
HAL Id: tel-00598299
https://theses.hal.science/tel-00598299

Submitted on 6 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the dynamics of active documents for distributed
data management

Pierre Bourhis

To cite this version:
Pierre Bourhis. On the dynamics of active documents for distributed data management. Other
[cs.OH]. Université Paris Sud - Paris XI, 2011. English. �NNT : 2011PA112003�. �tel-00598299�

https://theses.hal.science/tel-00598299
https://hal.archives-ouvertes.fr

Thèse de doctorat en informatique

Étude de la dynamique des documents actifs
pour la gestion d’information distribuées

On the dynamics of active documents for
distributed data management

Pierre Bourhis

11 Février 2011

Jury

Serge Abiteboul DR INRIA Saclay (directeur)
Michael Benedikt Prof. Univ. Oxford (rapporteur)
Albert Benveniste DR INRIA Rennes (rapporteur)
Nicole Bidoit Prof. Univ. Paris Sud
Anca Muscholl Prof. Univ. Bordeaux 1
Victor Vianu Prof. Univ. San Diego

Étude de la dynamique des documents actifs
pour la gestion d’information distribuées
On the dynamics of active documents for

distributed data management
Pierre Bourhis

Résumé

L’un des principaux problèmes que les applications Webs doivent gèrer aujourd’hui est l’évolutivité des
données. Dans cette thèse, nous considèrons ce problème et plus précisément l’évolution des documents
actifs. Les documents actifs sont documents XML pouvant évolués grâce à l’activation d’appel de services
Web. Ce formalisme a déjà été utilisé dans le cadre de la gestion d’information distribuée. Les principales
contributions de cette thèse sont l’étude théorique de différentes notions pour l’implémentation de deux
systèmes gèrant des applications manipulant des flux de données et des applications de type workflow.
Dans un premier temps, nous étudions des notions reliées à la maintenance de vues sur des documents
actifs. Ces notions sont utilisées dans l’implémentation d’un processeur de flux de données appelé Axlog
widget manipulant des flux à travers un document actif. La deuxième contribution porte sur l’expressivité de
différents formalismes pour contraindre le séquencement des activation d’un document actif. Cette étude a
été motivée par l’implémentation d’un système gérant des workflows focalisés sur les données utilisant les
documents actifs, appelé Axart.

Abstract

One of the major issues faced by Web applications is the management of evolving of data. In this thesis, we
consider this problem and in particular the evolution of active documents. Active documents is a formalism
describing the evolution of XML documents by activating Web services calls included in the document.
It has already been used in the context of the management of distributed data [Abiteboul 08a]. The main
contributions of this thesis are theoretical studies motivated by two systems for managing respectively stream
applications and workflow applications. In a first contribution, we study the problem of view maintenance
over active documents. The results served as the basis for an implementation of stream processors based
on active documents called Axlog widgets. In a second one, we see active documents as the core of data
centric workflows and consider various ways of expressing constraints on the evolution of documents. The
implementation, called Axart, validated the approach of a data centric workflow system based on active
documents.

Mots clefs : XML, documents actifs, satisfiabilité, pertinence, workflow

Keywords: XML, active documents, satisfiability, relevance, workflow

À l’exception de l’annexe C, qui propose un résumé de la thèse , cette thèse est rédigée en anglais.

With the exception of Appendix C, that is a summarize of the thesis, this thesis is written in English.

Introduction

One of the major issues faced by Web applications is the management of evolving of data. In
this thesis, we consider this problem and in particular the evolution of active documents. Active
documents is a formalism describing the evolution of XML documents by activating Web services
calls included in the document. It has already been used in the context of the management of
distributed data [Abiteboul 08a]. The main contributions of this thesis are theoretical studies
motivated by two systems for managing respectively stream applications and workflow applications.
In a first contribution, we study the problem of view maintenance over active documents. The results
served as the basis for an implementation of stream processors based on active documents called
Axlog widgets. In a second one, we see active documents as the core of data centric workflows and
consider various ways of expressing constraints on the evolution of documents. The implementation,
called Axart, validated the approach of a data centric workflow system based on active documents.

In a first part, we focus on streaming applications. The Web includes a large number of sources
consisting of XML streams such as news or Blog feeds. Many Web pages are simply aggregations
of news feeds. At the heart of such pages, one finds stream querying. We present a formal model,
called Axlog, that captures simple queries over streaming sources. Our approach is in the spirit of
view maintenance over active documents. Our main contribution, published in [3], is a study of
two theoretical notions: satisfiability and relevance. We briefly outline an algorithm to maintain
a view over document that includes input streams, see [4]. The algorithm uses these theoretical
notions in order to combine together database techniques: optimization evaluation techniques for
datalog queries, view maintenance techniques, stream processing techniques for XML ,and filter
techniques. The Axlog model is supported by the system P2PMonitor, that is demonstrated in [9].
P2PMonitor is a peer to peer system which monitors other peer to peer systems by managing XML
stream queries. The system P2PMonitor and the view maintenance algorithm have been presented
in detail in the thesis of Bogdan Marinoiu [Marinoiu 09].

In a second part, we address the problem of sequencing interactions between Web applications.
E-commerce Websites are a good example of applications where sequencing is crucial. The
interactions between the users and the applications are constrained in order to conform to a
workflow. Several workflow languages have been introduced, such as BPEL. However, most of the
languages focus on the sequencing of the actions rather than on the data used in the process. New
kinds of workflow languages more focused on data, called data-centric workflows, have recently
been introduced. We present the AXML Artifact model, [5], inspired by the Business Artifact
model, a data-centric workflow language introduced by IBM. Our main contribution, published in
[2], studies and compares different ways of expressing the sequencing of the operations based on
different paradigms including automata, pre- and post-conditions for operations, or temporal logic.
We briefly describe a system [8] implementing a portion of the AXML Artifact model.

The thesis is organized in two parts. The first deals with streaming applications and the second
with sequencing. In each part, we use the same organization. After an overview of the part, we
discuss the related work. We then present the model and study theoretical issues for the particular
model. Finally, we briefly discuss the implementation work based on these theoretical studies.

The first part is composed of three chapters: Chapter 1 presents the related work. Chapter 2

1

Introduction

describes the model and the study of the two key notions of satisfiability and relevance in the
context of the Axlog model. Chapter 3 describes the algorithm proposed to efficiently implement
applications based on the Axlog model and the system P2PMonitor supporting them.

The second part is composed of three chapters. Chapter 4 presents the related work. Chapter
5 describes the core of the model and the study of constraints specifying the evolution of active
documents. Finally Chapter 6 discusses some extensions of the model and an implementation.

Detailed proofs are provided in the appendix. Appendix C is a resume into French of the thesis.

2

Part I.

Maintenance of Views over Active
Documents

3

Overview of Part I

Many Web applications are based on dynamic interactions between Web components exchanging
flows of information. Such a situation arises for instance in mashup systems [Ennals 07] or when
monitoring distributed autonomous systems [Abiteboul 07]. This is a challenging problem that has
recently generated a lot of attention; see Web 2.0 [O’Reilly]. Starting from datalog and Active
XML technologies, we introduce a novel model, Axlog, for capturing interactions between Web
components and show how it can be supported efficiently. An Axlog widget uses an active document
interacting with the rest of the world via streams of updates. Its input streams specify updates the
document (in the spirit of RSS feeds), whereas its output streams are defined by queries on the
document. More precisely, the output stream represents the list of update requests to maintain
the view for the query. The queries we consider here are tree-pattern queries with value joins
(and a template to produce an XML result). Our data model and queries may include a time
dimension, an essential feature for such a setting. The crux of the support of Axlog widgets is the
maintenance of views corresponding to queries over the active documents. We exploit an array
of known technologies for datalog optimization techniques such as MagicSet, view maintenance
optimizations such as Differential technique and efficient XML filtering. The novel optimization
technique we propose is based on two fundamental new notions: relevance (different than that of
MagicSet), satisfiability for active documents.

First, we present the core of the model where the updates are only insertions and the queries
are tree pattern queries. We introduce and study two fundamental concepts in this setting, namely,
satisfiability and relevance. Some fact is satisfiable for an active document and a query if it has
a chance to be in the result of the query in some future state. Given an active document and a
query, a call in the document is relevant if the data brought by this call has a chance to impact the
answer to the query. We analyze the complexity of computing satisfiability in our core model, and
for extensions. In the core of the model, the only updates are insertions. In the extensions, the
active document may be associated to a schema, the updates may also be deletions, the queries
may contain some negations and the model and the queries may include a time dimension. We also
analyze the complexity of computing relevance for the core model.

The Axlog system is the core of the P2PMonitor system. We briefly present the system and the
integration of Axlog widgets in it. We briefly explain how satisfiability and relevance are used in
the view maintenance algorithm. To summarize, Axlog widgets can be used to support a number
of tasks in distributed environments such as stream processing. The platform supporting Axlog
widgets has been demonstrated in [9] using a supply chain application [Kapuscinski 04]. It is used
in a new version of a P2P monitoring system, P2PMonitor [Abiteboul 07]. The implementation
uses an efficient view maintenance algorithm [4]. This algorithm is notably based on satisfiability
and relevance [3].

The first part is composed of three chapters: Chapter 1 presents the related work. Chapter 2
describes the model and the study of the two key notions of satisfiability and relevance in the
context of the Axlog model. Chapter 3 describes the algorithm proposed to efficiently implement
applications based on the Axlog model, and the system P2PMonitor supporting them.

5

Chapter 1.

Related Work

This chapter presents related works for the first part. It is organized as follows. First, we briefly
present the main streams systems that have already been implemented. Then, we present the
techniques for query evaluation, we use or that are related on our work. The problem of view
maintenance has already been studied in depth. We mention some key techniques. The notion of
satisfiability for queries over trees has already been studied in other contexts that we present here.
Moreover, the notion of satisfiability of a query over active documents is related to the problem of
querying incomplete informations that we also mention. Finally, one of the extensions of Axlog
widget is concerned with typing. We discuss typing notions related to the one we use in this thesis.

1.1. Stream processing systems

1.1.1. Relational streams systems

Data stream processing has been intensively studied, in particular for the relational model, e.g. the
Borealis [Abadi 05], Aurora [Abadi 03] and STREAM [Motwani 03] systems. The main focus of
these systems is to deal with very intensive stream sources and a very large number of queries. Their
approach is typically to rewrite the query into an efficient plan of stream processors communicating
together. Most of the optimizations are based on using nonblocking operators. A blocking operator
is an operator that has to know the entire definition of the streams to fully process them. For
example, the join operator is blocking.

1.1.2. XML streams systems

In the XML stream processing field, lots of works focus on stream filtering, e.g [Diao 02, Green 03].
XML stream filters are generally based on automata, either non-deterministic [Diao 02], or deter-
ministic [Green 03]. These approaches scale very well with the number of queries on a stream by
aggregating the different filter into a single one.

Several XQuery processors for XML data streams have been proposed, e.g. [Florescu 03,
Koch 04], as well as distributed systems that handle streams e.g. StreamGlobe [Kuntschke 05,
Stegmaier 04]. Some works, e.g. [Fernández 07], are blending stream processing with optimization
techniques for XML databases, however in a quite different setting than the one we consider here.

1.2. Query evaluation

1.2.1. Datalog

Datalog [Abiteboul 95] is a declarative language to query relational data. In this part, we intensively
use the fact that tree-pattern queries can be rewritten into a datalog program as shown in [Gottlob 02,

7

Chapter 1: Related Work

Gottlob 05, Miklau 04]. We use datalog and benefit from known optimization techniques such as
Magic Set [Beeri 91] (or QSQ [Vieille 89]).

To compute the satisfiability of queries over an active document, we use constraint query
languages [Kanellakis 95], that is an extension of datalog to manipulate constraints.

In [Ronen 07], datalog is extended with XPath predicates; the evaluation is not incremental.

1.2.2. AXML

Query evaluation for active documents is studied in [Abiteboul 04a]. Their goal is to know which
functions have to be called to answer the query. The context is essentially different since the
functions are non-stream and the incremental maintenance is not considered. In the context of
distributed query optimization, an optimizer for AXML, called Optimax [Abiteboul 08b], has been
developed. In this context, a recent study has been done on the equivalence of AXML documents
[Abiteboul 11].

1.3. View Maintenance

1.3.1. Incremental View Maintenance

Our work is based on previous works on incremental view maintenance for relational databases
[Blakeley 86b, Ceri 94, Gupta 95, Gupta 93]. These works proposes an optimization method
typically by rewriting the query in order to compute only the new facts. Some auxiliary structures,
such as the number of times that a fact is derived, may have to be maintained if the deletions are
considered.

Incremental view maintenance for a graph semistructured data is studied in [Abiteboul 98]. Some
recent works have addressed the issue of incremental maintenance of no-join XPath views over trees
[Onizuka 05, Sawires 05, Björklund 09]. In particular, the work [Björklund 09] gives theoretical
bounds over the structures used to maintain Boolean no-join tree-pattern queries. The techniques
are based on automata theory. The maintenance of XQuery views is studied in [Foster 08] but
without data streams and with data fully residing in memory.

1.3.2. Relevance

The relevance of an update for a query/view has been intensively studied in relational databases,
e.g., [Blakeley 86a, Levy 93, Calì 08]. The fact that a stream is relevant, is related to the notion of
critical tuple for a conjunctive query presented in [Miklau 07].

The relevance of updates for XML trees have been studied in [Benedikt 10, Benedikt 09]. The
updates and queries are expressed in a large subset of XQuery, which is more powerful than our
tree-pattern queries. In [Benedikt 09], the relevance of updates is defined only from the schema of
the document. In [Benedikt 10], the relevance of updates is based on the notion of a set of nodes
that may impact the query if they are affected by an update. Because of the complexity of the
updates and the query, the computation of this set is non primitive recursive.

In active document contexts, function call Id relevance has also been studied [Abiteboul 04a,
Abiteboul 04b, Abiteboul 06]. The notions of relevance we introduce below (relevance and axlog-
relevance) are both more refined than previous notions such as lazy relevance.

8

1.4. Satisfiability and containment of queries

1.4. Satisfiability and containment of queries

The notion of satisfiability of queries over trees have been studied for different formalisms both for
static and for evolving trees.

1.4.1. Satisfiability of tree­pattern queries over static trees

In our study of satisfiability, we use some previous results on tree-pattern query satisfiability
and containment possibly under constraints such as DTD [Benedikt 08, Björklund 08, David 08,
Figueira 09, Miklau 04]. All these works are about trees with multiset semantics. As we demon-
strated in Section 2.4, the semantics of reduced trees introduces some subtleties. However, we
explain in Appendix A.3 how to use previous works in our setting.

First, remark that tree-pattern queries are always satisfiable if the trees do not have to respect
type constraints. The query containment of Boolean tree-pattern no-join queries has been studied in
[Miklau 04]. The complexity is co-np-complete.

The satisfiability and query containement of XPath queries are studied in [Benedikt 08, Figueira 09].
XPath queries are less powerful than tree pattern queries in particular because they cannot express
arbitrary joins (see Figure 1.1). In [Benedikt 08], the question of satisfiability of positive XPath
under DTD and containment of XPath queries is studied. The satisfiability of a positive Xpath query
under a DTD is np-complete. In the context of XPath, [Figueira 09] shows that the satisfiability of
an XPath query with negation over unordered trees is decidable. Its complexity is exptime. It gives
an upper-bound for query containment of Xpath under DTD.

Satisfiability and containment of conjunctives queries over trees is considered in [Björklund 08].
Conjunctive queries include tree-pattern queries. The satisfiability of a conjunctive queries under
DTD is np-complete and the containment of two conjunctive queries is 2-exptime.

a

b

c

$x

d

$y

e

c

$x

d

$y

Figure 1.1.: An arbitrary join tree-patern query

Satisfiability of Boolean combination of tree-patterns under DTD is studied in [David 08]. This
problem is undecidable in general. The problem becomes decidable for bounded depth trees and
the complexity is nexptime. There are subtleties about the semantics of tree pattern queries in
[David 08], inequalities constraints between variables are allowed and the valuation between a
tree-pattern query and a tree has to be injective, that is not our semantics. However, most of the
results can be adapted by removing these hypotheses. In particular, the satisfiability of Boolean
combination of tree patterns under DTD is also undecidable in our model.

Satisfiability for evolving trees There have been works on the verification of temporal prop-
erties for active documents. [Ma 08] also studies active document satisfiability for tree-pattern
queries. However, it deals with ordered trees, which is, as mentioned in the introduction, a

9

Chapter 1: Related Work

much more complex issue. The paper is rather imprecise and the results seem to contradict well-
known results [Muscholl 04]. [Abiteboul 04b] studies reachability for monotone AXML systems.
[Abiteboul 09, Genest 08, Genest 10] study a rather general class of non monotone AXML systems
and a very large class of temporal formulas. Our model is in many aspects more limited than
those used in these previous works. This is the price to pay to obtain ptime data complexities as
in our framework. However, it should be noted that the setting we consider allows unbounded
runs (which is not the case in [Abiteboul 09]) and infinite data values (which is not the case in
[Genest 08]). [Genest 10] proposes a more general formalism than ours but the known complexity
of the satisfiability of a query is not primitive recursive.

1.5. Incomplete information

1.5.1. Incomplete relational databases

First, the problem of satisfiability we study is related to the problem of querying an incomplete
database, e.g. [Grahne 91, Imielinski 82, Levy 96]. The representation of satisfiable answers we
use is related to the C-tables introduced in [Imielinski 84]. A C-table can be seen as a table of
generalized tuples. A C-table represents the set of instances that can be obtained by mapping a
valuation of the variables appearing in the C-table to it. This notion is more precise than the notion
of satisfiability introduced in our context. Indeed, our definition of satisfiability defines the union
of all the possible tuples that may be obtained by updates of the active document.

1.5.2. Trees and incomplete information

Active documents can be seen as trees with incomplete information, where function call Ids
represent incomplete information. The typed active documents we use are related to the incomplete
trees used in [Abiteboul 06]. They use trees with specific labels associated to a DTD. These labels
represent the existence of subtrees that satisfies the associated DTD. In this paper, the authors
explain how to refine an unknown XML database by querying it. In particular how to check if
a query may be satisfied by the unknown database by using incomplete information. The DTD
and queries are slightly different from ours. Their DTD can only express the possibility of the
existence of a subtree labeled by a label a (and not a precise number). They can express inequalities
constraints on values. In the same way, their queries based on tree-patterns cannot express joins but
can express inequalities of values to some constant. Another main difference comes from the set
semantics of trees used in our model vs the bag semantics in [Abiteboul 06] .

1.6. Type

The DTD formalism for unordered and reduced trees has already been introduced in [Abiteboul 09].
However a complete study of this formalism was not done in [Abiteboul 09]. To our knowledge,
the notions of reduced tree and unordered trees have not been studied simultaneously in the context
of regular languages. However, these notions have been considered separately as summarized next.

1.6.1. Unordered trees

Our notion of unordered DTD is inspired by other formalisms proposed for unordered trees. One
of the most general typing formalisms for unordered trees has been considered in [Seidl 03]. It

10

1.6. Type

introduces a kind of tree automaton where constraints are expressed by Presburger formulas. In
particular, they show that for a particular formalism emptiness is np-complete.

1.6.2. Reduced trees

The notion of reduced trees is related to the tree automata with sibling constraints for unranked trees
[Wong 07, Löding 09]. The constraints expressible in this formalism allow imposing equalities and
disequalities over sibling trees. They show that emptiness is decidable for such automata.

11

Chapter 2.

Satisfiability and relevance for queries over
active documents

2.1. Introduction

In this chapter, we introduce the core of the Axlog model, i.e active documents with queries that
define a view on them. An active documents is a tree with a set semantics for children of a node and
interacting with the rest of the world via streams of updates. For the queries, we use tree-pattern
queries with joins whose answers are tuples of bindings of the variables in the pattern. Such a
document with queries (i.e. views) defined on it is what we call an Axlog widget. The term Axlog
results from the marriage between Active XML (AXML for short) [Abiteboul 08a] and datalog.
The input streams of an Axlog widget specify updates to the document (in the spirit of RSS feeds).
In most of the chapter, the focus is on input streams where the updates are only insertions, although
we do consider also deletions. An output stream is defined by a query on the document. More
precisely, it represents the list of update requests to maintain the view of the query.

Our main contribution is a study of two novel notions for active documents, satisfiability and
relevance. First, we say that some fact is satisfiable for an active document and a query if it has
a chance to be in the result of the query in some future state. In the spirit of the evaluation of
tree-pattern queries using datalog [Gottlob 02], we show how to evaluate query satisfiability in
datalog, so in ptime in the size of the document. Note that the number of satisfiable tuples may be
infinite. We use a finite representation based on tuples with variables for the set of satisfiable tuples.
To handle these representations, we use the constraint query language CQL [Kanellakis 95].

We also study satisfiability (for a document and a query) for extensions of the model. First we
introduce typing. We consider typing for both the documents [Comon 97, DTD] and the data on
the input streams [WSDL]. Since we use set semantics, we adapt DTDs to ignore the ordering of
siblings. We show how to evaluate satisfiability for documents constrained by unordered-DTDs.
Then we consider a number of nonmonotonic features, like deletions, terminating calls, negation in
queries. In particular, we see that negation rapidly leads to undecidability of satisfiability. Finally
we consider temporal queries, a most useful feature in the context of active documents, e.g., for
monitoring. We extend the model with time and show how to evaluate satisfiability building on
constraint query languages.

The second key notion we study is relevance. Given an active document and a query, a call
in the document is relevant if the data brought by this call has a chance to impact the answer
to the query. This is in the spirit of data relevance in MagicSet [Beeri 91] and lazy-relevance in
[Abiteboul 04a]. Relevance of function calls has also been studied in [Abiteboul 04b]. Some works
on view maintenance also discuss relevance of updates, as in [Blakeley 86a, Abiteboul 06]. We
show how to evaluate relevance in ptime in the size of the data. The combined complexity is high
and the ptime algorithm is too expensive for practical purposes. We propose a weaker condition

13

Chapter 2: Satisfiability and relevance for queries over active documents

namely axlog-relevance, that is easier to verify.
The work presented here has been used in the implementation of a system supporting Axlog

widgets outlined in Chapter 3.
We want to stress the fact that we consider only unordered trees (set semantics for the children of

a node). Results in [Muscholl 04] indicate that document satisfiability for ordered trees and types
specified by DTDs is much more complicated.

The chapter is organized as follows. In Section 2.2, we formalize the model. In Section 2.3, we
study satisfiability. We consider types in Section 2.4 and other extensions of the model in Section
2.5. Section 2.6 is about relevance. The proofs are given in appendix.

2.2. The model

In this section, we define the data structure (active documents) and the query language (tree-pattern
queries) that are used for defining the Axlog model. We define Axlog systems. We introduce here
the core model. We will consider a number of extensions in Sections 2.4 and 2.5.

2.2.1. Definitions

We assume the existence of some infinite alphabets I of node identifiers, L of labels, C of (function)
call Ids, and V of variables. We do not distinguish here between XML data, attributes and labels, i.e.,
our labels are meant to capture these three notions. We use the symbols n,m, p for node identifiers,
a, b, c... for labels, ? f , ?g, ?h... for call Ids, possibly with sub and superscripts, and $x, $y, $z... for
variables. We consider active documents in the style of AXML [Abiteboul 08a, Axml]. Such
documents may be viewed as abstractions of XML documents including calls to external resources,
e.g., Web services or user inputs.

Definition 2.1 (Active document). An active document is a pair (t, λ) where (1) t is a finite binary
relation that is a tree∗ with nodes(t) ⊂ I ; (2) λ is a labeling function over nodes(t) with values in
L ∪ C; and (3) the root and each node that has a child are labeled by values in L (so only leaves
may be labeled by values in C). We also impose that: (4) no call Id occurs more than once in an
active document.

A (data) forest is a finite set of documents and of trees consisting of a single node with a label
from C.

Remark 1. In AXML, a function call node has children denoting the parameters of the call. We
consider in this paper that calls have already been made and a function call node, labeled with a
call Id, is just a marker to indicate where the results of the call should go, i.e., as siblings of this
node. Observe that, therefore, function call nodes do not have children, so there is no nesting of
such nodes.

Four examples of documents are given in Figures 2.1 and 2.2. The last document of Figure 2.2
presents the members of the Webdam team. Calls to the personnel database feed the document
namely ?researcher and ?phd. In a standard database manner, we use in this paper a set semantics
for the children of a node. Two active documents (t, λ), (t′, λ′) are isomorphic if they differ in
their node identifiers only. In the following, we will consider that all documents are reduced, i.e.,
that they don’t include a tree node with two isomorphic subtrees. Clearly, each document can be

∗The trees that we consider here are unordered and unranked.

14

2.2. The model

I J K

a

b

? f

c

e

a

b

? f c

e

Figure 2.1.: Updating of an active document

Webdam

Webdam

Permanents

?researcher researcher

name

Luc

topic

xml

researcher

name

Serge

topic

xml

· · · PhDStudents

?phd phd

name

Alban

adviser

Serge

phd

name

Pierre

adviser

Serge

phd

name

Wojciech

adviser

Luc

Figure 2.2.: An example of active documents

15

Chapter 2: Satisfiability and relevance for queries over active documents

reduced by eliminating duplicate isomorphic subtrees, and the result is unique up to isomorphism.
These notions are lifted to forests in the straightforward manner.

Calls can be seen as subscriptions (to some services) and are meant to receive streams of updates.
Trees evolve in time by receiving results of such update requests from the services called in them.
To simplify, we first consider that (1) the incoming flow of updates consists only of insertions, and
(2) these flows return data not containing new calls. More precisely, an insertion for an active
document I is an expression add(? f , J) where ? f is a call occurring in I and J a “passive” active
document (i.e., it contains no calls). Let I be an active document, add(? f , J) an update to I and n

the node of I labeled ? f . The result of applying add(? f , J) to I, denoted add(? f , J)(I), is the active
document obtained from I by adding, as a sibling of n, a fresh copy∗ J′ of J. For instance, for I, J,K

as in Figure 2.1, K = add(? f , J)(I). The active document obtained from I by applying a sequence ω
of inserts is denoted ω(I). To generalize, we also see an expression add(? f , {J1, ..., Jn}) as an update.
Applied to some active document I, it has the same effect as the sequence add(? f , J1);...; add(? f , Jn)
of updates (for some ordering of the updates in the set). Observe that the order of application of
these updates is irrelevant. This will no longer be true when we consider extensions of the model.
Also note that, by definition of active documents, a tree consisting of a single function call node is
not a document. This is ruled out because a call may request the insertion of a set of trees, so yield
a forest.

Constraint (4) in the definition of active document may seem arbitrary. We justify it next. We
can extend the definition of updates to allow the multiple occurrences of a call Id. When such
a call returns some data, isomorphic copies of this data are inserted in the document in various
places corresponding to occurrences of the call. This introduces some nonregularity (in the sense
of regular trees). To see that, consider the set of documents that can be reached from the document
r[a[? f]][b[? f]].

The queries considered in our model are tree-pattern queries. Examples are given in Figure 2.3.
The single lines indicate a parent relationship, and the double lines an ancestor relationship. The
$-variables may match any label. A variable $x is requested to be in the result if marked by a “+”.
The result therefore consists of tuples over the variables marked with “+”. The variables that are
not marked by a “+” are existentially quantified. So a query, in which there is no “+” mark, is a
boolean query. Query q1 is a Boolean query, and the other three queries return binary relations over
$x and $y. We consider only equality joins for now. We will introduce other comparators further
on. Formally, we have:

q1 q2 q3 q4

a

b

c

d

a

+$x

c

+$y

c

d

a

b

+$x

+$y

c

e

$x

Webdam

researcher

name

+$x

topic

xml

phd

name

+$y

adviser

$x

Figure 2.3.: Examples of queries

∗The copy is isomorphic to J and its nodes are disjoint from the nodes of I.

16

2.2. The model

Definition 2.2. (tree-pattern query) A (tree-pattern) query q is an expression (E/, E//, λ, π)
where: (i) E/, E// are finite, disjoint subsets of I × I, and (E/ ∪ E//) is a tree; (ii) The labeling
function λ maps nodes(q) to L ∪ V; and (iii) projection π is a subset of nodes(q) with labels in V ,
where nodes(q) is the set of nodes in E/ ∪ E//.

The semantics of queries is defined as follows.

Definition 2.3. (Semantics of TPQ) Let q = (E/, E//, λ, π) be a query and I = (t′, λ′) a document.
A valuation ν from q to (t′, λ′) is a mapping from nodes(q) to nodes(t′) that is:

(i) Root-preserving: ν(root(q)) = root(t′).
(ii) Parent/descendant preserving: For each (p, p′) ∈ E/, ν(p) is a parent of ν(p′) in t′; and for

each (p, p′) ∈ E//, ν(p) is an ancestor of ν(p′) in t′.
(iii) Label-preserving: For each p ∈ nodes(q), if λ(p) ∈ L then λ′(ν(p)) = λ(p), otherwise

λ′(ν(p)) ∈ L.
(iv) Join-obeying: If λ(p) = λ(p′) ∈ V , then λ′(ν(p)) = λ′(ν(p′)).

The result q(I) is the relation {λ′(ν(π)) | ν a valuation}.

If there is no variable occurring more than once, the query is said to be a no-join query. If π is
empty, the query is said to be a Boolean query. Its result is then either the empty set (false) or the
set containing the empty tuple (true). For a Boolean query q, if q(I) is true, we say that I satisfies q,
denoted I |= q. For a non-Boolean query q, using standard notation, we denote the fact that a tuple
u is a result, i.e. u ∈ q(I), by I |= q(u).

In general, we can use non-recursive datalog (nrec-datalog for short) to compute the answers to a
query in the style of [Gottlob 02, Miklau 04]. We assume, in a standard manner, that the document
is represented in a relational database using the extensional relations root, child, descendant, label

with their standard meaning ; in particular, label(a, x) holds if the node with identifier x is labeled
by a ∈ L. The representation also uses a unary relation, namely function, with the semantics that
function(x) holds if the label of node x is in C, i.e., x is a function call node. We construct by
recursion the datalog program Pq that computes q(I) given I using the programs corresponding
to its subqueries. The program has one relation p for each node p of q. The relation for the root
of q defines the answer. Observe that the datalog program needs to carry along labels if they are
potentially in the result or can potentially be joined to other labels. Observe also that the function
call nodes play no role for computing the answers to the query. Details are omitted. Efficient
algorithms for evaluation of tree-pattern and XPath queries can be found in [Gottlob 05].

2.2.2. Axlog Systems

We now consider Axlog systems where a call Id may correspond to a subscription to a query over
some active document of the system. This introduces recursion in the evaluation.

We want queries producing trees whereas the queries so far only produce tuples. For that, we
define queries with template that consist of pairs (q, t) where q is a query and a template t is a tree
where the labels are constants and variables occurring in q. A result for such a query is obtained by
replacing the variables in the template t by the valuation of the variables in q as given by a result
tuple.

Formally, an Axlog system S is composed of:

• A finite set of Axlog widgets, where an Axlog widget is a pair (d, (q, t)) where d is a document
and (q, t) a query with template, such that no call Id occurs twice.

17

Chapter 2: Satisfiability and relevance for queries over active documents

• A function ξ over the calls Ids occurring in the documents such that for each ? f , ξ(? f) is
either a specific symbol ⊤ (the call is external) or some (d, (q, t)) in the system (the call is
internal).

• For each document d, a queue of updates not yet treated denoted, Bd. These queues are
originally empty.

The evolution of an Axlog system is defined as follows:

1. an update may come from outside, i.e some add(? f ,K) for each external call occurring in
some document d. This update is added to the queue Bd.

2. the first update in a queue of some document arbitrarily chosen, say (d, (q, t)), is applied to
the document. The queries associated to a document produce new updates, i.e. trees not
appearing previously in the answer of the query, that are propagated to the corresponding
queues.

An Axlog system captures exactly the behaviors of a set of Axlog widgets implemented in
P2PMonitor.

2.3. Satisfiability

We are interested in the evolution of views over such documents, defined by tree-pattern queries.
First, given a document, we want to know if a Boolean query holds in some reachable state.
Similarly, we are concerned with determining whether a tuple belongs to the view in some reachable
state of the document. These notions are related to that of coverability in dynamic systems
[Finkel 01]. To investigate these issues, we introduce and study the notion of query satisfiability for
a document.

Definition 2.4. Given a document I and a query q, a tuple u is satisfiable for (I, q) if u ∈ q(ω(I))
for some (possibly empty) sequence ω of insertions. We say that a Boolean query q is satisfiable

for I, if for some ω, ω(I) |= q, i.e., the tuple () is satisfiable for (I, q). This is denoted by I |= �q.
Clearly, if I |= q, then I |= �q.

For example, the tuple () is satisfied for (I1, q0) of Figure 2.4, denoted by I1 |= q0. Similarly, for
q0, I2, I3 in Figure 2.4, I2 6|= �q0 and for I3 |= �q0. For I3, q0 does not hold but ? f may bring some
node labeled c to make q0 hold. Observe that this leads to some form of 3-valued logic where a
tuple may be true, false for now but possibly true in some future, or false forever. This notion is
interesting in its own right. For instance, consider in the context of the supply chain application of
[Kapuscinski 04] a query that selects the mail orders that completed successfully. One may want to
know which mail orders still have a chance to complete successfully even though they are not part
of the query result yet.

We also use a datalog program to compute the set of satisfiable tuples for (I, q). We assume
that the document is represented in a relational database using the extensional relations root, child,

descendant, label, function, time with the standard meanings. In particular, label(a, n) (respectively
function(n)) holds if the node with identifier n is labeled by a ∈ L (respectively ? f ∈ F). As
previously mentioned, in the computation of satisfaction, one carries along the bindings of the
variables that may occur in the result or be joined to other labels. For satisfiability, this is more
intricate since parts of the bindings may be brought by future inserts and may still be unavailable.

18

2.3. Satisfiability

q0 I1 I2 I3
a

b c

a

b c

a

b c’

a

b ?f

Figure 2.4.: A query and some active documents

q I I′

a

b

$x

+$x

+$y

a

b

a

a

?f

a

b

?f

a

?g

Figure 2.5.: A query and some active documents

In particular, the set of successful bindings for satisfiability may be infinite. (So, there is typically
no reachable instance that contains all the complete satisfiable tuples since there may be infinitely
many such tuples and instances are finite). To overcome this difficulty, we use generalized n-tuples
and the constraint query language CQL [Kanellakis 95], an extension of datalog with constraints.
We only need for now equality constraints between variables and possibly constants.

Definition 2.5. A generalized n-tuple is a pair (u, C) where u is a tuple of variables and C is a set of
satisfiable constraints of the form $x = $y or $x = a for some a in L.

A generalized tuple (u, C) is a finite representation for a possibly infinite set of (complete) n-
tuples, i.e., the set of tuples θ(u) for some instantiation θ of the variables satisfying C. We say that a
generalized n-tuple (u, C) is satisfiable for (I, q) iff for each instantiation θ of u satisfying C, θ(u) is
satisfiable for (I, q). Consider Figure 2.5. One can verify that, for instance, ($x, $y, $x = a) and
($x, $y, $x = a ∧ $y = c) are satisfiable for (I, q) and for (I′, q). The generalized tuple ($x, $y,∅) is
satisfiable for (I′, q) but not for (I, q).

The previous discussion motivates the following auxiliary notion. Let (u, C) and (u′, C′) be two
generalized n-tuples over the same set of attributes. Then (u′, C′) ⊑ (u, C), (u, C) more general than

(u′, C′), iff for each instantiation θ′ of u′ satisfying C′, there is an instantiation θ of u satisfying C

and θ(u) = θ′(u′). (This corresponds to the existence of a homomorphism from (u′, C′) to (u, C).)
Let q = (E/, E//, λ, π) be a tree-pattern query. We now sketch the construction of a program Pq

that computes the satisfied tuples for an active document. This program is used to build the program
P̂q that computes the generalized tuples for satisfiability. Program Pq has two different kinds of
intensional relations:

• One intensional relation for each node p, denoted p. The relation p has an arity equal to the
number of different variables appearing in the subtree rooted by p and appearing in π or in
another part of the tree plus one.

• One intensional relation q. This is the output relation and has an arity equal to the arity of π.

19

Chapter 2: Satisfiability and relevance for queries over active documents

Given an active document I, a tuple (n, a1, . . . ak) belongs to the relation p for Pq(I) iff the tuple
(a1, . . . , ak) is an answer of the subquery rooted at p evaluated over the tree rooted at the node n of
I. Intuitively, the rule associated to the relation p checks if there exists a tuple u belonging to the
relation p′, for each child p′ of p and that these tuples satisfy the join constraints over the values
and the relation constraints (children and descendants) over the nodes.

We now sketch the construction of a program P̂q that computes the generalized tuples for
satisfiability. It has one relation p̂ for each node p in q with the same arity as p and a relation
q̂. Relation p̂ defines the satisfiability for the subquery rooted at p. Program P̂q is obtained as
following :

1. For each rule r of Pq, the program P̂q contains the rule obtained from r by replacing each
relation p by p̂.

2. For each node p of q that is not the root, P̂q also contains is a rule that introduces a generalized
tuple (n, x1, ..., xk,∅) in p̂:

p̂(n, x1, ..., xk)← f unction(n)

where n is a variable denoting a function node and x1, x2, ..., xk are the other variables for the
variables occurring in p̂.

Observe that the second kind of rules may introduce unconstrained variables. This comes from
the fact that a call may a-priori bring data matching any pattern. Note also that equality constraints
in the generalized tuples are introduced by the joins.

The program P̂q for the query q of Figure 2.5 is given in Algorithm 2.1. The nodes of the query
are numbered using preorder traversal. The node p1 denotes the root of the query. The six first
rules are derived from Pq. The last four rules are added to compute the satisfiable tuples in CQL.

Algorithm 2.1 Program P̂q for Query q of Figure 2.5

begin
1 : q̂(x, y)← p̂1(n, x, y)
2 : p̂1(n, x, z)← root(n), label(a, n), child(n, n′),
child(n, n

′′
), p̂2(n′, x), p̂4(n

′′
, y, z), x = y

3 : p̂2(n, x)← child(n, n′), label(b, n), p̂3(n′, x)
4 : p̂3(n, x)← label(x, n)
5 : p̂4(n, x, y)← label(x, n), child(n, n′), p̂5(n′, y)
6 : p̂5(n, y)← label(y, n)
7 : p̂2(n, x)← f unction(n)
8 : p̂3(n, x)← f unction(n)
9 : p̂4(n, x, y)← f unction(n)
10 : p̂5(n, x)← f unction(n)

end

In [Kanellakis 95], it is shown how to evaluate datalog on generalized tuples in ptime. Using
their result, one can show that:

Theorem 2.6. Let q be a query. Then there exists an nrec-datalog program P̂q such that for each

generalized n-tuple (u, C), (sound) if (u, C) ∈ P̂q(I), then (u, C) is satisfiable for (I, q) and (complete)

if (u, C) is satisfiable for (I, q), then there exists (u′, C′) in P̂q(I), (u, C) ⊑ (u′, C′). Given I, one can

compute P̂q(I) in ptime in the size of the document.

20

2.3. Satisfiability

The proof is given in Appendix A.2.
Observe that the set of tuples returned by the program P̂q may be exponential in the size of q. To

analyze more precisely the complexity, we turn to Boolean queries. It is interesting to note that a
generalized tuple is satisfiable for some (I, q) if the Boolean query q(θ(u)) is satisfiable for I for
some θ that maps each variable in u to a distinct new constant not occurring in I or q. We now
consider the complexity of deciding whether a Boolean query is satisfiable for some document.

Theorem 2.7. Given I and a Boolean query q, one can decide whether q is satisfiable for I in ptime

in the size of I. The problem is np-complete in the size of q (or the size of I and q).

A detailed proof is given in Appendix A.2. We provide next a sketch of that proof.

Proof. (sketch) The data complexity follows from Theorem 2.6. NP-hardness is by reduction of
the evaluation problem that is known to be np-complete. See Theorem 7.3 of [Gottlob 02]. We now
prove that the satisfiability problem is in NP. Consider an instance (I, q) of the problem. To show
that I |= �q, it suffices to exhibit a sequence ω of insertions and a valuation ν of q in ω(I). First,
observe that if such a sequence exists, there is one with a number of insertions bounded by |q| and
the size of inserted trees also bounded by |q|. Furthermore, observe that we need only to consider
a polynomial number of labels (we have to guess values for variables). Then we have to check
(in polynomial time) that the given candidate valuation is successful. So, a polynomial number
of guesses (to guess a valuation) followed by a polynomial computation (to check the valuation)
suffice. This shows that the problem is in np. �

This result can be extended to Axlog systems.

Axlog system and recursion One can consider an Axlog system. Recall that in each document,
queries produce streams of answers. These streams are used as input streams to other documents of
the system

The datalog computation can be generalized to this setting. Observe that the program may now be
recursive. The following theorem considers the data and combined complexities for such systems.

Theorem 2.8. Let S and (d, q) be an Axlog system with empty queues and an Axlog widget

belonging to this system. Then there exists a datalog program P̃S,q such that for each generalized

n-tuple (u, C), (sound) if (u, C) ∈ P̃S,q(S), then (u, C) is satisfiable for (d, q) and (complete) if (u, C)
is satisfiable for (d, q), then there exists (u′, C′) in P̃S,q(S), (u, C) ⊑ (u′, C′). Given S, one can

compute P̃S,q(S) in ptime in the size of the documents of S .

The document satisfiability problem for Axlog-system is exptime-complete in the size of the

system.

The proof is given in Appendix A.2.
We finish this study with two remarks : the first is about a subclass of queries for which the

problem is easier and the other discusses an extension.

Remark 2 (no-join queries). The program complexity of the problem is np-complete. The complex-
ity comes from the joins. Indeed, one can check whether a Boolean no-join query q is satisfiable for
a document I in O(|q| × |I|). This is based on P̂q of Theorem 2.6 and using [Gottlob 02, Miklau 04].

Remark 3 (active data). We can also consider insertions of active data (i.e., data including new call
Ids). For this particular problem, such feature has no real impact on the complexity of the problem.

21

Chapter 2: Satisfiability and relevance for queries over active documents

2.4. Typed documents

A schema introduces types for the document (as in DTD [DTD]) and for the return values of calls
(as in WSDL [WSDL]). We consider types for unordered unranked trees inspired by DTDs. We
study the complexity of satisfiability for queries over documents with schemas specified with such
types. Results on query satisfaction (in the classical sense) by static documents constrained by
DTDs can be found, e.g, in [Benedikt 08, Björklund 08, David 08, Figueira 09, Miklau 04].

The proofs are only sketched here. Detailed proofs may be found in Appendix A.3.

2.4.1. Schema definition

DTDs have been defined for unranked ordered trees. We adapt them to our context of unranked
unordered trees. Recall that we assumed that a call Id occurs at most once in the document. On the
other hand, we will accept that a document contains several calls, e.g. ? f1, ? f2 to the same function,
say w. (For instance, ? f1 may correspond to the call w(0) and f2? to the call w(1).) We assume
the existence of an infinite set F of function names. The types we use are based on cardinality
constraints on children of nodes. For example, the following “unordered-DTD” ∆1 defines all trees
that have a root labeled a with one b-child, any number of c-children (the nodes labeled b or c are
leaves), and at least one call to some function w that returns (in each of it messages) only one node
labeled c:

d root : a

a→ |b| = 1 & |c| > 0 & |w| > 1
b→
c→

call w root : c

c→
Formally, a cardinality constraint over some set E is a Boolean combination of expressions of

the form |e| > k, for some e ∈ E and integer k. A multiset M of E is a function from E to N. A
multiset M satisfies a cardinality constraint, denoted M ⊢ C, if by replacing each |e| by M(e), the
cardinality constraint is true.

We use a particular symbol, namely dom, to represent the set of data values, i.e., the elements of
L except those labels occurring in the type definition.

Definition 2.9. An unordered-DTD is an expression (τ, Σ, F, r) (denoted τ when the other symbols
are understood) where Σ is finite set of labels, F a finite set of function names, r ∈ Σ is the root
label and τ maps each label in Σ into a cardinality constraint over Σ ∪ F ∪ {dom}. The satisfaction

of an unordered-DTD (τ, Σ, F, r) by a tree (t, λ) with labels in L ∪ F , denoted t |= τ, is defined
as follows: (i) the root must be r; (ii) the nodes with labels in L − Σ or in F are leaves; (iii) the
children of each node with label in L must satisfy the corresponding cardinality constraints. The
function τ is called the children constraints of (τ,Σ, F, r). A tree satisfies the children constraints τ
iff it satisfies the previous properties (ii) and (iii).

Based on these types, we define schemas. (We consider single document schemas but this can be
easily generalized.)

Definition 2.10. A(n Axlog) schema ∆ is an expression (d, F, ζ) where d is the name of the
document, F is a finite set of function names and ζ is a function associating to the document name
an unordered-DTD and to each F in F another unordered-DTD. Intuitively, the unordered-DTD

22

2.4. Typed documents

associated to the document imposes the shape of the document and each unordered-DTDs associated
of a function name imposes the shape of data brought by the calls of this function.

An instance I of a schema ∆ = (d, F, ζ) is an expression (t, λ, ν) such that the pair (t, λ) is an
active document, ν is a function that maps each call Id to a function name and is the identity on L

and the tree (t, λ ◦ ν) satisfies ζ(d).

Our notion of active documents constrained by an Axlog schema is closely related to the notion
of incomplete trees of [Abiteboul 06].

Reasoning about DTDs and reduced trees is not obvious. The following DTD τ describes the
trees that have a root labeled r and at least two leaves labeled b.

root : r

r −→ |b| > 2

b −→

In Figure 2.6, Tree t1 satisfies τ but t1 is not a reduced tree. Indeed, the reduced tree from t1 is t2.
But t2 has only one leaf labeled b. So, t2 does not satisfy τ. Observe that all trees satisfying τ are
not reduced and their associated reduced trees are all t2. So, even if the set of trees satisfying τ is
not empty, the set of reduced trees satisfying τ is empty.

t1

r

b b

t2

r

b

Figure 2.6.: A tree and its reduced tree

2.4.2. Satisfiability for Axlog schemas

A schema constrains the evolution of an active document. In particular, some insertions may be
inconsistent if they try to transform the instance into an instance not satisfying the schema. For
example, consider the Axlog schema ∆1 previously defined. The insertion add(? f , c) applied to the
instance I3 of Figure 2.4 gives an instance of ∆1, by considering that the Id call ? f is a call to the
function w. But the insertion add(? f , e) leads to a violation of the schema constraint. We assume
that an insertion that does not verify the typing constraints is simply rejected. Given a document
I satisfying ∆1, an insertion ω = add(? f ,K) is valid if K verifies the signatures of the service
corresponding to ? f and if ω(I) verifies ∆1. A sequence ω1; ..., ωk of insertions is considered
valid if for each 1 6 i 6 k, ωi is valid for ω1; ...;ωi−1(I). Observe that for some set of insertions,
some sequencing of the set may be valid and some invalid. The document satisfiability problem is
extended to take schemas into account: a query is satisfiable over an instance of a schema (d, F, ζ)
iff there is a valid sequence ω of insertions s.t. ω(I) |= q.

