

Magnetic Films: Studies of the FePt and FeRh systems

Cheikh Birahim Ndao

Supervisors : Nora Dempsey and Dominique Givord Nanosciences Department, Institut Néel CNRS-UJF Graduation committee : Véronique Pierron-Bohnes, IPCMS (Strasbourg) Massimo Ghidini, DMSM (Cambridge) Aboubaker-Chedikh Beye, GPSSM (Dakar) Alain Schuhl, Institut Néel (Grenoble)

MEMS (micro-electro-mechanical-systems)

- \Box Collective fabrication with µelectronics technologies (<1mm)
- Several applications : μ-switches, μ-motors, accelerometers...

Optical Switching MEMS Alcatel-Lucent Technologies

Activation in MEMS

- Physical principles used in MEMS
 - Electrostatic
 - > Thermal
 - > Piezoelectric
 - Magnetostrictive
 - Magnetic

MEMS (micro-electro-mechanical-systems)

- \Box Collective fabrication with µelectronics technologies (<1mm)
- **Several applications : μ-switches, μ-motors, accelerometers...**

Optical Switching MEMS Alcatel-Lucent Technologies

Activation in MEMS

- Physical principles used in MEMS
 - Electrostatic
 - > Thermal
 - > Piezoelectric
 - Magnetostrictive
 - Magnetic

High performance permanent magnet materials

Material	μ ₀ Μ _s (Τ)	μ ₀ Η _A (Τ)	(BH) _{max,th} (kJ/m ³)	Т _с (К)	
RE-TM					
Nd ₂ Fe ₁₄ B	1.61	7.6	514	585	Thesis
Sm ₂ Co ₁₇	1.30	6.4	333	1173	A.Walther
SmCo ₅	1.05	40	220	1000	
L1 ₀					
(FePt)	1.43	11.6	407	750	
FePd	1.38	3.3	379	760	
CoPt	1.00	4.6	200	840	

ab)

<u>L1₀ vs RE-TM</u>

- Comparable intrinsic magnetic properties

- $L1_0$ alloys much less susceptible to oxidation

Presentation outline

- Sample preparation
- The FePt System
 - □ Experimental results
 - Analysis
- The FeRh System
 - Experimental results
 - Analysis
- The Hybrid FePt/FeRh system
- Conclusions

Sample preparation

Sample preparation

Triode sputtering

High deposition rate over large areas makes this system compatible with MEMS platforms (large substrates...)

- Base pressure : 2.10⁻⁶ mbar
- Sputtering pressure : 2.10-3 mbar
- Si Substrate ($\Phi = 100$ mm)
- Target : -900V

Deposition rate :

~ 0,5 - Inm/s (2,8µm/h)

The FePt System

- $\gamma(A1)$: disordered phase - cubic symmetry - low magnetic anisotropy - $\gamma_2(L1_0)$: ordered phase - tetragonal symmetry - high magnetic anisotropy

Impact of composition on $L1_0$ ordering

X-Ray analysis

Impact of composition on $L1_0$ ordering

ann. 400°C/30mn Lorentz fit Profil n°1 Profil n°2

The decrease of Pt content causes:

- -gradual decrease of fundamental peaks
- of the disordered A1 phase
- gradual increase of fundamental peaks
- of the ordered $L1_0$ phase

Impact of composition on $L1_0$ ordering

Magnetometry analysis

The increase of Pt content causes:

- gradual disappearance of the hard magnetic behaviour associated with the L1₀ phase
- gradual increase of the soft phase behaviour associated with the A1 phase

Impact of composition on $L1_0$ ordering

Magnetometry analysis

The decrease of the Pt content causes:

- gradual increase of the Curie temperature of both AI and $L1_0$
- gradual decrease (increase) of the contribution of the A1 ($L1_0$) phase after annealing

Impact of composition on T_c

The increase of the Pt content causes a gradual decrease of the Curie temperature in both phases

D. C. Berry et K. Barmak JAP.vol. 102.pp024912(2007)

Adding Cu to the FePt system

X-Ray analysis

Adding Cu to the FePt system

X-Ray analysis

when Cu content increases:

-The shift of the Bragg peaks increases with increasing the value of the last Miller index (ℓ parameter) - Preferential occupation of Cu on the Fe sites

a(CuPt) (fcc) = 3.796a(FePt) (fcc) = 3.816

Adding Cu to the FePt system

Susceptibility behaviour near T_C

when the Cu content increases:

- The Curie temperature and the discontinuity at the transition decreases in the as deposited state
- Crystallographic ordering is favoured
- Crystallographic ordering of FePt films is accelerated (the ordering temperature is reduced) 13

Lattice Parameters and Order Parameter

- Continuity of the results of both systems.

- The addition of Cu in the FePt system allows to decrease the Pt content.

