶ
ɶ

ɶ ɶ ɶ

 

According to (a) and (b), ( , )E r Laɶ  and 
dz

dr

ɶ

ɶ
 have the same sign and hence only the equality 

 ( )

2 2

2
2 2 2

cos
2 2

cos
2 2

c

c

La La
r r

dz
r

dr La La
r r r

θ

θ

− − +
=

 
− − − +  

ɶ ɶ
ɶ

ɶ
ɶ

ɶ ɶ ɶ

. (2.27) 

is valid. 

The analytical expression of the meniscus can be obtained integrating relation (2.27) and 

imposing the boundary condition (2.23). As the integral can be expressed using elementary 

functions in some particular cases only, further two different cases will be treated separately: 

0La =  and 0La ≠ . 

Case I: 0La =  

On the physical point of view, this means that there is a connection between the cold and hot 

sides of the sample, so that the pressures cP  and hP  are equal. 

In this case equality (2.25) becomes: 

2

2
cos

1

c

dz
r

dr r

dz

dr

θ= −

 
+   

ɶ
ɶ

ɶ
ɶ

ɶ

ɶ

. 

As 2 cos 0cr θ− >ɶ  we get 

 ( )
( )

2

2
2 2

cos

cos

c

c

rdz
r

dr
r r

θ

θ

−
=

−

ɶɶ
ɶ

ɶ
ɶ ɶ

 (2.28) 
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which by integration gives 

 ( ) 2 2
2

1
1 cos

cos
c

c

z r r cθ
θ

= − +ɶ ɶɶ . (2.29) 

Using the condition ( )1z l h= +ɶ ɶɶ , the analytical expression of the meniscus surface in zero 

gravity when 0La =  is obtained: 

 ( ) ( )2 21
1 cos sin

cos
c c

c

z r r l hθ θ
θ

= − − + +ɶ ɶɶ ɶɶ  (2.30) 

where [ ]0,1r ∈ɶ . 

Statement 2.1: When 0Bo =  and 0La =  the function ( )z rɶɶ  which describes the meniscus 

surface has the following properties [Epure 2010-1]: 

(i) ( )z rɶɶ is strictly increasing for [ ]0,1r ∈ɶ  and 
2

c

π
θ > ; 

(ii) ( )z rɶɶ is convex for [ ]0,1r ∈ɶ  and 
2

c

π
θ > . 

From the above properties it results that in zero gravity condition and null gas pressure 

difference, the meniscus is always globally convex. This can be seen on the computed meniscus 

presented in Fig. 2.7. 

 

Figure 2.7 Meniscus shape ( )z rɶɶ for InSb, 160cθ = � . 

 

A meniscus is possible for the dewetted Bridgman growth configuration if the growth angle 
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0,
2

e

π
α

 
∈    (the angle between the tangent to the meniscus surface and the vertical) is achieved 

at least at one point on the meniscus surface, i.e. when the equation: 

 ( )
2

er
π

ψ α= −ɶ  (2.31) 

has at least one solution rɶ  in the range ( )0,1 ; ψ  represents the angle between the plane 0z =ɶ  

and the tangent plane to the meniscus. For this angle the equality tan
dz

dr
ψ =

ɶ

ɶ
 holds, and hence 

information concerning the achievement of the growth angle is given by the equation:  

2 2

cos
tan

1 cos

c

c

r

r

θ
ψ

θ

−
=

−

ɶ

ɶ

. 

Rewriting the above relation as: 

2 2 2

cossin

1 sin 1 cos

c

c

r

r

θψ

ψ θ

−
=

− −

ɶ

ɶ

 

gives 

 sin cos crψ θ= − ɶ  (2.32) 

that is equivalent to 

 ( )arcsin cos crψ θ= − ɶ , ,
2 2

π π
ψ

 
∈ −   , ,

2
c

π
θ π

 
∈    and [ ]0,1r ∈ɶ . (2.33) 

Relation (2.33) gives a necessary condition for dewetted growth which depends on the growth 

angle eα  and contact angle cθ . From the positivity of the derivative 

 
2 2

cos
0

1 cos

c

c

d

dr r

θψ

θ
= − >

−ɶ ɶ

, ,
2

c

π
θ π

 
∈    (2.34) 

it results that the function ( )rψ ɶ  is strictly increasing for [ ]0,1r ∈ɶ . Taking into account this 

monotony and the boundary condition (2.23) which is equivalent to ( )1
2

c

π
ψ θ= − , the growth 

angle can be achieved if ( )rψ ɶ  increases from 
2

e

π
α−  to 

2
c

π
θ −  , leading to 

2 2
e c

π π
α θ− < −  and 
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hence c eθ α π+ > . In the opposite case, when c eθ α π+ < , the growth angle cannot be achieved 

due to the monotony of ( )rψ ɶ . 

In the hypothesis that the growth angle criterion is satisfied, i.e. c eθ α π+ > , equations (2.31) 

and (2.32) give: 

 ( )sin 1 cos
2

e ce
π

α θ
 

− = − −   ɶ  (2.35) 

where 
a

e
e

r
=ɶ  represents the non-dimensional gap thickness and 1cr e= −ɶ ɶ  the non-dimensional 

crystal radius. From (2.35), the following non-dimensional gap thickness formula [Duffar 1997] 

is obtained: 

 
cos cos

cos

c e

c

e
θ α

θ

+
=ɶ  (2.36) 

valid under zero gravity condition, 0La = , and c eθ α π+ > . 

On the basis of these results, the following proposition can be stated: 

Statement 2.2: For a given ampoule radius and 0La = , if ,
2

c

π
θ π

 
∈    and 0,

2
e

π
α

 
∈    satisfy 

the inequality c eθ α π+ > , then, in the case of dewetted Bridgman process under zero gravity 

conditions, the meniscus height is constant and is given by the following relation: 

 ( )
1

sin sin .
cos

c e

c

h θ α
θ

= −ɶ  (2.37) 

 Proof: 

 Imposing to the relation (2.30) the condition of the growth angle achievement ( )cz r l= ɶɶɶ , 

 results: 

( )2 21
1 cos sin

cos
c c c

c

h r θ θ
θ

−
= − −ɶ . 

 Replacing in this relation 1cr e= −ɶ ɶ , where eɶ  is given by (2.36) gives: 
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 ( )
2

2 2cos cos1 1
1 1 cos sin 1 cos sin

cos cos cos

c e
c c e c

c c c

h
θ α

θ θ α θ
θ θ θ

  +− − = − − − = − −     
ɶ  

 from where it results: ( )
1

sin sin .
cos

c e

c

h θ α
θ

= −ɶ ■ 

Case II: 0La ≠  

The physical meaning of 0La ≠  is that the gases between the cold and hot sides of the sample 

do not communicate, so that a pressure difference exists. 

In order to obtain the meniscus equation, relation (2.27) should be integrated, but if 0La ≠  the 

integral cannot be expressed using elementary functions. Then, for obtaining information 

concerning the meniscus shape, achievement of the growth angle, and gap thickness, qualitative 

studies must be performed. 

Introducing tan
dz

dr
ψ =

ɶ

ɶ
 in relation (2.27) gives: 

 ( )
2

( , )

1
sin 2cos

2 2
c

E r La

r La
La

r
ψ θ

 
= − + +  

ɶ

ɶ

ɶ
�����������

 (2.38) 

The conditions (a) and (b) concerning the sign of ( , )E r Laɶ  given by (2.26) leads to: 

i) sin 0ψ >  for:  i1) ( );0La ∈ −∞  and ;1
2cos c

La
r

La θ

 
∈  + 
ɶ   

or  i2) [ )0,La ∈ ∞  and ( )0;1r ∈ɶ ; 

ii) sin 0ψ <  for ( );0La ∈ −∞  and 0;
2cos c

La
r

La θ

 
∈  + 
ɶ . 

Relation (2.38) is equivalent to 

 ( )
21

arcsin 2cos
2 2

c

r La
La

r
ψ θ

   
= − + +     

ɶ

ɶ
, ,

2 2

π π
ψ

 
∈ −    (2.39) 

if 

 ( ) [ ]
21

2cos 1,1
2 2

c

r La
La

r
θ

 
− + + ∈ −  
ɶ

ɶ
. (2.40) 
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From (i), (ii) and (2.40) it is obtained that (2.39) is well defined in the following situations:   

I) ;1
2cos c

La
r

La θ

 
∈  + 
ɶ  and ( );0La ∈ −∞  i.e. [ ]sin 0;1ψ ∈  and 0

dz

dr
>

ɶ

ɶ
; 

II) 
( )1 1 2cos

;1
2cos

c

c

La La
r

La

θ

θ

 − + + + ∈ + 
ɶ  and [ ) ( )0, 2cos 2cos ;c cLa θ θ∈ − ∪ − ∞  i.e. 

[ ]sin 0;1ψ ∈  and 0
dz

dr
>

ɶ

ɶ
; 

III)  
( )1 1 2cos

;
2cos 2cos

c

c c

La La La
r

La La

θ

θ θ

 − + + ∈ + + 
ɶ  and ( );0La ∈ −∞  i.e. [ ]sin 1;0ψ ∈ −  

and 0
dz

dr
<

ɶ

ɶ
. 

Similarly to the previous calculations developed in the case 0La = , the sign of the derivative 

d

dr

ψ

ɶ
 will give information about the shape of the meniscus.  

Deriving the relation (2.39) gives: 

 

( )

( )
2

22
2

1 1
2cos

2 2
1

1 2cos
2 2

c

c

d r La
La

dr r
r La

La
r

ψ
θ

θ

 
= − + −     

− − + +     

ɶ

ɶ ɶ
ɶ

ɶ

. (2.41) 

Taking into account that 
2

2 2

1

cos

d z d

drdr

ψ

ψ
=

ɶ

ɶɶ
, it can be easily seen that the concavity (

2

2
0

d z

dr
<

ɶ

ɶ
), 

convexity (
2

2
0

d z

dr
>

ɶ

ɶ
) and the inflexion (

2

2
0

d z

dr
=

ɶ

ɶ
) are given by the sign of the expression 

depending on rɶ  and La: 

 ( ) ( )
2

, 2cos
2 2

c

r La
F r La La θ= − + −

ɶ
ɶ . (2.42) 

Imposing the growth angle criterion (2.31), Eq. (2.38) gives: 

 
1

sin cos
2 2 2

e c c c

c

La La
r r

r

π
α θ

 
− = − − +   ɶ ɶ

ɶ
 (2.43) 

which is equivalent to  
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 ( )2 2cos 2 cos 0c c c er La r Laθ α+ + − =ɶ ɶ  (2.44) 

or written in terms of  the crystal-crucible gap tickness ( 1 ce r= −ɶ ɶ ): 

( ) ( ) ( )2 2cos 2 cos 2cos 2 cos cos 0c e c e ce La e Laθ α θ α θ+ − + + + + =ɶ ɶ . 

The existence of the gap (i.e. dewetting occurrence) is determined by La, cθ  and eα  values for 

which inequality (2.40) is satisfied and equation (2.44) has at least one solution. 

Further, Eq. (2.44) has solution if  

 2 22 cos cos 0c eLa La θ α∆ = + + ≥ . (2.45) 

Thus, for studying the existence of the crystal-crucible gap ( 1 ce r= −ɶ ɶ ) and the menisci shape, the 

following cases must be considered: 

I) If ( );0La ∈ −∞  and ;1
2cos c

La
r

La θ

 
∈  + 
ɶ  then 0

dz

dr
>

ɶ

ɶ
 and 0

d

dr

ψ
>

ɶ
 as ( ), 0F r La >ɶ . 

Hence, 
2

2 2

1
0

cos

d z d

drdr

ψ

ψ
= >

ɶ

ɶɶ
, i.e. the meniscus is globally convex, and the growth angle 

can be achieved only if c eθ α π+ ≥ . In this case Eq. (2.44) has two roots ( 0∆ > ): 2 0cr <ɶ  

and 1 ;1
2cos

c

c

La
r

La θ

 
∈  + 

ɶ   leading to one achievement of the growth angle and then 

the following formula for the gap thickness (see also [Duffar 1997]) is obtained: 

 

2 2

1

2cos cos 2 cos cos

2cos

c e c e

c

La La La
e

La

θ α θ α

θ

+ + + + +
=

+
ɶ . (2.46) 

The numerical results, obtained by solving the problem (2.22)-(2.23), reveal this 

behaviour for ( ]1 ;0La = − ∈ −∞  and 165 25c eθ α π+ = + >� � , as it can be seen in Fig. 

2.8. 
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Figure 2.8 (a) Computed meniscus shape ( )z rɶɶ  and (b) meniscus angle ( )rψ ɶ   corresponding to 

1La = −  and 165 25c eθ α+ = +� �  for InSb, g=0. The place where the growth angle 

( 1.13446
2

e

π
α− =  rad) is achieved is shown by the black dot. 

 

The figure shows that the meniscus is globally convex and that the growth angle is 

achieved. The computed gap thickness 11 1 0.969912 0.030088ce r= − = − =ɶ ɶ  is equal to the 

one given by formula (2.46), i.e. 1 0.030088e =ɶ .  

In Figure 2.9 the same behaviour can be observed in the special case when c eθ α π+ = . 

For 1La = −  the computed gap thickness 0e =ɶ  is equal to the one given by formula (2.46), 

i.e. 1 0e =ɶ .  
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Figure 2.9 (a) Computed meniscus shape ( )z rɶɶ  and (b) meniscus angle ( )rψ ɶ   corresponding to 

1La = −  and 155 25c eθ α+ = +� �  for InSb, g=0. The place where the growth angle 

( 1.13446
2

e

π
α− =  rad) is achieved is shown by the black dot.  

 

II) If [ ) ( )0, 2cos 2cos ;c cLa θ θ∈ − ∪ − ∞  and )
( )*

1 1 2cos
;1 ;1

2cos

c

c

La La
r r

La

θ

θ

 − + + +  ∈ = + 
ɶ ɶ  

then 0
dz

dr
>

ɶ

ɶ
, the meniscus can be globally concave or concave-convex, depending on the 

sign of 
d

dr

ψ

ɶ
 which is determined by the sign of ( ),F r Laɶ . This splits the interval 

[ )0;∞ into: 

II1) ( ]0; cos cLa θ∈ −  where the sign of 
d

dr

ψ

ɶ
 changes from negative to positive at the 

point )*;1
2cos

I

c

La
r r

Laθ
= ∈ − −

ɶ ɶ  and then the meniscus is concave-convex; 

II2) ( )cos ; 2cosc cLa θ θ∈ − −  where the sign of 
d

dr

ψ

ɶ
 is negative in the prescribed range of 

rɶ  and the meniscus is globally concave.  

II3) ( )2cos ;cLa θ∈ − ∞  where the sign of 
d

dr

ψ

ɶ
 is negative because ( ),F r Laɶ does not 

have real roots, and then the meniscus is globally concave.  

Further, imposing the condition of the growth angle achievement and studying the 

validity of inequality (2.45) the above ranges of La are restricted by the sum of the 

wetting cθ  and growth angle eα  as follows: 

Case c eθ α π+ < : 2 22 cos cos 0c eLa La θ α∆ = + + >  and hence Eq. (2.44) has too real 

roots 

2 2

1,2

cos 2 cos cos

2cos

e c e
c

c

La La
r

La

α θ α

θ

− + +
=

+

∓
ɶ . The signs of 1crɶ , 2crɶ  and their 

position with respect to the interval )*;1r ɶ depends on the La values: 
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II1) If  ( ]0; cos cLa θ∈ − , from the convexity of the meniscus in the neighbourhood of 1, 

is obtained that the growth angle can be achieved if c eθ α π+ ≥  (case studied below). 

II2) If ( )cos ; 2cosc cLa θ θ∈ − −  then 1 1cr >ɶ  and )*
2 ;1cr r∈ ɶ ɶ . In this case the meniscus is 

globally concave and the growth angle is achieved once as only the root 2crɶ  of Eq. (2.44) 

belongs to the prescribed range, leading to a crystal-crucible gap thickness expressed by 

2 2

2

2cos cos 2 cos cos

2cos

c e c e

c

La La La
e

La

θ α θ α

θ

+ + − + +
=

+
ɶ .      (2.47) 

The numerical results performed for ( )0.5 0.375;0.749La = ∈  shows that the growth 

angle is achieved once, as it can be seen on Fig. 2.10. 

 

Figure 2.10 (a) Computed meniscus shape ( )z rɶɶ  and (b) meniscus angle ( )rψ ɶ   corresponding to 

0.5La =  and 112 25c eθ α+ = +� �  for InSb, g=0. The place where the growth angle 

( 1.13446
2

e

π
α− =  rad) is achieved is shown by the black dot. 

 

The Figure 2.10 shows a concave meniscus, the crystal radius [ ]0.2872 0.258;1cr = ∈ɶ  and 

the computed gap thickness 1 1 0.2872 0.7128ce r= − = − =ɶ ɶ  is equal to 2 0.7128e =ɶ  given 

by formula (2.47). 
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II3) If ( )2cos ;cLa θ∈ − ∞  then  1 0cr <ɶ  and )*
2 ;1cr r∈ ɶ ɶ  leading to a crystal-crucible gap 

thickness 2eɶ  expressed by (2.47). In this case the meniscus is also globally concave. 

  The numerical results show that the meniscus is concave, and that for 

112 25c eθ α π+ = + <� � , ( ) ( )0.8 2cos ; 0.749;cLa θ= ∈ − ∞ = ∞  the growth angle is 

achieved (Fig. 2.11). 

 

Figure 2.11 (a) Computed meniscus shape ( )z rɶɶ  and (b) meniscus angle ( )rψ ɶ  corresponding to 

the 0.8La =  and 112 25c eθ α+ = +� �  for InSb, g=0. The place where the growth angle 

( 1.13446
2

e

π
α− =  rad) is achieved is shown by the black dot. 

 

The computed crystal radius is [ ]2 0.436024 0.396;1cr = ∈ɶ  and then the gap thickness 

21 1 0.436024 0.563976ce r= − = − =ɶ ɶ  is equal to 2 0.563976e =ɶ . 

Case c eθ α π+ ≥ :  The sign of ∆  depends on the roots of 0∆ = , i.e.  

( ) ( )1,2 cos sin sinc c e c eLa θ θ α θ α= − − + −∓ . 
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II1.1) If ( ]10;La La∈  then ( )1 ;1c Ir r∈ɶ ɶ  and ( )*
2 ;c Ir r r∈ɶ ɶ ɶ , and the meniscus is concave-

convex. The growth angle is achieved once on the convex part of the meniscus at 

( )1 ;1c Ir r∈ɶ ɶ , the gap thickness being given by 1eɶ  expressed by (2.46) and once on the 

concave part of the meniscus, at ( )*
2 ;c Ir r r∈ɶ ɶ ɶ  leading to a gap thickness 2eɶ  expressed by 

(2.47). 

The numerical results presented in Fig. 2.8 for ( ) ( )10.35 0; 0;0.632La La= ∈ =  show that 

the meniscus is concave-convex and the growth angle is achieved twice. 

 

Figure 2.12 (a) Computed meniscus shape ( )z rɶɶ  and (b) meniscus angle ( )rψ ɶ  corresponding to 

0.35La =  and 165 25c eθ α+ = +� �  for InSb, g=0. The places where the growth angle 

( 1.13446
2

e

π
α− =  rad) is achieved are shown by the black dots. 

 

For the Fig. 2.12, the meniscus is concave-convex and the growth angle is achieved once 

on the convex part at ( ) ( )1 0.90005 ;1 0.47;1c Ir r= ∈ =ɶ ɶ  and once on the concave part at 

( ) ( )*
2 0.24583 ; 0.21;0.47c Ir r r= ∈ =ɶ ɶ ɶ . Therefore, when the growth angle is achieved on 

the convex part of the meniscus the computed gap thickness 11 0.09995ce r= − =ɶ ɶ  is equal 

to 1 0.09995e =ɶ  given by formula (2.46). When the growth angle is achieved on the 
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concave part of the meniscus, the computed gap thickness 21 0.75417ce r= − =ɶ ɶ  is equal 

to 2 0.75417e =ɶ  expressed by (2.47) . 

II1.2) If ( ]1; cos cLa La θ∈ − then 2 22 cos cos 0c eLa La θ α∆ = + + <  and the growth angle 

is not achieved. This behavior can be observed on the Fig. 2.13, for 

( ] ( ]10.8 ; cos 0.632;0.966cLa La θ= ∈ − = . 

 

Figure 2.13  (a) Computed meniscus shape ( )z rɶɶ  and (b) meniscus angle ( )rψ ɶ  corresponding to 

0.8La =  and 165 25c eθ α+ = +� �  for InSb, g=0. The growth angle cannot be achieved. 

 

II2.1) If ( )2cos ;cLa Laθ∈ −  then 2 22 cos cos 0c eLa La θ α∆ = + + <  and the growth angle 

is not achieved (similar behavior to the previous case II1.2), the meniscus being also 

concave). 

II2.2) If [ )2 ; 2cos cLa La θ∈ −  then 2 22 cos cos 0c eLa La θ α∆ = + + > , there exist too roots 

1crɶ , 2 1cr >ɶ  and hence the growth angle is not achieved on the prescribed range of rɶ . 

II2.3) If ( )2cos ;cLa θ∈ − ∞  from the concavity of the meniscus in the neighbourhood of 

1, is obtained that the growth angle can be achieved if c eθ α π+ <  (see the case studied 

above). 
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III) If ( );0La ∈ −∞  and 
( )1 1 2cos

;
2cos 2cos

c

c c

La La La
r

La La

θ

θ θ

 − + + ∈ + + 
ɶ  then 0

dz

dr
<

ɶ

ɶ
 and  

0
d

dr

ψ
>

ɶ
 as ( ), 0F r La >ɶ . Moreover, 

2

2 2

1
0

cos

d z d

drdr

ψ

ψ
= >

ɶ

ɶɶ
, i.e. the meniscus is globally 

convex, but  the growth angle cannot be achieved in the prescribed range because the 

roots of Eq. (2.44) satisfy 1
2cos

c

c

La
r

La θ
>

+
ɶ  and 2 0cr <ɶ .  

The numerical results performed for  ( )500 ;0La = − ∈ −∞  (Fig. 2.14) show that the 

meniscus is convex, but the growth angle is achieved at 1 0.9998cr =ɶ  which does not 

belong to 
( )

[ )
1 1 2cos

; 0.996;0.998
2cos 2cos

c

c c

La La La

La La

θ

θ θ

 − + +  =+ + 
.  

 

Figure 2.14 (a) Computed meniscus shape ( )z rɶɶ  and (b) meniscus angle ( )rψ ɶ  corresponding to 

the 500La = −  and 165 25c eθ α+ = +� �  for InSb, g=0. The place where the growth angle 

( 1.13446
2

e

π
α− =  rad) is achieved is shown by the black dot. 

The above ranges for the Laplace number give information about the meniscus shape and the 

corresponding cases c eθ α π+ ≥  or c eθ α π+ < , in which the growth angle can be achieved, i.e. 

dewetting is feasible.   
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The gap formula (2.46) is valid when the growth angle is achieved on the convex part of the 

meniscus, and the second formula (2.47) is valid when the achievement of the growth angle 

occurs on the concave part of the meniscus. 

More precisely, the numerical results, obtained by solving numerically the non-dimensional 

Young-Laplace equation by Runge-Kutta method for InSb crystals grown in zero gravity by the 

dewetted Bridgman technique (material parameters for InSb are those presented in Table 1.1, 

illustrate the behaviors obtained through the qualitative study. In Table 2.1 a summary of the 

obtained results from the analytical and numerical studies is presented. 

 

Table 2.1 Meniscus shape and gap thickness depending on the pressure difference for the two 

cases: (a) 180c eθ α+ < °  and (b) 180c eθ α+ > ° , in microgravity conditions. 

 

2.2.2. Analytical and numerical solutions for the meniscus equation in normal gravity 

 

Under normal gravity conditions for a crucible radius larger than the capillary constant of the 

material, the curvature of the upper free liquid surface can be neglected (it is very small). For 

example for InSb the capillary constant is equal to 0.0036 m and the crucible radius is considered 

0.0055 m. Hence the axi-symmetric Young-Laplace equation (2.21) becomes: 

 ( )

3
2 22 2

2

1
1 1a

d z dz dz dz
Bo H z La

dr r dr drdr

       = − − + − +                 
ɶ ɶ ɶ ɶ

ɶ ɶ
ɶ ɶ ɶ ɶɶ

 (2.48) 
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where the axi-symmetric solution ( )z z r= ɶɶ ɶ  has to verify the following boundary condition: 

 ( )1z l h= +ɶ ɶɶ  and ( )1 tan , ,
2 2

c c

dz

dr

π π
θ θ π
   

= − ∈      
ɶ

ɶ
. (2.49) 

The nonlinear equation (2.48) is transformed into the following nonlinear system of two 

differential equations: 

 

( )

tan

1 1
tan

cos
a

dz

dr

d
Bo H z La

dr r

ψ

ψ
ψ

ψ


=   = − − − 

ɶ

ɶ

ɶ ɶ
ɶ ɶ

 (2.50) 

for which the boundary conditions (2.49) become [Balint 2008-2; Braescu 2008]: 

 ( )1z l h= +ɶ ɶɶ  and  ( )1 ; ,
2 2

c c

π π
ψ θ θ π

 
= − ∈   . (2.51) 

The functions from the right hand member of Eqs. (2.50) are real analytical, i.e. they can be 

expanded in Taylor series, and the conditions of existence and uniqueness of a solution are 

satisfied for the problem (2.50)-(2.51). The solution  

( ) ( ); , , , , , ; , , , ,c a c az z r La Bo H l h r La Bo H l hθ ψ ψ θ= + = +ɶ ɶ ɶ ɶɶ ɶɶ ɶɶ ɶ  

which depends on rɶ  and on the parameters , , , ,c aLa Bo H l hθ +ɶ ɶɶ  describes the meniscus if the 

growth angle is reached at a point [ ]0,1cr ∈ɶ , i.e.  

 ( ) ( ); .
2

c c ez r l r
π

ψ α= = −ɶɶ ɶɶ  (2.52) 

In the followings, this solution is denoted by ( )z z r= ɶɶ ɶ , ( )rψ ψ= ɶ . 

Because of the nonlinearity of the problem, an analytical formula of the meniscus cannot be 

obtained, hence analytical and numerical studies of the meniscus shapes are necessary. For this 

aim, the meniscus shape dependence on the pressure difference will be established, and 

inequalities of the pressure intervals which assure feasibility of dewetting will be determined. 

Due to different behaviours of the meniscus shape in the cases (I) 180c eθ α+ < ° , and  (II) 

180c eθ α+ ≥ ° ,  as it was already shown in the previous section for zero gravity, qualitative 

studies will be performed for each case separately. Generally for a clean, perfect liquid 
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semiconductor in a perfectly clean, smooth crucible surface, the wetting angles are less than 150° 

and the growth angles are less than 30° (see [Eustathopoulos 2010]) leading to 180c eθ α+ < ° . 

However when the crucible surfaces are rough or polluted it has been shown by recent 

experimental developments [Sylla 2008-1] and by thermodynamical analysis [Sylla 2008-2] that 

these angles can be enlarged leading to the inequality 180c eθ α+ ≥ ° . 

which proved that contamination of the system during the growth process may greatly increase 

the wetting angle, leading to an unexpected inequality between the wetting angle cθ  and growth 

angle eα , i.e., 180c eθ α+ ≥ ° . 

 

2.2.2.1. Qualitative studies on the meniscus shape using Taylor polynomial approximation 

Case 180c eθ α+ < °  

In order to perform a qualitative study of the meniscus shape (convex, concave-convex, convex-

concave, concave) as function of the Laplace number, the function ( )z z r= ɶɶ ɶ  is approximated by 

a Taylor polynomial of third degree ( )3
zT r
ɶ

ɶ  in the neighbourhood of 1ar =ɶ . Following [Braescu 

2008], [Balint 2008-2], for establishing the inequalities of the pressure intervals (i.e. La 

numbers) which assure feasibility of dewetted Bridgman growth, the information obtained from 

Taylor approximation (approximate meniscus) are combined with properties deduced from the 

problem (2.50) - (2.51) which describes the shape of the real meniscus. The third order Taylor 

polynomial ( )3
zT r
ɶ

ɶ  which approximates the meniscus surface ( )z z r= ɶɶ ɶ  is accurate only in a 

small neighbourhood of 1ar r= =ɶ ɶ  and it is given by: 

 ( ) ( ) ( ) ( )
( )

( )
( )

( )
2 33 1 1

1 1 1 1 1
2 6

z

z z
T r z z r r r

′′ ′′′
′= + ⋅ − + ⋅ − + ⋅ −

ɶ

ɶ ɶ
ɶ ɶ ɶ ɶɶ ɶ  (2.53) 

where: ( )1z l h= +ɶ ɶɶ  and ( )1z′ɶ , ( )1z′′ɶ , ( )1z′′′ɶ  represent the first, the second, and the third order 

derivatives of the function ( )z z r= ɶɶ ɶ  at 1r =ɶ , and are obtained from the system (2.50) and 

boundary conditions (2.51) as follows [Braescu 2008]: 

 ( ) 1cos
1

sin

c
z

c

z A
θ

θ
′ = − =

ɶ
ɶ  (2.54) 
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 ( )
( )

2 2

3 3 3

cos
1

sin sin sin

a
c

z z

c c c

Bo H l hLa
z A La B

θ

θ θ θ

 − + ′′ = − + + = − ⋅ +
ɶ ɶ

ɶ ɶɶ

ɶ  (2.55) 

 

( )
( )

( )

( )

2
2

5 5 3 5

2
2

3

3 2 2

2

2

6 cos3cos 6cos 1
1

sin sin sin sin

3 cos 3cos cos1
2cos

sinsin sin sin

6 cos

sin

a c
c c

c c c c

a c
c c

c

cc c c

a c

a

c

Bo H l h
z La La

Bo H l h Bo

Bo H l h
Bo H

θθ θ

θ θ θ θ

θ θ θ
θ

θθ θ θ

θ

θ

 − +   ′′′ = − + + + +  
  − + ⋅  + − − − + −

 − + − − −

ɶ ɶɶ

ɶ

ɶ ɶɶ

ɶ ɶɶ

ɶɶ ( )

3 2 3 3
z z z

l h

A La B La C

 + 
= ⋅ − ⋅ +

ɶ ɶ ɶ

ɶ

 (2.56) 

Information about the concavity or convexity of the meniscus ( )z z r= ɶɶ ɶ  in a sufficiently small 

neighbourhood of 1ar =ɶ , are given by the sign of the second derivative of the approximated 

meniscus ( ) ( )3
T zz r T r=

ɶ
ɶ ɶɶ : 

 ( ) ( )
2 3

2 2 3 2 3 3 2 3

2
1 1z

z z z z z z z

d T
A La B A La B La C r E E r

dr
 = − ⋅ + + ⋅ − ⋅ + ⋅ − = + ⋅ − ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ
ɶ ɶ

ɶ
 (2.57) 

where is denoted: 2 2 2
z z zE A La B= − ⋅ +
ɶ ɶ ɶ

 and 3 3 2 3 3
z z z zE A La B La C= ⋅ − ⋅ +
ɶ ɶ ɶ ɶ

. 