23

Chapter 2: Satisfiability and relevance for queries over active documents

The following theorem shows that the document satisfiability problem is still tractable in presence
of unordered-DTDs with respect to data complexity.

Theorem 2.11. Let a query q and an Axlog schema ∆ = (d, F, ζ) be fixed. Given I, the satisfiability

problem for q,∆ and I an instance of ∆, is in ptime in the size of I.

Proof. (sketch) To check if a tuple u is satisfiable, we proceed as follows. First the tuple must be
satisfiable in absence of typing constraints. We compute the satisfiable tuples and find all those that
“cover” u. We prove that u is derived iff there exists a sequence of updates whose length is bounded
by a polynomial in the size of the query. Then one has to check, for each call that is performed, that
it can bring data matching the desired pattern without violating the typing constraints. These tests
are hard with the respect to the query but in ptime with the respect of the data. �

The following theorem shows that the combined complexity remains unchanged in general in the
context of DTDs, but it becomes hard for no-join Boolean queries.

Theorem 2.12. Let an Axlog schema ∆ = (d, F, ζ) be fixed. Given I and q, the satisfiability problem

for q and I constrained by ∆ is np-complete in the size of I and q. It is already np-hard for no-join
Boolean queries.

Proof. (sketch) Membership in np is proved by exhibiting a sequence of updates such that the
length of the sequence is bounded by a polynomial in q and the size of each tree is bounded by a
polynomial in q. np-hardness for no-join Boolean queries is proved by reduction of the satisfiability
problem of a no-join Boolean query over a fixed DTD, which is known to be np-complete. See
Theorem 4.5 of [Benedikt 08]. In this proof, we use results (as Theorem 4.5 of [Benedikt 08]) and
techniques for trees that are not reduced. In order to use them on our setting of reduced trees, an
unordered-DTD τ is translated to an unordered-DTD τ′ that “almost” describes the corresponding
reduced trees. It captures the trees that can be extended to reduced trees obeying the constraint
τ. �

Remark 4. When active insertions are allowed, the complexity remains the same, i.e. np-complete
in the size of the query and the document and ptime in the size of the document.

Remark 5. The problem becomes undecidable in the case of active insertions when one considers
richer typing, namely bottom-up tree automata. A complete study for such richer typing is not
pursued in this thesis.

2.5. Nonmonotonicity

We consider in this section a number of nonmonotonic mechanisms, namely, deletions, end of calls,
time queries and queries with negation. In this context, satisfiability is no longer monotonic; e.g.
a Boolean query that is satisfiable may become unsatisfiable during the evolution of document.
We first consider mechanisms so that the document is no longer inflationary. We then consider
nonmonotonic queries. Details of the proofs may be found in Appendix A.4.

Noninflationary documents We consider two mechanisms that lead to a noninflationary be-
havior of documents: deletion and end of calls. A deletion is a new kind of update of the form
del(? f , q) where q is a tree pattern to select the nodes to delete. More precisely, the result of
applying del(? f , q) to a document I, denoted del(? f , q)(I), is the document obtained by deleting

24

2.5. Nonmonotonicity

the siblings of node ? f satisfying q, as well as their descendants. (In practice, a deletion often
uses identifiers to specify the subtrees to be deleted.) We also introduce the possibility that a call
terminates. Formally, we also consider messages of the form eos(? f), for end of update stream ? f .
When such a message arrives, the function call node is deleted. Observe that all the operations we
consider, insertions, deletions and eos, are in some sense local.

Because of deletions, satisfaction is no longer monotonic. Because of deletions and eos, the
document is no longer inflationary and therefore, satisfiability also is no longer monotonic. One
can prove that deletions do not increase the complexity of the satisfiability problem in the simple
model. Theorems of Section 2.3 remain valid in presence of deletions. But, deletions and schema
constraints∗ together make the satisfiability problem more difficult. More precisely, Theorems 2.11
and 2.12 become :

Theorem 2.13. Let a query q and an Axlog schema ∆ = (d,W, ζ) be fixed. The satisfiability problem

for q and an instance of ∆ I in presence of additions and deletions is co-np-hard in the size of I.

Let an Axlog schema ∆ = (d,W, ζ) be fixed. The satisfiability problem for q and I constrained by

∆ in presence of additions and deletions is ΣP
2 in the size of q and I.

Remark, we have considered only continuous functions. In practice, some functions are one shot,
i.e. they send a unique forest as an answer, and terminate. Such only one shot Web services do not
change much our setting. On the other hand, one may want to impose that the one-shot answer is a
single tree. The satisfiability problem for no-join Boolean queries becomes np-hard when such
answers are considered.

Nonmonotonic queries We next consider two kinds of nonmonotonic queries: time queries
and queries with negation.

Inequations over data values and in particular over time (time constraints) in many real life
examples. For instance, one may want to detect large-amount mail orders that took more than 2
days to be processed. We next sketch an extension of the model and the query language to support
time-based queries relying on systems of inequations. We assume that the definition of an instance
I includes a time function ψ from nodes(I) to Q. In general, it would be interesting to also consider
data values from Q and inequations involving data values. To simplify, this is not done here. We
impose that in an instance, the time of a node is larger or equal to that of its parent. Furthermore,
when applying an update add(? f ,K) to an instance I, we impose that (i) the time of each node in K

is larger than the time of each node in I; and (ii) the times of all nodes in K are identical. Condition
(i) is compulsory to be able to reason about time. Condition (ii) can be relaxed but is used here to
simplify.

Definition 2.14. A time-based query is a pair (q,C) where q is a query and C is a system of linear
inequations over the nodes of q. A valuation ν of a query (q,C) in an instance I = (t, λ, ψ) is a
valuation of q in (t, λ) such that the system of inequations obtained by replacing each node n in C

by ψ(ν(n)), is satisfied.

An example of time-based document I and one of time-based query (q,C) are given in Figure
2.7. In the graphical representation of documents, we append the time to the label, as in “a : 2” for
label a and time 2. We use a similar notation in queries.

Satisfiability is defined based on this extended notion of valuation in the obvious way. Satisfi-
ability can also be computed in CQL, but the construction is more intricate than previously. We

∗The schema may specify the nature of updates, inserts or deletes of the functions occurring in it. Details omitted.

25

Chapter 2: Satisfiability and relevance for queries over active documents

now have to carry along each generalized fact, constraints on its variables. All this can be captured
by datalog with constraints [Kanellakis 95]. A difficulty is that we don’t have the time value of
the future data to come. It is important to take into account the fact that this data will have a time
larger than the largest time value in the instance (that we can view as the current time). Note that,
as a consequence, satisfiability is no longer monotonic. Indeed, the arrival of some data that is
seemingly unrelated to the query may turn some query from satisfiable to unsatisfiable simply by
updating the current time. To illustrate, consider I and (q,C) in Figure 2.7. The query is satisfiable
for this document. It suffices that ? f returns some node labeled d with time say 4. Now suppose that
instead, it is ?g (seemingly unrelated) that returns some new node with time 10. This is imposing a
new constraint on the time of data that will be received later, that makes the query unsatisfiable for
the new instance.

Theorem 2.15. Satisfiability for time-based documents and queries can be computed by a datalog

program with linear inequations as constraints. Thus it can still be tested in ptime in the size of the

instance. It is np-complete in the document and query size.

Proof. (sketch) To prove the ptime bound, we adapt the program P̂. 3Sat can be reduced to query
satisfaction that itself can be reduced to query satisfiability. This shows np-hardness. �

I (q,C) qn

r:1

a:2

d:2

b:2

?f:2

c:2

?g:2

n1:r

n2:a

n3:d

C =
{

(n5 − n3) < 6
}

n4:b

n5:d

r

a

$x

¬ b

$x

Figure 2.7.: Nonmonotonicity: Time and negation

To complete the extensions, we consider negation in queries. A tree pattern query with negation
is a tree-pattern with an additional unary relation Neg over the nodes of the tree-pattern. The
meaning of a negation is to state that “there is no subtree matching the pattern”. For instance, the
Boolean query qn in Figure 2.7 states that the r-root has an a-child with a child with some label
$x, such that there is no b-child of the root that also has a child labeled $x. In general several
negations may be found on a down path from the root. The meaning of the quantification is as
follows. Variables not occurring in the output are existentially quantified in the least ancestor of the
nodes where they occur. Finally, we also impose that for each variable occurring in the output, at
least one of nodes labeled by the variable has all its ancestor non negated.

Theorem 2.16. The satisfiability problem is undecidable for queries with negation.

Proof. (sketch) The proof is by reduction of the implication problem of functional and inclusion
dependencies [Chandra 85]. This proof is in the spirit of that of Theorem 4.5 of [Abiteboul 06].
Our setting is more general. �

26

2.6. Relevance

We observe that in absence of joins, the satisfiability problem is decidable for queries with
negation. In the Boolean case, it has ptime data complexity and exptime-complete combined
complexity. It is interesting to obtain restrictions that make satisfiability decidable even in presence
of negation and joins. Such restrictions are considered, for instance, in [Abiteboul 09].

2.6. Relevance

We are interested in this section in the possible contributions of call Ids to the result of a query.
This problem is particularly useful for optimization. For instance, if we know that a call does not
affect the view we want to maintain, we can discard it. We introduce a notion of relevance that
captures the intuition that one particular call brings useful information for some particular query we
are interested in. We consider here the core model of Section 5.4 with insertions only and without
time. A study of relevance with nonmonotonic features such as deletions is more complicated, and
is left for future research.

After some brief motivation, we introduce a semantic notion of relevance and consider its
complexity. We then introduce a weaker notion, axlog-relevance, and discuss its completeness and
complexity.

Intuitively, a call Id ? f is “not relevant” for I, q if ignoring the data brought by ? f in I does not
change the result of q. Consider I and q in Figure 2.8. Note that ?h is not relevant for I and q

because its e parent does not match either b or d. Also, ? f is not relevant because some sibling
already provides the c. On the other hand, ?g is clearly relevant for I and q since it can bring a node
matching d.

This notion is related to the notion of lazy-relevance considered in [Abiteboul 04a]. They studied
the closely related problem: given a query over a document with intentional data (described as
call Ids), what are the Web services that need to be called to give all the mappings from the query
to the active documents. Lazy-relevance can be computed using a tree-pattern query. However,
the notions of relevance we consider here are more refined. For instance, the call Id ? f in I of
Figure 2.8 is lazy-relevant for I and q, whereas one can see that it is not useful since the only
matching data it can bring is a c and we already have one. We observe in passing that the notion of
relevance studied here could be used to improve the query optimization technique considered in
[Abiteboul 04a].

I q I′ q′

a

b

c ?f

?g e

?h

a

b

c

d

a

b

?f

e

b

?g

a

b

c

e

c

Figure 2.8.: Queries and active documents for relevance

To define relevance, we use the following auxiliary notion. Given a sequence ω of insertions and
a call Id ? f , let ωno- f denote the sequence obtained from ω by removing all ? f -insertions. Now, we
have:

27

Chapter 2: Satisfiability and relevance for queries over active documents

Definition 2.17. Let q be a query and I an active document. A call Id ? f is said to be not relevant

for q and I iff for each update sequence ω and for each tuple u, u ∈ q(ω(I)) iff u ∈ q(ωno- f (I)).

This notion of relevance of calls can be carried to data. When the data in a subtree is no longer
useful (after all tuples that could be derived using it have been derived), it is not necessary to keep
it. The subtree can then be garbage-collected. This will not be considered here.

The notion of relevance is somewhat more complex that it may look. Indeed, the active document
I′ and query q′ in Figure 2.8 illustrate a subtlety. Consider the sequence ω = add(? f , e[c]);
add(?g, c), that yields a document satisfying the query. A superficial analysis would lead to believe
that ? f and ?g are both useful because ? f brings data matching the left branch of the query, and
?g data for the right branch. However, observe that the update (?g, c) alone is enough to yield a
document satisfying the query. Indeed, the update add(? f , e[c]) is not needed in that particular
sequence and more generally, ? f is not relevant for I′ and q′ as in Figure 2.8.

Indeed, one can show that:

Theorem 2.18. The problem of deciding, given a document and an arbitrary query, whether a

call Id is not relevant is in ΣP
2 -complete in the size of the document and the query. The problem

of deciding, given a document and a no-join Boolean query, whether a call Id is relevant, is

np-complete in the size of the query and the document.

Proof. The ΣP
2 -hardness is shown by reducing the problem of deficiding if a tuple is a critical tuple

for a conjunctive query [Miklau 07].
We prove that the relevance of a call Id is ΣP

2 . Let I be a document containing a call Id ? f and q

a query. Then ? f is relevant for (I, q) if there exists an update ω, such that ω(I) = (t′, λ′), a tuple u

and a instanciation θ of the variables in q such that:
(*) for each instanciation θ′ from the variables in q to L , such that for variable $x labeling a

node of π, θ($x)) = θ′($x),
(+) ω(I) |= θ(q) and ωno− f (I) 6|= θ′(q).

First observe that it clearly suffices to consider ω of polynomial size. Also, the test (+) can be
performed in ptime. Thus the problem is in ΣP

2 .
Now consider no-join Boolean queries. np-hardness is by reduction of 3-SAT. For membership

in np, let ? f be a call Id in a document that is relevant. Then there exists a sequence of updates
that demonstrates that ? f is relevant. One can show that there also exists a “small” sequence of
updates that demonstrates it. So, to compute relevance in np, it suffices to guess a “small” sequence
of updates and test (*). The test (*) can be performed in ptime for no-join Boolean queries. �

The previous result shows the high expression complexity of the problem. We next show that
for any fixed query, relevance can be computed in ptime in the size of the document. To do that,
we explore in more details the possible scenarios for obtaining answers to the query, where a
scenario is essentially assigning the different roles, i.e. the subqueries to match, to existing data
or Id calls occurring in the document. More precisely, we reconsider satisfiability. We extend
the generalized tuples used to describe satisfiability by including some “provenance” information.
Generally, provenance is used to capture where data came from. Here, we are concerned with where
data might come from. We use extended generalized tuples that are called scenarios. A scenario
is an expression of the form p̂(u1, ..., un, C,P), where each ui is some constant or a variable and
u1, · · · , un is a tuple over the variables of subquery p that appear in the result or appear at least twice
in q (joins), C is the set of constraints, and P is the provenance information defined as follows.

Let p̂(u1, ..., un, C,P) be a generalized scenario derived for some query node p̂. The provenance
P is a tuple that specifies how the derivation of corresponding facts depends on the arrival (in

28

2.6. Relevance

certain streams) of data satisfying certain patterns. More precisely, the provenance is an m tuple,
where m is the number of nodes in the subquery rooted at p̂. The k-th component of P corresponds
to the k-th node of the subquery, in some fixed ordering of these nodes, say preorder traversal. Its
value is ⋆ if some data is already present in the document and matches the corresponding query
node. It is n? f for some call Id ? f if this specific call Id can bring data matching it. It is • otherwise,
with the meaning that the data comes from a match in an ancestor node.

We modify the datalog program that computes satisfiability so that it also computes provenance
information. For the query q and the document I of Figure 2.8, three scenarios are derived (by
considering the nodes of the query with the prefix order):

• ((), , ⋆, ⋆, ⋆, ?g),

• ((), , ⋆, ⋆, ? f , ?g),

• ((), , ⋆, ?g, •, ?g)

where the 4 entries of each tuple correspond to provenance for the 4 query nodes in preorder
traversal of the query tree. (The query is Boolean, so there is no data to return). Note that each
tuple corresponds to a scenario for the possible future derivation of the same fact q(). By observing
these tuples, one may be led to believe that ? f or ?g may bring useful data. But since we already
obtained the subgoal a/b/c, it turns out that this is not the case and only ?g is relevant. So, we have
to check each scenario if it is “useful”, i.e., if it possibly brings new results.

An instance ω of a given scenario is a sequence of updates, where each update add(? f ,K) in ω
corresponds to some occurrence of ? f in the provenance for a position corresponding to a subquery
rooted at p if the edge between p and its parent is a parent edge (single line). Furthermore K

satisfies the query θ([p]) ([p] is here the subquery rooted at p) where θ assigns to the result and join
variables the values specified by this scenario. (If the edge between p and its parent is a descendant
edge, some subtree of K must satisfy it, i.e., double line.)

The ptime algorithm is rather intricate. Its crux is to check (for some I and ? f) for each scenario
where ? f occurs, whether there exists a tuple that would be derived in this scenario, and would not
have been derived if ? f were removed from the scenario. This leads to:

Theorem 2.19. Let q be a fixed query. The problem of deciding, given a document and a call Id ? f

in it whether ? f is relevant for I, q, is in ptime in the size of I.

Proof. Let I be a document and ? f a call Id in it. We can compute in ptime all the possible scenarios
for (I, q) (i.e., the satisfiable tuples with their provenance). Consider one particular scenario
(u, C,P) including ? f . (There are polynomially many such scenarios.) Suppose (to simplify the
presentation and without loss of generality) that in this scenario ? f is used only once. Suppose it
is matched to the subquery p. Now consider the query q′ obtained from q by pruning out the p

subtree. The scenario gives us a scenario for q′ that we call the no-f scenario of (u, C,P). To check
that ? f is relevant for (I, q), it is necessary and sufficient to find a scenario (u, C,P) and a complete
tuple u such that there exists an instance ω of the scenario such that:

(a) the instance ω transforms I into I′ with u ∈ q(I′),
(b) the instance ω without ? f (which is an instance of

the no-f scenario of (u, C,P)) transforms I

into I′′ with u < q(I′′).

First observe that it is possible to restrict our attention to a polynomial number of u tuples. Let u be
such a tuple. It is rather easy to test (a). The test of (b) is trickier. Consider the query q̃ obtained by

29

Chapter 2: Satisfiability and relevance for queries over active documents

transforming I as follows: the ? f call and the ?g calls not occurring in the scenario are removed, a
?g call occurring in the scenario is replaced by the subquery it is supposed to provide according to
this scenario. This query (almost) tests whether a document comes from this particular scenario
omitting ? f . Indeed, one can show that ? f is relevant iff there exists an active document J such
that J |= (q̃ ∧ ¬q(u)), i.e. q̃ * q(u). Intuitively, from such a J, one can construct an update that
demonstrates that ? f is relevant. This query containment can be tested in ptime in the size of I. To
do that, we eliminate the joins by considering all valuations of the join variables. This results in
replacing the containment test by many simpler containment tests. This kind of containment test
can be done in ptime in the size of I by using Theorem 1 of [Miklau 04] �

Observe that this technique leads to a lot of computation for each satisfiable tuple. One can avoid
testing many of them using a notion of “dominance”. For instance, in the previous example, t1
dominates t2 and t3, so we find immediately that it is the only scenario to consider and we derive
that ? f is not relevant. This suggest a necessary notion of relevance that we study to conclude this
section. It is the one that is used in our system [4].

A renaming of a generalized tuple t is a tuple t′ obtained by renaming (using a bijection) the
variables of t. Let

t1 = (u1, ..., um, C1,P1), t2 = (u′1, ..., u
′
m, C2,P2)

be two tuples with provenance. (We assume without loss of generality that they have the same
“data” part consisting of distinct variables). We say that t1 is dominated by t2, denoted t1 ≺ t2
if (a) (u1, . . . , um, C1) ⊑ (u′1, . . . , u

′
m, C2) and (b) for each p ∈ nodes(q), either P2(p) = ⋆ or

P1(p) = P2(p) and there exists at least one p such that P2(p) = ⋆ and P1(p) , ⋆. The intuition is
that any relevant data needed by the dominating tuple to lead to satisfied tuples is also needed by
the dominated one. Thus, the dominated tuples are useless because they lead to the same satisfied
tuples.

We refine the set of candidates by eliminating the dominated tuples. In the previous example, t2
and t3 are eliminated. This leads to the notion of axlog-relevance. Let q, I and ? f be a query, an
active document and a call Id of I. Then ? f is axlog-relevant for q if there exists a not dominated
tuple p(u, C,P) (i) that may derive new results and (ii) where ? f appears. In Figure 2.8, the first
tuple gives a new result so only ?g is axlog-relevant.

The different notions of relevance are related in the following way. Relevance is more refined
than axlog-relevance that is more refined than lazy-relevance. In particular, in Figure 2.8 for I and
q, the Id call ? f is lazy-relevant but not axlog-relevant (neither relevant). Also, in Figure 2.8, for I′

and q′, the call Id ? f is axlog-relevant but not relevant.
Relevance and axlog-relevance both have ptime complexity in the size of the active document.

Axlog-relevance is more tractable in practice since the polynomial has a much smaller coefficient.

30

Chapter 3.

Axlog

3.1. Introduction

The work on Axlog was motivated by the development of the P2PMonitor system, a system for
monitoring P2P applications, introduced in [Abiteboul 07] and developed in [Marinoiu 09]. Based
on our maintenance optimization algorithm, an Axlog engine has been implemented [4]. It was
demonstrated in [9] using the Dell supply chain application, together with the P2PMonitor system.

The main issue for Axlog widgets is the efficient computation of output streams, i.e. a view
maintenance problem. In this chapter, we outline an algorithm for incrementally computing these
output streams presented in [4] and in [Marinoiu 09]. The algorithm exploits known datalog
optimization techniques such as Differential [Blakeley 86b] and MagicSet [Beeri 91] mixed with
the notions of satisfiability and relevance presented in the previous chapter. Satisfiability allows
stating whether some (incomplete) fact has a chance to hold in the future. We see that, with this
new notion of satisfiability, our algorithm is more optimistic (aggressive) than MagicSet. Based on
relevance, we show how to filter data before it enters the datalog program (to save on processing)
and possibly at the source of the stream (to save on communication).

The chapter is organized as follows. In Section 3.2, we introduce the Axlog widget environment
and briefly illustrate how Axlog widgets can be used. In Section 3.3, we outline the optimized
algorithm for the management of Axlog widgets for the core model and explain how the notion of
satisfiability and relevance introduced in the previous chapter are employed.

3.2. Axlog at Work

Axlog Widget

An Axlog widget is mainly a complex stream processor, that is defined by one (Active)XML
document and one or several queries. The widget receives update streams and generates output
streams. The content of each output stream is the new trees produced by the query of the Axlog
widget, see Section 5.4. An implementation of Axlog widgets is supported by P2PMonitor, a system
for managing streams. The streams in P2PMonitor are implemented by a Pub/Sub mechanism
based on Web Services. More precisely, a stream is exposed as a Web service to which Axlog
widgets may subscribe. (A list of subscribers is maintained for each channel by its owner). When
subscribing to a channel, an Axlog widget specifies a URI, i.e. the address of a Web Service that
is called by the channel provider every time a new update becomes available for that channel. In
P2PMonitor, a user can define a stream query by defining an Axlog widget that may subscribe to
other streams defined by Axlog widgets.

31

Chapter 3: Axlog

Application

We have illustrated the use of Axlog widgets by considering the Dell supply chain applica-
tion [Kapuscinski 04]. This distributed application represents the computer manufacturing platform
of the Dell company. It involves customers, Web stores, plants for computer manufacturing, banks,
suppliers, shipping companies and warehouses for the parts used by the plants. An order issued by
some customer enters the system via the Web store. After payment through a bank, the order arrives
in a plant that obtains the relevant parts from a warehouse and assembles the product. Suppliers
have to permanently supply this warehouse to avoid delays in obtaining the parts. Finally, the
product is shipped.

In such an environment, the use of Axlog widgets facilitates supporting tasks that are typically
very complex because of the distribution. For instance, they turn to be very useful to gather
information from the entire system. A set of Axlog widgets may be used to help users monitor the
processing of their orders. For instance, the monitoring of orders of INRIA that have been shipped
can be supported using the Axlog widget of Figure 3.1. The active document of Figure 3.1 uses
streams to the arrivals of new orders in the different parts of the Dell supply chain application. The
query assumes that the complete data of an order are stored at the Web store level. In order to
know that an order has been passed by INRIA, the query has to look at data sent from the Web
store. The system supporting the Axlog widget is able to select the different sources relevant for
the query. In the example, the system only needs to subscribe to the streams orders_webstore and
orders_shipping.

3.3. The View Maintenance Algorithm

Our algorithm to produce the output stream is based on view maintenance techniques. The query of
the Axlog widget is maintained over the active document. The updates to this view are published on
an output stream. In this section, we outline how to optimize this maintenance. This is achieved by
combining a wide array of existing techniques on datalog-based query processing on trees, datalog
optimization and stream filtering, and introducing novel features that are more specific to active
documents.

We focus here on the core model of the axlog widgets.

Datalog, Differential and MagicSet

First, a tree pattern query of an Axlog widget is translated into a datalog program in the style of
[Gottlob 02]. To use datalog, we represent the document (a tree) using relations, see Section 2.3.
To optimize the maintenance of this program, we use two known techniques for datalog, namely
Differential for incremental computations [Blakeley 86b] and MagicSet [Beeri 91, Vieille 89] for
query optimization.

Indeed, we want to avoid deriving irrelevant facts. To do that, we use the MagicSet technique,
that rewrites the datalog program (given the view query) into one that derives only facts that are
“relevant” for the view. Also, we want to avoid recomputing the view when new updates arrive. In
this purpose, we use the Differential technique for the incremental maintenance of datalog views.
This technique prevents us from unnecessarily repeating the same datalog derivations when a stream
brings new data. The combination of these various techniques is already the source of important
savings.

32

3.3. The View Maintenance Algorithm

d
management

webstore

id

w1

orders

?orders_webstore

bank

id

b1

orders

?orders_bank

plant

id

p1

orders

?orders_plant

shipping

id

s1

orders

?orders_shipping

q
management

webstore

orders

order

client

INRIA

oid

+$1

details

computer

shipping

orders

order

oid

$1

Figure 3.1.: An Axlog widget

�

�����������

����	
�	���

��������
�

�����

����
����

���

�

��

� ����������
��

�
��������

�

Figure 3.2.: The Dell supply chain

33

Chapter 3: Axlog

q1 I q2
a

b

c

+$1

d

y

a

d

? f

b

c

1

c

2

... ?g

c

?h

a

d

y

b

c

+$1

Figure 3.3.: Beyond MagicSet

MagicSet and Differential do not change the complexity of the evaluation of a query that is
exptime for the combined complexity in practical and ptime for the data complexity. We next
mention new optimizations based on satisfiability and relevance. These optimizations doe not
change the complexity of the evaluation. In practice, the new algorithm brings serious improvements
as shown in [6] and in [Marinoiu 09].

A More Optimistic Strategy using Satisfiability

The crux of MagicSet is to “focus on relevant data” (for a given query). However, some data may
seem irrelevant for now but may be relevant assuming some data is received in the future. The
computation of these facts is blocked with MagicSet.

To illustrate it, consider Figure 3.3. The notion of relevance as used in MagicSet heavily depends
on the ordering of the query branches (e.g. left is considered before right here). When evaluating
q1, the y branch is tested before the other branch. Suppose the data consists of a large collection of
subtrees having roots labeled c (brought by ?g). Observe that until ? f produces a node labeled y

(for yes), the c subtrees do not produce any answer. If we evaluate the query q2 with MagicSet,
no tuple is produced until the y is received. In particular, the b subtrees are not even tested. Then,
when y arrives, we have to perform a lot of computation and our response time will be worse for q2

than for q1.
To avoid this side effect, we relax the MagicSet technique by allowing our program to derive

facts that are only satisfiable. In the example, since we know that the f function call may return
a node labeled y, it seems more appropriate to be optimistic and start testing the b subtrees in
advance. If we allow to derive the facts for computing satisfiability, we more optimistically test the
b-subtrees.

Filtering the Streams

First, observe that some function calls are irrelevant for the query and may be unsubscribed by the
system. Moreover, observe that the computation of scenarios, see Section 2.6, with provenance
information tells us more than just relevance. For a relevant call ? f , we also find precisely for
what it is relevant, i.e., the list of subqueries for which it can bring relevant data. Based on that,
we can filter the stream of data brought by ? f to let only relevant data enter the document. This
presents the advantage of reducing processing (fewer data enters the datalog program) and also
communication (if the filtering is performed at a remote source).

To illustrate the use of filters, consider the query q2 and the document I in Figure 3.3, where
the pis represent node identifiers of the query. Observe that before we can derive any result, the

34

3.3. The View Maintenance Algorithm

tree-pattern rooted at the node labeled c has to be matched to data returned by ?g.
However, the system may perform a lot of filtering tasks for the same stream. A first optimization

is to prune some unneeded scenarios by using the notion of axlog-relevance presented in Section
2.6. Moreover, in the implementation, we use YFilter [Diao 02], one of the NFA-based solutions,
because it scales very well with the number of queries on a stream. Moreover, to avoid installing
too many filters on one stream, we use the notion of axlog-relevance to prune some unnecessary
scenarios.

35

Part II.

Data­centric Workflow Applications

37

Overview of Part II

The evolution of shared data is at the center of many human activities consisting of tasks whose
sequencing is governed by a workflow. Workflow models have traditionally been operation-centric,
ignoring almost completely the data aspects. Recently, there has been a proliferation of workflow
specification languages, notably data-centric, in response to the need to support increasingly
ubiquitous processes centered around databases. Prominent examples include e-commerce systems,
enterprise business processes, health-care and scientific workflows.

Towards a data-centric workflow approach, we first introduce the core of the AXML Artifact

model, called BAXML, to capture data and workflow management activities in distributed settings.
The model is built on active documents. One of the most discussed aspects of modeling data-centric
workflow is the specification of the workflow constraints. We address the problem of comparing the
expressiveness of workflow specification formalisms using a notion of view of a workflow. Views
allow to compare widely different workflow systems by mapping them to a common representation
capturing the observables relevant to the comparison. We compare the expressiveness of several
workflow specification mechanisms, including automata, temporal constraints, and pre-and-post
conditions with BAXML as underlying data models. One surprising result shows the considerable
power of static constraints to simulate apparently much richer workflow control mechanisms.
Moreover, we argue that the model captures the essential features of business artifacts as described
informally in [Nigam 03a] or discussed in [Hull 08]. To motivate this assertion, we compare the
expressiveness of the BAXML model with the tuple artifact model introduced in [Deutsch 09].

In a second part, we extend the AXML Artifact model with different features: hierarchy of
artifacts, access control, dynamic workflow behavior modifications and distribution of the sys-
tem. Hierachy of artifacts and distribution have already been presented in [5] and [Hélouët 10].
Distribution is a challenging problem for the implementation [Marinoiu 09] and model checking
[Hélouët 10]. This extension is not studied in this thesis. The other extensions are new. We illustrate
these different notions by two examples coming from Business applications: an example based on a
casting procedure as described in [Wikipedia] and an example based on the Dell Supply Chain
[Kapuscinski 04]. The casting procedure illustrates the three first notions. The Dell Supply Chain
illustrates the distribution. Finally, we present AXART a system supporting most of the AXML
Artifact model with the extended features. This system focuses on human interactions managed by
a central system. Thus, the distribution is not supported by AXART.

To summarize, we present a data-centric workflow language, AXML Artifacts, based on active
documents. Our main contribution, published in [2], is a study of the expressiveness of different
formalisms to control the sequencing of the active documents (BAXML), the core of the AXML
Artifact model. We implemented a prototype of this model, demonstrated in [8]. The distribution,
not supported by AXART, is briefly discussed in this thesis. It is fully developed in [5, Marinoiu 09]

This part is organized as follows. The related work is presented in Chapter 4. In Chapter 5,
we present the core model of AXML Artifact and different ways to express workflow constraints.
These are compared among each other and with an other model. Chapter 6 presents extensions of
the model and an implementation. The proofs are presented in Appendix B.

39

Chapter 4.

Related Work

Workflow languages has been extensively studied in the last 15 years to answer the need to model
business process activities. In this context, several languages for specifying workflows or for
modeling them have been proposed following different paradigms:

• declarative ways: specify in logic terms the sequencing of tasks

• procedural ways: specify operationally the sequencing of tasks

Procedural languages have initially been more popular, but the complexity of modeled activities
leads to proposals of declarative as data centric workflows. In particular, IBM has introduced
the Business Artifact model, called tuple artifact model, based on describing the evolution of
relational data. In the same way, the AXML artifact model is a data centric workflow model based
on describing the evolution of data represented using trees. To facilitate the development of web
applications, systems relying on declarative specifications have been developed in last ten years. In
parallel, their properties have been formally studied in several works.

In a first section, we present briefly different languages used for describing workflows. In the
second section, we present different systems implementing workflow descriptions. In a last section,
we sum up the formal works about data centric workflows.

4.1. Workflow languages and models

Workflow modeling and specification has traditionally been process centric (e.g., [Georgakopoulos 95,
van der Aalst 04]). This has been captured in the workflows community by flowcharts, Petri nets
[van der Aalst 98, van der Aalst 02, Adam 98], and state charts [Harel 87, Mok 02]. More re-
cently, data-centric workflows have been considered in [Wang 05], and in particular the artifact

model of IBM [Nigam 03b]. It was subsequently studied from both practical and theoretical per-
spectives in [Bhattacharya 07a, Bhattacharya 05, Deutsch 09, Bojanczyk 06a, Bhattacharya 07b,
Hull 00, Hull 99, Kumaran 08, Meier 10, Libkin 04, Martin 03, Zhao 09]. The Vortex framework
[Hull 99, Dong 99, Hull 00] is another way to describe declarative specifications for when a services
are applicable to an artifact. Moreover, the OWL-S [Martin 03, McIlraith 01] proposal describe
services using input/output, pre/post-conditions. There are used to model evolving database that is
closely related to the tuple artifact model. The AXML Artifact model introduced in [5], it is inspired
by [Abiteboul 09] that describes a first mechanism to sequence active documents by using guards to
control the activation of function calls. Different variants have been studied to obtain formal results
on reachability [Abiteboul 04b, Genest 08], model checking [Abiteboul 09, Genest 10], equiva-
lence [Abiteboul 11] decidability results . An extension of the model presented in [Abiteboul 09]
to describe interfaces has been developed in [Hélouët 10].

41

Chapter 4: Related Work

4.2. Workflows systems

The language BPEL, [BPEL], is the main language used in practice to build applications by
orchestrating web services as a procedural workflow.

The system AXART is related to platforms that help users model Web applications, such as
FORWARD [Bhatia 09] and WebML [Ceri 00]. It is also related to workflow design languages
such as the Vortex system [Hull 99], Business Artifacts [Hull 08] and to mashup systems such as
Yahoo Pipe [Yahoo Pipe]. The first two systems help the user describe Web applications in terms
of interactions. The business artifact model is used for complex applications, while mashup systems
are used to perform automatic data integration. Our system focuses on collaborative and dynamic
applications. In particular, the workflow can change during the life of an artifact.

4.3. Formal studies about workflows

4.3.1. Comparison of workflow languages

The comparison of such workflows systems by using the notion of bisimulation was introduced in
[Milner 89, van Benthem 76]. An example can be found in [Alur 05]: they compare the recursive
state machine, a formalism based on automata allowing to create new states and pushdown system
based on an automaton with a stack. It is shown that these two formalisms are bisimilar. The
comparison of data-centric formalisms has not been studied since the paper [2]. The comparison
of tuple artifact specifications is considered in [Calvanese 09] based on notion of dominance, that
focuses on the input/output pairs of a workflow. Decidability of dominance has been proven for
bounded sequences of relational tuple artifacts where services are described using Presburger
formulas. In the same vein, [Abiteboul 11] looks at equivalence of AXML documents modeling a
distributed query plan.

4.3.2. Verification

Verification for data-centric models based on transforming relational data is considered in [Gerede 07a,
Gerede 07b, Bhattacharya 07b, Deutsch 09, Fritz 09]. Other models in the same spirit include
the Vortex workflow framework [Hull 99, Dong 99, Hull 00], the OWL-S proposal [McIlraith 01,
Martin 03] as well as some work on semantic Web services [Narayanan 02]. The article [Deutsch 07]
(building on [Spielmann 03, Spielmann , Abiteboul 00]), considers the verification of properties
specified in LTL-FO, first-order logic extended with linear-time temporal logic operators, of data-
centric workflows. Similar extensions have been previously used in various contexts [Emerson 90,
Abiteboul 96, Spielmann 03, Deutsch 06]. An extension [Damaggio 11] including arithmetic con-
straints and data dependencies has recently been studied. Most of the previous works show
decidability in pspace of satisfaction of LTL-FO formulas for restrictions of the tuple artifact model.
The latter work shows decidability of satisfaction of LTL-FO formula in hyperexptime. Most of the
works on model checking on AXML have been discussed Chapter 1.

The above works are relevant to the large verification community. Model checking techniques
have bee recently extended to infinite-state systems (e.g., see for a survey [Burkart 01]). More
precisely, recent works are focusing on data as source of infinity mixed with recursive procedure.
This includes recursive procedure with arithmetic [Bouajjani 03], rewriting system with data
[Bouajjani 07b, Bouajjani 07a], Petri nets with colored token [Lazić 07], automata and logics over

42

4.3. Formal studies about workflows

infinite alphabets [Bouyer 02, Bouyer 03, Neven 04, Demri 09, Bojanczyk 06b]and temporal logic
manipulating data[Demri 09, Demri 08].

Apart from the work on verification of BAXML with guards mentioned above [Abiteboul 09],
most other work on static analysis on XML (with data values) deals with documents that do not
evolve in time, e.g., [Fan 01, Arenas 02, Alon 03]. See [Segoufin 07] for a survey on related issues.

43

Chapter 5.

Comparing Workflow Specification
Languages:
A Matter of Views

5.1. Introduction

The evolution of shared data is at the center of most human activities. The novel notion of business

artifact [Nigam 03a] has been proposed to specify such evolution. The main idea is to capture both
the flow of control (workflow) of the application but also data evolution (data cycle). Building on
active documents, we propose a new artifact model, the AXML Artifact model. The sequencing of
active documents are specified by different specification mechanisms based on automata, pre/post
conditions, and temporal constraints.. The main goal of this chapter is to compare them.

Comparing workflow specification languages is intrinsically difficult because of the diversity of
formalisms and the lack of a standard yardstick for expressiveness. In this chapter, we develop a
flexible framework for comparing workflow specification languages, in which the pertinent aspects
to be taken into account are defined by views. We use it to compare the expressiveness of several
workflow specification

Consider a system that evolves in time as a result of internal computations or interactions with
the rest of the world. Fundamentally, a workflow specification imposes constraints on this evolution.
There are numerous approaches for specifying such constraints. Perhaps the most popular consists
of specifying a set of abstract states of the system and imposing state transition constraints, in the
spirit of a BPEL program [BPEL]. Another, more declarative approach is to define a set of tasks
equipped with pre/post conditions, such as IBM’s Business Artifact model. Artifact systems may
also impose constraints by temporal formulas on the history of the run ([Hull]).

The richness and variety of these approaches renders their comparison difficult. In particular,
little is known of their relative expressive power. This is the main focus of the present chapter.

We argue that a very useful approach for comparing workflow specification languages is provided
by the notion of workflow view. More broadly, the notion of view is essential in the context
of workflows, and the need to provide different views of workflows is pervasive. For example,
views can be used to explain a workflow or provide customized interfaces for different classes
of stakeholders, for convenience or privacy considerations. The interaction of workflows, and
contractual obligations, are also conveniently specified by views. The design of complex workflows
naturally proceeds by refinement of abstracted views. Views can be used at runtime for surveillance,
error detection, diagnosis, or to capture continuous query subscriptions. The abstraction mechanism
provided by views is also essential in static analysis and verification.

Depending on the specific needs, a workflow view might retain information about some abstract
state of the system and its evolution, about some particular events and their sequencing, about the

45

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

entire history of the system so far, or a combination of these and other aspects. Even if not made
explicit, a view is often the starting point in the design of workflow specifications. This further
motivates using views to bridge the gap between different specification languages. To see how
this might be done, consider a workflow W specified by tasks and pre/post conditions and another
workflow W′ specified as a state-transition system, both pertaining to the same application. One
way to render the two workflows comparable is to define a view of W as a state-transition system
compatible with W′. This can be done by defining states using queries on the current instance and
state transitions induced by the tasks. To make the comparison meaningful, the view of W should
retain in states the information relevant to the semantics of the application, restructured to make it
compatible with the representation used in W′. More generally, views may be used to map given
workflows models to an entirely different model appropriate for the comparison. We will formalize
the general notion of view and introduce a form of bisimulation over views to capture the fact that
one workflow simulates another.

In our formal development, we mostly use the Active XML model [Abiteboul 08a], which
provides seamless integration of complex data and processes. To describe system evolution (in
the absence of workflow constraints), we use a core model called Basic Active XML (BAXML for
short). BAXML documents are active documents that are adapted in the context of workflows. The
document evolves as a result of function calls that initiate new sub-tasks, and returns of results of
function calls (using some local rewritings). The functions can be internal or external, the latter
modeling interaction with the environment. For example, a BAXML document is shown in Figure
5.1. Documents are subject to static constraints specified by a DTD and a Boolean combination of
tree-patterns. Note that this already provides some form of control on the execution flow, since a
function call can be activated, or its result returned, only if the resulting instance does not violate
the static constraints. Indeed, we will see that this already provides very powerful means to enforce
workflow constraints.

BAXML provides a very natural framework for specifying runs of systems in which tasks
correspond to evolving documents, and function calls are seen as requests to carry out sub-tasks.
With the core model in place, we consider three ways of augmenting BAXML with explicit
workflow control, corresponding to three important workflow specification paradigms:

Automata The automata are non-deterministic finite-state transition systems, in which states have
associated tree pattern formulas with free variables acting as parameters. A transition into a
state can only occur if its associated formula is true. In addition, the automaton may constrain
the values of the parameters in consecutive states.

Guards These are pre-conditions controlling the firing of function calls and the return of their
answers. This control mechanism was introduced in [Abiteboul 09], where the results
concern verification of temporal properties of such systems.

Temporal properties These are expressed in a temporal logic with tree patterns and Past LTL
operators. A temporal formula constrains the next instance based on the history of the run.

Although presented here in the context of BAXML, these extensions capture the essential aspects
of the three specification paradigms regardless of the specific underlying data model.

Our main results concern the relative power of BAXML and its extensions as workflow specifica-
tion languages. When we insist that they generate exactly the same runs, the three extensions turn
out to be incomparable. More interestingly, we then consider a more permissive and realistic notion
of equivalence in which a view allows to hide portions of the data and some of the functions, thus
providing more leeway in simulating one workflow by another. Surprisingly, we show that the core

46

5.2. Views and Simulations

BAXML alone is largely capable to simulate the three specification mechanisms based on guards,
automata, and temporal properties. This indicates the considerable power of static constraints to
simulate apparently much richer workflow control mechanisms. Of course, specifications using
guards, automata, and temporal properties are typically much more readable than their equivalent
specifications in BAXML using hidden functions and static constraints.

The above results show the usefulness of seeing a workflow abstractly as a constraint on the
runs of an underlying system, decoupled from the specific approach for defining the constraint. It
also demonstrates the effectiveness of views in comparing workflows and workflow specification
languages. Although the above languages are formalized in a specific Active XML context, we
believe that the results demonstrate the wide applicability of the approach beyond this particular
setting. In particular, the proofs provide general insight into when and how specifications based on
automata, guards, and temporal constraints can simulate each other.

After settling the relative expressiveness of the languages using BAXML as a common core,
we finally consider IBM’s business artifact model, which uses a different paradigm based on the
relational model and services equipped with first-order pre/post conditions. Relying once again
on the views framework, we compare BAXML to the business artifact model, as formalized in
[Deutsch 09]. We prove that BAXML can simulate artifacts, but the converse is false. The first
result uses views mapping XML to relations and functions to services, so that artifacts become
views of BAXML systems. For the negative result we use views retaining just the trace of function
and service calls from the BAXML and the artifact system. This is a powerful result, since it
extends to any views exposing more information than the function/service traces. The latter results
demonstrate once again the flexibility and power of the views approach to comparing workflows.

The chapter is organized as follows. We introduce the view-based framework for comparing
workflow languages in Section 5.2. The BAXML model and the workflow languages are presented
in Section 5.4. Their expressive power with respect to different views is compared in Section 5.5. In
Section 5.6 we compare BAXML with a variant of IBM’s business artifacts, and show that BAXML
can simulate artifacts, but the converse is false. Proofs are relegated to Appendix B.

5.2. Views and Simulations

In this section, we introduce an abstract framework for workflows and views of workflows. We
then use it to compare workflows.

Workflow Systems and Languages

The model for workflows we consider is quite general. Intuitively, a workflow system describes the
tree of the possible runs of a particular system. More formally, the nodes of a workflow system
are labeled by states from an infinite set Q∞ and the edges by events from an infinite set E∞
(Q∞ ∩ E∞ = ∅). For example, a state of a workflow system may be an instance of a relational
database or an XML document. It may also include various other relevant information such as the
state of an automaton controlling the workflow, or historical information such as the prefix of the
run leading up to it. A typical event may consist of the activation of a task, including its parameters.
The presence of data explains why the sets Q∞ and E∞ are taken to be infinite.

The workflow systems we consider include two particular events, namely block and ε, both in
E∞, whose role we explain briefly. First consider block. For uniformity, it is convenient to assume
that all runs are infinite. To this end, we use the distinguished event block to signal that the system

47

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

has reached a terminal state that repeats forever (so once a system blocks, it remains blocked).
On the other hand, the ε event corresponds to the classical notion of silent transition. Its meaning

is best explained in the context of a view (to be formally defined further), which defines the
observable portion of states and events. In particular, it may hide information about states as well
as events in the source system. For a transition in the source system, if the event is (even partially)
visible in the view or if the state of the view changes, the transition is observable in the view. On
the other hand, it may be the case that both the event and the state change are invisible in the view.
So, although there has been a transition in the workflow system, nothing can be observed in the
view. This is modeled by a silent transition, indicated by the special event ε. Observe that, unlike
for blocking transitions, an ε transition may be followed in the view by non-ε (visible) transitions,
in which the state may change.

