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CHAPTER I

INTRODUCTION

One of the most important problems that plague turbomachinery rotors is the exis-

tence of rogue blades — lone blades that exhibit unexpected fatigue failure. It has

been recognized that rotor mistuning might be the cause of rogue blades through a

phenomenon called normal mode localization, whereby vibration energy is confined to

a few blades of the assembly [1–14]. The goals of this dissertation are (1) to achieve

a thorough understanding of the fundamental mechanisms governing mistuning ef-

fects, (2) the development of mathematical models of turbomachinery rotors suitable

for mistuning analysis, and (3) the development of techniques for designers interested

in the mistuning sensitivity of a particular rotor design.

1.1. The Localization Phenomenon

1.1.1. Periodic Structures

A structure is said to be periodic, or tuned, if it consists of a chain of identical, identi-

cally connected substructures. Some examples of periodic structures are truss beams

[15, 16] and multi-span beams [17]. In the special case where the first substructure is

connected to the last one, the structure is said to have cyclic symmetry. Some mod-

els of turbomachinery rotors and large radial-rib antennas are excellent examples of

periodic structures with cyclic symmetry.

Brillouin [18] published his pioneering research on electrical periodic structures

in 1946. Subsequently many methods have been proposed for the analysis of periodic

structures. Of these, combined transfer matrix and wave propagation methods [16,

19, 20, 21] have become the most prevalent tool and are used extensively throughout

this dissertation.

Periodic structures may be classified by the number of coordinate through which

the substructures interact, normally referred to as coupling coordinates. Brillouin [18]

demonstrated that a periodic structure possesses as many pairs of characteristic waves

1



1.1. The Localization Phenomenon

as there are coupling coordinates. Characteristic waves were shown to exhibit three

types of frequency dependent behavior: unattenuated propagation waves in frequency

passbands, attenuated standing waves in frequency stopbands and, in the case of mul-

tiple coupling coordinates, attenuated propagating waves in frequency complexbands.

Another property of periodic structures is that the free vibration natural frequen-

cies belong to the passbands, with corresponding extended or periodic mode shapes.

The number of natural frequencies in each passband is equal to the number of sub-

structures in the periodic assembly and the number of passbands is equal to the num-

ber of degrees of freedom in each substructure. Continuous systems, for example, a

string with uniformly attached masses or a multi-span beam, feature an infinite num-

ber of passbands. The width of a passband is governed by the strength of substructure

coupling, the passband narrowing down to a single frequency for zero coupling. The

frequency to which the passband converges corresponds to a natural frequency of an

uncoupled substructure. Therefore, high modal density (the number of natural fre-

quencies per unit frequency) is synonymous with weak substructure coupling and a

large number of substructures.

1.1.2. Mistuned, Nearly Periodic Structures

In real life perfectly periodic structures are a rarity. The inevitable material defects,

manufacturing tolerances and in-service degradation break the perfect periodicity, giv-

ing the structure some degree of structural disorder, or mistuning. Mistuning can alter

qualitatively the dynamical behavior described in Section 1.1.1. The present section

gives a brief description of the phenomena caused by mistuning.

In his groundbreaking work in solid state physics, Anderson [22] showed that elec-

tron eigenstates in disordered lattices may become localized, resulting in a reduction

in the conductivity of wires. For his discovery of the mode localization phenomenon,

Anderson was awarded the Nobel prize. Anderson’s findings were first applied to en-

gineering structures by Hodges [23], who showed that the presence of disorder in a

nearly periodic structure may invalidate the results of a tuned analysis. Localization,

like damping, manifests itself as a spatial decay of the vibration amplitude along the

structure, but through vastly different mechanisms. In the case of damping, energy

is dissipated as vibrations are transmitted through the system, whereas in the case

of localization, the energy is merely confined to a small geometric region within the

structure. Localization occurs because waves propagating away from the energy source

are reflected at the boundaries between the slightly dissimilar subsystems making up

the nearly periodic structure. The resulting confinement of energy may lead to much

higher amplitudes locally than would be predicted if perfect periodicity were assumed,

2



1.2. History of the Analysis of Rotor Mistuning

with possibly disastrous effects, as seen in turbomachinery research [2, 3, 5, 24].

In mistuned structures passbands do not occur, since waves of all frequencies

are attenuated. The natural frequencies of free vibrations that were located in the

passbands of the tuned periodic structure remain clustered in a frequency range that

widens as the mistuning strength increases.

The localization phenomenon has recently received wide attention in the litera-

ture. It has been shown to occur in various types of engineering structures, such as

truss beams [19, 25], multi-span beams [25–29], generic chains of coupled oscillators

[23, 30, 31], a loaded string [32, 33], some large space structures [34, 35] and last, but

not least, blade assemblies [13, 14]. A review paper by Ibrahim [36] summarizes these

localization studies.

1.2. History of the Analysis of Rotor Mistuning

Designers are widely aware of inherent differences among rotor blades due to material

and manufacturing tolerances and in-service degradation, commonly referred to as

blade mistuning. In the past it has been widely accepted that mistuning causes a

reduction in the risk of flutter instability [37, 38, 39], therefore, rotor mistuning has

been viewed mostly as a positive feature. Through the ability to strategically place

blades on a disk, designers have devised schemes for balancing and improving stability

against flutter. The negative effect of mistuning, namely the potential for increased

response amplitudes of some blades due to mode localization, has not played a large

role in design, partially because it is very difficult to analyze and partially because of

robust designs with sufficiently large damping, e.g., in the blade-disk attachment and

through dry friction dampers between blades.

With the advent of blisks, single piece bladed disks, the focus on blade mistuning

as an unwanted phenomenon has increased. In a blisk the blades are permanently

attached to the disk and it is no longer possible to discard or strategically place blades

that fall outside acceptable manufacturing tolerances. Furthermore, blisks have much

lower internal damping than blade-disk assemblies and are therefore more prone to

adverse mistuning effects.

A large number of studies have been conducted in order to gain insight into the

effects of mistuning on the dynamics of turbomachinery rotors [40–44]. These studies

have been based on a variety of mathematical models with widely different parame-

ters and have often led to conflicting results. Nevertheless, much has been achieved

in understanding mistuning effects on the free response of bladed disks [6, 13, 14,

37, 45]. One of the few undisputed results is that mode localization increases mono-

tonically with decreased interblade coupling, a finding that has yet to be expanded to

3



1.3. Mistuned Forced Response as a Statistical Problem

the forced response case. Recent studies [46, 47] have evidenced that in the forced

response case additional mechanisms come into play and that a study of the mistuned

modes of free vibration is insufficient in predicting the sensitivity of forced response

blade amplitudes to mistuning. In their work, Wei and Pierre [46, 47] have attempted

a systematic exploration of the effect of various parameters in simple models of blade

assemblies. These investigations have yielded improved understanding of the forced

response of mistuned rotors, but have not resulted in a satisfactory understanding of

the governing physical phenomena. One of the objectives of this thesis is the physi-

cal interpretation of some of the phenomena observed but inadequately explained in

references [46] and [47].

1.3. Mistuned Forced Response as a Statistical Problem

Much of the work in the literature fails to address the importance of a full understand-

ing of the complete statistics of the forced response of mistuned rotors. In many cases

[2, 7] mistuning has been assumed to be deterministic, which is a significant limitation.

Even if the mistuning pattern of the blade assembly could be know when the rotor is

first put into service, this analysis would not account for additional mistuning that

may be caused during the life of the rotor. Some research effort has gone into opti-

mization of deterministic mistuning patterns, but this work has also failed to answer

any questions about statistics of forced response. Indeed, one could go as far as say-

ing that deterministically ordering blades with different properties, i.e., by alternating

blades with two different types of stiffness, does nothingmore than change the period

of the assembly from one blade to two blades and should perhaps be referred to as

detuning instead of mistuning.

Recognizing the random nature of blade mistuning but focusing only on the mean

and standard deviation of the response statistics also misses the mark. Without the

knowledge of the full statistics there can be no estimation of confidence intervals of

response amplitudes and thus of stress and fatigue life.

Some authors have fully acknowledged the need for a complete stochastic analysis

of the effects of blade mistuning [9, 48, 49]. However, while focusing on the statistics

of the response of individual blades in the assembly, the more important topic of the

statistics of the largest amplitude, i.e., the amplitude of the blade in the assembly that

exhibits the largest resonant response at any frequency, has not been addressed. The

approximation of the statistics of forced response is a formidable task, indeed. Some

authors [48, 49] have had limited success in deriving analytical approximations of the

response statistics of individual blades but these are not easily expanded to yield the

statistics of the largest amplitude. Chapter VI addresses this issue and gives a basic
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1.4. Practical Aspects of Mistuned Rotor Modeling

introduction into the field of the Statistics of Extreme Values. Analytical evaluations of

the statistics of largest forced response are extremely complicated and are beyond the

scope of this thesis. Approximation of the extreme statistics may however be obtained

using Monte Carlo simulations but only at a considerable cost.

1.4. Practical Aspects of Mistuned Rotor Modeling

Current analysis of rotordynamics is generally performed on a finite element model,

based on the assumption that the rotor is tuned. This results in tremendous computa-

tional savings and is generally the only realistic option. From the dynamics of a single

blade disk sector (one period in the bladed disk assembly), the dynamics of the entire

assembly may then be deduced. When blade mistuning is accounted for, cyclic sym-

metry is lost and the entire assembly must be modeled, with an obvious increase in

cost. Furthermore, the analysis of the statistics of the forced response of a mistuned

rotor calls for multiple realizations of mistuned assemblies, yielding computational

costs that are so large that the problem is rendered unsolvable by today’s technology.

Many simple mathematical models have been developed and extensively used for

the analysis of mistuned turbomachinery rotors. The most common of those. are

coupled-oscillator models of varying sophistication. While these models may provide

a great deal of insight into basic physical phenomena, they present a complicated

identification problem when they are required to represent actual engineering rotors.

The development of accurate yet efficient modeling techniques for blade assem-

blies is a high priority and is one of the principal contributions of this thesis. Even if

analytical methods are to be developed for the study of mistuning sensitivity, these

methods are likely to be based on simple models of bladed disks and a simple accurate

model will be required for verification of any new approach.

1.5. Directions of Mistuned Forced Response Analysis

Current research efforts in forced response are mostly divided into three main areas.

Some researchers focus their efforts on obtaining approximations of the statistics

of the forced response, for example, via perturbation methods [10, 48, 49]. Others

concentrate on the development of very reduced order modeling of turbine rotors that

achieve a compromise between reasonable computational efficiency and accurate mod-

eling of mistuning effects [10, 38]. Finally there is the study of the underlying physical

mechanisms with the goal of understanding which factors influence high sensitivity to

mistuning [14, 50]. All of these areas of research are represented in this thesis in one

way or another, and all of them are deemed equally important.
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1.6. Dissertation Outline
When arranging the material accumulated during the course of the research for this

thesis, an attempt was made to avoid the concatenation of previously written articles.

However, a chronological ordering is very much preserved. Hopefully this will not be

confusing to the reader.

The outline of the dissertation is as follows. In Chapter II we give a thorough

account of all the information that has been accumulated on the topic of cyclic sym-

metry. Chapter III is dedicated to the study of modeling techniques, and in partic-

ular to the development of a new methodology based on a novel component mode

approach. Chapter IV examines some special concepts in turbomachinery, such as en-

gine order excitation and aerodynamic coupling. Chapter V contains an investigation

of mistuning effects in a general mono-coupled coupled-oscillator model of a cyclic

structure. In the chapter we derive a general approximation of the localization fac-

tor, the quantitative measure of the average exponential decay of propagating waves

due to mistuning in the assembly. In addition to this, we suggest a universal mea-

sure of mistuning sensitivity in a mono-coupled model of a blade assembly. Finally,

Chapter V includes a study of the effects of additional coupling coordinates on the

localization phenomenon. A solid understanding of the mechanisms governing the

statistics of forced response is obligatory if any conclusions are to be reached. This

is the subject of Chapter VI. In Chapter VI we study in great detail the statistics of the

forced response of a very simple model of a bladed disk. Some valuable conclusions

are obtained that give a new understanding of localization as a forced response phe-

nomenon. Chapter VII presents a large amount of work that was performed in order

to validate and demonstrate the modeling techniques introduced in Chapter III. An

investigation of some prototype rotors leads to a dramatically improved insight into

the forced response phenomena. Chapter VIII gives a brief demonstration of the novel

component-mode modeling approach developed in Chapter III.
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CHAPTER II

CYCLIC SYMMETRY

Tuned turbomachinery rotors belong to a class of periodic structures called cyclic

structures. A structure is said of have cyclic symmetry when its structural properties

and geometry are rotationally periodic. Typically the period is one sector of the bladed

disk, consisting of one blade and the corresponding portion of the disk. In this chapter

we examine the mathematical properties shared by all cyclic structures.

2.1. Circulant Matrices
The analysis of structures with cyclic symmetry cannot be accomplished without a

thorough understanding of the properties of circulant and block circulant matrices.

A matrix is said to be circulant if every line in the matrix is obtained by shifting the

previous line one column to the right and wrapping the line so that the last element

of the previous line becomes the first element of the current line. Hence, an N × N
circulant matrix

C = circ[c1, c2, . . . , cN] =



c1 c2 c3 · · · cN−1 cN
cN c1 c2 · · · cN−2 cN−1
cN−1 cN c1 · · · cN−3 cN−2
...

...
...

. . .
...

...
c3 c4 c5 · · · c1 c2
c2 c3 c4 · · · cN c1


(2.1)

only hasN distinct elements. IfC is symmetric and circulant, the number of distinct el-
ements is reduced even further and two separate cases emerge, depending on whether

N is odd or even.

C =


circ[c1, c2, . . . , cN

2
, cN+2

2
, cN

2
, . . . , c3, c2] if N is even

circ[c1, c2, . . . , cN
2
, cN+1

2
, cN+1

2
, cN

2
, . . . , c3, c2] if N is odd

(2.2)

Note that in the case where N is even there are two unique elements in each line of

the matrix, whereas in the N odd case there is only one unique value. The two cases
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2.1. Circulant Matrices

must always be treated separately, which complicates somewhat the dynamic analysis

of rotors.

The concept of a circulant matrix can be generalized to block circulant matrices,

defined as

C = Bcirc[C1,C2, . . . ,CN] =



C1 C2 C3 · · · CN−1 CN
CN C1 C2 · · · CN−2 CN−1

CN−1 CN C1 · · · CN−3 CN−2
...

...
...

. . .
...

...
C3 C4 C5 · · · C1 C2
C2 C3 C4 · · · CN C1


, (2.3)

where each line of blocks is generated by shifting the previous line of block to the right

by one block. The block circulant, block symmetric case follows; it is analogous to the

symmetric circulant case.

In reference [51] Davis provides a rigorous mathematical treatment of circulant

matrices. An important tool in the discussion of circulant matrices is the permutation

matrix , ΠΠΠ.

ΠΠΠ = circ[0,1,0, . . . ,0] =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


. (2.4)

It can be shown that amatrix C is circulant if and only if thematrices C andΠΠΠ commute,
that is

CΠΠΠ = ΠΠΠC.

The powers of the permutation matrix are:

ΠΠΠ2 = circ[0,0,1,0, . . . ,0]

ΠΠΠ3 = circ[0,0,0,1,0, . . . ,0]
...

ΠΠΠN = ΠΠΠ0 =circ[1,0, . . . ,0] = I

(2.5)

where N is the order of the matrix. This yields a form for writing a general circulant

matrix

C = circ[c1, c2, . . . , cN] =
N∑
k=1

ckΠΠΠk−1 = pC(ΠΠΠ) (2.6)

where pC is a polynomial of degree N − 1. In the case of a block circulant matrix
Eq. (2.6) must be written as

C = circ[C1,C2, . . . ,CN] =
N∑
k=1

ΠΠΠk−1 ⊗ Ck (2.7)
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2.2. The Cyclic Eigenvalue Problem.

where ⊗ denotes the Kronecker product, which is discussed in Appendix A.
In general, a model of a rotor will be represented with block-circulant matrices

with block size equal to the number of degrees of freedom of each sector. Circulant

matrices only occur when a rotor is modeled with single degree of freedom sectors

(or multiple degree of freedom sectors that have been condensed down to a single

representative degree of freedom).

2.2. The Cyclic Eigenvalue Problem.

For the discussion of the eigenvalues of circulant matrices we introduce the Fourier

matrix, E, as

E = 1√
N


1 1 1 · · · 1
1 w w2 · · · wN−1

1 w2 w4 · · · w2(N−1)
...

...
...

. . .
...

1 wN−1 w2(N−1) · · · w(N−1)(N−1)

 (2.8)

where

w = e
2jπ
N (j =

√
−1). (2.9)

The Fourier matrix is unitary, i.e. EE∗ = I where ∗ denotes the complex conjugate

transpose of a matrix. This may be shown by observing that each element (i, k) in EE∗

represents a geometric series

(
EE∗

)
i,k =

1
N

N∑
r=1

e
2jπ(i−1)(r−1)

N e
2jπ(1−k)(r−1)

N

= 1
N

N∑
r=1

[
e
2jπ(i−k)

N

](r−1)
= 1
N

N∑
r=1

q(r−1)
. (2.10)

where we have defined q = e2jπ(i−k)/N . By observing that qN = 1, and that q = 1, for
i = k, we find

(
EE∗

)
i,k =


1
N

N∑
r=1

1(r−1) = 1 if i = k

1
qN

1− qN
1− q = 0 if i ≠ k.

(2.11)

9



2.2. The Cyclic Eigenvalue Problem.

2.2.1. General Circulant Matrices

The fundamental theorem is that the Fourier matrix diagonalizes any circulant matrix,

through the transformation E∗CE. This proven below. The significance of this property

is that all circulant matrices share the same eigenvectors— the columns of the Fourier

matrix.

In order to prove this, we first show that E diagonalizes the permutation matrix,ΠΠΠ, (see Eq. (2.4)) by proving the relationship
ΠΠΠ = EΩΩΩE∗ where ΩΩΩ = diag[1,w,w2, . . . ,wN−1] (2.12)

which holds because

(
EΩΩΩE∗

)
i,k =

1
N

N∑
r=1

w(i−1)(r−1)w(r−1)w(1−k)(r−1)

= 1
N

N∑
r=1

e
2jπ
N (i−k+1)(r−1) =


1 if i = k−1 or

i = N+k−1

0 otherwise

(2.13)

(see proof in Eqs. (2.10) and (2.11)) which is the precisely the form of the permutation

matrix ΠΠΠ in Eq. (2.4). By applying Eq. (2.6) we find
C = pC(ΠΠΠ) = pC(EΩΩΩE∗) = EpC(ΩΩΩ)E∗ = E diag

[
pC(1), pC(w), . . . , pC(wN−1)

]
E∗

(2.14)

or

E∗CE = diag[λ1, λ2, . . . , λN] (2.15)

where

λi = pC(wi−1) =
N∑
k=1

cke
2jπ(i−1)(k−1)

N (i = 1, . . . , N) (2.16)

are the eigenvalues of C, with the corresponding eigenvectors

ei =
1√
N

[
1,wi−1,w2(i−1), . . . ,w(N−1)(i−1)

]T
= 1√

N

[
1, ejσi, e2jσi, . . . , e(N−1)jσi

]T (i = 1, . . . , N) (2.17)

where

σi =
2(i− 1)π

N
(i = 1 . . .N) (2.18)

is the phase angle between adjacent sectors of the cyclic structure, usually referred to

as the interblade-phase angle.

In the turbomachinery literature [37, 3, 38, 2, 44, 24, 5] these modes are fre-

quently referred to as constant-interblade-phase-angle modes (See Section 2.5) since
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2.2. The Cyclic Eigenvalue Problem.

they feature a vibration shape in which all blades are vibrating with the same am-

plitude and a uniform interblade-phase angle. These are traveling wave modes that

appear in counter-rotating pairs (σN+2−i = −σi), represented by a complex conjugate
pair of columns for the Fourier matrix. Counter-rotating constant-interblade-phase-

angle modes are illustrated in Fig. 2.1.

2.2.2. Symmetric Circulant Matrices

If the matrix C is both symmetric and circulant, the number of distinct elements in

the matrix is only N+2
2 when N is even and N+1

2 when N is odd. The expression for

the eigenvalues thus takes on a simplified form, but different expressions are required

depending on whether N is odd or even. If N is odd,

λi = c1 + c2
(
w(i−1) +w(N−1)(i−1)

)
+ . . .+ cN+1

2

(
w(N−12 )(i−1) +w(N+12 )(i−1)

)
. (2.19)

If N is even,

λi = c1+c2
(
w(i−1) +w(N−1)(i−1)

)
+. . .+cN

2

(
w(N2 −1)(i−1) +w(N2 +1)(i−1)

)
+cN+2

2
w(N2 )(i−1).

(2.20)
Noting that wk(i−1) +w(N−k)(i−1) = 2cos

(
2πk
N (i− 1)

)
the eigenvalues may be written

as:

λi =


c1 + 2

N+1
2∑
k=2

ck cos
(
2π(k− 1)

N
(i− 1)

)
+ (−1)i−1cN+2

2
for even N

c1 + 2
N
2∑
k=2

ck cos
(
2π(k− 1)

N
(i− 1)

)
for odd N

i = 1, . . . , N

(2.21)
Due to the fact that cosx = cos(2π−x) it can be seen that the eigenvaluesof symmetric
circulant matrices appear in pairs, λi = λN+2−i, except λ1 which is a single eigenvalue.
For N even, λN+2

2
is also a single eigenvalue.

Even though they feature double eigenvalues, symmetric, circulant matrices do

possess a full set of eigenvectors. For a pair of double eigenvalues, one choice of

independent eigenvectors is the corresponding pair of complex conjugate eigenvectors

from the Fourier matrix. The eigenspace corresponding to a double natural frequency

may be spanned by any linear combination of the complex conjugate eigenvector pair

from the Fourier matrix. One common choice is the real and the imaginary parts of

the complex eigenvectors.
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2.2. The Cyclic Eigenvalue Problem.

2.2.3. Block Circulant Matrices

Recall that the circulant matrix

C = circ[c1, c2, . . . , cN] =
N∑
k=1

ckΠΠΠk−1 (2.22)

is diagonalized using the Fourier transformation E∗CE. Similarly, a block circulant

matrix

C = Bcirc[C1,C2, . . . ,CN] =
N∑
k=1

ΠΠΠk−1 ⊗ Ck (2.23)

is block-diagonalized using the transformation (E∗ ⊗ I)C (E⊗ I) where, again, ⊗ de-
notes the Kronecker product and I is an identity matrix of dimension equal to that of

the individual blocks Ck. We find

(
E∗ ⊗ I

)
C (E⊗ I) = (E∗ ⊗ I

) N∑
k=1

ΠΠΠk−1 ⊗Ck

 (E⊗ I)

=
N∑
k=1

(
E∗ ⊗ I

) [ΠΠΠk−1 ⊗ Ck
]
(E⊗ I)

=
N∑
k=1

(
E∗ΠΠΠk−1E)⊗Ck

=
N∑
k=1

ΩΩΩk−1 ⊗ Ck

=Bdiag[ΛΛΛ1,ΛΛΛ2, . . . ,ΛΛΛN],

(2.24)

where ΩΩΩ was defined in Eq. (2.12). This is a result similar to the one obtained earlier

for the diagonalization of the regular circulant matrix. The blocks are,

ΛΛΛi = N∑
k=1

Cke
2jπ(i−1)(k−1)

N (i = 1, . . . , N) (2.25)

and the problem of calculating the eigenvalues and eigenvectors of the block circulant

matrix C has been broken into N simpler eigenvalue problems for the individual ΛΛΛi
matrices, ΛΛΛiũi = 0 (i = 1, . . . , N), (2.26)

where each ΛΛΛi corresponds to a spatial harmonic ei (see Eq. (2.17)).

An eigenvector for C is calculated from an eigenvector of a block using the Kro-

necker product. If ũi is an eigenvector of the ΛΛΛi block, then the corresponding eigen-
vector of C is

ui = ei ⊗ ũi (2.27)
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2.2. The Cyclic Eigenvalue Problem.

2.2.4. Block Circulant, Block Symmetric Matrices.

As in the circulant case, symmetry renders the block-circulant eigenvalue problem

degenerate and most eigenvalues become double. The exceptions are the eigenvalues

corresponding to the zero harmonic and, if N is even, the N/2 harmonic.

The eigenvectors that correspond to a double eigenvalue can be taken as the pair

of complex conjugate (counter-rotating) constant-interblade-phase-angle modes. Al-

ternatively, the real eigenvectors that correspond to the real and imaginary parts of

the complex pair may be used.

The eigenvectors of C are calculated from the eigenvectors of a block. If ũik and

ũik are eigenvectors corresponding to a double eigenvalue of the ΛΛΛi block, where ũik

denotes the complex conjugate of ũik, then the corresponding eigenvectors of C are

ui = ei ⊗ ũi (2.28)

and

ui = ei ⊗ ũi. (2.29)

Expanding yields

ui , ui =
[
e
i ⊗ ũ
i − e�i ⊗ ũ�i

]
± j

[
e�i ⊗ ũ
i + e
i ⊗ ũ�i

]
(2.30)

where the superscripts 
 and � denote the real and imaginary parts, respectively. Se-

lecting the real and imaginary parts of ui and ui results in the alternative pair of

eigenvectors in the real domain, as:

v1,i =e
i ⊗ ũ
i − e�i ⊗ ũ�i

v2,i =e�i ⊗ ũ
i + e
i ⊗ ũ�i
(2.31)
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2.3. Coordinate Systems and Coordinate Transformations

Let us introduce some terminology for the various coordinate systems that enter into

the analysis of systems with cyclic symmetry. As an aid in the discussion, we present

the eigenvalue problem for a generic cyclic structural system





K1 K2 K3 · · · K3 K2
K2 K1 K2 · · · K4 K3
K3 K2 K1 · · · K5 K4
...

...
...

. . .
...

...
K3 K4 K5 · · · K1 K2
K2 K3 K4 · · · K2 K1


−ω2



M1 M2 M3 · · · M3 M2

M2 M1 M2 · · · M4 M3

M3 M2 M1 · · · M5 M4
...

...
...

. . .
...

...
M3 M4 M5 · · · M1 M2

M2 M3 M4 · · · M2 M1







q1
q2
q3
...

qN−1
qN


= 0

(2.32)

where N is the number of sectors in the cyclic structure, and the blocks Ki and Mi

(i = 1, . . . , INT[(N+2)/2]) are square matrices of dimension P , where P is the number
of degrees of freedom in the model of each disk-blade sector. (We have adopted the

short-hand notation INT[(N + 2)/2] to denote the integer division of (N + 2)/2 which
equals (N + 2)/2 if N is even and (N + 1)/2 if N is odd.) The structure is modeled

in a physical coordinate system (possibly using the Finite Element Method) where qi

denotes the degrees of freedom in sector i. As outlined above, Eq. (2.32) may be

brought into a block diagonal form using the coordinate transformation

q = (E⊗ I)u. (2.33)

where ⊗ denotes the Kronecker product which is discussed in Appendix A. Thus




K̃1 0 0 · · · 0 0
0 K̃2 0 · · · 0 0
0 0 K̃3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · K̃N−1 0
0 0 0 · · · 0 K̃N


−ω2



M̃1 0 0 · · · 0 0
0 M̃2 0 · · · 0 0
0 0 M̃3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · M̃N−1 0
0 0 0 · · · 0 M̃N







ũ1
ũ2
ũ3
...

ũN−1
ũN


=0

(2.34)

For the lack of a better terminology we shall refer to the u coordinate system as har-

monic coordinates, since the elements of each subvector of u, ũi, describe the motion

of a single bay in the assembly when the system is vibrating in the ith spatial harmonic.
The motion of the remaining bays is implied by the known interblade-phase angle, σi,
in Eq. (2.18).

To fully solve the eigenvalue problem, we must solve theN individual block eigen-
value problems, each of size P :

(
K̃i −ω2

i M̃i

)
ũi = 0 (i = 1, . . . , N) (2.35)

14



2.4. A Cyclic System of Equations of Motion

and find P natural frequencies ωi,1, . . . ,ωi,P with the corresponding sector eigenvec-

tors ũi,1, . . . , ũi,P . Assembly eigenvectors are generated from the sector eigenvectors

using the Kronecker product

ui,k = ei ⊗ ũi,k
(k = 1, . . . , P)
(i = 1, . . . , N)

The eigenvectors ũi,k define a transformation to amodal amplitude coordinate system,

ai,k
ũi = Ũiai (i = 1, . . . , N)

where the square matrix Ũi contains the ith-harmonic sector eigenvectors, ũi,k, as its

columns.

A transformation betweenmodal amplitude coordinates and harmonic amplitudes

for all harmonics could also be defined as

u =


Ũ1a1
Ũ2a2
...

ŨNaN

 =

Ũ1 0 · · · 0
0 Ũ2 · · · 0
...

...
. . .

...
0 0 · · · ŨN




a1
a2
...

aN

 = Ũa

Hence, the transformation between modal amplitudes coordinates and physical coor-

dinates may be simply written as

q = (E⊗ I) Ũ a. (2.36)

2.4. A Cyclic System of Equations of Motion
Consider the forced response of a structure with cyclic symmetry. The equations of

motion take the form

Mq̈+Dq̇+Aq+Kq = f (2.37)

where M, D, A and K are, respectively, the mass, damping, aerodynamic and stiffness

matrices of the structure. Since the structure has cyclic symmetry, the matrices are

block-circulant with block size equal to the number of degrees of freedom in each

sector.

Since all circulant matrices possess the same set of global eigenvectors, it is cus-

tomary to apply the coordinate transformation (2.33) to transform the right hand side

of Eq. (2.37) into generalized forces corresponding to the harmonic coordinates ui,

(i = 1, . . . , N). Hence the transformed forcing vector represents the excitation of the
various constant-interblade-phase-angle modes. (The physical justification for this is

presented in Section 4.1.) Since these modes correspond to the columns of the Fourier
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2.4. A Cyclic System of Equations of Motion

matrix, this amounts to a spatial Fourier decomposition of the forcing vector. Assum-

ing harmonic excitation, Eq. (2.37) may be written as

Cq =
N∑
i=1
(ei ⊗ fi) (2.38)

where fi is the component of the forcing in the ui direction, ei is defined in Eq. (2.17)

and C = (−ω2M+ jωD+A+K) is a circulant matrix. A transformation to harmonic

coordinates (Eq.(2.33)) yields

(E∗ ⊗ I)C(E ⊗ I)u =
N∑
i=1
(E∗ ⊗ I) (ei ⊗ fi) (2.39)

or, since

e∗kei =
{
0 if i ≠ k
1 if i = k

Equation (2.39) becomes



ΛΛΛ1 0 0 · · · 0 0
0 ΛΛΛ2 0 · · · 0 0
0 0 ΛΛΛ3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ΛΛΛN−1 0
0 0 0 · · · 0 ΛΛΛN





u1
u2
u3
...

uN−1
uN


=

N∑
i=1

(
1̂i ⊗ fi

)
(2.40)

where 1̂i is the ith canonical unit vector, a vector with all zero elements except 1 in the
ith element. The significance of Eq. (2.40) is that the forcing harmonic (ei ⊗ fi) only
excites the

(
ei ⊗ ũi,k

)
modes and the forced response problem in Eq. (2.37) is reduced

to solving a series of smaller problems, each of size P :

ΛΛΛi ui = fi (i = 1, . . . , N)
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2.5. Interblade-Phase-Angle Modes and Energy Methods.

1

3 6 9 12

15

27 24 21 18

Figure 2.1 Selected constant-interblade-phase-angle modes of a model of a 28-
blade bladed disk. The lengths of the radial lines represent the blade
displacement amplitudes at an instant of time. Modes 1 and 15 are
standing wave modes and correspond to unique eigenvalues. The
counter-rotating mode pairs (3,27), (6,24), (9,21), and (12,18) are com-
plex conjugate modes corresponding to a double natural frequency.

2.5. Interblade-Phase-Angle Modes and Energy Methods.

Figure 2.1 illustrates the constant-interblade-phase-angle modes of a cyclic system.

These modes can be identified by their number of nodal diameters, which are diam-

eters connecting pairs of nodes with zero deflection, positioned on opposite sides of

the structure. Table 2.1 shows the relationship between the mode number and the

number of nodal diameters in the mode. The number of nodal diameters of a mode

is directly related to the interblade-phase angle, σ , through Eq. (2.18). Using this rela-

tionship, the number of nodal diameters and the interblade-phase angle may be used

interchangeably.

Let us study in more detail the interblade-phase-angle modes in a system with

a single-degree-of-freedom per sector, such as the one shown in Fig. 2.2. Assuming

harmonic motion, when the assembly is vibrating in the σk interblade-phase-angle

mode with modal amplitude ak, the displacement of blade i is,

ui(t) = akejσkiejωt = akej(σki+ωt) (i = 1, . . . , N) (2.41)

Taking only the real part we find the familiar expression for the physical displacement,

ui(t) = ak cos(σki+ωt) (i = 1, . . . , N) (2.42)

which represents a sinusoidal displacement wave traveling in the positive i direction
(ascending blade number) at a constant speed c = ω/σk. The wave’s shape is not
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mode number i number of
nodal diameters

1 ≤ i ≤ N + 1
2

i− 1
N odd

N + 3
2
≤ i ≤ N N − (1+ i)

1 ≤ i ≤ N + 2
2

i− 1
N even

N + 4
2
≤ i ≤ N N − (1+ i)

Table 2.1 The relationship between themode number and the number of nodal

diameters in the mode shape.

kb kb

kc
mbmb

ui ui+1

Figure 2.2 A simple model of a tuned bladed disk featuring one-DOF, mono-
coupled bays to model each blade/disk sector.

distorted as it propagates. The kth mode’s complex conjugate counterpart is

ūi = aN−k+2ejiσN−k+2ejωt = aN−k+2e−jσkiejωt = aN−k+2ej(−σki+ωt) (i = 1, . . . , N)
(2.43)

since σN−k+2 = −σk. The real part of the displacement is

ui(t) = aN−k+2 cos(−σki+ωt) (i = 1, . . . , N) (2.44)

which is a wave propagating in the opposite direction at the same speed.

Let us examine the kinetic and potential energies of the simple structure depicted

in Fig. 2.2 as it vibrates in individual interblade-phase-angle modes. Note that energy
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2.5. Interblade-Phase-Angle Modes and Energy Methods.

analysis is impossible using a complex representation of motion (Eqs. (2.41) and (2.43))

since the potential and kinetic energies require the squaring of the displacement and

velocity respectively. This would prevent us from separating the real and imaginary

parts of the motion. The generalized physical velocity of blade i in the σk mode is

u̇i(t) = −akω sin(σki+ωt) (2.45)

From which we find the kinetic energy to be

Tk,i =
a2k
2
mω2 sin2(σki+ωt) =

a2k
4
mω2 (1− cos(2σki+ 2ωt))

=a
2
k
4
mω2 (1− cos(2σki) cos(2ωt)+ sin(2σki) sin(2ωt)) .

(2.46)

Summing over the blades, we find the total kinetic energy in the assembly for mode k

Tk = a2k

N4mω2 + mω
2

4

sin(2ωt) N∑
i=1
sin(2σki)− cos(2ωt)

N∑
i=1
cos(2σki)


(2.47)

There are two cases. If the mode does not propagate, i.e., if σk = nπ , (n = 0,1, . . .)
then

Tk =
a2kN
2
mω2 sin2 (ωt) (σk = nπ) (2.48)

otherwise the kinetic energy of the system is constant over time,

Tk =
a2kN
4
mω2 (σk ≠ nπ) (2.49)

Thus, there is a fundamental difference in the kinetic energy in standing wave motion

and traveling wave motion: in standing waves, kinetic energy oscillates sinusoidally in

time; in traveling waves, the total kinetic energy of the assembly remains fixed in time

and is simply being passed from one blade to another.

The strain energy in the ith bay (the ith blade and the spring connecting it with
blade i+ 1) in the σk interblade-phase-angle mode is

Vk,i =
1
2

{
kdu2i + kc (ui −ui+1)2

}
=a

2
k
2

{
kd cos2(σki+ωt)+ kc (cos(σki+ωt)− cos(σk(i+ 1)+ωt))2

}
=a

2
k
2

{
kd cos2(σki+ωt)+ 4kc

(
sin

(
σk
2

)
sin

(
σki+

σk
2
+ωt

))2}

=a
2
k
4
{kd(1+ cos(2σki+ 2ωt))+ 2kc (1− cos(σk)) (1− cos(2σki+ σk + 2ωt)}

(2.50)

19



2.5. Interblade-Phase-Angle Modes and Energy Methods.

The total strain energy in the assembly in the kth mode is therefore

Vk =
a2k
4

N∑
i=1
{kd(1+ cos(2σki+ 2ωt))+ kc (1− cos(σk)) (1− cos(2σki+σk + 2ωt)}

=a
2
k
4

kd
N + cos(2ωt) N∑

i=1
cos(2σki)− sin(2ωt)

N∑
i=1
sin(2σki)


+ 2kc (1− cosσk)

N − cos(σk + 2ωt) N∑
i=1
cos(2σki)

+ sin(σk + 2ωt)
N∑
i=1
sin(2σki)


(2.51)

but
N∑
i=1
sin(2σki) = 0 for all σk and

N∑
i=1
cos(2σki) = 0 for σk ≠ nπ , so

Vk =
a2k N
4

kd + 2kc (1− cosσk)
 (σk ≠ nπ) (2.52)

which is independent of time, and

Vk =
a2k N
4

kd (1+ cos(2ωt))+2kc (1− cosσk) (1− cos(σk + 2ωt))
 (σk = nπ).

(2.53)
Separating the cases σk = 0 and σk = π yields

Vk =
a2k N
2
kd cos2ωt (σk = 0) (2.54)

which is independent of kc and

Vk =
a2k N
2

(kd + 4kc) cos2ωt (σk = π) (2.55)

For all admissible δak we have

δT − δV = 0 (2.56)

and we find that the frequency equation of the system in the k the mode is

−mω2
k + kd + 2kc (1− cosσk) = 0 (k = 1, . . . , N) (2.57)

regardless of whether the corresponding wave mode is traveling or not.

From the above it should be clear that energy methods are not an ideal tool for

the analysis of the dynamics of blade assemblies when the motion is described in

terms of traveling wave modes. However, by switching to standing wave modes where

applicable (see Section 2.2.4), the analysis is greatly simplified. Furthermore, in many

simple models where all the degrees of freedom of a single site will vibrate with a zero

or π radian phase difference, the equations of motion in harmonic coordinates may

be easily be set up by inspection (see Section 3.1.2).
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CHAPTER III

MODELS OF TURBOMACHINERY ROTORS

In Chapter II we examined how the structural analysis of structures with perfect cyclic

symmetry, such as tuned blade assemblies, may be reduced to the analysis of a single

sector of the structure. When blade mistuning prevents the utilization of cyclic sym-

metry arguments a model of the full assembly is required. In the case of finite element

analysis, a much coarser meshmust be considered or the increase in problem size may

be so drastic that the problem becomes difficult on engineeringworkstations. Further-

more, a full analysis of the statistics of response of a randomly mistuned system calls

for multiple realizations of mistuned assemblies requiring an even more severe order

reduction, lest the problem become unsolvable. A full blown Monte Carlo simulation

of a mistuned structure may require thousands of realizations, a monumental task un-

less the number of degrees of freedom per realization is kept within reason. In many

cases this may limit the number of degrees of freedom per sector to less than ten.

