Mohsen Ardabilian 
  
Christian Vial 
  
Colette Vial 
  
Kun Peng 
  
Xiao Zhongzhe 
  
Aliaksandr Paradzinets 
  
Alain Pujol 
  
Yan Liu 
  
Huanzhang Fu 
  
Chu Duc Nguyen 
  
Karima Ouji 
  
Przemyslaw Szep- Tycki 
  
Kiryl Bletsko 
  
Gang Niu 
  
Xiaopin Zhong 
  
Jing Zhang 
  
Ying Hu 
  
Di Huang 
  
Chao Zhu 
  
Huibin Li 
  
Yu Zhang 
  
Boyang Gao 
  
Ningning Liu 
  
Tao Xu 
  
Keywords: 3D face, facial expression recognition, action unit recognition, face landmarking, statistical facial feature model, Bayesian belief network. xvi

The valuable discussions and communications with them not only help me to solve difficulties both in academic

List of Tables

Abstract

This Ph.D thesis work is dedicated to automatic facial analysis in 3D, including facial landmarking and facial expression recognition. Indeed, facial expression plays an important role both in verbal and non verbal communication, and in expressing emotions. Thus, automatic facial expression recognition has various purposes and applications and particularly is at the heart of "intelligent" human-centered human/computer(robot) interfaces. Meanwhile, automatic landmarking provides a prior knowledge on location of face landmarks, which is required by many face analysis methods such as face segmentation and feature extraction used for instance for expression recognition. The purpose of this thesis is thus to elaborate 3D landmarking and facial expression recognition approaches for finally proposing an automatic facial activity (facial expression and action unit) recognition solution.

In this work, we have proposed a Bayesian Belief Network (BBN) for recognizing facial activities, such as facial expressions and facial action units. A Statistical Facial feAture Model (SFAM) has also been designed to first automatically locate face landmarks so that a fully automatic facial expression recognition system can be formed by combining the SFAM and the BBN. The key contributions are the followings. First, we have proposed to build a morphable partial face model, named SFAM, based on Principle Component Analysis. This model allows to learn both the global variations in face landmark configuration and the local ones in terms of texture and local geometry around each landmark. Various partial face instances can be generated from SFAM by varying model parameters. Secondly, we have developed a landmarking algorithm based on the minimization an objective function describing the correlation between model instances and query faces. Thirdly, we have designed a Bayesian Belief Network with a structure describing the casual relationships among subjects, expressions and facial features. Facial expression or action units are modelled as the states of the expression node and are recognized Chapter 0. Abstract by identifying the maximum of beliefs of all states. We have also proposed a novel method for BBN parameter inference using a statistical feature model that can be considered as an extension of SFAM. Finally, in order to enrich information used for 3D face analysis, and particularly 3D facial expression recognition, we have also elaborated a 3D face feature, named SGAND, to characterize the geometry property of a point on 3D face mesh using its surrounding points.

The effectiveness of all these methods has been evaluated on FRGC, BU3DFE and Bosphorus datasets for facial landmarking as well as BU3DFE and Bosphorus

Chapter 1

Introduction

Research topic

Human face contains important and rich visual information for identification and communication, particularly for expressing emotion. Thus, analysing human face benefits a wide variety of applications from public security to personal emotion understanding, and from human computer interface (HCI) to robotics.

A problem of interest dealing with face analysis is facial expression recognition. Indeed, the traditional HCI that neglects facial expression excludes important information which can stimulate computer/robot to initialize proactive and socially appropriate behaviour during the communication process. This interaction between human and computers/robots is computer-based. It emphasizes the transmission of explicit information from texts, voices and gestures but ignores implicit information about the user. However, studies on human interaction paradigm suggest that facial expression contributes more than 50 percent to the effect of the spoken message as a whole while verbal part of a message contributes less than 10 percent to the effect of the message. Moreover, facial expression is one of the bases for understanding human emotional state, which is expressed through the contraction of face muscles resulting in facial appearance and geometry changes. Therefore, facial expression is an important cue for understanding emotions and its automatic recognition is a fundamental step for elaborating "intelligent" human/computer interactions.