More formally:

Definition 5.1 (Workflow System). A workflow system is a tuple (N, n0, δ, q0, λN , λδ) where:

• (N, n0, δ) is a tree with root n0, nodes N, edges δ.

• all maximal paths from n0 are infinite.

• λN is a function from N to Q∞, and λN(n0) = q0.

• λδ is a function from δ to E∞.

• for each (n, n′) ∈ δ, if λδ((n, n′)) = ε then λN(n) = λN(n′).

• for each (n, n′) ∈ δ, if λδ((n, n′)) = block then n′ is the only child of n and λN(n) = λN(n′).
Moreover, n′ has only one outgoing edge also labeled block.

The edges in δ are also called transitions of the workflow, and q0 is called its initial state.
Finally, a workflow language W consists of an infinite set of expressions, called workflow

specifications. For example, BAXML, and its extensions with guards, automata, and temporal
constraints, are all workflow languages. Given a workflow language W and W ∈W , the semantics
of W is a workflow system (i.e., the tree of runs defined by W) and is denoted by [W]W , or [W]
when W is understood.

Views of Workflow Systems

We next formalize the notion of view of a workflow system. We will argue that this is an essential
unifying tool for understanding diverse workflow models. In the present chapter, we rely heavily
on the notion of view in order to compare workflows languages.

A view V is a mapping on Q∞ ∪ E∞, such that V(Q∞) ⊆ Q∞, V(E∞) ⊆ E∞, V(ε) = ε,
and V(e) = block iff e = block. This mapping is extended to workflow systems as follows. Let
WS = (N, n0, δ, q0, λN , λδ) and V be a view. Then V(WS) is defined∗ as (N, n0, δ,V(q0), λN◦V, λδ◦V).
We say that the view V is well-defined for WS if V(WS) is a workflow system.

Note that, by definition of the mapping, the properties of blocking transitions are automatically
preserved. Note also that, by definition of well-defined workflow system, for each (n, n′) ∈ δ, if
V(λδ((n, n′))) = ε then V(λN(n)) = V(λN(n′)).

∗Composition is applied left-to-right.

48

5.2. Views and Simulations

Simulation of Workflows

We next consider the comparison of workflow systems and workflow languages based on the
concept of view. We use a variant of bisimulation [Milner 89] (that we call w-bisimulation). Of
course, many other semantics for comparison are possible. We refrain from attempting a taxonomy
of such semantics, and instead settle on one definition that is quite general and adequate for our
purposes.

In our semantics, we wish to be able to capture silent transitions as well as infinite branches of
such transitions. Given a workflow system as above, for each e ∈ E − {ε}, we define the relation

e→
on nodes by n

e→ m if there is a sequence of transitions from n to m, all of which are silent except
for the last one, which is labeled e.

Informally, the silent transitions are seen as partial internal computation that do not have impact
for the possible observable reachable events. The choices made during the internal computation
may be different, but the visible transitions at the end of sequences of silent transitions are the same.

Definition 5.2 (w-bisimulation). Let

WSi = (Ni, ni
0, δ

i, q0, λ
i
N , λ

i
δ)

i ∈ {1, 2}, be two workflow systems (with the same initial state). A relation B from N1 to N2 is a
w-bisimulation of WS1 and WS2 if B(n1

0, n
2
0) and for each n1, n2 such that B(n1, n2) the following

hold:

• λ1
N

(n1) = λ2
N

(n2).

• For each event e , ε, if n1
e→ n′1 in WS1 then there exists n′2 such that n2

e→ n′2 in WS2 and
B(n′1, n

′
2), and conversely.

• there is an infinite path of silent transitions from n1 in WS1 iff there is an infinite path of
silent transitions from n2 in WS2.

We denote by WS1 ∼ WS2 the fact that there exists a w-bisimulation of WS1 and WS2.

We note that there are well-known notions of bisimulation related to ours, such as weak-
bisimulation and observation-congruence equivalence, motivated by distributed algebra [Milner 89].
These differ from w-bisimulation in their treatment of silent transitions. For example, infinite paths
of silent transitions are relevant to w-simulation but are ignored in weak bisimulation. It can be
seen that observation-congruence equivalence implies w-bisimulation, but weak bisimulation and
w-bisimulation are incomparable.

Clearly, ∼ is an equivalence relation. Observe that views preserve w-bisimulation. More precisely,
let WS1 ∼ WS2. Then for each view V ,

(*) V(WS1) is well-defined iff V(WS2) is well-defined, in which case V(WS1) ∼ V(WS2).

Equivalence of workflow systems as previously defined essentially requires the two systems
to have the same set of states and events. However, in general we wish to compare workflow
systems whose states and events may be very different. In order to make them comparable, we
use views mapping the states and events of each system to a common, possibly new set of states
and events. Intuitively, these represent abstractions extracting the observable information relevant
to the comparison. The views may also involve substantial restructuring, thus extending classical
database views.

49

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

Suppose we wish to compare languages W1 and W2. To compare workflow specifications in W1

and W2, we use sets of views V1 and V2 that map the states and events of W1 and W2 to a common
set.

Definition 5.3 (Simulation). Let W1,W2 be workflow languages and V1,V2 be sets of views. The
language W2 simulates W1 with respect to (V1,V2), denoted W1 ֒→(V1,V2) W2, if for each W1 ∈W1

and V1 ∈ V1 such that V1(W1) is well-defined, there exist W2 ∈ W2 and V2 ∈ V2 such V2(W2) is
well-defined and V1(W1) ∼ V2(W2).

Remark 6. Note that the definition of simulation does not require effective construction of the
simulating workflow specification. However, all our positive simulation results are constructive.
The negative result in Theorem 5.23 also concerns effective simulation.

For sets of views V ,V ′, we define V ◦ V ′ = {V ◦ V ′ | V ∈ V ,V ′ ∈ V ′}. Intuitively, a view V ◦ V ′

is coarser than V (or equivalently, V is more refined than V ◦ V ′).
The following key lemma is a straightforward consequence of (*). It states that the relation ֒→ is

stable under composition of views.

Lemma 5.4 (Composition). Let W1 and W2 be workflow languages and V1,V2 and V be sets of

views. If W1 ֒→(V1,V2) W2 then W1 ֒→(V1◦V ,V2◦V) W2.

The Composition Lemma allows to relate simulations relative to different classes of views. It
says that simulation relative to given views implies simulation relative to any coarser views. This
provides a tool for proving both positive and negative simulation results.

A useful version of the above lemma is the following, combining composition and transitivity.

Lemma 5.5. Let W1,W2,W3 be workflow languages, and V1,V2,V3 and V be sets of views. If

W1 ֒→(V1,V2◦V) W2 and W2 ֒→(V2,V3) W3, then W1 ֒→(V1,V3◦V) W3.

As we will see, the version of transitivity provided by the above is routinely used in proofs that
combine multiple stages of simulation.

5.3. The Basic AXML model

In this section we present BAXML, the Basic AXML model. This is essentially a simplified version
of the GAXML model of [Abiteboul 09], obtained by stripping it of the control provided by call
and return guards of functions (all such guards are set to true). We consider such control later as
one of the workflow specification mechanisms. BAXMLconsists of extended active documents with
function calls modeling internal computations and asynchronous interactions with the environment.
It is the base of AXML Artifacts.

To illustrate our definitions, we use a simplified version of the Mail Order example of [Abiteboul 09].
The purpose of the Mail Order system is to fetch and process individual mail orders. The system
accesses a catalog subtree providing the price for each product. Each order follows a simple
workflow whereby a customer is first billed, a payment is received and, if the payment is in the
right amount, the ordered product is delivered. We assume given the following disjoint infinite sets:
nodes N (denoted n,m), tags Σ (denoted a, b, c, . . .), function names F , data values D (denoted
α, β, . . .) data variables V (denoted X,Y,Z, . . .), possibly with subscripts.

In the model, trees are active documents with some differences. In this part, we do not keep all
the informations about the call too. But contrary about in the previous part, we keep only the state

50

5.3. The Basic AXML model

of the call and which function name is called. By this way, we can constraints the activation and
the return of service calls using the different constraints. For each function name f , we also use the
symbols ! f and ? f , called function symbols, and denote by F ! the set {! f | f ∈ F } and by F ? the
set {? f | f ∈ F }. The union of F ! and F ? forms the set C. Intuitively, ! f labels a node where a call
to function f can be made (possible call), and ? f labels a node where a call to f has been made and
some result is expected (running call). After the answer of a call at node x is returned, the call may
be kept or the node x may be deleted. If calls to ! f are kept, f is called continuous, otherwise it is
non-continuous. For example, the role of the MailOrder function in Figure 5.1 is to indefinitely
fetch new mail orders from customers, so MailOrder is specified to be continuous. On the other
hand, the function !Bill occurring in a MailOrder is meant to be called only once, in order to
carry out the billing task. Once the task is finished, the call can be removed. Therefore, Bill is
specified to be non-continuous.

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

Product

Pname

Sony

Price

175

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Figure 5.1.: A BAXML document.

In this chapter, we distinct values and labels. A active document is a tree whose internal nodes
are labeled with tags in Σ and whose leaves are labeled by either tags, function symbols, or data
values. A BAXML forest is a set of BAXML trees. An example of BAXML document is given in
Figure 5.1.

Moreover, we refine the notion of reduced tree to take account of the running calls ? f . A tree
is reduced if it contains no distinct isomorphic sibling subtrees without running calls ? f . We
henceforth assume that all trees considered are reduced, unless stated otherwise. However, note
that the forest of an instance may generally contain multiple isomorphic trees.

Patterns We use patterns as the basis for our query language, and later in the specification of
workflow constraints and temporal properties. A pattern is a forest of tree-pattern queries. A
tree-pattern query is defined as in Definition 2.2 with some differences to take account of changes
in the definition of active document. Nodes are labeled by tags if they are internal, and by tags,
function symbols, or variables if they are leafs. In addition, nodes may be labeled by wildcard (*),
which can map to any tag. The nodes labeled by value variables are only mapped by nodes labeled
by values of V . A tree-pattern is evaluated over a tree in the straightforward way. The definition of
the evaluation of patterns over forests extends the above in the natural way. A constraint consisting
of a Boolean combination of (in)equalities between the variables and/or data constants may also
be given. In particular, we can specify joins (equality of data values). An example is given in

51

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

Figure 5.2 (a). The pattern shown there expresses the fact that the value Order-Id is not a key. It
does not hold on the BAXML document of Figure 5.1. (Indeed, we want Order-Id to be a key).

We sometimes use patterns that are evaluated relative to a specified node in the tree. More
precisely, a relative pattern is a pair (P, self) where P is a pattern and self is a node of P. A relative
pattern (P, self) is evaluated on a pair (F, n) where F is a forest and n is a node of F. Such a pattern
forces the node self in the pattern to be mapped to n. Figure 5.2 (b) provides an example of relative
pattern. The pattern shown there checks that a product that has been ordered occurs in the catalog.
It holds in the BAXML document of Figure 5.1 when evaluated at the unique node labeled !Bill.

We also consider Boolean combinations of (relative) patterns. The (relative) patterns are matched
independently of each other and the Boolean operators have their standard meaning. If a variable X

occurs in two different patterns P and P′ of the Boolean combination then it is treated as quantified
existentially for P and independently quantified for P′.

It will be useful to occasionally consider parameterized patterns, in which some variables are
designated as free. Let P(X̄) be a pattern with free variables X̄, and ν an assignment of data values
to X̄. A BAXML forest I satisfies P(X̄) for assignment ν, denoted I, ν |= P(X̄), if I satisfies the
pattern P(ν(X̄)) obtained by replacing each variable in X̄ by its value under ν.

Main

MailOrder

Order-Id

X

Cname

Y

Pname

Z

MailOrder

Order-Id

X

Cname

Y’

Pname

Z’ (a)
Y , Y’ or Z , Z’

Main

Product

Pname

X

MailOrder

Pname

X

self

(b)

Figure 5.2.: Two patterns

Queries As previously mentioned, patterns are used in queries, as shown next. A query is a finite
union of rules of the form Body→ Head, where Body and Head are patterns and Head contains no
descendant edges and no constants, and all its variables occur in Body. In each tree of Head, all
variables occur under a designated constructor node, specifying a form of nesting. When evaluated
on a forest, the matchings of Body define a set of valuations of the variables. The answer for the
rule is obtained by replacing, in each tree of Head, the subtree rooted at the constructor node with
the forest obtained by instantiating the variables in the subtree with all their matchings provided by

52

5.3. The Basic AXML model

the Body. The answer to the query is the union of the answers for each rule. As for patterns, we may
consider queries evaluated relative to a specified node in the input tree. A relative query is defined
like a query, except that the bodies of its rules are relative patterns (P, self). An example of relative
query (with a single rule) is given in Figure 5.3. The label of the constructor node (indicated by
brackets) is Process-bill.

Main

Catalog

Product

Pname

X

Price

Y

MailOrder

Pname

X

self: !Bill

{Process-bill}

Pname

X

Amount

Y

!Invoice

Figure 5.3.: Example of a relative query

Consider the evaluation of the query of Figure 5.3 on the BAXML document of Figure 5.1 at
the unique node labeled !Bill. There is a unique matching of the Body pattern and the result
is the Head pattern of the query with X replaced by Nikon and Y by 199 (without brackets for
Process-bill).

DTD Trees used by a BAXML system may be constrained using unordered DTDs and Boolean
combinations of patterns. Unordered DTDs are defined as in Definition 2.9. We allow also that
cardinality constraints can talk about the state of functions: they are Boolean combinations of
statements of the form |b| > k for b ∈ Σ ∪ F ! ∪ F ? ∪ {dom} and k a non-negative integer. Validity
of trees and of forests relative to a DTD is defined in the standard way, see Definition 2.9.

Schemas and instances A BAXML schema s is a tuple (Φint,Φext,∆) where (i) the set Φint

contains a finite set of internal function specifications, (ii) the set Φext contains a finite set of
external function specifications, and (iii) ∆ provides static constraints on instances of the schema. It
consists of a DTD and a Boolean combination of patterns. For instance, the negation of the pattern
in Figure 5.2 (b) states that Order-Id uniquely determines the mail order.

We next detail Φint and Φext. For each f ∈ F , let a f be a new distinct label in Σ. Intuitively, a f

will be the root of a subtree where a call to f is being evaluated. (This subtree may be seen as a
task initiated by the function call.) The specification of a function f of Φint indicates whether f is
continuous or not, provides its argument query (a relative query), and return query (a query rooted
at a f). When the argument query is evaluated, self binds to the node at which the call ! f is made.
The role of the argument query is to define the argument of a call to f , which is also the initial state
of the task corresponding to f .

Example 5.6. We continue with our running example. The function Bill used in Figure 5.1
is specified as follows. It is internal and non-continuous. The argument query is the query in
Figure 5.3. Assuming that Invoice is an external function eventually returning Payment (with
product and amount paid) the return query of Bill is:

53

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

aBill

Payment

Pname

X

Amount

Y

{Paid}

Pname

X

Amount

Y

Each function f in Φext is specified similarly, except that the return query is missing. In addition,
a DTD ∆ f constrains the answers returned by f (the DTD assumes a virtual root under which the
answer forest is placed). Intuitively, an external call can return any answer satisfying ∆ f at any
time, as long as the resulting instance also satisfies the global static constraints ∆. For example,
MailOrder is external, since its role is to fetch orders from an external user.

An instance I over a BAXML schema s = (Φint,Φext,∆) is a pair (T , eval), where T is a BAXML
forest and eval an injective function over the set of nodes in T labeled with ? f for some f ∈ Φint

such that: (i) for each n with label ? f , eval(n) is a tree in T with root label a f (its workspace), and
(ii) every tree in T with root label a f is eval(n) for some n labeled ? f . An instance of S is valid if
it satisfies ∆.

Runs Let I = (T , eval) and I′ = (T ′, eval’) be instances of a BAXML schema s = (Φint,Φext,∆).
The instance I′ is a possible next instance of I iff I′ is obtained from I by making a function call
or by receiving the answer to an existing call. We refer to the latter as an event. More precisely,
an event is an expression of the form ! f (F) or ? f (F), where f is a function, and F is the forest
consisting of the argument, resp. answer to the function call. For technical reasons, we also use
two special events, init that only generates the initial instance, and block, whose use will be clear
shortly. We denote by I ⊢e I′ the fact that I′ is a possible next instance of I caused by event e.

We now provide more details. When a call to ! f is made at node n, the label of n is changed
to ? f . If f is internal, we additionally add to the graph of eval the pair (n,T ′) where T ′ is a tree
consisting of a root a f connected to the forest that is the result of evaluating the argument query
of f on input (T , n). When an answer to call ? f at node n is received, the trees in the answer are
added as siblings of n, and n is deleted (if f is non-continuous) or its label is reset to ! f (if f is
continuous). If f is external, its answer is a forest satisfying ∆ f . If f is internal, the answer can be
returned only if eval(n) contains no running calls ?g, in which case the answer consists of the result
of evaluating the return query of f on eval(n), after which (n, eval(n)) is removed from the graph of
eval.

Figure 5.4 shows a possible next instance for the instance of Figure 5.1 after an internal call has
been made to !Bill. Recall the specification of Bill from Example 5.6. As !Bill is an internal
call, the subtree aBill contains the result of the query defining !Bill (see Figure 5.3). The dotted
arrow indicates the function eval.

We will typically be interested in runs of such systems. An initial instance of schema s is an
instance of s consisting of a single tree whose root is not a function call and for which there is no
running call. For runs, we use a variation of the model of [Abiteboul 09]. A prerun of a schema
s is a finite sequence {(Ii, ei)}06i6n, such that (i) for each i, Ii satisfies the static constraints ∆, (ii)
e0 = init, and (iii) for each i > 0, Ii−1 ⊢ei

Ii. A run is an infinite sequence ρ = {(Ii, ei)}i>0 such that:

nonblocking each finite prefix of ρ is a prerun of s, or

54

5.3. The Basic AXML model

Main

Catalog

· · ·

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

?Bill !Deliver !Reject

aBill

Process-bill

Pname

Nikon

Amount

199

!Invoice

Figure 5.4.: An instance with an eval link

blocking there is a finite prefix (I0, e0), ..., (In, en) of ρ that is a maximal prerun∗ of s; and for each
i > n, Ii = In and ei = block.

Thus, we force all runs to be infinite by repeating forever a blocking instance from which no legal
transition is possible, if such an instance is reached.

Semantics with and without aborts

We next discuss a subtle difference between the semantics adopted here and that of [Abiteboul 09].
According to our semantics, if a prerun reaches an instance from which every transition leads to a
violation of the static constraints, the prerun blocks forever in that instance, generating a blocking
run. In contrast, the semantics of [Abiteboul 09] allows blocking runs only if no transition exists at
all (whether leading to a valid instance or not). If there are possible transitions but they all lead
to constraint violations, the prerun is discarded. Intuitively, this amounts to aborting the run. We
refer to this as the semantics of runs with aborts, and to the one we follow in this paper as the
semantics of runs (without aborts). Note that in our semantics, every prerun is extensible to a
(possibly blocking) run, whereas this is not the case in the semantics with aborts. Furthermore, as
shown next, in the semantics with aborts it is undecidable if a given prerun can be extended to an
infinite run. This is a main motivation for our choice of the semantics without aborts.

Theorem 5.7. Let s be a BAXML schema and ρ a prerun of s. Under the semantics with aborts, it

is undecidable whether ρ is the prefix of a run of S . Furthermore, this remains undecidable even

for nonrecursive† DTDs.

The proof for arbitrary DTDs is trivial by the undecidability of the satisfiability of static con-
straints. We give in appendix a proof for nonrecursive DTDs.

∗There is no (I′, e′) for which (I0, e0), ..., (In, en)(I′, e′) is a prerun of s.
†A DTD is recursive is there is a cycle in the graph that has an edge from tag a to b if the DTD allows b to label a

child of a node labeled a.

55

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

5.4. Workflow Constraints

In this section, we introduce three ways of enriching the BAXML model with workflow constraints:
(i) function call and return guards (yielding the GAXML model), (ii) an automaton model, and
(iii) temporal constraints. Each corresponds to a very natural way of expressing constraints on the
evolution of a system. We study and compare these mechanisms in the next sections.

We begin by considering an abstract notion of workflow constraint. A workflow constraint W

over a BAXML schema S is a prefix-closed property of preruns of S . For a prerun ρ of S , we
denote by ρ |= W the fact that ρ satisfies W. We denote by S |W the workflow specification defined
by S constrained by W. A run of S |W is an infinite sequence ρ = {(Ii, ei)}i>0 such that:

nonblocking each finite prefix of ρ is a prerun of S that satisfies W.

blocking there is a finite prefix (I0, e0), ..., (In, en) of ρ that is a maximal prerun of S satisfying W;
and for each i > n, Ii = In and ei = block.

Observe that nonblocking runs of S |W are particular nonblocking runs of S . Also, a sequence
{(Ii, ei)}i>0 may be a blocking run of S |W but not a blocking run of S . (This is because all
transitions that are possible according to S are forbiddent by W.) The set of runs of S |W is denoted
by runs(S |W).

A main goal of the chapter is to compare the descriptive power of different formalisms for
specifying workflow constraints. To this end, we consider the workflow languages G (for call
guards), A (for automata), and T (for temporal formulas), defined next.

Call and return guards Recall the Mail Order example, in which processing an order requires
executing some tasks in a desired sequence (order, bill, pay, deliver). Since tasks in BAXML are
initiated by function calls, one convenient workflow specification mechanism is to attach guards to
function calls. For instance, the guard of !Deliver, shown in Figure 5.5, might require that the
ordered product must have been paid in the correct amount. Similarly, it is useful to control when
the answer of an internal function may be returned. This can be done by providing return guards.

Let S be a BAXML schema. A guard assignment over S is a pair γ = (γc, γr), where:

• γc, the call guard assignment, is a mapping from the functions of S to Boolean combinations
of relative patterns over S . A call to f can only be activated if γc(f) holds.

• γr, the return guard assignment, is a mapping from the functions of S which is true for
external functions and a Boolean combination of tree patterns rooted at a f for each internal
function f . The result of a call to f is returned only when γr(f) guard is satisfied on its
current workspace. Return guards constrain only internal functions.

A prerun ρ = (I0, e0), ..., (In, en) of S satisfies γ = (γc, γr), denoted ρ |= γ, if for each transition
Ii1 ⊢ei

Ii, if the transition results from a function call to ! f at node u the guard γc(f) holds in (Ii−1, u),
and if the transition results from the return of an internal function call ? f at node u, γr(f) holds in
evali−1(u). Observe that these constraints involve consecutive instances only.

The set of all guard workflow constraints is denoted G. A GAXML schema is an expression S |γ,
for some γ ∈ G.

Example 5.8. Figure 5.5 shows call guards for some functions in the Mail Order example. The call
guard of function Bill is given in Figure 5.2(b) (this checks that the ordered product is available).
The call guard of Invoice is true. In the same example, the return guard of function Bill is:

56

5.4. Workflow Constraints

Main

Product

Pname

X

Price

Y

MailOrder

Paid

Pname

X

Amount

Y’

self

γc(Re ject)
Y , Y’

Main

Product

Pname

X

Price

Y

MailOrder

Paid

Pname

X

Amount

Y

self

γc(Deliver)

Figure 5.5.: Call guards of Reject and Deliver.

aBill

Payment

indicating that payment has been received, so billing is completed.

Pattern automata We next consider workflows based on automata. The states of the automaton
are defined using pattern queries. The automaton has no final states, since BAXML (like AXML)
does not have a built-in notion of successful computation.

A pattern automaton is a tuple (Q, qinit, δ,Υ) where:

• Q is a finite set of states, qinit ∈ Q, and each q ∈ Q has an associated set of variables Xq;

• For each q, Υ(q) is a Boolean combination of parameterized patterns whose set of free
variables equals Xq;

• the transition function δ is a partial function over Q × Q; for each q, q′, δ(q, q′) is a Boolean
combination of equalities of variables in Xq and Xq′ .

To simplify the presentation, we assume without loss of generality that Xq and Xq′ have no
variables in common.

57

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

Let A be the set of pattern automata. An AAXML schema is an expression S |A for a BAXML
schema S and A ∈ A. A prerun ρ = {(Ii, ei)}i6n of S satisfies an automaton constraint A, denoted
ρ |= A, if there exists a sequence {(qi, νi)}i6n, where q0 = qinit and νi is a valuation of Xqi

, such that
for each i 6 n:

1. Ii, νi |= Υ(qi),

2. νi(Xqi
) ∪ νi+1(Xqi+1) |= δ(qi, qi+1).

Intuitively, the state of such an automaton after reading a finite sequence ρ of instances is a pair
(q, ν) where ν is a valuation of the variables in Xq. Note that the automaton is non-deterministic
both with respect to the state and the valuation of its variables.

An automaton for our running example is represented in Figure 5.6. The edges represent the
pairs for which δ is defined, and the patterns in Υ check the following:

• Υ(qinit) checks nothing.

• Υ(p)(x1) checks that the call to Bill of the MailOrder of Order-Id x1 has been activated
and the product is in the catalog. The calls to Deliver and to Reject are still not activated.

• Υ(pe)(x2) checks that the call to Bill of the MailOrder of Order-Id x2 has returned a
payment.

• Υ(d)(x3) checks that the call to Deliver of the MailOrder of Order-Id x3 is activated and
the amount brought by Bill is the same as the price of the item that has been ordered.

• Υ(de)(x4) checks that the call to Deliver of the MailOrder of Order-Id x4 has been
returned.

• Υ(r)(x5) checks that the call to Rejection of the MailOrder of Order-Id x5 is activated
and the amount brought by !Bill is different from the price of the item that has been ordered.

• Υ(re)(x6) checks that the call to Rejection has been returned for the MailOrder of
Order-Id x6.

qinit p(x1) pe(x2)

d(x3) de(x4)

r(x5) re(x6)

x1 = x1

x1 = x2

x2 = x3

x2 = x5

x3 = x4

x5 = x6

Figure 5.6.: Example of pattern automaton

We note that in some specification models, such as state-charts [Harel 87], states are defined in a
hierarchical manner, i.e. entering a state may trigger a more refined state-transition sub-system.
Other systems further extend this with recursion [Alur 05]. We extend our formalism to capture
such hierarchical notion in Chapter 6.

58

5.4. Workflow Constraints

Past­Tree­LTL Finally, we consider workflow constraints specified using temporal formulas. In-
tuitively, these state, given a particular history, whether a given transition is allowed. The language
is a variant of Tree-LTL [Abiteboul 09] using only past LTL operators, that we call Past-Tree-LTL.
It is obtained from classical propositional LTL (e.g., see [Emerson 90]) by interpreting each propo-
sition as a parameterized tree pattern P(X̄) where X̄ is a subset of its variables, designated as global.
All global variables are treated as free in the patterns and are quantified existentially at the end. The
past temporal operators are X−1 (previously) and S (since), with the standard semantics. Specifi-
cally, X−1ϕ holds for a prerun (I0, e0) . . . , (In, en) if ϕ holds at (I0, e0) . . . , (In−1, en−1); ϕSψ holds at
(I0, e0) . . . , (In, en) if ψ holds in (I0, e0) . . . , (I j, e j) for some j 6 n and ϕ holds in (I0, e0) . . . , (Ik, ek)
for every k, j < k 6 n. In summary, a Past-Tree-LTL formula is of the form ∃Xψ(X) where ψ uses
only the temporal operators X−1 and S, and X is the set of global variables of the parameterized
patterns interpreting the propositions. The set of Past-Tree-LTL formulas is denoted T . A TAXML

schema is an expression S |θ for S a BAXML schema and θ ∈ T . A prerun ρ satisfies ∃Xψ(X) if ρ
satisfies ψ(ν(X)) for some valuation ν of the global variables X in the active domain of ρ.

The choice to existentially quantify the global free variables appears natural for specifying
workflow transition constraints. Observe that such variables are quantified universally in the
language Tree-LTL of [Abiteboul 09], used to specify properties of all runs. However, the model
checking approach of [Abiteboul 09] is based on checking unsatisfiability of the negation of
Tree-LTL formulas, whose global variables then become existentially quantified.

To illustrate Past-Tree-LTL constraints, consider the description of valid transitions in the
MailOrder example. This can be specified by a Past-Tree-LTL disjunctive formula. One of its
disjuncts is the following:

∃y
(
ψ?Bill(y) ∧ X−1ψ!Bill(y) ∧ X−1ψγc(Bill)(y))

stating the existence of an order id y for which ?Bill is present in the current instance, !Bill is
present in the previous instance, and the guard of Bill is true in the previous instance. This is done
using appropriate parameterized patterns∗ ψ?Bill(y), ψ!Bill(y) and ψγc(Bill)(y).

Checking workflow constraints

The following establishes the complexity of testing workflow constraints.

Theorem 5.9. Let S |W be a fixed workflow schema, for W ∈ {G,A, T }, and ρ a prerun of S .

Checking whether ρ satisfies W can be done in ptime with respect to |ρ|.

A more difficult decision problem is checking the existence of a valid transition extending
the current prerun. Indeed, this is undecidable even for BAXML schemas with no workflow
constraints (with either flavor of the abort semantics). The difficulty arises from the power of
external functions. This cannot be done for external functions because the set of possible answers
is typically infinite, and of arbitrary depth. Indeed, without external functions it suffices to test all
possible call activations and returns. However, the problem becomes decidable for bounded trees.

Theorem 5.10. (i) Given a BAXML schema S and a prerun ρ of S , it is undecidable whether ρ

is blocking. (ii) Given a BAXML schema S with non-recursive DTD and a prerun ρ of S , it is

decidable whether ρ is blocking.

∗The parametrized pattern formula ψγc(Bill)(y) is obtained by replacing in γc(Bill) each label self by !Bill and mapping
y to the Order-Id of the MailOrder to which !Bill belongs.

59

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

5.5. Expressiveness

In this section we compare the expressive power of BAXML, GAXML, AAXML, and TAXML,
using the framework developed in Section 5.2. We begin by comparing the languages relative to
views retaining full information about the current BAXML document, that we refer to as identity
views. We then consider a more permissive version allowing to hide some of the data and functions,
thus providing more leeway for simulations.

Workflow system semantics

We begin by casting the semantics of BAXML, GAXML, AAXML, and TAXML in terms of the
workflow systems described in Section 5.2. For each specification S (for BAXML) or S |W (for
GAXML, AAXML and TAXML), the nodes of the workflow system are the finite prefixes of runs
of S or S |W. The state label for each node is the last instance in the prefix. The root is the empty
prerun, denoted Φ. There is an edge labeled e from node ν to ν′ if ν′ extends ν with a single instance
by event e that is a function call or the return of a such a call. Note that the infinite paths in the tree
starting from Φ correspond to the runs of S (|W). Because of the semantics of blocking runs, each
path is extensible to an infinite path.

Note that there are alternative choices of workflow system semantics, and different goals may
require different choices. For example, for AAXML it may be natural to retain in the state,
information on the current state of the associated automaton together with the valuation of its
parameters. This would simplify defining views where such states are included in the observables.

Comparison with identity views

We first compare BAXML, GAXML, AAXML, and TAXML relative to the identity view on the
states and events of the workflow system (denoted id), thus preserving full information on the
system. Observe that if a language W2 simulates W1 with respect to (id, id), this means that for
each W1 in W1, there exists W2 in W2, such that W1 ∼ W2, i.e., W1 and W2 have exactly the same
runs. So, this is a very strong requirement. Note also that, since id is the most refined possible view
of a workflow system, existence of simulation with respect to id would imply, by Lemma 5.4, the
existence of simulation with respect to any coarser view. Unfortunately (but not surprisingly), the
three extensions of BAXML models are incomparable relative to the identity view.

Theorem 5.11. The workflow languages GAXML, AAXML and TAXML are incomparable relative

to ֒→(id,id).

Simulation Schema blowup Instance blowup Silent transitions
GAXML ֒→(id,π) BAXML exponential linear in instance linear in prerun
AAXMLsib ֒→(id,π) BAXML exponential polynomial in instance polynomial in prerun
TAXMLsib ֒→(id,π) BAXML exponential polynomial in prerun polynomial in prerun
TAXML ֒→(id,π) AAXML exponential polynomial in prerun polynomial in prerun
AAXML ֒→(id,π) TAXML polynomial polynomial in instance O(1)

Figure 5.7.: Cost of various simulations from Theorems 5.12 and 5.13

60

5.5. Expressiveness

Comparison with projection views

Given the negative result of Theorem 5.11, we next consider simulation relative to views allowing
more leeway in the simulating system. Specifically, the view remains the identity on the simulated
system, but allows the simulating system to use additional data and functions. We refer to the latter
as a projection view and denote the class of projection views by π.

Specifically, let S be a BAXML schema and Σ0 and F0 be subsets of the tags and functions of S

(the visible symbols) such that, in every instance satisfying the DTD of S , whenever a node has
tag a < Σ0, none of its descendants has a label in Σ0 or in F0. The projection πΣ0,F0([S]) is defined
as follows. For a state I of [S] (and for any instance), the projection is obtained by removing all
nodes whose label is a tag not in Σ0 or a function not in F0 and their descendants. We also remove
the workspaces whose corresponding function calls have been projected out. The projection of an
event ! f (F) is ε for f < F0 and ! f (πΣ0,F0(F)) for f ∈ F0, and similarly for ? f (F). The projection
view is defined in the same way for BAXML augmented with constraints (GAXML, AAXML, and
TAXML).

Our main result is that, with projection views, the powerful control mechanisms of GAXML can
be simulated by BAXML alone. For AAXML and TAXML, we need a minor restriction forbidding
the presence of sibling calls to the same external function (this can be enforced by the DTD). We
denote these restrictions by AAXMLsib and TAXMLsib.

Theorem 5.12. W ֒→(id,π) BAXML
for W ∈ {GAXML,TAXMLsib,AAXMLsib}.

Since BAXML is included in GAXML, TAXMLsib, and AAXMLsib, it follows that the four
languages can simulate each other relative to projection views.

For AAXML and TAXML, we have the following.

Theorem 5.13. AAXML ֒→(id,π) TAXML and

TAXML ֒→(id,π) AAXML.

The proofs of the above results (see appendix) provide insight into the simulations of the four
languages by each other, and in particular into the power of imposing control using static constraints.
In terms of the cost of each simulation, several parameters can be considered:

• the blowup in the schema size,

• the blowup in the instance size,

• the number of silent transitions needed to simulate a single transition.

For the simulations considered here, the blowup in the schema size varies from polynomial
to exponential, the blowup in the instance size from polynomial with respect to the instance to
polynomial with respect to the entire prerun, and the number of silent transitions from constant to
polynomial in the prerun (for fixed schemas). The costs for various simulations are spelled out in
more detail in Figure 5.7.

The difficulty of simulating AAXML and TAXML with sibling external function calls by BAXML
(or GAXML) lies in the fact that the constraints of AAXML and TAXML must be checked after
every transition, and GAXML cannot prevent multiple returns from sibling external function calls
that skip validity checks. Indeed, as shown below, this difficulty cannot be circumvented.

Theorem 5.14. W 6֒→(id,π) GAXML

for W ∈ {TAXML, AAXML}.

61

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

Comparison with coarser views

Theorem 5.12 shows that BAXML, GAXML, TAXMLsib and AAXMLsib can simulate each other
relative to projection views. This result turns out to be quite powerful. Indeed, by Lemma 5.4 it
implies that the simulation results can be extended to any views that are coarser than such views.
For example, one may wish to focus on the sequence of events (function calls and returns, together
with their arguments), ignoring state information. This information can be captured by composing
the views in id and π with a view V that is the identity on events and maps every state to a fixed
constant. By Lemma 5.4, BAXML, GAXML, TAXMLsib and AAXMLsib can simulate each other
relative to (id ◦ V, π ◦ V). Similar remarks apply to TAXML and AAXML.

Conversely, one may be interested in observing certain characteristics of the states in the tree of
runs, ignoring event information. Once again, this can be captured by coarser views than (id, π) so
the four languages can simulate each other relative to such views.

5.6. BAXML and Tuple Artifacts

In the previous section, we compared the expressiveness of several workflow languages centered
around the common core provided by BAXML. In this section, we illustrate how views can be
used to reconcile models that are otherwise incomparable. For this, we use the views framework to
compare BAXML workflows with tuple artifacts workflows, a variant of IBM’s Business Artifacts,
which uses relational databases as its underlying model. The main result is that BAXML can
simulate tuple artifacts. Indeed, tuple artifacts can be seen as views of BAXML. We will also see
that tuple artifacts cannot simulate BAXML even with respect to coarse views retaining just the
traces of service and function calls.

We first review informally the tuple artifact model, as presented in [Deutsch 09] (see Subsection
5.6.1 for the formal definition). We denote the model by T A. We assume an infinite data domain
D. An artifact system consists of a set of artifacts and a set of services acting on the artifacts. An
artifact consists of an artifact tuple and a set of state relations. In addition, an artifact system has an
underlying database shared by all artifacts and services, that is fixed throughout a run of the system.

Each service causes a modification of one or several current artifacts. Intuitively, the focus is on
the evolution of the artifact tuples, while the state relations are used to carry auxiliary information
needed by the services. A service consists of the following:

• a pre-condition, which is an FO formula on the set of artifacts of the system and the underlying
database;

• a post-condition, which is an FO formula on the set of artifacts and the database, defining,
for each artifact tuple, the values allowed in the next instance; free variables range over the
infinite domain D, so may take new values not present in the current instance;

• for each state relation, two FO formulas defining the sets of tuples to be inserted and deleted
from the state. The formulas take as input the current artifact instance and the database, and
are interpreted with active domain semantics. Thus, their result is always finite.

Services are applied non-deterministically. At any given time, a service can be applied to the
current instance if its pre-condition holds and if the post-condition is satisfiable. Thus, there are two
forms of non-determinism in a transition: one stemming from the choice of service, and another
from the choice of values for the next artifact tuples, from among those satisfying the post-condition.

62

5.6. BAXML and Tuple Artifacts

A run of an artifact system is a sequence of consecutive instances together with the name of the
service applied at each transition. (For initial instance, we take any instance whose artifact states
are empty.) As for BAXML, blocking runs are extended by repeating forever the last configuration,
with the corresponding transitions labeled by the special event block. See [Deutsch 09] for a
detailed example of an artifact system.

5.6.1. The Tuple Artifact Model

We provide the definition of the tuple artifact model, adapted from [Deutsch 09]. A relational
database schema D consists of a finite set of relation symbols with specified arities. The arity of
relation R is denoted a(R). An instance, or interpretation, over a database schema, is a mapping
associating to each relation symbol R of the schema a finite relation over D, of arity a(R). We
assume familiarity with First-Order logic (FO) over database schemas. Given a schema D, LD

denotes the set of FO formulas over D. If ϕ(x̄) is an FO formula with free variables x̄, and ū is a
tuple over D of the same arity as x̄, we denote by ϕ(ū) the sentence obtained by substituting ū for x̄

in ϕ(x̄). Note that, since D is infinite, an FO formula ϕ(x̄) may be satisfied by infinitely many tuples
ū over D (so may define an infinite relation). Finiteness and effective evaluation can be guaranteed
by using the active domain semantics, in which the domain is restricted to the set of elements
occurring in the given instance (sometimes augmented with a specified finite set of constants in D,
by default empty). For an instance I, we denote its active domain by adom(I). Unless otherwise
specified, we assume active domain semantics for quantified variables and unrestricted semantics
for the free variables of a formula.

The artifact model uses a specific notion of class, schema and instance, defined next.

Definition 5.15. An artifact class is a pair C = 〈R, S 〉 where R and S are two relation symbols. An
instance of C is a pair C = 〈R, S〉, where (i) R, called attribute relation, is an interpretation of R

containing exactly one tuple over D, and (ii) S, called state relation, is a finite interpretation of S

over D.

We also refer to an artifact instance of class C as artifact instance, or simply artifact when the
class is clear from the context or irrelevant.

Definition 5.16. An artifact schema is a tuple

A = 〈C1, . . . , Cn,DB〉

where each Ci = 〈Ri, S i〉 is an artifact class, DB is a relational schema, and Ci, C j, and DB have no
relation symbols in common for i , j.

By slight abuse, we sometimes identify an artifact schema A as above with the relational schema

DBA = DB ∪ {Ri, S i | 1 6 i 6 n}.

An instance of an artifact schema is a tuple of class instances, each corresponding to an artifact
class, plus a database instance:

Definition 5.17. An instance of an artifact schema

A = 〈C1, . . . , Cn,DB〉

is a tuple A = 〈C1, . . . ,Cn,DB〉, where Ci is an instance of Ci and DB is an instance of DB over D.

63

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

Again by slight abuse, we identify each instance

A = 〈C1, . . . ,Cn,DB〉

of A with the relational instance DB ∪ {Ri, Si|1 6 i 6 n} over schema DBA. Let A be an artifact
schema and DBA its relational schema. Given an artifact instance over A, the semantics of formulas
in LA is the standard semantics on the associated relational instance over DBA.

We now define the syntax of services. It will be useful to associate to each attribute relation R of
an artifact schema A a fixed sequence x̄R of distinct variables of length a(R).

Definition 5.18. A service σ over an artifact schema A is a tuple σ = 〈π, ψ,S〉 where:

• π, called pre-condition, is a sentence in LA;

• ψ, called post-condition, is a formula in LA, with free variables
{x̄R | R is an attribute relation of a class in A};

• S is a set of state rules containing, for each state relation S of A, one, both or none of the
following rules:

– S (x̄)← ϕ+
S

(x̄);

– ¬S (x̄)← ϕ−
S

(x̄);

where ϕ+
S

(x̄) and ϕ−
S

(x̄) are LA-formulas with free variables x̄ s.t. |x̄| = a(S).

Definition 5.19. An artifact system is a pair Γ = 〈A,Σ〉, where A is an artifact schema and Σ is a
non-empty set of services over A.

We next define the semantics of services. We begin with the notion of possible successor of a
given artifact instance with respect to a service.

Definition 5.20. Let σ = 〈π, ψ,S〉 be a service over artifact schema A. Let A and A′ be instances of
A. We say that A′ is a possible successor of A with respect to σ (denoted A

σ−→ A′) if the following
hold:

1. A |= π;

2. A′|DB = A|DB;

3. if ūR is the content of the attribute relation R of A in A′, then A satisfies the post-condition ψ
where x̄R is replaced by ūR for each R;

4. for each state relation S of A and tuple ū over adom(A) of arity a(S), A′ |= S (ū) iff

A |= (ϕ+
S

(ū) ∧ ¬ϕ−
S

(ū)) ∨ (S (ū) ∧ ϕ+
S

(ū) ∧ ϕ−
S

(ū))
∨(S (ū) ∧ ¬ϕ+

S
(ū) ∧ ¬ϕ−

S
(ū))

where ϕ+
S

(ū) and ϕ−
S

(ū) are interpreted under active domain semantics, and are taken to be
false if the respective rule is not provided.

64

5.6. BAXML and Tuple Artifacts

Note that, according to (2) in Definition 5.20, services do not update the database contents (thus,
the database contents is fixed throughout each run, although it may of course be different across
runs). Instead, the data that is updatable throughout a run is carried by the artifacts themselves, as
attribute and state relations. Note that, if so desired, one can make the entire database updatable
by turning it into a state. Also observe that the distinction between state and database is only
conceptual, and does not preclude implementing all relations within the same DBMS.

We next define the notion of run of an artifact system Γ = 〈A,Σ〉. An initial instance of Γ is an
artifact instance over A whose states are empty.

Definition 5.21. A prerun of an artifact system Γ = 〈A,Σ〉 is a finite sequence ρ = {(ρi, σi)}06i6n

where each ρi is an artifact instance over A and each σi is a service, such that:

• ρ0 is an initial instance of Γ;

• σ0 = init;

• for each i > 0, ρi−1
σi−→ ρi.

We say that a pre-run is blocking if its last configuration has no possible successor. As for
BAXML, blocking runs are extended by repeating forever the last configuration, with corresponding
transitions labeled block. A run is an infinite sequence {(ρi, σi)}i>0 in which either every finite
prefix is a prerun, or the run is obtained by extending a blocking prerun by repeating forever the
last configuration with transitions labeled block. For an artifact system, the associated workflow

system is defined from the set of runs analogously to BAXML. In particular, the states are artifact
instances, and the events are services causing state transitions or the special event block.

5.6.2. Comparison

In order to simulate T A with BAXML, we must define views that render the two compatible.
For T A, we simply take the identity views id. For BAXML, we consider schemas of a special
form, that represent the artifact tuples and relations (states and database) of T A. A relation R with
attributes A1 . . . Am is naturally represented in BAXML by a subtree rooted at R, satisfying the
DTD:

R → |tupR| > 0
tupR → ∧m

i=1|Ai| = 1
Ai → |dom| = 1

We will have to record several instances of a state relation R. The current one will be adorned by a
function call !current just placed under its root, i.e., an R-labeled node. Artifact tuples are handled
similarly. Each service of the artifact system is modeled in BAXML by a corresponding function
with the same name. The call of a service is captured in BAXML by a call to the corresponding
function. Given a BAXML instance as described, the view is defined as follows. On states of the
BAXML workflow system, the view maps the subtrees representing database and state relations,
and artifact tuples, to the corresponding relations and tuples. Events consisting of activations of
functions corresponding to services are mapped to the corresponding service name, and all others
are mapped to ε. We denote this class of views by VT A. The main result is the following.

Theorem 5.22. T A ֒→(id,VT A) BAXML.

65

Chapter 5: Comparing Workflow Specification Languages: A Matter of Views

Thus, BAXML can simulate T A. In fact, since the view used for T A is the identity, tuple
artifacts themselves can be seen as views of BAXML systems. The simulation outlined in the
proof (see appendix) yields a BAXML schema polynomial in the T A schema, BAXML instances
polynomial in the T A instances, and polynomially many silent transitions (with respect to the
current instance), to simulate in BAXML one transition of T A.

Conversely, we will show that, in a strong sense, T A cannot effectively simulate BAXML. We
use coarse views that retain just the names of function calls in BAXML and of service calls in
T A (modulo a projection). Such views are natural because the traces of function and service calls
largely capture the sequencing of events central to workflows. We will prove a strong negative
result for such views. Intuitively, the problem in simulating BAXML with T A is due to the fact
that BAXML can read a large structure (for example an entire relation represented as an XML
document) by a single function call. On the other hand, tuple artifacts can only read one tuple at a
time, so the simulation requires a loop. This loop may lead to an infinite sequence of ε-transitions
(imagine a denial-of-service attack in which the attacker keeps sending new tuples). But if no such
sequence of ε-transitions occurs in the BAXML system, this is not a correct simulation.

