
HAL Id: tel-00596996
https://theses.hal.science/tel-00596996v1

Submitted on 30 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware for service provision in disconnected mobile
ad hoc networks

Romeo Said

To cite this version:
Romeo Said. Middleware for service provision in disconnected mobile ad hoc networks. Networking
and Internet Architecture [cs.NI]. Université de Bretagne Sud, 2011. English. �NNT : �. �tel-00596996�

https://theses.hal.science/tel-00596996v1
https://hal.archives-ouvertes.fr

THÈSE / UNIVERSITÉ DE BRETAGNE SUD
UFR Sciences et Sciences de l’Ingénieur

sous le sceau de l’Université Européenne de Bretagne

Pour obtenir le grade de :
DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE SUD

Mention : Informatique
École Doctorale SICMA

présentée par

Romeo SAID
VALORIA Laboratoire de Recherche Informatique et ses
Applications de Vannes et Lorient

Middleware for service provision
in disconnected mobile

ad hoc networks

Intergiciel pour la fourniture de services dans les

réseaux mobiles ad hoc discontinus

Thèse soutenue le 23 février 2011,
devant la commission d’examen composée de :

M. Pierre-François Marteau
Professeur des Universités, Université de Bretagne-Sud / Président

Mme. Françoise André
Professeur des Universités, Université de Rennes 1 / Rapporteur

M. Didier Donsez
Professeur des Universités, Université de Grenoble 1 / Rapporteur

M. Thomas Ledoux
Maître-assistant, École des Mines de Nantes / Examinateur

M. Frédéric GUIDEC
Maître de Conferences HDR, Université de Bretagne-Sud / Directeur de thèse

M. Yves MAHÉO
Maître de Conferences, Université de Bretagne-Sud / Encadrant de thèse

"Everything should be made as simple as possible, but not simpler."

Albert Einstein

Acknowledgments

I would like to thank my supervisor Yves Mahéo for all his support. With his critical
thinking and patience, he helped this work mature. I also want to thank my thesis di-
rector Frédéric Guidec for his guidance. I specifically thank him for reviewing this work,
which greatly helped produce a better quality manuscript.

I thank the jury members, Françoise André and Didier Donsez for reviewing this
manuscript, Thomas Ledoux as examiner, and Pierre-François Marteau as jury’s presi-
dent.

I thank all my colleagues at the VALORIA lab and all my friends, they all helped me
go through this milestone.

Last but not least, I thank my family for their everlasting support. I specially dedicate
this thesis to my loving parents.

This work was supported by the French Agence Nationale de la Recherche under contract
ANR-05-SSIA-0002-01, by the Région de Bretagne, and by the Conseil Général du Morbihan.

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Mobile ad hoc networks (MANETs) 2

1.1.2 The disconnected reality of MANETs 2

1.1.3 Need for application support . 3

1.1.4 Service-oriented computing: advantages and challenges 4

1.2 Goal . 5

1.3 Organization of the manuscript . 5

2 Service-Oriented Computing and Disconnected Mobile Ad Hoc Networks 7

2.1 Introduction . 7

2.2 Communications in disconnected mobile ad hoc networks 8

2.2.1 Communication protocols for MANETs 8

2.2.1.1 Proactive routing . 9

2.2.1.2 Reactive routing . 9

2.2.2 Communication protocols for disconnected MANETs 9

2.2.2.1 Delay tolerant networking 10

2.2.2.2 Message dissemination protocols 10

2.2.2.3 Content-based communications 11

2.3 Service-oriented computing . 11

2.3.1 From object-oriented to component-oriented distributed systems . 12

2.3.2 Service-oriented paradigm . 12

2.3.3 Fundamental steps of the service provision process 13

2.3.4 Client/provider interactions in distributed computing 14

2.3.4.1 Message passing . 15

2.3.4.2 Remote procedure call . 15

2.3.4.3 Event notifications . 15

2.3.4.4 Tuple spaces . 16

2.3.4.5 Message queues . 16

2.3.4.6 Publish/Subscribe . 16

2.4 Service provision systems . 17

2.4.1 Service provision systems for stable networks 17

2.4.1.1 OSGi . 17

2.4.1.2 Enterprise services . 18

i

Contents

2.4.1.3 Web Services . 18

2.4.1.4 Service Component Architecture 20

2.4.2 Service provision systems in dynamic networks 20

2.4.3 Service provision systems in MANETs 22

2.4.4 Discussion . 24

2.5 Conclusion . 26

3 Challenges and Design Overview 29

3.1 Introduction . 29

3.2 Challenging points . 30

3.2.1 Communication . 30

3.2.2 Interoperability . 30

3.2.3 Service contract . 31

3.3 Design overview . 31

3.4 Summary . 32

4 Disconnected Communication Support 33

4.1 Introduction . 33

4.2 DoDWAN communication protocol . 34

4.2.1 Opportunistic gossiping . 34

4.2.2 Periodic announcements . 35

4.2.3 Local cache . 35

4.2.4 Content-based matching . 35

4.2.5 Mobility as an advantage . 35

4.2.6 k-hop opportunistic gossiping . 36

4.2.7 Frugal use of the wireless medium 36

4.3 Publish/Subscribe interface . 36

4.3.1 Message . 36

4.3.2 Publishing a message . 37

4.3.3 Subscribing to messages . 38

4.3.4 Canceling a message . 39

4.4 Discussion . 39

4.4.1 Communication delay . 39

4.4.2 Loose coupling benefits . 40

4.5 Summary . 40

ii

Contents

5 Service Discovery 41

5.1 Introduction . 41

5.2 Service nodes in mobile environments . 42

5.3 Overview . 44

5.4 Elements of the discovery protocol . 46

5.4.1 Description . 46

5.4.1.1 Functional and non-functional service properties 47

5.4.1.2 Provider context properties 47

5.4.2 Advertisement . 48

5.4.3 Process at the provider side . 52

5.4.4 Collection . 53

5.4.5 Selection . 53

5.4.6 Process at the client side . 54

5.5 Discussion . 54

5.6 Summary . 55

6 Service Invocation Solutions 57

6.1 Introduction . 57

6.2 Service provider redundancy . 58

6.3 Remote invocation . 60

6.3.1 How clients issue invocation requests to providers 60

6.3.2 How providers respond to client requests 62

6.3.3 Response management policy . 66

6.3.4 Network healing . 67

6.3.4.1 Reactive competition . 68

6.3.4.2 Safe healing . 68

6.3.4.3 Aggressive healing . 69

6.3.5 Discussion . 71

6.3.5.1 Client-Provider binding . 71

6.3.5.2 Loose coupling benefits . 72

6.4 Invocation restrictions . 73

6.5 Blind invocation: Bypassing discovery . 75

6.6 Client and provider states . 76

6.7 Remote invocations of stateful services . 77

6.8 Public invocations . 80

6.9 Perspectives . 81

iii

Contents

6.9.1 Semantic invocation . 81

6.9.2 Complex request . 81

6.10 Summary . 82

7 Implementation and Evaluation 83

7.1 Introduction . 83

7.2 The service platform’s middleware . 83

7.3 Simulation environment and evaluation metrics 86

7.4 Discovery evaluation . 87

7.5 Invocation evaluation . 89

7.5.1 Effects of invoking multiple providers 89

7.5.2 Network healing . 91

7.5.3 Session recovery for stateful invocations 93

7.6 Conclusion . 94

8 Conclusions and Perspectives 97

8.1 Conclusions . 97

8.2 Perspectives . 99

References 104

iv

List of Figures

1.1 Communications in a Mobile Ad Hoc Network (MANET) 2

1.2 Disconnected Mobile Ad Hoc Network . 3

1.3 Middleware layers . 5

2.1 Entity interactions in a service oriented architecture 13

3.1 Two layer service platform on each mobile network node 32

4.1 Message examples . 37

4.2 Publish/Subscribe and subsequent communications 38

4.3 Subscription elements . 39

4.4 Predicate example . 39

5.1 Lifecycle of a provider node and of a provider agent 43

5.2 Lifecycle of a client node and of a client agent 43

5.3 Network environment . 44

5.4 Service interactions between a provider node A and client nodes B and C . 45

5.5 Components of a service descriptor message 46

5.6 Example of functional service properties written in WSDL 47

5.7 Example of non-functional service properties written in XML 47

5.8 Example of a provider node’s context properties 48

5.9 Controlling the level of accessible information 49

5.10 Header attributes of a descriptor message 49

5.11 Example of a descriptor message . 51

5.12 Provider side process, from service creation to getting ready for invocation 52

5.13 Process at the client side . 54

6.1 Provider examples offering the same business service 58

6.2 Invocation request’s header attributes . 61

6.3 Request message example . 62

6.4 Invocation response’s header attributes . 63

6.5 Example response messages . 65

6.6 Destination Vs content-based invocation . 66

6.7 Client-initiated healing message example 69

6.8 Healing predicate corresponding to the client’s healing message 69

6.9 Provider-initiated healing message examples 70

v

List of Figures

6.10 Healing predicate corresponding to P2’s healing message 70

6.11 Stateless invocations, late binding compared to loose binding 71

6.12 Pushing loose coupling to the limits . 73

6.13 Request messages for restricted invocations 73

6.14 Multi-level addressing in a request enables a wider impact range 74

6.15 Blind request message . 75

6.16 Client and provider states . 76

6.17 Stateful sequential invocation messages . 79

6.18 Public invocation messages . 80

6.19 A complex request example . 82

7.1 Architecture of the service platform . 84

7.2 Simulation environment of a disconnected MANET 86

7.3 Performance of discovery . 88

7.4 Destination-based Vs content-based invocations 90

7.5 Discovery and invocation satisfactions for 10% provider replication 90

7.6 Performance of healing . 92

7.7 Ratio of received responses over requests 92

7.8 Cumulative load sent into the network medium 93

7.9 Session management. 94

8.1 Quality of service adaptation persperctives 100

vi

List of Tables

7.1 Response reduction . 91

vii

List of Tables

viii

1
Introduction

Contents
1.1 Motivation . 1

1.1.1 Mobile ad hoc networks (MANETs) 2

1.1.2 The disconnected reality of MANETs 2

1.1.3 Need for application support . 3

1.1.4 Service-oriented computing: advantages and challenges 4

1.2 Goal . 5

1.3 Organization of the manuscript . 5

1.1 Motivation

The term "ubiquitous computing" refers to the pervasiveness of digital systems hav-
ing local processing power. The proliferation of computers gives birth to mobile devices
with heterogeneous hardware resources like CPU, memory, and storage (from laptops, to
personal digital assistants, to mobile phones, etc.). This proliferation also produces smart
objects which are everyday objects with embedded processing power, enabling them to
interact with the environment and to locally process the information. This representation
is usually referred to as "pervasive computing."

Ubiquitous computing can also refer to the possibility of accessing processing power
anywhere and at any point of time in order to satisfy any processing need. The focus is
on connectivity, where a device is able to request some processing capabilities residing
on another device. Mobile devices have heterogeneous communication resources, from
accessing a wired network, to having wireless chipsets with long radio ranges for cellular
networks, to having wireless chipsets with limited radio ranges (e.g. Wi-Fi, Bluetooth, or
Zigbee).

For this work, I am interested in network environments with no fixed infrastructure,
where only wireless ad hoc communications are possible between neighboring devices.
In such environments, devices can offer their processing power as services for other de-
vices to use.

1

Chapter 1. Introduction

1.1.1 Mobile ad hoc networks (MANETs)

Mobile ad hoc networks (MANETs) are spontaneously formed out of a number of
mobile devices that communicate thanks to short-range wireless communication capa-
bilities, using for example Wi-Fi or Bluetooth interfaces. A main advantage of this kind
of network is that it can be used without deploying a specific and sometimes costly in-
frastructure (such as interconnected Wi-Fi access points). Two devices are able to com-
municate when they are in the wireless range of one another. Figure 1.1-(a) shows an

Figure 1.1: Communications in a Mobile Ad Hoc Network (MANET)

example in which devices B and C can communicate because they are in mutual wireless
range. Devices A and C on the other hand cannot communicate directly but they can use
B as an intermediate relay. Therefore, mobile devices can form a network, where each de-
vice represents a network node. Figure 1.1-(b) illustrates a typical MANET, where nodes
are well distributed to enable a fully connected network. In this type of MANET, any two
nodes like E and F can communicate using a route created through intermediate nodes.
Because all nodes can move continuously (and often unpredictably) in such a network,
routes must be created and maintained by dynamic routing protocols [1]. For example
the route illustrated between nodes E and F can be dynamically reconstructed when the
topology of the network changes. MANETs actually cover a wide variety of situations
depending on the density of nodes in the network or their mobility scheme.

1.1.2 The disconnected reality of MANETs

In many ad hoc networks deployed in real conditions, mobile nodes can exhibit highly
dynamic behaviors of mobility and volatility. Volatility refers to the fact that they may
temporarily be switched off. Because of their mobility, their limited radio-range and
their volatility, the devices in such network environments form so-called “islands” whose
topology evolves continuously, rather than a single fully connected network, as shown
in Figure 1.2. The fragmentation of the network into islands renders communication be-
tween two islands impossible. As a consequence, a temporaneous path cannot always be
established between any pair of nodes in the network: end-to-end connectivity is thus not
guaranteed. In this work, I focus on this class of MANETs which I refer to as disconnected

2

1.1. Motivation

MANETs throughout the rest of this document. Network-wide communication itself in
disconnected MANETs is still a challenge, namely because routing techniques designed
for fully connected MANETs cannot be applied.

Figure 1.2: Disconnected Mobile Ad Hoc Network. Temporaneous communications be-
tween network islands are not possible.

Communication within an island remains possible, though. For example in the dis-
connected MANET shown in Figure 1.2, a route can be created between nodes A and C
and between E and F, but there is no feasible route between C and E.

As far as communications in disconnected MANETs are concerned, the absence of
end-to-end connectivity precludes relying on traditional routing techniques. Traditional
routing algorithms strive to identify a succession of nodes that form a path between a
sender and a receiver, in order to be able to transmit a message temporaneously along this
path. When routes cannot be created, the store-carry-and-forward approach [2] provides a
solution. With this approach, a message can be stored temporarily on a node, in order to
be forwarded later when circumstances permit. Mobility then becomes an advantage as
it facilitates message propagation: a device can carry a message when moving from an
island to another. Messages are therefore forwarded from one network node to another
when these nodes have the opportunity to meet.

1.1.3 Need for application support

MANETs have originally motivated research for tactical communication. Yet beside
the military domain, MANET applications in the civil domain are also considered, such
as: tourist services in infrastructure-less sites, traffic information in town centers, disaster
relief situations, or social networks in university campuses or societies. Such applications
need to be implemented using distributed application technologies.

When environments are modeled as fully connected MANETs, there is no special
need for dedicated distributed application systems, since routing protocols are supposed
to provide seamless network-wide connectivity. As a consequence, implementing dis-
tributed application technologies is not expected to be a challenge in such conditions.

3

Chapter 1. Introduction

When we recognize that real world MANETs are actually mostly disconnected, we re-
alize that existing distributed application solutions are not appropriate. Effectively, these
distributed application solutions are mostly designed for connected networks. More-
over, because of the absence of network wide end-to-end connectivity, these solutions
get restricted to proximity interactions between a node and its neighboring nodes only.
Therefore there is a need for building network-wide distributed application support that
specifically target disconnected MANETs, and that can tolerate connectivity disruptions
and transmission delays in such environments.

1.1.4 Service-oriented computing: advantages and challenges

Computing in mobile environments is increasingly becoming an experience where
users interact with their mobile devices and need access to more and more distant ser-
vices. In the service-oriented computing paradigm, the service provision process allows
a user to exploit services offered by other devices in the network by discovering and us-
ing their capabilities. In comparison with object-oriented and component-oriented dis-
tributed computing, service-oriented computing offers the means to manage a high-level
control over the provision process.

The three basic interacting entities in a service-oriented architecture are a client, a
provider (or server), and a directory. Providers register their offered services in the
directory. A client searches this directory for a needed service. It can then use the
discovered service by remotely invoking the provider that is hosting it. Unlike tra-
ditional client/server invocation approaches, the service-oriented approach introduces
late-binding between the client and the provider. The client invokes the most convenient
provider at runtime so it is not bound to a single provider.

The service-oriented computing model seems suited for ad hoc environments because
it emphasizes the decoupled nature of its entities. Decoupling between the client and the
provider is essential in mobile environments with a fluctuating availability of providers,
and where end-to-end communications are not guaranteed.

Still, in existing service-oriented systems, providers are usually supposed to be al-
ways available, as it is the case for example in Web services. Providers are also assumed
to be continuously reachable in wireless mobile environments, where local connected net-
works can be created using Wi-Fi hotspots, or by creating ad hoc networks using prox-
imity one-hop or routed multi-hop protocols. Therefore, although the service comput-
ing model is presented as loosely coupled, end-to-end invocation interactions between a
client and a provider are not supposed to be really challenging.

Although the service-oriented approach seems relevant for disconnected MANETS,
implementing distributed services for such networks still poses several challenges. Not
only network-wide communication features must be provided, in spite of constant net-
work fragmentation, but aspects such as the unpredictable reachability of the providers,
or potential communication delays, must be taken into account at the service level. Mi-
grating the service-oriented model from stable networks to disconnected mobile ad hoc
networks therefore requires rethinking of many concepts.

4

1.2. Goal

1.2 Goal

This thesis investigates the benefits and challenges of using the service-oriented para-
digm for mobile computing in disconnected mobile ad hoc network environments. My
overall objective is to build a service middleware platform for mobile nodes that supports
the execution of service-oriented applications in such environments.

In order to design a middleware platform that supports the execution of service-
oriented applications, I consider the service-oriented computing approach and how com-
munications can be provided in the targeted environments. I present the state of the art
of both communications and service-oriented systems in mobile ad hoc networks. I also
present the challenges that need to be addressed in order to design such a platform.

Application

Service Layer

Communication

Figure 1.3: Middleware layers

I then propose a service platform implemented as a middleware composed of two
layers: a communication layer, and a service layer (see Figure 1.3). The communication
layer has to provide mechanisms to decouple two service entities in terms of tempora-
neous interaction, synchronous behavior, and mutual knowledge. For this layer, I use
solutions for network-wide communication that were developed by my research team
(CASA) at the Valoria laboratory. The service layer has to provide mechanisms that de-
couple service providers and clients in terms of interoperability and service contract. For
this layer, I propose solutions for service discovery and invocation.

1.3 Organization of the manuscript

Chapter 2 presents the state of the art for service-oriented computing and for commu-
nications in mobile ad hoc networks. It starts by defining mobile ad hoc networks, then
it presents the main communication protocols used in such networks. The chapter also
details service-oriented computing by presenting the principles of the service-oriented
design paradigm and the fundamental steps of the service provision process. And fi-
nally it presents existing service provision systems, detailing those designed for stable
networks, more dynamic networks, and those designed for MANETs.

Chapter 3 introduces my contribution. It presents the challenging points that must
be addressed when designing a service provision platform that remains viable in discon-
nected mobile environments. The aim is to achieve better entity independence and loose
coupling at each of the presented points. The chapter also presents the design overview
of the service provision platform consisting of a communication layer and a service layer.

Chapter 4 presents the communication layer of the service platform. Due to the high
level of communication constraints imposed by disconnected environments, I used an

5

Chapter 1. Introduction

opportunistic and content-driven protocol (DoDWAN). The chapter describes the inner
workings of the protocol implementing a store-carry-and-forward paradigm, opportunis-
tic gossiping, and content-based matching. The chapter also describes the publish/sub-
scribe module interfacing the protocol with the upper service layer.

Chapter 5 presents the discovery protocol of the service layer. It describes the client
and provider nodes and their life-cycles, and describes the architecture of local directo-
ries. It details the elements that construct the discovery protocol, from the provider’s
service description and advertisement to the client’s service collection and selection.

Chapter 6 presents the full invocation solutions of the service platform. Invocations
must be tolerant to communication delays due to disconnected network environments.
The chapter presents the redundancy of service providers in mobile environments, where
there might be more than one provider offering the same business service. The chap-
ter presents the default remote invocation solution, detailing how a client can issue a
content-based invocation request to all providers of a business service, and how these
providers can respond back, and how network healing techniques eliminate unneeded
messages. It also presents how a client can restrict the invocation to specific providers.
In case of a discovery failure, a client can even send a blind invocation request hoping
for matching provider to respond. The chapter also presents stateful remote invocation
solutions via session management.

Chapter 7 presents the middleware implementation of the service platform described
in the previous chapters. The middleware’s layout consists of a service layer called DiS-
WAN where service agents reside, that can access the DoDWAN communication layer
via a publish/subscribe interface. Using this implementation, I conducted simulations
in as realistic as possible conditions in order to evaluate the service platform. The main
objective is to assess the performance of service discovery and invocation in terms of
response time and network load.

Chapter 8 concludes this document and presents some perspectives for future work.

6

2
Service-Oriented Computing and

Disconnected Mobile Ad Hoc Networks

Contents
2.1 Introduction . 7
2.2 Communications in disconnected mobile ad hoc networks 8

2.2.1 Communication protocols for MANETs 8
2.2.2 Communication protocols for disconnected MANETs 9

2.3 Service-oriented computing . 11
2.3.1 From object-oriented to component-oriented distributed systems 12
2.3.2 Service-oriented paradigm . 12
2.3.3 Fundamental steps of the service provision process 13
2.3.4 Client/provider interactions in distributed computing 14

2.4 Service provision systems . 17
2.4.1 Service provision systems for stable networks 17
2.4.2 Service provision systems in dynamic networks 20
2.4.3 Service provision systems in MANETs 22
2.4.4 Discussion . 24

2.5 Conclusion . 26

2.1 Introduction

This chapter presents the state of the art for service-oriented computing and com-
munications in mobile ad hoc networks. Section 2.2 starts by defining mobile ad hoc
networks, then it presents the main communication protocols used for these networks.
In connected MANETs (Section 2.2.1), communications are implemented using dynamic
routing protocols, where routing tables are created and maintained mainly using either
proactive or reactive routing techniques. In disconnected MANETs (Section 2.2.2), the
network contains disconnected islands between which routing protocols do not work.
In these disconnected networks, communications must be tolerant to delays and disrup-
tions, and protocols mostly use a store-carry-and-forward mechanism to enable network-
wide communications. Protocols rely on message delivery using either custody transfer
(allowing only one message copy) or epidemic behaviors (many message copies are dis-
seminated), some protocols use special techniques to reduce the overhead of epidemic

7

Chapter 2. SOC and D-MANETs

dissemination. Protocols can support destination-based or content-based communica-
tion styles. Section 2.3 details service-oriented computing by presenting the principles
of the service-oriented design paradigm (Section 2.3.2) and the fundamental steps of the
service provision process (Section 2.3.3). It also presents the techniques and technologies
that are used to enable interactions between clients and providers in distributed sys-
tems (Section 2.3.4). Section 2.4 presents the service provision systems. It details those
designed for stable networks (mainly enterprise and web services) and more dynamic
networks (e.g. LAN). Section 2.4 also presents provision systems designed for MANETs,
and discusses their main characteristics. Section 2.5 concludes the chapter.

2.2 Communications in disconnected mobile ad hoc networks

Mobile networks are often thought of as mobile computers connected to the internet
through cellular networks (e.g. EDGE, UMTS, HSPA [3]) or through Wi-Fi access points
(IEEE 802.11 [4]). These networks are called infrastructure-based networks. MANETs are
a completely different type of networks, where mobile computers can communicate with
each other via short-range wireless standards (e.g. Wi-Fi [4] in ad hoc mode, Bluetooth
IEEE 802.15 [5]). MANETs are spontaneously formed networks that do not need any form
of infrastructure.

2.2.1 Communication protocols for MANETs

MANETs can be formed by pedestrians holding mobile computers like smartphones,
PDAs, netbooks, or laptops. Another type are the VANETs [6] (Vehicular Ad Hoc Net-
works) where computers are embedded in vehicles. Another type of MANETs are sensor
networks, where sensors are used to monitor wild-life animals [7, 8], or monitor temper-
atures and other physical parameters over wide areas. Sensors networks usually focus
on very low energy consumption.

Mobile ad hoc networks were first introduced in the military domain, where the spon-
taneous network organization is considered as a big advantage in the battle field. But in
recent years, an increased number of studies have brought these networks to the civil
domain. One example is creating MANETs for disaster relief situations where all in-
frastructures could be destroyed, and where there is a need to coordinate rescue teams.
Another example is the use MANETs to provide communications for developing nations
[9]. MANETs can be an alternative to infrastructure-based networks, either because of
high costs or simply enabling ad hoc social and community interactions.

Communications in MANETs are often based on IP routing protocols, where every
network node is considered as a router, and where routing tables are created in order to
enable end-to-end communications. IP packets can be sent from a source to a destina-
tion node through many intermediate router nodes. Networks should have high node
density in order to support multi-hop connectivity between any two nodes. Routing pro-
tocols manage the routing table creation and updates in order to support node mobility.
The IETF MANET working group is in the process of standardizing many routing pro-
tocols corresponding to two families: Proactive routing and reactive routing. Other pro-
tocols are considered as hybrid, they use both proactive and reactive techniques. Other

8

2.2. Communications in disconnected mobile ad hoc networks

protocols use geographical locations at each node in order to build routing tables.

2.2.1.1 Proactive routing

Proactive or table-driven routing protocols require that each node of the network has
to constantly keep its own routing table up-to-date and ready in case a route is needed.
Each node periodically broadcasts its routing table to neighboring nodes. The main ad-
vantage of this type of routing, is that an end-to-end communication route can always
be found. But the disadvantage is that control messages used to keep the tables up-to-
date involves heavy network traffic, specifically if the network is not static (e.g. node
mobility). The OLSRv2 [10] protocol is the reference proactive protocol.

2.2.1.2 Reactive routing

Reactive or on-demand routing protocols does not require to keep up-to-date tables at
each node. The routing table is created at a node when a communication to a destination
node is needed. The source node invites other network nodes to update their tables
in order for the packet to be routed to the destination node. The main advantage is
that network traffic is proportional to the actual amount of communicated data. But
the disadvantage is the delay when trying to create a route for the first time, or when the
network topology changes due to mobile nodes. The DYMO [11] protocol is the reference
in reactive protocols.

2.2.2 Communication protocols for disconnected MANETs

The above-mentioned MANET routing protocols consider that an end-to-end route
can be dynamically created using intermediate nodes between any two nodes of the net-
work. Therefore, intermediate nodes must be available and well distributed in space, in
order for the communication to succeed. In case one intermediate node becomes unac-
cessible during a communication, the communication fails. However in many real-world
situations, the network does not have enough node density to guarantee end-to-end con-
nections between any two nodes. This type of network is called a disconnected MANET.
Disconnected MANETs are characterized by the fragmentation of the network into iso-
lated connectivity islands, where routing works inside of an island but not between is-
lands, and therefore traditional routing is no longer appropriate for this kind of network.
Moreover, connectivity can become even worse if we take into account the volatility of
nodes (e.g. a node can be turned of, or be on standby).

In this work, I am interested in disconnected MANET environments, where network-
wide communications is still considered a challenge due to the lack of temporaneous
end-to-end connectivity. Communication protocols in disconnected MANETs must be
disruption-tolerant and use a store-carry-and-forward paradigm. They mainly enable
relay network nodes to store and carry data from one network island to another. Discon-
nected MANET protocols can be destination-based or content-based. Destination-based
protocols present a send/receive like interface: a message is sent to one or many specifi-
cally addressed destination nodes, and a node receives only messages that are specifically

9

Chapter 2. SOC and D-MANETs

destined to it. Content-based protocols present a publish/subscribe like interface: a mes-
sage is published with no specific destination, and a node subscribes for messages of
interesting content in order to receive it.

2.2.2.1 Delay tolerant networking

Communications in disconnected MANETs are getting more and more attention in re-
cent years. Protocols try to enhance traditional routing for connected MANETs by toler-
ating disconnections. These enhancements consist of enabling some or all of the network
nodes to temporarily store messages, in order to resend them later on when conditions
permit. This type of networking is called DTN for Delay Tolerant Networking, and is
federated by the DTNRG working group [2] of the Internet Research Task Force. DTN
architectures were originally focused on interplanetary networks where communication
delays occur because of the long distances between communicating parties, and because
of their positioning in space (direct link availability). DTNRG also study tactical military
environments and other forms of disconnected environments. DTN protocols rely on the
store-carry-and-forward mechanism.