Thus, the following statement can be given: 

Statement 2.3: The sets of La values that define convex, concave-convex, convex-concave and 

concave shapes of the approximate menisci, are determined by the following inequalities: 

(i) if 2 0zE >
ɶ

 and 4 0zE <
ɶ

 (or 2 0zE >
ɶ

 and 4 1zE >
ɶ

), then the approximated meniscus is 

convex;   

(ii) if 2 0zE >
ɶ

 and 40 1zE< <
ɶ

, then the approximated meniscus is concave-convex; 

(iii) if 2 0zE <
ɶ

 and 40 1zE< <
ɶ

, then the approximated meniscus is convex-concave; 

(iv) if 2 0zE <
ɶ

 and 4 0zE <
ɶ

 (or 2 0zE <
ɶ

 and 4 1zE >
ɶ

), then the approximated meniscus is 

concave; 
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where 
2

4

3
1 z

z

z

E
E

E
= − ɶ

ɶ

ɶ

. 

The achievement of the growth angle eα of the approximated meniscus at some points in the 

interval ( )0,1 , (i.e. dewetting occurs) is given by the solution of the equation: 

 
3

tan
2

z
e

dT

dr

π
α

 
= −  

ɶ

ɶ
 (2.58) 

Because 180c eθ α+ < ° , the boundary condition for ( )rψ ɶ , ( ) ( )1
2 2

c e cr
π π

ψ α θ ψ= − > − =ɶ , 

shows that the growth angle can be achieved only if ( )rψ ɶ  decreases, i.e. 0
d

dr

ψ
<

ɶ
. On the other 

hand, 

( ) ( )2 21 sinz c

d
E

dr

ψ
θ= ⋅

ɶ
ɶ

 and ( )
2 3

2

2
1z

z

d T
E

dr
=ɶ

ɶ

ɶ
. 

Hence, if ( )rψ ɶ  decreases then ( )
2 3

2

2
1 0z

z

d T
E

dr
= <ɶ

ɶ

ɶ
, and the approximate meniscus must be 

concave in the neighbourhood of 1ar =ɶ . For this reason, special attention is paid on the convex-

concave (“S” shape), and concave meniscus shapes. Moreover, the inequality 2 0zE >
ɶ

 which 

appears in both cases, gives the values of La that lead to a concave meniscus at 1: 

 ( )
2

2
cosz

c a

z

B
La Bo H l h

A
θ  > = + − + ɶ

ɶ

ɶ ɶɶ . (2.59) 

The inequality (2.59) states that the gas pressure difference must be larger than the hydrostatic 

pressure plus a term which depends on the capillary parameters.  

For certain values of La, the growth angle can be achieved twice in the case of a convex-concave 

approximated meniscus (Eq. (2.58)) has two solutions), and once in the case of a concave 

approximated meniscus (Eq. (2.58)) has one solution). These values of La are given by the 

following statements (for details see [Braescu 2008]): 

Statement 2.4: The set of La values for which the growth angle eα  can be achieved once on the 

approximated meniscus, is defined by the inequality: 



65 

 

 1 1 3 2 1cos cos1
0

sin 2 sin

e e
z z z z z

e e

F A E E A
α α

α α

   
= − − + − <      ɶ ɶ ɶ ɶ ɶ

 (2.60) 

Statement 2.5: The set of La values for which, on the approximated meniscus, the growth angle 

eα  can be achieved twice in the interval ( )0,1  is defined by the following inequalities: 

 

( )

( )

2
2 2 3 1

1

3

3

1
4

3

2
5

3

cos
2 0,

sin

cos

sin
0,

0,

0,1 .

e
z z z z

e

e
z

e
z

z

z
z

z

z
z

z

F E E A

A

F
E

F
F

F

E
F

E

α

α

α

α

 
= − − >  

−

= >

= >

= ∈

ɶ ɶ ɶ ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

 (2.61) 

Statement 2.6:  For 180c eθ α+ < ° : 

(i).  If the real  meniscus is concave at 1ar =ɶ , then ( ) cosa cLa Bo H l h θ > − + + ɶ ɶɶ ;  

(ii).  If the real meniscus is convex at the triple point crɶ  where the growth angle is achieved, 

then ( ) cosa eLa Bo H l α< − −ɶɶ . 

Inequalities (i) and (ii) define the interval ILa  for which dewetted Bridgman is feasible with a 

convex-concave meniscus (“S” shape). Moreover they show that the value La(concave)  for which 

the meniscus is concave can be deduced from the pressure difference values  La(convex-concave)  for 

which the meniscus has the “S” shape. 

The range ILa  can be refined by using the approximation ( )T rψ ɶ  of the function ( )rψ ɶ , and the 

growth angle achievement condition on the approximate meniscus  ( )Tz rɶɶ :  

Statement 2.7: A refined range Approx
La of the interval ILa , for which dewetted Bridgman with 

convex-concave meniscus is feasible and the growth angle is achieved, is determined by the 

following inequalities: 

i) ( ) ( )cos cosa c a eBo H l h La Bo H lθ α − + + < < − − ɶ ɶ ɶɶ ɶ , 
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ii) ( )1 1 3 2 1cos cos1
0

sin 2 sin

e e
z z z z z

e e

F La A E E A
α α

α α

   
= − − + − <      ɶ ɶ ɶ ɶ ɶ

,    

iii) ( )
( )1

cos e
aBo H l La

r La

α
− − >ɶɶ

ɶ
,       

where ( )1r Laɶ  represents the real root of the equation ( ) ( )
23 2 1 cos1

1 1 0
2 sin

e
z z z

e

E r E r A
α

α
− + − + − =

ɶ ɶ ɶ
ɶ ɶ , 

and belongs to the interval ( )0, 1  [Braescu 2008].  

Inequalities (i) are related to the shape of the meniscus: concave at 1 and convex later. The 

second inequality (ii) expresses that the growth angle eα  is achieved once on the approximated 

meniscus.  Inequality (iii) indicates that in ( )1r Laɶ  the approximated meniscus is convex. 

Further, numerical results are presented by solving the problem (2.50) - (2.51) for InSb crystals 

grown under normal gravity conditions by the dewetted Bridgman process, similar to those 

reported in dimensional form in [Balint 2008-2], [Braescu 2008].  

Inequalities (i)-(ii), from Statement 2.7, give the La range [ ]50.419;51.69 . Through inequality 

(iii) it is refined to [ ]50.419;51.662Approx
La =  which represents the range of the Laplace number 

for which dewetted Bridgman with a convex-concave meniscus is possible and where the growth 

angle is achieved. Integrating numerically the system (2.50)-(2.51) for different values of the La 

from the refined range Approx
La , gives [ ]Re 50.792;51.531al

La =  which represents the real range 

of the pressure difference which gives a convex-concave real meniscus with two achievements of 

the growth angle (see Fig. 2.15).  
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Figure 2.15 Approximated menisci ( )3
zT r
ɶ

ɶ  (dashed line) and real (numerical) convex-concave 

menisci ( )z rɶɶ  corresponding to 50.792La =  (a) and 51.531La =  (b) for InSb, 14.545aH =ɶ . The 

places where the growth angle ( 1.13446
2

e

π
α− =  rad)  is achieved are shown by the black dots. 

If Real 51.532La ≥  then the real meniscus is concave and the growth angle is achieved only once, 

as can be seen in the Fig. 2.16. 

 

Figure 2.16 Approximated menisci ( )3
zT r
ɶ

ɶ  (dashed line) and real (numerical) concave menisci 

( )z rɶɶ  corresponding to 51.532La =  (a) and 60La =  (b) for InSb, 14.545aH =ɶ . The places 

where the growth angle ( 1.13446
2

e

π
α− =  rad)  is achieved are shown by the black dots. 

 

These figures show that the approximated meniscus given by the Taylor polynomial of third 

degree ( )3
zT r
ɶ

ɶ  is accurate only in the neighborhood of 1ar =ɶ .  

 

Case 180c eθ α+ ≥ °  

Similarly, using the Taylor polynomial of the third degree, ( )3
zT r
ɶ

ɶ which approximate the 

function ( )z z r= ɶɶ ɶ  in the neighborhood of 1, given by (2.53), qualitative results were obtained in 

the case 180c eθ α+ ≥ ° . 
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The approximated meniscus shape is given by the sign of the second derivative 
2 3

2

zd T

dr

ɶ

ɶ
 and hence, 

the inequalities presented in Statement 2.3 are also valid for this case. The condition of the 

growth angle achievement led to different results from those obtained in the case 180c eθ α+ < ° . 

It was already shown that the achievement of the growth angle eα at some points in the interval 

( )0;1 is given by the solution of the equation 
3

tan
2

z
e

dT

dr

π
α

 
= −  

ɶ

ɶ
.  

As 180c eθ α+ ≥ ° , the boundary condition for ( )rψ ɶ  shows that the growth angle can be 

achieved only if ( )rψ ɶ  decreases from 
2

c

π
θ −  to 

2
e

π
α−  , i.e. 0

d

dr

ψ
>

ɶ
. On the other hand, from 

Eqs. (2.50) :  

 ( ) ( )( )
( )

( )
1 1

1 1 tan 1
cos 1

a

d
Bo H z La

dr r

ψ
ψ

ψ
 = − − ⋅ − ⋅ ɶ ɶ

ɶ ɶ
, 

and using the boundary conditions  ( ) ( )1 , 1
2

cz l h
π

ψ θ= + = −ɶ ɶɶ , gives: 

 ( ) ( )1
1 cos .

sin
a c

c

d
Bo H l h La

dr

ψ
θ

θ
  = − + − +  ɶ ɶɶ

ɶ
 (2.62) 

As ( )1 0
d

dr

ψ
>

ɶ
, the following inequality for the pressure difference is obtained: 

 ( ) cosa cLa Bo H l h θ < − + + ɶ ɶɶ  (2.63) 

for which the growth angle can be achieved. 

This inequality gives information about the meniscus shape at 1ar =ɶ . Because 

( )
( )

( )
2

2 2

1
1 1

cos 1

d z d

drdr

ψ

ψ
=

ɶ

ɶɶ
 it is obtained that 

2

2
0

d z

dr
>

ɶ

ɶ
 in the neighbourhood of 1, which means 

that, the growth angle can be achieved if the meniscus is convex in the neighbourhood of 1. 

Then, for a pressure difference which satisfies the inequality (2.63) the meniscus is convex in the 

neighbourhood of 1 (this includes globally convex or concave-convex menisci), and the growth 

angle can be achieved. Thus, the following statements can be given: 
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Statement 2.8: If the values of La verifies the inequality ( ) cosa cLa Bo H l h θ < − + + ɶ ɶɶ , then the 

real meniscus is convex at the point 1ar r= =ɶ ɶ . 

Statement 2.9: For c eθ α π+ ≥ : 

(i)  If the real  meniscus is convex at 1, then ( ) cosa cLa Bo H l h θ < − + + ɶ ɶɶ ;  

(ii)  If the real meniscus is concave at the triple point crɶ  where the growth angle is achieved, 

then ( ) 1
cosa e

c

La Bo H l
r

α> − −ɶɶ

ɶ
. 

These analytical results prove that when La increases the meniscus height increases too and 

hence, the Taylor polynomial approximations can give accurate results only very close to the 

crucible wall. The problem (2.50) - (2.51) was solved numerically for InSb crystals, for different 

values of La which satisfies relation (2.63), i.e. 48.594La < and the results are presented in 

Figure 2.17. 

 

Figure 2.17: Approximated menisci ( )3
zT r
ɶ

ɶ  (dotted line) and real (numerical) convex menisci 

( )z rɶɶ  corresponding to 20La =  (a) and 48.5La =  (b) for InSb, 14.545aH =ɶ . The places where 

the growth angle ( 1.13446
2

e

π
α− =  rad) is achieved are shown by the black dots. 

 

On the numerical illustrations presented in Figure 2.17 it can be seen that the Taylor polynomial 

approximation has a limited utility in the case c eθ α π+ ≥ . 
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Therefore, for finding La limits corresponding to a certain un-approximated meniscus shape, for 

which the growth angle is achieved, other mathematical tools must be used, especially in the case 

c eθ α π+ ≥ .  

 

2.2.2.2. Qualitative studies on the meniscus shape without approximation 

Case c eθ α π+ ≥  

As was shown in the previous section, when c eθ α π+ ≥ , the meniscus height increases if the La 

increases, hence the Taylor polynomial approximations cannot generally be used, this being an 

opposite behaviour to the previous case c eθ α π+ <  where increasing La leads to a decrease of 

the meniscus. Then, to study qualitatively the meniscus shape as function of the Laplace number, 

only the properties obtained from the problem (2.50)-(2.51) and the growth angle criterion are 

used. 

Therefore, the following theorem can be stated [Braescu 2009-2]: 

Theorem 2.1: If the meniscus is globally convex and the function ( )z rɶɶ  is strictly increasing on 

[ ], 1crɶ  and verifies the boundary value problem (2.50)-(2.51) and (2.52), then for a given non-

dimensional gap thickness ( )0, 1e ∈ɶ , 1 ce r= −ɶ ɶ , the Laplace number  satisfies the inequalities: 

 
( )1

sin cos
1

sin cos

c e
e c a

c e
c e a

Bo H l h La
e e

Bo H l
e

θ α π
α θ

θ α π
θ α

+ −  − + + − + < −

+ −  < − − + − 

ɶ ɶɶ

ɶ ɶ

ɶɶ

ɶ

 (2.64) 

and the meniscus height hɶ  satisfies: 

 tan tan
2 2

e ce h e
π π

α θ
   

− < < −      
ɶɶ ɶ . (2.65) 

 Proof: Applying the Lagrange mean value theorem for the function ( )rψ ɶ , it is found that 

 there exist ( ) ( )1 , 1 1 , 1cr r e∈ = −ɶ ɶ ɶ  such that the following equality holds: 

 
( ) ( )

1

1

1

c

cr r

rd

dr r

ψ ψψ

=

−
=

−
ɶ ɶ

ɶ

ɶ ɶ
. (2.66) 
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 As ( )1rψ ɶ  verifies 
( )

( ) ( )
1

1 1

1 1

1 1
sin

cos
a

r r

d
Bo H z r La r

dr r r

ψ
ψ

ψ=

  = − − −   ɶ ɶ

ɶ ɶ ɶɶ
ɶ ɶ ɶ

 and from the 

 boundary conditions ( )1
2

c

π
ψ θ= − , ( )

2
c er

π
ψ α= −ɶ  and  relation (2.66) results 

 ( ) ( ) ( )1 1 1

1

1
sin cosc e

aLa Bo H z r r r
r e

θ α π
ψ ψ

+ − = − − − ɶ ɶ ɶ ɶɶ
ɶ ɶ

. (2.67) 

 Because  
2

2
0

d z

dr
>

ɶ

ɶ
 for any [ ], 1cr r∈ɶ ɶ , the functions 

dz

dr

ɶ

ɶ
 and ( )rψ ɶ  are strictly increasing 

 on[ ], 1crɶ the following inequalities are satisfied: 

i) ( ) ( ) ( )1 1cr rψ ψ ψ≤ ≤ɶ ɶ  which is equivalent to ( )1
2 2

e cr
π π

α ψ θ− ≤ ≤ −ɶ , 

ii) ( )1sin sin sin
2 2

e cr
π π

α ψ θ
   

− ≤ ≤ −      ɶ , 

iii) ( )1cos cos cos
2 2

c er
π π

θ ψ α
   

− ≤ ≤ −      ɶ  

 leading to 

1r r

dz
l l h

dr =

≤ ≤ +
ɶ ɶ

ɶ
ɶ ɶ ɶ

ɶ
. 

 Turning now to the relation (2.67) and taking into account these inequalities leads to the 

 inequalities (2.64) for La.  

 In order to find the inequality for the meniscus height, the Lagrange mean value theorem 

 for the function ( )z rɶɶ  is applied and gives that there exist ( )2 , 1cr r∈ɶ ɶ such that 

 
( ) ( )

2

1

1

c

cr r

z z rdz

dr r=

−
=

−
ɶ ɶ

ɶɶ ɶɶ

ɶ ɶ
. (2.68) 

 As ( )1z l h= +ɶ ɶɶ  and ( )cz r l= ɶɶɶ  the relation (2.68) becomes  

 

2r r

dz h

dr e=

=
ɶ ɶ

ɶɶ

ɶ ɶ
. (2.69) 

 Knowing that the functions 
dz

dr

ɶ

ɶ
 and ( )rψ ɶ  are strictly increasing on[ ], 1crɶ the following 

 inequalities are satisfied: 
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i) ( ) ( ) ( )2 1cr rψ ψ ψ≤ ≤ɶ ɶ  which is equivalent to ( )2
2 2

e cr
π π

α ψ θ− ≤ ≤ −ɶ  

ii) ( )2tan tan tan
2 2

e cr
π π

α ψ θ
   

− ≤ ≤ −      ɶ  

 From the first equation of the system (2.50) results ( )
2

2tan
r r

dz
r

dr
ψ

=

=
ɶ ɶ

ɶ
ɶ

ɶ
which replaced in 

 (2.69) gives ( )2tan
h

r
e

ψ =
ɶ

ɶ
ɶ

. Then, inequality ii) becomes tan tan
2 2

e c

h

e

π π
α θ

   
− ≤ ≤ −      

ɶ

ɶ
 

 which is equivalent to (2.65). ■ 

Similar studies to those presented in [Braescu 2009-2] and [Braescu 2010-1] were 

developed in order to obtain inequalities for concave-convex and convexo-concave menisci, and 

the results are presented here as statements. 

Statement 2.10:  If the meniscus is concave-convex and the function ( )z rɶɶ  is strictly increasing 

on [ ], 1crɶ  and verifies the boundary value problem (2.50)-(2.51), then for a given non-

dimensional gap thickness ( )0, 1e ∈ɶ , 1 ce r= −ɶ ɶ , the Laplace number satisfies the inequalities: 

 ( ) ( )1
cos cos

1
a c a cBo H l h La Bo H l h

e
θ θ   − + + < < − + +   −

ɶ ɶ ɶ ɶɶ ɶ

ɶ
.  (2.70) 

Statement 2.11:  If the meniscus is convex-concave and the function ( )z rɶɶ  is strictly increasing 

on [ ], 1crɶ  and verifies the boundary value problem (2.50)-(2.51), then for a given non-

dimensional gap thickness ( )0, 1e ∈ɶ , 1 ce r= −ɶ ɶ , the Laplace number satisfies the inequalities: 

 ( ) ( )cos cosa c a eBo H l h La Bo H lθ α − + + < < − − ɶ ɶ ɶɶ ɶ . (2.71) 

Numerical results obtained by solving the problem (2.50) - (2.51) for InSb crystals grown on the 

ground by the dewetted Bridgman in the case of high apparent wetting angle (i.e. gas pollution 

case 165 25 180c eθ α+ = + > °� � ) prove that, if the pressure difference satisfies the inequality 

(2.63), i.e. 48.594La < , then the meniscus is globally convex (see Fig. 2.18) or concave-convex 

(see Fig. 2.19; it is difficult to see this shape on the figure, but this can be seen in numerical 

results) and the growth angle is achieved once.  
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Figure 2.18 Meniscus shape ( )z rɶɶ  and meniscus angle ( )rψ ɶ corresponding to 40La =  and 

165 25c eθ α π+ = + >� �  for InSb, 14.545aH =ɶ . The place where the growth angle 

( 1.13446
2

e

π
α− =  rad)  is achieved is shown by the black dot. 

 

 

Figure 2.19 Meniscus shape ( )z rɶɶ  and meniscus angle ( )rψ ɶ  corresponding to 48.3La =  and 

165 25c eθ α π+ = + >� �  for InSb, 14.545aH =ɶ . The place where the growth angle 

( 1.13446
2

e

π
α− =  rad)  is achieved is shown by the black dot. 
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 In conclusion, for a convex-concave meniscus, the growth angle can be achieved (the 

crystal can be obtained) if inequalities (2.71) are satisfied. It is not sure if this achievement 

always takes place; this depends on the material and process parameters.  

Numerical results obtained by solving the problem (2.50)-(2.51) for InSb crystals grown on the 

ground by the dewetted Bridgman in the case of 165 25c eθ α π+ = + >� � , show that if 

49.5La = and 
1

1 sin 0.238c
Bo

θ> ⋅ = , then the meniscus is convex-concave and the growth 

angle is achieved on the convex part of the meniscus (see Fig. 2.20). 

 

Figure 2.20 Convex-concave meniscus shape ( )z rɶɶ  and meniscus angle ( )rψ ɶ  corresponding 

to 49.5La = and 165 25c eθ α π+ = + >� �  for InSb, 14.545aH =ɶ . The place where the growth 

angle ( 1.13446
2

e

π
α− =  rad)  is achieved is shown by the black dot. 

 

For the globally concave meniscus 0
d

dr

ψ
<

ɶ
, and hence the function ( )rψ ɶ  decreases on the 

interval ( )0; 1 ; because 
2 2

e c

π π
α θ− < −   the growth angle cannot be achieved on the globally 

concave meniscus. Numerical results show that for 60La =  the meniscus is globally concave 

and the growth angle is not achieved (Fig. 2.21). 
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Figure 2.21 Globally concave meniscus shape ( )z rɶɶ  and meniscus angle ( )rψ ɶ  corresponding to 

60La =  and 165 25c eθ α π+ = + >� �  for InSb, 14.545aH =ɶ . The growth angle 

( 1.13446
2

e

π
α− =  rad) cannot be achieved. 

 

Case c eθ α π+ <  

Similarly to the case c eθ α π+ ≥ , qualitative study of the meniscus shape as function of the 

Laplace number was performed using only the properties obtained from the problem (2.50)-

(2.51) and the growth angle criterion, leading to the following theorem: 

Theorem 2.2: If the meniscus is globally concave and the function ( )z rɶɶ  is strictly increasing on 

[ ], 1crɶ  and verifies the boundary value problem (2.50)-(2.51) and (2.52), then for a given non-

dimensional gap thickness ( )0, 1e ∈ɶ , 1 ce r= −ɶ ɶ , the Laplace number,  satisfies the inequalities: 

 
( )1

sin cos
1

sin cos

c e
e e a

c e
c c a

Bo H l h La
e e

Bo H l
e

θ α π
α α

θ α π
θ θ

+ −  − − + − + < −

+ −  < − + + − 

ɶ ɶɶ

ɶ ɶ

ɶɶ

ɶ

 (2.72) 

and the meniscus height hɶ  satisfies: 

 tan tan
2 2

c ee h e
π π

θ α
   

− < < −      
ɶɶ ɶ  (2.73) 
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 Proof: Applying the Lagrange mean value theorem for the function ( )rψ ɶ , it is found that 

 there exist ( ) ( )1 , 1 1 , 1cr r e∈ = −ɶ ɶ ɶ  such that the following equality holds: 

 
( ) ( )

1

1

1

c

cr r

rd

dr r

ψ ψψ

=

−
=

−
ɶ ɶ

ɶ

ɶ ɶ
 (2.74) 

 As ( )1rψ ɶ  verifies 
( )

( ) ( )
1

1 1

1 1

1 1
sin

cos
a

r r

d
Bo H z r La r

dr r r

ψ
ψ

ψ=

  = − − −   ɶ ɶ

ɶ ɶ ɶɶ
ɶ ɶ ɶ

 and from the 

 boundary conditions ( )1
2

c

π
ψ θ= − , ( )

2
c er

π
ψ α= −ɶ  and relation (2.74) results 

 ( ) ( ) ( )1 1 1

1

1
sin cosc e

aLa Bo H z r r r
r e

θ α π
ψ ψ

+ − = − − − ɶ ɶ ɶ ɶɶ
ɶ ɶ

 (2.75) 

 As 
2

2
0

d z

dr
<

ɶ

ɶ
 for any [ ], 1cr r∈ɶ ɶ , the functions 

dz

dr

ɶ

ɶ
 and ( )rψ ɶ  are strictly decreasing 

 on[ ], 1crɶ the following inequalities are satisfied: 

i) ( ) ( ) ( )1 1cr rψ ψ ψ≥ ≥ɶ ɶ  which is equivalent to ( )1
2 2

c er
π π

θ ψ α− ≤ ≤ −ɶ , 

ii) ( )1sin sin sin
2 2

c er
π π

θ ψ α
   

− ≤ ≤ −      ɶ , 

iii) ( )1cos cos cos
2 2

e cr
π π

α ψ θ
   

− ≤ ≤ −      ɶ , 

 leading to 

1r r

dz
l l h

dr =

≤ ≤ +
ɶ ɶ

ɶ
ɶ ɶ ɶ

ɶ
. 

 Turning now to the relation (2.75) and taking into account these inequalities leads to the 

 inequalities (2.72) for La.  

 In order to find the inequality for the meniscus height, the Lagrange mean value theorem 

 for the function ( )z rɶɶ  is applied and gives that there exist ( )2 , 1cr r∈ɶ ɶ such that 

 
( ) ( )

2

1

1

c

cr r

z z rdz

dr r=

−
=

−
ɶ ɶ

ɶɶ ɶɶ

ɶ ɶ
. (2.76) 

 Since ( )1z l h= +ɶ ɶɶ  and ( )cz r l= ɶɶɶ  the relation (2.76) becomes  
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2r r

dz h

dr e=

=
ɶ ɶ

ɶɶ

ɶ ɶ
. (2.77) 

 As the functions 
dz

dr

ɶ

ɶ
 and ( )rψ ɶ  are strictly decreasing on[ ], 1crɶ the following inequalities 

 are satisfied: 

i) ( ) ( ) ( )1 1cr rψ ψ ψ≥ ≥ɶ ɶ  that is equivalent to ( )1
2 2

c er
π π

θ ψ α− ≤ ≤ −ɶ , 

ii) ( )2tan tan tan
2 2

c er
π π

θ ψ α
   

− ≤ ≤ −      ɶ  

 From the first equation of the system (2.50) results ( )
2

2tan
r r

dz
r

dr
ψ

=

=
ɶ ɶ

ɶ
ɶ

ɶ
which introduced 

 in (2.77) gives ( )2tan
h

r
e

ψ =
ɶ

ɶ
ɶ

. Then, inequality ii) becomes 

 tan tan
2 2

c e

h

e

π π
θ α
   

− ≤ ≤ −      
ɶ

ɶ
 that is equivalent to (2.73). ■ 

 The above analytical and numerical studies of meniscus shapes were performed in order 

to derive the conditions which allow dewetting and lead to a crystal with a constant radius on the 

ground. The obtained results can be summarized as in Table 2.2. The results are useful for in situ 

control of the process and show the importance of a careful calculation of the meniscus shapes 

for the optimization of a stable dewetted Bridgman growth. 
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Table 2.2 Meniscus shapes and the achievement of the growth angle depending on the pressure 

difference in normal gravity conditions. 

 

2.3. Parametric study: crystal-crucible gap dependence on the main parameters to enhance 

the dewetting occurrence 

 

The main purpose of this parametric study is to describe the dependency of the crystal-crucible 

gap thickness on the relevant parameters which enhance the dewetting occurrence under normal 

gravity conditions. The detailed parametric study was already published in [Epure 2010-2] and 

here only a summary will be given. 

As already mentioned in the previous sections, on the physical point of view, the 

dewetting phenomenon is governed by the Young-Laplace equation through the Bond, Bo, (that 

for a given material depends only on the crucible radius) and Laplace, La, (that in a given 

configuration depends on the applied pressure difference) non-dimensional numbers. Other main 

parameters identified to enhance the dewetting occurrence are the crucible material through the 

wetting properties of the melt (Chapter 1).  

In order to analyze the dependence of the crystal-crucible gap ( 1 ce r= −ɶ ɶ ) on the Bo and 

La numbers, a parametric study has been performed for the two different cases: 180c eθ α+ < °  

and 180c eθ α+ > ° , as they lead to different behavior. 

The limit regimes of the main parameters ( La → −∞ , La → +∞ , Bo → +∞ , 0Bo → ) which 

enhance the dewetting occurrence were first studied. Then the problem (2.50)-(2.51) has been 

solved numerically using the adaptive 4
th

 order Runge-Kutta method (details about this 

numerical method can be found in [Braescu 2010-2]) for various values of the parameters. Once 

all the solutions of the system are computed, the evolution of the crystal-crucible gap thickness 

can be presented as graphical plots.  

