
HAL Id: tel-00598914
https://theses.hal.science/tel-00598914

Submitted on 27 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compilation infrastructure for dataflow programs
Matthieu Wipliez

To cite this version:
Matthieu Wipliez. Compilation infrastructure for dataflow programs. Modeling and Simulation. INSA
de Rennes, 2010. English. �NNT : �. �tel-00598914�

https://theses.hal.science/tel-00598914
https://hal.archives-ouvertes.fr

Thèse

THESE INSA Rennes
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’INSA DE RENNES

Spécialité : Traitement du signal et des images

présentée par

Matthieu Wipliez
ECOLE DOCTORALE : MATISSE
LABORATOIRE : IETR

Infrastructure de
compilation pour des
programmes f ux de

données

Thèse soutenue le 09.12.2010
devant le jury composé de :
François Bodin
Professeur des Universités à l’Université de Rennes 1 / Président
Marco Mattavelli
Professeur des Universités à l’EPFL / Rapporteur
Jean-Philippe Diguet
Chercheur CNRS HDR au LAB-STICC / Rapporteur
Julien Dubois
Maître de conférences à l’Université de Bourgogne / Examinateur
Mickaël Raulet
Docteur à l’INSA de Rennes / Co-encadrant
Olivier Déforges
Professeur des Universités à l’INSA de Rennes / Directeur de thèse

2

Acknowledgments

First, I would like to thank my advisors Pr Olivier Déforges and Dr Mickaël Raulet

for their help, their advice, and their support. Three years is a long time, for

the student and the advisors alike, so thank you for guiding me for all this time.

Mickaël, thank you for our discussions about RVC, RVC-CAL, and dataflow more

generally, including dataflow programming, scheduling of dataflow programs, and

code generation from dataflow programs. You showed me the dataflow way starting

with SynDEx, and I would not have done this work and this thesis if you had not

been there to teach me about the merits of dataflow, and I thank you for that.

I would also like to thank the other members of the jury, Pr Marco Mattavelli, Pr

Jean-Philippe Diguet, Pr François Bodin, and Dr Julien Dubois. You were all there

in early December in spite of the snow that brought France to its knees, disturbing

air traffic and road traffic alike. Thank you Marco and Jean-Philippe for reviewing

the thesis. Thank you François for presiding the jury, and thank you Julien for being

a member of the jury. Marco, you have been a proponent of (then) Cal2C and (now)

Orcc, and I thank you for that.

I extend my thanks to the various people that I have had the pleasure to work

with, Pr Jean-François Nezan for his advice on writing articles, and his patience for

reading them, my “friends in misery”, all the PhD students of the team that have

defended a thesis, or will defend one: Ghislain Roquier, Jonathan Piat, Maxime

Pelcat, Jérôme Gorin, Nicolas Siret, Hervé Yviquel, Khaled Jerbi, and finally to

Aurore Gouin and Jocelyne Tremier for managing administrative tasks seamlessly.

My special thanks go to Damien de Saint Jorre, whom has been a great support by

believing so much in RVC-CAL and in Orcc.

I am grateful to all my friends, and my family for believing in me. Thank you

Dad for all the technical discussions that we had during those three years, and thank

you for your advice more generally. Thank you Mom for bearing with me when I

was talking to you about my work, and still showing support. Thanks to my brother

Bastien and my sister Laurie, with whom I’ve had a lot of fun over the years.

Of course, these acknowledgments would not be complete without thanking Delia,

who still loves me after all these nights when you were on your own because I was

3

4

working (too) late to finish this thesis on time! Thank you for loving me, and even

if you get sleepy when I talk to you about my work for too long, I love you.

I dedicate this thesis to my beloved and regretted grandmother Alfreda.

Contents

Acknowledgments 3

1 Introduction 9

1.1 Context . 9

1.2 Overview . 11

1.3 Contributions . 12

1.4 Outline . 13

2 Background 17

2.1 Reconfigurable Video Coding . 18

2.1.1 Limitations of the Existing Standardization Process 18

2.1.2 Definition of Video Standards with RVC 20

2.2 Dataflow Models of Computation . 21

2.2.1 Overview . 21

2.2.2 Dataflow Process Networks . 22

2.2.3 Synchronous Dataflow . 23

2.2.4 Cyclo-static Dataflow . 24

2.2.5 Quasi-static Dataflow . 24

2.3 RVC-CAL Programming . 25

2.3.1 RVC-CAL Language . 26

2.3.2 Representation of Different MoCs in RVC-CAL 31

2.3.3 Support tools . 36

2.4 Compilation Process . 36

2.4.1 Parsing and Validation . 37

2.4.2 Control Flow Graph (CFG) 38

2.4.3 Data Flow Analysis (DFA) . 40

2.4.4 Generic Optimizations . 42

2.5 Conclusion . 42

5

6 CONTENTS

3 Intermediate Representation 43

3.1 Motivations for the Use of a Custom IR 43

3.1.1 Analysis and Transformation 43

3.1.2 Code Generation . 45

3.2 Related Work . 45

3.2.1 GIMPLE Intermediate Representation 46

3.2.2 Low-Level Virtual Machine (LLVM) 46

3.2.3 XLIM . 48

3.2.4 C Intermediate Language . 48

3.2.5 Conclusion . 49

3.3 Structure of the IR of an actor . 50

3.3.1 Serialization Format . 50

3.3.2 Priorities . 50

3.3.3 Finite State Machine . 51

3.3.4 Actions . 54

3.4 Semantics of the IR . 57

3.4.1 Statements . 57

3.4.2 Expressions and Type System 60

3.5 Conclusion . 61

4 Front-end 63

4.1 Overview . 63

4.2 Syntax Parsing . 64

4.2.1 Parsing with the Xtext Framework 64

4.2.2 Meta-model Inference . 64

4.2.3 Resolution of References . 66

4.3 Expression Evaluation . 67

4.4 Typing the AST . 68

4.4.1 Type Conversion . 68

4.4.2 Type Inference . 69

4.4.3 Type Checking . 70

4.5 Structural Transformations . 71

4.5.1 Tag Association Table . 71

4.5.2 Priority Resolution . 71

4.5.3 Finite State Machine . 72

4.5.4 Actions . 73

4.6 Semantic Transformations . 74

4.6.1 Translation of Statements and Expressions 74

4.6.2 Translation to SSA form . 76

CONTENTS 7

4.7 Conclusion . 77

5 Analysis and Transformation 79

5.1 Overview . 79

5.2 Detection of Unclassifiable Actors . 83

5.3 Abstract Interpretation of Actors . 84

5.3.1 Rules of Abstract Interpretation 85

5.3.2 Example of Abstract Interpretation 86

5.4 Classification of Dynamic Dataflow Actors 87

5.4.1 Classification of a static actor 87

5.4.2 Classification of a cyclo-static actor 88

5.4.3 Classification of a quasi-static actor 88

5.5 Transformation of Classified Actors 90

5.5.1 Transformation to SDF and PSDF 90

5.5.2 Loop Rerolling . 91

5.5.3 Reduction of the Number of Accesses to FIFOs 92

5.6 Conclusion . 93

5.6.1 Comparison to Related Approaches 93

5.6.2 Conclusion . 95

6 Code Generation 97

6.1 Overview . 97

6.2 Printing Code . 100

6.2.1 Approaches to Code Printing 100

6.2.2 The StringTemplate Template Engine 101

6.2.3 Printing Code with Templates 104

6.3 Transformations of the IR . 108

6.3.1 Generic transformations . 108

6.3.2 Language-Specific Transformations 110

6.4 Network Code Generation . 111

6.4.1 Instantiation and Semantic Checking 112

6.4.2 Flattening a Network . 112

6.4.3 Adding Broadcasts . 113

6.5 Conclusion . 115

7 Implementation and Results 117

7.1 Development Tools . 117

7.1.1 Eclipse Platform . 117

7.1.2 Graphiti Editor . 119

8 Contents

7.1.3 Open RVC-CAL Compiler . 121

7.2 Video Coding Applications . 124

7.2.1 Video Coding . 124

7.2.2 Normative Decoders . 125

7.2.3 Proprietary Decoders . 126

7.3 Implementation of a Dynamic Scheduler 127

7.3.1 Ptolemy Scheduler . 128

7.3.2 Threads . 128

7.3.3 SystemC Scheduler . 129

7.3.4 Round-Robin Scheduler . 129

7.4 Performance of Generated Code . 132

7.4.1 Code Generated by the C back-end 132

7.4.2 Results with Other Back-ends and Tools 133

7.4.3 Classification and Transformation of Actors 134

7.5 Conclusion . 134

8 Conclusion 137

8.1 Summary . 137

8.2 Perspectives . 139

A French Annex 141

A.1 Résumé de la thèse . 141

A.1.1 Contexte . 141

A.1.2 Programmes flux de données 144

A.1.3 Contributions . 145

A.2 Poursuite des travaux sur le flux de données 148

A.2.1 Prise en compte de l’architecture 148

A.2.2 Modifications et améliorations de la RI 149

A.2.3 Classification et transformation d’acteurs 150

A.2.4 Amélioration des FIFOs . 151

A.2.5 Amélioration du nouvel ordonnanceur 153

Chapter 1

Introduction

1.1 Context

More than ever, people are watching video content. The good old days where the

only way one could watch video at home was black and white low-resolution analog

television are long gone. The progress made in the last fifteen years or so has been

no less than formidable, for this period has simply revolutionized the way we watch

video. This started with the Digital Versatile Disc (DVD), before DivX and XviD

codecs became available. Later, video broadcasting websites have again radically

changed how people watch video on a daily basis. More recently, the introduction

of smartphones has made video watching shift to a portable and more personal

watching experience.

This increase in video broadcasting has been made possible by a large increase

in bandwidth available for consumers. Asymmetric Digital Subscriber Line (ADSL)

has brought broadband Internet access to hundreds of millions of people. Contrary

to ADSL and other types of DSLs that are based on existing copper telephone lines,

the next generation of landline technology will use optical fiber to offer ultra-fast

broadband Internet access, with rates in the order of hundreds of megabits per

second.

In the meantime, wireless technology has increasingly improved from the initial

data rate offered by the second generation of mobile telephony (2G) based on GSM

(Global System for Mobile Communications, originally from Groupe Spécial Mobile)

to later generations (2.5G, 2.75G) that used General packet radio service (GPRS)

and Enhanced Data rates for GSM Evolution (EDGE) to offer rates between 80

and 100 kilobits per second (kbps) and around 180 kbps respectively. The third

generation (3G) is now the de facto standard for the latest mobile phones, and uses

the Universal Mobile Telecommunications System (UMTS) to support data rates

between a few hundred kbps and a few megabits per second (Mbps). While still

9

10 Introduction

being technically 3G (more exactly 3.9G), the Long Term Evolution (LTE) will

enable data rates of up to one hundred Mbps.

With both common landline and wireless systems allowing a bandwidth of several

Mbps, and an explosion of video broadcasting, consumed bandwidth has grown

exponentially. As an example, it has been measured that in 2007 YouTube has

consumed as much bandwidth as the whole Internet seven years before. As a matter

of fact, consumed bandwidth has grown even faster than the number of transistors

per die as predicted by Moore’s law. In other words, the quantity of information

transmitted is growing faster than the capacity of routers in the network to treat the

information. This, and the demand for higher resolution necessary for home cinema,

has prompted the Moving Picture Experts Group (MPEG) and the Video Coding

Experts Group (VCEG) of the International Telecommunication Union (ITU-T) to

announce the development of a new coding standard named High Efficiency Video

Coding (HEVC).

Since the first widespread MPEG standard, MPEG-2/H.262 (H.262 being the

name in ITU-T nomenclature), used on DVDs and for digital television, following

standards have attempted to reduce the number of bits necessary to encode video.

MPEG-4 Part 2/H.263 did not provide a significant compression advantage over

MPEG-2, but was a success on Personal Computers with the release of DivX and

XviD codecs, which are used to encode the majority of videos available on peer-to-

peer networks. MPEG-4 Part 10/H.264, or Advanced Video Coding (AVC), was a

major success in that it provides a 50% bitrate reduction over MPEG-2 at the same

quality. HEVC intends to further reduces bitrate by 50% compared to H.264 at the

same quality.

Better video compression is achieved by using more sophisticated algorithms,

which means that video decoding demands more computational power. This was

not a problem until recently, since each new generation of processors was faster than

the previous one. Most of the time, “faster” simply meant “higher clock rate”, and

it was at the time a common belief that processor speed will steadily increase for

evermore. This belief is actually derived from a famous observation called Moore’s

law made by Intel co-founder Gordon E. Moore that the number of transistors that

can be placed inexpensively on an integrated circuit doubles approximately every two

years. Nowhere does this law say that speed or performance must increase, although

it is a consequence of the miniaturization of transistors in that more transistors allow

more complex designs, and smaller transistors allow a higher frequency per watt.

Clock rates stopped increasing when engineers could no longer design faster chips

because power dissipation became an issue, something known as the power wall.

In order to keep providing more computing power (in number of instructions

Overview 11

per second), the semiconductor industry switched to multi-core designs for desktop

computers first, with now most processors, desktop or otherwise, being multi-core.

Symmetrical multiprocessing (SMP) had been around for decades, so the idea of

having several processing units in parallel is hardly new. The two main differences

between multi-core and SMP, though, is that cores communicate faster than separate

processors do, and cores share cache. The latter becomes increasingly important as

we advance towards the memory wall, where memory latency is lagging behind

processor speed [WM95].

However, writing efficient programs for multi-core processors is not easy, and will

be even less so for many-core processors and processors with heterogeneous comput-

ing units (cores, one GPU, various accelerators). Heavily-threaded applications like

Database Management Systems (DBMS) and web servers were “multi-core ready”

since data centers and server machines were already using multi-processors. For all

other computationally-intensive applications, there is not really a single program-

ming model. Between threaded applications, message passing (MPI [GLS99]), multi-

core dedicated API (MCAPI), fine-grain automatic parallelization (i.e. paralleliza-

tion at the instruction level), compiler directives (OpenMP [DM02], Cilk [BJK+95]),

and others, there is plethora of possibilities. Most of these techniques do not even

apply to other types of chips like GPUs or programmable logic (FPGAs and ASICs).

1.2 Overview

This thesis presents a compilation infrastructure for dataflow programs. The concept

of dataflow program was first described by Dennis in 1974 [Den74] as a directed graph

where edges represent the flow of data between vertices, and vertices do not share

state, so it is possible to execute concurrently subsets of a dataflow graph. There are

many languages that can be called dataflow languages, such as Lustre [HCRP02],

Signal [BGJ91], VHDL [IEE93], as well as languages used by tools like Simulink

or LabVIEW.

The dataflow programs we consider in this thesis are dynamic dataflow programs

that behave according to the Dataflow Process Networks model [LP95]. The ver-

tices in a DPN are called actors and are written with a Domain-Specific Language

(DSL) called RVC-CAL. RVC-CAL is a language that was standardized by the Re-

configurable Video Coding (RVC) standard, and with which video coding tools are

defined. The language is a restricted subset of the CAL Actor Language [EJ03]

dedicated to video coding.

The research problems associated with dynamic dataflow programs in general

and RVC-CAL in particular include the following:

12 Introduction

• generate and execute efficient sequential software code from an inherently par-

allel description,

• generate and execute efficient parallel software code,

• generate software that can be dynamically (on-the-fly) reconfigured,

• generate efficient parallel hardware code that can be dynamically reconfigured.

Each of these problems is complex, for instance generating sequential software

code from a dataflow program and executing it in an efficient manner requires anal-

ysis, transformation, optimization, code generation, runtime scheduling.

1.3 Contributions

We show in this thesis how dataflow programs can be compiled to an Intermedi-

ate Representation (IR) so as to facilitate the analysis, transformation, and code

generation for these programs. The thesis makes the following contributions:

• an Intermediate Representation (IR) of dynamic dataflow actors that can be

used for analysis, transformation, and code generation to software and hard-

ware target languages,

• a method to analyze the behavior of a dynamic dataflow actor and check it

against well-known Models of Computation,

• a method to transform actors in a way that reduces the amount of scheduling

that needs to be performed at runtime, and makes merging actors easier,

• a simple template-based system to generate software and hardware code from

the IR,

• a simple, scalable, and efficient scheduling method for dynamic dataflow pro-

grams.

In addition to the research problems we listed, there are practical implementation

problems to consider to allow people to use the RVC standard as well as to describe

their applications with dynamic dataflow. Indeed, we believe it is crucial to build

“tools of the trade” for developers of dataflow applications, for the simple reason

that the more applications developed, the more applications we can experiment on,

and writing an application in a Domain-Specific Language without a domain-specific

editor is painful and tedious.

As a result, we present in this thesis the following contributions we made,

implementation-wise:

Outline 13

• a reconfigurable graphical editor called Graphiti for directed multi-graphs that

can be used to describe, among others, dataflow graphs,

• a complete tool set for RVC-CAL dataflow programs called the Open RVC-

CAL Compiler (Orcc) that includes an RVC-CAL textual editor, a compilation

infrastructure, a simulator and a debugger.

1.4 Outline

Chapter 2 presents the context in which the work presented in this thesis takes

place, as well as many concepts that form the basis for our work. The chapter starts

by a section dedicated to the Reconfigurable Video Coding (RVC) that details the

motivations behind it and the key aspects of the standard. We then present dataflow

programming and the different properties of dataflow models that we deal with

in this thesis, including the question of termination, the existence of a bounded

schedule, and scheduling algorithms. The RVC-CAL language is explained in the

following section. The chapter ends with a section that gives an overview of the

different steps in the compilation process.

The subsequent chapters detail our compilation infrastructure for RVC-CAL

dataflow programs, shown on Fig. 1.1, which is in essence a three-stage compiler for

dataflow programs. The aim of this infrastructure is three-fold:

1. to allow the seamless compilation of dataflow programs into any language,

including a combination of hardware/software languages and the possibility of

generating multi-core-ready code.

2. to provide developers of RVC applications with a real Integrated Development

Environment (IDE), which is necessary for the success of RVC.

3. to facilitate research about dataflow by providing a stable architecture with a

clean API and integrated tools.

The originality of our approach is that we expose a simple, high-level Interme-

diate Representation (IR) that is specific to dataflow models, and is used for analysis,

transformation, and code generation. Chapter 3 begins by examining related work

and motivations for having an IR specific to dataflow programs. We then detail the

IR, how it is structured, and the semantics of the different instructions it contains.

The first stage of the compiler, called front-end, is responsible for creating

an IR of RVC-CAL actors, the resulting actors being called IR actors. Chapter 4

explains how the front-end creates the IR of an RVC-CAL actor through a series

of transformations including parsing, expression evaluation, typing, type checking,

14 Introduction

 front-end middle-end

RVC-CAL

actors

IR

actors
XDF

networks

back-end

IR actors

XDF networks

source code

Figure 1.1: Compilation Infrastructure.

translation of structure and translation of statements and expressions. Although we

only present the front-end we have written for RVC-CAL, many of the principles

presented could be applied to other languages used in dataflow programming.

The middle-end is the component that analyzes and transforms the IR of actors

and networks to produce optimized IR actors and networks, as explained in chapter

5. We call “classification” the process of analyzing an actor to determine if it can

be scheduled at compile-time, completely or partly, the amount of data it produces

and consumes. Our classification method works on the IR of actors, and could be

used in theory for other dataflow languages as long as they are converted to the IR.

The result of classification can be an input to actor transformations, and the chapter

presents a transformation that works at the actor level to represent a low-level actor

at a higher-level of description.

The last stage of the compiler is code generation, in which the back-end for a given

language (C, LLVM, VHDL, etc.) generates code from a hierarchical network and

a set of IR actors. Chapter 6 examines the issues associated with code generation

before listing the different steps involved. The first step is the transformations

undergone by the IR of actors, either generic transformations such as optimizations,

or language-specific transformations necessary to generate code in a given language

from the IR. The second step is the transformations of the network, which consist

of closing the network by solving parameters, flattening a hierarchical network into

a flat one, and adding broadcasts where necessary. The last step of code generation

is printing code from actors and networks: we present a method that focuses on

readability (both of the code generator and of the generated code), maintenance, and

fast experimentation of code generators for new languages, without compromising

speed.

Outline 15

Chapter 7 begins with a presentation of support tools for RVC-CAL dataflow

programs, including a graphical editor called Graphiti and an implementation of the

infrastructure described in this document called Open RVC-CAL Compiler (Orcc).

The chapter then describes the video coding applications written with these tools.

Finally, we show results obtained with these applications concerning classification,

transformation, and dynamic scheduling on uniprocessors, multi-core processors,

and programmable hardware.

Finally, Chapter 8 concludes this thesis. The conclusion sums up the work pre-

sented in the document, identifies current limitations in our approach, and lists

perspectives for future work.

16 Introduction

Chapter 2

Background

The work presented in this thesis, a compilation infrastructure for dataflow pro-

grams, is mainly targeted at — although not restricted to — dataflow programs writ-

ten using the RVC-CAL language within the Reconfigurable Video Coding (RVC)

framework. RVC is the first standard to define a Domain-Specific Language (DSL)

with dataflow semantics and use it to describe video coding tools. This makes RVC

the perfect source of free, open-source, real-world dataflow programs. Consequently,

the results presented in Chapter 7 were obtained on normative RVC video decoders

and lower-level and higher-level non-normative video decoders written with RVC-

CAL. Additionally, many examples throughout this document reference actors that

are either defined by the RVC standard or are custom RVC-CAL implementations

of video coding tools.

This chapter aims to give the reader the necessary knowledge on the rationale

behind, and theoretical and practical aspects of, dataflow programming in general

and RVC dataflow programs in particular. This chapter naturally begins by a pre-

sentation of the Reconfigurable Video Coding standard in section 2.1, why it was

created and the advantages it has over existing approaches. We then define dataflow

programming in section 2.2 with the different models that define the behavior of

dataflow programs, and their associated properties such as existence of a bounded

schedule and compile-time scheduling. Section 2.3 provides an insight about the

RVC-CAL language, its model of computation, and support tools for the language.

This section also presents examples of the main constructs of RVC-CAL that are

useful to understand the examples shown later in this document. The last section of

this chapter gives an overview of the compilation steps that we use in our compilation

infrastructure.

17

18 Background

2.1 Reconfigurable Video Coding

2.1.1 Limitations of the Existing Standardization Process

Although video coding is a relatively new field when compared to the history of

computer science, it has been evolving quickly in the last two decades. Figure

2.1 shows the timeline of the publication of the main video standards. The first

video standard dates back to 1984 with the publication of H.120, which was not

widely used but formed a basis for its direct successors H.261 (1990) and MPEG-1

(1993). MPEG-2 (also called H.262), published in 1996, and H.264 (also known

as Advanced Video Coding, or AVC, and MPEG-4 part 10), ratified in 2003, are

generally considered to be the most successful standards in terms of impact and

number of users. The last few years have also seen the publication of a few royalty-

free standards, such as Xiph’s Theora and Google’s VP8 codecs.

1980 1985 1990 1995 2000 2005 2010 2015

0

2

4

6

8

10

12

14

H.120

H.261

MPEG-1

MPEG-2

H.263

MPEG-4 part 2

H.264

Theora

VC-1

SVC

MVC

VP8

High Efficiency Video Coding

Video standards

Year of publication

N
u

m
b

e
r

o
f
s
ta

n
d

a
rd

s
 p

u
b

li
s
h

e
d

Figure 2.1: Timeline of the publication of video standards.

The first thing that we can notice is the number of different standards. Although

some standards are supersets of others (MPEG-1 is a superset of H.261, and MPEG-

4 part 2 is compatible with H.263 to some extent), there is at least a dozen different

video standards that can be used to encode and decode video1. This means that

1SVC (Scalable Video Coding and MVC (Multiview Video Coding) are not standards per se,

they are profiles of AVC.

Reconfigurable Video Coding 19

embedded systems such as set-top boxes, video players, and handheld devices cannot

provide low-consumption hardware acceleration for all these standards because it

would take too much time and space on the component to implement them. The

situation can only worsen for two reasons: (1) once published a standard is never

“deleted”, and (2) the number of standards increases in a quasi-linear manner.

Generally speaking, a video standard defines many algorithms, or coding tech-

niques. These techniques have different goals and requirements, e.g. some techniques

are more computationally expensive, others are oriented towards professional usage,

etc. Since a standard is implemented on many different devices with different use-

cases, it is often not interesting nor possible to implement all techniques in a given

video decoder. Because of this, standards define a set of profiles that are a subset

of all the algorithms contained in the standard. Figure 2.2 represents the profiles

available in MPEG-2. Note that in this standard a profile is an exact subset of a

higher profile, e.g. the Spatial profile is the High profile without 4:2:2 chrominance

support and higher DC precision, but this is not necessarily the case in all stan-

dards. Profiles allow a certain degree of freedom in the implementation of a video

decoder, but this liberty is somewhat limited by the fact that profiles are fixed in

the standard.

bi-predictive frames

scalable extension

4:2:2 chrominance

Simple
4:2:0 chrominance

High

Main

SNR

spatial scalability

Spatial

higher DC precision

Figure 2.2: Profiles of the MPEG-2 standard.

Another concern with the current video standards is that they have all been

defined in a standalone way. As a result, there is often redundancy in textual

specifications and implementations of different standards. For instance, every video

coding scheme uses inverse Discrete Cosine Transform (DCT) or a variation of it

(H.264 uses an integer transform that has an equivalent effect). As a matter of fact,

since most standards use similar coding algorithms, we can conjecture that algo-

rithms follow a Pareto distribution, in other words that 20% of the video standards

use 80% of the coding algorithms. This is particularly true when looking at the

H.264 standard, which is, with its scalable (SVC) and multiview (MVC) profiles,

20 Background

the most complex standard ever published.

Finally, since MPEG-2, organizations have been providing reference software

accompanying the textual reference of standards. The problem of existing reference

software is that they are monolithic descriptions of the standards implemented in

C/C++ most of the time. This has the unfortunate effect that it is almost impossible

to derive a hardware implementation from these.

2.1.2 Definition of Video Standards with RVC

The Reconfigurable Video Coding (RVC) [ISO09, MAR10] standard aims to ad-

dress all the issues listed above. First of all, RVC defines a set of standard coding

techniques called Functional Units (FUs). This removes the redundancy between

standards by representing an algorithm that is common to several standards as a

single FU. FUs form the basis of existing and future video standards, and are stan-

dardized as the Video Tool Library (VTL). A FU is described with a portable,

platform-independent language called RVC-CAL, defined in section 2.3.

Figure 2.3: Block diagram of the motion compensation of an MPEG-4 part 2 de-

coder.

Contrary to existing standards that have historically described the video decod-

ing process as an informative block diagram, RVC requires the decoding process to

be described as a block diagram, also known as network or configuration, in which

blocks are the aforementioned FUs. To this end, RVC defines a XML-based format

called FU Network Language (FNL) that is used for the description of networks.

FNL is another name for the XML Dataflow Format (XDF) that was historically

the original name; we use both terms interchangeably in this document. A FNL

network may declare parameters and variables, has interfaces called ports, where a

port is either an input port or an output port, and contains a directed graph whose

Dataflow Models of Computation 21

vertices may be instances of FUs from the VTL or ports. At the time of this writing,

RVC has defined the FUs and FNL networks for MPEG-4 part 2 and MPEG-4 part

10 Constrained Baseline Profile.

Figure 2.3 shows an example of the FNL network that represents motion compen-

sation in the normative RVC description of an MPEG-4 part 2 decoder. A triangle

represents either an input port (MV, BTYPE, TEX) or an output port (VID).

Ports allow block diagrams to be composed in a hierarchical way. The rectangles

are instances, for example “buffer” refers to Mgnt Framebuf, a FU that manages a

buffer of frames, and “interpolation” refers to Algo Interpolation halfpel, which

performs half-pixel interpolation. Edges carry data between a source port of the

diagram or of an instance to a target port of the diagram or of another instance.

Describing a video decoder as a network of FUs rather than a monolithic C or

C++ program has several advantages. First of all, it is no longer necessary to define

profiles, rather a decoder may use any arbitrary meaningful combination of FUs.

Additionally, this allows a video decoder to be reconfigured at runtime by changing

the structure of the network that defines the decoding process. This is especially

interesting for hardware and memory-constrained devices. Finally, this makes RVC

more “hardware-friendly” because dataflow is a natural way of describing hardware

architectures.

2.2 Dataflow Models of Computation

2.2.1 Overview

A dataflow Model of Computation (MoC) defines the behavior of a program de-

scribed as a dataflow graph. A dataflow graph is a directed graph whose vertices are

actors and edges are unidirectional FIFO channels with unbounded capacity, con-

nected between ports of actors. The networks of FUs described by the RVC standard

are dataflow graphs. Dataflow graphs respect the semantics of Dataflow Process Net-

works (DPNs) [LP95], which are related to Kahn Process Networks (KPNs) [Kah74]

in the following ways:

• Those models contain blocks (processes in a KPN, actors in a DPN) that com-

municate with each other through unidirectional, unlimited FIFO channels.

• Writing to a FIFO is non-blocking, i.e. a write returns immediately.

• Programs that respect one model or the other must be scheduled dynamically

in the general case [LP95,Par95,HSH+09].

22 Background

The main difference between the two models is that DPNs adds non-determinism

to the KPN model, without requiring the actor to be non-determinate, by allowing

actors to test an input port for the absence or presence of data [LP95]. Indeed, in a

KPN process, reading from a FIFO is blocking : if a process attempts to read data

from a FIFO and no data is available, it must wait. Conversely, a DPN actor will only

read data from a FIFO if enough data is available, and a read returns immediately.

As a consequence, an actor need not be suspended when it cannot read, which in

turn means that scheduling a DPN does not require context-switching nor concurrent

processes. We show an example of a non-determinate merge that can be described

as a DPN actor written in RVC-CAL in section 2.3.2.

SDF

CSDF

PSDF

DPN

expressiveness analyzability

-

+
-

+

Figure 2.4: Dataflow Models of Computation.

This section presents a taxonomy of Models of Computation (MoCs) (Fig. 2.4)

that can model the different types of behavior that a DPN can exhibit. Figure

2.4 reflects the fact that MoCs are progressively restricted from the most general

DPN model towards the most restricted Synchronous Dataflow (SDF) model [LM87]

with respect to expressiveness, but at the same time they become more amenable to

analysis. The literature defines many different MoCs, and we voluntarily present a

small subset of MoCs that is sufficient to model the different types of behavior that

can be modeled with RVC-CAL as shown in section 2.3. We first study the rules of

DPN, and then present the models that can be used to model static, cyclo-static,

quasi-static, and dynamic actors.

2.2.2 Dataflow Process Networks

We define here the formal notations for Dataflow Process Networks (DPNs)2. Each

FIFO channel in a DPN carries a sequence of tokens X = [x1, x2, ...], where each

xi is called a token. The sequence of unconsumed (or available) tokens on the pth

input port is Xp. An empty FIFO corresponds to the empty sequence, noted ⊥. If

2The notations used below are based on the notations that Lee uses in [LP95].

Dataflow Models of Computation 23

a sequence X precedes a sequence Y , for instance X = [x1, x2] and Y = [x1, x2, x3],

we can write X ⊑ Y .

The set of all possible sequences is noted S, and Sp is the set of p-tuples of

sequences, in other words [X1, X2, ..., Xp] ∈ Sp. Examples of elements of S2 are

s1 = [[x1, x2, x3],⊥], s2 = [[x1], [x2]]. The length of a sequence is given by |X|,

similarly the length of an element s ∈ Sp is in turn noted as |s| = [|X1|, |X2|, ..., |Xp|].

For instance, |s1| = [3, 0] and |s2| = [1, 1].

Executing a DPN boils down to executing repeatedly the actors in the graph,

possibly ad infinitum. An actor executes (or fires) when at least one of its firing

rules is satisfied. Each firing consumes and produces tokens. An actor can have N

firing rules:

R = [R1,R2, ...,RN] (2.1)

A firing rule Ri is a finite sequence of patterns, one for each of the p input ports of

the actor:

Ri = [Pi,1, Pi,2, ..., Pi,p] ∈ Sp (2.2)

A pattern Pi,j defines an acceptable sequence of tokens: It is satisfied iff Pi,j ⊑ Xj,

the sequence of unconsumed (or available) tokens on the pth input port. If Pi,j = ⊥,

the pattern is satisfied for any sequence, which is different from Pi,j = [∗] that

defines a pattern satisfied for any sequence containing at least one token. When an

actor fires it applies a firing function f that consumes sequences of tokens on p input

ports and produces sequences of tokens on q output ports, and is defined as:

f : Sp → Sq (2.3)

2.2.3 Synchronous Dataflow

Synchronous Dataflow (SDF) [LM87] is the least expressive DPN model, but it

is also the model that can be analyzed more easily. Schedulability and memory

consumption of SDF graphs can be determined at compile-time, and algorithms

exist that can map and schedule SDF graphs onto multi-processors in linear time

with respect to the number of vertices and processors [PPW+09]. Any two firing

rules Ra and Rb of an SDF actor must consume the same amount of tokens:

|Ra| = |Rb| (2.4)

All firings must produce the same amount of tokens on the output ports:

∀sa ∈ Sp, ∀sb ∈ Sp, |f(sa)| = |f(sb)| (2.5)

This definition is actually included in Lee’s denotational semantics for SDF [LP95],

which states that SDF actors have a single firing rule, whose patterns are all of the

24 Background

form [∗, ∗, ..., ∗], although our definition explicitly allows SDF actors to have several

firing rules as long as they have the same production/consumption rate. In practice,

this makes it easier to describe SDF actors that have data-dependent computations.

2.2.4 Cyclo-static Dataflow

Cyclo-static Dataflow (CSDF) [BELP96] extends SDF with the notion of state while

retaining the same compile-time properties concerning scheduling and memory con-

sumption. State can be represented as an additional argument to the firing rules

and firing function, in other words it is modeled as a self-loop. The position of the

state argument (if any) is the first argument of a firing rule, i.e. it comes before

patterns. The equations defined in the previous section for SDF can be naturally

extended to express the same restrictions (fixed production/consumption rates) for

each possible state of the actor. Like SDF, CSDF graphs can be scheduled at

compile-time with bounded memory.

2.2.5 Quasi-static Dataflow

Synchronous and cyclo-static dataflow allow signal processing algorithms to be

modeled as graphs with fixed production/consumption rates. On the other

hand, so-called “quasi-static” graphs can be used to describe data-dependent to-

ken production and consumption. Quasi-static dataflow differs from dynamic

dataflow in that there are techniques that statically schedule as many opera-

tions as possible so that only data-dependent operations are scheduled at run-

time [BL93,BBM01,BLL+08,CKL+05].

Boolean-controlled Dataflow (BDF) [BL93] extends SDF with the ability to

model if-then-else constructs using Switch Select actors. BDF has an expressive

power equivalent to a Turing machine, yet it is limited by the fact that the input port

of Switch and the output port of Select have a fixed token rate of 1. An alternative

to model quasi-static dataflow is the Parameterized Dataflow (PSDF) [BBM01]. A

PSDF graph has ports, parameters, and contains three subgraphs:

• a body graph Φb, which is basically an SDF graph where the number of tokens

produced and consumed by actors can be functions of runtime parameters,

• a subinit graph Φs, which can read from ports and change parameters as long

as they do not affect production/consumption rates on the ports of the body,

• an init graph Φi, which can change parameters without the restriction of the

subinit

RVC-CAL Programming 25

Figure 2.5 presents a hierarchical PSDF graph that will execute A, B, or C

depending on the token on the C port. When the outside PSDF graph fires, subinit

Φs is fired first, which fires the S vertex. After that, the internal PSDF graph is

executed as follows. Its init Φi is executed and sets the parameters P,Q,R, S, T that

sets production/consumption rates of the A, B, and C vertices and the I1, I2, and

O ports. Finally the innermost body Φb is executed and fires A, B, or C depending

on the parameters set by Φi.

 Φ
i
: graph.init

 Φ
b
: graph.body

A

B

 Φ
s
: graph.subinitC

I1

I2 C

I1

I2

SC

OO2

2

4
4

2

2

2

2

S
P

P

R

Q
S

I1

S
I2

S
O

S

T

U

Figure 2.5: Parameterized Dataflow.

Algorithm 1 shows the pseudo-code that is equivalent to the behavior of the

graph shown on Fig. 2.5. This example shows what is in our opinion the main

limitation of the PSDF model, namely its complexity. The model is very expressive

and is interesting as an unified intermediate representation of graphs (being able to

represent SDF, CSDF, BDF, and conditionals or loops of graphs more generally).