Classical Models

Many reduced-order models of bladed disks have been developed for the study of lo-

calization and other basic phenomena. There are twomain categories of reduced order

models. The first category consists of models in which the bladed disk is modeled on

a sector by sector basis using coupled lumped mass oscillators. There are no limits

to the level of sophistication of these kinds of models. Each blade-disk sector may

be modeled with several degrees of freedom and sector to sector coupling may quite

elaborate, e.g. by allowing coupling to sectors other than the nearest neighboring sec-

tors. Such models capture the basic bladed disk dynamics, and exhibit localization

due to mistuning (see Section 1.1). The localization effects may then be analyzed by

using Monte Carlo techniques to determine the structure’s sensitivity to localization

for a given mistuning strength, by investigating the effect of various parameters on

the localization, or by other types of analysis. However, in terms of representing ac-

tual systems, these models are rather crude. Furthermore, if one wishes to use such

21



3.1. Coupled Oscillator Models

a model to predict the localization in a particular engineering structure, parameter

identification can be extremely difficult.

Improved Modeling Approach

The other category is exemplified by a model introduced by Kaza and Kielb [38], in

which the disk was modeled as a circular plate with constant thickness, and the blades

were modeled by elastic beams. The blades were attached to the disk by maintaining

continuity of displacement and slope at the disk-blade junction. The dynamics were

described by the standing wave modes of the disk and the traveling wave modes of

the blades. This type of model attempts to examine the disk and blade as separate

physical entities. This kind of approach has definite advantages over the coupled

oscillator models when it comes time to identify parameters in the model of an actual

rotor.

There is a clear need for an improved, systematic reduced-order modeling tech-

nique for bladed disks. Ideally, this technique would make use of a modal analysis

for a single sector finite element model, so that the reduced order model would rep-

resent well the actual structure. Furthermore, it should employ a component mode

approach, with the disk and blades as the components, so that individual blade prop-

erties may be mistuned. Finally, the technique should be able to produce a model with

a highly reduced number of degrees of freedom, so that Monte Carlo simulations may

be performed at a reasonable cost. Section 3.2 features such an approach.

3.1. Coupled Oscillator Models
Coupled oscillators models result from viewing turbomachinery rotors as a closed

periodic chain of oscillators. Each oscillator is the model of one or more blade-disk

sectors in the rotor, possessing any number of degrees of freedom, P . We shall refer

to an oscillator modeling one or more blade-disk sectors as a bay. Bay to bay coupling

occurs through some number of coupling coordinates, M. A bay may be coupled to

any number of its neighboring bays. The coupling coordinates are a subset of the

degrees of freedom in the bay. Herein lies the advantage of the coupled oscillator

model. As the number of coupling coordinates is normally a small number, bay to bay

interaction is easily visualized. Furthermore, as we shall presently see, the structure

may be modeled solely in terms of the coupling coordinates with a resulting, often

dramatic, reduction in the number of degrees of freedom and ensuring very sparse,

low bandwidth system matrices. Also, since the number of different energy carrying

waves possible in the structure is equal to the number of coupling coordinates (see

Chapter V) a coupled oscillator model lends itself readily to a wave analysis which is

essential for the fundamental understanding of mode localization.
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The coupled oscillator models are not without serious drawbacks. First, the con-

venient, simple model of interblade coupling is often a drastic oversimplification of

the complex coupling that may occur in turbomachinery rotors. Since coupling may

be the single most important factor influencing the mistuning sensitivity of a rotor

this may be a substantial limitation. Secondly, although the coupled oscillator models

may be of great academic interest, due to their transparency, they lose some of their

luster in real life applications due to difficulty in parameter identification. Currently,

no techniques exist for the automatic calibration of model parameters in the coupled

oscillator model leaving the analyst no good way of generating an efficient model of

his rotor.

Since the low number of coupling coordinates was toted as a major advantage of

coupled oscillator models, only models with one– (mono-coupled) or two coupling co-

ordinates (bi-coupled) will be presented here. We will see that even with this extremely

low number of coupling coordinates some very complex behavior may be modeled.

Due to the frequent use of the term degree of freedom it will be abbreviated as

DOF in most of what follows.

3.1.1. Transfer Matrix Formulation

In the cases where coupled oscillator models are deemed satisfactory it is usually be-

cause a bay may be considered to be coupled to very few of its neighboring elements

through a low number of coupling elements. These types of models lend themselves

to a transfer matrix representation. For example, an assembly which features only

coupling between adjacent blades can be modeled efficiently with transfer matrices

of dimension twice the number of coupling coordinates [21]. The number of DOFs

through which a blade is coupled to its neighbors may be much smaller than the ac-

tual number of DOFs accounted for in the blade-disk sector. With the transfer matrix

approach, the cyclic nature of the system is taken into account by realizing that the

state vector describing the behavior of each blade in anN-blade system is, at any given

time, periodic with a period N/n blades long, n = (0,1,2, . . . , N).
Blade assemblies may therefore be modeled as periodic structures with the addi-

tional constraint that the dynamics at the two boundaries are identical. The transfer

matrix modeling of any periodic or cyclic structure undergoing harmonic motion re-

quires the definition of a state vector . For the discussion we introduce the terms bay

and interface. A bay is normally defined as exactly one spatial period in the periodic

structure, such that only bays that are nearest neighbors are coupled. An interface is

a “point” on the structure which separates two bays. To a state vector for a interface

corresponds a transfer matrix that relates the states at two consecutive interfaces.
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The dimension of the state vector must be twice the number of coupling coordinates

at each interface, M [21]. A state vector is most commonly defined as the coupling

coordinate amplitudes at an interface and the amplitudes of the associated forces.

Displacements and forces at two consecutive interfaces are thus related as[
q
F

]
i
= T̂i

[
q
F

]
i−1

i = 1, . . . , N. (3.1)

where q and F each have dimensionM, whereM is the number of coupling coordinates

and T̂i is the transfer matrix for the ith bay, which depends on the frequency of har-
monic motion. If the structure is perfectly periodic then all the transfer matrices are

identical, corresponding to a blade assembly that is perfectly tuned.

Alternatively we could define a state vector for a bay as the coupling coordinate

amplitudes at both ends of the bay. Then

ui = Tiui−1 i = 1, . . . , N (3.2)

where ui = [qTi+1,qTi ]T has dimension 2M, i.e., twice the number of coupling coordi-
nates. Note that because of cyclicity qN+1 = q1 and qN = q0. The work is based on the

latter approach of bay state vectors. It is noteworthy that the actual number of DOFs of

each bay, P , may be larger (possibly much larger) than the number of coordinates, M,
through which it is coupled to the other bays in the assembly. It is M that determines

the dimension of the transfer matrix.

Equation (3.2) does not account for motion-independent external forces acting

on the system and hence only the free dynamics are considered. Furthermore, this

approach will only be used in conjunction with real-valued problems, thus ignoring

damping and aerodynamic effects.

As an example of the simplicity and usefulness of the transfer matrix formulation

we demonstrate how it may he used to find the modes of a cyclic structure. We search

for the modes of a tuned assembly whose dynamics are described by Eq. (3.2). Using

the cyclic nature of the N-bay system we obtain[
qo
q1

]
=
[

qN
qN+1

]
= TNo

[
qo
q1

]

whereTo is the transfer matrix for a tuned bay. Hence nontrivial solutions are obtained

if and only if

det
(
To

N − I
)
= 0. (3.3)

which after some algebra yields the frequency equations

λi(ω) = N
√
1 = ejσn i = 1, . . . ,2M (3.4)
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where

σn =
2π(n− 1)

N
, n = 1, . . . , N. (3.5)

Here, λi are the eigenvalues of To with corresponding eigenvectors[
qk

qk+1

]
i
=
[
1
eσn

]
⊗ ũni (3.6)

For each value of n the set of equations (3.4) (i = 1, . . . ,2M) yields P frequency solu-
tions, where P is the number of DOFs of each blade disk sector. The value,n represents

the number of nodal diameters and σ represents the constant interblade phase angle
throughout the assembly. As before ũni represents the shape of a single bay as the

assembly is vibrating in the ith σn-interblade-phase-angle mode
This is precisely the result discussed in Chapter II.

3.1.2. Mono Coupled Models

P  DOF

q
1

P  DOF

q
2

P  DOF

q
3

P  DOF

q
N

Figure 3.1 A general N-bay nearly cyclic assembly with P DOFs per bay, one of
which couples adjacent bays.

Figure 3.1 depicts a genericmono-coupled coupled oscillatormodel as a chain of P -DOF
subsystems, coupled through one coupling coordinate. The last subsystem connects

with the first one, hence the cyclic symmetry. Since the adjacent bays are only coupled

through one coordinate, the difference in the various mono-coupled models arises

solely from the modeling of the blade-disk sector.

In the case of a tuned mono-coupled assembly Eq. 3.2 takes the simplified form[
qi+1
qi

]
= To

[
qi
qi−1

]
i = 1, . . . , N (3.7)

which relates the states of two adjacent bays (recall that because of cyclicity qN+1 = q1
and qN = q0). The formulation of Eq. (3.7) requires two equations relating the coupling
coordinates qi+1, qi and qi−1. One is the equation of motion taken at interface i:

−qi+1 + βo(ω)qi − qi−1 = 0, βo(ω) ∈ IR, (3.8)
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where βo is a function defined by the equation of motion of the bay,ω is the frequency

of harmonic motion and IR is the real domain. Note that Eq. (3.8) is symmetric in qi+1
and qi−1, which requires the structure to be symmetric with respect to clockwise and

counterclockwise numbering. This is the case only in the absence of aerodynamic and

Coriolis forces. The symmetry discussed here is different from Mead’s [20] definition

of symmetry of individual bays, and Eq. (3.8) holds for either the symmetric or unsym-

metric bays as defined by Mead. Equation (3.8) does not account for dissipation since

βo(ω) is assumed to be real valued. The second equation in Eq. (3.2) is simply the

identity qi = qi. Hence each bay of a perfectly cyclic (tuned) mono-coupled structure
is described by the same transfer matrix representation[

qi+1
qi

]
=
[
βo(ω) −1
1 0

][
qi
qi−1

]
= To

[
qi
qi−1

]
, βo(ω) ∈ IR. (3.9)

where Eq. (3.9) accounts for neither damping nor aerodynamic effects. In general each

substructure possesses P DOFs (see Fig. 3.1) and the generalized coordinates of the
ith substructure are related to the coupling coordinate qi through P − 1 equations of
motion local to the bay. However, note that the coupling DOF has no special signifi-

cance, and in fact we may choose any of the P DOFs as our reference coordinate qi.
The choice must of course be the same for all bays.

Whenmistuning is introduced into the above cyclic system its periodicity is broken

in one of two ways. First, the mistuning may be caused by a parameter which only

appears in relation to the ith interface, e.g., the mistuning of parameters of individual
blades. When this is the case the symmetry of Eq. (3.8) is unaffected and Eq. (3.9) is

replaced by[
qi+1
qi

]
=
[
β(δi) −1
1 0

][
qi
qi−1

]
= Ti

[
qi
qi−1

]
, i = 1, . . . , N, (3.10)

where δi is the small deviation (order ε or smaller) of the parameter from its average

value, defining the mistuning for the ith bay. This is a random variable of mean zero.

In the notation, the frequency dependence of β has been dropped, for clarity.
Alternatively, the mistuningmay be caused by a parameter which appears at both

interfaces, i and (i+ 1), e.g., the stiffness of a spring connecting two interfaces. Then
Eq. (3.8) is no longer symmetric and Eq. (3.9) becomes[

qi+1
qi

]
=
[
β(δi, δi−1) −α(δi, δi−1)

1 0

][
qi
qi−1

]
= Ti;i−1

[
qi
qi−1

]
, i = 1, . . . , N,

(3.11)

where δi and δi−1 are random variables which correspond to the mistuned parameter

on each side of interface i. Again, the frequency dependence of α and β is implied.

Note the use of a semicolon in the index.
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One-DOF-sector model

Figure 3.2 depicts what is possibly the simplest possible model of a bladed disk. In-

deed, since the model only possesses one coupled DOF in each blade-disk sector, a

separate study of blade and disk motion is not possible. In the model, the DOF is con-

ventionally considered as modeling the blade motion, although it more closely models

disk type motion. Since much work on this model exists in the literature, and because

its single parameter representation of coupling provides a convenient way of examin-

ing coupling effects, which have been shown to govern sensitivity to mistuning [31],

it is ideal for the study of forced response. The understanding of the fundamental

mechanisms of mistuning effects obtained through the use of this model should be

fully applicable to more complicated models.

kb(1+ δi) kb(1+ δi+1)

kc
mbmb

qi qi+1

Fi Fi+1

c c

Figure 3.2 A simple model of a bladed disk featuring one-DOF, mono-coupled
bays to model each blade/disk sector.

The equations of motion of the system in Fig. 3.2 are

mbq̈i + cq̇i − kcqi−1 + (1+ δi)kbqi + 2kcqi − kcqi+1 = Fi (i = 1, . . . , N). (3.12)

where Fi = f e2jπC(i−1)/N is the component of engine order C excitation (see Section
4.1) acting on blade i and δi is the mistuning parameter for blade i. Due to the cyclicity
of the assembly we have qN+1 = q1 and qo = qN . Normalizing with kb and m and

assuming harmonic motion leads to the form

−Rqi−1 + (1+ δi + 2R − ω̄2 + 2jζω̄)qi −Rqi+1 = F̄i (i = 1, . . . , N) (3.13)
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where

R = kc
kb
, ω̄2 = mbω2

kb
, ζ = c

ccr
= c
2
√
kbmb

and F̄i =
f
kb
e2πC(i−1)/N (3.14)

To find the modes of free vibration of the tuned system, we examine the tuned, un-

forced, undamped case. The equations of harmonic motion are:

−Rqi−1 + (1+ 2R − ω̄2)qi − Rqi+1 = 0 (i = 1, . . . , N) (3.15)

A transformation to harmonic coordinatesui (See Section 2.3) is as simple as assuming

motion such that qi = uk, where uk is the amplitude of blade i when the assembly
is vibrating in the kth interblade phase angle mode. Then the motion of the adjacent

blades is qi−1 = uke−jσk and qi+1 = ukejσk , where σk = 2π(k − 1)/N is the phase

shift, and Eq. (3.15) may be written as

[
1+ 2R(1− cosσk)− ω̄2

k

]
uk = 0 (3.16)

where ω̄k is a natural frequency corresponding to the σk interblade phase angle mode.

Note that in the case of a single DOF per bay, harmonic coordinates and modal ampli-

tude coordinates are the same. The natural frequencies of the tuned system are

ω̄2
k = 1+ 2R(1− cosσk) (k = 1, . . . , N). (3.17)

Since cosσk = cosσN+2−k, natural modes appear mostly in pairs corresponding
to counterrotating (complex conjugate) interblade phase angle pairs. The natural fre-

quencies of a cyclic structuremay be convenientlyplotted as a function of the harmonic

at which they occur. Such a plot is depicted in Fig. 3.3. In the plot natural frequencies

may be seen to rise sharply as the number of nodal diameters increase. This is typical

of disk behavior since stiffness increases as tangential waviness of themode increases.

In the unforced, undamped case the equations of motion may be written in a

transfer matrix form[
qi+1
qi

]
=
[
(1+ δi + 2R − ω̄2)/R −1

1 0

][
qi
qi−1

]
, i = 1, . . . , N, (3.18)
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Figure 3.3 The natural frequencies of a one DOF model are plotted as a function
of the number of nodal diameters. Disk type dynamics are evidenced.
R = 0.7

Two-DOF-sector model

The next mono-coupled model of a bladed disk has two DOFs per bay. This model

is shown in Fig. 3.4. Dye and Henry [3] were among the first to propose this blade

assembly model and it has been used subsequently both for blade assemblies [37] and

for large space reflectors [34]. This model will play a large role throughout this work.

In Fig. 3.4, qbi represents the single-mode motion of the blade and q
d
i accounts for the

motion of the disk at the blade root. Corresponding to qbi are the blade (modal) mass
mb and nominal (modal) stiffness kb. The mass md simulates the effective mass of

the blade root and the corresponding section of the disk. The stiffness kd represents
the nominal stiffness of the rotor disk, whereas kc provides disk coupling between
neighboring blades. It is assumed that all bays have identical massesmb andmd and

that the blade–, disk– and coupling stiffness may differ from one bay to the next. This

reduces complexity and provides adequatemeans ofmistuning the natural frequencies

of the individual bays. We write the mistuned stiffnesses as

kid = kd(1+ δdi ), kib = kb(1+ δbi ) and kic = kc(1+ δci ), (3.19)

where δdi , δ
c
i and δ

b
i are random variables with zero mean and standard deviation

sd, sc and sb, respectively. The average values of the stiffnesses are kb, kd, and kc ,
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kd(1+ jγd + δdi ) kd(1+ jγd + δdi+1)

kb(1+ jγb + δbi ) kb(1+ jγb + δbi+1)

kc(1+ δci )

mbmb

mdmd

qdi qdi+1

qbi , Fi qbi+1 , Fi+1

c c

Figure 3.4 A simple model of a bladed disk featuring one disk-DOF and one blade-
DOF, mono-coupled bays to model each blade/disk sector.

respectively, and correspond to the stiffnesses in a tuned assembly. This is the only

model where we have included all these sources of mistuning since it will be used

to study the effects of the different types of mistuning. We also aim to study how

different combinations of stiffness and mass values affect the sensitivity of the system

tomistuningand how the sensitivitydiffers when the blade stiffness, the disk stiffness,

or the coupling spring stiffness are mistuned.

For the analysis of the forced response of the two-DOF per bay model to an engine

order excitation, damping is included in the form of structural, or hysteretic damping

for the blades (γb) and the disk (γd), and of viscous damping for the blades (c). The

aim of including viscous damping is to simulate aerodynamic damping, although aero-

dynamic interblade coupling is clearly not captured by the model. Forcing is assumed

to be applied at that blade DOF only.

We now proceed to formulate the equations of motion of a single bay in Fig. 3.4.

Bay i is defined as the ith blade-disk element, including the spring connecting it to

blade (i + 1). The ith interface is the point where bay i and bay (i − 1) meet. All
parameters of bay i except the spring stiffness appear solely in relation with the ith

interface, whereas kic connects interfaces i and i+1. For that reason, a dynamic force
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equilibrium at interface i will include both kic and ki−1c . This yields the equations of

motion

mbq̈bi + cqbi + kb(1+ δbi + γb)
(
qbi − qdi

) = Fi, (3.20)

kc(1+ δci−1)
(
qdi − qdi−1

)+ kc(1+ δci )(qdi − qdi+1)+ kd(1+ δdi + γd)qdi
+ kb(1+ δbi + γb)

(
qdi − qbi

)+mdq̈di = 0
(3.21)

Note that Eq. (3.20) is local to the ith blade. Introducing the following dimensionless
parameters

k̄d = kdkb
k̄c = kckb

m̄ = md

mb
. (3.22)

and assuming harmonic motion, q̈bi = −ω2qbi , Eq. (3.20) may be rearranged as

qib =
(1+ δi + jγb)qid + F̄i

(1+ δi + jγb)+ 2jζω̄− ω̄2 (3.23)

where

ω̄2 = mbω2

kb
F̄i = Fi

kb
ζ = c

ccr
= c
2
√
kbmb

(3.24)

Equation (3.21) may be similarly nondimensionalized as

k̄c(1+ δci−1)
(
qdi − qdi−1

)+ k̄c(1+ δci )(qdi − qdi+1)+ k̄d(1+ δdi + γd)qdi
+ (1+ δbi + γb)

(
qdi − qbi

)− ω̄2m̄qdi = 0
, (3.25)

Note that Eq. (3.23) can be used to eliminate the blade coordinates from Eq. (3.25).

In the absence of forcing and damping the equation of motion take a simplified

form,

qib =
(

1+ δi
1+ δi − ω̄2

)
qid (3.26)

and

qdi+1 =
1

1+ δci

[
2+δci +δci−1+

k̄d
k̄c
(1+δdi )−

ω̄2(1+ δbi )
k̄c(1+ δbi − ω̄2)

− m̄ω̄
2

k̄c

]
qdi −

1+ δci−1
1+ δci

qdi−1.

(3.27)
where Eq. (3.27) is solely in terms of disk coordinates. Defining

βi;i−1 = 1
1+ δci

[
2+ δci + δci−1 +

k̄d
k̄c
(1+ δdi )−

ω̄2(1+ δbi )
k̄c(1+ δbi − ω̄2)

− m̄ω̄
2

k̄c

]
(3.28)

and

αi;i−1 =
1+ δci−1
1+ δci

(3.29)

we can write [
qdi+1
qdi

]
=
[
βi;i−1 −αi;i−1
1 0

][
qdi
qdi−1

]
, i = 1, . . . , N, (3.30)
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a transfer matrix form of the free equations of motion of the system in Fig. 3.4 where

the state vector consists of the disk generalized coordinates.

For a tuned assembly we have δci = δdi = δbi = 0 and βo is given by

βo = 2+ k̄dk̄c
− ω̄2

k̄c(1− ω̄2)
− m̄ω̄

2

k̄c
. (3.31)

with αo = 1. See Chapter V for a discussion of transfer matrix approaches to wave and
mode analysis.

To find the natural frequencies of free motion of the tuned assembly, we break

the problem into individual spatial harmonics by a transformation to harmonic coor-

dinates,

uk = [ub,ud]Tk , (k = 1 . . .N), (3.32)

such that qi = uk. Here, uk is the amplitude vector of bay i as the assembly vibrates
in the kth interblade-phase-angle mode. Then the motion of the adjacent blades is

qi−1 = uke−jσk and qi+1 = ukejσk where σk = 2π(k − 1)/N and the equations of

motion become

mbü
(k)
b + kb

(
u(k)b −u(k)d

)
= 0 (3.33)

mdü
(k)
d + kdu(k)d + 2kc(1− cosσk)u(k)d − kb

(
u(k)b −u(k)d

)
= 0 (3.34)

Assuming harmonic motion of frequency, ω, Eqs. (3.33) and (3.34) may be written in
matrix form as:[

1 −1
−1 k̄d+2(1−cosσk)k̄c + 1

]
uk − ω̄2

[
1 0
0 m̄

]
ük = 0 (3.35)

with the same nondimensionalization scheme as before (see Eqs. (3.22) and (3.24)).

Equation (3.35) leads to the characteristic frequency equation

m̄ω̄4 − ω̄2
(
k̄d+2(1−cosσk)k̄c + 1+ m̄

)
+
(
k̄d+2(1−cosσk)k̄c

)
= 0 (3.36)

which has two frequency solutions for each admissible interblade phase angle σk,

k = 1, . . . , N:

ω̄2
k =

2k̄c (1− cosσk)+k̄d+m̄+1
2m̄

1±
√√√√√√1 − 4m̄

[
k̄d + 2k̄c (1− cosσk)

]
[
2k̄c (1− cosσk)+k̄d+m̄+1

]2

(3.37)

with σk given in Eq. (2.18). The natural frequencies for an example system are depicted

in Fig. 3.5. The corresponding local deflection shapes uk may be found using the first

equation in Eq. (3.35). It yields

uk =
[

1
1− ω̄2

k

]
(3.38)
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Figure 3.5 The natural frequencies of a two DOF model are plotted as a function
of the number of nodal diameters. Distinct blade dynamics (horizontal
curve segments) and disk type dynamics are evidenced. k̄d = 1., m̄ =
30, k̄c = 50

The free vibration modes of the tuned assembly can be classified as blade- or disk-

dominatedmodes based on the relative magnitudes of the disk and blade motions. We

can quantify this by defining a kinetic energy ratio as the ratio of blade kinetic energy

to the total kinetic energy in the constant interblade phase angle mode considered:

T̄k =
mb

(
u̇(k)b

)2
mb

(
u̇(k)b

)2 +md

(
u̇(k)d

)2 = 1

1+ m̄(1− ω̄2
k)2

(3.39)

Thus a value of T̄k close to zero indicates that in that mode the assembly dynamics

is dominated by the motion of the disk, while T̄k of order 1 indicates a blade motion
dominated dynamics.

Figure 3.5 shows a plot of the natural frequencies as a function of the number

of nodal diameters in the corresponding mode shape. Note the differences between

Fig. 3.5 and Fig. 3.3. The curves that correspond to the first and second natural fre-

quency at a given numer of nodal diameters veer away from each other at N/8. We

observe two distinct mode groups, a group of blade modes corresponding to the two

horizontal curve segments and a group of disk modes corresponding to the parabola

shaped curve segments. Note that if there were no coupling between the blades and
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the disk, Fig. 3.5 would show two intersecting curves, a parabola shaped curve similar

to the one depicted in Fig. 3.3 corresponding to disk modes and a horizontal curve

corresponding to a mode of a fixed blade. The fixed blade mode curve would naturally

be independent of the number of nodal diameters. Since the blade and the disk are

coupled, the curves do not intersect. Instead, the veer away from each other and the

tightness of the veering is a measure of the strength of the coupling. The stronger the

veering, the stronger the coupling.

In their work Cornwell and Bendiksen [34] and Bendiksen [37] took a different ap-

proach to the analysis of the same model. Using the theory of circulant matrices, they

chose to eliminate the disk DOFs by applying an approximate reduction procedure,

arguing that in many cases of practical interest the disk stiffness is much greater than

the blade stiffness. This is equivalent to setting md = 0 and thus m̄ = 0. We have
found this to be an unnecessary approximation, although the approach allows one

to emulate the coupling among all blades (as opposed to nearest neighbor coupling)

through the disk DOFs.

Three-DOF-sector model

Figure 3.6 depicts a model obtained from the one-disk-, one-blade-DOF model. The

model is enhanced by adding a DOF to the attached oscillator which is now capable of

capturing two mode motion in the blade.

The model presented here is not without compromises. The model of the blade

could bemore general— e.g., by coupling the upperDOF in the blade directly to the disk

DOF— but in order to limit the number of parameters in themodel some flexibility was

sacrificed. As we shall see in Chapter VII, this does not obviously limit the capabilities

of the model. Another concession to the ease-of-use was in the form of mistuning. As

in earlier models, mistuning was only considered in the blade stiffness. In the current

model there are two blade stiffnesses. These could have been individually mistuned

but this would have introduced considerable complications without any clear benefits.

The stiffness and mass of the additional oscillator are given as a mass ratio, µ and
stiffness ratio, κ, with respect to the pre-existing oscillator.

For the analysis of forced response, damping is included in the form of structural

(or hysteretic) damping for the blades (γb) and the disk (γd), and of viscous damping

for the blade DOFs (c1 and c2). Assuming that the blade structural damping is identical
for both parts of the blade, but that forcing and viscous damping of the two blade DOFs

may be different, the equations of motion are

mdq̈id+kb(1+jγb+δi)(qid−qib1)+kd(1+jγd)qid+kc(−qi−1d +2qid−qi−1d ) = 0 (3.40)
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Figure 3.6 A simple model of a bladed disk featuring one disk-DOF and two blade-
DOF, mono-coupled bays to model each blade/disk sector.

mbq̈ib1 + c1q̇b1 + kb(1+ jγb + δi)
(
(qib1 − qid)+ κkb(qib1 − qib2)

)
= Fi1 (3.41)

µmbq̈ib2 + c2q̇ib2 + κkb(1+ jγb + δi)(qib2 − qib1) = Fi2 (3.42)

where i = 1, . . . , N with qN+1 = q1 and qo = qN due to cyclicity. Nondimensionalizing
by scaling with the blade properties kb andmb and assuming harmonic motion yields

−ω̄2m̄qid+(1+jγb+δi)(qid−qib1)+k̄d(1+jγd)qid+k̄c(−qi−1d +2qid−qi−1d ) = 0 (3.43)

−ω̄2qib1 + 2jω̄ζ1qb1 + (1+ jγb + δi)
(
(qib1 − qid)+ κ(qib1 − qib2)

)
= F̄ i1 (3.44)

−µω̄2qib2 + 2jωζ2qib2 + κ(1+ jγb + δi)(qib2 − qib1) = F̄ i2 (i = 1, . . . , N) (3.45)

where the dimensionless parameters

k̄d = kdkb
k̄c = kckb

m̄ = md

mb
. (3.46)

35



3.1. Coupled Oscillator Models

and

ω̄2 = mbω2

kb
F̄i = Fi

kb
ζ1 = c1

ccr
ζ2 = c2

ccr

(
ccr = 2

√
kbmb

)
(3.47)

have been introduced. Equations (3.43) to (3.45) may be solved numerically for free or

forced response in the mistuned case. Let us examine in more detail the free response

of undamped, tuned systems that will be used in the parameter identification. We also

review the condensation approach that is used for an efficient solution of the forced

response of a mistuned structure.

Turning to the free response of the free undamped assembly we observe that the

transformation to harmonic coordinates,

uk = [ud,ub1, ub2]Tk , (k = 1, . . . , N), (3.48)

simply requires assuming motion such that qi = uk. Here uk is the amplitude vector

of blade i as the assembly vibrates in the kth interblade phase angle mode. Then
the motion of the adjacent blades is qi−1 = uke−jσk and qi+1 = ukejσk , where σk =
2π(k − 1)/N, and the equations of motion become

−ω̄2m̄ud,k +ud,k −ub1,k +
(
k̄d + 2k̄c(1− cosσk)

)
ud,k = 0 (3.49)

−ω̄2ub1,k +ub1,k −ud,k + κ(ub1,k −ub2,k) = 0 (3.50)

−ω̄2µub2,k + κ(ub2,k −ub1,k) = 0 (3.51)

or 
1+ k̄d + 2k̄c(1− cosσk) −1 0

−1 1+ κ −κ
0 −κ κ

− ω̄2
k

m̄ 0 0
0 1 0
0 0 µ


 ũk = 0 (3.52)

Note that Eq. (3.52) corresponds to the kth block of the block-diagonalized eigenvalue

problem in Eq. (2.26). The dimension of each block is equal to the number of DOFs

in each sector. However, since the two blade DOFs depend only on the disk DOF, as

follows

qib2 = qib1
κ

κ − µω̄2
(3.53)

qib1 = qid
(κ − µω̄2)

(1+ κ − ω̄2)(κ − µω̄2)− κ2 (3.54)

the problem may be condensed down to a single dependent variable, and the block-

circulant eigenvalue could be reduced to a circulant eigenvalue problem. In general,

the block size in block-circulant matrix for a cyclic structure may be condensed down

to the number of coupling coordinates.
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Solving Eq. (3.52) for the natural frequencies ω̄2
k yields three solutions,

ω̄2
k,1 = L3 + L2 −

G2
3G1

ω̄2
k,2 = −

1
2
(L3 + L2)−

G2
3G1
+ j
√
3
2
(L3 − L2)

ω̄2
k,3 = −

1
2
(L3 + L2)− G2

3G1
− j
√
3
2
(L3 − L2)

k = 1, . . . , N (3.55)

where

L1 =
√
3

G21

√
4G33G1 −G23G22 − 18G2G3G1G4 + 27G24G21 + 4G4G32

L2 =
(
G2G3
6G21

− G4
2G1
− G32
27G31

− L1
18

) 1
3

L3 =
(
G2G3
6G21

− G4
2G1
− G32
27G31

+ L1
18

) 1
3

(3.56)

and
G1 = −mµ
G2 = µ [kd + 2(1− cosσk)kc]+m[κ + κµ + µ]+ µ
G3 = − [kd + 2(1− cosσk)kc] [κ + κµ + µ]− κ(m+ µ + 1)
G4 = κ [kd + 2(1− cosσk)kc]

(3.57)

Figure 3.7 illustrates the natural frequencies as a function of the number of nodal

diameters in an example system. The corresponding mode shapes are calculated from

Eqs. (3.53) and (3.54) as

ũk =


ũ(k)d
ũ(k)b1
ũ(k)b2

 =

(1+ κ − ω̄2

k)
(
1− µ

κ ω̄
2
k

)
− κ(

1− µ
κ ω̄

2
k

)
1

 =
AkBk
1

 k = 1, . . . , N (3.58)

Clearly there are three such local shapes for each value of k. The free vibration modes
can be classified as blade- or disk-dominated modes. Figure 3.7 depicts the natural

frequencies conveniently plotted as a function of the number of nodal diameters in

the corresponding mode shape. Note how the addition of a second blade DOF has

introduced a second horizontal blade-mode branch that also interacts with the disk-

mode branch through a veering. Classification of blade motion dominated modes and

disk motion dominatedmodes is achieved by studying T̄k, the ratio of the blade kinetic
energy to the total system kinetic energy in a σk-interblade phase angle mode:

T̄k =
mb

(
˙̃u(k)b1

)2
+ µmb

(
u̇(k)b2

)2
md

(
u̇(k)d

)2 +mb

(
u̇(k)b1

)2 + µmb

(
u̇(k)b2

)2 = B2k + µ
m̄dA2k + B2k + µ

(3.59)
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Figure 3.7 Natural frequencies as a function of the number of nodal diameters

for the system: k̄d = 1., m̄ = 30, k̄c = 50, κ = .8 and µ = 1.

Modes dominated by the disk motion will be characterized by T̄k close to zero, and
blade-dominated modes by T̄k close to unity.

Now we show how the equations of motion may be condensed in the forced re-

sponse case to enhance the efficiency of the forced response solver. The condensation

is based on the fact that the blade DOFs in each sector depend only on the disk-DOF

of that sector. Assuming harmonic motion, we can solve Eq. (3.45) for the blade dis-

placement qib2

qib2 =
κ(1+ jγb + δi)qib1 + F̄ i2

2jω̄ζ2 − µω̄2 + κ(1+ jγb + δi)
(3.60)

Likewise, we have, from Eq. (3.44)

qib1 =
F̄ i2κK3(ω̄)+ F̄ i1K2(ω̄)+ qidK3(ω̄)K2(ω̄)

K1(ω̄)K2(ω̄)− κ2K2
3(ω̄)

(3.61)

where, for convenience, we have defined

K1(ω̄) = 2jζ1ω̄− ω̄2 + (1+ κ)(1+ jγb + δi)

K2(ω̄) = 2jζ2ω̄− µω̄2 + κ(1+ jγb + δi)

K3(ω̄) = (1+ jγb + δi)
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Finally, using Eqs. (3.60) and (3.61), we can reduce Eq. (3.43) to the form

−qi−1d + β(δi, ω̄)qid − qi+1d = F̄
i
2κ2K2

3(ω̄)+ F̄ i1κK3(ω)K2(ω̄)

k̄c
[
K1(ω̄)K2(ω̄)− κ2K2

3(ω̄)
] (i = 1, . . . , N)

(3.62)
where the equations of motion have been condensed down to one equation of motion

in terms of the coupling coordinates, qid. The dynamic properties of the system are

completely captured by the β function

β(δi, ω̄) = K4(ω̄)
k̄c

− κK2
3(ω̄)K2(ω̄)

k̄c
[
K1(ω̄)K2(ω̄)− κ2K2

3(ω̄)
] (3.63)

where

K4(ω̄) = −m̄ω̄2 + (1+ jγb + δi)+ k̄d(1+ jγd)+ 2k̄c (3.64)

Finally we point out that a transfer matrix representation of the free damped response

is obtainable from (3.62) as[
qi+1d
qid

]
=
[
β(δi, ω̄) −1

1 0

][
qid
qi−1d

]

3.1.3. Bi-Coupled Models

What themodels presented thus far have all had in common is a single coupling coordi-

nate. In the following sections we shall investigate two models that have two coupling

coordinates. As we will see in Chapter V the addition of a second coupling coordi-

nate complicates the analysis of waves in the assembly because as we stated in Section

1.1.1, there are as many wave channels in a periodic structure as there are coupling

coordinates.

There are two basic ways of obtaining a bi-coupled system. First, a system may

consist of a chain of coupled oscillator in which only adjacent oscillators are coupled,

through two coupling coordinates. Second, we may have an oscillator chain in which

each oscillator communicates directly with four other oscillators, two on each side,

through one coupling coordinate each. Figures 3.8 and 3.9 illustrate the two cases in

a general way.

The treatment of multi-wave periodic systems usually focuses on systems where

only neighboring bays are coupled through multiple coordinates, as shown in Fig. 3.8.

The form required for the transfer matrix representation of the multi-coupled system

depicted in Fig. 3.8 is [
qi+1
qi

]
=
[
B −A
I O

][
qi

qi−1

]
= T

[
qi

qi−1

]
(3.65)
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q1 q2 q3 qN

Q DOF Q DOF Q DOF Q DOF

Figure 3.8 A general N-bay cyclic assembly with Q DOFs per bay, two of which are
coupled to one adjacent bay on each side.

P  DOF

q1 q2 q3
qN

P  DOF P  DOF P  DOF

q4

P  DOF

Figure 3.9 A general N site cyclic assembly with P DOFs per site, one of which is
coupled to two adjacent sites on each side.

where qi is the vector of coupling coordinate amplitudes at bay i. The block I in the

matrix T denotes the identity matrix and 0 is a block of zeros.

The alternative method approaches bi-coupled systems (M = 2) through the spe-
cial case of five coupled bays as depicted in Fig. 3.9. This definition of a bay does not

conform to our earlier requirement that only neighboring bays be coupled. However,

we will demonstrate how this case of coupled non-adjacent bays can be related to the

case in which only neighboring bays are coupled. A transfer matrix representation of

a system where each bay is coupled to its four nearest neighbors is
qi+2
qi+1
qi
qi−1

 =

−α βi −α −1
1 0 0 0
0 1 0 0
0 0 1 0



qi+1
qi
qi−1
qi−2

 . (3.66)

The first row represents the equation of motion of the coupling coordinates of the ith

bay and the remaining rows are trivial identities. The analysis of the additional DOFs

of each bay is performed through equations of motion which are local to the bay.

Were this system to be described by a circulant system matrix [51], β and −α would
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ri

k1k1 P  DOF

si

k1 P  DOF

k2

k2 k2

k2

Figure 3.10 An aggregate bay of the model in Fig. 3.9, chosen so that only neigh-
boring substructures are coupled.

be, respectively, the diagonal and the super/sub-diagonal elements of the circulant

system matrix, with −1 appearing on the second off-diagonals. This would yield the
system matrix circ[β,−α,−1,0, . . . ,0,−1,−α].

For those familiar with the work of Mead [21], it is interesting to study the relation-

ship between the two approaches to bi-coupled systems, adjacent bay vs. nonadjacent

bay coupling. Plainly, the system in the preceding section, shown in Fig. 3.9, may be

modified to the form in Fig. 3.8 by regarding two adjacent bays as being one bay of the

system shown in Fig. 3.8.