The dependence of the non-dimensional gap thickness on the Laplace number is 

illustrated for different values of Bo, in the cases 180c eθ α+ < °  (Figure 2.22) and 

180c eθ α+ > ° (Figure 2.23). 
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Figure 2.22 Non-dimensional gap thickness as function of Laplace number for the case 

150 25 180c eθ α+ = ° + ° < ° . 
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Figure 2.23 Non-dimensional gap thickness as function of Laplace number for the case 

165 25 180c eθ α+ = ° + ° > ° . 

 

The dependence of the dimensionless gap thickness on the Bond number, for different 

values of La, in the cases 180c eθ α+ < ° and respectively 180c eθ α+ > °  is shown in Figures 2.24 

and 2.25. 

 

Figure 2.24 Non-dimensional gap thickness as function of Bond number for the case 

150 25 180c eθ α+ = ° + ° < ° . 
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Figure 2.25 Non-dimensional gap thickness as function of Bond number for the case 

165 25 180c eθ α+ = ° + ° > ° . 

 

The illustrated dependences of the non-dimensional gap thickness on the Laplace and 

Bond numbers shows that the crystal-crucible gap thickness presents a maximum when the Bo 

and La numbers are varied. This maximum decreases when the Bo and La increase. For both 

cases 180c eθ α+ < °and 180c eθ α+ > ° , the maximum of the gap thickness appears in the cases 

where the growth angle is achieved on a convex part of the meniscus, which, for stability 

reasons, is the preferred practical case (see Chapter 4). 

As for growing crystals with a uniform radius, it is important that small variations of the 

relevant parameters have a low effect on the crystal-crucible gap thickness, the maximal values 

are preferred for practical growth of crystals.  

In Figure 2.26 the maximum crystal-crucible gap thickness is plotted versus the contact 

angle and respectively the growth angle.  
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Figure 2.26 Non-dimensional maximum gap thickness as function of the contact angle and 

growth angle. 

 

It can be easily seen, on the graphical plot, that an increase of the contact angle leads to a 

decrease of the maximum gap thickness and increasing the growth angle the maximum gap 

thickness will increase too.  

After that, the Laplace number corresponding to the maximum value of the crystal-

crucible gap thickness was plotted versus the Bond number for a fixed growth angle 25eα = °  

and different values of the contact angle which leads to the cases 180c eθ α+ < ° , 

180c eθ α+ = ° and 180c eθ α+ > ° (see Figure 2.27). 
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Figure 2.27 Optimal Laplace number corresponding to the maximum gap thickness, versus Bond 

number. 

 

The variation of the optimal La number with Bo number is shown to be linear and 

practically independent of the value of the wetting and growth angles ([Epure 2010-2]). This 

means that La (the applied gas pressure) does not change practically for various crucible 

materials. In fact, the main effect of the gas pressure difference is to counteract the hydrostatic 

pressure which is almost independent of the contact angle. 

These results give a good understanding of the physics of the dewetting process and are 

basic reference tools for the practical crystal growers working with a given equipment and given 

materials and also for the equipment designers. 

Summary  

In this chapter the capillarity problems involved in the dewetted Bridgman crystal growth 

process have been studied. Firstly, some concepts from differential geometry were presented, 

such as principal normal curvatures of a surface and mean normal curvature at a point on a 

surface. These “tools” were useful for the mathematical formulation of the capillarity problem 

governed by the Young-Laplace equation that further allows computing the shape of the liquid 

meniscus.  

 In order to understand better the dewetted Bridgman process, analytical and numerical 

studies of the axi-symmetric Young-Laplace equation describing the meniscus shape were 

performed and the dependence of the meniscus shape and size on the pressure difference was 

established in zero and normal gravity conditions. In zero gravity conditions, the analytical 

study led to the formulas of the non-dimensional crystal-crucible gap thickness that are in 

agreement with those already reported in a dimensional form. In the case of normal gravity 

conditions, the qualitative studies for the meniscus shape were performed using Taylor 

polynomial approximation and also, without approximation using the properties obtained from 

Young-Laplace equation and the growth angle criterion.  

A parametric study has been performed in order to establish the dependence of the crystal-

crucible gap thickness on the relevant parameters of the dewetted Bridgman process.  
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CHAPTER 3: Contributions to the modeling of heat transfer  

problems and melt – solid interface displacement 

As the main objective of the present work is the stability analysis of the process, the necessary 

conditions in order to get a stable dewetting, i.e., a stable crystal diameter, or gap thickness must 

be found.  

From the existent stability analysis of the dewetted Bridgman process and as will be shown in 

Chapter 4, it appears that under zero gravity conditions, the only one variable parameter is the 

crystal-crucible gap thickness, because the heat transfer cannot change the pressure in the 

meniscus and thus has no effect on the meniscus shape and then on the gap [Duffar 2010]. Then 

only one equation is needed, which is the Young-Laplace equation.  

On the contrary, for experiments performed on the Earth, melting or solidification change the 

liquid height, then the hydrostatic pressure acting on the meniscus, and then the crystal-crucible 

gap thickness. In this case the gap thickness and the solid-liquid interface position are variables 

of the problem and hence two equations are needed, namely the Young-Laplace equation and the 

heat balance at the solid-liquid interface. 

Therefore, this chapter deals with contributions to the modeling of heat transfer problems in the 

case of dewetted Bridgman crystal growth; these results being useful for the development of the 

dynamical stability analysis of the process. In order to establish analytical expressions of the 

temperature distribution and the temperature gradients in the melt and in the solid, the non-

stationary one-dimensional heat transfer equation will be considered by neglecting the latent heat 

release (quasi steady-state approximation). The melt-solid interface displacement differential 

equation will be also derived from the thermal energy balance at the level of the interface and 

relevant properties concerning the solution ( )l tɶ ɶ  of this equation will be established 

(Propositions 3.1 to 3.3). The novelty is that the solution ( )l tɶ ɶ  will be found solving numerically 

by adaptive Runge-Kutta method its ordinary non-autonomous differential equation in which the 

analytical formulas of the temperature gradients will be used. Then, these results will be 

compared to those obtained by solving, by finite element method, the non-stationary one-

dimensional heat transfer equation in which the latent heat release is considered. Here these 
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studies are presented in the non-dimensional form, the dimensional form being reported in 

[Balint 2011-2]. 

Further, for studying the effect of the crystal-crucible gap on the curvature of the solid-liquid 

interface for a set of non-dimensional parameters representative of classical semiconductor 

crystal growth, an analytical expression of the interface deflection, based on simple heat fluxes 

arguments will be found. In order to check the accuracy of the obtained analytical formula and to 

identify its limits of validity, the heat transfer equation will be solved numerically in 2D axial 

symmetry, stationary case, using the finite element code COMSOL Multiphysics 3.3. Parts of 

these results are published in [Epure 2008]. 

 

3.1. Analytical expression of the temperature distribution and temperature gradients in the 

melt and in the solid 

 

In order to find analytical expressions of the temperature distribution and the temperature 

gradients in the melt and in the solid, the non-stationary one-dimensional heat transfer equation 

was considered in the following assumptions: the gap thickness does not influence the axial heat 

transfer; the temperature is constant in a cross-section of the melt-solid system; the lateral 

crucible wall is adiabatic; and the thermal flux is axial. The latent heat release is neglected which 

corresponds to cases where the latent heat flux due to solidification is low compared to the 

general heat flux in the sample (i.e., 
i l lv GλΛ ⋅ << ⋅ ). This often happens in real Bridgman 

growth where the growth rate is generally small (of the order of 610− m/s or lower) for assuring a 

good crystal quality. For example, in the case of InSb crystals (see Table 1.1), 
i l lv GλΛ ⋅ << ⋅  

gives 3 51.3 10 4.615 10⋅ << ⋅ . 

 The configuration under study is presented in Figure 3.1 in which z - coordinate with 

respect to the body frame zOr; d ′ - bottom coordinate of the ampoule with respect to the 

laboratory frame z O r′ ′ ′ , at 0t = ; aH , fH - the ampoule and furnace height; f
cT , f

hT - the cold 

respectively hot temperature of the furnace. 
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Figure 3.1 Configuration under study. 

 

For the analytical study the following hypothesis are established: 

• the ampoule moves with a constant rate av  in a furnace having a constant vertical 

temperature gradient k  (Figure 3.1). 

• at every moment of time, the temperatures at the hot and at the cold sides of the 

ampoule are equal to the temperatures of the furnace at the corresponding levels. 

• the temperature in the solid Ts, and in the liquid Tl  are time dependent and at the 

initial moment of time, when the pulling starts, are linear functions of the axial 

coordinate z. 

• the gap thickness does not influence the heat transfer because the radial heat fluxes 

are negligible. 
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Under the established hypothesis, during the solidification process, the temperature distribution 

( ),l lT T z t=  in the melt must satisfy the non-stationary one dimensional heat transfer equation 

([Balint 2011-2]) 

 
2

2
=0, with ll l

th a

T T
D l z H

t z

∂ ∂
− ≤ ≤

∂ ∂
 and l l

th

l l

D
c

λ

ρ
=  (3.1) 

with the corresponding boundary conditions: 

 ( ) ( ) ( ), a f
l a h c a aT H t T t T k d H v t′= = + + −  (3.2) 

 ( ),l mT l t T=  (3.3) 

and the initial condition in the melt: 

 

( )

( ) ( )

,0

0 0

f f
c m a a m c a

l

a a a a

a a
h m a m h

a a

T T d H H T lT d H
T z k z kl

H l H l H l H l

T T H T lT
z

H l H l

 ′ ′− + − +
= + + − 

− − − − 
− −

= +
− −

 (3.4) 

The non-dimensional form of the heat transfer equation is done by setting: 

 , , .
f

l c
l f

a a m c

T Tz l
z l T

r r T T

−
= = =

−
ɶ ɶɶ  (3.5) 

In order to non-dimensionalize t, it is necessary to multiply it by some combination of constants 

that has units of s
-1

. Thus, for considering our set of equations 
2

l
th

a

D
t t

r
=ɶ  is chosen as the non-

dimensional time variable [Fu 1981]. Physically speaking, this means that the time scale is given 

by the time needed for the diffusion of heat in a distance ar . The order of magnitude is 

2
a

l
th

r

D
(which in the case of InSb is 5.6 s). 

Replacing the dimensional variables in the initial equation (3.1) with their non-dimensional 

equivalents (3.5) the following non-dimensional heat transfer equation is obtained: 

 
2

2
=0, with l l

a

T T
l z H

t z

∂ ∂
− ≤ ≤

∂ ∂

ɶ ɶ
ɶ ɶɶ

ɶ ɶ

 (3.6) 

For the boundary conditions, using the same rules of non-dimensionalization gives: 
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( )

, , , ,

1, 0.

la a a
a alf

a a thm c

f f f
fm c c c

m cf f
m c m c

H r rd
d H k k Pe v

r r DT T

T T T T
T T

T T T T

′
′ = = = =

−

− −
= = = =

− −

ɶ ɶɶ

ɶ ɶ

ɶ ɶ

 (3.7) 

Therefore, the non-dimensionalized boundary conditions can be written as: 

 ( ) ( ) ( ), ,a f l
l a h c aT H t T t T k d H Pe t′= = + + − ⋅ɶ ɶɶ ɶ ɶ ɶ ɶɶ ɶ ɶ  (3.8) 

 ( ),l mT l t T=ɶɶ ɶɶ  (3.9) 

and the initial condition  

 

( )

( ) ( )

,0

0 0
.

f f
c m a a m c a

l

a a a a

a a
h m a m h

a a

T T d H H T lT d H
T z k z kl

H l H l H l H l

T T H T lT
z

H l H l

 ′ ′− + − +
= + + − 

− − − − 
− −

= +
− −

ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ
ɶ ɶɶɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶɶ ɶ ɶ ɶ ɶ

ɶ
ɶ ɶɶ ɶ

 (3.10) 

Similarly, the temperature distribution ( ),s sT T z t=  in the solid must satisfy the non-stationary 

one dimensional heat transfer equation: 

 
2

2
=0, with 0ss s

th

T T
D z l

t z

∂ ∂
− ≤ ≤

∂ ∂
 and s s

th

s s

D
c

λ

ρ
=  (3.11) 

with the following boundary conditions: 

 ( ),s mT l t T= , (3.12) 

 ( ) ( ) ( )0, a f
s c c aT t T t T k d v t′= = + −  (3.13) 

and the initial condition: 

 ( )
( )

( )
0

,0 0

af
m cf am c

s c c

T TT T d
T z k z T kd z T

l l l

  −′−
′= − + + = +  

 (3.14) 

Using the same rules of the non-dimensionalization as before, by setting: 

 
2

and
f l

s c th
s f

m c a

T T D
T t t

T T r

−
= =

−
ɶ ɶ  (3.15) 

the following non-dimensional heat transfer equation was obtained in the solid: 

 
2

2
=0, with 0s s

th

T T
D z l

t z

∂ ∂
− ≤ ≤

∂ ∂

ɶ ɶ
ɶɶ ɶ

ɶ ɶ
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s
th

th l
th

D
D

D
=ɶ  (3.16) 
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with the corresponding boundary conditions  

 ( ),s mT l t T=ɶɶ ɶɶ , (3.17) 

 ( ) ( ) ( )0, a f l
s c cT t T t T k d Pe t′= = + − ⋅ɶ ɶɶ ɶ ɶɶ ɶ ɶ  (3.18) 

and the initial condition  

 ( )
( )

( )
0

,0 0

af
m cf am c

s c c

T TT T d
T z k z T kd z T

l l l

  −′−
′= − + + = +  

ɶ ɶɶɶ ɶ
ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ
 (3.19) 

The significance of the non-dimensional parameters used in the previous formulas is tɶ  - the non-

dimensional moment of time; l
Pe - Péclet number for the liquid (compones velocity of heat 

carried by the sample by diffusion);  lɶ - the non-dimensional interface coordinate with respect to 

the body frame zOr; aHɶ , fHɶ - the non-dimensional ampoule and furnace height; ( )a
hT tɶ ɶ , ( )a

cT tɶ ɶ - 

the non-dimensional top and the bottom temperatures of the ampoule; f
cTɶ , f

hTɶ - the non-

dimensional cold respectively hot temperature of the furnace; mTɶ - non-dimensional melting 

temperature; kɶ - non-dimensional temperature gradient in the furnace. 

In a solidification process, the following inequalities necessarily hold:  

 0 ; ,a a fl H d H H′< < + ≤ɶ ɶɶ ɶ ɶ  (3.20) 

 ( )f f
c m c aT kd T T k d H′ ′+ ≤ ≤ + +ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ . (3.21) 

In order to obtain the analytical formula of the temperature distribution in the melt the Cauchy-

Dirichlet problem  

 ( ) ( ) ( )
( )

2

2
=0, with 

,

,

l l
a

a f l

l a h c a

l m

T T
l z H

t z

T H t T t T k d H Pe t

T l t T

∂ ∂
− ≤ ≤

∂ ∂ ′= = + + − ⋅ =

ɶ ɶ
ɶ ɶɶ

ɶ ɶ

ɶ ɶɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

ɶɶ ɶɶ

 (3.22) 

 in which the latent heat release was neglected (quasi steady state approximation [Tatartchenko 

1993]), must be solved for tɶ in the range *0, t  ɶ  with  

 *

1
.

f
m c

al

T T
t d H

kPe

 −
′= + −  

ɶ ɶ
ɶ ɶɶ

ɶ
 (3.23) 
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 ( ) ( ) ( )1 1,o

lT z t A t z B t= +ɶ ɶ ɶ ɶɶ ɶ  is considered for the homogenization of the boundary 

 conditions and then, 

( ) ( ) ( ),o a f l

l a h c aT H t T t T k d H Pe t′= = + + − ⋅ɶ ɶɶ ɶ ɶ ɶ ɶɶ ɶ ɶ  

( ),o

l mT l t T=ɶɶ ɶɶ  

 wherefrom it results  

 ( ),
f l l

o c m a a m a
l

a a a a

T T d H Pe t H T l d H Pe t
T z t k z kl

H l H l H l H l

 ′ ′− + − ⋅ − + − ⋅
= + + − 

− − − − 
ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶɶɶ ɶɶ ɶ
ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

. (3.24) 

 Hence, 

 ( ) ( ) ( ), , ,o

l l lT z t T z t T z t= +ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ  (3.25) 

 and the Cauchy-Dirichlet problem becomes: 

 
( ) ( ) ( )

( ) ( )

2

*2

*

, , , 0,

, , 0, 0,

ll l
a

a

l l a

T T z l
k Pe z t l H t

t z H l

T l t T H t t t

∂ ∂ −
= + ⋅ ∈ × ∂ ∂ −

= = ∈   

ɶɶ ɶ ɶ
ɶ ɶ ɶɶ ɶɶ

ɶɶɶ ɶ

ɶɶ ɶ ɶɶ ɶ ɶ ɶ

. (3.26) 

 In order to solve this non homogenous parabolic equation we shall look for the solution 

 of the form: 

 ( ) ( ) ( )
1

, sinl n

n a

n
T z t M t z l

H l

π∞

=

 
= − 

− ∑ ɶɶ ɶ ɶɶ ɶ
ɶɶ

 (3.27) 

 For ( )nM tɶ we arrive to the Cauchy problem: 

 ( ) ( )
2

1
,n n n

a

n
M M c t

H l

π 
′ + = 

− 
ɶ

ɶɶ
 (3.28) 

 ( ) ( )1
0n nM a=  (3.29) 

 where ( )1

nc  and ( )1

na are the Fourier coefficients from the Fourier series of the data problem 

( ) ( ) ( )1

1

sinl

n

na a

z l n
k Pe c t z l

H l H l

π∞

=

  −
⋅ = −  

− −   ∑ɶɶ
ɶ ɶɶ ɶ

ɶ ɶɶ ɶ
, 

( ) ( ) ( )1

1

,0 sinl n

n a

n
T z a z l

H l

π∞

=

  
= −  

−   ∑ ɶɶ ɶ ɶ
ɶɶ

, 
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 hence, 

 
( ) ( ) ( )1 2

sin
aH

l

n

a a al

z l n
c t k Pe z l dz

H l H l H l

π  −
= ⋅ ⋅ −  

− − −   ∫
ɶ

ɶ

ɶɶ
ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ
 (3.30) 

 
( ) ( ) ( )1 2

,0 sin
aH

n l

a al

n
a T z z l dz

H l H l

π  
= ⋅ −  

− −   ∫
ɶ

ɶ

ɶɶ ɶ ɶ ɶ
ɶ ɶɶ ɶ

 (3.31) 

 Then, the solution of the Cauchy problem (3.28)-(3.29) is 

 ( ) ( )
( )

( ) ( )

2 2

1 1

0

a a

n ntt t
H l H l

n n nM t a e e c d

π π
τ

τ τ

   
− − −      − −   = + ∫

ɶɶ ɶ
ɶ ɶɶ ɶ

ɶ . (3.32) 

 Introducing (3.32) into (3.27) the formal solution of the problem (3.26) is obtained: 

 ( ) ( )
( )

( ) ( ) ( )
2 2

1 1

1 0

, sina a

n ntt t
H l H l

l n n

n a

n
T z t a e e c d z l

H l

π π
τ π

τ τ

   
∞ − − −      − −   
=

      = + −    −      
∑ ∫

ɶɶ ɶ
ɶ ɶɶ ɶ

ɶɶ ɶɶ ɶ
ɶɶ

 (3.33) 

 As ( ),lT z tɶ ɶɶ  was considered a linear function, ( ),0 0lT z =ɶ ɶ and then ( )1

na  will be equal to 

 zero and the coefficient ( ) ( )1

n
c tɶ  is computed from (3.30): 

( ) ( ) ( )

( )
( ) ( )

( )
( )

( )

( )

1

2

2

2

1

2
sin

2
sin

2
1

2
1

a

a

H

l

n

a a al

Hl

ala

l
a n

a

l
n

z l n
c t k Pe z l dz

H l H l H l

k Pe n
z l z l dz

H lH l

H lk Pe

nH l

k Pe

n

π

π

π

π

+

  −
= ⋅ −  

− − −   
  ⋅

= − −  
−  −  

 −⋅  = − ⋅ − −   
⋅

= −

∫
∫

ɶ

ɶ

ɶ

ɶ

ɶɶ
ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ

ɶ
ɶ ɶɶ ɶ ɶ

ɶɶɶɶ

ɶɶɶ

ɶɶ

ɶ

 

 Replacing these coefficients in (3.33) gives 
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( ) ( )
( ) ( )

( )
( )

2

2

1

1 0

2

1

2
, 1 sin

2
1 1 sin

a

a

nt l t
n H l

l

n a

n
l t

n H la

a

n z lk Pe
T z t e d

n H l

n z lH lk Pe
e

n n H l

π
τ

π

π
τ

π

π

π π

 
∞ − −  + − 
=

 
−  + − 

    −⋅    = −    −      
     − −⋅     = − −     −       

∑ ∫
ɶ ɶ

ɶɶ

ɶ
ɶɶ

ɶɶɶ
ɶ ɶɶ

ɶɶ

ɶɶ ɶɶ ɶ

ɶɶ

( )
( )

2

1

2

1

1

1
2 1 1 sina

n

n
t

n H ll a

n a

n z lH l
k Pe e

n n H l

π π

π π

∞

=

 
∞ −  + − 
=

   
   − −    = ⋅ − −     −     

∑

∑ ɶ
ɶɶ

ɶɶ ɶɶ
ɶ

ɶɶ

. (3.34) 

 Introducing (3.34) into (3.25) the temperature distribution in the melt is obtained: 

 

( )

( )
( )

( )

2

2

1

1

,

1
2 1 1 sina

f l l
c m a a m a

l

a a a a

n
t

n H ll a

n a

a
h m

T T d H Pe t H T l d H Pe t
T z t k z kl

H l H l H l H l

n z lH l
k Pe e

n n H l

T t T

π
π

π π

 
−∞   + − 

=

 ′ ′− + − ⋅ − + − ⋅
= + + − 

− − − − 
   − −    + ⋅ − −     −      

−
=

∑
ɶ

ɶɶ

ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶɶ ɶ
ɶ ɶɶɶ ɶɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶɶ ɶɶ
ɶ

ɶɶ

ɶ ɶɶ

ɶ

( )

( )
( )

2

2

1

1

1
2 1 1 sin .a

a
a m h

a a

n
t

n H ll a

n a

H T lT t
z

H l H l

n z lH l
k Pe e

n n H l

π
π

π π

 
−∞   + − 

=

−
+

− −

   − −    + ⋅ − −     −      
∑

ɶ
ɶɶ

ɶɶ ɶ ɶ

ɶ
ɶ ɶɶ

ɶɶ ɶɶ
ɶ

ɶɶ

 (3.35) 

Similarly, for finding the analytical formula for the temperature distribution in the solid, the 

following Cauchy-Dirichlet problem must be solved: 

 ( )
( ) ( ) ( )

2

2
=0, with 0

,

0,

s s
th

s m

a f l

s c c

T T
D z l

t z

T l t T

T t T t T k d Pe t

∂ ∂
− ≤ ≤

∂ ∂ = ′= = + − ⋅

ɶ ɶ
ɶɶ ɶ

ɶ ɶ

ɶɶ ɶɶ

ɶ ɶɶ ɶ ɶɶ ɶ ɶ

. (3.36) 

 ( ) ( ) ( )2 2,o

sT z t A t z B t= +ɶ ɶ ɶ ɶɶ ɶ  is also considered for the homogenization of the boundary 

 conditions and then, 

( ),o

s mT l t T=ɶɶ ɶɶ  

( ) ( ) ( )0,o a f l

s c cT t T t T k d Pe t′= = + − ⋅ɶ ɶɶ ɶ ɶɶ ɶ ɶ  



94 

 

 wherefrom  

 ( ) ( ) ( )1
,o f l f l

s m c c
T z t T T k d Pe t z T k d Pe t

l
 ′ ′= − − − ⋅ + + − ⋅ ɶ ɶ ɶ ɶɶ ɶ ɶ ɶɶ ɶ ɶɶ ɶ

ɶ
. (3.37) 

 Hence, 

 ( ) ( ) ( ), , ,o

s s sT z t T z t T z t= +ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ  (3.38) 

 and the Cauchy-Dirichlet problem becomes: 

 
( ) ( ) ( )

( ) ( )

2

*2

*

, , 0, 0,

, 0, 0, 0, .

ls s
th

s s

T T z l
D k Pe z t l t

t z l

T l t T t t t

∂ ∂ −
= − ⋅ ∈ ×

∂ ∂ = = ∈   

ɶɶ ɶ ɶ
ɶ ɶɶ ɶ ɶɶ

ɶɶ ɶ

ɶɶ ɶɶ ɶ ɶ ɶ

. (3.39) 

 Following the same procedure as before we look for a formal solution  

 ( ) ( ) ( ) ( ) ( )

2 2

2 2

1 0

, sin
th th

n nt
D t D t

l l
s n n

n

n
T z t a e e c d z

l

π π
τ π

τ τ
   ∞ − − −      

=

      = +       
∑ ∫

ɶ
ɶ ɶɶ ɶ

ɶ ɶɶ ɶɶ ɶ
ɶ

 (3.40) 

 Computing the coefficients 

( ) ( )2

0

2
2

2

2
sin

2
sin

2

l

l

n

l

l

z l n
c t k Pe z dz

l l l

k Pe l l n
l

n nl l

k Pe
n

π

π

π π

π

 −  
= − ⋅ ⋅    

  ⋅   = − − +        
= ⋅

∫
ɶ

ɶɶ
ɶɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ
ɶ

ɶ ɶ

ɶ

 

( ) ( )2

0

2
,0 sin 0

l

n s

n
a T z z dz

l l

π  
= ⋅ =    ∫

ɶ

ɶ ɶ ɶ ɶ
ɶ ɶ

(as the function ( ),0 0sT z =ɶ ɶ ) lead to: 

 

( )
( )

2

2

1 0

2

1

2

1

2
, sin

1
2 1 sin

1
2 1

th

th

nt
D t

l l
s

n

nl D t
l

n th

l

nth

n
T z t k Pe e d z

n l

Pe l n
k e z

D n n l

Pe l
k e

D n n

π
τ

π

π
τ

π

π

π π

π π

 ∞ − −  
=

 ∞ −   
=

∞ −

=

      = ⋅       
       = ⋅ −           

 
= ⋅ −  

∑ ∫

∑

∑

ɶ
ɶ ɶ

ɶ

ɶ ɶ
ɶ

ɶ

ɶɶ ɶɶ ɶ
ɶ

ɶ
ɶ ɶ

ɶ ɶ

ɶ
ɶ

ɶ

2

sin .
th

n
D t

l n
z

l

π
π

   
          

ɶ
ɶ

ɶ
ɶ

 (3.41) 

 By introducing (3.41) into (3.38) the temperature distribution in the solid is obtained: 
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( ) ( ) ( )

( )
( )

2
2

1

2

1

1
,

1
2 1 sin

1
2 1

th

th

f l f l
s m c c

nl D t
l

nth

na l D
m c a l

c

nth

T z t T T k d Pe t z T k d Pe t
l

Pe l n
k e z

D n n l

T T t Pe l
z T t k e

D n nl

π

π

π

π π

π π

 ∞ −   
=

∞ − 
=

 ′ ′= − − − ⋅ + + − ⋅ 
     + ⋅ −         

−  
= + + ⋅ −  

∑

∑

ɶ ɶ
ɶ

ɶ
ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶɶ ɶ ɶɶ ɶ
ɶ

ɶ
ɶ ɶ

ɶ ɶ

ɶ ɶ ɶɶ
ɶɶ ɶɶ

ɶ ɶ

2

sin .
t n

z
l

π


          

ɶ

ɶ
ɶ

 (3.42) 

Therefore, the temperature gradients in the melt and in the solid, at the level of the interface are 

given by: 

 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

2

2

1

2
1

1

2
1

1
, 2 1 1

1
2 1 1 ,

a

a

na t
n H lh m ll

l a

naz l

n
f l t

n H llc m a
a

na a

T t TT
G l t k H l Pe e

z H l n

T T d H Pe t
k k H l Pe e

H l H l n

π

π

π

π

 
−∞   + − 

==

 
−∞   + − 

=

 
−∂  

= = + − ⋅ − − ∂ −   
 

′− + − ⋅  
= + + − ⋅ − − − −   

∑

∑

ɶ
ɶɶ

ɶɶ

ɶ
ɶɶ

ɶ ɶɶɶ
ɶ ɶ ɶɶ ɶɶ

ɶɶɶ

ɶɶ ɶ ɶ ɶ
ɶ ɶ ɶɶ

ɶ ɶɶ ɶ

(3.43) 

 

( ) ( )
( )

( )

( ) ( )
( )

2

2

2
1

2
1

1
, 2 1 1

1 1
1 2 1 1 .

th

th

na l D t
nm c ls

s

nthz l

nl D t
nl l

m

nth

T T tT Pe
G l t kl e

z Dl n

Pe
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 (3.44) 

 

3.2. Melt-solid interface displacement equation 

 

In the previous section it has been considered, and shown that it is the case in crystal growth 

process, that the latent heat release is not considered because it is negligible compared to the 

general heat flux in the sample. 

However there is a small difference between the heat flux in the solid and in the liquid, and then 

during the solidification process, the equation which describes the melt-solid interface 

displacement is obtained from the thermal energy balance at the level of the interface: 
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 ( ) ( ), ,l s

dl
St G l t G l t

dt
λ = − − 

ɶ
ɶ ɶɶ ɶ ɶɶ ɶ

ɶ
 (3.45) 

where: 
( )f

l m cc T T
St

−
=

Λ
 - the Stefan number [Ayasoufi 2009], s

l

λ
λ

λ
=ɶ - the non-dimensional 

thermal conductivity, ( ),lG l tɶɶ ɶ  and ( ),sG l tɶɶ ɶ - the non-dimensional temperature gradients at the 

level of the interface in the liquid and solid respectively, given by (3.43) and (3.44). 