However, we believe that designing an application using PSDF graphs is tedious

because of this very expressiveness.

2.3 RVC-CAL Programming

This section presents the RVC-CAL language and covers the syntax, semantics, and

the different MoCs that can be represented with the language. Additionally, we

list existing support tools for the simulation and compilation of files written in this

language.

26 Background

Algorithm 1: Pseudo-code equivalent to the PSDF graph of Fig. 2.5.

let c be the result of Φs(C);

if c = 1 then
read 2 tokens on I1;

fire A;

write 1 token to O;

else if c = 2 then
read 1 token on I1 and 1 token on I2;

fire B;

write 2 tokens to O;

else if c = 3 then
read 4 tokens on I2;

fire C;

write 2 tokens to O;

2.3.1 RVC-CAL Language

RVC-CAL is a Domain-Specific Language (DSL) that has been standardized by RVC

as a restricted version of CAL (Cal Actor Language). CAL was invented by Eker

and Janneck and is described in their technical report [EJ03].

Actor Structure

An RVC-CAL actor is an entity that is conceptually separated into an header and a

body. The header describes the name, parameters, and port signature of the actor

(Fig. 2.6). For instance, the header of the actor shown on Fig. 2.6 defines an actor

called GzipParser. This actor takes two parameters, one boolean and one integer,

whose values are specified at runtime, when the actor is instantiated, i.e. when it is

initialized by the network that references it. The port signature of GzipParser is

an input port I and two output ports HDATA and BDATA.

actor GzipParser(bool checkHeaderCRC , int acceptedMethods)

int I ==> int HDATA , int BDATA:

// body

end

Figure 2.6: Header of an RVC-CAL Actor.

The body of the actor may be empty, or may contain state variables declarations,

RVC-CAL Programming 27

functions, procedures, actions, priorities, and at most one Finite State Machine.

Type System

RVC-CAL, like hardware description languages, has integers with an arbitrary bit

width. Integers can be signed (declared with the int keyword) or unsigned (declared

with uint keyword). The bit width may be omitted, in which case the type has

a default bit width, or it can be specified by an arbitrary expression. The RVC

standard does not specify the default bit width, nor does it restrict the expression

that defines the bit width. We proposed in [RWJ09] that the bit width should

evaluate to a compile-time constant, and as such it should not depend on parameters.

The reason behind this is that the values of parameters are specified at runtime,

which is hardly compatible with static typing.

The other types supported by RVC-CAL are booleans (bool), floating-point real

numbers (float), strings (String) and lists (List). The list type behaves more like

an array type, in other words it has a fixed type and a fixed size. Floating-point

and string types are not used at the moment by FUs in the VTL.

Expressions

RVC-CAL has side-effect free expressions, i.e. an expression cannot modify vari-

ables or write to memory, as opposed to imperative languages such as C where an

expression can increment a pointer or call a procedure that changes a state variable.

The language of expressions includes references to variables (possibly with indexes

when referring to a list), binary and unary operations, as well as calls to side-effect

free functions (see below section 2.3.1). Expressions also borrow constructions from

functional languages, like if/then/else conditional expressions, and list generators.

A list generator is similar to the map function found in many functional program-

ming languages, and is a kind of inline for loop that creates a list whose members

are described by an expression. RVC-CAL currently does not define an operator

similar to the reduce or fold function, although it could be useful to add it to the

language. Figure 2.7 shows an example of an RVC-CAL expression that describes a

list whose each element is the sum of x[i] and o[i] right-shifted by 0 or 3 depending

on the value of the ROW parameter, for each value of i between 0 and 7 inclusive.

[rshift(x[i] + o[i], if ROW then 0 else 3 end) :

for int i in 0 .. 7]

Figure 2.7: Example of an RVC-CAL expression.

28 Background

State Variables

State variables can be used to define constants and to store the state of the actor

they are contained in. Figure 2.8 shows the three different ways of declaring a

state variable. The first variable called MAGIC NUMBER is a 16-bit unsigned integer

constant whose value is the number that identifies a GZIP stream [Deu96]. The

bits variable is a 16-bit unsigned integer variable without an initial value. The

num bits variable is a 4-bit unsigned integer that is initialized to zero (note the

difference between the = used to initialize a constant and the := used to initialize a

variable). The initial value of a variable is an expression.

uint(size =16) MAGIC_NUMBER = 0x1F8B;

// the bits of the byte read

uint(size =16) bits;

// number of bits remaining in value

uint(size =4) num_bits := 0;

Figure 2.8: Declaration of State Variables.

Functions

Like expressions, functions declared in RVC-CAL are side-effect free. As shown on

Fig. 2.9, a function may declare parameters (such as n in need bits) and local

variables, like eof . The body of a function is an expression whose type must match

the specified type of the function.

function need_bits(int n) --> bool

var

bool eof = get_eof_flag () :

if eof then false else num_bits >= n end

end

Figure 2.9: Declaration of a Function.

Procedures

RVC-CAL procedures are like procedures in most imperative languages. Procedures

can have parameters, local variables, and contain a sequence of imperative state-

RVC-CAL Programming 29

ments that have side-effects. RVC-CAL defines five kinds of statements:

1. assignment of an expression to a local variable or a state variable, possibly

with indexes when the target is a list.

2. call to a procedure or a function; the result of a function call can be assigned

to a local variable or a state variable.

3. execution of statements a finite number of times with a foreach loop that

resembles the generator expression, except its body is a sequence of statements:

it defines an index variable and executes the statements it contains for each

value of the index within defined bounds.

4. conditional execution of statements with an if/then/else construct.

5. execution of statements an unknown number of times with a while loop.

Actions

The only entry points of an actor are its actions; functions and procedures can only

be called by an action. An action may read tokens from input ports, compute data,

and write tokens to output ports. The patterns of tokens read and written by a

single action are called input pattern and output pattern respectively. Apart from

these specific features, the body of an action is like a procedure in most imperative

programming languages, with local variables and imperative statements. Examples

of actions are given below in section 2.3.2.

An action may be identified by a tag, which is a list of identifiers separated by

colons, where ta denotes the tag of action a. |ta| is the length of ta, with the empty

tag ǫ having a null length: |ǫ| = 0. The set of non-empty tags of an actor is denoted

T . There is a prefix relation, noted ⊑, between tags: t ⊑ t′ means that t is a prefix

of t′. For instance with tags a and a.x, we have a ⊑ a.x and a ⊑ a. A set of actions

that start with the same tag as an action a is described as follows:

t̂a = {ax ∈ A| ta ⊑ tax} (2.6)

An action may have firing conditions, called guards, where the action firing

depends on the values of input tokens or the current state. Guards are included in

scheduling information that define the criteria for action to fire. The contents of an

action, that are not scheduling information, are called its body, and define what the

action does. This is shown on Fig. 2.10 where the scheduling information appears

in light-gray, and the body is gray. The difference is not so clear, for instance the

expressions in the output pattern are part of the body, but the output pattern itself

is scheduling information as it holds the number of tokens produced by the action.

30 Background

read . immediate : action RUN :[r], VALUE :[v], LAST :[l] ==> OUT :[v]
guard
 r = 0,
 count != BLOCK_SIZE
do
 last := l;
 count := count + 1;
end

Scheduling information

Body

Figure 2.10: Scheduling information and body of an action.

When an actor fires, an action has to be selected based on the number and values

of tokens available and whether its guards are true. Action selection may be further

constrained using a Finite State Machine (FSM), to select actions according to the

current state, and priority inequalities, to impose a partial order among action tags.

Section 2.3.2 gives complete examples including FSM and priorities.

Finite State Machine (FSM)

An FSM is defined by the triple (S, s0, δ) where S is the set of states, s0 ∈ S is the

initial state, and δ is the state-transition function: δ : S×T → S. Note that a state

transition allows a set of actions obtained with t̂ from equation 2.6 to be fireable.

Figure 2.11 presents an example of a simple actor that downsamples its input stream

by two.

actor Downsample () bool R ==> bool R2 :

a0: action R:[r] ==> end

a1: action R:[r] ==> R2:[r] end

schedule fsm s0:

s0 (a0) --> s1;

s1 (a1) --> s0;

end

end

Figure 2.11: A simple RVC-CAL actor with an FSM.

RVC-CAL Programming 31

Priorities

Priorities establish a partial order between action tags. They have the form t1 >

t2 > ... > tn. These inequalities induce a binary relation on actions as follows:

a1 > a2 ⇔ ∃ t1, t2 : t1 > t2 ∧ a1 ∈ t̂1 ∧ a2 ∈ t̂2

∨ ∃ a3 : a1 > a3 ∧ a3 > a2
(2.7)

Priorities define the order in which actions are tested for schedulability. In the

example shown on Fig. 2.12, the Clip actor first tests if read signed action can be

fired, and if not, it tests if do clip can be fired. This renders the actor determinate:

in the case where there is one token on both I and S, the actor will fire read signed

first.

actor Clip () int(size =10) I, bool S ==> int(size =9) O :

bool s := false;

read_signed: action S:[signed] ==>

do

s := signed;

end

do_clip: action I:[i] ==> O:[clip(i,s)]

end

priority

read_signed > do_clip;

end

end

Figure 2.12: The Clip actor in RVC-CAL.

2.3.2 Representation of Different MoCs in RVC-CAL

An RVC-CAL actor can behave according to any of the MoCs listed in section 2.2.

We first detail the denotational semantics of the MoC of RVC-CAL, and then show

how the different MoCs can be implemented with the language.

32 Background

Dynamic MoC

RVC-CAL places no restrictions whatsoever about the firing rules nor firing function

of an actor. An RVC-CAL actor can thus have a behavior that is data-independent

and state-independent (SDF), cyclo-static state-dependent (CSDF), quasi-static

data-dependent (PSDF), or data-dependent and state-dependent (dynamic). A dy-

namic actor can be further categorized as time-independent or time-dependent. A

time-independent actor, also known as monotonic or determinate, will produce the

same results regardless of the time at which tokens are present on input ports; it

also means the actor can be represented as a Kahn process using blocking reads.

Conversely, a time-dependent actor does not necessarily produce the same results

depending on the time at which tokens arrive. The Clip actor presented in Fig.

2.12 of section 2.3.1 is an example of a time-dependent actor.

A time-dependent actor is not necessarily non-determinate (Clip is determinate

for example), but it cannot be implemented using the KPN model regardless. If we

use a Kahn process with blocking reads to implement the Clip actor, the behavior

of the actor becomes (1) read data from S (2) read data from I, write data to O,

etc. If the actor is used in a network where no data is ever available on S (in other

words the s flag is never set, which is possible), the network deadlocks. If less data

is available on S than on I 3, the actor quickly deadlocks if using FIFOs of finite

capacity, and if using unbounded FIFOs the actor produces wrong results.

The RVC-CAL language extends the DPN MoC by adding a notion of guard

to firing rules. Formally the guards of a firing rule are boolean predicates that may

depend on the input patterns, the actor state, or both, and must be true for a

firing rule to be satisfied. We define the guards of a firing rule with predicates that

return a set of valid sequences. Predicates are associated to the patterns of the rule

so that Gi,j is the guard predicate associated to the jth pattern of Ri. The firing

rule of the read signed action can then be written as follows:

G1,1 : {[n, ∗] | n < 0} (2.8)

R1 = [X ∈ G1,1, [∗],⊥] (2.9)

An actor is executed (or fired) by selecting a fireable action and firing it. An

action is fireable iff: (1) the current FSM state allows the action to fire (or there

is no FSM and this condition is always true), (2) there are enough tokens for the

action to fire, (3) the guards of the action evaluate to true .

3A variant of this actor is actually in the RVC VTL, and one token is available on S every 64

tokens consumed on I.

RVC-CAL Programming 33

Modeling of the Static MoC

Figure 2.13 shows a simple SDF actor with two untagged actions that have data-

dependent guards (functions f1 and f2 are not represented). The actor respects the

SDF MoC nonetheless, because both actions have the same input/output patterns.

As a matter of fact, the actor could be written with a single action, with a if test

on the flag variable and a local variable to hold the result of f1 or f2. We can

see that the SDF model severely limits expressiveness, for actors that respect the

SDF MoC cannot have an FSM, nor actions with different input/output patterns.

The ability to model SDF actors with RVC-CAL is interesting nonetheless because

it allows one to leverage tools that are able to statically schedule SDF graphs on

multi-processor platforms, such as Preesm [PPW+09].

actor SdfActor () int DATA , bool FLG ==> int O :

action DATA:[data] repeat 36, FLG:[flag] ==>

O:[f1(data)]

guard flag

end

action DATA:[data] repeat 36, FLG:[flag] ==>

O:[f2(data)]

guard not flag

end

end

Figure 2.13: An RVC-CAL actor that respects the SDF MoC.

Modeling of the Cyclo-Static MoC

There are two ways to represent a cyclo-static actor in RVC-CAL. The first and

most trivial way is to use a FSM that defines a cyclic, fixed (data-independent,

determined at compile-time) sequence of actions. The Downsample actor presented

in section 2.3.1 (Fig. 2.11) is an actor with an FSM that defines a simple cyclic

sequence of actions: a0, a1, etc. The second way involves the definition of a set of

state variables (that do not necessarily comprise all the state variables of the actor)

that form a state of the actor. The actor starts from the initial state, executes a fixed

sequence of actions that modify the state, and finally return to the initial state. For

instance, the actor presented on Fig. 2.14 is a minimalist example of the RVC-CAL

34 Background

representation of a CSDF actor using this method.

The first method is more restrictive because expressing an actor with a fixed

sequence of n actions using solely an FSM means the FSM needs to have n transi-

tions. Adding more iterations requires altering the structure of the FSM. In practice,

the second method is very useful to model loops so that they can be translated to

hardware, and it can be found in several actors in the RVC VTL that were origi-

nally written by Dave Parlour from Xilinx, a manufacturer of programmable logic

devices. Note that the CsdfActor of Fig. 2.14 can easily be extended to deal with

cyclo-dynamic dataflow [WELP96] by using a variable instead of 18. This variable

would be set at runtime before each cycle, e.g. in a before action.

actor CsdfActor () int X ==> int Y :

int count := 0;

body: action X:[x] ==> Y:[f(count , x)]

do

count := count + 1;

end

done: action ==>

guard count = 18

do

count := 0;

end

priority

done > body;

end

end

Figure 2.14: An RVC-CAL actor that respects the CSDF MoC.

Modeling of the Quasi-Static MoC

RVC-CAL can be used to describe actors that behave according to the PSDF model.

As an example, we show on Fig. 2.15 the RVC-CAL version of the PSDF graph

that was presented in section 2.2.5. This actor does not need a priority statement,

because the three conditions are mutually exclusive (it is not possible for c to be

RVC-CAL Programming 35

simultaneously equal to 1, 2, and 3). The actor has an FSM that starts in the cond

state, and then depending on the value of c it fires A, B, or C. Note that C has

a multi-token input pattern, which is equivalent to a repeat 4 of a single variable

(like in A).

RVC-CAL may be used for other types of quasi-static behaviors that can be

modeled with PSDF. For instance, a parameterizable loop could be implemented

with an action with a repeat whose value is an actor parameter or a value read

from an additional input port. It is interesting to note that we represent here the

behavior of a PSDF graph using an RVC-CAL actor for brevity and simplicity, but

we could have modeled the same behavior using a network and several actors.

actor QuasiStatic () int C, int I1, int I2 ==> int O :

cond.a: action C:[c] ==> guard c = 1 end

cond.b: action C:[c] ==> guard c = 2 end

cond.c: action C:[c] ==> guard c = 3 end

A: action I1:[i] repeat 2 ==> O:[f(i[0] + i[1])]

end

B: action I1:[i1], I2:[i2] ==> O:[f(i1), f(i2)]

end

C: action I2:[i0, i1, i2, i3] ==>

O:[f(i0), f(i1), f(i2), f(i3)]

end

schedule fsm cond :

cond (cond.a) --> exec_a;

cond (cond.b) --> exec_b;

cond (cond.c) --> exec_c;

exec_a (A) --> cond;

exec_b (B) --> cond;

exec_c (C) --> cond;

end

end

Figure 2.15: The RVC-CAL Version of the PSDF graph of Fig. 2.5.

36 Background

2.3.3 Support tools

The Open Dataflow environment, or OpenDF4, is a simulator and code generator for

the CAL language [BBJ+08]. Historically, the codebase of the OpenDF simulator

originated from the simulator present in Ptolemy [EJL+03] and later in Moses [ETH].

The simulator supports all the features of CAL, including lambda functions, dynamic

typing, and object-oriented programming with calls to Java classes. The latter is

possible because the simulator is itself running in Java, so it defers calls to Java

classes to the JVM using reflection. Discrete Event simulation [ZPK00] is used by

the simulator to schedule networks.

The OpenDF code generator transforms a hierarchical network and a set of

parameterizable actors into a flattened network and closed actors in a low-level

Intermediate Representation called XLIM. This representation can then be trans-

lated to Verilog by a tool called OpenForge, or to C by another tool unsurprisingly

called Xlim2C. Xlim2C5 is a compiler developed by Ericsson as part of the Actors

project. OpenForge6 is a behavioral hardware synthesizer developed by Xilinx. Un-

til OpenForge was open-sourced on SourceForge, it did not have an official name,

and therefore it is often referred to as “Cal2HDL” in various articles referenced by

this document.

2.4 Compilation Process

This section describes key concepts of compilation, and in particular the concepts

that are necessary to understand our work. Compilation is the process by which a

program in a source language is transformed to another semantically-equivalent pro-

gram in a target language. The source program is generally written by a programmer

in a high-level language, while the target language is often assembly language or ob-

ject code, but this is by no means a sine qua non condition, and there are compilers

for the lowest-level languages (like “brainfuck” [Mü93]) and compilers that generate

C code or byte code rather than assembly or object code. Note that we differentiate

compilation from source-to-source transformation in which tools parse, transform,

and re-generate a program in a given language according to a set of transformation

rules, like TXL [CHHP91].

A modern full-fledged optimizing compiler compiles a language to another lan-

guage following these steps:

4OpenDF is available at http://opendf.sf.net/.
5Xlim2C is available in the contrib folder of the OpenDF repository.
6OpenForge is available at http://openforge.sf.net/.

http://opendf.sf.net/
http://openforge.sf.net/

Compilation Process 37

1. parsing the program in the source language, checking it is syntactically and

semantically correct (including type checking),

2. transforming the program to an Intermediate Representation (IR) that makes

analysis and optimizations easier,

3. analyzing and optimizing the IR of the program,

4. transforming the IR to an abstract representation of the target language,

5. optimizing the abstract representation using target-specific rules,

6. printing the abstract representation to the target language.

This section presents the first three items of the above list, because the other items

involve details and techniques that we do not need to consider. For more insight,

the reader might refer to the reference book on compilation, the so-called “Dragon

Book” [ASU86].

2.4.1 Parsing and Validation

The first step of any compiler is to obtain an abstract representation of the source

program it is given. A source program is expected to respect the syntax of the

programming language in which it is written. This syntax is defined by a context-free

grammar, from which a lexer and a parser can be automatically generated. A lexer

transforms the source program into a sequence of meaningful tokens, or lexemes,

like identifiers, parentheses, operators, etc. The parser is then able to interpret

the resultant sequence of lexemes as meaningful language constructs that form the

Concrete Syntax Tree (CST) (Fig. 2.16(a)), and informs the user of any errors he

or she might have made. There are lexer/parser generators for several classes of

context-free grammars, e.g. LALR(1) [GH98,Joh76], LL(k) [Kod04], LL(*) [PQ95].

It is also possible to write hand-made lexers and parsers, although it is not probably

worth the effort for complex languages.

The abstract representation that is best suited for manipulation of the source

program is the Abstract Syntax Tree (AST) (Fig. 2.16(b)). Indeed the CST contains

too much information such as grammar rule invocations and separators (commas,

semi-colons, etc.). Depending on the parser generator, the programmer:

• has to write code that creates a part of the AST for each parsing rule; that

code is executed each time the parser enters a parsing rule,

• describes the AST associated with each parsing rule; the parser then generates

these fragments of AST instead of executing arbitrary code,

38 Background

(int

Type

size)=

3 4+

Expression

(a) CST of int(size=3+4).

TypeInt

ExprAdd

ExprInt ExprInt

3 4

(b) AST of int(size=3+4).

Figure 2.16: Concrete Syntax Tree and Abstract Syntax Tree of int(size=3+4).

• does not have anything to do: some parser generators are able to deduce the

AST from the grammar itself.

The AST that is obtained after the parsing step can be semantically checked.

Semantic checks depend on the language, but there are checks that are common

to most languages. This includes type checking (verifying that the type of a value

assigned to a variable is compatible with the type of the variable), uninitialized vari-

ables (a variable is used without having been assigned first), non-returning control

flow (infinite loop without a break), etc.

After the AST has been semantically checked, it can go through the next stages

of compilation so the program can be analyzed, optimized, and translated to code.

Most analysis and optimizations, however, are typically not written to be used on

an AST. Indeed, the AST does not explicitly represents control flow and data flow

information, and this information is crucial for many optimizations. As a result the

syntax tree needs to be transformed to a representation called the Control Flow

Graph (section 2.4.2), with data flow information (section 2.4.3).

2.4.2 Control Flow Graph (CFG)

The Control Flow Graph (CFG) is a representation of a procedure as a directed

graph where nodes are basic blocks of instructions with no conditional statements,

and edges represent the flow of control between nodes. Figure 2.17 shows the CFG

of well-known if (left) and while statements (right). Because both statements have

two possible outcomes (true or false), the nodes that correspond to if and while

have two successors, and each edge corresponds to one outcome. The CFG of a

procedure has a single entry node and a single exit node through which control

enters and leaves the procedure respectively, and may have any number of edges

between any two vertices.

The representation of control flow allows the formal definition of a well-structured

program. A well-structured program is a program that does not use goto statements

Compilation Process 39

if x > 0

y := x; y := -x;

...
if x > 0 then
 y := x;
else
 y := -x;
end
z := y + 1;
...

then else

z := y + 1;
...

...

...
i := 0;
while i < 10 then
 i := i + 1;
end
 x := i;
...

while i < 10

i := i + 1;

x := i;
...

…
i := 0;

Figure 2.17: CFGs of if and while statements respectively.

to do dubious things like enter in the middle of a loop. The CFG of such a program

is called reducible because it can be reduced to a single node by applying a series

of transformations given in [ASU86]. Some programming languages cannot express

irreducible control flow, including Modula, Oberon, and RVC-CAL. Many analy-

sis and optimization techniques generally work better or require reducible CFGs,

and although it is possible to transform an irreducible CFG into a reducible one

with node-splitting [CM69,JC96], it has been shown that this results in exponential

control flow graphs [CFT03].

The CFG is used by static analysis tools and compiler optimizations, from dead

code removal (CFG is used to check reachability) to constant propagation [WZ91]

(the graph is used to examine the successors of a given CFG node). The CFG

is also a prerequisite for the construction of the Static Single Assignment (SSA)

Intermediate Representation.

40 Background

2.4.3 Data Flow Analysis (DFA)

Data Flow Analysis (DFA) denotes the analysis of the behavior of a program based

on the analysis of the values of its variables. Many compiler optimizations can be

described in terms of DFA [Kil73], including constant propagation, common subex-

pression elimination [Coc70], liveness analysis. DFA is based on the specification of

data flow equations that are generally solved at the boundaries of basic blocks.

Def-use Information

DFA involves the construction of a data-flow graph that encodes information about

the definitions and uses of each variable. Unlike in traditional languages, a def-

inition is actually an assignment, not a variable declaration. An assignment to a

variable is said to kill all previous assignments. The data flow information of a given

variable is generally encoded as two lists:

1. def-use (Definition-Use) is the list of instructions that use this variable, for

each definition D.

2. use-def (Use-Definition) contains for each use U the list of instructions that

define (assign to) this variable before U .

The following example (Fig. 2.18) is adapted from an example given by Wegman

and Zadeck in [WZ91]. The corresponding def-use information is shown on Fig. 2.19.

The variable i has a list of def-use that has two definitions, each of them having three

uses.

Static Single Assignment (SSA)

Static Single Assignment (SSA) [CFR+91] is an Intermediate Representation that

make many optimizations easier to implement, faster, or both by enforcing a single

constraint: each variable must only be assigned once. The first reason for this is

that data flow information is simpler to encode with SSA: use-def chains point to

the only assignment to (or definition of) the variable, and similarly def-use chains

are a unidimensional list since there is a single definition of the variable. Figure 2.20

shows the def-use information of the code in Fig. 2.18 encoded with SSA.

It is possible for a variable to be defined in different branches, like i in our

example. Since a variable must only be defined once, SSA transforms each definition

of the same variable in n different branches to n different variables, which must be

merged when the branches are joined. This is done by a φ-function that creates a

new variable that takes the value of one of the definitions depending on the path

taken in the CFG.

Compilation Process 41

if j = x then

i := 1;

else

i := 2;

end

if k = x then

a := i;

else

if k = y then

b := i;

else

c := i;

end

end

Figure 2.18: Example of code with complex def-use information.

i := 1; i := 2;

a := i; b := i; c := i;

Figure 2.19: def-use information of code shown on Fig. 2.18.

i
1
 := 1; i

2
 := 2;

a := i
3
; b := i

3
; c := i

3
;

i
3
 := Φ(i

1
, i

2
);

Figure 2.20: def-use information of code shown on Fig. 2.18 encoded with SSA.

42 Background

2.4.4 Generic Optimizations

There exists a lot of optimizations based on the CFG and SSA form, includ-

ing dead variable removal, dead code elimination [CFR+91], constant propaga-

tion [WZ91,Pat95], code motion [Cli95], common subexpression elimination [Coc70],

partial redundancy elimination [MR79], etc. These transformations are implemented

and used by commercial compilers and by the two major open-source compilers, GCC

and LLVM. Some of these optimizations, and others, are also described in [ASU86].

Another kind of optimization, simpler yet effective, is peephole optimization.

Peephole optimization examines the sequence of instructions through a small sliding

window, and replaces one or more instructions by a better alternative, depending

on the criteria chosen (code size, execution speed, or a combination of both). This

kind of optimization is often done on the target-specific representation, although

it may also be used much earlier in the compilation process, as early as in the

parsing phase [Bra95]. Peephole optimizations are typically written by architecture

specialists, but Bansal and Aiken have shown that it is possible to automatically

generate a set of rules from a fine-grain description of the target architecture [BA06].

2.5 Conclusion

This chapter has presented the context of our work, starting with the limitations

of the existing standards and standardization process more generally, which was a

prelude to the motivations and principles of the Reconfigurable Video Coding (RVC)

framework. We have listed a few key dataflow Models of Computation (MoCs) in

section 2.2 expressed in terms of denotational semantics from the most general model

named Dataflow Process Networks (DPNs) that extend Kahn Process Networks

(KPNs) with non-determinism by allowing actors (processes in KPN terminology)

to test if a FIFO connected to an input port has data. The subsequent section has

described the RVC-CAL language, and how it can be used to represent the different

MoCs presented before. Finally, we have defined key concepts of the compilation

process that we need for the explanation of our work.

The next chapter leverages these concepts to detail our Intermediate Representa-

tion (IR), which is used for analysis, transformation, and code generation of dynamic

dataflow programs. This IR was designed mainly with the RVC-CAL language in

mind, although it could be used with other languages that respect the DPN model.

Chapter 3

Intermediate Representation

This chapter describes the basis of our compilation infrastructure for dataflow pro-

grams, namely a simple, high-level, dataflow-specific Intermediate Representation

(IR). An RVC-CAL actor can be translated to this IR, which is then used for anal-

ysis, transformation, and code generation.

This chapter begins by presenting in section 3.1 the motivations for using an

IR rather than a higher-level representation like an Abstract Syntax Tree (AST). In

particular, we show how an IR facilitates analysis, program transformation, and code

generation, and list the requirements for an IR suited to represent dataflow actors.

Section 3.2 then reviews related work concerning the most widely used Intermediate

Representations, and examine whether they meet our design requirements. Finally,

the following two sections respectively detail the structure and semantics of our IR

for dynamic dataflow actors.

3.1 Motivations for the Use of a Custom IR

This section presents the motivations behind the Intermediate Representation pre-

sented in this chapter. We show how an IR of actors can simplify important steps

of the compilation of dataflow programs such as analysis, program transformation,

and code generation.

3.1.1 Analysis and Transformation

As shown in section 2.3, RVC-CAL actors belong to the dynamic dataflow Model of

Computation. This means that in the general case, an actor cannot be scheduled

at compile-time, it must be scheduled at runtime instead. Fortunately, most signal

processing applications are far from being entirely dynamic, and parts with static

behavior need not be dynamically scheduled. The problem is to detect actors that

43

44 Intermediate Representation

behave statically or quasi-statically, since dynamic dataflow has an expressive power

equivalent to a Turing machine [BL93], which means it is not possible to prove the

termination of a dynamic dataflow program in general.

Detecting actors that behave according to more restricted MoCs (than RVC-

CAL) is a process called “classification”. Classification classifies the behavior of an

RVC-CAL actor in terms of number of tokens it receives and sends, patterns that

may govern token exchanges, and possibly acceptable token values. In the simplest

case, structural information of an actor is enough to classify it, for instance the rules

for an actor to be considered static only depend on the input and output patterns

of actions. In more complicated case, it is necessary to gather information from an

actual execution of the actor.

The structural information necessary for classification is not directly expressed

in the AST of an RVC-CAL actor, and the AST must be annotated with precom-

puted information first. For instance, token production/consumption rates for an

action must be computed from the rules of input/output patterns, which depends

on the number of tokens and repeat clause, or the type of tokens and repeat clause.

Likewise, priorities only express a partial order on action tags, so one must compute

the topological sort of the priority graph whose vertices are actions from each t̂ set

used in priorities. The FSM uses action tags too, so a transition from one state to

another may in fact become several possible transitions if the tag associated with

the transition refers to several actions.

In cases when the structural information is not enough, the actor needs to be in-

terpreted so its behavior can be properly analyzed. It is possible to execute the actor

by interpreting the AST directly, but this is cumbersome. For example, RVC-CAL

has a generator expression, a foreach construct, and a while construct. Writing

an interpreter for the RVC-CAL AST means implementing these three separately,

although they can all be transformed to while loops.

Additionally, using the AST needlessly complicates several program transforma-

tions, because transformations need to handle all the constructs of the AST, and

we have just seen that there is redundancy among these constructs. This means

that when writing a transformation, a programmer is going to spend time worrying

about the details of the AST rather than spending time writing the transformation

itself. Again, tag resolution in the FSM and transformation of priorities to a total

order would unnecessarily complicate transformations.

To sum up, on the one hand the AST misses information and needs to be anno-

tated, and on the other hand it contains redundant information for interpretation

and transformation. It is simply not suited for the analysis and transformation of

actors. We need a representation that is simpler to analyze and transform while

Related Work 45

containing all the necessary information.

3.1.2 Code Generation

In the context of co-design and heterogeneous computing more generally, it is desir-

able to be able to compile RVC-CAL actors to several more traditional languages,

hardware or software alike (C, Java, VHDL, etc.), to execute them on hardware

and software architectures. We would like to emphasize that we want to generate

source code and not assembly code. Assembly is inherently platform-specific and

architecture-specific, and there are already plenty of great compilers that are ca-

pable of producing excellent assembly code from higher-level languages, which also

have the advantage of being much easier to generate. As an example C code may

be used on virtually any platform, from high-end desktops and servers to embedded

platforms or even on Systems-on-Chip (SoCs), which is not the case for Intel’s 8086

assembly with AT&T syntax for instance.

Compiling an actor to a target language requires the code of the actor to undergo

several transformations. Indeed, several high-level functional constructs in RVC-

CAL have no direct equivalent in lower-level languages like C and VHDL. RVC-CAL

does not distinguish between assignments to local and state variables, but Hardware

Description Languages (HDLs) generally do. The language also has concepts that

are orthogonal to some languages, e.g. Finite State Machines (FSMs) must be

expressed using specific constructs (such as gotos or switchs) in most software

languages, while FSMs are described with built-in constructs in mainstream HDLs.

The transformations applied to an actor to compile it to a given target language

fall into two categories, either generic or target-specific. Examples of generic trans-

formations include dead variable removal, dead code elimination, constant propaga-

tion, etc. Note that we use the term statements as opposed to instructions to clearly

mark the difference between elements of source code and elements of assembly code.

The goal of an Intermediate Representation (IR) for a given source language is to

minimize the number of target-specific transformations that must be programmed to

compile code to different target languages by providing a sort of “common ground”

between these languages.

3.2 Related Work

This section presents related work about existing Intermediate Representations

(IRs). There has been extensive research on the use of IRs for various purposes,

particularly in the domain of compilation. An IR can have certain properties like

46 Intermediate Representation

SSA (and its many variants [CFR+91, CCF91, BCHS98,KS98, SVKW07] and oth-

ers) or three-address code [ASU86, LA04], or it can be an abstraction of a spe-

cific language, like C [NMRW02,WFW+94]. Additionally, many tools have their

own intermediate representation, such as GCC (an IR called GIMPLE derived from

SIMPLE [HDE+93]), LLVM [LA04], the Glasgow Hashkell Compiler (GHC) (an IR

called C– [JRR99]).

As far as hardware synthesis tools are concerned, it is our impression that there is

not really an open-source alternative to proprietary synthesis tools made by FPGA

manufacturers, in the sense that no open-source synthesis tool has been adopted by

a significant part of users. Consequently, there is no IR that we could produce and

which could then be given to existing synthesis tools.

GCC (GNU Compiler Collection) and LLVM (Low-Level Virtual Machine) are

among the largest open-source compilers available and the most widely used. We

examine in this section their intermediate representations, before presenting the

XLIM representation produced by the OpenDF front-end from CAL code. The last

IR presented is the C Intermediate Language (Cil) that we have used in our previous

work [WRR+08] and has been an inspiration for the IR described in this chapter.

3.2.1 GIMPLE Intermediate Representation

GCC (GNU Compiler Collection) has front-ends for C, C++, Fortran, Java, Objec-

tive C, and back-ends for several architectures, including ARM, MIPS, SPARC, x86,

x86-64. Front-ends manipulate an Intermediate Representation called GENERIC,

which is then lowered to another IR named GIMPLE. GIMPLE is in SSA form,

and is derived from an IR called SIMPLE [HDE+93]. This IR is the IR that the

optimizer (or middle-end) manipulates. After optimization GIMPLE is translated

to the Register Transfer Language (RTL) for target-specific optimizations and code

generation by back-ends.

GIMPLE is a generic IR in the sense that it is possible to obtain a GIMPLE

equivalent of about any program (GCC has front-ends for C, C++, Objective-C,

Fortran, Java, and Ada). The IR is geared towards imperative, sequential program-

ming languages, and it has no dataflow-specific constructs. Additionally, the API

is fairly complex, and it is not clear whether or how the IR could be extended with

dataflow-specific mechanisms.

3.2.2 Low-Level Virtual Machine (LLVM)

The Low-Level Virtual Machine (LLVM) is a project that provides:

Related Work 47

• a clean, target-independent, well documented IR1 called LLVM or LLVM IR,

• a library that contains many optimization passes for the IR, and back-ends for

architectures such as x86, x86 64, PowerPC, ARM, and others,

• a set of command-line tools, from a tool that displays the IR in a textual

form (llvm-dis) to an optimizing compiler (opt) implemented with the LLVM

library,

• a Just-in-time (JIT) engine that loads IR files, optimizes them, translates them

to native code, and executes the resulting code.

The LLVM IR is a typed three-address code assembly language in SSA form. Like

RVC-CAL, the LLVM type system has integer types with an arbitrary bit width.

The IR has 52 instructions, which is a relatively small number of instructions for

an assembly-like language, especially given the fact that this includes support for

high-level features like vectors, switch statements, va arg, and exceptions. This is

possible because many instructions can be overloaded to take arguments of several

types, e.g. add can be used to add integers or vectors.

Since version 2.7, LLVM includes a feature called metadata, which allows arbi-

trary data to be represented within an LLVM file. The IR also supports intrinsics,

which are predefined functions with precise semantics. For example, intrinsics in-

clude llvm.memcpy to copy a block of memory, llvm.atomic.cmp.swap that per-

forms a Compare & Swap, which can be used to implement lock-free data struc-

tures [Val95]. New intrinsics can be added to the LLVM IR without affecting the

existing optimizers. LLVM being under BSD license, one can add their own intrinsics

to the language in their own locally-maintained version of LLVM.