Among various aspects of face analysis, we mainly focus on face landmarking and facial expression recognition problems in 3D. Indeed, landmarking, which consists in automatically detecting points of interest on the face, is a fundamental step for further processing and is an important part in an automatic facial analysis system, Chapter 1. Introduction particularly for facial expression recognition which is the second important contribution of our work. Moreover, we have proposed contributions related to new 3D face features, and to face tracking in 2D videos for people counting.

Problems and objective

Since images and videos can be easily accessed, 2D face analysis has been at the heart of many research works for several years, such as detection, tracking, recognition and expression recognition. However, head pose and illumination variations impose strong hurdles on these problems. Recently, 3D face has emerged as a promising solution in face processing and analysis. There are several reasons that the 3D face has gained many interests. Firstly, 3D facial geometry is invariant to pose and illumination conditions so that exploitation of 3D geometry can tackle various problems encountered by 2D face analysis. Secondly, 3D face carries ample information on both geometry and texture. This helps to improve the recognition accuracy and the analysis of subtle facial motions. Finally, exploring the relationship between texture and geometry of 3D face provides auxiliary means for 2D face analysis, making it possible to reconstruct 3D shape from 2D face.

While 3D faces are theoretically reputed to be insensitive to lighting condition changes, they still require to be pose normalized and correctly registered for further face analysis. As most of the existing registration techniques assume that some 3D face landmarks are available, a reliable localization of them is capital. There exist many landmarking methods in 2D, such as PDM, ASM, AAM and CLM, which can be applied to the texture maps of 3D faces. Landmarking on 3D faces is then realized by mapping those 2D points to 3D face meshes. However, landmarking directly on texture of 3D faces still encounters the pose and lighting problems.

Moreover, 3D face scans synthesized from stereovision systems generally do not include this kind of mapping. Thus, most of existing 3D landmarking methods are based on 3D geometry. They obtain a high accuracy when locating shape-salient landmarks like nose tip. Unfortunately, the accuracy dramatically decreases when they attempt to locate other landmarks such as mouth corners or eyebrow corners, Chapter 1. Introduction which either are distributed on non-rigid regions of face or do not have salient local shape. Consequently, the number of landmarks provided is limited and the locating accuracy is not robust to conditions that cause changes on face geometry, such as expression and occlusion. Therefore, our objective in this work is to develop an approach robust to expression and occlusion making use of both shape and texture properties so that a larger number of shape-salient and non-shape-salient landmarks can be located.

Compared to 2D methods, facial expression analysis in 3D is more promising because 3D faces carry rich information and they are insensitive to lighting and head pose conditions. This explains the more recent significant increase in the number of studies dealing with 3D expression recognition. These studies are either based on facial feature or based on deformable face models, both of which have their own drawbacks. On the one hand, feature based approaches generally rely on a large number of landmarks which are used either for feature extraction or for face segmentation. Most of their performance highly depends on the landmark precision but automatically located landmarks do not have a sufficiently high precision.

Therefore, these approaches require manually located landmarks and are not suitable for automatic systems. On the other hand, model based approaches deform 3D deformable models to fit testing faces by minimizing energy functions on face texture and/or geometry and recognize expression using fitted model parameters.

This limits the usage of those interesting features which have better discrimination power on expression to enhance the recognition results. Therefore, our goal is to propose an efficient approach that is applicable to real world use cases. To do so, three requirements should be fulfilled: being robust to the imprecision of automatically located landmarks, being easily extended to recognize more expressions other than the universal expressions, and being flexible to integrate new features easily to enrich the face knowledge for better recognition when more expressions other than the six universal expressions or facial Action Units are considered.