More precisely, the views we use are defined as follows:

states for both BAXML and T A, all states are mapped to a constant state (so all information
about the states is lost);

events for BAXML, active calls ?g are mapped to ε and calls !g are mapped to g or to ε (so some
function calls can be hidden); for T A, a service σ is mapped to σ or to ε (so again, some
services can be hidden).

We denote the above class of views of BAXML systems by Vfun and of T A systems by Vserv.
Recall that the definition of simulation does not require effective construction of the simulating

schema (even though all our positive simulation results are constructive). We can show that one
cannot effectively construct a T A specification simulating a given BAXML schema, with respect
to the above views.

Theorem 5.23. There is no algorithm that, given as input a BAXML schema W1 and a view

V1 ∈ Vfun produces a T A schema W2 with a view V2 ∈ Vserv such that V1([W1]) ∼ V2([W2]).
Moreover, this holds even for BAXML schemas of bounded depth.

The proof (using only BAXML schemas of bounded depth) relies on the undecidability of
implication for functional and inclusion dependencies (see appendix).

Remark 7. By Lemma 5.4 (applied to effective simulations), the negative result of Theorem 5.23
extends to any views that expose more information than those above.

66

Chapter 6.

An implementation of the AXML artifact
model: AXART

6.1. Introduction

This chapter extends the core of the AXML Artifact model, e.g. a BAXML schema possibly with
some workflow constraints, presented in the previous chapter. This chapter proposes the AXART
system as a platform for collaborative work in a centralized environment. The AXART system is
based on the AXML Artifact model.

We extend the AXML Artifact model with several interesting features: control of the interactions
with the user, dynamic modification of the workflow ,and distribution. The dynamic modification
of the workflow and the management of access rights are new with respect to previous works.
We illustrate these with a real-life example: applying for a movie role in the movie industry, as
described in [Wikipedia]. This is representative of widely occuring cases where a workflow is
owned by a company or a public institution and with its partners. The example shows how a
standard workflow is modeled with AXML Artifact and how users can easily interact with the
artifacts using forms and modifying the states of the artifacts, effectively running the workflow.
The artifact changes are monitored by the AXML system and notifications are sent to potentially
concerned users, so that they can take appropriate actions. The example also illustrates the dynamic
modification of the workflow by two mechanisms, namely workflow specialization and workflow

exception, that allow users with proper rights to modify the workflows during their runs. This
provides useful flexibility in the workflows built with the AXML Artifact model. The changes on
the data and the workflow of an artifact are governed by the security rights that a user has for that
artifact. The distribution is illustrated by an application to Dell Supply chain [Kapuscinski 04].

The AXART system is a system managing centralized human interactions. It implements a
restriction of the AXML Artifact model. For example, the only allowed function are external
functions where the returned trees represent the information filled by a user. The main idea of the
implemented rules is to represent the workflow as data rules involving queries on the documents.
The system AXART maintains dynamically the views needed to verify the evolution of the workflow.
It uses monitoring techniques such as view maintenance on (active) documents in the presence of
positive updates. AXART combines these techniques with security techniques for managing access
rights. This allows the management of a large collection of artifacts with data access control.

The chapter is organized as follows. In the next section, we present two motivating examples. In
Section 6.3, we present briefly the extensions to the core of AXML Artifact model presented in the
previous Chapter. Section 6.4 presents the AXART system.

67

Chapter 6: An implementation of the AXML artifact model: AXART

6.2. Two motivating examples

We consider here two examples, illustrating the different extensions that we present in this chapter.
The first example illustrates the following extensions: hierarchy of artifacts, dynamic modification
of the workflow and access control. The second illustrates the distribution extension.

Role Application Procedure

The Setting We consider as motivating example the Role Application Procedure in Hollywood.
It is a workflow owned by a Film Company, whose purpose is to cast actors for a movie. There are
typically four types of participants involved in such a workflow: the Actor, the Casting Panel, the
Casting Assistant and the Film Director. Each of them corresponds to a security role in our system.

A Film Director creates an application to deal with the casting of his movie. For each role, he
creates a subtask. The actors can apply to a role by creating a sub artifact the Film Role Application

(FRA).
The Casting Assistant filters the applications e.g., eliminates the ones that are not filled in

properly and schedules auditions for the Film Actors. At the due date, the audition takes place
in front of two Casting Panels. It might result in the rejection of the application or in a "passed
audition" verdict. This procedure is a standard version of the workflow, as defined initially for
the class of FRAs. In addition, the Casting Panels may suggest new auditions and in this case
details need to be provided by the Casting Panels for organizing them. This is a case of Workflow
specialization.

A "passed audition" verdict means that the Actor is eligible for the role and that its application
will be considered by the Director. Out of a pool of FRAs that passed auditions, the Director will
choose one. Of course, the Director might have a short list of favorite actors and could make his
choice at any moment if he spots the an application of a favorite actor, even without having the
actor passing an audition for the role. This is a case of Workflow exception.

Each task is represented by an artifact. In our context of centralized system, the users log in the
system and all their actions are directly supervised by the system.

Audition

Pending
FRA Filled

Audition

Scheduled

Audition

Passed

CP Reject

CA Reject

Director

Reject

Director

Accept

List Filter

New

Audition

Figure 6.1.: The standard workflow of a FRA (solid), its exception (dotted) and its specialization
(bold)

68

6.2. Two motivating examples

An example Scenario We start with the standard workflow (the regular boxes and arrows in
Figure 6.1) that is pre-defined for an artifact of class FRA. The boxes represent stages in the
workflow, while the diamonds stand for choice operators. In the case of the standard casting
workflow we suppose that only an audition needs to be passed. At any moment, the artifact will
be viewed by the workflow participants as a form with fields to fill in. This figure represents the
unfolding of the workflow of the FRA and the workflow of the audition associated to it.

In the first part of the scenario, the Actor John Travolta fills the attached FRA with details about
him. When it is done, an audition is scheduled by a Casting Assistant. When the Casting Panel
logs in, it will be able to choose one of the FRAs in the stage Audition Scheduled. When choosing
the FRA of John Travolta, it will need to fill in a form as the one in Figure 6.2. Supposing the
two decisions of the Casting Panels are positive, the FRA of John Travis will be considered by the
Director at his next log in.

In a second time, we illustrate the principle of Workflow exception. The Director may have a
list of preferred actors for the main role. The Director logs in first. He will be able to edit a list
of his preferences for the Role Batman in the film A Batman Romance. He will place the actor
John Travolta as his first preference in the list and he will log out. This is a Workflow Exception.
The dotted arrow and box in Figure 6.1 shows the exception when the Director chooses to approve
John Travolta’s application at the first step. When the application of John Travolta matches the
list of preferences, i.e. it enters the List Filter stage, the Director is notified that should log in and
explicitly validate it.

The third part instances how the workflow can be changed by Workflow specialization during the
run of the application. The Casting Panel wants the actor John Who to pass another audition. The
bold arrows and boxes show the extension of the workflow.

Dell Manufacturing system

To illustrate the distribution aspect, we use as a running example a simplified view of the Dell
manufacturing system [Kapuscinski 04]. See Figure 6.3.

The manufacturing system processes continuous flows of orders and has to cope with issues such
as distant suppliers. The main modules are as follows. The WWW interface is the Webstore, in
charge of processing forms completed by customers and of generating orders to the dispatcher. For
a given order, Dispatch selects a plant close to the customer to delegate order processing. Each
Plant processes an order, by forwarding orders for different parts to the relevant warehouses. It
processes an order, by combining the parts that are received into objects (e.g. computers) that are
then physically sent to the customers. Warehouse is a platform acting as a buffer between suppliers
and Dell’s plants. Finally, Credit Service is a third party in charge of checking the validity of credit
card payments when an order is created at a Webstore.

In the running example, when a new Web order arrives (1), a new webOrder artifact is created.
Then the new artifact creates a subartifact that is sent to a credit service (2). Once credit has been
approved, the subartifact returns to the webOrder but now its state contains all the credit data (and
notably the fact that the credit request was successful). A plant is then selected and the artifact
moves to that plant (3). It initiates a new subartifact for gathering parts, that is sent to a warehouse
and another local artifact for communications with the customer (4). Once the product has been
built, the artifact is sent to a delivery service (5). Finally, once the Web order has been completed,
the artifact moves to an archive where it is stored as a text-based XML serialization that includes
all the information it has gathered during its life cycle (6).

69

Chapter 6: An implementation of the AXML artifact model: AXART

Figure 6.2.: Form snapshot for a stage (Audition Scheduled)

70

6.3. Extensions of the AXML Model

Wo6
wo5

catalogue

wo4 wo3 wo2

wo1

WEBSTORE PLANT DELIVERY

CREDIT APPROVAL WAREHOUSE ARCHIVE

wo4-ca wo3-wh

wo3-com

(1)

(2)

(3)

(4)

(5)

(6)

Figure 6.3.: Artifacts in the Dell application

6.3. Extensions of the AXML Model

Hierarchy of artifacts

In real workflows, artifacts can be related to each other in a hierarchical. In the AXML Artifact
model, an artifact can have subartifacts that are considered as its subtasks. In the movie example,
each task managing a role may have several subtasks managing the applications of the actors. We
materialize this relation between artifact and subartifact using active documents with subtrees. A
artifact α is a subartifact of the artifact β iff the active document representing α is a subtree of
the active document representing β. Each (sub)active document representing an (sub)artifact is
identified by the tag Artifact labeling its root. Moreover, we assume that each node labeled Artifact

has a child labeled Id which has an associated value. This value is the identifier of the artifact,
which is assumed unique. An artifact α is an ancestor of the artifact β iff the active document of α
has the subtree of β.

Moreover, we equip each (sub)artifact with its own schema. An action of an artifact is not only
constrained by the workflow of its schema but also by the workflows of its ancestor(s). Indeed,
when an action is made for an artifact, it changes also the active documents of its ancestors that
have to satisfy their workflow constrains. In the rest of the chapter, we consider that the workflow
constraints are expressed by Tree pattern automata, but other constraints may be used. Remark that
a function can return an artifact or classical active documents.

We now extend the schema to allow access control, workflow modifications and distribution.

71

Chapter 6: An implementation of the AXML artifact model: AXART

Access Control

In the scenario, the notion of user activating a call is introduced. Users can activate function calls
only if they have rights to do so based on their roles. We associate to each state of the Tree pattern
automata a set of pair (role name, function name) with the following semantics: the user with the
role r can activate the function call ! f iff the pair (r, f) is associated to the current state of the
artifact. Remark that now, an activation of a function call is constrained by the workflow constraints
and by access controls.

Dynamic modification of the behavior of an artifact

Our system allows to modify the authorized behaviors of an artifact principally based on the modi-
fication of the schema of the artifact. We distinguish two kinds of modifications : specializations

that constraint the possible future behaviors of the artifact, and exceptions that relax the possible
future behaviors of the artifact. These workflow extension mechanisms are new features proposed
in this chapter. Specialization is related to Business rules for the tuple artifact model introduced
in [Bhattacharya 07c] and studied also [Deutsch 09]. Business rules are conditions that can be
super-imposed on the pre-conditions of existing in order to customize their behavior services
without changing their implementations.

A specialization is based on a modification of the schema and by adding possible new subartifacts.
The new schema has to be a restriction of the previous schema: the static constraints have to imply
those of the previous schema. In the same way, the workflow constraints have to be more constrained.
We impose the following syntactic constraints. The two workflow constraints have to be defined
over the same set of states. For each constraint, the formulas of the new workflow has to imply the
old one (by taking into account the static constraints) and the new function δ has to be more refined
than the old one. A specialization may add some subartifacts that were not allowed to add even by
activating function calls. This is for instance the case in the movie example when a new audition
has to be scheduled after the first one. In the main workflow, this possibility was not planned and
no function calls may bring a new audition artifact. The only way to schedule one would be by
specializing the artifact.

Similarly, exceptions are based on the modification of the schema. In the case of an exception,
the new schema relaxes the constraints. The new static constraints are more general. The access
controls may also be a relaxed as well as the workflow constraints. The states are the same but the
transition function is more general as well as the formulas of the states. For instance, in the movie
example, the Director accepts an application if the actor passed the auditions successfully. In the
second scenario, the Director relaxes the constraints for John Travolta. The Director accepts an
application if the actor passed the audition successfully, or is called John Travolta.

These kinds of modifications can be done only if after the change the artifact and its ancestors
may remain in their current stage and the user is authorized to make it. As for the activation of
functions, rights for each kind of action are associated to a role and a state .

Distribution

In a distributed environment, it might be the case that artifacts are processed outside of the system
that originated them. This kind of semantics is not considered in the previous chapter. In particular,
a subartifact may be moved outside. Such an artifact contains the set of rules that define its valid
evolution with respect to the workflow, so these rules can be enforced by the partner systems.
However, there is no guarantee that the partner system will not violate rules. In the example of

72

6.4. The AXART System

the Film Role Procedure, the Impresario fills out the application for the role outside the Film
Company’s system, be awarding of the rules that need to be followed. In our model, an artifact may
leave and then return into the secure system. The system only gives the artifact to a user who is
authenticated and has the proper access rights. When the artifact returns to the secure system, the
system checks that the user modified the artifact according to the rights associated with his role.
The received artifact will be rejected otherwise. Observe that in a distributed variant of our scenario
all the participants, except for the Impresario, log in and work in the secure environment provided
by the system of the Film Company. Checking the evolution of an artifact against security rights is
not the topic of this thesis and is not supported by the AXART system.

6.4. The AXART System

6.4.1. The implemented Model

The model implemented in the AXART system is a restriction of the AXML artifact model that
focuses on the human interactions. A user can interact with the system by activating a function call.
Then he has to fill a form representing the tree returned to system. In this way, the user has both
client and server interactions with the AXART system.

In the system, an active document is represented by an AXML document. See Figure 6.4 where
the tree is represented using an XML syntax (a text-based serialization of the tree). The figure
shows part of a Film Role artifact immediately after the activation and the return of the function
call Artifact0.Init. The function call Artifact0.newFilmRoleApplication is activated next in order
to create a FilmRoleApplication artifact. All functions are external. Each function DTD can only
represent a fix tree with possible data values representing the fields that a user has to fill.

< Artifact >
< Content >

< axml:sc xmlns:axml="http://futurs.inria.fr/gemo/axml/" axml:id="Artifact0.Init" id="n2" >
< FilmRoleApplications >
< axml:sc xmlns:axml="http://futurs.inria.fr/gemo/axml/" axml:id="Artifact0.newFilmRoleApplication" >

< /FilmRoleApplications >
< RoleName > PulpFiction < /RoleName >

< /Content >
...

< <ArtId id > Arti f act0 < /ArtId >
< /Artifact >

Figure 6.4.: An AXML artifact

In order to simplify the implementation, we require that there are no two calls to the same service
in a same active document. This is done by imposing syntactic constraints on the DTDs. The right
to activate a function depends on the role of the user and on the state of the artifact.

To ensure good performance in our system, we impose two restrictions:

1. Tree pattern query nodes are not labeled by function tags.

73

Chapter 6: An implementation of the AXML artifact model: AXART

2. The activation and the return of a function form an atomic action for our system, in particular
there are no internal function calls.

Moreover, we impose syntactic restrictions on the workflow exceptions and the workflow
specifications. We assume that the Boolean combination of tree-patterns are in disjunctive form. A
specialization of a formula ϕ can only be made by adding conjuncts to a conjunction of ϕ. Adding
artifacts for a specialization can only be done under a specific label SchemaUpdate labeling only
one child of the artifact’s root. An extension of a formula ϕ can only be made by adding disjunction
to it.

To summarize, in our system, an artifact is at any given time an active document (or part of
it). It contains its data and the data of its subartifacts, as well as information about the workflow
stages the artifact and its subartifacts are in. An artifact can be in a stage if it satisfies the formula
associated to its current state. Finally, the workflow of a schema describes the possible transitions.
Because we do not impose that an artifact should satisfy only one stage formula at a time, it is
possible to change the stage without updating the content of the artifact. An artifact evolves when a
user calls a function of the AXML document. Following the activation of a function call, the same
user fills the fields of the function. The update is accepted if it leads to valid workflow stages for all
artifacts.

6.4.2. Algorithm

The main technical difficulty of the system is to compute in runtime the possible functions that
may be activated by a user following his role and the current stage of this artifact. to this end, we
look for the possible trees that a user may return without violating the constraints of the workflows
associated to the current artifact and its ancestor. Remark that the structure of a tree returned by a
function is fixed, only its values can change. So, we look for the possible valuations that a user
can return. Because of the restrictions, we can assume that the model is monotone and we can use
techniques and notions presented in Part I. For each function call f and tree-pattern query appearing
in a formula, we compute the scenarios, see Definition in Section 2.6. Remain that a scenarios
explain how a set function call may contribute to the satisfaction of a tree-pattern query. We look
for the scenario where only f appears the provenance tuple. From these scenarios and the definition
of the return tree of f , we extract generalized tuples representing the allowed valuations of the
variables of the returned tree of f . The generalized tuples are manipulated through the operators
used to define the formula. A function can be activated iff the user has the right to activate the
function and if the set of the possible valuations is not empty. These structures are maintained
incrementally when the artifact is updated.

6.4.3. The Architecture

The main goal of the system is to manage the updates of artifacts. An update waits to be applied
until the Artifact Manager checks that the artifact and the higher-level artifacts can transition to
a next stage under this update. The properties of stages are expressed by Boolean combinations
of Patterns that have to be checked. The Artifact Manager is helped by the Axlog Module that
maintains incrementally the answers and the scenarios of the tree-pattern queries used to define the
properties of the states, see Section 2.6. The AXART system is built on top of the AXML system,
used as AXML DocStore in Figure 6.5, that is a manager of active documents. The update of an
AXML document is done through a service of the AXML system.

74

6.4. The AXART System

Axlog

Module

Update

Notifications

AXART System

Artifact

Manager

Artifact

ServicesGUI

Manager

Views definition

and maintenance

Web

browser

Module

AXML

DocStore
Views

Store
AXML

Services

Artifact

Classes

Metadata

Updates

Figure 6.5.: Architecture of a peer of the AXART System

Access control and monitoring queries are handled at the peer level. The architecture of an
AXART peer is presented in Figure 6.5.

The system maintains values of the stage formulas as views, using Axlog widget, see Chapter 3
and for more details [Marinoiu 09]. Thanks to a subscription service that we developed in Axlog,
the AXART system would be easily extended to allow users to receive alerts about artifacts that
concern them. For instance, the Director can register into the system and ask notified whenever a
favorite actor applies for the role of Batman. Similarly, an Actor can register a task to the monitoring
system and be notified whenever one of his applications has been approved. The monitoring of
artifacts model are discussed in [Marinoiu 09]

6.4.4. The User Interface

The system provides to the users with a Web interface for managing the artifacts. After logging
into the system, the user has access to the set of artifacts that he can modify, has sent or received.
He also has a list of functions that he can activate according to his security rights.

When a user chooses to activate a function, a form as in Figure 6.2 is presented to him. The
system may propose the set of possible valuations, which are dynamically generated, to the user.
In Figure 6.2, the user can choose one of the Accepted/Rejected options. He can create or import
artifacts from other systems, e.g. received by email.

In order to modify the workflow, the system provides a high-level language that supports the
creation of an artifact of a known class. The user may redefine the constraints of stages using a
set of basic properties suggested by the system. Defining new properties requires an expert, since
tree-pattern queries are involved.

75

Conclusion

We study in this thesis how active documents can provide the basis for the management of distributed
data. We focus on two kinds of data management systems: stream processing and data-centric
workflows.

Stream Processing: the Axlog model

Our first contribution is the study of active documents for stream processing. Works on stream
processing have focused on processing intensive streams where the relevant data arrives in a short
time. We study here stream processing in a different setting where relevant data arrives over long
periods of time. In this context, we propose a new stream processor model called Axlog widget,
specified using a query over an active document. We developed efficient techniques to maintain
queries over active documents. These techniques are based on two theoretical notions: satisfiability
and relevance. In particular, they allow combining techniques used for database theory and stream
processing. We show the tractability of satisfiability and relevance notions for monotone Axlog
widgets. The algorithm to maintain queries over active documents and the use of Axlog widgets are
fully developed in [Marinoiu 09]. System issues are briefly presented in this thesis to motivate the
study of satisfiability and relevance.

Data centric workflow: the AXML Artifact model

Our second contribution is the study of active documents used in the context of data-centric
workflows. Several previous models based on active active documents have been proposed in
[Abiteboul 09] and [5]. These works focused on different aspects of the workflows, the model
checking for [Abiteboul 09] and a global distributed model for [5]. In this thesis, we revisit the
AXML model, in order to understand and compare the different workflow constraints introduced
in [Abiteboul 09], based on guards for activation and return of function calls and in [5], based on
automata. To this end, we introduce a common core of these models called BAXML. We then
augment BAXML with different workflow constraint languages. The contribution of the thesis is
dual. First, it proposes a flexible framework for comparing distinct workflow models by means of
views extracting a common set of observable states and events, and a natural notion of simulation.
Second, it uses this framework to compare concrete languages capturing some of the main workflow
specification paradigms: automata, temporal constraints, and pre-and-post conditions. These
are first investigated using BAXML. We prove the surprising result that the static constraints of
BAXML are alone sufficient to simulate the three apparently much richer workflow specification
languages mentioned earlier. Beyond the specifics of the XML-based model, the results provide
insight into the power of the various workflow specification paradigms, the trade-offs involved in
choosing one over another, and the relationship to static constraints. Finally, we compare BAXML
to tuple artifacts, a variant of IBM’s Business Artifact model using relational databases. We show
that BAXML can simulate tuple artifacts whereas the converse is false. To compare these very

77

Conclusion

different models, we use again the views framework to render them compatible. This illustrates the
usefulness of the view-based framework to reconcile seemingly incomparable workflow models.

Then, we extended BAXML coupled with workflow constraints with new features or some
presented in [5] to obtain the AXML Artifact model. The AXML Artifact model supports descrip-
tion of workflow constraints, hierarchy of tasks, access control, worklow update and distribution.
We have implemented a prototype, AXART based on the extended AXML Artifact model. The
prototype implements a subset of the AXML Artifact model, focusing on human interactions.

Perspectives

Data centric workflows provide a challenging topic where much work remains to be done. We
mention next three future research directions.

The first is the extension of AXART to a distributed setting in order to fully support the
model proposed in [5]. The new system will have to deal with checking access control in a
distributed environment. A first idea would be to see how techniques developed in [Abiteboul r]
and [Abiteboul f] and demonstrated in [Antoine 11] could be adapted to this context. Another
approach which seems particularly promising would be to check access controls a posteriori. For
example, an artifact is sent from Alice to Bob, who is an untrusted peer. After receiving back of
this artifact from Bob, Alice has to check if Bob correctly obeyed the access rights. Watermarking
techniques can also be used this problem.

The following two points are based on the view framework for comparing workflows. First
remark that this framework allows to provide several explanations of the same workflow based on
different workflow languages. The workflow semantics is a tree of runs described in a particular
formalism. Its execution can be explained in a different formalisms for a user using the notion of
view based simulation. For example, an AXML artifact having a BAXML schema may have an
explanation using a AAXML schema (the BAXML schema is a simulation of the AAXML schema)
that would be more readable for the user.

The second topic is to describe powerful interfaces of systems, in particular choreography
contracts between two systems. It seems that that view-based simulations and artifacts would
be particularly suitable for this task. An interface would be an artifact describing possible and
obligatory behaviors of its implementations. An artifact would implement another artifact by using
a relation based on views for simulation. The notion of view simulation would be adapted to define
the implementation relation. It would be a way to describe powerful contracts with data at the
center, in particular for applications where privacy is essential, like in social network applications.

The last topic is in line with model checking of AXML artifacts. In previous work, each restriction
of the model needed to obtain decidability consists in trading off part of recursion in the process,
non-monotonicity and unbounded data. One could also consider combining different techniques
with abstractions of complex artifacts. Some behaviors of the artifact would be abstracted to check
particular properties. With a “right“ notion of abstraction, based on views, the properties checked
on the abstraction would be also true for the “real” artifact.

78

Part III.

References

79

Self References

Journal Article

[1] Claude Jard, Thomas Chatain and Pierre Bourhis Diagnostic temporel dans les systèmes
répartis à l’aide des dépliages des réseaux de Petri. JESA, 39:351– 366, 2005.

Conference Articles

[2] Serge Abiteboul, Pierre Bourhis and Victor Vianu. Comparing Workflow Specification
Languages: A Matter of Viewso In Proc. ICDT, Uppsala, Sweeden March 2011.

[3] Serge Abiteboul, Pierre Bourhis and Bogdan Marinoiu. Satisfiability and Relevance for Active
Documents. In Proc. PODS, Providence, USA, June 2009.

[4] Serge Abiteboul, Pierre Bourhis and Bogdan Marinoiu. Efficient maintenance techniques for
views over active documents In Proc. EDBT, Saint Petersburg, Russia, March 2009.

[5] Serge Abiteboul, Pierre Bourhis, Alban Galland and Bogdan Marinoiu The AXML Artifact
Model. In Proc. TIME, Brixen-Bressanone, Italia, July 2009.

[6] Serge Abiteboul, Pierre Bourhis and Bogdan Marinoiu. Incremental View Maintenance of
Active Documents. In Proc. BDA, Marseilles, France, October 2007.

[7] Claude Jard, Thomas Chatain and Pierre Bourhis. Diagnostic temporel dans les systèmes
répartis à l’aide des dépliages des réseaux de Petri. In Proc. Modélisation des systèmes

répartis, Autran, France, October 2005.

Demonstrations

[8] Serge Abiteboul, Pierre Bourhis, Alban Galland and Bogdan Marinoiu Axart, Enabling Col-
laborative works with Active XML Artifacts. In Proc. VLDB, Singapur, Singapur, September
2010.

[9] Serge Abiteboul, Bogdan Marinoiu and Pierre Bourhis. Distributed Monitoring of Peer-to-Peer
Systems. In Proc. ICDE, Cancun, Mexico, April 2008

81

Bibliography

[Abadi 03] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul & S. B. Zdonik. Aurora: a new model and

architecture for data stream management. VLDB J., vol. 12, no. 2, 2003.

[Abadi 05] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H.
Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing
& S. B. Zdonik. The Design of the Borealis Stream Processing Engine. In
CIDR, 2005.

[Abiteboul 95] Serge Abiteboul, Richard Hull & Victor Vianu. Foundations of databases.
Addison-Wesley, 1995.

[Abiteboul 96] S. Abiteboul, L. Herr & Jan Van den Bussche. Temporal Versus First-Order

Logic to Query Temporal Databases. In Proc. ACM PODS, pages 49–57,
1996.

[Abiteboul 98] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos & Janet L.
Wiener. Incremental Maintenance for Materialized Views over Semistruc-

tured Data. In VLDB, pages 38–49, 1998.

[Abiteboul 00] S. Abiteboul, V. Vianu, B.S. Fordham & Y. Yesha. Relational Transducers

for Electronic Commerce. JCSS, vol. 61, no. 2, pages 236–269, 2000.
Extended abstract in PODS 98.

[Abiteboul 04a] Serge Abiteboul, Omar Benjelloun, Bogdan Cautis, Ioana Manolescu, Tova
Milo & Nicoleta Preda. Lazy Query Evaluation for Active XML. In SIGMOD
Conference, pages 227–238, 2004.

[Abiteboul 04b] Serge Abiteboul, Omar Benjelloun & Tova Milo. Positive Active XML. In
PODS, pages 35–45, 2004.

[Abiteboul 06] Serge Abiteboul, Luc Segoufin & Victor Vianu. Representing and querying

XML with incomplete information. ACM Trans. Database Syst., vol. 31,
no. 1, pages 208–254, 2006.

[Abiteboul 07] Serge Abiteboul & Bogdan Marinoiu. Distributed Monitoring of Peer to

Peer Systems. In Workshop On Web Information And Data Management,
pages 41–48, 2007.

[Abiteboul 08a] Serge Abiteboul, Omar Benjelloun & Tova Milo. The Active XML project:

an overview. VLDB J., vol. accepted for publication, 2008.

[Abiteboul 08b] Serge Abiteboul, Ioana Manolescu & Spyros Zoupanos. OptimAX: efficient

support for data-intensive mash-ups. In ICDE, pages 1564–1567, 2008.

83

Bibliography

[Abiteboul 09] Serge Abiteboul, Luc Segoufin & Victor Vianu. Static analysis of Active

XML systems. In TODS, 2009. Extended abstract in PODS 08.

[Abiteboul 11] Serge Abiteboul, Balder ten Cate & Yannis Katsis. On the Equivalence of

Distributed Systems with Queries and Communication. In ICDT, 2011.

[Abiteboul r] Serge Abiteboul, Meghyn Bienvenu, Alban Galland & Marie-Christine
Rousset. Distributed Datalog Revisited. Datalog 2.0 Workshop, 2010 (To
appear).

[Abiteboul f] Serge Abiteboul, Alban Galland, Amélie Marian & Alkis Polyzotis. Web-

damExchange, a Model for Data Access on the Web. In preparation, draft on
http://webdam.inria.fr/drafts/WebdamExchange.pdf.

[Adam 98] N. Adam, V. Atluri & W. Huang. Modeling and analysis of workflows using

Petri nets. Journal of Intelligent Information Systems, vol. 10, no. 2, pages
131–158, 1998.

[Alon 03] Noga Alon, Tova Milo, Frank Neven, Dan Suciu & Victor Vianu. XML with

data values: typechecking revisited. JCSS, vol. 66, no. 4, pages 688–727,
2003.

[Alur 05] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid,
Thomas W. Reps & Mihalis Yannakakis. Analysis of recursive state ma-

chines. ACM Trans. Program. Lang. Syst., vol. 27, no. 4, pages 786–818,
2005.

[Antoine 11] Emilien Antoine, Alban Galland, Kristian Lyngbaek, Amélie Marian &
Neoklis Polyzotis. Social Networking on top of the WebdamExchange

System. In ICDE, Hannover Allemagne, 04 2011.

[Arenas 02] Marcelo Arenas, Wenfei Fan & Leonid Libkin. Consistency of XML Specifi-

cations. In PODS, 2002.

[Axml] Axml. http://activexml.net.

[Beeri 91] Catriel Beeri & Raghu Ramakrishnan. On the power of magic. J. Log.
Program., vol. 10, no. 3-4, pages 255–299, 1991.

[Benedikt 08] Michael Benedikt, Wenfei Fan & Floris Geerts. XPath satisfiability in the

presence of DTDs. J. ACM, vol. 55, no. 2, pages 1–79, 2008.

[Benedikt 09] Michael Benedikt & James Cheney. Schema-Based Independence Analysis

for XML Updates. PVLDB, vol. 2, no. 1, pages 61–72, 2009.

[Benedikt 10] Michael Benedikt & James Cheney. Destabilizers and Independence of XML

Updates. PVLDB, vol. 3, no. 1, pages 906–917, 2010.

[Bhatia 09] Gaurav Bhatia, Yupeng Fu, Keith Kowalczykowski, Kian Win Ong,
Kevin Keliang Zhao, Alin Deutsch & Yannis Papakonstantinou. FORWARD:

Design Specification Techniques for Do-It-Yourself Application Platforms.
In WebDB, 2009.

84

http://webdam.inria.fr/drafts/WebdamExchange.pdf

Bibliography

[Bhattacharya 05] K. Bhattacharyaet al. A model-driven approach to industrializing discovery

processes in pharmaceutical research. IBM Systems Journal, vol. 44, no. 1,
pages 145–162, 2005.

[Bhattacharya 07a] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam & F. Y. Wu. Artifact-

centered operational modeling: Lessons from customer engagements. IBM
Systems Journal, vol. 46, no. 4, pages 703–721, 2007.

[Bhattacharya 07b] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu & J. Su. Towards formal

analysis of artifact-centric business process models. In BPM, 2007.

[Bhattacharya 07c] K. Bhattacharya, C.E. Gerede, R. Hull, R. Liu & J. Su. Towards formal

analysis of artifactcentric business process models. In Int. Conf. on Business
Process Management, 2007.

[Björklund 08] Henrik Björklund, Wim Martens & Thomas Schwentick. Optimizing Con-

junctive Queries over Trees Using Schema Information. In MFCS, pages
132–143, 2008.

[Björklund 09] Henrik Björklund, Wouter Gelade, Marcel Marquardt & Wim Martens. Incre-

mental XPath evaluation. In ICDT ’09: Proceedings of the 12th International
Conference on Database Theory, pages 162–173, New York, NY, USA, 2009.
ACM.

[Blakeley 86a] José A. Blakeley, Neil Coburn & Per-Åke Larson. Updating Derived Re-

lations: Detecting Irrelevant and Autonomously Computable Updates. In
VLDB’86, pages 457–466, 1986.

[Blakeley 86b] Jose A. Blakeley, Per-Ake Larson & Frank Wm Tompa. Efficiently updating

materialized views. SIGMOD Rec., vol. 15, no. 2, pages 61–71, 1986.

[Bojanczyk 06a] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin &
Claire David. Two-Variable Logic on Words with Data. In LICS, 2006.

[Bojanczyk 06b] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin &
Claire David. Two-Variable Logic on Words with Data. In LICS, pages 7–16,
2006.

[Bouajjani 03] A. Bouajjani, P. Habermehl & R. Mayr. Automatic verification of recursive

procedures with one integer parameter. Theoretical Computer Science,
vol. 295, pages 85–106, 2003.

[Bouajjani 07a] A. Bouajjani, P. Habermehl, Y. Jurski & M. Sighireanu. Rewriting systems

with data. In FCT’07, volume 4639 of Lecture Notes in Computer Science,
pages 1–22. Springer, 2007.

[Bouajjani 07b] A. Bouajjani, Y. Jurski & M. Sighireanu. A Generic Framework for Reason-

ing about Dynamic Networks of Infinite-State Processes. In TACAS’07, vol-
ume 4424 of Lecture Notes in Computer Science, pages 690–705. Springer,
2007.

85

Bibliography

[Bouyer 02] P. Bouyer. A Logical Characterization of Data Languages. Information
Processing Letters, vol. 84, no. 2, pages 75–85, 2002.

[Bouyer 03] P. Bouyer, A. Petit & D. Thérien. An algebraic approach to data languages

and timed languages. Information and Computation, vol. 182, no. 2, pages
137–162, 2003.

[BPEL] BPEL. http://bpel.xml.org/ .

[Burkart 01] O. Burkart, D. Caucal, F. Moller & B. Steffen. Verification of infinite

structures. In Handbook of Process Algebra, pages 545–623. Elsevier
Science, 2001.

[Calì 08] Andrea Calì & Davide Martinenghi. Querying Data under Access Limita-

tions. In ICDE, pages 50–59, 2008.

[Calvanese 09] Diego Calvanese, Giuseppe De Giacomo, Richard Hull & Jianwen Su.
Artifact-Centric Workflow Dominance. In ICSOC/ServiceWave, pages 130–
143, 2009.

[Ceri 94] Stefano Ceri & Jennifer Widom. Deriving Incremental Production Rules for

Deductive Data. Inf. Syst., vol. 19, no. 6, pages 467–490, 1994.

[Ceri 00] Stefano Ceri, Piero Fraternali & Aldo Bongio. Web Modeling Language

(WebML): a modeling language for designing Web sites. Computer Networks,
vol. 33, no. 1-6, pages 137–157, 2000.

[Chandra 85] Ashok K. Chandra & Moshe Y. Vardi. The implication problem for functional

and inclusion dependencies is undecidable. SIAM journal on computing,
vol. 14, no. 3, pages pp. 671–677, 1985.

[Comon 97] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison
& M. Tommasi. Tree automata techniques and applications. 1997. release
October, 1rst 2002.

[Damaggio 11] Elio Damaggio, Alin Deutsch & Victor Vianu. Artifact Systems with Data

Dependencies and Arithmetic. In ICDT, 2011.

[David 08] Claire David. Complexity of Data Tree Patterns over XML Documents. In
MFCS, 2008.

[Demri 08] Stéphane Demri, Ranko Lazić & Arnaud Sangnier. Model checking freeze

LTL over one-counter automata. In Proceedings of the 11th International
Conference on Foundations of Software Science and Computation Structures
(FoSSaCS’08), pages 490–504, 2008.

[Demri 09] Stéphane Demri & Ranko Lazić. LTL with the freeze quantifier and register

automata. ACM Trans. Comput. Logic, vol. 10, no. 3, pages 1–30, 2009.

[Deutsch 06] Alin Deutsch, Liying Sui, Victor Vianu & Dayou Zhou. Verification of

communicating data-driven web services. In PODS, 2006.

86

http://bpel.xml.org/

Bibliography

[Deutsch 07] Alin Deutsch, Liying Sui & Victor Vianu. Specification and verification of

data-driven Web applications. JCSS, vol. 73, no. 3, pages 442–474, 2007.

[Deutsch 09] Alin Deutsch, Richard Hull, Fabio Patrizi & Victor Vianu. Automatic

verification of data-centric business processes. In ICDT, 2009.

[Diao 02] Yanlei Diao, Peter M. Fischer, Michael J. Franklin & Raymond To. YFilter:

Efficient and Scalable Filtering of XML Documents. In ICDE, pages 341–,
2002.

[Diekert 08] Volker Diekert & Paul Gastin. First-order definable languages. In Jörg Flum,
Erich Grädel & Thomas Wilke, editeurs, Logic and Automata: History and
Perspectives, volume 2, pages 261–306. 2008.

[Dong 99] G. Dong, R. Hull, B. Kumar, J Su & G Zhou. A framework for optimizing

distributed workflow executions. In DBLP, 1999.

[DTD] DTD. http://www.w3.org/TR/REC-xml/#dt-doctype.

[Emerson 90] E. Allen Emerson. Temporal and Modal Logic. In J. Van Leeuwen, editeur,
Handbook of Theoretical Computer Science, Volume B: Formal Models and
Sematics, pages 995–1072. North-Holland Pub. Co./MIT Press, 1990.

[Ennals 07] Robert Ennals & David Gay. User-friendly functional programming for Web

mashups. In ICFP, pages 223–234, 2007.

[Fan 01] Wenfei Fan & Leonid Libkin. On XML Integrity Constraints in the Presence

of DTDs. In PODS, 2001.

[Fernández 07] Mary F. Fernández, Philippe Michiels, Jérôme Siméon & Michael Stark.
XQuery Streaming à la Carte. In ICDE, pages 256–265, 2007.

[Figueira 09] Diego Figueira. Satisfiability of downward XPath with data equality tests.
In PODS, pages 197–206, 2009.

[Finkel 01] Alain Finkel & Philippe Schnoebelen. Well-Structured Transition Systems

Everywhere! Theoretical Computer Science, vol. 256, no. 1-2, pages 63–92,
April 2001.

[Florescu 03] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Ric-
cardi, Till Westmann, Michael J. Carey, Arvind Sundararajan & Geetika
Agrawal. The BEA/XQRL Streaming XQuery Processor. In VLDB, pages
997–1008, 2003.

[Foster 08] J. Nathan Foster, Ravi Konuru, Jérôme Siméon & Lionel Villard. An Alge-

braic Approach to View Maintenance for XQuery. In PLAN-X, 2008.

[Fritz 09] Christian Fritz, Richard Hull & Jianwen Su. Automatic construction of

simple artifact-based business processes. In ICDT, 2009.

[Genest 08] Blaise Genest, Anca Muscholl, Olivier Serre & Marc Zeitoun. Tree Pattern

Rewriting Systems. In ATVA, pages 332–346, 2008.

87

Bibliography

[Genest 10] Blaise Genest, Anca Muscholl & Zhilin Wu. Verifying Recursive Active

Documents with Positive Data Tree Rewriting. CoRR, vol. abs/1003.1010,
2010.

[Georgakopoulos 95] D. Georgakopoulos, M. Hornick & A. Sheth. An overview of workflow man-

agement: From process modeling to workflow infrastructure management.
Distributed and Parallel Databases, vol. 3, pages 119–153, 1995.

[Gerede 07a] C. E. Gerede, K. Bhattacharya & J. Su. Static Analysis of Business Artifact-

centric Operational Models. In IEEE International Conference on Service-
Oriented Computing and Applications, 2007.

[Gerede 07b] C. E. Gerede & J. Su. Specification and Verification of Artifact Behaviors in

Business Process Models. In ICSOC, 2007.

[Gottlob 02] Georg Gottlob & Christoph Koch. Monadic Queries over Tree-Structured

Data. In LICS, pages 189–202, 2002.

[Gottlob 05] Georg Gottlob, Christoph Koch & Reinhard Pichler. Efficient algorithms for

processing XPath queries. ACM Trans. Database Syst., vol. 30, no. 2, pages
444–491, 2005.

[Grahne 91] G. Grahne. Problem of incomplete information in relational databases.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1991.

[Green 03] Todd J. Green, Gerome Miklau, Makoto Onizuka & Dan Suciu. Processing

XML Streams with Deterministic Automata. In ICDT, 2003.

[Gupta 93] Ashish Gupta, Inderpal Singh Mumick & V. S. Subrahmanian. Maintaining

Views Incrementally. In SIGMOD Conference, pages 157–166, 1993.

[Gupta 95] Ashish Gupta & Inderpal Singh Mumick. Maintenance of Materialized

Views: Problems, Techniques and Applications. IEEE Data Eng. Bull.,
vol. 18, no. 2, pages 3–18, 1995.

[Harel 87] David Harel. Statecharts: A Visual Formulation for Complex Systems. Sci.
Comput. Program, vol. 8, no. 3, pages 231–274, 1987.

[Hélouët 10] Loïc Hélouët & Albert Benveniste. Document Based Modeling of Web

Services Choreographies Using Active XML. In ICWS, pages 291–298,
2010.

[Hull] Richard Hull. Personal communication, 2009.

[Hull 99] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar & G. Zhou. Declar-

ative Workflows that Support Easy Modification and Dynamic Browsing. In
Proc. Int. Joint Conf. on Work Activities Coordination and Collaboration,
1999.

[Hull 00] R. Hull, F. Llirbat, B. Kumar, G. Zhou, G. Dong & J. Su. Optimization

techniques for data-intensive decision flows. In Proc. IEEE Intl. Conf. on
Data Engineering (ICDE), pages 281–292, 2000.

88

Bibliography

[Hull 08] Richard Hull. Artifact-Centric Business Process Models: Brief Survey of

Research Results and Challenges. In OTM Conferences (2), pages 1152–
1163, 2008.

[Imielinski 82] Tomasz Imielinski & Jr. W. Lipski. The relational model of data and

cylindrical algebras. In PODS ’82: Proceedings of the 1st ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 170–170,
New York, NY, USA, 1982. ACM.

[Imielinski 84] Tomasz Imielinski & Witold Lipski Jr. Incomplete Information in Relational

Databases. J. ACM, vol. 31, no. 4, pages 761–791, 1984.

[Kanellakis 95] Paris C. Kanellakis, Gabriel M. Kuper & Peter Z. Revesz. Constraint Query

Languages. J. Comput. Syst. Sci., vol. 51, no. 1, pages 26–52, 1995.

[Kapuscinski 04] Roman Kapuscinski, Rachel Q. Zhang, Paul Carbonneau, Robert Moore &
Bill Reeves. Inventory decisions in Dell’s supply chain. Interfaces, vol. 34,
no. 3, pages 191–205, 2004.

[Koch 04] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt & Bernhard
Stegmaier. FluXQuery: An Optimizing XQuery Processor for Streaming

XML Data. In VLDB, pages 1309–1312, 2004.

[Kumaran 08] S. Kumaran, R. Liu & F. Y. Wu. On the duality of information-centric

and activity-centric models of business processes. In Proc. Intl. Conf. on
Advanced Information Systems Engineering (CAISE), 2008.

[Kuntschke 05] Richard Kuntschke, Bernhard Stegmaier, Alfons Kemper & Angelika Reiser.
StreamGlobe: Processing and Sharing Data Streams in Grid-Based P2P

Infrastructures. In VLDB, 2005.

[Lazić 07] R. Lazić, Th. Newcomb, J. Ouaknine, A. Roscoe & J. Worrell. Nets with

Tokens Which Carry Data. In ICATPN’07, volume 4546 of Lecture Notes in

Computer Science, pages 301–320. Springer, 2007.

[Levy 93] Alon Y. Levy & Yehoshua Sagiv. Queries Independent of Updates. In VLDB
’93: Proceedings of the 19th International Conference on Very Large Data
Bases, pages 171–181, San Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

[Levy 96] Alon Y. Levy. Obtaining complete answers from incomplete databases. In
In Proc. of the 22nd Int. Conf. on Very Large Data Bases (VLDB’96, pages
402–412, 1996.

[Libkin 04] Leonid Libkin. Elements of finite model theory. Springer, 2004.

[Löding 09] Christof Löding & Karianto Wong. On Nondeterministic Unranked Tree

Automata with Sibling Constraints. In FSTTCS, pages 311–322, 2009.

[Ma 08] AHai-Tao Ma, Zhong-Xiao Hao & Yan Zhu. Checking Satisfiability of Tree

Pattern Queries for Active XML Documents. In INFOCOMP, pages 11–18,
2008.

89

Bibliography

[Marinoiu 09] Bogdan Marinoiu. Monitoring of Distributed Applications in Peer to Peer

Systems. PhD thesis, Université Paris Sud, 2009.

[Martin 03] D. Martinet al. OWL-S: Semantic Markup for Web Services, W3C Member

Submission, November 2003.

[McIlraith 01] S. A. McIlraith, T. C. Son & H. Zeng. Semantic web services. IEEE
Intelligent Systems, vol. 16, no. 2, pages 46–53, 2001.

[Meier 10] Michael Meier, Michael Schmidt, Fang Wei & Georg Lausen. Semantic

query optimization in the presence of types. In PODS, pages 111–122, 2010.

[Miklau 04] Gerome Miklau & Dan Suciu. Containment and equivalence for a fragment

of XPath. J. ACM, vol. 51, no. 1, pages 2–45, 2004.

[Miklau 07] Gerome Miklau & Dan Suciu. A formal analysis of information disclosure

in data exchange. J. Comput. Syst. Sci., vol. 73, no. 3, pages 507–534, 2007.

[Milner 89] R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[Mok 02] W.Y. Mok & D.P. Paper. Using Harel’s Statecharts to Model Business

Workflows. J. of Database Management, vol. 13, no. 3, pages 17–34, 2002.

[Motwani 03] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Singh
Manku, C. Olston, J. Rosenstein & R. Varma. Query Processing, Approxi-

mation, and Resource Management in a Data Stream Management System.