The store-carry-and-forward approach enables network nodes to temporarily store a
message (in a local cache) if it is incapable of immediately transferring the message to
another network node. Therefore nodes can carry messages around, and due to their
mobility, they can transfer these messages to other disconnected parts of the network en-
vironment. Messages can be transferred using dynamic routing protocols inside of con-
nectivity islands, but they should be carried by the moving nodes between disconnected
islands.

2.2.2.2 Message dissemination protocols

From the store-carry-and-forward approach, came the idea of opportunistic network-
ing in dynamic and disconnected MANETs. In opportunistic networking, a node takes
the opportunity of meeting another node in order to exchange messages. Opportunistic
networking do not rely on routing tables, messages are transfered from node to node, and
contacts between nodes are not planed. There exists many opportunistic DTN network-
ing studies, [12, 13, 14] are surveys of the proposed solutions. Communication protocols
vary depending on the characteristics of the target environment like the network size and
node mobility patterns, and one-to-one or one-to-many communication needs.

As an example of one-to-one communications, a message can be routed from a source
node to a destination node using custody transfer [15]. A single copy of the message is
transferred from node to node. Amongst possible contacts, a node delegates the message
to the best possible carrier node. This is only convenient for environments where node
mobility is well known or highly predictable. Custody transfer has the advantage of
producing very low network traffic, but communication failures occur in case a delegated
carrier node fails.

One-to-many communications are usually implemented using epidemic dissemina-
tion protocols [16, 17]. Message copies propagate like a virus from one network node
to every other node it meets during its travels, and each infected node does the same,

10

2.3. Service-oriented computing

until the message reaches all network nodes. The advantage of this behavior is that a
message gets transferred to its destinations very fast, and the communication does not
fail in case some of the carrier nodes fail. But the disadvantage is that it creates a high
network traffic and consumes storage space at each node. Some protocols [18, 19] try
to minimize these disadvantages, by stopping the dissemination after the message gets
delivered to destination, or by limiting the propagation of the dissemination by fixing a
message lifetime or using geolocation techniques. Others control the dissemination of a
message, where each node selects the best possible carriers using a utility function. This
utility function is usually based on studying the history of contacts and mobility patterns
in order to predict the future [20], or the utility function can use probabilistic methods
[21].

2.2.2.3 Content-based communications

The majority of routing protocols are destination-based, where the sender of a mes-
sage explicitly specifies the addresses of one or many destination nodes. The message
gets routed in the network in order to be received only by the specified destinations. An-
other type of communication protocols are the content-based protocols (e.g. [22, 23]). In
content-based communications, a message does not contain an explicit destination. The
message gets routed in the network and delivered according to the interest that network
nodes have for the contents of the message. Therefore, the communication behavior is
similar to the content-based publish/subscribe model [24]. A source node publishes mes-
sages in the network, other nodes subscribe to some interesting messages, and the routing
protocol brokers the delivery of these messages.

The DoDWAN protocol [25, 26] is a protocol that builds on the previously mentioned
approaches to enable communications in highly dynamic disconnected MANETs. It uses
the store-carry-and-forward mechanism to opportunistically disseminate messages in
the network, and relies on the content-based approach for the opportunistic message
exchange. Compared to other previously mentioned protocols, the DoDWAN protocol
enhances message delivery in highly dynamic disconnected MANETs while producing
a fairly low network traffic. It provides mechanisms to decouple two service entities
in terms of temporaneous interaction, synchronous behavior, and mutual knowledge.
Therefore, I chose this protocol for the communication layer of the service platform.
Chapter 4 details how this protocol provides communication support in the service plat-
form.

2.3 Service-oriented computing

A service is a task or a function that a provider can provide to a consumer. Service-
orientation is a design paradigm that helps build distributed computing systems around
the service as a fundamental unit [27]. Service-oriented computing systems must follow
the principles of the service-oriented design paradigm. The service-oriented paradigm
gets its inspiration from object-oriented computing principles, it also shares some goals
with component-oriented computing, but offers further enhancements and additions.

11

Chapter 2. SOC and D-MANETs

2.3.1 From object-oriented to component-oriented distributed systems

A distributed system consists of multiple autonomous computers that communicate
through a computer network. The computers interact with each other in order to achieve
a common goal [28]. Computers are autonomous entities, each having a processor and a
local memory, and they communicate with each other by message passing. More explic-
itly, a computer is represented by a software agent, an agent communicates by protocol
stacks over a network with remote agents. Agents work together to perform some tasks,
in a distributed manner.

Remote Procedure Call RPC [29] was first introduced in procedural languages. Since
then, the main distributed systems are object-oriented and component-oriented distributed
systems.

In distributed object systems, a software agent exposes the semantics of object ini-
tialization and method invocation to remote agents. Objects maintain complex internal
states to support their methods. Proprietary or standardized mechanisms broker commu-
nications across system boundaries. Communication interactions between remote agents
are fine grained, and these agents must share the same implementation technology. One
object sends a request to another object in a remote machine to perform a task, the result
is sent back to the calling object. Examples of technologies that implement distributed
objects are: Java RMI [30], DCOM [31], Objective-C [32], Pyro [33]. The CORBA [34]
technology enhances distributed object systems by allowing agents to have different im-
plementation technologies.

In distributed component systems, a software component is an encapsulated entity
that communicates with other components via interfaces. A component offers its ser-
vices through a provided interface, another component needing these services adopts a
used interface. This is how components communicate without being concerned with the
inner workings and implementations of one another. A computer running several com-
ponents is called an application server, the combination of application servers and soft-
ware components invoking them forms a distributed system. Examples of distributed
software component technologies are: CORBA Component Model [34], Enterprise Java
Beans [35], .NET Remoting [36], FractalRMI and Dream [37].

2.3.2 Service-oriented paradigm

The service consists of a set of capabilities and a contract describing them to the pub-
lic. The contract must be standardized so that consumers properly understand the capa-
bilities offered by providers. The contract expresses the functional aspect of the service
(functions and data types), as well as the policy aspect of the service (non-functional and
behavioral characteristics).

Services must be discoverable and easily located by consumers who want to interop-
erate with them. Discovery mechanisms involve using a service registry (or directory)
containing service contracts, that a consumer can access to choose the needed service. A
consumer can then use the service’s capabilities by invoking them.

Service loose coupling emphasizes on reducing the dependency between service pro-
viders and consumers. Loose coupling can influence the content and granularity of the

12

2.3. Service-oriented computing

contract, which must also be implemented in a technology independent manner to enable
interactions between providers and consumers built with different technologies. Loose
coupling also influences the late binding of consumers to providers. Since a consumer is
not bound to a specific provider, an invocation link is only created at execution time.

Service reusability stresses that services be considered as resources, where service
capabilities are defined unconstrained to the functional context. For example, bundling
an already existing application into a service enables this application to be reused in a
service-oriented system. Non-proprietary technology enables service reuse.

A service is a deployable entity, independently of other services. It is also supposed
to be autonomous and have a degree of control over the resources it uses, in order to
enhance its reliability.

A stateful service involves the management of state information during consecutive
interactions with a consumer (conversational state of many invocations). A stateless ser-
vice does not depend on state information. Stateless service invocation does not relate to
a specific client or to previous invocations. Service orientation recommends that services
be stateless and become stateful only when required.

Complex services are built using the composition of many individual services. A
composed service has a contract that uses capabilities from other services. Therefore,
services must interoperate with each other, like consumers can interoperate with services.
They should be able to effectively participate as members of the composition.

Service-oriented computing offers an abstract model to build distributed applications.
It specifies a service as an abstraction and not simply as an interface like in traditional
distributed computing. A better abstraction provides better agility and reliability when
providers offer their capabilities to consuming clients.

2.3.3 Fundamental steps of the service provision process

Figure 2.1: Entity interactions in a service oriented architecture

A service-oriented system follows the principles of the above-mentioned service-
oriented design paradigm. A service-oriented system is built using an architecture called
SOA (Service-Oriented Architecture). Entities in a service-oriented architecture are of
three types: a service provided by a provider, a registry1 helping services get discov-

1The word "registry" can be used interchangeably with the word "directory".

13

Chapter 2. SOC and D-MANETs

erable, and a consumer wanting to use the services (see Figure 2.1). The basic actions
taken by these entities and the interactions between them —in order to create a viable
service-oriented system— are:

• Description: The functional capabilities and non-functional properties of the ser-
vice are described in a syntax understandable by all the entities of the system. It
is also human-readable to enable easy creation. The description has well defined
semantics to enable proper discovery. The description is created by the service pro-
grammer.

• Advertisement: The description is meant to be advertised by the service provider
on a registry entity. The advertisement may add more information to the service
description (e.g. provider availability times). This information is supposed to assist
the consumer on whether or not he would like to use the service. The implementa-
tion of a service registry varies depending on the architecture of the system. Wired
and stable networks use centralized registries where a provider registers its de-
scription, and where a consumer searches for registered providers. In distributed
architectures, the registry can also be distributed using total or partial duplication
over network nodes. In highly dynamic distributed environments, the registry can
completely disappear in favor of a peer-to-peer type of discovery.

• Discovery: Discovery is a core principle of the service-oriented design. The con-
sumer prepares a description of his needs, put together in a format resembling that
of the service description. With these needs, the consumer seeks matching services.
Discovery enables the matching between the consumer’s needs and services of the
registry having similar descriptions. The matching can result in many appropriate
services, the consumer finally selects one service out of all these matching services.

• Invocation: Invocation enables a consumer to use a service. Once the consumer
discovers an appropriate service, invocation consists of transmitting requests from
the consumer to the service and then receiving responses back from the service.
The communication link should be available during the interaction. Invocation
requests and responses should be implementation-neutral in order to comply with
the principles of the service-oriented paradigm. In other words, consumers and
services built using different technologies should still be able to interact.

Section 2.3.4 enumerates the main interaction types and techniques that can be used to
support invocation in general, and argues to what extent these techniques are appropriate
in a service-oriented system.

2.3.4 Client/provider interactions in distributed computing

In the following, I enumerate the main techniques that are used in distributed systems
to enable interactions between clients and providers 2. I focus on the ability of these tech-
niques to provide asynchronous interactions and less ties between the communicating
entities.

2The word "client" can be used interchangeably with the word "consumer". The same can be done be-
tween the words "provider" and "service".

14

2.3. Service-oriented computing

2.3.4.1 Message passing

Message passing is considered as the oldest form of interaction between distributed
agents. An agent communicates by sending and receiving messages. It is a low-level
interaction mode.

Message passing systems can be synchronous, where the sender and receiver have to
wait for each other to transfer the message. In other words, the sender is blocked until
the receiver has received the message, and the receiver is also blocked until the reception
is over. Synchronous communications has the advantage of simplifying communications
between senders and receivers. Message passing systems can also be asynchronous. To
deliver a message from sender to receiver, the sender is not blocked, but still the receiver
is blocked since it is listening synchronously on the communication channel. This com-
munication channel is setup before any message exchange, therefore the receiver must be
known to the sender and both of them must be active at the same time.

2.3.4.2 Remote procedure call

Remote Procedure Call RPC [29] was first introduced in procedural languages. Since
then, it has been implemented in object-oriented systems as remote method invocations
(e.g. Java RMI [30], DCOM [31], and CORBA [34]). The invoking object holds references
to the invoked object, and remote interactions appear as local interactions. The client
calls a client stub as a local method call, the stub puts the call parameters into a mes-
sage, the message is sent over the network to the server, the server stub calls the server
method, and the server reply is sent back to the client using a similar behavior. The SOAP
[38] invocation specification is considered as message-passing, since it is a protocol for
exchanging structured information in Web Services [39], but the message contents are
usually RPC between the sender and the receiver.

Usually in RPC, the client sends a synchronous call (and is blocked until the reception
of a response), the server can process the call asynchronously. To remove the synchronism
from these remote invocations, some systems allow the caller to send one way calls and
not expect a response, other systems (e.g. Future interface of Java Concurrent [40]) allow
the caller process to keep working and access the reply when it becomes available (using
a call handle). In RPC, the two interacting entities must be active at the same time, and
the caller holds remote references to the invoked entity.

2.3.4.3 Event notifications

Notification systems use events for client-provider interactions. A normal RPC in-
vocation is broken into two one-way invocations, the client calls the provider and puts
a callback reference to itself, the provider responds by calling the client back using the
reference. The observer pattern [41] uses event notifications, where an object notifies its
observers by calling their notify methods.

Event notifications remove the synchronism that blocks the invoking client in RPC,
therefore the client provider interaction becomes completely asynchronous. But still, an
event notification does not work unless both interacting entities are active at the same

15

Chapter 2. SOC and D-MANETs

time, and they always hold references to each other.

2.3.4.4 Tuple spaces

In distributed tuple space systems, the tuple space is either a shared memory or a
data container, where a network node inserts tuples for other nodes to access and read
concurrently. The Linda [42] coordination language introduced this notion of tuple space.
A tuple space is a collection of ordered tuples that any network node can manipulate
using three main operations: out puts a tuple in the tuple space, read reads a tuple from
the tuple space, and in reads and removes the tuple from the tuple space. Lime [43] is an
implementation of Linda for mobile environments.

In tuple spaces, the interacting entities do not hold references to each other in order
to communicate. The node that inserts a tuple in the tuple space does not know who is
accessing this tuple. And a node reading a tuple does not know who put it in the space.
Furthermore, the read operation lets many nodes read a tuple, which enables a one-to-
many communication mode. In addition, the interacting entities do not have to be active
at the same time for the communication to succeed. But the synchronization problem
remains, since a node is blocked when reading a tuple from the tuple space. Therefore,
some implementations of tuple spaces like JavaSpaces [44] provide asynchronous notifi-
cations of new tuples.

Another close example to shared data is the flow-based programming [45] where ap-
plications are considered as "black boxes" that exchange messages through predefined
connections. This flow-based programming is mainly used in component-oriented sys-
tems. Like in tuple spaces, interacting entities do not hold references to each other.

2.3.4.5 Message queues

Message-oriented middleware (MOM) [46] emerged from the need to glue together
remote applications without re-engineering individual modules. A MOM depends on
message queuing (e.g. Apache Qpid [47], JMS [48]) for interactions between clients and
providers. A queue is a storage space where messages can be placed by producers, and
then concurrently pulled by consumers. The queue stores messages in a first in first out
(FIFO) manner, and provides transactional and ordering guarantees. To some extent,
message queuing systems relate to the publish/subscribe interaction model.

Message producers and consumers do not share references to each other, and they do
not have to be active at the same time in order to communicate. A producer is not blocked
when storing messages, but a consumer is blocked when pulling these messages.

2.3.4.6 Publish/Subscribe

A publish/subscribe system [24] lets producers send messages to a message broker
via a publish method, the broker also has a subscribe method to let consumers subscribe to
messages of interest. The broker filters published messages according to the interest of
each of the subscribers, and notifies these subscribers of matching messages. There are
two main techniques of filtering: topic-based and content-based. In topic-based pub/sub

16

2.4. Service provision systems

systems, a topic is a keyword representing a class of messages, each published message
belongs to a topic, subscribers subscribe for the kind of topics they are interested in.
When a producer publishes a message, the broker notifies the subscribers of the mes-
sage’s topic. The broker is often centralized, it may also be distributed, it may sometimes
disappear in favor of a peer-to-peer interaction model. One of the oldest topic-based
pub/sub systems was Isis [49], a more recent example is TIBCO Rendezvous [50]. In
content-based pub/sub systems, the subscription is based on the actual contents of a
published message. The broker filters messages according to their internal attributes or
their meta-data (e.g. Siena [51], Jedi [52], JMS [48]). Another example is CORBA with
DDS [53] where the client-server model in CORBA is extended using the publish/sub-
scribe features of a DDS data distribution service.

With pub/sub systems, the interacting entities do not need to know or hold references
to each other. A publisher does not know who and how many are receiving its message,
and the subscriber does not have to know who published the message. Furthermore, a
communication succeeds even if the entities are not active at the same time. In addition,
the publisher is not blocked when publishing a message, and a subscriber is not blocked
when subscribing and gets notified at message reception, therefore the communication is
completely asynchronous.

2.4 Service provision systems

Computer devices might be using an infrastructure to be connected to the Internet
or to local networks, or else they might be using ad hoc communications without in-
frastructures. Taking into account the characteristics of network environments, service
provision systems can be divided into three types: those designed for stable networks,
others designed for dynamic networks, and others designed for MANETs.

2.4.1 Service provision systems for stable networks

2.4.1.1 OSGi

The OSGi [54] platform is maintained by the OSGi Alliance. Its is not intended to
create distributed applications, it is a middleware that defines a dynamic component
system for Java, where local applications are dynamically composed of many reusable
service components. A component is created by developers and put in a repository as
a software bundle ready for deployment. A bundle is a collection of Java classes with a
manifest description containing its identifiers and dependencies. A bundle is deployed
as a service on a local OSGi capable machine, and its service interface is registered at the
local service registry. The life cycle of a bundle is controlled using a simple API (install,
start, stop, update, uninstall). Local services can discover other local services from the
local registry, in order to fulfill their dependencies. The OSGi middleware is intended to
enable a local service-oriented platform. Though, bundles can exist on remote software
repositories ready to be discovered and downloaded. In addition, a bundle’s life cycle
can be remotely controlled. Furthermore, the R-OSGi [55] proposition enables interac-
tions between remote services deployed on different machines. OSGi is used as the base

17

Chapter 2. SOC and D-MANETs

platform for many Java EE application servers (e.g. GlassFish [56], JBoss AS [57], JOnAS
[58]).

2.4.1.2 Enterprise services

Since the 90’s, enterprise service architectures have helped shape the principles of
the service-oriented paradigm. These architectures range from application integration,
to process management, to complex service-oriented architectures.

EAI Enterprise application integration is a middleware framework composed of a col-
lection of technologies to enable integration of systems and applications across the en-
terprise. It abstracts proprietary applications through the use of adapters, brokers, and
orchestration mechanisms. An example is the enterprise service bus ESB [59], where the
bus is a messaging engine that enables applications to communicate using technologies
like XML and SOAP (e.g. OpenESB [60], WebSphere ESB [61], etc.).

BPM Business process management considers assets of the system as processes. It fo-
cuses on on the management, automation, and adaptation of these processes. It assumes
the role of the process composition controller. It is implemented using orchestration tech-
nologies like BPEL [62].

SOA Enterprise services matured with the creation of complete SOA platforms by var-
ious vendors or open source projects (e.g. Oracle Fusion Middleware [63], GlassFish [56],
JAVA EE [35], SAP SOA [64], etc.). The platforms offer varying functionalities like discov-
ery, integration, process management, messaging. They use a wide range of technologies
like RPC, SOAP [38], REST [65], DCOM [31], CORBA [34], SCA [66], and Web services
[39].

2.4.1.3 Web Services

The service-oriented paradigm is an abstract and implementation-neutral paradigm.
Still, its association with Web services [39] has become very common. A reason for this
association, is that the majority of SOA vendors have modeled their service-oriented plat-
forms as Web services.

By definition 3, a Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. A Web service has an interface described
in the WSDL machine-processable language. Other systems read the WSDL description
in order to interact with the Web service using SOAP messages. These messages are
usually transported over HTTP using XML serialization.

The owner of a Web service (a person or organization) is called a provider entity, it
provides the functionalities of the service through the implementation of a provider agent.
Likewise, a requester entity is a person or organization wishing to use the service, the re-
quester agent software exchanges invocation messages with the provider agent software.

3http://www.w3.org/TR/ws-arch/#whatis

18

2.4. Service provision systems

But before invocations, the request and provider entities become known to each other,
and they agree on the service description and semantics that determine the interactions
between the requester and provider agents. This is the discovery phase that can be im-
plemented using three approaches: (1) using a registry service that is centrally controlled
by an authority where providers actively register their services, (2) using the index ap-
proach where an index is automatically maintained by a Web crawler for example, (3)
using peer-to-peer discovery where a requester directly queries the providers to search
for services.

Web Service Description Language WSDL [67] was originally developed by IBM, Mi-
crosoft, and Ariba, the current version WSDL 2.0 is a W3C recommendation. A WSDL
document describes a Web service using the XML format. It contains an abstract section
and a binding section. The abstract section describes the interface composed of opera-
tions, each operation defines its input and output messages. The abstract section also
contains the data types of these inputs and outputs written in XML Schema. The binding
section binds the operations and messages to a concrete network invocation protocol (e.g.
SOAP binding, HTTP binding, etc.). In order to enhance the discovery, the WSDL docu-
ment can include semantic annotations in SAWSDL [68]. Semantics help categorizing the
interface when publishing to a registry, and therefore it helps requesters with discovery.
Semantic annotations can also map data types from an ontology during invocation.

Simple Object Access Protocol SOAP [38] was originally developed by Microsoft, the
current version SOAP 1.2 is a W3C recommendation. It is a protocol specification for
exchanging invocation messages between requesters and providers. The message format
is XML. SOAP relies on RPC for the invocation model (request and response messages).
Messages are usually transmitted over HTTP, but there is other transmission modes like
JMS [69] and SMTP. A SOAP message is an XML envelope containing an optional header
part and a body part. SOAP helps create stateless or stateful Web services, where a ser-
vice may expose an arbitrary set of operations. There exists another type of Web services
called REST-ful Web services. REST [65] enables service invocation but only using a uni-
form set of stateless operations over HTTP (create, retrieve, update, delete).

Universal Description Discovery and Integration UDDI [70] was originally developed
by IBM, Ariba, and Microsoft. The current version 3 is sponsored by the OASIS orga-
nization. UDDI specifies the creation of a central registry called UBR (UDDI Business
Registry), and specifies a framework to describe service metadata and another frame-
work to discover them. An XML document describes the capabilities and properties of
a service. Description can include information about the business providing the service
like its name and contact information of administrators, it also includes identifiers for
the service and descriptions. Registration at the UBR is made using SOAP over HTTP,
and service requesters query the UBR for services. UDDI is mostly implemented for the
enterprise world.

In comparison to traditional distributed systems, Web services are appropriate for
applications operating over the Internet where reliability cannot be guaranteed. In ad-
dition, components of the system run on different technologies, platforms, and vendor

19

Chapter 2. SOC and D-MANETs

products. Web services help wrap and expose existing applications over the network.
Web services do not require to synchronously manage deployment at all consumers and
providers. And finally, Web services can be composed and orchestrated (WS-CDL [71],
BPEL for Web services [62]).

2.4.1.4 Service Component Architecture

The Service Component Architecture (SCA) [66] specifications describe a model for
building applications using a service-oriented architecture. It represents an extension to
service implementation approaches like Web services. The model consists of composing
components, where each component offers its services and requires references to other
services. SCA aims to provide a wide range of implementation technologies for com-
ponent creation, like different programming languages and frameworks. SCA also aims
to provide a wide range for the access methods connecting these components, including
different communication technologies like Web services, messaging systems, and RPC.

2.4.2 Service provision systems in dynamic networks

Dynamic networks are characterized by network nodes that can join or leave the net-
work due to their mobility. Typical examples are local networks in home and enterprise
environments, where computers can be connected using wired LAN or wireless WiFi
hotspots, or using Bluetooth ad hoc communications. In these environments, connec-
tions and disconnections happen at a slow rate. Therefore, service provision systems fo-
cus on discovering newly connected nodes and the services they offer. Once discovered,
invoking these services is not considered as a challenge because a network connection is
available between the service and the consumer.

Jini [72] was originally developed by Sun Microsystems, it is now maintained by the
Apache Software Foundation under the Apache River project. It is a service-oriented
architecture for building secure distributed systems. It defines a programming model
that extends the Java technology. The Jini architecture consists of three types of entities:
service providers, clients, and lookup services. A service can be a software component,
a hardware device, or a combination of the two. A service provider uses multicast to
find a lookup service, and then registers a proxy object of its service. A client also uses
multicast to find a lookup service, then it specifies an interface that the desired service
might implement. If a matching service is found, the client copies the proxy object of the
service. This proxy object is then used to directly invoke the service provider. Jini uses
serialization to send objects over the network. Services can be grouped into federations to
allow clients to search for specific groups. Multiple lookup services can coexist to prevent
failure points.

Service Location Protocol SLP [73] was developed by the SRVLOC work group of the
IETF, as a service-oriented computing standard. A service agent describes the location
(URL) and capabilities of a service (attribute-value pairs), and registers at a directory
agent. A user agent queries the directory agent using attributes in order to discover

20

2.4. Service provision systems

matching services. Services can be grouped into scopes, and clients can browse all avail-
able services. If there is no directory agent, client and service agents can still perform
peer discovery using multicast. When a directory agent becomes available, it multicasts
its presence for the client and service agents to use. The SLP standard does not specify
an invocation protocol.

DNS Service Discovery DNS-SD [74] is an IETF Internet draft. It extends the DNS [75]
Domain Name Service protocol by adding service attributes to DNS records to allow
clients to receive service information through normal DNS communication. DNS-SD is
used in the Zeroconf stack.

Universal Plug and Play UPnP [76] was developed by Microsoft and is now main-
tained by the UPnP forum. When a device joins the network, it advertises its presence, so
it could present its description of capabilities on demand (XML descriptions). A control
point acts as a directory that collects device descriptions. The control point discovers de-
vices using SSDP [77], then it asks for a detailed description of the device’s services, then
it uses SOAP to discover and invoke specific actions. If the state of a service changes, the
GENA [78] notification architecture reports events to the control point. UPnP is deployed
over TCP.

Salutation [79] is a discovery and invocation model from the Salutation Consortium. It
enables devices to advertise their capabilities expressed as a collection of attributes. A
device has a local SLM manager for storing its service descriptions. The SLM managers
on different devices communicate to exchange service descriptions. Communications be-
tween SLMs are independent of the transport protocol, they can work over many trans-
port managers TM, each TM implementing a transport protocol. Periodic checks ensures
that a client has a list of the currently available services. Invocation is supported using
RPC.

Bluetooth Service Discovery Protocol Bluetooth SDP [80] is a service discovery proto-
col for Bluetooth devices in proximity (only one hop communications). Service character-
istics are described using attribute-value pairs. A client device has the option of search-
ing for specific services by querying a provider device using desired service attributes,
for the provider to match and return relevant services. Otherwise, using a generic query,
the client can ask the provider for a list of all available services. The protocol does not
specify advertising, service directories, or service invocations.

In addition to the presented systems, there exists many others that are used for dy-
namic networks. For example IGRS [81] which is comparable to UPnP, uses an extended
version of the SSDP service discovery. Another example is EchoNet [82] which is in-
tended for device interoperability in a home or a building setting.

21

Chapter 2. SOC and D-MANETs

2.4.3 Service provision systems in MANETs

The design of service provision systems for MANETs is inspired by some of the pre-
viously described systems for stable and dynamic networks, yet it takes into account
the special characteristics of mobile environments. I enumerate some selected provision
systems for MANETs, and then I discuss their various characteristics.

DeapSpace [83] is a service discovery protocol for single-hop ad hoc networks. A ser-
vice is described using a compact predefined format containing its name, address, inputs,
outputs, properties, and time to live. Each node maintains a list of its local and discov-
ered service descriptions. A node advertises its list of service descriptions to its neighbors
using periodic broadcasts. A node receives broadcasts and adds the advertised service
descriptions to its service list. Using these broadcasts, a service node can have a view of
all the services available in the network.

Konark [84] is a discovery and invocation protocol for multi-hop ad hoc networks. A
service description is based on WSDL. Each node maintains a local service registry that
stores service descriptions in tree based structure. The protocol uses multicast to adver-
tise and discover services. When a client node needs a service, it multicasts a search
query. If another node receives the search query and finds matching services in its reg-
istry, it advertises a message for each service. Service advertisements use multicast or
periodic broadcasts, if some other node picks up an advertisement, it adds the service
description to its registry. A provider node has a micro-HTTP server that handles client
invocations. Invocation requests and responses are based on SOAP over HTTP.