This aggregate bay, which possesses Q = 2P DOFs, is depicted in Fig. 3.10. The
corresponding form of the aggregate transfer matrix is obtained by multiplying two

adjacent individual transfer matrices defined in Eq. (3.66). This yields

[
qi+1
qi

]
=


−α β −α −1
1 0 0 0
0 1 0 0
0 0 1 0



−α β −α −1
1 0 0 0
0 1 0 0
0 0 1 0


[

qi
qi−1

]

=


α2 − β −αβ−α α2 − 1 α
−α β −α −1
1 0 0 0
0 1 0 0


[

qi
qi−1

]

=
[
B −A
I O

][
qi

qi−1

]
(3.67)

where

qi =
[
ri
si

]
(3.68)

The more classical representation of periodic structures in terms of coupled adjacent
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kd3(1+ jγd) kd3(1+ jγd)
kd1(1+ jγd)
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md1

md3
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qd2i qd2i+1

qd1i qd1i+1

qbi , Fi qbi+1 , Fi+1

c c

Figure 3.11 A simple model of a bladed disk featuring two disk-DOF and one
blade-DOF, bi-coupled bays to model each blade-disk sector.

bays is thus easily achieved from the non-adjacent coupling formulation by a simple

permutation of the state vector coordinates and the squaring of the associated transfer

matrix. In the following sections we shall give examples of both types of bi-coupled

systems.

Three-DOF-sector bi-coupled model

Figure 3.11 depicts an elaborate three-DOF per bay model. The modeling of the blades

is identical to that for the one disk-DOF, one blade-DOF mono-coupled system. How-

ever, each disk sector is modeled as a two-DOF system, with stiffness and inertia influ-

ence coefficients which yield general (for example, non-diagonal) stiffness and mass

matrices for the disk sector. Note that the “mass” md3 represents a cross-inertia.

Adjacent disk sectors are also coupled in a general way, as shown in Fig. 3.11. It is

noteworthy that because of the generality of the disk sector model, one can reason-

ably expect negative values for some of the disk parameters, particularlymd3 and kc3 .
However there is no guarantee that any set of parameters will lead to a positive definite

system. A poor choice of parameters may result in spurious, non-physical systems.

For each bay in Fig. 3.11 the three equations governing the steady-state response
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to the harmonic excitation are:

−ω̄2qib + (1+ jγb + δi)
(
qib − qid2

)+ 2jζω̄qib = F̄i, (3.69)

−ω̄2
[
m̄2qid2 + m̄3qid1

]
+ k̄d3(1+ jγd)qid2 + k̄d2(1+ jγd)

(
qid2 − qid1

)
+k̄c2

(
−qi−1d2 + 2qid2 − qi+1d2

)
+ k̄c3

(
−qi−1d1 + 2qid2 − qi+1d1

)
+ (1+ δi + jγb) (qid2 − qib) = 0

(3.70)

−ω̄2
[
m̄1qid1 + m̄3qid2

]
+ k̄d1(1+ jγd)qid1 + k̄d2(1+ jγd)

(
qid1 − qid2

)
+k̄c1

(
−qi−1d1 + 2qid1 − qi+1d1

)
+ k̄c3

(
−qi−1d2 + 2qid1 − qi+1d2

)
= 0

(3.71)

where the disk parameters have been scaled by the blade parameters as follows

m̄1 = md1
mb

k̄c1 =
kc1
kb k̄d1 =

kd1
kb

m̄2 = md2
mb

k̄c2 =
kc2
kb k̄d2 =

kd2
kb

m̄3 = md3
mb

k̄c3 =
kc3
kb k̄d3 =

kd3
kb

(3.72)

in addition to using the dimensionless parameters of Eq. (3.24) and the scaling the

frequency of motion with the blade natural frequency, ωb = kb/mb.

We solve Eq. (3.69) for qib, thus obtaining

qib =
(
1+ δi + jγb

)
qid2 + F̄i(

1+ δi + jγb
)+ 2jζω̄− ω̄2

(3.73)

and use it to eliminate qib from Eq. (3.70), which then takes the form

−ω̄2
[
m̄2qid2 + m̄3qid1

]
+ k̄d3(1+ jγd)qid2 + k̄d2(1+ jγd)

(
qid2 − qid1

)
+k̄c2

(
−qi−1d2 + 2qid2 − qi+1d2

)
+ k̄c3

(
−qi−1d1 + 2qid2 − qi+1d1

)
+ (1+ δi + jγb)

(
qid2 −

(
1+ δi + jγb

)
qid2 + F̄i(

1+ δi + jγb
)+ 2jζω̄− ω̄2

)
= 0

(3.74)

This leaves us with two equations, (3.71) and (3.74), and two unknowns per bay, qid =
[qid1 , q

i
d2]

T . This system of equations can be written as

−Aqi+1d + Biqid −Aqi−1d = F̄ fi i = 1, . . . , N, (3.75)

where

A =
[
k̄c1 k̄c3
k̄c3 k̄c2

]
, (3.76)
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Bi =



− ω̄2m̄1 + 2(k̄c1 + k̄c3)
+ (k̄d2 + k̄d1)(1+ jγd)

−ω̄2m̄3 − k̄d2(1+ jγd)

−ω̄2m̄3 − k̄d2(1+ jγd)

−ω̄2m̄2 + (k̄d3 + k̄d2)(1+ jγd)+ 2(k̄c2 + k̄c3)

+(1+ δi + jγb)− (1+ δi + jγb)2
(1+ δi + jγb)+ 2jζω̄− ω̄2


(3.77),

and

fi = 1+ δi + jγb
1+ δi + jγb + 2jζω̄− ω̄2

e
[
2jπ
N C(i−1)

] [
0
1

]
. (3.78)

The individual bay equations can be gathered in a 2N by 2N system which governs the

steady-state forced response of the assembly:

B1 −A 0 0 . . . 0 −A
−A B2 −A 0 . . . 0 0
0 −A B3 −A . . . 0 0
0 0 −A B4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . BN−1 −A
−A 0 0 0 . . . −A BN





q1d
q2d
q3d
q4d
...

qN−1d
qNd


= F̄



f1
f2
f3
f4
...

fN−1
fN


(3.79)

The above matrix is “block-tridiagonal circulant” (or nearly so for mistuned systems)

and has a reduced dimension of 2N × 2N for this 3N-DOF assembly. The solution of

the linear system, Eq. (3.79), yields the forced response amplitudes of the disk DOFs.

The blade forced response amplitudes can then calculated from Eq. (3.73).

For a mistuned assembly Eq. (3.79) cannot be simplified and its solution requires

the inversion of the impedance matrix. A computer program that takes into account

the sparseness of the matrix and can accomplish the inversion in a very efficient man-

ner was developed and used in this work. Hence, this 3N × 3N system that under

normal circumstances would require order (3N)2 operations can be solved with order

2N operations. In the tuned assembly case a closed-form solution can be obtained, as

follows.

The response of the tuned system may be easily calculated once it has been real-

ized that an engine order C excitation only causes theσC+1 = 2πC/N interblade phase
angle modes to respond, with all other modes remaining quiescent for all time. As we

showed in Section 2.4, the forced response problem is thus reduced to(
Bo − 2cosσC+1A

)q(C)d1
q(C)d2

 = [ 0F̄
]

1+ jγb
1+ jγb + 2jζω̄− ω̄2

(3.80)

with A and Bo from Eqs. (3.76) and (3.77), respectively, with δi = 0. Equation (3.80) is
readily solved for q(C)d2 . The value of q

(C)
b is subsequently obtained via Eq. (3.73). The
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final result, the magnitude of the blade response amplitude due to an engine order C

excitation, |q(C)b |, is obtained as

|q(C)b | =

∣∣∣∣∣∣∣∣∣∣

 f
(
1+ jγb

)(
K22 − K

2
12
K11

) + 1


(
1+ jγb + 2jζω̄− ω̄2

)−1
∣∣∣∣∣∣∣∣∣∣
F̄ (3.81)

where

K12 = −ω̄2m̄3 − k̄d2(1+ jγd)− 2k̄c3 cosσ (3.82)

K11 = −ω̄2m̄1 + k̄d1(1+ jγd)+ k̄d2(1+ jγd)+ 2k̄c1(1− cosσ)+ 2k̄c3 (3.83)

K22 =− ω̄2m̄2 + k̄d3(1+ jγd)+ k̄d2(1+ jγd)+ 2k̄c2(1− cosσ)

+ 2k̄c3 + 1+ jγb −
(1+ jγb)2

1+ jγb − ω̄2 + 2jζω̄
(3.84)

f = 1+ jγb
1+ jγb − ω̄2 + 2jζω̄ (3.85)

We are interested in the modes of the tuned system. The transformation to har-

monic coordinates,

uk = [ub,ud1, ud2]Tk , (k = 1 . . .N), (3.86)

requires assuming motion such that qi = uk as before. Again, uk is the amplitude

vector of blade bay i as the assembly vibrates in the kth interblade phase angle mode.

Then the motion of the adjacent blades is qi−1 = uke−jσk and qi+1 = ukejσk where
σk = 2π(k− 1)/N and the equations of motion become

mbü
(k)
b + kb(u(k)b −u(k)d2 ) = 0 (3.87)

md1ü
(k)
d1 +md3ü

(k)
d2 + kd1u

(k)
d1 + kd2(u

(k)
d1

−u(k)d2 )+ 2kc1(1− cosσk)u
(k)
d1 + 2kc3(u

(k)
d1 − cosσku

(k)
d2 ) = 0

(3.88)

md3ü
(k)
d1 +md2ü

(k)
d2 + kd3u

(k)
d2 − kd2(u

(k)
d1 −u

(k)
d2 )+ 2kc2(1− cosσk)u

(k)
d2

+2kc3(u(k)d2 − cosσku
(k)
d1 )− kb(u

(k)
b −u(k)d2 ) = 0

(3.89)

Assuming harmonicmotion of frequency,ω, Eqs. (3.87)–(3.89) may bewritten inmatrix
form as

1 0 −1
0 k̄d1+k̄d2+2(1−cosσk)k̄c1+2k̄c3 −

(
k̄d2 + 2k̄c3 cosσk

)
−1 −

(
k̄d2 + 2k̄c3 cosσk

)
k̄d2+k̄d3+1+2(1−cosσk)k̄c2 + 2k̄c3

uk
−ω̄2

1 0 0
0 m̄1 m̄3

0 m̄3 m̄2

uk=0
(3.90)
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Equation (3.90) leads to the characteristic frequency equation

(1− ω̄2)
(
k̄d1+k̄d2+2(1−cosσk)k̄c1+2k̄c3 − m̄1ω̄2

)
(
k̄d2+k̄d3+ 1+ 2(1−cosσk)k̄c2+2k̄c3 − m̄2ω̄2

)
−(1− ω̄2)

(
k̄d2 + 2k̄c3 cosσk + m̄3ω̄2

)2
−
(
k̄d1+k̄d2+2(1−cosσk)k̄c1+2k̄c3 − m̄1ω̄2

)
= 0

(3.91)

Equation (3.91) has three frequency solutions for each admissible interblade phase

angle σk, k = 1, . . . , N (see Eq. (2.18)). The solution in closed form is obtained by using

Eq. (3.55) with

G1 = m̄2
3 − m̄1m̄2

G2 =m̄1k̄d3 + 2m̄1k̄c2 + m̄1m̄2 + m̄1 + 2k̄d2m̄3 + 2m̄1k̄c3 − m̄2
3 + m̄1k̄d2 + 2k̄c1m̄2

+ 2k̄c3m̄2 + k̄d2m̄2 + k̄d1m̄2 + (4k̄c3m̄3 − 2m̄1k̄c2 − 2k̄c1m̄2) cosσk

G3 =4
[
k̄2c3 − k̄c1 k̄c2

]
cos 2σk + 2

[
k̄d1 k̄c2 + k̄d2 k̄c2 + 4k̄c1 k̄c2 + k̄c1 k̄d2 + k̄c1 k̄d3

+ 2k̄c1 k̄c3 + 2k̄c3 k̄c2 + k̄c1m̄2 + k̄c1 + 2k̄d2 k̄c3 + m̄1k̄c2 − 2k̄c3m̄3
]
cosσk

− k̄d1 k̄d2 − k̄d1 k̄d3 − 2k̄d1 k̄c2 − 2k̄d1 k̄c3 − k̄d2 k̄d3 − k̄d1 − k̄d2 − 2k̄c1 − 2k̄c3
− 2k̄d2 k̄c2 − 4k̄d2 k̄c3 − 2k̄c1 k̄d2 − 2k̄c1 k̄d3 − 4k̄c1 k̄c2 − 4k̄2c3 − k̄d2m̄2 − k̄d1m̄2

−4k̄c1 k̄c3 −2k̄c3 k̄d3 −4k̄c3 k̄c2 −2k̄c1m̄2 −2k̄c3m̄2 −m̄1k̄d2 −2m̄1k̄c2

−2m̄1k̄c3 −2k̄d2m̄3 −m̄1k̄d3

G4 =− 2k̄c1 k̄d2 cosσk − 2k̄c1 k̄d3 cosσk + k̄d1 k̄d2 + k̄d1 k̄d3 + 2k̄d1 k̄c2 + 2k̄d1 k̄c3
+ 4k̄d2 k̄c3 − 2k̄d1 k̄c2 cosσk +4k̄c1 k̄c2 cos 2σk−2k̄d2 k̄c2 cosσk+4k̄c1 k̄c2
− 8k̄c1 k̄c2 cosσk+2k̄c1 k̄d3 + 4k̄2c3−4k̄2c3 cos 2σk+k̄d2 k̄d3 −4k̄c3 k̄c2 cosσk
+2k̄c1 k̄d2−4k̄d2 k̄c3 cosσk+2k̄d2 k̄c2+4k̄c1 k̄c3+2k̄c3 k̄d3
+4k̄c3 k̄c2−4k̄c1 k̄c3 cosσk

Figure 3.12 presents a typical plot of the natural frequencies of a bi-coupled, three

DOF system, plotted as a function of the number of nodal diameters in the correspond-

ing mode shape. Note the existence of two groups of disk modes and one blade mode

group.
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Figure 3.12 The natural frequencies of a bi-coupled, three DOF model are plotted
as a function of the number of nodal diameters. Distinct blade and
two mode disk type dynamics are evidenced. m̄d1 = 58, m̄d2 = 78,
m̄d3 = −63, k̄d1 = −18, k̄d2 = 4000, k̄d3 = 50, k̄c1 = 1800, k̄c2 =
2400, k̄c3 = −2000.

Non-adjacent neighbor coupling bi-coupled model

Dye and Henry’s model of a two-DOF per site assembly presented above may be

easily extended to include an extra coupling spring of stiffness kc2, as illustrated in

Fig. 4. The disk DOF at site i is now connected not only to sites i− 1 and i+ 1, but to
sites i−2 and i+2 as well. We distinguish between the stiffnesses of the two coupling
springs kc1 and kc2, so that a parametric study may reflect the effect this additional
coupling parameter. Since the model will only be used for the investigation of free

response no forcing or damping is considered.

The model is depicted in Fig. 3.13. A bay is defined as one blade-disk oscillator

and the springs connecting it with the two higher numbered oscillators. In Fig. 3.13

we attempt to show the definition of a bay by drawing it with a heavier line type. The

equations of motion for bay i are

mbq̈bi + kib
(
qbi − qdi

) = 0, (3.92)

which is identical to Eq. (3.20) for the mono-coupled two DOF system. The blade

stiffness mistuning is introduced as kb(1+ δi). For the disk DOF, one has

kc1
(
2qdi −qdi−1−qdi+1

)+kc2(2qdi −qdi−2−qdi+2)+kdqdi +kib(qdi −qbi )+mdq̈di = 0. (3.93)
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Figure 3.13 A simple model of a bladed disk featuring one disk-DOF and one
blade-DOF bays coupled to four of its nearest neighbors.

In the case of harmonic motion, Eq. (3.92) may be rearranged as in Eq. (3.26). Using

Eq. (3.23) to eliminate the blade coordinates from Eq. (3.93) yields

qdi+2 = −αqdi+1 + β(δbi )qdi −αqdi−1 − qdi−2 (3.94)

corresponding to Eq. (3.66), where

β(δbi ) = 2+ 2
k̄c1
k̄c2
+ k̄d
k̄c2
− ω̄2(1+ δbi )
(1+ δbi − ω̄2)k̄c2

− m̄ω̄
2

k̄c2
(3.95)

α = k̄c1
k̄c2

(3.96)

and in addition to Eq. (3.22) the dimensionless parameters have been introduced:

k̄c1 =
kc1
kb

k̄c2 =
kc2
kb

In the tuned case, δbi = 0, we have

βo = 2+ 2
k̄c1
k̄c2
+ k̄d
k̄c2
− ω̄2

(1− ω̄2)k̄c2
− m̄ω̄

2

k̄c2
. (3.97)

The modes of free vibrations are obtained in much the same way as for the pre-

vious models. The problem is broken into individual spatial harmonics by a transfor-

mation to harmonic coordinates,

uk = [ub,ud]Tk , (k = 1 . . .N), (3.98)
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Figure 3.14 The natural frequencies of a bi-coupled, non-adjacent couplingmodel
plotted as a function of the number of nodal diameters. Distinct blade
and two mode disk type dynamics are evidenced. k̄d = 25, m̄ = 35,
k̄c1 = 50, k̄c2 = −23.

such that qi = uk. Here, uk is the amplitude vector of bay i as the assembly vibrates

in the kth interblade-phase-angle mode. A slight twist arises from the fact that five

adjacent bays are coupled. The motion of four adjacent blades must be considered,

and is found to be qi−2 = uke−2jσk , qi−1 = uke−jσk , qi+1 = ukejσk and qi+2 = uke2jσk

where σk = 2π(k− 1)/N after some algebra we find the natural frequencies to be

ω̄2
n =

m̄+K(n) + 1±
√
(m̄+K(n)+ 1)2 − 4m̄K(n)

2m̄
(3.99)

where

K(n) = k̄d + 2k̄c1(1− cosσn)+ 2k̄c2(1− cos2σn). (3.100)

Figure 3.14 shows an example of natural frequencies of a non-adjacent couplingmodel

plotted as a function of the number of nodal diameters. The figure highlights a spe-

cial feature of this model, namely the ability to model a dip in the disk-mode curve,

corresponding to initial softening of blade modes as the number of nodal diameters

increases. This phenomenon is frequently observed in turbomachinery. This property

of the non-adjacent coupling model will be studied in great detail in Section 5.3.1.
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3.1. Coupled Oscillator Models

3.1.4. Parameter Identification

The natural frequencies of detailed finite element models of tuned bladed disks can

generally be calculated at a reasonable cost through the use of cyclic symmetry, be-

cause only one blade/disk sector need to be considered. Any eigen-analysis of a mis-

tuned system, however, would require consideration of the entire bladed-disk. Even a

deterministic analysis of a single mistuned system appears to be a monumental task,

and a stochastic analysis is simply impossible.

A compromise solution is to identify, for the tuned assembly, a reduced-order

model which is in some sense equivalent to the detailed finite element model. This

equivalence has of course to be defined. The ultimate aim of this identification would

be that the reduced-order model not only captures the dynamics of the tuned assem-

bly accurately, but also those of its mistuned counterpart, therefore rendering the

prohibitive task of a systematic mistuned analysis possible because of the small num-

ber of DOF for the reduced-order model.

The analysis in the preceding sections of this chapter has yielded the natural fre-

quencies of the several tuned two- and three-DOF per bay systems in closed form. This

suggests, as a measure of equivalence between the finite element and reduced-order

models, that both types of models ought to have ideally the same natural frequen-

cies in a given frequency range. The identification problem thus consists of requiring

the finite element natural frequencies to match the reduced-order model frequencies

and, subsequently, of solving for the parameters of the reduced-order model from its

analytical natural frequency expressions. At this point two remarks should be made.

First, the natural frequency expressions are strongly nonlinear in the structural mass

and stiffness parameters, leading to a difficult nonlinear inverse problem. Second, a

reduced-ordermodel typically featuresmanymore natural frequencies (2N or 3N) than

there are structural parameters, and thus certain natural frequencies — only as many

as there are parameters to identify — must be selected in the identification procedure.

It is intuitively clear that this choice will be a decisive factor in determining the quality

of the reduced-order model approximation, thereby making the entire identification

procedure heuristic and thus rather delicate. One way to attempt to systematize the

selection of the natural frequencies to be used in the identification is to plot the assem-

bly natural frequencies versus the number of nodal diameters (henceforth referred to

as the frequency curves), which provides a graphical description of the tuned system

dynamics. From these frequency curves, the important dynamic features which ought

to be captured by the reduced-order model can be identified, therefore suggesting

which of the nodal diameter frequencies the system parameters ought to be extracted

from. Hence the use of the frequency curves renders the identification process a bit
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3.1. Coupled Oscillator Models

more systematic, although it is still largely dependent upon engineering judgment.

Besides the identification of specific bladed-disks, one of the objectives of the

study was to determine which features of the frequency curves are the most impor-

tant in order for the reduced-order model to reproduce properly, not only the tuned

assembly dynamics, but also its sensitivity to mistuning and the effects of mistun-

ing on free and forced response. This will be commented upon throughout the case

studies presented in Chapter VII.

The parameter identification scheme can be summarized as follows. First, select

as many finite element natural frequencies as are unknown parameters in the desired

simple model. Second, match these frequency values with the analytical expressions of

the natural frequencies of the simple model considered. Third, solve these nonlinear

equations for the structural parameters.

The last step is carried out numerically and was observed to be a very delicate

matter. In fact, in many cases it will not be possible to solve precisely for those system

parameters which yield the selected finite element frequencies, and one may have to

settle for reduced-order frequencies that were close, sometimes not very much so, to

the selected finite element values.
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3.2. Finite Element Model Order Reduction

3.2. Finite Element Model Order Reduction

In the previous sections we have presented several different coupled oscillator mod-

els of bladed disks. The models vary in sophistication depending on the accuracy

required for sufficient modeling of sector dynamics and blade to blade interaction.

It should be clear at this point that although the analysis of simple models may be

a very straightforward problem, the identification of parameters in order to calibrate

the model properties with the rotor under investigation may be a very cumbersome

process. Even when the model parameters have been optimized, the simple model

may provide a grossly inadequate model of the dynamics of the rotor.

Many will agree that only modal analysis is capable of providing satisfactory ac-

curacy at the low orders required for Monte Carlo simulations, and given the readily

available modes of free vibration of the tuned assembly a modal analysis of the mis-

tuned problem is very tempting. However, in a direct modal analysis, all information

about the blade dynamics is embedded in the modes, leaving no way of entering blade

mistuning in a controlledmanner. An alternative approach is that of componentmode

analysis in which the blades and the disk are treated as separate components. The

most difficult problem in component mode analysis is the modeling of the interface

between the components. This problem is effectively addressed in the several compo-

nent mode techniques that have been suggested [38, 52, 53, 54, 55]. However, none

of these meet the dramatic order reduction requirements outlined above. In partic-

ular, most of these techniques require an additional set of mode shapes which allow

the model to span the space of possible motions of the connected structure. These

additional mode shapes are typically necessitated by artificial constraints imposed at

component interfaces, and are therefore often referred to as constraint modes. The

constraint modes can lead to an unsatisfactorily large number of degrees of freedom

in the reduced order model. For instance, if one were to apply the Craig-Bampton

technique to a solid element FEM, there would be 3×NNI constraint modes per sector,
where NNI is the number of finite element nodes at each disk-blade interface. This

cost is unacceptable for the analysis suggested herein.

In this section, we present a reduced-order modeling technique which is tailored

to representing particular mistuned bladed disk structures based on a FEM of a single

disk-blade sector. We use a component-mode approach, in which the disk motion is

described by finite element mode shapes of the disk, and the blade elastic motion is

described by the finite elementmode shapes of a blade fixed at the disk-blade interface.

The motion of the blade due to the motion of the disk is described as a summation

of disk mode motions at the disk-blade interface. This is in many ways similar to the

method proposed by Kaza and Kielb [38] albeit much more general. By viewing blade
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3.2. Finite Element Model Order Reduction

motion as the sum of a disk induced motion and the motion of a cantilevered blade,

disk-blade attachment is achieved in a compatible way, and no constraint mode shapes

are necessary. This technique:

• is systematic from the FEM of one disk-blade sector

• features the blade modal stiffnesses as explicit parameters so that the blade nat-
ural frequencies may be directly mistuned

• minimizes storage requirements
• is capable of producing models with a small number of degrees of freedom

This method places importance on the last item, and as a result it may not be as

accurate as other component-mode techniques. However, with the present method,

we can generate models which are of sufficiently low order as to be suitable for Monte

Carlo simulations.

I would like to acknowledge the work of my co-worker Mr. Matthew Castanier who

collaborated with me on the development of this technique. He is the co-author of a

paper about this topic [****].

3.2.1. Nomenclature

N The number of disk-blade sectors.

P The maximum number of nodal diameters of a disk mode shape. P =
int[N/2].

Ṽn A matrix formed with the selected n nodal diameter (nth harmonic) mode
shapes of the disk as its columns. The tilde signifies that each mode only

contains the degrees of freedom of a single sector. When selecting modes

to be considered in the analysis, both modes of a pair corresponding to a

double natural frequency must be included. Note that the following analysis

assumes that the vectors are normalized with respect to the mass matrix.

Ũdn Each column of thismatrix is the disk-inducedmotion of a single blade when

the disk sector to which it is attached is vibrating in a mode shape of Ṽn.

The ordering of these modes should correspond to Ṽn. The scaling of these

modes follows from the normalization of the modes of Ṽn.

Ũb A matrix formed with the selected set of cantilevered blade mode shapes as

its columns.

⊗ The Kronecker product (see Appendix A).

Vn The n nodal diameter mode shapes of an entire disk, formed by expanding

the single sector mode shapes contained in Ṽn, as explained in Appendix B.

V The matrix of all disk modes. V=[V0,V1, . . . ,VP]
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3.2. Finite Element Model Order Reduction

Udn Disk-induced motions of all the attached blades as the disk vibrates with the

shapes in Vn. The columns of Udn are formed like the columns of Vn (see

Appendix B).

Ud The matrix of all disk-induced motions, Ud = [Ud0 ,Ud1 , . . . ,UdP]
. The ordering of Ud corresponds to the ordering of V.

Ub A block diagonal matrix, Ub =
(
I⊗ Ũb

)
, where the order of I is equal to N.

Each block corresponds to the cantilevered mode shapes for an individual

blade in the bladed disk.

an A vector of generalized coordinates corresponding to the n nodal diameter

disk modes.

a Vector of generalized coordinates for all disk modes, a = [aT0 , aT1 , . . . , aTP ]T

bi A vector of generalized coordinates for blade i.
b The vector of generalized coordinates for all N blades. It is formed as b =[

bT1 ,b
T
2 , . . . ,b

T
N

]T
.

v The disk deflection vector.

v =
P∑
n=0

Vnan (3.101)

u The blade deflection vector, containing the total motion of all N attached

blades.

u =
P∑
n=0

Udnan +Ubb (3.102)

M̃d, K̃d The finite element mass matrix and stiffness matrix of a disk sector.

Md,Kd The finite element mass matrix and stiffness matrix of the entire disk.

I, K̂d The modal mass matrix and modal stiffness matrix of the entire disk. The

modal mass matrix is the identity matrix since the modes are normalized

with respect to the mass matrix.

M̃b, K̃b The finite element mass matrix and stiffness matrix of a free blade.

I, K̂b The modal mass matrix and modal stiffness matrix of a cantilevered blade

with no mistuning. For simplicity, we choose the convention that blade mis-

tuning only occurs in the blade modal stiffness matrix, and that the modal

stiffness matrix of mistuned blade i is K̂ib = (1 + δi)K̂b, where δi is a mis-
tuning value from a random variable.
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3.2. Finite Element Model Order Reduction

3.2.2. Formulation

The diskmotion iswritten in terms ofmodal amplitudes,Va (see the Nomenclature

section). The motion of an individual blade then consists of two components: the

motion of the blade due to the disk motion, Uda; and an elastic blade motion written

in terms of a the modes of a cantilevered blade, Ubb. Since the elastic motion of the

blade is written relative to the disk-induced motion of the blade, the attachment of

the blade to the disk is automatic. Note that the disk-induced motion of the blade is

not simply a rigid body motion, since it also accounts for the deformation of the blade

due to disk deformation. Later sections explain how the modes in V, Ub, and Ud may

be efficiently calculated with a finite element approach.

The kinetic energy of the assembly may be written as:

T =1
2
v̇TMdv̇+ 12 u̇

TMbu̇

=1
2

P∑
n=0

{
ȧTnV

T
n

}
Md

P∑
m=0
{Vmȧm} + 12

Ubḃ+ P∑
n=0

Udnȧn

T Mb

Ubḃ+ P∑
m=0

Udmȧm


=1
2

P∑
n=0

ȧTnȧn +
1
2
ḃT ḃ+ ḃTUb TMb

P∑
n=0

{
Udnȧn

}
+ 1
2

P∑
n=0

{
ȧTnU

dT
n

}
Mb

P∑
m=0

{
Udmȧm

}
(3.103)

the first variation of which is

δT =
P∑
n=0

δȧTnȧn + δḃT ḃ+
P∑
n=0

δḃTUb TMbUdnȧn

+
P∑
n=0

δȧTnU
dT
n MbUbḃ+

P∑
m=0

P∑
n=0

δȧTnU
dT
n MbUdmȧm

(3.104)

Similarly, the strain energy is

U =1
2
vTKdv+ 12u

TKbu

=1
2

P∑
n=0

{
aTnV

T
n

}
Kd

P∑
m=0
{Vmam} + 12

Ubb+ P∑
n=0

Udnan

T Kb

Ubb+ P∑
m=0

Udmam


=1
2

P∑
n=0

aTnK̂dnan +
1
2
bTUb TKbUbb+ bTUb TKb

P∑
n=0

{
Udnan

}

+ 1
2

P∑
n=0

{
aTnU

dT
n

}
Kb

P∑
m=0

{
Udmam

}
(3.105)

where K̂dn is the block of Kd which contains the modal stiffnesses of the disk modes

with n nodal diameters. Recall that Ud constitutes the blade motions due to disk

motion. It is clear that in many cases, this will be almost pure rigid body motion. It is
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our contention that the strain energy due to this term may often be negligible. It will,

however, be included here. The first variation of the strain energy is

δU =
P∑
n=0

δaTnK̂dnan + δbTUb TKbUbb+
P∑
n=0

δbTUb TKbUdnan

+
P∑
n=0

δaTnU
dT
n KbUbb+

P∑
m=0

P∑
n=0

δaTnU
dT
n KbUdmam

(3.106)

We apply Hamilton’s principle,∫ t2
t1
[δU − δT]dt = 0 (3.107)

and find

δan : än+UdTn Mb

P∑
m=0

Udmäm +UdTn MbUbb̈+ K̂dnan

+UdTn KbUbb+UdTn Kb
P∑

m=0
Udmam = 0

(3.108)

δb : b̈+
P∑
n=0

Ub TMbUdnän +
P∑
n=0

Ub TKbUdnan

+
(
diag(1+ δi)⊗ K̂b

)
b = 0

(3.109)

At this point we make an important approximation. Recall that we suggested

above that the strain energy due to the disk-induced motion of the blade should in

many cases be a small term. Given this assumption we elect to ignore the effect of

blade mistuning in this term reasoning that the effect of mistuning on this small term

will be negligible. Hence, blade mistuning will only be included in the strain energy of

the blades due to the deformation of blades in the cantilevered blades modes. This

approximation dramatically increases the efficiency of the generation of the reduced

order equations of motion of the mistuned assembly.

Using the definition of a and Ud (see Nomenclature section), we may cast our

equations into the following matrix formI+Bdiag
(
ŨdTn M̃bŨdn

)
Ub TMbUd

UdTMbUb

I

[ä
b̈

]
+

K̂d+Bdiag
(
ŨdTn K̃bŨdn

)
Ub TKbUd

UdTKbUb

diag(1+δi)⊗K̂b

[a
b

]
=0

(3.110)

where Bdiag denotes a block diagonal matrix, and diag denotes a diagonal matrix. A

few comments about Eq. (3.110) are in order. First it is to be noted that no information

about mode shapes in the disk is required. Only the modal stiffnesses of the disk and

blade modes, the disk-induced shape functions and elastic modes in the blade, and

the blade mass and stiffness matrices enter the analysis.
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In the mass and stiffness matrices, the bottom right blocks are diagonal, i.e., no

coupling of blade modes occurs. Coupling of blade modes and disk modes appears in

the top right and bottom left blocks of the mass and stiffness matrices. These blocks

are in general full, hence there is full coupling of all blade and disk modes. The top left

blocks feature two terms: one that corresponds to the disk alone, and a second term

related to the assembly of disk and blades. Yet, we note that the top left blocks of the

mass and stiffness matrices are block diagonal for the following reason: addition of

blade inertia preserves the cyclicity of the assembly. Likewise, since the contribution of

blade stiffness mistuning on the disk-induced strain energy in the blades was ignored,

addition of blade stiffness does not alter the cyclicity of the disk. Hence there is no

coupling among the different nodal diameter modes. However, the addition of the

blade inertia and stiffness couples the modal circle modes that have the same number

of nodal diameters.

An examination of Eq. (3.110) reveals the reason for ignoring the contribution of

blade stiffness mistuning on the disk-induced strain energy. Thanks to this approxi-

mation, themistuning random variables δi only appear in the bottom right hand block,
which is the only block that must be generated for successive mistuning patterns. If

this assumption had not been made, the entire stiffness matrix would have to be re-

generated for each mistuning pattern.

As an aside, we point out the fact that individual blades are not directly coupled.

Thus, the blade degrees of freedom may be written in terms of disk coordinates. This

is strictly equivalent to the elimination of all degrees of freedom except the coupling

coordinates that was shown to be possible in the coupled oscillator models [50]. From

Eq. (3.109), assuming harmonic motion,

[
Ub TKbUd −ω2UTbMbUd

]
a+

[
diag(1+ δi)⊗ K̂b −ω2I

]
b = 0 (3.111)

where the matrix
[
diag(1+ δi)⊗ K̂b −ω2I

]
is diagonal. For this reason, the blade

degrees of freedom may be efficiently represented in terms of the disk degrees of

freedom. By substituting this relationship into Eq. (3.108), thereby eliminating b the

computational efficiency may be greatly improved. However, this elimination of blade

coordinates may be of limited use in a free response analysis, because the natural

frequencies become embedded in the eigenvalue problem preventing the use of canned

eigenvalue solvers. The elimination of blade degrees of freedom should considered an

essential part of a forced response analysis or a transfer matrix approach.
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3.2.3. Pseudo-Physical Coordinate System

The coordinate system presented above features a mixture of modal amplitudes of in-

terblade phase angle modes for the disk, and blade modal amplitudes. Hence, only the

blade degrees of freedom in the reduced order model are directly associated with indi-

vidual sectors. Therefore, a direct comparison with the lumped mass models hitherto

utilized in the analysis of bladed disks is difficult. A coordinate transformation from

the disk modal amplitude coordinates to disk sector coordinates would be useful.

Since the top left blocks of the mass and stiffness matrices are block diagonal,

there exists a transformation to a block circulant form (See Eq. (2.33)). The result-

ing coordinate system will be referred to as pseudo-physical coordinates, because the

transformation is to the deflections of an equivalent lumped mass model for the disk

sector. The transformation does not effect the blade degrees of freedom. We define

the following transformed matrices:

A = (F⊗ I)
[
I+ Bdiag

(
ŨdTn M̃bŨdn

)](
F⊗ IT

)
(3.112)

B = (F⊗ I)
(
UdTMbUb

)
(3.113)

C = (F⊗ I)
[
I+ Bdiag

(
ŨdTn M̃bŨdn

)] (
F⊗ IT

)
(3.114)

D = (F⊗ I)
(
UdTKbUb

)
(3.115)

Eq. (3.110) may then be rewritten in the pseudo-physical coordinate basis as

 A

BT

B

I


[
ÿ
b̈

]
+


C

DT

D

diag[K̂i]


[
y
b

]
=0 (3.116)

where y is the vector of disk pseudo-physical coordinates. We have introduced the

notation diag[K̂i] for the diagonal matrix of mistuned modal stiffnesses, diag(1+
δi)⊗ K̂b.

Equation (3.116) still features the inertial coupling of blades that was observed

in Eq. (3.110), caused by the coordinate system for the blades being relative to the

disk. Yet another step is required to complete the transformation to the lumped mass

models similar to the ones in the literature which usually feature absolute deflections

resulting in stiffness coupling of the blades.

We define a transformation from b, the coordinates of blade motion relative to

disk motion, to z, the coordinates of absolute blade motion.

z = BTy+ b (3.117)
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Applying Eq. (3.117), Eq. (3.116) becomes


A− BBT

0

0

I


[
ÿ
z̈

]
+


B diag[K̂i]BT+C

DT − diag[K̂i]BT

D− B diag[K̂i]

diag[K̂i]


[
y
z

]
=0 (3.118)

which features the more familiar stiffness coupling of individual blades through the

disk. Finally, [y, z]T may be reordered so that coordinates of each sector are grouped.

The vector xT is formed, where xi contains both blade and disk absolute, pseudo-

physical coordinates of sector i. In a tuned form, the equations of motion have the

form presented in Eq. (2.32). In the mistuned case, the circulant form of Eq. (2.32) is

destroyed giving rise to the form





K1o K11 K12 . . . K
1
2 K11

K21 K2o K21 . . . K
2
3 K22

K32 K31 K3o . . . K
3
4 K33

...
...

...
. . .
...

...
KN−12 KN−13 KN−14 . . . KN−1o KN−11
KN1 KN2 KN3 . . . K

N
1 KNo


−ω2



Mo M1 M2 . . . M2 M1

M1 Mo M1 . . . M3 M2

M2 M1 Mo . . . M4 M3
...

...
...
. . .
...

...
M2 M3 M4 . . . Mo M1

M1 M2 M3 . . . M1 Mo







x1
x2
x3
...

xN−1
xN


= 0

(3.119)
where the superscripts in the stiffness matrix correspond to the sector numbers.
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3.2.4. Transfer Matrices

In the earlier work by the authors [56, 50], a transfer matrix approach to the analysis

of bladed-disks was presented. A low number of coupling coordinates was shown the

be the prerequisite to the applicability of this approach. It was hypothesized that in

many cases the elements of M and K will exhibit rapid decay away from diagonal.

In such cases, the dominance of the coupling between neighboring sectors may be

capitalized upon by ignoring the coupling between weakly coupled sectors. Assume,

for instance, that only three blocks away from the diagonal in Eq. (3.119) are deemed

significant. Then the remaining blocks may be truncated and the dynamics of the

system represented in a transfer matrix form

xi+1
xi

xi−1
xi−2
xi−3
xi−4

 =


−Ti1 −Ti2 −Ti3 −Ti2 −Ti1 −I
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0





xi
xi−1
xi−2
xi−3
xi−4
xi−5

 (3.120)

where

Ti1 =
(
Ki3 −ω2M3

)−1 (
Ki2 −ω2M2

)
Ti2 =

(
Ki3 −ω2M3

)−1 (
Ki1 −ω2M1

)
Ti3 =

(
Ki3 −ω2M3

)−1 (
Ki0 −ω2M0

)
Naturally, the elimination of the blade degrees of freedom as discussed above is highly

advantageous since it reduces the dimension of the blocks of the transfer matrix.