Chapter 1. Introduction

Our approach

Human face properties are carried by rigid parts corresponding to the skeleton and by non-rigid parts corresponding to face muscles whose configuration mainly depends on emotion. Since the variations of these properties influence both face shape and texture, the problem of interest turns to be how we can learn these variations and apply them to the face analysis. Statistical models have been widely used for this purpose, which learn the major variations of face by Principle Component Analysis (PCA) and synthesize new face instances by a combination of learnt variation modes. This process can be understood as the construction of a face space, whose bases are eigenvectors of variations from PCA and new face instances can be associated with a point in this space. Previous statistical models of 3D faces are generally built on the whole face, such as the 3D Morphable Model. The drawback is that they cannot be properly fitted into new face scans when faces are partially occluded and thus have local shape deformations. In order to solve this problem, we propose in this thesis to build statistical face models from local regions configured by a global morphology, and apply them to face landmarking and expression recognition.

Specifically, for face landmarking, to overcome the accuracy decrease when locating non shape-salient landmarks, we consider both geometry and texture information so that all landmarks can be featured prominently. The statistical models are learnt from training faces with all kinds of the universal expressions in order to include the expression variations. By doing so, face instances with expression can be generated for landmarking on those faces with expression. Moreover, our statistical models are built from local regions so that it is still applicable for partially occluded faces by fitting itself based on unoccluded face regions.

In order to develop a facial expression recognition method being robust to automatic landmark errors, features are extracted from local shape and local texture around landmark locations. A graphical model Bayesian Belief Network (BBN) has been designed to estimate the emotion states or facial action units. The structure of this BBN allows integrating different features and expressions in a flexible manner.

The BBN parameters are computed thanks to our proposed statistical feature mod-Chapter 1. Introduction els. By combining this graphical model with our automatic landmarking approach, we are able to implement a fully automatic and efficient system for facial expression recognition.

Our contributions

These two main contributions of this PhD thesis involve 3D face landmarking and 3D facial expression recognition. Moreover, we also contribute to new 3D face features, and to face tracking in 2D videos containing drastic changes on face scale for people counting.

3D face landmarking: Landmarking is essential for most of the face processing and analysis methods. We target on locating a large number of feature points on 3D faces under challenging conditions, i.e., expression and occlusion, so that automatically detected landmarks can be used for facial expression analysis. We have intentionally chosen those landmarks that can be used for face registration and facial expression recognition. To do so, we have proposed a 3D statistical facial feature for landmarking provides a fully automatic facial expression system that is applicable to real world use cases.

Other contributions dealing with face analysis: New Feature for 3D facial expression: Pose-invariant features for 3D faces can be a shortcut for face analysis because it avoids the procedure of face alignment.

However, previous proposed curvature based features, such as shape index and HK curvature, are sensitive to facial surface noise. We have proposed a novel feature which derives only from point clouds of 3D faces to describe the local shape properties. It is easy to be implemented and can be used to enrich information used for face analysis.

Face tracking and people counting: A problem of interest regarding face analysis in image sequences is face tracking, which has numerous interesting applications such as people counting, the problem we have addressed in this work. In order to increase the face tracking accuracy under the scenarios where face scale varies dramatically, such as faces moving towards the camera, we have improved Kalman filter by integrating 3D information to better predict the face position. The improved Kalman filter is further combined with a kernel based object tracking algorithm so that the combined tracker is more robust to head pose variation and illumination. This tracker is initialized by an Adaboost face detector and outputs tracked face trajectories. People counting is then performed thanks to a trajectory classification algorithm we proposed that is based on the histogram of trajectory angles.

Organization of the thesis

This thesis is organized as follows:

Chapter 2 focuses on facial landmarking. We first introduce the background Chapter 1. Introduction about facial landmarking. Both facial landmarking methods in 2D and 3D are presented in the related works section. Then, we propose our 2.5D facial landmarking approach in the following section. Section 2.4 presents the SFAM with a fitting algorithm for 3D face landmarking. An occlusion detection and classification method is also proposed here so that this approach is applicable to landmarking on partially occluded faces. We draw our conclusion on facial landmarking at the end of this chapter.