Chakraborty et al. proposed the GSD [85] service discovery protocol for pervasive and
ad hoc environments. A service is semantically described using the OWL [86] ontology
language; it enables the hierarchical grouping of services. A provider node broadcasts
service advertisements to the vicinity using one hop broadcasts, and nodes receiving the
advertisement can relay it according to a specified number of hops. Service advertise-
ments are also cached in the receiving nodes. A node can also periodically advertise in-
formation about the service groups found in its vicinity, so that service group information
is propagated to the whole network. A client node can also initiate a service discovery
request that can be selectively forwarded from node to node depending on the service
group information, until it reaches a provider node. A discovery response is routed back
to the client on the same request route, or using a routing protocol in case of failure.
Chakraborty et al. also proposed a service invocation protocol GSR-S [87], that uses the
discovery routes created by GSD to support invocations. It specifically uses the route cre-
ated by advertisements or the route created by the discovery request, and assumes that
the links are reversible. It also enables session maintenance, where a client can initiate a
session with a specific provider node or with the service instance independently of the
provider node.

Sailhan et al. proposed a scalable service discovery protocol for highly dynamic large-
scale ad hoc networks [88]. Some nodes of the network may have multiple wireless in-

22

2.4. Service provision systems

terfaces, enabling them to be connected to the Internet. A service is described using
WSDL enriched with QoS parameters. QoS parameters are service-related (e.g. security,
availability time, reliability), and resource-related (e.g. performance, memory, energy, ge-
ographical location). A subset of the network nodes act as service directories, and form
a virtual network. A directory node caches the description of the services available in
its vicinity, and it advertises its presence to its neighbors. Directory nodes communi-
cate with each other. Each directory periodically broadcasts its profile summarizing the
cached services to peer directories. When a client node needs a service, it queries its clos-
est directory node. If the directory node does not have a matching description, it searches
in the received profiles of its peers, and contacts peer directories that are likely to have a
matching description. If found, the description is transmitted to the origin directory and
then to the client. Directory nodes are uniformly and dynamically deployed within the
network.

PDP [89] is a pervasive discovery protocol for ad hoc networks with limited device
resources. A node contains a service cache containing a list of known services. A ser-
vice is described using a description language called GSDL based on XML, it enables the
description of hierarchical relationships among services. A service provider node broad-
casts the descriptions of its services not periodically but only when a client asks for them.
All devices in the broadcast range store them in their cache. When a provider device
receives a discovery request from a client device, it checks if it is one of the provided
services or listed in its cache. If found, the provider waits for a calculated amount of
time before sending its discovery reply. During this time, the provider listens to other
providers advertising the same service type. A client node can send a discovery request
to one device only or to all devices providing the same service type. When a provider
node wants to switch off, it sends a deregister message to the other devices. Invocations
are implemented using SOAP requests and responses.

LSD [90] The Lightweight Service Discovery protocol is implemented over the OLSR
proactive routing protocol. A client’s discovery request and response are piggybacked
in the messages of OLSR, as well as the advertisement and registration messages. LSD
supports the presence of a service directory, it periodically advertises its services. A client
searches for a directory, if it does not find one, it queries providers directly. Service invo-
cation is considered as stable, the SIP protocol was used in simulations.

Handorean et al. [91] uses context-aware information to support predictable service
provision in MANETs. Discovery is implemented using tuples spaces. A tuple is a se-
quence of Java objects (each has a type and a value). A node places a tuple in the tuple
space to make it available to all other nodes that are sharing the same tuple space. Tuple
spaces having the same name are merged when their nodes are within one hop communi-
cation range. A node needing to read something from the tuple space creates a template
describing the interesting tuple. The template should match a tuple in order for the node
to read the matching tuple. The tuple space system enables a coordination model. It en-
ables a client node to discover the available provider nodes in its proximity. The system
implements a session management protocol called "follow-me". A client starts by invok-
ing a neighboring provider by opening a session. When the client moves, the session

23

Chapter 2. SOC and D-MANETs

is migrated to another close by provider that can be accessed by the client. In case of a
disconnection, the session can be reopened at another provider when one come into the
client neighborhood. The system uses strong process migration, everything needed for
the execution of code on another node. Sometimes, volunteer nodes can play the role of
a service provider. The system only uses one hop communications.

2.4.4 Discussion

There exists a broad diversity of provision systems for MANETs, the previously de-
scribed ones are a selected representation of this diversity. Many surveys and compara-
tive studies are proposed in the literature [92, 93, 94, 95] that try to classify these systems
according to various criteria. In the following, I present the prominent design character-
istics of these systems.

Emphasis on discovery.
Provision systems are primarily intended to support network-wide service discovery.

The goal is to enable every client node to discover service providers with a high success
rate. In addition, systems try to minimize the network traffic induced by the discovery
protocol using different combinations of broadcast, multicast, or unicast transmissions.
The duration of the discovery is also taken into account, that is, the time between the
moment when the client issues its discovery request and the moment when this client
receives a discovery reply. This duration depends on the topology and the density of the
network. It can be of the order of seconds in some connected environments.

Design level.
Some provision systems are designed so that the service discovery is directly depen-

dent on an underlying routing protocol. These protocols are referred to as network layer
protocols or cross-layer protocols. Routing protocols transmit node discovery packets in
order to create routing tables, discovery can just use this already available information
to enable communications between service clients and providers. Therefore discovery
requests and replies are piggybacked to the messages of the routing protocol. Once a
client node discovers a provider, end-to-end invocation interactions are also carried out
using the routing protocol. Some of these systems work over known routing protocols
(e.g. LSD, AODV-SD [96], and others [97, 98]). Other systems build the routes of com-
munications and service discovery at the same time (e.g. GSD [87], and [99]). Network
layer protocols usually make use of limited service descriptions, but significantly reduce
the network overhead due to their use of the routing information.

Other provision systems are designed independently of the the underlying commu-
nication protocol. They are called application-layer protocols. The discovery protocol in-
volves using some form of vicinity advertisements (broadcasts, multicasts), but mostly it
still needs an underlying routing protocol to enable point-to-point communications (e.g.
DeapSpace, Konark, Sailhan et al., PDP). Yet these systems stay independent from the
routing layer. Application-layer protocols offer better portability than the network-layer
protocols.

24

2.4. Service provision systems

Service description.
The minimal method to describe a service is using unique identifiers UUID (Univer-

sal Unique Identifier) that should be known to all network nodes. This minimal de-
scription is mostly used in network layer discovery systems. More attributes can be
added to the UUID to enhance the description. A small size description helps lower
energy consumption and network bandwidth. Meanwhile, other systems enable en-
riched service descriptions in order to help clients with service selection. These descrip-
tions mostly use attribute-value pairs written in XML-based languages, describing func-
tional (e.g. Konark) and appending non-functional service properties (e.g. Sailhan et al.).
Non-functional properties are mostly QoS properties to help the client select the closest
provider node or the most available one (e.g. [99]), in an effort to limit long-distance
and failure-prone invocations. Descriptions can also help classify services according to
predefined trees (e.g. Konark, PDP). Other descriptions use semantic ontologies (e.g.
GSD), and categorize services into groups. Service selection is usually done manually
by the client, except for some systems where selection is automatically incorporated into
the discovery protocol, like GSD that uses the group information to properly forward
discovery queries, and [100] that effectively use geographic proximity information.

Directory architecture.
Among application-layer discovery protocols, the service directory is designed using

various architectures. Centralized directory architectures are excluded, because a direc-
tory hosted by a single node cannot always be accessible to all nodes of the network, it
also introduces a single point of failure, and does not necessarily have enough resources
to serve all network nodes. Therefore, all discovery protocols use distributed directory
architectures with two main variations: peer-to-peer, or using overlay networks. In peer-
to-peer only architectures, each node has a cache containing a list of its services and
descriptions of others found in the network. The main disadvantage is that the service
descriptions must be periodically advertised from each node (broadcasts or multicasts).
Descriptions travel from node to node in order to properly disseminate to all network
nodes, which produces large amounts of network traffic. Examples of such systems are
Konark, GSD, and others [101, 102]. In systems using overlay networks, the directory is
distributed on only some nodes that form the virtual overlay network. Distribution can
be done using fully duplicated directories or partially duplicated but coherent directo-
ries. The overlay nodes are dynamically an uniformly deployed in the network, so that
any client can have access to a nearby directory node. Directory nodes collect service
descriptions and communicate with each other to maintain the known service list, which
restricts heavy discovery communications to the overlay network only. Therefore these
systems are scalable and can handle high node density, but on the downside it is difficult
to maintain directory coherence in case of highly dynamic networks. Examples of such
systems are Sailhan et al., and others [103, 104, 105, 106].

Discovery interaction modes.
There exists two main modes of discovery interactions between clients and providers:

push or pull modes. In push mode also called reactive discovery (e.g. DeapSpace),
providers push their service descriptions using unsolicited advertisements, and clients
listen and select the services they need. Provider advertisements are usually broadcast to

25

Chapter 2. SOC and D-MANETs

the one-hop neighborhood, or multicast with multi-hop support. In pull mode or proac-
tive discovery, a client asks for needed services by sending a discovery request directly
to provider nodes or to directory nodes. The discovery request is either sent using broad-
cast, multicast, or unicast. A provider or directory answers back with matching service
descriptions. But the majority of discovery systems use both push and pull modes (e.g.
Konark, PDP, GSD).

Invocation support.
The above-mentioned provision systems offer varying support to service invocation.

After discovery, the discovery reply obtained by a client is an address of the provider, and
subsequent invocations are not considered as a challenge. A large majority of systems
designed for connected MANETs rely on dynamic routing protocols, using one-to-one or
one-to-many invocations. But few provision systems present characteristics viable in dis-
connected MANETs, that is without routing or overlay directory networks, but still they
do not enable network-wide invocations. Some only enable proximity invocations (e.g.
UPnP), where a client and a provider are neighbors. And others enable proximity-only
invocations with service migrations to maintain service sessions (e.g. [91]). Other solu-
tions propose to handle service disruptions using dynamic service-oriented computing.
In dynamic SOC, services register and unregister themselves at the directory according
to their contextual availability, and clients therefore can dynamically use the available
provider. [107] proposes service level agreements (SLA) for dynamic SOC, where the
client and the provider agree on service disruption concerns.

2.5 Conclusion

In order to design a middleware platform that supports the execution of service-
oriented applications for mobile nodes in disconnected MANETs, I studied the service-
oriented computing approach and how communications can be provided in the targeted
environments. This chapter presented the state of the art of both communications and
service-oriented systems in mobile ad hoc networks.

MANETs are spontaneously formed networks that do not need any form of infras-
tructure. In connected MANETs, communications are implemented using dynamic rout-
ing protocols, where routing tables are created and maintained using either proactive
or reactive routing techniques. In disconnected MANETs, the network contains discon-
nected islands where routing protocols do not work. In these disconnected networks,
communications are tolerant to disruptions, and protocols mostly use a store-carry-and-
forward mechanism to enable network wide communications. Protocols rely on data
dissemination from network node to another. Protocols can support destination-based or
content-based communication styles.

A distributed system consists of multiple autonomous computers that communicate
through a computer network in order to achieve a common goal. After object-oriented
and component-oriented distributed systems, service-oriented systems provide greater
benefits for the loosely coupled mobile computing. Service-oriented computing systems
follow the principles of the service-oriented design paradigm. The fundamental elements
needed to create a service-oriented system are: service description (providers describe

26

2.5. Conclusion

their provided services), advertisement (these providers advertise their services), discov-
ery (clients discover advertised services), invocation (clients use the provided services).
A client uses a service using invocation interactions with a provider. Few of the tech-
niques that are used to enable invocations in distributed systems in general are adapted
to the needed loose coupling of a service-oriented system. Service provision systems
vary according to the target network environment, the majority are designed for stable
networks (mainly enterprise and web services) and more dynamic networks (like local
networks). Even though there exists service-oriented systems specifically designed for
MANETs, issues related to service discovery, advertisement, invocation, still have their
own specific challenges. The description of my solutions to these challenges follows in
the next chapters.

27

Chapter 2. SOC and D-MANETs

28

3
Challenges and Design Overview

Contents
3.1 Introduction . 29
3.2 Challenging points . 30

3.2.1 Communication . 30
3.2.2 Interoperability . 30
3.2.3 Service contract . 31

3.3 Design overview . 31
3.4 Summary . 32

3.1 Introduction

To cope with continuously changing heterogeneous environments, Service-Oriented
Computing (SOC) emphasizes the construction of an abstract model for distributed sys-
tems. In comparison with traditional distributed systems, abstraction provides better
agility and reliability when clients consume the capabilities offered by providers. In other
words, SOC specifies a service as an abstraction, not simply an interface.

The main two features of my service provision system must be (1) the ability of service
entities to tolerate long periods of disconnection, and (2) the ability to handle change.
This can be achieved by making the different entities of the architecture less dependent
by loosening their strong ties with the other entities. Being less dependent means that
each service entity is more autonomous, which in turn means less needed interactions to
complete a service task. This is essential in a disconnected mobile environment where an
interaction between two nodes can take a considerable time to finish, due to the lack of
deterministic and instantaneous communications. Additionally, loosening the ties means
more tolerance to change and failure. The ability to handle change can help improve
the performance of the service provision. In order to design a viable service provision
system, loose coupling is highly desirable on many challenging points. The following
sections enumerate these points and describe the design overview.

The notion of "Loose Coupling" was first introduced by Karl Weick [108] in the field
of organizational studies. According to Weick, coupling represents the degree of direct
knowledge that an organization has of another. By loosening this coupling, one organi-
zation becomes less dependent on others.

29

Chapter 3. Challenges of SOC

This notion of loose coupling is currently used as a principle of the service-oriented
paradigm. It has effectively influenced the late-binding of consumers to providers. It
has also influenced the use of technology-independent interaction schemes between con-
sumers and providers. Throughout the rest of this document, I intend to improve the
loose coupling between service entities. The looser the coupling that the service plat-
form’s design can achieve, the better it can handle the challenges of disconnected envi-
ronments.

3.2 Challenging points

3.2.1 Communication

In order for the service provision system to tolerate disruptions, a communication
layer has to provide mechanisms to decouple two service entities in terms of tempora-
neous interaction, synchronous behavior, and mutual knowledge. The following time-
synchronization-space three dimensions of communication decoupling was identified in
[24].

• Time: Since mobile nodes exhibit unpredictable volatility in their environment,
there is a high probability that two service entities are not active at the same time.
In addition, two entities residing in different network islands cannot have a con-
nected communication link. Hence the communication problem in case a consumer
requests information from a non-active or unreachable producer, or conversely in
case a producer sends information to a non-active or unreachable consumer. There-
fore, a temporaneous interaction between two entities is not guaranteed.

• Synchronization: Because of the temporaneous interaction problem, disconnected
mobile communications are inherently asynchronous, therefore a service provision
system must naturally handle this. A producer must not be blocked after producing
its information, and likewise a consumer must not be blocked while it is waiting to
receive this information.

• Addressing space: Decoupling the addressing space means that two interacting en-
tities do not need to know and hold references to each other. Even more, a producer
of information does not know how many consumers are consuming this informa-
tion. Likewise, a consumer of information does not know how many producers
it is getting its information from. A publish/subscribe communication system is
capable of applying this space decoupling between service entities that thereupon
communicate as decoupled publishers of and subscribers to information.

3.2.2 Interoperability

Service providers and clients should always be able to understand each other regard-
less of their implementation technology. The abstraction of the implementation can only
be achieved using universal standards and specifications for the sake of interoperability.
A service provider implemented in Java should seamlessly interact with clients imple-
mented in C++ or .NET for example.

30

3.3. Design overview

This implementation abstraction is well done in service provision systems like Web
services [39] using XML as an interaction language, and specifically using specifications
like WSDL [67] and SOAP [38] for service description and invocation. The service plat-
form proposed in the following chapters also uses WSDL and SOAP in the discovery and
invocation interactions.

3.2.3 Service contract

By hiding the implementation technology, a change in the implementation of a service
provider does not mandate any change at the consumer side. But if the service contract
changes (like a change in function behavior), this change of course impacts the consum-
ing clients. The service provision system has to manage these changes to decrease the loss
of service from a client’s point of view. Therefore the service-oriented paradigm enforces
late-binding between consumers and providers in order to free their coupling until the
last moment before invocation. Yet during the invocation, the service contract binds the
consumer to the provider. In other words, the consumer sends its invocation request to
the specified provider destination. This type of request can cause the failure of the invo-
cation in case the specified provider is unreachable. A provider can become unreachable
to the client because of the very nature of disconnected MANETs.

The service platform proposed in the following chapters presents content-based in-
vocations. A content-based request is created according to a discovered provider, but it
can however be answered by other providers offering compatible service contracts.

3.3 Design overview

The global objective is to build a service middleware platform for mobile nodes that
supports the execution of service-oriented applications in disconnected MANETs. In or-
der to separate the concerns proper to communications and those proper to service inter-
actions, the service platform’s design consists of two layers: a communication layer and
a service layer. Figure 3.1 shows that a mobile network node can for example consist of a
human user carrying a mobile computer where a service platform is installed.

The service layer called DiSWAN (Distributed Services in Wireless Ad Hoc Networks)
contains all the service agents. A service agent is either a client or a provider. The plat-
form can host many clients and many providers. A service agent communicates with
other agents on remote nodes via the communication layer. A service agent acts on be-
half of a higher-level user application. A user application may perform automatic actions
or require the intervention of a human user. The definition of the application level is out
of the scope of this work, and is simply referred to as "user" in the remaining of the doc-
ument.

The following chapters describe the architecture of the service platform. The archi-
tecture can be viewed through two different design patterns. Each pattern focuses on a
different aspect of interoperability between service entities.

• The Message Oriented pattern focuses on the interactions of service entities using
a message oriented communication model. The format and structure of messages

31

Chapter 3. Challenges of SOC

Figure 3.1: Two layer service platform on each mobile network node

in terms of headers and bodies is defined to enable service entities to understand
the exchanged messages. In addition, this pattern defines how these messages get
transported by network nodes as determined by a communication protocol. Chap-
ter 4 describes the communication layer used in order to take care of the commu-
nication challenges of time-synchronization-space. The communication protocol
ensures a network-wide content-driven dissemination of messages. The protocol
implements disruption-tolerant information caching enforced by a content-driven
and opportunistic gossiping system. The communication layer provides a pub-
lish/subscribe interface accessible to higher-level service agents.

• The Service Oriented pattern builds on the basics of the message oriented commu-
nication pattern by adding the concept of action and service. It interprets messages
as requests for actions and as responses to those requests. The model therefore
allows the messages to be expressed in order to yield different expectations (e.g.
request message, response message, service descriptor message). The discovery
and invocation protocols described in Chapters 5 and 6 define the service-level in-
teractions of the platform’s service layer. These protocols draw inspirations from
Web service technologies in order to enable interoperability between service enti-
ties. In addition, discovery relies on the information dissemination properties of
the underlying communication layer. Furthermore, invocations use content-based
requests in order to enable late-binding and addressing multiple providers.

3.4 Summary

I presented in this chapter the challenging points that must be addressed for the de-
sign of a service provision platform that remains viable in disconnected mobile environ-
ments. The design focus is to achieve better entity independence and loose coupling at
each of the presented points, despite the challenges inherited by mobile environments in
comparison to infrastructure and static environments. Consequently, the aim is to respect
these principles throughout the decision making in the design process of the communi-
cation, discovery, and invocation protocols.

32

4
Disconnected Communication Support

Contents
4.1 Introduction . 33

4.2 DoDWAN communication protocol . 34

4.2.1 Opportunistic gossiping . 34

4.2.2 Periodic announcements . 35

4.2.3 Local cache . 35

4.2.4 Content-based matching . 35

4.2.5 Mobility as an advantage . 35

4.2.6 k-hop opportunistic gossiping . 36

4.2.7 Frugal use of the wireless medium 36

4.3 Publish/Subscribe interface . 36

4.3.1 Message . 36

4.3.2 Publishing a message . 37

4.3.3 Subscribing to messages . 38

4.3.4 Canceling a message . 39

4.4 Discussion . 39

4.4.1 Communication delay . 39

4.4.2 Loose coupling benefits . 40

4.5 Summary . 40

4.1 Introduction

The service platform consists of two layers: the service layer containing service agents,
and the communication layer. The needs of the service platform concerning the support
for communications are:

1. Counterbalance the unpredictable availability that excludes temporaneous interac-
tions between service providers and consumers.

2. Enable asynchronous and unblocking service requests and responses.
3. Decouple the references between providers and consumers.

33

Chapter 4. Communication Support

For the platform’s communication layer, I used the DoDWAN [25, 26] protocol for
disconnected MANETs (Document Dissemination in mobile Wireless Ad Hoc Networks).
DoDWAN was developed in my research team (CASA) of the Valoria laboratory at the
"Université de Bretagne Sud" 1. DoDWAN implements an opportunistic and content-
driven communication protocol, accessible to higher layers through a publish/subscribe
interface. A high-level service agent can therefore publish and subscribe to structured
pieces of information called messages. In order to receive interesting messages, a service
agent subscribes using a predicate to match the contents of these messages. The union of
subscription predicates form a mobile node’s interest profile. A network node has a local
storage space (cache) to store messages. This storage space enables the store-carry-and-
forward mechanisms. In other words, the communication protocol enables mobile nodes
to store and transport interesting messages, so that a published message disseminates
amongst mobile nodes according to wireless contact opportunities and to the interest
profiles of these nodes.

Section 4.2 describes the communication layer’s protocol, which uses caching, content-
based matching, and opportunistic gossiping. Section 4.3 presents the communication
layer’s publish/subscribe interface, it describes what a message is and how a message
can be published, subscribed to, and cancelled. Section 4.4 describes the resulting charac-
teristics of the communication layer, stressing that it is a best effort solution that induces
communication delays. Section 4.5 concludes the chapter.

4.2 DoDWAN communication protocol

DoDWAN is built as a middleware for mobile network nodes. The middleware imple-
ments a communication protocol accessible to the service layer through a publish/sub-
scribe interface. The entities and principles of the protocol are detailed in the following
(further details can be found in [26]).

4.2.1 Opportunistic gossiping

In a dynamic mobile environment, the mobility of nodes yields contact opportunities
between them. The protocol implemented in DoDWAN exploits these transient contacts
in order to opportunistically exchange messages. Each node in the network is associated
a “profile”, that determines the kind of information it is interested in. A gossip-like mech-
anism orchestrates interactions between neighboring nodes, allowing them to exchange
messages according to their respective interest profiles.

Interaction between mobile nodes relies on a simple scheme, whereby each node pe-
riodically announces its profile and a “catalog" of the message headers that are currently
available in its local cache. When a node discovers that one of its neighbors can provide a
message it is interested in (that is, a message header that matches its own interest profile
and that is not already available in its own cache), it can request a copy of this message
from this neighbor. At the time of the reception of this request the neighbor broadcasts

1Specifically, DoDWAN represents the work accomplished by Julien Haillot for his thesis "Définition et
validation d’un modèle de communication supportant la communication basée contenus dans les réseaux mobiles ad
hoc discontinus".

34

4.2. DoDWAN communication protocol

the corresponding message, thus all nodes located in its neighborhood can benefit from
this broadcast. Any node that receives a message verifies if the header of this message
matches its own interest profile and, if so, it additionally verifies if this message is not
already present in its local cache. If this is not the case, then it puts the newly received
message in its cache. Upon receiving one or several requests for a particular message
from its neighbors, the owner of this message broadcasts it on the wireless medium, so it
can be received by all requesters simultaneously.

Transient contacts between mobile nodes are thus exploited opportunistically for ex-
changing messages between these nodes, based on their respective interest profiles, and
based on the messages they can provide each other on demand.

4.2.2 Periodic announcements

The gossiping mechanism relies on announcing the interest profile and the message
catalog of each node. If two nodes are passing by each other, the time window of a pos-
sible contact gets slimmer with a higher node moving speed. Therefore, announcements
are repeated in a periodic way so that two nodes detect each other inside of the contact
time window, and with additional spare time for any eventual message exchange.

4.2.3 Local cache

Each node in the network has a dedicated storage space serving as a local cache of
messages. A message created by the node is deposited in this cache, and messages re-
ceived from other nodes are also stored in the cache. Since this storage space is neces-
sarily limited (especially on small mobile devices), the cache purges messages that have
reached their end of life (deadline), and in case the cache grows full it purges older mes-
sages to make space for new ones.

4.2.4 Content-based matching

Message exchange between mobile nodes relies on content-based matching. A mobile
node receives only messages of interest according to the contents of the message. When a
message is created at a node A, it is handed over to other nodes that are interested in the
content of this message. For example a node B that expressed its interests in its profile,
will retrieve the message when it gets the opportunity if the profile matches the message.
Likewise, the message is also transferred from the interested node B to other interested
nodes that may not have direct contact with A.

4.2.5 Mobility as an advantage

By storing messages in the local cache, a node can serve as a mobile carrier for these
messages while moving in the network (“store-carry-and-forward” principle). In a dis-
connected environment, a carrier node becomes the physical relay of information. The
success of communicating a message from creator node A to an interested distant node C
residing in a different network island depends on intermediary relay nodes.

35

Chapter 4. Communication Support

4.2.6 k-hop opportunistic gossiping

In addition to the one-hop gossiping between two neighbor nodes, the protocol ex-
tends the gossiping phase to the nodes of a connected network island using k-hop for-
warding. This is efficiently implemented using multi-point relay selection. Requests are
sent using multi-point broadcast and replies are sent using unicast source routing. In
other words, the announcement of a node A can be immediately forwarded to node B
through intermediate nodes of the same network island (in case A and B are not neigh-
bors). And in consequence, messages could be exchanged using k-hop non caching relay
points. The number of hops is limited and does not span all the network island.

4.2.7 Frugal use of the wireless medium

The protocol is designed so as to maximize the message delivery ratio while remain-
ing very frugal as far as the number and the volume of exchanged data are concerned. A
node adapts its catalog announcements to the interest profiles of its neighboring nodes.
Therefore the periodic announcements do not advertise all the cached messages but only
those that might interest the neighbors. Many requests for a message from a source node
are all satisfied using only one message broadcast. The protocol is built over UDP, and
each node is listening on the broadcast channel.

4.3 Publish/Subscribe interface

The communication layer is accessible to the service layer’s agents through a pub-
lish/subscribe interface. Service agents can create, publish, subscribe to, and cancel mes-
sages.

4.3.1 Message

The communication protocol operates with structured pieces of information referred
to as “messages”. A message is composed of two parts: a header, and a payload. The
header is a collection of attributes, which can provide any kind of information about the
corresponding message, such as its origin, its topic, a list of keywords, the type of its
content, etc. The payload can be any type of content created by a service agent.

The interface enables the service layer’s agents to directly create and manipulate mes-
sages. Messages are meant to be published by source nodes, so that they get transported
and received by interested nodes. The protocol requires unique identification for each
message in the network. A source node sets the message’s id using a hashing function.
The protocol also requires a source node to set the message’s deadline, after which the
message will no longer be valid.

Figure 4.1 shows some message examples. The id and deadline attributes are the
only ones required in every message. Other attributes can be added by the creator of the
message, for example the publisher, keywords, and mimetype attributes are added by a
higher-layer agent as required by its proper protocols.

36

4.3. Publish/Subscribe interface

header attributes

id ="1f281af3a..ce656159"
deadline ="2010-06-15T09:00:00"
publisher ="bob"
keywords ="notes"
mimetype ="text/plain"

payload

header attributes

id ="c0dcc1e33..af5546f0"
deadline ="2010-06-15T09:00:00"
publisher ="cnn"
keywords ="news"
mimetype ="application/pdf"

payload

header attributes

id ="3fd7d47ae..e83b414"
deadline ="2010-06-15T09:00:00"
publisher ="bob"
keywords ="beach"
mimetype ="image/jpeg"

payload

header attributes

id ="1028bc2f..af3febce9"
deadline ="2010-06-15T09:00:00"
publisher ="bob"
keywords ="laugh"
mimetype ="video/mp4"

payload

Figure 4.1: Message examples

The payload of a message is compressed to take the least possible space during trans-
mission from node to node. Large messages are split into smaller fragments, a message
fragment has the same header as its parent message and a part of the compressed pay-
load.

In order to illustrate the publish/subscribe mechanism described in the following
sections, Figure 4.2 presents a communication example between two neighboring nodes
A and B. Node A publishes a message, and node B subscribes and receives the published
message. The example also shows the announce-request-broadcast interactions between
the nodes.