The right-hand side of the equation (3.45) can be written as: 
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 (3.46) 

Hence, the following inequalities hold: 
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(3.47) 

The above inequalities lead to the following proposition: 

Proposition 3.1: For every moment of time *0,t t∈   ɶ ɶ  the following equalities hold: 

 ( ) ( ){ } ( ) ( ){ }
0

0

lim , , ; lim , , .
a

a

l s l s
l l H

l l H

St G l t G l t St G l t G l tλ λ
→ →
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   − − = +∞ − − = −∞   ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ  (3.48) 

Equalities (3.48) with the inequality 

 ( ) ( ){ }, , 0l sSt G l t G l t
l

λ
∂  − − < ∂

ɶ ɶɶ ɶ ɶɶ ɶ
ɶ

 (3.49) 

(valid for l
Pe  small compared to 1, which is the case for semiconductor growth) imply that for 

every moment of time *0,t t∈   ɶ ɶ , there exists a unique value ( ) (* 0, al t H ∈ ɶ ɶɶ  such that: 
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 ( )( ) ( )( )* *, , 0.l sSt G l t t G l t tλ − − = ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ  (3.50) 

Therefore, the following proposition can be stated: 

Proposition 3.2: At a point ( ),l tɶ ɶ  which belongs to the rectangle ( *0, 0,aH t×   ɶ ɶ  one and only 

one of the following situations can occur: 
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 (3.51) 

where ( )l tɶ ɶ represents the solution of Eq. (3.45).  

The value of  ( )*l tɶ ɶ  at a moment of time *0,t t∈   ɶ ɶ  satisfies: 
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 (3.52) 

Moreover, since ( ) ( ){ }, , 0l sSt G l t G l t
t

λ
∂  − − > ∂

ɶ ɶɶ ɶ ɶɶ ɶ
ɶ

(for l
Pe  small), ( )*l tɶ ɶ  is an increasing 

function with: 
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 (3.53) 

The value ( )*l tɶ ɶ  splits the interval 0, aH  ɶ  in two ranges: ( ))*0, l t ɶ ɶ  and ( )( * , al t H ɶ ɶɶ  and is the 

boundary between the melting and solidification processes. If at the moment of time tɶ the 

crystallization front level ( )l tɶ ɶ  is in the range ( ))*0, l t ɶ ɶ , then solidification takes place (Figure 

3.2). If at the moment of time tɶ , ( )l tɶ ɶ  is in the range ( )( * , al t H ɶ ɶɶ then melting takes place (see 

[Balint 2011-2]). In order to analyze the solidification process, the following proposition must be 

valid: 

Proposition 3.3: For an initial value 0l
ɶ  which satisfies ( )0 *0 0l l< ≤ɶ ɶ , the solution of the initial 

value problem: 
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 (3.54) 

is defined for [ ]0 *t ,t∈ , it is an increasing function and verifies ( ) ( )0 00 *l l t; ,l l t< <  ( ( )*l tɶ ɶ  the 

solution of Eq.(3.50)) for every [ ]0 *t ,t∈ . 

Thus, for showing that the solution of IVP (3.54) is an increasing function, a solution ( )1l tɶ ɶ which 

starts below ( )*l tɶ ɶ  (i.e., ( ) ( )1 *0 0l l<ɶ ɶ ) is considered and it will be proved by contradiction that 

( )1l tɶ ɶ  remains under ( )*l tɶ ɶ  during the solidification process. Hence, supposing that the 

intersection of ( )1l tɶ ɶ  and ( )*l tɶ ɶ occurs at time 0 *0,t t∈   ɶ ɶ , then ( ) ( )1 0 * 0l t l t=ɶ ɶɶ ɶ and ( )1l tɶ ɶ  can be 

expanded in Taylor series at the point 0tɶ  as  
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 (3.55) 

From (3.46) and (3.47) it gives:  
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. 

Since the first derivative of ( )1l tɶ ɶ with respect to tɶ , computed at 0tɶ , is equal to zero, the sign of 

the second derivative must be studied: 
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Computing at 0tɶ  gives: 
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From the positivity of this derivative and the relation (3.55) it results that ( ) ( )1 1 0l t l t>ɶ ɶɶ ɶ  in a small 

neighbourhood of 0tɶ , which is in contradiction with the implication of (3.51) that ( ) ( )1 1 0l t l t<ɶ ɶɶ ɶ  

for any 0t t<ɶ ɶ . Hence, the supposition is false, there is no intersection between ( )1l tɶ ɶ  and ( )*l tɶ ɶ .  

Thus, the solution of (3.54), defined for *0,t t∈   ɶ ɶ , is an increasing function and verifies 

( ) ( )0 0 *;0,l l t l l t< <ɶ ɶ ɶ ɶɶ ɶ  for every *0,t t∈   ɶ ɶ . 

Remark: When the filled ampoule is placed directly in the furnace such that the coordinate of the 

bottom of the ampoule is equal to d ′ɶ and the pulling up starts, a melting process followed by 

solidification takes place [Balint 2011-2]. This process is described by the equation (3.51) and 

the initial condition ( )0 al H=ɶ ɶ  (see Figure 3.5). 

 

3.3. Numerical illustration of the melt-solid interface displacement 

 

The theoretical studies presented in the previous sections will be illustrated numerically. The 

numerical computations are performed for two semiconductors InSb and GaSb (thermophysical 

properties are given in Table 1.1). Other common input parameters are: the temperature at the 

cold side of the furnace, 0f
cT =ɶ  and the pulling rate, 6 110 m sav

− −= ⋅ . Special attention must be 

paid in choosing the vertical temperature gradient in the furnace kɶ  and the parameter d ′ɶ  which 

gives the position of the ampoule in the furnace, in order to get solidification. A natural way to 

choose kɶ  and d ′ɶ , when f
cTɶ is fixed, can be the following: ( )f

m c ak T T H= −ɶ ɶ ɶ ɶ  and 0ad H L′ = −ɶ ɶ ɶ  

where 0Lɶ is the seed length. Therefore, in the case of InSb, 15000K mk
−= ⋅ and in the case of 

GaSb, 17237.5K mk
−= ⋅ . 
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For the numerical illustration of the melt-solid interface evolution, the following steps are 

required: 

• Numerical determination of *tɶ  using relation (3.23), so that for InSb * 10758.89t =ɶ  and 

for GaSb * 10156.39t =ɶ  are obtained. 

• Numerical determination of ( )*l tɶ ɶ  performed considering the first four terms for the 

thermal gradients ( ),lG l tɶɶ ɶ , ( ),sG l tɶɶ ɶ  in the equation (3.50) and *0,t t∈   ɶ ɶ . The values 

( )* 0 2.061l =ɶ , ( )* * 14.545 al t H= ≤ɶ ɶɶ  for InSb and ( )* 0 2.518l =ɶ , ( )* * 14.545 al t H= ≤ɶ ɶɶ   for 

GaSb are obtained. Graphical representation of ( )*l tɶ ɶ  is shown in Figure 3.2 for both 

semiconductors. 

 

Figure 3.2 Solidification process boundaries of (a) InSb and (b) GaSb.  

 

• Numerical determination of the solution ( )0;0,l t lɶ ɶɶ  of differential equation (3.45) using 

Mathcad 13. In Figure 3.3 the computed ( )*l tɶ ɶ  and ( )0;0,l t lɶ ɶɶ  corresponding to 

( )0 * 0 2.061l l= =ɶ ɶ  are represented for InSb. 
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Figure 3.3 Evolution of the interface displacement for InSb (a) the beginning of the solidification 

and (b) the entire solidification process. 

 

Similarly, in Figure 3.4 the computed ( )*l tɶ ɶ  and ( )0;0,l t lɶ ɶɶ  corresponding to 

( )0 * 0 2.518l l= =ɶ ɶ  are represented for GaSb. 

 

Figure 3.4 Evolution of the interface displacement for GaSb (a) the beginning of the 

solidification and (b) the entire solidification process. 

 

Computations show that ( )0;0,l t lɶ ɶɶ  is an increasing function which satisfies ( ) ( )0 0 *;0,l l t l l t< <ɶ ɶ ɶ ɶɶ ɶ  

for every *0,t t∈   ɶ ɶ  (as it was mentioned in section 3.2). Moreover, it can be seen that 
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( ) ( )* 0;0,l t l t l−ɶ ɶ ɶɶ ɶ  becomes very small after a short period of time and ( )* 0;0, al t l H≅ɶ ɶ ɶɶ  (i.e., the 

entire melt is solidified during the period *0, t  ɶ ). 

In Figure 3.5 the melting and solidification processes are illustrated for 0 14.545al H= =ɶ ɶ . 

 

Figure 3.5 Melting-Solidification process of InSb (a) and GaSb (b). 

 

The above numerical results were obtained on the basis of the analytical formulas of the 

temperature distribution presented in section 3.1. These formulas were found solving the heat 

transfer equation in the melt and in the solid by neglecting the latent heat release at the solid-

liquid interface. Under these hypotheses the equation of the melt - solid interface displacement 

was determined from the thermal balance equation.  

In order to check these hypothesis, the heat transfer problem taking into account an 

averaged value of the latent heat released all along the process, has been solved numerically with 

Comsol Multiphysics software. The results are presented on Figures 3.6 with dotted lines. The 

continuous line in this figure represents the computed crystallization front evolution using the 

analytical formulas of the temperature gradients.  
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Figure 3.6 Evolution of the interface displacement during the solidification process of InSb- 

comparison between numerical results given by Comsol and Mathcad. 

 

Both results compared in Figure 3.6 show the same behavior. It is important to underline that, 

generally, the heat transfer equation including the latent heat release at the level of the interface, 

does not have analytical solution.  

 

3.4. Heat transfer in 2D axial symmetry (Stationary case) 

 

Further improvements of the dewetted growth are related to the modification of the solid-liquid 

interface curvature when a gap exists between the crystal and the crucible: for a curved interface, 

the radial temperature gradient creates convection in the liquid which determines chemical 

segregation, and in solid creates thermo-elastic stresses which determine defects, dislocations 

and grains. In practice, slightly convex interfaces are preferred but are difficult to achieve in the 

case of semiconductors where the solid is a worse thermal conductor compared to the liquid. The 

experimental and theoretical analyses of the dewetted growth [Duffar 1997, 2000, 2001-1] have 

shown that it is possible to control the thickness of the crystal-crucible gap by controlling the gas 

pressure on the cold side of the growth ampoule. Then, in order to control the crystal quality, it is 

useful to know how the gap thickness influences the solid-liquid interface curvature. 
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3.4.1. Effect of the gap thickness on the solid-liquid interface 

 

The main purpose of this study is to describe the effect of dewetting on the solid-liquid interface 

curvature defined as the maximum depletion against horizontal which passes through the solid-

liquid-gas triple point. For this aim the procedure described in Refs. [Barat 1998, Stelian 2001] is 

applied: only the effects of the crucible and crystal parameters on the interface curvature are 

studied. It is well known that furnace related heat transfer (convection, radiation, etc.) influences 

the interface curvature, but this requires a case by case analysis totally depending on the furnace 

design. There is also generally little choice for the crucible material, especially if dewetting is 

requested. Then the dependence of the interface curvature on the gap thickness, crucible 

thickness, and on the liquid, solid and crucible thermal conductivities are studied from an 

analytical study and compared with those obtained from numerical simulations using finite 

element method. The equation of energy by conduction, in stationary case, is solved in order to 

find the isotherm of solidification which describes the shape of the solid-liquid interface. The 

melting temperature is assumed uniform all over the interface (the case of pure substance or 

diluted alloy) and the convective heat transport is neglected (convection has been shown to have 

virtually no effect on the interface shape because the Prandtl number for semiconductors is very 

low, around 0.01[Chang 1983, Crochet 1989]).   

 

3.4.1.1. Dimensional analysis 

 

The effect of the crystal-crucible gap on the curvature of the solid-liquid interface is studied in 

the following assumptions:  the system is axially symmetric and the crucible wall is adiabatic 

(for example in Bridgman-Stockbarger furnace). The geometry of the dewetted Bridgman system 

is shown in Figure 3.8 (a), where the coordinate system is fixed at the bottom of the cylindrical 

ampoule. 
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Figure 3.8 (a) Geometry and principal parameters of the problem; (b) Heat flux repartition - 

negligible gap; (c) Heat flux repartition - negligible crucible. 

 

Generally, in order to develop equations and to design scale models that describe the 

physical phenomena, the dimensional analysis is used on the basis of the Vaschy-Buckingham 

theorem (so called Π -theorem) which states that a physically meaningful equation can be 

expressed as a function of p m n= −  non-dimensional quantities, where m represents the number 

of physical variables and n represents the number of basic dimensions used to describe the 

variables [Dobre 2007]. Thus, the equation can be written as  

( )1 2, ,..., 0pF Π Π Π =  or equivalently ( )1 1 2 ,..., pFΠ = Π Π  

where 1 2, ,..., pΠ Π Π are the non-dimensional quantities. 

As the basic dimensions in the thermodynamic field are: the mass (M), the length (L), the time 

(T) and the temperature (θ ), all physical variables can be expressed as a combination of these 

basic dimensions. 

The matrix (developed by Remillard), which relates the set of physical variables involved in our 

problem and the fundamental set MLTθ , is [Stelian 2001]: 
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  d e f cr  aλ  gλ  
sλ  lλ  lG  cv  Λ  

M 0 0 0 0 1 1 1 1 0 0 1 

L 1 1 1 1 1 1 1 1 -1 1 -1 

T 0 0 0 0 -3 -3 -3 -3 0 -1 -2 

θ  0 0 0 0 -1 -1 -1 -1 1 0 0 

                                                                                                                                          (3.56) 

where d is the thickness of the crucible, e is the thickness of the gap,  f  is the interface 

deflection, cr  represents the crystal radius, aλ , gλ , sλ , lλ  are respectively the thermal 

conductivities of the ampoule, gap, solid and liquid, lG  is the thermal gradient in the liquid, cv is 

the interface velocity and Λ is the latent heat of fusion. 

In (3.56), the row elements represent the exponent of the dimensions corresponding to the 

physical quantities listed at the top of each column. For example, the dimensional representation 

of the interface velocity is [ 1
LT

− ]. 

The dimensional matrix has eleven variables (employed as in [Stelian 2001]) and four 

independent fundamental dimensions. Therefore, the Vaschy-Buckingham theorem gives the 

conclusion that seven non-dimensional quantities can be used, each of these quantities being a 

product of some physical variables at different powers. In order to calculate these powers, it is 

necessary to solve n simultaneous equations by choosing the appropriate columns of the matrix 

(3.56). For example, if we want to find the non-dimensional quantity ( )7 , , ,l l iG vλΠ Λ  we can 

chose the last three columns as the coefficients of the matrix and the column headed by lλ for the 

right-hand side [Stelian 2001]: 

 

0 0 1 1

1 1 1 1

0 1 2 3

1 0 0 1

x

y

z

       
− −     =    − − −      −   

 (3.57) 
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which is equivalent to 7
x y z
l i lG v λΛ = Π . Solving the simultaneous equation (3.57) gives: 1x = − , 

1y z= = . Therefore, the non-dimensional quantity 7Π , is given by: 

 7
i

l l

v

G λ

Λ
Π = . (3.58) 

Similarly, the other non-dimensional parameters can be obtained as: 

 1

c

f

r
Π = , 2

c

d

r
Π = , 3

c

e

r
Π = , 4

l

s

λ

λ
Π = , 5

l

a

λ

λ
Π = , 6

l

g

λ

λ
Π =  (3.59) 

So, the final result is 

 ( )1 2 7,..., or , , , , ,l l l i

c c c s a g l l

vf d e
F F

r r r G

λ λ λ

λ λ λ λ

 Λ
Π = Π Π =    

. (3.60) 

Note that this set of non-dimensional parameters is not unique. They are however independent 

and form a complete set. 

 

3.4.1.2. Analytical study 

 

In order to find an approximate solution for the curvature of the solid-liquid interface the 

following hypothesis are established: 

- quadratic interface; 

- the thermal conductivity of the gas (in the gap) is negligible compared to the thermal 

conductivity of the solid, liquid and crucible; 

- the angle between the local direction of the heat flux and the vertical is given by the ratio 

of the radial and axial heat fluxes; 

We turn now to the thermal energy balance, that features the thermal fluxes in the liquid 

and out of the solid lΦ and sΦ as well as the thermal fluxes in the crucible at the hot and cold 

ends h
aΦ  and c

aΦ . The external wall of the crucible is adiabatic, so that heat conservation 

requires: 

 h c
l a s aΦ + Φ = Φ + Φ  (3.61) 

The thermal fluxes can be locally expressed as  
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 i i i iG AλΦ =  (3.62) 

with iG  the thermal gradient and Ai the surface through which the flux is flowing and i=s, l, a or 

g. The thermal gradient in the sample and in the crucible equilibrate, yielding  

 l l a a
s l

s s a a

A A
G G

A A

λ λ

λ λ

+
=

+
 (3.63) 

where sG and lG  are the thermal gradients in the solid and liquid away from the interface and sA  

and aA  the surfaces of the solid and crucible. 

When the latent heat release at the melt-solid interface is accounted, then the corresponding heat 

flux can be expressed as: 

 s s s iA vρΛΦ = Λ  (3.64) 

where ρs is the density of the solid, As is the surface of the solid, cv  represents the interface 

velocity and Λ is the latent heat. Because of the gap existing between the crucible and the solid 

crystal, the latent heat cannot be conducted to the crucible, hence, the amount of latent heat is 

conducted only to the solid. 

As the thermal flux equation (3.62) is linear, in the case of interest ( l sλ λ> for semiconductors), 

the slope of the heat flux will be given by  

 
,

tan
l s lateral l

s s

ϕ
Λ

Φ − Φ − Φ
=

Φ + Φ
 (3.65) 

which results from two different flux repartition at the level of the solid-liquid interface: 

(i) case of the negligible gap (Fig. 3.8 (b)) studied in [Barat 1998, Stelian 2001] for 

which tan l s

s

ϕ
Φ − Φ

=
Φ

;  

(ii) case of the negligible crucible (Fig. 3.8 (c)) for which the thermal flux in the lateral 

part of the liquid is deviated toward the crystal and hence 
,

tan
lateral l

s

ϕ
Φ

= −
Φ

. 

Using Eqs. (3.62) and (3.63) we find that the slope of the heat flux (3.65) can be 

expressed as follows:  
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( ) ( )

( ) ( )
tan

l l l s s s l l g l s s a a s l l a a

s is s s s s i
s l l a a s s a a

l

G A G A G A A A A A

vG A A v
A A A A

G

λ λ λ λ λ λ λ λ λ
ϕ

ρλ ρ λ λ λ λ λ

− − + − +
= =

Λ+ Λ + + +

 (3.66) 

The interface is described as a parabola of equation 2
z ar br c= + +  where the coefficients a, b, c 

are given by the followings: 

- the apex of the parabola is situated on the (Oz) axis: b=0 and ( )0 sz c L f= = −  (see Fig. 

3.8 (a), Ls represents the crystal length); 

- the derivative in the triple point ( cr ; Ls): 2 tancar ϕ= ; 

- the triple point is situated on the parabola: 2 tan
2

c
s c c s

r
c L ar br L ϕ= − − = − . 

From these we obtain  

tan
2

crf ϕ= , 

and hence the interface curvature f is given by: 

 
( ) ( )

( ) ( )2

l s s a a s l l a ac

s i
s l l a a s s a a

l

A A A Ar
f

v
A A A A

G

λ λ λ λ λ λ

ρ
λ λ λ λ λ

  + − + =
Λ + + +  

 (3.67) 

Comparison with numerical results shows that this formula overestimates the curvature of the 

interface by a factor 2.5, and then we propose the adjusted formula:  

 
( ) ( )

( ) ( )5

l s s a a s l l a ac

s i
s l l a a s s a a

l

A A A Ar
f

v
A A A A

G

λ λ λ λ λ λ

ρ
λ λ λ λ λ

  + − + =
Λ + + +  

 (3.68) 

It should be noticed that a power 4 expression (instead of a parabola) for the interface curvature 

will give a factor ¼. In the case where ivΛ ⋅  can be neglected it is easy to observe that this 

expression is independent of the magnitude of the temperature gradients in the liquid and solid, 

and then of the prescribed temperature difference between the hot and cold zones h CT T T∆ = −  

[Epure 2008]. In terms of non-dimensional parameters, equation (3.68) becomes: 
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( ) ( )

1 1

1 15

δ β γ ε
α

β ε γ ξ β ε δπ

 − ⋅ ⋅ −
=  

⋅ + + + ⋅ +  
 (3.69) 

where the non-dimensional parameters are similar to those given by (3.58) and (3.59): 

� ( )1/2
/ sf Aα = , the non-dimensional curvature of the interface, sA being the surface  

of the solid crystal, 2
s cA rπ= ⋅ ; 

� /s aA Aβ = , the ratio of the surfaces of the solid and crucible, where 

( )( )2a cA d r e dπ= ⋅ + + ; 

� /g sA Aγ = , the ratio of the surfaces of the gap and solid crystal, where  

( )2g cA e r eπ= ⋅ ⋅ + ; 

� /l sδ λ λ= , the ratio of the thermal conductivities of the liquid and solid; 

� /l aε λ λ= , the ratio of the thermal conductivities of the liquid and crucible; 

� /l gη λ λ= , the ratio of the thermal conductivities of the liquid and gas; 

� s i

l l

v

G

ρ
ξ

λ

Λ
= , the ratio representing the effect of latent heat on the interface deflection. 

It should be mentioned that the parameter η  does not appear in Eq. (3.69) because we made the 

assumption that the thermal conductivity of the gas is negligible compared to the other 

conductivities. 
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Figure 3.9 Dependence of the non-dimensional interface deflection on the ratio representing the 

effect of the latent heat. 

 

The dependence of the non-dimensional curvature α on the ratio ξ presented in Fig. 3.9, shows 

that for interface velocities smaller than 10
-6

 m/s, the effect of the latent heat on the liquid-solid 

interface deflection can be neglected. This often happens in real Bridgman growth where the 

growth rate is generally small (of the order of 610− m/s or lower) for assuring a good crystal 

quality. 

It can be observed that, in the case where the latent heat release is not taken into account, Eq. 

(3.69) becomes [Epure 2008]: 

 
1

1
15

β ε δ
α

β ε β γ επ

 ⋅ +
= − ⋅ + ⋅ ⋅ +  . (3.70) 

 The obtained formulas are similar to those reported in [Barat 1998, Stelian 2001], the 

only one difference is that now the surface of the liquid and gap appears because the surface of 

the liquid is different from the surface of the solid, due to the existence of the crystal-crucible 

gap. 
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3.4.2. Comparative study 

 

In order to check the accuracy of the obtained analytical formula (3.70) and to identify its limits 

of validity, numerical modelling of the thermal problem has been carried out, using the finite 

elements code COMSOL Multiphysics 3.3. 

We have considered the axisymmetrical geometry shown in Fig. 3.8 (a) with a thermal 

flux resulting from fixed temperatures Th and Tc at the hot and cold ends. In agreement with the 

theoretical approach, we supposed latent heat and convective heat transport to be negligible and 

we have used an adiabatic boundary condition at the outer crucible wall. 

Heaviside functions were used to define the thermal conductivities as functions of 

temperature, which makes the problem nonlinear. In order to solve this problem a mapped mesh 

with 1050 quadrilateral elements, very fine in the r direction and somewhat coarser in the z 

direction, was used. According to the considering geometry 4400 degrees of freedom were 

obtained. 

The convergence of this model is difficult and it was necessary to use a nonlinear 

stationary solver with relative tolerance 10
-6

 and 25 iterations. 

First, numerical studies were performed with a fixed meniscus in the geometry and it was 

observed that the shape of the solidification isotherm is following the shape of the meniscus and 

then, in order to get better and easier convergence, the next studies were performed without a 

fixed meniscus in the geometry. 

For the length of the crucible not to influence the results, it was taken as at least 10 times 

its radius. It was also verified that the solution is independent of the applied temperature 

difference, h CT T T∆ = −  in agreement with the results of the dimensional analysis of the problem 

[Epure 2008]. 

 The non-dimensional interface curvatures, α , obtained in the numerical simulations are 

compared to the predictions of the analytical formula (3.70) as can be seen in Figure 3.10 (a) 

versus the ratio of the surfaces of the solid crystal and crucible, β ; (b) versus the ratio of the 

surfaces of the gap and solid crystal,γ ; (c) versus the ratio of the thermal conductivities of the 

liquid and solid,δ  and (d) versus the ratio of the thermal conductivities of the liquid end 

crucible,ε .  
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Figure 3.10 Non-dimensional liquid-solid interface deflectionα , as a function of the non-

dimensional parameters of the process. 

 

The numerical results presented in Fig. 3.10 show that both solutions are of the same order of 

magnitude and the variation of the curvature with the various parameters follows the same trend 

which proves the usefulness of the analytical formula. Concerning its limits of validity, 

COMSOL code proved that solution converges for gap of maximum 430 micrometers. 

Moreover, computations show that some cases (gap between 400 and 430 micrometers) the 

curvature can be reversed from convex to concave. 

As it was found in the dimensional analysis, numerical studies show that the curvature of the 

solid-liquid interface is influenced also, but not very much, by the ratio of the thermal 

conductivities of the liquid and gas (Fig. 3.11). 
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Figure 3.11 Non-dimensional curvature of the solid-liquid interface α, as a function of the ratio 

of thermal conductivities of the liquid and gas, η. 

 

Summary 

In this chapter a simplified problem of the dewetted Bridgman process with adiabatic walls was 

treated for modelling heat transfer problems. Analytical expressions of the temperature 

distribution and the temperature gradients in the melt and in the solid were established by 

solving analytically the non-stationary one-dimensional heat transfer equation by neglecting the 

latent heat release (quasi steady-state approximation). The melt-solid interface displacement 

differential equation was also derived from the thermal energy balance at the level of the 

interface and relevant properties concerning the solution ( )l tɶ ɶ  of this equation were established 

(Propositions 3.1 to 3.3). The solution ( )l tɶ ɶ  was obtained by numerical integration (using 

adaptive Runge-Kutta method) of its ordinary non-autonomous differential equation in which the 

analytical formulas of the temperature gradients were used. Further, the results were compared 

to those obtained by solving, by finite element method, the non-stationary one-dimensional heat 

transfer equation in which the latent heat release was considered. 

The effect of the crystal-crucible gap on the curvature of the solid-liquid interface has been 

studied for a set of non-dimensional parameters representative of classical semiconductor 

crystal growth. An analytical expression for the interface curvature, based on simple heat fluxes 

arguments was found.  
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The analysis shows that the shape of the interface depends on the thickness of the gap, the 

thickness of the crucible, and on the thermal conductivities of the liquid, solid, gas and crucible. 

As expected, the curvature of the interface decreases when the crystal-crucible gap increases. An 

interesting result is that, for a large enough gap, the curvature of the interface may be reversed.  

Therefore, the Bridgman crystal grower has now a new degree of freedom for the 

improvement of crystal quality. By adjusting the gap thickness in the dewetted mode, it is 

possible to modify the interface curvature. The proposed analytical expression can be used for a 

rough initial design of the growth process. In order to get more precise values of interface 

curvature it is anyhow necessary to use numerical simulation and to take into account more 

realistic parameters, including the furnace design.  
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CHAPTER 4: Contributions to the dynamical stability of the 

dewetted Bridgman crystal growth 

 

As it was explained in the first chapter, stability is necessary to achieve consistency, repeatability 

and uniformity - the keys to successful crystal growth in the laboratory and in industrial 

production. In crystal growth the concept of stability is used as a generic concept but is generally 

not precisely defined from the mathematical point of view. Therefore, in this chapter, different 

concepts of stability occurring in shaped crystal growth will be defined and applied in the case of 

crystals grown by the dewetted Bridgman technique. Some of these concepts were applied for 

others crystal growth processes by Tatartchenko [Tatartchenko 1993, 2010]. 

Further, after the concept of practical stability over a bounded time period will be 

introduced ([Balint 2011-2]), analytical and numerical investigations of the practical stability 

over a bounded time period of the nonlinear system of differential equations describing the melt-

solid interface displacement and the gap thickness evolution for dewetted Bridgman crystals 

grown in terrestrial conditions will be developed. 

 

4.1. Lyapunov dynamic stability in crystal growth involving free liquid surfaces 

 

The aim of this section is to present different concepts of Lyapunov stability which can occur in 

shaped crystal growth: classical, uniform, asymptotic, and exponential Lyapunov stabilities of a 

steady-state; partial Lyapunov stability of a steady-state; and the same types of Lyapunov 

stabilities for time-dependent regimes ([Balint 2011-1]). It will be emphasized that Lyapunov 

stability in the more general case in crystal growth does not assure the recovery of the non-

perturbed regime. For recovery of the non-perturbed regime it is necessary to have at least 

asymptotic stability; while exponential stability implies recovery of the non-perturbed regime. 

Also, it will be proved that Hurwitz criterion can not be applied in the case of time-dependent 

regime, and that classical Lyapunov stability implies partial stability. 
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4.1.1. Lyapunov stability of a steady-state solution and a time-dependent solution respectively 

 

The mathematical description of the shaped crystal growth process consists in a set of ordinary 

differential equations [Tatartchenko 1993] of the form: 

 ( )1,..., , , , 1, i
i n

dX
f X X t C i n

dt
= =  (4.1) 

where t denotes the time, n is the number of unknowns depending on the crystallization 

technique and the crystal cross-section, C denotes a set of controllable crystallization parameters, 

the thermophysical and other constants of the substance being crystallized. The stationary values 

*
iX of the variables iX  present special interest when crystals having constant cross-section with 

stationary crystallization-front positions must be grown. 