Despite all these features, we did not use LLVM as an Intermediate Representa-

tion of dynamic dataflow programs for several reasons. First of all, LLVM is, like its

name indicates, low-level, and we do not need such a low-level IR. Analysis of the

behavior of dynamic dataflow programs is easier to write with a simpler and higher-

level IR, and the transformations we are interested in are structural transformations,

i.e. transformations of the structure of actors.

The LLVM compiler can optimize code thoroughly, and a low-level IR is not a

problem when generating assembly code or object code (as the majority of back-

ends in LLVM do). However, the IR is not very interesting for the generation of

source code, because the generated code is cryptic. Moreover, we have chosen a

rapid prototyping approach in our compilation infrastructure: we want people to be

able to quickly try out a new approach to generate code in a different manner, and

1The language reference for the IR is available online at http://llvm.org/docs/LangRef.html.

http://llvm.org/docs/LangRef.html

48 Intermediate Representation

this is hardly compatible with the heavy infrastructure typically used in back-ends.

As a conclusion, it is our opinion that in our case, LLVM is more appropriate as a

target for code generation from dataflow programs, than as an IR of the programs

themselves.

3.2.3 XLIM

XLIM (XML Language Independent Model) is a low-level IR in SSA form generated

by the Open Dataflow (OpenDF) environment from CAL actors. This IR was created

to target a hardware synthesizer called OpenForge that generates low-level Verilog

code [JMP+08]. We deliberately chose to design another IR rather than using XLIM

because it failed to meet several of our requirements.

XLIM was designed with hardware in mind, and as such it is ridiculously low-

level. For instance, incrementing a variable is represented with four operations:

one operation to produce the integer “1”, one operation to add the integer to the

source variable, one operation to cast the result, and one operation to store the

result in the target variable. Not only is this extremely verbose (by contrast this

is represented in our IR with an assignment of an addition to a variable, with the

same type information as expressed in XLIM), but this makes the representation

even more complicated to manipulate than an AST.

XLIM removes any form of structure from scheduling information (guards, FSM,

priorities). The action scheduler is expressed as an infinite while loop that starts

by computing the guards of all actions indiscriminately, before entering a gigantic

tree of nested if statements to determine which action should be fired. An FSM

with n states is transformed to a set of n boolean variables, which always contains

exactly one variable whose value is true, and which is the current state. All this

makes it unnecessarily hard to retrieve the structure of the original actor, as well as

making it difficult to design other implementations of an action scheduler.

Finally, contrary to what the name suggests, XLIM is not a language-independent

IR. There are two flavors of XLIM, one hardware-oriented (that was originally

present in OpenDF) and one software-oriented, created for the needs of the Xlim2C

code generator. The hardware-oriented representation supports a small subset of

RVC-CAL, and the software-oriented representation only recently started to sup-

port the most advanced features of RVC-CAL (list generators, foreach statements).

3.2.4 C Intermediate Language

The C Intermediate Language (CIL) [NMRW02] (not to be confused with the Com-

mon Intermediate Language of the Common Language Infrastructure [Ecm06]) is an

Related Work 49

IR that can be seen as a subset of C with clean semantics. Like LLVM, CIL means

several things: an IR; a library that contains an implementation of the CIL IR, a C

to CIL parser, a CIL to C pretty-printer, and several analysis and transformation

passes performed on CIL; a set of tools based on the CIL library. The CIL IR re-

moves many of the quirks and ambiguities typically present in C programs by making

explicit many implicit constructs, such as memory references and side-effects. CIL

is traditionally used to perform analysis and source-to-source transformations of C

programs, such as merging C source files together, adding buffer overrun defense

mechanisms, or ensuring memory safety [NCH+05].

We have used CIL in some of our previous work [WRR+08] in a prototype that

generated C directly from CAL (at the time the RVC standard had not been ratified

yet). CIL has influenced the design of our IR in three ways:

• As a high-level representation and source-to-source transformation tool, CIL

tries its best to produce code that is as faithful as possible to the original code.

We have found this valuable in practice, especially for debugging purposes of

the generated code, e.g. to trace bugs back into the RVC-CAL source. The

IR has been designed to be a canonic representation of RVC-CAL while being

as close to the language as possible.

• Rather than representing loops using a conditional branch statement (in other

words, a if and a goto) like LLVM, CIL lowers all loop constructs to a single

while loop. This makes it easier to produce code for targets that do not

have the notion of a goto, namely programmable logic, as well as simplifying

code generation for target languages (including those that do not have goto

statements, like Oberon [Wir88], Modula [Wir83], and RVC-CAL).

• CIL separates instructions with side-effects from side-effect free expressions,

which facilitates analysis and transformation without obfuscating code like

three-address code does.

3.2.5 Conclusion

We have presented the IRs used by the two major open-source compilers, GCC, and

LLVM, as well as two others IRs related to our work, namely XLIM and CIL, and

have shown why XLIM was poorly suited to be a good IR of RVC-CAL actors. The

rest of this chapter presents the structure and semantics of our IR of RVC-CAL

actors.

50 Intermediate Representation

3.3 Structure of the IR of an actor

This section describes the structure of the Intermediate Representation of RVC-CAL

actors.

3.3.1 Serialization Format

The IR is serialized in the JSON format. JSON stands for JavaScript Object Nota-

tion, and offers a lightweight alternative to XML by allowing the description of data

with a well-defined subset of JavaScript. JSON data types are common to most

programming languages, and fall into three categories:

1. an object, represented as a key-value association, where keys are strings, and

values may be arbitrary JSON data,

2. an array, which is a possibly empty list where each member is JSON data,

3. a scalar, either a boolean, a floating-point number, an integer number, a string,

or the null value.

Figure 3.1 shows how these different data types are encoded.

{"is it forty -two?": true,

"Fibonacci": [1, 2, 3, 5, 8, 13],

"Pascal": [1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1],

"PI": 3.14159265358

}

Figure 3.1: A JSON object with a few mathematical sequences.

3.3.2 Priorities

An IR actor has the same structural elements as the original actor with the notable

exception of priorities. Indeed, as pointed out in section 3.1, if we want to analyze,

transform, or compile an actor, the partial order expressed by priorities must be

transformed to a total order. As a result, actions are sorted by descending priority

in the IR and priorities need not be present anymore. This admittedly results in a

loss of expressiveness because an order is imposed on actions even if the designed

did not intend to.

Not having priorities in the IR does not have a noticeable impact on the execution

speed of generated code. The CAL MoC only allows one action to fire at a time, in

Structure of the IR of an actor 51

other words two or more actions cannot be fired in parallel, so we only lose the abil-

ity to evaluate the schedulability of actions in parallel. Since scheduling information

is generally computationally-inexpensive and with a few conditional branches, it is

not clear how this information could be computed in parallel on software processors.

This kind of fine-grain parallelism is more suited to Programmable Logic Devices

(PLDs), but if we generate code to compute schedulability information as shown on

Fig. 3.2, synthesizers are capable of analyzing data-dependencies and schedule the

tests in parallel.

Figure 3.2 shows a VHDL process that is sensitive to two signals, the classic

reset signal and a Add TEX send signal that is activated when data is available on

the TEX input port. For the reader not familiar with VHDL, reset is always true

unless the device is reset, in which case the signal becomes false. The assignments

“:=” and “<=” denote assignments to local variables (that we have omitted here

for the sake of brevity) and signals respectively.

3.3.3 Finite State Machine

The Finite State Machine (FSM) of an RVC-CAL actor is transformed in our IR to an

FSM in a form that is easier to manipulate and to generate code from while keeping

the same information (initial state and list of transitions). Contrary to RVC-CAL,

the FSM in the IR explicitly lists the states of the FSM to allow the generation

of switch-based implementations in software languages as well as to describe an

FSM type in Hardware Description Languages (HDLs). Rather than having several

transitions departing from a single state as in RVC-CAL (Fig. 3.3), transitions are

grouped by starting state (Fig. 3.4). Enumerating transitions this way facilitates

analysis (finding dead-end states isO(1) for instance) and code generation: whatever

the target language is, different cases must be distinct, and when using gotos, labels

must be distinct too.

Figure 3.4 shows the IR of the FSM of Fig. 3.3 as serialized with JSON. Note

that action tags are represented as a list of strings, e.g. the tag “cmd.tex” is a

list [‘‘cmd’’, ‘‘tex’’]. Another difference between the original RVC-CAL FSM

and its IR is that action tags are developed, which is why the transition “cmd” to

“cmd” becomes two transitions because the tag “cmd.other” actually denotes two

actions with respective tags “cmd.other.mot” and “cmd.other.mix”. Once again this

facilitates analysis and code generation, but this is not the only reason behind this

difference. Tags used in transitions may be affected by priorities, yet we have seen

that priorities are absent from the IR. As a consequence, tags must be developed

according to the priority order so that their interpretation is no longer dependent

on priorities.

52 Intermediate Representation

signal isSchedulable_done_go : std_logic;

signal isSchedulable_texture_go : std_logic;

signal count : integer range 127 downto -128;

Add_scheduler : process (reset_n , Add_TEX_send) is

-- local variable declarations (omitted)

begin

if reset_n = ’0’ then

isSchedulable_done_go <= ’0’;

isSchedulable_texture_go <= ’0’;

else

-- test if "done" action is schedulable

isSchedulable_done1_1 := count;

if (isSchedulable_done1_1 = 64) then

isSchedulable_done0_1 := ’1’;

else

isSchedulable_done0_1 := ’0’;

end if;

isSchedulable_done0_2 := isSchedulable_done0_1;

isSchedulable_done_go <= isSchedulable_done0_2;

-- test if "texture" action is schedulable

isSchedulable_texture1_1 := Add_TEX_send;

if (isSchedulable_texture1_1 = ’1’) then

isSchedulable_texture0_1 := ’1’;

isSchedulable_texture0_2 := isSchedulable_texture0_1;

else

isSchedulable_texture0_3 := ’0’;

isSchedulable_texture0_2 := isSchedulable_texture0_3;

end if;

isSchedulable_texture_go <= isSchedulable_texture0_2;

end if;

end process Add_scheduler;

Figure 3.2: Test of the schedulability of two actions in VHDL.

Structure of the IR of an actor 53

schedule fsm cmd :

cmd (cmd.tex) --> texture;

cmd (cmd.other) --> cmd;

texture (done) --> cmd;

texture (texture) --> texture;

end

Figure 3.3: A sample FSM in RVC-CAL.

[

"cmd", // initial state

["cmd", "texture"] // list of states

[

// list of transitions from cmd

["cmd",

[

[["cmd", "tex"], "texture"],

[["cmd", "other", "mot"], ["cmd"]],

[["cmd", "other", "mix"], ["cmd"]],

]

],

// list of transitions from texture

["texture",

[

[["done"], "cmd"],

[["texture"], "texture"]

]

]

]

]

Figure 3.4: The IR of the FSM shown on Fig. 3.3.

54 Intermediate Representation

3.3.4 Actions

The IR of an action reflects the semantic difference between its scheduling informa-

tion (input patterns, output patterns, guards) and its body (local variable decla-

rations, statements, expressions computed in the output pattern). As a result, the

IR contains, in addition to the action tag, scheduling information and body in two

unrelated data structures. There are several reasons for this:

• when testing if an action is schedulable, it is necessary to check if there are

enough tokens on input ports, and enough space on output ports, but these

operations are not necessary in the action body,

• guards may use the values of tokens, in which case these tokens are peeked,

not read, because if the action is not schedulable the tokens must not be

consumed,

• it is always possible to reunite scheduling information and body later if nec-

essary, but this would not be the case if we had transformed the action to a

form similar to if (schedulable) then body,

• as we showed in section 3.3.2, this separation allows the schedulability of ac-

tions to be tested in parallel when generating HDL code.

Scheduling Information

The scheduling information consists of the input and output patterns, and a proce-

dure that contains code that determines if the action is schedulable.

Unlike RVC-CAL patterns, IR patterns simply give the token production/con-

sumption on ports. An IR pattern is a simple association list where each member is

a two-element list, the first element being the name of the port, and the second one

being the number of tokens read (input pattern) or written (output pattern). As an

example, the input and output patterns of untagged action of Fig. 3.5 are stored in

an array whose first element is the input pattern and whose second element is the

output pattern.

int DEPTH = 8;

action BITS:[r, g, b] repeat DEPTH , SIGNED :[s] ==>

PIX:[pix] repeat #pix

Figure 3.5: Patterns of an RVC-CAL action.

Structure of the IR of an actor 55

IR patterns are not difficult to compute, but it is information that is useful for

both analysis (production/consumption rates of a static actor are the production/-

consumption of its action(s)) and dynamic scheduling (test that there is enough

space before firing an action). Moreover, this information is computed anyway to

allocate memory statically to store peeked tokens in the procedure that tests the

schedulability of an action.

[

// input pattern

[

["BITS", 24], ["SIGNED", 1]

],

// output pattern

[

["PIX", 3]

]

]

Figure 3.6: The IR patterns of the action shown on Fig. 3.5.

The code that tests the schedulability of an action is put in a procedure named

“isSchedulable ” followed by the action tag. This procedure first tests if tokens are

available using the built-in function hasTokens. This function takes two arguments:

the first one is the name of the port on which tokens may be present, the second one

being the minimum number of tokens expected. If the IR is translated to a source

language L, it is expected that there be an implementation of hasTokens in L. If

the action reads tokens, the “isSchedulable” procedure calls peek (with the same

arguments as hasTokens) on each port read, and reorganizes tokens if necessary, as

shown on Fig. 3.7. The figure represents the 24 tokens on the BITS port of Fig. 3.5

as they are read from the FIFO, and then how they are reorganized in each token

array. The code for reorganizing the tokens is listed on the right hand-side of the

figure.

The guards of the action, if they exist, are translated to IR expressions and

statements and tested in the procedure. An example of a schedulability procedure

is shown on Fig. 3.8; the language shown respects IR semantics (section 3.4.1), but

is expressed in an RVC-CAL-like language for readability.

56 Intermediate Representation

 action BITS :[r, g, b] repeat 8

List(type:int, size=8) r

List(type:int, size=8) g

List(type:int, size=8) b

i := 0;
while i < 8 do
 r[i] := BITS[3 * i + 0];
 g[i] := BITS[3 * i + 1];
 b[i] := BITS[3 * i + 2];
end

Figure 3.7: Reorganizing tokens read.

bool isSchedulable_a ()

var

bool result_1 , bool result_2 , bool result_3 ,

bool _tmp_1 , int _tmp_2 ,

List(type:int , size =2) A

do

_tmp_1 := hasTokens(port_A , 2);

if (_tmp_1) then

A := peek(port_A , 2);

_tmp_2 := load(A, 0);

result_1 := (_tmp_2 = 5);

else

result_2 := false;

end

result_3 := phi(result_1 , result_2);

return result_3;

end

Figure 3.8: IR isSchedulable of an action.

Semantics of the IR 57

Body

The body of an action is represented in the IR as a procedure that is organized as

follows:

• If the input pattern is not empty, read tokens from input ports, and reorganize

them if there are repeats and multi-token patterns. The procedure does not

test if the tokens are available, because the contract of the IR is that the

procedure that contains the action body is only called when the action is

schedulable.

• Initialization of local variables. Local variables are initialized after tokens are

read because they may depend on the value of tokens.

• Statements from the original action transformed into IR statements.

• If the output pattern is not empty, compute output expressions present in

output pattern, reorganize them if there are repeats and multi-token patterns,

and write tokens to output ports.

3.4 Semantics of the IR

The previous section has presented the structure of the IR of an actor, more pre-

cisely how the different RVC-CAL constructs are laid out in the IR, in short absence

of priorities, different organization of FSM, separation of schedulability information

and body of actions. This section presents the semantics of the IR in which schedu-

lability information and computations are expressed. We separate these semantics

between statements that have side-effects and expressions that are side-effect

free.

3.4.1 Statements

The IR of statements is expressed as a simple language and represented as a Control

Flow Graph (CFG). As shown on Fig. 3.9, CFG nodes are separated into basic

blocks of instructions and conditional nodes, namely if and while nodes. if nodes

and while nodes are two different nodes rather than a single unified branching

conditional node because this better represents the semantics of the program.

The IR is in SSA form with an unlimited number of registers. Registers are any

scalar local variable of procedures or actions. Variables that reside in memory (as

opposed to registers) are actor parameters, state variables, and arrays (local or not).

Memory access is explicitly modeled by specific instructions for loads and stores.

58 Intermediate Representation

CFGNode ::= IfNode(Expression, CFGNode*, CFGNode*, BlockNode)

| WhileNode(Expression, CFGNode*, BlockNode)

| BlockNode(Instruction*)

Figure 3.9: Syntax of IR CFG nodes.

We do not use the array SSA form [KS98] for arrays, instead the memory-specific

load/store instructions are used.

Instruction ::= RegularInstr | SSAInstr | FIFOInstr

Figure 3.10: Syntax of IR instructions.

As presented by Fig. 3.10, the IR instructions can be divided in three categories:

1. Regular instructions: Assign, Call, Load, Return, Store.

2. SSA-specific instruction: Phi.

3. FIFO instructions: HasTokens, Peek, Read, Write.

Regular Instructions

Regular instructions are instructions that are not specific to the SSA form nor to

FIFO management. In fact, with the notable exception of return, these instructions

have a direct equivalent in RVC-CAL (the inverse is not necessarily true). The

regular instructions are listed Fig. 3.11.

RegularInstr ::= Assign(LocalVariable, Expression)

| Call(LocalVariable?, Function, Expression*)

| Load(LocalVariable, Variable, Expression*)

| Store(Variable, Expression*, Expression)

| Return(Expression?)

Figure 3.11: Syntax of IR regular instructions.

The semantics of the instructions is the following:

• Assign assigns an IR expression to a local variable. The instruction forms

the definition of the variable in the data flow sense.

• Call calls a procedure with a (possibly empty) list of arguments, and an op-

tional result. The call may return a result and assign it to a variable, in which

case, like the assign instruction, the call is the definition of the variable.

Semantics of the IR 59

• Load loads a scalar value from memory and assigns it to a local variable (the

variable is defined by the instruction). If the memory location points to an

array, load is passed a list of indexes, each of which is an IR expression.

• Store is the counterpart of load in that it stores an IR expression into memory.

Like load, store is passed a list of indexes if the memory location is an array.

• Return is the only IR instruction that has no RVC-CAL equivalent. It is

necessary in the IR because there is no return in RVC-CAL, and because the

IR is an imperative language that does not have “pure” functions that returns

only an expression.

Phi instruction

SSAInstr ::= Phi(LocalVariable, LocalVariable, LocalVariable)

Figure 3.12: Syntax of Phi instruction.

The first argument a1 of the Phi instruction is the target of the instruction. Phi

assigns its target the value of φ(a2, a3), in other words the target is assigned the

value of the (i + 1)th operand when the instruction is reached by ith branch of the

control flow.

FIFO instructions

FIFO instructions have the following syntax:

FIFOInstr ::= HasTokens(LocalVariable, Port, int)

| Read(Variable, Port, int)

| Peek(Variable, Port, int)

| Write(Port, int, Variable)

Figure 3.13: Syntax of FIFO instructions.

The semantics of the FIFO instructions are defined as follows:

• HasTokens sets a local variable to true if the FIFO connected to the given

input port has at least the given number of tokens, and sets it to false oth-

erwise.

• Read reads the given number of tokens on the FIFO connected to the given

input port and copies them into the given variable.

60 Intermediate Representation

• Peek acts as read except it does not remove tokens peeked from the FIFO.

• Write writes the given number of tokens from the given variable on the FIFO

connected to the given output port.

3.4.2 Expressions and Type System

Expressions in the IR are side-effect free and have simple arithmetic properties. The

semantics of binary and unary expressions are only defined for scalar operands, but a

simple expression that refers to a variable may be of type List. This allows lists to be

passed as parameters to functions for instance. Variables other than lists are always

local variables that were either declared as local variables in the source, or that

have been loaded from a state variable. The operators used by binary expressions

and unary expressions are the same as RVC-CAL’s, whose semantics and associated

types are presented in the next chapter. Literals can be booleans, floating-point

reals, or arbitrary-sized integers.

Expression ::= BinaryExpr(Expression, BinaryOp, Expression)

| LiteralExpr(Literal)

| UnaryExpr(UnaryOp, Expression)

| VarExpr(Variable)

Figure 3.14: Syntax of FIFO instructions.

The type system of the IR is similar to RVC-CAL’s. The types have the same

name and semantics, the difference being that IR types have sizes that are compile-

time constant integer numbers instead of expressions. This admittedly results in

a loss of expressiveness, but we have found that parameterized types posed more

problems than they solved. On the one hand, parameters given at compile-time

virtually removes any possibility of reconfiguration. On the other hand, if parameters

are given at runtime then type checking can only be performed when an actor is

instantiated, i.e. very late in the design process. Moreover, having values for the

size of types specified at runtime creates plenty of bug opportunities, except if people

thoroughly test their code; which is precisely the raison d’être of static type checking

(and static type inference), to catch type-related bugs as early as possible. Finally,

to our knowledge, no language nor existing JIT compiler supports integers whose

size is specified at runtime.

Conclusion 61

3.5 Conclusion

This chapter has presented the foundation on which our compilation infrastructure

is built, namely a simple, high-level Intermediate Representation (IR) of dynamic

dataflow programs. We have listed our motivations for using a dataflow-specific IR,

and examined related work concerning a few existing IRs that have inspired the

design of our IR, whose structure and semantics were then presented.

The next three chapters are dedicated to the three components of our infrastruc-

ture that respectively produce, analyze and transform, and generate code from the

IR of actors.

62 Intermediate Representation

Chapter 4

Front-end

4.1 Overview

This chapter presents the front-end of our compilation infrastructure. As Fig. 4.1

shows, the front-end is responsible of transforming RVC-CAL actors to an IR of

actors, which includes steps such as parsing, typing, semantic checking, and various

transformations. Most of the steps described here are specific to RVC-CAL, but it

is our opinion that the information presented in this chapter can be useful to create

front-ends for other languages as well.

middle-end
RVC-CAL

actors

IR
actors

back-end

front-end

Parsing

Typing

Semantic checks

Transformations

Figure 4.1: Front-end in the Compilation Infrastructure.

The front-end starts by parsing each RVC-CAL actor into an Abstract Syntax

Tree (AST) (section 4.2) which is transformed to the IR previously described in

Chapter 3. The first transformation, which is described in section 4.3, is the eval-

uation of expressions that define the initial values of state variables and the size of

types as compile-time constants. The AST is then typed, which involves conversion

of types to the type system of the IR, type inference from expressions, and finally

63

64 Front-end

type checking to catch type errors (section 4.4).

The annotated AST can then be transformed to the IR. Section 4.5 presents the

structural transformations from the AST to the IR. These transformations include

the creation of a tag association table, creation of a total order of actions from the

partial order on action tags expressed by the priorities, translation of the FSM, and

transformation of each action to a procedure that contains scheduling information

(guards, input pattern) and a procedure that contains the computations of the ac-

tion. Finally, section 4.6 details the semantic transformations from the AST to the

IR. Semantic transformations aim to express the behavior described by the body of

actions, functions, and procedures with the statements and expressions of the IR.

4.2 Syntax Parsing

4.2.1 Parsing with the Xtext Framework

The Xtext1 framework [EV06] generates an ANTLR-based syntax parser automati-

cally from a grammar description, but also a meta-model of the AST, as well as code

that transforms the concrete syntax to the AST. The AST meta-model generated

from the grammar may be post-processed if necessary to include additional informa-

tion by linking to other meta-models. Xtext takes advantage of the meta-modeling

infrastructure and Java code generation capabilities of the Eclipse Modeling Frame-

work (EMF) [Ecl].

Figure 4.2 shows the grammar rule for an RVC-CAL actor. The grammar de-

scription syntax is read as follows. Strings enclosed in quotes are lexical tokens, e.g.

an actor must begin with the keyword actor. The number of times a rule is invoked

is expressed using the same syntax as regular expressions, namely the number of

invocations can be any number of times (star sign), at least once (plus sign), at

most once (question mark), or exactly one time (no suffix present). The result of a

grammar rule is assigned to a scalar using the equal sign (like “name” and “sched-

ule”). If a rule may be executed more than once, the plus-equal sign must be used

to obtain a list (“parameters”, “inputs”, etc.). When a rule is not called (e.g. an

actor without a Finite State Machine causes the AstSchedule rule to be skipped),

its result is nil.

4.2.2 Meta-model Inference

The part of the meta-model generated for the AstActor rule is shown on Fig. 4.3.

The meta-model is inferred by Xtext from the grammar description using the fol-

1Xtext is available at http://www.eclipse.org/Xtext/.

http://www.eclipse.org/Xtext/

Syntax Parsing 65

AstActor:

’actor ’ name=ID

’(’ (parameters += AstParameter

(’,’ parameters += AstParameter)*)? ’)’

(inputs += AstPort (’,’ inputs += AstPort)*)? ’==>’

(outputs += AstPort (’,’ outputs += AstPort)*)? ’:’

(functions += AstFunction

| procedures += AstProcedure

| actions += AstAction

| initializes += AstInitialize

| stateVariables += AstStateVariable)*

(schedule = AstSchedule)?

(priorities += AstPriority)*

’end’;

Figure 4.2: Xtext grammar rule for an RVC-CAL actor.

Figure 4.3: Inferred meta-model from the AstActor rule.

66 Front-end

lowing rules:

• A grammar rule creates a class, unless it explicitly specifies that its return

type is the same as another existing grammar rule (for instance the grammar

has a rule Token that returns a Variable).

• An assignment creates an attribute in the class named after the left-hand side

when the return type of the rule is a primitive value (String for the ID rule,

int for the INT rule, etc.)

• When the right hand side is another rule, an assignment creates a reference

with containment set to true (in the example, parameters, ports, etc. belong

to the actor).

• A rule may be cross-referenced by referencing the rule between square brackets,

as shown on Fig. 4.4. In the example, a “procedure” attribute will be created

as a reference with containment set to false.

AstStatementCall:

procedure =[AstProcedure]

’(’ (parameters += AstExpression

(’,’ parameters += AstExpression)*)? ’)’ ’;’;

Figure 4.4: Xtext grammar rule for a call statement with cross-reference to a pro-

cedure.

4.2.3 Resolution of References

After a text file is parsed by Xtext, references are not resolved: a proxy that bears

the name of the referenced object is installed instead of the reference. The step

that transforms a model by solving its cross-references is called linking. The built-in

Xtext linking service replaces each proxy by a reference to the object defined with

the given name (if it exists). The name of an object is generally its identifier, but it

can be configured to be a qualified name that depends on the context.

The default linking service must be extended to deal with RVC-CAL’s needs.

First, in addition to C-like operators for bitwise operations (and, or, xor, not),

RVC-CAL defines intrinsic functions (namely bitand, bitor, bitxor, bitnot).

Because of the very nature of these functions, they are not defined anywhere, and

the linker must be aware of that fact and understand that a reference to an undefined

“bitand” function is a reference to an intrinsic, and not an error. The same reasoning

Expression Evaluation 67

applies for built-in procedures like print and println. Another feature that requires

custom linking is the definition of FSM transitions. Transitions reference a source

state and a target state, but these states are never defined. Our custom linking

service must therefore define a state the first time it is encountered when linking

the FSM, and other cross-references to this state will simply point to this state as

usual.

4.3 Expression Evaluation

Many transformations from the AST to the IR need to evaluate expressions as

compile-time constants for various purposes. To this end, an expression is given to

an evaluator, which either returns a compile-time constant, or reports an error. We

define in this section the evaluator that is present in the front-end.

The set of values that the evaluator can return is a union of the set of real

numbers R, signed integer numbers Z, and booleans B (which is an admittedly

small set compared to the other two). The front-end internally represents signed

integer numbers as integers with an arbitrary size, so the value of a signed number

is only limited by the available memory. However, since the RVC standard does not

currently define the size or behavior of real numbers, we currently use 32-bit float

types.

The evaluator has the following properties:

• The value a variable may be assigned belongs to the set:

V alues = R ∪ B ∪ {⊥}

The value ⊥ is used for variables whose value is unknown: uninitialized vari-

ables and variables whose value could not be evaluated as a compile-time

constant.

• Each variable that has been evaluated is present in the environment that as-

sociates a variable and its value:

Env : Idents→ V alues

The evaluation rules for RVC-CAL expressions are shown on Table 4.1. The

table is to be read as the rule named n is applied if the condition c is true, in which

case it returns the value v. Rules are separated in sections, in the following order:

scalars, list expression, if expression, unary operations, binary operations. In each

section, rules are listed sequentially from top to bottom, i.e. if the first rule does

not apply, we try the second one, and so on until we find a rule that can be applied.

68 Front-end

Rule

Name Condition Value

var var ∈ Env ∧ Env(var) 6= ⊥ Env(var)

otherwise ⊥

lit always true lit

[e1, ..., en] ∀i ∈ 2..n, type(ei) = type(ei−1) the list [e1, ..., en]

if(c, e1, e2) c ∈ B ∧ type(e1) = type(e2) e1 if c, otherwise e2

bitnot(e) e ∈ Z bitwise complement of e

not e e ∈ {true , false } logical complement of e

-e e ∈ R inverse of e

#e e refers to a list number of elements of e

none of the above ⊥

e1 op e2 op ∈ { =, != } and type(e1) = type(e2) result of equality

op ∈ {<,≤,≥, >} and e1, e2 ∈ R result of comparison

op ∈ { and, or } and e1, e2 ∈ B logical combination

op ∈ {+,−,×,÷,mod} and e1, e2 ∈ R result of e1 op e2

op is a bitwise operator and e1, e2 ∈ Z result of e1 op e2

none of the above ⊥

Table 4.1: Evaluation rules for RVC-CAL expressions (eval).

4.4 Typing the AST

In the process of translating RVC-CAL to IR, the step following syntax parsing is

typing. Types in the AST must be converted from the RVC-CAL type system to

the IR type system. Additionally, expressions in the AST have no type, but they

need to be typed so that RVC-CAL can be properly translated to IR.

4.4.1 Type Conversion

The conversion from RVC-CAL types to IR types is done as shown on Table 4.2.

Integers and unsigned integers types whose size is not set are arbitrarily considered

32-bits wide, which is still the predominant integer type on processors. As mentioned

in the previous chapter, in section 3.4.2, the front-end requires the size of types to

be compile-time constants, as given by eval(e) for any expression e. The conversion

of a List type recursively converts the type of its elements by calling conv(t).

The front-end currently limits the size of an integer type to 64 bits (although

Typing the AST 69

RVC-CAL type Condition IR type

bool/float/String bool/float/String

int/uint int(size=32)/uint(size=32)

int(size=e) eval(e) ∈ N int(size=eval(e))

uint(size=e) eval(e) ∈ N uint(size=eval(e))

List(type=t, size=e) eval(e) ∈ N List(type=conv(t), size=eval(e))

Table 4.2: Conversion from RVC-CAL type system to IR type system (conv).

internally the size of a int/uint could be as large as 231 − 1 bits), because it is not

clear yet how integer types larger than 64 bits should be implemented, nor if they

could even be implemented on all platforms.

4.4.2 Type Inference

Functions, procedures, and variables are typed in RVC-CAL, so we only need a

“weak” form of type inference to type expressions. We oppose a “weak” type in-

ference algorithm to the Damas-Milner’s W type inference algorithm [DM82] and

successors. These algorithms infer the most general type scheme for expressions and

functions described with lambda calculus. We have shown in [WRR+08] that W

could be used to type CAL actors (which, contrary to RVC-CAL actors, may not be

fully typed), by translating functions, procedures, expressions to lambda calculus.

Type inference associates types with identifiers that are the names of variables,

functions, procedures. Types are associated to identifiers by the Γ function:

Γ : Idents→ Types (4.1)

Type inference is defined in terms of inference rules. An inference rule has the

general form:

Γ ⊢ P

Γ ⊢ expr : t
(4.2)

The rule means that under the assumptions about the types of the variables in Γ,

if the premises P are true, then the expression expr is well-typed and has type t.

If an expression cannot be typed it is invalid according to the type system and an

error is reported.

Table 4.3 presents examples of the type inference rules used by the front-end.

RVC-CAL supports integers with an arbitrary size, which means that most arith-

metic expressions (sum, product, left shift...) have a particular typing rule. We

have documented in [WRGS10] the complete list of typing rules for all expressions

70 Front-end

of RVC-CAL, and proposed that these rules be included in future versions of the

RVC standard.

Name Inference rule

boolean Γ ⊢ bool

floating-point number Γ ⊢ float

string Γ ⊢ String

integer Γ ⊢ i : int(size = bitlength(i))

variable Γ ⊢ v : t (iff v : t ∈ Γ)

list
Γ ⊢ e1 : t ... Γ ⊢ en : t

Γ ⊢ [e1, ..., en] : List(type : t, size = n)

if
Γ ⊢ e1 : bool Γ ⊢ e2 : t Γ ⊢ e3 : t

Γ ⊢ if e1 then e2 else e3 end : t

Table 4.3: Type inference of RVC-CAL expressions.

The size of an integer i is computed using equation 4.3. The leading “1” adds a

sign bit to the number of bits of the integer in two’s complement.

bitlength(i) = 1 + ⌈log2(

{

if n ≥ 0, i+ 1

otherwise, −i

}

)⌉ (4.3)

4.4.3 Type Checking

Before AST nodes are translated to the IR, the front-end checks that the actor is

correctly typed. This step is called type checking, and consists of checking that the

conditions presented in Table 4.4 are true. The assignment type check rule is to be

read as an assignment of an expression e to a target t, where t is a reference to a

variable, possibly with indexes. The type of an indexed variable is determined using

the same rule as an indexed expression.

AST node Condition

if(e) typeof(e) = bool

while(e) typeof(e) = bool

t := e typeof(t) ∩ typeof(e) 6= ∅

p(e1, ..., en) ∀pi ∈ params(p), typeof(pi) ∩ typeof(ei) 6= ∅

Table 4.4: Type checking of AST statements.

Structural Transformations 71

After the AST has been annotated with types and type-checked, it can be trans-

formed to the IR. The next section presents the structural transformations, i.e.

transformations of priorities, FSM, and actions to the IR, and the subsequent sec-

tion details the semantic transformations, i.e. transformations that create an IR of

the behavior expressed by the body of actions, functions, and procedures.

4.5 Structural Transformations

As explained in section 3.3, the FSM and priorities of an actor must be transformed

to the form used by the Intermediate Representation.

4.5.1 Tag Association Table

Prior to transforming FSM and priorities, we build a tag association table that

associates tags and lists of actions. Transitions in the FSM and inequalities in

priority statements reference tags, but the design of the IR require that each tag

t be replaced by the set of actions t̂ associated with this tag. Building the set t̂

for each tag t separately simplifies the transformation of FSM and priorities. In

our previous work [WRN09] the total order obtained from priorities would include

superfluous “virtual” tags, that is tags that are not associated with an action, and

the transformation of the FSM needed to compute the t̂ set, even if the priority

resolution already did in a different way.

Each time an action a with tag ta = [i1, ..., in] is translated from RVC-CAL to

IR, n new entries are added to the table, one per tag identifier. The action a is

added to the list of actions associated with each tag tp where tp is defined as each

non-empty prefix of ta by: ∀tp.tp 6= ⊥ ∧ tp ⊑ ta. When all actions have been added

to the table, the set of actions associated with a tag t is retrieved in O(1).

4.5.2 Priority Resolution

The partial order on tags is transformed to a total order of actions by creating a

directed graph from priorities and sorting it topologically. The graph is defined as

G = (V,E) where V is the set of vertices and E ⊆ V × V is the set of edges. The

graph contains one vertex per tagged action. Each priority inequality ta > tb creates

edges between all the vertices that correspond to actions of the t̂a set and all the

vertices that correspond to actions of the t̂b set. Figure 4.5 shows the directed graph

that would be created from priorities b > a > c and a.x > a.y contained in an actor

with four actions a.x, a.y, b, c. The graph shown on the figure has no vertex a

72 Front-end

because there is no action a in our sample actor, and b and c are both connected to

a.x and a.y, because t̂a = {a.x, a.y}.

b c

a.x a.y

Figure 4.5: Directed Graph of Priorities.

The second step to obtain a total order is to compute the topological sort of the

graph. Topological sort is only defined for Directed Acyclic Graphs (DAGs), so the

graph must be checked for cycles. A cycle in the graph implies that the actor was

not well-defined, because it means that there exists at least an action that has a

higher priority than itself. The output of the sort is a list of vertices that respects

the partial order of the graph.