In CIDR, 2003.

[Muscholl 04] Anca Muscholl, Thomas Schwentick & Luc Segoufin. Active Context-Free

Games. In STACS, pages 452–464, 2004.

[Narayanan 02] S. Narayanan & S. McIlraith. Simulation, Verification and Automated Com-

position of Web Services. In WWW, 2002.

[Neven 04] F. Neven, T. Schwentick & V. Vianu. Finite State Machines for Strings Over

Infinite Alphabets. ACM Transactions on Computational Logic, vol. 5, no. 3,
pages 403–435, 2004.

[Nigam 03a] A. Nigam & N.S. Caswell. Business artifacts: An approach to operational

specification. IBM Systems Journal, vol. 42, no. 3, pages 428–445, 2003.

[Nigam 03b] Anil Nigam & Nathan S. Caswell. Business artifacts: An approach to

operational specification. IBM Systems Journal, vol. 42, no. 3, pages 428–
445, 2003.

[Onizuka 05] Makoto Onizuka, Fong Yee Chan, Ryusuke Michigami & Takashi Honishi.
Incremental maintenance for materialized XPath/XSLT views. In WWW,
pages 671–681, 2005.

[O’Reilly] Tim O’Reilly. What is Web 2.0?, http://www.oreilly.com/web2/archive/what-

is-web-20.html.

90

Bibliography

[Ronen 07] Royi Ronen & Oded Shmueli. Evaluation of datalog extended with an XPath

predicate. In WIDM, pages 9–16, 2007.

[Sawires 05] Arsany Sawires, Jun’ichi Tatemura, Oliver Po, Divyakant Agrawal &
K. Selçuk Candan. Incremental Maintenance of Path Expression Views.

In SIGMOD Conference, pages 443–454, 2005.

[Segoufin 07] Luc Segoufin. Static analysis of XML processing with data values. SIGMOD
Record, vol. 36, no. 1, pages 31–38, 2007.

[Seidl 03] Helmut Seidl, Thomas Schwentick & Anca Muscholl. Numerical document

queries. In PODS ’03: Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages
155–166, New York, NY, USA, 2003. ACM.

[Spielmann] M. Spielmann. Abstract State Machines: Verification Problems and Com-

plexity. Ph.D. thesis, RWTH Aachen, 2000.

[Spielmann 03] M. Spielmann. Verification of Relational Transducers for Electronic Com-

merce. JCSS., vol. 66, no. 1, pages 40–65, 2003. Extended abstract in PODS
2000.

[Stegmaier 04] Bernhard Stegmaier, Richard Kuntscke & Alfons Kemper. StreamGlobe:

adaptive query processing and optimization in streaming P2P environments.
In ACM International Conference Proceeding Series; Vol. 72, 2004.

[van Benthem 76] Johan van Benthem. Modal correspondence theory. PhD thesis, Mathematish
Instituut & Instituut voor Grondslagenonderzoek, Univ. of Amsterdam, 1976.

[van der Aalst 98] Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Man-

agement. Journal of Circuits, Systems, and Computers, vol. 8, no. 1, pages
21–66, 1998.

[van der Aalst 02] W. M. P. van der Aalst & A. H. M. ter Hofstede. Workflow Patterns: On the

Expressive Power of (Petri-net-based) Workflow Languages. In Proc. of the
Fourth International Workshop on Practical Use of Coloured Petri Nets and
the CPN Tools, 2002, 2002.

[van der Aalst 04] W.M.P. van der Aalst. Business process management demystified: A tutorial

on models, systems and standards for workflow management, 2004. In
Lectures on Concurrency and Petri Nets.

[Vardi 96] Moshe Y. Vardi. An Automata-Theoretic Approach to Linear Temporal

Logic. In Logics for Concurrency: Structure versus Automata, volume 1043
of LNCS, pages 238–266. Springer-Verlag, 1996.

[Vieille 89] L. Vieille. Recursive query processing: the power of logic. Theor. Comput.
Sci., vol. 69, no. 1, pages 1–53, 1989.

[Wang 05] J. Wang & A. Kumar. A Framework for Document-Driven Workflow Systems.
In Business Process Management, pages 285–301, 2005.

91

Bibliography

[Wikipedia] Wikipedia. http://en.wikipedia.org/wiki/Casting_

%28performing_arts%29.

[Wong 07] Karianto Wong & Christof Löding. Unranked Tree Automata with Sibling

Equalities and Disequalities. In ICALP, pages 875–887, 2007.

[WSDL] WSDL. http://www.w3.org/TR/wsdl.

[Yahoo Pipe] Yahoo Pipe. pipes.yahoo.com .

[Zhao 09] Xiangpeng Zhao, Jianwen Su, Hongli Yang & Zongyan Qiu. Enforcing

Constraints on Life Cycles of Business Artifacts. In TASE, pages 111–118,
2009.

92

http://en.wikipedia.org/wiki/Casting_%28performing_arts%29
http://en.wikipedia.org/wiki/Casting_%28performing_arts%29
pipes.yahoo.com

Part IV.

Appendix

93

Appendix A.

Satisfiability and Relevance: Proofs

A.1. Notations

In the main text, a generalized tuple (u, C) is a tuple of variables and the constraints are equality
constraints over variables and labels. In this section and in all the proofs, we use a definition that
is more convenient for the proofs. It is a pair consisting of (i) a tuple of variables and labels and
equality constraints over variables. The two definitions are clearly equivalent and one can transform
from one to the other in ptime.

Let q be a query, t an active document, p, n some nodes, respectively in q, t; and u a tuple over
all the variables of q. Let πp(u) be the projection of u over the variables appearing in the subtree
rooted at p. The query q(u) is obtained from q by replacing the variable $i by u($i). This definition
is extended to all tuples over a subset of the variables appearing in q. In the rest of the paper, we
suppose that there are no two nodes belonging to π labeled by the same variable. Then:

• descq(p) and desct(n) are the set of descendants of p for the query q and the set of descendants
of n for the tree t.

• ⌊p⌋q and ⌊n⌋t are the subtrees rooted at p and n, respectively.

• //q is the query with a root that (i) is labeled ∗ ; (ii) has q as a single subtree ; and (iii) the
edge from the root is in E//.

Finally, [p]u is the query defined as follows:

• if the edge leading to p is in E/, then [p]q = ⌊p⌋q and

• if the edge leading to p is in E//, then [p]q = ⌊p⌋q ∨ //⌊p⌋q.

Note that [p]u is not a tree pattern query but a union of such queries.
Figure A.1 shows a query q and the derived queries : ⌊c⌋q, //⌊c⌋q and [c]q. When q, t are

understood, we use desc(p), ⌊p⌋ and ⌊n⌋, [p].

A.2. Satisfiability

A.2.1. Proof of Theorem 2.6

We use Algorithm A.1 to construct datalog programs that compute satisfiability in ptime in the size
of the documents. We explain some aspects of the datalog programs and give a proof of correctness.
In the program, we denote by Activevar(p) the set of variables that appear in ⌊p⌋ and that are needed
in the output or that need to be carried on for checking a join constraint. That set can be computed
in a preprocessing phase, ignoring the data. For each node p occurring in the query, we consider

95

Appendix A: Satisfiability and Relevance: Proofs

q ⌊c⌋q //⌊c⌋q [c]q

a

b c

d

c

d

∗

c

d

∨

c

d

∗

c

d

Figure A.1.: Examples of queries

a predicate called p̂. The arity of p̂ is the number of active variables plus one. Its first column,
with attribute name node, is used for the node identifiers and each other column corresponds to a
variable in Activevar(p). We denote by C(p) the equality constraints associated to the relation p.
Observe how C(p) is used in Algorithm A.1. The constraint C(p) in the rule for p̂ contains :

• up′($1) = up′′($1) if p′, p′′ ∈ children(p) ∪ {p} and $1 ∈ Activevar(p′) ∩ Activevar(p′′).

• up($1) = x where label(x, n) occurs in the rule of p̂ and λ(p) = $1 ∈ Activevar(p).

• up′($1) = x where label(x, n) occurs in the rule of p̂ and λ(p′) = $1 ∈ Activevar(p′).

The constraint C(p) in the rule for p̂ contains nothing else.

Algorithm A.1 Satisfiability for queries
Data: a tree-pattern query q

Result: the datalog program P̂q

begin

for p = root(q) do

P̂ +:= q̂()← p̂(u, n), root(n)

foreach p ∈ nodes(q) \ {root(q)} do

if p labeled by b ∈ L then
δ +:= p̂(n, u) ← label(b, n), p̂i1(n1, ui1), . . . , p̂ j1(n′1, u j1), . . . ,
child(n, n1), ..., descendant(n, n′1), . . . ,C(p) where (p, pix

) ∈ E/, (p, p jy) ∈ E//,

else
δ +:= p̂(n, u) ← label(x, n), p̂i1(n1, ui1), . . . , p̂ j1(n′1, u j1), . . . ,
child(n, n1), ..., descendant(n, n′1), . . . ,C(p) where (p, pix

) ∈ E/, (p, p jy) ∈ E//,

foreach p ∈ nodes(q) \ {root(q)} do
δ +:= p̂(n, u)← f unction(n) where for each $i ∈ Activevar(p), u($i) = xi

end

The next lemma states the soundness of the datalog program.

96

A.2. Satisfiability

Lemma A.1. Let q, P̂q, I, be a query, the datalog program associated to q, an active document.

Let be n and (u, C) be a data node of I and a generalized tuple. Let p be a node of q. If (n, u, C) ∈ p̂

in P̂q(I), then (u, C) ∈ �⌊p⌋(⌊n⌋).

Proof. The proof is by induction.

• Let p be a leaf of q.

– Activevar(p) = {$i}. Then p is labeled by a variable $i. So, in compliance with
Algorithm A.1, (n, x,) ∈ p̂ iff n is a function node, and (n, a) ∈ p̂ iff n is a data node
labeled by a. So for the second case, it implies that ⌊n⌋ |= �⌊p⌋(a).

– Activevar(p) = ∅. According to Algorithm A.1, (n) ∈ p̂ iff n is a function node or p is
labeled by a variable or p and n are labeled by the same label a. In the two cases, it
implies that ⌊n⌋ |= �⌊p⌋.

• Let p be a query node and piy one of its children such that (p, piy) ∈ E/ (and similarly for
E//). Let (u, C) be a generalized tuple and n be a data node such that (n, u, C) ∈ p̂. Let
{(nx, ux, Cx)} be a set of generalized tuples belonging to the relations p̂iy such that they imply
that (n, u) belongs to p̂ following the rules described in Algorithm A.1. We remark that the
generalized tuples (nx, ux, Cx) have solvable constraints. Let ϕ a valuation of the generalized
tuple u. The restriction of ϕ over common attributes of u and ux is a partial valuation of ux

which can be extended to a complete valuation of ux. This valuation is denoted by ϕx. We
build a sequence of updates ω such that ω(⌊n⌋) |= ⌊p⌋(ϕ(u)).

– If nx is a function node. Then, the call Id associated can receive a tree satisfying
[px](ϕx(ux)).

– If nx is a data node. By induction, there is a sequence ωx such that ωx(⌊nx⌋) |=
⌊px⌋(ϕx(ux)).

Then, by aggregating all the sequences of updates in the global sequence of updates ω, we
have that ω(⌊n⌋) |= ⌊p⌋(ϕ(u)). So, for each instantiation ϕ of u, there is a sequence ω such
that ω(⌊n⌋) |= ⌊p⌋(ϕ(u)).

Therefore (u, C)�⌊p⌋(⌊n⌋). �

The next lemma states the completeness of the datalog program.

Lemma A.2. Let q, P̂q, I, (u, C) be a query, the datalog program associated to q, an active document

and a generalized tuple. Let p and n be a node of q and a data node of I. If (u, C) ∈ �⌊p⌋(⌊n⌋) then

there exists a generalized tuple (n, u′, C′) belonging to P̂q(I) such that (u, C) ⊑ (u′, C′).

Proof. The proof is by induction.

• Let p, (u, C) and n be a leaf of q, a generalized tuple and a data node of d such that
(u, C) ∈ �⌊p⌋(⌊n⌋). The node n is labeled by b. Because n is a data node, u has its value in L,
and u = b. Remark that the body of p̂ is equal to label(b, n). Then, (n, u, C) is in p̂.

• Let p be a query node and pix
one of its children such that (p, pix

) ∈ E/. Let (u, C) and n

be a tuple and a data node such that (u, C) ∈ �⌊p⌋(⌊n⌋). Let ϕ be a valuation of (u, C) such
that each variable of u is associated to some fresh label when it is possible. So, there exists
a sequence ω of updates such that ω(⌊n⌋) |= ⌊p⌋(ϕ(u)). Thus, there is a valuation ν from

97

Appendix A: Satisfiability and Relevance: Proofs

⌊p⌋(ϕ(u)) to ω(⌊n⌋). For each px child of p, we can define a generalized tuple (ux, Cx) built
from ϕ(u) by projecting it on variables common to Activevar(p) and Activevar(px) and then
by extending it to other variables of Activevar(px) according to the valuation ν. So (ux, Cx)
belongs to ω(⌊nx⌋). We have to consider two cases :

– nx belongs to ⌊n⌋. By induction, there is a generalized tuple (u′x, C
′
x) such that (nx, u

′
x, C
′
x) ∈

p̂x and (ux, Cx) ⊑ (u′x, C
′
x).

– nx does not belong to ⌊n⌋. So there is a function node n′x which is a sibling of an
ancestor of nx. In this case, we have (n′x, u

′
x,∅) ∈ p̂x. The tuple (u′x,) is composed by

variables without constraints, so (ux, Cx) ⊑ (u′,∅).

By using the rule of p̂ with the generalized tuples (nx, ux, Cx) or (n′x, u
′
x, C
′
x), we can define a

generalized tuple (u′, C′) such that (n, u′, C′) ∈ p̂. Because the tuples in P̂ take values only in
the labels of q and I and in the variables, the choice of the valuation ϕ at the beginning does not
change the definition of u′x (see Lemma A.3 further) . Finally, the rule is monotone and for each
x, (ux, Cx) ⊑ (u′x, C

′
x) , so (u, C) ⊑ (u′, C).

�

This concludes the proof of Theorem 2.6.

A.2.2. Proof of Theorem 2.7

To show np-hardness, we use a reduction of the evaluation problem for tree-pattern queries that is
known to be np-complete. The np-completeness of the evaluation of our tree-pattern queries can be
shown by adapting either the proof of Theorem 7.3 of [Gottlob 02] or the proof of the satisfaction
problem for injective tree-patterns in [David 08].

We now prove that the satisfiability problem is in NP. Let q be Boolean query and I an active
document. To show that I |= �q, it suffices to exhibit a sequence ω of insertions and a valuation ν
of q in ω(I). First, observe that if such a sequence exists, there is one with a number of insertions
bounded by |q| and the size of inserted trees also bounded by |q| (see Lemma A.4). Furthermore,
observe that we need only to consider a polynomial number of labels (we have to guess values for
variables. See Lemma A.3). Then we have to check (in polynomial time) that the given candidate

valuation is successful. The query to evaluate over ω(I) is a no-join tree-pattern query (the variables
are replaced by the values that have been guessed). Since the satisfaction of a no-join tree-pattern
query is polynomial in the sizes of the query and the tree [Gottlob 02, Miklau 04], membership
in np follows. We now prove the two auxiliary results that are used in the proof of the theorem,
namely Lemma A.3 and Lemma A.4.

Let q, I, (u, C) be a query, an active document, and a generalized tuple. By definition, I |=
�q((u, C)) iff for all instantiations θ of (u, C), I |= �q(θ(u)). The following lemma shows that it
suffices to check one particular instantiation.

Lemma A.3. Let q, I, (u, C) be a query, an active document and a generalized tuple. Let θ be

a particular instantiation of u that associates to each $i, a distinct, fresh label, i.e. a label not

appearing in I or q. Then (u, C) ∈ �q(I) iff I |= �q(θ(u)).

Proof. (⇒) If (u, C) ∈ �q(I), for each instantiation of (u, C), θ′, I |= �q(θ′(u)). Thus, in particular,
I |= �q(θ(u)).

(⇐) Now suppose that I |= �q(θ(u)) for this particular θ. Let ω be an update sequence so that
ω(I) |= q(θ(u)). Let θ′ be an arbitrary instantiation. By construction of θ, there exists a call Id f

98

A.2. Satisfiability

such that for all $i, θ′($i) = f (θ($i)). Let ω′ be the update sequence obtained from ω by replacing
each constant θ($i) by θ′($i) = f (θ($i)). Clearly, ω′(I) |= q(θ′(u)), so I |= �q(θ′(u)). Since θ′ is
arbitrary, (u, C) ∈ �q(I). �

We now show that for a tuple u, u is satisfiable iff there exists a sequence of updates ω such
that (i) it length is bounded by |q| and (ii) each subtree K of an update belonging to ω has its size
bounded by the size of q. For that, we use the definition of scenarios mentioned in Section 2.6.

Algorithm A.2 computes a set of scenarios denoted Scen(q, I).
This program takes an active I document and builds scenarios for I and q. It is derived from

Algorithm A.1. We assume some orders for the nodes of the query.

Algorithm A.2 Scenario for queries
Data: a tree-pattern query q

Result: the datalog program relevantq such that relevantq(I) = S cen(q, I)
begin

for p = root(q) do
δ +:= relevantq(u,P)← relevantp(n, u,P), root(n)

foreach p ∈ nodes(q) \ {root(q)} do

if p labeled by b ∈ L then
δ+:= relevantp(n, u,P)← label(b, n), relevantpi1

(n1, ui1 ,Pi1), . . . , relevantp j1
(n′1, u j1 ,P j1), . . . ,

child(n, n1), descendant(n, n′1), . . . ,C(p) where (p, pix
) ∈ E/, (p, p jy) ∈ E//,

Πdescpix
(P) = Pix

,Πdescpix
(P) = P jy,P(p) = ⋆

else
δ+:= relevantp(n, u,P)← label(x, n), relevantpi1

(n1, ui1 ,Pi1), . . . , relevantp j1
(n′1, u j1 ,P j1), . . . ,

child(n, n1), descendant(n, n′1), . . . ,C(p) where (p, pix
) ∈ E/, (p, p jy) ∈ E//,

Πdescpix
(P) = Pix

,Πdescpix
(P) = P jy,P(p) = ⋆

foreach p ∈ nodes(q) \ {root(q)} do
δ +:= relevantp(n, u,P) ← f unction(n) where ∀$i ∈ Activevar(p), u($i) = xi

P(p) = λ(n),∀n′ ∈ desc(p),P(p′) = •
end

Lemma A.4 gives the correctness and the soundness of this algorithm for extracting the informa-
tion needed for proving document satisfiability.

Lemma A.4. Let q, I be a query and an active document. Let u and ω be a tuple over q and a

sequence of updates. Then ω(I) satisfies the Boolean query q(u) iff there exists a scenario (u′, C,P)
in Scen(q, I) such that (u,∅) ⊑ (u′, C) and ω implements (u,∅,P).

Proof. Observe that the graph of dependencies of the relations in the program constructed by
Algorithm A.2 is a tree. The proof is by induction on the graph of dependencies of the relations.
Let n, p, u, ω be a data node of I, a node of q, a tuple over the variables of [p], and a sequence of
updates. We show that

ω(⌊n⌋) satisfies ⌊p⌋(u) iff there is a scenario (u′, C,P) ∈ relevantp such that (u,∅) ⊑ (u′, C) and ω
implements (u′, C,P).

The different parts of the inductions are straightforward. This proves the lemma. �

This concludes the proof of Theorem 2.7.

99

Appendix A: Satisfiability and Relevance: Proofs

A.2.3. Systems of active documents

We now consider systems of active documents where a call Id may correspond to a subscription to
a query over some active document of the system. This introduces recursion in the evaluation.

A.2.3.1. Proof of Theorem 2.8

Let S and d be an axlog system with empty queues and a document belonging to this system. First,
we can forget the order of applications of the updates in the system since the system is clearly
confluent. The program datalog P̂q is adapted as follows:

1. There are new extended relations d(n) (the node n belongs to the document d), ξq,to(n)
(ξ(λ(n)) = (q, to))

2. The relations p̄qi
(u, u′) denote the result tuple of querying a tree to(u′).

3. A program P̃(d,(q,to)) is built from the program P̃q by adding the conditions d(n) in each rule.
The rules p̂(n, u)← f un(n) are replaced by rules

p̃(n, u)← f un(qi,to)(n), d(n), p̄qi
(u, u′), q̃i(u′).

By applying naive evaluation of the datalog program iteratively, we can demonstrate that ∆ j+1 =

Q j+1(I) − Q j(I) is the set of updates resulting of applying the updates ∆ j in the system, the external
updates are added after the first iteration. So, because of confluence, each tuple computed by the
program is indeed a satisfiable tuple.

This program shows that the problem is solvable in ptime in the size of the document and in
exptime in the size of the system (size of the queries and size of the document).

The exptime-hardness is by reduction of the evaluation of datalog program that is known to be
exptime-hard. That ends the proof.

A.3. Typed documents

In this section, we provide the proofs concerning satisfiability for documents constrained by
schemas based on DTDs. Reasoning over DTDs and reduced trees is more difficult than over DTDs
with classical trees. In this context, we propose a specific kind of DTDs, called reduced DTDs,
easier to manipulate. First, the definition of reduced DTDs is given. We introduce an algorithm to
transform a DTD into an equivalent reduced DTD. Then, we extend this notion to Axlog schemas.
An algorithm solving the satisfiability problem for reduced DTDs is given. Finally, the study of the
complexity of this algorithm provides the proofs of Theorems 2.11 and 2.12.

A.3.1. Reduced DTDs

Reasoning about DTDs and reduced trees is not obvious as shown in Section 2.4.
The goal of this subsection is to propose a definition of DTD called reduced DTD such that the

problems exhibited by the example in Section 2.4do not appear. Moreover, we explain how to find
from a DTD an equivalent reduced DTD.

Let F be a forest. We consider the multiset of the roots of the trees in F. We denote by root{F }
the multiset of labels obtained by replacing in this set, each call to a function w by w and each
label in L − Σ by dom. For a unordered-DTD (τ,Σ,W, r), we denote by the λ(τ) the set equals to
Σ ∪ {dom} ∪W.

100

A.3. Typed documents

Definition A.5. An unordered-DTD (Σ,W, d, τ) is reduced iff for each a ∈ Σ, for each multiset M,
M ⊢ τ(a), there is a reduced forest F of τ such that (i) each tree of the forest satisfies the children
constraints∗ τ and (ii) root{F} = M.

We show that each unordered-DTD has a reduced DTD that defines the same set of reduced trees.
But first, we consider the notion of disjunctive DTD that is useful towards the notion of reduced
DTD, we study. We show that for each unordered-DTD there exists an equivalent one that is in a
disjunctive form and from each disjunctive DTD, there exists a reduced DTD that defines the same
set of reduced trees.

A.3.1.1. Disjunctive DTD

Definition A.6. Let (τ,Σ,W, r) be an unordered DTD. It is a disjunctive DTD iff there exists an
integer denoted by max(τ) such that for each a ∈ Σ, τ(a) =

∨
ϕi where for each i,

(+) ϕi is a conjunction of atoms of the form |b| = k, k 6 max(τ) or |b| > max(τ).

(++) for each b ∈ Σ ∪ {dom} ∪W, a term |b| op k appears exactly once in ϕi (possibly the term
|b| = 0)

(+++) for each j, i , j, the formula ϕi ∧ ϕ j is unsatisfiable.

The following lemma shows that for each unordered-DTD, there is an equivalent disjunctive
DTD.

Lemma A.7. Let D = (τ,Σ,W, r) be an unordered-DTD. There exists a disjunctive DTD D′ =
(τ′,Σ,W, r) such that for each a ∈ Σ, M a multiset of λ(τ), M satisfies τ(a) iff M satisfies τ′(a).

Proof. We show how to construct a disjunctive DTD (τ′,Σ,W, r) such that the sets of trees defined
by τ and τ′ are equal. We denote by max(τ) the largest integer appearing in the constraints of τ.
The negations can be pushed to the bottom of the tree-formula. Then ¬(|b| op k) can be replaced by
|b| op ′k, e.g. ¬(|b| = 5) by |b| , 5. One can eliminate the undesired comparators as follows:

1. |b| , k by (|b| < k) ∨ (|b| > k)

2. |b| 6 k by (|b| < k) ∨ (|b| = k) and |b| > k by (|b| > k) ∨ (|b| = k)

3. |b| < k by
∨

i<k |b| = i

4. |b| > k by
∨

k<i>max(τ) |b| = i ∨ |b| > max(τ)

After applying these substitutions, each constraint τ(a) can be rewritten into a disjunctive formula∨
ϕi where each ϕi satisfies Properties (+) and (++). For each ϕi and each b, if a term |b| op k does

not appear in ϕ then the term |b| = 0 is added to ϕi. Moreover, if there are two terms of the form
|b| op k in a formula ϕi, the formula is rewritten as follows:

There are two terms |b| = k1 and |b| = k2. If k1 and k2 are equal then one of the terms is removed.
Otherwise, the formula ϕi is removed.

There are a term |b| = k and a term |b| > max(τ). The formula ϕi is removed.

∗The children constraints are the constraints over children of a node imposed by τ, see Section 2.4.

101

Appendix A: Satisfiability and Relevance: Proofs

There are two terms |b| > max(τ) and |b| > max(τ). Then one of the terms is removed.

Then, each formula ϕi satisfies Property (++). Remark that for each a, for each i, j, i , j,
ϕi, ϕ j ∈ τ(a), ϕi ∧ ϕ j is satisfiable iff ϕi is equal to ϕ j. Then for each formula τ(a), it is sufficient
to keep a unique representative of each ϕi of τ(a). After this last operation, we obtain τ′ with the
desired property.

So, (τ′,Σ,W, r) is a disjunctive DTD and for each a ∈ Σ, M a multiset of Σ, M ⊢ τ(a) iff
M ⊢ τ′(a). �

Remark that Lemma A.7 implies that the unordered-DTD D′ defines the same set of trees than
D.

Observe that the transformation of a unordered-DTD D into a disjunctive DTD D may imply the
explosion of the size of the children constraints of D′ in the size of the children constraints τ.

A.3.1.2. From disjunctive DTD to reduced DTD

First, we show for a given disjunctive DTD (τ,Σ,W, r), the existence of a reduced DTD defining
the same the set of reduced trees. This algorithm uses the auxiliary notion of number of reduced
trees rooted by a label a and satisfying the children constraints τ, for each label a ∈ λ(τ). First, we
assume that these numbers are given. Then, we explain how to compute them.

Definition A.8. Let (τ,Σ,W, r) and a be an unordered-DTD and a label belonging to λ(τ). We
denote by [a]τ, the number of different reduced trees rooted by a and that satisfy the children
constraints τ.

When τ is understood, we use [a].

Definition A.9. Let D = (τ,Σ,W, r) be a disjunctive DTD. We denote by reduced(D) = (τ′,Σ,W, r),
the DTD where the children constraints of τ′, are obtained by rewriting each conjunctive formula ϕ
of the constraint τ(a), for each a ∈ Σ as follows:

1. If for each term |b| = k of ϕ, [b] is greater or equal than k and for each term |b| > max(τ) ∈ ϕ,
[b] = ∞ then ϕ is kept as it is.

2. If for each term |b| = k of ϕ, [b] is greater or equal than k, for each term |c| > max(τ) of ϕ,
[c] > max(τ) and there exists a term |d| > max(τ) of ϕ such that [d] , ∞ then ϕ is rewritten
as follows:

• Each term |b| = k is kept.

• Each term |c| > max(τ) such that [c] = ∞ then the term is kept.

• Finally, each term |d| > max(τ) such that [d] < ∞ then the term is replaced by
|d| > max(τ) ∧ |d| 6 [d].

3. In the others cases, the formula ϕ is removed from the disjunction.

Remark that the construction does not give a disjunctive form (because of the second rule). By
applying Lemma A.7, we can turn it into disjunctive form without losing the property that the
resulting DTD is reduced.

102

A.3. Typed documents

Example A.10. The next unordered-DTD D = (τ, {a, b},∅, a) is not a reduced DTD.

a → |b| > 0 ∧ |a| = 0 ∧ |dom| = 0
b → |a| = 0 ∧ |b| = 0 ∧ |dom| = 0

And the following unordered-DTD is reduced(D)= (τ′, {a, b},∅, a) built from the previous
unordered-DTD.

a → |b| = 1 ∧ |a| = 0 ∧ |dom| = 0
b → |a| = 0 ∧ |b| = 0 ∧ |dom| = 0

The next theorem shows the correctness of the construction of reduced(D).

Theorem A.11. Let D = (τ,Σ,W, r) be a disjunctive DTD. Then, the unordered-DTD reduced(D)

is a reduced DTD and the set of reduced trees satisfying D is the same as the one satisfying

reduced(D).

Proof. By construction of the constraints of reduced(D) = (τ′,Σ,W, r), we can remark that for each
conjunctive formula ϕ of τ′(a), there is a formula ϕ′ in τ(a), such that each multiset satisfying ϕ
satisfies ϕ′. Then, the trees satisfying reduced(D) satisfy D. So the set of reduced trees satisfying
reduced(D) is included in the set of reduced trees satisfying D.

Suppose by contradiction, that there is a reduced tree t satisfying D and not reduced(D). Let n be
a node of t labeled by a such that its children do not satisfy τ′(a). By construction of τ′, it implies
that there exists a label b in λ(τ) such that the number of children of n labeled b is greather than [b].
But the subtrees of n labeled by b form a reduced forest. So, there is a contradiction. So, the set
of reduced trees satisfying τ is included in the set of reduced trees satisfying τ′. Thus, the set of
reduced trees satisfying τ is equal to the set of reduced trees satisfying τ′.

The fact that reduced(D) is reduced comes from its construction. For each a, for each conjunctive
formula ϕ of τ′(a), for each term |b| = k of ϕ, there exists a reduced forest of trees rooted by b and
satisfying the children constraints of τ′, because k 6 [b]. For each term of ϕ, |c| > max(τ), there
exists an infinite set of reduced trees rooted by c and satisfying the children constraints τ′. So, for
any multiset M satisfying ϕ, there is a reduced forest F such that any tree of F satisfies the children
constraints τ′ and root{F} = M. �

Computation of the numbers of reduced trees Let D = (τ,Σ,W, r) be a disjunctive DTD.
We provide an algorithm, namely Count-RT (for count reduced trees) which computes for each
a in λ(τ), [a]τ. It is presented in Figure A.3. Algorithm Count-RT uses the following symbols:
for each a ∈ λ(τ) the number Count-RT(D)(a), the function τActive and the sets NActive and EActive.
For each a ∈ Σ, the subset τActive(a) of conjunctive formulas is a subset of τ(a). A conjunctive
formula ϕ appears in τActive(a) iff there exists a reduced tree rooted at a such that the multiset M

of labels of the children of its root satisfies ϕ. The set NActive is a set of labels rooting reduced
trees satisfying the children constraints of τ, i.e a ∈ NActive iff Count-RT(D)(a)> 0. The set of
edges EActive represents the known dependencies of a label a to another b. The pair (a, b) belongs
to EActive iff there exists a conjunction ϕ ∈ τActive(b) such that the term |a| op k appears in ϕ and
is different from the term a = 0. At the end of the computation of Count-RT, for each a ∈ λ(τ),
Count-RT(D)(a) should be equal to the number [a]τ. Lemma A.14 shows this property.

Then, we define Count-RT(D)(a) for a ∈ Σ as follows:

1. if a belongs to a cycle in (NActive, EActive) then Count-RT(D)(a) = ∞

2. if a does not belongs to a cycle then Count-RT(D)(a) =
∑
ϕi∈τActive(a)

∏
b∈λ(τ) Count(b, ϕi)

103

Appendix A: Satisfiability and Relevance: Proofs

where Count(a, ϕ) is defined as follows:

• For (|a| = k) ∈ ϕ, Count(a, ϕ) =
(
Count−RT(D)(a)

k

)

• For (|a| > max(τ)) ∈ ϕ, Count(a, ϕ) =
∑Count−RT(D)(a)

i=max(τ)+1

(
Count−RT(D)(a)

i

)

The numbers Count-RT(D)(a) and Count(a, ϕ) take their values in N ∪ {∞}. The following
algebra over N ∪ {∞} is used: k ∗ ∞ = ∞ for k , 0; k + ∞ = ∞;

∑∞
i=k ui = ∞, ui ∈ N+ ∪ {∞}.

We assume that ∞ ∗ 0 = 0; for k , 0,
(∞

k

)
= ∞ and for k = 0,

(∞
k

)
= 1. We assume also that∑

a∈A f (a) = 0 if A = ∅.
Algorithm Count-RT is initialized as follows: for each a ∈ Σ, Count-RT(D)(a)= 0; for each

w ∈ W, Count-RT(D)(w)= ∞, Count-RT(D)(dom)= ∞, NActive, EActive, τActive(a), for each a ∈ Σ
are equal to the empty set. The algorithm has two embedded loops called C-graph and C-value.
Intuitively, the (C-value) loop computes the values Count-RT(D)(a) for the DTD limited to the
labels appearing in NActive and the children constraints limited to τActive. The (C-graph) loop
computes at each time, the new formula and labels that are considered active after the computation
of Count-RT(D)(a) for the previous restriction.

The next lemma shows that Algorithm Count-RT terminates.

Lemma A.12. Let D = (τ,Σ,W, r) be an unordered-DTD. Then Algorithm Count-RT applied to D

terminates.

Proof. First remark that the sets τActive, NActive, EActive can only increase and they have finite bounds.
Therefore they reach a stable value. Thus, Algorithm Count-RT terminates iff each loop C-value
terminates. We demonstrate now that each loop C-value terminates. First remark, the formula∑
ϕi∈τActive(a)

∏
b∈λ(τ) Count(b, ϕi) terminates. The formula Count(a, ϕ) could raise a problem for

Count-RT(D)(a) = ∞ if the term associated to a in ϕ is |a| > max(τ). However, remark that in this
case, Count(a, ϕ) = ∞ iff Count-RT(D)(a) = ∞. So Count(a, ϕ) can be computed in finite time. To
demonstrate that the C-value loop terminates always, we prove the following property.

(†) Let NActive, τActive and EActive be a set of label, a restriction of τ, the set of edges derived from
F such that (NActive, EActive) is a DAG. Then the C-value loop using the values NActive, τActive and
EActive always terminates.

We denote by d(a), the depth of a, the maximum of the length of paths from a leaf of
(NActive, EActive) to a. We demonstrate by induction on k, that each Count-RT(a) with d(a) 6 k is
stabilized after k + 1 steps of the loop C-value. For the initialization, d(a) = 0 implies that a is a
leaf. So, the labels used in the formula in τActive(a) are already computed. Then after the first step,
the value of Count-RT(D)(a) cannot be changed. For the propagation, we suppose that for each
label b of depth less than k, then the value Count-RT(D)(b) does not change after k + 1 iterations of
the C-value loop. Let a be a label such that d(a) = k + 1. Then, the predecessors of a have a depth
at most equal to k. Then after k + 1 steps, for each predecessor b of a, Count-RT(D)(a) is stable by
hypothesis of induction. It implies that Count-RT(D)(a) is stable after k + 2 steps. That concludes
the proof of the property.

We conclude the proof of Lemma A.12. After each step of the loop, a number Count-RT(D)(a)
can increase strictly only a finite number of times. First, if each label a appearing in an active
strong connected component, then Count-RT(a) = ∞. It implies that Count-RT(D)(a) does not
change between two following steps of the loop C-value. Each other label a does not belong to an
active strong connected component. By removing the strong components to (NActive, EActive), is a
DAG. Property (†) shows the termination of the loop C-value for a DAG. �

104

A.3. Typed documents

Algorithm A.3 Algorithm Count-RT
Data: An unordered-DTD (τ,Σ,W, r)
Result: {Count − RT(D)(a) | a ∈ Σ}
begin

foreach a ∈ Σ do
Count − RT(D)(a) = 0 τActive(a) = ∅

foreach w ∈ W do
Count − RT(D)(w) = ∞

Count − RT(D)(dom) = ∞
changedS = true
(C-graph) loop
while changed do

OldNActive = NActive

OldEActive = EActive

foreach a ∈ Σ do
OldτActive(a) = τActive(a)
foreach ϕ ∈ τ(a) do

if ϕ ∧a |a| 6 Count-RT(D)(s) is satisfiable then
τActive(a) = τActive(a) ∪ ϕ

if Count-RT(D)(a) >0 then

NActive = NActive ∪ {a}
foreach (a, b) ∈ Σ2 do

if ∃ϕ ∈ τActive(b), |a|opk ∈ ϕ, (|a|opk) , (|a| = 0) then
EActive = EActive ∪ (a, b)

changedS = EActive , OldEActive||NActive , OldNActive||τActive ,

OldτActive

(C-value) loop
changedV = true
while changedV do

changedV = false
foreach a ∈ NActive do

OldCount-RT(D)(a) = Count-RT(D)(a)
if ∃ a cycle in (NActive, EActive) then

Count-RT(D)(a) =∞
else

Count-RT(D)(a) =
∑
ϕi∈τActive(a)

∏
b∈λ(τ) Count(b, ϕi)

if OldCount-RT(D)(a) , Count-RT(D)(a) then
changedV = true

end

105

Appendix A: Satisfiability and Relevance: Proofs

To conclude the dicsussion about Algorithm Count-RT, we prove that it computes the guessed
values [a]τ. This is proven in Lemma A.14. To prove it, we use the following Lemma.

Lemma A.13. Let D = (τ,Σ,W, r) be a disjunctive DTD. At the end of each step of C-graph, for

each a ∈ NActive, [a]τActive = Count-RT(D)(a).

Proof. The proof is by induction.
At the first step, the only active conjunctive formula are of the form∧a∈Σ|a| = 0∧|dom| op k

∧
w∈W |w| op k′.

In this case, it is easy to demonstrate that Count-RT(D)(a) = [a]τActive
.

In the propagation case, we distinguish two cases:

1. For each label a in the cycle, the number of reduced trees t rooted by a and satisfying the
constraints of τ is infinite.

2. For each a that does not belong to a cycle of (NActive, EActive)

[a]τActive
=

∑

ϕi∈τActive(a)

∏

b′∈λ(τ′)

CountτActive
(b′, ϕi).

where

where CountτActive
(a, ϕ) is defined as follows:

• For (|a| = k) ∈ ϕ, CountτActive
(a, ϕ) =

([a]τActive

k

)

• For (|a| > max(τ)) ∈ ϕ, CountτActive
(a, ϕ) =

∑[a]τActive

i=max(τ)+1

(
[a]τActive

i

)

We demonstrate Case (1) by proving the following property by induction on k:
(‡) The graph (NActive, EActive) has a cycle. Then for each label a in a cycle, for each k, there is a

reduced tree satisfying the children constraints of τActive of root labeled a and of depth greater than
k.

By definition of NActive, there exists a tree of t satisfying the children constraints of τActive and
having a root labeled a. This initializes the induction. Let suppose that ‡ holds for some k. Let
b be a label such that (b, a) ∈ EActive. Let ϕ be a formula of τActive(a) such that the term |b| in ϕ is
different from |b| = 0. By induction hypothesis, there exists a forest F of reduced trees satisfying
the children constraints of τActive such that the multiset of labels of the root of the forest satisfies ϕ.
Remark there is at least a tree t′ of F with its root labeled b. Because of the recurrence hypothesis,
there exists a tree satisfying the children constraints of τ, having a root labeled b and having a depth
greater than k. If t belongs to F then the tree a[F] satisfies children constraints of τ and has a depth
greater than k + 1. Otherwise, we replace t′ by t in the forest F given the forest F′. This forest have
the same number of trees and then a[F′] satisfies the children constraints and has a depth greater
than k + 1. That ends the proof of Property ‡.

Case (1) is a direct corollary of Property ‡.
We prove Case (2) by induction. Without loss of generality, we assume that the graph (NActive, EActive)

is DAG (the cycles are removed). The initialization deals with with two cases only labels a such
that the only conjunction formulas in τ(a) are on the form ∧a∈Σ|a| = k ∧ |dom| op k

∧
w∈W |w| op k′

where for each a ∈ Σ, Count-RT(D)(a) is equal to 0 or∞. Then it is easy to show that

[a]τActive
=

∑

ϕi∈τActive(a)

∏

b′∈λ(τ)

CountτActive
(b′, ϕi).

106

A.3. Typed documents

Let a be a label having some parents in (NActive, EActive). By induction hypothesizes, we assume that
for each parent b of a that [b]τActive

=
∑
ϕi∈τActive(b)

∏
b′∈λ(τ) CountτActive

(b′, ϕi). By using simple combi-
natorial reasonings, it is easy to demonstrate that [a]τActive

=
∑
ϕi∈τActive(a)

∏
b′∈λ(τ) CountτActive

(b′, ϕi).
We conclude the propagation of the demonstration of Lemma A.13. We assume that n loops

C-graph have be done. The algorithm begins a new loop C-graph. First, we want to check that
for each label a in a cycle of (NActive, EActive), Count-RT(D)(a) = ∞. By using Property 1, it is
easy to show that for each label that belongs to a graph [a]τActive

= Count-RT(D)(a). By a simple
induction on the structure of the graph obtained from (NActive, EActive) by removing the cycles, it is
easy to show that when the C-value loop terminates, for each a that does not belong to a cycle in
(NActive, EActive), [a]τActive

= Count-RT(D)(a). �

Finally, the following lemma shows the correctness of Algorithm A.3.

Lemma A.14. Let D = (τ,Σ,W, r) be an disjunctive DTD. Then for each a, [a] = Count-RT(a)

Proof. For each a ∈ τ, we denote by τreal(a) the set of formulas ϕ of τ(a) such there is a reduced for-
est F verifying that root{F} ⊢ ϕ and each tree of F is rooted at a. We demonstrate by contradiction
that τ(real) is equal to τActive when Algorithm Count-RT terminates.

First, remark that Property (
√

) holds: for a partition τ1(a) and τ2(a) of τ(a) then for each reduced
tree satisfying the children constraints then there is a subtree satisfying only the children constraints
defined by τ1 or a subtree satisfying only the children constraints defined by τ2.

Let assume that τreal , τActive. We denote by τ′, the set τreal − τActive. Remark that (τ′, τActive) is
a partition of τreal. By Property (

√
), we consider two cases:

1. There exists a reduced subtree satisfying only the children constraints of τ′.

2. There exists a reduced subtree that does not satisfy the children constraints τActive but that
satifies the children constraints τreal and each of its subtrees satisfies the children constraints
τActive.

(1). Let us assume there exists a reduced tree t in τ′. It implies that there exists a label a and a
formula ϕ in τ′(a) such that ϕ is satisfied by the multiset M, where for each b ∈ Σ, M(b) = 0. By
definition of the algorithm, this formula belongs to τActive after the first C-graph loop. This is a
contradiction. Then there is no reduced tree satisfying only the children constraints τ′.

(2). Let t be a tree satisfying the children constraints of ψ(τ) and that does not satisfy the children
constraints of ψActive. Without losing generality, we assume that each subtree of t satisfies the
children constraints τActive. Because of the correctness of Algorithm Count-RT, it means that for
each a the number of subtrees of t rooted by a is less than [a]τActive

. By definition of the algorithm,
it means that the formula is satisfied by the multiset labels of the roots of the subtrees of t. Then
this formula belongs to τActive. This is a contradiction.

Then τreal is equal to τActive at the end of Algorithm Count-RT. Thus, by Lemma A.13, Count-
RT(D)(a)= [a] at the end of Algorithm Count-RT. �

Remark 8. Overse, that the construction blows up the size of the unordered-DTD because of the dis-
junctive form we use as intermediary structure. However, the following unordered-DTD shows that
even without this step, the exponential blow up cannot be avoid. Let D = (τ, {a0, · · · , an, b, c},∅, a0)

107

Appendix A: Satisfiability and Relevance: Proofs

be the following unordered-DTD:

an −→ |an−1| > 0

· · ·
ai −→ |ai+1 > 0

· · ·
a0 −→ |b| = 1 ∨ |c| = 1

b −→
c −→

By an induction, it is easy show that [ai] is equal to 2
2···

22

︸︷︷︸
i . Thus, for any reduced DTD D′ =

(τ′, {a0, · · · , an, b, c},∅, a0) defining the same set of reduced trees than D, τ′(an) has to imply

|an| 6 2
2···

22

︸︷︷︸
n . Thus, the size of D′ is at least exponential in the size of D.

A.3.2. Reduced Axlog schemas

Reasoning about unordered-DTDs and reduced trees is not obvious as shown in Section 2.4.
Another problem comes from the interactions between the DTD constraining the document and the
specifications of trees coming from the functions. The following Axlog schema ∆ shows an aspect
of this problem.

d root : r

r −→ |w| = 1 ∧ |a| > 0

a −→ |dom| = 1

w root : a

a −→

A possible instance has a root r; it has a call to the function w and some a children with a data
value. Observe that no tree sent from w can be inserted in the document.

Definition A.15. Let ∆ = (d,W, ζ) be an Axlog schema. Then ∆ is a reduced Axlog schema for I

iff

1. the sets of internal labels are the same in the unordered-DTDs defined in ζ; the sets of
functions defined in the unordered-DTDs are equals to W.

2. for each w ∈ W, ζ(w) is a reduced DTD and ζ(d) is a reduced DTD;

3. for each w ∈ W, for each t satisfying ζ(w), t satisfies the children constraints of ζ(d).

108

A.3. Typed documents

A.3.2.1. From schema to reduced schema

The following theorem shows that for any Axlog schema, there is a reduced Axlog schema defining
the behaviors..

Theorem A.16. Let ∆ = (d,W, ζ) and I be an Axlog schema. Then, there exists an Axlog schema

Reduc(∆) = (d,W, ζ′) such that Reduc(∆) is reduced and for each sequence ω and each I, ω is a

valid sequence for ∆ and I iff ω is a valid sequence for Reduc(∆) and I.

Proof. We give a constructive proof of the theorem. The first property implies to rewrite some
constraints. Some labels considered as value (represented by dom) may become some labels of Σ for
some unordered-DTD (τ,Σ,W, r) if this label belongs to Σ′ in another unordered-DTD (τ′,Σ′,W, r′).
Details omitted.