The Lyapunov stability of a steady-state solution ( ) ( )* *, 1, , 0, constanti i iX t X i n t X≡ = ≥ = of the 

system (4.1) is defined as follows [Coddington 1955, Halanay 1966, Rouche 1977, Gruyitch 

2004, Balint 2008-1]: 

Definition 4.1.1: The steady-state solution ( ) *
i iX t X≡  of the system (4.1) is Lyapunov stable if 

for any 0ε > and 0 0t ≥  there exists ( )0, 0tδ δ ε= >  such that for any 0 , 1,iX i n=  which 

satisfies ( )0 *
0, , 1,i iX X t i nδ ε− < = , the solution ( )0 0

1; ,..., , 1,i nX t X X i n=  of the system (4.1) is 

defined for any 0t t≥  and satisfies: 

 ( )0 0 *
1; ,..., , 1,i n iX t X X X i nε− < = . (4.2) 

Comments: 

i) In the above definition ( )0 0
1; ,..., , 1,i nX t X X i n=  is called perturbed solution and 

represents that solution of (4.1) which at the moment 0t t=  starts from ( )0 0
1 ,..., nX X , i.e., 

( )0 0 0
0 1; ,..., , 1,i n iX t X X X i n= = . This makes sense when there exist a unique solution 

( )0 0
1; ,..., , 1,i nX t X X i n=  of the equation (4.1) satisfying ( )0 0 0

0 1; ,..., , 1,i n iX t X X X i n= = , 

which is assured when functions ( )1,..., ; , , 1,i nf X X t C i n=  have continuous partial 

derivatives. 
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ii) Definition 4.1.1 expresses the fact that, if a small perturbation ( )0 0
1 ,..., nX X  of the steady-

state ( )* *
1 ,..., nX X  occurs at a certain moment 0 0t ≥  ( ( )0 *

0, , 1,i iX X t i nδ ε− < = , 

( )0, 0tδ ε >  and sufficiently small), then the time dependent perturbed solution 

( )0 0
1; ,..., , 1,i nX t X X i n=  rests close to the steady-state solution ( ) *, 1,i iX t X i n≡ =  

(i.e. ( )0 0 *
1; ,...,i n iX t X X X ε− <  for 0t t≥  , 1,i n=  and 0ε >  small). 

iii) When ( )0, tδ δ ε=  is independent of 0t  then the steady-state ( ) *, 1,i iX t X i n≡ =  is called 

uniformly Lyapunov stable. 

iv) It should be mentioned that there are systems for which every steady-state is stable (e.g., 

for n=1 and the Eqs. 0X =ɺ  or X X= −ɺ ), or all steady-states are unstable (e.g., for n=1 

and the Eq. 2
X X=ɺ ), or some steady-states are stable and others are unstable (e.g., for 

n=1 and the Eq. 2
X X X= − +ɺ , the steady-state * 0X =  is stable and the steady-state 

** 1X =  is unstable) ([Balint 2011-1]). 

Definition 4.1.2: If the steady-state *, 1,iX i n=  is Lyapunov stable, and for every 0 0t ≥  there 

exists ( )0 0tη >  such that for any 0 , 1,iX i n=  which satisfies ( )0 *
0 , 1,i iX X t i nη− < = , the 

perturbed solution ( )0 0
1; ,..., , 1,i nX t X X i n=  of the system (4.1) satisfies 

( )0 0 *
1lim ; ,..., 0,i n i

t
X t X X X

→+∞
− = 1,i n= , then the steady-state *, 1,iX i n=  is Lyapunov 

asymptotically stable. 

Definition 4.1.3: If there exist two positive constants, 0ν >  and 0B >  such that for any 

0 , 1,iX i n=  and 0t t≥  the inequality ( ) ( )00 0 * 0 *
0 1; , ,...,

t t

i n i i iX t t X X X B e X X
ν− −

− < ⋅ −  holds, then 

the steady-state *, 1,iX i n=  is called exponentially stable. 

Concerning the stability analysis of a steady-state ( ) *, 1,i iX t X i n≡ =  of the system (4.1), 

Lyapunov showed that this can be reduced to the analysis of the stability for zero steady-state, 

( ) ( )* *
1 ,..., 0,...,0nY Y = , of the perturbed system defined as follows [Coddington 1955, Halanay 

1966, Rouche 1977, Gruyitch 2004, Balint 2008-1]: 
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 ( )* *
1 1 ,..., , , , 1,i i n nY f Y X Y X t C i n= + + =ɺ  (4.3) 

The perturbed system (4.3) is obtained making the change of variables *, 1,i i iY X X i n= − =  in 

(4.1). In fact, Lyapunov showed that the steady-state solution ( )* *
1 ,..., nX X  of the system (4.1) is 

Lyapunov stable if and only if the steady-state solution ( ) ( )* *
1 ,..., 0,...,0nY Y =  of the system (4.3)

is stable.  

For analyzing the stability of the steady-state ( ) ( )* *
1 ,..., 0,...,0nY Y =  of the perturbed system (4.3), 

Lyapunov developed the right- hand side of (4.3) in the form: 

 ( ) ( )
2

* * * *
1 1

1 1 1

,..., , , ,..., , , ..., 1,
n n n

i i
i n k n k l

k k lk k l

f f
Y X X t C Y X X t C Y Y i n

X X X= = =

∂ ∂
= + + =

∂ ∂ ∂
∑ ∑∑ɺ . (4.4) 

Retaining only the first term of the development, Lyapunov associated to the perturbed system 

(4.4), the following linear system: 

 ( )* *
1

1

,..., , ,
n

i
i n k

k k

f
Z X X t C Z

X=

∂
= ⋅

∂
∑ɺ  (4.5) 

so-called the linearized set of equations around the steady-state ( )* *
1 ,..., nX X . 

Remarks 4.1: 

i) If the system (4.1) is autonomous then the system (4.5) is a linear system of differential 

equations with constant coefficients and can be solved explicitly. Taking into account the 

analytical expression of the solutions (see [Halanay 1966]) it follows that, if all roots S of 

the characteristic equation 

 det 0, the Kronecker delta,ik ik

k

f
S

X
δ δ

 ∂
− ⋅ = 

∂ 
  (4.6) 

have negative real components, then the steady-state ( ) ( )* *
1 ,..., 0,...,0nZ Z =  of the 

linearized system is stable. Moreover, this solution is exponentially stable. 

ii) In the case of an autonomous system, if the Hurwitz conditions [Halanay 1966] are 

satisfied, then the roots S of the characteristic equation (4.6) have negative real 

components and the steady-state ( ) ( )* *
1 ,..., 0,...,0nZ Z =  of the linearized system is 
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exponentially stable. Lyapunov showed ([Halanay 1966]) that in these conditions the 

steady-state ( ) ( )* *
1 ,..., 0,...,0nY Y = of the perturbed system (4.4) is exponentially stable. 

iii) It must be mentioned that the above statement is not valid if the system (4.1) is non-

autonomous. For example, for the non-autonomous system 

1 1 2

2 2

1

1

1 1

2 1

X X X
t

X X
t


= − ⋅ + + = − ⋅ ⋅ +

ɺ

ɺ

 

and the steady-state ( ) ( )* *

1 2, 0,0X X = , the rots of the characteristic equation 

corresponding to the linearized system 
1 1 2

2 2

1

1

1 1

2 1

Z Z Z
t

Z Z
t


= − ⋅ + + = − ⋅ ⋅ +

ɺ

ɺ

, have negative real 

components but the solution ( ) ( )* *

1 2, 0,0Z Z =  is not stable because 

( ) ( )
0 0 3

0 0 1 2 2
1 1 2

2
; , 1 1

1 1 3

Z Z
Z t Z Z t

t t

 
= + ⋅ ⋅ + − + +    tends to +∞  as t tends to +∞ . 

Further, the stability concept for a time dependent solution of a system (4.1) will be presented as 

was reported in [Balint 2011-1]. 

Let ( ) , 1,iX t i n= , 0t ≥  be a time dependent solution of the system (4.1). 

Definition 4.1.4: The solution ( ) , 1,iX t i n= , 0t ≥  is called Lyapunov stable if for any 0ε >  and 

0 0t ≥  there exists ( )0, 0tδ δ ε= >  such that for any 0 , 1,iX i n=  which satisfies 

( ) ( )0
0 0,i iX X t tδ ε− < , the solution ( )0 0

1; ,...,i nX t X X , 1,i n=  of the system (4.1) is defined for 

any 0t t≥  and verifies: 

 ( ) ( )0 0
1 0 0; ,..., , and 1, .i n iX t X X X t t t i nε− < ≥ =  (4.7) 

Here ( )0 0
1; ,...,i nX t X X , 1,i n=  is the perturbed solution and  ( )0 0 0

0 1; ,...,i n iX t X X X= , 1,i n= . 

In this case, the perturbed system is defined as: 

 ( ) ( )( ) ( )1 1 ,..., , , , 1,i i n n iY f Y X t Y X t t C X t i n= + + − =ɺɺ  (4.8) 



122 

 

and depends on t, even if the system (4.1) is autonomous. 

It can be seen that the solution ( ) , 1,iX t i n=  of (4.1) is stable if and only if the steady-state 

( ) 0, 1,iY t i n≡ =  of the perturbed system (4.8) is stable. 

Starting from the perturbed system (4.8) the linearized set of equations is defined as: 

 ( ) ( )( )1

1

,..., , ,
n

i
i n k

k k

f
Z X t X t t C Z

X=

∂
= ⋅

∂
∑ɺ  (4.9) 

The linearized set of equations (4.9) is a linear system of differential equations with time 

dependent coefficients, even for autonomous systems. Generally, the system (4.9) cannot be 

solved explicitly.  

There are no Hurwitz type criteria concerning the stability of the steady-state 

( ) ( )( ) ( )1 ,..., 0,...,0nZ t Z t ≡  of this kind of system (see [Coddington 1955, Halanay 1966, 

Rouche 1977, Gruyitch 2004, Balint 2008-1]). 

Therefore, if the steady-state ( ) ( )* *
1 ,..., 0,...,0nZ Z =  of the system (4.9) is exponentially stable 

and some supplementary conditions which concern the nonlinear part of  the perturbed system 

(4.8) are satisfied, then the steady-state ( ) ( )* *
1 ,..., 0,...,0nY Y = of the perturbed system (4.8) is still 

exponentially stable [Halanay 1966]. Hence the solution ( ) , 1,iX t i n=  of the system (4.1) is 

exponentially stable. 

Remarks 4.2: 

i) In the case of a small perturbation, the Lyapunov stability of the steady-state of an 

autonomous system, alone, cannot assure the recovery of the steady-state. What can 

be said is that, after a small perturbation, the evolution is near the steady-state. 

ii) Exponential stability is more than Lyapunov stability. When the steady-state of an 

autonomous system is exponentially stable then, in the case of a small perturbation, 

the steady-state is recovered after a transition period. 

iii) In the case of an autonomous system, if Hurwitz inequalities are satisfied for the 

linearized set of equations, then the steady-state is exponentially stable. 

iv) If the linearized set of equations is time dependent, then the Hurwitz inequalities are 

not sufficient to assure the exponential stability.  
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4.1.2. Partial Lyapunov stability and capillary stability 

 

According to [Tatartchenko 1993] (page 59) it is refered to capillary stability when the stability 

of a system can be provided only by the capillary effects i.e., in the case when it is considered 

that “a change in crystal dimensions and crystallization front position does not lead to any 

change in liquid- and solid-phase temperature gradients at the crystallization front”.  

Analyzing the system of differential equations considered in [Tatartchenko 1993] that governs 

the process in Czochralski technique: 

 

( )

( ) ( )

tan ,
2

, ,

lc
c e

l
l c s c

dr
Pe r l

dt

dl
Pe St G r l G r l

dt

π
ψ α

λ

   
= − ⋅ − −        = − −  

ɶ
ɶɶ

ɶ

ɶ
ɶ ɶɶ ɶ ɶɶ ɶ

ɶ

 (4.10) 

the requirement that: the non-dimensional crystal radius crɶ  and crystallization front position lɶ do 

not lead to change in liquid- and solid- phase temperature gradients at the crystallization front, 

means that ( ),l cG r lɶɶ ɶ  and ( ),s cG r lɶɶ ɶ  are constant ([Balint 2011-1]). Hence the right-hand side of 

the second equation in system (4.10) is a constant. In order to have at least one steady-state the 

right-hand side terms must be equal to zero, thus 0
dl

dt
=

ɶ

ɶ
 and ( ) ( ), ,l

l c s cPe St G r l G r lλ = − ɶ ɶɶ ɶ ɶɶ ɶ . In 

(4.10) l
Pe and St represent the non-dimensional Péclet (in the liquid) and Stefan numbers. 

Now for an arbitrary * 0l >ɶ , *
crɶ  should be found such that: 

 ( )* *, .
2

c er l
π

ψ α= −ɶɶ  (4.11) 

Assuming that this was found as it was shown in [Tatartchenko 1993], the linearized set of 

equations at ( )* *,cr lɶɶ  can be written: 

 

( ) ( ) ( )

( )

* * * *, ,

0

l l
c c c c

c

d
r Pe r l r Pe r l l

dt r l

d
l

dt

ψ ψ
δ δ δ

δ

∂ ∂
= − ⋅ ⋅ − ⋅ ⋅ ∂ ∂ =

ɶ ɶ ɶɶ ɶ ɶ ɶ
ɶɶ ɶ

ɶ

ɶ

 (4.12) 
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and the roots S of the corresponding characteristic equation (4.6) are: ( )* *
1 ,l

c

c

S Pe r l
r

ψ∂
= − ⋅

∂
ɶɶ

ɶ
 and 

2 0S = . If ( )* *
1 , 0

c c

l
c r r

c

S Pe r l A
r

ψ∂
= − ⋅ = <

∂
ɶ ɶ

ɶɶ
ɶ

 then the steady-state ( ) ( ), 0,0cr lδ δ ≡ɶɶ  of the 

linearized set of equations (4.12) is stable. It must be mentioned that the steady-state 

( ) ( ), 0,0cr lδ δ ≡ɶɶ  is not exponentially stable; the perturbation of crystal dimension will attenuate, 

but that of the crystallization front position will not attenuate.  

The transfer of the stability from the linearized system (4.12) to the nonlinear system: 

 

( )tan ,
2

0

lc
c e

dr
Pe r l

dt

dl

dt

π
ψ α

   
= − ⋅ − −      
=

ɶ
ɶɶ

ɶ

ɶ

ɶ

 (4.13) 

when ( )* *
1 ,c

c

S v r l
r

ψ∂
= − ⋅

∂
 is working in this particular case, but not according  to the general 

Lyapunov stability theorem concerning stability after the first approximation. More precisely, 

when a root S of the characteristic Eq. (4.6) has zero real component, then the zero steady-state 

of the nonlinear perturbed system (4.4) can be stable or unstable. Therefore, the stability of a 

steady-state of system (4.10) in the hypothesis assumed by Tatartchenko, should not be analyzed 

via Lyapunov theorem concerning stability after the first approximation [Balint 2011-1]. 

The graphical explanation presented in [Tatartchenko 1993] suggests that capillary stability is, in 

fact, the so-called partial stability. This type of stability is of interest when only the behavior of a 

pre-specified component (e.g., component ( )0 0; ,cr t r lɶɶɶ ɶ ) of an evolution (e.g., 

( ) ( ) ( )( )0 0 0 0 0 0; , ; , , ; ,cE t r l r t r l l t r l=ɶ ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ ) is of interest, or when stability with respect to only one 

component (component ( )0 0; ,cr t r lɶɶɶ ɶ ) is in fact possible. 

The initial work in this area concerns partial stability with respect to disturbances in the entire 

initial value ( ( )0 0,r lɶɶ  is perturbed) [Rumyantsev 1957], while in subsequent work, partial 

stability with respect to disturbances in only part of the initial value, 0rɶ  is of interest [Fergola 
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1970, Rouche 1967]. A complex but general description of this subject can be found in 

[Vorotnikov 1998]. 

In what follows, just some elements concerning the partial stability with respect to crɶ  of the 

system (4.10) are presented, in order to illustrate that this concept covers the concept of capillary 

stability. 

Let ( )* *,cr lɶɶ  be a steady-state of system (4.10). 

Definition 4.1.5: The steady-state solution ( ) ( )( ) ( )* *, , , 0c cr t l t r l t≡ ≥ɶ ɶɶ ɶ ɶɶ ɶ  of (4.10) is Lyapunov 

partially stable with respect to crɶ  if for any 0ε >  and 0t t≥ɶ ɶ  there exists ( )0, 0tδ δ ε= >ɶ such 

that for any 0rɶ  satisfying *
0 cr r δ− <ɶ ɶ , the solution ( ) ( )( )* *

0 0; , , ; ,cr t r l l t r lɶ ɶ ɶɶ ɶɶ ɶ ɶ  of the system (4.10) 

is defined for every 0t t≥ɶ ɶ  and verifies: ( )* *
0 0; , , .c cr t r l r t tε− < ∀ ≥ɶɶ ɶ ɶɶ ɶ ɶ  

Remarks 4.3: 

i) Here ( ) ( )( )* *
0 0; , , ; ,cr t r l l t r lɶ ɶ ɶɶ ɶɶ ɶ ɶ  represents the solution of (4.10) which at the moment 

0t t=ɶ ɶ  starts from ( )*
0 ,r lɶɶ , i.e. ( ) ( )* * *

0 0 0 0 0; , ; ; ,cr t r l r l t r l l= =ɶ ɶ ɶ ɶɶ ɶɶ ɶ ɶ ɶ . In this case, only the 

crystal dimension *
crɶ is perturbed. 

ii) Definition 4.1.5 expresses the fact that, if at a certain moment 0 0t ≥ɶ , a small perturbation 

0rɶ  of the steady-state *
crɶ  occurs ( ( ) ( )*

0 0 0, , , 0cr r t tδ ε δ ε− < >ɶ ɶɶ ɶ  and sufficiently small), 

then the time dependent solution ( ) ( )( )* *
0 0; , , ; ,cr t r l l t r lɶ ɶ ɶɶ ɶɶ ɶ ɶ  which appears after the 

perturbation remains close to the steady-state *
crɶ  (i.e. ( )* *

0; ,c cr t r l r ε− <ɶɶɶ ɶ ɶ  for 0t t≥ɶ ɶ  and 

ε  small). 

iii) If in Definition 4.1.5 ( )0, tδ δ ε= ɶ  is independent of 0tɶ , then the steady-state ( )* *,cr lɶɶ  is 

Lyapunov uniformly partially stable with respect to crɶ . 

The system of the perturbed equations with respect to crɶ  in this case is defined as 
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( ) ( )

( ) ( ) ( )

* *

* * * *

tan ,
2

, ,

l
c c c e

l
l c c s c c

d
r Pe r r l

dt

d
l Pe St G r r l G r r l

dt

π
δ ψ δ α

δ δ λ δ

   
= − ⋅ + − −        = − + − +  

ɶɶ ɶ ɶ
ɶ

ɶ ɶ ɶɶ ɶɶ ɶ ɶ ɶ
ɶ

 (4.14) 

If it is considered that the melt and crystal temperature gradients at the melt/solid interface are 

independent of the crystal dimension, the second equation of (4.14) becomes: ( ) 0
d

l
dt

δ =ɶ

ɶ
 and 

the system of the perturbed equations is reduced to the equation: 

 ( ) ( )* *tan , .
2

l
c c c e

d
r Pe r r l

dt

π
δ ψ δ α

  
= − ⋅ + − −    

ɶɶ ɶ ɶ
ɶ

 (4.15) 

It can be seen that the function 0crδ ≡ɶ is a solution of the perturbed equation (4.15) and is 

Lyapunov stable (Def. 4.1) if and only if the steady-state ( )* *,cr lɶɶ  of (4.10) is partially Lyapunov 

stable with respect to crɶ  [Balint 2011-1]. 

In order to investigate the stability of the steady-state 0crδ ≡ɶ of the perturbed equation (4.15), 

the right-hand side of the eq. (4.10) is developed in the form: 

 ( ) ( )* *, ...l
c c c

c

d
r Pe r l r

dt r

ψ
δ δ

∂
= − ⋅ ⋅ +

∂
ɶɶ ɶ ɶ

ɶ ɶ
 (4.16) 

Considering only the first term of the above development, the linearized system is: 

 ( )* *, .l
c

c

Z Pe r l Z
r

ψ∂
= − ⋅ ⋅

∂
ɶɺ ɶ

ɶ
 (4.17) 

If ( )* *,l
c

c

Pe r l
r

ψ∂
− ⋅

∂
ɶɶ

ɶ
 is negative, then the steady-state ( ) 0Z t ≡ɶ  of (4.17) is exponentially stable, 

i.e., 

 ( )
( )* *,

0 0;

l
c

c

Pe r l t
r

Z t Z Z e

ψ∂
− ⋅ ⋅

∂< ⋅
ɶ ɶɶ

ɶ
ɶ  (4.18) 

and it can be shown that the steady-state 0crδ ≡ɶ of the perturbed system (4.15) is also 

exponentially stable, i.e., there exists 1 0l
Pe >  such that for every 0ε >  there exists 

( ) 0δ ε > such that if ( )0rδ δ ε<ɶ  then  

 ( ) 1
0; , 0

l
Pe t

cr t r e tδ δ ε − ⋅< ⋅ ∀ ≥
ɶ

ɶ ɶɶ ɶ  (4.19) 
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Hence the steady-state ( )* *,cr lɶɶ  of the system (4.10) is partially exponentially stable with respect 

to crɶ . 

 

4.1.3. Analytical studies of the Lyapunov stability occurring in a mathematical model of the 

dewetted Bridgman crystal growth under zero gravity conditions 

 

In 2004, Bizet and co-workers developed a study concerning the stability of the dewetting 

phenomenon under zero gravity conditions, in the frame of the Lyapunov stability theory, [Bizet 

2004]. A more thorough investigation of this problem reveals that the presented study is valid 

only in the case where the liquid meniscus (the liquid free surface at the level of the solid-liquid 

interface) is fixed at a point on the crucible wall, for example because of sharp roughness or 

chemical heterogeneities on the crucible wall. In more classical situations the liquid meniscus 

advances along the crucible wall with a constant wetting angle, which, in case of hysteresis, is a 

receding angle. For such more usual situations, the analysis of the stability of the radius of the 

crystal should be studied in a more general way as follows [Balint 2011-1]. 

 In the mathematical description of dewetted Bridgman crystal growth under zero gravity 

conditions, described in [Bizet 2004] two variables were considered: the crystal radius crɶ (or gap 

thickness a ce r r= −ɶ ɶ ɶ ) and the crystallization front position lɶ  (see Fig. 2.6). It was assumed that: 

(i) the solid and the melt are insulated (adiabatic lateral crucible wall) and the thermal flux is 

axial; (ii) in a cross-section of the melt/solid system, the temperature is constant; (iii) the gap 

does not influence the heat transfer because there is no radial heat flux; (iv) the non-dimensional 

temperature in the solid, sTɶ , and in the liquid, lTɶ , are linear functions of the non-dimensional 

axial coordinate zɶ and do not depend on the non-dimensional moment of time tɶ ; (v) the thermal 

problem is considered as a quasi-steady state, i.e., the thermal fluxes in the solid and in the liquid 

are constant at each moment.  

The melt-solid interface displacement equation is obtained from the thermal balance at 

the interface: 

 h m m c

a

T T T Tdl
St

dt H l l
λ

 − −
= − − 

− 
ɶ ɶ ɶ ɶ ɶ

ɶ

ɶ ɶɶɶ
 (4.20) 
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where: St - Stefan number, λɶ  - the non-dimensional thermal conductivity, hTɶ  = constant 

represents hot temperature at the top of the melt, mTɶ  – the non-dimensional melting temperature, 

cTɶ = constant represents cold temperature at the bottom of the seed ( c m hT T T< <ɶ ɶ ɶ ), aHɶ – the non-

dimensional total length of the melt and solid, lɶ is the non-dimensional z-coordinate of the melt-

solid interface (see Fig. 2.6).  

Eq. (4.20) has a unique steady-state solution *
lɶ  given by: 

 
( )

* 1 .h m
a

h m m c

T T
l H

T T T Tλ

 − = − − + −  
ɶ ɶ

ɶ ɶ

ɶɶ ɶ ɶ ɶ
 (4.21) 

It is easy to see that: *0 al H< <ɶ ɶ ; * 0l =ɶ  if and only if c mT T=ɶ ɶ , and *
al H=ɶ ɶ  if and only if 

h mT T=ɶ ɶ ([Balint 2011-1]). 

As the derivative of the right-hand side of the Eq. (4.20) at *
lɶ  is strictly negative: 

 

( ) ( )*

2 2
* *

0,h m m c h m m c

a l l a

T T T T T T T Td
St St

dl H l l H l l

λ λ

=

   − − − −   − − = − + <    −   −    

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ
ɶ ɶ

ɶ ɶ ɶɶ
ɶ ɶɶ

 (4.22) 

it follows that the steady-state solution ( ) *
l t l≡ɶ ɶɶ of the Eq. (4.20) is exponentially stable. 

Moreover, since the right-hand side of (4.20) is negative for lɶ in the range ( )*, al Hɶ ɶ , and 

it is positive for lɶ in the range ( )*0, lɶ , a solution ( )l t l′;ɶ ɶɶ  of the Eq. (4.20) which starts from 

( )*0,l l′∈ɶ ɶ  increases and tends to *
lɶ  as t tends to +∞ ; while a solution ( )l t l′;ɶ ɶɶ  which starts from 

( )*, al l H′∈ɶ ɶ ɶ  decreases and tends to *
lɶ  as t tends to +∞ . This means that the region of attraction 

[Balint 2008-1] of the steady-state solution ( ) *
l t l≡ɶ ɶɶ  is equal to the interval ( )0, aHɶ . 

From the crystal growth point of view, the time-dependent solution ( )0l t l;ɶ ɶɶ  with 0l
ɶ =seed 

length ( *
00 l l< <ɶ ɶ ) presents interest. This solution will be denoted by ( )l tɶ ɶ and can be found by 

solving the equation [Balint 2011-1]: 
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( )

( ) ( )

( )

0

2
1

l t
a

l h m m c a m c

u H u du
t

St T T T T u H T Tλ λ

− ⋅
⋅ = − + − ⋅ − ⋅ − 
∫
ɶ ɶ

ɶ

ɶ

ɶ

ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ
 (4.23) 

The gap size evolution in [Bizet 2004] was treated via crystal radius evolution for which 

the equation used in E.F.G technique was employed [Tatartchenko 1993]. More precisely, it was 

assumed that between the hot and cold volumes a communication exists (open crucible). Hence, 

the gas pressure on both sides is the same, the menisci are spherical and the radii are equal. It 

was stated that menisci are concave seen from the melt. This last statement implies that the 

wetting angle cθ  satisfies 
2

c

π
θ > (the crucible is not wetted by the melt). It was also assumed 

that the growth angle eα  can be reached. These implies that the inequality 
2 2

e c

π π
α θ− < −  holds 

(i.e. e cα θ π+ > ). 

Under the above hypothesis the deviation (with respect to the crucible wall) of the tangent 

to the crystal at the crystal-melt-gas triple point, for which the rɶ  coordinate is equal to crɶ , is 

given by [Balint 2011-1]: 

 ( )
2 2

cos
arctan

2 21 cos

c c
c e e

c c

r
r

r

θπ π
ψ α α

θ

 ⋅    − − = − − −       − 
ɶ

ɶ

ɶ

 (4.24) 

The deviation ( )
2

c er
π

ψ α
 

− −  ɶ  is equal to zero (i.e. the tangent to the crystal wall at the triple 

point is parallel to the ampoule wall) if and only if crɶ  is given by: 

 * cos

cos

e
c c

c

r r
α

θ
= = −ɶ ɶ  (4.25) 

Therefore, the equation which governs the crystal radius evolution is: 

 
( ) ( ) 2 2

sin
2

tan arctan .
21 cos

c c
c h m m c

e

a c c

r
dr T T T T

St
dt H l t l t r

π
θ

π
λ α

θ

  
⋅ −   − −    = − ⋅ − −   

−     − ⋅    

ɶ
ɶ ɶ ɶ ɶɶ

ɶ

ɶ ɶɶɶ ɶ ɶ
ɶ

 (4.26) 

In terms of the gap size ( 1a c ce r r r= − = −ɶ ɶ ɶ ɶ ) and the crystallization front position lɶ , the 

system describing the process, according to [Bizet 2004], is: 
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= − −  
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ɶ ɶ ɶ ɶ ɶ
ɶ

ɶ ɶɶɶ ɶ ɶ

ɶ
ɶ ɶ ɶ ɶɶ

ɶ

ɶ ɶɶɶ ɶ ɶ
ɶ

 (4.27) 

Equation (4.26) and the system (4.27) are built up on geometrical considerations rather than 

modeling the physics of the changes due to the presence of the seed (crystal) [Tatartchenko 

1993]. 

The system (4.27) has the family of steady-states ( )*,l eɶ ɶ  with: 

 ( )
( )

* 1
.

0,1

h m
a

h m m c

T T
l H

T T T T

e

λ

  −  = −  − + −   
∈

ɶ ɶ
ɶ ɶ

ɶɶ ɶ ɶ ɶ

ɶ

 (4.28) 

In this family of the steady-states, ( )*
1,l eɶ ɶ  with 1

cos
1

cos

e

c

e
α

θ
= +ɶ  presents special interest 

since the gap size 1eɶ  corresponds to the situation where the tangent to the crystal wall is parallel 

to the crucible wall. 