4.3.2 Publishing a message

A service layer agent uses the interface to publish a message into the network. The
publish method simply deposits the message in the local cache. As explained in Sec-
tion 4.2, one of the important elements of the protocol is to construct a “catalog" for the
mobile node. The catalog lists the messages available in the node’s local cache that can be
interesting to the neighboring nodes. The protocol advertises this catalog to these neigh-
boring nodes. If the message can interest a neighbor node, then the message’s header is
appended to the catalog. Therefore the message gets advertised. When a node that has
subscribed for this kind of message receives the catalog advertisement, this node can re-
quest to get the message. The message is therefore transmitted from the publishing node
to an interested node, and by the same mechanism the message will also be transmitted

37

Chapter 4. Communication Support

Figure 4.2: Publish/Subscribe interface and subsequent communications between two
neighbor nodes

from interested node to other interested nodes.

4.3.3 Subscribing to messages

A service layer agent specifies what kind of messages it wishes to receive from the
network. It creates an atomic proposition for every needed attribute comparison, then
creates a subscription predicate as a function of these atomic propositions. The subscrip-
tion predicate is then used at the subscribe method, which appends this predicate to the
global node’s “profile". The profile is another important element of the protocol (Sec-
tion 4.2), where all the wishes of the node are grouped. Figure 4.3 shows all the elements
of a subscription.

The protocol matches an atomic proposition against corresponding header attributes
from all accessible messages (advertised and made accessible by neighboring nodes). In
an atomic proposition, the value can be a number to match against numerical attributes,
or it can be a regular expression to match against string attributes. The predicate example
in Figure 4.4 conveys wishes of receiving french news messages. The second message

38

4.4. Discussion

ai := (attribute, comparator, value) is an atomic proposition,
where comparator ∈ {=, 6=, <,≤, >,≥}

pi = a1 ◦ ... ai ... ◦ an is a subscription predicate,
where operator ◦ ∈ {∧,∨}

P = (p1 ∨ ... pi ... ∨ pn) is the resulting node profile.

Figure 4.3: Subscription elements

in the above example Figure 4.1 matches this predicate, so when this message becomes
accessible it will be requested by the subscribing node.

p = keywords="news|journal" ∧ (publisher="cnn" ∨ language="fr")

Figure 4.4: Predicate example

The subscribe method takes two parameters: first a predicate, and second a handler
to notify the service agent of every message reception.

4.3.4 Canceling a message

A service agent may need to cancel an obsolete message before the message’s proper
deadline, which is highly beneficial from a network load reduction point of view (by
stopping the message’s dissemination). The interface allows a higher-level agent to can-
cel the dissemination of messages. The cancel method takes the id of the message to
cancel, and a deadline date. A cancel starts purging the message in the local cache, and
then it adds an entry to the node’s catalog. Therefore, catalog advertisements disseminate
the cancellation to neighboring nodes, until the deadline date.

4.4 Discussion

4.4.1 Communication delay

The store-carry-and-forward nature of the protocol imposes communication delays in
message delivery. A message usually travels from a source node to another node using
an unknown number of intermediate carriers. Communication delay depends on many
variables of the mobile environment, for example let’s take the distance separating two
network nodes:

• If nodes A and B are neighbors (mutual wireless radio range), the communication
delay d1 depends on the announcement period of both nodes (profile+catalog an-
nouncement) added to the request transmission and then to the actual message
broadcast time.

39

Chapter 4. Communication Support

• If nodes A and C are in the same network island but not in wireless range. The
communication delay d2 depends on the period of k-hop announcements and k-
hop requesting and proper message transmission times, and on the number n of
hops between the nodes (when n>k).

• If nodes A and D are in separate network islands, then the communication delay
d3 depends on the mobility of intermediate carrier nodes traveling from an island
to another in addition to delays inside of islands. The delay caused by the nodes
traveling between islands is clearly higher (by many orders of magnitude) to the
delays inside of islands.

In consequence, the communication layer provides a best effort solution where the suc-
cess of an interaction between remote service entities is not guaranteed, and where com-
munications include significant and unpredictable delays. Still, the communication layer
provides a network-wide solution in disconnected MANETs, where higher-level applica-
tions should consider communication delays as part of their interaction model.

4.4.2 Loose coupling benefits

The communication challenges identified in Chapter 3 show that in order for the ser-
vice platform to tolerate communication disruptions, the communication layer must en-
able the decoupling at the three time-synchronization-space dimensions.

• Time: With unpredictable availability there is a high probability that two service
entities wanting to communicate are not active at the same time. As seen in the ex-
ample of Figure 4.2, when node B subscribed, the message was not even published
yet, as if node A was unavailable at that moment.

• Synchronization: In the example, node A was not blocked after producing its mes-
sage, and likewise node B was not blocked while waiting to receive the message.

• Addressing space: The two interacting nodes do not need to know and hold ref-
erences to each other. The producer of information does not know how many are
consuming this information. Likewise, the consumer of information does not know
how many producers it is getting its information from. Therefore, the content-based
protocol can achieve this space decoupling.

As a consequence, the communication challenges of time-synchronization-space de-
coupling are well met by the used communication protocol.

4.5 Summary

This chapter presented the communication layer of the service platform. Due to the
high communication constraints imposed by disconnected environments, I used an op-
portunistic and content-driven protocol (DoDWAN). The chapter described the inner
workings of the protocol, consisting of a message store-carry-and-forward paradigm,
content-based matching, and opportunistic gossiping. The chapter also described the
publish/subscribe module interfacing the protocol with the upper service layer.

40

My friend, thou art not my friend, but how shall I make thee
understand? My path is not thy path, yet together we talk,
hand in hand.

Kahlil Gibran 5
Service Discovery

Contents
5.1 Introduction . 41

5.2 Service nodes in mobile environments 42

5.3 Overview . 44

5.4 Elements of the discovery protocol . 46

5.4.1 Description . 46

5.4.2 Advertisement . 48

5.4.3 Process at the provider side . 52

5.4.4 Collection . 53

5.4.5 Selection . 53

5.4.6 Process at the client side . 54

5.5 Discussion . 54

5.6 Summary . 55

5.1 Introduction

By definition, discovery enables network nodes to become aware of the availability
and capability of peers on the network. Service providers describe and advertise their
capabilities for clients to discover and match their needs.

According to the service-oriented paradigm, a service’s functional and non-functional
properties are described in a machine interpretable and human readable syntax forming
the service’s contract. The contract is advertised by a service provider on a directory en-
tity. Depending on the characteristics of the network environment, the directory entity
may be implemented as centralized, or distributed, or in a peer-to-peer manner. In or-
der for a client to discover services from the directory, the client describes its needs in a
format resembling that of the service description, and searches the directory for services
matching these needs. The directory may return many matching services to the client,
who finally selects one for invocation.

The goal of the proposed service platform is to provide network-wide service pro-
vision. Service provision must handle communication constraints inherent in the dis-
connected mobile environments, where node density and mobility produce fragmented

41

Chapter 5. Service Discovery

network topologies (as illustrated in Figure 1.2 on page 3). Service client and provider
agents interact using the communication layer (DoDWAN protocol) described in Chap-
ter 4; communications are carried out using best-effort solutions with a content-based
store-carry-and-forward protocol. Communications present unpredictable delay times
for end-to-end data delivery. Service protocols between providers and consumers must
deal with this communication delay in addition to dealing with change and heterogene-
ity. Therefore, throughout the design of service discovery and invocation, I focus on
service agents independence and loosening mutual ties in order to counterbalance the
environmental constraints. The goal is to design a service provision platform that is ca-
pable of achieving an acceptable level of performance by reducing the completion time
of a task as well as reducing the number of needed interactions as much as possible.

This chapter details the discovery protocol of the service layer DiSWAN. Section 5.2
starts by describing the client and provider nodes and their life-cycles. Section 5.3 gives
an overview of the architecture. Section 5.4 describes the elements that construct the
discovery protocol, from the provider’s service description and advertisement until the
client’s service collection and selection. Section 5.5 discusses the changes that can affect
the performance of the service provision process. And Section 5.6 concludes the chapter.

5.2 Service nodes in mobile environments

In a mobile network environment, each node hosts a service platform instance com-
posed of two layers: a service layer called DiSWAN and a communication layer called
DoDWAN. Every node starts its life as a simple node with no service agents. A service
agent is either a client agent or a provider agent. A provider agent provides one busi-
ness service, and a client agent wants to use one business service. A node having one or
several client agents is called a client node, and a node having one or several provider
agents is called a provider node. A simple node becomes a client node or a provider node
or both, according to its user’s requirements. It can have many client agents and many
provider agents.

This work does not address the entire software deployment issues. However a de-
scription of a client’s and a provider’s lifecycle is fundamental in defining their roles in
the discovery and invocation protocols.

Provider node’s lifecycle.
When the user installs a first provider agent, the simple node becomes a provider node.

The user can install many provider agents. The node becomes simple again when the
user uninstalls the last provider agent. When an installed provider agent advertises its
descriptor, it becomes ready to receive and then respond to client invocations. The adver-
tised descriptor contains functional and non-functional service properties in addition to
the node’s context properties. If the context of the provider node changes (e.g. changes lo-
cation), the provider agent updates and advertises its descriptor again. Figure 5.1 shows
the lifecycle of a provider node and the lifecycle of an installed provider agent.

42

5.2. Service nodes in mobile environments

Figure 5.1: Lifecycle of a provider node and of a provider agent

Figure 5.2: Lifecycle of a client node and of a client agent

Client node’s lifecycle.
When the user defines discovery needs, the platform creates a corresponding client

agent. Discovery needs represent the kind of functional service capabilities the user
wants to use, in addition to context properties about where and when he wants to use
them. When the user forgets his discovery needs, the corresponding client agent is re-
moved. When the first client agent is created, the simple node becomes a client node.
Many client agents can be created, each corresponding to a different set of discovery
needs. A node becomes simple again when the last client agent is removed. The client
agent starts its life at a discovery stage. It discovers providers capable of fulfilling the
user’s needs. When the user decides to invoke a discovered provider, the client agent
goes into an invocation stage. When the invocation completes, the client agent goes back
to discovery stage. In case the user is satisfied with invocation, he may want to forget
his discovery needs, so the corresponding client agent is removed. Figure 5.2 shows the
lifecycle of a client node and the lifecycle of a client agent.

In addition to the previously described lifecycle, a node can be a client and provider

43

Chapter 5. Service Discovery

Simple Node

Ad Hoc Connection

D

G H

L

F

B
C

M

A

K

E

Client Node

Provider Node

Provider+Client Node

J

I

Offline Node

Figure 5.3: Network environment

node if it contains client and provider agents at the same time. Figure 5.3 depicts an
example of a mobile environment where nodes form disconnected islands of connectivity.
This environment contains client nodes (B, C, K, M), provider nodes (A, E, F, G, M), simple
nodes that are neither clients nor providers (D, H, L), and offline nodes (I, J). Notice that
node M is both client and provider.

5.3 Overview

The fundamental steps of the service provision process are: (1) description, (2) adver-
tisement, (3) discovery, and (4) invocation. A service directory is the service entity where
providers advertise their services and clients discover needed services.

Directory architecture.
A centralized directory is excluded in MANETs because it is not accessible from all

network nodes and it represents a single point of failure. Some architectures distribute
the contents of the directory over an overlay network consisting of uniformly deployed
directory nodes, where the directory is either fully or partially duplicated. Overlay net-
works are hard to maintain in highly dynamic and disconnected MANETs. On the other
hand, the peer-to-peer architecture is better suited for disconnected environments, where
each network node is responsible for its own list of discovered services. But existent im-
plementations of this peer-to-peer architecture have the disadvantage of producing high
network traffic, since providers periodically broadcast or multicast their descriptions that
are also disseminated to all network nodes (see directory architecture at page 25). There-
fore, the solution I propose in the service platform makes every client node responsible
for its own local directory as in peer-to-peer architectures, yet using the publish/sub-
scribe content-based opportunistic communications of the underlying layer for discovery
interactions. In consequence, my solution gives greater independence for service nodes,
and also uses the communication layer’s selective information dissemination in order to
maintain a low network overhead.

To show how local directories fit into the service architecture, lets take a simple ex-

44

5.3. Overview

Figure 5.4: Service interactions between a provider node A and client nodes B and C

ample. Consider that the node A of Figure 5.3 is providing a service that nodes B and
C want to use. Figure 5.4 depicts the steps of the provision process. (1) The provider
creates a description of functional and non-functional service properties in addition to
the provider node’s context properties. (2) A provider does not need registration in a
specific directory, instead it advertises its service descriptor to whoever is interested. A
service descriptor is created as a message containing the service description and context
properties. The descriptor message is published using the underlying communication
layer, so to get disseminated by network nodes until delivered to interested client nodes.
(3) Discovery at the client side is divided into collection and selection. A client node is
responsible for its own local directory, which contains only interesting services according
to its user’s needs. The client agent subscribes to interesting service descriptors, descrip-
tors are received over time and collected in the local directory. When the user needs to
actually invoke a service, he selects a provider out of the local directory. Therefore, there
is no need for a client agent to contact a remote directory as in centralized architectures,
and no need to synchronize directory copies as in distributed architectures. (4) The client
agent finally invokes the selected provider.

Client’s invocation behavior.
The default behavior of a client is first to define its needs. These needs are used to col-

lect interesting service descriptors. This collection process is executed in the background.
When the client needs to invoke a provider, it selects one from the supposedly collected
descriptors.

• In case the selection succeeds, then the client is able to create a well formatted invo-
cation request according to the selected descriptor. The classic invocation behavior
would be to send this request specifically to the discovered provider. In the invo-
cation solution I propose (detailed in Chapter 6): the invocation request formatted
according to a discovered provider, can be received (using a content-based request)
by providers other than the discovered provider, as long as these other providers
offer a compatible business service. This proposed behavior extends the classic one,
it uses the discovery stage as means to invoke many compatible providers possibly
available in the environment. By extending the invocation reach to other compati-

45

Chapter 5. Service Discovery

ble providers, the degree of compatibility influences the reliability of the responses
from such providers.

• In case the selection did not succeed (e.g. no collected descriptors yet), and the
client needs an imminent invocation, then a content-based invocation request can
be created by the client without referring to any known provider. This behavior
(also detailed in Chapter 6) is a last minute attempt to invoke some provider. But
since no actual description about a possibly responding provider was collected,
then the response of such a provider should not be considered as reliable in com-
parison with the response of a discovered provider.

5.4 Elements of the discovery protocol

The purpose of the proposed discovery protocol is to let every client find an inter-
esting service provider. The protocol works in a typical scenario, where a client node
and a provider node are considered distant with no temporaneous end-to-end connec-
tion. The same protocol remains valid in scenarios where client and provider nodes are
in proximity. The discovery protocol consists of all the provision steps needed before an
invocation, which are:

• Description and advertisement are performed by the service provider.
• Collection and selection are performed by the service client.

5.4.1 Description

When the user of a node installs a service, DiSWAN creates a provider agent. The
provider agent envelopes the description of functional and non-functional properties
along with the provider node’s context properties in a single message called service de-
scriptor. Therefore, a descriptor is essential since it contains all the resource information
needed by consuming clients to decide whether or not the provider fulfills their needs.
The main components of a service descriptor are (see Figure 5.5): (1) the provider node’s
identity, (2) the service’s identity, (3) a set of the service’s functional capabilities, (4) a set
of the service’s non-functional detail, and (5) a set of the provider node’s context proper-
ties.

Figure 5.5: Components of a service descriptor message

46

5.4. Elements of the discovery protocol

5.4.1.1 Functional and non-functional service properties

Service description aims to list functional capabilities and non-functional detail. It is
the job of the service creator (programmer) to define these functional and non-functional
properties. When the service is installed, these properties become available in the corre-
sponding provider agent.

Functional properties form the service interface that a client needs in order to create
requests and understand responses. Generally in distributed client/server computing,
the functional interface of a server is hard coded in a proxy that has to be installed on
the client. This forces an implementation technology on both the service and client sides.
Following the ambition to loosely couple the service computing at the implementation
level, a description written in a universal syntax gives more independence to the service
entities. Therefore I chose to use the WSDL description language (as in Web Services),
and not serialization methods proper to a specific implementation technology like it is
the case in Jini [72] for example. This way, the client is free to create its own proxy ac-
cording to its implementation technology. Figure 5.6 shows a functional description of
an example service "S1" offering the capability "add" that takes two numbers and returns
their sum.

<wsdl>
<interface name="S1">

<operation name="add">

<input name="number1" xs:type="xsd:int"/>

<input name="number2" xs:type="xsd:int"/>

<output name="result" xs:type="xsd:int"/>

</operation>

</interface>

</wsdl>

Figure 5.6: Example of functional service properties written in WSDL

Extra detail enhances the service description with non-functional properties (e.g. au-
thor, version, cost, signature, etc.). These non-functional properties can be decisive when
a user chooses between many providers of the same functionality. Figure 5.7 shows an
example of non-functional service properties written in simple XML.

<detail>
<version>2.0</version>

<author>romeo</author>

</detail>

Figure 5.7: Example of non-functional service properties written in XML

5.4.1.2 Provider context properties

Because of the dynamically changing environment (node mobility, volatility, density),
a provider node can be available in the environment at a given time, and it can leave the

47

Chapter 5. Service Discovery

environment or simply be turned off to become unreachable by client nodes at some other
point in time. Therefore, a provider node’s user has to convey its context properties in
terms of availability in space and time. These context properties describe the provider
node’s availability using a representation of an iCalendar calendar event, written in XML
using xCal1. Figure 5.8 shows an example of context properties.

<context>
<vevent>

<properties>

<dtstart><date-time>20100612T090000Z</date-time></dtstart>

<dtend><date-time>20100612T180000Z</date-time></dtend>

<location>vannes,tohannic,ubs</location>

</properties>

</vevent>

</context>

Figure 5.8: Example of a provider node’s context properties

The <context> element contains a calendar <vevent> element specifying the avail-
ability in time (<dtstart> to <dtend>) and space (<location>). The provider can even
convey many availability events, considered as the node’s planning. The location prop-
erty is a general description of the environment: whether it’s a university campus, a city’s
public place, or a building.

5.4.2 Advertisement

After describing the service properties and the provider node’s context properties, the
description is enveloped in a descriptor that is advertised to interested client nodes. The
descriptor is created as a message and published using the underlying communication
layer. The XML description is put in the message’s payload. The message header contains
the message’s "id" and "deadline" that are required by the communication protocol.

Even though the description is intended to be accessible by the higher service layer
of a receiving client node, it is not enough to just put all the properties (functional, non-
functional, and context) into the payload part of the message because messages get dis-
seminated in the environment according to their header’s attributes. Therefore, for a
more effective descriptor dissemination and discovery, some properties of the payload
need to also be present at the header part of the descriptor message. Figure 5.9 specif-
ically shows that data in the payload is only accessible to the service layer entities and
data in the header is accessible to the communication layer. In consequence, if more in-
formation about the payload is also present in the header, then the communication layer
works more effectively in the selective dissemination of messages. Figure 5.10 shows
the descriptor message’s header attributes. Attributes with the "s:" and "e:" prefix are
predefined by the DiSWAN service layer.

The values of the attributes are automatically filled according to the description in-
1iCalendar (RFC 5545) stands for: Internet Calendaring and Scheduling Core Object Specification, and

xCal is an XML representation of iCalendar.

48

5.4. Elements of the discovery protocol

Descriptor

Header

Payload

level adjustment

accessible to the

communication layer

accessible only to the

higher service layer

Figure 5.9: Controlling the level of accessible information

header attributes

id =""
deadline =""
publisher =""
s:type ="descriptor"
s:service =""
s:capability =""
e:detail/[property] =""
s:location =""
s:dtstart =""
s:dtend =""

Figure 5.10: Header attributes of a descriptor message

formation at the creation time of the provider agent. The header’s attributes are the
following:

• Attributes required by the communication layer: a required unique message id
attribute, a required deadline attribute to declare the validity of the message.

• A publisher attribute (predefined by the communication layer) holds the provider
node’s identity.

• An s:type attribute declares a descriptor message.

• A service identity s:service attribute. Its value is the equal to the WSDL interface
name.

• A s:capability attribute representing functional operations. Its value is a comma
separated list of the names of WSDL operations.

• Non-functional service attributes are represented in the header as extensible at-
tributes with the "e:" prefix. They use the form e:detail/[property]. They are
the equivalent to the non-functional properties of the detail description present
in the payload. An attribute is added for each element in the detail part (e.g.
e:detail/version and e:detail/author).

• The context attributes are the s:location attribute for helping clients to discover
services at a specific location, and the s:dtstart and s:dtend attributes for clients

49

Chapter 5. Service Discovery

wishing to discover services at specific times. These attributes are the equivalent to
the <location>, <dtstart>, and <dtend> elements of the context properties.

Figure 5.11 shows an example of a complete descriptor message. The message’s
payload contains the full description as an XML listing, which contains the functional
service description in the <wsdl> element, the non-functional service description in the
<detail> element, and the provider node’s context properties in the <context> element.
The header part contains the attributes that are automatically filled according to the full
description.

50

5.4. Elements of the discovery protocol

header attributes

id ="af435ce3b23366f0d77cef8bfd6f4f81"
deadline ="2010-06-15T09:00:00"
publisher ="bobmobile"
s:type ="descriptor"
s:service ="S1"
s:capability ="add,subtract"
e:detail/version ="2.0"
e:detail/author ="romeo"
s:location ="vannes,tohannic,ubs"
s:dtstart ="2010-06-12T09:00:00"
s:dtend ="2010-06-12T18:00:00"

payload

<wsdl>
<interface name="S1">

<operation name="add">

<input name="number1" xs:type="xsd:int"/>

<input name="number2" xs:type="xsd:int"/>

<output name="result" xs:type="xsd:int"/>

</operation>

<operation name="subtract">

<input name="number1" xs:type="xsd:int"/>

<input name="number2" xs:type="xsd:int"/>

<output name="result" xs:type="xsd:int"/>

</operation>

</interface>

</wsdl>
<detail>

<version>2.0</version>

<author>romeo</author>

</detail>
<context>

<vevent>

<properties>

<dtstart><date-time>20100612T090000Z</date-time></dtstart>

<dtend><date-time>20100612T180000Z</date-time></dtend>

<location>vannes,tohannic,ubs</location>

</properties>

</vevent>

</context>

Figure 5.11: Example of a descriptor message

51

Chapter 5. Service Discovery

5.4.3 Process at the provider side

Figure 5.12 recapitulates the steps taken at the provider side in order to install a ser-
vice and get ready for incoming client invocations. A programmer creates the service’s
binary, functional WSDL description, and non-functional description. A provider agent
hosts the service binary, and creates the service descriptor according to the description
and context properties. The descriptor is published to interested clients. After advertis-
ing the descriptor, the provider agent subscribes for client invocation requests in order to
receive them. Chapter 6 details how to create the corresponding subscription predicates.

Service Creation
1 begin Programmer creates service S1 and its description

service binary classes —> service.binary
define functional interface: operations, inputs, outputs —> service.wsdl
define non-functional service details —> service.detail

Provider Agent Creation
2 begin pa = new ProviderAgent(S1, node.context); //User installs service S1
3 pa.business(S1.binary); //set service binary
4 begin payload = new Payload(); //create a message payload

payload.append(S1.wsdl); //add WSDL functional interface
payload.append(S1.detail); //add non-functional service details
payload.append(node.context); //add context properties

5 begin header = new Header(); //create a message header
//repeat fill from equivalent descriptions
...
header.setAttribute("s:capability","add");
...

6 pa.descriptor(new Message(header, payload)); //set descriptor
7 publish(pa.descriptor); //publish message in the environment
8 p = new Predicate(s:type="request" ∧ destination="bob"); //create predicate for

incoming client requests
9 h = new Handler(pa); //create a reception notification handler

10 subscribe(p, h); //subscribe to client requests

Provider Agent Runtime
11 Idle

notify h triggered if changes occur:
12 respond to request updated service description

updated provider context
then restart at step 4

Figure 5.12: Provider side process, from service creation to getting ready for invo-
cation

52

5.4. Elements of the discovery protocol

5.4.4 Collection

When the user defines his discovery needs, the platform creates a client agent. In
order for the client node to collect interesting services, the client agent subscribes using
a subscription predicate 2. The predicate contains propositions that are matched against
the attributes of a descriptor message.

For example, the client can define his needs of using a service offering a capability
named "add" or "sum" and that the provider is located at the specific "ubs" location. The
client agent subscribes using the following predicate corresponding to the user’s needs:

p1 = s:type="descriptor" ∧ s:capability="add|sum" ∧ s:location="ubs" (5.1)

Now if this client wants to restrict its discovery to providers available at a specific
time, the client agent subscribes using the following predicate:

p2 = p1 ∧ s:dtstart<"2010-06-12T10:00:00" ∧ s:dtend>"2010-06-12T11:00:00" (5.2)

Effectively, the subscription using the publish/subscribe interface of the communica-
tion layer enables the content-based opportunistic matching process between the client’s
preferences against the descriptors that are disseminated in the network. The matching
consists of comparing the attribute-value fields of the header of a disseminated descriptor
to the subscription predicate (as was explained in the previous chapter). As time passes,
all matching descriptors are collected in the client node’s local directory for future use
when a service invocation is needed.

5.4.5 Selection

During collection, the platform presents the user with the already collected services in
the local directory. At this stage, the client agent can access the information of a descrip-
tor’s payload. This enables the client to make sure of a proper functionality match, and a
proper contextual availability according to the current time and space situation. Selection
is the process of picking a proper service provider in preparation for invocation.

The invocation time can be a high level decision made by the user (human or ap-
plication). When an invocation is needed, a service descriptor is selected according to
the current context properties. Effectively, the client agent compares its node context
with the context advertised in the descriptor in order to select the best available provider
node. For example, if the client node is present at the "ubs" location at 10am, then the
client agent selects a provider that had advertised that it would be present at the "ubs"
location and available at the needed time.

The platform also enables the client agent to be notified when the client node’s context
changes (e.g. location) to match that of a collected descriptor. Therefore, the matching
descriptor is selected and a notification is raised to the user in order for him to oppor-
tunistically invoke the provider.

2Subscription ingredients:
ai := (attribute, comparator, value) is an atomic proposition, where comparator ∈ {=, >,≥, <,≤, 6=}, and
p = a1 ◦ ... ai ... ◦ an is a subscription predicate, where operator ◦ ∈ {∧,∨}

53

Chapter 5. Service Discovery

5.4.6 Process at the client side

Figure 5.13 recapitulates the process of a client node collecting interesting services,
until the invocation time when the user selects a service out of his local directory.

Discovery Preferences
1 User defines discovery preferences

Client Agent Creation
2 begin ca = new ClientAgent(); //create client agent
3 begin p = new Predicate(); //create predicate

p.add(s:type="descriptor"); //add a descriptor type attribute
p.and(s:capability="add|sum"); //functional capabilities and detail
...
p.and(s:location="ubs"); //add context properties to restrict the discovery
p.and(s:dtstart<"2010-06-12T10:00:00");
p.and(s:dtend>"2010-06-12T11:00:00");

4 begin ca.collect(p);//collect service descriptors
h = new Handler(ca); //create a reception notification handler
subscribe(p, h); //subscribe to service descriptors

Client Agent Runtime
5 Idle

notify h.process(message) triggered (when invocation needed) or (notify ch triggered)
6 begin 7 begin

//store collected descriptor //select descriptor
directory.append(message) d = ca.select(node.context);

//create opportunistic context handler //form functional invocation request
ch =new ContextHandler(message.context) request =new Request(d, user.input);

end //publish invocation request
ca.invoke(request);

end

Figure 5.13: Process at the client side

5.5 Discussion

The primary performance criterion of the service provision process is the time delay
that a task needs to complete, a task can be composed of up to several round trip interac-
tions between two service entities. As far as discovery is concerned, the proposed discov-
ery protocol described in this chapter relies on the information dissemination properties
of the underlying communication layer, which in consequence reduces the discovery in-
teractions to just one (getting the service descriptor from the provider node to the client
node). Effectively, the provider node advertises its descriptor by making a publication,
and the a client node receives this descriptor by subscribing. Therefore the time delay

54

5.6. Summary

of discovery is that of delivering a message from a provider node to an interested client
node, this delay is unpredictable because of the dynamic and disconnected mobile envi-
ronment.