We handle the second property by rewriting the constraints of the unordered-DTDs describing
the messages sent by the functions as follows: for each a, the constraint ζ(w)(a) is rewritten into
ζ(w)(a) ∧ ζ(d)(a). Then, we substitute the obtained unordered-DTDs by the equivalent reduced
DTD. Finally, the unordered-DTD associated to the document is substituted by one of its equivalent
reduced DTD. Those operations can be done using the algorithm in the proof of Theorem A.11.
For each function w, ζ′(w) describes the same set of reduced trees than ζ(w), and ζ′(d) describes
the same set of reduces trees than ζ(d). Then, this implies that for each sequence of updates ω and
for each instance I, ω is valid for ∆ and I iff ω is valid for Reduc(∆) and I. �

A.3.3. Proofs of Theorems 2.11 and 2.12 for reduced Axlog schemas

To prove Theorems 2.11 and Theorem 2.12 for reduced Axlog schemas, we propose first an non
deterministic algorithm derived from Theorem A.19 presented further. The second part of the
demonstration consists in determinating the algorithm by bounding the space of research of the
structures used in Theorem A.19.

A.3.3.1. Algorithm

In this subsection, recall that the Axlog schema is reduced. We need the following definition :

Definition A.17. Let ∆ = (d,W, ζ) be a reduced Axlog schema and I an instance of ∆. Let N0, · · ·Nk

be a sequence of multisets over λ(ζ(d)) and n, a node of I. Then N0, · · ·Nk is an extension of n

compatible with I and ∆ iff

1. N0 is equal to the multiset of the labels of the children of n in I.

2. There exists a unique a ∈ λ(ζ(d)), such that Ni(a) + 1 = Ni+1(a); for the other labels b,
Ni(b) = Ni+1(b).

3. For each Ni, there is a conjunctive formula ϕ j of τ(λ(n)) such that the multiset Ni satisfies ϕ j.

4. For each a ∈ Σ, the call Ids labeling children of n can bring a reduced forest F of trees rooted
by a such that:

• For each reduced tree t of F, t satisfies the unordered-DTD ζ(w), where w is the service
associated to the service of a call Id, child of n.

• No tree of the forest F appears as subtree of n in I.

109

Appendix A: Satisfiability and Relevance: Proofs

• The number of trees of F is equal Nk(a) − N0(a).

Intuitively, an extension is an abstraction of a possible infinite set of valid sequences of updates
such that the ith update brings a tree rooted by a where a is the label such that Ni−1(a) + 1 = Ni(a).
The following lemma explains this intuition.

Lemma A.18. Let ∆ = (d,W, ζ), I, n be a reduced Axlog schema, an instance of ∆ and a node

of I. Let N0, · · ·Nk and n be an extension of n compatible with I and ∆. Then, there exists a

valid sequence of updates ω such that for each i, the update (? f , t) = ω(i) satisfies the following

properties: the label a of the root of t satisfies that Ni−1(a) + 1 = Ni(a) and the call Id ? f is a child

of n.

Proof. We explain how to build a valid sequence from the sequence N0, · · ·Nk by induction.
We suppose that there is a valid sequence ω of size i. Let a be the label such that Ni(a) + 1 =

Ni+1(a). Following Property 4 of Definition A.17, there exists a tree t belonging to Fa and not
appearing in an update of the built sequence. Following Property 4 of Definition A.17, there exists
a call Id ? f , child of n, such that t satisfies ζ(ν(? f)). The i+1th update of the sequence is add(? f , t).
Property 3 of Definition A.17 ensures that the sequence ω.add(? f , t) is valid. �

In the following theorem, we need a refined notion of extension. We need to add some constraints
on the trees brought by the call Ids. For that, we define the notion of DTD constraints which is
a conjunction formula of terms |τ| > k, where τ is a DTD. A reduced forest F of trees satisfies a
DTD constraints ψ iff there exists a partition F1, · · · Fm of F such that (i) at each term |τ| > k of ψ
is associated a set Fi such that each tree of Fi satisfies τ and the cardinality of Fi is greater than k.
A set Fi cannot be associated to two terms of a formula ψ.

An extension N0, · · ·Nk of n compatible with I and ∆ satisfies a DTD constraints ψ iff there exists
a forest F satisfying Property 4 of Definition A.17 that satisfies also ψ.

The following theorem explains which structures consider to verify the satisfiability of a query.

Theorem A.19. Let q, ∆ = (d,W, τ) and I be a query, a reduced Axlog schema and an instance of

ζ(d). The query q is satisfiable for I and ∆ iff

1. There exists a scenario (u, C,P) of Scen(q, I).

2. There is a valuation ν of the variables of u.

3. There is a partition π of the set {p| P(p) ∈ F}, π = {P1, . . . Pk}, such that for each j, for

each p, p′ ∈ P j, P(p) = P(p′). We denote by numb(? f)(π) the number of sets Pi such

that P(p) =? f , p ∈ Pi, we denote this call Id call(Pi). For each Pi, there exists a tree of

ζ(ν(call(Pi))) satisfying the conjunction of tree-patterns ∧p∈Pi
ν([p]).

4. For each parent n of a function node appearing in P , there is an extension N0(n), . . . ,Nk(n)
of n compatible with I, ∆. Moreover, this extension satisfies ∧? f∈children(n)|ζ(ν(? f))| >
numb(? f)(π).

So, from the previous theorem, we obtain the following nondeterministic algorithm:

1. Compute the set Scen(q, I).

2. Guess a scenario of Scen(q, I) and a partition π.

110

A.3. Typed documents

3. Check if π satisfies Property 2 using one of the algorithms proposed in [Miklau 04, Benedikt 08,
David 08].

4. Guess for each parent n of a function node appearing in P a sequence N0(n), . . . ,Nk(n).

5. Check if N0(n), · · · ,Nk(n) is an extension of n compatible with I and ∆ and that satisfies
∧? f∈children(n)|ζ(ν(? f))| > numb(? f)(π). For that, we have to count for each call Id ? f calling
the function w the number of trees satisfying ζ(w) that can be brought also by other call Ids or
already in the documents. These numbers can be computed using the algorithm of the proof
of Theorem A.11 over conjunction of DTDs, which is also a unordered-DTD. For instance,
the number of the same reduced trees brought by two call Ids ? f and ?g can be computed by
applying this algorithm to ζ(ν(? f)) ∩ ζ(ν(?g)).

Remark 9. One can extend the techniques to consider that results of calls may themselves contain
new calls. The main part difficulty is that we have to consider tree automota to represent the trees
that a function can return and no unordered-DTDs. Details omitted.

The proof of Theorem A.19 is based on Lemmas A.20 and A.22. The first lemma explains that
in order to prove the satisfiability for a query, and an instance of a Axlog schema, a necessary and
sufficient condition is to exhibit a scenario and a valid sequence implementing this scenario. We
already showed in Algorithm A.2 to find a sufficient set of scenarios Scen(q, I). The difficult part
here is to decide if there is a valid sequence implementing a particular scenario. The properties
given by Theorem A.19 are necessary and sufficient to check if a scenario is implemented by a
valid sequence of updates. The second lemma explains that to find a valid sequence for a scenario,
it is sufficient to consider only some particular subsequences. For this last lemma, we introduce the
notion of sequences closed by siblings call Ids (Definition A.21).

The following lemma explains that to check that a query q is satisfiable for an instance I of
a reduced Axlog schema, it is necessary and sufficient to exhibit a valid sequence of updates
implementing a scenario of Scen(q, I).

Lemma A.20. Let q, ∆ = (d,W, τ) and I be a query, a reduced Axlog schema and an instance of

ζ(d). The query is satisfiable for I and ∆ iff there exists a scenario (u, C,P) of Scen(q, I) and a

valid sequence ω such that ω implements (u, C,P).

Proof. ⇐ Let ω, (u, C,P) be a valid sequence for I and ∆, and a scenario of Scen(q, I). The
sequence ω implements the scenario (u, C,P) then, by Lemma A.4, there is a tuple u′

such that the document ω(I) satisfies q(u). Moreover, the sequence is valid so the query is
satisfiable.

⇒ Now suppose q is satisfiable for I and ∆. Then, there is a tuple u and a valid sequence ω such
that ω(I) |= q(u). So by Lemma A.4, there exists a scenario (u′, C,P) such that ω implements
(u′, C,P).

�

We introduce a property for the subsequences called closed by sibling Ids such that the validity
of a sequence is equivalent to the validity of its closed by sibling call Ids subsequences.

Definition A.21. Two call Ids ? f and ?g are siblings iff the function nodes n and n′ associated to
? f and ?g (λ(n) =? f , λ(n′) =?g) are siblings. Let ω, I be a sequence of updates and an instance.
A subsequence ω′ is closed by sibling call Ids for I iff for each update add(? f ,K) in ω′, for each
update add(?g,K′), where ? f and ?g are sibling call Ids then add(?g,K′) in ω appears in ω′.

111

Appendix A: Satisfiability and Relevance: Proofs

The following lemma shows that the validity of a sequence depends only of the validity of the
subsequences closed by siblings call Ids in the document.

Lemma A.22. Let ω be a sequence of updates. Let ∆ and I be an Axlog schema and an instance

of this Axlog schema. Then ω is a valid sequence of updates for the instance I constrained by the

Axlog schema ∆ iff for each subsequence closed by sibling call Ids ω′, ω′ is valid.

Proof. ⇒ The proof is by induction. The lemma is true for an empty sequence. Let ω and ω′, I

and ∆ = (d,W, ζ) be two sequences of updates, an active document and an Axlog schema.
The document is an instance of ζ(d). The sequence ω is valid for I and ζ and the sequence
ω′ is closed by siblings call Ids subsequence of ω. We denote lastω the last update of ω, and
ω − ω′ the sequence consisting of the updates belonging to ω and not belonging to ω′. We
distinguish two cases :

1. lastω , lastω′ . Then ω′ is subsequence of ω − lastω that is valid. By the hypothesis of
induction (ω′ is closed by sibling call Ids for ω − lastω), ω′ is valid

2. lastω = lastω′ . Then, we consider first ω′ − lastω′ which is closed by sibling call Ids for
ω − lastω. So, the sequence ω′ − lastω′ is valid (because of the induction hypothesis).
We consider add(? f ,K) = lastω. Let n be the parent of the function node labeled ? f .
The set of siblings of ? f respects the constraints associated to their parent before and
after of the addition of root{K} (this is implied by the fact that ω is a valid sequence).
So, the update ω′ is valid.

⇐ Let ω′ be a subsequence closed by sibling call Ids of ω. Observe that the subsequence ω − ω′
is also closed by sibling Ids. Then, the subsequence ω − ω′ is valid. After applying the
subsequence ω′, the parent nodes of call Id appearing in ω − ω′ have the same children than
before applying the subsequence ω′. It is easy to check that ω′ ∪

(
ω − ω′

)
is valid.

�

Now, we demonstrate Theorem A.19.

Proof. Let q,∆ = (d,W, ζ), I be a tree-pattern query, an Axlog schema and an active document.
The document is an instance of ζ(d).

The proof uses Definition A.21 and Lemmas A.20 and A.22.

⇒ There exists a scenario s = (u, C,P) and a valid sequence ω valid that implements s (with
Lemma A.20). Then, for each p,P(p) =? f , there is an update add(? f ,K) of ω where
K |= [p]. Without loss of generalities, we can assume that there does not exists any update
add(? f ,K) appearing twice or more in ω.

Let add(? f ,K) be an update in ω. We define by Q(? f ,K) the set of the nodes p of q, such
that [p] is satisfied by K and P(p) ∈ F . From the subsets Q(? f ,K), it is possible to find
the desired partition: if there exists K and K′ such that add(? f ,K) and add(? f ,K′) and
Q(? f ,K) ∩ Q(? f ,K′) , ∅, a node belonging to the two sets is removed from one. This
rule is applied until there is no K and K′ such that there is ? f , add(? f ,K) and add(? f ,K′),
and Q(? f ,K) ∩ Q(? f ,K′) , ∅. These yields a partition of the nodes p such that P(p) ∈ F.
This partition is denoted {P1,. . . , Pk}. This partition satisfies Properties 3 of Theorem A.19,
following the definition of Q(? f ,K). For each set Pi, there is an update add(? f ,K) such that
for each p ∈ Pi, K |= [p]. Moreover K satisfies ζ(ν(? f)) because ω is valid.

112

A.3. Typed documents

Let n be a parent node of a call Id appearing in P . Let ωn be the subsequence of ω by
keeping only the updates corresponding to children of n. From this subsequence, we build
the sequence Ni such that Ni+1 = Ni ∪ root{K}, where ωn(i) = add(? f ,K). The multiset N0

equals children(n). This sequence is an extension of n compatible with I and ∆ because ω is
valid. Moreover, by construction of Pi, this extension satisfies the DTD constraints as defined
in Theorem A.19.

⇐ Let π = P1, . . . , Pk and {Ni} be a partition satisfying Property 2 of Theorem A.19 and for each
n parent of a function node appearing in P , the sequence N0(n), · · · ,Nk(n) is an extension
of n for I and ∆ satisfying the DTD constraints ∧? f∈children(n)|ζ(ν(? f))| > numb(? f)(π). First,
we built a subsequence of updates for each n parent of a function node appearing in P ,
denoted ωn. It is built from the sequence N1(n), . . . ,Nk(n). We denote by ai the label such
that Ni(n)(ai) = Ni−1(n)(ai) + 1. We denote by S at(a, n, j), the set of Pi such that call(Pi) is
a child of n, the query associated to Pi is not satisfied by j first updates of ωn and the label of
the roots of trees brought by call(Pi) is a. For each N j(n), we do the following:

• If S at(a j, n, j−1) , ∅, then a set Pi is chosen in S at(a j, n, j−1). The update add(? f ,K)
is added to the sequence where K satisfies

∧
p∈Pi

[p] under the Axlog schema ζ((ν(? f)))
and ? f = call(Pi). The tree K is reduced. We can assume without loss of generality
that this tree is not isomorphic to one of the subtrees of n in ω(0). · · · .ω(j − 1)(I). Let
assume that it is not the case. Then, this implies that

– There is a scenario (u′, C′,P ′) in Scen(q, I) such that for each p ∈ Pi, P ′(p) = ⋆.
In this case, we consider no more (u, C,P) but (u′, C′,P).

– Or, there is another partition such that Pi can be brought together with the other
set P j for which the tree was added. In this case, we consider this new partition.

Remark that in the first case, the new scenario has more nodes p of q such that P(p) = ⋆.
So, this argument can be only applied a finite number of times. In the second case, the
new partition has less subsets than before. So, this argument can be only applied a finite
number of times.

Moreover, $S at(a j, n, j) = S at(n, j − 1) − {Pi} and for each a , a j, S at(a, n, j − 1) =
S at(a, n, j).

• If $S at(a j, n, j − 1) = ∅, then the update add(? f ,K) is added to the sequence. The tree
K satisfies that the label of its root is equal a j. The tree K belongs to L(ζ(ν(? f))). The
tree K is a fresh reduced tree. This last property is implied by the fact the DTD is a
reduced DTD. Indeed, the set Nk(n) satisfies ϕ of ζ(d), so there exists a reduced set of
trees.

Now, we prove by induction that the prefixes of each ω(n) are valid. It is true for the empty
subsequence. Let ω′ and ω′′, two prefixes of ω(n), ω′′ = ω′ − lastω′ . We suppose ω′′ valid.
There is an associated sequence N0(n), . . . ,N j(n) to ω′′ by construction. Remark that ω′(I)
belongs to L(ζ(d)). Indeed, first, for each node n′ , n of I, the multiset of the labels of its
children satisfies the constraints associated to λ(n′). Then, the multiset N j(n) satisfies the
constraint associated to λ(n) by ζ(d). Finally, as ω′′ is valid then ω′ is valid.

Let ω be the union of the sequences ω(n). Each ω(n) is a subsequence of ω closed by sibling
call Ids. So, ω is valid. Furthermore, the sequence ω implements a scenario of Scen(q, I).

�

113

Appendix A: Satisfiability and Relevance: Proofs

A.3.3.2. Complexity

Theorem A.19 gives a method to check the satisfiability of a query q for an instance I of a schema ∆.
We next analyze the data complexity of this method. The combined complexity is studied further.

Data complexity Theorem 2.11 states that the satisfiability of query for an instance of an Axlog
schema is in ptime in the size of the instance. We prove this theorem in the context of a particular
kind of Axlog schema, the reduced Axlog schema. This proof is based on Theorem A.19. We
explore the scenario of Scen(q, I) and check the properties given by Theorem A.19. Property 1
of Theorem A.19 does not depend on the size of the instance. The next lemma, namely Lemma
A.23, is used to check Property (1) to (4) of Theorem A.19 by providing bounds on the size of the
sequences {Ni(n)} to check.

Lemma A.23. Let q, ∆ = (d,W, τ) and I be a query, a reduced Axlog schema and an instance of

ζ(d). The query q is satisfiable for I and ∆ iff there exists a valid sequence of updates ω of length

bounded by |q| ∗ (|q| + (|∆| + 1)2) and there exists an instantiation of the variables h, ω(I) |= h(q).

Proof. We denote by λ{children(n, ω′(I))} the multiset of the labels∗ of the children of n in ω′(I).

⇒ There exists valid sequence of updates ω and a scenario s = (u, C,P) of Scen(q, I), such that ω
implements s. More precisely, there exists an instantiation h of the variables of q such that ω
implements h(s). In the rest of the proof, we consider the scenario h(s) = (h(u), h(C),P).

First, we demonstrate that the only interesting updates are those brought by call Ids siblings
of call Ids appearing in P . We denote the sequence

util(ω, h(s)) = {add(? f ,K)|add(? f ,K) ∈ ω ∧ ∃p,P(p)is sibling of f ?}.

No updates related to a function appearing in P is removed so, util(ω, h(s)) implements h(s).
Moreover, util(ω, h(s)) is closed by siblings call Ids for ω and I, so util(ω, h(s)) is valid. So
util(ω, h(s))(I) satisfies h(q).

Then, we demonstrate that for each n, parent of a call Id appearing in P , a valid subse-
quence called rev(n) can be extracted from util(ω, h(s)) such that ∪nrev(n) implements h(s).
Moreover, each sequence rev(n) has a length bounded by |q| + (|∆| + 1)2. Let n and ωn

u be
a parent of a call Id appearing in P and the subsequence of util(ω, h(s)) composed of the
updates brought by the call Ids children of n. Suppose that ωn

u has a length greater than
|q| + (|∆| + 1)2 (in the other case, rev(n) is equal to ωn

u). Let ϕ be the conjunctive formula
of τ(λ(n)) such that λ{children(n, ωn

u(I))} satisfies ϕ. Remark that, there exists at least one
label b in Σ ∪ {dom} ∪W such the term |b| > max(τ). So, let ω̄n,h(s) be the minimal valid
subsequence of ωn

u such that λ{children(n, ω̄n,h(s)(I))} satisfies ϕ. Remark that the length
of ω̄n,h(s) is almost (|∆| + 1)2. Moreover, for each p in q such that P(p) is a child of n,
we choose an update add(P(p),K) of ωn

u such that K |= [p]h(s). We denote u(p, ω) this
update. Let consider that the sequence ω̄n,h(s). ∪P(p) child of n u(p, ω). It is valid, in particular
λ{children(n, ω̄n,h(s). ∪P(p) child of n) u(p, ω)(I))} satisfies ϕ. This is proved by induction on
ω′. We present here only the induction part. We can remark that if u(p, ω) appears in ω′ then
ω′(I) is equal to ω′.u(p, ω)(I). The last tree is not reduced and its reduced associated tree is

∗We assume that the labels belonging to L − Σ are replaced by the label dom. The call Ids are replaced by the name of
the functions that they call.

114

A.3. Typed documents

equal to the reduced tree of ω′(I). If u(p, ω) = add(P(p),K) does not appear in ω′. So, the
term |root{K}| > max(τ) appears in ϕ and λ{children(n, ω′.u(p, ω)(I))} satisfies ϕ. So, the
sequence ω′.u(p, ω) is valid. In this case, we use ω̄n,h(s). ∪ P(p) child of n)u(p, ω) for the
sequence rev(n).

Finally, each sequence rev(n) is closed by sibling call Ids, so
⋃

n rev(n) is valid. For each
p, P(p) ∈ F , there exists an update add(P(p)),K) such that K |= [p]h(s), so

⋃
n rev(n)

implements h(s). Moreover, the number of parents of functions appearing in P is bounded
by |q|. So, the sequence rev(n) has a length bounded by |q| ∗ (|∆ + 1|2 + |q|).

⇐ This direction is obvious almost by the definition.

�

The proof of Theorem 2.11 for reduced Axlog schema.

Proof. It is enough :

• To enumerate all the scenarios, bounded by a polynomial function of the size of I.

• For a scenario (u, C,P), to enumerate all the partitions {p| P(p) ∈ F}, the number is indepen-
dent of the size of I.

• To find one partition that satisfies Property 3 of Theorem A.19. This does not depend of the
size of I.

• To enumerate for each parent of a call Id appearing in P , the sequences N0, · · ·N j(n). The
number of parents is bounded by q. Each sequence has length less than (∆ + 1)2 + q. So the
maximal number of sequences does not depend of the size of I.

• To find a sequence satisfying Property 4 of Theorem A.19 can done in a polynomial time of
the size of I.

That concludes the proof of Theorem 2.11 for reduced Axlog schema. �

Combined complexity We demonstrate now that the document satisfiability for a query q, an
instance I of a reduced Axlog schema is np-complete.

Proof. np-hardness For no-join Boolean queries, np-hardness is proved by reduction of the satisfi-
ability problem of a no-join Boolean query over a fixed DTD, that is known to be np-complete.
See Theorem 4.5 of [Benedikt 08].

np Finally, we see that we can exhibit a scenario s = (u, C,P), a valuation of the variables θ of the
scenario, a partition of {p| P(p) ∈ F}, a set {Ki} of trees bounded by a polynomial function
of q and a set sequence of multisets {Ni(n)}, where n is a parent of call Id appearing in P .
The length of each sequence N0(n), · · · ,Nk(n) is bounded by a polynomial function in the
size of the Axlog schema, and the query. We have to check Property 4 of Theorem A.19
for each N0(n), · · ·Nk(n). The fact that a sequence N0(n), · · · ,Nk(n) is an extension of n

compatible with I and ∆ can be tested in polynomial time in the size of the input. Algorithm
Count-RT is used to ensure the satisfaction of the DTD constraints implied by the scenario
and the partition as defined in Property 4 of Theorem A.19. Finally, the set {Ki} exhibits trees

115

Appendix A: Satisfiability and Relevance: Proofs

certifying Property 3. Those trees are bounded by a polynomial size of q using Theorem 4.5
of [Benedikt 08]. As shown in Theorem 4.5 of [Benedikt 08], those trees do not belong to
the language defined by the DTD. However, they can be extended by adding subtrees such
that the trees belong to the language. Because the Axlog schema is reduced, we can directly
use the same trees as Theorem 4.5 of [Benedikt 08]. So, we can check the satisfiability of q

for I and ∆ in polynomial time. This shows the membership in np of the satisfiability of q, I

and ∆ for reduced Axlog schemas.
�

A.4. Nonmonotonicity

A.4.1. Noninflationary documents: Theorem 2.13

For noninflationary documents Theorems 2.12 and 2.11 do not hold. We have an analogue theorem;
namely Theorem 2.13.

A.4.1.1. Upper bound:

We prove that the satisfiability problem for a query q and an instance I constrained by a schema ∆
in presence of additions and deletions is ΣP

2 in the size of I and q.

Proof. First, we define a set of tuples (ω, I0, · · · , Ik, d, ν, val1, val2) that we denote L as follows:

• ω is a sequence of updates of which the size is bounded by |q| ∗ (|q|+ (1+ |∆|)2 + |I|)), Ii is an
instance,

• d is function that for update w(i) = delete(?f,q) gives the nodes of the initial instance and the
trees adding updates that are deleted by it.

• ν is a instantiation of the variables of q.

• val j(i)(n) defines an instantiation oj the variables of qi such that ω(i) = delete(? f , qi) associ-
ated to a node n.

The tuple (ω, I0 · · · Ik, ν, val1, val2) belongs to L iff

1. I0 = I

2. Each Ii can be extended to an instance satisfying ∆.

3. Ik satisfies ν(q).

4. for all i, if ω(i) = add(? f ,K) then Ii+1 = ω(i)(Ii).

5. if ω(i) = delete(?g, qi) then

• for each n ∈ d(ω(i)) ∩ I, then n ∈ Ii and n < Ii+1, n is a sibling of ?g and ⌊n⌋ |=
val1(i)(n)(qi)

• for each n ∈ Ii ∩ I and n < d(ω(i)), then n ∈ Ii+1. Moreover, if n is a sibling of ?g,
⌊n⌋ 6|= val2(i)(n)(qi) and ⌊n⌋ 6|= val1(i)(qi);

• for each tree K ∈ d(ω(i)), then K is in Ii and not in Ii+1

116

A.4. Nonmonotonicity

• for each tree K brought by an update, such that K is in Ii and not in d(ω(i)) then K is in
Ii+1.

The size of a tuple is polynomial in the size of the query and the initial instance. Remark that the
queries in a deletion operation can be bound by a polynomial size of the instance I.

One can verify that a tuple is in L in ptime in the size of the query and the initial instance. The
main part is to check that there are enough different reduced trees brought by updates that have
to be or not be deleted after. For that, we count the trees of satisfying queries under ∆ using an
adaptation of Algorithm Count-RT.

We denote by L′ the language of the set of tuples (ω, I0 . . . Ik, ν, val1) such that

∀val2, (ω, I0 . . . Ik, ν, val1, val2) ∈ L

.
One can show that a tuple belongs to L′ iff there is a valid sequence of updates ω such that

ω(I) |= q:

Proof. ⇐ Let ω be a valid sequence of updates such that ω(I) |= q. So, there exists an instantiation
θ of the variables of q such that ω(I) |= θ(q). Without loss of generality, we can assume that
the length of ω can be bounded by |q| ∗ (|q| + (1 + |∆|)2 + |I|)∗. The sequence {Ii} is built as
follows: I0 = I and Ii+1 = ω(i)(Ii). Let ω(i) = delete(? f , qi) and n be an update and a node
in Ii and not in Ii+1, ⌊n⌋ |= qi. Then there exists an instantiation θi,n of the variables of qi such
that ⌊n⌋ |= θi,n(qi). Moreover, for each n in Ii and in Ii+1, n is a sibling of ? f implies that
⌊n⌋ 6|= qi. So, val1 is built by assigning for each node i such that ω(i) = delete(? f , qi) and for
n a sibling of ? f appearing in Ii and not Ii+1 to val1(i)(n), the instantiation θi,n . For the other
values of i and n, an instantiation is chosen randomly. For any instanciation val2, the tuple
(ω, I0, . . . , Ik, ν, val1, val2) ∈ L, so (ω, I0, . . . , Ik, ν, val1) ∈ L′.

⇒ Let (ω, I0, . . . , Ik, ν, val1) be a tuple in L′. Let i be an integer such that ω(i) = delete(? f , qi). Let
n be a node in Ii and in Ii+1 and sibling of ? f . Then for each instantiation θ′ of the variables
of qi, ⌊n⌋ 6|= θ′(qi), and so ⌊n⌋ 6|= qi. Thus, we have that for each i, Ii+1 = ω(i)(I). Moreover,
ω is a valid sequence of updates such that ω(I) |= ν(q).

�

So q is satisfiable iff there exists (ω, I0 . . . In, ν, val1) ∈ L′. So the problem is in Σp

2 . �

A.4.1.2. Lower bound:

co-np-hardness
We demonstrate this lower bound by reducing the not 3-colorable graph problem.

Proof. Let G = (V, E) be a graph without auto-loops. We reduce the problem of 3-colorability of
G by the satisfiability of the query q for the instance I under the schema ∆. The definitions of the
query q and the schema ∆ are independant of G. Only the definition of I changes following the

∗The proof of this assumption can be done by adapting the proof of Lemma A.23

117

Appendix A: Satisfiability and Relevance: Proofs

definition of G. The schema ∆ is the following :

d root : r

r −→ (|a| = 3 ∧ |wd | = 1 ∧ |wa| = 1)∨
(|a| = 1 ∧ |b| = 1 ∧ |?g| = 1 ∧ |? f | = 1)∨
(|a| = 1 ∧ |?g| = 1 ∧ |? f | = 1)

b −→
a −→ |e1| > 0 ∧ |n| >= 0
node −→ |val| = 1
e1 −→ |e2| = 1 ∧ |val| = 1
e2 −→ |val| = 1
val −→ |dom| = 1

wd delete

wa add root : b

b −→

The function wa can send some update add(? f , t) with t is a single node labeled b and ? f is a call
Id to wa. The function wd can send deletions. The query q checks whether the instance has a child
labeled b of the root of the instance I. The instance I has three subtrees rooted by a. Each subtree
rooted by a describes a graph as follows: the value under the node labeled node is the identifier of
a node of the graph. A value is a label which does not belong to {r, a, b, node, val, e1, e2, }. Each
edge (n1, n2) of E is represented by a subtree rooted by e1 such that the value under the child val of
e1 is n1 and the value under the child val of e2 is n2. In Figure A.2, the instance I′ is an encoding
of the “triangle“ graph, i.e {x1, x2, x3}, {(x1, x2), (x2, x3), (x1, x3), (x3, x1), (x3, x2), (x2, x1)} for some
x1, x2, x3. Two of the subtrees, denoted t1

G
and t2

G
, rooted by a in I describe the graph G, and the

third subtree, denoted tT , rooted by a describes the triangle graph. We assume that a value does not
appear in two subtrees rooted by a.

I′

a

node

val

x1

node

val

x2

node

val

x3

e1

val

x1

e2

val

x2

e1

val

x2

e2

val

x1

e1

val

x1

e2

val

x3

e1

val

x3

e2

val

x1

e1

val

x2

e2

val

x3

e1

val

x3

e2

val

x2

Figure A.2.: An tree coding the triangle graph

We demonstrate now that the query q is satisfiable for I and ∆ iff it is possible to delete two
subtrees rooted by a of I by the same deletion and only two. Indeed, if it is possible, this deletions
is applied and after a node b is added by an update from wa. If q is satisfiable then there exists a

118

A.4. Nonmonotonicity

sequence of updates such that w(I) has a child b. It implies that there is only one subtree rooted by
a. Then, it implies that there is an update deleting two subtrees at the same time. On the other hand,
the query q is satisfiable for I and ∆ iff there exists a query q′ which (i) is satisfied by two subtrees
of I with a root labeled by a and (ii) is not satisfied by the other tree of I rooted by a label a.

We demonstrate towards a contradiction that there does not exist a query q′ satisfying Properties
(i) and (ii) for I iff G is homomorphic to the triangle graph (in another hand, G is 3-colorable). Let
suppose that G is homomorphic to the triangle graph, we denote by h this homomorphism. Suppose
towards contradiction that a query q′ that satisfies Property (i) and (ii). Then, q′ does not have any
value of a subtree rooted by a inside itself (a value does not appear in two subtrees of I rooted by
a). So, the query uses only the labels a, node, e1, e2, val and variables. We denote ν the valuation
from q′ to t1

G
. Then, we explain how to build a valuation from q′ to tT . First, we create a function ξ

from t1
G

to tT as follows (Remember that each value x appearing in t1
G

corresponds to a node x of
the graph G)

• The root of t1
G

is mapped to the root of tT

• Each subtree rooted by node and with value x inside is mapped to the subtree rooted by node

and with the value h(x) inside.

• Each subtree corresponding to the edge (x, y) in G is mapped to the subtree corresponding of
the edge (h(x), h(y)) in the triangle graph.

The function ξ respects the root, child and descendant relations and for each value x of tT , the
images of nodes labeled by x have the same label h(x). Then, the function ξ ◦ ν is a valuation from
q′ to tG. Thus, there is a contradiction.

Suppose now that there does not exists a query q′ satisfying Properties (i) and (ii). Let qG be the
query obtained from t1

G
by replacing any value x of t1

G
by the variable $x. This query is satisfied

by t1
G

and t2
G

. Then, this query is satisfied by tT . Let ν be a valuation from qG to tT . Clearly, the
function associating to the variable $x appearing in qG to the value in tT is a homomorphism of
graphs. Then G is homomorphic to the triangle graph. �

A.4.2. Non monotonic queries

In this subsection, we prove Theorems 2.15 and 2.16.

A.4.2.1. Proof of Theorem 2.15­data complexity

We proof first the data complexity of the satisfiability of time-query over an active document.

Proof. We adapt Algorithm A.2 by adding to the scenario, a generalized tuple (ut, Ct). Let p and
(n, u, C, ut,Ct,P) be a node of q and a tuple of a relation relevantp. The tuple ut is a tuple of
variables over the time of the nodes of [p]. We assume that the variable $tp is the variable assigned
to the time of the node p (ut(p)). The constraints Ct are the inequalities in q dealing with the nodes
appearing in the subquery p and the instantiation of the time variables of the nodes already mapped.
Those constraints are expressed by inequalities constraints. Remark that by the definition of a
generalized tuple (u, C), the constraints C are satisfiable using the values in u for the corresponding
variables.

Remark that by adding time, even if there is some scenario in Scen(q, I), this does not imply the
satisfiability of the query. Indeed, the time constraints and the fact that time increases with the

119

Appendix A: Satisfiability and Relevance: Proofs

updates imply that the order of a sequence now is relevant. In Figure A.3, the query is unsatisfiable.
The only scenario is ((),∅, ($tp2 , $tp3 , $tp4 , $tp5), ($tp2 < $tp4 ∧ $tp3 > $tp5), (⋆, ? f , •, ? f , •)). Sup-
pose that the first relevant update satisfies the subquery [p2], and the second relevant update satisfies
the subquery [p4]. Then the times of the updates respect the constraints ($tp2 = $tp3 ∧ $tp4 =

$tp5 ∧ $tp2 < $tp4). There is a contradiction with the constraints of the query. The same kind of
contradiction appears by choosing as first relevant update the update satisfying [p4].

Query

p1 : a

p2 : b

p3 : c

C =
{

p2 < p4 ∧ p3 > p5

}

p4 : d

p5 : e

Document

a : 1

? f : 2

Figure A.3.: A timed query and a timed document

So, after having computed S cen(q, I), each scenario (u, C, ut, Ct,P) is rewritten as following

1. Let π = {P1, . . . Pk} be a partition of the set {p| P(p) ∈ F} such that for each Pi:

a) For p, p′ ∈ Pi, P(p) = P(p′) ∈ F , we denote by f un(Pi), the call Id associated to the
node of Pi by P .

b) the boolean combination∗
∧

p∈Pi
[p] is satisfiable.

Two nodes p and p′ belong to Pi means there is an update that satisfies two subqueries [p]
and [p′].

2. Let ≺ be a total order for π. This order is the order of the sequence of updates. An update
add(? f , t) such that t satisfies

∧
p∈Pi

[p] and ? f = f un(Pi), is received before an update
add(?g, t) such that t satisfies

∧
p∈P j

[p] and ? f = P(p), p ∈ P j iff Pi ≺ P j.

3. The following constraints are added to the constraints Ct:

• for each Pi ∈ π, for each node p, p′ ∈ Pi, $tp = $tp′ (the subqueries are satisfied by the
same update)

• for each Pi, P j ∈ π, for each node p ∈ Pi, p′ ∈ P j, Pi ≺ P j, $tp < $tp′ (the update
satisfying the queries of Pi is before the update satisfying the queries of P j)

• for the minimal element Pi of π for each node p ∈ Pi, Pi is the minimum for ≺,
$tp > now (the first updates is received after now)

∗We extend the semantic of tree pattern query to the boolean combination of tree patterns queries by the classical
semantic.

120

A.4. Nonmonotonicity

• for each Pi ∈ π, for each node p ∈ Pi, p′ a descendant of p, $tp = $tp′ (the nodes of the
same update have the same time)

The set of scenario that is thereby obtained is called Scen(q, I).
(†) We prove query is satisfiable iff there is scenario in Scen(q, I).

Proof of (†) Remark that the constraints Ct of one scenario of Scen(q, I) are satisfiable.
If there is a scenario s = (u, C, ut, Ct,P) of Scen(q, I), then there are a scenario s′ of Scen(q, I), a

partition π and an order ≺ such that s is the rewriting of s′ with π and ≺. Because the constraints
Ct are satisfiable, there is a valuation θ of the variables $tp. Let ω be a sequence of updates. At
each update is associated a set Pi of π. The first update is associated to the minimal Pi for ≺. If an
update is associated to Pi, then the next update is associated to PJ , where P j is the successor of Pi

following ≺. The time of all the nodes of an update is θ(p), p ∈ Pi, where Pi is the set associated to
the update. Then, the instance ω(I) satisfies q.

If the query is satisfiable. Then there exists ω a sequence of updates such that ω(I) |= q. Let
ν be valuation from the query to the instance ω(I). Let ω′ be the sequence updates that brought
a node mapped in ν. The time constraints for the sequences are respecting by ω′ , because it is
a subsequence of ω. It is easy to find a scenario in Scen(q, I) and a partition π, by associating at
each update, the subqueries mapped in this update. Then the scenario s is rewritten following this
partition and this order of the sequence. The new constraints are satisfiable at least with the time of
the nodes of ω′. So, Scen(q, I) is not empty.

The proof of † completes the proof of Theorem 2.15 �

A.4.2.2. Proof of Theorem 2.15­combined complexity

Proof. The np-hardness of time query satisfiability is proved by reduction of np-hardness of time
query satisfaction. The time query satisfaction np-hardness is proved by reduction of 3-Sat. Let ϕ
be 3-Sat formula. Let Var(ϕ) be the set of variables in ϕ. For each variable x of Var(ϕ) the labels
varx, x and x̄. The document has root labeled r which a subtree for each variable x of Var(ϕ) such
that the root of this subtree is varx and four children, two labeled by x and two labeled by x̄. The
times of r, varx, one x and one x̄ are 0 and the time of the other x and x̄ is 1. The associated query
is exactly the document with the following constraints:

• for each variable x, x + x̄ = 1

• for each clause and the literal l1, l2, l3 of the clause, l1 + l2 + l3 > 1

It is obvious that the document satisfies the query iff the formula is satisfiable �

A.4.2.3. Proof of Theorem 2.16

We reduce the problem of implication of function dependencies (fd’s in short) and inclusion
dependencies (ind’s in short) for relational databases to the satisfaction problem for queries with
negations. (Satisfaction can then easily be reduced to document satisfiability.)

We recall classical definition of dependencies in the relational model:

fd I |= A1 . . . Am → B (where Ai and B are attributes) iff for each tuple s, t ∈ I, s(Ai) = t(Ai) for
each i implies s(B) = t(B).

121

Appendix A: Satisfiability and Relevance: Proofs

ind I |= A1 . . . Am ⊆ B1 . . . Bm (where Ai, Bi are attributes), if for each tuple r in I, there exists a
tuple s in I such that for each i, r(Ai) = s(Bi).

Consider a relation R over A1....Am. We can represent it naturally as a tree with root labeled by
r, with a child labeled R, that has children labeled t (one per tuple), each with m children labeled
A1, ..., Am, each with a set of children. The set of labels under the node labeled Ai represent the
value t(A). Each value v in a tuple t is represented in our tree by a set of labels. We impose with
some patterns that if a label appears in two sets then the sets are equal. So to test equality between
two values of tuples, we have to test equality if the two sets have a same label. To test inequality
between values of two tuples, we have to test if a label appears in one set representing the values
and not in the other one. One can construct queries as follows:

1. a Boolean query γ that tests whether the document d is indeed a representation of a relation
R.

2. for each dependency χ (functional or inclusion), a Boolean query q(χ) that checks whether χ
is satisfied.

Let χ1, ..., χn and χ be functional or inclusion dependencies. Consider the query q consisting of a
root labeled r, positive subpatterns for each χi, and γ, and a negative one for χ. Then one can prove
that

χ1 ∧ ... ∧ χn 0 χ iff ∃d(d |= q)

.

A.5. Relevance

We prove the np-hardness of relevance of a call Id for a Boolean query.
The proof is by reduction of 3SAT. Let ϕ = ∧i∈[1..n]Ci be such a formula. The corresponding

instance is constructed as follows. For each Ci, let ci be a distinct new label. The instance also uses
functions h0

j
and h1

j
for each x j. The root, labeled r, has one subtree t j for each variable x j and one

other subtree tc. The subtree t j has a root labeled a and two subtrees, t0
j
, t1

j
defined as follows:

• t0
j

has root labeled a, one children labeled ci for each Ci where x̄ j occurs, and two other

subtrees: one consisting of a single node labeled 0; and one subtree a[h0
j
].

• t1
j

has root labeled a, one children labeled ci for each Ci where x j occurs, , and two other

subtrees: one consisting of a single node labeled 1; and one subtree a[h1
j
].

The subtree tc is: a[a[1 a[1]] a[0 a[h]]]; where h is the function for which we question the
usefulness.

The query q is constructed as follows. It has a root r with one subtree qi for each clause Ci plus a
subtree qc, defined as follows. Query qi has a root labeled a and a unique child

a[ci a[1]]

The other child of the root of q is

a[a[1 a[1]] a[0 a[1]]]

122

A.5. Relevance

I

r

a

a

1 c1 c3 a

h1
1

a

0 c2 a

h0
1

· · · a

a

1 a

1

a

0 a

h

q

r

a

a

c1 a

1

· · · a

a

1 a

1

a

0 a

1

Figure A.4.: The construction for Theorem 2.18 of ϕ

123

Appendix A: Satisfiability and Relevance: Proofs

The instance I and the query q are shown in Figure A.4 for

ϕ = (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

One can show that ϕ is satisfiable iff h is useful: Suppose ϕ is not satisfiable. Then every instance
that satisfies ∧qi also satisfies qc, so h is useless.

Conversely, suppose that ϕ is satisfiable. Let ν be a valuation that satisfies ϕ. Consider the update
w that consists in sending a 1 to each h1

j
of ν(x j) = 1 and sending a 1 to h0

j
otherwise. Let J = w(I).

Then J 6|= q whereas add(h, 1)(J) does. Thus h is useful.

124

Appendix B.

Comparing Workflow Specification
Languages: The Proofs

B.1. Proof of Theorem 5.7

We adapt the proof of Theorem 4.2 of [Abiteboul 09], showing that it is undecidable, given a
positive pattern P without variables and a GAXML schema S |γ, whether some instance satisfying
P is reachable in a valid run of S |γ.

The proof is by reduction of the implication problem for functional and inclusion dependencies
(FDs and IDs), known to be undecidable (see [Chandra 85]). Let R be a relation with k attributes, Γ
a set of FDs and IDs over R, and F an FD over R. We construct a BAXML schema S and an initial
instance I0 such that Γ 6|= F iff there is a valid run from I0. We represent relation R with attributes
A1 · · · Ak in the standard way, as a tree rooted at R. Relation R, together with some additional
functions whose role will become apparent, is depicted in Figure B.1. Clearly, this structure can be
enforced by the DTD.

R

T

A1 A2 . . . Ak ! fτ

. T

A1 A2 . . . Ak ! fτ

Figure B.1.: Relation adorned with some functions

Static constraints can easily require satisfaction of the FDs in Γ and violation of F. In order
to check that the inclusion dependencies of Γ are satisfied, we use one internal, non-continuous
function fτ for each τ ∈ Γ. One occurrence of each fτ is attached to each tuple of R, as in Figure
B.1. The functions fτ always return the empty answer. Static constraints require the following:

(i) there is at most one occurrence of ? fτ for each τ,

(ii) whenever ? fτ occurs, the ID τ is satisfied for the tuple to which ? fτ is attached.

The constraint (i) is expressed by conjunctions of negations of patterns as in (i) of Figure B.2 and
using the fact that there are no two subtrees rooted at T representing the same tuple. This property

125

Appendix B: Comparing Workflow Specification Languages: The Proofs

is due to the fact that the initial active document is reduced. The constraint (ii) is enforced by the
conjunction of patterns as in (ii) of the same figure, illustrating the case when τ = R[Ai] ⊆ R[A j].

R

T

A1

x1

· · · Ak

xk

? fτ

T

A1

y1

· · · Ak

yk

? fτ

(i)∨
i xi , yi

R

? fτ

−→ R

T

Ai

x

? fτ

T

A j

x (ii)

Figure B.2.: (i) Pattern whose negation forbids two activated calls and (ii) ensuring satisfaction of
[Ai] ⊆ [A j]

Finally, the global DTD specifies a root r, under which one can find either a subtree rooted at R

of the shape above, or one external, non-continuous function !h. Thus, the instance I0 consisting of
the root r with child !h is a possible initial instance. Clearly, there exists a valid run from I0 iff the
function h can return a tree R witnessing that Γ 6|= F, which concludes the proof.

B.2. Proof of Theorem 5.9

Let S |W be a workflow schema and ρ = (Ii), 1 6 i 6 n be prerun of S . Note first that we can check
that I0 verifies the constraints of S and those imposed on initial instances by W in ptime with respect
to |I0|. For γ ∈ G, it is clear that one can further check, for each i < n, whether the transition from Ii

to Ii+1 satisfies γ in ptime with respect to |Ii| + |Ii+1|. Consider an automaton A = (Q, qinit, δ,Υ). To
check that ρ satisfies A, we define by induction on i auxiliary relations Ri

q for each state q ∈ Q as

follows. For i = 0, all Rq are empty except Rqinit
that contains all valuations ν of Xqinit

for which
I0, ν |= Υ(qinit). For i > 0, Ri

q contains all valuations ν of X̄q for which there exists a sequence

(q j, ν j), j 6 i, where q0 = qinit, qi = q, ν = νi, and for each j < i, ν j is a valuation of Xq j
, such that:

1. I j, ν j |= Υ(q j),

2. ν j(Xq j
) ∪ ν j+1(Xq j+1) |= δ(q j, q j+1).

It is clear that for each i, the relations {Ri+1
q | q ∈ Q} can be computed from Ii+1 and {Ri

q | q ∈ Q} in
polynomial time. Moreover, the size of the relations Ri+1

q remains polynomial in the number of data

126

B.3. Proof of Theorem 5.10

values occurring in the entire prefix (I j), 0 6 j 6 i + 1. Therefore, the set of relations {Rn
q | q ∈ Q}

can be constructed in time polynomial in |ρ|. Finally, ρ satisfies A iff some relation Rn
q is nonempty

for some q.
Finally, consider T . Let θ be a Past-Tree-LTL formula ∃Xψ(X). We must check that for some

valuation ν of X to data values in ρ, ρ satisfies θν = ψ(ν). Observe that θν is has no global
variables. Let θ0

ν be a Past-LTL propositional formula from which θν is obtained by interpreting the
propositions by Boolean patterns formulas. To each truth assignment of the propositions, one can
assign a symbol. Let Σ be this set of symbols. There exists an automaton A0 with alphabet Σ, that
is equivalent to θ0

ν . From A0 it is straightforward to construct a Tree-pattern automaton Aν such that
S |θν and S |A have the same runs. Using the earlier result for automata, we can check that ρ satisfies
Aν in polynomial time. Moreover, it can be seen that the polynomial bound is independent of ν.
Since there are polynomially many ν (for fixed ψ), it can be checked in ptime whether ρ satisfies ψ.