In order to investigate the Lyapunov stability of the steady-state ( )*
1,l eɶ ɶ using Hurwitz 

criterion, the right-hand sides of the equations of system (4.20) were denoted by 

( ) ( ), and ,f l e g l eɶ ɶɶ ɶ : 

 

( )
( ) ( )

( )
( ) ( )

( )

( )
2 2

,

.1 sin
2

, tan arctan
21 1 cos

h m m c

a

c
h m m c

e

a
c

T T T T
f l e St

H l t l t

e
T T T T

g l e St
H l t l t e

λ

π
θ

π
λ α

θ

  − −
= − −  

−       − −    − −    = − − − −   
−     − − ⋅     

ɶ ɶ ɶ ɶ
ɶ ɶɶ

ɶ ɶɶ ɶ ɶ

ɶ
ɶ ɶ ɶ ɶ

ɶ ɶɶ
ɶ ɶɶ ɶ ɶ

ɶ

 (4.29) 

According to Hurwitz criterion if the following inequalities hold: 
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( ) ( ) ( ) ( )
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1 1

* * * *
1 1 1 1
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l e l e

el

f g f g
l e l e l e l e

e el l

∂ ∂
+ < ∂∂

∂ ∂ ∂ ∂ ⋅ − ⋅ > ∂ ∂∂ ∂

ɶ ɶɶ ɶ
ɶ ɶ
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ɶ ɶɶ ɶ

 (4.30) 

then the steady-state solution ( ) ( )( ) ( )*
1, ,l t e t l e≡ɶ ɶɶ ɶɶ ɶ  is exponentially stable. Then, if at a certain 

moment 0 0t ≥ɶ  there is a small perturbation of the steady-state ( )*
1,l eɶ ɶ , the steady-state will be 

recovered. 

Concerning the conditions (4.30) it gives: 

( )
( )

*
1 2 *2

*
, 0h m m c

a

T T T Tf
l e St

l lH l

λ

 
− −∂  = − + < ∂ −  

ɶ ɶ ɶ ɶ
ɶ ɶɶ

ɶ ɶ
ɶɶ

 

( )*
1, 0

f
l e

e

∂
=

∂
ɶ ɶ

ɶ
 

( )
( )

( )
( )* *

1 1* * 2 2

1 sin
2

, arctan , 0
21 1 cos

c
h m m c

e

a
c

e
T T T Tg

l e St l e
e eH l l e

π
θ

π
λ α

θ

  
− −   − −∂ ∂    = − − ⋅ − − =   

∂ ∂−     − −  

ɶ
ɶ ɶ ɶ ɶ

ɶ ɶɶɶ ɶ
ɶ ɶɶɶ ɶ

ɶ

 

and hence the first condition of (4.30) is satisfied but the second condition is not satisfied. 

Therefore, Hurwitz criterion cannot be applied in order to establish the Lyapunov 

stability (exponential stability) of the steady-state ( )*
1,l eɶ ɶ (see also [Balint 2011-1]). 

In fact, even if the steady-state ( )*
1,l eɶ ɶ  is Lyapunov stable, it can be said that if there is a 

small perturbation of the steady-state ( )*
1,l eɶ ɶ , then the time dependent perturbed solution 

remains close to the steady-state. Such information is not interesting for crystal growth since 

when the growth process starts, lɶ  is equal to 0l
ɶ - the non-dimensional seed length, which is in 

general, close to *
lɶ but in some cases can be significantly different (only at the end of the process 

lɶ  approaches *
lɶ ) [Balint 2011-1].  

What is more important is to know if the time-dependent solution ( ) ( ) 1,l l t e e t e= = ≡ɶ ɶ ɶ ɶɶ ɶ ɶ  

of the system (4.27) is Lyapunov stable, with ( ) 00l l=ɶ ɶ - seed length. In other words, as was 
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emphasized in [Balint 2011-1], it is interesting to check if the recovery of the evolution 

( ) ( )( ),l l t e e t= =ɶ ɶ ɶ ɶɶ ɶ is assured in the case where during the growth, at a moment 0 0t ≥ɶ  there are 

perturbations in the crystal length and gap size. 

In this case, the linearized set of equations is written as: 

 
( ) ( )
( ) ( )

1 11 1 12 2

2 21 1 22 2

Z a t Z a t Z

Z a t Z a t Z

 = ⋅ + ⋅
= ⋅ + ⋅

ɺ ɶ ɶ

ɺ ɶ ɶ
 (4.31) 

where the coefficients ( )ija tɶ  are given by: 
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 (4.32) 

and ( )l tɶ ɶ  is the solution of the initial value problem: 

 

( ) 00

h m m c

a

T T T Tdl
St

dt H l l

l l

λ
  − −

= − −  
−  

=

ɶ ɶ ɶ ɶ ɶ
ɶ

ɶ ɶɶɶ

ɶ ɶ

 (4.33) 
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Since *
0l l<ɶ ɶ and c m hT T T< <ɶ ɶ ɶ , the solution ( )l tɶ ɶ  of (4.33) (defined for 0t ≥ɶ )  is increasing, 

concave, bounded above by *
lɶ  and tends to *

lɶ  as tɶ  tends to +∞ . Moreover, it is asymptotically 

Lyapunov stable. 

Hence, the coefficients ( ) ( )11 22,a t a tɶ ɶ  are bounded above by some negative constants 

i.e., there exist 1 20 and 0c c> > such that  

 ( ) ( )11 1 22 2and for 0.a t c a t c t≤ − ≤ − ≥ɶ ɶ ɶ  (4.34) 

 Since the system of the linearized equations (4.31) in this case, according to (4.32), has 

the form: 

 
( )
( )

1 11 1

2 22 2

Z a t Z

Z a t Z

 = ⋅
= ⋅

ɺ ɶ

ɺ ɶ
 (4.35) 

applying the Levinson-Flato theorem (see [Coddington 1955]) it follows that the steady-state 

solution ( ) ( )( ) ( )1 2, 0, 0Z t Z t ≡ɶ ɶ  of (4.35) is exponentially stable. 

Therefore the time dependent solution  ( ) ( ) 1,l l t e t e= ≡ɶ ɶ ɶ ɶɶ ɶ  of system (4.27) is 

exponentially stable. 

 In more physical terms this stability can be explained in the following way. 

Under zero gravity conditions the pressure inside the liquid is imposed by the hot free 

surface of the liquid and depends only on the ampoule radius and on the wetting angle, cθ . Then 

the curvature of the meniscus at the level of the melt-solid interface is totally fixed. Analytical 

expressions of the gap thickness eɶ  have been established [Duffar 1997] for two different cases. 

As the crystal-crucible gap thickness eɶ  is controlled by the growth angle, it follows that eɶ  is 

totally independent of the evolution of the solidification and then of the heat transfer. 

1) If there is a connection between the hot and cold sides of the sample, so that the La=0, 

then the following expression is obtained: 

 
cos cos

cos

e c

c

e
α θ

θ

+
=ɶ  (see section 2.2.1)����������������������������������������������������������

2) If the gases between the hot and cold sides of the sample do not communicate, so that 

a pressure difference exists ( 0La ≠ ), the following expressions are obtained: 
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2 2

1,2

2cos cos 2 cos cos

2cos

c e c e

c

La La La
e

La

θ α θ α

θ

+ + ± + +
=

+
ɶ  

 which are valid in certain conditions satisfied by La, cθ  and eα  values (see section 

2.2.1).�

� It can be observed from the above formulas that the gap thickness does not depend on the 

meniscus height hɶ and hence the crystal radius ( 1cr e= −ɶ ɶ ) is independent of the solid-liquid 

interface position.  

During solidification, the growth rate is positive and the stability of the radius depends 

only on the curvature of the meniscus at the melt-solid-gas triple line. It should be pointed out 

that the crystal radius stability is totally controlled by capillarity. 

As explained in chapter 1, the experimental observations under zero gravity conditions 

have shown, that the crystal-crucible gap is remarkably stable which is in agreement with the 

above analysis: in zero gravity, the meniscus is convex (i.e. the second derivative of the function 

which describes the evolution of the meniscus height is positive) as its curvature is imposed by 

the melt free surface at the hot side (see Figure 4.1.2). Only in case of large Laplace number, La 

the shape of the meniscus at the liquid- solid -gas triple line can be concave (the gap thickness 

given by 2eɶ ), so that the crystal radius is not stable.  

 

Figure 4.1.1 Dewetting configuration in zero gravity conditions. 



135 

 

4.1.4. Capillary stability in normal gravity: Young-Laplace’s equation 

 

In this study, the stability of the growth process is analysed from the capillary point of view only, 

being assumed that the thermal and pressure effects can be neglected. Therefore, only one 

equation is needed for stability analysis, which is the Young-Laplace equation. This capillary 

stability is a particular case of the dynamic stability, taking into account only variations of the 

crystal-crucible gap thickness such that the crystal side is no longer parallel to the crucible wall 

[Duffar 1997]. This study of the capillary stability was performed using the Lyapunov approach 

and was published in [Epure 2010-3].  

In the dewetted Bridgman process, the equation which describes the evolution of the crystal 

radius with time in normal gravity is given by: 

 ( )
2

c
c e

dr dl
tan r ,l

dt dt

π
ψ α
  

= − − −    
ɶɶ

ɶɶ
ɶ ɶ

 (4.36) 

where 
dl

dt

ɶ

ɶ
 represents the non-dimensioanl growth rate (i.e. the solid-liquid interface velocity, 

considered here constant >0).  

Denoting by *

crɶ  the steady-state of (4.36) the perturbed equation with respect to 
c

rɶ  is: 

 
( ) ( )

2

c *

c c e

d r dl
tan r r ;l

dt dt

δ π
ψ δ α
  

= − + − −    
ɶɶ

ɶɶ ɶ
ɶ ɶ

 (4.37) 

where *

c c cr r rδ = −ɶ ɶ ɶ  and lɶ  is a parameter ( *

crɶ  is a unique steady-state for any 0 0al l ,H l ∈ − ɶ ɶ ɶɶ , 

[Balint 2008-1]). It can be easily seen that 0crδ =ɶ  is a solution of the perturbed equation (4.37)

and it is stable in Lyapunov sense if and only if the steady-state solution *

crɶ of (4.36) is stable. 

In order to investigate the stability of the steady-state 0crδ =ɶ  of the perturbed equation (4.37) 

the linearized equation with respect to 
crɶ  is considered: 

 
( ) ( )c *

c c c

c

d r d
v r ,l r

dt dr

δ ψ
δ= − ⋅ ⋅

ɶ
ɶɶ ɶ ɶ

ɶ ɶ
 (4.38) 

Equation (4.38) is a linear differential equation of the first order and its solution satisfies the 

inequality: 
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ψ

δ
− ⋅ ⋅

< ⋅
ɶ ɶɶ ɶ

ɶ
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The steady-state 0crδ =ɶ  is stable if and only if the right hand side of the inequality (4.39) tends 

to zero. This condition is accomplished only if: 

 ( ) 0*

c

c

d
r ;l

dr

ψ
>ɶɶ

ɶ
 (4.40) 

which leads to ( )
( )

( )
2

2 2

1
0* *

c c*
c cc

d z d
r r

dr drcos r

ψ

ψ
= ⋅ >

ɶ
ɶ ɶ

ɶ ɶɶ

. 

It can be concluded that if ( )
2

2
0*

c

c

d z
r

dr
>

ɶ
ɶ

ɶ
 then the steady-state 0crδ =ɶ  is a stable solution of the 

perturbed eq. (4.37) and the steady-state *

c
rɶ  of (4.36) is stable.  

Therefore, under these hypotheses, it is proved that the capillary stability is linked to the shape of 

the meniscus at the triple line: with a global concave meniscus (i.e. the second derivative is 

negative) it is unstable (Fig. 4.1.2 (a)), and with a convex meniscus (i.e. the second derivative, at 

the triple point, of the function which describes the meniscus surface is positive) the growth is 

stable (Fig. 4.1.2 (b)). The physical description of this is shown on Figure 4.1.2: as the growth 

angle eα  should be kept at the triple line, on figure (a) any perturbation of crɶ  increases. On the 

contrary, with a convex meniscus (b) the perturbation disappears (i.e. crystal radius variation 

tends to zero). 
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Figure 4.1.2 Physical description of the capillary stability ([Epure 2010-3]). 

 

The dependence of the crystal-crucible gap thickness on the relevant parameters which determine 

the dewetting occurrence on the ground have been studied, leading to the plot of a diagram 

(Figure 4.13) with Laplace’s number as a function of the Bond number, that furthermore fulfill 

the capillary stability criteria of the crystal diameter (Figure 4.1.2). 
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Figure 4.1.3 Stability and meniscus shape zones, in the La-Bo plane. 

 

However the capillary stability presented here is only a particular case of the dynamic stability 

and further studies are needed in order to fully solve the stability problem in dewetting Bridgman 

process. For experiments performed in terrestrial conditions, melting or solidification change the 

height of liquid, then the hydrostatic pressure acting on the meniscus, and then the gap thickness. 

In this case the gap thickness and the solid-liquid interface position are two variables of the 

problem and two equations are needed, the Young-Laplace equation and the heat balance at the 

interface, as it will be presented in the next sections of this chapter.  

 

4.2. Practical dynamic stability in terrestrial conditions 

 

In the study of Lyapunov stability, an interesting set of problems deal with bringing the system 

close to a certain state, rather than the state 0x = . In some cases, the desired state of a system 

may be unstable in the sense of Lyapunov and yet the system may oscillate sufficiently near this 
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state whose performance is considered acceptable in practice. Many problems fall into this 

category, for example an aircraft or a missile may oscillate around a mathematically unstable 

path yet its performance may be acceptable, the problem in a chemical process of keeping the 

temperature within certain bounds, etc. According to [Gruyitch 2004], Chetaev was the first who 

described the need of a non-Lyapunov dynamic stability concept ([Chetaev 1961]) for studying 

the stability of some kinds of airplane movements: he was interested in finding the necessary 

limits in which can vary the input determined by unknown factors (e.g. time-dependent 

impervious external conditions) in order to get a stable movement. In western literature, the new 

concept of stability, so-called practical stability, which is neither weaker nor stronger, but 

different, than Lyapunov stability was introduced by [La Salle 1961] and further treated in 

[Bernfeld 1980], [Lakshmikantham 1990], [Gruyitch 2004] and others.  

Compared to the Lyapunov stability (which concerns the stability of a specified solution over an 

unbounded time interval) used frequently in crystal growth, the practical stability of the system 

over a bounded time interval reflects better the reality because in practice, the dewetted 

Bridgman solidification process takes place in a bounded time interval, and the interest is the 

behaviour of the whole process, when unexpected perturbations occur. 

 

4.2.1. Practical stability over a bounded time interval in a forced regime 

 

In order to define this concept the following system of differential equations is considered: 

 ( )1 1,..., ; , , ,..., , 1,
j

j n m

dX
f X X t C i i j n

dt
= =  (4.41) 

where t denotes the time, n is the number of unknown functions (which depends on the 

crystallization technique), C denotes a set of crystallization parameters (thermophysical and 

other constants of the substance being crystallized, see for example [Tatartchenko 1993]), 

( )1,..., mi i  is an input function (forcing terms) which belongs to a family I of inputs of our interest 

(as for example the gas pressure diference or the furnace power). 

Let [ ]0,τ  be a bounded interval of time and 0
AX , AX

τ  two subsets of n
ℝ . 
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Definition 4.2.1: The system (4.41) is practically stable with respect to 0
AX , AX

τ , I over the 

bounded time period [ ]0,τ  if its solutions obey 

( ) ( )( ) ( ) ( )( )( )0 0 0 0
1 1 1 1 1; ,..., , ,..., ,..., ; ,..., , ,...,n m n n m AX t X X i t i t X t X X i t i t X

τ∈  for every [ ]0,t τ∈ , 

( )0 0 0
1 ,..., n AX X X∈  and ( ) ( )( )1 ,..., mi t i t I∈  (see [La Salle 1961], [Michel 1970-1], [Michel 1970-

2] ). 

Comments: 

i) In the previous definition ( ) ( )( )0 0
1 1; ,..., , ,..., , 1,j n mX t X X i t i t j n=  represents that solution 

of (4.41) which corresponds to the input ( ) ( )( )1 ,..., mi t i t  and at the moment of time 0t =  

starts from ( )0 0
1 ,..., nX X , i.e., ( ) ( )( )0 0 0

1 10; ,..., , ,..., , 1,j n m jX X X i t i t X j n= = . This is 

possible only when there is a unique solution of the equation (4.41) with these properties. 

For example, when the functions ( )1 1,..., ; , , ,..., , 1,j n mf X X t C i i j n=  have continuous 

partial derivatives it can be demonstrated that this is always true [Balint 2011-2]. 

ii) Definition 4.2.1 expresses the fact that for every input function ( ) ( )( )1 ,..., mi t i t I∈ , the 

solution of (4.41) which starts from a point ( )0 0 0
1 ,..., n AX X X∈ , during the period of time 

[ ]0,τ , has the value included in the set AX
τ  [Balint 2011-2]. 

Here just some elements concerning the practical stability over a bounded time interval were 

presented, in order to illustrate that this concept covers a certain stability having practical 

significance. A complex and general treatment of the subject can be found in [Grujic 1973] and 

[Gruyitch 2004]. It must be underlined that the mathematical tools used for proving practical 

stability over a bounded time interval are different from those used for proving the Lyapunov 

stability, i.e., they are similar to those used for proving continuous dependence on the initial 

values. 
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4.2.2. Practical stability of the melt-solid interface displacement equation of the dewetted 

Bridgman process 

 

In the following, the practical stability over a bounded time period of the equation which 

describes the melt-solid interface displacement during the solidification process, presented in 

Section 3.1.2, will be illustrated analytically and numerically as in [Balint 2011-2]. 

As the solidification process will be analyzed, for solving Eq. (3.51) the initial condition 0l
ɶ  

satisfying the inequality ( )0 *0 0l l< ≤ɶ ɶ  must be considered. 

In order to show that the melt-solid interface displacement equation is practically stable with 

respect to ( )( )0
*0, 0AX l= ɶ , ( )* 0,

t
A aX H= ɶ , I = ∅  over the bounded time period *0, t  ɶ it is 

necessary to show that the solution of the initial value problem: 

 
( ) ( )

( ) 0

, ,

0

l s

dl
St G l t G l t

dt

l l

λ
  = − −   =

ɶ
ɶ ɶɶ ɶ ɶɶ ɶ

ɶ

ɶ ɶ

 (4.42) 

is defined for *0,t t∈   ɶ ɶ , is an increasing function and verifies ( ) ( )0 0 *;0,l l t l l t< <ɶ ɶ ɶ ɶɶ ɶ  for every 

*0,t t∈   ɶ ɶ , where ( )*l tɶ ɶ  is the solution of Eq. (3.50) (what was already proved in section 3.1.2.). 

This means that the melt-solid interface displacement equation is practically stable with respect 

to ( )( )0
*0, 0AX l= ɶ , ( )* 0,

t
A aX H= ɶ , I = ∅  over the bounded time period *0, t  ɶ . 

Remark: In this case there is no forcing term, i.e. I = ∅ . 

Below, the practical stability of the melt-solid interface displacement equation was illustrated 

numerically. In Figure 4.2.1 are represented ( )*l tɶ ɶ  and the computed solutions of equation (3.45) 

( )1l tɶ ɶ , ( )2l tɶ ɶ , ( )3l tɶ ɶ  representing ( )0;0,l t lɶ ɶɶ  for 0l
ɶ  equal to 0.36, 1.03, respectively 1.63, for InSb. 

In Figure 4.2.2 are represented ( )*l tɶ ɶ  and ( )1l tɶ ɶ , ( )2l tɶ ɶ , ( )3l tɶ ɶ  representing ( )0;0,l t lɶ ɶɶ  for 0l
ɶ  equal 

to 0.36, 1.26, respectively 2, for GaSb.  
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Figure 4.2.1 Practical stability of the melt-solid interface displacement for InSb (a) the beginning 

of the solidification process and (b) the entire solidification process. 

 

 

Figure 4.2.2 Practical stability of the melt-solid interface displacement for GaSb (a) the 

beginning of the solidification process and (b) the entire solidification process. 

 

On the Figures 4.2.1 and 4.2.2 it can be seen that ( ) ( )* 0;0,l t l t l−ɶ ɶ ɶɶ ɶ  becomes very small after about 

10 minutes, which is a typical relaxation time for antimonide samples of this size [33] and that 

( )* 0;0, al t l H≅  (i.e., the entire melt is solidified during the period [ ]*0,t ).   
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4.2.3. Equations governing the crystal-crucible gap thickness evolution 

 

According to [Tatartchenko 1993], the equation which governs the crystal radius evolution is 

 ( ) ( ), , tan
2

c
l s e

dr
St G l t G l t

dt

π
λ ψ α

   = − − −      
ɶ

ɶ ɶɶ ɶ ɶɶ ɶ
ɶ

 (4.43) 

where ψ  represents the angle between the tangent line to the meniscus free surface at the crystal-

melt-gas triple point A and the horizontal axis Or. 

The angle ψ  can be found solving the Young-Laplace equation which describes the free surface 

of the meniscus: 

 ( )
1 2

1 1 m
a hyd hLa Bo H z La La

R R

 
+ = − + − + +  

ɶ ɶ
ɶ ɶ

 (4.44) 

where 11 Rɶ , 21 Rɶ – the non-dimensional principal normal curvatures at an arbitrary point M of 

the free surface, aHɶ - the non-dimensional coordinate of the top of the melt column with respect 

to the Oz axis, zɶ - the non-dimensional coordinate of M with respect to the Oz axis, 

( )c h aP P r
La

γ

− ⋅
=  is the non-dimensional Laplace number, 

2
l ag r

Bo
ρ

γ

⋅ ⋅
=  is the non-

dimensional Bond number, ( )aBo H z−ɶ ɶ  represents the non-dimensional hydrostatic pressure of 

the melt column, hydLa - the hydrodynamic La number due to the convection (see Fig. 4.2.3). 

It is assumed that the ampoule is closed and the gas pressures in the hot and cold volumes are 

controlled independently [Balint 2011-2]. 
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Figure 4.2.3 Schematic dewetted Bridgman technique in normal gravity conditions. 

 

The pressure difference across the free surface appearing in the right-hand side of the equation 

(4.43) can be written as [Balint 2011-2]: 

 
( ) ( )m m

a hyd h a hyd hLa Bo H z La La Bo z La Bo H La La

Bo z P

− + − + + = − ⋅ − − ⋅ − −

= − ⋅ −

ɶ ɶɶ ɶ

ɶɶ

 (4.45) 

where  

 m
a hyd h aP La Bo H La La P Bo H= − ⋅ − − = ∆ − ⋅ɶ ɶ ɶ ɶ   and  m

hyd hP La La La∆ = − −ɶ  (4.46) 
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The pressure Pɶ  does not depend on the axial coordinate z but it depends on the moment of time 

during the growth process. In the following, P∆ ɶ will be called forcing term (or total input) and it 

will be written as 

 ( ) ( )aP Bo H l t i t ∆ = − + ɶɶ ɶ ɶ ɶ  (4.47) 

The part ( )aBo H l t − ɶɶ ɶ  of P∆ ɶ  represents that part of the cold gas pressure which compensates 

the hydrostatic pressure of the melt column at the moment of time tɶ and it is determined by the 

coordinate of the melt-solid interface ( )l tɶ ɶ . The part ( )i tɶ  is unknown and cumulates 

( ) ( )( ) m
a hyd hi t La Bo H l t La La= − − − −ɶɶɶ ɶ .  

The main objective is to find the range where the values of ( )i tɶ  must be included, in order to 

have an appropriate meniscus for the crystal growth (i.e. strictly positive gap thickness). 

In the case of an axisymmetric meniscus the equation (4.44) becomes: 

 ( )

3
2 22 2

2

1
1 1

d z dz dz dz
Bo z P

dr r dr drdr

      
= − ⋅ + + − +               

ɶ ɶ ɶ ɶ
ɶɶ

ɶ ɶ ɶ ɶɶ
. (4.48) 

The solutions of this equation should verify the following conditions: the wetting angle cθ  on the 

crucible and the growth angle eα  at the triple phase line which is at the height l. 

In order to grow a crystal with constant radius crɶ , the solution of equation (4.48) must verify the 

following conditions: 

 

( ) ( )

( ) ( )

( ) [ ]

; tan ;
2

1 ; 1 tan ;
2

 is strictly increasing on ,1 .

c c e

c

c

dz
z r l r

dr

dz
z l h

dr

z r r

π
α

π
θ

 
= = −  

 
= + = −  

ɶ
ɶɶ ɶɶ

ɶ

ɶ
ɶ ɶɶ

ɶ

ɶ ɶɶ

 (4.49) 

It should be noticed that the nonlinear boundary value problem given by (4.48)-(4.49) represents 

the formal mathematical transcription of the equilibrium state presented on the Figure 4.2.3 (see 

[Balint 2011-2]). This is an overspecified boundary value problem and has no solution for 

arbitrary values of  Pɶ  and hɶ . Therefore, we are interested in finding those ranges of Pɶ  and hɶ  

for which the above problem has approximate solution, i.e. a solution that verifies the equation 
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(4.48) and conditions (4.49) for for cr′  and l′  closed to cr  and l  respectively. This means that 

small variations of the crystal radius 
cr  and the crystallization front position l  are allowed. The 

crystal radius variations must be sufficiently small for avoiding the crystal reattchment to the 

inner crucible wall. Then, in order to reach the proposed objective, the nonlinear boundary value 

problem (4.48)-(4.49) is transformed into the problem: 

 

( )

tan

1 1
tan

cos

dz

dr

d
Bo z P

dr r

ψ

ψ
ψ

ψ


= = − ⋅ + −

ɶ

ɶ

ɶɶ
ɶ ɶ

 (4.50) 

 

( ) ( )

( ) ( )

( ) [ ]

; ;
2

1 ; 1 ;
2

 is strictly increasing on ,1 .

c c e

c

c

z r l r

z l h

z r r

π
ψ α

π
ψ θ

= = −

= + = −

ɶɶ ɶɶ

ɶ ɶɶ

ɶ ɶɶ

 (4.51) 

Because of different behaviours of the meniscus shape in the cases (I) 180c eθ α+ > ° , and  (II) 

c eθ α π+ < , as already explained in Chapter 2, qualitative studies must be performed in each 

case separately.  

 

Case I: 180c eθ α+ > °  

In order to get information about the pressure difference, the meniscus height and the function 

( )z rɶɶ  that describes the meniscus surface, mathematical tools were used leading to some 

theorems presented below in non-dimensional terms. These theorems were reported in 

dimensional terms in [Balint 2011-2]. 

Considering the nonlinear boundary value problem (NLBVP) given by (4.48) and (4.49) it can be 

stated: 

Theorem 4.1 If ( )z rɶɶ  is a convex solution of the NLBVP (4.48) - (4.49), then for the gap 

thickness 1 ce r= −ɶ ɶ , the pressure difference aP P Bo H∆ = + ⋅ɶ ɶ ɶ , the meniscus height hɶ  and ( )z rɶɶ  

the following inequalities hold: 
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( )

( ) ( ) ( )

1
sin cos

1

sin cos ,

tan tan ,
2 2

1 tan 1 tan .
2 2

c e
a e c

c e
a c e

e c

c e

Bo H l h P
e e

Bo H l
e

e h e

l h r z r l h r

θ α π
α θ

θ α π
θ α

π π
α θ

π π
θ α

+ −  − + − + ≤ ∆   − 
+ −  ≤ − − −      ⋅ − ≤ ≤ ⋅ −            + − − − ≤ ≤ + − − −        

ɶ ɶɶ ɶ

ɶ ɶ

ɶɶ

ɶ

ɶɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶɶ

 (4.52) 

 Proof: Let ( )z rɶɶ  be a convex (
2

2
0

d z

dr
>

ɶ

ɶ
) solution of the NLBVP (4.48) - (4.49) and 

 ( ) arctan
dz

r
dr

ψ =
ɶ

ɶ
ɶ

. Since ( )rψ ɶ  verifies: 

 
( )

( ) ( )

( ) ( )

1 1
sin ,

cos

and 1 .
2 2

c e c

d
Bo z r P r

dr r r

r

ψ
ψ

ψ

π π
ψ α ψ θ

 
= − ⋅ + +     = − = − 

ɶɶ ɶɶ
ɶ ɶ ɶ

ɶ

 (4.53) 

 according to the Lagrange mean value theorem, there exist ( ) ( )1 ,1 1 ,1cr r e∈ = −ɶ ɶ ɶ  such that 

 the following equality holds 

 ( ) ( ) ( )1 1 1

1

1
cos sinc eP r Bo z r r

e r

θ α π
ψ ψ

+ −
= − − ⋅ −ɶ ɶ ɶ ɶɶ

ɶ ɶ
 (4.54) 

 Since ( )
2

2
0

d z
r

dr
>

ɶ
ɶ

ɶ
 for any [ ],1cr r∈ɶ ɶ , the function ( )

dz
r

dr

ɶ
ɶ

ɶ
 is strictly increasing on [ ],1crɶ , 

 and hence the following inequalities are satisfied: 

 

( )

( )

( )

( )

1

1

1

1

,
2 2

cos cos cos ,
2 2

sin sin sin ,
2 2

tan tan tan .
2 2

e c

c e

e c

e c

r

r

r

r

π π
α ψ θ

π π
θ ψ α

π π
α ψ θ

π π
α ψ θ


− ≤ ≤ −     − ≤ ≤ −            − ≤ ≤ −            − ≤ ≤ −        

ɶ

ɶ

ɶ

ɶ

 (4.55) 

 Because ( ) ( ) ( ) ( )21 1 tanc cz z r h r rψ− = = −ɶɶ ɶ ɶɶ ɶ  it follows that hɶ verifies  
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 tan tan .
2 2

e ce h e
π π

α θ
   

⋅ − ≤ ≤ ⋅ −      
ɶɶ ɶ  (4.56) 

 Taking into account inequalities (4.55) and substituting aP P Bo H= ∆ − ⋅ɶ ɶ ɶ , the inequalities 

 (4.52)1 are obtained. Inequalities (4.52)3 can be obtained integrating (4.55)4 on [ ],1crɶ . ■ 

Remark: If in (4.52)1, P∆ ɶ  is replaced by ( ) ( )aBo H l i t− +ɶɶ ɶ , then the following inequality is 

obtained:  

 ( )
1

sin cos sin cos
1

c e c e
e c c eBo h i t

e e e

θ α π θ α π
α θ θ α

+ − + −
− ⋅ − + ≤ ≤ − −

−
ɶ ɶ

ɶ ɶ ɶ
. (4.57) 

Theorem 4.2 If ( )0,1e ∈ɶ , 0l >ɶ , tan , tan
2 2

e ch e e
π π

α θ
    

∈ ⋅ − ⋅ −        
ɶ ɶ ɶ  and aP P Bo H∆ = + ⋅ɶ ɶ ɶ  

satisfies : 

 ( ) 1
sin cos

1

c e
a e cP Bo H l h

e e

θ α π
α θ

+ − ∆ < − + − +  −
ɶ ɶɶ ɶ

ɶ ɶ
 (4.58) 

then there exist ( )1 ,1cr e∈ −ɶ ɶ , ( )tan , tan
2 2

c a c el l h e l h r r
π π

θ α
    

′∈ + − ⋅ − + − − −          and a 

convex solution of the initial value problem (IVP): 

 ( )

3
2 22 2

2

1
1 1

d z dz dz dz
Bo z P

dr r dr drdr

      
= − ⋅ + ⋅ + − + ⋅               

ɶ ɶ ɶ ɶ
ɶɶ

ɶ ɶ ɶ ɶɶ
 (4.59) 

 ( ) ( )1 ; 1 tan ,
2

c

dz
z l h

dr

π
θ
 

= + = −  
ɶ

ɶ ɶɶ
ɶ

 (4.60) 

which verifies ( ) ( ); tan
2

c c e

dz
z r l r

dr

π
α

 
′= = −  

ɶ
ɶɶ ɶɶ

ɶ
. 