In addition to the communication delays affecting the performance of discovery, there
exists other elements that directly influence the performance of the service provision.
From a client’s point of view, these elements are mostly related to changes that can occur
at the provider side. Reasons for this change can be simply related to the service version-
ing, or in case the provider of the service decides to change its implementation aspects.
Changes to the identity or to the interface of the service render the invocation impossible
for clients that have not updated their knowledge about the service they seek. Moreover,
the unpredictable node availability of service providers in disconnected MANETs and the
absence of instantaneous up-to-date information about this availability may render the
advertised context properties obsolete. Therefore clients obviously need an additional
discovery phase, adding extra delays to the service provision process. In order to reduce
the effect of these changes on the performance of service provision, the proposed discov-
ery protocol enables an "always on" discovery. Effectively, a client agent always collects
service descriptors in an effort to have the most possible up-to-date information about
service providers. Service providers on the other hand advertise their changes in ser-
vice functionality and changes in context (they publish new updated descriptors). This
discovery behavior characterizes the publish/subscribe communication model.

The main design focus in the service platform is to improve the loose coupling be-
tween the providers and the consumers of services. The discovery protocol enables a
form of loose coupling by reducing interactions between providers and clients to the
minimum. Still, the more knowledge about the provider that a client has to remem-
ber and to keep up-to-date, the more ties exist between the provider and client entities.
When an invocation is needed, it becomes harder to handle a change of availability of
the provider, hence reducing the performance of the service provision. The next chapter
proposes elaborate invocation solutions in order to increase loose coupling and enhance
the service provision performance. More precisely, content-based invocation requests en-
able the invocation of multiple providers, therefore reducing the effect of obsolete context
properties for example.

5.6 Summary

This chapter presented the behavior of the proposed discovery protocol in DiSWAN.
It presented the life-cycles of the client and provider nodes. A node is a client node if
it hosts a client agent, the client agent is responsible for discovering service descriptors
according to its user needs and also responsible for invocation interactions with a service
provider. A node is a provider node if it hosts a provider agent, the provider agent
is responsible for exposing a business service and also responsible for advertising the
service’s descriptor. The chapter also described the discovery architecture using local
directories, where each client node is responsible for its own local directory where it
collects interesting service descriptors. The chapter detailed the elements that construct
the discovery protocol, they are the description and advertisement at the provider side,
and collection and selection at the client side. Description is the process of describing the

55

Chapter 5. Service Discovery

functional and non-functional service properties in addition to describing the provider
node’s context properties. Advertisement is the process of creating a service descriptor
and publishing it to interested clients. Collection is the process of describing a client’s
needs and subscribing using these needs in order to receive matching service descriptors.
Selection is the process of selecting a proper service descriptor from the local directory in
preparation for invocation. Invocation is detailed in the following Chapter 6.

56

6
Service Invocation Solutions

Contents
6.1 Introduction . 57

6.2 Service provider redundancy . 58

6.3 Remote invocation . 60

6.3.1 How clients issue invocation requests to providers 60

6.3.2 How providers respond to client requests 62

6.3.3 Response management policy . 66

6.3.4 Network healing . 67

6.3.5 Discussion . 71

6.4 Invocation restrictions . 73

6.5 Blind invocation: Bypassing discovery 75

6.6 Client and provider states . 76

6.7 Remote invocations of stateful services 77

6.8 Public invocations . 80

6.9 Perspectives . 81

6.9.1 Semantic invocation . 81

6.9.2 Complex request . 81

6.10 Summary . 82

6.1 Introduction

Service invocation is the process of a client actually using the capabilities of a service
provider. In the previous chapter, I described the service discovery process. This chapter
describes the full solutions that I put into place in the DiSWAN service layer in order to
handle service invocations. Like discovery, invocations must also be tolerant to commu-
nication delays that are naturally induced by disconnected network environments. The
amount of delay that a client can tolerate depends on the interactivity level needed (at
business level) for reasonably good operating conditions. From a client’s point of view,
after issuing its request, it may expect one or many responses. According to these client

57

Chapter 6. Service Invocation Solutions

expectations, service providers should know what and how to deliver their services. The
presented solutions use remote invocations only, they do not deal with code mobility 1.

Section 6.2 presents how some providers in a mobile environment might be offering
the same business service. Section 6.3 presents the default remote invocation solution
proposed in DiSWAN, detailing how a client can issue a content-based invocation re-
quest to all providers of a business service, and how these providers respond back. The
section also presents network healing techniques that are use to eliminate unneeded invo-
cation messages. Section 6.4 presents how a client uses invocation restrictions in order to
address specific providers. Section 6.5 presents how a client can even send a blind invo-
cation request in case of a discovery failure. Section 6.6 presents the client and provider
states during the provision process. Section 6.7 details stateful remote invocations via
session management. Section 6.8 details public invocations where a response can benefit
more than one client. Section 6.9 presents some perspectives. And Section 6.10 concludes
the chapter.

6.2 Service provider redundancy

Mobile networks can be perceived as environments containing many providers offer-
ing a wide variety of services, where it becomes likely to have some providers offering
the same business service. This situation is the result of having different providers host
the same service implementation, or providers hosting different service implementations
with the same declared invocation interface, or providers hosting different service imple-
mentations with different but equivalent invocation interfaces. Let’s take the comparison
example given in Figure 6.1:

provider P1

service S1

capability

int add(int a, int b)

provider P2

service S1

capability

int add(int a, int b)

provider P3

service S2

capability

int add(int a, int b)

provider P4

service S3

capability

float sum(int x, int y)

Figure 6.1: Provider examples offering the same business service

1. Providers P1 and P2 have installed the same service S1 so they are naturally offering
the same capability add(a,b).

2. Provider P3 has installed service S2 which happens to offer the capability add(a,b),
same as offered by service S1.

3. Provider P4 has installed service S3 which offers the capability sum(x,y). Capabil-
ities sum(x,y) and add(a,b) might be equivalent, therefore P4 probably offers the

1Code Mobility: First is the transfer of program code (i.e., passing executable code to the target system).
Second, one must restore the execution state at the new system; of course, this implies that the execution
state was safely backed up at the originating system. Third, all resources or data associated with the old
system must be propagated to the target system.

58

6.2. Service provider redundancy

same business service as the rest of the providers.

Increased service availability.
The availability of a business service has a substantial effect on the success and per-

formance of service provision. The more this business service is available in time and in
space, the better opportunities there are for the invoking clients. Availability in time de-
pends on the hosting node’s behavior (up times), which is assumed to be unpredictable
if not advertised. Likewise, availability in space depends on the hosting node’s behavior
(unpredictable mobility), but also depends on the number of services offering the same
capability. Figure 6.1 is an example of how the same business service can be offered by
many providers; invocation solutions detailed in the remainder of this chapter take ad-
vantage of the improved service availability.

Better service provision performance.
The performance of the service provision process is mainly judged by the time elapsed

from the point when a client needs a service to the point when this client gets satisfied, the
less time the provision process gets delayed means better performance. Since a message
delivery delay from endpoint to endpoint is unpredictable then the amelioration to the
provision process has to deal with decreasing the number of client-provider interactions
in order for the provision to complete. With that goal in mind, having many providers
seamlessly offering the same business service and substituting each other when it comes
to responding to a client request provides faster responses for two reasons:

• Failure in client-provider communications: a failure in communicating a request or
a response until the invocation deadline, forces the client to redo the invocation.
Failures occur in case the originally intended provider has become unreachable or
unavailable.

• Message dissemination: a request message is disseminated from a client node and
gets processed by the first compatible provider node it reaches, because the final
destination of an invocation request is not restricted to a specific provider node
anymore.

Service group.
A service "group" is a set of compatible providers offering the same business service

(same capability). I use this definition through the remaining of this chapter. A group
does not mean any special formation or affiliation, but only a way to denote compatible
providers.

The problem.
The point is how clients can take advantage of this provider redundancy with no redis-

covery phase. The solution I propose in the following sections is: a client should have the
possibility of invoking the capability itself without any regard to the hosting provider,
providers on the other hand have to recognize client invocations.

In a wireless ad hoc environment containing a wide range of applications, each ser-
vice client has invocation needs that differ from other clients. A client’s needs imply

59

Chapter 6. Service Invocation Solutions

how providers handle invocation interactions. Furthermore, having redundant providers
does not necessarily produce redundant responses. Depending on the application, if
each response depends on its provider’s context then a client may need to receive many
responses and perform some post processing. For example, providers of an ambient tem-
perature service may produce responses different from each other.

6.3 Remote invocation

A client consumes a service by invoking its capabilities. A business service may be of-
fered by multiple redundant providers. Therefore the default remote invocation behavior
in DiSWAN consists of the following:

• A client creates a functional request according to a discovered service provider.
• The client publishes its request message to the attention of the discovered provider

in addition to other compatible providers.
• Compatible providers can receive the client’s request. A provider creates a response

message and publishes it back to the client.
• According to the client’s needs, it may get satisfied when receiving the first re-

sponse or it may collect multiple responses to be satisfied. The invocation com-
pletes when the client gets satisfied.

• After being satisfied, the client can initiate the healing of residual request and re-
sponse messages from the network. The healing of response messages can also
be initiated by the providers themselves according to the priority of the response
messages.

6.3.1 How clients issue invocation requests to providers

When an invocation is needed, the client selects a discovered service provider. The
client agent creates a SOAP request according to the WSDL description of the selected
provider. The client agent creates a request message and puts the SOAP request in the
payload. The request message’s header contains the attributes needed to disseminate to
the business service that is hosted by the discovered provider and by other providers.
In order to let the request be received by other providers, the service identity and the
invoked capability itself are included in the request’s header. Figure 6.2 shows a request
message’s header, some header attributes are inherited from the underlying communi-
cation protocol (DoDWAN), the "s:" prefix denotes attributes proper to the service layer
(DiSWAN). The header’s attributes are:

• The inherited id attribute ensures the uniqueness of the message in the network.

• The s:type attribute defines the message as an invocation request.

• The s:issuedAt attribute is the request creation date.

• Using the inherited deadline, the client informs the network of the date it needs to
receive a response. The deadline time constraint sets the validity of the request and
its corresponding response. The request message is sent with a deadline property

60

6.3. Remote invocation

header attributes

id =""
s:type ="request"
s:issuedAt =""
deadline =""
publisher =""
destination =""
s:service =""
s:capability =""
s:resPolicy =""
s:healing =""

Figure 6.2: Invocation request’s header attributes

to inform the network of the validity of this request, a corresponding response has
also the same deadline property. This time constraint will guarantee (guaranteed by
the communication layer) that only valid requests and responses are present in the
network at a given time. In fact, any network node will delete an obsolete request
or response from its communication cache and will no longer relay it. I identified
three parameters influencing how the client agent defines the deadline: An applica-
tion related delay constraint, before which the client application needs to receive a
response in order to perform other processing; a mobility related delay constraint,
if the mobile node knows that it will be leaving its current network environment at
a certain time, then it should fix the deadline accordingly; a communication related
delay RTT, that is a constraint of the network environment, RTT is the time needed
by a message to go round trip between two network nodes. Therefore the deadline
attribute is defined by the client according to the following interval:

RTT <deadline ≤ min(Dapplication, Dmobility) (6.1)

Using the deadline attribute, the client agent declares the time delay it is willing
to wait before receiving a response. Outside of the interval, the invocation cycle is
highly prone to failure. The RTT is unpredictable in disconnected MANETs, if it
exceeds the deadline then the response would not be received by the needed date,
therefore the client agent assumes a failed invocation.

• The inherited publisher attribute contains the requesting node’s identity, so that
the response can find its way back to the client.

• The inherited destination attribute defines the provider node’s identity.

• The s:service attribute defines the service identity as described in the selected
service description.

• The s:capability attribute holds the name of the service’s capability.

• The s:resPolicy attribute declares the response management policy needed by the
client . Its value is either "multiple" to declare a multiple-response policy or "first"
to declare a first-response policy.

61

Chapter 6. Service Invocation Solutions

• The s:healing attribute declares the type of healing that the client needs . Its value
is either "safe" or "aggressive".

Figure 6.3 shows a request message example. The payload contains the well format-
ted SOAP invocation. The header contains the discovered provider node’s identity P1,
the service identity S1, and the invoked capability add.

header attributes

id ="b89f6db2b9515b88cc93b7ee38ca870d"
s:type ="request"
s:issuedAt ="2010-06-14T09:00:00"
deadline ="2010-06-15T09:00:00"
publisher ="alicemobile"
destination ="P1"
s:service ="S1"
s:capability ="add"
s:resPolicy ="first"
s:healing ="aggressive"

payload

<SOAP-ENV:Body>
<add>

<number1 xsi:type=’xsd:int’>965654</number>
<number2 xsi:type=’xsd:int’>67622</number>

</add>
</SOAP-ENV:Body>

Figure 6.3: Request message example

6.3.2 How providers respond to client requests

In the default invocation, a client does not orchestrate invocations by sending one
request per provider. A client invokes the discovered provider as well as other compati-
ble providers by publishing a single request. Effectively, the request’s header illustrated
in Figure 6.2 contains the destination attribute of the discovered provider, in addition
to the s:service and s:capability attributes enabling the request to be disseminated
to compatible providers. In order for providers to receive the request message, each
provider P subscribes using a subscription predicate 2 of the following form:

p P = s:type="request" ∧ (destination="P" ∨ s:service="" ∨ s:capability="") (6.2)

For example, P1 subscribes using the predicate:

p P1 = s:type="request" ∧ (destination="P1" ∨ s:service="S1" ∨ s:capability="add") (6.3)

2Subscription ingredients:
ai := (attribute, comparator, value) is an atomic proposition, where comparator ∈ {=, >,≥, <,≤, 6=}, and
p = a1 ◦ ... ai ... ◦ an is a subscription predicate, where operator ◦ ∈ {∧,∨}

62

6.3. Remote invocation

Likewise, each of P2 and P3 uses its appropriate predicate:

p P2 = s:type="request" ∧ (destination="P2" ∨ s:service="S1" ∨ s:capability="add") (6.4)
p P3 = s:type="request" ∧ (destination="P3" ∨ s:service="S2" ∨ s:capability="add") (6.5)

Provider P4 on the other hand offers the sum capability. For provider P4 to be able to
receive the client’s request, the add capability must be appended next to the proper sum
capability in the predicate:

p P4 = s:type="request" ∧ (destination="P4" ∨ s:service="S3" ∨ s:capability="sum|add") (6.6)

It is the user that decides —at the creation time of the provider agent at P4— that add
represents an alias to sum and therefore it is willing to accept the corresponding requests.
Still there is a probability that this assumption is wrong, therefore the response of P4
should not be considered as reliable as P1’s response for example.

Figure 6.4 shows the header of a response message. The header’s attributes are the
following:

header attributes

id =""
s:type ="response"
s:issuedAt =""
deadline =""
publisher =""
destination =""
s:service =""
s:capability =""
s:requestID =""
s:requestAt =""
s:resPolicy =""
s:healing =""
s:doubt =""

Figure 6.4: Invocation response’s header attributes

• The inherited id attribute insures the uniqueness of the message in the network.

• The s:type attribute defines the message as an invocation response.

• The s:issuedAt attribute is the response creation date.

• The inherited deadline attribute ensures the message will be purged at a future
time. It is equal to the request’s deadline attribute, since it was supposed to set the
validity of the request and its corresponding response.

• The inherited publisher attribute contains the responding node’s identity.

• The inherited destination attribute contains the client node’s identity.

63

Chapter 6. Service Invocation Solutions

• The s:service attribute contains the service identity as described in the service
description.

• The s:capability attribute contains the name of the service’s capability.

• The s:requestID attribute contains the request’s ID.

• The s:requestAt attribute contains the request’s creation date.

• The s:doubt attribute contains the doubt factor of the responding provider. This
attribute defines the reliability of the response. If a provider receives a request with
a destination attribute matching its identity then the provider responds with a
doubt of "0" (since it is the discovered provider itself). If a provider receives a
request with an s:service attribute matching its offered service identity then the
provider responds with a doubt of "0" (since a response from an matching service
implementation is also considered as fully reliable). If a provider receives a request
that does not match neither of the provider identity nor the service identity but only
matching the s:capability attribute then the response must not be considered
as reliable. Therefore the provider puts a doubt of "1" if it offers the requested
capability, or puts a doubt of "2" if it offers an alias to the requested capability.

• The s:resPolicy attribute contains the same value contained in the corresponding
request message (either "multiple" or "first").

• The s:healing attribute contains the same value contained in the corresponding
request message (either "safe" or "aggressive").

• The payload contains the well formatted SOAP invocation response.

Figure 6.5 shows response messages from the four providers of the presented example in
case they receive the request of Figure 6.3. Both P1 and P2 have a doubt factor of "0", P3
has a doubt factor of "1" since it used capability matching, and P4 has a doubt factor of
"2" since it used capability alias matching.

64

6.3. Remote invocation

header attributes

id ="e57047912..6b1c2a65"
s:type ="response"
s:issuedAt ="2010-06-14T09:10:00"
deadline ="2010-06-15T09:00:00"
publisher ="P1"
destination ="alicemobile"
s:service ="S1"
s:capability ="add"
s:requestID ="b89f6db2..38ca870d"
s:requestAt ="2010-06-14T09:00:00"
s:resPolicy ="first"
s:healing ="aggressive"
s:doubt ="0"

payload

<SOAP-ENV:Body> <add>
<result xsi:type=’xsd:int’>1033276

</result> </add>
</SOAP-ENV:Body>

(a) P1’s Response Message

header attributes

id ="69ae4c15d..45fb1c1a"
s:type ="response"
s:issuedAt ="2010-06-14T09:07:00"
deadline ="2010-06-15T09:00:00"
publisher ="P2"
destination ="alicemobile"
s:service ="S1"
s:capability ="add"
s:requestID ="b89f6db2..38ca870d"
s:requestAt ="2010-06-14T09:00:00"
s:resPolicy ="first"
s:healing ="aggressive"
s:doubt ="0"

payload

<SOAP-ENV:Body> <add>
<result xsi:type=’xsd:int’>1033276

</result> </add>
</SOAP-ENV:Body>

(b) P2’s Response Message

header attributes

id ="7db944f96..9a276089"
s:type ="response"
s:issuedAt ="2010-06-14T09:15:00"
deadline ="2010-06-15T09:00:00"
publisher ="P3"
destination ="alicemobile"
s:service ="S2"
s:capability ="add"
s:requestID ="b89f6db2..38ca870d"
s:requestAt ="2010-06-14T09:00:00"
s:resPolicy ="first"
s:healing ="aggressive"
s:doubt ="1"

payload

<SOAP-ENV:Body> <add>
<result xsi:type=’xsd:int’>1033276

</result> </add>
</SOAP-ENV:Body>

(c) P3’s Response Message

header attributes

id ="b5f9bd2d..942b3bd88"
s:type ="response"
s:issuedAt ="2010-06-14T09:04:00"
deadline ="2010-06-15T09:00:00"
publisher ="P4"
destination ="alicemobile"
s:service ="S3"
s:capability ="sum,add"
s:requestID ="b89f6db2..38ca870d"
s:requestAt ="2010-06-14T09:00:00"
s:resPolicy ="first"
s:healing ="aggressive"
s:doubt ="2"

payload

<SOAP-ENV:Body> <add>
<result xsi:type=’xsd:float’>1033276
</result> </add>
</SOAP-ENV:Body>

(d) P4’s Response Message

Figure 6.5: Example response messages

65

Chapter 6. Service Invocation Solutions

6.3.3 Response management policy

The default invocation in DiSWAN uses content-based request dissemination that
widens the invocation addressing range to a multiplicity of providers, which I call group
invocation. Figure 6.6 compares a traditional destination-based invocation behavior to
DiSWAN’s content-based group invocation:

(a) Destination-based client or-
chestration.

(b) Content-based group invoca-
tion.

Figure 6.6: Destination Vs content-based invocation

(a) Client orchestration relies on sequential invocations. After the failure of the first in-
vocation attempt (due deadline), the client issued the second request to another
provider. Therefore, the client gets satisfied after: ta = deadline +RTT (C,P2).

(b) With group invocation, the client targets all possible providers with a single request.
Therefore, the client gets satisfied after: tb = RTT (C,P2).

Addressing a business service instead of a unique provider increases the reactivity of
the system but also possibly generates multiple responses for a single invocation request.
The service platform enables the client to manage this multiplicity using two policies:
multiple-response and first-response. The response management policy is chosen by the
client and specified in each invocation request using the s:resPolicy attribute (either
"multiple" or "first").

Multiple-response policy.
Using a multiple-response policy lets all responses to a client’s request be delivered to

this client. Indeed, there are situations in which a client could see it as an advantage.
Consider for example a client using a service designed for translating an English sen-
tence into French. Multiple responses can be useful to an end-user who can choose the
best answer. Similarly, it could be useful that a call to a temperature service in a sensor
network let multiple responses reach the client which would average the received values.

First-response policy.
On the other hand, in the case where only one response is useful, the client applies a

first-response policy, in which only the first received response is interesting to the client
and the following ones are discarded. A train schedule information service for example
allowing requests such as "at what time are the departures to Paris between 12:00 and
18:00" is normally invoked with a first-response policy because any extra response received
after the first one is obviously redundant.

66

6.3. Remote invocation

6.3.4 Network healing

After the client gets satisfied, the invocation leftovers will continue to propagate until
their deadline is reached, consuming network bandwidth and storage capacity in the
relay nodes. Moreover, benefiting from the fact that several providers are allowed to
answer a single invocation request incurs extra network cost, specially in case only one
response is expected by the client. Network healing is the elimination of the invocation
leftovers, including redundant responses and the request message itself.

Network healing is only applied in case the client requests a first-response policy.
When the client requests a multiple-response policy, the client expects to receive multiple
responses until the deadline defined in the request. When the deadline is reached, the
invocation completes and the request and response messages become obsolete and are
naturally deleted by network nodes.

In disconnected and dynamic mobile environments, consensus is not applicable be-
cause the set of providers is not known a priori and the absence of full connectivity of the
network precludes learning its composition in a reasonable time. Consensus protocols
between providers can guarantee the uniqueness of an invocation (e.g. unique transac-
tion) and generally reduce network overhead. A consensus protocol normally assigns
one delegated responder at a given time. My objective is more realistic and therefore less
ambitious: it will not guarantee that only one response reaches the client node but rather
tries to cancel the propagation of redundant messages.

A low-level network healing ability is provided by the DoDWAN communication
layer via the cancel(id, deadline) method (see Section 4.3.4 in Chapter 4). A service
agent can cancel a message using the message’s unique id. The cancel order propagates to
network nodes through the low-level periodic catalog announcements until the deadline.
In other words, the cancel order travels from one network node to another using the
catalog announcements. When a node receives the cancel order, it deletes the message
from its cache, stops relaying this message, and appends the cancel order to its own
catalog announcements.

A node can call the cancel method only if it knows the message’s id. Since an invoca-
tion can produce many response messages from different providers, then a node wanting
to initiate the healing of the network does not necessarily know all the response messages
in order to be able to cancel them. Hence a node wanting to initiate the healing creates
a healing message in addition to canceling the known messages. The healing message
helps other nodes cancel corresponding messages, these corresponding messages are not
known to the initiating node.

DiSWAN enables the client to request one of two types of healing: safe healing and
aggressive healing.

• The client requests the safe healing type by putting the attribute s:healing="safe"
in the invocation request. This type of healing makes use of the low-level cancel
method, it also enables a reactive competition technique between providers dur-
ing the invocation, in addition to creating a client-initiated healing message after
satisfaction.

• The client requests the aggressive healing type by putting the attribute s:healing
="aggressive" in the invocation request. This type of healing makes use of the

67

Chapter 6. Service Invocation Solutions

low-level cancel method, it also enables a reactive competition technique between
providers during the invocation, in addition to creating provider-initiated healing
messages even before the satisfaction of the client.

In the following, I present the reactive competition technique, I also present the safe
and aggressive healing types.

6.3.4.1 Reactive competition

Using either the safe or the aggressive healing types, a reactive competition technique
is always applied. Reactive competition is applied only at provider nodes, it does not in-
volve creating healing messages. A provider subscribes for messages holding responses
to requests it could himself respond to. When a provider P1 receives such a response
issued by another provider P2, then:

• If P1 has not yet himself answered the request: P1 compares the s:doubt attribute
of P2’s response with the one it can provide itself. If P2’s response has a lower or
equal doubt (better or equal reliability), then it gives up attempting to answer the
request and rather starts to relay P2’s response. Otherwise, it answers the request
and cancels P2’s response.

• If P1 had already answered the request: P1 also compares the s:doubt attribute of
P2’s response with its proper response. P1 keeps the most reliable answer by can-
celing the response with a higher doubt. In case both answers have equal doubts,
then it compares the issued date of both responses and cancels the more recent one.

Reactive competition is always profitable in terms of reduction of the number of trans-
mitted messages (no extra messages are added) and it does not delay the arrival of the
first response at the client.

6.3.4.2 Safe healing

The safe healing type (s:healing="safe") applies the basic reactive competition dur-
ing the invocation. When a client gets satisfied by receiving its first response, it cancels its
request message and cancels the received response message (both messages are known to
the client). In addition to canceling the known messages, the client creates and publishes
a control message called healing message in order to try to eliminate from the network
other messages that are not known to the client. This client-initiated healing message
disseminates in the network. When a node λ receives this healing message, it cancels
response messages that correspond to the denoted invocation. Figure 6.7 shows an ex-
ample client-initiated healing message.

The healing message contains only a header and no payload. The s:type= "healing"
attribute defines the message as a healing message. The deadline attribute’s value is
the same as the invocation deadline. The s:requestID attribute contains the id of the
request message. A large number of nodes, if not all, are supposed to subscribe for control
messages of this type in order to ensure their rapid dissemination.

In effect, when a node λ receives a healing message, it creates a healing predicate.
Figure 6.8 shows a healing predicate corresponding to a client-initiated healing message.

68

6.3. Remote invocation

header attributes

id ="e3185af50..b7868f25"
s:type ="healing"
deadline ="2010-06-15T09:00:00"
s:initiated ="client"
s:requestID ="b89f6db2..38ca870d"

empty payload

Figure 6.7: Client-initiated healing message example

h C = s:type="response" ∧ s:requestID="b89f6db2b9515b88cc93b7ee38ca870d"

Figure 6.8: Healing predicate corresponding to the client’s healing message of Figure 6.7

Node λ creates a filter using the predicate via a filter(predicate, deadline) method
to filter local messages. The filter interface is similar to the matching of the subscribe in-
terface, but only applies to local messages present in the cache of the node, it does not
involve asking other nodes for messages. The created filter stays active until the deadline
of the invocation. The filter created with the predicate of Figure 6.8 matches response
messages that have the specified s:requestID attribute. Filtered messages are canceled
by node λ.

As extra messages are transmitted, this tends to increase the network load, yet healing
messages have a very small size so the elimination of pending responses –whose size can
be orders of magnitude larger– compensate in most cases for this augmentation (this is
shown in the simulations of Chapter 7).

6.3.4.3 Aggressive healing

The aggressive healing type (s:healing="aggressive") applies the basic reactive
competition during the invocation. It also consists in starting the dissemination of heal-
ing messages by the providers before a response is known to have reached the client.
A provider P answering a request creates and starts disseminating a healing message
(s:type= "healing"). In other words, the provider publishes a response message and
also publishes a corresponding healing message. Figure 6.9 shows example healing mes-
sages.

A healing message from P is a command to other nodes to cancel all the instances
of the specified request as well as all the corresponding responses of lower quality than
the response issued by P. A response message m is considered as of lower quality in
comparison to another response message n, if m has a doubt higher than the doubt of n,
or if m is issued after n in case the doubt is equal for both.

In effect, when a node λ receives a healing message, it creates a corresponding heal-
ing predicate. Node λ creates a filter using this predicate via the filter(predicate,
deadline) method to filter local messages. The filter only applies to local messages
present in the cache of the node, it does not involve asking other nodes for messages.
The created filter stays active until the deadline of the invocation. Filtered messages are

69

Chapter 6. Service Invocation Solutions

header attributes

id ="9b985af50..b7868f1e"
s:type ="healing"
s:issuedAt ="2010-06-14T09:07:00"
deadline ="2010-06-15T09:00:00"
s:initiated="provider"
s:requestID="b89f6db2..38ca870d"
s:doubt ="0"

empty payload

(a) P2’s Healing Message

header attributes

id ="402c0b7b3..06d7ff54"
s:type ="healing"
s:issuedAt ="2010-06-14T09:15:00"
deadline ="2010-06-15T09:00:00"
s:initiated="provider"
s:requestID="b89f6db2..38ca870d"
s:doubt ="1"

empty payload

(b) P3’s Healing Message

Figure 6.9: Provider-initiated healing message examples

cancelled by the node.