Analysis

is

Model: Presentation

Modeling of magnetization curves in polycrystalline systems

- Assembly of exchange coupled crystallites

Model: Presentation

= 180 = 90 25 30 35 μ₀Η_{app} [T] approximation of reversible rotation of domain magnetization in polycrystalline system $= 180^{\circ}$ 90° 30° 15 = 0.5 = 2.5 = 5 $\diamond - \eta = 10$

approximation of reversible rotation of domain magnetization

 $\alpha_{_{C}}\left(\varphi_{_{C}},\psi_{_{C}}\right)=\arccos\left\{\sin\varphi_{_{Z}}\sin\varphi_{_{C}}\left[\sin\left(\psi_{_{C}}+\psi_{_{Z}}\right)\right]+\cos\varphi_{_{Z}}\cos\varphi_{_{C}}\right\}$

16

45

 $\blacksquare - \eta = 50$

35

30

 $\mu_0 H_{app}$ [T]

15

Model: Presentation

 $\alpha_{_{C}}\left(\varphi_{_{C}},\psi_{_{C}}\right)=\arccos\left\{\sin\varphi_{_{Z}}\sin\varphi_{_{C}}\left[\sin\left(\psi_{_{C}}+\psi_{_{Z}}\right)\right]+\cos\varphi_{_{Z}}\cos\varphi_{_{C}}\right\}$

Model vs Measurement

Modeling of magnetization curves

The η (intergranular coupling) and σ (texture) parameters are fixed by fitting the experimental results in both directions of applied field

¹Kuz'min Phys. Rev. Lett.,94.107204 (2005) ²H.B. Callen and E. Callen, J. Phys. Chem. Solids 27, 1271 (1966)

Model vs Measurement

Determination of the anisotropy field

The micromagnetic model¹ enables one to quantify the reduction parameter (α_M) of the anisotropy field and the effect of the dipolar interactions (N_{eff})

$$\mu_0 H_C = \alpha_M \mu_0 H_A - \mu_0 N_{eff} M_S$$

¹Kronmüller et al. JMMM.Vol.74.pp291-302 (1988)

Model vs Measurement

Hopkinson peak: Modelization of the demagnetized state

- The reversible magnetization process occurs if $|\phi$ - $\theta_{\rm c}|$ < $\pi/2$

- The irreversible magnetization process occurs if $|\phi$ - $\theta_{c}|$ > $\pi/2$

Model vs Measurement

Hopkinson peak: Modelization of the demagnetized state

Origin:

The Hopkinson peak is related to the magnetization process of the $L1_0$ phase and comes from the irreversible rotation of magnetization

Beyond permanent magnets: switchable magnetic materials

- Why go beyond hard magnets?
 The interaction current-field is driven by currents in coils
 - > Joule heating losses
 - Complex design
- Switchable magnetic materials:
 Reversible change of magnetic properties
 (M_s, H_A) by an external parameter.

Modification of intrinsic properties. e.g. H_A Thermo-switchable Modification of magnetic order e.g. Ferro ⇔ Para

or Antiferro 🗇 Ferro

E-field switchable

- The FeRh System

Phase Diagram & Crystal Structures

- γ : disordered phase – fcc structure (A1 type) - paramagnetic

- α' : ordered phase – CsCl structure (B2 type) - antiferromagnetic/ferromagnetic

Structural and Magnetic properties

Neutron diffraction¹ performed on a bulk sample with 53[at%] of Rh

- at 20°C: presence of magnetic coherent reflection with Q= $\pi/a(111)$ -- M \cong 0 Am² / kg - at 100°C: only the superstructure and fundamental peaks are present -- M \cong 125 Am² / kg

¹F. Bertaut, F. De Bergevin and G. Roult , C. R. Acad. Sci., 256(8):1688, 1963.

14 - H					
		<i>(</i>	_		
	 Eva evine entel vegulte		- Impact of o	composition	on transition
			- Effects of t	hermal treat	ments

Impact of Rh [at%] on AFM \rightarrow FM transition

Impact of Rh [at%] on AFM \rightarrow FM transition

The variation of the width of thermal hysteresis is correlated with the thermal activation
The increase of magnetization at low temperature is correlated with the Fe anti-site atoms

Effect of thermal treatments

The heat treatments performed on the same sample cause:

- shift of the transition temperature
- variation of the width of thermal hysteresis
- variation of the magnetization at low temperature

Effect of thermal treatments

The heat treatment performed on the same sample creates a fluctuation of composition

Effect of thermal treatments

The heat treatment performed on the same sample creates a fluctuation of composition

Analysis

DSC (Differential Scanning Calorimetry) analysis

The DSC allows the characterization of the endothermic and exothermic reactions that occur during the transition

DSC (Differential Scanning Calorimetry) analysis

DSC vs Magnetic Measurements

$$\Delta C_P(T,H) = -\Delta C_M(T,H) = -T\left(\frac{\partial S_M}{\partial T}\right)$$

31

DSC vs Magnetic Measurements

Both thermomagnetic derived effect show good agreement
The observed shift decreases sharply when the applied field is reduced

The substrate is pre-patterned with SiO_2 by lithography (the lateral dimensions are referenced by the width x and the periodicity y of the strips)

Magnetic characterization

Magneto-optic characterization

Magneto-optic characterization

FePt/FeRh

Conclusions

Subtle links between structural and magnetic properties studied in FePt and FeRh

Quantitative analysis of magnetic and magneto-thermal properties carried out

Demonstration of a potential use of FeRh for magnetic screening

Perspectives

Broad range of possible applications of these functional magnetic materials in magnetic micro-systems

FePt particularly suited to bio-medical applications

F. Dumas-Bouchiat + C. Ndao + A. Zaccaria (GIN)

Trapping of Fe-oxide nanoparticles on FePt film structured by Thermo-Magnetic-Patterning

Applications in selection / manipulation of biological species (cells, bacteria etc.)

Acknowledgments

Rostislav Grechishkin (Univ. TVER) El-Kebir Hlil Frédéric Dumas-Bouchiat Laurent Ranno Olivier Geoffroy

> David Barral Didier Dufeu Laurent Del-Rey Eric Eyraud Denis Maillard

Philippe Plaindoux Luc Ortéga

Franck Balestro Vitoria Barthem Richard Heattel Gilbert Reyne