Chapter 3 covers 3D facial expression recognition. We start the chapter by first introducing the development of facial expression analysis and motivations for facial expression recognition. Section 3.2 presents the emotion theories, facial expression properties and facial expression interpretations. We make a review of the state-ofthe-art dealing with the classification of facial expressions in both 2D and 3D. In section 3.4, we present a 3D facial expression recognition approach based on a local geometry-based feature. This feature, named SGAND, is proposed in conjunction with a pose estimation algorithm for 3D faces since the face direction is required for the feature extraction. Section 3.5 presents our graphical model, BBN, for recognizing facial expressions and AUs with an uniform structure. A fully automatic facial expression recognition system is also presented in this section. Conclusions are drawn in section 3.6.

Chapter 4 presents a minor contribution: a people counting system which is based on face detection and tracking. The related works and the system framework are introduced in sections 4.1 and 4.2. Section 4.3 presents our face tracker whereas section 4.4 describes the people counter. Experimental results are given in section 4.5 and a conclusion is drawn in section 4.6.

Chapter 5 summarizes the main thesis results and contributions. Finally further research suggestions are given.

Chapter 2

3D Face Landmarking

Introduction

A problem of interest concerning face analysis is landmarking which consists in locating facial landmarks. Facial landmarks are points of correspondence on faces that matches between and within populations [Mardia & Dryden 1998]. They have consistent reproducibility even in adverse conditions such as facial expression or occlusion [Farkas 1994]. These facial landmarks generally include nose tip, inner eye corners, outer eye corners, mouth corners, etc. They are not only characterized by their own properties in terms of local texture and local shape but also by their structural relationships which result from the global face morphology.

Uses of landmarks for face analysis are numerous and include important applications such as face alignment, registration, reconstruction, recognition and expression recognition. For example, irises are often located in 2D face images for normalizing the face scale and in-plane rotation; the triangle constructed by the nose tip and the inner corners of eyes can be used for aligning 3D faces; a set of landmarks are generally required from 2D face images and their corresponding peers on 3D face models for 3D face reconstruction. Furthermore, various features are extracted such as Gabor response and Local Binary Pattern for face recognition and facial expression recognition, either around facial landmarks or on face regions segmented by landmarks. An example of face alignment using landmarks on 2D face images is illustrated in Fig. 2.1 .

2.5D/3D faces have recently emerged as a major solution in face processing and analysis to deal with pose and lighting variations [START_REF] Bowyer | [END_REF]. A 2.5D face is a simplified three-dimensional (x, y, z) face representation that contains at most one Chapter 2. 3D Face Landmarking Figure 2.1: Face Alignment using landmarks [START_REF] Huang | [END_REF] depth (z) value for every point in the (x, y) plane. While 2.5D/3D face models are theoretically reputed to be insensitive to lighting condition changes, they still require to be pose normalized and correctly registered for further face analysis, such as 3D face matching [START_REF] Lu | Matching 2.5D Face Scans to 3D Models[END_REF], Zeng et al. 2008], tracking [START_REF] Sun | [END_REF], recognition [START_REF] Gokberk | [END_REF][START_REF] Kakadiaris | 3D face recognition in the presence of facial expressions: an annotated deformable model approach[END_REF], and facial expression analysis [Niese et al. 2008]. As most of the existing registration techniques assume that some 2.5D/3D face landmarks are available, a reliable localization of these facial landmarks is essential.

When automatically locating landmarks on faces, approaches generally face the challenges of head pose, illumination, facial expression and occlusion. Head pose variations not only influence the facial appearance in images or video sequences but also cause self-occlusion where some landmarks are hidden. Illumination changes, including variations of lighting intensity and lighting source position, affect either pixel values over the whole face or those on face parts. Facial expressions due to facial muscle contractions cause non rigid deformations on face texture and shape, especially in the mimic parts of faces such as mouth regions. Occlusion is usually caused by face clusters, hand gesture or accessories such as glasses and masks. Some landmarks may become hidden and thus changes may appear concerning the local texture and shape around other landmarks. Although some approaches handle the variations of head pose and illumination in their learning stages for a better precision and robustness, these two problems are still challenging in 2D environment. Thus, 3D faces have gained interest since their processing and analysis may have the ability to deal with pose and lighting variations. Indeed, landmarks on 3D faces can be located through the face mesh analysing using curvature information or other geometry-based features. However, expression and occlusion remain open problems Chapter 2. 3D Face Landmarking for landmarking on 3D faces.