4.5.3 Finite State Machine

The transformation from the RVC-CAL FSM to an IR of the FSM as detailed in

section 3.3.3 is done with the following steps. First, the AST of the body of the

FSM is transformed to an attributed directed graph G = (V,E, t) where the set

of vertices is defined as V = S (S is the set of states), and the set of edges, that

correspond to transitions in the original FSM, is defined by E ⊆ S×S. t is a function

written t : E → T that associates each edge of E with a tag from the set of tags

T of the actor. The second step is to transform G to a graph G′ = (V,E, t′) where

t′(e) 7→ t̂(e), in other words where each edge between any two states is associated

with the set of actions that match the tag t(e). Transforming G to G′ is done in

O(E) by using the tag association table computed previously.

The last step is the transformation of G′ to a list of transitions named L. The

order in this list is not relevant, hence we can define L as the set L = S ×D where

D is the set of destinations from any given state, and is given by D ⊆ A × V . For

each state s ∈ S, we obtain a list of edges from E, and for each edge e a destination

state as well as associated actions with t′(e). The list of actions must be ordered

by priority, which is done using a sort algorithm where the order of two actions a1

and a2 depends on the rank of the actions. If a1 has a priority that is higher than,

lower than, or equal to the priority of a2 then the order should be respectively a1, a2,

a2, a1, and either one in the case they have the same priority.

Structural Transformations 73

4.5.4 Actions

As per the structure of the IR shown in section 3.3.4, the transformation of ac-

tions separates each action a into two IR procedures, one procedure that computes

the schedulability of the action a called isSchedulable a, and one procedure that

contains the body with the computations performed by the action when fired. Al-

gorithm 2 shows the creation of the procedure in the IR that contains the body of

an action a. This algorithm is a straightforward translation of RVC-CAL seman-

tics to IR semantics. The transformation to an IR of statements and expressions is

described below in section 4.6.

Algorithm 2: Creates the body procedure for an action a.

input : action a

output: procedure a

declare token variables;

declare local variables;

foreach input pattern of n tokens on port P do
create a Read(v, P , n);

create assignments from v to token variables;

foreach local variable v initialized with an expression e do
transform e to an IR expression e′;

create Assign(v, e′);

transform statements;

foreach output pattern of n tokens on port P with expressions en do
create a local array arr of size n;

translate en to IR expressions e′n;

create assignments from e′n to arr;

create a Write(P , n, arr);

create Return(⊥);

The procedure that computes whether the action a can be scheduled is created

by Algorithm 3. The procedure created by this algorithm is a translation of the

scheduling information written in RVC-CAL using the IR. If there are input patterns,

the algorithm creates Peek instructions, as well as token reorganization code if

needed. This must be done before the code that evaluates guards is created, because

guards may depend on values peeked from FIFOs. The tricky part of the algorithm is

the last if condition, in which the nodes previously created are moved into a newly-

created IfNode. Indeed, the code that peeks FIFOs and evaluates the guards must

only be executed if there are tokens in the FIFOs. Moving nodes in the CFG is not

computationally expensive, as it is only a matter of affecting the predecessors and

74 Front-end

successors of the different CFG nodes.

Algorithm 3: Creates the isSchedulable procedure for an action a.

input : action a

output: procedure isSchedulable a

create a boolean variable “result” that is true if the action can be fired;

if the action has no input pattern and no guard then
create Assign(result, true);

else

if the action has an input pattern then

foreach input pattern of n tokens on port P do
create a Peek(v, P , n);

create assignments from v to token variables;

if the action has guards then
transform each guard expression gi to an IR expression ei;

create Assign(result, e1 and ... and en);

if the action has an input pattern then
create a new IfNode;

move nodes and instructions created until now inside the then branch

of the IfNode;

foreach input pattern of n tokens on port P do
create HasTokens(hti, P , n) before the IfNode;

set the condition of the IfNode to ht1 and ... and htn;

create Assign(result, false) in the else of the IfNode;

create Return(result);

4.6 Semantic Transformations

The semantic transformations include the translation of statements and expressions

to the IR, and then the translation to SSA form.

4.6.1 Translation of Statements and Expressions

The translation of statements and expressions is a complicated one, with many par-

ticular cases. Actions, procedures, and functions are all translated to IR procedures,

so we will refer to the procedure being created, or current procedure, rather than

the original object in the AST.

Semantic Transformations 75

Loading and Storing Global Variables

The front-end produces a code that contains a number of loads and stores that is as

small as possible. Indeed, in the IR a global variable (parameter or state variable)

cannot be used as-is in expressions and needs to be explicitly loaded. Similarly,

when a global variable is assigned in the RVC-CAL source code, this translates to

a store in the IR. However, at most one action can be executed at any given time,

so we have exclusive access to the global variables of the actor, and as a result it is

not necessary to eagerly load or store variables. This simplifies the IR of the code as

well as code generation for hardware targets: during one cycle, programmable logic

can store several global variables, but it cannot store any of them more than once

during the cycle.

To minimize the number of loads and stores, the front-end maintains a set of

variables that need to be loaded, and another set of variables that need to be stored.

These sets are associated to the current procedure, and are initialized to the empty

set. The simplest case is when the procedure does not call another procedure: after

the IR procedure has been fully translated, loads are added at the beginning and

stores at the end. When the procedure does contain calls, however, we need to make

sure that the callee procedure has an up-to-date view of the global variables, and the

front-end inserts spill code around the call. Before the call, this code stores modified

variables that the procedure may load, and after the call, the code re-loads global

variables that the callee procedure may store. If an inline transformation is applied,

this spill code can be identified easily and removed.

Translation of Expressions

The difficulty in the translation of RVC-CAL expressions to the IR lies in the trans-

lation of the functional if and list constructs, and in the fact that the front-end

tries to produce the smallest code for these constructs. For instance the assignment

of a list [e1, e2, ..., en] to a target variable v can be naively translated as the creation

of a temporary list, and a copy of this list to v. However, in most cases2 v can

be assigned the values directly, saving the creation of a copy loop. Similarly, it is

possible for a variable v to be assigned an if that returns a list [e1, e2, ..., en]. In this

case, a naive translation would create code that in each branch of the if, computes

values, copies them into a temporary list, and after the if, copies the temporary

list to v.

To create code that is as small (and hopefully, fast) as possible for assignments

of lists to variables requires the front-end to maintain a current target. When a

2As long as v does not appear on the right hand-side, because the list may reorganize values in

a different order, and assigning v directly will produce wrong results.

76 Front-end

variable is assigned an expression, the target is the variable and indexes used in

the assignment. When an expression is not assigned to anything, for example in

conditions, a temporary variable is created to hold the result and becomes the target.

This target is directly assigned when if and list expressions are translated.

Apart from these considerations, the translation of expressions is done as follows.

Unary and binary expressions have a direct equivalent in the IR, so translating them

is done by translating their operand(s) and creating an equivalent IR expression

with the same operator. Calls to built-in bitwise functions become unary or binary

expressions depending on the function called. A list is translated as a sequence of

stores, surrounded by a WhileNode that corresponds to each generator (if any).

Translation of Statements

The translation of statements is pretty straightforward compared to the translation

of expressions. Calls, if statements, foreach and while loops are transformed to

Call, IfNode, and WhileNode respectively. The only trick is the translation of an

assignment to a variable. If the variable is a list, then the variable becomes the target

in the translator of expressions, which creates the necessary nodes and instructions.

Otherwise, if the variable is a global variable, a temporary local variable is created

to hold the result, and an Assign is created.

4.6.2 Translation to SSA form

The IR created from RVC-CAL statements and expressions does not have the SSA

property initially. As explained in section 2.4.3, Static Single Assignment (SSA)

is a property that makes many optimizations easier to implement, faster, or both,

and reduces memory used to store dataflow information. There are many variants of

SSA: vanilla SSA, semi-pruned SSA, array SSA, interprocedural SSA, etc. [CFR+91,

BCHS98,KS98,SVKW07], and many algorithms that can transform code to minimal

SSA form (with no superfluous φ assignments), using a variety of data structures

and approaches [CFR+91,BM94,CF95,PB95,SG95,AH00].

Of the different strains of SSA, we found that vanilla SSA was the best suited

for our purpose. First, two of the languages we wanted to generate from our IR

(namely LLVM and XLIM) are in vanilla SSA form. Second, the aim of our work

is not to create yet another optimizing compilation infrastructure; we perform a

handful of trivial optimizations in order to produce cleaner and smaller code, but

“true” optimizations should be performed by the compiler specific to the language

in which source code is generated from the IR, therefore we did not feel the need for

more complicated forms of SSA.

Conclusion 77

The algorithm we use to transform the IR so it has the SSA property is the

single-pass algorithm of Brandis and Mössenböck. This algorithm is particularly

well suited for structured languages, i.e. languages that do not allow breaking the

control flow arbitrarily. RVC-CAL is a structured language in that it does not have

break, continue, goto, or return. This makes translation of SSA easier because

we do not need any specific data structure like the dominance tree traditionally used

for the translation to SSA of languages with unrestricted control flow such as C.

4.7 Conclusion

This chapter has presented the front-end of our compilation infrastructure. The

front-end produces an IR of RVC-CAL actors in several steps including parsing,

typing, and several transformations. We have shown how we exploited the Xtext

framework to obtain a full-fledged Java description of the AST of RVC-CAL, along

with a syntax parser, a pretty-printer, and a linker. We have presented the rules of

the evaluation of compile-time expressions, and of type conversion, type inference,

and type checking of the AST of an RVC-CAL actor. Finally, sections 4.5 and 4.6

have explained the transformations to the IR of RVC-CAL structure and semantics

respectively.

The next two chapters show the next two components of our infrastructure: the

middle-end (Chapter 5) and the back-end (Chapter 6). The middle-end can analyze

the IR of an actor to determine the MoC to which it conforms, and transform actors

that are static, cyclo-static, and quasi-static in a way that removes the need for

runtime scheduling wherever possible.

78 Front-end

Chapter 5

Analysis and Transformation

5.1 Overview

The middle-end can analyze and transform the IR of actors (produced by the front-

end) and XDF networks (Fig. 5.1). Analysis aims to provide as much information

as possible about the behavior of an actor or a network. This information can then

be used to create transformed actors and networks from which the back-end can

generate better code, that is code that runs faster, consumes less memory, or a

trade-off between these two.

Classification

Normalization

Merging

middle-endfront-end

IR
actors

XDF
networks

back-end

IR actors
XDF networks

Figure 5.1: Middle-end in the compilation infrastructure.

We detail in this chapter one analysis method and one transformation algorithm

that we have described in [WR10]. The analysis method is called classification and

can automatically classify an actor as static, cyclo-static, or quasi-static (section

5.4). Classification is necessary to allow actors and networks to be transformed

79

80 Analysis and Transformation

and optimized. The transformation is an algorithm to transform actors classified as

static, cyclo-static, and quasi-static to reduce scheduling overhead when executing

those actors (section 5.5). The transformation we describe may be used to transform

actors into other actors that will not only execute faster, but will also facilitate opti-

mizations that may be applied later. For instance, actor merging creates composite

actors from several actors, and our transformation changes actors so that they can

be merged more easily.

Through this chapter we will refer to an example to allow a better understanding

of classification and transformation. This example is a FU from the RVC VTL called

Algo Interpolation halfpel that is a low-level description of half-pixel interpola-

tion. This actor has an FSM presented on Fig. 5.2.

start

interpolatedone

start

row_col_0
other

Figure 5.2: The Finite State Machine of Algo Interpolation halfpel.

Figure 5.3 shows the variables of the actor, two of which, x and y , act as loop

counters, and other variables are used by computations in the actor.

int(size =5) x;

int(size =5) y;

int(size =3) flags;

int(size =2) round;

int(size =9) d0;

...

int(size =9) d9;

Figure 5.3: Variables of Algo Interpolation halfpel.

The first action that can be fired is the start action. This action assigns zero

to x and y , and initializes the values of flags and round , as shown on Fig. 5.4.

After the action start is fired, the actor is in the interpolate state. In this state, any

of the actions done, row col 0, other (Fig. 5.5) can be executed until the actor

Overview 81

goes back to the start state. The actions are tested for schedulability in this very

order as constrained by the priority statement of the actor.

start: action halfpel :[f] ==>

do

x := 0;

y := 0;

flags := f >> 1;

round := f & 1;

end

Figure 5.4: Action start of Algo Interpolation halfpel.

The done action contains the loop termination condition and after it is fired

the actor is back in the start state. The two other actions compute data and incre-

ment the x and y loop indexes. Figure 5.6 contains the listing of the loop body

procedure.

Classification aims to answer the following questions:

• is the Algo Interpolation halfpel actor dynamic?

• if not, is it static, cyclo-static, or quasi-static?

• in this case, what actions are fired, and how many tokens are read from its

input ports and how many are written to its output ports?

Considering the FSM of the actor, the values initially assigned to x and y , the

actions fireable in the interpolate state, and the loop body procedure, classification

is able to tell us:

• that the actor is cyclo-static and fires actions in this order: start, 9 ×

row col 0, 8× (row col 0 and 8× other), done,

• that 1 token is read from halfpel, 81 tokens are read from RD, and 64 tokens

are written to MOT.

The next section presents our method to automatically classify dynamic dataflow

actors into more restricted dataflow Models of Computations (MoCs). This method

is capable of answering the questions listed above for actors that are static (respect

the SDF model), cyclo-static (respect the CSDF model) or quasi-static (we define

the kind of quasi-static behavior we support as a subset of PSDF).

82 Analysis and Transformation

done: action ==>

guard

y = 9

end

row_col_0: action RD:[d] ==>

guard

x = 0 or y = 0

do

loop_body ();

end

other: action RD:[d] ==> MOT:[p]

guard

x != 0, y != 0, y != 9

do

// computation of p omitted

loop_body ();

end

Figure 5.5: Actions fireable in the interpolate state.

procedure loop_body(int(size =9) d)

begin

// dn := dn -1; d0 := d;

x := x + 1;

if x >= 9 then

x := 0;

y := y + 1;

end

end

Figure 5.6: loop body procedure.

Detection of Unclassifiable Actors 83

5.2 Detection of Unclassifiable Actors

DPN places no restrictions on the description of actors, and as such it is possible

to describe a time-dependent actor in that its behavior depends on the time at

which tokens are available. This happens in RVC-CAL when a given action reads less

tokens from input ports than a given higher-priority action, and these two actions

have guards that are not mutually exclusive:

∃i ∈ [2..N], ∃j, k ∈ [1..p]

{

Pi,j ⊐ Pi−1,j

Gi,k ∩ Gi−1,k 6= ∅
(5.1)

The Clip actor presented section 2.3.2 has a time-dependent behavior. In this

particular case, this behavior was a flaw in the implementation of the actor itself,

although it may never cause any problems if the actors connected to it always send

a token on the S port first. In other cases, time-dependent behavior can be useful

as a low-level optimization by allowing an actor to test for the absence of data and

still do something useful when that is the case. Time-dependent behavior can be

removed in some cases simply by making guards mutually-exclusive, which in our

example translates to rewriting the do clip action as presented in Fig. 5.7. We

used a count variable to implement the intended behavior of the actor, which reads

a sign flag and then clips 64 values.

int count := -1;

read_signed: action S:[signed] ==>

guard count < 0

do

s := signed;

count := 63;

end

do_clip: action I:[i] ==> O:[clip(i,s)]

guard count >= 0 // mutually exclusive with read_signed

do

count := count - 1;

end

Figure 5.7: The do clip action rewritten in a time-independent way.

Classifying a time-dependent actor may be intractable or impossible depending

on the kind of actor. This kind of actor cannot be classified as SDF by definition

84 Analysis and Transformation

(equation 5.1 is incompatible with equation 2.4), but it could still be considered

a valid cyclo-static or quasi-static actor, in which case we would need to record

the sequences of tokens that lead to this cyclo-static or quasi-static behavior. The

intractability of classifying such an actor lies just there.

We showed in [WR10] that the time-dependent version of the Clip actor could be

considered cyclo-static with a period of 65 tokens, because we supposed that tokens

would arrive in the correct order. Even knowing the period of a time-dependent

actor, an automatic classification would still need to explore all the possible input

patterns, from [⊥,⊥] to [[∗, ..., ∗], [∗, ..., ∗]], which means at most 265 combinations in

this case, with no clear heuristic to prune useless sequences. Worse, if an actor were

entirely dynamic, there would be no criterion as to when to stop the enumeration of

possible tokens.

Therefore our classification method must detect and discard time-dependent ac-

tors to prevent enumerating the universe of possible token sequences. Detecting

actions that read less tokens from input ports than higher-priority actions is trivial.

However, such actions may not render the actor time-dependent if their guards are

exclusive, which must be mechanically verified. To this end we feed the guards to a

constraint solving system, which either gives the values of tokens and state variables

that satisfy both guards (guards not mutually exclusive), or else finds no solution

(guards mutually exclusive).

Constraints are created from the guards of an action as follows. The guards of

an action are boolean expressions that must be simultaneously true for the action to

be fired, so we translate each guard of any two actions to a constraint. Suppose an

action has a guard x > 0 and the other action has a guard x 6= 1, then the constraint

solver will find values of x that satisfy the constraints, such as x = 2. If there is

such a solution, this means the guards are not mutually exclusive.

5.3 Abstract Interpretation of Actors

Classifying an actor within a MoC is based on checking that a certain number of

MoC-dependent rules hold true for any execution of this actor. Some of these rules

are verified solely from the structural information of the actor, for instance the rules

for a static actor only depends on the input and output patterns of actions. In

more complicated cases, we need to be able to obtain information from an actual

execution. The actor must be executed so that the information obtained is valid

for any execution of the actor, whatever its environment (the values of the tokens

and the manner in which they are available). As a consequence it is not possible to

simply execute the actor with a particular environment supplied by the programmer.

Abstract Interpretation of Actors 85

To circumvent this problem we use abstract interpretation [CC77].

5.3.1 Rules of Abstract Interpretation

Abstract interpretation is an interpretation of the computations performed by a

program in an abstract universe of objects rather than on concrete objects. Our

abstract interpretation of an actor has the following properties:

• The set of values that can be assigned to a variable is

V alues = Z ∪ {true , false } ∪ {⊥}

The value ⊥ is used for variables whose value is unknown, e.g. for uninitialized

variables.

• The environment is defined as an association of variables and their values:

Env : Idents→ V alues

Env initially contains the state variables of the actor associated with their

initial value if they have one, otherwise with ⊥.

• When the interpreter enters an action, the environment is augmented with

bindings between the name of the tokens in the input pattern and ⊥. In other

words, a token read has an unknown value by default.

The abstract interpreter interprets an actor by firing it repeatedly until either

one of the conditions is met:

1. The interpreter is told to stop because analysis is complete as determined by

the classification algorithm.

2. The interpreter cannot compute if an action may be fired because this infor-

mation depends on a variable whose value is ⊥.

To fire the actor, the interpreter starts by selecting one fireable action, that is

an action that meets the criteria defined section 2.3. The abstract interpretation

of an RVC-CAL actor is the same as its concrete interpretation with the following

exceptions. Any expression that references a variable v where Env(v) = ⊥ has the

value ⊥. Conditional statements and loops that test an expression whose value is ⊥

are not executed. However, guards evaluated as ⊥ cause the abstract interpreter to

stop as per condition 2.

86 Analysis and Transformation

5.3.2 Example of Abstract Interpretation

As an example, we present the abstract interpretation of the

Algo Interpolation halfpel actor defined in section 5.1. The environment

initially contains the variables { x , y , flags , round , d0 , ..., d9 } that are all

associated with ⊥. For the sake of brevity we will not represent variables nor tokens

valued as ⊥ in the environment. Table 5.1 sums up the abstract interpretation of

the actor.

State Action fired Environment

start n/a ∅

interpolate start { x = 0, y = 0 }

interpolate row col 0 { x = 1, y = 0 }

...

interpolate row col 0 { x = 8, y = 0 }

interpolate row col 0 { x = 0, y = 1 }

interpolate row col 0 { x = 1, y = 1 }

interpolate other { x = 2, y = 1 }

...

interpolate other { x = 8, y = 1 }

interpolate other { x = 0, y = 2 }

start done { x = 0, y = 9 }

Table 5.1: Abstract interpretation of Algo Interpolation halfpel.

Like the concrete interpretation, the abstract interpretation starts by firing the

only fireable action in the initial state, the start action. Since the token f read on

the halfpel port has by definition the value ⊥, the variables flags and round are

set respectively to ⊥÷ 2 and ⊥ mod 2, in other words they are both set to ⊥. The

variables x and y both take the value 0. After the action is fired, the interpreter

changes the state to interpolate. This is shown on the table as the first row.

In the interpolate state, there are three possible actions that can be executed.

The interpreter schedules the first one whose input patterns are satisfied and whose

guard is true, in this case it is the row col 0 action because we consider that tokens

are always available, and the condition x = 0 or y = 0 is true. When the action

fires, the abstract interpreter executes d n := d n−1 for n in the interval [9..1], so

variables d9 to d1 take the value ⊥. Then it executes d0 := d , which assigns d0

the value ⊥ because the d token is ⊥ too. The subsequent assignments to x and y

are executed as per concrete interpretation rules since both variables have concrete

Classification of Dynamic Dataflow Actors 87

values, so x takes the value 1, and y is unchanged. The row col 0 action is fired

as long as either x or y is true (second part of Table 5.1).

When y becomes greater than zero, the actor has a different behavior as can be

seen on the third part of Table 5.1. In this case, row col 0 is executed once, and it

is followed by 8 firings of other. Then, row col 0 can be fired again, followed by

8 firings of other, and so on. Finally, as soon as y equals 9, done fires and takes

back the actor to its initial state.

5.4 Classification of Dynamic Dataflow Actors

Classification is a prerequisite for the transformations presented in section 5.5 as

well as other transformations such as actor merging. We first present how the

classification method can detect actors that it cannot classify and discard them.

5.4.1 Classification of a static actor

Classification tries to classify each actor within models that are increasingly expres-

sive and complex. The rationale behind this is that the more powerful a model, the

more difficult it is to analyze. If an actor cannot be classified as a static actor, the

method will try to classify it as cyclo-static, and then as quasi-static.

Algorithm 4 recognizes actors that conform to the SDF MoC. It is a straightfor-

ward translation of the equations 2.4 and 2.5 that define the firing rules and function

of an SDF actor. The “input” and “output” functions respectively return the input

pattern and output pattern of their argument as associative maps between ports

and the number of tokens they consume (respectively produce).

Algorithm 4: Returns true if an actor can be classified as SDF.

input : n actions

output: is SDF

if n > 0 then
ip1 ← input(actions[1]);

op1 ← output(actions[1]);

for i← 2 to n do
ipi ← input(actions[i]);

opi ← output(actions[i]);

if ip1 6= ipi ∨ op1 6= opi then
return false

return true
return false

88 Analysis and Transformation

5.4.2 Classification of a cyclo-static actor

The conditions an actor must meet to be a candidate for classification as cyclo-static

are two-fold: (1) it must have a state, hereinafter noted S, and (2) there must be a

fixed number of data-independent firings that depart from the initial state, modify

the state, and return the actor to its original state S0. We consider two kinds of

actor state:

1. S consists of a set of scalar state variables and their runtime value. A state

variable belongs to S iff it has an initial value and is used in at least one guard

expression. S0 is the set of variables of S with their initial value. Non-scalar

variables (arrays) are not taken into account because state is typically not

implemented with them. A full cycle is found when at least one action has

been executed, and S = S0 is true.

2. In the case where S = ∅ and the actor does not have an FSM, it is considered

to have no state and therefore cannot be classified as cyclo-static. Otherwise

the state consists of the current FSM state, and S0 is the initial state s0 of the

FSM: S0 = s0. If there is no path that returns S to S0, the actor cannot be

classified as cyclo-static.

Once the classification algorithm finds the actor to be a valid cyclo-static can-

didate, we use the abstract interpreter presented section 5.3 until we find that the

actor has returned to its original state, or the abstract interpreter stops because

of data-dependent behavior. When the actor has returned to its original state, the

algorithm stores the sequence of actions that fired, as well as the production and

consumption of tokens on each port of the actor.

5.4.3 Classification of a quasi-static actor

A quasi-static actor is informally described as an actor that may exhibit dis-

tinct static behaviors depending on a data-dependent condition. Our classification

method is restricted to classify the subset of quasi-static actors considered by Boutel-

lier et al. [BLL+08] and defined as follows. A quasi-static must have an FSM whose

initial state s0 has transitions to n branches (n ≥ 2), the ith branch starting with

state si.

Each transition from s0 to si must be solely dependent on a control token in

the BDF sense; s0 may have a cycle, which simply consumes one control token and

returns the actor to the initial FSM state. Self-loops and cycles more generally are

allowed within a branch, and so are cross-branch transitions, as long as all branches

go back to the initial state. Figure 5.8 presents the FSM of an actor with 4 branches:

Classification of Dynamic Dataflow Actors 89

(s0), (s1, s4, s6, s7, s8), (s2, s4, s6, s7, s8), (s3, s5). The actor would not be accepted

by our classification method because the last branch (represented with dotted states

and transitions) never goes back to the initial state.

s
0

s
1

s
2

s
4

s
6

s
3

s
5

s
7

s
8

Figure 5.8: A Finite State Machine with four branches.

The first step of the classification of an actor as quasi-static is to assert it has an

FSM that respects the aforementioned conditions. This is done simply by examining

each successor si of the initial state s0, and checking that there is a path from si

back to s0. This criterion alone does not qualify the actor as quasi-static, it merely

discards candidates that cannot be quasi-static.

The second step of the classification checks that each branch fires a fixed number

of data-independent firings and returns to the initial state:

1. for each branch i, find a value that satisfies the condition to take branch i but

not any branch before it. We use constraint solving to automatically find a

satisfying value.

2. use the abstract interpreter by taking branch i and firing the actor until it

goes back to the initial state, or the abstract interpreter stops because of data-

dependent behavior.

Taking branch i is done by making the interpreter return the concrete value

computed in step 1 instead of ⊥ when the control port is read. It is important

that the abstract interpreter only provide the concrete value once. Indeed, in some

FSMs there may be more than one conditional state, i.e. more than one state being

conditioned by the control port. We could probably further narrow the subset of

acceptable actors with this criterion, but this is not necessary since the abstract

interpreter will identify the transitions departing from a conditional state different

from s0 as data-dependent.

90 Analysis and Transformation

5.5 Transformation of Classified Actors

This section presents a method to automatically transform actors that were classified

as static, cyclo-static, or quasi-static, to higher-level SDF and PSDF graphs. This

transformation improves execution speed of the resulting actors, and makes merging

actors of the same kind easier.

5.5.1 Transformation to SDF and PSDF

The classification of actors gives information about the sequence of actions that were

fired:

• in the case of static behavior, there may only be one action by definition;

actors that have several actions with similar input/output patterns must be

transformed to single-action actors.

• in the case of cyclo-static behavior, the sequence is a list of actions with fixed

production/consumption rates that start from an initial state and eventually

return to this initial state.

• in the case of quasi-static behavior, there are several sequences of actions;

each sequence is a concatenation of a first conditional action and a sequence

of actions with fixed production/consumption rates.

To allow actors to be merged later, these sequences must be transformed to

respect appropriate MoCs. They can be trivially transformed from cyclo-static to

CSDF and from quasi-static to PSDF, by transforming an action invocation to a

vertex and setting production and consumption to zero on every edge (since the

actions do not consume the data of one another). Sadly, this sort of graphs are

useless:

• They do not represent the behavior of the actors.

• They are not suitable for merging, in particular merging SDF graphs together

when each graph is composed of up to a few hundred vertices can quickly result

in huge graphs, especially if the repetitions of vertices are not multiple of one

another (see [LM87] for additional explanations).

• They cannot be efficiently mapped and scheduled because optimally scheduling

a SDF graph is an NP-complete problem [PPW+09].

A better representation is a graph where a sequence of actions is transformed to

a single higher-level action that fires all the actions in the sequence consecutively,

Transformation of Classified Actors 91

this way edges can carry the proper production/consumption rates and the graph

accurately represents the actor’s behavior. The contents of higher-level actions can

be factorized with loop rerolling.

5.5.2 Loop Rerolling

Loop rerolling is the exact opposite of the well-known loop unrolling transformation.

It has been used by Stitt and Vahid to recover loop structures from compiled code

[SV05]. In the context of this work, we used this transformation to find loops of

actions within an initially flat sequence of actions.

The general algorithm to perform loop rerolling is as follows:

1. recognize common sequences within an input sequence

2. form loops around consecutive repetitions of common sequences

We used the Sequitur [NMW97] algorithm to recognize common sequences of

actions from the initially flat list of actions. Sequitur works by deriving a hierarchical

structure in the form of a Context-Free Grammar from a sequence of symbols. For

instance the grammar G1 derived from the sequence of symbols ababc is:

• S → A A c

• A → a b

In our case, the initial input is a sequence of actions. Action tags cannot be used

directly however, as Sequitur may group components from different tags together.

For example, the grammar G2 derived from a.b a.c a.b a.c x.y is:

• S → A B C B ’ ’ x . y

• A → a .

• B → b C c

• C → ’ ’ A

This grammar is of no use, because it cannot be exploited to find repetitions of

actions. On the other hand, if we replace a.b by a, a.c by b, and x.y by c, we

obtain the sequence ababc. As shown above, this leads to the grammar G1, which

is clearly more amenable to analysis of loop patterns.

To obtain loops from the hierarchical structure, we walk through the hierarchical

structure by counting the number of rule invocations and developing the rules. For

92 Analysis and Transformation

instance, suppose we have a sequence1 composed of four repetitions of a sub-sequence

composed of five as followed by three bs, noted 4(5(a) 3(b)). The corresponding

grammar is:

• S → A B C C C D

• A → a a

• B → A a

• C → D B A

• D → b b b

The grammar is gradually transformed as follows:

• S1 → A B 3(C) D

• S2 → 2(a) A a 3(D B A) 3(b)

• S3 → 2(a) 2(a) a 3(3(b) A a 2(a)) 3(b)

• S4 → 2(a) 2(a) a 3(3(b) 2(a) a 2(a)) 3(b)

Finally we group consecutive actions together, which gives us 5(a) 3(3(b) 5(a)) 3(b).

Sequitur works in linear time, so the hierarchical structure it derives is not optimal,

which explains why the result is not minimal in terms of number of loops.

Figure 5.9 shows what the output of loop rerolling looks like on the

Algo Interpolation halfpel actor. As mentioned above, Sequitur may not al-

ways derive the optimal grammar, which is why there is an additional loop on other

that would not have been necessary should the first loop include one less row col 0.

5.5.3 Reduction of the Number of Accesses to FIFOs

Before classification, all actors are considered dynamic. This means that to fire an

action an action scheduler must check that there are enough tokens in the input

FIFOs and enough space in the output FIFOs, read tokens, compute data, and

write tokens. After classification we know that some actors have a behavior that is

static, cyclo-static, or quasi-static. As a consequence, we have information about

the number of tokens and the space needed for several actions to fire, not just one.

A static actor is transformed to an actor with a single action, so it is not possible

to reduce the number of read and write operations. Conversely, after loop rerolling

1The developed sequence is “aaaaabbbaaaaabbbaaaaabbbaaaaabbb”.

Conclusion 93

start ();

foreach int i in 1 .. 10 do

row_col_0 ();

end

foreach int i in 1 .. 8 do

foreach int j in 1 .. 8 do

other ();

end

row_col_0 ();

end

foreach int i in 1 .. 8 do

other ();

end

done ();

Figure 5.9: Loop Rerolling on Algo Interpolation halfpel.

cyclo-static actors have one high-level action, and quasi-static actors have n condi-

tioned high-level actions. Those high-level actions act as static action schedulers:

They fire sequences of actions, each action potentially reading and writing tokens.

Since we know the number of firings that will occur, those reads and writes can be

replaced by loads from/stores to arrays. For instance the limit action of Clip would

be transformed as shown on Fig. 5.10. The A action is transformed as follows:

1. read data from each input port in a tokens port array

2. initialize each index port variable to zero

3. fire actions

4. write data to each output port from tokens port

5.6 Conclusion

5.6.1 Comparison to Related Approaches

Zebelein et al. present a classification algorithm for dynamic dataflow models in

[ZFHT08]. In their model, actors are defined as SystemC modules that receive and

send data via SystemC FIFOs. Their classification method is based on the analysis

of read and write patterns and FSMs of the different modules. Compared to ours,

94 Analysis and Transformation

do_clip: action ==>

var

int(size =10) i := tokens_I[index_I],

int(size =9) o

do

index_I := index_I + 1;

count := count - 1;

o := clip(i, s);

tokens_O[index_O] := o;

index_O := index_O + 1;

end

Figure 5.10: The limit action transformed.

their approach is limited by the fact that they ignore any C++ code that does not

contain a read or a write, and that they do not classify quasi-static actors.

A different approach is presented by Årzén et al. that is based on an analysis

of the Control-Flow Graph [ÅNvP10]. On one hand, their approach is capable of

finding actors that are static and cyclo-static, but not those that are quasi-static.

These actors represent a non-negligible proportion of actors in our test application.

Moreover, no distinction is made between dynamic and time-dependent actors, and

one actor that our method finds to be cyclo-static is classified by their method as

time-dependent. On the other hand, Årzén et al. show an interesting constraint-

based system to find the optimal scheduling of a set of static and cyclo-static actors,

as well as an actor merging system. However, no experiments are shown with respect

to the expected performance increase that should result from these techniques. Fi-

nally, the report does not present an equivalent of our loop rerolling transformation,

which can dramatically reduce runtime scheduling, as shown in Chapter 7.

In [BLL+08], Boutellier et al. show how to express quasi-static RVC-CAL actors

as PSDF graphs and how to derive a multiprocessor schedule from these graphs.

However, they do not address the issues of automated classification and transfor-

mation: Quasi-static behavior is specified with parameters defined manually, and

they do not explain how low-level Homogeneous SDF (HSDF) graphs created from

quasi-static branches can be automatically transformed to high-level PSDF graphs.

As a consequence, we believe that our work can serve as a preprocessing step for

their approach by automatically classifying actors as quasi-static and transforming

them to high-level PSDF graphs.

Gu et al. present a technique to recognize a set of Statically Schedulable Regions

(SSRs) within a dynamic dataflow program [GJB+09]. SSRs are sets of ports that

Conclusion 95

are statically coupled, which essentially means that the production of an output port

matches the consumption of the input port(s) it is connected to (additional criteria

are developed in [GJB+09]). On the one hand, SSR classification has potentially

more knowledge about static behavior because it looks at connected actors rather

than just inside actors. On the other hand, by considering an actor as a whole our

classification can discover its behavior (cyclo-static and quasi-static) and transform

it into a high-level SDF or PSDF graph that will make merging easier. Using SSRs to

obtain additional information as an input to our classification algorithm is a possible

direction for future work.

5.6.2 Conclusion

This chapter has presented one analysis method called classification that can auto-

matically classify an actor as static, cyclo-static or a restricted form of quasi-static

behavior. Classification annotates an actor with an MoC, token production/con-

sumption rates, and a sequence of actions (or sequences of actions in the case of

quasi-static behavior). This information can then be used by a transformation

method that reduces scheduling overhead and can facilitate other transformations

of dynamic dataflow programs, such as actor merging or the quasi-static scheduling

method of Boutellier et al. [BLL+08].

The next chapter details the back-end of our compilation infrastructure that gen-

erates code in several languages from networks and the IR of actors. Chapter 7 will

then present applications on which we have tested our classification and transforma-

tion methods, and results in terms of the number of actors that can be successfully

classified with our method, as well as the speedup given by our transformation.

96 Analysis and Transformation

Chapter 6

Code Generation

6.1 Overview

The last stage of the compilation infrastructure is code generation, in which the back-

end for a given language (C, LLVM, VHDL, etc.) generates code from a hierarchical

network and a set of IR actors. We name the back-end for a language L the “L

back-end” (e.g. C back-end) but this has no implication on the language in which

the back-end itself is written. The source code in a language generated by the

back-end for this language can then be given to third-party tools, such as compilers

and synthesizers for this language, to produce executable code. Figure 6.1 shows

where back-ends are located in the compiler with an example of the different steps

a back-end can do.

 front-end

middle-end

IR actors
XDF networks

source code

back-end

Transformations
of the IR

Network
flattening

Translation
out of SSA

Broadcast
addition

Figure 6.1: A back-end in the compilation infrastructure.