3.2.5. Generating Component Modes using FEM

In this section we outline how the the finite element method may be utilized to obtain

the ingredients required for the order reduction method. Two separate finite element

eigenvalue analyses are required: a cyclic symmetry analysis of the disk alone, and an

analysis of a fixed blade. Throughout the discussion it is assumed that eigenvectors are

normalized with respect to the mass matrix. From Eq. (3.110) we make the following

inventory:

• mode shapes for a fixed blade, Ũb
• corresponding modal stiffnesses, K̂b
• the finite element mass and stiffness matrices of a free blade, M̃b and K̃b

• shape functions for the attached blades that are due to nodal diameter mode
shapes in the disk, Ũd

• modal stiffnesses of the disk nodal diameter modes, K̂d
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3.2. Finite Element Model Order Reduction

The eigenvalue analysis of a single cantilevered blade is straightforward. The

blade mass and stiffness matrices may not be as easily obtained but are required for

the analysis.

The method for obtaining the disk-induced shapes in the blade is less apparent.

An approach fundamental to the current work is as follows. By performing the cyclic

symmetry analysis of the disk component withmassless blades attached, the required

shape functions in the blade are automatically generated. This technique requires no

modification to a pre-existing FEM apart from setting the blade material density to

zero. Because massless blades have no inertia, they will follow the motion of the disk,

and will not add spurious natural frequencies.

A serendipitous consequence of this approach is the stiffening of the disk compo-

nent by the attached blades. Since this setup mimics the actual disk-blade interface,

the disk mode shapes are improved. As a result modal convergence is enhanced. The

analysis yields the desired number of families of nodal diameter modes for the disk

component. A family refers to all nodal diameter modes of a certain type in the disk,

e.g., the one nodal circle out of plane bending. Only themodal stiffnesses of themodes

as well as the part of the eigenvectors pertaining to the blade (the blade shape func-

tions) are retained. The part of the eigenvectors pertaining to the disk (the disk modes)

are discarded.
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CHAPTER IV

CONCEPTS IN TURBOMACHINERY

A newcomer to the area of vibration analysis in turbomachinery will face some un-

familiar terminology. We have already encountered constant-interblade-phase-angle

modes discussed in Section 2.5 where modes shapes corresponding to a double natu-

ral frequency are presented as a pair of counterrotating complex shapes. As discussed

in Chapter II these modes are often classified by the number of nodal diameters in the

mode shape, a term that those familiar with the modes of a circular plate should be

comfortable with. In circular plates, modes may also be ranked by the number of

nodal circles in the shape. Due to the varity of motion in the attached blades (in-plane

bending, out-of-plane bending, torsion etc.) the nodal circle concept is not useful in

turbomachinery.

In this chapter we discuss briefly two other subjects that may cause a beginner

some discomfort: engine order excitation and aerodynamic coupling.

4.1. Engine Order Excitation

The primary form of excitation in the analysis of forced response in turbomachinery

is that of engine order excitation. This forcing condition occurs due to the fact that the

rotors are rotating through a steady flow that is non-uniform around the annulus [57].

The non-uniformity of the flow stems from the multiple obstructions in the flow, both

up-stream and down-stream caused by stator blades and structural members through

which the fluid must pass.

Each blade on the rotating assembly experiences these spatial variations in the

steady flow as time-varying and therefore responds by vibrating with frequencies that

are directly related to the speed of rotation. The forcing function not only has a charac-

teristic frequency which is an integer multiple of the rotation speed but also a charac-

teristic shape since it is applied simultaneously to all the blades around the assembly.

By performing a Fourier transformation of the spatial shape of the flow field it may be

broken into its spatial harmonics and, assuming linear dynamics, the response of the
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4.1. Engine Order Excitation

assembly to each of these analyzed separately. The forcing function of a engine order

C excitation of frequencyω on blade i in a blade assembly

Fi = f e2jπC(i−1)/N ejωt = f ej(2πC(i−1)/N+ωt) (4.1)

which is a traveling wave excitation of amplitude f traveling in the positive i direction
(ascending blade number) with wave speed

c = ωN
2πC

The advantage of examining individually the spatial harmonics of the excitation is that

each one harmonic excites only modes with the same number of nodal diameters as

the excitation (see Section 2.4). Recall that an assembly may have several modes with

a given number of nodal diameters, much like a circular plate has many modes with a

different number of nodal circles for a given number of nodal diameters.

In Section 2.2.4 we discussed how a pair ofmode shapes corresponding to a double

eigenvaluemay either be written in a real (standing wave) or a complex (traveling) form.

The same is true for the engine order excitation. When the form of the excitation and

the modes follows the same convention, a given engine order of the excitation will

excite only one of the modes corresponding to a double natural frequency, namely the

one that is parallel with. Otherwise it will excite both modes in the pair.

A convenient way to present the characteristics of forced respose due to engine

order excitatione is with a Campbell or interference diagram (see Fig. 4.1). A Camp-

bell diagram plots frequency of excitation as a function of rotational speed with an

indication of the response level on a third axis. Also shown on Fig. 4.1 are horizontal

lines indicationg the individual natural frequencies. These lines are plotted as hor-

izontal signifying that they are independent of speed. This may not always be the

case due to centrifucal stiffening of blade modes, flexural modes in particular. The

plot also contains order lines indicating the frequencies of prominent excitation condi-

tions. Where an nth order line crosses a natural frequency curve corresponding to an
n nodal diameter mode a resonance condition will occur with insignificant response

at other intersections.
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4.2. Aerodynamic Coupling
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Figure 4.1 A Campbell diagram shows the relationship between frequency of ex-
citation, the rotional speed, the engine order of the excitation (radial
lines) and the natural frequencies (horizontal lines). Using the Camp-
bell diagram resonant conditions (shown here with ( )) may be iden-
tified at a glance.

4.2. Aerodynamic Coupling

In general, turbomachinery rotors experience interblade coupling through the gases

on which the blades are acting. In the following sections we shall examine briefly how

aerodynamic coupling alters the dynamics of tuned and mistuned turbomachinery

rotors.
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4.2. Aerodynamic Coupling

4.2.1. General Formulation for Tuned System

In a tuned system, aerodynamic coupling effects are assumed to possess the same

cyclic symmetry as the rotor itself, and hence are described by circulant matrices of

the same dimension as the other system matrices. The aerodynamic forces couple

all the blade degrees of freedom, so the resulting aerodynamic matrix is, in general,

fully populated. The aerodynamic matrix depends on an assumed frequency of blade

motion,ωa, and the flow parameters. According to unsteady aerodynamic theory, the

aerodynamic forces on an airfoil are not in phase with its motion and therefore the

aerodynamic matrix is complex. However, since the aerodynamic terms are assumed

to be cyclic, the matrix may be block diagonalized using the Fourier matrix defined in

Section 2.2. This means that aerodynamic forces do not couple modes that possess

different numbers of nodal diameters. The block size in the block diagonal form of

the aerodynamic matrix equals the number of degrees of freedom, P , in the model of

each blade-disk sector. The aerodynamic matrix should not be assumed to be sym-

metric since aerodynamic forces depend on the direction of rotation. The equations

of free motion of an N blade assembly with aerodynamic coupling are, in the physical

coordinate system:

Mq̈+Kq+A(ωa)q = 0 (4.2)

where the dimension of the matrices M, K and A is PN × PN and where ωa is an

assumed frequency at which the aerodynamic coupling terms are calculated. The de-

pendence on ωa will be dropped in what follows. Equation (4.2) contains no viscous

damping term. This greatly simplifies the analysis and is easily justified by the fact that

the viscous damping is due to the aerodynamics and is captured in the aerodynamic

matrix. Structural damping is accounted for as a complex stiffness in the stiffness

matrix K.

Earlier, we examined how the study of a cyclic systemmay be broken into separate

cases for each interblade-phase angle, σk, where

σk =
2(k− 1)π

N
(k = 1, . . . , N).

In order to achieve this we perform a transformation to harmonic coordinates,

u = (E∗ ⊗ I)q, (4.3)

that describe the motion of the assembly as it vibrates in each of the spatial harmonic

modes. The reader is referred to a complete discussion of the various coordinate

systems in Section 2.3. In the absence of aerodynamic coupling, Eq. (4.2) is transformed

to harmonic coordinates, rendering the mass and stiffness matrices block diagonal,

Bdiag
[
M̃k

]
ü + Bdiag

[
K̃k
]
u = 0 (k = 1, . . . , N). (4.4)
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4.2. Aerodynamic Coupling

Equation (4.4) may be broken down intoN smaller vector equations (each of dimension

P ) for the individual σk interblade-phase-angle modes,

−ω2M̃kũk + K̃kũk = 0 (k = 1, . . . , N) (4.5)

where harmonic motion has been assumed. In Eq. (4.5) M̃k and K̃k are the interblade-

phase-angle dependent mass and stiffness matrices (Eq. (2.34)) and ũk represents the

motion of a single sector when the assembly is vibrating in the σk interblade-phase-
angle mode. Equation (4.5) may be solved to yield P natural frequenciesωk,1, . . .,ωk,P

with corresponding eigenvectors ũk,1, . . . , ũk,P for the sector. Assembly eigenvectors
are generated from the sector eigenvectors using the Kronecker product

uk,i = ek ⊗ ũk,i.

where ek is the kth column of the Fourier matrix. The matrix of sector eigenvectors,
Ũk, at each interblade phase angle defines the transformation to modal amplitude

coordinates, ak,1, . . . , ak,P , as
ũk = Ũkak (4.6)

The transformation in Eq. (4.6) can be applied to Eq. (4.5) resulting in the set of uncou-

pled equations,

−ω2diag[mk,i]ak + diag[kk,i]ak = 0 (i = 1, . . . , P , k = 1, . . . , N) (4.7)

in modal amplitude coordinates, ak. Each equation in Eq. (4.7) has dimension P .

We now return to Eq. (4.2). Applying the transformation of Eq. (4.3) casts Eq. (4.2)

into harmonic coordinates. Since the aerodynamic forces were assumed cyclic, Eq. (4.2)

becomes block diagonal (see Eq. (4.4)) and may be broken down into N eigenvalue

problems, each of size P .

M̃k¨̃uk + K̃kũk + Ãkũk = 0 (k = 1, . . . , N) (4.8)

The harmonic coordinate form of the aerodynamic matrix, as N P × P blocks Ãk, pro-

vides one compact form of representing aerodynamic coupling from which the aerody-

namic matrix in physical coordinates may be reconstructed using Eq. (4.3). Normally,

the aerodynamic forces on the blade coordinates will be much greater than the forces

on the disk coordinates, and the elements of Ãk that correspond to disk coordinates

may possibly be ignored.

Equation (4.8) may be further transformed, to the a coordinate system of modal

amplitudes of the tuned, structural-only system, using Eq. (4.6). (The transformation
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4.2. Aerodynamic Coupling

directly from physical to modal amplitude coordinates is given in Eq. (2.36).) This

presents aerodynamic coupling as modal influence coefficients,

diag[mk,i]äk + diag[kk,i]ak + Lkak = 0 (i = 1, . . . , P , k= 1, . . . , N) (4.9)

where Lk is a full matrix of aerodynamic coefficients, implying a complete aerodynamic

coupling of the all the σk interblade-phase-angle modes. The N matrices of modal

influence coefficients, Lk provide another compact representation of the aerodynamic

coupling. It is unclear which form, Ãk or Lk, is more easily obtainable, but one form

leads to another using the transformation

Ãk = UkLkUTk (4.10)

4.2.2. Example System

Figure 4.2 presents a schematic of an assembly with two blade-degrees-of-freedom

and one disk-degree-of-freedom per sector, vibrating in motions in the σk interblade

phase angle modes. The aerodynamic effects on the disk degree-of-freedom have been

ignored. The aerodynamic effects in the harmonic coordinate system are represented

by interblade-phase-angle dependent springs of complex constants ak11,a
k
21,a

k
12,a

k
22.

The harmonic coordinates ũk = [ũd, ũb1, ũb2]Tk , describe the local shape of a bay
as the assembly vibrates in the kth interblade-phase-angle mode.

The equations of motion may be found by inspection

md ¨̃ud,k + kb(ũd,k − ũb1,k)+ (kd + 2kc(1− cosσk)) ũd,k = 0 (4.11)

mb ¨̃ub1,k + kb(ũb1,k − ũd,k)+ κkb(ũb1,k − ũb2,k)
+ 2ak11ũb1,k(1− cosσk)+ 2ak12(ũb1,k − ũb2,k cosσk) = 0

(4.12)

µmb ¨̃ub2,k + κkb(ũb2,k − ũb1,k)
+ 2ak22ũb2,k(1− cosσk)+ 2ak21(ũb2,k − ũb1,k cosσk) = 0

(4.13)

Scaling with the blade properties and assuming harmonic motion yields
1+ k̄d + 2k̄c(1− cosσ) −1 0

−1 1+ κ −κ
0 −κ κ

− ω̄2
k,i

m̄ 0 0
0 1 0
0 0 µ


+2

0 0 0
0 āk11(1− cosσk)+ āk12 −āk12 cosσk
0 −āk21 cosσk āk22(1− cosσk)+ āk21


 ũk,i = 0

(4.14)
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Figure 4.2 A simple model of a bladed disk featuring one coordinate structural
coupling of bays with one disk-DOF and two blade-DOF and a sim-
plistic model of aerodynamic blade coupling, while vibrating in a σk
interblade-phase-angle mode.

Therefore, by comparison with Eq. (4.8),

Ãk = 2

0 0 0
0 āk11(1− cosσk)+ āk12 −āk12 cosσk
0 −āk21 cosσk āk22(1− cosσk)+ āk21

 . (4.15)

This result could have been obtained from a complete equation of motion in physical

coordinates by applying Eq. (4.3).
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4.2. Aerodynamic Coupling

4.2.3. Free Aeroelastic Response

The study of stability in a mistuned assembly with aerodynamic coupling and

structural damping requires the solution of Eq. (4.2). If the assembly is tuned, then

a transformation to either Eq. (4.8) or Eq. (4.9) provides considerable computational

savings.

We assume a solution

q = e(γ+jω)t

and find that {
(γ + jω)2M+K +A

}
q = 0 (4.16)

Solving for the eigenvalues of Eq. (4.16) yields values of −λ = (γ+ jω)2 = [γ2−ω2]+
2jγω. Hence,

ω2 − γ2 = Re(λ)

γω = −1
2
Im(λ)

γ = Re(
√
−λ)

ω = Im(
√
−λ),

with stable solutions for γ ≤ 0 (asymptotically stable for γ < 0).
For illustrative purposes we include Fig. 4.3 that shows the eigenvalue loci for a

model of a 72-blade blisk. No meaningful aerodynamic data was available and there-

fore the figure only shows the stabilizing effects of structural damping and mistuning.

The plot also shows how the mistuning causes scattering and splitting of the (mostly)

double eigenvalues of the tuned assembly.
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4.2. Aerodynamic Coupling

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

−0.0027 −0.0026 −0.0025 −0.0024 −0.0023 −0.0022 −0.0021 −0.002

ω̄

γ

Figure 4.3 Eigenvalue loci in model 1Bg (see Chapter ‘Compressor-chapter’) of
a 72-blade blisk with 7.25% blade mistuning ( ) are compared with
the eigenvalue loci of a tuned assembly ( ). The model features 0.1%
structural damping but no aerodynamic coupling. Since γ = Re(

√
−λ),

the more negative values of γ imply greater stability. The stabilizing
effect of mistuning is apparent, as is the splitting and scattering of
eigenvalues due to mistuning.

70



CHAPTER V

WAVE PROPAGATION AND LOCALIZATION

A study of wave propagation in blade assemblies is made possible with coupled oscil-

lator models with a low number of coupling coordinates. The analysis has little value

in models obtained via order reduction of Finite Element models because of the large

number of coupling coordinates.

As we shall see in this chapter, wave propagation analysis is a particularly attrac-

tive approach to a statistical study of mistuning effects on the free response in blade

assemblies.

In the first part of this chapter, we review the theory of wave propagation in peri-

odic multi-coupled structures and explain the effects of mistuning. We present a mea-

sure of mistuning effects, the localization factor , and derive approximate expressions

for the localization factor for a general mono-coupled system with a general source of

mistuning. Furthermore, we propose a measure of sensitivity to blade mistuning.

In the second part of the chapterwe attempt to gain insight into localization effects

in multi-coupled systems. In lieu of a rigorous mathematical analysis of localization

factors in a multi-coupled assembly an attempt was made to apply some of the lessons

learned from the analysis of mono-coupled systems. An examination of the modal

structure of a bi-coupled model yields qualitative information about the influence of

the additional coupling coordinate and when additional coupling coordinates may be

ignored.

At the time of thiswriting, no completemethodexisted for quantifying localization

effects in multi-coupled structures. Recent developments have brought a tool for this

type of analysis in the form of Lyapunov exponents [*****].
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5.1. Waves in Perfectly Periodic Structures

5.1. Waves in Perfectly Periodic Structures
We examine the propagation of waves in a general infinite periodic structure whose

dynamics are governed by Eq. (3.2). It has long been known that energy-carrying mo-

tions in periodic structures only occur in isolated frequency ranges known as pass-

bands. Outside the passbands, only attenuated standing waves or complex waves can

take place [21]. A physical understanding of these wave-propagation characteristics is

achievable through the diagonalization of Eq. (3.2). This requires the solution of the

eigenvalue problem:

qi = Toqi−1 = λqi−1, (5.1)

where To is the transfer matrix of a tuned assembly. Equation (5.1) yields the eigen-

values and eigenvectors of To. Its significance is as follows. The eigenvectors of To

define wave-modes, or characteristic waves, which propagate along the structure in

such a way that the state-vector, qi, is multiplied by a complex scalar, λ, as the wave
passes through each bay. The independent wave-modes define the preferred means

of free wave propagation along the periodic assembly — much like normal modes are

the preferred form of free vibration of a structure. The normal modes form a basis

for all vibration shapes in a structure. Similarly, all possible waveforms in a structure

may be written as a linear combination of wave-modes.

Eigenvalues appear in reciprocal pairs, λ and λ−1, that are either real or complex
conjugate [21]. To each eigenvalue pair thus correspond two waves which are equiv-

alent except for their direction of travel. The eigenvalue that has modulus greater

than 1 is associated with a wave-mode traveling and/or attenuating in the direction of

decreasing bay number. We shall refer to this as the left or counterclockwise direction.

Since the dimension of the transfer matrix is twice the number of coupling co-

ordinates between bays (see Chapter III), the number of left- and right-traveling wave

pairs equals the number of coupling coordinates for the assembly. A transformation

between physical coordinates and wave coordinates is defined by the matrix X which

has as its columns the eigenvectors of To. The similarity transformation of To into

wave coordinates thus yields a diagonal wave transfer matrix Wo, as[
L
R

]
i+1
=Wo

[
L
R

]
i
= X−1ToX

[
L
R

]
i
=
[ΛΛΛ 000
000 ΛΛΛ−1

][
L
R

]
i

(5.2)

where R and L are vectors of right- and left-traveling wave coordinate amplitudes. ΛΛΛ
is a diagonal matrix of eigenvalues with modulus greater than or equal to 1.

For a given eigenvalue λi in ΛΛΛ (i = 1, . . . ,M), let λi = eµi define the complex propa-
gation constant, µi, with µi = γi+jσi. The corresponding reciprocal eigenvalue defines
the propagation constant of the right-traveling wave, −µi. Here γi, the real part of the
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5.1. Waves in Perfectly Periodic Structures

propagation constant, is the rate of exponential attenuation of the wave amplitude Li
from one bay to the next. The imaginary part, σi, is the interblade phase angle, the
difference in phase between the motion of adjacent bays. In the literature dealing with

wave propagation in periodic systems [21], the interblade phase angle is usually called

the wave number. The propagation constants contains all the information about the

frequency-dependent propagation of waves through the assembly. For each eigenvalue

in ΛΛΛ the following cases can be distinguished depending on the frequency:
• λi ∈ IR: For the left-traveling wave γi > 0, leading to attenuation. Also, adjacent

bays are vibrating either in phase or out of phase, σi = 0 or σi = π , which implies
that these are standing waves. These frequency ranges define stopbands.

• λi ∈ C, λi ∉ IR, |λi| = 1: In this case γi = 0 and no attenuation occurs. These fre-
quencies define a passband in which the left- and right-going waves travel without

attenuation.

• λi ∈ C, λi ∉ IR, |λi| ≠ 1: For the left-traveling wave µi = γi+jσi with γi > 0 and
σi ≠ 0 orπ ; hence thewave travelswith attenuation. The corresponding reciprocal
eigenvalue characterizes the right-traveling wave with propagation constant −µi.
In this case the eigenvalues λi and λ−1i are not complex conjugate. Therefore

there must be companion pair of left- and right-traveling waves with propagation

constants γi−jσi and −γi+jσi, respectively. We refer to these waves as complex
waves and to the associated frequency ranges as complexbands. In order for

them to exist there must be at least four eigenvalues, that is, at least two coupling

coordinates: hence complex waves cannot occur in a mono-coupled system. Since

the two left-going (and the two right-going) waves are complex conjugates, they

actually represent one wave shape. Physically, the two pairs of waves merge into

one in a complexband.

5.1.1. The Mono-Coupled Assembly

For the tuned mono-coupled system described by Eq. (3.9) the eigenvalues of the two

by two transfer matrix are

λ, λ−1 = βo
2
±
√(

βo
2

)2
− 1, λ ∈ C, βo ∈ IR, (5.3)

We choose the convention that λ has modulus greater than or equal to one. The wave-

modes appear as the eigenvectors, [1, λ−1]T and [1, λ]T , corresponding to the eigen-
values λ and λ−1, respectively. The two wave-modes could also be written as [λ,1]T

and [1, λ]T , which shows that they are equivalent except for their direction of travel.
This is supported by the symmetry of the problem to clockwise or counterclockwise

numbering of the bays.
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The eigenvectors of To are arranged as the columns of a matrix X which defines

the transformation [
qi
qi−1

]
= X

[
L
R

]
i
, X =

[
1 1
λ−1 λ

]
, (5.4)

from physical coordinates to left- and right-traveling wave coordinates at bay i, corre-
sponding to the wave-mode basis. The displacement transfer matrix To is thus trans-

formed into the diagonal wave transfer matrix,

[
L
R

]
i+1
=Wo

[
L
R

]
i
=
[
λ 0
0 λ−1

][
L
R

]
i
. (5.5)

For this mono-coupled assembly there exists a single pair of characteristic waves. Fre-

quency passbands and stopbands are arranged as follows:

• |βo(ω)| < 2: These frequencies define a passband in which waves travel without

attenuation. From the real part of Eq. (5.3), the interblade phase angle is related

to frequency by the dispersion relation:

2 cosσ = βo(ω̄), 0 < σ < π. (5.6)

For a given value of σ , Eq. (5.6) has as many frequency solutions as there are
degrees of freedom in each bay [21]. Hence, the number of passbands equals the

number of degrees of freedom in each bay, P . The frequencies at which σ = π/2
will be referred to as midband frequencies. Note that the midband frequency is

not necessarily located close to the mean frequency in the passband.

• |βo(ω)| > 2: These frequency ranges define stopbands.

• |βo(ω)| = 2: This gives γ = 0 and σ = 0 or σ = π , and defines the bounding
frequencies or the passband/stopband edges.
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Figure 5.1 The passband/stopband structure of the assembly in Fig. 3.4, for
k̄c = k̄d = m̄ = 1 (tuned case). Note the two distinct passbands, where
γ = 0. Also note a singularity at ω̄ = 1, corresponding to the natural
frequency of a cantilevered blade.

Example

Figure 5.1 depicts the passband/stopband structure for the assembly in Fig. 3.4

for one set of parameter values. The rate of exponential attenuation, γ, and the in-
terblade phase angle, σ , are displayed as a function of the dimensionless frequency.

As predicted above, two frequency passbands are observed, corresponding to the two

degrees of freedom per bay. In the passbands γ = 0 and unattenuated propagation
of waves occurs. The wave travel is evidenced by the change of phase, 0 < σ < π ,
from bay to bay. The other regions are stopbands, γ ≠ 0, where standing waves decay

exponentially and neighboring bays are either vibrating in phase or out of phase.

A special feature for this structure is the infinite attenuation observed at ω̄ = 1,
that is, at ω2 = kb

mb
. We explain this behavior by pointing out that this is the natural

frequency of a blade cantilevered at its root, hence at this frequency qdi = 0. Equation
(3.23) confirms this. If the disk deflection equals zero, energy cannot be transmitted

along the bays, hence the infinite attenuation of the waves.
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5.1.2. The Bi-Coupled Assembly

In the tuned case the eigenvalues of the transfer matrix in Eq. (3.66) are solutions of

the characteristic equation

λ4 +αλ3 − βoλ2 +αλ+ 1 = 0 (5.7)

where βo is for the tuned system. Equation (5.7) simplifies to

[
λ2 + 1

2
(α+ κ)λ+ 1

][
λ2 + 1

2
(α− κ)λ+ 1

]
= 0 (5.8)

where

κ =
√
4βo +α2 + 8 (5.9)

Hence the four eigenvalues of the transfer matrix are:

λ1, λ−11 = −
1
4

[
α− κ ±

√
(α− κ)2 − 16

]
(5.10)

λ2, λ−12 = −
1
4

[
α+ κ ±

√
(α+ κ)2 − 16

]
. (5.11)

To an eigenvalue λ corresponds the eigenvector [1, λ−1, λ−2, λ−3]T. The eigenvectors are
arranged as columns of the matrix X, yielding the transformation

qi
qi−1
qi−2
qi−3

 =

1 1 1 1
λ−11 λ−12 λ11 λ12
λ−21 λ−22 λ21 λ22
λ−31 λ−32 λ31 λ32



L1
L2
R1
R2


i

= X


L1
L2
R1
R2


i

(5.12)

The wave transfer matrix for the system is
L1
L2
R1
R2


i+1

=


λ1 0 0 0
0 λ2 0 0
0 0 λ−11 0
0 0 0 λ−22



L1
L2
R1
R2


i

(5.13)

For this bi-coupled assembly there are two pairs of left- and right-traveling waves. For

the study of the structure of the passbands, stopbands and complexbands of the sys-

tem we note that κ is either pure imaginary or real positive. Furthermore, we assume

that α is positive. If α is negative, the role of the wavetypes L1, R1 and L2, R2 is
reversed.
For waves L1,R1,L2 and R2
• 4βo +α2 + 8 < 0: In this case κ is imaginary and the operand of the square root
in Eqs. (5.10) and (5.11) is complex. These frequencies define a complexband.
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5.1. Waves in Perfectly Periodic Structures

For waves L1 and R1
• |α− κ| < 4: These frequency ranges define passbands for waves L1 and R1. The

dispersion relation is:

cosσ1 = −α− κ4 (5.14)

• |α− κ| > 4: These frequency ranges define stopbands for waves L1 and R1.

• |α − κ| = 4: These frequency values define passband/stopband edges for waves

L1 and R1.
For waves L2 and R2
• |α+ κ| < 4: These frequency ranges define passbands for waves L2 and R2 with
the dispersion relation:

cosσ2 = −
α+ κ
4

(5.15)

• |α+ κ| > 4: These frequency ranges define stopbands for waves L2 and R2.
• |α + κ| = 4: These frequency values define passband/stopband edges for waves

L2 and R2.

It is noteworthy in Eq. (5.15) that since κ is positive (see Eq. (5.9)), if α > 4 there

is no passband for the R2 and L2 pair.

Example

Figures 5.2 show the interblade phase angles and rates of exponential decay for the

bi-coupled system in Fig. (3.13) with m̄ = 1., k̄d = 1 and k̄c1 = k̄c2 = 1. The passband,
stopband and complexband structure of the assembly’s two characteristic wave pairs

is revealed. For this choice of parameters, each wave pair features two separate pass-

bands (γ = 0), as expected for a two-degree of freedom per site system. Each passband

for waves L2 and R2 is contained within the corresponding passband for waves L1 and
R1 and the right passband edges are common to the two wave pairs.

As in the mono-coupled system we observe infinite attenuation at ω̄ = 1, which corre-
sponds to the natural frequency of the cantilevered blade. Also evident are two com-

plexbands, i.e., frequency ranges where there exist waves with both attenuation and

phase shift. As predicted, the two pairs of waves behave as one in the complexbands.

In Fig. 5.2 the two frequencies at which the transition from passband to com-

plexband occurs are of special importance. At complexband edges κ = 0, as it goes
from pure imaginary to positive real. We notedabove that in the passband for wavetype

two, |α+κ| < 4. Hence wavetype two has passbands if and only ifα < 4. This dramatic
change as α goes through the values 4 is illustrated in Fig. 5.3.

Figure 5.3 depicts the propagation constants for the bi-coupled system with

α = k̄c1/k̄c2 = 5. As predicted by Eq. (5.15), the passband for the L2, R2 wave pair
has vanished and only stopbands and complexbands remain. The first wave pair still
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Figure 5.2 Propagation constants vs. frequency for the system in Fig. 3.13 with
m̄ = 1., k̄d = 1 and k̄c1 = k̄c2 = 1. A detailed view on the right. Wave
type one is ( ) and type two is ( ).

features two distinct passbands in which the interblade phase angle now changes from

σ = 0 at the lower passband edge to σ = π at the upper passband edge. Motions with
all blades vibrating in phase (σ = 0) and alternate blades vibrating in phase (σ = π )
do not stretch the spring kc2, hence the passband edges are uneffected by kc2 when
α > 4.
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Figure 5.3 Propagation constants vs. frequency for the system in Fig. 3.13 with
m̄ = 1, k̄d = 1, k̄c1 = 1 and k̄c2 = 0.2 . A detailed view on the right.
Wave type one is ( ) and type two is ( ).
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1 2 4 6 8

10 12 14 16 18

20 22 24 26 28

Figure 5.4 Localized modes in the second frequency cluster of a 28 blade assem-
bly with k̄d = m̄ = 1, k̄c = 0.1, and uniform random mistuning in the
blade stiffness with 5% standard deviation (sb = 0.05). The lengths of
the radial lines represent the blade displacement amplitudes. Modes
are sorted by increasing natural frequency.

5.2. Localization in Mistuned Mono-Coupled Assemblies

Let us begin the analysis ofmistuned systems by examining the effect mistuninghas on

the natural modes. When mistuning is introduced, the system is no longer symmetric

with respect to the clockwise and counterclockwise directions. This loss of cyclicity

results in a splitting of the double natural frequencies, such that the system has P
clusters of N distinct natural frequencies, where N is the number of blades and P is
the number of degrees of freedom per bay. The clusters of frequencies correspond,

approximately, to the passbands of the system’s tuned counterpart, although they

generally are wider. The correspondingmode shapes are standing waves that no longer

possess the cyclic symmetry exhibited by the tuned system, where all blades vibrate

with the same amplitude. Instead, the vibration energy may be concentrated in a

handful of blades that have significantly larger deflection than the majority of blades.
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5.2. Localization in Mistuned Mono-Coupled Assemblies

We refer to this phenomenon as mode localization [31].

As an example of the effect of randommistuning, we consider the mode shapes of

the mistuned blade assembly model depicted in Fig. 3.4. Figure 5.4 displays some of

the mode shapes in the second frequency cluster of a 28-blade assembly. The modes

have changed drastically compared to the tunedmodes depicted in Fig. 2.1. High levels

of localization are observed, such that the vibrational energy of a localizedmode shape

is no longer uniformly distributed along the rotor. Such mode localization may result

in a substantial increase in forced response amplitudes and in a potential decrease in

fatigue life.

In order to achieve a compact characterization of localization phenomena, a

stochastic approach is chosen to analyze the effects of random blade mistuning. The

statistical description is not well suited to themodes of vibration because of the switch-

ing of the associated natural frequencies as the strength or the distribution of mistun-

ing varies. We choose instead to examine the frequency-dependent propagation of

incident waves in mistuned assemblies.

In order to avoid the contamination of the localization effect by the cyclicity con-

dition, an infinite assembly is studied, which consists of a segment of N mistuned

bays (i = 1, . . . , N) embedded in an otherwise tuned infinite assembly. Our interest lies
in the transmission of incident waves along the N-bay mistuned segment. An advan-
tage of this setup is that a wave that exits the mistuned segment is propagated away

and does not return. We then let N go to infinity in order to obtain an asymptotic

characterization of wave transmission through mistuned bays.

For tuned systems, characteristic waves propagate independently of one another

and, in frequency passbands, are unattenuated. Mathematically this is expressed by

the fact that for a tuned bay the transformation from physical to wave coordinates

renders thewave transfer matrix diagonal (see Section 3). For amistuned bay, however,

the transformation defined by X does not, in general, diagonalize the random bay

transfer matrix, Ti. This means that a wave incident to a mistuned segment is not

fully transmitted along the segment, but rather experiences scattering at each interface

between dissimilar bays, giving rise to reflected and transmitted components in all the

characteristic wave types for the assembly. The effect of thesemultiple reflections over

a number of mistuned bays is to trap the incident wave near the incidence region—

this is the phenomenon referred to as localization [30]. Also, the conversion of the

incident wave into the other wave types may cause the transmitted wave which exits

themistuned segment to be quite different, in terms of amplitude but also of wave type

components, from the incident wave—a phenomenon referred to as wave conversion

[19]. The mathematical formalism used in the study of localization and conversion
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5.2. Localization in Mistuned Mono-Coupled Assemblies

phenomena follows.

A statistical approach is chosen to examine the high sensitivity to mistuning and

the occurrence of localization in randomly mistuned assemblies. A statistical descrip-

tion of the modes of vibration is not practical due to the switching of the associated

natural frequencies as the strength or the distribution of mistuning varies. We choose

instead to examine the propagation of incident waves in mistuned assemblies. This

allows us to control the frequency at which we wish to examine localization. In order

to avoid the contamination of the localization effect by the cyclicity condition, an infi-

nite assembly is studied. We further assume that mistuning is restricted to a segment

of N bays (numbered from i = 1 to i = N) embedded in an otherwise tuned infinite
assembly. We are interested in the transmission of incident waves along the N-bay

mistuned segment. An advantage of this approach is that a traveling wave that exits

the mistuned segment will be propagated away and will not return. We then let N

go to infinity in order to obtain an asymptotic characterization of wave transmission

through mistuned bays. A full derivation of the results of this section may be found

in [31].

In Section 5.1.1 we demonstrated how the transfer matrix To of a tuned bay is

diagonalized by the similarity transformation defined by the matrix X, which has as

its columns the eigenvectors of To. We called the diagonalized matrix a wave transfer

matrix, Wo. The transformation introduces a new set of coordinates, namely the left–

and right-traveling components of a wave. The transformation defined by X does not,

in general, diagonalize the transfer matrix of a bay belonging to themistuned segment,

Ti or Ti;i−1 (i = 1, . . . , N), as the case may be. Instead a non-diagonal wave transfer
matrix is generated. The elements of this matrix may be expressed in terms of the

more familiar reflection and transmission coefficients, as follows.

At the interface between dissimilar bays, waves are split into a transmitted part

and a reflected part. As illustrated in Fig. 5.5, the left traveling wave incident to bay

i − 1, Li, is the sum of a transmitted left traveling wave, tiLi+1 and a reflected right

traveling wave, riRi. Likewise, the right-traveling wave incident to bay i + 1, Ri+1, is
comprised of a transmitted part, t̂iRi, and a reflected part, r̂iLi+1 . Here ti and t̂i are

transmission coefficients and ri and r̂i are reflection coefficients in the left and right
directions, respectively. Transmission and reflection coefficients are the complex am-

plitudes of transmitted and reflected waves due to an incident wave of unit amplitude,

respectively. The above defines a scattering matrix, Si:[
Li
Ri+1

]
= Si

[
Ri
Li+1

]
=
[
ri ti
t̂i r̂i

][
Ri
Li+1

]
, (5.16)

where directional symmetry in the absence of aerodynamic forces dictates that t̂i = ti
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Figure 5.5 Scattering of waves at substructure interfaces in a structure with a
single wave channel.

and r̂i = ri. Solving Eq. (5.16) for Ri+1 and Li+1 yields

[
L
R

]
i+1
=Wi

[
L
R

]
i
=


1
ti

−ri
ti

ri
ti

ti −
r2i
ti


[
L
R

]
i
. (5.17)

Equation (5.17) tells us that the off-diagonal elements in Wi govern what portion of

a right or left traveling wave is reflected, thereby generating a wave in the opposite

direction. The transmitted portion of the incident wave is determined from the first

diagonal element in the wave transfer matrix. For a tuned bay Wi = Wo is diagonal

and there is no reflection at the interface. Hence ri = 0 and the wave is fully transmit-
ted. For a mistuned bay there is a reflection, or scattering at the interfaces between

bays. A wave incident to a segment of randomly mistuned bays will experience mul-

tiple reflections whose effect may be to trap a wave near the incidence region. Only

a frequency-dependent fraction of an incident wave is transmitted along to the far

end of the mistuned segment. This effect is called localization. In a mistuned system

passbands no longer exist since all waves are attenuated [31].

For a segment of N dissimilar bays the wave transfer matrix is the product of the

random wave transfer matrices of the individual bays

WWWN =
N∏
i=1

Wi =


1
τN

−ρN
τN

ρN
τN

τN −
ρ2N
τN

 . (5.18)
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The one-one term, 1/τN , tells us which portion of an incident wave is transmitted to

the far end of the mistuned segment. Obviously the behavior of the transmission coef-

ficient for the mistuned segment, τN , governs the strength of the effects of mistuning

and the resulting localization. We define the localization factor as

γ = lim
N→∞

[
1
N
ln
∣∣∣∣ 1τN

∣∣∣∣] , (5.19)

implying that asymptotically, the ratio of emergent to incident wave decreases expo-

nentially with an increasing number of bays, N [31]. The localization factor, γ, defines

the average exponential decay rate per bay and thus is a descriptor of the strength of

localization. Assuming that the random variables δi (i = 1 . . .N) from Eqs. (3.10) and

(3.11) form an ergodic sequence, then the transmission coefficient, τN(δ1, . . . , δN), is

also ergodic. Ergodicity implies that, with probability 1, the limit in Eq. (5.19) is equiv-

alent to the ensemble average for a finite mistuned segment of length N:

γ =
〈
1
N
ln
∣∣∣∣ 1τN

∣∣∣∣9 , (5.20)

where 〈〉 denotes the expected value of a random variable [30].

The assumption that a cyclic structure is infinite is of course a limitation. It must

be understood that this type of analysis is only applicable if the localization is strong

enough that the vibration energy is confined to a sufficiently small region compared

to the size of the assembly. For a nearly cyclic finite system this basically requires that

the wave be adequately attenuated before reaching the incidence region again and thus

interacting with other waves from the same source.

5.2.1. Sensitivity to Mistuning.

In general Eqs. (5.19) and (5.20) for the localization factor cannot be evaluated in closed

form. However, analytical approximations are possible using perturbation methods,

as follows.

We seek an expansion of 1
τN in Eq. (5.19) in terms of the small mistuning parameter,

δi (δi of order ε or smaller), thus treating the mistuned system as a perturbation of

the tuned system. This is obtained through a Taylor expansion of the function β(δi)
in Eq. (3.10):

β(δi) = βo + β′(0)δi +O(δ2i ) (5.21)

and subsequent expansion of τN and expansion and averaging of γ. The expansion

in Eq. (5.21) must of course be uniform, i.e., β′(0) must be of order one (order ε0)
or smaller. However, if the expansion in Eq. (5.21) is nonuniform, i.e., when β′(0) is
large (order ε−1 or larger) the technique breaks down. In this case the perturbation
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expansion is only valid for δi second order (order ε2) or smaller. This breakdown

indicates high sensitivity tomistuning and it is when the breakdown occurs (if it occurs)

that systemshave been seen to enter the realm of strong localization. This suggests the

use of the first-order Taylor coefficient of β(δi) as ameasure of sensitivity to mistuning:

S = β′(0) (5.22)

A similar scenario may take place in the Taylor expansion of the transfer matrix in

Eq. (3.11), albeit with four different first-order Taylor coefficients for α and β with

respect to δi and δi−1. We do not formally define a sensitivity measure for this case.