For example, when node λ receives P2’s healing message, λ creates the corresponding
healing predicate h P2 (see Figure 6.10).

h P2 = (s:type="response" ∨ s:type="healing")
∧(s:requestID="b89f6db2b9515b88cc93b7ee38ca870d")
∧(s:doubt>"0" ∨ (s:doubt="0" ∧ s:issuedAt>"2010-06-14T09:07:00"))

Figure 6.10: Healing predicate corresponding to P2’s healing message

The filter created with h P2 filters response messages answering to the same request
id, and having a higher doubt factor than P2, or having an equal doubt factor but were
issued after P2’s response. Filtered messages are cancelled. If for example P4’s response
message is received by λ, it gets filtered according to h P2 because it responds to the same
request as P2 and has a higher doubt than P2, then λ cancels P4’s response message using:
cancel("b5f9bd2d..942b3bd88", "2010-06-15T09:00:00").

h P2 also filters healing messages. In case a network node receives two healing mes-
sages for the same request, it will only consider the one having a smaller doubt factor
or with an equal doubt factor but issued beforehand. The other healing message is can-
celled.

In addition, when a node λ receives a healing message, it cancels the corresponding
request message only if the healing message presents a doubt of "0". In other words, λ
can cancel the request because it is now sure that there exists a reliable response in the
network. For example, when λ receives P2’s healing message then it cancels the request,
but when it receives P3’s healing message it will not cancel the request. The node cancels
the request using:
cancel("b89f6db2..38ca870d", "2010-06-15T09:00:00")

The client node gets satisfied after receiving a response (e.g. P2’s response), so it
cancels this response message from the network using:
cancel("69ae4c15d..45fb1c1a", "2010-06-15T09:00:00").

A healing message is useful only if it is relayed by more nodes than the providers of

70

6.3. Remote invocation

the concerned service, therefore this healing message should be relayed by almost all the
nodes of the network. The objective of a provider-initiated healing message is to enable at
simple nodes, a behavior similar to the reactive competition behavior at provider nodes,
and consequently this eliminates more redundant messages. However, in unfavorable
network conditions, it may happen that a healing message provokes the cancellation of
a response that could otherwise have been the first one to arrive at the client. Thus, this
healing type may theoretically delay the arrival of the response to the client. Experiments
I conducted tend to show that this delay is negligible whereas the gain in redundant
message elimination is significant (see Section 7.5.2 in the next chapter).

6.3.5 Discussion

6.3.5.1 Client-Provider binding

A binding represents the reference exchange between a client and a provider in order
for invocation interactions to work. Traditional client-server computing models have a
strong binding between the two entities: a client –as soon as it is created– is bound to a
server for all future interactions. The service-oriented computing came into the picture
with its late binding.

Late binding.
The idea of late binding characterizes the service computing model, in that the client

does not need to be bound to a provider before actually invoking it. As seen in Fig-
ure 6.11, from the point in time t0 when a client discovered a service provider P1 to the
point t1 when the client started an invocation, the client was not bound to any provider.

Figure 6.11: Stateless invocations, late binding compared to loose binding

Loose binding.
In an effort to push this late binding even more, DiSWAN proposes loose binding,

it allows the client to invoke a service instance without binding to the actual provider
hosting this service. The client publishes a request message to a service group, the request
flows without forcing an explicit provider’s destination. As seen in Figure 6.11, from the

71

Chapter 6. Service Invocation Solutions

point in time t0 when a client discovered a service provider P1 to the point t2 when the
client received an invocation response, the client was not bound to any provider. This
is made possible by appending a reduced version of the service descriptor (s:service
and s:capability) to the header of the request in order to let other providers receive the
request and decide whether or not they can answer. Hence a client formulates its request
not only with a SOAP part according to a discovered service, but also with a description
of the invoked service in the header of the request message.

Symmetrically, a provider does not receive only a request in which its name figures
in the request’s destination attribute. Instead, a provider subscribes so that it receives all
the requests containing a header matching one of the hosted services.

6.3.5.2 Loose coupling benefits

My focus in the design of the service platform is to enhance loose coupling between
clients and providers. The design helps decrease the number of needed interactions, it
provides less dependency, and helps decrease the latency of the request-response inter-
action cycle.

The discovery behavior decreases the interactions between the client and provider
entities to a minimum. The discovery protocol is an always active process, where the
client continuously discovers interesting service providers. When this client needs to use
a service, it generates an invocation request.

Furthermore, with the above detailed invocation solution: it becomes possible for a
client to invoke a desired business service without special regard to an actual hosting
provider and where several providers hosting the same business service deal with this
type of invocation. Therefore the content-based invocation enables less dependency be-
tween a client and service providers.

The invocation solution enables all compatible providers to answer the client. The
response of the closest provider gets received by the client, therefore decreasing the round
trip time in comparison to that with far away providers.

On the downside, using capability matching induces more doubt about the reliability
of the answering provider. In other words, if the add capability of P3 matches the add
capability of P1 syntactically but not semantically, then P3’s response would not be valid
for the invoking client any more. Alias capabilities are even harder to match, the sum
capability must match the add capability semantically, which induces even more doubt
about the reliability of P4’s response.

Figure 6.12 illustrates how higher loose coupling provides higher doubt and therefore
less reliability. If the invocation request is only addressed to a specific provider destina-
tion then the invocation is the least loose coupled. If the request could also be addressed
to the service hosted by many providers then the invocation is more loose coupled. If the
request can address all the possible compatible providers as enabled by the default invo-
cation behavior (capability and alias capability matching), then loose coupling increases
but with decreased reliability.

72

6.4. Invocation restrictions

Figure 6.12: Pushing loose coupling to the limits may produce a higher doubt about the
answering provider’s reliability.

6.4 Invocation restrictions

In order to make it possible for a client to invoke a desired business service with-
out special regard to an actual hosting provider, DiSWAN enables using content-based
invocations. A content-based invocation addresses a wide range of possible providers.
However, DiSWAN also lets this client application orchestrate invocations by selecting
then requesting a specific provider or a specific service. This behavior is considered as
a restriction to the content-based default invocation solution proposed above, by rolling
back to a more traditional service invocation behavior. Implementing these restrictions is
rather straightforward, by making modifications to the request message.

header attributes

id ="b89f6db2..38ca870d"
s:type ="request"
s:issuedAt ="2010-06-14T09:00:00"
deadline ="2010-06-15T09:00:00"
publisher ="alicemobile"
destination="P1"
s:service ="S1"

payload

<SOAP-ENV:Body>
<add>

<number1 xsi:type=’xsd:int’>965...
<number2 xsi:type=’xsd:int’>676...
</add>

</SOAP-ENV:Body>
(a) Service Restricted Request

header attributes

id ="b89f6db2..38ca870d"
s:type ="request"
s:issuedAt ="2010-06-14T09:00:00"
deadline ="2010-06-15T09:00:00"
publisher ="alicemobile"
destination="P1"

payload

<SOAP-ENV:Body>
<S1>
<add>

<number1 xsi:type=’xsd:int’>965...
<number2 xsi:type=’xsd:int’>676...
</add>
</S1>

</SOAP-ENV:Body>
(b) Provider Restricted Request

Figure 6.13: Request messages for restricted invocations

• A client restricts the invocation to a specific service by moving the s:capability
attribute from the request’s header and placing it directly in the SOAP payload (see
Figure 6.13(a)).

73

Chapter 6. Service Invocation Solutions

• A client restricts invocation to a specific provider by moving the s:service at-
tribute from the request’s header and placing it directly in the SOAP payload (see
Figure 6.13(b)).

For example, there exists situations in which a specific provider is expected to be
addressed when transferring the invocation request. This can occur because a provider
is known to be the only one to ensure a certain quality of service or because of the very
nature of the service. In some situations the client prefers to restrict the invocation to a
specific provider according to contextual availability in time and space.

Because of the client orchestration, network healing is not the same as described
above. After the client gets satisfied, it simply cancels the request and response messages
in order to heal the network.

Figure 6.14 illustrates restricted invocation scenarios (a) and (b). Scenarios (c) and (d)
illustrate the default invocation (Section 6.3).

Figure 6.14: Multi-level addressing in a request enables a wider impact range

(a) After discovering the provider P1, the client’s invocation request is published to dis-
seminate in the network. Using the destination attribute, the request message can
be delivered to the exact provider P1.

74

6.5. Blind invocation: Bypassing discovery

(b) The client appends the s:service attribute to its request’s header. Therefore, the
request message can be delivered to providers P1 and P2 (both hosting the service
S1). Service level matching removes the client’s dependence on a specific provider,
thus enabling this client to address many providers of the same service.

(c) The client appends the s:capability attribute to its request’s header. Therefore, the
request message can be delivered to providers P1, P2 and P3 (all offering the same
capability). Capability matching provides even more independence by expanding
the range of possibly addressed providers, where the requested capability is ex-
posed by different services.

(d) As an extension of scenario (c), the request message can be delivered to providers P1,
P2, P3 and P4, using alias capability matching at the P4 provider.

6.5 Blind invocation: Bypassing discovery

In all the previously described invocation solutions, the invocation process follows a
discovery phase where a client gets to know a provider’s reference or just its functional
resources in order to create a well formed request. In case the client had not received
any interesting service descriptors when an invocation is needed, the client sends a blind
invocation request (see example in Figure 6.15).

header attributes

id ="b89f6db2b9515b88cc93b7ee38ca870d"
s:type ="request"
s:issuedAt ="2010-06-14T09:00:00"
deadline ="2010-06-15T09:00:00"
publisher ="alicemobile"
s:capability ="add|sum"

payload

<SOAP-ENV:Body>
<operation>

<input xsi:type=’xsd:int’>965654</input>
<input xsi:type=’xsd:int’>67622</input>

</operation>
</SOAP-ENV:Body>

Figure 6.15: Blind request message

Since there is no discovered service providers, a blind request’s header cannot have
neither destination nor s:service attributes. A blind header focuses on the functional
invocation s:capability attribute. The s:capability attributes could be the same at-
tribute found in the client’s original discovery predicate . With this behavior, instead of
waiting to discover service descriptors, a blind request completely removes the destina-
tion and service attributes. In other words, the client side matching for service discovery
previously used in the discovery protocol is replaced with provider side matching, con-
sequently making an invocation without a client’s discovery process.

75

Chapter 6. Service Invocation Solutions

Since there is no discovered functional interface, a blind request does not have an
accurate SOAP invocation syntax. Instead, the client uses generic operation and input
SOAP elements in the request’s payload (see Figure 6.15).

On the other side, in order to receive blind requests, a provider subscribes using a
subscription predicate of the following format:

p P = s:type="request" ∧ s:capability="add" (6.7)

When a service provider receives a blind request, it retrieves the input values and creates
a response message with a s:doubt="2" attribute.

Blind invocation enhances the service provision process by completely bypassing
the whole discovery phase. Blind requests relying on capability matching and on the
providers intelligence, reduces needed interactions, thus boosting loose coupling. This
invocation scenario provides the most loose coupling that our service platform can afford
to do. Full semantic invocation scenarios using ontologies are the obvious next step for
totally loose coupled service provision. The proposed platform does not implement such
semantic invocation.

6.6 Client and provider states

During discovery and invocation, clients and providers go through many states. As
a recapitulation of the service provision process, Figure 6.16 shows the state diagrams of
both clients and providers (healing interactions are not shown for the sake of simplicity).

issue

request

4

satisfied with invocation

re
c
e
iv

e
 la

s
t

re
s
p
o
n
s
e

2

wait for requests

(a) Client State Diagram (b) Provider State Diagram

1

defined discovery predicate

2

collecting

descriptors

3

waiting for

response

re
c
e
iv

e

d
e
s
c
rip

to
r

is
s
u
e
 b

lin
d

re
q
u
e
s
t

deadline

re
c
e
iv

e

d
e
s
c
rip

to
r

receive descriptor

re
c
e
iv

e

re
s
p
o
n
s
e

1

install service

p
u
b
lis

h

d
e
s
c
rip

to
r

3

able to answer

re
c
e
iv

e

re
q
u
e
s
tis

s
u
e

re
s
p
o
n
s
e

Figure 6.16: Client and provider states

A client defines a discovery predicate, and has the option of either waiting for ser-
vice descriptors in order to issue normal requests or urgently issue blind requests. After

76

6.7. Remote invocations of stateful services

publishing its request, a client waits for a response so that it becomes satisfied with in-
vocation. A provider installs services, publishes its descriptor, subscribes and waits for
requests, received requests are processed and responses are published back to the re-
questers.

6.7 Remote invocations of stateful services

By definition, stateful services are services preserving state information, where an
invocation may depend on the results of previous invocations. A stateful service is capa-
ble of keeping track of a client through the use of a persistent session accessible only by
this client. A service saves the conversational state data of its corresponding client. The
state data is stored in the memory of the service. The client associates itself with a single
service where its session resides. A session has a predefined inactivity deadline corre-
sponding to the maximum time allowed between two client invocations. In other words,
if the client does not invoke the service within the deadline time after its last invocation,
then the session will be lost.

Stateful services can be easily implemented where temporaneous communications
are available, for example if the client and provider are in proximity or if they reside in
connected networks. Session loss occurs in case the provider becomes unreachable for a
time that exceeds the session deadline. In network environments where communications
are not guaranteed like in disconnected MANETs, session loss becomes more frequent. To
enable stateful service invocations in disconnected MANETs, session management mech-
anisms must be implemented. Session management should provide session recovery on
another provider in case the session is lost at the original provider.

When services have to maintain state data in memory (i.e. stateful session) between
invocations, the client becomes strongly bound to the provider. State messaging [109]
presents a solution, it delegates the storage of state data to the exchanged messages in-
stead of saving the state data in memory. The state data is added to the request and
response messages in order to keep the other party up-to-date. When a client issues a re-
quest to a service provider, the provider creates the necessary data structures to maintain
the state and appends this state data to the response. The client processes the response
and updates the state data that is appended to the next request message.

The solution I propose builds on the same state messaging mechanism. In case an
originally intended provider would become unreachable, the client holds the needed
state information enabling another compatible provider to resume.

Stateful services presume that there would be sequential request-response cycles. The
first client request opens a new session at the provider, the first response returns the
session identifier to the client, so that the latter could work with its session later on. The
first request-response cycle is considered as a stateless invocation, so that the default
invocation solution previously presented still apply. Once the client receives the first
response from a provider, then all consecutive requests will be destined to this provider.
A session context holding up-to-date state information is returned with every response,
so that when the sessions is lost, another provider can resume the session from where it
ended.

77

Chapter 6. Service Invocation Solutions

Let’s take the example application of a mortgage calculator. The service calculates
monthly payments based on the global amount, the number of years, and the interest
rate. Figure 6.17(a) shows the first client request message: attribute s:session="0" asks
the provider to open a session, and the payload contains the mortgage capability’s SOAP
inputs. Figure 6.17(b) shows the the service’s response: the s:session attribute holds
the session’s identifier for future reference, the payload contains the state data as well
as the SOAP response. Figure 6.17(c) shows the second client request: containing the
session reference, the state data, and invoking the extra capability to check how an extra
monthly payment reduces the number of years. By the time the client sends its second
request, suppose provider P2 has become out of reach. Since the second request has the
session context, it would not be hard for provider P1 to pick up from where P2 left off.
Figure 6.17(d) shows P1’s response: containing the same session identifier to show the
client that his session was recovered, and the updated state data, and the SOAP response.

78

6.7. Remote invocations of stateful services

header attributes

id ="b89f6db2..38ca870d"
s:type ="request"
s:session ="0"
s:issuedAt ="2010-06-14T09:00:00"
deadline ="2010-06-14T09:20:00"
source ="alicemobile"
destination ="P1"
s:service ="S1"
s:capability ="mortgage"

<SOAP-ENV:Body>

<mortgage>

<amount xsi:type=’xsd:int’>170000</amount>

<years xsi:type=’xsd:int’>20</years>

<interest xsi:type=’xsd:int’>7</interest>

</mortgage>

</SOAP-ENV:Body>

(a) First Request Message

header attributes

id ="69ae4c15d..45fb1c1a"
s:type ="response"
s:session ="UFG7656ZDT"
s:issuedAt ="2010-06-14T09:02:00"
deadline ="2010-06-14T09:20:00"
source ="P2"
destination ="alicemobile"
s:service ="S1"
s:capability ="mortgage"
s:requestID ="b89f6db2..38ca870d"
s:requestAt ="2010-06-14T09:00:00"
s:doubt ="0"

<state>

<amount xsi:type=’xsd:int’>170000</amount>

<years xsi:type=’xsd:int’>20</years>

<interest xsi:type=’xsd:int’>7</interest>

</state>

<SOAP-ENV:Body>

<mortgage>

<monthly xsi:type=’xsd:int’>1318</monthly>

</mortgage> </SOAP-ENV:Body>

(b) P2’s Response to (a)

header attributes

id ="19c6d7e3d..a6ff6085"
s:type ="request"
s:session ="UFG7656ZDT"
s:issuedAt ="2010-06-14T09:10:00"
deadline ="2010-06-14T09:30:00"
source ="alicemobile"
destination ="P2"
s:service ="S1"
s:capability ="extra"

<state>

<amount xsi:type=’xsd:int’>170000</amount>

<years xsi:type=’xsd:int’>20</years>

<interest xsi:type=’xsd:int’>7</interest>

</state>

<SOAP-ENV:Body>

<extra>

<monthly xsi:type=’xsd:int’>200</monthly>

</extra> </SOAP-ENV:Body>

(c) Second Request Message

header attributes

id ="d879d02c2..8b662e5"
s:type ="response"
s:session ="UFG7656ZDT"
s:issuedAt ="2010-06-14T09:13:00"
deadline ="2010-06-14T09:30:00"
source ="P1"
destination ="alicemobile"
s:service ="S1"
s:capability ="extra"
s:requestID ="19c6d7e3d..a6ff6085"
s:requestAt ="2010-06-14T09:10:00"
s:doubt ="0"

<state>

<amount xsi:type=’xsd:int’>170000</amount>

<years xsi:type=’xsd:int’>15</years>

<interest xsi:type=’xsd:int’>7</interest>

</state>

<SOAP-ENV:Body>

<extra>

<years xsi:type=’xsd:int’>15</years>

</extra> </SOAP-ENV:Body>

(d) P1’s Response to (c)

Figure 6.17: Stateful sequential invocation messages
79

Chapter 6. Service Invocation Solutions

6.8 Public invocations

All previous invocation examples of this chapter, are private scope invocations. A
requesting client is the final destination of a provider’s response. In other words, a re-
sponse message is useless to some other client node, even though this other client node
might be willing to relay the message.

Public scope.
An invocation is of public scope if the provider’s response may interest many possible

clients. This type of behavior relates more to information sharing applications, like a
weather information service for example. Figure 6.18 shows a public request-response
invocation example of a weather service.

header attributes

id ="7a3430ad..58ca8d5a"
s:type ="request"
s:issuedAt ="2010-06-10T09:00:00"
deadline ="2010-06-10T09:20:00"
source ="alicemobile|public"
destination ="P1"
s:service ="S1"
s:capability ="weather"

payload

<SOAP-ENV:Body>

<weather>

<city xsi:type=’xsd:string’>vannes</city>

</weather>

</SOAP-ENV:Body>

(a) Public Request Message

header attributes

id ="9166c320..df74f9b34"
s:type ="response"
s:issuedAt ="2010-06-10T09:02:00"
deadline ="2010-06-11T00:00:00"
source ="P1"
destination ="alicemobile|public"
s:service ="S1"
s:capability ="weather"
s:requestID ="7a3430ad..58ca8d5a"
s:requestAt ="2010-06-14T09:00:00"
s:doubt ="0" />

binary payload

<requestSOAP>

<weather>

<city xsi:type=’xsd:string’>vannes</city>

</weather> </requestSOAP>

<SOAP-ENV:Body>

<weather>

<temperature xsi:type=’xsd:int’>16

</temperature>

<html>...

...</html> </weather> </SOAP-ENV:Body>

(b) Public Response Message

Figure 6.18: Public invocation messages

The client issues its request with a source="alicemobile|public" attribute, with

80

6.9. Perspectives

the SOAP input in the payload. The provider answers with a message containing the
destination="alicemobile|public attribute", the SOAP response appended to the
SOAP request in the payload. For private invocations, the deadline needed by a client
is supposed to be the same for the request and the response messages. In other words,
there is no need for these messages to stay alive and cached in the network beyond the
requesting client’s deadline. In the case of a public scope invocation, the response may
still be valid after the requesting client’s deadline. Thus this response is given a proper
deadline in order for other clients to benefit from it. In the above weather example,
the returned weather information will stay valid for the rest of the day, therefore the
response’s deadline is set accordingly.

6.9 Perspectives

6.9.1 Semantic invocation

Future mobile devices will have an increase in computing and storage power, that
will enable them to handle complex ontology languages and semantic systems. That
will eventually allow semantic only invocations, where no a priori discovery is needed.
For example, a client sends an English written request that will semantically be directed
and handled to the proper service that will semantically process and respond back to the
client. Even though our blind request can somehow achieve this same goal, but it is based
on semantic keyword comparison and filtering and does not resort to any ontologies. My
main reason not to use ontologies is that the ontology language has to be known by all
the entities of the service platform, this situation can be divided in two points:

• Reduced size specific domain ontologies that must be distributed to all service en-
tities. Problems occur if this ontology is updated on the service side and not on the
client side for example.

• Full blown ontology languages including specific and large domain ontologies and
spoken language ontologies. Actual mobile devices are not capable of handling the
large storage space nor the computational power needed for such semantic systems.

6.9.2 Complex request

Since a request-response cycle’s completion time can be unpredictably long, it is help-
ful to group sequential requests into a one time complex request. Of course this is not
obvious for most stateful applications since the client usually issues a stateful request
after checking the result of a previous response. But a simple use case of a complex re-
quest would be to use the same capability many times with different input variations (see
example in Figure 6.19).

81

Chapter 6. Service Invocation Solutions

header attributes

id ="c90b0fde6..e2852b47"
s:type ="request"
s:session ="0"
s:issuedAt ="2010-06-14T09:00:00"
deadline ="2010-06-14T09:20:00"
source ="alicemobile"
destination ="P1"
s:service ="S1"
s:capability ="mortgage"

binary payload

<SOAP-ENV:Body>

<mortgage>

<amount xsi:type=’xsd:int’>170000</amount>

<years xsi:type=’xsd:int’>20</years>

<interest xsi:type=’xsd:int’>7</interest>

</mortgage>

</SOAP-ENV:Body>

<SOAP-ENV:Body>

<mortgage>

<amount xsi:type=’xsd:int’>170000</amount>

<years xsi:type=’xsd:int’>15</years>

<interest xsi:type=’xsd:int’>7</interest>

</mortgage>

</SOAP-ENV:Body>

Figure 6.19: A complex request example

6.10 Summary

This chapter described the full invocation solutions of the service platform. Invo-
cations must be tolerant to communication delays due to disconnected network envi-
ronments. The chapter presented the service provider’s kinds found in mobile environ-
ments, where there might be more than one providers offering the same business service.
The chapter presented remote invocation solutions, detailing how a client can issue a
content-based invocation request to all providers of a business service, and how these
providers respond back, and how network healing techniques eliminate unneeded mes-
sages. It also presented how a client can restrict the invocation to specific providers. In
case of a discovery failure, a client can even send a blind invocation request. The chapter
also presented stateful remote invocation solutions via session management. Public in-
vocations solutions were presented, for cases where a response can benefit more than one
requesting client. And it presented a future perspectives. The next chapter presents the
implementation of the service platform as a middleware, and shows evaluations using
simulated network scenarios.

82

7
Implementation and Evaluation

Contents
7.1 Introduction . 83

7.2 The service platform’s middleware . 83

7.3 Simulation environment and evaluation metrics 86

7.4 Discovery evaluation . 87

7.5 Invocation evaluation . 89

7.5.1 Effects of invoking multiple providers 89

7.5.2 Network healing . 91

7.5.3 Session recovery for stateful invocations 93

7.6 Conclusion . 94

7.1 Introduction

This chapter details the middleware implementation of the service platform described
in the previous chapters. Section 7.2 presents the middleware’s layout. It consists of
a service layer where service agents reside, they access the communication layer via a
publish/subscribe interface. Using this implementation, I conducted simulations in as
realistic as possible conditions in order to evaluate the service platform (Section 7.3). The
main objective is to assess the performance of service discovery (Section 7.4) and invoca-
tion (Section 7.5) in terms of response time and network load. Section 7.6 concludes the
chapter.

7.2 The service platform’s middleware

The service platform is structured in two layers. Figure 7.1 gives an overview of its
architecture. The first layer (DiSWAN) is a high-level service layer that is in charge of
all service-oriented processing, enabling discovery and invocation interactions between
clients and providers. The second layer (DoDWAN) is a communication layer taking
care of all data level exchanges, resulting in a communication system fully adapted to
disconnected network environments.

83

Chapter 7. Implementation and Evaluation

Figure 7.1: Architecture of the service platform

From the service layer’s point of view, a message is sent from a source node to the
network using a message publication. The message is disseminated in the network ac-
cording to its content; it is received at a node that has previously provided a predicate
matching this message, via a subscription operation. Even though the architecture sep-
arates the service and communication layers, their are interconnected via the publish/-
subscribe interface. Messages created by the service layer are directly exploitable by the
communication layer, and informations related to the communication layer are accessible
to the service layer.

One service platform is operational on each network node. It enables a node to act
as a provider and/or a client. The service platform can host several provider agents and
several client agents. The service delivery is carried out in two phases of client-provider
interactions. The first phase is the service discovery during which a provider should
advertise its service in the network for potential clients to discover. The second phase
is the service invocation during which a client invokes providers. The communication
protocol was described in Chapter 4, and the discovery and invocation protocols were
described in Chapters 5 and 6.

• Each provider agent exposes an installed business service. When the user installs
a service, a provider agent is created. The provider agent is responsible for creat-
ing the descriptor message. It puts the description of functional and non-functional
service properties as well as the node’s context properties in the descriptor mes-
sage’s payload. It fills the descriptor message’s header according to the descrip-
tion information. It advertises the descriptor by publishing it to the network. The
provider agent also acts as a container for installed business classes. It subscribes
to receive request messages, executes the service invocation, and then publishes
response messages to the invoking clients. The provider agent also performs the
reactive competition healing technique and creates provider-initiated healing mes-
sages.

• Each client agent needs to consume an exposed service corresponding to a defined

84

7.2. The service platform’s middleware

discovery predicate. When the user defines a set of needs using a discovery pred-
icate, a client agent is created. The client agent subscribes for interesting services
using the predicate. Received descriptors are collected in the directory. When an
invocation is needed, the client agent selects a descriptor from the directory. It cre-
ates and publishes request messages, and subscribes to receive response messages.
According to the user’s needs, the client agent defines the response policy, which is
either multiple-response or first-response. It also defines the type of healing, which
is either safe or aggressive. In case the healing is safe, the client agent creates client-
initiated healing messages after satisfaction.

• The directory module acts as a storage of discovered service descriptors. It collects
the descriptors that interest the client agents. It provides a selection interface used
by a client agent to get contextually appropriate descriptors. It also can notify a
client agent of the presence of a contextually appropriate descriptor in order to
opportunistically start an invocation.

• The node controller manages the lifecycle of the provider agent and client agent
modules. The controller applies node-wide preferences. It takes the human user’s
general interests, it subscribes using these interests for matching messages, which
helps the node participate in relaying messages that are not necessarily used by
the provider and client agents. This altruist behavior is generally recommended,
specially in highly disrupted network environments. The controller also subscribes
for healing messages in order to make the node participate in network healing. It
cancels cached messages that correspond to a received healing message.

• The DoDWAN communication layer implements a publish/subscribe interface over
a store-carry-and-forward module in order to enable content-based message dis-
semination. It holds the node’s cache where all the messages published by the
upper layer and received from the network are stored. The cache is responsible for
deleting obsolete messages (due deadline).