The code generation process is different for each back-end. Indeed, a given target

97

98 Code Generation

language and the associated tools and architecture generally do not have the same

capabilities as another target language and its tools. For instance, VHDL natively

supports the description of hierarchical architectures, while most popular software

languages do not have anything specific for this. Additionally target languages do

not have the same expressiveness, for instance C code is higher-level than VHDL, and

even more than Intermediate Representations like LLVM or XLIM. As a result, many

steps in the general code generation process are optional, and back-ends execute

these steps as needed.

There exists a myriad of programming languages, as well as many intermediate

representations and several hardware description languages, but it is not necessary

to write a back-end for each of these. First of all, the first language one thinks of

generating is unequivocally the C language. Although it was invented forty years ago,

it is still the second most popular language1 for writing software. Most languages

can use C code via a Foreign Function Interface (FFI): Java has the Java Native

Interface (JNI), C++ simply requires the programmer to declare C functions in

extern "C" namespace, and major dynamic languages (such as Python and PHP)

have a well-defined C FFI.

The only architecture that C is not well-adapted to is programmable logic. Al-

though high-level synthesizers are capable of transforming C code into Register

Transfer Level (RTL) description (a description of the flow of signals between hard-

ware registers and the operations performed on these signals), they require the C

code to be written using a strict subset of C (no pointers, no memory allocation).

Additionally, the synthesized RTL code is inherently sub-optimal (in terms of speed

and occupation) because C code is sequential, whereas hardware descriptions are typ-

ically parallel, and the language does not allow the description of integers with an

arbitrary size. Conversely, dataflow networks are a natural abstraction of hardware

architectures by providing hierarchical, inherently parallel descriptions. Actors writ-

ten in RVC-CAL, with arbitrary-sized integers and atomic actions, are well-suited

to be translated to hardware.

Another interesting target is the Low-Level Virtual Machine (LLVM). LLVM is

a platform-neutral, low-level IR, which can be executed on the fly on many archi-

tectures by a Just-In-Time (JIT) engine. Consequently, it is possible to generate a

portable LLVM representation of a Video Tool Library (VTL) [GWPR10a], and to

load actors from this portable VTL on demand when instantiating a network. This

is the purpose of a tool called Jade (JIT Adaptive Decoder Engine) [GWPR10c].

Using the portable VTL in LLVM, Jade is capable of truly reconfiguring a video

decoder dynamically.

1According to the Tiobe index, see http://www.tiobe.com

http://www.tiobe.com

Overview 99

Our earlier work had focused on generating C code from CAL [WRR+08,

RWR+08,WRN09], and as a consequence the first back-end I wrote in our com-

pilation infrastructure was a C back-end. I have also written a Java back-end, and

have participated in several back-ends written by other people:

• A C++ back-end written by Ghislain Roquier that generates C++ code for

actors and networks; this back-end can be used in a co-design context where

parts of a network are executed by programmable logic.

• An LLVM back-end written by Jérôme Gorin that generates LLVM code for

actors; actors in LLVM form can then be loaded on-demand along with an XDF

network by the Just-in-time Adaptive Decoder Engine (Jade) [GWPR10c].

• A VHDL back-end written by Nicolas Siret that generates VHDL code for

actors and networks [SWNR10].

At the time of this writing, other back-ends are work in progress. The first is

a promela back-end whose aim is to allow RVC-CAL dataflow programs to be

checked by the spin model checker (see [HL91] for more details on promela and

spin). The other one is an XLIM back-end to allow the use of other CAL-oriented

tools, like Xlim2C or OpenForge.

The back-end for a given language can perform any or all of the following steps:

1. actor code generation

• transform the Intermediate Representation so that it forms a subset of

the target language and there exists a valid representation in the target

language for each IR instruction and node,

• print code in the target language directly from the transformed IR.

2. network code generation

• close each network in the hierarchy, starting from the top network, by

replacing parameters by their concrete value,

• flatten the network,

• add broadcast where necessary,

• serialize the networks to XDF or print code for each network.

The next section presents how code is printed, and how this influences the data

structure and transformations of the IR. The two subsequent sections present the

transformations of the IR and the transformations of the network respectively.

100 Code Generation

6.2 Printing Code

Printing code is the one step that is common to actor code generation and network

code generation. It produces textual output from a model, where in our case the

model is either an IR actor or a network.

6.2.1 Approaches to Code Printing

There are two kinds of approaches to transform an IR to a target language L: pro-

grammatic approaches or the template approach. Programmatic approaches print

code according to a program, while in the template approach the code is printed

according to a template, which can be informally described as chunks of text inter-

leaved with code or references to data.

Programmatic Approaches

The two most used programmatic approaches are the following:

1. pretty-print an IR to L using visitors, print statements, explicitly specifying

indentation/“dedentation” e.g. at the entry/exit of a block,

2. translate an IR to the AST of L, and pretty-print the resulting AST.

The first approach allows the highest degree of control since everything is done

manually, but this is at the expense of productivity and maintainability. The code

mainly consists of calls to print the text, thus obfuscating the textual representation

of each element. Code written by hand (for instance to prototype a new way of

generating code) cannot be copied/pasted as-is, but instead must be formatted with

a print by line.

The second approach has several advantages over the first one. First of all, we are

not concerned with the textual representation, but with the abstract representation,

which means a productivity a lot higher. The translation from the IR to the AST of L

makes it impossible to produce L code that is not syntactically-correct. Translating

the IR to an AST is relatively easy, an AST being a superset of the IR in most cases.

The main drawback of this approach is that it is necessary to have a description

of the AST and a pretty-printer for it for each language. There are libraries available

for many languages, but not necessarily all, and describing the AST of a language

from scratch is not trivial. Additionally, libraries are not necessarily all written in

the same language, which means you need to write code in this language or use

bindings to it to use the library. Finally, describing a chunk of manually-written

Printing Code 101

code (like a wrapper or initialization code) by constructing an AST is a lot more

verbose than textual code, and the code is painful to write and read2.

The Template Approach

The template approach focuses on describing the textual representation of each ele-

ment of the IR with templates. Contrary to programmatic approaches, the template

approach is text-centric: most of the contents of a template is text. Using templates

has several advantages other programmatic approaches. The visual representation

(in our case generated source code) is independent from the model (IR actor) and

is no longer hard-coded. It is a lot faster to write a template for a language than to

describe the AST constructs in the target language, not to mention the time that

may be necessary to describe the AST or write bindings to an existing library. It is

also very easy to print code differently, like switching from K&R style in C to ANSI

style or Java-like style, whereas changing the style of a pretty-printer can be tricky.

Templates are mostly used by web designers to isolate design from model, and

by programmers who write code generators. Perhaps one of the most early form

of template engine is the m4 macro-processor, used by the Autoconf tools to create

the famous configure scripts. A more recent template engine is the JavaServer

Pages (JSP), which make writing a dynamic website in Java in a similar way to

PHP. The Eclipse Modeling Framework (EMF) uses Java Emitter Templates (JET)

within the Eclipse platform to produce Java code from models. Another example of

what can be considered a template engine is XSLT (Extensible Stylesheet Language

Transformations). XSLT is an XML-based language that creates a new document

(in XML, HTML, or text) from an original XML document by applying template

rules to XML nodes.

6.2.2 The StringTemplate Template Engine

The compilation infrastructure uses the StringTemplate [Par06] to print code with

templates. StringTemplate (ST) is a template engine that strictly enforces sep-

aration of model and view [Par04]. The Model-View-Controller (MVC) [KP88]

paradigm states that an application be described as three connected components:

1. the model manages the behavior and state of the application

2. the view manages the visual representation of the model

3. the controller may update the view and the model when appropriate.

2As a matter of fact, this has been our experience with our Cal2C code generator, which

constructed C code chunks with CIL.

102 Code Generation

MVC is a popular way of implementating a GUI, but can also be applied to other

situations. In particular, we can see a template system as conforming to MVC, where

the View is the template, the Model is the model, and the Controller is the template

engine.

The strict separation of model and view enforced by StringTemplate reduces

the likelihood of having bugs in the printer, or ending up with bloated templates.

This is advocated by Terrence Parr, StringTemplate’s author, in [Par04], and I have

found empirical support that computations in a template are an important source of

hard-to-track bugs in my previous experience with both code generation with m4 and

web design with PHP. Because you can only do so much in a template, in particular

you cannot write code that computes something, you have to do all computations

once and for all in the model. This has two consequences: (1) never will there be

some code hidden inside a template that has an unanticipated side-effect, and (2)

a ST template will contain some control (if/then/else) and loops to iterate on

lists and maps, but most of the contents of the template are the chunks of text it

produces.

Comparison to Related Template Engines

We use EMF technology in the front-end, thus making JET a good candidate for a

template engine, yet JET resembles JSP (without the dependence on Java Enterprise

Edition), which means that code is allowed in the template, which is something that

should be avoided. XSLT was a candidate, but first the IR was not serialized in XML

(although admittedly it would have been possible to remedy that), and second, XSLT

is heavy and complex (it is Turing complete after all), and allows computations to

be performed in the view — although its declarative nature makes it somehow less

error-prone.

Another interesting feature not necessarily found in template engines is on-the-

fly compilation of templates. Many template engines generate code from a template

that must be compiled and linked for the template to be callable by client code.

Instead, ST compiles the templates when they are first loaded, and interprets them.

On-the-fly compilation allows templates to be corrected, improved, and tested much

faster. This is particularly useful when trying a new approach in generated code,

something that typically requires many rounds of trial and error. The disadvantage

of interpretation, as opposed to off-line compilation, is that the template engine

is not as fast. In practice, however, we tackled this problem by leveraging the

concurrent Java API to apply n templates in parallel, with n being the number of

cores of the machine.

Printing Code 103

Overview of a ST Template

A ST template has a name, attributes, and a definition delimited with << and

>>. Template definitions can be placed in the same file, forming a template

group. Attributes are referenced by expressions placed between two dollar signs

$, and everything else is text. Figure 6.2 shows a simple template PrintWelcome

that prints a welcome message based on a user name and the time the user last

logged in. An attribute can be any object (in Java this means anything that ex-

tends java.lang.Object). In the example of Fig. 6.2, userName is a string, but

lastLogin is probably a date. When referencing the attribute, ST will ask the ob-

ject its string representation (this is done in Java by invoking the object’s toString

method). An attribute may not have a value, in which case its representation is the

empty string.

PrintWelcome(userName , lastLogin) ::= <<

Welcome , $userName$!

Last login time: $ lastLogin$

>>

Figure 6.2: Example of a simple StringTemplate template.

Conditionals in Templates

Templates can reference other templates, and can include templates conditionally. A

template T is referenced by $T(attr 1=val 1, ..., attr n=val n)$. The callee

can reference the attributes declared by its caller, and its caller’s caller, and so

on up to the top of the hierarchy. Template inclusion is conditioned with $if

(condition)$ followed by the template to use when the condition is true and

terminated by $endif$. It is possible to use $else$ and $elseif$ to have several

conditionally included templates. For instance, the Intro template in Fig. 6.3 calls

the PrintWelcome template if the connected attribute is true, and prints the

text “Sorry, ...” otherwise.

Evaluation of Expressions

ST expressions can be more complex than just a reference to an attribute. The

expression $attribute.property $ retrieves the property of the attribute, and then

prints its string representation. The Java implementation of ST uses reflection to

look for a method getProperty in the attribute’s class. A template reference can be

indirect, which means that the name of the template is an expression, “tmpl.name”

104 Code Generation

Intro(connected , user , loginTime) ::= <<

$ i f (connected)$

$PrintWelcome(userName=user , lastLogin=loginTime)$

$ e l se $

Sorry , you need to log in to access this page.

$endif$

>>

Figure 6.3: A ST template with conditionals.

in the expression $(tmpl.name)(attr 1=val 1, ...)$. The value of a key key in a

map is accessed with the same notation: $map.(key)$. ST also has an expression to

apply a template to each element of a list with $a list : template(arguments)$,

where the value in the current iteration is named it. The keys of a map can be

iterated on like a list with $map.keys $.

ST handles attributes and evaluates expressions in a way that is different from

what is done by most template engines, using a push method and lazy evaluation.

In ST, attributes must be computed before the template is applied, and pushed

in the template; Terrence Parr explains in [Par04] why this is better than using a

pull strategy where attributes are computed on demand when they are used. Lazy

evaluation is the opposite of eager evaluation, and denotes the fact that an attribute

is evaluated as late as possible. In particular, passing an attribute as a parameter

to a template does not result in this parameter being evaluated. Lazy evaluation

is more efficient because attributes that are not used, or that are referenced by a

conditional template not taken will not be evaluated.

6.2.3 Printing Code with Templates

Printing code with templates when the view is strictly separated from the model

requires the model to provide all the information that is needed by templates. In

the context of code generation, the model is either a network or an IR actor.

Network Model

The network has methods that allow the template to access the lists of its parame-

ters, variables, input ports and output ports. The graph of a network is represented

with JGraphT [Nav08], but this API cannot be used directly by templates for several

reasons:

• vertices and edges of a JGraphT graph are returned as sets, but ST only

Printing Code 105

supports lists and maps,

• the list of incoming and outgoing edges of a vertex is obtained by calling a

method with a vertex parameter, but methods cannot be called with parame-

ters in templates,

• many methods in the API are not named after the naming scheme that ST

expects, “getSomething” or “isSomething”.

As a result, we have added methods to the network model that return: (1) the list

of instances, (2) the list of connections, (3) a map between a vertex and its incoming

connections and a map between a vertex and its outgoing connections, (4) a map

between a connection and its source and a map between a connection and its target.

Figure 6.4 shows how some of these methods are used in practice.

declareFifos(network) ::= <<

$network . connections : declareFifo (i t)$

>>

declareFifo(conn) ::= <<

$createFifoInfo (connection=conn ,

source=network . sourceMap . (conn) ,

target=network . targetMap . (conn))$

>>

Figure 6.4: Obtaining information about the connections of a network.

An instance has methods for the template to identify its contents as an ac-

tor, a broadcast, or a network. The contents of an instance are accessed with

$instance.actor$, $instance.broadcast$, and $instance.network$ respec-

tively. A connection has methods to access its maximum size if it is set, and its

source port and target port. The source port of a connection is defined when the

source of the connection is an instance, and symmetrically the target port is defined

when the target is an instance. Finally a connection can return the map between

an attribute name and the attribute value.

Actor Model

Contrary to the network model, most of the structural information of an actor

can be readily accessed by templates, like $actor.ports $, $actor.actions $,

or $actor.fsm $. These attributes are computed in the model by the methods

106 Code Generation

getPorts, getActions, getFsm, which return the ports, actions, and FSM respec-

tively. The IR of statements and expressions is significantly lower-level than struc-

tural information, and there are cases where a naive utilization of templates is not

simple, efficient, or even possible. As a result, specific “tricks” or techniques are

required to handle the following cases gracefully:

• templates of instructions

• printing casts

• printing code for expressions

• template-specific data

As described in Chapter 3, the IR represents the body of an action or a procedure

as a Control-Flow Graph (CFG) where nodes can be basic blocks of instructions or

conditional nodes, namely if and while nodes. There are ten instruction kinds, from

Assign to Write. The API closely reflects this, and adds another instruction kind

called SpecificInstruction to model instructions that are specific to one or more

back-ends. The different node kinds and instruction kinds are subclasses of generic

Node and Instruction interfaces respectively. These interfaces have methods that

test the nature of a node (respectively an instruction), like isIfNode or isAssign,

which can be used in templates. However, using these methods in templates is

verbose and not scalable, because each time a specific instruction Ii is added to the

API a method isIi must be added to the Instruction interface. An alternative is

shown on Fig 6.5, by using the “simple name” of the class of the instruction as the

template name.

Some languages require that when a variable is assigned an expression with a

different type, the expression be casted to the type of the variable. The IR does

not have a built-in representation for casts because the rules that govern the need

for type-casting are language-specific. Languages with arbitrary-sized integers (like

LLVM or VHDL) are quite strict in this regard, whereas C/C++ code generated

from the IR does not even require casting; Java somehow falls in the middle. Us-

ing casts in templates is pretty straightforward: every instruction that assigns a

value to a variable (in the general sense, including loads and stores) has a getCast

method that returns a Cast object if a cast is needed. The class has the properties

$cast.truncated $, $cast.extended $, and $cast.signed $ that respectively in-

dicate if the cast truncates the value, extends the value, and if the value is signed.

If the cast is extended and signed, the value will be extended and its sign bit kept.

As mentioned above, there are things that cannot be done with a template, and

printing readable arithmetic expressions from the expression tree of the IR is one of

Printing Code 107

Assign(assignInstr) ::= <<

...

>>

Call(call) ::= <<

...

>>

...

PrintInstruction(instr) ::= <<

$(instr . c l a s s . simpleName)(instr)$

>>

PrintInstructions(instructions) ::= <<

$ instruct ions : PrintInstruction (i t)$

>>

Figure 6.5: Printing instructions of a block node.

them. A readable arithmetic expression is an expression that only uses parentheses

when necessary, e.g. a + b ∗ c does not need parentheses (Fig. 6.6(a)). This is

possible because mathematics (and typically programming languages) associate each

operator with a precedence, for instance × has a higher precedence than +. When

printing an expression from an expression tree, parentheses should be put around

an expression if either one of the two following conditions are met:

• if the precedence of the operator of the parent expression is greater than the

precedence of the operator of the current expression (Fig. 6.6(b)),

• if the precedences of both operators are equal, and either the expression is on

the right branch of the parent expression and this operator is left-associative, or

the expression is on the left branch of the parent expression and this operator

is right-associative (Fig. 6.6(c)).

These conditions cannot be done in a template because ST considers comparisons

as computations, and therefore does not allow them in templates.

Finally, there are cases where no matter how much the IR of an actor is trans-

formed, there is simply no way to represent language-specific data in the generic

model. Such cases include sensitivity lists for a VHDL process that implements the

action scheduler, a map that maps each object in the IR to a unique integer to

108 Code Generation

a

b c

*

+

(a) Tree of a+ b× c.

a

c

b

+

*

(b) Tree of (a+ b)× c.

a

b c

/

/

(c) Tree of a÷ (b÷ c).

Figure 6.6: Three expressions and the corresponding expression trees.

produce LLVM metadata, or scheduling information in the C scheduler. It is not

practical to add methods in the model for this sort of specific functionality, therefore

we have added a “templateData” field to an actor that can contain arbitrary data

used by the template, and is computed by the language-specific back-end.

6.3 Transformations of the IR

Printing code in languages as different as C, LLVM, and VHDL from a single In-

termediate Representation, even with language-specific templates, requires the IR

to be transformed so every IR construct can be printed by a template. Indeed,

some transformations like translation of φ functions to copies, which is necessary for

every language that is not natively in SSA form, cannot be written in templates.

This section presents the transformations common to all back-ends, such as dead

code elimination and dead store elimination, as well as transformations used by only

part of the back-ends like transformation out of SSA form, and finally the main

language-specific transformations.

6.3.1 Generic transformations

Generic transformations are transformations that are not specific to a single lan-

guage. These transformations typically include generic optimizations in optimizing

compilers.

Code Cleanup Transformations

Since no optimizations whatsoever are done on the IR by the front-end or the middle-

end, the code generally contains statements that are useless because of the generic

translation of RVC-CAL to the IR, or because the middle-end has reorganized the

IR in a way that renders some code paths useless. We could generate code as-is

and leave third-party tools the opportunity to clean up the code and optimize it,

Transformations of the IR 109

but many compilers print warnings whenever there is unused code or variables. As

a result, the code generator does a few transformations on the IR to clean it up,

namely dead store elimination [CFR+91], dead globals elimination, and a simple

form of dead code elimination (e.g. conditionals always true or always false).

The dead store elimination takes the semantics of FIFO operations into account.

For instance, it is possible to remove useless Peek instructions, but Reads must not

be removed because it would change the semantics of the actor.

Translation out of SSA

Contrary to the IR, most target languages are not in SSA form. The IR must thus be

transformed to a non-SSA form so that code does not have φ functions anymore. This

transformation is called “out-of-SSA translation” and the literature proposes several

methods for this [CFR+91, BCHS98, SJGS99, BDR+09]. The method proposed by

Cytron et al. in [CFR+91] for translation out of SSA is simple but can exhibit

subtle errors in some cases, as pointed out by Briggs et al. in [BCHS98], who thus

describe algorithms that produces correct code after the translation out of SSA.

Sreedhar et al. [SJGS99] later present a method that is simpler and more efficient

than the previous algorithms of Briggs et al. Finally, Boissinot et al. [BDR+09]

show an approach that aims at being a “provably-correct method, generic, simple to

implement”, even in cases where the previous methods can be “incorrect, incomplete,

overly pessimistic, or too expensive”.

Fortunately, the method of Cytron et al. works in our case. Their approach

consists of replacing a φ-function in a block b by one copy in each predecessor block

of b. This results in numerous copies in the CFG, which can then be removed by

register allocation using methods such as described in [CAC+81,CH84,BCT94,PS99].

This approach stops working when optimizations such as code motion [Cli95], copy

propagation, partial redundancy elimination [MR79, BC94, CCK+97] increase the

live ranges of variables or break the assumption that a φ-function merges definitions

of the same variable.

Our compiler does not provide these sophisticated optimizations, for the simple

reason that compilers for the target languages we generate are optimizing compilers

and will perform these optimizations, and many others. The simple optimizations

we have implemented allow us to use the naive out of SSA translation method. The

code generator does not use a coalescing register allocator though, which means it

generates many useless copies, but again the tools that are fed the generated code

are expected to take care of that.

110 Code Generation

Name Altering Transformation

The name altering transformation renames variables, procedures, state names, in

short any named object of an actor, that would clash with lexical conventions and

known symbols in the target language. Some languages like Java or C++ have

a built-in mechanism (be it imports or namespaces) that makes it possible to use

arbitrary names without risk of conflict, but this is not the case for every language.

A more subtle problem concerns variables whose name is a keyword in the target

language, e.g. a state variable named class. For these cases, the transformation

simply replaces the offending names according to an associative map.

This transformation also handles the rewriting of identifiers that do not respect

the lexical conventions of identifiers of the target language. In particular, we discov-

ered that VHDL forbids identifiers that contain two or more adjacent underscores.

For this kind of case the transformation is configured with a regular expression and

the replacement expression associated, which can reference the regular expression’s

groups.

6.3.2 Language-Specific Transformations

The language-specific transformations aim to transform the IR in a way that facili-

tates code printing. Consider for example the fragment of IR code (after out of SSA

translation) shown on Fig. 6.7. The code clips a value x to -2048 and assigns the

result to the res variable (res 1, res 2 and res 3 are the three different versions

of the res variable created when translating to SSA).

ok_1 := not (x < -2048);

if ok_1 then

res_1 := x;

res_2 := res_1;

else

res_3 := -2048;

res_2 := res_3;

end

Figure 6.7: Clips x to −2048 in CAL.

Figure 6.8 shows how the code of Fig. 6.7 can be translated in VHDL. The main

difference between the two versions is the expressiveness of boolean expressions: in

VHDL, boolean variables cannot be assigned anything else than a boolean literal,

and a condition must be a relational expression. The VHDL back-end must therefore

translate the IR of Fig. 6.7 so that it can be easily printed as the code on Fig. 6.8.

Network Code Generation 111

if (x < -2048) = ’0’ then

ok_1 := ’1’;

else

ok_1 := ’0’;

end if;

if (ok_1 = ’1’) then

res_1 := x;

res_2 := res_1;

else

res_3 := -2048;

res_2 := res_3;

end if;

Figure 6.8: Clips x to −2048 in VHDL.

Another example is the translation to LLVM, as the listing of Fig. 6.9 shows.

First, LLVM is in SSA form with a native phi instruction, so there is no need for out

of SSA translation. Contrary to programming languages intended for humans, and

like other IRs such as GIMPLE [HDE+93] or Jimple [VRCG+99], LLVM is in three-

address-code (3AC), in which the right-hand side of each assignment is a binary

expression. 3AC facilitates optimizations of expressions such as Partial Redundancy

Elimination [BC94]. Since our IR is not in 3AC, it must be transformed to 3AC by

splitting expressions and assigning them to fresh local variables (because LLVM is

in SSA form each variable is only assigned once). The transformation also replaces

unary operators by binary operations, and uses no-ops such as addition of zero for

simple assignments, i.e. when a variable is simply copied to another variable. A

possibly more elegant solution for the latter case would be copy folding using a

stack of aliases for each simple assignment.

6.4 Network Code Generation

The IR of a network is an in-memory representation of the corresponding XDF file:

• input and output ports,

• parameters and local variables,

• a graph whose each vertex is a port or an instance of an actor or a network

with a (possibly empty) association table between parameters and expressions.

112 Code Generation

%expr_1 = sub i32 0, 2048

%expr_2 = icmp slt i32 %x, %expr_1

%ok_1 = icmp eq i1 %expr_2 , 0

br i1 %ok_1 , label %bb1 , label %bb2

bb1:

%res_1 = add i32 %x, 0

br label %bb4

bb2:

%res_3 = sub i32 0, 2048

br label %bb4

bb3:

%res_2 = phi i32 [%res_1 , %bb2], [%res_3 , %bb3]

ret i32 %res_2

}

Figure 6.9: Clips x to −2048 in LLVM.

6.4.1 Instantiation and Semantic Checking

The first thing that a back-end does when loading a network is instantiation. Instan-

tiation recursively replaces names referenced by instances of a network by actors or

networks loaded on-the-fly. This is necessary to be able to assert that the network

is semantically correct.

The code generation currently contains only two semantic checks. The first

check is the verification of parameters. A network must have the correct number of

parameters, i.e. there must be no missing or extraneous parameters. The second

check is the verification of connections. Connections between any two instances must

refer to existing port names, and they must be from an input port of the current

network or an output port of an instance, to an input port of an instance or an

output port of the current network. Additionally, any two ports connected must

have the same type.

6.4.2 Flattening a Network

Some back-ends flatten the hierarchical network to facilitate code generation. In-

deed, software programming languages do not have constructs to describe a hierar-

chical structure in a straightforward way. Conversely, a flat network can simply be

Network Code Generation 113

described as a list of actors. Another advantage of a flat network is that the actors it

contains are closed, which means their parameters have been removed and replaced

by constant values. The compiler of the target language can take advantage of that

when performing constant propagation [WZ91] and produce faster code.

The flatten algorithm is described by Algorithm 5. This algorithm flattens

a network by recursively flattening every sub-network. The graph of a network is

defined by G = (V,E, s, t) where V is the set of vertices of the network defined as

V = Pi ∪ Po ∪ I where Pi are input ports, Po output ports, and I instances. The

set of edges is E ⊆ V × V , and s and t give the source (respectively target) of an

edge e as s : E → V and t : E → V . After a sub-network Gs is flattened (line

5), the algorithm first imports its instances into the current network (line 5), and

then the edges connected between instances (line 5). The next step is to connect

the imported instances to the existing instances (line 5), after which the vertex that

referenced the sub-network can be safely removed.

Algorithm 5: Description of the flatten algorithm.

input: G = (V,E, s, t)

foreach v ∈ V do

if v is refined by a network then
let Gs = (Vs, Es, ss, ts) be the subgraph described by v;

flatten(Gs);1

V ← V ∪ {v ∈ Is};2

E ← E ∪ {e ∈ Es | s(e) ∈ Is ∧ t(e) ∈ Is};3

connect(G, Gs, v);4

V ← V \ {v};

The connection step adds edges between instances in G connected to the sub-

network Gs and instances copied from Gs into G. This is done in two steps, first by

adding incoming edges of v and then adding outgoing edges of v. These steps are

exactly symmetrical, so we only describe the connection of incoming edges. The set

of incoming edges of v is defined by Si = {e ∈ G | t(e) = v}. For each such edge e,

we take the name of its target port p, retrieve the set of edges outgoing from this

port in Gs as So = {es ∈ Gs | s(es) = p} and modify the set of edges in G as follows:

E ← E ∪ {(s(ei), t(eo)) | ei ∈ Si ∧ eo ∈ So}.

6.4.3 Adding Broadcasts

An XDF network supports implicit broadcasts, in other words broadcasting data

from a single output port to several input ports is done simply by having one con-

114 Code Generation

nection between the output port and each of the target input ports, as shown on

Fig. 6.10.

Figure 6.10: Implicit Broadcast of Data Produced by source.

Broadcasting must be explicitly implemented in target languages. There are two

ways to do this. The first way is to use special broadcast FIFOs wherever data is

broadcast. Conventional FIFOs have a read index and a write index (indicating

where is data located in the FIFO), to which broadcast FIFOs add an additional

read index per consumer. The contract of these FIFOs is that the global read index

is always the smallest of the consumers’ read indexes.

Figure 6.11: Explicit broadcast of data produced by source handled by a broadcast

actor.

The other way uses a special kind of “broadcast” actor. One instance of this

actor is inserted wherever there is more than one connection going out of an output

port. The connections are replaced by one connection to the broadcast’s input port,

and one connection between each output port of the broadcast and the input ports

Conclusion 115

of the target as shown on Fig. 6.11. When fired, the broadcast actor simply copies

data coming on its input port to each of its output ports.

6.5 Conclusion

This chapter has presented the last stage of our compilation infrastructure that

generates code from networks and the IR of actors. A back-end is specific to a

language, and may generate code in this language for actors, networks, or both.

The code generation process is different for each back-end, with the exception of the

last step called code printing.

We devote an entire section to code printing that starts by examining existing

approaches commonly employed by code generators. The section explains why these

approaches are not very well suited in our case because we want to be able to

generate many different languages, and present an alternative that uses templates

to define a “view” of the model that is the code. We give key features and semantics

implemented by the StringTemplate template engine that back-ends use to print

code, and show some techniques that handle cases that cannot be easily expressed

with templates. Finally, two sections show the steps that are performed to transform

actors and networks respectively so code can be printed from them.

The next chapter starts by presenting the implementation of support tools for

RVC-CAL dataflow programs. These tools include a graphical editor and an imple-

mentation of the infrastructure described in this document, which have been (and

are still being) used for the development of RVC decoders that are described in the

next chapter. After these decoders are presented, the chapter shows results of the

classification and transformation methods we have presented in the previous chapter,

and the scheduling algorithms and techniques we have implemented.

116 Code Generation

Chapter 7

Implementation and Results

This chapter begins with section 7.1 that presents support tools for RVC-CAL

dataflow programs, among which the Open RVC-CAL Compiler, which is an im-

plementation of the compilation infrastructure for dataflow programs described in

this document. The next section starts with an overview of video coding before

presenting the two normative RVC decoders as well as lower-level and higher-level

non-normative decoders. Section 7.3 lists different runtime scheduling techniques

for dynamic dataflow programs. Finally, the chapter concludes by a section that

presents the performance of the code generated from the given test applications on

a multi-core processor and on programmable logic. This section also shows how our

transformation of actors presented earlier can improve speed of the generated code.

7.1 Development Tools

This section lists the development tools that were used to write the applications

detailed later in this chapter. These tools can only be used within the Eclipse

platform, presented in the next subsection.

7.1.1 Eclipse Platform

Eclipse [DRW04] is best described as an open-source, extensible infrastructure for

writing Integrated Development Environments (IDEs). Eclipse is written in Java

and leverages the OSGi [OSG05] framework to offer a dynamic component-based

system. A component is both a bundle in OSGi terminology and a plug-in in Eclipse

terminology. Apart from the core constituted of the platform runtime and the OSGi

implementation, all functionalities are available as plug-ins. As such it is possible

to write arbitrary applications based on a dynamic plug-in model with a minimal

set of plug-ins known as Rich Client Platform (RCP). RCP helps developers to

117

118 Implementation and Results

build portable applications with native look-and-feel more rapidly by extending or

reusing many well-maintained Eclipse plug-ins. The platform can also be used to

write portable full-fledged language-specific IDEs, such as the proprietary IDE Code

Composer Studio by Texas Instruments (starting from version 4), and language-

specific IDEs for languages including Java, C/C++, PHP available as official bundles

on the Eclipse website.

OSGl framework

Extension registry OSGi services

Runtime

UI

Debug Editors

Platform

Builders

Workspace Workbench

UI

JDT

Debug

Core

Eclipse Ecosystem

Graphiti

Editor

Configuration

...

Figure 7.1: Eclipse ecosystem.

Figure 7.1 shows what the “Eclipse ecosystem” looks like. The core of Eclipse

is the runtime layer with the OSGi framework and services, and the extension reg-

istry. The platform layer contains common plug-ins that are maintained by the

Eclipse team. The last layer is where RCP applications and IDEs are located. RCP

applications only need the runtime and UI at the bare minimum, whereas IDEs gen-

erally use the majority of platform plug-ins. Plug-ins are grouped in features such

as Graphiti and JDT in Fig. 7.1. Each plug-in can extend (or contribute) or be

extended by other plug-ins, for instance the Debug plug-in of the Java Development

Tools (JDT) depends on the Debug plug-in of the platform layer. Plug-in depen-

dencies are specified at build time, but contributions are discovered at runtime by

the extension registry when plug-ins are started by the OSGi framework.

Development Tools 119

7.1.2 Graphiti Editor

Graphiti [Gra] is a generic graph editor that I wrote with Jonathan Piat. We believe

Graphiti has a combination of features that makes it unique and invaluable: Graphiti

is an Eclipse plug-in, it is lightweight, dynamically reconfigurable, easily extensible,

and has a nice and standard user interface. We have written an MPEG contribution

to show how the editor could be used to edit RVC dataflow descriptions [WPR08].

Related Work

Most of the approaches to generic visual editors are generative in the sense that they

provide methods to generate a visual editor tailored to a given model and visual

syntax from a specification. The most well-known example within the Eclipse world

is the Graphical Modeling Framework (GMF). GMF generates a graphical editor

based on the Graphical Editor Framework (GEF) from two meta-models defined

with the Eclipse Modeling Framework (EMF), namely the domain model and the

visual model, and the mapping between the two models. The generated editor is fully

customizable and can be updated when the models or the mapping change. Ehrig et

al. present another method to generate visual editors as GEF-based Eclipse editors

from a specification of a Visual Language (VL) and graph transformation techniques

[EEHT05]. Two other well-known approaches for generating editors with a tailor-

made UI (i.e. not using GEF) are DiaGen [MV95] by Minas and Viehstaedt and

GenGED [Bar98] by Bardohl. Another interesting generative method is presented

by West and Kahl in [WK09] using a Haskell framework instead of yet another DSL

for the definition of the model and the VL.

The alternative to generative approaches is to have a generic editor that is con-

figured on-the-fly. The Moses project [ETH] provides a generic graph editor whose

behavior and VL syntax for a given graph are defined by a description of the model

and visual syntax for this graph. The description is written in a DSL called Graph

Type Definition Language (GTDL) [Jan97]. Janneck and Esser detail in [JE01] their

method to define a domain-specific VL syntax in GTDL as is implemented in Moses.

Description of Graphiti

Graphiti combines the elegance and simplicity of the approach of Janneck and Esser

with the flexibility of the Eclipse plug-in system and the power of well-established

frameworks and technologies, namely GEF, XML, XSLT, and ANTLR [PQ95]. The

fact that our approach is similar to theirs is not surprising since Janneck himself

convinced us of the benefit of creating a generic graph editor. Graphiti stems from

the observation that graph editors generally support only a few file formats, and

120 Implementation and Results

often not the ones we were interested in; the situation is even worse with generic

graph editors described in the literature, because they use their own non-standard,

loosely-defined file format, or only know about a single file format like GraphML

or GXL. Nowhere in the papers mentioned in the previous section is addressed the

question of the format in which a graph is defined. On the other hand, our editor is

used routinely with the following file formats: XDF networks, a subset of IP-XACT

[Ber06], GraphML [BEH+02] graphs and Preesm workflow graphs [PPW+09]. Other

problems with existing editors are the use of DSLs where well-known languages would

be more appropriate, and the lack of extensibility implied by generative approaches.