B.3. Proof of Theorem 5.10

(i) The undecidability is due to the external functions. We have to test whether there is some
returned data that would be valid for the static constraints. This is undecidable because of the
undecidability of the satisfiability of Boolean combinations of tree patterns under arbitrary DTDs
[David 08]. (ii) For each non-activated function call ! f , it is sufficient to test it directly, and similarly
for the return of an internal function call. Let ? f be an activated external function call. The problem
of the possible return of ? f can be reduced to the satisfiability of a Boolean combination of patterns
by an instance satisfying a non-recursive DTD, which is decidable [David 08]. First, the DTD of
the answer of the function f is rewritten to take into account the sibling trees of the function call
? f and the DTD of the schema. The rewritten DTD τ′ ensures in particular that (∗) for a returned
forest F, there exists a forest F′ having the same multiset of the labels of roots as F and any tree
of F′ is isomorphic to a sibling of ? f . Intuitively, the construction of the Boolean combination of
patterns is done by looking for patterns that can extend prefixes of patterns of the static constraints
already mapped into the current instance. The extraction of the Boolean combination ϕ′ from the
static constraints is done as follows: Each pattern P is rewritten as a disjunction ∨ϕP,P′(ν), where P′

is a prefix of P and ν a valuation of the variables of P′. A formula ϕP,P′(ν) is in the disjunction iff
there is a mapping of P′(ν) in the instance I that can be extended to each node n of P not in P′ but
whose parent is in P′, such that n can be mapped to ? f . The definition of ϕP,P′(ν) is the conjunction
of subpatterns [n]P(ν). A pattern [n]P is defined as follows:

• If the incoming edge to n is a child edge, then [n]P is the subtree rooted at n.

• If the incoming edge to n is a descendant edge, then [n]P is a root labeled with ∗ and its only
subtree is the subtree rooted at n. The edge between the root and the subtree is a descendant
edge.

If P and P′ are equal then ϕP,P(ν) is set to true.
The formula ϕ′ is satisfiable for reduced trees under τ′ iff the function ? f can return.

B.4. Proof of Theorem 5.11

Let W1 and W2 be workflow specifications. Observe that with the identity view, [W1] ∼ [W2] iffW1

and W2 have the same sets of runs. We denote the latter by W1 ≡ W2.

127

Appendix B: Comparing Workflow Specification Languages: The Proofs

We prove the theorem by a sequence of lemmas. The first two state that GAXML 6֒→(id,id)

{AAXML, TAXML} (by showing that there is a GAXML schema for which no AAXML or
TAXML schema has the same set of runs). In both cases, we use the fact that, over data-free
schemas (fixed vocabulary), the runs accepted by automata and by Past-Tree-LTL formulas are
closed under equivalence wrt homomorphism, which is not the case for guards. In the following,
the view is fixed to be id.

B.4.1. Lemma GAXML 6֒→(id,id) AAXML

Proof. We exhibit a GAXML schema S |γ for which no pattern automata schema has the same set
of runs.

We briefly describe some aspects of S . Its DTD imposes that its instances consist of a tree of root
r with six children that are function calls to some internal functions f1, ..., f5 and end. The argument
query of each fi is f for some internal function f and its return guard is false. The argument query
of f is some internal function g and its return guard is also false. Function g returns the empty
message (its return guard is true). Function end has an empty argument query and a return guard
that is false. In γc, all call guards are true except for g that is: end must not be active.

At some stage, we have reached the instance I1 where the fi have been called as well as the
function f in the workspace for fi for each i. More precisely, the instance consists of: a tree with a
root labeled r, five trees with roots labeled a fi , i 6 5, and five trees with roots a f . The r root has for
children five activated functions calls ? fi, i 6 5, and one inactive function call end. For each i 6 5,
the workspace of the function fi has a root labeled a fi with for unique child, an active function call
? f . Each workspace for a function call f has a root labeled a f with as child, an inactive call to
function g.

Now consider the following two sequences from I1:

• {Ii}: activate 3 g’s; activate end; return 2 g’s.

• {Ji} with J1 = I1 activate 3 g’s; activate end; return one g; activate one g.

Observe that the first is accepted by S |γ and not the second because the last activation of g violates
its guard.

Suppose that there exists an automaton A such that S |A ≡ S |γ. Since {Ii} is accepted by S |γ, it
is accepted by S |A. Now, we can clearly assume that its state formulas do not have free variables
since there is only a fixed set of labels in S |γ. Observe that for each i, there is a homomorphism
from Ii to Ji, and conversely. They are the same except for the last one and in both last ones, some
g has been activated, some g has terminated, and some have not been activated. (This is where we
use the fifth g.) Thus any state formula that holds for Ii, also holds also for Ji. Since {Ii} is accepted
by S |A, {Ji} is accepted by S |A, so by S |γ, a contradiction. Hence there is no automaton A such
that S |A ≡ S |γ.

�

Observe that the proof does not use relative patterns in guards.

B.4.2. Lemma GAXML 6֒→(id,id) TAXML

Proof. This follows by a similar observation as above: the set of runs definable by a Past-Tree-LTL
formula is closed under equivalence wrt homomorphism (without data values). The details are
straightforward and omitted. �

128

B.4. Proof of Theorem 5.11

The next two lemmas state that GAXML cannot simulate AAXML or TAXML. In both cases,
we use the fact that the history of the computation is not recorded in the current instance.

B.4.3. Lemma AAXML 6֒→(id,id) GAXML

Proof. Consider the following AAXML schema S |A. The DTD of S enforces that the initial
instance consists of one of the function calls ! f or !g under the root, where f and g are non-
continuous internal functions. There are no data values. A call to f returns !g and a call to g never
returns (so all runs are blocking). The automaton A enforces that we start in a state qinit (with
formula true), move to qcall- f (with formula stating that ? f is a child of the root), move to qend (with
formula true). This imposes that if we start with f , we call f , receive !g, then call g and block; but
if we start with g, we immediately block. Now suppose towards a contradiction that there exists
a schema S ′ and a guard constraint γ so that S ′|γ ≡ S |A. Observe that in the run starting from f

under the root, we reach an instance I that consists only of g under the root and then g is called in I.
Now use I as an initial instance. Then the guard of g allows calling g from I, a contradiction. �

B.4.4. Lemma TAXML 6֒→(id,id) GAXML

Proof. The proof is the same as for AAXML 6֒→(id,id) GAXML, where instead of the automaton A

we use a constraint θ ∈ T stating that the initial instance has ! f under the root. �

B.4.5. Lemma TAXML 6֒→(id,id) AAXML

Proof. The proof is based on the fact that a Past-Tree-LTL formula can “remember" a data value
even after it disappears from the instance, using an existentially quantified global variable, while
this is not possible for an automaton (all parameters of a state must occur in the present instance).
Specifically, consider a TAXML schema whose initial document consists of a single function call
! f under root r. A call to f produces a workspace consisting of an external function call !g that
returns a single data value. The function f returns a call to another external function !h that again
returns a single data value. The Past-Tree-LTL formula imposes the following sequence of calls
and returns:

1. f is called

2. g is called

3. g returns a value u

4. f returns !h

5. h is called and returns the same value u returned in step (3).

Now suppose that there exists an AAXML schema describing the same sequence. The state of
the automaton after step (4) cannot have any parameters, since the current instance has no data
value. Then the automaton cannot impose that the data value returned in step (5) is the same as that
in (3). Thus, no such automaton exists. �

The next lemma uses the fact that LTL is weaker than automata on finite words [Libkin 04].

129

Appendix B: Comparing Workflow Specification Languages: The Proofs

B.4.6. Lemma AAXML 6֒→(id,id) TAXML

Lemma B.1. AAXML 6֒→(id,id) TAXML

Proof. We use the following AAXML schema S |A . The DTD states that the root is r and it has
two children, namely ! f or ? f and !g or ?g. The function f is a continuous internal function that
returns an empty answer. The function g does nothing (its return guard is false). From qinit, the
automaton enforces that f is called, returns its answer, and is called again to get to a state qchoice.
In that state, one can either return f and go back to qinit or call g and get to state qblock. Consider
the four possible instances of S . We denote them by the symbols a (children of r are ! f , !g), b (they
are ? f , !g), c (they are ? f , ?g), and d (they are ! f ,?g). Observe that the set of preruns of S |A is the
prefix-closure L of the language {(ab)2nc | n > 0}. Note that L cannot be expressed by FO on words
because it is not counter free [Diekert 08], so it can neither be expressed by LTL [Libkin 04]. Now
suppose, towards a contradiction, that there exists a Past-Tree-LTL schema S ′|θ equivalent to S |A.
We show that we can construct from S ′|θ an LTL formula ϕ that defines L. Apart from θ itself, the
formula ϕ must capture the valid transitions among instances, as well as the DTD ∆ of S ′. Thus, ϕ
is the conjunction of the following LTL formulas:

ψθ obtained from θ by replacing each pattern p by the disjunction of the symbols corresponding
to the instances satisfying p (for example, for the pattern stating the existence of ? f , the
disjunction is b ∨ d), and replacing Past-LTL operators with LTL ones;

ψ⊢ is the conjunction of constraints on consecutive instances defining the transition relation ⊢
(for example, one such constraint is G(a→ X(b ∨ d)));

ψ∆ Note that ∆ must allow instances a, b, c that appear in runs of S |A. Thus, ∆ defines either the
set of instances of S ′|θ, {a, b, c} or {a, b, c, d} . In the first case, ψ∆ is G(a ∨ b ∨ c). In the
second case, ψ∆ is true.

Let ϕ = ψθ ∧ ψ⊢ ∧ ψ∆. It is easy to check that ϕ is an LTL formula defining L, contradiction. �

B.5. Proof of Theorem 5.12

B.5.1. Simulation of GAXML by BAXML

This proof consists of two parts: first, we demonstrate that the return guards can be removed from
GAXML schema without losing expressiveness. Then, we demonstrate that a GAXML schema
where all return guards are true can be simulated by a BAXML schema. We denote the set of
GAXML schemas whose return guards are set to true by GAXMLno-ret.

Lemma B.2. GAXML ֒→(id,π) GAXMLno-ret.

Proof. We explain how we can remove the return guards of GAXML schemas. Intuitively, we
simulate the check of the return guard of a workspace of ? f using a function call !check-rg f in the
same workspace, whose call guard checks the return guard of f . We wish to ensure the following
property, while avoiding infinite branches of ε-transitions:

(+) the call to ? f can return only if the call to !check-rg f has been activated in its workspace
(signaling satisfaction of the return guard) and no other transition visible in the workspace
occurred in the meantime.

130

B.5. Proof of Theorem 5.12

Enforcing (+) requires some auxiliary functions. Recall that, by definition, the answer cannot be
returned as long as the workspace contains active function calls. In the simulation, the answer to ? f

can be returned after the answer to ?check-rg f is returned. To inhibit other visible transitions, the
answer to every other function call is forced to contain a call to an internal function !return whose
answer is empty. Property (+) is mainly ensured by two relative queries added to the return query
of f :

a f //!check-rg f −→ {error}

and
a f //!return −→ {error}.

A constraint states that error may not occur in a valid instance.
We explain in more detail the sequence of actions, in particular how to ensure there are no infinite

sequences of ε-transitions. First, the activation of !check-rg f is allowed (by using the call guard) iff
the return guard of f is true, there is no activated function call, and !return is not in the workspace.
The function call ?check-rg f returns another function call !rg-ok f . The function call !rg-ok f is only
activated in the presence of !return, and returns !check-rg f (the presence of !return ensures that a
visible transition occurs, thus preventing infinite sequences of ε-transitions). The function !return

can be activated in the workspace, returning the empty answer, only if ?rg-ok f also occurs in the
workspace. In summary, the call ? f can return only if !rg-ok f is in the workspace and no visible
transition occurred since the firing of !check-rg f . Also, consecutive calls to !check-rg f cannot occur
without the return of a visible function call in the workspace. This ensures (+) while preventing
infinite sequence of ε-transitions.

Figure B.3 gives an overview of the possible sequences of function calls for the new functions.
�

We next show that GAXML without return guards can be simulated by BAXML.

Lemma B.3. GAXMLno-ret ֒→(id,π) BAXML.

Proof. Let S |γ be a GAXMLno-ret schema. We construct a BAXML schema S ′ that simulates S |γ.
Intuitively, we check the guard of f by adding to the argument query of f additional rules that check
satisfaction of each pattern of γc(f) and insert a corresponding tag in the workspace, signaling
satisfaction of the pattern. Specifically, for each pattern P of γc(f), we add to the argument query of
f a rule P→ {satP} where satP is a new tag. Note that, if P is a relative pattern, self is mapped to
the same node when it is viewed as the body of a relative query. Finally, the DTD of the workspace
is modified to allow only subsets of tags satP corresponding to truth assignments satisfying γc(f).
This ensures that ! f can only be activated if γc(f) is satisfied. Remark that this construction works
only for internal functions, as external function calls do not produce a workspace. To deal with
external functions, the schema is first modified to ensure that every new occurrence of an external
call ! f is accompanied by a sibling !lock f . This is done using the DTDs (including those of answers
to external function), as well as by modifying the return queries of internal functions by adding to
every occurrence of ! f a sibling !lock f .

The function !lock f is internal and has several roles:

• checking satisfaction of the guard of f ; this is done as above, using the workspace of lock f ;

• checking that the static constraints would be satisfied after the activation of ! f . This is done
by rewriting the constraints in order to allow mapping ? f to ? f or to ?lock f and ! f to !lock f

for external functions.

131

Appendix B: Comparing Workflow Specification Languages: The Proofs

!check-rg f

?check-rg f

!rg-ok f

· · ·

return f

!return !rg-ok f

!return ?rg-ok f

!return !check-rg f

?return !check-rg f

!check-rg f

return of return

call of return

return of rg-ok f

call of rg-ok f

return g

· · ·

return check-rg f

! return ?check-rg f

!return !rg-ok f

!return ?rg-ok f

!return !check-rg f

?return !check-rg f

!check-ok f

return of return

call of return

return of rg-ok f

call of rg-ok f

return chek-rg f

return g

call check-rg f

Figure B.3.: Tree illustrating some of the possible actions for the return of f

132

B.5. Proof of Theorem 5.12

Static constraints require that ! f can only be activated if it has a sibling ?lock f , ensuring that its
guard and constraints are true. In addition, ?lock f acts as a lock disallowing any action other than
the activation of the sibling ! f . This is ensured by the following properties:

• ?lock f and !return do not occur simultaneously. (As in the simulation above, we require that
each forest returned by a function contains a function call !return.)

• The argument query of lock f contains a query that returns the tag error if there is any
activated function call ?lockg in the instance. The static constraints forbid the occurrence of
error in the instance.

• The initial workspace of each internal function is augmented with an internal function call
!activated (that returns the empty answer). Static constraints disallow the simultaneous
occurrence of ?lock f and !activated.

�

In summary, we have shown that

GAXML ֒→(id,π) GAXMLno-ret

and GAXMLno-ret ֒→(id,π) BAXML. By Lemma 5.5 it follows that GAXML ֒→(id,π) BAXML.
Since this is the first application of the lemma, we explain it in detail. The lemma is applied with
V1 = V2 = id and V = V3 = π. Since π = id◦πwe have that GAXML ֒→(V1,V2◦V) GAXMLno-ret and
GAXMLno-ret ֒→(V2,V3) BAXML. By Lemma 5.5, GAXML ֒→(V1,V3◦V) BAXML. Since π ◦ π = π it
follows that GAXML ֒→(id,π) BAXML.

B.5.2. Simulation of AAXMLsib by BAXML

Let S |A be an AAXMLsib schema with functions F0 and tags Σ0. We outline the construction of
a GAXML schema S ′|γ that simulates S |A relative to projection views. Since GAXML can be
simulated by BAXML relative to projection views, and since projection is coarser than the identity
on GAXML, Lemma 5.5 implies that AAXMLsib can be simulated by BAXML.

Without loss of generality, we can assume that the static constraints of S consist just of a DTD.
Indeed, the data constraints can be easily pushed into the automaton A. As described in the proof
of Theorem 5.9, the satisfaction of an automaton A by a prerun can be checked incrementally by
maintaining the states of the automaton reachable in the prerun, together with the valuations of their
parameters. The simulation by a GAXML schema essentially implements the same incremental
check. Thus, S ′|γ must alternate the simulation of events of S |A (function calls and returns) with
validity checks and updates of the state and valuation information of A. The simulation is quite
intricate and we outline the main points, providing intuition on the more subtle aspects.

The representation and maintenance of the state and valuation information for A is straightforward.
We use a subtree with root states, and one child !q for each state q of A. Valuations of X̄q are kept in
adjacent subtrees, each with root label Vq. The current valuations are marked by a function !current

(internal, noncontinuous, with empty answer). An evaluation of !q returns a new set of valuations,
also subtrees with root Vq, but now marked with another function !new. The update is completed by
having the functions !current vanish and the functions !new turn into !current. One update round is
controlled by a function update whose activation enables the update and blocks all transitions not
involved in the update. Other locks ensure that update can be activated only when the simulation of

133

Appendix B: Comparing Workflow Specification Languages: The Proofs

one transition of S is completed. We can also enforce that the update round is performed only once
between transitions.

The main difficulty in the simulation concerns the function calls and returns, and their timing
relative to the update round outlined above. Specifically, the following raise technically intricate
points:

(i) ensuring that validity of a function call or return is checked for each event (in particu-
lar, this requires preventing multiple transitions skipping intermediate validity checks and
state/valuation updates)

(ii) checking validity of a candidate event of S with respect to the DTD and A without actually
carrying out the event (in particular, one must prevent infinite branches of ε-transitions caused
by unsuccessful guesses of the next valid event)

The sequencing needed for (i) and (ii) is enforced by a locking mechanism implemented by
auxiliary functions. Before outlining the main aspects of the simulation, we make some useful
technical remarks.

Valid automata transitions vs. static constraints Given the current state/valuation information for A

and a next instance I of S , validity with respect to A of the transition to I can be expressed in S ′ by a
formula ϕ(next). The formula ϕ(next) is the disjunction ∨q,q′ψ(next)(q, q′), where q and q′ are states
of A, and ψ(next)(q, q′) checks that q is a current state, the formula Υ(q′) holds, and the equality
constraints between some valuation of X̄q and a possible next valuation of X̄q′ provided by Υ(q′)
are satisfied. Note that ϕ(next) is not directly expressible as a static constraint in S ′, because these
are Boolean combination of independent patterns, whereas ϕ(next) uses parameterized patterns
sharing free variables. To overcome this gap, some pre-processing is needed for each transition.
Specifically, for a formula ϕ(next) with free variables X, candidate valuations for X are generated
and the patterns in ϕ(next) are augmented so that X is bound in all patterns to the same valuation.
The generation of the candidate valuations depends on the action leading to the transition (we
omit the details). This reduces evaluation of ϕ(next) to evaluation of a Boolean combination of
independent patterns, so a static constraint of S ′. In the following, we will use for simplicity ϕ(next)
as a static constraint, bearing in mind that its evaluation requires the above pre-processing phase.

Rewriting patterns The patterns used in S |A have to be rewritten when used in S ′|γ. Indeed, since
an instance I′ of S ′ contains the corresponding instance I in S |A, a pattern can be satisfied in I′ and
not in I. The main problem is due to descendant branches and the wildcard used in patterns. To
resolve this, each tag in Σ0 used in I′ is adorned with a child labeled real. The patterns are rewritten
using these markings, to ensure that each pattern of S |A used in S ′|γ is mapped to nodes in I rather
than to hidden nodes used in the simulation.

Rewriting queries The simulation introduces new data values in the trees. These data values can
be matched by patterns in the queries, such as q = ∗//$x. To avoid this, we first ensure by static
constraints that each node labeled by a tag appearing in the projected trees has a child labeled
real, as explained previously. But this is not sufficient. For some technical reasons, the queries
cannot be rewritten in the same language. For example, ∗//$x is rewritten into the disjunction
∗[real]/$x ∨ ∗[real]// ∗ [real]/$x. Remark that disjunction cannot be expressed by a single query.
To evaluate a disjunction, a sequence of internal functions, one for each disjunct in each query is
called first. Each function simulates the evaluation of a disjunct and keeps the possible valuations.
These valuations are used in the query at the end (details are omitted).

134

B.5. Proof of Theorem 5.12

Extending GAXML with global return guards In our simulation, we allow return guards that can
check a global property of the instance. This is an extension of GAXML, since in GAXML return
guards of function calls are only able to check properties of the workspace. In our context, we can
simulate global return guards. This is done by adding to the workspace of each function f using a
global return guard γr(f) a function check-return-guard f . The call guard of this function is γr(f).
The new local return guard of f simply checks that check-return-guard f has returned. This works
in the context of our simulation because we only use it on reachable instances I of S |γ in which
satisfaction of γr(f) implies that the return of the corresponding call to f leads to the only valid
transition. Note that otherwise, a reevaluation of check-return-guard would have to be done after
each other valid transition by using a mechanism like in the proof of GAXML without return guard.

We next outline the simulation of the events of S |A. In all cases, the simulation involves the
following steps:

1. Acquire a lock for a function call or return. The lock initiates an attempt to carry out the
associated event.

2. Check that the event corresponding to the lock would result in a valid transition of S |A.

3. In the affirmative, the locked event is carried out and the lock released. Otherwise, the lock
is also released, but in a manner that prevents another locking attempt before a valid event
occurs. This prevents infinite branches of ε-transitions.

We now describe the specific simulation used for the activation of a function call, the return of
an internal function call, and the return of an external function call.

B.5.2.1. Activation of a function call

The activation of an internal function ! f is controlled using a sibling function !lock f . As described
above, this has a dual role: it acts as a lock, and it checks whether the activation of ! f would result
in a transition allowed by the automaton. If so, it returns a function call !activate-f. Otherwise, it
returns !notactivate-f. The call ! f cannot be activated unless !activate-f occurs as a sibling. The
functions !lock f and !activate-f also prevent other transitions from occurring during the attempt to
activate ! f . To this end, one can guarantee that there is at most one node labeled ?lock f , (for some
f) in an instance, i.e. at most one lock. This is enforced by the guard of lock f . Moreover, no active
function call can return its answer while ?lock f , !activate-f, or ?activate-f occur. As described in
the proof of Theorem 5.12 , it is easy to ensure that every occurrence of ! f is always accompanied
by a sibling !lock f following each visible transition.

To ensure that ! f is activated whenever !activate-f is activated, the guard of activate-f ensures that
this function cannot be called while it still has a sibling ! f . The function call !notactivate-f ensures
that !lock f cannot be called more than once between two valid transitions. It is activated during
the maintenance phase and returns !lock f (needed for the next attempt to call ! f , following another
transition). The constraints impose that activate-f handshakes with the lock for the maintenance of
the states and valuations.

Figure B.4 summarizes the possible sequences of activations in the simulation of an internal call
of f. The role of the function w f ,a will be explained shortly. The nodes represents the functions
siblings of the call f The possible sequences for an external call are the same except the function
w f ,a is replaced by certificate f ,a.

135

Appendix B: Comparing Workflow Specification Languages: The Proofs

!f !lock f

!f ?lock f

!f !w f ,a !activate-f

?f !w f ,a !activate-f

?f ?w f ,a !activate-f

!f ?w f ,a ?activate-f

!f ?w f ,a

return of activate-f

call of activate-f

call of w f ,a

call of f

return of lock f

!f !notactivate-f

return of lock f

call of lock f

Figure B.4.: The tree some of the actions for the simulation of the activation of the call of f

136

B.5. Proof of Theorem 5.12

B.5.2.2. Return of an internal function call

We describe the simulation in several stages. The basic locking mechanism is simple. The lock
initiating an attempted return of a function call ? f is implemented using a function !lockw present
in the workspace. If the call return to ? f would result in a valid transition, the lock is released and
the result is returned. Otherwise, the lock is released and another function !wait is activated in
order to inhibit any locking attempt until another transition has been successfully completed.

Checking validity of the call return is much more complex. It is carried out using the workspace
of an auxiliary function check f ,a that is a sibling to ? f (here a is the tag of the parent of ? f , needed
to check the DTD). A difficulty is to make sure the activated occurrence of check f ,a is indeed a
sibling of the call ? f whose workspace is locked (recall that patterns cannot detect the link between
a call and its workspace). Assume for the moment that this is achieved. Then check f ,a works
as follows. First, it generates in its workspace a copy of its sibling subtrees, (these are “almost"
isomorphic copies of the originals, keeping sufficient information for checking validity, see below).
Next, it generates in the same workspace the answer to the locked call ? f . In the following stage,
four functions are used to test satisfaction or violation of the DTD (ok-dtd and notok-dtd) and the
automaton constraint (ok-A and notok-A) by the result. Specifically, for the first two the test is done
using the DTD of S ′ and for the last two using their guards. To test satisfaction of the automaton
constraint using guards, the formula ϕ(next) has to be rewritten into a disjunction of formulas, each
of which decomposes the patterns into a part that applies to the workspace of check f ,a (mimicking
the subtree rooted at the parent of the call ?check f ,a, labeled a) and another to the rest of the instance.
If the result is positive (the transition is valid) then a flag ok-return is turned on in the workspace of
? f . The guards and constraints then force the answer to the call ? f to be returned, and ?check f ,a

returns the empty answer. If the result is negative, the function !wait is activated in the workspace
of ? f (see above), and the call ?check f ,a returns then the function calls !w f ,a and !reinitialize. These
functions are used to allow a new check of this function after a valid transition as detailed be.

We next explain how to generate !check f ,a as a sibling of the call ? f whose workspace is locked.
The process starts at the time when ! f is activated. We ensure that each function call ! f has as a
sibling a call !w f ,a (where a is the tag of the parent the function call). When the call to ! f is made,
its workspace includes a function !init that uniquely marks the most recent function call (and later
vanishes). Additionally, a new identifier α is generated in the workspace of ? f (more on this in the
next paragraph). Then the function !w f ,a is called and copies the identifier α from the workspace of
? f marked by !init. Note that the only function call !w f ,a without a sibling ! f is the sibling of the
most recently activated call ? f . Once the simulation of the call to ! f is completed, !init vanishes
but the workspaces of ? f and ?w f ,a remain linked by the identifier α. When the return of the call
? f is simulated, the call ?w f ,a sharing the same id α with the workspace of ? f returns as answer the
desired function call !check f ,a. If due to a lock the return of f is disallowed, the call to !w f ,a has
to be activated again. The function check f ,a returns the function calls !w f ,a and !reinitialize. The
second function ensures that its sibling ! f has as sibling !w f ,a after the reinitialization.

The identifier α in the previous paragraph can easily be generated by an external function that
returns a new value. If one wishes to avoid using external functions in the simulation, the identifier
can be represented by a chain of calls to two internal functions, encoding the binary representation
of an integer. The bookkeeping is more complicated in this case, since comparing identifiers is no
longer an atomic operation. In particular, identifiers have to be destroyed and reconstructed (details
omitted). Moreover, the identifiers have to be refreshed after each valid transition to ensure that the
size of each instance of the simulation remains polynomial in the size of the current instance.

Recall that one of the roles of !check f ,a is to copy the relevant sibling subtrees of ? f . We

137

Appendix B: Comparing Workflow Specification Languages: The Proofs

explain briefly how this is done. We enforce that each tag of Σ0 has a child function call !copy-to.
As remarked earlier, the copy performed loses some information. The loss concerns the exact
number of sibling calls ?g to an internal function g. Indeed, it is not possible to fully replicate this
information because of the limitations of patterns. Fortunately, multiple occurrences of sibling calls
to the same function are not relevant when they occur as internal nodes in sibling subtrees of ? f .
Thus, only one representative of such calls is copied. This does not affect the simulation, since trees
with activated function calls cannot be merged, and patterns cannot count such occurrences. For
calls ?g occurring as siblings of ? f , their number is relevant to satisfaction of the DTD after the call
return, but only up to the maximum integer used in the DTD of S . The number of occurrences up
to this maximum can be signaled using additional function calls whose activation is constrained by
the DTD of S ′. For example, the DTD may stipulate that a function !eq(?g=m) may be activated iff
the number of occurrences of siblings ?g is m.

Copying a tree is done by mutually recursive calls between functions residing in the source tree
(copy-to, in-progress, copy-values-to, done-to) and in the target tree (copy-from, copy-values-from,
done-from). The copy is done in a depth-first manner. The copy-to indicates the parent node to
copy. The function call !copy-from copies this node with child labeled !copy-from. The function
call !in-progress indicates that copying is in progress for the subtrees of the parent node of this
call. The function call copy-values-to indicates that the function calls and the sibling values of this
function have to be copied. It implies that the subtrees are entirely copied, which is signaled by the
function !done. The copy of the function calls is tricky, since copying the activated function calls
has to be done before the others (to guarantee that partially copied subtrees are not merged). The
function calls !done-from and !done-to are reinitialized to !copy-to after each valid transition.

Figure B.5 summarizes the tree of actions done to check the return of a call. At each node, we
represent the function calls siblings of the call ? f , the function calls in the workspace of ? f and the
function calls in the workspace of check f ,a when it is in the simulation.

B.5.2.3. Return of an external function call

This is the most subtle part of the simulation. Observe first that it is not possible to take a lock using
a marker returned by an external function call ? f , because two calls to ? f at different locations in
the document may return exactly the same forest and be indistinguishable by the constraints of the
GAXML schema. Moreover, it is not possible to take a lock prior to the return of ? f , because one
cannot know if ? f can return an answer satisfying the constraints (recall that this is undecidable,
see proof of Theorem 5.10). If a lock is taken when ? f cannot return, this leads to a blocking run
in an instance of S ′|γ whose projection in S |A is not blocking, which violates the definition of
simulation. Instead, the idea of our simulation is to use, for every call ? f to an external function, an
associated sibling call to an internal function certificate f ,a such that:

(i) if ? f may return, then ?certificate f ,a may return a flag !return f . The function !return f

compels ? f to return and also acts as a lock preventing other transitions until the next
cleaning stage.

(ii) the call ?certificate f ,a may remain activated until the next cleaning stage, in which case ? f

is not allowed to return. During the cleaning stage, the call ?certificate f ,a returns and is
reactivated.

Note that, even if ? f can return, ?certificate f ,a does not necessarily return, unless the return of
? f is the only possible next transition. Otherwise, the cleaning stage may be reached without a

138

B.5. Proof of Theorem 5.12

(?f ?w f ,a), (!lockw)

(?f ?w f ,a), (?lockw),

(?f !check f ,a), (?lockw),

(?f ?check f ,a), (?lockw),
(!ok-dtd, !notok-dtd,
!ok-A, !notok-A)

(?f ?check f ,a), (?lockw),
(?ok-dtd, !notok-dtd,
!ok-A,!notok-A)

(?f ?check f ,a), (?lockw),
(ok-dtd, !notok-dtd, !ok-
A,!notok-A)

(?f ?check f ,a), (?lockw),
(ok-dtd, !notok-dtd, ?ok-
A,!notok-A)

(?f ?check f ,a), (?lockw),
(ok-dtd, !notok-dtd, ok-
A,!notok-A)

(?f ?check f ,a), (ok-
return),
(ok-dtd, !notok-dtd, ok-
A,!notok-A)

(?f), (ok-return)

(!return)

return of f

return of check f ,a

return of lockw

return of ok-A

call of ok-A

(?f ?check f ,a), (?lockw),
(ok-dtd, !notok-dtd, !ok-
A,?notok-A)

(?f ?check f ,a), (?lockw),
(ok-dtd, !notok-dtd, !ok-
A,notok-A)

(?f ?check f ,a),
(?lockw,?wait),
(ok-dtd, !notok-dtd, !ok-
A,notok-A)

(?f !w f ,a !reinitialize), (?lockw,?wait)

(?f ?w f ,a !reinitialize), (?lockw,?wait)

(?f ?w f ,a ?reinitialize), (?lockw,?wait)

(?f ?w f ,a), (?lockw,?wait)

(?f ?w f ,a), (?wait)

return of lockw

return of reinitialize

call of reinitialize

call of w f ,a

return of check f ,a

call of wait

return of notok-A

call of notok-A

return of ok-dtd

call of ok-dtd

(?f ?check f ,a), (?lockw),
(!ok-dtd, ?notok-dtd,
!ok-A,!notok-A)

(?f ?check f ,a), (?lockw),
(!ok-dtd, notok-dtd, !ok-
A,!notok-A)

return of notok-dtd

call of notok-dtd

call of check f ,a

return of w f ,a

call of lockw

call of wait

Figure B.5.: The tree of some of the actions for the simulation of the return of the internal call of f139

Appendix B: Comparing Workflow Specification Languages: The Proofs

return of ?certificate f ,a or ? f , by simulating some other transition. If ?certificate f ,a does not return
and the cleaning stage is not reached, then the run is blocking, both in S |A and in S ′|γ.

We next elaborate on (i). To mimick ? f , the function certificate f ,a uses in its workspace an
external control function fake f . The workspace also contains additional information so that ?fake f

may return in the context of the workspace iff ? f may return in the context of its original location.
Specifically, the workspace contains a copy of the sibling subtrees of ? f (this is done as in the
previous simulation). In addition, it contains information on the evaluation of the patterns in ϕ(next)
on the portion of the current instance excluding the siblings of ? f . The partial evaluations of the
patterns together with the siblings allow expressing within the workspace constraints on the return
of ?certificate f ,a that are equivalent to those on the return of ? f (the DTD and valid transition in
A). This ensures that ?fake f may return iff ? f may return. If ?fake f returns, then ?certificate f ,a

returns the flag !return f as desired. To prevent multiple returns to ?fake f at different locations
in the document, the answer to ?fake f contains a flag !return-fake-f that is not allowed to appear
twice in the document. To ensure this, the workspace of ?certificate f ,a also contains a unique id
(generated by an external function). A constraint forbids two occurrences of !return-fake-f with
distinct workspace id’s. Note that the id technique could not be used to implement directly a lock
for the return of ? f , because such an id could not be erased from the instance and this could lead
to faulty simulations. Indeed, the id’s could inhibit merging of subtrees whose projections would
otherwise be merged.

Finally, if ?certificate f ,a does not return during the current round, its workspace is reconstructed
during the cleaning stage in order to reflect changes in the instance.

(?f ?certificate f ,a), (?fake f)

(?f ?certificate f ,a), (! return-fake f)

(?f !return f)

(!return !return f)

(!return ?return f)

(?return ?return f)

(?return)

return of return

return of return f

call of return

call of return f

return of f

return of certificate f ,a

return of fake f

Figure B.6.: The tree of some of the actions for the simulation of the return of the call of the external
function f

Figure B.6 summarizes the tree of actions performed to check the return of an external call. At
each node, we represent the function calls occurring as sibling of the call ? f , then the function calls
in the workspace of certificate f ,a when it exists.

140

B.6. Proof of Theorem 5.13

B.5.3. Simulation of TAXMLsib by BAXML

This follows from the simulation of AAXMLsib by GAXML and from Theorems 5.13, noting
that the simulation of TAXML by AAXML does not introduce sibling calls to the same external
function.

B.6. Proof of Theorem 5.13

B.6.1. Simulation of AAXML by TAXML

Let S |A be an AAXML schema with functions F0 and tags Σ0. The broad lines of the simulation of
AAXML by TAXML are similar to the simulation of AAXML by GAXML. As in the latter case, the
TAXML system must enforce an alternation of transitions and maintenance of the state/valuation
information for A. This is done by a locking mechanism enforced by auxiliary functions, much
like in the simulation by GAXML. We omit the similar details and focus on returns of external
function calls. Recall that GAXML could not simulate AAXML with sibling calls to the same
external function. We outline how this is done by TAXML.

Each function call notifies its return by a function call !safe-r that belongs to its answer (this can
be enforced for external functions by their DTD). The function !safe-r works as a lock. To ensure
that two sibling functions calls ? f do not return consecutively, the TAXML formula imposes that no
two consecutive instances contain a function call !safe-r. In particular, this requires the activation
of !safe-r f in the instance following its first occurrence. The validity of the return with respect to A

is checked, as in the simulation by GAXML, by the constraint ϕ(next), whenever !safe-r f occurs
(note that ϕ(next) can be used directly in the Past-Tree-LTL formula).

B.6.2. Simulation of TAXML by AAXML

We describe the simulation of TAXML by AAXML. We first consider a variant of AAXML denoted
AAXML∗ and show how TAXML can be simulated by AAXML∗. We then show how AAXML∗

can be simulated by AAXML. In particular, it will follow from the constructions that

TAXMLsib ֒→(id,π) AAXMLsib

completing the proof of Theorem 5.12.
The automaton model of AAXML∗ differs from AAXML as follows:

(i) the automaton is equipped with final states, and a prerun must lead to some final state in
order to be accepted,

(ii) the state variables are the same for all states and remain unchanged in each transition, and

(iii) the state variables range over the active domain of the entire prerun which is the input to the
automaton, rather than just the last instance leading to that state.

B.6.2.1. From TAXML to AAXML∗

Let ξ = ∃X̄ϕ(X̄) be a Past-Tree-LTL formula. Recall that each such formula is obtained from a
propositional Past-LTL formula ϕ̄ with propositions P in which each proposition p ∈ P is replaced
by a Boolean combination of parameterized patterns ψp. Using a variant of the algorithm of
[Vardi 96] for finite words, one can construct a finite-state automaton Aϕ̄ whose alphabet consists of

141

Appendix B: Comparing Workflow Specification Languages: The Proofs

the truth assignments to P, that is equivalent to ϕ̄. From this we can obtain an AAXML∗ automaton
Aξ equivalent to ξ as follows.

• For each truth assignment σ to P, let γσ be the Boolean combination of tree patterns obtained
from the propositional formula ∧σ(p)=1 p ∧σ(p)=0 ¬p by replacing each p by ψp

• For each state q of Aϕ̄, Aξ has one state (q, σ) for each outgoing transition from q labeled
σ, and transitions are induced by those in Aϕ̄. The state formula for (q, σ) is γσ. The state
variables (which recall are all the same) equal X̄.

• The final states of Aξ are those of the form (q, σ) where q is final in Aϕ̄.

It is easily seen that the AAXML∗ automaton Aξ is equivalent to ξ.

B.6.2.2. From AAXML∗ to AAXML

We explain informally the main points in the simulation of AAXML∗ by AAXML. Consider an
AAXML∗ specification S ∗|A∗. We describe an AAXML specification S |A that simulates it. Recall
the differences (i)-(iii) between the AAXML∗ and AAXML automata. The simulation by S |A is
similar to the maintenance of states and valuations used in the simulation of AAXML by GAXML.
Dealing with (i) and (ii) is straightforward. To account for the final states, S |A must check that at
each transition, one of the reachable states is final. The fact that state variables are the same and do
not change in A∗ is easily enforced in A. The most delicate part of the simulation concerns (iii),
i.e. the difference in the active domain semantics for the two models. There are two aspects to
be dealt with. First, state formulas of A∗ are evaluated on the active domain of the entire prerun
leading to the current state. This can be easily simulated in A by always propagating in a transition
all values from the current to the next instance. The second, trickier aspect involves the new values
introduced in transitions by external function calls. Because of the semantics, these have to be also
taken into account in previous transitions. Dealing with this requires augmenting the state/valuation
maintenance algorithm. Specifically, S |A must decide if the current transition would be allowed
had A been run from the beginning on the active domain extended with the new values. In order to
do this incrementally (without re-running the automaton on the extended domain), A must maintain
some additional information summarizing the reachable states and valuations where the latter
include values outside the current prerun. In order to do this, the key observation is that a positive
pattern with a free variable X cannot be satisfied for any value of X not in the current instance. Let
@ be a new symbol, representing an arbitrary value outside the current active domain. Consider a
valuation ν of the state variables X into the current active domain augmented with @. We can define
satisfaction of a tree pattern P(ν(Y)) in a BAXML instance, where Y ⊆ X, as follows: if ν(Y) does
not contain @, then satisfaction is defined as usual; otherwise, P(ν(Y)) is not satisfied. This extends
to satisfaction of Boolean combinations of tree patterns, so of state formulas. The maintenance
algorithm can now be extended to keep states together with valuations including @. When new
values are introduced, this provides sufficient information to determine the allowed transitions.

B.7. Proof of Theorem 5.14

We first show that there exists an AAXML schema with external functions that cannot be simulated
by a GAXML schema relative to a projection view. Intuitively, if there are several sibling active
function calls to the same external function, the GAXML schema is not able to impose that only

142

B.8. Proof of Theorem 5.22

one function call returns before the states of the automaton are updated and validity of the transition
is ensured.

The AAXML schema S |A is the following. We describe the shape of a run. The initial instance
is a tree rooted at r with one child labeled by a continuous function !g. The function !g returns an
external, non-continuous function call ! f . Repeated calls to g and f (in alternation) generate an
unbounded number of sibling calls ? f . Each function f returns a label a. The automaton further
imposes that no more than one answer to ? f be returned in a run.

We show that there is no GAXML schema simulating S |A. Assume towards a contradiction
that there exists such a schema S ′|γ. Let M be the maximum integer used in the DTD of S ′.
We exhibit a prerun that is valid for S ′|γ, but whose projection is not valid for S |A. First, let
ρ = (I0, e0), · · · (Im, em) be a prerun for S |A in which Im has M + 1 occurrences of ? f and em is the
only return of a call ? f occurring in ρ. Let I be the instance resulting from the return of another
call ? f of Im (let e be this event). Note that ρ is a valid prerun of S |A whereas ρ.(I, e) is not.
Nonetheless, we show that ρ.(I, e) is the projection of a prerun of S ′|γ. Since S ′|γ simulates S |A
and ρ is a prerun of S |A, there exists a prerun of S ′|γ with a subsequence (I′

i0
, e′

i0
), · · · (I′

im
, e′

im
) so

that i0 = 0, im = m and (I j, e j) is the projection of (I′
i j
, e′

i j
), 0 6 j 6 m. In particular, I′

im−1
contains

M + 2 calls to ? f , I′
im

contains M + 1 calls to ? f , and (since calls ? f are visible), I′
im

is obtained
from I′

im−1 by the return of a call to ? f , consisting of some forest F. We claim that S ′|γ allows the
transition from I′

im
to I′ in which another call to ? f returns the same forest F. Indeed, because in the

BAXML semantics isomorphic subtrees are reduced, the two occurrences of F are merged so the
only difference between Iim and I′ is that Iim has M + 1 calls ? f whereas I′ has M such calls. Since
M is the maximum integer used in the DTD of S ′, and Iim satisfies the DTD, so does I′. Similarly,
Iim and I′ satisfy the same tree patterns because the two instances are homomorphic to each other.
Thus, I′ satisfies all static constraints of S ′. Since external function returns have no guards, the
transition is valid in S ′|γ. However, the projection of I′ is I and, as we have seen, ρ.(I, e) is not a
valid prerun of S |A. This contradicts the existence of S ′|γ.

The fact that TAXML cannot be simulated by GAXML follows from the fact that AAXML can
be simulated by TAXML (Theorem 5.13) and AAXML cannot be simulated by GAXML. The
difficulty is the same as in the above proof.

B.8. Proof of Theorem 5.22

We show that T A can be simulated by GAXML (this suffices since BAXML can simulate GAXML,
see Theorem 5.12). We sketch the simulation for T A systems with only one artifact class with
a single state and database relation, and a single service. This is sufficient to capture the salient
elements of the simulation. As dicussed in [Deutsch 09], an arbitrary T A system can be easily
represented by such a restricted system.

Suppose the artifact system has an artifact tuple with k attributes A1, . . . , Ak, a database relation
DB, and a state relation S . The unique service has pre-condition π, postcondition ψ, and state
formulas ϕ+

S
and ϕ−

S
. Relations will be represented in the simulating GAXML system in the standard

way, by subtrees of bounded depth (see Section 5.6). The database relation is a fixed subtree in
the main document, while the state and artifact tuple are represented in workspaces of function
calls, which facilitates updating their values. More specifically, the state is represented and updated
using the workspaces of two function calls that alternate between carrying the current state and
computing the next state.

An application of the service requires simulating the following:

143

Appendix B: Comparing Workflow Specification Languages: The Proofs

1. evaluating the pre-condition π on the database, current state and current artifact tuple.

2. evaluating the FO formulas ϕ+
S

and ϕ−
S

and generating the new S in the workspace of one of
the two functions mentioned above.

3. non-deterministically generating a new candidate artifact tuple and verifying satisfaction of
the postcondition ψ.

The bookkeeping needed to enforce the above sequencing can be straightforwardly done with
auxiliary functions. There are two delicate points: the evaluation of an FO formula, and simulating
(3) so that all qualified next artifact tuples can be generated and failed attempts do not lead to
spurious blocking or infinite chains of ε-transitions. Recall that in general there are infinitely many
new candidate artifact tuples, because new values can come from the infinite domain D.

B.8.1. Evaluating an FO formula

We first elaborate on the evaluation of FO formulas. Recall that the formulas ϕ+
S

, ϕ−
S

, and π are
interpreted with active domain semantics. Consider an FO formula written using ∧,¬,∃. The
formula is evaluated by structural recursion on its syntax tree. Given standard representations of
the result of two subformulas, it is easy to compute the relation obtained by applying ∧ and ∃.
Applying ¬ is trickier. For conciseness, we illustrate how to compute the complement of a unary
relation P with respect to the active domain (this can be easily extended to arbitrary arity). The
relation P is represented by a subtree with root labeled P, satisfying the DTD

P → |dom| > 0.

The complement is constructed as follows. First, a call to a function !checkP generates the current
active domain, where each value is adorned with two functions !in-P and !not-in-P. More precisely,
its initial workspace is of the following shape (the role of !p̄ will be explained shortly):

acheckP
→ |!p̄| = 1 ∧ |val| > 0

val → |dom| = 1 ∧ |!in-P| = 1 ∧ |!not-in-P| = 1

The functions in-P and not-in-P are internal. The call guard of in-P verifies that the value
adjacent to the call is in P, whereas the guard of not-in-P checks that the value is not in P. Both can
be easily done using relative patterns. The role of the function !p̄ is dual. First, its guard ensures
that for each value, one of its siblings !in-P or !not-in-P has been called. To this end, its guard
forbids the presence of two siblings !in-P and !not-in-P. Second, its argument query computes the
complement of P, by collecting the values with a sibling ?not-in-P.