When the sensitivitymeasure, S = β′(0), becomes large the expansion in Eq. (5.21)
is nonuniform, indicating a qualitative change in the assembly’s dynamics, and other

avenues must be explored. Note that in the passbands of the tuned system we have

−2 ≤ βo ≤ 2, but when S is large, β(δi) in Eq. (5.21) has the potential to become
large for first-order mistuning in that frequency range. This suggests treating the off-

diagonal terms in the transfer matrix of Eq. (3.10) as small perturbations compared to

the large β(δi), thus yielding an alternative expansion for the high sensitivity case.

The two techniques outlined here, for the cases of normal and high sensitivity, are

detailed in the following sections.

5.2.2. Classical Perturbation Method — Normal Sensitivity.

Consider the case where the expansion (5.21) is valid for first-order mistuning (δi of
order ε), i.e., when S = β′(0) is not large (S of order one or smaller). We shall refer to
this case as low or normal sensitivity. The much simpler case in Eq. (3.10) is treated

first to better explain the technique. In Eq. (3.10), βi = β(δi) depends only on one
mistuned parameter, with β(0) = βo corresponding to the tuned case. A uniform

expansion of Ti in the small mistuning parameter δi yields

Ti =
[
β(δi) −1
1 0

]
=
[
βo −1
1 0

]
+
[
β′(0) 0
0 0

]
δi +

[
β′′(0) 0
0 0

]
δ2i
2
+ . . .

= To +T′δi + T′′
δ2i
2
+ . . .

(5.23)

A transformation to wave coordinates is accomplished with the matrix of eigenvectors

of To,

X =
[

1 1
e−jσ ejσ

]
, (5.24)

where σ is defined in Eq. (5.6). Note that the analysis is limited to the tuned system’s

passband, since there is already large attenuation in the stopband. The wave transfer
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matrix is expanded as

Wi = X−1TiX =Wo +W′δi +W′′
δ2i
2
+ . . .

=
[
ejσ 0
0 e−jσ

]
+
[
ejσ 1
−1 e−jσ

]
δiβ′(0)
2j sinσ

+
[
ejσ 1
−1 e−jσ

]
δ2i β′′(0)
4j sinσ

+ . . .
(5.25)

We need to evaluate the wave transfer matrix for a segment of N mistuned bays, each

with its own random mistuning parameter δi. The random variables δi corresponding
to each bay are considered independent and identically distributed, with zero mean

and standard deviation sδ. An assembly of N bays has the wave transfer matrixWWWN ,

which, when expanded to the second order in the δi’s, becomes

WWWN =
1∏
i=N

(
Wo + δiW′ +

δ2i
2

W′′
)
+O(δ3i )

=Wo
N +

N∑
i=1

Wi−1
o W′WN−i

o δi +
N∑
i=1

Wi−1
o W′′WN−i

o
δ2i
2
+

N∑
i=1

N∑
j=1
j≠i

Rδiδj +O(δ3i ).

(5.26)

The matrix R in Eq. (5.26) has a highly complex form, not evaluated since that entire

term will vanish in the averaging process that follows, due to independence of the

random variables δi, (i = 1 . . .N). For an approximation of the localization factor,
only the first diagonal element ofWWWN , wN

11 = 1
τN , is needed. We have

1
τN
= ejNσ

1+ β′(0)
2j sinσ

N∑
i=1
δi +

β′′(0)
4j sinσ

N∑
i=1
δ2i

+O(δ3i ), (5.27)

∣∣∣∣ 1τN
∣∣∣∣2 =

1+ β′(0)2

4 sin2σ

N∑
i=1
δi

N∑
l=1
δl

+O(δ3i ). (5.28)

Since the δi’s have zero mean and are independent, we have 〈δiδj〉 = 0 for j ≠ i and
〈δiδi〉 = s2δ. Using the expansion ln(1+x) = x +O(x2), we obtain the approximation
of the localization factor, valid for low sensitivity,

γ =
〈
1
2N

ln
∣∣∣∣ 1τN

∣∣∣∣2
〉
� 1
2

(
β′(0)sδ
2 sinσ

)2
= (S(ω̄))2 s2δ
2 (2+ βo(ω̄)) (2− βo(ω̄))

, O(S) ≤ 1,
(5.29)

where S is the sensitivity measure defined in Eq. (5.22). Note that both S and βo
are functions of ω̄ and vary within the passband. The localization factor, γ, allows for

localization effects to be characterized in a simple and compact way, without extensive

simulations of mistuned systems. Note that Eq. (5.29) is general and applies to any

mono-coupled mistuned assembly, as long as the mistuning parameter is not one that
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connects two adjacent bays. It is of interest to note that the second-order Taylor

coefficient, β′′(0), is cancelled from the derivation. According to Eq. (5.29), the onset

of localization increases as the sensitivity measure squared. Also, to first order, the

localization factor increases with the square of the mistuning standard deviation. The

approximation of the localization factor becomes unbounded at frequencies which

correspond to the edges of the passband of the tuned structure, βo = ±2. This is
reasonable, since at those frequencies the transformation matrix X (see Eq. (5.24)) is

singular.

In order to obtain a quick estimate of the level of localization present in a system,

it is advantageous to focus on the localization factor at the midband frequency. This

frequency corresponds to the interblade phase angle σ = π/2, thus is the median
natural frequency in the tuned system’s passband. Note that σ = π/2 does not corre-
spond to a natural frequency unlessN/4 is an integer. Nonetheless, in each passband,

the frequency corresponding to σ = π/2 (see Eq. (5.6)) will have an equal number of
frequencies above and below it. Note also, that the midband frequency need not be

located close to the mean frequency of the passband. One has, at midband,

γmid =
S2mids

2
δ

8
. (5.30)

which gives a good indication of the strength of localization effects in a “typical” mode

of the system.

Let us now consider the case where a parameter common to two adjacent bays is

disordered. In this case the transfer matrix has the general form in Eq. (3.11), where α

and β are functions of two independent and identically distributed random variables,

δi and δi−1. Assuming that β and αmay be uniformly expanded in the small disorder
parameters δi and δi−1, we find an expansion of Ti,i−1:

Ti;i−1 =
[
β(δi, δi−1) −α(δi, δi−1)

1 0

]
=
[
βo −αo
1 0

]
+
[
β,i−1 −α,i−1
0 0

]
(0,0)

δi−1

+
[
β,i −α,i
0 0

]
(0,0)

δi +
[
β,(i−1)(i−1) −α,(i−1)(i−1)

0 0

]
(0,0)

δ2i−1
2

+
[
β,i(i−1) −α,i(i−1)
0 0

]
(0,0)

δiδi−1 +
[
β,ii −α,ii
0 0

]
(0,0)

δ2i
2
+ . . .

=To + T,1δi + T,2δi−1 + T,11
δ2i
2
+T,12δiδj +T,22

δ2i−1
2
+ . . . ,

(5.31)

where the index notation T,1 and T,2 has been adopted to denote differentiation with

respect to the first variable (δi) and the second variable (δi−1), respectively. A trans-
formation to wave coordinates is accomplished using the matrix X from Eq. (5.24). The
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result is an expansion of the wave transfer matrix in the small disorder parameters δi
and δi−1:

Wi;i−1 =Wo +W,1δi +W,2δi−1 +W,11
δ2i
2
+W,12δiδi−1 +W,22

δ2i−1
2
+ . . . (5.32)

The wave transfer matrix of an N-bay segment is

WWWN =WN;N−1WN−1;N−2 . . .W2;1W1;0

�
1∏
i=N

(
Wo +W,1δi +W,2δi−1 +W,11

δ2i
2
+W,12δiδi−1 +W,22

δ2i−1
2

)
.

(5.33)

Carrying the product out to the second order in the δ’s, the one-one term is found to

be, after tedious algebra,

w̃N
11 =

1
τN
� ejNσ

1+ e−jσ (W,1 +W,2)11
N∑
i=1
δi + e−2jσ (W,2 W,1)11

N∑
i=1
δ2i

+ e−jσ (W,11 +W,22)11
N∑
i=1

δ2i
2

 = ejNσ
1+ C1 N∑

i=1
δi + C2

N∑
i=1
δ2i

 , C1, C2 ∈ C
.

(5.34)

The tilde on w̃N
11 underlines the fact that a few liberties have been taken, i.e., we have

ignored very complicated terms that we know will vanish in the averaging process

at a later stage in the derivation. The term containing W,2W,1 appears due to the

occurrence of the same random variable in two adjacent matrices. Next the magnitude

of w̃N
11 is evaluated:

|w̃N
11|2 = 1+ R1

N∑
i=1
δi + R2

N∑
i=1
δ2i +O(δ3), R1, R2 ∈ IR. (5.35)

Due to the terms linear in δ, a second-order expansion of ln |wN
11|2 is required, that is,

ln(1 + x) = x − x2/2 +O(x3). Dividing by 2N and taking the limit as N → ∞ yields

the localization factor, after substantial algebra:

γ = lim
N→∞

1
2N

ln |wN
11|2 �s2δ


[
β,1+β,2−(α,1+α,2 )βo2

]2
8 sin2σ

− β,1 β,2−βoβ,2α,1
2

+α,11+α,22
4

− (α,1+α,2 )
2

8

]
,

(5.36)

where

β,1=
∂β(δi, δi−1)

∂δi

∣∣∣∣
(0,0)

α,1= ∂α(δi, δi−1)∂δi

∣∣∣∣
(0,0)

α,11= ∂
2α(δi, δi−1)

∂δ2i

∣∣∣∣
(0,0)

β,2= ∂β(δi, δi−1)∂δi−1

∣∣∣∣
(0,0)

α,2= ∂α(δi, δi−1)∂δi−1

∣∣∣∣
(0,0)

α,22=
∂2α(δi, δi−1)

∂δ2i−1

∣∣∣∣
(0,0)

,

(5.37)
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5.2. Localization in Mistuned Mono-Coupled Assemblies

which reduces to the form of Eq. (5.29) for β(δi, δi−1) = β(δi) and α(δi, δi−1) = 1.
Finally, in the numerous cases where

α(δi, δi−1) = f(δi−1)f (δi)
, (5.38)

Eq. (5.36) simplifies to

γ = s2δ

[β,1+β,2 ]2
8 sin2σ

+ β,2
2

(
βo
f ′(0)
f (0)

− β,1
)
+ 1
2

(
f ′(0)
f (0)

)2 . (5.39)

At midband Eq. (5.39) reduces even further, to:

γmid =
s2δ
8

[βmid,1−βmid,2 ]2 + 4
[
f ′mid(0)
fmid(0)

]2 . (5.40)

5.2.3. Modified Perturbation Method — High Sensitivity.

As suggested in Section 6.1 and observed in Section 6.2, the Classical Perturbation

Method fails in the limit of high sensitivity , i.e., when S = β′(0) is large. Not only may
this be seen by the failure of the Taylor expansion of β (Eq. (5.21)), but also by the

fact that γ in Eq. (5.29) becomes large (order ε−1) for S large, while it supposedly is a
small perturbation of its zero value in the tuned system’s passbands. The introduction

of first-order mistuning in a system with strong sensitivity (β′(0)� 1) has the effect

that in the passbands β(δi) becomes large (recall that in a tuned system’s passband
−2 < β(0) < 2). This suggests the following modified perturbation scheme, where the
off-diagonal terms are regarded as the perturbation.

Ti =
[
β(δi) −1
1 0

]
=
[
β(δi) 0
0 0

]
+
[
0 −1
1 0

]
= T̄i +∆T. (5.41)

A brief review of the equation of motion, Eq. (3.8), aids in a physical interpretation of

the Modified Perturbation Method. The larger β becomes compared to 1, the less qi is
influenced by qi+1 and qi−1. Consequently, in Eq. (5.41), a coupled system is treated

as a perturbation of the uncoupled system. Since the modified unperturbed matrix

T̄i is already diagonal, there is no need for a wave coordinate transformation. Hence

the physical coordinates are also “wave coordinates” (actually, since the unperturbed

structure is uncoupled it does not actually transmit waves) and T̄i is a wave transfer

matrix for the unperturbed structure. The wave transfer matrix for the perturbed,

N-bay structure is then

WWWN =
1∏
i=N

Ti ≈
1∏
i=N

T̄i +
N∑
l=1

 l−1∏
i=N

T̄i∆T
1∏

i=l−1
T̄i

 =


1∏
i=N

β(δi) −
2∏
i=N

β(δi)

1∏
i=N−1

β(δi) 0

 , (5.42)
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5.2. Localization in Mistuned Mono-Coupled Assemblies

where the product is expanded to the first order in the perturbation, ∆∆∆T. Due to the

special form of ∆∆∆T all terms in the sum vanish except the first one and the last one.

These terms become the off-diagonal terms in the matrix product and do not affect

the transmission coefficient. From Eqs. (5.42) and (5.18) we see that

1
τN
=

1∏
i=N

β(δi). (5.43)

Thus, in accordance with Eq. (5.20) the localization factor becomes

γ = 〈ln |β(δ)|〉 =
∫
ln |β(δ)|pdfδ(δ)dδ, (5.44)

where 〈〉 denotes an average and pdfδ(δ) is the probability density function of the
random variable δ.

Next we attempt to express the localization factor in terms of the large sensitivity

measure, S = β′(0). Focusing on the midband frequency, where the interblade phase
angle is σ = π/2 and β(0) = 0, the first-order approximation of βmid for small δ is
(assuming that the remainder of the expansion is uniform)

βmid(δ) � Smidδ, O(Smid) > 1. (5.45)

Equation (5.44) may now be written as

γmid � ln |Smid| +
∫
ln |δ|pdfδ(δ)dδ, (5.46)

which in the case of a uniform distribution, δ ∈ [−W,W] ≡ [−√3sδ,
√
3sδ], reduces

further, to

γmid � ln |Smid| + ln(
√
3sδ)− 1, O(Smid) > 1, (5.47)

a remarkably simple and general characterization of localization in the high sensitivity

case. Note that only the system sensitivity and the mistuning standard deviation are

needed to evaluate γ. Also note that since Smid is large, γmid is not first order but
of order one, corresponding to a strong localization behavior. Pierre [31] examined

a chain of single-degree of freedom oscillators, where S = 1/R, i.e., the sensitivity is
the inverse of the dimensionless coupling between oscillators, R. His result verifies
Eq. (5.47).

In the limit of strong sensitivity, theModified PerturbationMethod treats a coupled

system as a perturbation of an uncoupled, disordered system. This implies that the

method is applicable only to weakly coupled assemblies and leads to an interpretation

of sensitivity as an inverse of the coupling among bays. High sensitivity to mistuning

has already been observed in systems with weakly coupled bays [31]. However, the
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5.2. Localization in Mistuned Mono-Coupled Assemblies

definition of coupling in complicated multi-parameter systems is not always possible,

whereas the evaluation of S = β′(0) is straightforward.
Note that the results of this section are valid only in the cases where themistuning

is not common to adjacent bays as in Eq. (3.11). Since the systems of immediate interest

to us do not exhibit strong localization when common parameters are disordered, this

extension is not developed here.
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1
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10 100 1000
0.001

0.01

0.1

1

10

10 100 1000

γmid

Smid

Figure 5.6 Approximation of the localization factor at the midband frequency as
a function of the sensitivity measure (Smid = β′mid(0)). ( ) cor-
responds to the classical perturbation result (Eq. (5.29)), valid for Smid
small. ( ) corresponds to the modified approach (Eq. (5.47)),
valid for Smid large. The mistuning is uniform with 5% standard devi-
ation.

Figure 5.6 illustrates the perturbation results for the mid-passband localization factor

(Eqs. (5.30) and (5.47)) for a generic systemdescribed by Eq. (3.10), plotted as a function

of sensitivity. The mistuning is uniform with 5% standard deviation. Equations (5.30)

and (5.47) are valid in the limit of weak and strong sensitivity, respectively. Observe

the rapid onset of localization, followed by a more moderate increase but large values

of γmid in the limit of high sensitivity.
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5.2.4. Example.

We now apply the tools developed above to the system depicted in Fig 3.4. Correspond-

ing to the mistuned parameters kib and k
i
d are measures of sensitivity to mistuning,

Sblade and Sdisk, according to Eq. (5.22). No such measure has been defined when the
mistuned parameter is one connecting two interfaces, therefore the case where kc is

mistuned is given a different treatment. A parametric study identifies combinations of

parameter values leading to high sensitivity. Analytical approximations of localization

factors are obtained in the limits of weak and strong sensitivity. These approximations

are verified by Monte Carlo simulations.

Measures of Sensitivity

Disk Mistuning: From the definition of β in Eq. (3.28), when δci = δbi = 0, one has:

β(δdi ) = 2+
k̄d
k̄c
(1+ δdi )−

ω̄2

k̄c(1− ω̄2)
− m̄ω̄

2

k̄c
. (5.48)

Thus, from Eq. (5.22), the measure of sensitivity to disk stiffness mistuning is simply,

Sdisk = kd
kc

(5.49)

Note that since β(δdi ) is linear with respect to the mistuning, its first-order Taylor

expansion is exact. Sdisk is easy to comprehend. The sensitivity increases linearly
with the disk stiffness and is inversely proportional to the stiffness of the coupling

spring. It is independent of the blade stiffness and the mass of the blade and the disk.

The sensitivity measure is also independent of frequency and is therefore the same in

both passbands. Note the obvious correlation between weak interblade coupling and

high sensitivity as kd → ∞ and kc → 0. These results confirm those of Wei and Pierre

[14], Pierre [31], and Cornwell and Bendiksen [34].

Blade Mistuning: For blade mistuning only, δdi = δci = 0 and Eq. (3.28) simplifies
to

β(δbi ) = 2+
k̄d
k̄c
− ω̄2(1+ δbi )
k̄c(1+ δbi − ω̄2)

− m̄ω̄
2

k̄c
(5.50)

Thus, from Eq. (5.22)

Sblade = ω̄4

(1− ω̄2)2k̄c
. (5.51)

Equation (5.51) is more complicated than it first would seem, because the location

of the passbands, and hence the corresponding ranges for ω̄, depend on the system
parameters k̄c , k̄d and m̄. The sensitivity is of course very different in the two pass-
bands of the system. To give an example of how deceptive Eq. (5.51) is, one might
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k̄d
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(a) k̄c = 1, 1st passband

k̄d

0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000

S
b
=

1

0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000

S
b
=

10

0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000

S
b
=

10
0

0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000
0.01

0.1

1

10

100

1000

1e-05 0.001 0.1 10 1000

S
b
=

10
00

k̄c

(c) m̄ = 1, 1st passband
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(e) k̄d = 1, 1st passband

k̄d

0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000

S
b
=

10

0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000

S
b
=

10
0

0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000
0.01

0.1

1

10

100

1000

0.1 1 10 100 1000

S
b
=

10
00

m̄

(b) k̄c = 1, 2nd passband
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(d) m̄ = 1, 2nd passband
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Figure 5.7 Contours of the sensitivity measure, Sblademid , at the two passband cen-

ters. In each plot one of the parameters k̄c , k̄d and m̄ is fixed while the
others are varied.

wrongly assume that a large coupling spring stiffness, k̄c , always leads to low sensi-

tivity. A counterexample is given below. However, small values of k̄c do ensure high
sensitivity, as we soon will see.

Solving Eq. (3.37) for midband frequencies (σk = π/2) and substituting the values
of ω̄2

mid into Eq. (5.51) yields

Sblademid1,2 =
1
4k̄c

[
2k̄c + k̄d − m̄− 1∓

√[
2k̄c + k̄d + m̄+ 1

]2 − 4m̄ [
k̄d + 2k̄c

]]2
,

(5.52)

where the plus (resp., minus) sign corresponds to the first (resp., second) passband.

The sensitivity to blade mistuning at midband is plotted in Fig. 5.7. The plots show

contours of the surface Sblademid (k̄c , k̄d, m̄) by, in turn, fixing one parameter and vary-
ing the other two. A study of the plots yields information about the combination of

parameter values that lead to strong sensitivity in the two passbands.

Figures 5.7(c) and 5.7(e) tell us that strong sensitivity in the first passband may

be produced by large as well as small values of k̄c , the coupling spring stiffness. At
first it seems surprising that a large k̄c leads to high sensitivity at the first midband.
Validation comes in the form of a parametric study of the natural frequencies [45]
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5.2. Localization in Mistuned Mono-Coupled Assemblies

which illustrates that for large k̄c all natural frequencies except the first one merge

with the upper passband edge. The lower passband edge features all bays vibrating

in phase, independent of the coupling spring stiffness. Hence, although the passband

is large, the range of the natural frequencies becomes small, and this system has very

weak coupling. A system with stiff coupling springs may be likened to a collection of

blades mounted on the perimeter of a rigid ring. The blades are thus decoupled in the

limit k̄c → ∞, vibrating in their first mode with qdi � 0. The opposite occurs in the
second passband, where the bay is vibrating in its second mode that, unlike the first

mode, requires a nonzero qdi . In this case the stiff coupling spring contributes heavily
to the coupling between bays and the sensitivity decreases as k̄c increases.

In addition to the above observations we note from Fig. 5.7 that if m̄ is large

enough, increasing it will cause a decrease in first passband sensitivity and an increase

in second passband sensitivity. Varying m̄ for small m̄ has only a small effect on

sensitivity, as evidenced by the lower portion of Fig. 5.7(e) and Fig. 5.7(f). Similarly we

see that an increase in k̄d increases first passband sensitivity except when k̄d is small
(Fig. 5.7(a)) or when k̄c is very large (Fig. 5.7(c)). Second passband sensitivity decreases

with increased k̄d but only in ranges determined by m̄ and k̄c . A combination of a
small k̄c and a large k̄d leads to high sensitivity in both passbands.

Coupling Spring Mistuning: Although we have not defined a sensitivity mea-
sure for the system in Eq. (3.11), we attempt to examine its sensitivity to mistuning

by considering all four possible first-order Taylor coefficients. From Eq. (3.28), with

δdi = δbi = 0,

β(δci , δ
c
i−1) =

1
1+ δci

[
k̄d
k̄c
− m̄ω̄

2

k̄c
− ω̄2

k̄c(1− ω̄2)
+ 2+ δci + δci−1

]
= βo + δ

c
i + δci−1

1+ δci
(5.53)

and from Eq. (3.29)

αi;i−1 =
1+ δci−1
1+ δci

(5.54)

from which

∂β(δci , δ
c
i−1)

∂δci

∣∣∣∣
(0,0)
= 1− βo

∂β(δci , δ
c
i−1)

∂δci−1

∣∣∣∣
(0,0)
= 1 (5.55)

and
∂α(δci , δ

c
i−1)

∂δci

∣∣∣∣
(0,0)
= −1 ∂α(δci , δ

c
i−1)

∂δci−1

∣∣∣∣
(0,0)
= 1 (5.56)

All four Taylor coefficients in Eqs. (5.55) and Eqs. (5.56) remain of order one or smaller

for all parameter values. We conclude that in the case of coupling spring mistuning

the classical perturbation is valid for all parameter values. This system is thus never
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5.2. Localization in Mistuned Mono-Coupled Assemblies

strongly sensitive to coupling spring mistuning and only weak localization may be

expected to occur.

Localization Factors and Monte Carlo Simulation.

Based on the expressions for the sensitivity measure, we are now in the position to

examine the localization factor due to the above three types of disorder in the limits

of low and high sensitivity. Using Monte Carlo simulations we confirm the validity of

the perturbation approximations of the localization factor and the validity of S as a
measure of sensitivity.

Monte Carlo simulations were performed in the following manner. A series of

random transfer matrices representing the bays of a finite, cyclic assembly were gen-

erated, based on a random sequence, δi, from a random number generator. We call

the resulting assembly one realization of mistuning. The matrices were multiplied

together and transformed into wave coordinates, as explained in Section 6, yielding

the wave transfer matrix for the mistuned assembly (see Eq. (5.18)). The localization

factor for this particular realization of an N-bay system may be calculated from,

γN = 1
2N

ln
∣∣∣∣ 1τN

∣∣∣∣2 . (5.57)

This was repeated for a large number of realizations of the assembly and the result

averaged, adding realizations until the desired accuracy had been reached. The above

constitutes one Monte Carlo simulation, for a system with some set of parameters k̄c ,
k̄d and m̄ vibrating at some frequency.

One point must be made about N, the number of bays in each realization. A
product of a finite number of transfermatrices does not account for the infinitenumber

of successive reflections that occur in the bays of an infinite system. A Monte Carlo

simulation based on single bay realizations, N = 1, would only account for direct

transmission through the bay and all reflections would be truncated. A Monte Carlo

simulation using two bay realizations, N = 2, would additionally account for the wave
fractions that are reflected twice as they propagate through the assembly, but all higher

order reflectionswould be truncated, and so on. The number of bays in each realization

is especially important when localization is strong (the off diagonal terms inWi are no

longer very small). For the cases studied, it was found that fewer than eight bays (N =
8) for each realization would, for strong localization, converge to an incorrect value

for the localization factor. The number of realizations required for the convergence

of γN varied but was usually in the thousands.
Verification by Monte Carlo simulations consists of two parts. On the one hand we

verify the variation of γ as a function of frequency by running a series of simulations
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5.2. Localization in Mistuned Mono-Coupled Assemblies

for a range of frequencies and plot the results along with the perturbation approxi-

mations in the passbands. The other part of the simulation process is the verification

of the two perturbation solutions of γmid as a function of the sensitivity measure,

Smid. It is clear that both γmid and Smid are functions of k̄c , k̄d and m̄ and may thus

be parameterized with any or all of these parameters. This offers the opportunity

to examine the invariance of the relationship between γmid and Smid with respect to

the system parameters, such that we would expect to obtain the same relationship no

matter which of k̄c , k̄d or m̄ is varied. This relation should also be independent of

which passband is chosen for the simulation. If this invariance is verified then the lo-

calization factor in Eqs. (5.30) and (5.47) will prove to be an extremely general tool for

predicting mistuning effects when used in conjunction with the measure of sensitivity,

Smid.
For the Monte Carlo simulations a uniform distribution of width 2W was assumed

for the mistuning. The standard deviation of the mistuning is
√
3W
3 .

Disk Mistuning:
From the perturbation analysis, the localization factors are:

•Weak Sensitivity

γd �
s2dk

2
d

8k2c sin2σ
, (5.58)

γd,mid �
s2dk

2
d

8k2c
. (5.59)

•Strong Sensitivity

γd � kc
2
√
3sdkd

[
(β(

√
3sd) ln |β(

√
3sd)| − β(−

√
3sd) ln |β(−

√
3sd)|

]
− 1, (5.60)

γd,mid � ln
∣∣∣∣kckd

∣∣∣∣+ ln(√3sd)− 1. (5.61)

These results are plotted in Fig. 5.15 as a function of the sensitivity measure in

Eq. (5.49), Sdisk = kd/kc . Observe how the transition from the classical perturbation

to the modified perturbation result, that is, from weak to strong localization, occurs at

about the sensitivity value Smid � 30. Also note that the Monte Carlo results agree well
with the perturbation results in the limits of strong and weak sensitivity. Figure 5.14

illustrates the validity of the perturbation approximations throughout the passbands.

In Fig. 5.14(a) an excellent agreement between the simulation results and the classi-

cal perturbation solution is observed. Figure 5.14(b) demonstrates the quality of the

modified perturbation solution in the passband of a very sensitive system, while the

classical result grossly over-predicts the localization factor.
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Figure 5.8 Monte Carlo simulations ( ) are used to verify the invariance of
Eq. (5.59) ( ) and Eq. (5.61) ( ) . The simulation result
is a collection of data generated by varying both kc and kd in both
passbands, with all results falling on the same curve. The standard
deviation of uniform disk stiffness mistuning is 5%.
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Figure 5.9 Exponential decay, γd, due to 5% disk stiffness mistuning vs. fre-

quency. In stopbands Monte Carlo simulations ( ) nearly co-
incide with the propagation constant for the tuned system ( ) .
In (a) the simulations results overlap the classical perturbation result
( ) , Eq. (5.58), in the passbands. In (b) the simulation agrees with
the modified perturbation result ( ) , Eq. (5.60).

96



5.2. Localization in Mistuned Mono-Coupled Assemblies

Blade Mistuning:
The perturbation analyses yield the following localization factors:

•Weak Sensitivity

γb �
1

k̄2c

[
ω̄2

(1− ω̄2)

]4 s2b
8 sin2σ

(5.62)

γb,mid �
s2b

128k̄2c

[
2k̄c + k̄d − m̄− 1±

√[
2k̄c + k̄d + m̄+ 1

]2 − 4m̄ [
k̄d + 2k̄c

]]4
(5.63)

where the plus and the minus signs denote the first and the second passband, respectively.

•Strong Sensitivity

γb �
(1− ω̄2)βo ln

∣∣∣∣∣ β(
√
3sb)

β(−√3sb)

∣∣∣∣∣
2
√
3sb

(
βo + ω̄4

k̄c(1− ω̄2)

) + ln ∣∣β(√3sb)β(−√3sb)∣∣
2

−
ω̄4 ln

∣∣∣∣∣1− ω̄2 +√3sb
1− ω̄2 −√3sb

∣∣∣∣∣
2k̄c

√
3sb

(
βo +

ω̄4

k̄c(1− ω̄2)

)
(5.64)

γb,mid � ln
∣∣∣∣∣∣ 1
4k̄c

[
2k̄c + k̄d − m̄− 1±

√[
2k̄c + k̄d + m̄+ 1

]2 − 4m̄ [
k̄d + 2k̄c

]]2∣∣∣∣∣∣
+ ln(

√
3sb)− 1

(5.65)
with the same sign convention as above.

Figure 5.10 illustrates the transition from the classical perturbation approxima-

tion of the mid-band localization factor to that obtained by the modified perturbation

approach. The sensitivitymeasure, Sblademid (Eq. (5.52)), is affected by all parameters, m̄,

k̄c and k̄d as well as the passband number. Figure 5.10 contains three Monte Carlo sim-
ulation curves, each obtained by varying a different system parameter. These curves

overlap nearly perfectly (except for a slight discrepancy at very high sensitivity) and

they also agree closely with the corresponding simulation curve in Fig. 5.15 for disk

stiffness mistuning. This suggests that S = β′(0) is indeed highly suitable as a univer-
sal measure of sensitivity, at least for mono-coupled systems.

Figure 5.11 shows the exponential attenuation as a function of frequency in a sys-

tem that has low sensitivity in the second passband but high first passband sensitivity.

In the second passband the classical perturbation solution provides an excellent pre-

diction of weak localization. In the first passband the modified perturbation approach
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Figure 5.10 Monte Carlo simulations ( ) are used to verify Eq. (5.63)
( ) and Eq. (5.65) ( ) . Multiple Monte Carlo simulations
are obtained by varying m̄ in 1st passband, k̄d in 2nd passband and k̄c
in 1st passband. The standard deviation of blade stiffness mistuning
is 5%. Note the near overlap of the various Monte Carlo results.

matches the simulated results, thereby confirming the strong localization approxima-

tion.

Coupling Spring Mistuning:
•Weak Sensitivity, from Eq. (5.39)

γc � 2− βo2+ βo
s2c
2

(5.66)

γc,mid �
s2c
2

(5.67)

•Strong Sensitivity is never obtained through mistuning of k̄c .

In Fig. 5.12 we observe the excellent agreement between the classical perturbation

result and the Monte Carlo simulations in the case of spring mistuning. This was

evidenced for all other parameter values, which confirms the lack of high sensitivity

to spring mistuning. It is interesting to note that the localization factor vanishes at

the left passband edge. This is reasonable since at that frequency no stretching of the

coupling spring occurs and mistuning of the spring stiffness is inconsequential.

98



5.3. Localization in Mistuned Bi-Coupled Assemblies

0.0001

0.001

0.01

0.1

1

10

0 2 4 6 8 10 12 14 16
ω

γ
b

2

(a) Sblademid2 � 1.2

0.0001

0.001

0.01

0.1

1

10

0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96
ω

γ
b

2

(b) Sblademid1 � 123 (1st passband)
Figure 5.11 Exponential decay, γb, due to 5% blade stiffness mistuning vs. fre-

quency. In stopbands Monte Carlo simulations ( ) agree
with the propagation constant for the tuned system ( ) . In
(a) the simulations results overlap the classical perturbation result
( ) , Eq. (5.62), in the 2nd passband. In (b) the simulation agrees
with the modified perturbation result ( ) , Eq. (5.64).
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Figure 5.12 Localization factor as a function of frequency in a system with cou-

pling spring stiffness mistuning of standard deviation 5%. Results
from Monte Carlo simulations ( ) agree with the classical per-
turbation solution ( ) in the passband and with the tuned sys-
tem’s propagation constant ( ) in the stopbands. Note the lack
of localization at the left passband edges and the very weak localiza-
tion throughout the passbands.

5.3. Localization in Mistuned Bi-Coupled Assemblies

As stated above, localization factor approximations are not yet obtainable for assem-

blies with more than one coupling coordinate, hence not permitting an in-depth study

of localization in the bi-coupled assembly. In Section 5.1 we have observed how the
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introduction of an additional coupling coordinate introduces a second wave channel

in the assembly but that it is not until the associated non-adjacent coupling stiffness

is sufficiently strong (α < 4) that the additional wave channel is capable of energy-

carrying motion. This suggests that localization results obtained for mono-coupled

mistuned assemblies may be applicable to bi-coupled ones as long as there are no

frequency passbands associated with the additional wave type. In the following we

attempt to draw qualitative conclusions about the effect of the additional coupling

coordinate through the study of the example system in Fig. 3.13.

5.3.1. Effects of Bi-Coupling on Modal Structure

Explain howwewill attempt to use themodal structure to get ideas about themistuning

effects.

The Mono-Coupled Assembly

From Eqs. (5.3) and (3.4), one obtains

βo(ω̄
p
n)

2
±

√√√√(βo(ω̄p
n)

2

)2
− 1 = ej2π(n−1)/N n = 1, . . . , N

p = 1, . . . , P , (5.68)

whereN is the number of blades and P is the number of degrees of freedom per blade.

This simplifies as

βo(ω̄
p
n) = 2cosσn

n = 1, . . . , N
p = 1, . . . , P , (5.69)

yielding P natural frequency solutions for each value of the interblade phase angle,

hence N × P natural frequencies for the assembly. From Eq. (5.69) one can easily

show that all natural frequencies are double, except those corresponding to σ1 = 0
and, if N is even, those corresponding to σ(N+2)/2 = π . Also, Eq. (5.69) indicates that
−2 ≤ βo ≤ 2, hence the natural frequencies belong to the assembly’s passbands (see
Eq. (5.6)), with N frequencies for each of the P passbands.
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Figure 5.13 Natural frequencies as a function of the number of nodal diameters,
for both passbands of the system in Fig. 3.4 with k̄c = k̄d = 1 and
m̄ = 5.

Example

Turning our attention to the system of Fig. 3.4, we have, from Eqs. (5.69) and (3.31)

β(ω̄n) = 2+ k̄dk̄c
− ω̄2

n

k̄c(1− ω̄2
n)
− m̄ω̄

2
n

k̄c
= 2cosσn, (5.70)

which when solved for ω̄2
n yields

ω̄2
n =

m̄+K(n) + 1±
√
(m̄+K(n)+ 1)2 − 4m̄K(n)

2m̄
(5.71)

where theminus sign yields values in the first passband and the plus sign gives second

passband frequencies. In Eq. (5.71), K(n) denotes the associated modal stiffness of

the disk

K(n) = k̄d + 2k̄c (1− cosσn) (5.72)

where σn is the interblade phase angle of thenthmode in each of the passbands, given

in Eq. (3.5). K(n) increases from kd to kd + 4kc as the interblade phase angle varies
from 0 to π .

It is customary to plot the natural frequency distribution against the number of

nodal diameters. This gives an indication of the number of natural frequencies per

unit frequency, the modal density, in a given frequency range. In Figure 5.13 this is
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done for m̄ = 5, k̄d = 1 and k̄c = 1. An interesting feature, sometimes overlooked, is
that the curves have local extrema at zero andN/2, hence themodal density is greatest
at passband edges. The natural frequencies increase monotonically as the number of

nodal diameters increases from 0 to N/2 and possess no other extrema.
It should also be noted that the natural frequency function of nodal diameters is

the inverse of the interblade phase angle function of frequency illustrated in Fig. 5.1.

The Bi-Coupled Assembly

Equations (3.4), (5.10) and (5.11) yield the set of frequency equations

−1
4

[
α−κ ±

√
(α− κ)2 − 16

]
= ej2π(n−1)/N

−1
4

[
α+ κ ±

√
(α+ κ)2 − 16

]
= ej2π(n−1)/N

n = 1, . . . , N. (5.73)

or

−α(ω̄)− κ(ω̄)
4

= cosσn (5.74)

−α(ω̄)+ κ(ω̄)
4

= cosσn (5.75)

with σn given by (3.5). Equations (5.74) and (5.75) will yield a total of N × P natural
frequencies corresponding modes of type (L1, R1) and (L2, R2) respectively.

Example

Solving Eqs. (5.74) and (5.75) for the system in Fig. 3.13 yields

ω̄2
n =

m̄+K(n) + 1±
√
(m̄+K(n)+ 1)2 − 4m̄K(n)

2m̄
(5.76)

where

K(n) = k̄d + 2k̄c1(1− cosσn)+ 2k̄c2(1− cos2σn), (5.77)

is themodal stiffness of the disk for themodes of interblade phase angle σn. Note that
the expressions of the natural frequencies of themono-coupled system, Eqs. (5.71) and

(5.72), and of the bi-coupled system, Eqs. (5.76) and (5.77), are similar, except for the

modal disk stiffness,K(n), which ismodified by the additional coupling spring. As was
the case with the mono-coupled system (Eq. (5.72)), K(n) has values kd and kd + 4kc
at the interblade phase angles 0 and π , respectively. The effect of kc2 on K(n) occurs
only between σ = 0 and σ = π and is largest for σ = π/2. The consequence is that
whereas the natural frequencies of the mono-coupled system increase monotonically,

we find that Eq. (5.76) may possess a maximum at an interblade phase angle given by

cosσ = − kc1
4kc2

(5.78)
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which has no solution when α = kc1/kc2 > 4. Recall that the frequency function in

Eq. (5.76) is the inverse of the dispersion relation in the passbands plotted in Figs. 5.2

and 5.3. The maximum of Eq. (5.76) thus corresponds to the frequency of transition

from passband to complexband in Figs. 5.2 and 5.3. The location of the maximum

varies from σ = π to σ = π
2 as α =

kc1
kc2 varies from 4 to zero. Its occurrence as α

becomes smaller than 4 signifies the birth of passbands for the second wave type, as

discussed in section 3.2.
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Figure 5.14 Natural frequencies as a function of the number of nodal diameters,
for both passbands of the system in Fig. 3.13 with m̄ = 5, k̄d = k̄c1 = 1
and k̄c2 = 0.2 ( )Ṫhe natural frequency curve for the mono-
coupled system with m̄ = 5, k̄d = k̄c = 1 ( )is shown for com-
parison. Passband edges are denoted by ( ).