In this chapter, we focus on locating facial landmarks on 3D face scans, including those affected by the presence of facial expression and/or occlusion. We are convinced that local feature information and the structural relationships are jointly important for reliable face landmarking. Thus, contrary to the existing methods which rely on geometric information for 3D landmarking, we propose to solve the problem with statistical approaches using both local shape and texture of 3D faces as well as their global structure.

The remainder of this chapter is organized as follows. A review of landmarking algorithms in 2D and 3D is presented in section 2.2. Then, we present our statistical approach for landmarking on 2.5 faces in section 2.3. In section 2.4, we describe our statistical facial feature model and its application for locating landmarks on 3D faces with expression and occlusion. Finally we draw a conclusion in section 2.5.

Related works

Even if our work is focused on 3D face landmarking, a review of approaches developed in 2D is essential to understand their foundations and challenges that extension studies in 3D can aim at. Thus, current 2D face landmarking approaches are presented in subsection 2.2.1 followed by subsection 2.2.2 where state-of-the-art approaches for 3D face landmarking are introduced.

Face landmarking in 2D

Face landmarking has been extensively studied on 2D face images. These approaches can be divided into feature-based and structure-based categories.

2D face databases

2D landmarking approaches are tested on a variety of datasets due to the different usage of landmarks and different pose, illumination, scale conditions. Thus, it is hard to directly compare the efficiency of landmarking methods. pression Database [Kanade et al. 2000], PIE database [Sim et al. 2003] and JAFFE database [Lyons et al. 1998] for facial expression analysis. A detailed description on these datasets and more datasets on 2D face analysis can be found following the link: http://www.face-rec.org/databases/.

Feature-based approaches

Feature-based approaches associate features extracted around landmarks in order to relocate them in new images. Features used for representing point properties include color [Zhao et al. 2008[START_REF] Talafova | [END_REF] , local intensity value [Beumer et al. 2006], Gabor wavelets [Feris et al. 2002] [Celiktutan et al. 2008[START_REF] Shih | [END_REF], gradient orientations [START_REF] Yun & Guan | Automatic fiducial points detection for facial expressions using scale invariant feature[END_REF], discrete cosine transform (DCT) [START_REF] Akakin | [END_REF]], Scale-Invariant Feature Transform (SIFT) [START_REF] Asbach | [END_REF], Speed Up Robust Features (SURF) [Kim & Dahyot 2008], etc.

Landmarks are searched either based on some priori knowledge on face or based on two-class classifiers and similarity scores. The locating results may be further constrained or refined by geometrical information, like line properties between landmarks (distance or angles) or a global geometrical model.

These feature-based approaches can be classified into three categories:

• Prior knowledge based strategies: [Zhao et al. 2008] uses the prior geometry distances between eye regions as well as between the month region and eye regions. In this approach, eye centers are located by calculating the sum of RGB components difference and the mouth is supposed to be in a region lo-Chapter 2. 3D Face Landmarking cated by a certain distance below the eye centers. The mouth center is then located from color distribution. An correction rate of 95.52% for locating eye centers and mouth center is reached. When the Euclidean distance between an automatic eye center and its corresponding manual eye center is less than 0.25 of the Euclidean distance (pixel) between two manual eye centers (d rl ), automatic eye centers are considered as correctly detected. When the Euclidean distance between an automatic mouth center and the manual mouth center is less than 0.12 of d rl , automatic mouth center is considered as correctly detected. [START_REF] Talafova | [END_REF]] search landmarks at the assumed subregions in a face image using human skin chromaticity and face morphological characteristics. Author gives the average locating errors of 5 pixels without indicating the resolution of testing face images. [START_REF] Wang | [END_REF] uses the horizontal and vertical projection curves of gray values for locating eye, nose and mouth. The approach has been tested on JAFFE dataset without providing quantitative analysis on landmarking result.