B.8.2. Generating the new artifact tuple

Like the state, the artifact tuple is represented and updated using the workspaces of two functions
that alternate between carrying the current value and computing the new value of the artifact tuple.
Recall that generally there are infinitely many candidates for the next artifact tuple, since the
free variables of the post-condition range over the infinite domain D. Observe that satisfaction
of the post-condition is invariant under the following equivalence relation on k-tuples over D:
〈a1, . . . , ak〉 ≡ 〈b1, . . . , bk〉 iff for all i, j:

• ai = a j iff bi = b j,

144

B.9. Proof of Theorem 5.23

• if either ai or bi is in the active domain, then ai = bi.

To each equivalence class corresponds a type specifying the values for the coordinates that belong to
the active domain, and the equality type for the coordinates whose values are not in the active domain.
It is straightforward to nondeterministically construct a relation containing one representative tuple
for each equivalence class. Specifically, internal function calls are used to generate the values of
the coordinates in the active domain, and external functions to generate values for the coordinates
outside the active domain. The equality type for the latter is imposed by constraints. In addition,
each tuple is adorned with a function call whose role is to evaluate the post-condition ψ for the
tuple, returning ok in the affirmative and not-ok in the negative. Since ψ is in FO, this can be done
similarly to the above. The functions evaluating ψ for each tuple are called non-deterministically,
and a simple locking mechanism ensures that (i) the functions are evaluated completely one at a
time, and (ii) function activations are blocked in the current round as soon as one of them returns ok.
The new artifact tuple is the unique one marked ok. It can be easily checked that every candidate
tuple can be generated in this manner by some computation path. If there is no such tuple, the
artifact system blocks, and so does the simulation.

B.9. Proof of Theorem 5.23

The proof is based on a reduction from the implication problem for functional and inclusion
dependencies (FDs and IDs), known to be undecidable. Specifically, we consider instances of the
implication problem of the form ∆ |= f , where ∆ is a set of FDs and IDs, and f an FD. We consider
a BAXML schema S whose initial instance consists of a single external function !e under the root.
The function returns a tree representing an arbitrary finite relation, of the form shown in Figure B.1.
Specifically, each tuple is adorned with one function ! fτ for each ID τ in ∆. Additionally, there is
one function !g under the root R. The call guard of each fτ checks that the ID τ is violated for the
sibling tuple. Satisfaction of the FDs in ∆, and violation of f , are ensured by static constraints. The
guard of !g simply checks that the relation returned by the call to !e is non-empty.

We consider the view VS retaining all functions. It is easy to check that ∆ 6|= f iff there is a
blocking run of S whose view under VS is ρ = init.e.g.(block)ω (we ignore the constant state).
Indeed, since no function ! fτ can be called, all IDs in ∆ are satisfied. Recall that satisfaction of the
FDs in ∆ and violation of f are ensured by the constraints. Thus, the non-empty instance returned
by e satisfies ∆ and violates f .

Now suppose towards a contradiction that one can effectively construct, for each BAXML schema
as above, a corresponding artifact system Γ with a view VΓ ∈ Vserv so that VS ([S]) ∼ VΓ([Γ]). By
definition, the first event in both [S] and [Γ] is init. Also, in [S] there is a unique edge labeled init,
leading to the node whose state is root/!e. Let T!e be the subtree of [S] rooted at that node. By
definition of ∼, VS (T!e) must be w-bisimilar to V(T) for every subtree T ∈ Tinit, where Tinit consists
of the subtrees of [Γ] whose roots have incoming edge init. In other words, Γ must simulate S

regardless of its database. In particular, this must be the case for the empty database. Thus, let
T∅ be the subtree in Tinit corresponding to the empty database. From the above it follows that
VS (T!e) ∼ VΓ(T∅).

Recall that ∆ 6|= f iff VS (T!e) contains a path from the root labeled e.g.block. Since VS (T!e) ∼
VΓ(T∅), this happens iff VΓ(T∅) contains a path from the root labeled ε∗.e.ε∗.g.ε∗.block. By
definition of ∼, since VS (T!e) has no infinite branches of ε-transitions (in fact no ε-transitions at
all), VΓ(T∅) may not have infinite branches of ε-transitions. Also note that T∅ is finitely branching,
modulo isomorphism (this is because in artifact systems, each transition other than init generates

145

Appendix B: Comparing Workflow Specification Languages: The Proofs

only finitely many non-isomorphic states from each given state). It follows that from each given
node, the set of lengths of ε-paths originating at that node is bounded (otherwise, an easy induction
shows that there must be an infinite path of ε-transitions from that node). This allows to effectively
generate a breadth-first expansion of VΓ(T∅) (modulo isomorphism) until the first 3 non-ε transitions
occur along all branches. This allows deciding if a path labeled ε∗.e.ε∗.g.ε∗.block starting from the
root exists in VΓ(T∅), and provides a procedure for testing whether ∆ |= f .

146

Appendix C.

Résumé de la thèse en français

C.1. Introduction

L’un des principaux problèmes que les applications Webs doivent gérer aujourd’hui est l’évolutivité
des données. Dans cette thèse, nous considérons ce problème et plus précisément l’évolution des
documents actifs, une abstraction des documents écrits en Active XML [Abiteboul 08a] (AXML).
Les documents actifs sont documents XML pouvant évoluer grâce à l’activation d’appele de
services Web. Ce formalisme a déjà été utilisé dans le cadre de la gestion d’information distribuée.
Les principales contributions de cette thèse sont l’étude théorique de différentes notions pour
l’implémentation de deux systèmes gérant des applications manipulant des flux de données et des
applications de type workflow. Dans un premier temps, nous étudions des notions reliées à la
maintenance de vue sur des documents actifs. Ces notions sont utilisées dans l’implémentation d’un
processeur de flux de données appelé Axlog widget manipulant des flux à travers un document actif.
La deuxième contribution porte sur l’expressivité de différents formalismes pour contraindre le
séquencement des activations d’un document actif. Cette étude a été motivée par l’implémentation
d’un système gérant des workflows focalisés sur les données utilisant les documents actifs, appelé
Axart. Dans une première partie, nous étudions les applications gérant des flux. Le Web possède un
nombre très important de sources de flux de données exprimées en XML comme les fils de blogues
ou les fils de dépêche. De plus en plus, les pages Webs font simplement de l’édition d’agrégats
de ces flux. Au cœur de ces pages se trouve un système de gestion de flux. Nous présentons un
modèle formel appelé Axlog qui calcule des requêtes simples sur les flux. Notre approche se fonde
sur la maintenance de vues sur les documents actifs. La contribution principale autour de ce sujet,
publiée dans [3], est l’étude de deux notions théoriques appelées satisfiabilité et pertinence. Un
algorithme pour maintenir une vue sur un document incluant des appels à des flux est brièvement
présenté [4]. Cet algorithme s’articule autour des notions théoriques présentées précédemment. Ces
notions permettent de combiner ensemble différentes techniques relatives aux bases de données :
optimisation de l’évaluation d’une requête écrite en datalog, techniques pour la maintenance de
vues, gestion de calculs de flux XML et enfin techniques de sélections pour les flux XML. Le
modèle Axlog est implémenté par le système P2PMonitor, présenté dans [9]. P2PMonitor est un
système distribué qui a pour finalité la surveillance d’autres systèmes distribués. La surveillance
faite par P2PMonitor est effectuée par le calcul de requêtes sur des flux de données XML. Le
système P2PMonitor et l’algorithme de maintenance de vue ont été présenté en détail dans la thèse
de Bogdan Marinoiu [Marinoiu 09]. Dans une deuxième partie, nous abordons le problème du
séquencement des actions intra et inter applications. Les sites Webs d’e-commerce sont un exemple
intéressant d’applications où l’ordonnancement est crucial. Les interactions entre utilisateurs et
applications sont contraintes afin d’être conformes au workflow. Plusieurs langages de description
de workflows ont été introduits, comme BPEL. Cependant, grand nombres de ces langages se
concentrent sur la description procédurale des possibles séquencements des actions sans prendre

147

Appendix C: Résumé de la thèse en français

vraiment en compte d’autres aspects comme les données utilisées dans l’application.
De nouveaux types de langages de description de workflows plus focalisés sur les données,

appelés «data-centric workflow» ont été récement proposés. Nous présentons dans cette thèse le
modèle d’AXML Artifact, [5], influencé par le modèle de Business Artifact, introduit par IBM.
Notre principale contribution, [2], dans cette partie est l’étude et la comparaison de différentes
manières d’exprimer l’ordonnancement des actions en se basant sur des paradigmes différents
incluant automates, pré-et post-conditions pour l’activation d’une action ou la logique temporelle.
Nous décrivons brièvement un système, AXART [8], implémentant une partie du modèle AXML
Artifact.

La thèse est organisée en deux parties. La première traite des applications gèrant les flux
et la deuxième des workflows. Chaque partie est organisée de la même manière. Après une
présentation de la partie, nous discutons des travaux similaires. Nous présentons le modèle et
l’étude théorique pour le type d’applications que nous considérons. Pour conclure, nous discutons
de l’implémentation du modèle présenté précédemment.

C.2. Résumé de la partie I : Maintenance de vues sur les
documents actifs

Les échanges de flux d’information est un des mécanismes prédominants des applications Webs.
Ces mécanismes sont particulièrement présent dans les mashups systèmes [Ennals 07] ou systèmes
distribués dédiés à la surveillance [Abiteboul 07]. La gestion de ces flux de données est un
ambitieux problème qui a déjà engendré un très grand nombre de résultats voir Web 2.0 [O’Reilly].
Nous présentons un nouveau modèle se fondant sur datalog et Active XML technologies appelé
Axlog. Il capture les interactions entre applications Webs et montre comment celles-ci peuvent
implémentées efficacement. Un Axlog widget utilise un document actif interagissant avec le reste
du monde au travers des flux de notifications. Leurs flux entrants notifient les modifications du
document (dans l’esprit des fils RSS) tandis que leur flux sortant est définie par une requête posée
sur le document. Plus précisément un flux sortant représente la liste des mises-à-jour nécessaires
pour maintenir la vue définie par la requête. Les requêtes que nous considérons dans cette thèse
sont des requêtes de motif d’arbre avec jointures sur les données (et un motif pour produire un
résultat sous format XML). Notre modèle de données et les requêtes associées peuvent inclure une
dimension temporelle essentielle dans les problèmes de surveillance. La clé du support d’un Axlog
Widget est la maintenance de la vue correspondant à la requête posée sur le document actif. Pour
cela, nous réutilisons un ensemble de technologies : des techniques d’optimisation de requêtes
datalog comme MagicSet, des techniques efficaces pour la maintenance de requêtes datalog comme
Differential et des techniques efficaces de filtres sur des flux XML. Le cœur des optimisations de
notre algorithme est construit autour de deux techniques fondamentales : la pertinence (différente
de celle introduite dans Magic Set) et la satisfiabilité d’une requête sur un document actif. Dans
un premier temps nous introduisons le cœur du modèle où les mises-à jour sont simplement des
insertions et les requêtes sont des motifs d’arbres. Nous présentons et étudions les deux concepts
fondamentaux que sont la satisfiabilité et la pertinence. Un fait est satisfiable pour un document
actif et une requête, s’il a une chance de devenir vrai par une suite de mise-a-jour du document
actif. Pour un document actif et une requête donnés, une souscription à un flux du document est
pertinente si les mises-à-jour apportées par le flux peuvent avoir un impact sur le résultat de la
requête. Nous analysons la complexité de la satifiabilité pour le cœur du modèle ainsi que pour
des extensions : un document actif peut être associé à un type, les mises-à-jour peuvent inclure

148

C.2. Résumé de la partie I : Maintenance de vues sur les documents actifs

également des supressions, les requêtes peuvent inclure des négations et documents et requêtes
peuvent inclure une dimension temporelle. Les Axlog widgets sont les composants essentiels du
système P2PMonitor. Nous le présentons briêvement ainsi que l’intégration des Axlog widgets
dans celui-ci. Nous expliquons sans détailler comment la satisfiabilité et la relevance sont utilisées
dans l’algorithme pour la maintenance d’une vue. Pour résumer, les Axlogs widgets peuvent être
utilisés pour supporter un grand nombre de tâches dans des environnements distribués comme
la gestion de flux. L’utilisation des Axlog Widgets a été démontrée dans [9] dans le cadre de la
surveillance d’une application de construit de produit [Kapuscinski 04]. Les Axlog widgets sont au
cœur d’une seconde version du système P2PMonitor [Abiteboul 07]. L’implémentation est basée
sur un algorithme efficace de maintenance de vue [4]. Cet algorithme utilise notamment les notions
théorique de satisfiabilité et pertinence étudiés dans [3].

C.2.1. Résumé du Chapitre 2 : Axlog Model, satisfiabilité et pertinence

Dans ce chapitre, nous introduisons le cœur du modèle Axlog, qui est un document actif avec une
requête définissant une vue dessus. Un document actif est un arbre avec sémantique ensembliste
pour les sous-arbres d’un arbre et interagissant avec le reste du monde avec des flux de mises-à-jour.
Les requêtes sont des motifs d’arbre avec des jointures. Le résultat d’une requête sont les n-uplets
représentant les possibles valeurs que peuvent prendre certaines des variables apparaissant dans le
motif d’arbre. Ces n-uplets peuvent être édités sous la forme d’arbres en utilisant un formulaire.
Un document actif associé avec une requête est ce que nous appelons une Axlog widget. Le terme
d’Axlog vient du mariage d’Active XMl (AXML en acronyme) [Abiteboul 08a] et datalog. Les
flux entrants d’une Axlog widget définissent les mises-à-jour du document actif. Dans la plupart
des résultats, les mises-à-jour sont des insertions. Nous étudions toutefois le cas où les mises-à-jour
sont des suppressions. Le flux sortant est défini à partir de la requête de l’Axlog widget. Plus
précisément, il représente la liste des mises-à-jour nécessaires pour maintenir la vue définie par la
requête. La majeure contribution de cette partie est l’étude des notions pour les documents actifs
de la satisfiabilité et de la pertinence. Tout d’abord, un fait est satisfiable pour un document actif
et une requête si ce fait peut apparaître dans la réponse de la requête à la suite de mises-à-jour du
document actif. Dans le même esprit que l’évaluation de motifs d’arbres en utilisant un programme
datalog [Gottlob 02], nous démontrons comment évaluer la satisfiabilité d’une requête (si il y a au
moins un fait satisfiable) en utilisant un programme datalog. Il en découle que la satisfiabilité d’une
requête est ptime dans la taille du document actif. Remarquez que le nombre de faits satisfiables
pour un document actif et une requête peut être infini. Nous utilisons une représentation finie en
utilisant des n-uplets possédant des variables. Pour gérer ces n-uplets, appelés n-uplets généralisés,
nous utilisons le langage de requêtes CQL [Kanellakis 95]. La satisfiabilité est aussi étudiée pour
des extensions du modèle. Premièrement, les documents actifs et les données des mises-à-jours
sont typées [Comon 97, DTD , WSDL]. Comme nous utilisons une sémantique ensembliste pour
les sous-arbres d’un nœud et des arbres non ordonnés, nous adaptons les DTDs pour ignorer l’ordre
des nœuds voisins. Nous démontrons que la satisfiabilité d’une requête pour un document actif typé
à la même complexité. Toutefois l’algorithme que nous utilisons n’est pas un simple programme
datalog. D’un autre côté, nous étudions plusieurs extensions entrainant la non monotonicité de la
satisfiabilité de la requête pour un document actif telles que suppression, terminaison d’un flux,
négation de sous-requêtes. En particulier, la négation dans les requêtes entrainent l’indécidabilité
de la satisfiabilité. Pour finir, nous introduisons le temps dans les documents et les requêtes. Le
temps est une importante notion pour la surveillance. Nous étendons le programme utilisé dans le
modèle de base pour tenir compte des contraintes temporelles.

149

Appendix C: Résumé de la thèse en français

La deuxième notion que nous étudions est la pertinence d’une souscription à un flux. La
souscription à un flux est pertinente si les données apportées par cette souscription peuvent avoir un
impact sur le résultat de la requête. Une notion de pertinence plus faible a déjà étudiée d’appels de
fonctions dans [Abiteboul 04a]. La pertinence dans le cas de base est ptime dans le document actif.
Hélas, la complexité combinée est élevée et l’algorithme ayant une complexité polynomiale possède
des constantes trop élevée en pratique, Nous introduisons une notion de pertinence entre notre
notion de pertinence et la pertinence proposée dans [Abiteboul 04a], appelée axlog–pertinence.
C’est cette notion qui est utilisée dans l’implémentation.

C.2.2. Résumé du chapitre 3 : Implémentation du modèle d’Axlog

Les travaux faits autour d’Axlog ont été premièrement motivés par le développement du sys-
tème P2PMonitor, un système pour la surveillance des applications pair à pair introduit dans
[Abiteboul 07] et développé dans [Marinoiu 09]. À partir de notre algorithme de maintenance de
vues, le système P2PMonitor supporte maintenant les Axlog widgets [4]. Leur utilisation a été dé-
montrée dans [9] dans le cadre de la surveillance d’un système simulant sur la chaine d’assemblage
Dell. Le problème principal pour l’implémentation des Axlog widgets est le calcul efficace de la
production du flux de sortie, qui est un problème de maintenance de vue. Nous avons développé
un tel algorithme qui est aussi présenté dans [4]. Cet algorithme combine des techniques de bases
données comme MagicSet [Beeri 91] et Differential [Blakeley 86b] ainsi des techniques de filtrage
de flux [Diao 02] qui n’avaient pas jamais été utilisées ensemble. Cette combinaison est possible
dans notre cadre grâce à l’utilisation des notions que sont la satisfiabilité et la pertinence. Pour
donner un bref aperçu de ce que fait l’algorithme, MagicSet permet le calcul que des faits pertinents
pour l’évaluation de la requête actuelle. Cela peut entraîner le calcul d’un très grand nombre de faits
à l’arrivée d’une mise-à-jour qui aurait pu être évité car ils étaient calculables avant cette mise-à-jour.
Nous relaxons l’algorithme de MagicSet en autorisant le calcul des faits satisfiables. Grâce à notre
algorithme du calcul de pertinence présenté dans le travail théorique, nous sommes en mesure
d’indiquer quelles requêtes doivent être satisfaites par les données arrivant d’une souscription d’un
flux pour avoir un impact sur le résultat de la requête. Grâce à ces connaissances, il est possible de
filtrer les données des flux avant leur intégration au programme de maintenance de vue (sauvant du
temps de calcul) et si possible à la source même (sauvant des communications).

C.3. Résumé de la partie II : le modèle AXML Artefact

L’évolution de données partagées est le centre des nombreuses activités humaines constituées de
tâches qui sont coordonnées au travers d’un worklflow. Les langages de description de workflow
se sont globalement focalisés sur des descriptions procédurales des actions ignorant les aspects
liés aux données. Depuis récemment, il y a une prolifération des langages, appelés workflow
centré-données, en réponse aux besoins croissants de modélisation des applications manipulant
massivement des données. E-commerce systèmes, processus de business d’entreprise, processus
médicaux et scientifiques workflows sont des exemples primordiaux nécessitant des workflows
centrés données. Dans le cadre d’une approche de workflow centré données, nous proposons
un nouveau modèle de description de workflow centré données, appelé AXML Artefact. Dans
un premier temps, nous présentons dans un premier temps le cœur du modèle AXML Artefact,
appelé BAXML pour capturer la gestion de l’activité d’un document actif. Ce modèle utilise des
documents actifs qui dont l’évolution est seulement contraint pour des contraintes statiques. Un des

150

C.3. Résumé de la partie II : le modèle AXML Artefact

plus grands challenges discuté de la modélisation des workflows centré données est la spécification
des contraintes de workflow. Nous étudions le problème de comparer l’expressivité de plusieurs
mécanismes de spécification de workflow en utilisant une notion de vue pour un workflow. Les vues
permettent de comparer des systèmes décrits dans des langages très largement différents en associant
aux différents systèmes une représentation commune capturant les notions observables pertinentes
pour la comparaison. Nous comparons l’expressivité de plusieurs langages de workflow incluant
automate, contraintes temporelles et pré- et post- conditions associés au BAXML comme le modèle
de données sous-jacent. Un résultat surprenant montre que les contraintes statiques ont un pouvoir
d’expression considérable permettant de simuler de mécanismes de contrôle plus complexe. De plus,
nous affirmons que notre modèle capture l’essentiel des caractéristiques business artefacts comme
décrits informellement dans [Nigam 03a] ou discuter dans [Hull 08]. Pour motiver cette affirmation,
nous comparons l’expressivité du modèle BAXML avec le modèle d’AXML artefact introduit
dans [5]. Dans un deuxième temps, nous étendons le modèle AXML Artefact avec différents
principes: hiérarchie d’artefacts, contrôle d’accès, dynamique modification des comportements
possibles du système et distribution dans le système. Les notions de hiérarchies et de distribution
ont été présenté [5] et [Hélouët 10]. La distribution est un problème difficile pour l’implémentation
[Marinoiu 09] et la vérification [Hélouët 10]. Cette extension n’est pas étudiée dans cette thèse.
Les autres extensions sont nouvelles. Nous illustrons ces notions à l’aide de deux exemples venant
des applications de type Business : un exemple basé sur la gestion d’un casting [Wikipedia] et un
exemple basé sur la chaîne d’assemblage Dell [Kapuscinski 04]. La gestion du casting illustres
les trois premières notion tandis que la chaîne d’assemblage Dell illustre la distribution. Pour
conclure, nous présentons le système AXART supportant la majeure partie du modèle AXML
Artefact, avec les extensions. Ce système se focalise sur les interactions humaines gérées par un
système centralisé. Cela implique que la distribution n’est pas gérée par le système. Pour résumer,
nous présentons un langage pour décrire des workflows centrés données appelé AXML Artefact.
Il est basé sur les documents actifs. La contribution majeure de cette partie, publiée dans [2], est
une comparaison de l’expressivité de différents formalismes pour le contrôle de l’évolution d’un
document actif (BAXML). Nous avons implémenté un prototype d’une grande partie d’AXML
Artefact, démontré en [8]. La distribution qui n’est pas supporté par le prototype AXART, est
simplement présenté dans cette thèse mais est pleinement développé dans [Marinoiu 09].

C.3.1. Résumé du chapitre 5 : Comparaison de l’expressivité de langages de
spécifications de workflows: un problème de vues

L’évolution de données partagées est le centre d’un grand nombre d’activités humaines. La
notion de business artefact [Nigam 03a] a été proposée pour spécifier de telles évolutions. L’idée
principale est de capture le flux de contrôle de workflow de l’application mais aussi l’évolution
des données. En partant des documents actifs, nous proposons un nouveau artefact modèle, appelé
AXML Artifact modèle. Le séquencage des documents actifs peuvent être spécifiés par différents
mécanismes comme les automates, les pré- et post-conditions ou des contraintes temporelles. Le
but principale est de comparer ces différents mécanismes. Toutefois, il est extrêmement difficile
de comparer ces langages de spécification au vue de la diversité des formalismes et du manque
de référence commune. Dans ce chapitre, nous développons un adaptive cadre pour comparer les
langages de spécification de workflows où les aspects pertinents, qui doivent être priss en cause,
sont définis au travers de vues. Nous utilisons ce cadre pour comparer les langages présentés
précédemment. Considérons le système qui évolue dans le temps comme le résultat de calculs
internes ou d’interactions avec le reste du monde. Fondamentalement, une spécification de workflow

151

Appendix C: Résumé de la thèse en français

impose des contraintes sur son évolution. Il existe un grand nombre d’approches pour spécifier de
telles contraintes. La plus populaire des approches semble consister à spécifier un ensemble d’états
abstraits du système et d’imposer des contraintes sur les transitions possibles entre états, comme
dans BPEL [BPEL]. D’autre part, une approche plus déclarative est de définir un ensemble de
tâches équipées avec des pré- et post- conditions, tel que le modèle d’IBM, Business artefact. Un
système d’artefact peut aussi imposer des contraintes par des formules temporelles sur l’histoire
de l’exécution [Hull]. Nous affirmons que les vues sur les workflows est très utile pour comparer
des workflows mais aussi que les vues permettent de décrire plusieurs explications d’un même
workflow. Par exemple, les vues peuvent être utilisé pour des interfaces aux clients de différentes
classes d’actionnaires pour de raisons de présentation ou de sécurité. Les interactions et contrats
sur les workflows peuvent être aussi spécifiés par des vues. La création de worklows complexes
est faite naturellement en procédant par rafinement par vues abstraites. Les vues peuvent être
également utilisées à l’exécution pour la surveillance, la détection d’erreurs, le diagnostique ou
capturer les souscriptions de requêtes continues. Le mécanisme d’abstraction fournis par les vues
est également essentiel dans l’analyse statique et la vérification. Dépendant des besoins nécessaires,
une vue de workflow peut retenir des informations concernant des états abstraits du système, de son
évolution, comme sur certains évènements et leur séquences, ou sur l’entière histoire du système
jusqu’à maintenant ou la combinaison de ces aspects. Même si cela n’est pas fait explicitement,
une vue est souvent le point de départ de la création d’un workflow.

Pour voir comment cela marche, considérons un workflow W spécifié par des tâches et des pré-
/post-conditions et un autre workflow W0 spécifié par un système à transitions, les deux pertinents
pour la même application. Un moyen pour rendre les deux workflows comparable est de définir une
vue sur W comme un système à transitions compatible avec W0. Cela peut être faire en définissant
état à partir de requêtes sur l’état courrant et les transitions induites par les tâches. Pour rendre
la comparaison significative, la vue doit retenir dans les états les informations pertinentes pour la
sémantique de l’application restructurée pour être compatible avec la représentation utilisée dans
W0. Plus généralement, les vues peuvent être utilisées pour des langages totalement différents. Nous
formalisons la générale notion de vue et introduisons une forme de bisimulation sur les vues pour
capturer le fait qu’un worflow simule un autre. Dans notre formel développement, nous étudions
principalement les documents actifs (AXML [Abiteboul 08a]) qui permet une intégration continue
de processus et de données. Pour décrire, l’évolution du système en l’absence de contraintes de
type workflow, nous définissons le modèle de base appelé Basic AXML (BAXML). BAXML
documents sont des documents actifs qui sont adaptés dans le contexte des workflows. Le document
évolue suivant le résultat d’appels de fonctions qui initient des sous-tâches et qui retourne des sous-
arbres . Les fonctions peuvent être internes ou externes, suivant la modélisation des interactions
avec l’environnement. La figure C.1 montre un document actif. Les documents sont sujets à
des contraintes statiques définies par une DTD et une combinaison booléenne de motifs d’arbres.
Remarquez que cela implique déjà une certaine forme de contrôle avec le flux d’exécution. En effet,
un appel de fonction peut être activé ou peut retourner un résultat que si le document résultant ne
viole pas les contraintes statiques. En effet, nous verrons que cela produit déjà un très grand pouvoir
pour exprimer des contraintes de type workflow. BAXML offre un naturel modèle pour spécifier
les exécutions d’un système dans lequel les tâches correspondent à des documents évoluant et les
appels de services sont des requêtes retournant des sous- tâches. À partir de ce modèle de basem
nous considérons trois moyens de spécifier augmentant BAXML avec des contrôles explicites,
correspondant aux trois importants workflows paradigmes :

• Automates : les automates sont non déterministes systèmes transitionnels finis. Des requêtes

152

C.3. Résumé de la partie II : le modèle AXML Artefact

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

Product

Pname

Sony

Price

175

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Figure C.1.: A BAXML document.

sont associées à leurs états. Les requêtes sont des formules de motifs d’arbre avec des
variables libres apparaissant dans la paramétrisation des états. Une transition dans un état
peut être effectuée si la formule associée au nouvel état est vrai dans le document résultant.
De plus, l’automate peut contraindre les valeurs des paramètres de deux consécutives états.

• Gardes : les gardes sont des pré-conditions controllant l’activation des appels de services
et le reoutr de leur réponses. Ce mécanisme de contrôle a été introduit dans [Abiteboul 09],
dont les résultats concernent la vérification de propriétés temporelles sur de tels systèmes.

• Propriétés temporelles : elles sont exprimées dans une logic utilisant des motifs d’arbres
et Past-LTL opérateurs. Une formule temporelle contraint l’évolution d’un document en
utilisant l’histoire de l’exécution actuelle.

Bien que ceci est présenté dans le contexte de BAXML, ces extensions capturent les aspects
essentiels des paradigmes de spécification indépendemment du modèle de données sous-jacent.

Notre résultats principaux concernent le pouvoir d’expressivité de BAXML et des différentes ex-
tensions liées aux langages de spécifications de langages. Quand nous imposons que deux systèmes
aient exactement les mêmes exécutions, les trois extensions sont incomparables. Des résultats
deviennent plus intéressants quand nous relachons une notion plus permissive d’équivalence dans
laquelle une vue peut cacher des portions de donńées et des activités liées aux fonctions permettant
plus de souplesses dans la simulation. Surprenamment, nous démontrons que BAXML est capable
de simuler largement les trois mécanismes de spécifications basés sur les gardes, les automates
ou les propriétés temporelles. Cela indique la puissance impressionante des contraintes statiques
pour simuler des mécanimses apparemment plus puissants. Bien sûr, les spécifications comme les
gardes, les automates et propriétés temporelles sont plus lisibles que leur équivalentes spécifications
dans BAXML en utilisant des fontions non observables et des contraintes statiques. Les résultats
présentés montrent l’utilité de montrer une abstraction du worklflow comme une contrainte sur
les exécutions du système sous-jacent, découplé des approches spécifiques pour définir les con-
traintes. Il est aussi démontré que l’utilité des vues dna sla comparaisons des workflows et des
langages de workflows. Bien que les langages décrits ici sont formalisés dans le contexte d’AXML,
nous croyons que les résultats montrent la généralisation de l’approche sur d’autres formalisme
que celui présenté ici. En particulier, les preuves donnent des idées générales de comment les

153

Appendix C: Résumé de la thèse en français

différents langages peuvent se simuler l’un l’autre. Après les résultats relatifs aux document actifs,
nous considéron le modèle de Business artefact introduit par IBM qui utilisent des paradigmes
différents : les données sont représentées sous un format relationnel et les services sont équipées de
pré-/post-conditions en utilisant des formules du premier ordre. Grâce encore une fois aux vues,
nous comparons BAXML avec le modèle de Business artefact comme formaliser dans [Deutsch 09].
Nous prouvons que BAXML peut simuler les artefacts mais l’inverse est faux. Le premier résultat
utilise des vues associant des arbres XML à des relations et des fonctions à des services. Pour le
résultat négatif, nous utilisons des vues qui retiennent seulement la trace des appels de fonctions
dans BAXML et des services dans le modèle de business artefact. Cela montre un très for résultat,
il s’étend pour toute vue qui expose plus d’information que les traces d’appels de fonctions/services.
Ces résultats montrent encore la flexibilité et l’intérêt des vues pour comparer des formalismes de
workflows..

C.3.2. Résumé du Chapitre 6: Implémentation du modèle AXML Artefact

. Nous étendons le coeur du modèle d’AXML Artefact par plusieurs intéressantes notions, le con-
trôle des interactions avec des utilisateurs, la modification dynamique du workflow, la hiéarchisation
des tâches et la distribution. La modification dynamique du workflow et la gestion du contrôle
d’accès sont nouveaux comparer aux travaux antérieurs. Nous les illustrons dans un exemple
pratique : la gestion de l’attribution de la distribution d’un film comme décrit dans [Wikipedia].
Ceci est repésentatif des interactions possibles entre plusieurs acteurs humains. L’exemple montre
comment un standard workflow est modélisé grâce le modèle d’AXML artefact et comment les
utilisateurs peuvent facilement exécuter le workflow en interagissant avec les artefacts en utilisant
des formulaires et en modifiant les états associés aux artefacts. Les artefacts sont surveillés et des
notifications peuvent être possiblement envoyés aux utilisateurs qui peuvent prendre les bonnes
dès lors la décision appropriée. L’exemple illustre la modification dynamiques des workflows
par deux mécanismes appelés spécialisation de workflows et relation de workflow qui permettent
aux utilisateurs ayant les autorisations de modifier le workflow au cours de son exécution. Cela
procure une flexibilité utile lors de la spécification d’un workflow avec notre modèle. Toutes les
modifications sont contrôlées par règles d’accès. La distribution est illustrée par une modélisation
de la chaine de distribution de Dell [Kapuscinski 04].

Un prototype, AXART du modèle d’AXML artefact est présenté. Ce prototype sert à gérer les
interactions entre humains. Il implémente qu’un sous-ensemble du modèle étendu. Par exemple,
les seules fonctions gérées sont les fonctions externes qui représentent les interactions avec les
utilisateurs. L’idée principale du système est de gérer efficacement les requêtes évoluant dans
les règles du workflow. Pour cela, le système maintient incrémentalement ces requêtes. Il utilise
les techniques de surveillance développées dans la première partie telles que la maintenance de
motifs d’arbres sur des document actifs en présence de souscriptions de flux générant que des ajouts
d’arbres. AXART combine ces techniques avec des technique de sécurité sur le contrôle d’accès.
Cela permet la gestion d’une collection raisonnale d’artefact munis de contrôle d’accès.

C.4. Conclusion

Nous étudions dans cette thèse comment les documents actifs peuvent être considérer comme un
modèle de base pour la gestion d’information distribuée. Les études se sont focalisées sur deux
types de systèmes : la gestion de flux de données et les worklows centrés données.

154

Worklow centré données: le modèle AXML Artefact

C.4.1. Gestion de flux : le modèle Axlog

Notre première contribution est l’étude des documents actifs dans le cadre de la gestion de flux.
Pour cela un modèle, Axlog, a été proposé. Il est la juxtaposition d’un document actif souscrivant à
des flux de données et d’une requête définissant un flux de sortie. Notre intérêt est de présenter
un algorithme efficace pour maintenir la requête durant l’évolution du document actif. Pour cela
nous introduisons deux notions : la satifiabilité et la pertinence. La faisabilité du calcul de ces deux
notions est étudięe dans cette thèse.

Worklow centré données: le modèle AXML Artefact

Notre secondde contribution est d’étudier les documents actifs pour la modélisation d’application
de workflows centrés données. Pour cela, nous proposons un modèle sous-jacent, BAXML fait de
documents actifs et de contraintes statiques auquel des contraintes de workflows sont associées. La
contribution majeure a été d’étudier l’expressivité de différents langages de contraintes en utilisant
un nouveau formalisme basé sur les vues. Nous avons en parituclier montré la puissance des
contraintes statiques pour simuler des formalismes qui semblaient plus expressifs.

C.4.2. Perspectives

Les workflows centrés données proposent de grands défis et il reste beaucoup de travail à faire.
Nous proposons plusieurs approches.

La première est l’extension du système AXART pour gérer la distribution comme proposé dans le
modèle général. Cela implique des problèmes pour la gestion des contrôles d’accès. Une première
approche serait de poursuivre les approches proposées dans [Abiteboul r] et dans [Abiteboul f] et
démontré dans [Antoine 11]. Une autre approche serait de faire de la vérification a posteriori des
actions des différents utilisateurs. Cela impliquerait de développer des sigatures utiles dans notre
cadre. Les deux autres points sont d’étudier la notion de vues proposées dans cette thèse pour
définir des abstractions riches de systèmes pour permettre de définir des interfaces ou faire de la
vérification de parties utiles du modèle.

155

Contents

Introduction 1

I. Maintenance of Views over Active Documents 3

1. Related Work 7
1.1. Stream processing systems . 7

1.1.1. Relational streams systems . 7
1.1.2. XML streams systems . 7

1.2. Query evaluation . 7
1.2.1. Datalog . 7
1.2.2. AXML . 8

1.3. View Maintenance . 8
1.3.1. Incremental View Maintenance . 8
1.3.2. Relevance . 8

1.4. Satisfiability and containment of queries . 9
1.4.1. Satisfiability of tree-pattern queries over static trees 9

1.5. Incomplete information . 10
1.5.1. Incomplete relational databases . 10
1.5.2. Trees and incomplete information . 10

1.6. Type . 10
1.6.1. Unordered trees . 10
1.6.2. Reduced trees . 11

2. Satisfiability and relevance for queries over active documents 13
2.1. Introduction . 13
2.2. The model . 14

2.2.1. Definitions . 14
2.2.2. Axlog Systems . 17

2.3. Satisfiability . 18
2.4. Typed documents . 22

2.4.1. Schema definition . 22
2.4.2. Satisfiability for Axlog schemas . 23

2.5. Nonmonotonicity . 24
2.6. Relevance . 27

3. Axlog 31
3.1. Introduction . 31
3.2. Axlog at Work . 31
3.3. The View Maintenance Algorithm . 32

157

Contents

II. Data­centric Workflow Applications 37

4. Related Work 41
4.1. Workflow languages and models . 41
4.2. Workflows systems . 42
4.3. Formal studies about workflows . 42

4.3.1. Comparison of workflow languages . 42
4.3.2. Verification . 42

5. Comparing Workflow Specification Languages:
A Matter of Views 45
5.1. Introduction . 45
5.2. Views and Simulations . 47
5.3. The Basic AXML model . 50
5.4. Workflow Constraints . 56
5.5. Expressiveness . 60
5.6. BAXML and Tuple Artifacts . 62

5.6.1. The Tuple Artifact Model . 63
5.6.2. Comparison . 65

6. An implementation of the AXML artifact model: AXART 67
6.1. Introduction . 67
6.2. Two motivating examples . 68
6.3. Extensions of the AXML Model . 71
6.4. The AXART System . 73

6.4.1. The implemented Model . 73
6.4.2. Algorithm . 74
6.4.3. The Architecture . 74
6.4.4. The User Interface . 75

Conclusion 77
Stream Processing: the Axlog model . 77
Data centric workflow: the AXML Artifact model . 77
Perspectives . 78

III. References 79

IV. Appendix 93

A. Satisfiability and Relevance: Proofs 95
A.1. Notations . 95
A.2. Satisfiability . 95

A.2.1. Proof of Theorem 2.6 . 95
A.2.2. Proof of Theorem 2.7 . 98
A.2.3. Systems of active documents . 100

A.3. Typed documents . 100

158

Contents

A.3.1. Reduced DTDs . 100
A.3.2. Reduced Axlog schemas . 108
A.3.3. Proofs of Theorems 2.11 and 2.12 for reduced Axlog schemas 109

A.4. Nonmonotonicity . 116
A.4.1. Noninflationary documents: Theorem 2.13 116
A.4.2. Non monotonic queries . 119

A.5. Relevance . 122

B. Comparing Workflow Specification Languages: The Proofs 125
B.1. Proof of Theorem 5.7 . 125
B.2. Proof of Theorem 5.9 . 126
B.3. Proof of Theorem 5.10 . 127
B.4. Proof of Theorem 5.11 . 127

B.4.1. Lemma GAXML 6֒→(id,id) AAXML . 128
B.4.2. Lemma GAXML 6֒→(id,id) TAXML . 128
B.4.3. Lemma AAXML 6֒→(id,id) GAXML . 129
B.4.4. Lemma TAXML 6֒→(id,id) GAXML . 129
B.4.5. Lemma TAXML 6֒→(id,id) AAXML . 129
B.4.6. Lemma AAXML 6֒→(id,id) TAXML . 130

B.5. Proof of Theorem 5.12 . 130
B.5.1. Simulation of GAXML by BAXML . 130
B.5.2. Simulation of AAXMLsib by BAXML 133
B.5.3. Simulation of TAXMLsib by BAXML . 141

B.6. Proof of Theorem 5.13 . 141
B.6.1. Simulation of AAXML by TAXML . 141
B.6.2. Simulation of TAXML by AAXML . 141

B.7. Proof of Theorem 5.14 . 142
B.8. Proof of Theorem 5.22 . 143

B.8.1. Evaluating an FO formula . 144
B.8.2. Generating the new artifact tuple . 144

B.9. Proof of Theorem 5.23 . 145

C. Résumé de la thèse en français 147
C.1. Introduction . 147
C.2. Résumé de la partie I : Maintenance de vues sur les documents actifs 148

C.2.1. Résumé du Chapitre 2 : Axlog Model, satisfiabilité et pertinence 149
C.2.2. Résumé du chapitre 3 : Implémentation du modèle d’Axlog 150

C.3. Résumé de la partie II : le modèle AXML Artefact 150
C.3.1. Résumé du chapitre 5 : Comparaison de l’expressivité de langages de

spécifications de workflows: un problème de vues 151
C.3.2. Résumé du Chapitre 6: Implémentation du modèle AXML Artefact . . . 154

C.4. Conclusion . 154
C.4.1. Gestion de flux : le modèle Axlog . 155

Worklow centré données: le modèle AXML Artefact 155
C.4.2. Perspectives . 155

List of Algorithms 161

159

Contents

List of Figures 163

160

List of Algorithms

2.1. Program P̂q for Query q of Figure 2.5 . 20

A.1. Satisfiability for queries . 96
A.2. Scenario for queries . 99
A.3. Algorithm Count-RT . 105

161

List of Figures

1.1. An arbitrary join tree-patern query . 9

2.1. Updating of an active document . 15
2.2. An example of active documents . 15
2.3. Examples of queries . 16
2.4. A query and some active documents . 19
2.5. A query and some active documents . 19
2.6. A tree and its reduced tree . 23
2.7. Nonmonotonicity: Time and negation . 26
2.8. Queries and active documents for relevance . 27

3.1. An Axlog widget . 33
3.2. The Dell supply chain . 33
3.3. Beyond MagicSet . 34

5.1. A BAXML document. 51
5.2. Two patterns . 52
5.3. Example of a relative query . 53
5.4. An instance with an eval link . 55
5.5. Call guards of Reject and Deliver. 57
5.6. Example of pattern automaton . 58
5.7. Cost of various simulations from Theorems 5.12 and 5.13 60

6.1. The standard workflow of a FRA (solid), its exception (dotted) and its specialization
(bold) . 68

6.2. Form snapshot for a stage (Audition Scheduled) 70
6.3. Artifacts in the Dell application . 71
6.4. An AXML artifact . 73
6.5. Architecture of a peer of the AXART System 75

A.1. Examples of queries . 96
A.2. An tree coding the triangle graph . 118
A.3. A timed query and a timed document . 120
A.4. The construction for Theorem 2.18 of ϕ . 123

B.1. Relation adorned with some functions . 125
B.2. (i) Pattern whose negation forbids two activated calls and (ii) ensuring satisfaction

of [Ai] ⊆ [A j] . 126
B.3. Tree illustrating some of the possible actions for the return of f 132
B.4. The tree some of the actions for the simulation of the activation of the call of f . 136
B.5. The tree of some of the actions for the simulation of the return of the internal call of f 139

163

List of Figures

B.6. The tree of some of the actions for the simulation of the return of the call of the
external function f . 140

C.1. A BAXML document. 153

164

	Introduction
	Maintenance of Views over Active Documents
	Related Work
	Stream processing systems
	Relational streams systems
	XML streams systems

	Query evaluation
	Datalog
	AXML

	View Maintenance
	Incremental View Maintenance
	Relevance

	Satisfiability and containment of queries
	Satisfiability of tree-pattern queries over static trees

	Incomplete information
	Incomplete relational databases
	Trees and incomplete information

	Type
	Unordered trees
	Reduced trees

	Satisfiability and relevance for queries over active documents
	Introduction
	The model
	Definitions
	Axlog Systems

	Satisfiability
	Typed documents
	Schema definition
	Satisfiability for Axlog schemas

	Nonmonotonicity
	Relevance

	Axlog
	Introduction
	Axlog at Work
	The View Maintenance Algorithm

	Data-centric Workflow Applications
	Related Work
	Workflow languages and models
	Workflows systems
	Formal studies about workflows
	Comparison of workflow languages
	Verification

	Comparing Workflow Specification Languages: A Matter of Views
	Introduction
	Views and Simulations
	The Basic AXML model
	Workflow Constraints
	Expressiveness
	BAXML and Tuple Artifacts
	The Tuple Artifact Model
	Comparison

	An implementation of the AXML artifact model: AXART
	Introduction
	Two motivating examples
	Extensions of the AXML Model
	The AXART System
	The implemented Model
	Algorithm
	The Architecture
	The User Interface

	Conclusion
	Stream Processing: the Axlog model
	Data centric workflow: the AXML Artifact model
	Perspectives

	References
	Appendix
	Satisfiability and Relevance: Proofs
	Notations
	Satisfiability
	Proof of Theorem 2.6
	Proof of Theorem 2.7
	Systems of active documents

	Typed documents
	Reduced DTDs
	Reduced Axlog schemas
	 Proofs of Theorems 2.11 and 2.12 for reduced Axlog schemas

	Nonmonotonicity
	Noninflationary documents: Theorem 2.13
	Non monotonic queries

	Relevance

	Comparing Workflow Specification Languages: The Proofs
	Proof of Theorem 5.7
	Proof of Theorem 5.9
	Proof of Theorem 5.10
	Proof of Theorem 5.11
	Lemma GAXML -2.5mu(id,id) AAXML
	Lemma GAXML -2.5mu(id,id) TAXML
	Lemma AAXML -2.5mu(id,id) GAXML
	Lemma TAXML -2.5mu(id,id) GAXML
	Lemma TAXML -2.5mu(id,id) AAXML
	Lemma AAXML -2.5mu(id,id) TAXML

	Proof of Theorem 5.12
	Simulation of GAXML by BAXML
	Simulation of AAXMLsib by BAXML
	Simulation of TAXMLsib by BAXML

	Proof of Theorem 5.13
	Simulation of AAXML by TAXML
	Simulation of TAXML by AAXML

	Proof of Theorem 5.14
	Proof of Theorem 5.22
	Evaluating an FO formula
	Generating the new artifact tuple

	Proof of Theorem 5.23

	Résumé de la thèse en français
	Introduction
	Résumé de la partie I : Maintenance de vues sur les documents actifs
	Résumé du Chapitre 2 : Axlog Model, satisfiabilité et pertinence
	Résumé du chapitre 3 : Implémentation du modèle d'Axlog

	Résumé de la partie II : le modèle AXML Artefact
	Résumé du chapitre 5 : Comparaison de l'expressivité de langages de spécifications de workflows: un problème de vues
	Résumé du Chapitre 6: Implémentation du modèle AXML Artefact

	Conclusion
	Gestion de flux : le modèle Axlog

	Worklow centré données: le modèle AXML Artefact
	Perspectives

	Contents
	List of Algorithms
	List of Figures