Figure 5.14 displays the natural frequencies in both passbands as a function of the

number of nodal diameters for k̄c1 = 1 and k̄c2 = 0.2, i.e., the coupling between nearest
neighbors is five times stronger then the coupling between bays that are separated by

one bay (α = 5). In this case there are no passbands for the second wave type (see
Eq. (5.15) and Fig. reffigs) and thus all normal modes are associated with the first wave

type. Furthermore, since for α = 5 the passband edges occur for σ = 0 and π (see

Fig. 5.3) and since the corresponding natural frequencies are independent of the non-

adjacent coupling stiffness, kc2 (see Eq. (5.77)), the bi-coupled system and the mono-

coupled assembly feature the same frequency passbands, as depicted in Fig. 5.14.

Note, however, that the variation of the natural frequencies with the interblade phase
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angle, or the number of nodal diameters, is different for the mono- and bi-coupled

systems, though it is monotonous in both cases. In particular, the modal density of

the bi-coupled system is larger for the higher numbers of nodal diameters.
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Figure 5.15 Natural frequencies as a function of the number of nodal diame-
ters, for both passbands of the system in Fig. 3.13 with m̄ = 5 and
k̄d = k̄c1 = k̄c2 = 1 ( )Ṫhe natural frequency curve for the mono-
coupled systemwith m̄ = 5, k̄d = k̄c = 1 ( )is shown for compar-
ison. Passband edges for the two wave types are denoted by ( ).

Figure 5.15 shows the natural frequencies in both passbands as a function of the num-

ber of nodal diameters for k̄c1 = 1 and k̄c2 = 1, hence α = 1. Since kc2 is greater than
kc1/4, Eqs. (5.14) and (5.15) indicate that passbands must exist for both wave types.
Indeed, we observe in Fig. 5.15 the widening of the passbands for the type-one wave

and the appearance of passbands for the second wave type (this can also be seen in

Fig. 5.2). Apparent in Fig. 5.15 is the non-monotonous variation of the natural fre-

quencies with the number of nodal diameters, as predicted by Eq. (5.78). The maxima

shown in Fig. 5.15 — one for each passband — would occur for all values of α < 4. On
each frequency curve, the maximum separates the normal modes that are associated

with each type of wave: the modes that feature a number of nodal diameters (or an in-

terblade phase angle) that is smaller than that of the maximum belong to the first wave

type, while those whose interblade phase angle is larger than that of the maximum are

associated with the second wave type. This is also evidenced in Fig. 5.2. Clearly the

number of free vibration modes associated with the second wave type increases with
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the stiffness kc2. From Eq. (5.78) it may be seen that as kc2 → ∞, the location of the
peak frequency goes to σ = π/2 (n = N/4), at which point the number of modes of
type 1 equals (approximately) that of type 2.

It is important to note that when kc2 becomes greater than kc1/4, that is, when
the non-adjacent coupling spring stiffness becomes sufficiently large, the dynamic

characteristics of the bi-coupled system become qualitatively different from those of

the mono-coupled assembly. In these cases the adjacent coupling assumptionmay not

be valid.

5.3.2. Mistuning Sensitivity and Modal Density

A study of the natural frequencies of the system in Fig. 3.13 demonstrated how

the introduction of the non-adjacent coupling spring initially causes an increase in

modal density at the upper passband edge while not affecting the passband width (see

Fig. 5.14). Increasing kc2 (or decreasing α) beyond kc1/4 (or below α = 4) causes an
increase in passband width and a subsequent decrease in modal density, as shown in

Fig. 5.15.

Perturbation methods for the eigenvalue problems have been used previously to

predict the effects of mistuning on the free dynamics of periodic structures [26, 58].

Since the second-order eigenvalue perturbations due to mistuning are inversely pro-

portional to thedistance between the tunedeigenvalues, it results that the sensitivity to

mistuning, and thus localization effects, typically increase as the modal density of the

tuned assembly increases. Using this result we make the following predictions about

the influence of the non-adjacent coupling spring kc2 on the sensitivity to mistuning.

• In the range 0 < kc2 < kc1/4, modal density at the upper edge of the pass-
bands (where mistuning sensitivity is the greatest) is increased compared to the mono-

coupled system, causing an increase in mistuning sensitivity beyond what is pre-

dicted by the mono-coupled analysis. The modal density reaches a maximum when

kc1/kc2 = 4.
• For kc2 > kc1/4, the modal density in the neighborhood of natural frequency

of the N/2 interblade phase angle modes (previously the upper passband edge) de-

creases. Also, a widening of the passband occurs with a corresponding decrease in

modal density throughout the passband, and a subsequent decrease in sensitivity to

mistuning.

Localized modes provide ample evidence of this behavior. As an example, we

examine the modes of vibration of a 100-blade mistuned system with m̄ = 5, k̄d = 1
and k̄c1 = 1. For a given random mistuning pattern, we follow mode shapes occurring

at ω̄2 � 0.644, as k̄c2 is increased from 0 to 1. This frequency is located just below the
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Figure 5.16 Mode 98 in a 100-blade mono-coupled assembly with natural fre-
quency ω̄2 = 0.6439. m̄ = 5, k̄d = 1 and k̄c = 1. The standard
deviation of mistuning is 8%
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Figure 5.17 Mode 92 in a 100-blade bi-coupled assembly with natural frequency
ω̄2 = 0.6439. m̄ = 5, k̄d = 1, kc1 = 1 and kc2 = 0.2. The standard
deviation of mistuning is 8%

upper edge of the first passband of the mono-coupled system and thus corresponds

to the maximum localization in the mono-coupled system.

The modes studied are depicted in Figs. 5.16-5.19. The localization effect of mis-

tuning is evident for both mono- and bi-coupled systems. Comparing Fig. 5.16 with

Fig. 5.17, as k̄c is increased from 0 to 0.2 the increased modal density causes increased

localization. A further increase to k̄c2 = 0.4 results in weaker localization, to a strength
lower than that of the mono-coupled system. For k̄c2 = 1, localization at ω̄2 � 0.644
has all but vanished. A more accurate examination of these four mode shapes is pos-
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Figure 5.18 Mode 73 in a 100-blade bi-coupled assembly with natural frequency
ω̄2 = 0.6446. m̄ = 5, k̄d = 1, kc1 = 1 and kc2 = 0.4. The standard
deviation of mistuning is 8%
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Figure 5.19 Mode 40 in a 100-blade bi-coupled assembly with natural frequency
ω̄2 = 0.6448. m̄ = 5, k̄d = 1, kc1 = 1 and kc2 = 1. The standard
deviation of mistuning is 8%

sible by plotting the absolute value of the displacement of each mode on a logarithmic

scale and aligning the mode peaks. Figure 5.20 demonstrates that the behavior of the

rate of decay as kc2 increases is as outlined above.
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Figure 5.20 Comparison of amplitude decay for mistunedmodes with natural fre-
quency ω̄2 � 0.644. The absolute value of the blade displacement is
plotted on a logarithmic scale with the mode peaks aligned. Mono-
coupled ( ), α = 5 ( ), α = 2.5 ( ), α = 1 ( ).

5.4. Conclusion
Wave propagation of mistuned mono- and bi-coupled blade assemblies were studied

using a transfer matrix approach. A mono-coupled assembly may be modeled using a

2× 2 transfer matrix whereas the bi-coupled system requires a 4× 4 transfer matrix.
The theory of wave propagation in multi-coupled periodic structures was reviewed

and detailed for the mono- and bi-coupled assemblies. The study identified that if

coupling of neighboring blades is more than four times stronger than the coupling of

blades separated by one blade, then the wave propagation properties of the mono- and

bi-coupled assemblies are qualitatively the same.

A comprehensive methodology for quantifying localization effects in general

mono-coupled systems was presented and a measure of mistuning sensitivity was pre-

sented. An investigation of an example system revealed the sensitivitymeasure to be a

reliable universal way of quantifying mistuning sensitivity in a mono-coupled system.

A study of the natural frequency distribution of the mono- and bi-coupled assem-

blies revealed that mistuning sensitivity, as predicted by an analysis of a mistuned

mono-coupled system, may initially increase when non-adjacent bay coupling is in-

troduced. Sensitivity was found to reach a maximum when coupling of neighboring

blades is four times as strong as the coupling of blades separated by one blade. For

higher values of the non-adjacent coupling, mistuning sensitivity was decreased and

localization all but vanished when the non-adjacent coupling became as strong as the

adjacent coupling. These conclusions were supported by the examination of the local-

ized modes of mistuned bi-coupled systems with various levels of interblade coupling.
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CHAPTER VI

STATISTICS OF FORCED RESPONSE

In the case studies of mistuned rotors presented in Chapter VII dramatic mistuning

effects were expected. All the prototype rotors that were being studied featured weak

interblade coupling, a property synonymous with strong mistuning sensitivity in the

free response case. Free response analysis [45] predicts that sensitivity to mistuning

increases monotonically as coupling is reduced. Curiously, the mistuning effects on

forced respose amplitudes were weaker than expected. Furthermore, when studying

the forced response of the 36 blade compressor prototype, two different engine orders

of excitation lead to stronger mistuning effects in modes with stronger interblade cou-

pling, a trend completely opposite to the trend predicted by the free response analysis.

There had been some evidence [46] that forced response of assemblies with moder-

ately weak coupling will experience larger mistuning effects than assemblies with very

weak interblade coupling, but no physical insight had been obtained. Clearly, a better

understanding of the effect on forced response of the localization phenomenon was

needed. This chapter focuses mainly on the effect of interblade coupling on mistuned

system forced response in search of a satisfactory explanation for the mechanisms

that govern this behavior.

As the work presented in Chapter VII progressed, it became increasingly clear that

improved tools were required if a complete insight was to be gained into the statistics

of mistuning-induced magnification of the largest blade amplitude. As a consession

to computational feasibility, Monte Carlo simulations were being limited to a fixed

frequency for each realization of a mistuned assembly. This led to results that left

many questions unanswered, and the need for amore complete analysis — in which the

peak resonance response for each realization would be calculated — became obvious.

This deficiency is remidied in the current work.

The analysis contained in this chapter is purely statistical. Since analytical meth-

ods for estimating the forced response statistics are not in place, a Monte Carlo sim-
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ulation approach is used. Given that many uncontrollable factors, such as in-service

degradation, influence blade mistuning, the authors feel strongly that small mistun-

ing should always be treated as a random variable and that any effort to study (and

perhaps optimize) deterministic mistuning patterns is misguided.

Much of the work on the statistics of mistuned system forced response found in

the literature [48, 49] is focused on the response statistics of individual blades. We

believe this to be an incomplete result since it does not account for the sample size, i.e.,

the number of blades on the disk. Response statistics of mistuned bladed disks should

be presented in terms of the largest amplitude of any blade of the disk, commonly

called the extreme statistics. Sinha [49] in his introduction mentions how important it

is for designers to know “the probability that the largest response amplitude on any disk

[an assembly of blades] would exceed a critical value” , but does not address the issue

in the body of the paper. We agree with Sinha that confidence intervals for the extreme

statistics would be the ideal predictive tool for designers concerned with mistuning

effects. All the statistical results in this paper are in terms of the largest amplitude

magnification (or amplification) occurring at any frequency in any blade of a mistuned

assembly. By magnification we mean the mistuning-induced increase in amplitude

relative to that predicted by the tuned analysis.

In this chapter we treat the term coupling rather loosely as the strength of blade to

blade influence. By using the simplest model of a bladed disk imaginable (see Section

3.1.2), we have a simple, single-parameter measure of coupling. We acknowledge that

in real life systems coupling may be considerably more difficult to quantify. (see dis-

cussion in Section 5.2.1). However, we believe that the mechanisms governing forced

response sensitivityuncovered through the use of thismodel should be fully applicable

to more complicated models.
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6.1. Extreme Statistics and Uncoupled Oscillators
To highlight some of the concepts presented in this chapter, let us look at the response

of an assembly of uncoupled oscillators. In the case of no coupling the term “assembly”

is, of course, a misnomer, but it will be used to refer to the set of N oscillators. Since

the goal is to study the effect of coupling, the limiting case of vanishing coupling will

provide a crucial foundation. Futhermore, the assumption of zero coupling is an im-

portant simplification rendering the response of the blades statistically independent.

This makes it possible to analyze the statistics in closed form.

In the absence of coupling springs, a single blade in Fig. 3.2 has the equation of

forced harmonic motion

(1+ δi)q − ω̄2q + 2jζω̄q = F̄ . (6.1)

where ζ denotes the viscous damping ratio and δi is a random variable representing

the stiffnessmistuningof the ith blade. The resonance amplitude of this single-degree-

of-freedom system can be easily calculated to be

|q|max =
|F|

2ζ
√
1+ δi − ζ2

(6.2)

which we scale by the resonance amplitude of the corresponding tuned system (δi = 0)
to yield

A=
√
1− ζ2√

1+ δi − ζ2
(6.3)

The random variableA denotes the magnification of the resonance amplitude due to

mistuning. It is a monotonic function for the small δi values that are of interest here.
Given a probability density function for the mistuning random variable ∆, f∆(δ), we
may calculate the statistics of the magnification,A, as:

fA(A) = f∆(δ)
∣∣∣∣ dδdA

∣∣∣∣ (6.4)

For example, if we assume that that the mistuning is uniformly distributed with stan-

dard deviation s (see Fig. 6.1), then

f∆(δ) =

0 if δ < −√3s
1

2
√
3s if |δ| ≤ √3s

0 if δ >
√
3s

(6.5)

and we find

fA(A) =


0 if A < Amin
1− ζ2√
3 s A3

if Amin ≤A ≤ Amax
0 ifA > Amax
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Figure 6.1 Probability density function of uniform blade mistuning with s = 10%

standard deviation and zero mean.
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Figure 6.2 Probability density function of resonance amplitude magnification,A,

of a single oscillator that has uniform blade stiffness mistuning with
10% standard deviation.

where

Amax =
√
1− ζ2√

1−√3s − ζ2
and Amin =

√
1− ζ2√

1+√3s − ζ2

The probability density function fA(A) is depicted in Fig. 6.2.
We are, however, much more interested in the response statistics of the one blade

in an assembly of N blades that exhibits the largest resonance amplitude, at any fre-
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quency. This is the subject of a field within probability theory referred to as the “statis-

tics of extreme values.” For a discussion of the topic the reader is referred to the classic

work of Gumbel [59].

The probability distribution function of a random variable X, FX(x), corresponds
to the probability that X < x. The probability distribution of the largest sample, X,
in a set of N samples is the combined probability that X < x and that all the other

samples are smaller than X. Therefore, assuming that the blades are independently
mistuned,

FX,N(x) = [FX(x)]N (6.6)

and the probability density function of the largest sample in a set of N samples is

simply

fX,N(x) = N [FX(x)]N−1 fX(x). (6.7)

As an example, consider an assembly of N, uncoupled, mistuned blades like the one

presented above. We find that the probability distribution function ofA is

FA(A) = ζ
2 − 1+A2(1+√3s − ζ2)

2
√
3sA2

(6.8)

and hence that the probability density function for resonance amplitude magnification

in the blade with the largest amplitude is

fA,N(A) = N
[
ζ2 − 1+A2(1+√3s − ζ2)

2
√
3sA2

]N−1
1− ζ2√
3 sA3

(6.9)

Figure 6.3 illustrates how the number of blade, N, affects the shape of the probability
density function of the extreme values. As the number of blades increases, so does

the probability of a large largest amplitude. With a bigger set of samples, the chances

of the set containing a large value become greater. At the same time the probability

of experiencing low amplification in the blade with the largest amplitude decreases.

Indeed, in a 12-blade assembly there is negligible probability that the blade with the

largest amplitude has a lower amplitude than the tuned system. It is almost certain

that the amplification of this blade will be between 5% and 10% greater than the tuned

system.

In [45] mode localization was shown to increase monotonically with decreased

interblade coupling. The extreme case of zero coupling has the individual oscillators

vibrating at their natural frequencies with no participation from its uncoupled fellow

blades. A mode in which only one blades vibrates would be considered fully localized.

On the other hand the probability density function in Fig. 6.3 shows that for the system

and mistuning type analyzed here the largest increase in peak response is only 10%.
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Figure 6.3 Probability density function of largest resonance amplitude magnifica-
tion of an assembly of N oscillators with uniform disk stiffness mis-
tuning with 10% standard deviation. A 4 blade assembly ( ) is
compared to a 12-blade assembly ( ).

This is not a dramatic effect and is substantially lower than the 30% to 300% increases

reported by various studies [24].

This surprising result raises the question as to whether mistuning effects may be

contributed to by another mechanism, perhaps one that is completely different from

the energy confinementmechanism that causesmode localization. We shall investigate

this issue in the next section.
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6.2. Coupling Effects on Forced Response Statistics

When interblade coupling is considered, analytical results for largest response statis-

tics become tremendously difficult to obtain. Some work has been done on the re-

sponse statistics of individual blades in an assembly [48, 49], but, as stated in the

previous section, it is really the statistics of the blade which has the largest amplitude

that are of the greatest interest. Given that information, an analyst could be provided

with confidence intervals for the largest amplitude experienced by any blade in a pro-

duction run of rotors. This information is not directly obtainable from the response

statistics of individual blades as was done in Eqs. (6.6) and (6.7). This is because

the responses of adjacent, coupled blades are not independent random variables and

Eq. (6.6) is invalid.

However, the development of analytical methods for the extreme statistics in blade

assemblies is not the goal of this work. Rather, we wish to understand the relationship

between the level of interblade coupling and the statistics of largest forced response

amplitudes. Therefore, for this study we will rely solely on Monte Carlo simulations.

6.2.1. Monte Carlo Simulation of Response Statistics

Monte Carlo simulations are an alternative to the analytical solution of probability

density functions. An outline of Monte Carlo simulations is as follows. A mistun-

ing pattern for one realization of a mistuned assembly is obtained using a random

number generator. A frequency response analysis of this system yields the largest

resonance amplitude. Note that to find this value we must sweep frequency and solve

a large number of forced response problems. The largest resonance amplitude value

constitutes one sample and is stored in a vector. This process is repeated until some

convergence condition is met. Post-processing of the sample vector results in an ap-

proximation of the response statistics, e.g., the probability density function. Clearly,

this brute force method may be extremely expensive in terms of computational time.

Tens of thousands of realizations may be required, each realization requiring a large

number of solutions when frequency is swept to find the peak response amplitude.

In Fig. 6.4 we observe the excellent results achievable by Monte Carlo simulations

if no expense is spared. The figure provides mutual verification of the analytical result

in Eq. (6.9) and Monte Carlo simulation results.
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Figure 6.4 Probability density function of largest resonance amplitude magnifica-
tion of an assembly of N oscillators with uniform disk stiffness mis-
tuning with 10% standard deviation. The analytical solution for a 12-
blade assembly ( ) is compared to the Monte Carlo simulation of
105 12-blade systems ( ) .

6.2.2. Results

Figure 6.5 shows how the statistics of the largest response of the system in Fig. 3.2

evolve as the level of interblade coupling is varied. A 12-blade assembly was analyzed

by Monte Carlo simulation. Of greatest importance is the curve labeled 99%. The values

on this curve denote the mistuning-induced amplification of largest response that will

only be surpassed by 1% of all realizations of mistuned systems. We will say that when

this value deviates greatly from unity, mistuning effects are high. From the 1% curve

we see that a 12-blade assembly will almost certainly experience larger amplitudes

than the tuned system since the curve is above A = 1 throughout nearly the entire
range of coupling.

For high values of coupling, the effects of mistuning are weak, as predicted by the

free vibration characteristics of the tuned system. When coupling is large, mistuning

effects are weak and the mistuned struture possesses extended, non-localized modes

[45]. This lack of sensitivity of the free response to mistuning implies small mistuning

effects on the forced response. Indeed, for high coupling values the three curves
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Figure 6.5 Statistics of the largest resonance amplitude magnification in a 12-
blade assembly as a function of interblade coupling, R. The main plot
shows the 1%, 50% and 99% percentiles of the statistics. The inserted
plot shows the entire probability density function at the coupling case
with the largest magnification, R = 0.0316. Mistuning, δ, is uniform
with 3% standard deviation and excitation is engine order 3.

for the 1%, 50%, and 99% percentiles merge, signifying that the probability density

function approaches a delta function, i.e., the magnification,A, approaches unity with
probability one.

In the other extreme, that is, for very weak, coupling, we see the effects predicted
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in Section 6.1. The probability density function for this case would be similar to the

one depicted in Fig. 6.3 (except that here mistuning has 3% standard deviation instead

of 10% considered earlier).

As coupling decreases from strong to weak we note a sharp increase in mistuning

effects reaching a maximum for moderately weak coupling levels. For 3% mistuning

the maximum occurs at R � 0.0316, and predicts that as many as 1% of the assemblies
sampled will have magnification of amplitudes in excess of 45% greater than a tuned

analysis would have predicted. The inserted figure depicts the probability density

function of the magnification of the largest amplitude for R = 0.0316. Note that it is
markedly different from the one illustrated in Fig. 6.3. For instance, the probability

density function now has an upper tail.

For assemblies with a different number of blades, Fig. 6.5 would change in the

following way. For assemblies with fewer blades, there is an increase probability of

finding assemblies with a small largest amplitude (see Fig. 6.3), and it may be likely that

an assembly has a smaller largest amplitude than the tuned system’s. The opposite

occurs as the number of blades is increased, because with a bigger set of samples the

chances of finding a large amplitude in the set becomes greater. In general, as the

number of blades is increased, the 1% and 50% curves will approach the 99% curve.

The 99% curve will be affected the least because the probability density beyond the

99th percentile is low and the additional samples are unlikely to fall above the 99%

curve, a thereby shifting the 99th percentile.

6.2.3. Energy Flow Analysis

The behavior of mistuning effects reaching a maximum for moderate coupling has

been observed before [46]. However, the mechanism at work has never been satis-

factorily explained. The dynamic behavior is fully understood in the limits of strong

and vanishing coupling. An assembly with strongly coupled blades features extended,

unlocalized modes. Mistuning has a weak effect on the forced response of this as-

sembly, and small mistuning-induced amplification of largest amplitude are observed.

All blades vibrate with the same amplitude — vibration energy is shared equally. In

Section 6.1 we observed how, in the absence of coupling the blades vibrate indepen-

dently. The energy source for an isolated blade is limited to the energy contribution

of the force acting on the blade. What these two cases of coupling extremes have in

common is the fact that energy given to a blade through external forcing remains in

that blade. Clearly, an uncoupled blade could experience greater response amplitudes

if the blade could draw on the energy that is being fed to the other blades of the assem-

bly. When interblade coupling is added to the system, this opens up a channel through

118



6.2. Coupling Effects on Forced Response Statistics

which blades can share energy. This idea prompted us to investigate the energy flow

in the assembly.

For the analysis we adopt the definition of power used by Signorelli and von Flotow

in [16]. The instantaneous power at a point at which a force is applied is

pi(t) = Re(Fi(t))Re(q̇i(t))

where Re(Fi(t)) is the real part of the applied force, and Re(q̇i(t)) is the real part
of the velocity of the point at which the force is applied. For harmonic motion, the

energy input is defined as the time average of the instantaneouspower over one period,

T = 2π/ω:
Ei = 1

T

∫ T
0
pi(t)dt.

The energy input from the resultant force of the two springs connected to blade i is

Esi =
1
T

∫ T
0
Re
[
R(qi+1(t)− 2qi(t)+ qi−1(t))

]
Re
[
q̇i(t)

]
dt

= −ωR
T

∫ T
0

[
(qi+1 − 2qi + qi−1)R cosωt − (qi+1 − 2qi + qi−1)I sinωt

]
[
qRi sinωt + qIi cosωt

]
dt

= ωR
2

[(
qi+1 − 2qi + qi−1

)I qRi − (qi+1 − 2qi + qi−1)R qIi]
where the superscript s denotes that this is the energy transmitted through the springs.

This clearly goes to zero as the coupling R goes to zero as expected. Furthermore,
as R becomes large the structure starts to behave as if it were tuned, and responds with

a constant interblade-phase-angle, σ . In this case, we may write qi = A , qi+1 = Aejσ
and qi−1 = Ae−jσ yielding Ei = 1

2ωR(sin(σ) + sin(−σ)) = 0, as expected, since the
wave is perfectly transmitted through the blade.

The forcing of blade i is f̄ e2πj(i−1)C/N ejωt , where C denotes the engine order of

the excitation. The energy input into the blade due to this forcing is

EFi =
ωf̄
2

[
qRi sin

2π(i − 1)C
N

− qIi cos
2π(i− 1)C

N

]
As a measure of the contribution of the energy input into blade i through the coupling
springs we define

E = E
F
i + Esi
EFi

.

Note that E is a normalized measure of energy input: the total energy given to blade

i through the coupling springs and the applied external force, scaled with the energy
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Figure 6.6 Statistics of the energy input at maximum resonance in a 12-blade as-
sembly with 3% mistuning.

input from the blade force alone. Therefore, when there is no spring-transmitted con-

tribution from the other blades in the system, E goes to unity.
Figure 6.6 depicts the statistics of E, calculated for the blade with the largest

amplitude, at resonance. The statistics were calculated by a Monte Carlo simulation,

as follows. For each realization of a mistuned system the frequency was swept until

the largest response of any blade at any frequency was observed. The value E was
calculated for the largest amplitude blade at the resonance frequency. This constituted

one sample from the distribution of E. The generation of the probability density
function followed the steps outlined in Section 6.2.1. The similarities of Fig. 6.6 and

Fig. 6.5 are apparent. As predicted, E → 1 in the limits of high and low coupling. In

between, we observe a sharp increase in E as the energy input of the force acting on
the blade is augmented by as much as 70% by contributions from the other blades in

the assembly. The curious occurrence of largest amplitude blades that lose energy

through the springs in the neighborhood of R = 0.001 and R = 1 is most likely a

numerical inaccuracy.

This proves that mistuning effects in blade assemblies undergoing engine order

excitation are not governed solely by mode localization. Instead, for large mistuning
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Figure 6.7 Single blade excitation vs. engine order three excitation illustrates the
transmission of energy. All amplitudes are scaled with the tuned en-
gine order response. Tuned, engine order excitation case features zero
energy transmission making it suitable as a datum ( ). The 99th
percentile response of the engine order excitation, ( ), demon-
strates amplitude magnification due to energy influx. In the case of
single blade excitation of a tuned system, ( ), the largest ampli-
tude is reduced due to energy flow to the unexcited blades. The 99th
percentile response of a mistuned response, ( ), illustrates how
localization prevents the flow of energy to other blades resulting in a
smaller amplitude reduction.

effects to occur two conditions must be met. The mistuning to coupling ratio must

be large enough that the assembly has localized modes. Additionally, coupling must

be sufficiently strong that the blade around which vibrations are being localized can

receive energy input from neighboring blades.

6.3. Single Blade Excitation
In order to further our understanding of the effect of energy flow through coupling,

we investigate the academic problem of a blade assembly where only one blade in

the assembly is excited. The force amplitude on that blade is the same as the force

amplitude that would be applied to it in the case of engine order excitation. Above,

we examined the effect of coupling on the response of tuned and mistuned systems
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to engine order excitation. In this section we compare this behavior with the response

of tuned and mistuned systems to single blade excitation.

In Section 6.2.3 we demonstrated how the net energy flow to a blade in a tuned

assembly undergoing engine order excitation is zero. This allows us to use this case

as a datum by which we scale the other cases.

Figure 6.7 depicts the increase or reduction in the largest amplitude compared

with the response of the tuned, engine order excitation case. In the mistuned cases

we only examine the 99th percentile values. We already explained why an increase in

the largest amplitude is observed in the mistuned, engine order excitation case. The

explanation of the reduction in amplitudes in the single blade excitation cases follows

bymuch the same reasoning. Even if only one blade in the assembly is being excited, all

blades partipate in the motion. Energy has leaked from the blade that is being excited

to the unexcited blades. Since a mistuned system features wave localization, energy

is confined to the excited blades and a smaller amount of energy leakage is observed

— the energy level of the excited blade remains higher than that of the excited blade

in the tuned case.

We observe the same behavior as before in the extreme coupling cases. In the limit

of vanishing coupling, it becomes immaterial whether one blade or all blades are being

excited. The two tuned cases merge, as do the two mistuned cases. At the opposite

end of the scale, we find that mistuning effects become negligible for strong coupling.

Amplitudes in the single blade excitation case become greater than in the engine order

excitation case, but this is not a mistuning effect. As before, we see the coupling must

be sufficiently small for great mistuning effects to take place and strong enough for

energy to be able to propagate.

Note that although the single blade excitation cases show a reduction in largest

amplitude compared with the engine order excitation cases, it should also be observed

that mistuning effects increase the largest amplitudes in the single blade excitation

case. At the coupling value R � 0.03 the 99th percentile response is approximately
twice that of the tuned system

122



6.4. Effects of Mistuning and Damping Strength

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.001 0.005 0.01 0.05 0.1 0.5

M
ag
n
ifi
ca
ti
o
n
,A

Standard Deviation of Mistuning, s

1%

50%

99%

Figure 6.8 Statistics of the maximum resonance amplitude magnification in a 12-
blade assembly as a function of the standard deviation of uniform
blade mistuning, s. The plot shows the 1%, 50% and 99% percentiles
of the statistics. Interblade coupling is R = 0.0316 and excitation is
engine order 3.

6.4. Effects of Mistuning and Damping Strength

The observation above can be generalized somewhat to explain the effect of variations

in damping and mistuning strength on the largest response amplitude. In Fig. 6.8 the

magnification of maximum forced response amplitude is plotted as a function of mis-

tuning strength. The plot is obtained at R = 0.0316 corresponding to the maximum
amplification of largest amplitude and therefore to the most pronounced sharing of

energy. For weakly mistuned systems the amplitude increase is small since the system

modes are only weakly localized. As the standard deviation of mistuning is increased,

the 99th percentile magnification increases up to a maximum of 50% at approximately

5% mistuning, after which it goes down, reaching a minimum at approximately 10%

mistuning. The explanation is that excessive mistuning will prevent the augmentation

of vibration energy in the localized blade for much the same reason that it causes local-

ization in the first place — by preventing the propagation of energy-carrying waves to

the localized blade from the other blades. This latter effect was observed in reference

[46, 4] without a satisfactory explanation of the phenomenon. This interesting result
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Figure 6.9 Statistics of the maximum resonance amplitude magnification in a 12-
blade assembly as a function of the viscous damping factor, ζ. The plot
shows the 1%, 50% and 99% percentiles of the statistics. Interblade
coupling is R = 0.0316, mistuning has a 3% standard deviation, and
excitation is engine order 3.

indicates that the best way to prevent rogue blades may be, in some cases, to increase

mistuning!

As mistuning standard deviation is further increased beyond approximately 10%

, the effect of mistuning starts to increase again. This should come as no surprise

because of how mistuning was defined, namely as kb(1 + δi). Clearly, large negative
values of δ will give lead to soft blades that will dominate the motion. Indeed, a
standard deviation greater than 1/

√
3 � 57.75% will give blades with negative stiffness,

which is of course unrealistic.

Damping induces spatial amplitude decay, similar to localization in its effects,

but not its causes. Therefore, effects similar to those described in for the variation of

mistuning might be expected. Figure 6.9 depicts the change in the statistics of largest

amplitude magnification as the strength of viscous damping is varied. If damping is

very strong, wave localization due to mistuning is reduced and mistuning effects are

weak. As damping is reduced, localization in the normal modes is increased. At the

same time the reduction in damping is enabling the propagation of energy so that
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6.4. Effects of Mistuning and Damping Strength

the localized blade may draw energy from the other blades in the assembly thereby

increasing its own vibration energy. At ζ � 0.5%, the 99th percentile of the magnifi-
cation reaches a maximum, and decreases for lower values of damping. Earlier work

[60] has shown that for low values of damping, localization of propagatin waves in-

creases for a given value of coupling, thereby decreasing blade to blade interaction.

It is likely that this may inhibit wave propagation in the structure, counteracting the

ease of energy propagation due to low damping.

For very weak damping we observe a large dispersion in the magnification statis-

tics. In particular, the high probability (approximately 25%) of findingmistuned assem-

blies with maximum amplitude smaller than the tuned assembly is puzzling. As we

observed for the uncoupled assembly, this should be a rare occurrence in a 12-blade

assembly. A plausable explanation is that in the low damping case, some mistuned

systems may have a higher rate of energy dispersion resulting in less total vibration

energy. We do not have a satisfactory explanation, but we must point out that great

numerical difficulty is involved in finding the absolute peak response when damping

is very low because the frequency response features well separated sharp resonance

peaks. Clearly the extreme statistics of dependent random variables are a complicated

affair that would necessitate further analytical development.
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CHAPTER VII

CASE STUDIES IN ROTORDYNAMICS: PART 1

In this chapter we apply the first modeling approach, the coupled-oscillator models,

presented in Chapter III to some example systems. The goal is to investigate how

easily the methods can be implemented and to get some ideas about the quality of

the results obtained using the models generated by the methods. We also hope to

draw some conclusions about which factors in the dynamical behavior should be the

primary focus when generating coupled-oscillator models.

We direct our attention to two compressor rotor prototypes whose computational

date we were given access to. The first case, is a blisk with 72 short blades. The

second case study is a that of a 36-blade compressor stage. These two prototypes will

be approached by identifying parameters in simple coupled oscillator models.

7.1. Case 1: A 72-Blade Blisk — Coupled Oscillator Method

A detailed finite element analysis of the modes of free vibration of the blisk has been

performed in advance, and the model identification described herein is based upon

these finite element natural frequency results. The finite element data is illustrated in

Fig. 7.1.

Each nodal diameter mode in Fig. 7.1, besides its interblade phase angle, is charac-

terized by a deflection shape local to a bay, or a blade/disk sector. Depending on

the relative magnitudes of the blade and disk deflection, and on the deflection shapes

for the blade and the disk, modes can be classified as being blade-dominated or disk-

dominated, but also in terms of the blade mode number and disk mode number which

governs the deflection shape of the sector. This classification has been performed from

the finite elementmode-shapes, and branches of disk-dominated and blade-dominated

modes are depicted in Fig. 7.1. The dynamic range considered is such that the dynamic

response of the blisk takes place in the first two groups of blade modes. These two

blade mode groups are characterized by two branches with horizontal asymptotes in

Fig. 7.1. The lower mode group, blade bending dominated motion, will be of interest
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Figure 7.1 Dimensionless natural frequencies as a function of the number of
nodal diameters as calculated via finite element analysis. Curve veering
phenomena are evidenced. The modes for modal diameters 19-36 are
not shown so as to provide more detail at the lower nodal diameters.

to us here. As may be seen by the high modal density of these modes, there is very

little participation of the disk motion, except in the veering regions. We shall refer

to these assembly modes as blade-bending and blade-torsion modes. Figure 7.1 also

contains two families of natural frequencies that correspond to mode shapes where

the disk motions dominate, with very little participation of the blade. These will be

referred to as disk-modes. Note that the disk-mode frequency branches rise quite

rapidly as the number of nodal diameters increases, a phenomenon due to the swift

stiffening of the disk as the circumferential wave length decreases. The disk-mode

frequency branches thus encounter the slowly-varying blade-mode branches, causing

the occurrence of the phenomenon of curve veering and thus important disk-mode

and blade-mode interactions in the veering regions.

Previous studies (Chapter V and reference [61]) have revealed that blade assem-

blies with weak interblade coupling are particularly susceptible to high sensitivity to

mistuning. This high sensitivity may cause the localization of the mode shapes and a

sharp increase in forced response amplitudes. High modal density, such as the one ev-
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7.1. Case 1: A 72-Blade Blisk — Coupled Oscillator Method

idenced by the families of blade bending and blade torsion modes in Fig. 7.1, is a clear

indicator of weak interblade coupling. (For example, in the limit of zero interblade

coupling the modal density of the tuned assembly becomes infinite.) This means that

the blades of the blisk are weakly coupled in their first bending and first torsion mode

motions, and thus that the compressor stage is likely to be highly sensitive to random

blade mistuning. However, in Chapter VI it was evidenced that mistuning sensitivity

does not increase indefinitely as coupling is decreased and that assemblies with ex-

tremely weak coupling may have reduced sensitivity to mistuning. Thus quantifying

mistuning effects on the blade bending and blade torsion modes will be of special in-

terest due to the extreme levels of modal density featured in these mode-groups for

large numbers of nodal diameters.

Using three of the simple models presented in Chapter III we will be able to model

two or three curves at a time using the two- and three-DOF models respectively. In two

of the models the blades possess only one degree of freedom and those models only

allow the study of one of the horizontal branches at a time, forcing us to treat the blade

bending and blade torsion separately. The third model has two degrees of freedom in

the blade allowing us to model two blade modes at once. However, whether or not the

blade torsion modes are modeled, only the blade bending modes will be examined.

7.1.1. Identification of Model Parameters

In this section we consider the frequency range corresponding to the first group of

blade modes. For this mode cluster each blade vibrates in its first bending mode and

there is very little participation of the disk. The natural frequencies corresponding to

the various nodal diameter mode shapes are spread from ω̄ � 0.972 for zero nodal
diameters to ω̄ � 1 for 36 nodal diameters, with two single natural frequencies at
nodal diameters 0 and 36 and double natural frequencies for all nodal diameters from

1 to 35. This narrow frequency range indicates a high modal density for the first mode

group, especially for the higher nodal diameters (N ≥ 20). This high modal density
means that the blades are weakly coupled in their first bendingmodemotion, and thus

that the compressor stage is likely to be highly sensitive to mode shape localization

due to random blade mistuning.

The zero nodal circle disk-modes are born at ω̄ � 0.336 for zero nodal diameter
and undergo subsequently an extremely rapid frequency increase as the number of

nodal diameters increases (for N = 9 the frequency of the zero nodal circle disk-mode
is ω̄ � 4.5). This disk-mode frequency branch therefore encounters the first bending
blade-mode branch near the second nodal diameter frequency, causing the occurrence

of the phenomenon of curve veering and thus important disk-mode and blade-mode
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7.1. Case 1: A 72-Blade Blisk — Coupled Oscillator Method

interactions near the veering region. In the veering region the modes of both branches

feature significant contributions of the disk as well as of the blade motion.

The study of mistuning effects and localization for the blade bending modes will

be carried out for four reduced-order systems, two of which are based on the two-

DOF per sector mono-coupled model in Fig 3.4, one is of the three-DOF per sector

mono-coupled variety depicted in Fig. 3.6 and one is a three-DOF per sector bi-coupled

model as shown in Fig. 3.11. The parameter sets for each model type will be selected,

through the parameter identification process outlined in Section 3.1.4, so as to capture

the features of the FEM system in various ways.

Identification of Two-DOF per Bay Model Parameters

The first models identified are based on the two-DOF per sector model which is de-

picted schematically in Fig. 3.4. The model has three dimensionless parameters which

are identified by requiring some of its natural frequencies to match the finite element

frequencies. Three such constraints are needed here, and they are typically taken

at low nodal diameters since the first curve approaches ω̄ = 1 approximately, in an
asymptotic manner.