The main difference between our method and other editors is that we focus

on syntactic transformations rather than semantic transformations, although they

can also be done in Graphiti. Graphiti knows of only one simple generic XML

format in which any kind of directed attributed multi-graph, the type of graphs

used in [JE01], can be described. Graphiti exposes a framework whose aim is to

allow the transformation of any text or XML format to the XML format, and vice-

versa, as shown on Fig. 7.2. The framework uses a DOM parser to obtain the DOM

tree corresponding to the contents of XML files. Text files must be parsed with an

ANTLR parser that return the AST corresponding to the input, and the framework

then serializes the AST to a DOM tree. The DOM tree obtained in any case is then

transformed with XSLT to our XML format. XSLT transformations and ANTLR

parsers are written by users.

 network N() int I ==> bool O:
 …
end

<network id=”N”>
 <input name=”I” type=”int”/>
 <output name=”O” type=”bool”/>
 …
</network>

ANTLR

<Network>
 <Id>N</Id>
 <Input>
 <Type>int</Type>
 <Name>I</Name>
 </Input>
 <Output>
 <Type>bool</Type>
 <Name>O</Name>
 </Output>
 …
</Network>

serialization of
AST to DOM

parsing
to DOM

Transformation
with XSLT

XML file

text file

Graphiti parser

Figure 7.2: Graphiti transformations.

Figure 7.3 shows dependencies and extensions around Graphiti. The editor

Development Tools 121

depends on GEF and the configuration plug-in. The configuration plug-in exposes

two extension points that other plug-ins can extend. The first extension point serves

to declare an ANTLR parser with a unique identifier associated to the parser class.

The second extension point allows the declaration of a graph type with the following

data:

1. semantics of the graph (types of vertices and edges, and attributes allowed for

objects of each type),

2. visual syntax of the graph (colors, shapes, etc.),

3. the transformations from the file format to Graphiti’s XML format and vice-

versa.

Extension points are defined as an XML schema, which allows us to enforce certain

constraints, such as allowing at most one parser before XSLT transformations.

editor

configuration

Graphiti

GEF

plug-in X

plug-in Y

Eclipse

depends on

extended by

Figure 7.3: Graphiti infrastructure.

7.1.3 Open RVC-CAL Compiler

The Open RVC-CAL Compiler (Orcc, pronounced “orc”) is a collection of support

tools for RVC dataflow applications. It contains an implementation of our com-

pilation infrastructure, as well as a simulator and a debugger that use the IR as

their input, all of which inside a single Eclipse feature. This description might let

the reader think that Orcc is no more than a mere clone of OpenDF, or wonder

122 Implementation and Results

why we bothered to create a new tool set rather than simply reusing or modifying

the existing tools. We outline below the main reasons for creating a compilation

infrastructure of our own, and the main differences between OpenDF and Orcc. We

are aware that some of OpenDF’s issues are solely implementation-related, but as

stated in the introduction, we firmly believe that the quality of tools for a given

language can greatly influence, in a good or a bad way, the success of that language,

and RVC-CAL is no exception.

• OpenDF does not provide anything specific for RVC-CAL, like syntax restric-

tion, static typing, semantic checks, etc.

• As stated in section 3.2.3, XLIM is too low-level an Intermediate Representa-

tion to be a good starting point for the generation of software. The software-

oriented version of XLIM did not exist at the time this thesis started, and

at the time the XLIM code generator did not support multi-tokens, repeats,

statements with list generators, foreach statements, nor initialize actions.

• The code generator in OpenDF flattens networks and specializes actors at

compile-time. Specialization is the process by which parameters of each actor

are replaced with compile-time values. Early flattening and specialization

basically kills any opportunity for reconfiguration, which is a cornerstone of

the RVC framework.

• OpenDF parses actors and represents their AST as DOM trees, which are

then gradually transformed with XSLT before being written to XLIM or re-

parsed into Java objects used by the simulator. Not only does this complicates

maintenance because code refactoring has to be done manually, but it also

renders simulation and code generation much much slower than if a domain-

specific, more compact representation and Java transformations were used.

As a matter of fact, we compare compilation times between Orcc and tools

associated with OpenDF.

Table 7.1 shows compilation times for a low-level CAL model of an MPEG-4 part

2 Simple Profile decoder located in the OpenDF repository and the RVC-CAL Video

Tool Library (VTL) that is in the Orcc repository. The number of lines of code are

simply the number of text lines, including comments and empty lines, but still gives

a good measure of complexity. All actors from the MPEG-4 OpenDF model are

included in the VTL as proprietary actors. The tests were performed on a Ubuntu

10.04 (64 bit version) with an AMD Phenom(tm) II X6 1055T processor clocked at

2.8 GHz and 4 gigabytes of RAM, with only one terminal and one instance of Eclipse

running on the system. Eclipse was launched with the -Xmx1500m option that allows

Development Tools 123

Java to use at most 1.5 GB of RAM. The times indicated are average compilation

times obtained with three following runs. These results suggest that Orcc is more

than twenty times faster than OpenDf (as shown by (58, 777÷ 30)÷ (5, 976÷ 65)).

Application Actors Lines of code Compiler Time (seconds)

MPEG-4 35 5,976 OpenDF 65

VTL 198 58,777 Orcc 30

Table 7.1: Compilation times for different applications with OpenDF and Orcc.

Likewise, writing a VHDL back-end could seem useless since OpenForge can gen-

erate a hardware description from a CAL dataflow program [JMP+08]. The authors

explain that the tool performs optimizations (bit-accurate constant propagation,

static scheduling of operators, memory access optimizations, pipelining) and conse-

quently generates fast code as indicated by their results. However, we have found

that OpenForge and the code it generates had the following limitations:

• The generated code is Xilinx-specific and very low-level, to the point that it

looks like an RTL description with explicit hardware signals between hardware

registers. This means the code cannot be synthesized to FPGAs from other

vendors, cannot be debugged, and if there is a bug in the compiler, identifying

it by reading the source is not possible.

• The synthesizer is given a flat network and specialized actors, thus it gener-

ates a flat VHDL network and actors with no parameters. This makes the

transformation from a CAL dataflow application to a VHDL hardware de-

scription quite lossy, which is a pity since both languages allow hierarchical

and parameterizable descriptions.

• The tool itself is complex, not maintained (there has not been any commit on

the repository in more than a year), and terribly slow.

We used the same platform to test the synthesis of the MPEG-4 application,

and show the time it took to compile XLIM actors to Verilog with OpenForge on

Table 7.2. Results show that the compilation time is significantly higher for the large

syntax parser actor, which seems to suggest that the compilation time per actor is

quadratic on the order of the number of lines of the actor. The VHDL back-end

present in Orcc is not yet capable of handling the entirety of actors handled by

OpenForge, but adding the necessary transformations to handle them is unlikely to

have any influence on the time that the back-end needs to generate code, which is

around three seconds.

124 Implementation and Results

Actors Lines of code Time (seconds)

1 syntax parser 1,361 339

34 other actors 4,615 217

Table 7.2: Compilation times for the actors of the MPEG-4 decoder with OpenForge.

7.2 Video Coding Applications

Since all the test applications are video decoders, this section begins by an overview

of the principles of video coding and the structure of video decoders.

7.2.1 Video Coding

Video coding is the process by which a video sequence is encoded in a way that

reduces the size of data necessary to store the sequence.

Digital Representation of Video

A video sequence is conceptually a 3D array of pixels, where the first dimension is

the (discretized) time and the last two dimensions represent the width and height

of the sequence. Each point in time points to a frame of the given width and height.

The number of frames displayed per second is called the frame rate, with the most

frequently used frame rates being 23.976, 24, 25, 29.97, 30, and their multiples. The

fact that some of these are real numbers is due to historical reasons because of legacy

standards (NTSC).

A pixel in a video is generally a square (although most video standards support

rectangle pixels) that is associated with a color. Contrary to other computer systems,

pixels of video are not represented with the RGB (Red-Green-Blue) components, but

rather with the YCbCr (also called YUV) digital coding system as defined by ITU-R

BT.601 [ITU], which encodes color information as “one luminance and two colour-

difference signals”. There are at least two reasons for this. The first one, as is often

the case, is historical: when color television was invented, it needed to be compatible

with existing black and white broadcast systems, which used one signal to transmit

the luminance (or brightness) information. The second reason is that the human

eye is less sensitive to changes in color than to changes in brightness. The YCbCr

system can be used to represent the Cb and Cr components with less precision (and

therefore a smaller quantity of information) without perceived difference in quality,

something which is not possible with RGB.

Video Coding Applications 125

Spatial and Temporal Redundancy

An uncompressed video sequence contains a large number of redundancy informa-

tion. Spatial redundancy is the fact that many neighboring pixels have the same

value or similar values. Rather than storing the values of all the pixels in an image,

it is more advantageous to split the image into blocks, and to encode the information

of pixels in each block as the average color of the block and the differences between

each pixel and the average value. Run-length encoding can then be used to express

this information in a minimal way. To further compress the image, it is possible

to eliminate the less-visible details of each block. This is done by using a Discrete

Cosine Transform (DCT), a variant of the Fourier transform, to transform the color

information in the spatial domain to the frequency domain in which the color signal

is represented as a sum of cosine functions at different frequencies. The less-visible

details are removed by removing the functions with the highest frequencies.

Temporal redundancy is the fact that the differences between two consecutive im-

ages are generally small. To remove this redundancy, only the differences between

images are encoded rather than encoding each image separately. The differences

between images are not simply computed as the difference between a pixel in the

current image and the pixel in the previous image though. Camera movement be-

tween two images renders this naive approach sub-optimal, which is why video coding

schemes use motion estimation to express the value of the pixel in the current image

as a combination of a pixel in the previous image and a vector. The result of motion

estimation is a predicted image whose difference with the actual image is encoded.

The process that takes a set of motion vectors and a set of differences to produce a

new image is called motion compensation.

7.2.2 Normative Decoders

Within the RVC framework, video decoders are separated in two categories, nor-

mative and non-normative, or proprietary. The normative decoders are described

with Functional Units (FUs) from the RVC Video Tool Library (VTL), whereas

proprietary decoders may use their own implementation of FUs, although they are

required to have the same interface (input ports, output ports, parameters) as nor-

mative FUs. The proprietary decoders presented below are custom implementations

that are not necessarily compatible with the normative FUs. These decoders were

either written before RVC became a standard, or were written outside the scope of

the RVC standard as experiments.

126 Implementation and Results

MPEG-4 part 2

The first normative RVC decoder is a decoder for the Simple Profile of the MPEG-4

part 2 standard shown on Fig. 7.4. This decoder decodes the three components

Y, U, and V separately. The “parser” block parses the binary syntax in which the

video is encoded to information that is meaningful to the later stages of the video

decoder. The “texture” block decodes spatial information and performs an inverse

DCT on each block (which is the inverse transformation of the DCT mentioned in

section 7.2.1); the output of this block is pixels in the YUV domain. The “motion”

block performs motion compensation on blocks that have motion information, and

simply copies the other blocks to its output. Finally, the “display” block transforms

the YUV pixels to RGB and displays them on the screen.

parser

texture Y

texture U

texture V

motion Y

motion U

motion V

display

Figure 7.4: Normative MPEG-4 part 2 Simple Profile decoder.

MPEG-4 part 10

The second normative RVC decoder is a decoder for the Constrained Baseline Profile

of the MPEG-4 part 10 standard, also known as Advanced Video Coding (AVC) and

H.264. Unlike the normative MPEG-4 part 2 decoder, it only separates luminance

and chrominance, in other words Cb and Cr are decoded by the same blocks.

7.2.3 Proprietary Decoders

The proprietary decoders are decoders that do not use the standard FUs from the

VTL.

Implementation of a Dynamic Scheduler 127

Hardware-oriented Description

The hardware-oriented description of an MPEG-4 part 2 Simple Profile decoder was

the first video decoder to be written in CAL. It was written by Dave Parlour from

Xilinx as a test application for OpenForge [JMP+08]. As opposed to the normative

RVC version, this decoder is not compliant with the MPEG-4 part 2 standard, as it

does not respect the requirements of the ISO/IEC 23002-2:2007 standard [ISO07].

The structure of the decoder is shown on Fig. 7.5.

parser texture motion display

Figure 7.5: Proprietary description of an MPEG-4 part 2 Simple Profile decoder.

This description decodes the Y, Cb, Cr components serially, i.e. first the lu-

minance and then the two chrominance components. The texture block contains

a low-level iDCT described as a hierarchical network that contain six actors and a

network that contains five actors itself. In comparison, the normative RVC decoder

implements an ISO/IEC 23002-2 compliant inverse DCT in one actor.

Software-oriented Descriptions

Other researchers working on RVC-CAL have derived proprietary descriptions from

the normative and hardware-oriented descriptions. One description has the same

structure as the hardware description, with the exception of the inverse DCT, which

uses the same as the normative decoder. Another description uses the same structure

as the normative decoder. The main difference with the descriptions presented

previously is that these software-oriented descriptions use a few actors that have

been rewritten to be higher-level. As a matter of fact, some of these actors resemble

the actors produced by of our transformation method presented in Chapter 5.

7.3 Implementation of a Dynamic Scheduler

Dynamic dataflow programs, such as dataflow programs whose actors are defined

with RVC-CAL, behave according to the Dataflow Process Network (DPN) Model

of Computation (MoC) that was detailed in section 2.2. The DPN MoC does not

impose a particular scheduling technique, as long as it is respects the semantics of

the model:

128 Implementation and Results

1. reading from a FIFO is non-blocking and actors are allowed to test an input

port for the absence or presence of data.

2. writing to a FIFO is non-blocking, i.e. a write always returns immediately.

Although it somehow seems unusual, the fact that writes are non-blocking (re-

quirement 2) poses no problem since theoretically FIFOs have an unbounded capac-

ity. In practice, Parks has shown that it is possible to find a bounded schedule for

many process networks and dynamic dataflow applications [Par95]. Additionally,

the implementation of FIFOs must take into account requirement 1: it must be

possible to query the state of the FIFO and peek tokens.

This section describes different scheduling methods that can be used to schedule

dynamic dataflow programs that respect the DPN MoC. The first two methods are

from the state of the art, and the last two are methods we have implemented.

7.3.1 Ptolemy Scheduler

The earliest implementation of a code generator and scheduler for CAL dataflow

programs is described by Wernli [Wer02]. The author presents a compiler that

transforms CAL actors to Java classes that use the Ptolemy API to implement

the behavior of actors. Using this API, a dynamic dataflow actor is represented

as a Java class that extends ptolemy.actor.TypedAtomicActor. The actors can

be used in Ptolemy and scheduled using an approach based on Parks’s scheduling

technique as described by Zhou in [Zho04]. This is different from our approach since

the generated actors are not standalone, rather they must be scheduled within the

Ptolemy framework. Although we have not tested the speed of the Ptolemy simulator

per se, our experience with simulators of CAL dataflow programs — Moses [ETH]

and OpenDF that are both based on a fork of the simulator implemented in Ptolemy,

as well as the simulator implemented in Orcc — allows us to say that the speed

achieved by the Ptolemy CAL simulator cannot compare to the speed of generated

code.

7.3.2 Threads

A possible solution to schedule a dynamic dataflow program is to use one thread

per actor, and let the kernel schedule these threads. This was the first approach

we tried, although we never published our results. The limitation of this approach

is that it is not possible to use traditional FIFOs with blocking reads as per the

requirements of the DPN model (as mentioned above and detailed in section 2.3.2).

The Xlim2C compiler written by Ericsson first generated code with one thread per

Implementation of a Dynamic Scheduler 129

actor. The results they report in the technical report [vP10] is that they obtained

3.5 frames per second on a QCIF video (176x144 pixels) using the hardware-oriented

MPEG-4 part 2 description.

7.3.3 SystemC Scheduler

SystemC [IEE05] is an industry standard for system-level modeling, design and

simulation. Any system that may be implemented in hardware, software, or a com-

bination of both, can be modeled with the set of macros, C++ classes and templates

provided by the SystemC framework. Within this framework, a design is composed

of a set of modules that are connected with channels via ports. Modules can be

parameterized and can contain other modules, in other words hierarchy is allowed.

Each module contains a process that is the computational kernel of the module. Pro-

cesses are not preemptible, but they can be suspended by the SystemC scheduler

when reading from empty FIFOs, writing to full FIFOs, or by calling wait explicitly.

Roquier et al. present an automatic translation (implemented in the Cal2C tool)

of hierarchical networks and actors to SystemC modules, and leverage the TLM

framework (Transaction Level Modeling) to implement peekable FIFOs [RWR+08].

They use their technique to obtain a SystemC model of an earlier version of the

normative MPEG-4 part 2 SP decoder. The results obtained are in the order of

2,000 macroblocks per second, which represents 20 frames per second on a QCIF

video. However, the method presented cannot be used with other schedulers because

actions and action schedulers have an explicit dependency on SystemC. Moreover,

although the generated SystemC model behaves correctly, it does not respect DPN

semantics because actors are suspended whenever they cannot read or write.

I explained in [WRN09] how to separate the scheduler from the actors by using

an interface, and list the requirements the interface needs to meet to guarantee

the DPN semantics are respected by the generated model. The paper presents

comparable results to those shown in [RWR+08], and also presents results for the

low-level proprietary version (which could not be generated before by Cal2C). I also

sketch in this paper that a better scheduler for DPN would make “no use of threads”

and would provide “direct access to peekable FIFOs via pointers”.

7.3.4 Round-Robin Scheduler

The actor scheduler used in software code generated by Orcc uses a single-thread

round-robin scheduler with hand-written specialized FIFOs that minimize the num-

ber of memory copies. I implemented this scheduler in an early version of Orcc,

and we wrote an MPEG contribution about it [RW09] which was presented at the

130 Implementation and Results

89th MPEG meeting. The code generated with this scheduler runs about five times

faster than the code that uses the SystemC scheduler. This speed increase lies in

the implementation of the scheduler and of the FIFOs.

Implementation of the Scheduler

The majority of actors are very fine-grain, especially when compared to software

traditionally implemented with threads. As a result, the time spent in the scheduler

can be quite large compared to the amount of computations performed by actors.

Traditionally, a scheduler will try hard to be fair, i.e. allocate time fairly to active

tasks. A round-robin scheduler is fair by nature, and has zero overhead, since it

simply calls tasks in a pre-determined circular order. This is implemented as an

infinite while loop whose body contains calls to the action scheduler of each actor.

The action scheduler of an actor is implemented as a function that fires as many

actions in a row as possible. If the actor has an FSM, the action scheduler starts

by jumping to the current state of the actor (with a goto). Then the first fireable

action in the state fires and jumps to the target state it is associated with. When no

more actions can be fired, the action scheduler returns. If the actor does not have

an FSM, the action scheduler simply fires actions in an infinite while loop. When

no actions can be fired any more, the function returns.

As an example, Figure 7.6 presents the C implementation of the Downsample

actor that was presented in section 2.3.1 in Fig. 2.11. This figure illustrates why

this implementation respects DPN semantics. Indeed, if an action is not schedulable

because it has no tokens, the scheduler does not wait, instead it simply returns.

Likewise, if an action is schedulable but there is no space in output FIFOs, the

scheduler does not fire the action, and returns. As a matter of fact, this simple

example shows why we currently require that repeat constructs be compile-time

constants. Indeed, if an action is schedulable, and fires, but there is no space in

output FIFOs, the action scheduler must somehow store the tokens produced (whose

number may vary, so this requires dynamic memory allocation), record the fact that

these tokens are to be written later, return, and the next time it is fired, if there

is space, it will send the tokens. This is complicated, and it is likely to be a severe

performance hit for all but coarse-grain actors.

Implementation of FIFOs

The FIFOs are circular buffers implemented as a structure with an array that con-

tains the contents of the FIFO, a size, and a read and write index. We use macros

to produce a template-like definition of FIFOs to provide implementations for 8,

16, 32, and 64-bit integer types (signed or unsigned). For instance, in the example

Implementation of a Dynamic Scheduler 131

void downsample_scheduler () {

// jump to FSM state

switch (_FSM_state) {

case s_s0:

goto l_s0;

case s_s1:

goto l_s1;

default:

return;

}

l_s0:

if (isSchedulable_a0 ()) {

a0();

goto l_s1;

} else {

return;

}

l_s1:

if (isSchedulable_a1 ()) {

if (! fifo_i32_has_room(R2 , 1)) {

return;

}

a1();

goto l_s0;

} else {

return;

}

}

Figure 7.6: Implementation of an RVC-CAL Actor in C.

132 Implementation and Results

above, the FIFO connected to output port R2 has type i32, which corresponds to

a C int.

Our implementation minimizes memory copies when reading from/writing to a

FIFO. It does so by giving direct access to the contents of the FIFO. In the simplest

case, a Read on a FIFO is equivalent to &fifo->contents[fifo->read_ind]. The

only case where it is necessary to copy memory is around the bounds of a FIFO,

in other words when a part of requested tokens is at the end of the buffer, and the

other part is at the beginning of the buffer.

The FIFOs can be readily used in a multi-core environment, because the number

of elements that can be read or written is not stored, rather it is computed from the

read and write index. An action updates the read and write indexes when it has

finished a complete firing, i.e. tokens read are no longer needed, and the action has

written tokens to the FIFO. Updating the indexes allows other cores to write more

data to the FIFO, or to access the newly produced data.

7.4 Performance of Generated Code

This section shows the performance of the code generated by several back-ends, and

how our transformation of actors (section 5.5) can improve performance.

7.4.1 Code Generated by the C back-end

Table 7.3 shows results obtained with the same test platform with which the com-

pilation times presented earlier were obtained. For completeness we reproduce the

specification of the test machine here: it is running an Ubuntu 10.04 (64 bit ver-

sion) with an AMD Phenom(tm) II X6 1055T processor clocked at 2.8 GHz and 4

gigabytes of RAM. We use gcc version 4.4.3 to compile the C code. The generated

C code uses the single-thread round-robin scheduler described above. The results

shown are the average number of FPS (Frames Per Second) for several decoders.

MPEG-4 part 2 decoders use a QCIF video (176x144 pixels) named “foreman qcif”

available in the Orcc SVN repository, and the normative MPEG-4 part 10 decoder

uses the QCIF “LS SVA D” sequence also available in the repository. We have

slightly rounded the numbers up and down by a couple of FPS to ease compari-

son (for instance the actual numbers for the low-level and normative descriptions of

MPEG-4 part 2 are closer to 98 and 152 respectively).

The results depicted in Table 7.3 show a large difference between MPEG-4 part 2

and MPEG-4 part 10 (H.264) decoders. The H.264 standard is a lot more complex,

which makes the decoder slower than the MPEG-4 part 2 decoders. For instance,

there are less than 100 FIFOs in the MPEG-4 part 2 low-level decoder, and more

Performance of Generated Code 133

Application Number of frames per second (QCIF)

MPEG-4 part 2 (normative) 150

MPEG-4 part 2 (low-level) 100

MPEG-4 part 2 (high-level 1) 200

MPEG-4 part 2 (high-level 2) 300

MPEG-4 part 10 (normative) 60

Table 7.3: Performance of the C Code Generated from Different Applications.

than 600 in the H.264 decoder. There also are more actors instantiated by the

network, namely 124 instances against 33 instances for the MPEG-4 part 2 decoder.

Many actors have different production/consumption rates, and some actors need to

be fired a lot more than others. As a result, the round-robin scheduler is probably

not the best choice when there are that many actors.

We have also run the applications using several cores on our test platform. The

code generation for a n-core partitioning of an application is very simple. We split

the set of actors into n threads, and each thread contains a round-robin scheduler

that schedules its subset of actors. Each thread is assigned to a particular core,

and threads are run without synchronization. Table 7.4 shows the speedup obtained

with two cores (n = 2). We have found that using more cores did not allow a bigger

speedup, and performance actually starts to degrade when four cores or more are

used.

Application Speedup

MPEG-4 part 2 (normative) 1.3

MPEG-4 part 10 (normative) 1.8

Table 7.4: Performance on Two Cores.

7.4.2 Results with Other Back-ends and Tools

The JIT Adaptive Decoder Engine (Jade) of Gorin et al. uses the same round-robin

scheduler and FIFO implementation as the C code. Jade is able to outperform the

code compiled by gcc using code JIT’ed from the portable VTL generated by the

LLVM back-end of Orcc. Results are available in [GWPR10a].

The VHDL back-end of Orcc described by Siret et al. in [SWNR10] is able to

generate readable and portable VHDL code in a few seconds. The generated VHDL

code runs as fast as code generated by OpenForge, although the hardware synthe-

134 Implementation and Results

sized from this code requires more logic components than the hardware synthesized

from code generated by OpenForge.

7.4.3 Classification and Transformation of Actors

This section presents the results of the classification method in terms of the number

of actors that can be classified with our method. The classification method has

been tested on 50 actors used by two dataflow descriptions of the normative and

low-level versions of the MPEG-4 part 2 decoder present in Orcc. Table 7.5 shows

the classification results with actors classified as static, cyclo-static, quasi-static,

dynamic, time-dependent.

Number of actors Classification

6 static

14 cyclo-static

11 quasi-static

13 dynamic

6 time-dependent

Table 7.5: Classification results on 50 actors.

We have implemented our transformation method for cyclo-static actors with

mono-token reads and writes. Using the optimization with this subset of cyclo-static

actors results in a 20% increase of the number of frames per second in the low-level

MPEG-4 part 2 description. Measurements on the Algo Interpolation halfpel

actor presented in Chapter 5 indicate that the transformed version of the actor is

2.4 times faster than the original version.

7.5 Conclusion

This chapter has presented the implementation of support tools for RVC-CAL

dataflow programs, and results obtained with video coding applications written with

these tools. Support tools include a graphical editor that can be used with XDF

dataflow networks, and an implementation of our compilation infrastructure named

Open RVC-CAL Compiler (Orcc). We have mentioned the principles behind video

coding as an introduction to the description of RVC video decoders. Section 7.3 has

presented several implementations of schedulers for dynamic dataflow programs,

among our simple and efficient round-robin scheduler. Finally, the last section has

given results obtained with the test applications presented earlier. These results

Conclusion 135

include performance of the code generated by several back-ends on a multi-core

processor and on programmable logic.

The next and final chapter of this thesis concludes this document by a summary

of the work we have presented, before identifying current limitations in our approach.

Finally, we list perspectives for future work that can take advantage of our compi-

lation infrastructure to perform more sophisticated analyses and transformations.

136 Implementation and Results

Chapter 8

Conclusion

8.1 Summary

The work presented in this thesis takes place in a context of growing demand for bet-

ter video quality (High-Definition TV, home cinema...) and unprecedented concern

for power consumption. Video quality can be improved simply by compressing less,

in other words by transmitting more information. However, bandwidth consumption

is growing in an exponential fashion, driven by the increasing number of embedded

systems with video playing capabilities and Internet access, such as smartphones and

set-top boxes. Another way to improve video quality is to use better video compres-

sion, with more complex algorithms that demand more computational power, which

is conflicting with the goal of lower power consumption. Additionally, the current

process for standardization of video coding methods provides standards with little

flexibility, and no room for arbitrary configuration of a video decoder depending

on the type of the user device. This slows down the adoption of new standards

because it is increasingly long and complicated to implement standards on systems

with restricted capabilities and heterogeneous computing platforms.

The Reconfigurable Video Coding (RVC) MPEG standard attempts to solve

many of these problems. Previous video standards have historically described video

coding features in terms of a fixed set of profiles, with each profile suited to a

particular use of the standard (for instance, low-resolution display, higher error

resilience, the latter and high-resolution display, etc.). In contrast, within RVC a

video decoder is described with a block diagram (or network) whose blocks are called

Functional Units (FUs) or actors and implement different decoding algorithms. This

is a paradigm shift in video coding in that it renders the concept of profile obsolete,

since within RVC a profile is equivalent to a given network of FUs. Another way of

seeing this is that it is possible to have many more configurations of a video decoder

than the existing number of profiles in a typical video standard.

137

138 Conclusion

Furthermore, RVC networks are a lot more flexible than reference software pro-

vided by previous standards as monolithic C/C++ descriptions. An RVC network is

formally described as a Dataflow Process Network (DPN) [LP95], an extension of the

Kahn Process Network (KPN) model [Kah74]; we also refer to a DPN as a dynamic

dataflow program. A DPN connects actors with FIFOs that have non-blocking read

semantics, and actors are described as a set of firing rules that may read/write data

from/to FIFOs. Actors in an RVC network are written in a platform-neutral lan-

guage called RVC-CAL (presented in section 2.3.1) which respects DPN semantics.

The DPN model is the most general dataflow model, and there are many models

that are defined as a restricted subset of DPN semantics. We have shown in section

2.3.2 how some of these models could be described in RVC-CAL.

RVC decoders are abstract descriptions that can be simulated, but they must be

transformed to a hardware or software description to be efficiently executed. In order

to facilitate the analysis, transformation, and code generation for dynamic dataflow

programs, we have defined an Intermediate Representation (IR) of dynamic dataflow

actors in Chapter 3. As we show in section 3.2, to our knowledge there is no IR in

the state of the art that can represent the structure and semantics of an actor in

a simple and high-level way. After the description of the structure and semantics

of our IR, Chapter 4 describes the front-end of our compilation infrastructure that

compiles RVC-CAL to an IR of actors. Along with networks, this IR of actors can be

analyzed and transformed by the middle-end as explained in Chapter 5. Finally, we

explain in Chapter 6 how back-ends generate code in many languages from networks

and the IR of actors.

We have implemented the compilation infrastructure described in this document

in a tool called Orcc (Open RVC-CAL Compiler). In addition to an RVC-CAL front-

end, a middle-end with classification and transformation capabilities, and C, C++,

Java, LLVM, VHDL, and XLIM back-ends, Orcc includes an RVC-CAL textual ed-

itor, a simulator and a debugger. We have also written a generic graph editor called

Graphiti that can be used to edit RVC networks. As pointed out in Chapter 7, Orcc

and Graphiti are available as Eclipse features. This chapter also presents results ob-

tained with RVC video coding applications and several implementations of dynamic

scheduling techniques for dataflow programs, including our round-robin scheduler.

As mentioned in section 7.1.3 these applications represent tens of thousands of lines

of RVC-CAL code. A CABAC parser described as a single actor accounts for more

than 9,000 lines alone [BMR10].

Perspectives 139

8.2 Perspectives

Our compilation infrastructure is the first to use a simple, high-level, unified Interme-

diate Representation (IR) of dynamic dataflow programs that can be easily analyzed,

transformed, and from which we can generate code in many languages from hardware

description languages to high-level software languages. This opens many interesting

perspectives for future work, the first of which is to use the infrastructure to gen-

erate a mixed hardware/software description, also known as a hardware/software

co-design system. Previous works, including ours [RLM+09], have described the im-

plementation of co-design systems from an RVC-CAL program. However, most of

the time software and hardware are generated by different tools (in our case, Cal2C

and OpenForge). Using the C and VHDL back-ends implemented in Orcc, it would

be possible to generate a co-design system with a single tool. This would offer the

user more flexibility to describe the mapping of actors to components.

Another area for future work concerns our classification method presented in

Chapter 5 and the associated transformations. We have seen that we are able to

recognize SDF, CSDF, but only a subset of PSDF, and it would be interesting to rec-

ognize a larger set of quasi-static behaviors. Additionally, based on the results given

by the classification, we could implement many transformations that would allow

faster code to be generated. Indeed, there are many techniques and algorithms in the

literature that can efficiently schedule static, cyclo-static, or quasi-static graphs. We

could benefit from using these techniques whenever possible to reduce the amount

of scheduling that needs to be performed at runtime. Furthermore this would al-

low us to generate an efficient mapping and scheduling of non-dynamic parts of an

application.

Although improving the code generated for statically schedulable actors is im-

portant, it is equally important to improve the speed of code generated for dynamic

actors. The FIFOs we have implemented are multi-core ready, in the sense that they

can be used readily with any arbitrary mapping of actors to several cores. Because of

that, the FIFO implementation is sub-optimal, and we have seen that this approach

to multi-core does not scale at all: using more than three cores even tends to decrease

performance. Each call to check the number of tokens or the space available, or to

read or write data, uses the read (or write) index modulo the size of the FIFO. This

results in a large overhead because FIFOs are the only means of communication that

an actor has: in a simple test, we have noticed that using arrays was 3.5 times faster

than using the current FIFOs. This leads us to believe that by not allowing FIFOs

to be shared between cores, and by reducing the number of modulo operations, we

could obtain a similar speedup in parts of low-level descriptions where FIFO access

is a limiting factor (like the iDCT of the low-level MPEG-4 part 2 description).

140 Conclusion

Likewise, although the current round-robin scheduler is simple and works well

on most applications, there are certain applications where it is grossly inefficient,

and would need to be replaced. In particular, the parser of the MPEG-4 part

10 description was recently rewritten so that the bit-level decoding is described in

a client-server fashion. More precisely, every time a “client” actor wants a syntax

element, it sends a request (with tokens) to a bit-level decoding “server” actor, which

decodes the syntax element and then sends a response with the decoded element to

the client. With the round-robin scheduler, all actors are scheduled once between

each request and the corresponding response, which stalls the client and generally

performs a good deal of useless work. Using a more sophisticated scheduler1 can

dramatically improve the situation (on this particular application the speedup is

around 7), while bringing no significant difference on other applications. We believe

that this experimental scheduler can be further improved to reduce as much as

possible the number of times actors are scheduled in vain.

1Also known as “experimental scheduler” in Orcc.

Appendix A

French Annex

Conformément à la loi n◦94-665 du 4 août 1994 relative à l’emploi de la langue

française, le manuscrit étant rédigé dans une langue étrangère au français, il doit

contenir un résumé en français, reproduit ci-après. Ce résumé est suivi par une

synthèse du travail effectué autour des programmes flux de données RVC-CAL depuis

la fin de la rédaction de cette thèse en octobre 2010.

A.1 Résumé de la thèse

A.1.1 Contexte

Les systèmes embarqués sont aujourd’hui présents dans la majorité des équipements

du quotidien et dans la quasi-totalité des secteurs d’activité. En 2004, le profit

généré par l’industrie micro-électronique était d’environ 40 milliards de dollars dans

le monde et, malgré la crise économique mondiale de 2008, il atteint 79 milliards

de dollars en 2009 soit une augmentation de 14,2% par an ; pour l’ensemble du

domaine des systèmes embarqués, logiciel et matériel, le profit généré est de l’ordre

de 3,488 millions de dollars (Information Society Technology). Ainsi, la consom-

mation des produits de haute technologie est en hausse, notamment l’électronique

grand public. Le nombre de ”smartphones”, ces téléphones intelligents combinant

à la fois les fonctions de téléphone, d’agenda électroniques, de lecteur vidéo, et de

navigateur Web, par exemple a explosé. Précisément, l’institut GfK a mesuré une

augmentation du volume des ventes de ce type de téléphone de 138%, en France.

D’autre part, il s’est vendu plus de 7 millions de téléviseurs à écran plat en 2009 et

plus de 8 millions en 2010. De la même manière, les ventes d’ordinateurs personnels

augmentent régulièrement, notamment pour les micro-portables (connus sous le nom

de ”netbooks”), qui offrent des fonctionnalités similaires à un ordinateur portable

classique pour un prix moindre.

142 French Annex

Ces produits ont en commun une offre multimédia importante, notamment

une capacité à lire du contenu vidéo et audio, que celui-ci soit stocké au sein du

périphérique (mémoire flash, cartes SD, disque dur, etc.) ou diffusé via des ser-

vices de diffusion de vidéo à la demande (Youtube, Dailymotion, box, etc.). A

l’heure actuelle, un produit type smartphone ne proposant pas une offre multimédia

suffisante ne se vendrait pas, ou peu. Ce point sous-tend que tout produit ”high-

tech” dispose d’une connexion Internet et que la bande passante disponible au sein

du réseau est suffisante. Il y a encore dix ans, une éternité dans le domaine des

hautes technologies, ce point aurait été jugé irréel. En effet, on comptait alors

moins d’un million de foyers ayant un accès Internet haut débit en France ; ils

sont aujourd’hui plus de vingt millions. Par ailleurs, les technologies de transport

de données pour téléphone portable ont largement évolué, autorisant des taux de

transfert de quelques mégabits par seconde (Mbps) grâce à la 3G et au protocole

Universal Mobile Telecommunications System (UMTS) contre quelques centaines de

kilobits par seconde (kbps) quelques années plus tôt. Il est à noter que le standard

Long Term Evolution (LTE), en cours de de développement, permettra des taux de

transferts de données jusqu’à 100 Mbps.

Un problème bloquant apparâıt cependant : la quantité d’information trans-

mise augmente plus rapidement que la capacité qu’ont les routeurs dans le réseau à

traiter cette information. En effet, entre l’augmentation du nombre d’équipements

capables de lire du contenu vidéo diffusé, et l’augmentation de la bande passante

disponible, la bande passante consommée connâıt une croissance exponentielle. Par

exemple, en 2007, il a été mesuré que le site de diffusion vidéo le plus connu, Youtube,

avait consommé autant de bande passante qu’Internet tout entier sept ans plus tôt.