• Similarity score based strategies: [Feris et al. 2002] performs a brute-force search within a limited window for a position that minimizes the score computed in a wavelet subspace. An detection rate over 94% for eight landmarks (four eye corners, two nostrils and two mouth corners) has been reached with an precision of 3 pixels on selected images (resolution of 640*480) from the Yale and FERET dataset. In [Beumer et al. 2006], the likelihood that a scanned pixel is the position of the landmark is evaluated by Approximate Maximum Discrimination Analysis (AMDA) using the texture values in a region surrounding landmarks. They name this method 'the MLLL-BILBO combination'. Tested on the texture images from part of FRGC dataset, 'the MLLL-BILBO combination' achieves an average errors of 0.042 for right eye, 0.046 for left eye, 0.058 for nose and 0.037 for mouth. This error is computed as the Euclidean distance (pixel) between automatic landmark and its manual equivalent divided by the inter-ocular distance. In [START_REF] Akakin | [END_REF], each facial landmark is selected from the peaks in the corresponding matching score Chapter 2. 3D Face Landmarking map, which is computed by correlating DCT template with the DCT vector of the test block. Tested on texture images from FRGC dataset, at least 83% of outer eye corners, 90% of nose tip and 70% of mouth corners are correctly detected. The correct detection is evaluated as if the Euclidean distance in terms of pixels of an automatic landmark from the true position is less than 0.1 of the inter-ocular distance. [START_REF] Asbach | [END_REF]] compares potential landmarks with vertices on a normalized face mesh using SIFT and SURF description. They conclude that scale invariant Harris interest points with SURF descriptions are the most promising combination for locating landmarks. [START_REF] Celiktutan | [END_REF]] models facial landmarks redundantly by four different feature, i.e., DCT, Non-negative Matrix Factorization, Independent Component Analysis and Gabor Wavelets. Matching scores are later fused for selecting candidate points. over 94.8% of inner eye corners, over 93.8% and 89.7% of outer eye corners and inner eyebrow corners are correctly detected using a criterion of 0.1 of inter-ocular distance for correct detection.

• Classifier based strategies: another method presented in [Beumer et al. 2006] uses the Viola-Jones detector to classify a combination of Haar-like features on local texture around landmarks. Tested on the texture images from part of FRGC dataset, the approach achieves an average errors of 0.032 for right eye, 0.033 for left eye, 0.063 for nose and 0.041 for mouth. This error is computed as the Euclidean distance (pixel) between automatic landmark and its manual equivalent divided by the inter-ocular distance. Compared with 'the MLLL-BILBO combination' presented in the same paper, Viola-Jones detectors perform better on upper part of face but worse on lower part of face. In [Hanif et al. 2008], neural networks are trained to locate specific landmarks such as eyes and mouth corners in orientation-free face images. They report a mean location error of 0.12 over four landmarks. The normalized localization error is defined as the mean Euclidean distance between the detected landmark and the equivalent normalized with respect to the inter-ocular distance. In [START_REF] Yun & Guan | Automatic fiducial points detection for facial expressions using scale invariant feature[END_REF], Adaboost classifiers are trained to classify gra-Chapter 2. 3D Face Landmarking dient orientation histograms calculated from the direction of interest points in their neighborhood. Tested on 480 image sequences of 120 subjects from Cohn-Kanade dataset and another database, their approach achieves a good performance of 90.69% average recognition rate for landmarking 26 landmarks with a criterion of 5 pixels between automatic landmarks and ground truth with a image resolution of 640*480. [Kim & Dahyot 2008] uses Support Vector Machines (SVM) to classify SURF local descriptors of landmarks. Tested on their own collected dataset, they achieve correct detection rates over 90% for detecting eye and mouth and 72% for detecting nose on images (resolution of 130*140) without providing a clear definition on correct detection.

The located landmarks or candidates may be further filtered or constrained by geometry information. In [Beumer et al. 2006], a shape correction algorithm is performed after AMDA to relocate those landmarks which do not comply with the constrains in a pre-trained shape model. In [START_REF] Akakin | [END_REF]], a probabilistic graph model chooses the best combination of located landmarks. In [START_REF] Celiktutan | [END_REF], a structural completion method uses a graph composed of 12 landmark points to recover the missing landmarks. [Kim & Dahyot 2008] eliminates the wrongly classified descriptors based on geometrical constraints on relationship of facial component positions.