Recall that one of the major limitations of the mono-coupled systems is that their

frequency spectrum consists of branches, or passbands such that all frequencies in the

2nd branches are higher than the highest frequency in the 1st branch, the 2 branches

being separated by ω̄ = 1. It is therefore impossible to enforce the zero nodal diameter
natural frequency of the second branch, ω̄ � 0.971.
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Figure 7.2 The dimensionless natural frequencies of system 1Ba (line) globally

approximate the finite element data (points)

Model 1Ba: Global Similarity

For the first identification we would like to chose points on the first and second

branches such that the global shape of the branches is reproduced by the reduced-

order model. Constraining the curves with the zero- and two-nodal diameter frequen-

cies of the first curve and the three-nodal diameter frequencies of the second curve

yields

m̄ = 43.3924 k̄d = 5.01330 k̄c = 1161.89 (7.1)

The frequency curves for the reduced-order model corresponding to these parame-

ters are depicted in Fig. 7.2. The model approximates reasonably well the tuned blisk

dynamics in the first two mode groups. In particular, note that the veering away of

the disk-mode and the blade-mode branches is captured by the simple model, and

that the agreement is excellent for the higher nodal diameters. It is also important

to note that mode shapes are exchanged through the veering region: the lower fre-

quency branch features disk-dominated modes for N = 0 and 1, which become blade-
dominated modes for N ≥ 3; the converse is true for the higher frequency branch.
At N = 2 the veering and mode switching occur, hence both system modes features

important disk and blade contributions.

A detailed view of the veering region is shown in Fig. 7.2(b). In the figure we

see the weaknesses of this model. First, there is considerable overshoot of the lower

frequency curve at the veering, leading to a grossly exaggerated level of modal density

in the simple model at nodal diameters four and higher. Second, the inability of the

two-DOF per bay model to reproduce the overlapping mode groups means that the
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Figure 7.3 The dimensionless natural frequencies of system 1Bb (line) approxi-

mate the flatness of the first curve of the finite element data (points)

lower three frequencies of the second branch cannot be captured accurately, because

their finite elements values are smaller than the blade-alone frequency, ω̄ = 1. This
discrepancy for nodal diameters 1–3 is significant relative to the frequency spread in

the blade-bending mode group.

Model 1Bb: Improved Flatness of First Branch

In this identification round we attempt to remedy the high overshot of the first fre-

quency branch in model 1Ba. This is accomplished by ignoring the fit of the second

branch completely, placing instead full emphasis on the fit of the first frequency curve

in the veering range. The result is depicted in Fig. 7.3. We chose the zero-, two- and

four-nodal diameter frequencies on the first branch as the constraints and found

m̄ = 2.49369 k̄d = 0.407713 k̄c = 206.483 (7.2)

Examining Fig. 7.3(b), we see that the fit of the first curve is greatly improved although

it is not without some overshot. Placement of the zero nodal diameter frequency of

the second branch suffers compared to model 1Ba. In fact, the zero-, one-, and two-

nodal diameter frequencies of the blade bending mode groups are all poorly modeled,

indicating that dynamic response predicted in those modes may not be valid. Further

improvement was not possible.
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Figure 7.4 The dimensionless natural frequencies of system 1Bc, ( ), approx-
imate globally and locally the finite element data, ( ), for the first
family of disk modes and for the first two families of blade modes.
Detailed plots of the veerings are shown on the right.

Identification of a Model with Two-DOF per Blade

One identification of the parameters for the 72-blade blisk was performed using the

two-blade-DOF-per-sector model in Fig. 3.6. By selecting as constraints the 0, 4 and

18 nodal diameter modes on the first curve, the 18 nodal diameter modes on the

second curve, and the 0 and 4 nodal-diameter modes on the third curve, the following

parameter values were obtained:

k̄c = 324.292 k̄d = 1.32788 m̄ = 21.9461
µ = .685764 κ = 1.01804

(7.3)

The resulting fit of the natural frequencies of the rotor is illustrated in Fig. 7.4. Con-

sidering that the second curve is incapable of having a lower value than the highest

value on the first curve (see the discussion in Chapter 7.1), the fit must be considered

excellent both in a global and a local sense.

Note that to simplify comparison with the other models, which feature the first

blade mode at ω̄ � 1, we will introduce a frequency scaling factor of 1.423.
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Figure 7.5 The natural frequencies of system 1Bd (line) approximate the flatness

of the first curve of the finite element data (points)

Parameter Identification for Three-DOF per Bay, Bi-Coupled Model

Now turning our attention to the more versatile three-DOF per bay system depicted

in Fig. 3.11 we follow a methodology similar to the mono-coupled model identifica-

tions, albeit encountering much greater difficulty in the identification of the model

parameters. Recall that the bi-coupled model features nine independent, dimension-

less parameters. These are identified by requiring nine of the natural frequencies of

the model to match their finite element counterparts.

In an attempt to model more closely the modal density of the first branch and thus

to capture mistuning effects accurately, we relax the global constraints and perform

a parameter identification based on the zero- to eight-nodal diameter modes for the

first branch only, ignoring all other branches. This yields

m̄1 = 58.4311
m̄2 = 78.2008
m̄3 = −63.4161

k̄d1 = −17.8281
k̄d2 = 4074.68
k̄d3 = 50.0048

k̄c1 = 1760.89
k̄c2 = 2397.06
k̄c3 = −2020.31

(7.4)

The frequency curves of the system are depicted in Fig. 7.5. Note the much improved

shape of the first frequency branch. Overshot is very moderate and modal density is

accurately captured. An interesting feature is the reasonable placement of the second

and third curves (especially the second curve for small numbers of nodal diameters)

in the absence of any constraints.
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Remarks

We have selected four simple models that we feel are representative of the blisk vibrat-

ing, near it first bending blade frequency, given different criteria and the limitations of

the models used. The great difference in the various sets of parameters identified is

striking, showing no clear pattern. The bi-coupled, three-DOF per bay system features

negative m̄3 and k̄c3. Since these terms correspond to off-diagonal mass and stiffness
matrix elements, this is not unexpected. The negative or negligible value of k̄b1 is more
surprising, although this may be caused by the blisk’s lack of a center hub.

At this point it is not clear that these quite different systems will feature dynamics

that are remotely similar, even in the tuned case.
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Figure 7.6 Fanning out and veering of the dimensionless natural frequencies as

mistuning strength is increased. This was calculated for one realiza-
tion of system 1Be with uniform random mistuning. The white region
indicates the range of the uniformly mistuned cantilevered blade nat-
ural frequencies. The quantity s denotes the standard deviations of
stiffness mistuning.

7.1.2. Mistuned System Analysis

Natural frequencies of mistuned systems

We first examine the effect of mistuning on the assembly natural frequencies, as de-

picted in Fig. 7.6. In the tuned assembly all natural frequencies except those for N = 0
andN = 36 are double. When the blisk is mistuned, all double natural frequencies split
to yield 72 single natural frequencies for each DOF in the bay. The plot was generated

using the three-DOF per bay system 1Bd, for one realization of machine-generated

uniformly distributed random mistuning. A fanning out and veering away of the nat-

ural frequencies close to the blade-alone first bending frequency is observed. Also,

Eq. (C.1) in Appendix C yields the spread due to mistuning of the blade-alone natural

frequencies, which is illustrated as a white region in Fig. 7.6. For example, for the

stiffness-mistuning standard deviation s = 0.08, the mistuned blade-alone frequen-
cies, ω̄b

i , belong to the interval [
√
1− 0.08√3,

√
1+ 0.08√3] ≡ [0.928,1.067]. Observe

in Fig. 7.6 that the natural frequencies of the mistuned assembly, in the vicinity of

the blade bending dominated modes, fall within this window of blade cantilevered fre-

quencies, which is a clear indicator of the very weak interblade coupling. This, as much

as the high modal density observed in Fig. 7.5, suggests a high sensitivity to random

mistuning.
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Figure 7.7 (a) Distribution of dimensionless natural frequencies in the tuned sys-

tem 1Ba (top) compared to the natural frequencies of a singlemistuned
system (bottom).
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Figure 7.7 (b) Localization of waves in System 1Ba. Shown is the exponential

attenuation rate in the tuned system’s stopband ( ) along with
Monte Carlo simulations of the localization factor ( ) and its ap-
proximations by Classical Perturbation ( ) and Modified Perturba-
tion ( ) (s = 7.25%)
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Figure 7.7 (c) Localization factor for the modes of system 1Ba, obtained from

Monte Carlo simulations using the natural frequencies of a mistuned
systemwith a givenmistuningpattern ( ) and the natural frequen-
cies of a tuned system ( ).
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Figure 7.7 (d) Kinetic energy ratio, T̄ , (Eq. (3.39)) for the modes of the tuned sys-

tem of type 1Ba.
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Figure 7.8 (a) Distribution of dimensionless natural frequencies in the tuned sys-

tem 1Bb (top) compared to the natural frequencies of a singlemistuned
system (bottom).
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Figure 7.8 (b) Localization of waves in System 1Bb. Shown is the exponential

attenuation rate in the tuned system’s stopband ( ) along with
Monte Carlo simulations of the localization factor ( ) and its ap-
proximations by Classical Perturbation ( ) and Modified Perturba-
tion ( ) (s = 7.25%)
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Figure 7.8 (c) Localization factor for the modes of system 1Bb, obtained from

Monte Carlo simulations using the natural frequencies of a mistuned
systemwith a givenmistuningpattern ( ) and the natural frequen-
cies of a tuned system ( ).
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Figure 7.8 (d) Kinetic energy ratio, T̄ , (Eq. (3.39)) for the modes of the tuned sys-

tem of type 1Bb.
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Figure 7.9 Comparison of the Monte Carlo simulations of the localization factor

for the three two-DOF per bay systems 1Ba ( ) and 1Bb ( ),
for uniform mistuning of standard deviation s = 7.25%.

The illusion that the mistuned system has a larger number of modes is due to the

splitting of frequencies that are double for the tuned system, as well as to the fact that

the tuned system features a large number of frequencies concentrated at the right edge

of the cluster. This spreading of the natural frequencies is also presented for systems

1Ba and 1Bb in Figs. 7.7(a) and 7.8(a), respectively.

Localization factors

Next, we examine the localization of traveling waves in the two-DOF per bay systems

identified above, when uniform blade stiffness mistuning with 7.25% standard devia-

tion is present. This type of analysis is currently not available for the three-DOF per

bay systems. Localization is quantified in terms of the localization factor, γ, the rate

of exponential spatial decay of waves incident to an infinite assembly. The results

are depicted in Figs. 7.7(b) and 7.8(b) in terms of frequency. For clarification, each

figure also shows the exponential decay rate in a tuned system ( ). This brings

out the passband (γ = 0) and stopband (γ > 0) structure of the tuned system. When
the system is mistuned, the system passbands vanish and γ is always nonzero. Hence,

waves of all frequencies are attenuated in mistuned assemblies. For each mistuned

system three curves are presented: A Monte Carlo simulation of the wave propaga-

tion ( ) is compared with perturbation results based on a Classical Perturbation

approach ( ) and a Modified Perturbation approach ( ) (see 5.2).

Figures 7.7(b) and 7.8(b) show the localization factor in systems 1Ba and 1Bb,

respectively. In Fig. 7.7(b) we see that Monte Carlo simulations predict the localization

factor in 1Ba to be largest and relatively constant in the frequency range 0.93 to 1.06.
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This frequency range corresponds with the range of mistuned blade-alone frequencies

at standard deviation of blade stiffness mistuning equal to s = 7.25% in Fig. 7.6. The
conclusion is that localization is strongest in the blade-dominated modes and occurs

in the frequency range populated by the modes of mistuned systems. This result is

repeated in Fig. 7.8(b), although the effect is not as clear due to the stopbands featured

by system 1Bb in its tuned state.

A few words about the stopbands in Figs. 7.7(b) and 7.8(b) are in order. Recall

that due to the mixing of the mode groups of the finite element model, there should

be no stopband near the blade-alone frequency. Model 1Ba models this most closely

with only a very narrow stopband that goes undetected in the Monte Carlo simulation.

Model 1Bb has a wide stopband between approximately ω̄ = 1 and ω̄ = 1.2. The

existence of this spurious stopband is obviously affecting the localization factor cal-

culated for system 1Bb above ω̄ � 1.07. Hence we feel that it is system 1Ba which best

captures the qualitative behavior of the localization factor as a function of frequency.

Figure 7.9 presents a comparison of the localization factor for themodels 1Ba and

1Bb in the frequency range of interest. Note the high sensitivity of γ to the quality of
the frequency fit achieved by the two models. In Fig. 7.9 system 1Ba has much lower

values of the localization factor than that predicted by system 1Bb. The higher values

predicted by system 1Bb are most likely due to corruption by the proximity to the

spurious passband.

Figures 7.7(b) and 7.8(b) also feature the Classical Perturbation and Modified Per-

turbation results. For both systems the Modified Perturbation approach provides a

poor approximation of the localization factor throughout the frequency range. Since

the Modified Perturbation is accurate in the limit of strong sensitivity (weak coupling),

a possible conclusion is that that sensitivity is only moderate. The Classical Perturba-

tion approach has been found to yield an accurate approximation of the localization

factor in the limit of weak to moderate sensitivity. However, the Classical Perturbation

method experiences numerical difficulties at frequencies corresponding to the bound-

ing frequencies between the passbands and stopbands of the tuned system. This is

clearly the case in systems 1Ba and 1Bb. In systems 1Ba and 1Bb classical approxima-

tion of the localization factor is accurate throughout the passbands. Alas, the natural

frequencies are not dispersed evenly in the passband, and only a small part of the

passbands is included in Figs. 7.7(b) and 7.8(b). Hence only the disk modes popu-

lating the lower regions of the passbands in systems 1Ba and 1Bb are approximated

satisfactorily by the Classical Perturbation approach.

Figures 7.7(c) and 7.8(c), and Figs. 7.7(d) and 7.8(d), provide additional insight into

the localization phenomenon in the reduced-order models. Figures (c) present the lo-
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calization factor for the various system modes. This way of presenting localization

factor is meaningful due to the non-uniform spacing of the natural frequencies inside

the mode groups. This representation may be accomplished calculating the localiza-

tion factor at the natural frequencies of either a mistuned or a tuned system. The two

methods are compared in the figures. The former method, although more accurate, is

somewhat more costly since the natural frequencies of a mistuned systemmust be cal-

culated first, which defeats the purpose of using γ as a predictor of mode localization.
The comparison illustrates that using the tuned mode frequencies to predict localiza-

tion is a valid approximation. Figures 7.7(c) and 7.8(c) also demonstrate how the first

few modes of models 1Ba and 1Bb are disk-modes that do not experience localization.

In Figs. 7.7(d) and 7.8(d) the kinetic energy ratio of the modes of the tuned systems are

studied. A comparison with Figs. 7.7(c) and 7.8(c) shows, with striking agreement, that

only the blade-dominated modes (those with high kinetic energy ratio) are localized.

This result is understandable. Because mistuning is only in the blades, it has a much

smaller effect when the participation of the blade is small.

7.1.3. Localized modes

The analysis of localization factors is not complete without their validation by the

mode shapes of mistuned systems. In this section we shall only consider the group of

first bending blade modes and the neighboring disk modes.

As was shown in Chapter II, all modes of the tuned blisk are “extended” modes

which feature a sinusoidal amplitude variation with the blade number and a number

of nodal diameters varying from zero to 36. These modes are called extended because

the entire tuned assembly participates in the motion. The two standing mode shapes

associated with each double frequency can be combined to form two counter-rotating

traveling waves of uniformmaximum amplitudes throughout the rotor, indicating that

the energy of the tuned blisk is equally shared by all blades.

When the blisk is mistuned the mode shapes may or may not experience large

deviations from the nodal diameter modes of the tuned system, depending on the sen-

sitivity to mistuning and the type of blade or disk mode considered. If large deviations

occur, then the mode shapes become localized to a few of the blades, such that only

these few blades experience significant amplitudemotion. The spatial amplitude decay

that characterizes a localized mode is, on the average or asymptotically, exponential,

and the corresponding rate of decay is the localization factor, γ. This is verified below.
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Figure 7.10 Disk deflection pattern and blade deflection pattern for mode 23 of
mistuned system1Ba. The disorder pattern is uniformly random such
that s = 7.25%. The absolute value of the displacements are plotted
alongside exponential functions with decay rate equal to the localiza-
tion factor calculated by Monte Carlo simulation at the frequency of
the mistuned mode considered, γ = 0.0251.

Localization of disk and blade amplitude patterns

In Figs. 7.10 and 7.11 we study the localization of selected mistuned modes of the

mistuned systems 1Ba and 1Bb. Both systems feature the same pattern from a uniform

random mistuning of standard deviation 7.25%. Some interesting conclusions can be
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Figure 7.11 Disk deflection pattern and blade deflection pattern for mode 72 of
mistuned system 1Bb. The disorder pattern is uniformly random
such that s = 7.25%. The absolute value of the displacements are
plotted alongside exponential functions with decay rate equal to the
localization factor calculated by Monte Carlo simulation at the fre-
quency of the mistuned mode considered, γ = 0.297.

drawn from Figs. 7.10 and 7.11. First, the high sensitivity of the mode shapes to

small mistuning is observed, along with the corresponding high levels of localization.

Second, the degree of localization is consistently observed to be significantly larger

for the blade coordinate amplitude pattern than for the disk coordinate amplitude
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pattern. Third, the values of the localization factor for the various systems appear

to predict reliably the localization present in the disk coordinate patterns featured by

typical modes, as demonstrated in Figs. 7.10(a) and 7.11(a). However, the decay of the

blade coordinate pattern, which is of much greater practical interest to us, appears

to be relatively poorly predicted by the localization factor in Figs. 7.10(b) and 7.11(b).

Namely, local resonances of blades lead to spatial attenuation rates away from the

maximum blade amplitude that are much higher than γ would indicate. The following
reasoning justifies why this may be so.

First, it is important to recall that the localization factor characterizes the spatial

amplitude decay of the physical coordinates through which energy is being transmit-

ted along the structure, i.e., the coupling coordinates. For the system in Fig. 3.4 the

coupling coordinates are the disk DOF, qid, thereby confirming the validity of the ex-
ponential fits to the disk DOF deflection patterns, shown in Figs. 7.10(a), and 7.11(a).

Second, we explain the fact that the blade DOF’s feature a different spatial decay from

that of the disk DOF’s. According to Eq. (3.26) the relationship between the ith disk

and blade coordinates may be written as

qid =
(
1− ω̄2

1+ δi

)
qib, i = 1, . . . , N. (7.5)

For the blade-dominated modes of the 72-blade blisk considered here, the assembly’s

natural frequencies are very close to the natural frequency of a cantilevered blade (the

scaling frequency), i.e.,

ω̄2 = 1+ ε (7.6)

where ε is small. An expansion of Eq. (7.5) to the first order in ε and δi yields

qib =
qid

δi − ε
(7.7)

where (δi − ε) is small, possibly approaching zero if δi � ε. This tells us that the ith
blade amplitude is not solely determined by the ith disk DOF amplitude, but rather by

the ratio of the disk DOF amplitude to the difference between the ith blade-alone nat-

ural frequency and the natural frequency of the mistuned mode considered. Namely,

if the ith blade frequency mistuning is close to ε, the ith blade amplitude becomes
much larger than the disk amplitude, and in the limit δi → ε, the blade amplitude be-
comes infinite, i.e., resonance occurs. This shows that while the disk deflection spatial

pattern is governed by the occurrence of mode localization, the blade amplitude pat-

tern is determined not only by localization effects, but also by purely local resonances

which occur when a blade natural frequency happens to be close to the frequency of

the mistuned mode considered. Note that if the disk is stiff and interblade coupling is
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weak (which is the case here) the blade-dominatedmistunedmodes tend to occur each

at a natural frequency that nearly matches one of the mistuned blade-alone natural

frequencies (this can be seen in Fig. 7.6) and each mode is localized about the blade in

question.

The localized blade is then the one that undergoes a particularly significant local res-

onance, therefore resulting in a much larger amplitude locally and in increased “local-

ization” for the blade amplitude patterns. The occurrence of local blade resonances

superimposed to localization are clearly observed in Figs 7.10 and 7.11, by compar-

ing the plots labeled (b) to those labeled (a). Further, note that, as surmised above,

local blade resonances are only observed in the region where localization is strong

(Fig. 7.11(b)) but do arise for various blades in the rotor when localization is relatively

weak (Fig. 7.10(b)). The bottom line is that the “localization” for the blade DOF’s is

significantly greater than that for the disk DOF’s and is under-predicted by the local-

ization factor. At this point it is not clear how to characterize the spatial decay for

the blade amplitudes (note that this decay is probably not even exponential). How-

ever, it is quite important to be aware of and quantify this new “super-localization”

phenomenon, as it results in an actual risk for rogue blades that is much greater than

would be predicted by the (disk DOF) localization factor.
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Figure 7.12 Blade displacements for selected modes of mistuned systems 1Ba

( ), 1Bb ( ) (s = 7.25%).
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Localized modes of various models

Figures 7.12 compares some mistuned modes in the two two-DOF models. Agreement

is generally very good, in particular the two models agree well on the location of the

localization. As predicted by the localization factor, the localization in model 1Bb is

somewhat stronger than that observed in model 1Ba.

The comparison of a mono-coupled model (1Bb) and a bi-coupled model (1Bd) is

somewhat richer in flavor. Although we are unable to calculate a localization factor

for the three-DOF per bay model, a comparison of the mistunedmodes can yield some

information about the localization effects. The comparison of the mode shapes of the

two systems is depicted in Figs. 7.13 and 7.14. In all cases modes are show in terms

of blade displacement. The comparison was based on selecting the modes of the

two systems whose natural frequencies were closest. The mode shapes are of course

eigenvectors defined up to a multiplicative constant, and hence blade deflection values

can only be compared within each mode. Figure 7.13 depicts the onset of localization

as the modes change from disk-motion dominated modes to blade-motion dominated

modes (see Fig. 7.8(d)). Figure 7.13(a) depicts the second mode. Localization is negligi-

ble and the mode is a clean one-nodal diameter mode. Mode 6 in Fig. 7.13(b) has clearly

become localized, although 6 nodes (or 3 nodal diameters) may still be identified. The

results in Fig. 7.13 tell us that the disk-dominatedmodes, which occur before the veer-

ing of the frequency curves, are very little affected by mistuning. Note that mode 6

is more localized for the bi-coupled model. We believe this is due to the different

approximations of the veering for the two models: namely, the overshot of the first

frequency curve in model 1Bb leads to an over-prediction of the modal density and a

localization factor for that is too low. Figure 7.13(c) illustrates how second passband

modes may exist among the first passband modes in the three-DOF model. Recall how

overlapping passbands were toted as one of the desirable features of the three-DOF

model. Between modes 11 and 18 of the three-DOF system we verify the existence

of the first mode in the second passband. The exact number of this mode was not

obtained since was sufficiently localized to be indistinguishable from the modes 12-

17. This insertion of second passband modes within the first passband modes does

not occur in the two-DOF model, resulting in a mismatch of the mode numbers in

Fig. 7.13(c). In addition, a pair of second passband modes exists between modes 18

and 23 in the three-DOF system, hence the discrepancy of three for the mode numbers

of the two systems that is held constant all the way up to the mode pairs 52 and 55

(Fig. 7.14(a)). Figures 7.14(a) and 7.14(b) show continued excellent agreement between

the twomodels as well as high levels of localization for these blade-bending dominated

modes. In Fig. 7.14(b) we observe the insertion of two more second passband modes
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(c) Mode 17 of 1Bb ( ) vs. mode 18 of 1Bd ( ).
Figure 7.13 Modes 2 and 6 depict the onset of localization as themode shapes are

transformed from being disk-deflection dominated to blade-bending
dominated. The mode pair 17-18 illustrates how a second passband
mode exist amongst the first passband modes of the three-DOF sys-
tem only, The plots show the blade amplitudes versus blade number.
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(b) Mode 71 of 1Bb ( ) vs. mode 76 of 1Bd ( ).
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(c) Mode 78 of 1Bb ( ) vs. mode 78 of 1Bd ( ).

Figure 7.14 The mode pairs 52-55 and 71-76 illustrate how second passband
modes exist amongst the first passband modes of the three-DOF sys-
tem only. The exact location of these modes is difficult to obtain.
Mode 78 is the first mode in 1Bd after the blade modes. It is iden-
tical to mode 78 for 1Bb but the corresponding natural frequencies
are quite different The plots show the absolute value of the blade
amplitude versus blade number.
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of the three-DOF system within the first passband modes.

Figure 7.14(c) shows the sudden disappearance of localization as we move into

the second passband. In the figure, we observe that mode six of the second passband

(mode 78) is a disk-dominatedmode. The difference in themode numbers between the

two- and three-DOF per bay systems has vanished and the two modes agree perfectly.

Due to an incorrect fit at this frequency in the two models, the corresponding natural

frequencies do not match well.

Comments

Disk-dominated modes are little affected by mistuning.

Blade-dominated modes undergo drastic changes when mistuning is introduced,

to become localized to a few blades. Localization is severe for higher numbers of

nodal diameters.

The localization factor is calculated with respect to the coupling coordinates (the

disk-DOF’s) and does not account for local blade resonances. Therefore, the lo-

calization factor may underestimate the “super-localization” experienced by the

blade displacement pattern.

In general, there is good agreement between the modes of the three-DOF and two-

DOF per sector models. The main discrepancies occur in the curve veering region

and in the low-nodal diameter disk-modes. It is believed that the three-DOF per

bay model provides a better approximation of the system dynamics.
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7.1.4. Tuned and Mistuned Forced Responses

In the forced response case each blade DOF is excited by a harmonic force. In models

with one blade-DOF, the dimensionless force amplitude, F̄ = F/kb, is taken to be unity
(this is not restrictive since the structural system is linear). This is not possible in

the two-blade DOF models because the model features two blade forces. In this case

we calibrate the two blade forces in such a way that the tuned forced response will

agree with that of the one-blade DOF models. The excitation is of engine order 22.

In addition, viscous and structural damapings are included in the model, as follows:

structural, hysteretic damping of value 0.1% in the disk and blades (rendering the

stiffnesses kd, kd1, kd2, kd3, and kb complex), and viscous damping in the blade DOF

in order to simulate aerodynamic damping. For most cases considered, and unless

otherwise stated, the viscous damping value is ζ = 1%. Again, the two-DOF model
features two damping values that must be calibrated to yeild results similar to that

of the one-blade DOF models. All models — the two two-DOF, the one two-blade-DOF

model and the bi-coupled, three-DOF per bay models — are analyzed.

In the discussion below we shall attempt to adhere to the following terminology.

We will make a distinction between the terms peak or resonance amplitude on the one

hand and largest amplitude on the other. A peak, or a resonance amplitude denotes

an extreme amplitude of a blade, with respect to the excitation frequency, whereas

a largest amplitude denotes, at some given excitation frequency, the largest blade

amplitude throughout the rotor assembly. Futhermore, we will refer to themaximum

amplitude which we define as the largest peak amplitude, namely the largest amplitude

in any blade, at any frequency.
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Figure 7.15 Frequency response of tuned assemblies of types 1Ba ( ), 1Bb
( ) and 1Bd ( ) for engine order 22 excitation.

Tuned Assembly Response

Let us first compare the frequency response of the systems that feature one blade

degree of freedom, systems 1Ba, 1Bb and 1Bd, in their tuned state. We select blade

viscous damping ζ = 1% and a unit forcing of the blade degree of freedom. Figure 7.15
displays the frequency response. All blades experience the same response amplitude,

which is plotted versus frequency for all the models at engine order 22 excitation. The

response of a tuned assembly is characterized by a single peak, as the excitation is

orthogonal to all constant interblade phase angle modes but one. Immediately obvious

is the good agreement between the responses of the two two-DOF per bay systems and

the bi-couped three-DOF per bay system. This is truly remarkable considering the

very different structural parameter sets that characterize these systems. Note that

the good agreement of the peak frequency is insignificant because the frequencies are

dimensionless and may be arbitrarily scaled.

In order to make a comparison withmodel 1Bcwhich features two degrees of free-

dom, a calibration of the forcing and damping is required, as well as to the previously

mentioned scaling of the dimensionless frequency with the value 1.423. To study the

effect of this manipulation we create forcing/damping conditions for system 1Bc such

that the peak amplitude and the width of the peak matched that of the other systems.
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Figure 7.16 Frequency response of tuned assemblies of types 1Bc ( ) and
1Bd ( ) for engine order 22 excitation.

A good approximation was found for the following values.

F1 = 0.
F2 = 0.56154
ζ1 = 0.
ζ2 = 0.008

(7.8)

The resulting frequency response is compared with that of system 1Bd in Fig. 7.16.

Hence, we have access to four dramatically different systems that all exhibit iden-

tical forced response behaviour in the absence of mistuning. Next we examine the

effect of mistuning.
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Deterministically Mistuned System Response

One primary goal in analyzing the forced response of mistuned structures is to deter-

mine the increase in blade response amplitude compared to the response amplitude

of the tuned system. For one mistuned assembly with some mistuning pattern, mis-

tuning effects can be characterized by the ratio of the maximum response amplitude

of the mistuned system to the amplitude of the tuned system.

Figure 7.17 displays the frequency response of blade 63 in the 72-blade blisk and

provides a comparison with the maximum response amplitude of any blade through-

out the rotor. Since for the mistuned system the excitation is no longer orthogonal

to the mistuned mode shapes, the frequency response of any give blade ought to fea-

ture a number of resonant peaks equal to the number of blades. However, many of

these peaks are small and, as shown in Fig. 7.17(a), the presence of significant damping

causes the resonant peaks to decrease in height and increase in width. This results in

the merging of many of the 72 resonant peaks, such that the frequency response of

blade 63 features primarily one large resonant peak. It is noteworthy that the reso-

nant amplitude of blade 63 is significantly larger than the tuned amplitude, by about

30%. Also, the primary resonant frequency for blade 63 is higher than the tuned res-

onant frequency, and it can be easily verified that it is nearly equal to the blade-alone

frequency of the 63rd blade.

In Fig. 7.17(b), the envelope of the individual blades’ frequency responses, the

largest response, feature a large number of resonant peaks. It suggests that the var-

ious blades in the mistuned blisk reach their peak amplitude amplitude at different

resonant frequencies, giving rise to a relatively broad range of resonant frequencies.

These resonant frequencies correspond approximately to the blade-alone natural fre-

quencies of the individual mistuned blades. In order to confirm this, observe how the

response of the 63rd blade corresponds precisely to one of the peaks of the maximum

frequency response. Similarly all peaks in Fig. 7.17(b) correspond to the resonant peak

of one blade on the blisk. However, the number of resonant peaks in Fig. 7.17 is smaller

than the number of blades, indicating that some blades feature a resonant amplitude

that is lower than the maximum amplitude envelope, i.e., the resonant peaks of some

blades are overshadowed by the peaks of other blades. The above observations con-

firm that the blades of this weakly coupled mistuned rotor respond essentially like

single-DOF oscillators, at about their blade-alone (mistuned) natural frequency. An-

other interpretation is that as the excitation frequency is swept, the system responds

sequentially in the various localized modes in one localized mode after the other, each

of which features primarily the vibration of a particular blade. It is the highest peak

of the largest amplitude curve in Fig. 7.17(b) that defines themaximum amplitude for
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Figure 7.17 (a) Frequency response of the 63rd blade in a mistuned blisk ( )
and of the corresponding tuned system ( ). ζ = 1%.
(b) Largest frequency response of any blade in the mistuned blisk
( ) together with the response of the 63rd blade ( ). ζ = 1%.
(c) The largest frequency response in theweakly dampedblisk ( )
is compared with the peak response of the equivalent tuned blisk
( ). ζ = 0.1%. All figures: Model 1Bb, C = 22.
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this particular mistuned rotor.

Figure 7.17(b) depicts the largest response of a relatively strongly damped ro-

tor with a large number of blades. Since damping is strong, the individual response

peaks are relatively wide, and the high number of blades ensures high density of

peaks. Clearly, the largest response amplitude for a more weakly damped rotor with

fewer blades would look considerably different with narrow, clearly separated peaks.

Whereas the curve in Fig. 7.17(b) depicts largest response that is greater than that

of the tuned system throughout the peak response range, we could easlily imagine

systems of which the opposite is true. Figure 7.17(c) depicts the largest response of

a 72 blade blisk (model 1Bb) with only 0.1% viscous damping. Its largest response

is predominantly lower than the peak tuned response amplitude. This will become

important in the following discussion.

In summation, the most important effects of mistuning on the forced response

appear to be:

a broadening of the resonant frequency range, which corresponds to the range of

the blade-alone mistuned frequencies.

the occurrence of localized forced responses, whereby at a given frequency one

or few blades of the rotor undergo vibration of significant amplitude, while the

other blades remain nearly quiescent.

an increase in largest response amplitude in — but not necessarily throughout —

the resonant range. Three factors govern the dispersion of the largest response

amplitudes as frequency is varied. They are:

— The mistuning strength: the greater the mistuning, the wider the spread be-

tween the mistuned blade-alone natural frequencies and thus between the

resonance frequencies.

— The damping level: the weaker the damping, the narrower the resonant peaks

and thus the greater the low-amplitude gap between them.

— The number of blades: the larger the number of blades, the larger the number

of peaks in the resonant frequency range and thus the greater the probability

for a mistuned system to experience a large amplitude.
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Figure 7.18 Monte Carlo simulations yield the mean largest response ( ) and

2.7 σ -bound ( ) of largest response in the blisk. The tuned sys-
tem response is ( ). Model 1Bb, C = 22, ζ = 1%.

Stochastically Mistuned System Response

When the mistuning pattern is not known deterministically but only in a statistical

way, the characterization of mistuning effects with a single scalar is not possible any

longer, and a stochastic description of the maximum amplitude is required. This is

achieved here through the use of Monte Carlo simulations which, for example, yield

such information as the probability density function of the ratio of the maximum re-

sponse amplitude to the tuned response amplitude. This statistical description allows

us to characterize the average increase in maximum response amplitude for all mis-

tuned systems and the proportion of mistuned systems that experience a maximum

response amplitude which is greater than some value.

Hence, the next level of integration comes in the form of Monte Carlo simulation

of themistuned blisk’s forced response. The numerousmistuning patterns used in the

simulations were obtained from a random number generator: a uniform distribution

was chosen, of mean equal to the blade-alone first bending natural frequency and

of standard deviation 3.6% (this translates into a s = 7.25% standard deviation of

mistuned blade stiffness). This means that the blade-alone frequencies never deviate

from the blade-alone mean frequency by more than
√
3 × 3.6% of its value. At each

frequency of the frequency sweep a large number of mistuned assemblies is generated
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and for each assembly the largest amplitude is recorded. These largest amplitudes are

ensemble averaged and their standard deviation calculated for each value of frequency.

The Monte Carlo simulations thus yield approximations of the mean and standard

deviation of themaximum response amplitude throughout the rotor at each frequency.

We found that reasonable accuracy is achieved through the consideration of approx-

imately 1000 realizations of mistuned systems. Figure 7.18 depicts the mean of the

maximum response amplitude of any blade at a versus excitation frequency which is

directly available from the Monte Carlo simulations. Also featured in Fig. 7.18 is an ap-

proximation of the 99th percentile of the maximum amplitude. At a given frequency,

the 99th percentile of the maximum response amplitude is defined as the value of the

maximum response amplitude such that 99% of all occurrences of mistuned systems

feature maximum response amplitudes that are smaller: that is, only 1% of mistuned

systems feature a maximum response amplitude that exceeds this bound at that fre-

quency. The approximation depicted in Fig. 7.18 is based on the assumption that

the 99% maximum amplitude percentile is located at approximately 2.7 standard de-

viations above the mean. This factor was determined empirically from subsequent

observations of the probability density function of the maximum amplitude in various

cases.

An interesting feature of the Monte Carlo simulation of the largest frequency re-

sponse is the flatness of the mean and 99% percentile frequency response curves in the

range of large amplitudes. This is due to the fanning out of natural frequencies of the

mistuned assembly which is shown in Fig. 7.6. Indeed the width of this flat top corre-

sponds to the width of the uniform distribution of the blade-alone natural frequencies

used in the simulations. Besides the broadening of the resonant frequency range, mis-

tuning causes a significant increase in the largest response amplitudes: relative to the

tuned system, the increase in the mean of the maximum response is about 21% over

the resonant frequency range, and that for the 99th maximum amplitude percentile

is about 58%. At this point it is noteworthy to emphasize the high sensitivity of the

forced response of the blisk to mistuning: a frequency mistuning of 3.6% may result

in a 58% increase in the response amplitude of at least some of the blades!

We now apply a Monte Carlo simulation analysis to the mistuned forced response

of all the models, 1Ba, 1Bb, 1Bc and 1Bd. Figure 7.19 depicts the result of the Monte

Carlo simulations of the largest amplitude for the various systems. The frequency

responses of the different systems display very similar features and are in good over-

all quantitative agreement. Nevertheless, the response amplitudes of the bi-coupled

system, 1Bd are a bit smaller that those of the mono-coupled systems, 1Ba, 1Bb and

1Bc.
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Figure 7.19 Monte Carlo simulations of the largest frequency response of various

models of mistuned assemblies. The bottom curve ( ) denotes
the tuned system response. The mean largest amplitude forms the
middle group of curves; the 2.7 σ -bound of the largest amplitude
form the top group of curves. The line types are defined according to
the following format. Models 1Ba ( ), 1Bb ( ), 1Bc ( )
and 1Bd ( ). Viscous damping is ζ = 1%, ζ1 = 0% and ζ2 = 0.8%
(s = 7.25%). Dimensionless frequency of 1Bc is multiplied with 1.423.

Our interpretation of these results are as follows. Systems 1Bb and 1Bc have a

very similar frequency curve fit (see Figs. 7.3 and 7.4) which yeilds a similar approxi-

mation of the modal density and interblade coupling. This agreement translates into

very good agreement on the mistuning effects. System 1Bd features an even more

accurate curve fit (see Fig. 7.5) that predicts an even lower modal density, i.e., higher

interblade coupling which we evidence as leading to weaker mistuning effects. Sys-

tem 1Ba (Fig 7.2) blatantly overestimates the modal density (underpredicts interblade

coupling) which also leads to weaker mistuning effect than those predicted by models

1Bb and 1Bc. For a probable explanation we refer the reader to Fig. 6.5. Model 1Ba
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has very weak interblade coupling and belongs to the left side of the hump. Model

1Bd has considerably stronger interblade coupling placing it to the right of the hump.

Models 1Bb and 1Bc with their intermediate levels of coupling belong on the hump.

It is without question model 1Bd with its most accurate approximation of interblade

coupling that most accurately predicts mistuning effects in the blisk.
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Magnification of Largest Amplitude
Figure 7.20 An approximation of the fixed frequency probability density func-

tion (ffpdf) is calculated at the excitation frequency which yields the
largest value for the 99% percentile of the largest response ampli-
tude. The “magnification of largest amplitude” is defined as the ratio
of the largest amplitude of any blade in a mistuned rotor to the peak
response amplitude of the corresponding tuned rotor. The vertical
line marks the mean. Model 1Bb, C = 22, ζ = 1%, s = 7.25%.
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Statistics of Largest Response

The largest response amplitude has an unknown statistical distribution. This distribu-

tion may vary greatly, depending for instance on the interblade coupling (see Chapter

VI). Therefore, it is not sufficient to calculate the mean and standard deviation if in-

formation about confidence intervals is required. For instance, if it were known that

largest response amplitude had a Gaussian distribution, the 99th percentile would be

2.33 standard deviations above the mean. However, since we do not know the distribu-

tion, the 99th percentile must be calculated explicitly from the Monte Carlo simulation

output.