Concrètement, la bande passante consommée augmente plus vite que le nombre

de transistors disponibles dans les composants électroniques utilisés par les rou-

teurs. Ce constat, ainsi que celui de la demande croissante du marché pour des

vidéos plus hautes résolutions type Haude définition (720p, 1080i, 1080p, voir le 4k

et la Ultra High Definition), a poussé le Moving Picture Experts Group (MPEG)

et le Video Coding Experts Group (VCEG) de l’International Telecommunication

Union (ITU-T) à annoncer le développement d’une nouvelle norme de codage nommé

High Efficiency Video Coding (HEVC). Cette norme vise à diminuer la quantité

d’informations nécessaire pour coder une vidéo de 50% par rapport au précédent

standard MPEG AVC (Advanced Video Coding). Lors du meeting MPEG de jan-

vier 2011, le nombre d’experts et de chercheurs participant aux réunions sur HEVC

représentait plus de la moitié du nombre total d’experts participant au meeting, une

indication très claire de l’intérêt porté à HEVC.

Afin d’obtenir une compression plus élevée, il est indispensable d’utiliser des al-

Résumé de la thèse 143

gorithmes plus poussés et de facto, plus complexe, ce qui engendre une augmentation

de la puissance de calcul nécessaire pour l’encodage et le décodage de vidéo. Ainsi,

l’encodage de séquences vidéo de référence (relativement complexe), avec l’encodeur

de référence HEVC, dans sa version disponible de janvier 2011, nécessitait plusieurs

heures de calcul pour quelques centaines d’images. Cette augmentation n’était pas

problématique jusqu’à présent puisque obtenir plus de puissance de calcul reve-

nait à mettre à jour les dispositif de codage et décodage via l’utilisation d’une

nouvelle génération de processeurs plus rapide que la précédente. Autrement dit,

”plus rapide” signifiait concrètement ”à une fréquence d’horloge plus élevée”, et il

était commun de penser que la vitesse des processeurs allait continuer à augmenter

linéairement. Ceci découle d’une affirmation bien connue appelée loi de Moore.

Cette loi définie par le co-fondateur d’Intel : Gordon E. Moore, dit que le nom-

bre de transistors pouvant être placés à peu de frais sur un circuit intégré double

approximativement tous les deux ans.

L’interprétation de la loi de Moore doit être réalisé avec soin. En effet, elle

ne dit nullement que la fréquence ou les performances des processeurs augmentent

linéairement tous les deux ans mais bien que le nombre de transistors double approx-

imativement. Bien que l’augmentation de la fréquence soit une des conséquences de

la miniaturisation des transistors, celle-ci n’est nullement infinie. La miniaturisation

réduit la consommation énergétique, donc la résistance thermique ce qui permet

d’augmenter la fréquence de fonctionnement mais il existe une barrière physique au

procédé. Ainsi les fréquences d’horloge ont arrêté d’augmenter quand les ingénieurs

ne pouvaient plus réduire la taille des transistors et, de fait, ne pouvait plus réduire

la dissipation thermique, ce problème a été appelé le power wall, le mur de la puis-

sance. L’augmentation des performance en terme de puissance de calcul (nombre

d’instructions par seconde) est depuis réalisé par la fabrication de processeurs ap-

pelés ”multi-core”, ou multi-coeurs (i3, i7, par exemple) composé de plusieurs cœurs

de traitement (de 2 à 2n). Ces processeurs, d’abord disponibles pour les ordinateurs

de bureau, sont désormais présents dans divers systèmes embarqués. Il est à noter

que l’idée d’avoir des processeurs en parallèle n’est pas récente, les architectures de

type ”symmetrical multiprocessing” (SMP), par exemple, sont disponibles depuis

des années. Ceci dit, les deux différences majeures entre les processeurs multi-core

et les architectures classiques SMP (c’est-à-dire disponibles avant le multi-core), sont

que les cœurs d’un processeur communiquent plus rapidement que des processeurs

séparés, et que d’autres part les cœurs partagent un cache commun. Ce dernier

point prend de plus en plus d’importance au fur et à mesure que nous avançons vers

le memory wall, le mur de la mémoire, qui est caractérisé par le fait que la latence

mémoire n’augmente pas aussi vite que la vitesse processeur [WM95].

144 French Annex

Le principal problème des processeurs multi-cœurs est qu’il n’est pas facile de

créer des programmes qui soient efficaces sur ce type d’architecture. Program-

mer les futurs processeurs “many-core” (plusieurs centaines de cœurs) et des pro-

cesseurs hétérogènes (comportant des cœurs généralistes, un ou plusieurs GPU,

divers accélérateurs) sera encore plus difficile. Certaines applications étaient déjà

prêtes pour le multi-core, typiquement les applications fortement multi-threadées

comme les Systèmes de Gestion de Bases de Données (SGBD) ou les serveurs Web,

qui de toute façon étaient déjà déployées sur des serveurs multi-processeurs. Cepen-

dant, pour toutes les autres applications demandeuses de puissance de calcul, il n’y

a pas vraiment de modèle de programmation unifié. Entre l’utilisation de threads,

de passage de message (MPI [GLS99]), d’API dédié au multi-core (MCAPI), de

parallélisation automatique (c’est-à-dire extraction automatique de parallélisme au

niveau instruction), de directives pour les compilateurs (OpenMP [DM02], Cilk

[BJK+95]), et autres, il existe tout un panel de possibilités. Notons par ailleurs

qu’aucun des modèles précités n’est adapté à la description de composants (FPGA

et ASIC).

A.1.2 Programmes flux de données

Cette thèse présente une infrastructure de compilation pour des programmes flux

de données, appelés “dataflow programs” en anglais. Le concept de programme flux

de données a été décrit pour la première fois par Dennis en 1974 [Den74] comme

un graphe dirigé dont les arcs représentent le flux de données entre les sommets.

Le fait que les sommets ne puissent pas partager de variables permet d’exécuter

des sous-ensembles du graphe de manière concurrentes. Historiquement il y a eu de

nombreux langages qu’on a qualifiés de flux de données, tels que Lustre [HCRP02],

Signal [BGJ91], VHDL [IEE93], ainsi que des langages utilisés dans des outils

propriétaires comme Simulink ou LabVIEW.

Les programmes flux de données que nous considérons dans cette thèse sont des

programmes flux de données qui se comportent selon le model Dataflow Process

Networks [LP95]. Les sommets d’un DPN sont appelés des acteurs, et sont écrits

dans un langage dédié à un domaine (Domain-Specific Language or DSL) appelé

RVC-CAL. RVC-CAL est un langage qui fut standardisé par le standard RVC (Re-

configurable Video Coding), et avec lequel sont définis des outils de codage vidéo.

Le language est un sous-ensemble restreint du CAL Actor Language [EJ03] optimisé

pour le codage vidéo.

Les problèmes de recherche associés avec les programmes flux de données dy-

namiques en général, et avec RVC-CAL en particulier incluent les problèmes suiv-

ants:

Résumé de la thèse 145

• génération et exécution efficace de code logiciel séquentiel à partir d’une de-

scription intrinsèquement parallèle,

• génération et exécution de code logiciel parallèle,

• génération de code logiciel qui puisse être dynamiquement (à la volée) recon-

figuré,

• génération de descriptions matérielles portables et efficaces,

• reconfiguration partielle d’une description matérielle correspondant à un

ajout/suppression de sommets dans le graphe flux de données initial,

• création de programmes pour des architectures hétérogènes (matériel/logiciel,

avec différents types de processeurs et liens de communications).

Chacun de ces problèmes est complexe en soi, par exemple la génération de

code logiciel séquentiel depuis un programme flux de données, et son exécution de

manière efficace demande de l’analyse, de la transformation, de l’optimisation, de la

génération de code, et de l’ordonnancement dynamique, tout ceci dédiés à ce type

de programme.

A.1.3 Contributions

Nous montrons dans cette thèse comment des programmes flux de données peuvent

être compilés dans une Représentation Intermédiaire (RI) afin de faciliter l’analyse,

la transformation, et la génération de code de ces programmes. La thèse fait les

contributions suivantes :

• une Représentation Intermédiaire (RI) d’acteurs flux de données dynamiques

qui peut être utilisée pour l’analyse, la transformation, et la génération de code

vers des langages cibles matériels et logiciels.

• une méthode pour analyser le comportement d’un acteur flux de données dy-

namique afin de déterminer s’il se comporte conformément à des Modèles de

Calcul (MoC) connus,

• une méthode qui transforme des acteurs d’une manière qui réduise

l’ordonnancement à l’exécution et facilite la réunification d’acteurs,

• un système basé sur des templates pour générer du code matériel et logiciel

depuis la RI de manière simple,

146 French Annex

• deux méthodes d’ordonnancement efficaces, simples, et scalables pour des pro-

grammes flux de données dynamiques.

En plus des problèmes de recherche que nous avons listé dans la section

précédente, il existe des problèmes pratiques d’implémentations qui doivent être con-

sidérés pour permettre aux développeurs d’utiliser le standard RVC et de développer

leurs applications en utilisant du flux de données dynamique. En effet, je crois

qu’il est crucial de construire une véritable “bôıte à outils” pour les développeurs

d’applications flux de données, pour la simple raison que plus il y a d’applications

développées, plus nous aurons d’applications sur lesquelles nous pourrons conduire

des expérimentations, et écrire une application dans un langage dédié à un domaine

sans éditeur dédié à ce langage est pénible et compliqué.

En conséquence, je présente également dans cette thèse les contributions que j’ai

faites, au niveau de l’implémentation:

• un éditeur de graphes reconfigurable appelé Graphiti pour des multi-graphes

dirigés qui peut être utilisé pour décrire, entre autres, des graphes flux de

données,

• un ensemble d’outils pour des programmes flux de données RVC-CAL appelé

Open RVC-CAL Compiler (Orcc) qui inclut un éditeur textuel de RVC-CAL,

une infrastructure de compilation, un simulateur, et un débuggueur.

 front-end middle-end

RVC-CAL

actors

IR

actors
XDF

networks

back-end

IR actors

XDF networks

source code

Figure A.1: Infrastructure de Compilation pour des Programmes Flux de Données.

L’infrastructure de compilation pour des programmes flux de données RVC-CAL

que nous présentons dans cette thèse, et qui est représentée sur la Fig. 1.1, peut

s’apparenter à un compilateur pour des programmes flux de données séparé en trois

étages. Le but de cette infrastructure est triple:

Résumé de la thèse 147

1. permettre la compilation de programmes flux de données dans n’importe quel

langage (matériel et logiciel), et pour n’importe quelle plateforme (multi-core,

hétérogène, etc.).

2. fournir aux développeurs d’applications RVC un réel IDE (Integrated Devel-

opment Environment), qui est nécessaire pour le succès du langage RVC-CAL

et du standard RVC.

3. faciliter la recherche concernant les programmes flux de données en fournissant

une architecture stable, une API propre, et des outils intégrés.

Le premier étage du compilateur, appelé front-end, est responsable de la

création d’une RI des acteurs RVC-CAL, les acteurs résultants étant nommés ac-

teurs RI. Le chapitre 4 explique comment le front-end crée la RI d’un acteur RVC-

CAL à travers une série de transformations comportant de l’analyse syntaxique, de

l’évaluation d’expressions, du typage et de la vérification de types, et de la traduc-

tion de la structure, des instructions et des expressions. Bien que je ne présente que

le front-end que j’ai écrit pour RVC-CAL, de nombreux principes décrits dans ce

chapitre peuvent être appliqués pour d’autres langages utilisés dans la programma-

tion flux de données.

Le middle-end est le composant qui analyse et transforme la RI des acteurs

et des réseaux pour produire des acteurs RI et des réseaux qui soient tous deux

optimisés, ainsi qu’expliqué dans le chapitre 5. Nous appelons “classification” le

processus qui consiste à analyser un acteur pour déterminer s’il peut être ordon-

nancé à la compilation, complètement ou en partie, et pour déterminer la quantité

de données qu’il produit et consomme. Notre méthode de classification est basée

sur la RI des acteurs, et pourrait être utilisée en théorie pour d’autres langages flux

de données tant que ceux-ci peuvent être convertis vers la RI. Le résultat de la clas-

sification peut servir d’entrée pour des transformations d’acteurs, ainsi ce chapitre

présente une transformation au niveau acteur qui permet de passer d’une descrip-

tion bas niveau (lecture/écriture de 1 jeton par action) à une description haut niveau

(lecture/écriture de n jetons par action).

Enfin le dernier étage du compilateur est la génération de code, qui est effectuée

par un back-end pour un langage donné (C, LLVM, VHDL, etc.) et qui génère du

code à partir d’un réseau hiérarchique et d’un ensemble d’acteurs RI. Le chapitre 6

examine les problèmes à résoudre pour générer un code efficace dans des langages

cibles très différents. La première étape de la génération de code est la séquence

de transformations subies par la RI des acteurs, que ces transformations soient

génériques (optimisations sur la RI) ou spécifiques (transformation de la RI pour être

plus proche du langage cible). La deuxième étape est la transformation du réseau,

148 French Annex

tout d’abord en “fermant” le réseau (résolution des paramètres), en mettant à plat

la hiérarchie, et en ajoutant des sommets de diffusion là où ils sont nécessaires. Fi-

nalement, la dernière étape de la génération de code consiste à écrire du code textuel

depuis la RI des acteurs et des réseaux. Pour ce faire, nous présentons une méthode

qui se concentre sur la lisibilité (à la fois celle du générateur de code et du code

généré), la maintenance, et l’expérimentation rapide de générateurs de code pour

des nouveaux langages, sans compromettre la vitesse d’exécution du générateur de

code

Le chapitre 7 commence par présenter les outils de support pour les programmes

flux de données RVC-CAL, ceci incluant un éditeur de graphes nommé Graphiti, et

une implémentation de l’infrastructure décrite dans ce document appelée Open RVC-

CAL Compiler (Orcc). Le chapitre décrit ensuite les applications de codage vidéo qui

ont été décrites, en partie ou totalement, avec ces outils. Finalement, nous montrons

les résultats obtenus sur ces applications avec la classification, la transformation

d’acteurs, et l’ordonnancement dynamique sur mono-processeur, processeur multi-

cœurs, et logique programmable.

Pour finir, le chapitre 8 conclut cette thèse. La conclusion fait le bilan du tra-

vail présenté dans le document, identifie les limitations de notre approche à l’heure

actuelle, et liste des perspectives pour des travaux futurs.

A.2 Poursuite des travaux sur le flux de données

Cette section décrit les travaux qui ont été effectués autour des programmes flux de

données RVC-CAL, par moi ou par d’autres, au sein du laboratoire où j’ai effectué

ma thèse, ainsi que dans d’autres laboratoires, mais également des directions qui

semblent intéressantes, qu’elles aient été proposées par moi ou par d’autres.

A.2.1 Prise en compte de l’architecture

Ainsi que j’identifiais dans la conclusion de ma thèse, l’avantage considérable de se

baser sur une infrastructure de compilation avec une Représentation Intermédiaire

simple, haut-niveau, et portable, est que l’on peut générer du code matériel et logi-

ciel à partir d’une seule et même RI d’un programme au sein de l’infrastructure.

Cependant, il n’est pas réaliste de pouvoir penser générer une application qui soit

mi-hardware/mi-software sans prendre en compte l’architecture cible.

Un outil appelé Preesm, développé par Maxime Pelcat et Jonathan Piat (et

auquel j’ai contribué un peu de code) à l’IETR, est orienté vers la génération de

code optimisée à partir de modèles flux de données statiques pour DSP multi-cœurs,

dont l’architecture (moyens de communications entre cœurs, entre DSPs, entre DSP

Poursuite des travaux sur le flux de données 149

et mémoire(s), entre DSP et PC...) est décrite à l’aide d’un modèle nommé S-LAM

(System-Level Architecture Model). Ce modèle est sérialisé en IP-XACT, ce qui per-

met de garantir l’interopérabilité avec d’autres outils. Afin de mutualiser les efforts,

Maxime et moi avons récemment créé un projet nommé DFTools (pour DataFlow

Tools) dans lequel seront regroupés tous les composants utiles à des outils manipu-

lant des graphes flux de données, et ceci inclut notamment un modèle d’architecture.

Damien de Saint-Jorre, ingénieur à l’IETR, a d’ailleurs commencé une génération

de code multi-plateformes basée sur ce modèle d’architecture.

A.2.2 Modifications et améliorations de la RI

La Représentation Intermédiaire (RI) sur laquelle est basée l’infrastructure de com-

pilation présentée dans le document a été construite de manière incrémentale en

fonction des besoins de différents back-ends. Elle n’est donc en aucune manière

figée, bien au contraire. Par exemple, à une époque la RI ne contenait pas de CFG,

parce que les analyses que nous voulions faire n’avait pas besoin de cette information,

et le seul back-end existant à l’époque, le back-end C, n’en avait pas besoin non plus

; j’ai rajouté plus tard la notion de CFG pour les besoins du back-end LLVM écrit

par Jérôme Gorin. Un autre exemple est qu’il y avait auparavant une instruction

HasRoom qui faisait partie de la RI, et qui devait être traduite par les back-ends

par une vérification de la place restante dans la FIFO. La place restante dans une

FIFO n’est pas une condition qui entre en jeu dans l’ordonnancement d’une action,

et n’était donc pas utilisée par la classification ou l’interpréteur, mais uniquement

traduite par les back-ends. Après avoir rajouté l’information des motifs d’entrée

et de sortie des actions, l’instruction HasRoom était devenue redondante, et fut

supprimée.

Après l’écriture de la thèse, j’ai réalisé que l’instruction HasTokens était

également redondante, puisque l’information de lecture peut également se déduire

des patterns d’entrée et de sortie. D’autre part, ne pas utiliser cette instruction rend

l’écriture de certains back-ends plus simples, et donne plus de souplesse dans cer-

tains cas (mise à jour de la l’implémentation des FIFOs par exemple). On pourrait

argumenter que finalement les autres instructions d’accès aux FIFOs, Peek, Read,

et Write ne sont pas nécessaires puisque tout l’information est enregistrée dans

les motifs des actions. La différence est cependant que ces instructions définissent

des variables contenant des jetons, ce qui permet de traiter ces variables comme

les autres. Suite à une suggestion de Jérôme Gorin, j’ai changé la manière dont

est représentée l’information des motifs d’entrée et de sortie d’une action. Ces

motifs comportent toute l’information nécessaire (dont la définition des variables

contenant les jetons), et ont permis de supprimer les instructions Peek, Read, et

150 French Annex

Write. L’utilisation de motifs rend beaucoup plus simple certaines transformations

d’acteurs, telles que la fusion d’acteurs ou la division d’actions.

Une autre amélioration de la RI a été proposée par Hervé Yviquel, qui effectue

une thèse à l’IRISA en cotutelle avec l’IETR/INSA. Bien que cet aspect ne soit pas

mentionné dans la thèse, il n’existe pas réellement de modèle de la RI, seulement une

implémentation. Définir un modèle de la RI aurait un certain nombre d’avantages:

• permettre aux nouveaux développeurs une référence claire et précise quant à

l’organisation et au contenu de la RI,

• formaliser et uniformiser les relations entre instructions, expressions, nœuds

du CFG, etc. Cela permettra de répondre à des questions comme “quel objet

contient quel autre(s) objet(s)”, “quel objet référence tel autre(s) objet(s)”.

Cela permettra également d’offrir les mêmes possibilités à tous les niveaux,

ce qui n’est pas le cas aujourd’hui, par exemple il est possible de connâıtre le

bloc auquel appartient une instruction, mais il n’est pas possible de connâıtre

facilement le nœud auquel appartient une expression...

• faciliter la traduction depuis et vers la RI à partir de et vers d’autres RI qui

ont déjà été modélisées.

Orcc étant développé sous Eclipse, le framework de modélisation utilisé serait EMF.

A.2.3 Classification et transformation d’acteurs

Un besoin identifié lors du meeting MPEG qui s’est déroulé à Daegu, en Corée, fin

janvier 2011, concerne la caractérisation des acteurs dont le comportement dépend

du temps. La méthode que j’ai proposée dans la thèse permet de trouver les acteurs

qui ont un comportement time-dependent en vérifiant si les gardes d’actions avec

des motifs d’entrée dépendants du temps sont mutuellement exclusives. J’avais

utilisé pour vérifier l’exclusion mutuelle un solveur de contraintes. Cependant, le

problème de prouver l’exclusion mutuelle (ou la non-exclusion mutuelle) est plutôt

un problème de satisfaisabilité qu’un problème de résolution de contraintes. Cela

fait qu’un solveur de satisfaisabilité (appelé solveur SAT ou solveur SMT selon le

type de problème) sera potentiellement plus performant pour résoudre le problème.

De plus, le pouvoir d’expression de solveurs SMT est plus important que celui des

solveurs de contraintes typiques, notamment ils peuvent raisonner sur des concepts

de plus haut niveau, tels les tableaux, les fonctions, etc. Il est donc envisagé, pour la

classification, de mettre en place une interface avec un solveur SMT afin de diminuer

le nombre de faux-positifs (en effet toutes les gardes d’un acteur potentiellement

Poursuite des travaux sur le flux de données 151

time-dependent ne pouvant être exprimées sous forme de contraintes font que l’acteur

est automatiquement considéré time-dependent).

D’autres pistes sont en cours concernant l’analyse et la transformation d’acteurs.

On peut citer par exemple les travaux de Johan Ersfolk, de l’Abo Academy Univer-

sity, qui a commencé l’écriture d’un back-end dans Orcc pour générer du Promela

à partir d’un modèle RVC-CAL, afin de pouvoir utiliser l’outil Spin pour analyser

le comportement du modèle. D’autres travaux sont en cours par Jérôme Gorin pour

fusionner des acteurs dont le comportement est statique, cyclo-statique, ou quasi-

statique.

A.2.4 Amélioration des FIFOs

Comme nous l’avons décrit dans la thèse, il existe au sein d’un programme flux de

données dynamique un certain nombre d’acteurs qui peuvent se comporter selon

des modèles de calcul plus restreints, tels SDF (Synchronous Dataflow), CSDF

(Cyclo-Static Dataflow), ou encore PSDF (Parameterized Synchronous Dataflow).

La littérature mentionne plusieurs techniques pour tirer profit des propriétés de ces

modèles afin de minimiser voir de supprimer le besoin d’ordonnancer ces acteurs

à l’exécution en faveur d’un ordonnancement à la compilation. Cependant, il est

rare que tous les acteurs d’une application se comportent selon ces modèles. Dans

certaines applications, la proportion d’acteurs respectant le modèle de calcul flux

de données dynamique le plus général (DPN) est même plus grande que la propor-

tion d’acteurs SDF, CSDF, ou PSDF ; c’est ainsi le cas de la description RVC d’un

décodeur MPEG AVC (Advanced Video Coding). Il est donc vital de diminuer au-

tant que faire se peut le surcoût lié à l’exécution de ce type d’acteurs, notamment

au niveau de l’ordonnanceur d’acteurs et des FIFOs.

Le surcoût de l’exécution d’acteurs dynamiques par rapport à l’exécution

d’acteurs statiques se retrouve à deux niveaux:

1. utilisation de FIFOs, contrairement à de simples tableaux pour des acteurs

statiques,

2. ordonnancement à l’exécution plutôt qu’à la compilation pour des acteurs sta-

tiques.

Intéressons-nous tout d’abord au surcoût lié à l’utilisation de FIFOs telles qu’elles

étaient implémentées dans le back-end C de Orcc. Les instructions Peek,

Read, Write de la RI sont traduites en C par des appels à des fonctions

d’une librairie implémentant des FIFOs avec des buffers circulaires, respectivement

fifo <type> peek, fifo <type> read, fifo <type> write (type étant le type

152 French Annex

de la FIFO, parmi i8, u8, i16, etc.). Afin de pouvoir utiliser ces FIFOs dans un

contexte multi-cœur, le générateur de code C ajoute à la fin de chaque action des

appels aux fonctions fifo <type> read end et fifo <type> write end pour sig-

naler que l’action a fini de lire (respectivement d’écrire) dans les FIFOs concernées.

Toujours dans ce contexte, une FIFO est une simple structure contenant un tableau,

un indice de lecture, un indice d’écriture, et un entier contenant la taille de la FIFO.

Les fonctions read end et write end mettent à jour respectivement l’indice de lec-

ture et d’écriture de la FIFO passée en paramètre. Ceci permet de garantir que les

données lues et utilisées par une action ne soient pas remplacées par des données

produites par un autre acteur tant que l’action n’est pas terminée.

Le problème inhérent à ce modèle est qu’à chaque opération sur une FIFO,

que ce soit calcul du nombre de tokens présents, de la place restante, lecture ou

écriture, les fonctions doivent comparer les indices de lecture et d’écriture

pour savoir si la FIFO est vide ou pleine. En effet, dans un buffer circulaire

il est possible d’avoir un indice d’écriture inférieur à l’indice de lecture, dans le cas

où il y a des données entre l’indice de lecture et la fin du buffer, et entre le début

du buffer et l’indice d’écriture. Ce surcoût est constant quel que soit le nombre de

jetons lus ou écrits en un appel à read ou write. Autrement dit, si l’on nomme c

le surcoût, faire n read(1) entrâıne un surcoût total de c × (n − 1) par rapport à

un seul read(n). C’est l’une des raisons pour lesquelles un design dit “bas-niveau”,

qui lit/écrit au plus un jeton par port par action, est plus lent qu’un design plus

haut-niveau qui va lire/écrire plus de tokens à la fois par action.

Pour remédier à ce problème, le code généré par le back-end C n’appelle

désormais plus les fonctions de lecture/écriture de FIFOs. Au début de l’exécution

d’un acteur, l’acteur fait une copie locale des indices de lecture/écriture. Les ap-

pels aux fonctions de lecture/écriture sont remplacés par des références de la forme

jetons[indice % TAILLE] où jetons est le tableau contenant les jetons présents

dans la FIFO, indice est l’indice de lecture (le cas échéant, d’écriture) local, et

TAILLE est la taille (constante) de la FIFO. Bien entendu, pour que ce remplacement

soit avantageux, il faut que l’opération modulo utilisée soit plus rapide à exécuter

que les fonctions des FIFOs. Ces fonctions, dans le meilleur des cas, en admettant

qu’elles soient inlinées dans le code appelant, font une addition, une comparaison, et

un saut conditionné. Sur un processeur tel que l’AMD Phenom II, ceci prend 1 + 1 +

1 = 3 cycles. A noter que ce nombre donne un ordre d’idée plutôt qu’un temps réel,

puisque les nombres sur lesquels nous nous basons sont la latence des instructions,

et le processeur exécute plusieurs instructions à un cycle donné. L’utilisation d’un

saut conditionnel peut occasionner une latence supplémentaire lorsque le processeur

prédit mal un branchement et doit alors recharger son “pipeline” d’instructions. Une

Poursuite des travaux sur le flux de données 153

division sur le processeur décrit ci-dessus, quant à elle, prend au meilleur cas autour

de 20 cycles, et jusqu’à environ 40 cycles au pire cas en 32 bits, et 70 cycles au pire

cas en 64 bits !

L’opération modulo peut être optimisée pour ne prendre qu’un seul

cycle dans la quasi-totalité des cas. En effet, la taille de la FIFO est constante

et définie à la génération de code par l’utilisateur. Si cette taille est multiple de

2, alors l’opération indice % TAILLE est équivalente à un “et” binaire indice &

(TAILLE - 1), qui ne prend qu’un cycle.

Une autre source de surcoût lié à l’ordonnancement d’acteurs dynamiques

provient des sommets de diffusion de données. Jusqu’alors, ces sommets étaient

transformés en des acteurs dont le seul but était de copier les données lues depuis

leur port d’entrée pour les écrire sur n ports de sortie. Or il est possible de sup-

primer ces copies mémoire en permettant à une FIFO d’avoir plusieurs lecteurs

(et donc plusieurs indices de lecture) pour un écrivain (un seul indice d’écriture). Les

FIFOs ont donc été modifiées par Hervé Yviquel pour autoriser plusieurs lecteurs et

supprimer ces sommets de diffusion de données.

Application Number of frames per second (QCIF)

MPEG-4 part 2 (normative) 153

MPEG-4 part 2 (low-level) 160

Table A.1: Performance of the C Code Generated from Different Applications.

La table A.1 montre les résultats obtenus sur deux descriptions du décodeur

MPEG-4 part 2 disponible dans Orcc avec les améliorations mentionnées

précédemment. En comparant ces résultats avec ceux donnés dans la thèse (table

7.3), on constate une amélioration de 60% sur la description bas-niveau,

alors que l’application haut-niveau n’est quasiment pas affectée. Nous avons obtenu

une augmentation des performances supplémentaire en utilisant une taille de FIFO

par défaut plus importantes (4096) et en supprimant les contraintes sur la taille des

FIFOs. Le gain en performance est de l’ordre de 20 fps sur une résolution CIF, qui

amène le design bas-niveau à 80 images par seconde sur une résolution CIF. Nous

poursuivons notre travail sur l’amélioration des FIFOs, notamment pour supprimer

les copies mémoire qui sont encore effectuées à la lecture et à l’écriture de données

quand le nombre de jetons à lire/écrire est supérieur à 1.

A.2.5 Amélioration du nouvel ordonnanceur

Nous prévoyons de travailler ensuite à l’amélioration du nouvel ordonnanceur men-

tionné dans la conclusion de la thèse. Cet ordonnanceur ordonnance les acteurs en

154 French Annex

fonction de leurs besoins, en d’autres termes lorsqu’un acteur ne peut plus s’exécuter

parce que la FIFO connectée à un de ses ports d’entrée I est vide, l’ordonnanceur

va exécuter l’acteur dont un port de sortie est connecté à I. Si un acteur ne peut

plus s’exécuter parce que la FIFO connectée à un de ses ports de sortie O est pleine,

alors l’ordonnanceur exécute le ou les acteurs dont un port d’entrée est connecté à

O. Cet ordonnanceur est très intéressant dans les cas où les acteurs d’une application

ont des rythmes différents. En effet, l’algorithme de l’ordonnanceur ne va activer

des acteurs que lorsque cela est nécessaire, contrairement à l’ordonnanceur Round-

Robin, qui lui ordonnance tous les acteurs de manière indiscriminée. Le problème

est que pour l’instant ce nouvel ordonnanceur a un surcoût qui le rend plus lent que

l’ordonnanceur Round-Robin dans les cas où les acteurs d’une application ont des

rythmes homogènes.

Il y a plusieurs sources de surcoût dans le nouvel ordonnanceur. Tout d’abord,

les acteurs ne font pas directement aux fonctions de l’ordonnanceur quand ils ne

peuvent plus s’exécuter. A la place, ils mettent à jour une structure en construisant

un nombre qui identifie les ports dont les FIFOs sont vides ou pleines. Par exemple,

soit un acteur avec quatre ports d’entrée P1, P2, P3, P4, s’il manque des données sur

les ports 1 et 3, on a un nombre en binaire 0101 (bits 1 et 3 activés). L’ordonnanceur

doit ensuite lancer les prédecesseurs (ou successeurs) pour chaque port dont le bit

correspondant dans ce nombre est à 1. Pour cela il fait une boucle sur les ports

d’entrée (ou de sortie le cas échéant). On pourrait supprimer la construction de

ce nombre et la boucle de l’ordonnanceur si les acteurs appelaient directement les

fonctions d’ajout et de suppression des prédécesseurs.

Une autre source de surcoût vient du fait que l’ordonnanceur maintient une liste

des acteurs à ordonnancer, cependant il n’est pas toujours nécessaire de passer par

cette liste, notamment dans le cas où il ne manque des données que sur un seul

port. Par ailleurs, l’ordonnanceur exécute un acteur en faisant appel à sa fonction

“scheduler”. Il est possible d’éliminer ces deux sources de surcoût en déclarant les

schedulers d’acteurs en-ligne, et en utilisant des sauts vers ces schedulers plutôt que

des appels de fonctions. Toujours sur le processeur mentionné plus tôt, un saut con-

ditionnel prend 1 cycle, un appel de fonction en prend 3. A cela vient s’ajouter les

différentes instructions utilisées habituellement dans une fonction : enter (sauve-

garde du pointeur de base et réservation d’espace sur la pile, 10 cycles), leave

(restauration du pointeur de base et libération de l’espace réservé, 3 cycles), sauve-

gardes de divers registres avec push (4 cycles), etc.

Dans la plupart des langages séquentiels, le coût d’un appel de fonction est

généralement considéré négligeable dès que cette fonction dépasse un certain seuil

(dans son guide pour l’optimisation, AMD suggère de ne pas “inliner” une fonction

Poursuite des travaux sur le flux de données 155

qui contient 500 instructions ou plus). En revanche, le code généré à partir d’un

modèle CAL a la particularité d’appeler de petites fonctions très (très !) souvent.

Bien que le compilateur soit capable d’optimiser les fonctions à l’intérieur d’un ac-

teur, il ne peut pas supprimer les appels à des fonctions situées dans des modules

différents. Déclarer les fonctions scheduler des acteurs en-ligne devrait permettre

d’éliminer ce surcoût.

156 French Annex

List of Figures

1.1 Compilation Infrastructure. 14

2.1 Timeline of the publication of video standards. 18

2.2 Profiles of the MPEG-2 standard. 19

2.3 Block diagram of the motion compensation of an MPEG-4 part 2

decoder. 20

2.4 Dataflow Models of Computation. 22

2.5 Parameterized Dataflow. 25

2.6 Header of an RVC-CAL Actor. 26

2.7 Example of an RVC-CAL expression. 27

2.8 Declaration of State Variables. 28

2.9 Declaration of a Function. 28

2.10 Scheduling information and body of an action. 30

2.11 A simple RVC-CAL actor with an FSM. 30

2.12 The Clip actor in RVC-CAL. 31

2.13 An RVC-CAL actor that respects the SDF MoC. 33

2.14 An RVC-CAL actor that respects the CSDF MoC. 34

2.15 The RVC-CAL Version of the PSDF graph of Fig. 2.5. 35

2.16 Concrete Syntax Tree and Abstract Syntax Tree of int(size=3+4). . 38

2.17 CFGs of if and while statements respectively. 39

2.18 Example of code with complex def-use information. 41

2.19 def-use information of code shown on Fig. 2.18. 41

2.20 def-use information of code shown on Fig. 2.18 encoded with SSA. . . 41

3.1 A JSON object with a few mathematical sequences. 50

3.2 Test of the schedulability of two actions in VHDL. 52

3.3 A sample FSM in RVC-CAL. 53

3.4 The IR of the FSM shown on Fig. 3.3. 53

3.5 Patterns of an RVC-CAL action. 54

3.6 The IR patterns of the action shown on Fig. 3.5. 55

157

158 List of Figures

3.7 Reorganizing tokens read. 56

3.8 IR isSchedulable of an action. 56

3.9 Syntax of IR CFG nodes. 58

3.10 Syntax of IR instructions. 58

3.11 Syntax of IR regular instructions. 58

3.12 Syntax of Phi instruction. 59

3.13 Syntax of FIFO instructions. 59

3.14 Syntax of FIFO instructions. 60

4.1 Front-end in the Compilation Infrastructure. 63

4.2 Xtext grammar rule for an RVC-CAL actor. 65

4.3 Inferred meta-model from the AstActor rule. 65

4.4 Xtext grammar rule for a call statement with cross-reference to a

procedure. 66

4.5 Directed Graph of Priorities. 72

5.1 Middle-end in the compilation infrastructure. 79

5.2 The Finite State Machine of Algo Interpolation halfpel. 80

5.3 Variables of Algo Interpolation halfpel. 80

5.4 Action start of Algo Interpolation halfpel. 81

5.5 Actions fireable in the interpolate state. 82

5.6 loop body procedure. 82

5.7 The do clip action rewritten in a time-independent way. 83

5.8 A Finite State Machine with four branches. 89

5.9 Loop Rerolling on Algo Interpolation halfpel. 93

5.10 The limit action transformed. 94

6.1 A back-end in the compilation infrastructure. 97

6.2 Example of a simple StringTemplate template. 103

6.3 A ST template with conditionals. 104

6.4 Obtaining information about the connections of a network. 105

6.5 Printing instructions of a block node. 107

6.6 Three expressions and the corresponding expression trees. 108

6.7 Clips x to −2048 in CAL. 110

6.8 Clips x to −2048 in VHDL. 111

6.9 Clips x to −2048 in LLVM. 112

6.10 Implicit Broadcast of Data Produced by source. 114

6.11 Explicit broadcast of data produced by source handled by a broadcast

actor. 114

List of Figures 159

7.1 Eclipse ecosystem. 118

7.2 Graphiti transformations. 120

7.3 Graphiti infrastructure. 121

7.4 Normative MPEG-4 part 2 Simple Profile decoder. 126

7.5 Proprietary description of an MPEG-4 part 2 Simple Profile decoder. 127

7.6 Implementation of an RVC-CAL Actor in C. 131

A.1 Infrastructure de Compilation pour des Programmes Flux de Données. 146

160 List of Figures

List of Tables

4.1 Evaluation rules for RVC-CAL expressions (eval). 68

4.2 Conversion from RVC-CAL type system to IR type system (conv). . . 69

4.3 Type inference of RVC-CAL expressions. 70

4.4 Type checking of AST statements. 70

5.1 Abstract interpretation of Algo Interpolation halfpel. 86

7.1 Compilation times for different applications with OpenDF and Orcc. . 123

7.2 Compilation times for the actors of the MPEG-4 decoder with Open-

Forge. 124

7.3 Performance of the C Code Generated from Different Applications. . 133

7.4 Performance on Two Cores. 133

7.5 Classification results on 50 actors. 134

A.1 Performance of the C Code Generated from Different Applications. . 153

161

Personal Publications

[GJB+09] R. Gu, J.W. Janneck, S.S. Bhattacharyya, M. Raulet, M. Wipliez, and

W. Plishker. Exploring the concurrency of an MPEG RVC decoder

based on dataflow program analysis. IEEE Transactions on Circuits

and Systems for Video Technology, 19(11), 2009.