Structure-based approaches

Structure-based approaches are usually implemented via fitting a face model composed of both face shape and texture feature. Instead of extracting features from texture or shape separately, these methods use texture and shape knowledge simultaneously in the locating process. There exist many popular face models or approaches such as Active Shape Model and Active Appearance Model. Here we review some representative studies.

• Active Shape Model (ASM): [Cootes et al. 1995] have first proposed to represent the shape of an object using landmark points and to learn shape variations using Principle Component Analysis (PCA). Each landmark is associated with Chapter 2. 3D Face Landmarking the corresponding local texture. ASM is fitted by minimizing an objective function based on the sum of local texture similarity. [Park & Shin 2008] uses ASM to detect four landmarks for facial recognition. To apply ASM which is learnt from objects with great shape variations, [Xu & Ma 2008] the Euclidean distance between an automatic landmark and its manual equivalent) over all 240 images for each of 58 landmarks is between two to four pixels in this method. [START_REF] Huang | [END_REF]] build separate Gaussian models for shape components instead of using statistical analysis on the global shape so that more detailed local shape deformations can be preserved. The nonlinear inter-relationships among the shape components are described by the Gaussian Process Latent Variable Model. Tested on 377 images (640*480) of group 1 from extended Yale Database, over 89.7% of all landmarks are localized with a precision of 12 pixels. [START_REF] Faling | [END_REF]] project a 3D shape model into images during the searching process with a 3D transform method to handle the great variance of head pose. Tested on their own dataset, the average errors (measured as the Euclidean distance between an automatic landmark and its manual equivalent) over all 200 images for ten landmarks is between three to five pixels for nearly frontal face views.

• Active Appearance model (AAM): AAM, originally proposed in [Cootes et al. 1998], learns a statistical shape model similar to ASM as well as a model from shape-normalized texture. The two models are further combined to form an appearance model by removing their correlations. The searching algorithm uses the residual between the current estimation of Chapter 2. 3D Face Landmarking appearance and the input image to drive an optimization process. Based on AAM, [START_REF] Hou | [END_REF] proposes a direct appearance model which uses texture information directly in the prediction of the shape and in the estimation of position and appearance for faster convergence and higher accuracy. To locate landmarks robustly against the expression changes and scale variations, [Zhu & Zhao 2009] fits AAM with Lucas-Kanade algorithm, which minimizes the square sum of the difference between a template and an input image with respect to the warp parameters. They claim that about 90% of the test images give good results for locating 60 landmarks without a definition of the good criterion. [START_REF] Yu | Facial Feature Extraction on Fiducial Points and Used in Face Recognition[END_REF] applies AAM in automatically locating 17 landmarks for face recognition.

• Other Approaches combining local and global information: [START_REF] Tu | [END_REF] use Singular Value Decomposition (SVD) to combine two related classes, shape and texture, in a single eigenspace, named Direct Combined Model (DCM) algorithm. It estimates the facial shape directly by applying the significant texture-to-shape correlations. Tested on 450 images with resolution of 640*480 from their own database, they achieve an average error of 2 pixels for all 84 landmarks over images with the frontal pose. This average error increases to 8 pixels when head pose varies to 35 degrees. [Cristinacce & Cootes 2008] The fitting of this model is improved by using an optimization in the form of subspace constrained mean-shifts [Saragih et al. 2009]. [START_REF] Kozakaya | [END_REF] proposes a weighted vector concentration approach, which integrates the global shape vector and locally normalized Histogram of Oriented Gradients (HOG) descriptor. Both the global and local information are combined in landmarking by solving a single weighted objective function. Tested on 1918 images Chapter 2. 3D Face Landmarking from FERET dataset, they achieve landmarking error between 0.03 and 0.07 for 14 landmarks. This error is measured as the average of Euclidean distance (normalized by inter ocular distance) between an automatic landmark and its manual equivalent over all tested images. The mean error over all 14 landmarks is 0.05.