A proof of concept prototype of DiSWAN is implemented in Java (5500 lines of code).
The wsdl4j.jar 1 library is used for manipulating WSDL descriptions, and the saaj.jar 2

library is used for manipulating SOAP invocation requests and responses. The lower
layer uses a Java implementation of the DoDWAN 3 protocol.

In order to assess the performance of the service platform, the middleware is inter-
faced with the MADHOC network simulator [110]. MADHOC provides a customizable
simulation area, a customizable set of mobility models, and models for the propagation
of the radio waves. Contrary to more popular wireless network simulators, MADHOC
allows us to run the actual code of the middleware on every network node, hence taking
into account not only algorithmic issues but all the implementation choices as well.

1http://sourceforge.net/projects/wsdl4j
2http://java.net/projects/saaj
3http://www-valoria.univ-ubs.fr/CASA/DoDWAN

85

Chapter 7. Implementation and Evaluation

7.3 Simulation environment and evaluation metrics

I conducted simulations in order to evaluate the service platform. The main objective
is to assess the performance of service discovery and invocation (in terms of response
time and network load) in as realistic as possible conditions.

Environment.
Network environments present different topologies and mobility behaviors that di-

rectly influence the quality of the service provision. The most widely used environment
for simulations in the literature so far presents a square area with a uniform node concen-
tration and a random way point mobility behavior. Simulations using this basic type of
environment produce very good communication qualities because of its uniform mobil-
ity, and to some extent it enables predictability where any two nodes can eventually meet
in some point of time. For the simulations presented in this chapter, I opted for a more
realistic urban environment with buildings and mobility restrictions (see Figure 7.2). In
effect, the mobility of the nodes is restricted to predefined routes between buildings, the
nodes cannot access all the buildings of the simulation area, and they have a random
volatility behavior.

(b) Communication islands(a) Mobility area and radio ranges

Figure 7.2: Simulation environment of a disconnected MANET. (a) The area represents a
university campus where nodes communicate using Wi-Fi in ad hoc mode (radio ranges
are illustrated). (b) The network presents disconnected islands of connectivity.

The simulation environment consists of a 500x900m2 area. Nodes in the network
represent users equipped with Wi-Fi capable handheld devices. Nodes live in buildings,
they take roads to go from one building to another at human walking speeds (5 km/h).
At any time a node may stop for a random period of time (between 1 and 6 minutes).
Nodes are volatile: a node is switched on and off in a random manner. Nodes have
different wireless ranges whether they are indoor (20m) or outdoor (50m). A node has
affinities with some buildings and is not capable of accessing all the environment areas
during a simulation run. In effect, a node stays inside its building on 70% of its movement
decisions.

This environment corresponds to realistic disconnected environments with unpre-
dictable mobility behaviors. The disconnected nature of the network is depicted in Fig-
ure 7.2(b), where nodes form separate islands of connectivity.

A service platform is deployed on each node of the network. Some nodes play the role
of providers, some other nodes play the role of clients. The remaining nodes that are nei-

86

7.4. Discovery evaluation

ther providers nor clients, can sometimes participate as simple messages relays. A node
becomes a relay node if it is interested in the contents of the disseminating messages.

Evaluation metrics.
Simulations help evaluate the satisfaction of clients. Client satisfaction parameters are

divided into discovery satisfaction and invocation satisfaction. Discovery satisfaction
delay DSD is the delay between the time a client subscribes its predicate to find a suitable
service and the time when this client receives a service descriptor. Invocation satisfaction
delay ISD is the delay between the time the client publishes its request to the service and
the time when it receives its response. In consequence, a client needs a delay of (DSD +
ISD) in order to complete its first invocation. Every stateless invocation afterwords will
only take an ISD delay to complete. In case of stateful invocations it takes (DSD + n.ISD)
delay to complete n invocations, where ISDs are not necessarily equal.

Simulations also estimate the cost of discovery and invocation in terms of the load on
the radio medium. For this purpose, I measure the number of messages sent and received
by each network node, as well as the global amount of transmitted data.

In an environment of N nodes containing p provider nodes of the same business ser-
vice S1, r = (100 * p / N) represents the percentage of service replication in the environ-
ment.

7.4 Discovery evaluation

The performance of discovery is directly related to the performance of the underlying
communication protocol, since the providers are simply publishing their descriptors and
the clients are simply subscribing in order to collect these descriptors.

The simulation environment is populated with 80 network nodes, among which 8
play the role of service providers and 32 act as service clients. The remaining 40 nodes are
neither providers nor clients but are used as simple message relays in some simulation
runs. Four different business services are deployed on the providers; each service is
actually deployed twice in order to obtain 8 provider nodes. Four different types of
clients are present, forming four sets of eight clients targeting the same service. In this
environment, the percentage of replication is r= 100 * 2 / 80 = 2.5%.

At the start of a simulation run, providers and clients are randomly distributed in the
4 buildings. And from the start, providers publish their descriptors and clients subscribe.
The experiment consists in running three simulation scenarios, all with the same node
mobility model but with various behaviors with respect to message dissemination:

1. The first simulation scenario is used as reference. All 80 nodes have disabled their
store-carry-and-forward module of the communication layer. As a consequence, no
network-wide dissemination is possible. In this proximity scheme, providers and
clients must be in wireless range to interact. This scenario is intended to model
an approach that gives results very similar to what could be obtained with more
classical one-hop broadcast-based discovery methods. Due to the absence of dis-
semination, providers periodically advertise their descriptors every 15 seconds.

87

Chapter 7. Implementation and Evaluation

2. In the second simulation scenario, only the 8 providers and 32 clients participate
selectively in the message dissemination performed by the communication layer.
The remaining 40 nodes are not interested in relaying any type of message. The low
level gossiping of the communication protocol has a period of 15 seconds between
catalog announcements.

3. The third simulation scenario is similar to the second, but now, the 40 nodes that are
neither providers nor clients become interested in relaying messages. So we obtain
40 provider and client nodes that relay the messages and effectively consume the
messages relative to service discovery and invocation they are concerned with, and
40 additional nodes just helping in the message dissemination process, regardless
of the type of service involved.

(a) Client Satisfaction

(b) Network Load

Figure 7.3: Performance of discovery

The discovery satisfaction ratio is defined as the percentage of clients that have dis-
covered the service they targeted at a given time. Figure 7.3(a) presents the results ob-
tained for the three simulation scenarios described above. After 1800 seconds only 30%
of the clients are satisfied when communications are restricted to one-hop transmissions
(scenario 1). After the same period of time, the use of network-wide dissemination has a
drastic impact on the speed of discovery: 90% of the clients have discovered the service
they wanted when only half of the nodes (that is the providers and the clients) participate

88

7.5. Invocation evaluation

in the dissemination (scenario 2 with 40 relays). This percentage reaches 100% when all
the nodes are ready to play the role of relay (scenario 3 with 80 relays).

Resorting to network-wide dissemination for service advertisement yields a higher
number of messages when compared to the one-hop broadcast-based method. However,
the gossiping protocol implemented in DoDWAN has been designed so as to minimize
the number and the size of the exchanged messages, thus reducing the actual load. Fig-
ure 7.3(b) plots the measured load of the network over time in the three considered sce-
narios. This load is expressed as the cumulative amount of data (in kB) transmitted by all
nodes in the wireless medium. The figure confirms that the load in the one hop discov-
ery increases linearly, because of the periodic advertisements of service descriptors. The
curves for the scenarios involving network-wide dissemination have a higher slope but
tends to flatten after a while. It can be noticed that the number of relays can be chosen to
obtain a good compromise between the client satisfaction and the network load. In this
example, maintaining the number of relays to 40 have induced a reasonable load while
offering a fairly good satisfaction ratio.

7.5 Invocation evaluation

The simulation scenario for evaluating the invocation consists of populating the en-
vironment with N=100 network nodes. The same business service is deployed with a
variable replication percentage, r changes from one simulation run to another. There
is only one client node seeking this business service. For every value of r, 50 runs are
performed in order to obtain an averaged distribution curve for DSD and ISD client sat-
isfaction delays. In each run, the client starts by discovering the service, and the DSD
is measured. After discovery, the client behavior is to perform 20 invocations randomly
executed throughout the duration of the simulation run, in order to plot a distribution
curve for ISD. The network load is also measured. Measures are averaged over the 50
runs.

The following simulation results show the interest of taking advantage of service
replication through the use of content-based invocations in Section 7.5.1. In addition,
they show the performance of the proposed network healing solution on reducing the
network load in Section 7.5.2. They also show that the service session management en-
hances session recovery in Section 7.5.3.

7.5.1 Effects of invoking multiple providers

The content-based approach I followed is intended to accelerate the invocation pro-
cess when several providers propose the service. Figure 7.4 shows, for several service
replication rates, a comparison of the invocation satisfaction delay obtained when (a) the
invocation requests are sent with destination-based messages to a pre-discovered provider
and (b) content-based invocation requests can reach any compatible provider and the
client exploits the first received response. Each curve plots the cumulative distribution
of the percentage of successful invocations against the measured average delay. As an
example, in Figure 7.4-(b), we see that around 70% of the invocations are completed in
less than 10 minutes when the service replication is of 5% (that is, when the service is pro-

89

Chapter 7. Implementation and Evaluation

Figure 7.4: Effects of content-based invocations of multiple providers

vided by 5 of the 100 nodes). The results show that the use of content-based invocation
effectively takes advantage of service replication: the more the percentage of replication
the quicker the curves reaches high values, whereas replication has little effect when
destination-based invocations are used. The curves in Figure 7.4-(a) show for example
that, when considering a percentage of 80% of the invocations completed, the satisfac-
tion delay passes from 24 minutes with no replication to 20 minutes with 30% replication
(compared to a change from 24 to 3 minutes when using content-based invocations in the
same conditions). Moreover, it is worth noticing that the gain brought about by content-
based invocations is significant even for a low percentage of service replication.

In the remaining of the presented results, I consider only one value for the service
replication, fixing it at a 10%. A low value has been chosen, knowing that the actual
replication rate could vary a lot according to the nature of the application services. Fig-
ure 7.5 plots the cumulative distribution of satisfaction for 10% replication.

Figure 7.5: Discovery and invocation satisfactions for 10% provider replication

90

7.5. Invocation evaluation

We can see that the client can have 100% discovery satisfaction in under 5 minutes of
delay from when he wished for a service till the time he received a compatible service
descriptor. Figure 7.5 also shows the cumulative distribution of succeeded invocations,
100% of succeeded invocations take less than 25 minutes to finish. In case a client has
only 10 minutes to wait for his response, then he has about 85% probability of success
(the invocation curve is the one found in Figure 7.4 with 10% replication).

7.5.2 Network healing

Provider replication increases the network load by adding extra response messages.
The healing protocol is used to clean up the network from redundant and unneeded
messages. Simulations show the effectiveness of this healing by measuring the network
load with and without healing. Simulations also show that the healing does not influence
the satisfaction of clients.

In order to show the effectiveness of the full healing solution proposed in the previous
chapter. I used content-based invocations in four simulation scenarios, and measured
their impact on the number of messages sent in the network as well as on the amount of
transferred data.

1. The first scenario does not use any healing, and is used as reference.

2. The second scenario puts in place the reactive competition (RC) mechanism per-
formed at provider nodes.

3. The third scenario uses the safe healing type. It includes the reactive competition
mechanism and adds healing messages initiated by the client. After receiving a
response, the client initiates the healing of its request and corresponding response
messages from the network.

4. The fourth scenario uses the aggressive healing type. It includes the reactive com-
petition mechanism and adds healing messages initiated by the providers them-
selves.

Figure 7.6(a) shows the cumulative distribution of the number of responses sent by
the providers against time when applying the four scenarios.

Table 7.1 shows the response reduction ratio of all scenarios. In comparison to the
first scenario, the number of sent responses is drastically reduced in scenarios 2, 3, and 4
(by a factor of up to 4.7).

(1) (2) (3) (4)

r=10% No Healing Reactive Competition Safe Healing Aggressive Healing

Reduction 192/192= 192/108= 192/62= 192/41=

Ratio 1 1.7 3 4.7

Table 7.1: Response reduction

91

Chapter 7. Implementation and Evaluation

Figure 7.6: Performance of healing

Interestingly, although the aggressive healing may theoretically delay useful responses
and even prevent them from arriving at the client, the results for the considered scenario
do not reveal such a loss. This is illustrated by the two dotted lines in Figure 7.6(b),
which represent the cumulative number of requests sent by the client and the cumulative
number of responses effectively received by this client (with aggressive healing applied):
responses are, as expected, slightly delayed, but the client eventually receives them all.
Furthermore, Figure 7.7 compares the client satisfaction ratio between scenarios 1 and 4,
responses are delayed in scenario 4 but they are not lost.

Figure 7.7: Ratio of received responses over requests

When considering the network load, the impact of network healing is even more im-
portant. Extra healing messages are added but they have a small footprint ('200 Bytes)
and they allow saving requests and responses (which may be of relatively large size). In
practice, the volume of the request and responses saved can largely compensate the vol-

92

7.5. Invocation evaluation

Figure 7.8: Cumulative load sent into the network medium

ume of extra control messages. This is confirmed by the results given in Figure 7.8. This
figure plots the cumulative network load sent by all the nodes into the network medium
when no healing is applied as well as when the full healing is applied (scenarios 1 and
4). The network load is divided in two values: the cumulative useful payload (i.e. the re-
quests and responses), and the cumulative size of control messages (at the service and the
communication level, including extra control messages due to healing). We considered
an average size of 26 kB for requests and responses. As expected, the amount of control
data slightly increases when the healing is activated, but this extra cost is very small com-
pared to the amount of data that is required for redundant requests and responses when
no healing is applied: for the entire experiment, 27 MB of control messages are added but
142 MB of useful payload are saved.

7.5.3 Session recovery for stateful invocations

I compared the efficiency of the session recovery mechanism based on content-based
invocation to a more classic approach used in fully connected MANETs. In this latter
approach, communication can only take place inside an island, using multi-hop trans-
missions that exploit a routing algorithm. I measured the time taken for session recovery
in a simulated scenario where a client tries to maintain a session with a service provider,
within which it periodically sends invocation requests with a 5-minute timeout. The ses-
sion is considered broken if the response has not arrived 5 minutes after the request is
sent. Each of the providers are randomly turned off and back on 5 times during a simu-
lation run.

In the routed scheme, the client iterates on the following steps: (1) it discovers a list
of providers that propose the service it wants by broadcasting a discovery request in
its entire communication island and by waiting for a discovery response; (2) it opens a
session with the first provider that responds; (3) it performs a sequence of invocations to
the chosen provider until the session is broken. The scenario with the proposed session
recovery scheme is simpler as the discovery phase has not to be repeated: after having

93

Chapter 7. Implementation and Evaluation

discovered the existence of the wanted service, the client iterates on the following steps:
(1) it performs a first content-based invocation, opening a session with the first provider
that responds; (2) it performs a sequence of destination-based invocations to this provider
until the session is broken. Figure 7.9 shows the cumulative distribution of the percentage
of session recovery in the two schemes.

Figure 7.9: Session management.

The content-based session recovery scheme clearly outperforms the routed scheme.
For example, with the content-based approach, 60% of the sessions are recovered in less
than 20 minutes whereas only 25% of the sessions are recovered in less that this same
duration with the routed scheme. Two main reasons explain this: the discovery phase
is performed only once, and the communication method is not limited to the communi-
cation island so it allows the client to reach any provider in the network when trying to
re-establish a session.

7.6 Conclusion

This chapter presented the implementation of the service platform as a middleware
architecture. The middleware consists of a service layer (DiSWAN) and a communication
layer (DoDWAN). Even though the platform separates the two layers to provide a clear
distinction between service layer’s protocols and communication layer’s protocols, the
agents of the service layer have direct access on message manipulation, which enables
a better cross-layer coordination. Using this middleware implementation, I conducted
simulations in a disconnected MANET environment in order to evaluate the discovery
and invocation protocols. The main objective is to assess the performance in terms of
response time and network load. The performance of discovery is directly related to
those of the underlying communication layer. Simulations measure the client satisfaction
with discovery, and the time delays needed for this discovery. Simulations also measure
the client satisfaction with invocation. They show the benefits of content-based invoca-
tions in providing faster response times and better satisfaction (when invoking a business
service independently of its providers). Simulations also show the drastic reduction of
redundant and leftover messages when applying the healing mechanisms, without influ-

94

7.6. Conclusion

encing the proper execution of the invocation. In addition, simulations showed that when
sessions are needed, the proposed solution provides better session recovery in compari-
son to traditional routing techniques.

Concerning the simulation itself, even though I tried to create a university campus
environment with as realistic as possible conditions, still node behavior could be very
different in the real world. Moreover, I actually conducted more simulations by varying
many parameters. For example, when letting all the nodes move freely in all network
areas, the simulation produces better results from the ones presented in this chapter.
And when nodes are restricted to their buildings with very limited movement between
buildings, the simulation produces worse results with a high rate of delivery failures.
The results presented in this chapter restrict nodes to their buildings on 70% of their
movement decisions, which lets a number of the nodes at a given time move between
buildings in order to enable network-wide dissemination. In addition, the presented
simulations may be specific to the university campus environment, and the performance
of the platform may change in other types of environments.

95

Chapter 7. Implementation and Evaluation

96

8
Conclusions and Perspectives

8.1 Conclusions

This thesis investigated the benefits and challenges of using the service-oriented com-
puting in disconnected mobile ad hoc network (MANET) environments. My overall ob-
jective was to build a service middleware platform for mobile nodes that supports the
execution of service-oriented applications in disconnected MANETs.

In order to design this service platform, I studied the service-oriented computing
approach and how communications can be provided in the targeted environments. I
presented the state of the art of both communications and service-oriented systems in
mobile ad hoc networks.

MANETs are spontaneously formed networks that do not need any form of infras-
tructure. In disconnected MANETs, the network contains disconnected islands between
which traditional routing protocols do not work. In such disconnected networks, com-
munications must be tolerant to disruptions, and protocols must use a store-carry-and-
forward mechanism to enable network-wide communications.

The service-oriented computing (SOC) model seems suited for ad hoc environments
because it emphasizes the decoupled nature of its entities. Effectively, the decoupling
between the client and the provider entities becomes essential in mobile environments
with a fluctuating availability of providers, and where end-to-end communications are
not guaranteed. Still, in existing service-oriented systems, providers are usually sup-
posed to be always available, as it is the case for example in Web services. Providers are
also assumed to be continuously reachable in wireless mobile environments, where local
connected networks can be created using Wi-Fi hotspots, or by creating ad hoc networks
using proximity one-hop or routed multi-hop protocols. Although the service-oriented
approach seems relevant for disconnected MANETS, implementing distributed services
for such networks still poses several challenges. Not only network-wide communication
features must be provided, in spite of constant network fragmentation, but aspects such
as the unpredictable reachability of the providers, or potential communication delays,
must be taken into account at the service level.

I proposed a service platform implemented as a middleware of two layers: a com-
munication protocol resides in the lower layer, and discovery and invocation protocols
reside in the higher layer.

Due to the high communication constraints imposed by disconnected environments,

97

Conclusions

I used an opportunistic and content-driven protocol (DoDWAN) to implement the lower
layer of the platform. Chapter 4 described the inner workings of the protocol, implement-
ing a message store-carry-and-forward paradigm, opportunistic gossiping, and content-
based matching. A publish/subscribe API interfaces the protocol with the upper service
layer. The communication challenges of disconnected MANETs impose that the com-
munication layer enable the decoupling at the three time, synchronization, and space
dimensions. With unpredictable availability, there is a high probability that two service
entities wanting to communicate are not active at the same time or that they reside in
different parts of the network (islands). In addition, a network node cannot be blocked
after producing a message, and likewise it cannot be blocked while waiting to receive a
message. Furthermore, two interacting nodes do not need to know and hold references
to each other. The producer of information does not know how many nodes are consum-
ing this information. Likewise, the consumer of information does not know how many
producers it is getting its information from. These communication decoupling challenges
are well met by the DoDWAN communication protocol.

I proposed a discovery protocol for the service layer of the platform. Chapter 5 pre-
sented the life-cycles of the client and provider nodes. It also presented the elements
that construct the discovery protocol, which are the description and advertisement at the
provider side, and collection and selection at the client side. Service description uses
functional and non-functional properties. Providers advertise their services by adding
context information to the descriptions. Discovery is based on a peer-to-peer only ar-
chitecture using local directories at each node, where a client collects only interesting
services. The discovery relies on the content-based message dissemination of the un-
derlying communication layer, giving an aspect of cross-layer design. After collecting
interesting service, the client selects the most appropriate one to invoke.

The main purpose is to improve the loose coupling between the providers and the
consumers of services. The more knowledge about the provider that a client has to re-
member and keep up-to-date, the more ties exist between the provider and client enti-
ties, and it becomes harder to handle a change of availability of the provider. In case
the provider is no longer available, the client in the worst case needs to rediscover other
providers, hence reducing the performance of the service provision. Content-based invo-
cation solutions help increase loose coupling and enhance the system’s performance.

I also proposed invocation solutions for the service layer. Chapter 6 assumes that in
mobile environments, there might be a multitude of providers offering the same busi-
ness service. Content-based invocations are used to benefit from this service replication.
In the default remote invocation behavior, a client creates a functional request according
to a discovered service provider. The client publishes its request message to the atten-
tion of the discovered provider, in addition to other compatible providers. Compatible
providers can receive the client’s request. A provider creates a response message and
publishes it back to the client. According to the client’s needs, it may get satisfied when
receiving the first response or it may collect multiple responses to be satisfied. The in-
vocation completes when the client gets satisfied. After being satisfied, the client can
initiate the healing of residual request and response messages from the network. The
healing of response messages can also be initiated by the providers themselves according
to the priority of the response messages. The client also has the possibility to restrict this
default behavior to specific provider destinations. In worst-case scenarios, where a client

98

8.2. Perspectives

cannot collect any interesting service, blind invocation requests are used to overcome the
discovery failure. In addition, the chapter presented stateful remote invocation solutions
using session management and recovery.

And finally Chapter 7 presented the implementation of the service platform as a
middleware architecture. The middleware consists of a service layer (DiSWAN) and a
communication layer (DoDWAN). The platform separates the two layers to provide a
clear distinction between service layer’s protocols and communication layer’s protocols.
Still, the agents of the service layer have direct access to message creation and manipula-
tion. Using this middleware implementation, I conducted simulations in a disconnected
MANET environment, using as realistic as possible conditions in order to evaluate the
discovery and invocation protocols. The main objective was to assess the performance of
the middleware platform in terms of response time and network load. The performances
of discovery is directly related to those of the underlying communication layer. Simula-
tions measured the client satisfaction with discovery, and the time delays needed for this
discovery. Simulations also measured the client satisfaction with invocation. They con-
firmed the benefits of content-based invocations in providing faster response times and
better satisfaction (when invoking a service independently of its providers). Simulations
also showed the drastic reduction of redundant and leftover messages when applying
the healing mechanisms, without influencing the proper execution of the invocation. In
addition, simulations showed that when sessions are needed, the proposed solution pro-
vides better session recovery in comparison to traditional routing techniques.

8.2 Perspectives

In the following, I enumerate some interesting perspectives for future work.

Security
This work did not try to address security issues in the design of the service platform.

In MANET environments, the most obvious measure is to ensure the authenticity of mes-
sages disseminating in the network. Authenticity is hard to implement in mobile envi-
ronments, unless closed communities are created in order for them to identify each of
their members, which tends to go against the nature of mobile networks. Still, some sim-
ple measures could be implemented. For example a sender could include its signature in
its messages. Furthermore, the payload of messages could be encrypted for interactions
between trusted friends, which does not hinder the dissemination of messages based on
the contents of their headers, yet relay nodes might not accept to relay encrypted mes-
sages. Another example might be using authorized service access at the provider nodes
to control client invocations, which can hinder the performance of content-based invoca-
tions.

Semantic descriptions and ontologies
This thesis studies the challenges of disconnected mobile ad hoc networks from the

service provision point of view. It uses solutions for network-wide communication, and
proposes solutions for service discovery and invocation. One of the key novelties is en-
abling a service provider to accept the reception of a request initially created according to

99

Conclusions

the description of another provider. I believe it represents a transition in the service pro-
vision behavior from the traditional discovery-invocation technique to a an invocation
only technique.

Full-blown ontology languages provide specific and large domain ontologies and
spoken language ontologies. Yet, mobile devices are usually not capable of providing
the large storage space nor the computational power needed for such semantic systems.
Ontologies might eventually allow semantic-only invocations, where no a priori discov-
ery is needed. Even though the blind request mechanism proposed in this document can
somehow bypass discovery, it is based on keyword matching and does not resort to any
ontologies.

Ontology systems need the ontology language to be known by all the entities of the
network. A possible solution might be to use reduced size specific domain ontologies
that would be distributed to all nodes. Yet, synchronization problems might occur if this
ontology was updated on the service side and not on the client side. One can imagine the
extension for pure ad hoc networks, where nodes can connect to the internet from time
to time in order to install or synchronize their ontologies.

Adaptive service provision
The proposed service platform provided adaptation mechanisms namely at the selec-

tion stage where a client agent selects the best provider according to the context proper-
ties. This adaptation can be further enhanced in order to enable a better service provi-
sion, where the needed quality of service properties are adapted to the available quality
of service properties. Available QoS can represent hardware resources (e.g. processing,
storage), and network resources (how well the node can communicate to other nodes),
and context properties (e.g. location information, availability). Applications can declare
their QoS needs (e.g. needed response time, use trusted providers). Automated adapta-
tion between these needed and available QoS gives place to a better provision process.
Figure 8.1(a) shows how quality of service adaptation between available and needed QoS
might be implemented in the service middleware. Figure 8.1(b) shows some use cases of
adaptation.

(a) QoS adaptation can be added to the mid-
dleware

(b) Adaptation use case examples

Figure 8.1: Quality of service adaptation persperctives

100

8.2. Perspectives

Another form of adaptation is service-level adaptation: depending on the requester’s
requirements, the service provider’s capabilities, and the dynamic runtime conditions
such as service load. For example, a provider receives incoming requests and enables
prioritization according to predefined classifications, the request is then placed on the
appropriate priority queue. Another example can be that a provider makes sure the
number of requests per customer is within a predefined limit, and exceeding requests
are assigned a low priority. This automated resource management and adaptation can be
very challenging in disconnected MANETs.

Real world experiments
Recent experimentation campaigns were conducted at the campus of the "Université

de Bretagne Sud" (DoDWAN-Expe1). These campaigns collected the traces of contacts
between network nodes as well as the network traffic produced by the DoDWAN pro-
tocol. The evaluation of the service platform can be enhanced when using these real
contact traces in the simulation environment. Moreover, future works should perfect the
implementation and the API provided by DiSWAN to higher layers in order to create
applications and conduct experiments in real world environments.

1http://www-valoria.univ-ubs.fr/CASA/DODWAN-EXPE/

101

Conclusions

102

Personal Publications

1. Yves Mahéo and Romeo Said. Service Invocation over Content-Based Communi-
cation in Disconnected Mobile Ad Hoc Networks. In 24th International Conference
on Advanced Information Networking and Applications (AINA’10), pp. 503-510, Perth,
Australia, April 2010.

2. Romeo Said and Yves Mahéo. Toward a Platform for Service Discovery and Invo-
cation in Disconnected Mobile Ad Hoc Networks. In International Conference On
Embedded and Ubiquitous Computing (EUC 2008), Shanghai, China, December 2008.

3. Nicolas Le Sommer, Romeo Said, and Yves Mahéo. A Proxy-based Model for Ser-
vice Provision in Opportunistic Networks. In 6th International Workshop on Middle-
ware for Pervasive and Ad-Hoc Computing (MPAC’08), Louvain, Belgium, December
2008.

4. Yves Mahéo, Romeo Said, and Frédéric Guidec. Middleware Support for Delay-
Tolerant Service Provision in Disconnected Mobile Ad Hoc Networks. In Workshop
on Java and Components for Parallelism, Distribution and Concurrency at IPDPS’08, Mi-
ami, FL, USA, April 2008.

103

References

[1] Changling Liu and Jörg Kaiser. A Survey of Mobile Ad Hoc network Routing Pro-
tocols. Technical report, University of Magdeburg, 2005.

[2] Kevin Fall and Stephen Farrell. DTNRG, Delay Tolerant Networking Research
Group, IRTF Internet Research Task Force. www.dtnrg.org.