 Proof: Because (4.58) implies: 

 ( ) 1
sin cos

1

c e
e cP Bo l h

e e

θ α π
α θ

+ −
< − + − +

−
ɶ ɶɶ

ɶ ɶ
 (4.61) 

 the inequality  

( ) 1
cos sin 0

1

c e
c eP Bo l h

e e

θ α π
θ α

+ −
+ + − < − <

−
ɶ ɶɶ

ɶ ɶ
 

 is obtained. Then, the solution ( )z z r= ɶɶ ɶ  of the IVP  (4.59) - (4.60) at  1ar =ɶ  satisfies: 
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( )1
cos

cos
2

c

c

d
P Bo l h

dr

ψ
θ

π
θ

 = − + + −  
−  

ɶ ɶɶ

ɶ
, where ( ) arctan

dz
r

dr
ψ =

ɶ
ɶ

ɶ
. 

 Thus, it follows that ( )1 0
d

dr

ψ
>

ɶ
 and hence there is ( )0,1r I′∈ ∩ɶ  such that the following 

 inequalities hold: 

 ( ) ( ) ( )
2

2
0; tan ; tan

2 2
e c

d z dz dz
r r r

dr drdr

π π
α θ

   
> > − ≤ −      

ɶ ɶ ɶ
ɶ ɶ ɶ

ɶ ɶɶ
, (4.62) 

 for any [ ],1r r′∈ɶ ɶ . Here I represents the maximal interval of existence for the considered 

 solution ( )z rɶɶ  of the IVP  (4.59) - (4.60). 

 Let consider that 
*

rɶ  is defined as: 

 ( ) [ ]{ }
*

inf 0,1 inequalities (4.58) hold , ,1r r I r r′ ′= ∈ ∩ ∀ ∈ɶ ɶ ɶ ɶ  (4.63) 

 It is obvious that 
*

0r ≥ɶ , and for any (
*
,1r r ∈ ɶ ɶ  inequalities  (4.62) hold. Also, the limits 

 ( ) ( ) ( ) ( )
* *

* *

0 lim ; 0 lim
r r r r

dz dz
r r z r z r

dr dr
+ = + =

ɶ ɶ ɶ ɶց ց

ɶ ɶ
ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶ
 exist and satisfy: 

 

( )

( ) ( ) ( )

*

* * *

tan 0 tan ,
2 2

1 tan 0 1 tan .
2 2

e c

c e

dz
r

dr

l h r z r l h r

π π
α θ

π π
θ α

   
− ≤ + ≤ −            + − − − ≤ + ≤ + − − −        

ɶ
ɶ

ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶɶ

 (4.64) 

 Similarly, the limit ( ) ( )
*

*

2 2

2 2
0 lim

r r

d z d z
r r

dr dr
+ =

ɶ ɶց

ɶ ɶ
ɶ ɶ

ɶ ɶ
 exists and satisfies ( )

*

2

2
0 0

d z
r

dr
+ ≥

ɶ
ɶ

ɶ
. 

 Due to the fact that 
*

rɶ  is the infimum defined by (4.63), and  

 ( )
*

2

2
0 0

d z
r

dr
+ ≥

ɶ
ɶ

ɶ
 ; ( )

*
0 tan

2
e

dz
r

dr

π
α

 
+ ≥ −  

ɶ
ɶ

ɶ
 ; ( )

*
0 tan

2
c

dz
r

dr

π
θ
 

+ ≤ −  
ɶ

ɶ
ɶ

 , 

 one of these inequalities must become equality. 
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 Since ( ) ( )
*

0 tan
2

c

dz dz
r r

dr dr

π
θ
 

+ < ≤ −  
ɶ ɶ

ɶ ɶ
ɶ ɶ

 for any (
*
,1r r ∈ ɶ ɶ  it is impossible to obtain 

 ( )
*

0 tan
2

c

dz
r

dr

π
θ
 

+ = −  
ɶ

ɶ
ɶ

. Therefore, it must be found which one of the other two 

 inequalities: ( )
*

2

2
0 0

d z
r

dr
+ ≥

ɶ
ɶ

ɶ
 ; ( )

*
0 tan

2
e

dz
r

dr

π
α

 
+ ≥ −  

ɶ
ɶ

ɶ
  has to become equality. 

 Firstly, we will show that the inequality 
*

1r e> −ɶ ɶ  holds. For this purpose the contrary is 

 assumed, i.e., 
*

1r e≤ −ɶ ɶ . According to the Lagrange mean value theorem there is 

 ( )1 ,1eξ ∈ − ɶ  such that the following equality holds: 

( ) ( ) ( )
( )

( ) ( )
1

1 1 sin
cos

d e
e e Bo z P

dr

ψ
ψ ψ ξ ξ ψ ξ

ψ ξ ξ

 
− − = ⋅ = − ⋅ + +  

ɶ
ɶɶ ɶ ɶ

ɶ
. 

 Using  (4.61) the following estimations can be obtained:  

( ) ( )

( )
( ) ( )

( )

( )
( )( ) ( )

( )
( ) ( )

( )

( )

1 1

sin1
sin cos

cos 1

sin
sin2

sin
cos 1

cos
1 2

sin
cos cos

co

c e
e c

c
c e

e

e

c e e c e

c e

e

e
Bo l h Bo z

e e

e
Bo l h z

e e

ψ ψ

ψ ξθ α π
α θ ξ

ψ ξ ξ

π
θ

ψ ξθ α π
ξ α

ψ ξ ξ

π
α

θ α π α θ α π
ψ ξ ψ ξ

θ α π

− − >

 + −
− − + − + + ⋅ + 

− 
  

−  + −   = + − + + − >
−   

 
−  > + − = + −

> + −

ɶ

ɶ
ɶ ɶ ɶ

ɶ ɶ

ɶ
ɶ ɶ ɶ

ɶ ɶ

s
2

.

cos
2

e

c e

c

π
α

θ α π
π

θ

 
−   > + − 
−  

 

 Hence ( )1
2

ee
π

ψ α− < −ɶ , which is impossible. In this way it is shown that 
*

1r e> −ɶ ɶ . 
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 Further, we will show that from 
*

1r e> −ɶ ɶ  it follows that ( )
*

2

2
0 0

d z
r

dr
+ ≠

ɶ
ɶ

ɶ
. For this 

 purpose we assume the contrary i.e. ( )
*

2

2
0 0

d z
r

dr
+ =

ɶ
ɶ

ɶ
. Hence, according to the eq. (4.59) 

 we obtain: 

( ) ( )

( )

( )

* *

*

*

*

*

*

1
0 sin 0

1 1 1 1
sin cos sin 0

1

sin sin 01 1 2
sin

1

c e
e c

c
c e

e

P
z r r

Bo Bo r

l h r
Bo e Bo e Bo r

r
l h l h

Bo e Bo e r

ψ

θ α π
α θ ψ

π
θ ψθ α π

α

+ = − − +
⋅

+ −
> − + + − +

− ⋅

  
−  ++ −   = + + + − > +

−   

ɶ

ɶ ɶɶ
ɶ

ɶ ɶ ɶ
ɶ ɶ ɶ

ɶ
ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

 

 that is not possible. In this way it is proven that ( )
*

2

2
0 0

d z
r

dr
+ ≠

ɶ
ɶ

ɶ
. 

 Taking into account that ( )
*

0 tan
2

c

dz
r

dr

π
θ
 

+ ≠ −  
ɶ

ɶ
ɶ

 and ( )
*

2

2
0 0

d z
r

dr
+ ≠

ɶ
ɶ

ɶ
, it is deduced 

 that ( )
*

0 tan
2

e

dz
r

dr

π
α

 
+ = −  

ɶ
ɶ

ɶ
. Concerning the value ( )

*
0z r +ɶɶ , the inequality 

*
1r e> −ɶ ɶ  

 implies: 

( ) ( )
* *

tan 0 1 tan
2 2

c el h e z r l h r
π π

θ α
   

+ − − ≤ + ≤ + − − −      
ɶ ɶ ɶ ɶɶ ɶ ɶɶ . 

 Considering 
*cr r=ɶ ɶ  and ( )

*
0l z r′ = +ɶ ɶɶ , it is obtained that the Theorem 4.2 is valid.■ 

Remark: Replacing in (4.58) P∆ ɶ  by ( ) ( )aBo H l i t− +ɶɶ ɶ , the following inequality holds:  

( )
1

sin cos
1

c e
e ci t Bo h

e e

θ α π
α θ

+ −
< − + − ⋅

−
ɶɶ

ɶ ɶ
. 

Theorem 4.3 If ( )1 2, 0,1e e ∈ɶ ɶ , 1 2e e<ɶ ɶ , 0,l >ɶ 2 2tan , tan
2 2

e ch e e
π π

α θ
    

∈ ⋅ − ⋅ −        
ɶ ɶ ɶ  and 

aP P Bo H∆ = + ⋅ɶ ɶ ɶ  verifies: 
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( )
1

2 2

sin cos

1
sin cos

1

c e
a c e

c e
a e c

Bo H l P
e

Bo H l h
e e

θ α π
θ α

θ α π
α θ

+ − − − − < ∆ 
+ − < − + − +  −

ɶɶ ɶ

ɶ

ɶ ɶɶ

ɶ ɶ

 (4.65) 

then there exist  ( )2 11 ,1cr e e∈ − −ɶ ɶ ɶ , 2 1tan , tan
2 2

c el l h e l h e
π π

θ α
    

′∈ + − − + − −        
ɶ ɶ ɶ ɶ ɶɶ ɶ  and a 

convex solution ( )z rɶɶ  of the IVP (4.59)-(4.60) which verifies ( )cz r l′= ɶɶɶ and ( ) tan
2

c ez r
π

α
 

= −  ɶɶ . 

 Proof: The existence of crɶ  and the inequality 21cr e≥ −ɶ ɶ  follows from Theorem 4.2 and 

 the inequality 11cr e< −ɶ ɶ  results from Theorem 4.1. The fact that l′ɶ  is in the interval 

 2 1tan , tan
2 2

c el h e l h e
π π

θ α
    

+ − − + − −        
ɶ ɶ ɶ ɶɶ ɶ is also a consequence of Theorems 4.1 

 and 4.2. ■ 

Remark: Replacing in (4.65) P∆ ɶ  by ( ) ( )aP Bo H l i t∆ = − +ɶɶ ɶ ɶ  gives: 

( )
1 2 2

1
sin cos sin cos

1

c e c e
c e e ci t Bo h

e e e

θ α π θ α π
θ α α θ

+ − + −
− − < < − ⋅ − +

−
ɶɶ

ɶ ɶ ɶ
. 

Theorem 4.4 If  for 0 0, 0l h> >ɶ ɶ  and ( )0 0P Bo l i t= − ⋅ +ɶ ɶ  the function ( )
0l

z rɶ
ɶɶ  is a solution of the 

NLBVP (4.48)-(4.49) then for every lɶ  the function ( ) ( )
0

0l l
z r z r l l= + −ɶ ɶ

ɶ ɶɶ ɶɶ ɶ  is a solution of the 

NLBVP (4.48)-(4.49) for ( )
lP Bo l i t= − ⋅ +ɶɶ ɶ . 

 Proof: By hypothesis we have: 

( ) ( )

( ) ( )

0 0 0 0

0

0

0

0

0

3/2
2 22

02

0

0

1
1 1

tan ;
2

1 tan ; 1 .
2

l l l l

l

l

c e cl

l

c l

d z dz dz dz
Bo z P

dr r dr drdr

dz
r z r l

dr

dz
z l h

dr

π
α

π
θ

            = − ⋅ + + − +                     
= − =     

= − = +   

ɶ ɶ ɶ ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ ɶ ɶ ɶ
ɶɶ

ɶ ɶ ɶ ɶɶ

ɶ
ɶɶ ɶɶ

ɶ

ɶ
ɶ ɶɶ

ɶ

 

 It is easy to verify that the function ( ) ( )
0

0l l
z r z r l l= + −ɶ ɶ

ɶ ɶɶ ɶɶ ɶ  satisfies  
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( ) ( )

( ) ( )

3/2
2 22

02

1
1 1

tan ;
2

1 tan ; 1 .
2

l l l l

l

l
c e cl

l
c l

d z dz dz dz
Bo z P

dr r dr drdr

dz
r z r l

dr

dz
z l h

dr

π
α

π
θ

             = − ⋅ + + − +                 = − =     
= − = +   

ɶ ɶ ɶ ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ ɶ ɶ ɶ
ɶɶ

ɶ ɶ ɶ ɶɶ

ɶ
ɶɶ ɶɶ

ɶ

ɶ
ɶ ɶɶ

ɶ

 

 Hence 
l

zɶɶ  is a solution of the NLBVP (4.48)-(4.49) for ( )
lP Bo l i t= − ⋅ +ɶɶ ɶ . ■ 

Remark: Similar studies were reported by Balint and co-workers in the case of cylindrical tubes 

([Balint 2008-3]), ribbons ([Balint 2008-4]) and rods grown by Edge-defined Film-fed Growth 

(EFG) technique ([Balint 2010], [Balint 2010-1]). 

On the basis of Theorems 4.1-4.3 the following statement holds ([Balint 2011-2]): 

Statement 4.1. For 1 20 1e e< < <ɶ ɶ , 2 2tan , tan
2 2

e ch e e
π π

α θ
    

∈ − −        
ɶ ɶ ɶ  and ( )i tɶ  satisfying : 

 ( )
1 2 2

1
sin cos sin cos

1

c e c e
c e e ci t Bo h

e e e

θ α π θ α π
θ α α θ

+ − + −
− − < < − + − ⋅

−
ɶɶ

ɶ ɶ
 (4.66) 

there exists [ ]2 11 ,1cr e e∈ − −ɶ ɶ ɶ , ( ) ( ) ( )2 1tan , tan
2 2

c el t l t h e l t h e
π π

θ α
    

′ ∈ + − − + − −        
ɶ ɶ ɶ ɶ ɶɶ ɶ ɶɶ ɶ  and a 

convex solution ( )z rɶɶ  (i.e., 
2

2
0

d z

dr
>

ɶ

ɶ
 ) of the initial value problem: 

 
( )

( ) ( ) ( )

3
2 22 2

2

1
1 1

1 ; 1 tan
2

c

d z dz dz dz
Bo z P

dr dr r dr dr

dz
z l t h

dr

π
θ

       
= − ⋅ + ⋅ + − +                  

′= + = −   

ɶ ɶ ɶ ɶ
ɶɶ

ɶ ɶ ɶ ɶ ɶ

ɶ
ɶ ɶɶɶ

ɶ

 (4.67) 

which verifies ( ) ( ) ( ); tan
2

c c e

dz
z r l t r

dr

π
α

 
′= = −  

ɶ
ɶ ɶɶ ɶɶ

ɶ
. 

Comment: The above statement gives an answer to the main problem. It states that if the value of 

the unknown part ( )i tɶ  of the forcing term P∆ ɶ is in the range defined by (4.66) then an 

appropriate meniscus with convex free surface appears.  
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The upper limitation of the crystal radius crɶ  given by the constant 11 e− ɶ  shows that the gap 

1 ce r= −ɶ ɶ  during the growth process must be larger than 1eɶ . The lower limitation of the crystal 

radius 
crɶ  given by the constant 21 e− ɶ  shows that the gap 1 ce r= −ɶ ɶ  must be smaller than 2eɶ . By 

choosing 2eɶ  such that the following inequality 

 
3

2

2

sin

1

ce

Boe

θ
π<

−

ɶ

ɶ

 (4.68) 

holds, the static stability [Braescu 2010] of the menisci for which the gap thickness is less than 

2eɶ  is assured. 

On the basis of Statement 4.1, the function ψ  (which depends on the crystal radius 
crɶ and on the 

value of i, ( ),cr iψ ψ= ɶ ) can be built ([Balint 2010-2]). Its construction is based on the numerical 

integration of the system (4.50) ([Balint 2011-2]). More precisely, the following steps have to be 

followed: 

(i) A value of 2eɶ  in the range ( )0,1  has to be chosen such that the inequality (4.68) is 

satisfied, and the value 0hɶ  in the range 2 2tan , tan
2 2

e ce e
π π

α θ
    

− −        ɶ ɶ  has to be 

considered (for example 0 2 tan
2

ch e
π

θ
 

= −  
ɶ ɶ  ). 

(ii) A value 1 20 e e< <ɶ ɶ  has to be chosen such that the inequality 

1 0 2

1 2 2

1
sin cos sin cos

1

c e c e
c e e cE Bo h E

e e e

θ α π θ α π
θ α α θ

+ − + −
= − − < − + − ⋅ =

−
ɶ

ɶ ɶ ɶ
 (4.69) 

holds. 

(iii) For the input i a set of m values 1 1 2 2... mi E i i E= < < < =  is chosen. 

(iv)  In a given range ,ψ ψ    having the property 
2 2

e

π π
ψ α ψ< − < < , a set of n values is 

chosen: 1 2 ... nψ ψ ψ ψ ψ= < < < = . 
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(v) For an arbitrary 0l
ɶ  (let say 0l

ɶ = the seed length or 2aHɶ ) and 0 0 pP Bo l i= − ⋅ +ɶɶ  the solution 

of the system (4.50) which satisfies ( ) ( )0 01 ;
2

c e
z l h r

π
ψ α= + = −ɶ ɶ ɶɶ  is determined 

numerically, obtaining the functions ( ); pz z r i= ɶɶ ɶ  and ( ); pr iψ ψ= ɶ , 1,p m= . 

(vi)  The values 
,p qrɶ  defined by ( ); q

pq pr iψ ψ=ɶ , 1,p m= , 1,q n=  are found. Fitting the data  

,p qrɶ , 
pi  and qψ  the function ( ),cr iψ ɶ  is found. 

Remark 1: The function ( ),cr iψ ɶ  obtained for an arbitrary 0l
ɶ  coincides with that obtained 

applying the same steps for any 0l l≠ɶ ɶ , ( )0, al H∈ɶ ɶ  (see Theorem 4.4). 

Remark 2: In the case of zero gravity, for an open ampoule ( 0La = ), if the Marangoni 

convection is neglected, then according to (4.46) and (4.47) we have ( ) .m

hP La i t const∆ = − = =ɶ ɶ , 

and hence m

h
P La= −ɶ . Solving (4.50)2 in this case the function ( )

2 2

cos
arctan

1 cos

c c
c

c c

r
r

r

θ
ψ

θ

  = −  − 
ɶ

ɶ

ɶ

  

is obtained. 

 

Case II: 180c eθ α+ < °  

Similarly to the previous case, in the case of 180c eθ α+ < °  the following statement can be 

given: 

Statement 4.2.  For 1 20 1e e< < <ɶ ɶ , 2 2tan , tan
2 2

c eh e e
π π

θ α
    

∈ − −        
ɶ ɶ ɶ  and ( )i tɶ  satisfying : 

 

( )2

2

1 1

tan sin cos
2

1
sin cos

1

c e
e c c

c e
e e

Bo h e i t
e

Bo h
e e

θ α ππ
α θ θ

θ α π
α α

  + − 
− + − − + <    

+ −
< − ⋅ − −

−

ɶ ɶɶ
ɶ

ɶ

ɶ ɶ

 (4.70) 

there exists [ ]2 11 ,1cr e e∈ − −ɶ ɶ ɶ , ( ) ( ) ( )2 1tan , tan
2 2

e cl t l t h e l t h e
π π

α θ
    

′ ∈ + − − + − −        
ɶ ɶ ɶ ɶ ɶɶ ɶ ɶɶ ɶ  and a 

concave solution ( )z rɶɶ  (i.e., 
2

2
0

d z

dr
<

ɶ

ɶ
) of the initial value problem: 
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( )

( ) ( ) ( )

3
2 22 2

2

1
1 1

1 ; 1 tan
2

c

d z dz dz dz
Bo z P

dr dr r dr dr

dz
z l t h

dr

π
θ

       
= − ⋅ + ⋅ + − +                  

′= + = −   

ɶ ɶ ɶ ɶ
ɶɶ

ɶ ɶ ɶ ɶ ɶ

ɶ
ɶ ɶɶɶ

ɶ

  

which verifies ( ) ( ) ( ); tan
2

c c e

dz
z r l t r

dr

π
α

 
′= = −  

ɶ
ɶ ɶɶ ɶɶ

ɶ
. 

Comment: Statement 4.2 ensures the fact that if the value of the unknown part ( )i tɶ  of the 

forcing term P∆ ɶ is in the range defined by (4.70) then an appropriate meniscus with concave free 

surface appears.  

The upper limitation of the crystal radius 
crɶ  given by the constant 11 e− ɶ  shows that the gap 

1 ce r= −ɶ ɶ  during the growth process must be larger than 1eɶ . The lower limitation of the crystal 

radius 
crɶ  given by the constant 21 e− ɶ  shows that the gap 1 ce r= −ɶ ɶ  must be smaller than 2eɶ . By 

choosing 2eɶ  such that the following inequality 

 
3

2

2

sin

1

ee

Boe

α
π<

−

ɶ

ɶ

 (4.71) 

holds, the static stability [Braescu 2010] of the menisci for which the gap thickness is less than 

2eɶ  is assured. 

On the basis of Statement 4.2, the function ψ  (which depends on the crystal radius 
crɶ and on the 

value of i, ( ),cr iψ ψ= ɶ ) can be built, as it was already explained in the case 180c eθ α+ > ° . 

It should be mentioned that in this case also, the function ( ),cr iψ ɶ  obtained for an arbitrary 0l
ɶ  

coincides with that obtained applying the same steps for any 0l l≠ɶ ɶ , ( )0, al H∈ɶ ɶ . 

 

4.2.4. Practical stability of the nonlinear system of differential equations describing the melt-

solid interface displacement and gap thickness evolution 

 

The system of differential equations governing the solidification process is: 
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( ) ( )

( ) ( ) ( )

, ,

, , tan ,
2

l s

c
l s c e

dl
St G l t G l t

dt

dr
St G l t G l t r i

dt

λ

π
λ ψ α

  = − −       = − − −      

ɶ
ɶ ɶɶ ɶ ɶɶ ɶ

ɶ

ɶ
ɶ ɶɶ ɶ ɶɶ ɶ ɶ

ɶ

 (4.72) 

Eq. (4.72)2 is built up on geometrical considerations rather than modeling the physics of the 

changes due to the presence of the crystal [Tatartchenko 1993]. 

The information which presents interest for crystal growth is the practical stability of the system 

(4.72) on the bounded time period 
*0, t  ɶ  (period of growth) with respect to: the set of initial 

conditions ( )( ) ( )0

* 2 10, 0 1 ,1AX l e e= × − −ɶ ɶ ɶ , the set of inputs I and the set of final values 

( ) ( )*

2 10, 1 ,1
t

A aX H e e= × − −ɶ ɶ ɶ  (that are not the same for both cases). This stability is presented in 

what follows. 

From the growth angle criterion we get: 

( )0 ,
2

c e
r i

π
ψ α= −ɶ  

Expanding in Taylor series ( ),cr iψ ɶ  at the point ( )0 ,cr iɶ  where the growth angle is achieved, and 

retaining only the first two terms: 

( ) ( ) ( ) ( )0 0 0, , , ...c c c c c

c

r i r i r i r r
r

ψ
ψ ψ

 ∂
= + − + 

∂ 
ɶ ɶ ɶ ɶ ɶ

ɶ
 

the argument of the tangent function from (4.72)2 becomes: 

( ) ( ) ( ) ( )0 0 0 0tan , tan ,
2 2

e c c c e c c c

c c

r i r r r i r r
r r

π ψ π ψ
α α

      ∂ ∂ 
− + − − − = −       

∂ ∂          
ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ
 

It can be observed that in the second equation of the system (4.72) there is a function F 

depending on lɶ , tɶ , 
crɶ  and i , whose Taylor series expansion at the point 0

c
rɶ  is:  

( ) ( ) ( ) ( )0 0 0, , , , , , , , , ...c c c c c

c

F
F l t r i F l t r i l t r i r r

r

 ∂
= + − + 

∂ 
ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ ɶ

ɶ
 

where 

( ) ( ) ( ) ( ) ( )0 0 0 0, , , , , tan , 0c l s c c c

c

F l t r i St G l t G l t r i r r
r

ψ
λ

  ∂ = − − =    ∂   
ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ
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( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

0

0 0 0

0 0

2 0 0 0

, , , , , tan ,

1
, , ,

cos ,

c c

c l s c c c

c c c
r r

l s c c c

c

c c c

c

l

F
l t r i St G l t G l t r i r r

r r r

St G l t G l t r i r r
r

r i r r
r

St G l

ψ
λ

ψ
λ

ψ

=

   ∂ ∂ ∂ = − −      ∂ ∂ ∂    
 ∂ = − −   ∂  ∂  

−  
∂  

=

ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ
ɶ ɶ ɶ

ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ ɶ
ɶ

ɶ ɶ ɶ
ɶ

ɶɶ ( ) ( ) ( ) ( )0 0, , ,s c c c

c

t G l t r i r r
r

ψ
λ

 ∂ − −   ∂ 
ɶɶ ɶɶ ɶ ɶ ɶ ɶ

ɶ

 

Therefore, the second equation of the system, can be written as 

( ) ( ) ( ) ( )0 0, , ,c
l s c c c

c

dr
St G l t G l t r i r r

dt r

ψ
λ

 ∂ = − −   ∂ 
ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ ɶ

ɶ
 

( ) ( ) ( ) ( )
31

2

0

0

, , ,c
l s c c c

c
EE

E

dr
St G l t G l t r i r r

dt r

ψ
λ

<

 ∂ = − −   ∂ 
ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ ɶ

ɶ ����������������
�����

 

For a convex meniscus,
2

2
0

c

z

r

∂
>

∂

ɶ

ɶ
 i.e. 

2

1
0 0

cos c cr r

ψ ψ

ψ

∂ ∂
> ⇒ >

∂ ∂ɶ ɶ
 and  

i) If 0 0c
c c

dr
r r

dt
< ⇒ >

ɶ
ɶ ɶ

ɶ
i.e. 0

c c
r rɶ ɶր ; 

ii) If 0 0c
c c

dr
r r

dt
> ⇒ <

ɶ
ɶ ɶ

ɶ
i.e. 

0

c c
r rց . 

It results that the crystal radius 
crɶ  converges to 0

crɶ  and rests in the interval [ ]2 11 ,1e e− −ɶ ɶ (Figure 

4.2.4 (a)). Thus the system (4.72)  is practically stable. 

For a concave meniscus,
2

2
0

c

z

r

∂
<

∂
 i.e. 

2

1
0 0

cos c cr r

ψ ψ

ψ

∂ ∂
< ⇒ <

∂ ∂
and  

i) If 0 0c
c c

dr
r r

dt
< ⇒ <

ɶ
ɶ ɶ

ɶ
; 

ii) If 0 0c
c c

dr
r r

dt
> ⇒ >

ɶ
ɶ ɶ

ɶ
 

It results that the crystal radius 
crɶ diverges and cross over the interval [ ]2 11 ,1e e− −ɶ ɶ  (Figure 4.2.4 

(b)). Thus the system (4.72) is practically unstable. 
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Figure 4.2.4 Convergence of the crystal radius: (a) case of a convex meniscus and (b) case of a 

concave meniscus. 

 

Case I: 180c eθ α+ > °  

In this case, for the set of initial conditions ( )( ) ( )0

* 2 10, 0 1 ,1AX l e e= × − −ɶ ɶ ɶ , the set of the inputs is: 

( ) ( )
1

sin cos sin cos
1

c e c e
e c c eI i t Bo h i t

e e e

θ α π θ α π
α θ θ α

 + − + −
= − ⋅ − + ≤ ≤ − − 

− 
ɶɶ ɶ

ɶ ɶ ɶ
 and the 

set of final values ( ) ( )*

2 10, 1 ,1
t

A aX H e e= × − −ɶ ɶ ɶ . 

According to the considerations presented in section 4.2.2, ( ) ( )0, al t H∈ɶ ɶɶ  for any ( )( )0 *0, 0l l∈ɶ ɶ . 