[GWPR10a] Jérôme Gorin, Matthieu Wipliez, Françoise Prêteux, and Mickaël

Raulet. A portable Video Tool Library for MPEG Reconfigurable

Video Coding using LLVM Representation. In Design and Architec-

tures for Signal and Image Processing (DASIP), 2010.

[GWPR10b] Jérôme Gorin, Matthieu Wipliez, Françoise Prêteux, and Mickaël

Raulet. An LLVM-based decoder for MPEG Reconfigurable Video

Coding. In IEEE workshop on Signal Processing Systems (SiPS), 2010.

[GWPR10c] Jérôme Gorin, Matthieu Wipliez, Françoise Prêteux, and Mickaël

Raulet. LLVM-based and scalable MPEG-RVC decoder. Journal of

Real-Time Image Processing, pages 1–12, 2010. 10.1007/s11554-010-

0169-2.

[JMP+08] J.W. Janneck, I.D. Miller, D.B. Parlour, G. Roquier, M. Wipliez,

and M. Raulet. Synthesizing hardware from dataflow programs: An

MPEG-4 simple profile decoder case study. In IEEE workshop on Sig-

nal Processing Systems (SiPS), pages 287–292. IEEE, 2008.

[JMP+09] Jörn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier,

Matthieu Wipliez, and Mickaël Raulet. Synthesizing Hardware from

Dataflow Programs. Journal of Signal Processing Systems, 07 2009.

[JMRW10] J.W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez. Reconfig-

urable video coding: a stream programming approach to the specifi-

cation of new video coding standards. In Proceedings of the first an-

nual ACM SIGMM conference on Multimedia systems, pages 223–234.

ACM, 2010.

163

[JWR+10] K. Jerbi, M. Wipliez, M. Raulet, O. Déforges, M. Babel, and M. Abid.

Fast Hardware implementation of an Hadamard Transform Using RVC-

CAL Dataflow Programming. In 5th IEEE International Conference

on Embedded and Multimedia Computing, August 2010.

[LMW+08] Christophe Lucarz, Marco Mattavelli, Matthieu Wipliez, Ghislain

Roquier, Mickaël Raulet, Jörn W. Janneck, Ian D. Miller, and David B.

Parlour. Dataflow/Actor-Oriented language for the design of complex

signal processing systems. In Design and Architectures for Signal and

Image Processing (DASIP), Bruxelles, Belgique, 2008.

[PPW+09] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.F. Nezan. An

open framework for rapid prototyping of signal processing applications.

EURASIP Journal on Embedded Systems, 2009:3, 2009.

[RLM+09] G. Roquier, C. Lucarz, M. Mattavelli, M. Wipliez, M. Raulet, J.W.

Janneck, I.D. Miller, and D.B. Parlour. An integrated environment for

HW/SW co-design based on a CAL specification and HW/SW code

generators. In IEEE International Symposium on Circuits and Systems

(ISCAS), page 799. IEEE, 2009.

[RWR+08] G. Roquier, M. Wipliez, M. Raulet, J.W. Janneck, I.D. Miller, and

D.B. Parlour. Automatic software synthesis of dataflow program: An

MPEG-4 simple profile decoder case study. In IEEE workshop on

Signal Processing Systems (SiPS), pages 281–286, 2008.

[SWNR10] Nicolas Siret, Matthieu Wipliez, Jean-François Nezan, and Aimad

Rhatay. Hardware code generation from dataflow programs. In Design

and Architectures for Signal and Image Processing (DASIP), 2010.

[WR10] Matthieu Wipliez and Mickaël Raulet. Classification and Transforma-

tion of Dynamic Dataflow Programs. In Design and Architectures for

Signal and Image Processing (DASIP), 2010.

[WRN09] Matthieu Wipliez, Ghislain Roquier, and Jean-François Nezan. Soft-

ware Code Generation for the RVC-CAL Language. Journal of Signal

Processing Systems, 2009.

[WRR+08] Matthieu Wipliez, Ghislain Roquier, Mickaël Raulet, Jean-François

Nezan, and Olivier Déforges. Code generation for the MPEG Recon-

figurable Video Coding framework: From CAL actions to C functions.

In IEEE International Conference on Multimedia and Expo (ICME),

pages 1049–1052, 2008.

MPEG Contributions

[DRRW08] Florian Décologne, Mickaël Raulet, Ghislain Roquier, and Matthieu

Wipliez. M15420: RVC Conformance Testing of a Functional Unit us-

ing Open Dataflow and TCP/IP. ISO/IEC JTC1/SC29/WG11, 84th

MPEG Meeting Document Register, Archamps, France, April 2008.

[GWR+10] Jérôme Gorin, Matthieu Wipliez, Mickaël Raulet, Marco Mattavelli, and

Françoise Préteux. M17318: Demo : An MPEG RVC decoder based on

LLVM. ISO/IEC JTC1/SC29/WG11, 91st MPEG Meeting Document

Register, Kyoto, Japan, January 2010.

[JPM+08] Jörn W. Janneck, David Parlour, Ian Miller, Matthieu Wipliez, Mickaël

Raulet, Ghislain Roquier, Christophe Lucarz, and Marco Mattavelli.

M15386: CAL profile for HW/SW code generators of the RVC frame-

work. ISO/IEC JTC1/SC29/WG11, 84th MPEG Meeting Document

Register, Archamps, France, April 2008.

[LRWM10] Pierre-Laurent Lagalaye, Mickaël Raulet, Matthieu Wipliez, and Marco

Mattavelli. M17839: Debug and development support tools for RVC-

CAL. ISO/IEC JTC1/SC29/WG11, 93th MPEG Meeting Document

Register, Geneva, Switzerland, July 2010.

[RPR+07] Ghislain Roquier, Maxime Pelcat, Mickaël Raulet, Matthieu Wipliez,

Jean-François Nezan, and Olivier Déforges. M14457: A scheme for

implementing MPEG-4 SP codec in the RVC framework. ISO/IEC

JTC1/SC29/WG11, 80th MPEGMeeting Document Register, San José,

USA, April 2007.

[RRW+08] Mickaël Raulet, Ghislain Roquier, Matthieu Wipliez, Jean-François

Nezan, and Olivier Déforges. M15167: Update of CAL2C code gen-

eration. ISO/IEC JTC1/SC29/WG11, 83rd MPEG Meeting Document

Register, Antalya, Turkey, January 2008.

165

[RW09] Mickaël Raulet and Matthieu Wipliez. M16700: Extension of Cal2C in a

new compiler infrastructure called ORCC. ISO/IEC JTC1/SC29/WG11,

89th MPEG Meeting Document Register, London, England, June 2009.

[RWJ09] Mickaël Raulet, Matthieu Wipliez, and Jörn W. Janneck. M16333: FU

Parametrization and FU code generation. ISO/IEC JTC1/SC29/WG11,

88th MPEG Meeting Document Register, Maui, USA, April 2009.

[WLRG10] Matthieu Wipliez, Pierre-Laurent Lagalaye, Mickaël Raulet, and Jérôme

Gorin. M17841: Development status of Open RVC-CAL compiler.

ISO/IEC JTC1/SC29/WG11, 93th MPEG Meeting Document Regis-

ter, Geneva, Switzerland, July 2010.

[WPR08] Matthieu Wipliez, Jonathan Piat, and Mickaël Raulet. M15680: DDL

graphical editor. ISO/IEC JTC1/SC29/WG11, 85th MPEG Meeting

Document Register, Hannover, Germany, July 2008.

[WR10] Matthieu Wipliez and Mickaël Raulet. M18346: Automatic classification

of FUs. ISO/IEC JTC1/SC29/WG11, 94th MPEG Meeting Document

Register, Guangzhou, China, October 2010.

[WRGS10] Matthieu Wipliez, Mickaël Raulet, Jérôme Gorin, and Nicolas Siret.

M18345: Addendum: Specification of typing rules for RVC-CAL.

ISO/IEC JTC1/SC29/WG11, 94th MPEG Meeting Document Regis-

ter, Guangzhou, China, October 2010.

[WRN09] Matthieu Wipliez, Mickaël Raulet, and Jean-François Nezan. M16145:

Proposed changes for RVC-CAL annex A of ISO-IEC 23001-4. ISO/IEC

JTC1/SC29/WG11, 87th MPEG Meeting Document Register, Lau-

sanne, Switzerland, February 2009.

[WRP08] Matthieu Wipliez, Mickaël Raulet, and Jonathan Piat. M15870:

Editing a RVC FU network using a GUI called Graphiti. ISO/IEC

JTC1/SC29/WG11, 86th MPEG Meeting Document Register, Busan,

Korea, October 2008.

[WRR+07] Matthieu Wipliez, Ghislain Roquier, Mickaël Raulet, Jean-François

Nezan, Marco Mattavelli, and Ian Miller. M14981: Status of CAL2C

code generation. ISO/IEC JTC1/SC29/WG11, 82nd MPEG Meeting

Document Register, Shenzhen, China, November 2007.

[WRR+08] Matthieu Wipliez, Mickaël Raulet, Ghislain Roquier, Jean-François

Nezan, and Olivier Déforges. M15382: A fast simulation of

RVC MPEG4 SP decoder using Cal2C code generation. ISO/IEC

JTC1/SC29/WG11, ISO/IEC JTC1/SC29/WG11, 84th MPEG Meet-

ing Document Register, April 2008.

Bibliography

[AH00] J. Aycock and N. Horspool. Simple generation of static single-

assignment form. In Compiler Construction, pages 110–125. Springer,

2000.

[ÅNvP10] K.E. Årzén, A. Nilsson, and C. von Platen. Model Compiler, 2010.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: principles, tech-

niques, and tools. Reading, MA,, 1986.

[BA06] S. Bansal and A. Aiken. Automatic generation of peephole superopti-

mizers. ACM SIGOPS Operating Systems Review, 40(5):394–403, 2006.

[Bar98] R. Bardohl. A Generic Graphical Editor for Visual Languages based on

Algebraic Graph Grammars. In Proc. IEEE Symp. Visual Languages,

pages 48–55. Citeseer, 1998.

[BBJ+08] Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W. Janneck, Johan

Eker, Carl von Platen, Marco Mattavelli, and Mickaël Raulet. OpenDF:

a dataflow toolset for reconfigurable hardware and multicore systems.

SIGARCH Comput. Archit. News, 36(5):29–35, 2008.

[BBM01] Bishnupriya Bhattacharya, Shuvra S. Bhattacharyya, and Senior Mem-

ber. Parameterized Dataflow Modeling for DSP Systems. IEEE Trans-

actions on Signal Processing, 49:2408–2421, 2001.

[BC94] P. Briggs and K.D. Cooper. Effective partial redundancy elimination.

ACM SIGPLAN Notices, 29(6):159–170, 1994.

[BCHS98] P. Briggs, K.D. Cooper, T.J. Harvey, and L.T. Simpson. Practical im-

provements to the construction and destruction of static single assign-

ment form. Software: Practice and Experience, 28(8):859–881, 1998.

[BCT94] P. Briggs, K.D. Cooper, and L. Torczon. Improvements to graph color-

ing register allocation. ACM Transactions on Programming Languages

and Systems (TOPLAS), 16(3):455, 1994.

169

[BDR+09] B. Boissinot, A. Darte, F. Rastello, B.D. de Dinechin, and C. Guillon.

Revisiting out-of-SSA translation for correctness, code quality and ef-

ficiency. In Proceedings of the 2009 International Symposium on Code

Generation and Optimization, pages 114–125. IEEE Computer Society,

2009.

[BEH+02] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall.

GraphML Progress Report Structural Layer Proposal. In Graph Draw-

ing, pages 109–112. Springer, 2002.

[BELP96] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-

static dataflow. IEEE Transactions on signal processing, 44(2):397–408,

1996.

[Ber06] V. Berman. Standards: The P1685 IP-XACT IP Metadata Standard.

IEEE Design & Test of Computers, 23(4):316–317, 2006.

[BGJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-

chronous programming with events and relations: the SIGNAL lan-

guage and its semantics. Science of Computer Programming, 16(2):103–

149, 1991.

[BJK+95] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Ran-

dall, and Y. Zhou. Cilk: An efficient multithreaded runtime system. In

Proceedings of the fifth ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 207–216. ACM, 1995.

[BL93] J.T. Buck and E.A. Lee. Scheduling dynamic dataflow graphs with

bounded memory using the token flow model. Acoustics, Speech, and

Signal Processing, IEEE International Conference on, 1:429–432, 1993.

[BLL+08] J. Boutellier, C. Lucarz, S. Lafond, V.M. Gomez, and M. Mattavelli.

Quasi-static scheduling of CAL actor networks for reconfigurable video

coding. Journal of Signal Processing Systems, pages 1–12, 2008.

[BM94] M.M. Brandis and H. Mössenböck. Single-pass generation of static

single-assignment form for structured languages. ACM Transactions on

Programming Languages and Systems (TOPLAS), 16(6):1698, 1994.

[BMR10] Endri Bezati, Marco Mattavelli, and Mickaël Raulet. RVC-CAL

dataflow implementations of MPEG AVC/H.264 CABAC decoding. In

Design and Architectures for Signal and Image Processing (DASIP),

2010.

[Bra95] M.M. Brandis. Optimizing compilers for structured programming lan-

guages. PhD thesis, ETH Zürich, 1995.

[CAC+81] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins,

and P.W. Markstein. Register allocation via coloring. In Computer

Languages, volume 6, pages 47–57. Elsevier, 1981.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation

of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN sym-

posium on Principles of programming languages, pages 238–252. ACM

New York, NY, USA, 1977.

[CCF91] J.D. Choi, R. Cytron, and J. Ferrante. Automatic construction of

sparse data flow evaluation graphs. In Proceedings of the 18th ACM

SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 55–66. ACM, 1991.

[CCK+97] F. Chow, S. Chan, R. Kennedy, S.M. Liu, R. Lo, and P. Tu. A new

algorithm for partial redundancy elimination based on SSA form. In

Proceedings of the ACM SIGPLAN 1997 conference on Programming

language design and implementation, page 286. ACM, 1997.

[CF95] R.K. Cytron and J. Ferrante. Efficiently computing Φ-nodes on-

the-fly. ACM Transactions on Programming Languages and Systems

(TOPLAS), 17(3):487–506, 1995.

[CFR+91] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck.

Efficiently computing static single assignment form and the control de-

pendence graph. ACM Transactions on Programming Languages and

Systems (TOPLAS), 13(4):490, 1991.

[CFT03] L. Carter, J. Ferrante, and C. Thomborson. Folklore confirmed: re-

ducible flow graphs are exponentially larger. In Proceedings of the 30th

ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 106–114. ACM, 2003.

[CH84] F. Chow and J. Hennessy. Register allocation by priority-based col-

oring. In Proceedings of the 1984 SIGPLAN symposium on Compiler

construction, pages 222–232. ACM, 1984.

[CHHP91] J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow. TXL: A rapid

prototyping system for programming language dialects. Computer Lan-

guages, 16(1):97–107, 1991.

[CKL+05] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Watan-

abe. Quasi-static scheduling of independent tasks for reactive systems.

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 24(10):1492–1514, 2005.

[Cli95] C. Click. Global code motion/global value numbering. ACM SIGPLAN

Notices, 30(6):246–257, 1995.

[CM69] J. Cocke and R.E. Miller. Some analysis techniques for optimizing

computer programs. In Proc. 2nd Hawaii International Conference on

System Sciences, pages 143–146, January 1969.

[Coc70] John Cocke. Global common subexpression elimination. SIGPLAN

Not., 5(7):20–24, 1970.

[Den74] J. Dennis. First version of a data flow procedure language. In Program-

ming Symposium, pages 362–376. Springer, 1974.

[Deu96] P. Deutsch. RFC 1952: GZIP file format specification version 4.3.

Internet Engineering Task Force (IETF), 1996.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional

programs. In Proceedings of POPL ’82, pages 207–212, 1982.

[DM02] L. Dagum and R. Menon. OpenMP: an industry standard API for

shared-memory programming. Computational Science & Engineering,

IEEE, 5(1):46–55, 2002.

[DRW04] J. Des Rivières and J. Wiegand. Eclipse: A platform for integrating

development tools. IBM Systems Journal, 43(2):371–383, 2004.

[Ecl] Eclipse Foundation. Eclipse Modeling Framework (EMF).

[Ecm06] Ecma. ISO/IEC 23271/ECMA-335: Common Language Infrastructure

(CLI), 2006.

[EEHT05] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of visual

editors as eclipse plug-ins. In Proceedings of the 20th IEEE/ACM in-

ternational Conference on Automated software engineering, page 143.

ACM, 2005.

[EJ03] J. Eker and J. Janneck. CAL Language Report. Technical Report

ERL Technical Memo UCB/ERL M03/48, University of California at

Berkeley, December 2003.

[EJL+03] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-

dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity-the Ptolemy

approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[ETH] ETH Zürich. Moses project: http: // www. tik. ee. ethz. ch/

~ moses/ .

[EV06] S. Efftinge and M. Völter. oAW xText: A framework for textual DSLs.

In Workshop on Modeling Symposium at Eclipse Summit, 2006.

[GH98] E.M. Gagnon and L.J. Hendren. SableCC, an object-oriented com-

piler framework. In tools, page 140. Published by the IEEE Computer

Society, 1998.

[GLS99] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel

programming with the message passing interface. MIT Press, 1999.

[Gra] Graphiti. Graphiti Editor: http: // graphiti-editor. sf. net/ .

[HCRP02] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous

data flow programming language LUSTRE. Proceedings of the IEEE,

79(9):1305–1320, 2002.

[HDE+93] L. Hendren, C. Donawa, M. Emami, G. Gao, and B. Sridharan. De-

signing the McCAT compiler based on a family of structured intermedi-

ate representations. Languages and Compilers for Parallel Computing,

pages 406–420, 1993.

[HL91] G.J. Holzmann and Staff AT&T Bell Laboratories. Design and valida-

tion of computer protocols. Prentice hall Englewood Cliffs, New Jersey,

1991.

[HSH+09] W. Haid, L. Schor, K. Huang, I. Bacivarov, and L. Thiele. Efficient

execution of Kahn process networks on multi-processor systems using

protothreads and windowed FIFOs. In Proc. IEEE Workshop on Em-

bedded Systems for Real-Time Multimedia (ESTIMedia), pages 35–44,

2009.

[IEE93] IEEE Std 1076-1993. IEEE Std 1076 - IEEE Standard VHDL Language

Reference Manual, 1993.

http://www.tik.ee.ethz.ch/~moses/
http://www.tik.ee.ethz.ch/~moses/
http://graphiti-editor.sf.net/

[IEE05] IEEE Std 1666-2005. IEEE Std 1666 - IEEE Standard SystemC Lan-

guage Reference Manual, 2005.

[ISO07] ISO/IEC FDIS 23002-2:2007(E). Information technology – MPEG

video technologies – Part 2: Fixed-point 8x8 inverse discrete cosine

transform and discrete cosine transform, 2007.

[ISO09] ISO/IEC FDIS 23001-4. MPEG systems technologies – Part 4: Codec

Configuration Representation, 2009.

[ITU] ITU-R. ITU-R Recommendation BT.601-4.

[Jan97] J.W. Janneck. Graph-type definition language (GTDL)—specification.

Moses project, 1997.

[JC96] J. Janssen and H. Corporaal. Controlled node splitting. In Compiler

Construction, pages 44–58. Springer, 1996.

[JE01] Jörn W. Janneck and Robert Esser. A predicate-based approach to

defining visual language syntax. In HCC ’01: Proceedings of the IEEE

2001 Symposia on Human Centric Computing Languages and Environ-

ments (HCC’01), page 40, Washington, DC, USA, 2001. IEEE Com-

puter Society.

[Joh76] S.C. Johnson. YACC-yet another compiler-compiler, 1976.

[JRR99] S. Jones, N. Ramsey, and F. Reig. C– –: A Portable Assembly Lan-

guage that Supports Garbage Collection. Principles and Practice of

Declarative Programming, pages 1–28, 1999.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming.

In Proceedings of IFIP’74, pages 471–475, August 1974.

[Kil73] G.A. Kildall. A unified approach to global program optimization. In

Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on

Principles of programming languages, pages 194–206. ACM, 1973.

[Kod04] V. Kodaganallur. Incorporating language processing into Java applica-

tions: A JavaCC tutorial. IEEE software, pages 70–77, 2004.

[KP88] G.E. Krasner and S.T. Pope. A cookbook for using the model-view

controller user interface paradigm in Smalltalk-80. Journal of Object-

oriented programming, 1(3):49, 1988.

[KS98] K. Knobe and V. Sarkar. Array SSA form and its use in parallelization.

In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 107–120. ACM, 1998.

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation framework

for lifelong program analysis & transformation. Code Generation and

Optimization, IEEE/ACM International Symposium on, 0:75, 2004.

[LM87] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings

of the IEEE, 75(9):1235–1245, 1987.

[LP95] Edward A. Lee and Thomas M. Parks. Dataflow Process Networks.

Proceedings of the IEEE, 83(5):773–801, May 1995.

[MAR10] M. Mattavelli, I. Amer, and M. Raulet. The Reconfigurable Video Cod-

ing Standard [Standards in a Nutshell]. Signal Processing Magazine,

IEEE, 27(3):159 –167, may 2010.

[MR79] E. Morel and C. Renvoise. Global optimization by suppression of partial

redundancies. Communications of the ACM, 22(2):96–103, 1979.

[MV95] M. Minas and G. Viehstaedt. DiaGen: a generator for diagram ed-

itors providing direct manipulation and execution of diagrams. In

11th IEEE International Symposium on Visual Languages, Proceed-

ings., pages 203–210, 1995.

[Mü93] U. Müller. brainfuck – an eight-instruction turing-complete pro-

gramming language. Available at the Internet address http: // en.

wikipedia. org/ wiki/ Brainfuck , 1993.

[Nav08] B. Naveh. JGraphT: http: // jgrapht. sourceforge. net , 2008.

[NCH+05] G.C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.

CCured: Type-safe retrofitting of legacy software. ACM Transactions

on Programming Languages and Systems (TOPLAS), 27(3):477–526,

2005.

[NMRW02] G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate

language and tools for analysis and transformation of C programs. In

Compiler Construction, pages 209–265. Springer, 2002.

[NMW97] C.G. Nevill-Manning and I.H. Witten. Identifying hierarchical structure

in sequences: A linear-time algorithm. Journal of Artificial Intelligence

Research, 7(1):67–82, 1997.

http://en.wikipedia.org/wiki/Brainfuck
http://en.wikipedia.org/wiki/Brainfuck
http://jgrapht.sourceforge.net

[OSG05] OSGi Alliance. OSGi Service Platform Release 4, 2005.

[Par95] Thomas M. Parks. Bounded Scheduling of Process Networks. PhD

thesis, Berkeley, Berkeley, CA, USA, 1995.

[Par04] Terence John Parr. Enforcing strict model-view separation in template

engines. InWWW ’04: Proceedings of the 13th international conference

on World Wide Web, pages 224–233, New York, NY, USA, 2004. ACM.

[Par06] T. Parr. A functional language for generating structured text. URL

http://www. cs. usfca. edu/˜ parrt/papers/ST. pdf, 2006.

[Pat95] J.R.C. Patterson. Accurate static branch prediction by value range

propagation. ACM SIGPLAN Notices, 30(6):67–78, 1995.

[PB95] K. Pingali and G. Bilardi. APT: A data structure for optimal control

dependence computation. In Proceedings of the ACM SIGPLAN 1995

conference on Programming language design and implementation, pages

32–46. ACM, 1995.

[PQ95] T.J. Parr and R.W. Quong. ANTLR: A predicated-LL (k) parser gen-

erator. Software: Practice and Experience, 25(7):789–810, 1995.

[PS99] M. Poletto and V. Sarkar. Linear scan register allocation. ACM

Transactions on Programming Languages and Systems (TOPLAS),

21(5):895–913, 1999.

[SG95] V.C. Sreedhar and G.R. Gao. A linear time algorithm for placing

&phgr;-nodes. In Proceedings of the 22nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 62–73.

ACM, 1995.

[SJGS99] V. Sreedhar, R. Ju, D. Gillies, and V. Santhanam. Translating out of

static single assignment form. Static Analysis, pages 849–849, 1999.

[SV05] G. Stitt and F. Vahid. New decompilation techniques for binary-level

co-processor generation. In IEEE/ACM International Conference on

Computer-Aided Design, 2005. ICCAD-2005, pages 547–554, 2005.

[SVKW07] S. Staiger, G. Vogel, S. Keul, and E. Wiebe. Interprocedural Static Sin-

gle Assignment Form. In Proceedings of the 14th Working Conference

on Reverse Engineering, pages 1–10. Citeseer, 2007.

[Val95] J.D. Valois. Lock-free linked lists using compare-and-swap. In Pro-

ceedings of the fourteenth annual ACM symposium on Principles of

distributed computing, page 222. ACM, 1995.

[vP10] C. von Platen. CAL ARM Compiler, 2010.

[VRCG+99] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-

san. Soot - a Java bytecode optimization framework. In Proceedings of

the 1999 conference of the Centre for Advanced Studies on Collaborative

research, page 13. IBM Press, 1999.

[WELP96] P. Wauters, M. Engels, R. Lauwereins, and JA Peperstraete. Cyclo-

dynamic dataflow. In pdp, page 0319. Published by the IEEE Computer

Society, 1996.

[Wer02] L. Wernli. Design and implementation of a code generator for the CAL

actor language. Technical report, Technical Memo UCB/ERL M02,

2002.

[WFW+94] R.P. Wilson, R.S. French, C.S. Wilson, S.P. Amarasinghe, J.M. Ander-

son, S.W.K. Tjiang, S.W. Liao, C.W. Tseng, M.W. Hall, M.S. Lam,

et al. SUIF: An infrastructure for research on parallelizing and opti-

mizing compilers. ACM Sigplan Notices, 29(12):31–37, 1994.

[Wir83] N. Wirth. Programming in MODULA-2. Springer Berlin;, 1983.

[Wir88] N. Wirth. The programming language Oberon. Software: Practice and

Experience, 18(7):671–690, 1988.

[WK09] S. West and W. Kahl. A Generic Graph Transformation, Visualisa-

tion, and Editing Framework in Haskell. In 8th International Workshop

on Graph Transformation and Visual Modeling Techniques, volume 18,

2009.

[WM95] W.A. Wulf and S.A. McKee. Hitting the memory wall: Implications of

the obvious. ACM SIGARCH Computer Architecture News, 23(1):20–

24, 1995.

[WZ91] M.N. Wegman and F.K. Zadeck. Constant propagation with conditional

branches. ACM Transactions on Programming Languages and Systems

(TOPLAS), 13(2):181–210, 1991.

[ZFHT08] C. Zebelein, J. Falk, C. Haubelt, and J. Teich. Classification of General

Data Flow Actors into Known Models of Computation. Proc. MEM-

OCODE, Anaheim, CA, USA, pages 119–128, 2008.

[Zho04] G. Zhou. Dynamic dataflow modeling in Ptolemy II. Master’s thesis,

University of California, 2004.

[ZPK00] B.P. Zeigler, H. Praehofer, and T.G. Kim. Theory of modeling and

simulation. Academic press New York, NY, 2000.

Institut National des Sciences Appliquées de Rennes
20, Avenue des Buttes de Coëmes CS 70839 F-35708 Rennes Cedex 7
Tel : 02 23 23 82 00 - Fax : 02 23 23 83 96

N° d’ordre : D10-33

Résumé

Les travaux présentés dans cette thèse prennent place
dans un contexte de demande grandissante pour des
vidéos de haute qualité (télévision haute-déf nition, «
home cinema »…), et une préoccupation sans précédent
pour la consommation électrique. Les limitations et le
manque de f exibilité des standards vidéo actuels fait qu’il
est de plus en plus long et diff cile de les implémenter,
particulièrement sur des systèmes embarqués. Un
nouveau standard appelé Reconf gurable Video Coding
(Codage vidéo reconf gurable) vise à résoudre ces
problèmes en décrivant des décodeurs vidéos sous la
forme de programmes f ux de données dynamiques.

Un programme f ux de donnée (« dataf ow » en anglais)
est un programme représenté comme un graphe
dirigé dont les sommets sont des unités de calcul (ou
acteurs) et les arcs représentent le f ux de données
entre les sommets. Un modèle de calcul (MoC) déf nit
la sémantique des programmes f ux de données comme
un sous-ensemble du modèle le plus général appelé
Réseau de Processus Flux de données (Dataf ow
Process Network, ou DPN). Différents MoC offrent
des compromis entre expressivité et prédicabilité du
comportement du modèle à la compilation. Ainsi, le
modèle SDF est le plus restrictif DPN au niveau de
l’expressivité, mais il est également le plus prévisible
: il est possible de générer un ordonnancement d’un
graphe SDF sur plusieurs processeurs à la compilation
en minimisant la consommation mémoire. A l’inverse,
un graphe respectant le modèle DPN sans restrictions
ne peut pas être ordonnancé à la compilation, et la
consommation mémoire ne peut pas être minimisée.

Le travail décrit dans cette thèse est une infrastructure
de compilation pour des programmes f ux de données.
Les programmes f ux de données considérés sont
dynamiques, et la thèse montre comment les acteurs
de ces programmes peuvent être représentés avec
une représentation intermédiaire (RI) simple et haut
niveau. La RI de ces acteurs peut être automatiquement
analysée par une méthode de classif cation décrite
dans la thèse, qui annote les acteurs qui peuvent se
comporter selon un MoC plus restreint que le modèle
DPN. L’infrastructure est également capable de
transformer de tels acteurs à un plus haut niveau de
description. Finalement, la thèse montre comment les
programmes f ux de données dynamiques peuvent être
transformés en plusieurs langages, depuis C jusqu’à des
langages de description de matériel, et présente des
résultats concernant les performances du code généré.

Abstract

The work presented in this thesis takes place
in a context of growing demand for better video
quality (High-Def nition TV, home cinema...) and
unprecedented concern for power consumption.
The limitations and lack of f exibility of current video
standards make it increasingly long and complicated
to implement standards, particularly on embedded
systems. A new standard called Reconf gurable Video
Coding aims to solve these problems by describing
video decoders with dynamic dataf ow programs.

A dataf ow program is a program represented as a
directed graph where vertices are computational units
(or actors) and edges represent the f ow of data between
vertices. A Model of Computation (MoC) def nes the
semantics of dataf ow programs as a subset of the
most general Dataf ow Process Network (DPN) model.
There are different MoCs that offer different trade-offs
between expressiveness and compile-time predictability.
For instance, the SDF model is the most restrictive
subset of DPN with respect to expressiveness, but it
is also the most predictable: it is possible to map and
schedule SDF graphs onto multi-processors at compile-
time while minimizing memory consumption. A dynamic
dataf ow program that respects the unrestricted DPN
model, however, is not schedulable at compile-time and
memory consumption may not be bounded in all cases.

The work described in this thesis is a compilation
infrastructure for dataf ow programs. The dataf ow
programs considered are dynamic dataf ow programs,
and the thesis shows how actors of these programs
can be represented in a simple, high-level Intermediate
Representation (IR).The IRof actors canbeautomatically
analyzed by a classif cation method presented in the
thesis, which annotates the actors that can behave
according to a MoC that is more restricted than the
general DPN model. The infrastructure is also capable of
transforming such actors at a higher-level of description.
Finally, the thesis shows how dynamic dataf ow
programs can be transformed to several languages,
from C to hardware description languages, and presents
results about the performance of the generated code.

	Acknowledgments
	Introduction
	Context
	Overview
	Contributions
	Outline

	Background
	Reconfigurable Video Coding
	Limitations of the Existing Standardization Process
	Definition of Video Standards with RVC

	Dataflow Models of Computation
	Overview
	Dataflow Process Networks
	Synchronous Dataflow
	Cyclo-static Dataflow
	Quasi-static Dataflow

	RVC-CAL Programming
	RVC-CAL Language
	Representation of Different MoCs in RVC-CAL
	Support tools

	Compilation Process
	Parsing and Validation
	Control Flow Graph (CFG)
	Data Flow Analysis (DFA)
	Generic Optimizations

	Conclusion

	Intermediate Representation
	Motivations for the Use of a Custom IR
	Analysis and Transformation
	Code Generation

	Related Work
	GIMPLE Intermediate Representation
	Low-Level Virtual Machine (LLVM)
	XLIM
	C Intermediate Language
	Conclusion

	Structure of the IR of an actor
	Serialization Format
	Priorities
	Finite State Machine
	Actions

	Semantics of the IR
	Statements
	Expressions and Type System

	Conclusion

	Front-end
	Overview
	Syntax Parsing
	Parsing with the Xtext Framework
	Meta-model Inference
	Resolution of References

	Expression Evaluation
	Typing the AST
	Type Conversion
	Type Inference
	Type Checking

	Structural Transformations
	Tag Association Table
	Priority Resolution
	Finite State Machine
	Actions

	Semantic Transformations
	Translation of Statements and Expressions
	Translation to SSA form

	Conclusion

	Analysis and Transformation
	Overview
	Detection of Unclassifiable Actors
	Abstract Interpretation of Actors
	Rules of Abstract Interpretation
	Example of Abstract Interpretation

	Classification of Dynamic Dataflow Actors
	Classification of a static actor
	Classification of a cyclo-static actor
	Classification of a quasi-static actor

	Transformation of Classified Actors
	Transformation to SDF and PSDF
	Loop Rerolling
	Reduction of the Number of Accesses to FIFOs

	Conclusion
	Comparison to Related Approaches
	Conclusion

	Code Generation
	Overview
	Printing Code
	Approaches to Code Printing
	The StringTemplate Template Engine
	Printing Code with Templates

	Transformations of the IR
	Generic transformations
	Language-Specific Transformations

	Network Code Generation
	Instantiation and Semantic Checking
	Flattening a Network
	Adding Broadcasts

	Conclusion

	Implementation and Results
	Development Tools
	Eclipse Platform
	Graphiti Editor
	Open RVC-CAL Compiler

	Video Coding Applications
	Video Coding
	Normative Decoders
	Proprietary Decoders

	Implementation of a Dynamic Scheduler
	Ptolemy Scheduler
	Threads
	SystemC Scheduler
	Round-Robin Scheduler

	Performance of Generated Code
	Code Generated by the C back-end
	Results with Other Back-ends and Tools
	Classification and Transformation of Actors

	Conclusion

	Conclusion
	Summary
	Perspectives

	French Annex
	Résumé de la thèse
	Contexte
	Programmes flux de données
	Contributions

	Poursuite des travaux sur le flux de données
	Prise en compte de l'architecture
	Modifications et améliorations de la RI
	Classification et transformation d'acteurs
	Amélioration des FIFOs
	Amélioration du nouvel ordonnanceur