[3] GSM Alliance. GSM Technology. www.gsmworld.com.

[4] IEEE Standard for Information Technology. Telecommunications and informa-
tion exchange between systems- local and metropolitan area networks- specific
requirements- part 11: Wireless lan medium access control (mac) and physical layer
(phy) specifications. ANSI/IEEE Std 802.11, 1999 Edition (R2003), pages i –513, 2003.

[5] IEEE Standard for Information Technology. Telecommunications and information
exchange between systems - local and metropolitan area networks - specific re-
quirements. - part 15: Wireless medium access control (mac) and physical layer
(phy) specifications for wireless personal area networks (wpans). IEEE Std 802.15-
2002), 2002.

[6] Stephan OLARIU and Michele C. WEIGLE, editors. Vehicular Networks: From Theory
to Practice. Chapman & Hall/CRC Computer and Information Science Series, 2009.

[7] Bartosz Wietrzyk, Milena Radenkovic, and Ivaylo Kostadinov. Practical MANETs
for Pervasive Cattle Monitoring. In ICN, pages 14–23, 2008.

[8] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh, and
Daniel Rubenstein. Energy-efficient computing for wildlife tracking: design trade-
offs and early experiences with zebranet. In ASPLOS-X: Proceedings of the 10th in-
ternational conference on Architectural support for programming languages and operating
systems, pages 96–107, New York, NY, USA, 2002. ACM.

[9] Alex Pentland, Richard Fletcher, and Amir Hasson. Daknet: Rethinking connectiv-
ity in developing nations. IEEE Computer, 37(1):78–83, 2004.

[10] Thomas Clausen, Christopher Dearlove, and Philippe Jacquet. The optimized link
state routing protocol version 2, IETF, draft-ietf-manet-olsrv2-11, October 2010.

[11] Ian Chakeres and Charles Perkins. Dynamic manet on-demand (dymo) routing,
IETF, draft-ietf-manet-dymo-21, January 2011.

[12] Zhensheng Zhang and Qian Zhang. Delay/disruption tolerant mobile ad hoc net-
works: latest developments: Research articles. Wireless Communications and Mobile
Computing, 7(10):1219–1232, 2007.

[13] Zhensheng Zhang. Routing in Intermittently Connected Mobile Ad Hoc Networks
and Delay Tolerant Networks: Overview and Challenges. IEEE Communications
Surveys and Tutorials, 8(1):24–37, January 2006.

[14] Luciana Pelusi, Andrea Passarella, and Marco Conti. Opportunistic Networking:
Data Forwarding in Disconnected Mobile Ad Hoc Networks. IEEE Communications
Magazine, November 2006.

105

References

[15] Kevin Fall, Wei Hong, and Samuel Madden. Custody transfer for reliable delivery
in delay tolerant networks. Technical report, Intel Research Berkeley, 2003.

[16] Amin Vahdat and David Becker. Epidemic routing for partially connected ad hoc
networks. Technical report, Duke University, 2000.

[17] Mirco Musolesi, Cecilia Mascolo, and Stephen Hailes. Emma: Epidemic messaging
middleware for ad hoc networks. Personal Ubiquitous Computing, 10(1):28–36, 2005.

[18] Khaled A. Harras, Kevin C. Almeroth, and Elizabeth M. Belding-Royer. Delay
tolerant mobile networks (dtmns): Controlled flooding in sparse mobile networks.
In In IFIP Networking Conference, Ontario, CANADA, May 2005.

[19] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra.
Spray and wait: an efficient routing scheme for intermittently connected mobile
networks. In WDTN ’05: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-
tolerant networking, pages 252–259, New York, NY, USA, 2005. ACM.

[20] Chiara Boldrini, Marco Conti, and Andrea Passarella. Context and resource aware-
ness in opportunistic network data dissemination. In The Second IEEE WoWMoM
Workshop on Autonomic and Opportunistic Communications (AOC 2008), Newport
Beach, CA, USA, June 2008.

[21] Anders Lindgren, Avri Doria, and Olov Schelen. Probabilistic routing in inter-
mittently connected networks. In Petre Dini, Pascal Lorenz, and Jose Neuman
de Souza, editors, Service Assurance with Partial and Intermittent Resources, volume
3126 of Lecture Notes in Computer Science, pages 239–254. Springer Berlin Heidel-
berg, 2004.

[22] Antonio Carzaniga and Alexander L. Wolf. Content-based Networking: A New
Communication Infrastructure. In NSF Workshop on an Infrastructure for Mobile and
Wireless Systems, number 2538 in LNCS, pages 59–68, Scottsdale, Arizona, October
2001. Springer-Verlag.

[23] Paola Costa, Mirco Musolesi, Cecilia Mascolo, and Gian Petro Picco. Adaptive
Content-based Routing for Delay-tolerant Mobile Ad Hoc Networks. Technical
report, UCL, August 2006.

[24] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2), 2003.

[25] Julien Haillot and Frédéric Guidec. A Protocol for Content-Based Communication
in Disconnected Mobile Ad Hoc Networks. In IEEE 22nd Int. Conf. on Advanced
Information Networking and Applications (AINA’08), Okinawa, Japan, March 2008.

[26] Julien Haillot and Frédéric Guidec. A Protocol for Content-Based Communication
in Disconnected Mobile Ad Hoc Networks. Journal of Mobile Information Systems,
6(2):123–154, 2010.

[27] Thomas Erl. SOA Principles of Service Design. Prentice Hall, 2007. ISBN-10:
0132344823.

106

References

[28] Gregory Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, 2000.

[29] Sun Microsystems, Inc. RPC: Remote Procedure Call, Protocol Specification Version
2, RFC 1057, June 1988.

[30] ORACLE. JAVA Remote Method Invocation. http://www.oracle.com.

[31] Microsoft Corporation. DCOM. http://www.microsoft.com.

[32] Apple. Objective-C. http://developer.apple.com.

[33] Pyro. Python remote objects. http://www.xs4all.nl/ irmen/pyro3/.

[34] Object Management Group OMG. CORBA. http://www.omg.org.

[35] ORACLE. JAVA Enterprise Edition. http://www.oracle.com.

[36] Microsoft Corporation. .NET Remoting. http://msdn.microsoft.com.

[37] Philippe Merle and Jean-Bernard Stefani. A formal specification of the Fractal com-
ponent model in Alloy. Research Report RR-6721, INRIA, 2008.

[38] W3C CONSORTIUM. SOAP Version 1.2 Part 1: Messaging Framework. W3C Rec-
ommendation, April 2007. http://www.w3.org.

[39] W3C CONSORTIUM. Web services architecture. W3C Working Group Note,
February 2004. http://www.w3.org.

[40] ORACLE. JSR 166: Concurrency Utilities. http://jcp.org/en/jsr/detail?id=166.

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. AddisonWesley, 1994. ISBN 0-201-
63361-2.

[42] David Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages and Systems, 7:80–112, 1985.

[43] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A Coordina-
tion Middleware Supporting Mobility of Hosts and Agents. ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 15, no. 3:279–328, July 2006.

[44] Sun Microsystems. Javaspaces specification, 1999.

[45] J. Paul Morrison. Flow-Based Programming: A New Approach to Application Develop-
ment. Van Nostrand Reinhold, 1994. ISBN 0-442-01771-5.

[46] Guruduth Banavar, Tushar Deepak Chandra, Robert E. Strom, and Daniel C. Stur-
man. A case for message oriented middleware. In Proceedings of the 13th Interna-
tional Symposium on Distributed Computing, pages 1–18, London, UK, 1999. Springer-
Verlag. 3-540-66531-5.

[47] Apache Software Foundation. Qpid open source advanced message queuing pro-
tocol. http://qpid.apache.org.

107

References

[48] ORACLE. Java message service JMS specification.

[49] Keneth Birman and Thomas Joseph. Exploiting virtual synchrony in distributed
systems. In SOSP ’87: Proceedings of the eleventh ACM Symposium on Operating sys-
tems principles, pages 123–138, New York, NY, USA, 1987. ACM.

[50] TIBCO. TIBCO Rendezvous. http://www.tibco.com.

[51] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scal-
ability and expressiveness in an internet-scale event notification service. In In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Com-
puting, pages 219–227, 2000.

[52] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi event-based
infrastructure and its application to the development of the opss wfms. IEEE Trans-
actions on Software Engineering, 27(9):827–850, September 2001.

[53] Object Management Group OMG. DDS Data Distribution Service for Real-time
Systems. http://www.omg.org.

[54] OSGi Alliance. OSGi service platform, Core Specification, Release 4, Version 4.2,
September 2009. http://www.osgi.org.

[55] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-OSGi: distributed
applications through software modularization. In Middleware 07: Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware, pages 1–20, New
York, NY, USA, 2007. Springer-Verlag New York, Inc.

[56] ORACLE. GlassFish Server Open Source Edition. http://glassfish.dev.java.net.

[57] JBoss Enterprise, Red Hat. JBoss Application Server. http://www.jboss.org.

[58] ObjectWeb Consortium. JOnAS Application Server. http://wiki.jonas.ow2.org.

[59] Dave Chappell. Enterprise Service Bus. OReilly, June 2004. ISBN 0-596-00675-6.

[60] ORACLE. The Open Enterprise Service Bus. http://open-esb.dev.java.net.

[61] IBM. WebSphere Enterprise Service Bus. www.ibm.com.

[62] OASIS. Web Services Business Process Execution Language (WSBPEL), 2006.
www.oasis-open.org.

[63] ORACLE. Oracle Fusion Middleware. www.oracle.com.

[64] SAP. Service-Oriented Architecture. www.sdn.sap.com.

[65] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, 2000.

[66] OASIS. Service Component Architecture SCA. SCA specifications, March 2007.
http://www.oasis-opencsa.org/sca.

[67] W3C CONSORTIUM. Web Services Description Language (WSDL) Version 2.0.
W3C Recommendation, June 2007. www.w3.org.

108

References

[68] W3C CONSORTIUM. Semantic Annotations for WSDL and XML Schema. W3C
Recommendation, August 2007. http://www.w3.org.

[69] W3C CONSORTIUM. SOAP over Java Message Service 1.0. W3C Candidate Rec-
ommendation, June 2009. http://www.w3.org.

[70] OASIS. UDDI Version 3.0.2. UDDI Spec Technical Committee Draft, November
2004. http://uddi.org.

[71] W3C CONSORTIUM. Web Services Choreography Description Language Version
1.0. W3C Candidate Recommendation, November 2005. http://www.w3.org.

[72] Apache Software Foundation. Jini technology, Apache River. http://www.jini.org.

[73] Erik Guttman, Charles Perkins, John Veizades, and Michael Day. Service Location
Protocol, Version 2. IETF RFC 2608, June 1999.

[74] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. Internet Draft, Febru-
ary 2011.

[75] P. Mockapetris. Domain Name Service. Standard, November 1987. RFC 1034.

[76] UPnP Forum. UPnP Device Architecture, Version 1.1, October 2008.
http://www.upnp.org.

[77] Varon Y. Goland and Ting Cai and Paul Leach and Ye Gu. Simple service discovery
protocol 1.0. Internet draft, April 1999.

[78] Josh Cohen and Sonu Aggarwal. General Event Notification Architecture. Internet
draft, July 1998.

[79] Salutation Consortium. Salutation, October 2003. http://salutation.org.

[80] Bluetooth Special Interest Group. Specification of the Bluetooth System, Version
2.1 + EDR, Service Discovery Protocol, July 2007. http://www.bluetooth.com.

[81] IGRS Alliance. IGRS Standard v1.0. http://www.igrs.org/indexen.aspx.

[82] ECHONET CONSORTIUM. ECHONET Specification.
http://www.echonet.gr.jp/english.

[83] Reto Hermann, Dirk Husemann, Michael Moser, Michael Nidd, Christian Rohner,
and Andreas Schade. DEAPspace - Transient ad hoc networking of pervasive de-
vices. Computer Networks, 35(4):411–428, March 2001.

[84] Sumi Helal, Nitin Desai, Varun Verma, and Choonhwa Lee. Konark : Service Dis-
covery and Delivery Protocol for Ad-hoc Networks. In 3rd IEEE Conf. on Wireless
Communication Networks (WCNC), New Orleans, USA, March 2003.

[85] Dipanjan Chakraborty, Anupam Joshi, Yelena Yesha, and Tim Finin. Toward Dis-
tributed service discovery in pervasive computing environments. IEEE Transactions
on Mobile Computing, 5(2):97– 112, February 2006.

109

References

[86] W3C CONSORTIUM. OWL Web Ontology Language. W3C Recommendation,
February 2004. http://www.w3.org.

[87] Dipanjan Chakraborty, Anupam Joshi, and Yelena Yesha. Integrating service dis-
covery with routing and session management for ad-hoc networks. Ad Hoc Net-
works, 4(2):204–224, March 2006.

[88] Françoise Sailhan and Valérie Issarny. Scalable Service Discovery for MANET. In
Int. Conf. on Pervasive Computing and Communications (PerCom’2005), Hawai, USA,
March 2005. IEEE Press.

[89] Celeste Campo, Mario Munoz, Jose Carlos Perea, Andreas Marin, and Carlos
Garca-Rubio. PDP and GSDL: A New Service Discovery Middleware to Support
Spontaneous Interactions in Pervasive Systems. In IEEE Middleware Support for Per-
vasive Computing (PerWare 2005), Hawaii, March 2005.

[90] Li Li and Louise Lamont. A Lightweight Service Discovery Mechanism for Mobile
Ad Hoc Pervasive Environment Using Cross-Layer Design. In PERCOMW ’05: Pro-
ceedings of the Third IEEE International Conference on Pervasive Computing and Com-
munications Workshops, pages 55–59, Washington, DC, USA, 2005. IEEE Computer
Society.

[91] Radu Handorean, Rohan Sen, Greg Hackmann, and Gruia-Catalin Roman. Sup-
porting Predictable Service Provision in MANETs via Context Aware Session Man-
agement. International Journal of Web Services Research, (3):1–26, 2006.

[92] Christopher N. Ververidis and George C. Polyzos. Service discovery for mobile ad
hoc networks: A survey of issues and techniques. IEEE Communications Surveys
and Tutorials, 10(3):30–45, 2008.

[93] Adnan Noor Mian, Roberto Baldoni, and Roberto Beraldi. A Survey of Service Dis-
covery Protocols in Multihop Mobile Ad Hoc Networks. IEEE Pervasive Computing,
8:66–74, 2009.

[94] Seyed Amin Hosseini Seno, Rahmat Budiarto, and Tat-Chee Wan. Survey and new
Approach in Service Discovery and Advertisement for Mobile Ad hoc Networks.
International Journal of Computer Science and Network Security, 7(2):275–284, 2007.

[95] Chunglae Cho and Duccki Lee. Survey of Service Discovery Architectures for Mo-
bile Ad hoc Networks. Term paper, Mobile Computing, CEN 5531, Dept. Computer
and Information Science and Eng, Univ. Florida, Fall, 2005.

[96] Rajeev Koodli and Charles Perkins. Service discovery in on-demand ad hoc net-
works. IETF Internet draft, October 2002.

[97] Gertjan P. Halkes, Aline Baggio, and Koen Langendoen. A simulation study of inte-
grated service discovery. In First European Conference on Smart Sensing and Context,
EuroSSC, pages 39–53, 2006.

[98] Jose Luis Jodra, Maribel Vara, Jose Ma Cabero, and Josu Bagazgoitia. Service dis-
covery mechanism over olsr for mobile ad-hoc networks. In AINA ’06: Proceedings
of the 20th International Conference on Advanced Information Networking and Applica-
tions, pages 534–542, Washington, DC, USA, 2006. IEEE Computer Society.

110

References

[99] Paal E. Engelstad, Yan Zheng, Rajeev Koodli, and Charles E. Perkins. Service Dis-
covery Architectures for On-Demand Ad Hoc Networks. Ad Hoc and Sensor Wireless
Networks, 1, 2006.

[100] René Meier, Vinny Cahill, Andronikos Nedos, and Siobhán Clarke. Proximity-
Based Service Discovery in Mobile Ad Hoc Networks. In 5th IFIP International
Conference on Distributed Applications and Interoperable Systems (DAIS’05), volume
3543 of LNCS, Athens, Greece, June 2005. Springer.

[101] Alex Varshavsky, Bradley Reid, and Eyal de Lara. A cross-layer approach to service
discovery and selection in MANETs. In 2nd IEEE Int. Conf. on Mobile Ad-hoc and
Sensor Systems (MASS 05), Washington, USA, November 2005. IEEE Press.

[102] Vincent Lenders, Martin May, and Bernhard Plattner. Service Discovery in Mobile
Ad Hoc Networks: A Field Theoretic Approach. In International Symposium on
a World of Wireless, Mobile, and Multimedia Networks (WoWMoM 2005), Taormina,
Italy, June 2005.

[103] Michael Klein, Birgitta Konig-Ries, and Obreiter Philipp. Service Rings - A Seman-
tic Overlay for Service Discovery in Ad hoc Networks. pages 180–185, 2003.

[104] Michael Klein, Birgitta Konig-Ries, and Obreiter Philipp. Lanes: A Lightweight
Overlay for Service Discovery in Mobile Ad Hoc Networks. In 3rd Workshop Appli-
cations and Services in Wireless Networks (ASWN 03), July 2003.

[105] Jerry Tyan and H. Mahmoud, Qusay. A network layer based architecture for service
discovery in mobile ad hoc networks. In 17th Ann. IEEE Canadian Conf. Electrical
and Computer Eng. (CCECE 04), volume 3, pages 1379–1384, Niagara Falls, Canada,
May 2004. IEEE Press.

[106] Andronikos Nedos, Kulpreet Singh, and Siobhán Clarke. Service*: Distributed
Service Advertisement for Multi-Service, Multi-Hop MANET Environments. In
7th IFIP Int. Conf. on Mobile and Wireless Communication Networks (MWCN’05), Mar-
rakech, Morocco, September 2005.

[107] Lionel Touseau, Didier Donsez, and Walter Rudametkin. Towards a sla-based ap-
proach to handle service disruptions. In Proc. of 5th IEEE International Conference
on Services Computing (SCC 2008), Research track, July 8-11, 2008, Honolulu, Hawaii,
2008.

[108] Karl Weick. Educational organizations as loosely coupled systems. Administrative
Science Quarterly, 21:1–19, 1976.

[109] Thomas Erl. SOA Design Patterns. Prentice Hall PTR, 2009. ISBN-10: 0136135161.

[110] Luc Hogie, Pascal Bouvry, and Frédéric Guinand. The MADHOC simulator.
http://www-lih.univ-lehavre.fr/~hogie/madhoc.

111

Résumé

Les réseaux mobiles ad hoc (MANETs) se forment spontané-
ment à partir de terminaux mobiles qui communiquent en utilisant
des interfaces sans fil à faible portée (e.g. Wi-Fi, Bluetooth). Dans
la plupart des réseaux ad hoc déployés dans des conditions réelles,
ces terminaux mobiles peuvent être volatiles et distribués de manière
clairsemée, et former par conséquent des îlots de connectivité qui
évoluent continuellement. Dans cette thèse, je considère spécifique-
ment ce type de réseaux, qui sont appelés MANETs discontinus. Les
communications dans les MANETs discontinus présentent un défi,
parce que les protocoles de routage conçus pour les MANETs con-
nexes ne fonctionnent pas dans de tels réseaux. L’approche store-
carry-and-forward est proposée depuis quelques années pour palier
les discontinuités du réseau. Elle permet à un nœud de stocker tem-
porairement un message, afin de le transmettre plus tard quand les
conditions deviennent favorables. La mobilité des nœuds devient
alors un avantage, en facilitant la propagation des messages d’un
îlot vers un autre.
L’approche orientée services semble appropriée pour mettre en œu-
vre des applications dans les MANETs discontinus à cause de la
nature découplée des entités qu’elle met en jeu. En effet, le décou-
plage entre un client et un fournisseur de service est essentiel dans
un environnement où la disponibilité des fournisseurs est fluctuante,
et où les communications de bout en bout ne sont pas garanties. Mal-
gré ce découplage, dans les systèmes orientés services existants les
fournisseurs sont souvent supposés stables et toujours accessibles.
Bien que l’approche orientée services semble appropriée dans les
MANETs discontinus, la mise en œuvre de services distribués né-
cessite des communications dans l’ensemble du réseau, malgré la
fragmentation de celui-ci. En outre, la mise en œuvre doit prendre en
compte l’accessibilité non prévisible des fournisseurs, ainsi que les
délais potentiels de la communication.
Cette thèse propose une plate-forme de services pour les terminaux
mobiles, qui supporte l’exécution d’applications orientées services
dans les MANETs discontinus. La plate-forme consiste en un inter-
giciel structuré en deux couches : une couche de communication
et une couche de services. La couche de communication permet
le découplage entre deux entités en termes d’interactions dans le
temps, de comportement synchrone, et de connaissance mutuelle.
Pour cette couche de communication (DoDWAN), un protocole op-
portuniste et basé contenu est utilisé. La couche de services (DiS-
WAN) permet le découplage entre les fournisseurs de services et
les clients en termes d’interopérabilité et de contrat de service. Pour
cette couche, des solutions de découverte et d’invocation de services
sont proposées.
Les éléments du protocole de découverte sont la description et la
publication du coté fournisseur, et la collecte et la sélection du coté
client. La description inclut des propriétés fonctionnelles et non-
fonctionnelles du service, ainsi que des propriétés contextuelles. La
découverte est basée sur le modèle pair à pair, où un client ne col-
lecte que les services intéressants. Les invocations sont basées con-
tenu pour bénéficier de la réplication de services, dans le cas où
plusieurs fournisseurs peuvent fournir le même service métier. Le
client crée sa requête en connaissant un fournisseur déjà découvert,
mais il publie cette requête afin qu’elle soit reçue par tous les four-
nisseurs compatibles. L’exploitation de la multiplicité des fournisseurs
pouvant engendrer des communications superflus, plusieurs mécan-
ismes de "guérison" du réseau ont été mis en place pour éliminer
les requêtes et réponses d’invocation redondantes. Des simulations
dans un MANET discontinu ont été effectuées. Les simulations mon-
trent que la performance de la découverte étant directement liée à
celle du protocole de communication et que l’utilisation des invoca-
tions basées contenu permet de meilleurs temps de réponses et une
meilleure satisfaction du client. Les simulations montrent aussi que
les mécanismes de "guérison" du réseau sont efficaces.

Abstract

Mobile ad hoc networks (MANETs) are spontaneously formed
out of mobile devices that communicate thanks to short-range wire-
less communication capabilities (e.g. Wi-Fi, Bluetooth). In many ad
hoc networks deployed in real conditions, mobile devices can exhibit
highly dynamic behaviors of mobility and volatility. Because of their
behavior and their distribution, the devices in such network environ-
ments form so-called "islands" whose topology evolves continuously,
rather than a single fully connected network. In this work, I focus
on this class of MANETs which I refer to as disconnected MANETs.
Network-wide communication in disconnected MANETs is still a chal-
lenge, namely because routing techniques designed for fully con-
nected MANETs cannot be applied. The store-carry-and-forward ap-
proach provides a solution. With this approach, a message can be
stored temporarily on a node, in order to be forwarded later when
circumstances permit. Mobility then becomes an advantage as it fa-
cilitates message propagation from one island to another.
The service-oriented computing (SOC) model seems suited for ad
hoc environments because it emphasizes the decoupled nature of
its entities. Effectively, the decoupling between a client entity and a
provider entity becomes essential in mobile environments with a fluc-
tuating availability of providers, and where end-to-end communica-
tions are not guaranteed. Still, in existing service-oriented systems,
providers are usually supposed to be available and always reachable.
Therefore, implementing distributed services for such networks still
poses several challenges. Not only network-wide communication fea-
tures must be provided, in spite of constant network fragmentation,
but aspects such as the unpredictable reachability of the providers,
or potential communication delays, must be taken into account at the
service level.
I propose a service platform for mobile nodes that supports the exe-
cution of service-oriented applications in disconnected MANETs. The
service platform is implemented as a middleware composed of two
layers: a communication layer, and a service layer. The communi-
cation layer provides mechanisms to decouple two service entities in
terms of temporaneous interaction, synchronous behavior, and mu-
tual knowledge. For this layer (DoDWAN), I use an opportunistic and
content-driven protocol. The service layer (DiSWAN) provides mech-
anisms that decouple service providers and clients in terms of inter-
operability and service contract. For this layer, I propose solutions for
service discovery and invocation.
The elements that construct the discovery protocol are the descrip-
tion and advertisement at the provider side, and collection and se-
lection at the client side. Description includes functional and non-
functional service properties, as well as context properties. Discovery
is based on a peer-to-peer architecture, where a client collects only
interesting services. Content-based invocations are used to benefit
from the service replication, in case a multitude of providers can be
offering the same business service. A client creates a functional re-
quest according to a discovered provider, then publishes its content-
based request message to the attention of all compatible providers.
Profiting from this provider multiplicity can generate redundant mes-
sages, I propose network healing mechanisms in order to eliminate
the redundant invocation requests and responses.
Using a prototype implementation of the middleware, I conducted
simulations in a disconnected MANET environment. The perfor-
mances of discovery is directly related to those of the underlying com-
munication layer. Simulations confirm the benefits of content-based
invocations in providing faster response times and better client satis-
faction. Simulations also show a drastic reduction of redundant and
leftover messages when applying the healing mechanisms.

n d’ordre : 223
Université de Bretagne Sud
Centre d’Enseignement et de Recherche Y. Coppens - rue Yves Mainguy - 56000 VANNES
Tél : + 33(0)2 97 01 70 70 Fax : + 33(0)2 97 01 70 70

	Introduction
	Motivation
	Mobile ad hoc networks (MANETs)
	The disconnected reality of MANETs
	Need for application support
	Service-oriented computing: advantages and challenges

	Goal
	Organization of the manuscript

	Service-Oriented Computing and Disconnected Mobile Ad Hoc Networks
	Introduction
	Communications in disconnected mobile ad hoc networks
	Communication protocols for MANETs
	Proactive routing
	Reactive routing

	Communication protocols for disconnected MANETs
	Delay tolerant networking
	Message dissemination protocols
	Content-based communications

	Service-oriented computing
	From object-oriented to component-oriented distributed systems
	Service-oriented paradigm
	Fundamental steps of the service provision process
	Client/provider interactions in distributed computing
	Message passing
	Remote procedure call
	Event notifications
	Tuple spaces
	Message queues
	Publish/Subscribe

	Service provision systems
	Service provision systems for stable networks
	OSGi
	Enterprise services
	Web Services
	Service Component Architecture

	Service provision systems in dynamic networks
	Service provision systems in MANETs
	Discussion

	Conclusion

	Challenges and Design Overview
	Introduction
	Challenging points
	Communication
	Interoperability
	Service contract

	Design overview
	Summary

	Disconnected Communication Support
	Introduction
	DoDWAN communication protocol
	Opportunistic gossiping
	Periodic announcements
	Local cache
	Content-based matching
	Mobility as an advantage
	k-hop opportunistic gossiping
	Frugal use of the wireless medium

	Publish/Subscribe interface
	Message
	Publishing a message
	Subscribing to messages
	Canceling a message

	Discussion
	Communication delay
	Loose coupling benefits

	Summary

	Service Discovery
	Introduction
	Service nodes in mobile environments
	Overview
	Elements of the discovery protocol
	Description
	Functional and non-functional service properties
	Provider context properties

	Advertisement
	Process at the provider side
	Collection
	Selection
	Process at the client side

	Discussion
	Summary

	Service Invocation Solutions
	Introduction
	Service provider redundancy
	Remote invocation
	How clients issue invocation requests to providers
	How providers respond to client requests
	Response management policy
	Network healing
	Reactive competition
	Safe healing
	Aggressive healing

	Discussion
	Client-Provider binding
	Loose coupling benefits

	Invocation restrictions
	Blind invocation: Bypassing discovery
	Client and provider states
	Remote invocations of stateful services
	Public invocations
	Perspectives
	Semantic invocation
	Complex request

	Summary

	Implementation and Evaluation
	Introduction
	The service platform's middleware
	Simulation environment and evaluation metrics
	Discovery evaluation
	Invocation evaluation
	Effects of invoking multiple providers
	Network healing
	Session recovery for stateful invocations

	Conclusion

	Conclusions and Perspectives
	Conclusions
	Perspectives

	References