In order to show that ( ) [ ]2 11 ,1cr t e e∈ − −ɶɶ ɶ ɶ  it can be remarked that, according to statement 4.1 

(section 4.2.3) ( )i t I∈ɶ  assures the existence of a convex meniscus. This implies 

( ), 0c

c

r i
r

ψ∂
>

∂
ɶ

ɶ
which proves that ( ) [ ]2 11 ,1cr t e e∈ − −ɶɶ ɶ ɶ . Therefore, the system (4.72) is practically 

stable with respect to 0

AX , *t

AX , I defined above. 

Remark: If ( )m

h hydLa La− − is negligible with respect to La then P La∆ =ɶ  and 

( )aLa Bo H l i t = − + ɶɶ ɶ . Therefore the pressure difference La has to satisfy: 

 

( )
1

2 2

sin cos

1
sin cos .

1

c e
a c e

c e
a e c

Bo H l La
e

Bo H l h
e e

θ α π
θ α

θ α π
α θ

+ − − − − < 
+ − < − + − +  −

ɶɶ

ɶ

ɶ ɶɶ

ɶ ɶ

 (4.73) 
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This means that if during the growth, the pressure difference between the cold and hot sides of 

the sample is maintained between the limits given by the above inequalities then the dewetted 

Bridgman process is successfull. 

 

Case II: 180c eθ α+ < °  

In this case, for the set of initial conditions ( )( ) ( )0

* 2 10, 0 1 ,1AX l e e= × − −ɶ ɶ ɶ , the set of the inputs is: 

( ) ( )
1

sin cos
1

tan sin cos
2

c e
e e

c e
e c c

I i t Bo h i t
e e

Bo h e
e

θ α π
α α

θ α ππ
α θ θ

 + −
= − ⋅ − − ≤

−
  + − 

≤ − + − − +      

ɶɶ ɶ

ɶ ɶ

ɶ ɶ
ɶ

 

and the set of final values ( ) ( )*

2 10, 1 ,1
t

A aX H e e= × − −ɶ ɶ ɶ . 

According to the considerations presented in section 4.2.2, ( ) ( )0, al t H∈ɶ ɶɶ for any ( )( )0 *0, 0l l∈ɶ ɶ . 

In order to show that ( ) [ ]2 11 ,1cr t e e∈ − −ɶɶ ɶ ɶ it can be remarked that, according to statement 4.2 

(section 4.2.3) ( )i t I∈ɶ  assures the existence of a concave meniscus. This implies 

( ), 0c

c

r i
r

ψ∂
<

∂
ɶ

ɶ
which proves that ( ) [ ]2 11 ,1cr t e e∉ − −ɶɶ ɶ ɶ . Therefore, the system (4.72) is practically 

unstable with respect to 0

A
X , *t

A
X , I defined above. 

Remark: If ( )m

h hydLa La− − is negligible with respect to La then P La∆ =ɶ  and 

( )aLa Bo H l i t = − + ɶɶ ɶ . Therefore the pressure difference La has to satisfy: 

 

( )

( )

2

2

1 1

tan sin cos
2

1
sin cos .

1

c e
a e c c

c e
a e e

Bo H l h e La
e

Bo H l h
e e

θ α ππ
α θ θ

θ α π
α α

  + − 
− + + − − + <    

+ − < − + − −  −

ɶ ɶɶ ɶ
ɶ

ɶ ɶɶ

ɶ ɶ

 (4.74) 

This means that during the growth, the pressure difference La has to be maintained between the 

limits given by the above inequalities. 
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4.2.5. Numerical illustration of the practical stability and practical instability 

 

In order to illustrate numerically the practical stability of the system (4.72) describing the crystal 

radius and the melt-solid interface evolution, first the function ( ),cr iψ ɶ  is determined on the basis 

of the steps described in section 4.2.3 (see also [Balint 2011-2]): 

 

Case I: 180c eθ α+ > °  

- for InSb 

( ) 2 5 2, 9.155 15.567 1.711 7.632 9.87 10 1.707c c c cr i r i r i r iψ −= − ⋅ + ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅ɶ ɶ ɶ ɶ  

with [ ] [ ]2 11 ,1 0.982,0.9982cr e e∈ − − =ɶ ɶ ɶ , [ ] [ ]1 2, 17.32, 3.21i E E∈ = − − (the pressure range which 

assure a convex meniscus); 

 - for GaSb 

( ) 2 9 2, 69.6 139.926 1.525 71.552 6.63 10 1.522c c c cr i r i r i r iψ −= − ⋅ + ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅ɶ ɶ ɶ ɶ  

with [ ] [ ]2 11 ,1 0.982,0.9982cr e e∈ − − =ɶ ɶ ɶ , [ ] [ ]1 2, -36.97, - 6.59i E E∈ = . 

Then, the system (4.72) is solved numerically for the following input function: 

( ) ( ) ( )
1 2 / 2 sini t E E A tω= + + ⋅ɶ , with ( )2 10 / 2A E E< < −  and / 2f ω π= , the input oscillations 

frequency. 

The computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ , respectively ( )cr tɶɶ , for InSb in the case of 

0 0.367l =ɶ , ( )4 0;7.055A = ∈ , are presented in Figure 4.2.5 for ω  equal to 0.005 s
-1

.  
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Figure 4.2.5 Computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ  showing the practical stability of the system for InSb 

crystals. 

 

For GaSb, the computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ , respectively ( )cr tɶɶ , in the case of 

0 1.458l =ɶ , ( )8 0;15.19A = ∈ , are presented in Figure 4.2.6 for ω  equal to 0.005 s
-1

.  
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Figure 4.2.6 Computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ  showing the practical stability of the system for 

GaSb crystals. 

 

Figures 4.2.5 and 4.2.6 show that for harmonic inputs ( )i tɶ of different frequencies having the 

amplitude in the prescribed range, the computed crystal radius fluctuates between the limits 

21 e− ɶ  and 11 e− ɶ . This means that during the whole process, dewetting takes place, i.e., the gap 

thickness fluctuates between 1eɶ  and 2eɶ . 

The computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ , respectively ( )cr tɶɶ , for InSb in the case of 

0 0.367l =ɶ , ( )9 0;7.055A = ∉ , are presented in Figure 4.2.7 for ω  equal to 0.005 s
-1

.  
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Figure 4.2.7 Computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ  showing the practical instability of the system for 

InSb crystals. 

 

For GaSb, the computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ , respectively ( )cr tɶɶ , in the case of 

0 1.458l =ɶ , ( )18 0;15.19A = ∉ , are presented in Figure 4.2.8 for ω  equal to 0.005 s
-1

.  
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Figure 4.2.8 Computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ  showing the practical instability of the system for 

GaSb crystals. 

 

Figures 4.2.7 and 4.2.8 show that for harmonic inputs with amplitudes not included in the 

prescribed range, the crystal radius fluctuations cross over the interval [ ]2 11 ,1e e− −ɶ ɶ , i.e., the 

crystal grows with increasing fluctuations.  

 

Case II: 180c eθ α+ < °  

- for InSb 

( ) 2 6 2, 9545.151 19238.492 2.365 9694.029 6.66 10 2.369c c c cr i r i r i r iψ −= − ⋅ + ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅ɶ ɶ ɶ ɶ  

with [ ] [ ]2 11 ,1 0.9909,0.9985cr e e∈ − − =ɶ ɶ ɶ , [ ] [ ]1 2, 76.16, 217.058i E E∈ = (the pressure range 

which assure a concave meniscus); 
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 - for GaSb 

( ) 2 6 2, 657.742 1325.308 2.302 667.883 1.38 10 2.302c c c cr i r i r i r iψ −= − ⋅ + ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅ɶ ɶ ɶ ɶ  

with [ ] [ ]2 11 ,1 0.9909,0.9985cr e e∈ − − =ɶ ɶ ɶ  m, [ ] [ ]1 2, 45.56,172.12i E E∈ = . 

Then, the system (4.72) was solved numerically for the following input function: 

( ) ( ) ( )
1 2 / 2 sini t E E A tω= + + ⋅ɶ , with ( )2 10 / 2A E E< < −  and / 2f ω π= , the input oscillations 

frequency. 

The computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ , respectively ( )cr tɶɶ , for InSb in the case of 

0 0.5l =ɶ , ( )30 0;70.449A = ∈ , are presented in Figure 4.2.9 for ω  equal to 0.005 s
-1

.  

 

Figure 4.2.9 Computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ  showing the practical instability of the system for 

InSb crystals, case 180c eθ α+ < ° . 
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For GaSb, the computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ , respectively ( )cr tɶɶ , in the case of 

0 0.5l =ɶ , ( )20 0;63.28A = ∈ , are presented in Figure 4.2.9 for ω  equal to 0.005 s
-1

.  

 

Figure 4.2.10 Computed ( )l tɶ ɶ , ( )i tɶ , ( )P t∆ ɶ ɶ  showing the practical instability of the system for 

GaSb crystals, case 180c eθ α+ < ° . 

 

Figures 4.2.9 and 4.2.10 show that the crystal radius fluctuations cross over the interval 

[ ]2 11 ,1e e− −ɶ ɶ , i.e., the crystal grows attached to the ampoule wall.  

 

Summary 

In the first part of this chapter, different concepts of Lyapunov stability which can occur 

in shaped crystal growth: classical, uniform, asymptotic, and exponential Lyapunov stabilities of 

a steady-state; partial Lyapunov stability of a steady-state; and the same types of Lyapunov 
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stabilities for time-dependent regimes were presented. Applying these concepts for the dewetted 

Bridgman growth process permitted to conclude as in [Balint 2011-1] the followings: 

(i) From mathematical point of view the capillary stability of a steady-state regime means 

partial Lyapunov stability of the regime with respect to the crystal radius, crɶ . 

(ii) Lyapunov stability of a steady-state regime implies partial stability with respect to all 

variables, in particular, implies capillary stability. The inverse of the above statement is 

not valid.  

(iii) In the model which describes the dewetted Bridgman crystal growth in zero gravity 

conditions, the growth regime is time dependent.  It is exponentially stable what is more 

than Lyapunov or capillary stability. This shows and explains, in agreement with the 

experiments, that the dewetting is always stable in zero gravity. 

Further, in order to study the stability of the dewetted Bridgman process on the Earth, the 

concept of practical stability over a bounded time period was introduced. Analytical and 

numerical investigations of the practical stability over a bounded time period of the nonlinear 

system of differential equations describing the melt-solid interface displacement and the gap 

thickness evolution for dewetted Bridgman crystals grown in terrestrial conditions were 

developed. Explicit formulas were established for the limits of the range of the pressure 

difference in order to have practical stability of the system and the gap thickness in a prescribed 

range. According to these studies, in the case 180c eθ α+ > ° , for a convex meniscus the system is 

practically stable and in the case 180c eθ α+ < ° , for a concave meniscus, the system is not 

practically stable. The practical stability of the convexo-concave meniscus was not studied here, 

as limitations of the gas pressure difference were not established analytically. 
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GENERAL CONCLUSIONS AND PERSPECTIVES 

The aim of this thesis was to bring information concerning the dewetted Bridgman technique by 

detailed theoretical results and numerical simulations, on the basis of mathematical models able 

to better reflect the real phenomena appearing during the growth. The dewetted Bridgman 

technique represents an exciting recent development for the growth of bulk single-crystals from 

the melt because it reduces the crystal defects due to the absence of crucible wall-crystal 

interaction.  

The experiments performed under microgravity conditions have shown that the dewetting 

phenomenon is intrinsically stable with the formation of a constant crystal-crucible gap 

( 10 to100 m≈ µ ) along several centimetres.  

The experimental observations under normal gravity conditions confirmed also the 

existence of a liquid meniscus linking the crucible-melt-gas and crystal-melt-gas triple points and 

its control by manipulating the gas pressure in the crucible. It generally leads to the apparition of 

a constant gap thickness between the grown crystal and the inner crucible walls. The experiments 

showed that an important characteristic of dewetting in normal gravity is the self-stabilizing gas 

pressure difference. 

From the existent stability analysis presented in the bibliographic study it was concluded 

that the main parameter for stability is certainly a high wetting angle and the growth angle must 

be different from 0°. In practice two different cases, 180c eθ α+ < °  and 180c eθ α+ ≥ ° , should be 

considered, as they lead to different behavior. 

 According to this bibliographic survey, the present thesis work mainly consists in 

analytical and numerical studies of the dewetted Bridgman process including capillarity, heat 

transfer and stability problems. 

 

• Capillarity problems 

The capillarity problem is governed by Young-Laplace’s equation that relates the pressure inside 

and outside the liquid to the normal curvature of the liquid surface, called meniscus. Firstly, the 

mathematical formulation of the capillarity problem was presented and the Young-Laplace 
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equation was expressed using the principal normal curvatures of a surface instead of using the 

radius of curvature (frequently used in crystal growth).  

 Analytical and numerical studies of the axi-symmetric Young-Laplace equation 

describing the meniscus shape were performed and the dependence of the meniscus shape and 

size, on the pressure difference between the cold and hot sides of the sample, was established in 

zero and normal gravity conditions. In the case of normal gravity conditions, qualitative studies 

for the meniscus shape were performed using Taylor polynomial approximation and also, 

without approximation using the properties obtained from Young-Laplace equation and the 

growth angle criterion. Explicit formulas for prescribing a pressure difference range and the 

corresponding meniscus shapes for which dewetting can be obtained were established 

analytically. These formulas can be used for a rough initial design of the growth process.  

 Further, in order to establish the dependence of the crystal-crucible gap thickness on the 

relevant parameters of the dewetted Bridgman process, a parametric study was performed for the 

two different cases: 180c eθ α+ < °  and 180c eθ α+ ≥ ° . It has been shown that optimal parameters 

exist that enhance dewetting and can be easily obtained from the physical properties of the 

material and characteristics of the process. 

 These results give a good understanding of the physics of the dewetting process and are 

basic reference tools for the practical crystal growers working with a given equipment and given 

materials and also for the equipment designers. 

 On the mathematical point of view, it was a good opportunity to show how some 

concepts from differential geometry of surfaces or the Taylor series can be applied for describing 

some phenomena occurring in crystal growth. 

 

• Heat transfer problems 

A simplified configuration of the dewetted Bridgman process with adiabatic lateral crucible 

walls was treated for modeling the heat transfer in the process. Analytical expressions of the 

temperature distribution and the temperature gradients in the melt and in the solid were 

established by solving analytically the non-stationary one-dimensional heat transfer equation by 

neglecting the latent heat release (quasi steady-state approximation). The melt-solid interface 

displacement differential equation was also derived from the thermal energy balance at the level 
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of the interface and relevant properties concerning the solution of this equation were established. 

The solution was found by solving numerically its ordinary differential equation. This 

approximation has been checked by comparison with the results obtained by solving numerically 

with COMSOL Multiphysics 3.5 the heat transfer problem that takes into account an averaged 

value of the latent heat released all along the process.  

 By using the Fourier series in order to find the analytical expressions of the thermal 

gradients in the solid and liquid, it was proven once again the importance and the utility of the 

mathematical tools for describing some phenomena during the crystal growth process. 

 Further, the effect of the crystal-crucible gap on the deflection of the solid-liquid 

interface has been studied for a set of non-dimensional parameters representative of classical 

semiconductor crystal growth. An analytical expression for the interface deflection, based on 

simple heat fluxes arguments was found. It shows that the solid-liquid interface deflection can be 

adjusted by the thickness of the gap: the deflection of the interface decreases when the crystal-

crucible gap increases. Another interesting result is that, for a large enough gap, the curvature of 

the interface may be reversed. Therefore, the Bridgman crystal grower has now a new degree of 

freedom for the improvement of crystal quality. By adjusting the gap thickness in the dewetted 

mode, it is possible to modify the interface deflection.  In order to get more precise values of 

interface deflection it is anyhow necessary to use numerical simulation and to take into account 

more realistic parameters, including the furnace design.  

 

• Stability of the coupled capillarity and heat transfer problems 

Different concepts of Lyapunov stability which can occur in shaped crystal growth were 

presented and applied for the dewetted Bridgman growth process. It was concluded that from the 

mathematical point of view the capillary stability of a steady-state regime means partial 

Lyapunov stability of the regime with respect to the crystal radius. In the model which describes 

the dewetted Bridgman crystal growth in zero gravity conditions, the growth regime is time 

dependent and is exponentially stable what is more than the Lyapunov or capillary stability. This 

shows and explains, in agreement with the experiments, that the dewetting is always stable in 

zero gravity. 

 For studying the dynamic stability of the dewetted Bridgman process in normal gravity 

conditions, the concept of practical stability over a bounded time period was introduced. 
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Analytical and numerical investigations of the practical stability over a bounded time period of 

the nonlinear system of differential equations describing the melt-solid interface displacement 

and the gap thickness evolution were developed. Explicit formulas were established for the limits 

of the fluctuations range of the pressure difference in order to obtain the gap thickness in a 

prescribed range leading to the practical stability of the system. According to these studies, the 

system is practically stable for a convex meniscus ( 180+ ≥ °c eθ α ).  

 Concerning the crystal-crucible gap thickness under microgravity conditions, it has been 

already demonstrated that its stability is a pure geometrical problem and is ascertained as far as 

the meniscus exists. This is independent of the time representation of the process, infinite or 

finite. However the problem is much more complicated under normal gravity conditions, where 

the meniscus shape, then the gap thickness, does depend on the solid-liquid interface position 

hence on the heat transfer. In this case the practical stability approach should absolutely be used 

in order to study the stability of the process.  

It should be noticed that there is still one obscure point, the practical stability of a 

convexo-concave meniscus (so-called “S-shape meniscus”). For such meniscus shape, the 

mathematical tools developed in the present work did not lead to a limitation of the gas pressure 

difference needed for the analytical study of the practical stability. Only some numerical studies 

for the case of InSb and GaSb crystals were performed, without leading to a general conclusion 

concerning the practical stability of the system in the case of a convexo-concave meniscus. 

 These results show that the “practical stability” approach has a clear interest for the study 

of bounded time processes. For the industrial production, the stable conditions of the process (i.e. 

180+ ≥ °c eθ α ) should be chosen but it is not easy to find an ideal crucible. In this case, it is 

necessary to work with instable conditions (i.e. 180+ < °c eθ α ) and therefore to implement a 

control device. 

 For the development of a robust process control system it is important to understand the 

relation of the process dynamics with the different operating conditions and the important 

process characteristics such as gradients, process physics, system design, and materials 

characteristics and also the characteristic time for relaxation of the perturbations. 

 An overview of important process modeling and control issues, as well as mathematical 

modeling for analysis and controller design are provided in [Winkler 2010]. Winkler and co-
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authors present many of the critical concepts and practices needed to design and implement 

modern control for the Czochralski process and these can be useful for dewetted Bridgman 

process. 

 On the practical point of view, the thermal field control in crystal growth is so well 

developed that in any case, stable or not, the thermal field, hence the solid-liquid interface 

position versus time, is under control. In order to implement a control process for dewetted 

Bridgman crystal growth in the case of a concave meniscus ( 180c eθ α+ < ° ) which was proven 

that it is practically unstable, a good understanding of the physics (capilarity and heat transfer) 

that describes the phenomena occuring in the growth process is necessary. The crystal-crucible 

gap thickness should be measured in order to control the gas pressure difference in the sample. It 

is also important to study the reaction of the system to an input change during the growth and to 

measure the characteristic relaxation time. 

 The results obtained in this thesis work, will be useful for the implementation of the 

automatic control of the dewetted Bridgman processes because informations about the reaction 

of the system to different fluctuations of the temperature gradients and of the gas pressure 

difference were provided. It will constitute premises for the elaboration of new production 

technologies and control processes for the improvement of the quality of the crystals. After such 

developments we can hope that the dewetted Bridgman process, now studied only in two or three 

laboratories in the world, would be used at the industrial scale. 

 Concluding, the objectives were mainly accomplished and robust tools (analytical and 

numerical) for studying the dewetted Bridgman process were developed. The obtained results 

show the importance of a careful calculation of the meniscus shapes for the optimization of the 

dewetted Bridgman process. In general terms, the understanding gained from the successful 

modeling will lead to better process operation and design, ultimately yielding better quality 

crystals at higher production rates and lower costs. 
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�Analytical and numerical studies of the dewetted Bridgman process: 

capillarity, heat transfer and stability 

The phenomenon of dewetting is characterized by the Vertical Bridgman growth of a 

crystal without contact with the walls of the crucible due to the existence of a liquid meniscus at 

the level of the solid-liquid interface which creates a gap between the crystal and the inner 

crucible walls. One of the immediate consequences of this phenomenon is the drastic 

improvement of the crystal quality. This improvement is essentially related to the absence of 

wall-crystal interaction, so that no grain or twin spurious nucleation can occur and no differential 

dilatation stresses exist, which could generate dislocations. In order to bring crucial information 

concerning dewetted phenomenon, detailed theoretical results and numerical simulations are 

necessary, on the basis of the mathematical models able to reflect better the real phenomenon 

which should include all essential processes appearing during the growth.  

The main problem of the dewetting growth and the related improvements of the material 

quality is the stability of the growth process. In this context, the main purpose of the present 

work is to perform analytical and numerical studies for capillarity, heat transfer and stability 

problems of the dewetted Bridgman process. 

Firstly, the mathematical formulation of the capillary problem governed by the Young-

Laplace equation has been presented, followed by analytical and numerical studies for the 

meniscus equation for the cases of zero and normal terrestrial gravity. Secondly, the heat transfer 

problems have been treated. Thus, in order to find analytical expressions of the temperature 

distribution and the temperature gradients in the melt and in the solid, analytical and numerical 

studies for the non-stationary one-dimensional heat transfer equation have been performed. The 

melt-solid interface displacement equation was also derived from the thermal energy balance at 

the level of the interface. Further, for studying the effect of the crystal-crucible gap on the 

curvature of the solid-liquid interface for a set of non-dimensional parameters representative of 

classical semiconductor crystal growth, an analytical expression for the interface deflection, 

based on simple heat fluxes arguments was found. In order to check the accuracy of the obtained 

analytical formula and to identify its limits of validity, the heat transfer equation was solved 

numerically in 2D axial symmetry, stationary case, using the finite elements code COMSOL 

Multiphysics 3.3. 

 Further, the stability analysis has been developed. Different concepts of Lyapunov 

stability which can occur in shaped crystal growth: classical, uniform, asymptotic, and 

exponential Lyapunov stabilities of a steady-state; partial Lyapunov stability of a steady-state; 

and the same types of Lyapunov stabilities for time-dependent regimes, have been presented.  In 

what follows, after the concept of practical stability over a bounded time period has been 

introduced, analytical and numerical investigations of the practical stability over a bounded time 

period of the nonlinear system of differential equations describing the melt-solid interface 

displacement and the gap thickness evolution for dewetted Bridgman crystals grown in terrestrial 

conditions have been performed. 

 

Keywords: Meniscus shape (Numerical simulation), Stability, Dewetted Bridgman (Crystal 

growth) 



Etudes analytiques et numériques du procédé de Bridgman démouillage: capillarité, transfert de 

chaleur et stabilité 

 

L’objectif principal de cette thèse est de réaliser des études analytiques et numériques pour des 

problèmes de capillarité, de transfert de chaleur et de stabilité du procédé Bridgman démouillage. Pour le 

calcul de la forme du ménisque, sa surface sera donnée par l’équation de Young-Laplace décrivant 

l’équilibre sous la pression. Cette équation sera transformée en un système non linéaire d’équations 

différentielles. A partir d’études qualitatives et quantitatives de la solution, la dépendance de la forme du 

ménisque (convexe, concave, convexe-concave), de  la différence de pression et d’autres paramètres du 

procédé, sera déterminée. Pour étudier la stabilité dynamique du système, l’épaisseur de l’espacement 

cristal-creuset et la position de l’interface liquide-solide sont des variables du problème et donc deux 

équations seront nécessaires, précisément,  l’équation de Young-Laplace et le bilan thermique à 

l’interface liquide-solide. 

Par conséquence, ce travail est organisé comme suit: 

Des contributions récentes à la modélisation de certains problèmes de capillarité sont présentées dans le 

deuxième chapitre, à commencer par la formulation mathématique du problème capillaire régie par 

l’équation de Young-Laplace. Des  études analytiques et numériques pour l’équation du ménisque sont 

élaborées pour le démouillage en microgravité et sur terre.  

Le troisième chapitre traite des contributions à la modélisation des problèmes de transfert de 

chaleur. Ainsi, les études analytiques et numériques pour l’équation non stationnaire de transfert de 

chaleur à une dimension sont effectuées afin de trouver des expressions analytiques de la distribution de 

la température et des gradients de température dans le liquide et dans le solide. L’équation de 

déplacement de l’interface liquide-solide est également obtenue du bilan énergétique à l’interface. 

Après quoi, l’effet de l’espacement cristal-creuset sur la courbure de l’interface liquide-solide est étudié 

pour un ensemble de paramètres représentatifs non-dimensionnels de la croissance de cristaux semi-

conducteurs classiques. Une expression analytique pour la déflexion de l’interface, basée sur la théorie 

du flux de chaleur est rapportée. Afin de vérifier l’exactitude de la formule obtenue analytiquement et 

d’identifier ses limites de validité, l’équation de transfert de chaleur est résolue numériquement dans une 

symétrie axiale en 2D, pour un cas stationnaire et en utilisant le code d’éléments finis COMSOL 

Multiphysics 3.3. 

Le dernier chapitre est entièrement consacré à l’analyse de la stabilité. Tout d’abord, différents 

concepts de stabilité de Lyapunov qui peuvent survenir dans la croissance des cristaux: classique, 

uniforme, asymptotique et exponentielle d’un état d’équilibre; stabilité partielle de Lyapunov d’un état 

d’équilibre, et les mêmes types de stabilités de Lyapunov pour la solution temporelle sont présentés. 

Dans ce qui suit, après l’introduction de la notion de stabilité pratique sur une période de temps limitée, 

des études analytiques et numériques de la stabilité pratique sur une période de temps limitée du 

système non linéaire, des équations différentielles décrivant le déplacement d’interface liquide-solide et 



l’évolution de l’espacement cristal-creuset, pour des cristaux élaborés par le procédé Bridgman 

démouillage sous conditions terrestres sont développés. 

Enfin, les conclusions générales et perspectives de ce travail sont exposées. 



Modelarea matematica a procesului de crestere a cristalelor cu metoda dewetted Bridgman 

 

 Scopul principal al acestei teze este studiul analitic si numeric al capilaritatii, al transferului de 

caldura si al stabilitatii dinamice a procesului de crestere a cristalelor cu metoda dewetted Bridgman. 

Pentru determinarea formei meniscului, suprafata sa ( ),z z x y=  este descrisa de ecuatia Young-

Laplace a unei suprafete capilare in echilibru. Aceasta ecuatie neliniara de ordinul doi a fost  transformata 

intr-un sistem neliniar de ecuatii diferentiale de ordinul intai. In urma studiilor calitative si numerice ale 

solutiei sistemului, a fost determinata dependenta formei meniscului (global convex, global concav, 

convex-concav) de diferenta de presiune de gaz aplicata in creuzet si de ceilalti parametrii relevanti ai 

procesului. Pentru studiul stabilitatii dinamice a sistemului, dimensiunea gap-ului (spatiul dintre cristal si 

peretii interiori ai creuzetului) si pozitia interfetei solid-lichid sunt doua variabile ale problemei, ceea ce 

inseamna ca sunt necesare doua ecuatii si anume, ecuatia Young-Laplace si ecuatia bilantului de energie 

la nivelul interfetei solid-lichid. 

In acest context, teza a fost organizata astfel: 

 Contributii recente la modelarea problemelor de capilaritate au fost prezentate in capitolul 2, 

incepand cu formularea matematica a problemei capilaritatii guvernata de ecuatia Young-Laplace. Studii 

analitice si numerice au fost realizate atat pentru cazul gravitatiei nule cat si pentru gravitatie normala. 

In al treilea capitol au fost prezentate contributii la modelarea problemelor de transfer de caldura. Asadar, 

studii analitice si numerice ale ecuatiei nestationare unidimensionale a caldurii au fost realizate pentru a 

determina expresiile analitice ale distributiei temperaturii si a gradientilor de temperatura in solid si in 

topitura. De asemenea, din ecuatia bilantului de energie la nivelul interfetei a fost dedusa si ecuatia care 

descrie deplasarea frontului de cristalizare. 

 Apoi a fost studiat efectul gap-ului cristal-creuzet asupra formei interfetei solid-lichid, pentru un 

set de parametrii adimensionali, reprezentativi  in crsterea cristalelor semiconductoare. Pornind de la 

teoria fluxului de caldura s-a determinat expresia analitica a curburii interfetei. Pentru a verifica precizia 

acestei formule analitice si pentru a stabili limitele sale de validitate, s-a rezolvat numeric ecuatia caldurii 

in 2D axi-simetric, cazul stationar, folosind metoda elementelor finite propusa de soft-ul COMSOL 

Multiphysics 3.3. 

 Ultimul capitol este dedicat in totalitate analizei stabilitatii dinamice a procesului. Mai intai au fost 

prezentate diferite concepte de stabilitate in sens Lyapunov, intalnite adesea in cresterea cristalelor 

profilate:  stabilitatea clasica, uniforma, asimptotica si exponentiala a unei solutii stationare , in sensul lui 

Lyapunov; stabilitatea partiala in sens Lyapunov a unei stari stationare; si aceleasi tipuri de stabilitate in 

regim dependent de timp. Dupa introducerea conceptului de stabilitate practica peste un interval de timp 

finit, s-a investigat analitic si numeric stabilitatea practica in timp finit a sistemului neliniar de ecuatii 

diferentiale care descrie deplasarea frontului de cristalizare si evolutia dimensiunii gap-ului pentru 

cristalele crescute cu metoda dewetted Bridgman in conditii terestre. 

La final, au fost expuse concluziile generale si perspectivele acestor studii desfasurate pe parcursul tezei. 