Therefore, the next level of sophistication for the forced response results is in the

form of an approximation of the fixed frequency probability density function (ffpdf) for

the maximum amplitude, which is calculated at the excitation frequency for which the

2.7σ -bound of the largest amplitude (or the approximation of the 99% percentile) in
Fig. 7.18 is the greatest. Figure 7.20 presents the probability density function as a func-

tion of the magnification of largest amplitude due to mistuning, where the latter is the

ratio of the largest amplitude of a mistuned system to the peak response amplitude of

the tuned system. Observe that the ffpdf of the largest amplitude is Gaussian-like but

skewed, with a long tail toward the high amplitude range, such that the magnification

of the largest amplitude is larger than 58% for 1% of all possible realizations of mis-

tuned systems, at that frequency. This statistical information leads to the prediction

of confidence intervals for the maximum amplitudes, and as such the ffpdf’s of the

largest amplitude do provide very useful information which could be used effectively

at the design stage. Obtaining the ffpdf of the largest response amplitude is a com-

putationally intensive operation, however, even for a single excitation frequency as it

is done herein. For a convergence of the 99% percentile value with 0.1% accuracy, ap-

proximately 30,000 realizations are required, yielding acceptable cost. Since the 99th

percentile is likely to be the valuemost useful to a designer, it is a parameter z, defined
as the number of standard deviations between the mean and the 99th percentile that

was used as a test for convergence. Unfortunately, convergence is remarkably slow

due to the low probability density in the neighborhood of the 99th percentile.

It is only through this type of analysis that the 99% percentile approximated in

Fig. 7.18 by the 2.7σ -bound may be accurately determined. A counterintuitive feature

of the ffpdf depicted in Fig. 7.20 is that there is a non-negligible probability (namely

0.05) that the largest response amplitude of the mistuned structure be smaller than

that of the tuned assembly, at the frequency at which the ffpdf is computed. This

feature is a direct consequence of studying the statistics at a fixed frequency. It occurs

because the lower tail of the ffpdf is largely populated by assemblies that do not have
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Figure 7.21 Fixed frequency probability density function of the largest response
amplitude (calculated at the frequency which yields the greatest value
of the 2.7σ -bound of the largest amplitude) for the various models
of mistuned assemblies. Vertical bars denote the mean of the largest
amplitude. The engine order if the excitation is 22. The line types
are defined according to the following format. Models 1Ba ( ),
1Bb ( ), 1Bc ( ) and 1Bd ( ). Viscous damping is ζ =
1%, ζ1 = 0% and ζ2 = 0.8% (s = 7.25%)

a resonance at the frequency in question (see Fig. 7.17(c)).

As an example of the usage of the ffpdf, one might observe that only a very small

area is contained under the curve above the amplification value 1.6, hence it is very

improbable to find a system which has a largest amplitude that is 60% larger than

predicted by the tuned analysis.

Figure 7.21 depicts the result of a fixed frequency analysis of the probability den-

sity function of largest amplitude. We find the continued good agreement between

models 1Bb and 1Bc. Again, we contend that it is model 1Bd with its fine model of the

interblade coupling that best predicts the mistuning effects.
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Statistics of Maximum Response

Next, we shouldmention the “ultimate” in statistical analysis of the forced response of

bladed disks, namely the full-blown calculation of the probability density function for

the maximum response amplitude (the largest response at any excitation frequency).

This would be achieved as follows. For each of realization of mistuned systems, record

the peak resonant response of the assembly, i.e., the greatest value of the response

amplitude at any frequency and for any blade throughout the rotor. Then calculate

the statistics of this ensemble of maximum amplitudes, yielding the mean, standard

deviation, and perhaps even pdf of the largest amplitude. Clearly this is a task of gar-

gantuan proportions, requiring a full high-resolution frequency scan for each of the

many thousand systems in the Monte Carlo simulation! Also note that this approach

yields information in an extremely integrated form, as a single number—themaximum

response amplitude—characterizes one realization of mistuned systems. Figure 7.22

depicts the comparison of the largest fixed frequency response probability density

function and the probability density function for the maximum response. The maxi-

mum amplitude pdf does not feature a a tail reaching below the amplitude of the tuned

system, since it is very unlikely that a mistuned system has its largest resonant peak

be smaller than that of the tuned system.

Due to the great expense involved in the calculation of the statistics of the maxi-

mum response statistics, no comparison was performed for the various models. Only

model 1Bc was analysed in this way.

Figure 7.22 illustrates the different results obtained for the statistics of the largest

blade response amplitude depending on whether frequency is swept to find the peak

response of each mistuned system or if the response of the mistuned system is cal-

culated at a predetermined frequency (chosen to be the frequency that leads to the

maximum of the mean plus 2.7 times the standard deviation). As expected, the dif-

ference in the lower tails of the distributions is great. This can be explained by the

fact that in the fixed frequency analysis, the chosen frequency may fall between peaks

of the response for some mistuned systems. The fixed frequency probability density

function could be incorrectly interpreted as predicting the existence of mistuned sys-

tems that possess lower largest amplitude than that of the tuned system. The truth is

that the largest amplitudes of these systems occur at different frequencies. When the

statistics are analyzed using a frequency sweep, thereby finding the largest resonant

amplitude in each individual mistuned system, we find that it is extremely unlikely to

find a mistuned system with a smaller peak response than that of the tuned system.

Indeed, the probability of finding a mistuned system with less than a 20% increase in

largest amplitude is negligible.
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Figure 7.22 Comparison of a probability density functions of the largest response
amplitudes. ( ), by sweeping frequency to find the maximum
resonant peak; ( ) at a fixed frequency (the frequency leading to
the greatest value of the mean plus 2.7 times the standard deviation
in a frequency response analysis of a mistuned system). (1Bc, s =
7.25%, C = 22)

In thefixed frequency case, the 99th percentile value is approximately 1.6 times the

tuned resonant amplitude. Using a frequency sweep, we find that the 99th percentile

of the amplitude magnification statistics is approximately 1.75. This means that in a

production run of rotors of this type, when run at a specific speed, only 1% of the rotors

are expected to exceed a largest blade amplitude that is 60% greater than would have

been predicted by a cyclic symmetry analysis. However, when the rotor runs through a

range of rotational speeds, there is a 1% probability that it will experience an amplitude

that is 75% greater than that of the tuned rotor. Thus, the fixed frequency analysis of

the statistics seems to be a rather poor approximation of the actual statistics, although

the fixed frequency statistics are perfectly valid in their own right.

163



7.1. Case 1: A 72-Blade Blisk — Coupled Oscillator Method

The analysis of the actual response statistics, requires the incorporation of a full

frequency sweep, and is a tremendous computational challenge. The efficient coding

of the problem, in addition to having access to powerful workstations, has allowed

us to tackle this type of analysis, albeit for very simple models. The problem has

proven slightly less costly than initially expected since the dispersion of the values

in the response statistics, when frequency is swept, is more reasonable than when

frequency is fixed. This guarantees convergence for a smaller number of realizations

of mistuned systems. Recall that for each realization, the peak frequency response

amplitude must be calculated, a process which may require hundreds of solutions of

the forced response problem at various values of the frequency.

7.1.5. Variation of Mistuning Strength

The results of Chapter VI show that—under certain circumstances—mistuningeffects

on forced response may not increase monotonically with increased mistuning strength

(see Fig. 6.8). An examination of the statistics of the maximum response amplitudes

in model 1Bc (using a frequency sweep) reveal that this is not the case for the group

of first bending modes of the 72-blade blisk. Figure 7.23 shows that in this case the

mistuning effects do indeed increase monotonically with the strength of mistuning.

What remains to be explained is the absence of a local maximum, such as the one

depicted in Fig. 6.8, from the curves in Fig. 7.23. It must be understood that the humps

in the curves in Fig. 6.8 only occur when specific conditions are met, namely when

localization effects are sufficiently large that the assembly features localized modes,

yet the coupling is strong enough so that transmission of energy to the localized blade

can occur. The value of interblade coupling used to generate Fig. 6.8 was selected

such that this effect would be maximized. Generally, the non-monotonous variation

of amplitude with mistuningmay or may not be observed at other coupling values. For

example, for zero interblade coupling, the largest blade amplitude can be easily shown

to increase monotonically with mistuning strength. Accordingly, as we had observed

in Section 7.1, interblade coupling in the first blade bending modes of the blisk is

quite weak. It is, according to Fig. 7.23, too weak for the augmentation of localized

blade energy to occur, here precluding the occurrence of the hump. However, non-

monotonous variation might take place for other blade mode groups of the 72-blade

blisk, with stronger interblade coupling.
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Figure 7.23 Magnification of maximum amplitude due to mistuning as a function
of the standard deviation of blade stiffness mistuning, s, for model
1Bc. The curves show the 1%, 50% and 99% percentiles of the statistics
of forced response obtained by a frequency sweep. Engine order of
the excitation is 9. The vertical line denotes the 7.25% mistuning
strength used throughout the current work.

7.1.6. Variation of Damping Strength

As we noted in the analysis of the forced response statistics of the simple system in

Chapter VI, a variation in damping may have a non-intuitive effect on mistuning sen-

sitivity. Figure 7.24 depicts the effect of damping on the amplitude magnification for

the 72-blade blisk. Damping is scaled by the a parameter, ν , i.e., the viscous damping

ratios are taken as νζ1 and νζ2 and the structural damping ratios are νγ1 and νγ2.
Note that the figure shows the magnification of maximum amplitudes with respect

to the similarly damped tuned system, not absolute amplitudes. Needless to say, the

absolute amplitudes at ν = 0.1 are two orders of magnitude greater than those at
ν = 10. Note the non-monotonous variation of the largest amplitude magnification
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Figure 7.24 Magnification of maximum amplitude due to mistuning as a function
of a damping scale, ν , for model 1Bc. The curves show the 1%, 50%
and 99% percentiles of the statistics of forced response obtained by a
frequency sweep. Engine order of the excitation is 9. Viscous damp-
ing is νζ1 and νζ2 and the structural damping ratios are νγ1 and
νγ2. ζ1 and ζ2 are given in Eq. (7.8), and γ1 = γ2 = 0.1%. Mistuning
is 7.25%. The vertical line denotes the damping value used through-
out the current work.

with damping, according to the results of Chapter VI for the simple model. We find

that the 72-blade blisk is operating close to the extreme case of mistuning sensitivity.

At higher or lower values of damping, the response of a mistuned structure would be

closer to that predicted by a tuned analysis.
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Figure 7.25 (a) The natural frequency data of the finite element model of the 36-
blade compressor assembly.
(b) The natural frequencies of a three-DOF system approximate
branch 2Fbis. Model 3Ba.

7.2. Case 2: 36-Blade Compressor — Coupled Oscillators

The second coupled case study, using coupled oscillator models, is that of a 36-blade

low pressure compressor stage, which consists of short blades mounted on a drum-

type disk. The finite element frequency data is depicted in Figs. 7.25(a) and 7.25(b),

organized with respect to the natural frequency number at each number of nodal di-

ameters. In this frequency plot the main areas of interest are the 2Fbis blade mode

family, which consists of blade-motion dominated modes in the second blade flexural

mode. At this point it is important to note that the curves labeled 2Fbis feature these

blade modes only for the higher numbers of nodal diameters (i.e., the flat portions of

the curves), but that the 2Fbis blade modes may be present in the other curves at low

nodal diameters. In other words, the blade mode groups do not necessarily follow

the continuous curves in Fig. 7.25(a). Strictly speaking, the coupled-oscillator models

presented here are not suitable for modeling systems of this complexity. Instead, the
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Finite Element order reduction technique presented in Chapter III should be used.

Only the 2Fbis group of modes will be investigated. This mode groupe features

a frequency curve with a very gradual veering compared with the very sharp veering

that we observed for the 72-blade blisk. We expect this study to add a new flavor to

the investigation of mistuning effects. This analysis will be far less extensive than that

for the blisk, mainly focusing on the differences between the two rotors.

7.2.1. Identification of Model Parameters

The frequency curve 2Fbis features seven frequency points along its very smooth veer-

ing. Due to this large amount of detail a three-DOF model was required in order to

achieve a reasonable fit.

Model 3Ba: Accurate fit of the 2Fbis curve

A good fit of the first curve requires that all nine frequency constraints be placed on the

first curve, and these were chosen to be at nodal diameters 1, 5, 6, 8, 9, 12, 14, 16 and

18. The result is depicted in Fig. 7.25(b). An excellent fit is achieved for nodal diameters

5 and higher. Stretching the lower tail of the 2Fbis curve to lower frequencies was

impossible without seriously compromising the fit at higher nodal diameters. Hence

the fit at low numbers of nodal diameters is only approximate. However, the frequency

spectrum of the compressor stage at these low nodal diameters is so complex that it

is not even clear what a better fit would be. Moreover, since the study calls for the

analysis of the forced response at engine order 13, this choice of frequency fit was

deemed appropriate. The parameters that come out of the identification process are:

m̄1 = 9972.47
m̄2 = 2731.65
m̄3 = −5214.26

k̄d1 = 3138.46
k̄d2 = 5908.37
k̄d3 = −1662.71

k̄c1 = 2282.42
k̄c2 = 618.552
k̄c3 = −1183.53

(7.9)

Due to the adequacy of the fit no other model was obtained. Clearly, the model pro-

posed here fails to capture the details of the interaction with the unmodeled modes

with a lower number of nodal diameters, in the frequency range of interest (see

Fig 7.25(b)).
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7.2.2. Tuned and Mistuned Forced Responses

For the forced response analysis it was assumed that the standard deviation of blade

stiffness mistuning was 5% and that the viscous damping of the blade was 0.5%. Struc-

tural damping of blade and disk was set at 0.1%. To highlight the effect of the gradual

frequency curve veering, we focus on two excitation of engine orders 7 and 13. This

was so that a comparison of mistuning effects at two very different levels of modal

density might be achieved (see Fig. 7.25(b)).

Deterministic Mistuned Systems

We examine first the forced response of a single mistuned system when excited by

engine orders 7 and 13, respectively. Figure 7.26 illustrates the largest frequency re-

sponse. In Fig. 7.26(a) we see that since model 3Ba features a low modal density in

the neighborhood of the 7-nodal diameter frequency, the fanning out of the natural

frequencies due to mistuning is so subtle that the response contains primarily a sin-

gle resonant peak, whose frequency is close to the resonance frequency of the tuned

system. Compare this to Fig. 7.26(b), where there are several distinct peaks due to

the fanning out of the natural frequencies caused by the combination of mistuning

and high modal density near the 13 nodal diameter frequency. Also note the much

larger response due to engine order 13 excitation (for both tuned and mistuned sys-

tems). The reason is that themodes close to the 13-nodal diameter frequency are more

blade-dominated than the 7-nodal diameter modes.
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Figure 7.26 The largest frequency response of any blade throughout the assem-

bly, for one realization of the mistuned compressor stage with ran-
dom mistuning ( ), is compared to the response of a tuned sys-
tem ( ). The excitation has engine order (a) C = 7 and (b) C = 13.
Model 3Ba, ζ = 0.5%, s = 5%.
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Figure 7.27 The Monte Carlo simulation of the forced response of mistuned sys-

tems yields the mean ( ) and 99th precentile ( ) of the
largest response amplitude of any blade in the compressor. The
tuned system response is ( ). Engine order of the forcing is
C = 7. Model 3Ba, ζ = 0.5%, s = 5%.

Stochastic Mistuned Systems

Figures 7.27 and 7.28 depict the results of Monte Carlo simulations of the largest

frequency response of the model 3Ba, when subjected to excitation with engine order

7 and 13, respectively. Immediately obvious is the greater widening of the resonant
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Figure 7.28 The Monte Carlo simulation of the forced response of mistuned sys-

tems yields the mean ( ) and 99th percentile ( ) of the
largest response amplitude of any blade in the compressor. The tuned
system response is ( ). Engine order of the forcing is C = 13.
Model 3Ba, ζ = 0.5%, s = 5%.

frequency range due to mistuning for engine order 13 excitation compared to that for

engine order 7 forcing, as predicted by Fig. 7.26.

A study of the fixed-frequency probability density functions for the largest re-

sponse amplitudes to the two types of excitation reveals the familiar effect that the re-

sponse to engine order 13 features a lower tail that stretches far below 1 (see Fig. 7.29).

This indicates that at the frequency at which the PDF is calculated, a substantial frac-

tion of mistuned systems have largest amplitudes smaller than the tuned system’s

peak amplitude. This is obviously due to the separation of the peaks depicted in

Fig. 7.26(b), which results in a higher probability of finding a low largest amplitude in

mistuned systems and hence in a much greater dispersion of the largest amplitudes.

For the engine order 7 excitation this effect does not occur.

Figure 7.30 illustrate a comparison of the magnification statistics run at a fixed

frequency vs. sweeping frequency. For engine order 7 we observe a fine agreement that

indicates that under certaine circumstances fixed-frequency response statistics may

offer an inexpensive approximation of the frequency swept analysis. The engine order

13 case, on the other hand, illustrates the circumstances where a misinterpretation

of the fixed-frequency statistics could be disastrous. The figure also clearly indicates

that mistuning effects are far greater for the engine order 7 than the engine order 13

excitation. The 99thpercentile of the largest amplitude yields, forC = 7, a 74% increase
in largest amplitude compared to the tuned system’s peak amplitude, as opposed to

only a corresponding 41% increase for C = 13. In Chapter VI we showed that high
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Figure 7.29 An approximation of the probability density function (PDF) is cal-
culated at the excitation frequency which yields the largest value for
the 99th percentile of the largest response amplitude. Excitation is of
engine order 13 ( ) and 7 ( ). The “magnification of largest
amplitude” is defined as the ratio of the largest amplitude of any
blade in a mistuned rotor to the peak response amplitude of the cor-
responding tuned rotor. The vertical lines mark the mean values.
Model 3Ba, ζ = 0.5%, s = 5%.
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Figure 7.30 Comparison of the statistics of the magnification of largest response
( ) and the magnification of maximum response (obtained by
sweeping frequency) ( ) for C = 7 (left) and C = 13 (right).

modal density (as a measure of weak coupling) normally predicts high sensitivity to
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7.2. Case 2: 36-Blade Compressor — Coupled Oscillators
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The curves show the 1%, 50% and 99% percentiles of the statistics of
forced response obtained by a frequency sweep. Engine order of the
excitation is 7.

mistuning but that very weak coupling (or very high modal density) could cause a

decrease in mistuning sensitivity. The present results show this effect clearly. The

modal density is far weaker at the 7-nodal diameter frequency than it is at the 13-

nodal diameter frequency, yet the mistuning effects are much more pronounced for

C = 7. This may of course only be of academic interest since, regardless of mistuning
effects, the engine order 13 response is much greater than the engine order 7 response

and is therefore obviously the determining factor for safe design.
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7.3. Summary

7.2.3. Worst Case Mistuning Strength

The behaviour of the 36-blade rotor at the 7 nodal-diameter mode of the 2Fbis group

suggests that in that region, it could feature an interblade coupling in the critical re-

gion where the interplay of localization effects and energy transmission causes strong

mistuning effects. One way of examining this is by checking whether the variation of

mistuning strength would lead to the hump featured in Fig. 6.8 but found to be absent

from Fig. 7.23. Such an analysis is presented in Fig. 7.31. Non-monotonous behavior

is indeed observed, leading to a 99th percentile largest amplitude that is over 4 times

that predicted by the tuned analysis, albeit at unrealistically high values of mistuning.

In our opinion, the results outlined in this section offer strong validation of most

of our findings for the 72-blade blisk and 36-blade compressor case, namely that for

most of the first bending modes of the blisk and for most of the modes in the 2Fbis

mode group of the 36-blade compressor, interblade coupling strengths are below the

most critical values and consequentlymistuning effects are more moderate than those

observed for the engine order 7 excitation of the 36-blade compressor.

7.3. Summary

In this section we have investigated a method proposed for modeling complicated

blade assemblies with simple coupled-oscillator models, based on a parameter iden-

tification technique involving finite-element natural frequency data. The simplicity of

the models considered allows the modeling of an entire assembly at a reasonable cost.

It is therefore possible to include mistuning caused by blade-to-blade dissimilarities

in the free and forced response analyses.

From the finite element analysis the families of modes corresponding to the vari-

ous frequency branches (e.g., blade bending modes, disk modes, blade torsion modes,

etc.) should be carefully identified. This information is essential in the identification

process. In some cases, tracking the families of modes as the number of nodal di-

ameters increases may be made easier by supplementing the natural frequency data

with additional frequencies calculated for interblade phase angle boundary conditions

that do not correspond to an integer number of nodal diameters. For instance, a com-

plicated frequency curve veering occurring between 6- and 7-nodal diameter modes

in a 50-blade assembly could be captured in greater detail by examining not only the

σ = 12π/50 and σ = 14π/50 interblade phase angle mode but also the fictional
σ = 13π/50 interblade phase angle “mode”. Hence the idea is that by making the
frequency curves more continuous the tracking of mode families can be done more

effectively.

In the identification of the parameters of the reduced-order models a great deal of
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7.3. Summary

judgment is required from the analyst. Only a small number of the natural frequencies

of the finite elementmodel can be approximated by the simple models. These frequen-

cies must be chosen with great care if the proper features of the finite-element model

are to be captured by the reduced-order model. At the beginning of the present study

it was unclear which features of the finite element model were the most important

ones. We can now say with some confidence that mistuning effects are most accu-

rately modeled when the modal density of the reduced-order model closely matches

that of the finite element model. Hence, during the identification process, the greatest

emphasis should be placed on fitting the reduced-order model frequency curves to

the finite element frequencies which are in the neighborhood of the number of nodal

diameters that corresponds to the engine order of the excitation of interest.

The study of free response highlighted the effect mistuning has on natural fre-

quencies and mode shapes. Tuned rotors with weakly coupled blades feature, in some

blade mode group, natural frequencies tightly clustered near the the blade-alone natu-

ral frequency of the blade mode in question. This results in a highmodal density of the

assembly near the blade-alone natural frequency. When blade mistuning is introduced

to thisweakly coupled rotor the assembly natural frequencies fan out to become nearly

the same as the blade-alone natural frequencies of the mistuned blades. Mistuned ro-

tors with weakly coupled blades feature spatially localized modes. We introduced the

localization factor , a measure of mode localization in mono-coupled blade-assemblies.

The localization factor proved to be very sensitive to how accurately the frequency

curves of the reduced-order system fit the natural frequencies of the finite element

system in the frequency range of interest. Strong localization is known to occur in

systems with high modal density (weak coupling). However, we found that if modal

density becomes too high, the mistuning effects may start to decrease. From this find-

ing we drew the conclusion that a correct representation of the modal density in the

desired frequency range is the key to the accurate modeling of mistuning effects by

the reduced-order system.

Localization due to blade mistuning was found to occur solely in the modes dom-

inated by blade motion. The localization factor characterizes the spatial decay of the

coupling coordinate amplitudes (i.e., the disk coordinates) and it was found to agree

well with the experimental decay of the localized mode shapes, when expressed in the

disk coordinates. However, when the localized modes were examined in terms of blade

displacements, they exhibited much more dramatic amplitude decay patterns which

were not predicted by the localization factor. These effects were explained as local

blade resonances, leading to a phenomenon we called “super-localization”, and were

toted as a great risk factor for rogue blades. Nonetheless, the localization factor must
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7.3. Summary

be heralded as a good predictor of mistuning effects, even if quantitative information

should never be taken literally.

A statistical approach to the forced response analysis was presented. We intro-

duced the concept of treating, at a given frequency, the largest response amplitude of

any blade throughout a mistuned assembly as a random variable. The investigation of

the statistics of the largest response amplitude was carried out by Monte Carlo sim-

ulations and major interest. First, Monte Carlo simulations of the largest frequency

response were used to approximate numerically the mean and the standard deviation

of the largest response amplitude of mistuned rotors for each frequency. Then, a

full investigation of the statistics of the largest response amplitudes was performed

by running Monte Carlo simulations at the worst-case frequency obtained from the

largest frequency response simulations, yielding the probability density function of

the largest response amplitude at that frequency. It was shown how these results

may be of help in the design phase. We also explained how of calculating the prob-

ability density function at a fixed frequency is a compromise required by the great

computational expense of a full-blown study of the frequency-independent statistics.

Furthermore, we discussed how the fixed-frequency statistics depend on the damp-

ing, the interblade coupling, the mistuning strength and the number of blades in the

assembly.

An interesting result of the statistical analysis of the forced response was that the

two-DOF per bay models consistently demonstrated greater mistuning effects than the

three-DOF per bay systems. Due to the greater precision normally associated with a

larger number of degrees of freedom, as well as their more precise approximation of

interblade coupling, the single most important factor influencing mistuning effects,

we concluded that the results obtained with three-DOF per bay models were more

accurate.
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CHAPTER VIII

CASE STUDIES IN ROTORDYNAMICS: PART 2

In this chapter we apply our component-mode bases Order Reduction Method to a

fictitious finite element model since no real finite element model was available. This

allowed us to ensure simplicity, yet care was taken that the model was rich in chal-

lenging dynamics.

8.1. Order Reduction of a Solid Element System

As an example, we present a simple FEM of one sector of a fictitious bladed-disk struc-

ture. Top and side views of the finite elementmesh are shown in Fig. 8.1. The elements

are all eight-noded solid bricks. The disk sector has 15 elements, and the blade has 3

elements. In addition, there is a thin transition element that connects the blade and

the disk. This element can be thought of as representing a taper. In the finite element

runs, the transition element was arbitrarily considered to be part of the disk compo-

nent. In general, the blade substructure may be defined as the part of the model which

is to have mistuned properties.

Figure 8.1 Top and side view of an example solid element finite element model.
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8.1. Order Reduction of a Solid Element System
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Figure 8.2 Natural frequencies of the example system shown as a function of the
number of nodal diameters in the corresponding mode shape. The
lines connect members of a modal families.

All nodes of the inner radius of the disk are completely constrained. Also, all

elements have the same material properties. This FEM therefore represents a blisk

which is clamped at the inner radius. There are 138 degrees of freedom per disk-blade

sector, and a total of 24 sectors for the full blisk. All finite element work was done

on NASTRAN using SOL 48 for the disk component, and SOL 103 for the cantilevered

blade.

Although this model is simple, the properties and dimensions were chosen so that

the dynamics would be quite challenging to reproduce with a ROM. As a benchmark ,

we show the natural frequencies of the FEM versus the number of nodal diameters in

Fig. 8.2. Note that this plot shows several very close frequency curve veerings.

For the ROM, we take five families of disk modes, and four cantilevered elastic

blade modes. Thus, there are nine degrees of freedom per sector for the ROM, com-

pared to 138 degrees of freedom per sector for the FEM.

The natural frequencies found from the ROM are shown versus the finite element

frequencies in Fig. 8.3. Globally, the frequency distribution is very well captured by

the ROM. In particular, the disk modes are nicely approximated. The blade modes,
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Figure 8.3 Natural frequencies of 9-degree-of-freedom ROM (") compare favor-
ably with the natural frequencies of the FEM (—) when plotted as a
function of the number of nodal diameters in the corresponding mode
shape.

however, are not as well captured. The ROM frequencies tend to be higher than the

FEM frequencies. In particular, the frequencies of the second blade mode, an in plane

bending mode, are somewhat overpredicted. Note that this family of modes is almost

uncoupled from the disk motion (hence the almost horizontal line). The reason that

this delicate interaction between disk and blade is poorly capture is most likely due to

the fact that cantileveredblade modeswere used, and thefixed end boundary condition

makes the blade modal stiffnesses too large. A key family of disk modes is obviously

missing and these shapes may be difficult to identify and include. On the other hand,

the global agreement of the two models is excellent, in particular, the the way the

veerings of the multiple frequency curves is nearly impeccable?
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8.1. Order Reduction of a Solid Element System

8.1.1. Very Reduced Order System

The previous nine-degree-of-freedom model captures well the natural frequencies in

a rather broad frequency range. For the purposes of mistuning analysis, however,

the structural dynamicist often chooses to focus on a small frequency band which

includes a set of blade modes. It is the blade modes which feature large localization,

and are therefore of primary importance. We now take the first two families of FEM

disk modes and the first FEM blade mode in order to create a ROM with only three

degrees of freedom per sector.
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Figure 8.4 Natural frequencies of 3-degree-of-freedom ROM (") compare favor-

ably with the natural frequencies of the FEM (—) in a narrow frequency
band.

The natural frequencies of the three-degree-of-freedomROM are shown in Fig. 8.4.

Considering that we have approximated a 138-degree-of-freedom-per-sector model

with a three-degree-of-freedom-per-sector model, the frequency fit is excellent.
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8.1. Order Reduction of a Solid Element System

8.1.2. Mistuning

In order to reproduce the dynamics of the FEM with the ROM, not only must the fre-

quencies be well approximated, but the mode shapes must match as well. Even though

the component mode shapes for the ROM are taken from the FEM, we are interested

in comparing the mode shapes for the bladed disk assembly, which are created in the

reduced-order modeling process. In addition, we need to verify that the mistuning

effects are well captured by the ROM. Therefore, we proceed to validate the order re-

duction method by examining how well the frequencies and the localized mode shapes

of the ROM compare to those of the FEM for one realization of a mistuned bladed disk.

For this validation, we constructed a FEM for the full blisk of which one sector was

presented in Fig. 8.1. Mistuning was added by allowing each blade to have a different

Young’s modulus. The Young’s modulus for each blade i, Ei, was found as:

Ei = E0(1+ δi) (8.1)

where E0 is the Young’s modulus for a tuned blade, and δi is a sample — from a

uniform distribution with standard deviation 5% — produced by a random number

generator. The modal stiffnesses of the ROM were changed so that the mistuning

pattern was identical to that of the FEM. Note that 5% stiffness mistuning corresponds

to approximately 2.5% blade natural frequency mistuning. The FEM considered here

has a total of 3312 degrees of freedom, while the ROMhas only 216 degrees of freedom.

Since the mistuning destroys the cyclic symmetry of the structure, the modes will

no longer be associated with a certain number of nodal diameters. We therefore plot

the natural frequencies of both models versus occurrence number in Fig. 8.5. The

frequencies of the two models compare very well over this frequency range.

Finally, we compare selected localizedmode shapes of the FEM and ROM in Fig. 8.6.

The vibration amplitude of each blade was reduced to a scalar by taking the sum of

the squares of all degrees of freedom in the blade. The vector of these amplitudes was

then normalized so as to have unit length.

Note that the mode shapes are very similar. Although the amplitudes at a certain

blade may differ slightly, the maximum amplitudes occur at the same blade and are

very close. Furthermore, the mode shapes of the FEM and ROM exhibit similar spatial

amplitude decay, and we found this to be typical of the FEM and ROM modes. This

is of primary importance since it demonstrates that the two models have comparable

sensitivity to mistuning.
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Figure 8.5 Comparison of the natural frequencies of the FEM and ROM for the
mistuned case.

8.1.3. Conclusions

A reduced-order modeling technique was presented which is tailored to producing a

very low-order model of an actual bladed disk structure. The method is systematic

from a finite element model (FEM) of one disk-blade sector of the structure. A compo-

nent mode approach is used, where the disk modal stiffnesses and the blade motion

due to disk mode shapes are found from the FEM modes of the disk with massless

blades . The blade modal stiffnesses and blade mass matrix are found from the FEM

modes of the blade with all nodes at the disk-blade interface fixed. This is all the

information that is needed from the FEM runs, so storage requirements are modest.

Mistuningmay easily be added to the reduced-order model (ROM) by slightly disorder-

ing the blade stiffness properties.

The reduced-order modeling technique performed well for the example case con-

sidered. For order reduction per sector 138 → 9, the system dynamics were well

captured over a broad frequency range. For order reduction per sector 138 → 3, the

system natural frequencies were approximated in the frequency band of interest. It

was found that blade to disk coupling plays an important role in the dynamics of the

reduced order model, and may need to be enhanced.
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Figure 8.6 Selected localized mode shapes of a mistuned realization of the FEM
compared with the ROM. Standard deviation of uniform mistuning is
5%
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8.1. Order Reduction of a Solid Element System

The frequencies and mode shapes were compared for the FEM and ROM of the

example system with mistuned blade stiffnesses. The frequencies for the two models

were very similar. The match between FEM and ROM mistuned mode shapes was ex-

cellent. The maximum amplitudes occurred at the same blade and were nearly equal

in magnitude. Also, the spatial amplitude decay rates were similar, which means that

sensitivity to mistuning is well preserved in the order reduction process.
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CHAPTER IX

CONCLUSIONS

This chapter outlines the directions of the research, highlights major contributions,

and summaries the main conclusion.

9.1. Research Thrusts

The research of mistuning effects on the response characteristics of mistuned bladed

disks proceeded along three principal lines:

Development of modeling techniques for mistuned bladed disks.

Investigation of mistuning effect on free waves and free modes of vibration and

the development of measures of mistuning sensitivity.

A statistical analysis of the mistuning effects on largest response amplitudes.

9.2. Contributions

In the Chapter I we identified the areas mentioned above as being in need of develop-

ment. The main contributions of the thesis have been:

A systematic review of simple coupled-oscillator models widely used in the analy-

sis of bladed disks, as well as the development of enhanced models with special-

ized properties. A technique is proposed for identifying parameters in coupled-

oscillator models by correlating the natural frequencies and global mode shapes

of the model with those obtained by a tuned finite element analysis of the rotor

under investigation.

A novel modeling technique based on a component mode methodology was de-

veloped. The method balances accuracy and computational efficiency, as well

as making it possible to mistune individual blades in a controlled manner. This

method has several advantages over simple coupled-oscillator models, namely a

more complete model of interblade coupling and the ability to generate reduced

order models from finite element models in an automatic manner.
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9.3. Main Findings

The understanding of mistuning sensitivity of free modes of vibration in mono-

coupled coupled-oscillator models of bladed disks has been furthered and a reli-

able scalar measure of sensitivity was developed. For bi-coupled systems, param-

eter ranges were identified in which a mono-coupled approximation is justifiable.

An in depth study of the statistics of largest forced response amplitudes in bladed

disks has identified an energy flow mechanism that, in the case of engine order

excitation, enhances the mistuning effects for sufficient levels of coupling. Hence,

there exists an optimal coupling level at which the mode localization and energy

augmentation phenomena collaborate.

9.3. Main Findings
Highmistuningsensitivityofmodes of free vibrationwas shown to be synonymous

with low interblade coupling.

Correlation of simple coupled-oscillator models and real-life rotor prototypes is

difficult, but if successful, may result in models that can provide useful informa-

tion about mistuning effect on forced and free response. Dynamical behaviour of

rotors may be too complex to be captured by the simplistic models of coupling in

the coupled-oscillator models.

The straightforward component mode modeling approach provides much more

sophisticated models of blade-to-blade coupling. As interblade coupling has been

shown to be the single most important factor governingmistuning sensitivity, this

modeling approach holds great promise as an analysis tool.

Contrary to the predictions of the free response, mistuning effects in forced re-

sponse do not necessarily increase as interblade coupling is decreased. Instead,

there may be a moderately weak level of coupling at which mistuning effects reach

a maximum. Hence, sensitivity measures based on a free analysis can only be re-

lied on to rule out mistuning effects. If the free analysis predicts strongly localized

mode shapes, a forced response analysis must be performed.

For certain systems, improvingmanufacturing tolerances in order to reducemistu-

ing effects may have the opposite effect since decreasing mistuning may improve

energy flow into the largest amplitude blade.
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APPENDIX A

THE KRONECKER PRODUCT

In the study of the block circulant matrices, that arise in the analysis of structures with

cyclic symmetry, the Kronecker produce is a useful tool. A brief introduction of the

product and some of its properties is in order. Many users will be be familiar with the

Kronecker product of a column vector and a line vector to form a matrix

D = a⊗ bT =


a1b1 a1b2 . . . a1bN
a2b1 a2b2 . . . a2bN
...

...
. . .

...
aNb1 aNb2 . . . aNbN

 (A.1)

The Kronecker product of two matrices is

C = A⊗ B =


a11B a12B a13B . . .
a21B a22B . . . . . .
...

...
. . .

. . .

 (A.2)

Some of the useful properties of the Kronecker product include

(A⊗ B) (C⊗D) = (AC)⊗ (BD) (A.3)

(A⊗ B)∗ = A∗ ⊗ B∗ (A.4)
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APPENDIX B

ESTIMATION OF STANDARD DEVIATION

Say we have a set of N observations which are assumed to be independent and iden-

tically distributed random variables, X1, . . . , XN . If we assume that they are uniformly
distributed over a range of values [a, b], the joint probability density function (pdf) is

fX1···XN(x1, · · · , xN) =
1

(b − a)N b > a (B.1)

where x1, · · · , xN is a set of actual data points from one realization of the N observa-

tions.

If the parameters a and b are unknown, then we can use the data set to estimate
these parameters. One way to do this is to use the concept of maximum likelihood

parameter estimation. Consider an arbitrary pdf which depends on some parameter

θ. The maximum likelihood estimator, θ̂, is the value of that parameter which is most
likely to have given rise to the observed data set. Clearly, this is the value of θ which

maximizes the pdf.

Thus, the maximum likelihood estimator, â, of the parameter a is the value of a

which maximizes the pdf of Eq. (B.1), or the value of a which is the closest possible to
the value of b. However, in order for the observed data set to be possible, we have the
restriction:

a ≤ xi ≤ b i = 1, . . . , N (B.2)

We therefore find â to be

â =min{x1, . . . , xN} = xmin (B.3)

Similarly, the maximum likelihood estimator for b is

b̂ =max{x1, . . . , xN} = xmax (B.4)

Recalling that the observations are identically distributed, the estimated pdf for a

single observation is

fX(x) =
1

b̂ − â =
1

xmax −xmin
(B.5)
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Appendix B: Estimation Of Standard Deviation

In our case the N data points, x1, . . . , xN , correspond to the N mistuned blade-alone

frequencies. Equation (B.5) thus gives the pdf for the mistuned frequencies.
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APPENDIX C

MEASURES OF MISTUNING

Recall that the small mistuning parameter δ is defined in terms of blade stiffness,

kb(1 + δi), and is uniformly distributed, δi ∈ [−W,W] ≡ [−
√
3s,
√
3s], where s is the

standard deviation of the mistuning. Since blade stiffness is proportional to natural

frequency squared the individual blade natural frequencies are distributed in

ωb
i ∈

[
kb
mb

√
1− s

√
3,
kb
mb

√
1+ s

√
3
]

(C.1)

Sincemistuning is considered small, s is small compared to 1 and hence the frequencies

may be assumed to be approximately uniformly distributed in

ωb
i ∈

[
kb
mb

(
1− s

√
3
2

)
,
kb
mb

(
1+ s

√
3
2

)]
(C.2)

So when blade stiffness mistuning is small and uniformly distributedwith standard de-

viation s, the blade natural frequency distribution may be approximated by a uniform
distribution of standard deviation s/2.
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