In order to overcome the lighting problem, the above studies perform either an intensity normalization process [Cootes et al. 1995, Cootes et al. 1998], extract illumination-insensitive features, such as facial component contour and corner [START_REF] Wang | [END_REF], or include illumination variations in their learnt facial models [Cristinacce & Cootes 2008]. Meanwhile, in order to overcome the head pose problem caused by the in-plane rotation and face scale, [START_REF] Celiktutan | [END_REF] and [Xu & Ma 2008] detect landmark candidates under multi-directions and multiscales. However, locating landmarks remains too challenging 2D approaches when dealing with faces with out-plane rotation and partially illuminated. Theoretically, 2D landmarking methods can be applied to 3D faces by locating landmarks on 2D texture maps and then using correspondence from the scanner systems to map those points onto 3D face meshes. However, due to the aforementioned limitations, dedicated landmarking approaches are necessary for locating landmarks on 3D faces.

Face landmarking in 3D

3D face landmarking approaches can be classified into three categories: 3D face mesh-based, 2.5D range map-based and geometry and texture combination-based approaches.

3D face databases

Most of 3D face analysis focused on 3D face recognition. Moreover, most of face recognition studies on 3D faces are conducted on the FRGC dataset [Phillips et al. 2005]. Thus, as a preprocessing step for face recognition, landmarking methods are often tested on this dataset. Other 3D datasets such as BU3DFE Chapter 2. 3D Face Landmarking [START_REF] Yin | [END_REF]] and Bosphorus database [START_REF] Savran | [END_REF] are also used for testing 3D landmarking methods.

3D face mesh-based approaches

In this category, studies rely on face point cloud and triangulation. [Conde & Serrano 2005] calculate the spin images [Johnson 1997] based on 3D face meshes and uses Support Vector Machine (SVM) as classifiers to locate the nose tip and inner eye points. [START_REF] Xu | [END_REF]] define the 'effective energy' describing local surface feature, and designs a hierarchical filtering scheme to filter both this feature and a local shape statistical feature. SVM is then used to locate nose tip.

Tested on 280 scans from 3DPEF dataset, a correction rate up to 99.3% has been achieved with a precision of 20mm on the unnormalized face scans. Nose tip is also detected in [START_REF] Bevilacqua | [END_REF]] by applying a generalized Hough Transform. In [START_REF][END_REF], nose tip and nose saddles are detected thanks to a calculation of the local curvature surface. Descriptors of local shape are calculated in [START_REF] Huertas | [END_REF] from inner product of points and their local plane normal. The search for nose tip and inner corner of eyes are based on matching these descriptors with ones from training, constrained by a graph model. Tested on 1507 non-normalized face scans from FRGCv2 dataset, over 90% of eye-corners and the nose-tip are located with a precision of 12mm and 15mm. Other studies fit a normalized face mesh with prior landmark knowledge to a new face for locating its landmarks. [START_REF] Kakadiaris | 3D face recognition in the presence of facial expressions: an annotated deformable model approach[END_REF]] build an annotated deformable face model on face mesh. By fitting the model to new faces, landmarks are naturally implied to the correspondence of the model annotation. [START_REF] Irfanoglu | [END_REF]] find a dense correspondence between an annotated base mesh to new faces. A similar surface model is built by [START_REF] Hutton | [END_REF]], however, their surface model can be considered as a 3D point distribution model (PDM). A recent work done by Nair [Nair & Cavallaro 2009] builds another 3D PDM model for face detection, landmarking and registration. In order to be insensitive to expressions, its points are located only in nasal and ocular regions. Tested on non-normalized face scans from BU3DFE dataset, their methods locates inner corners of eyes (left and right), Chapter 2. 3D Face Landmarking outer corners of eyes (left and right) and nose tip with mean errors (absolute distances between automatic landmarks and manual equivalent) of 11.89mm, 12.11mm, 19.38mm, 20.46mm and 8.83mm. Because features related to 3D face meshes are only based on the geometry information, it is hard to distinguish geometry-nonsalient points e.g., eyebrow corners, and therefore the points that can be located are limited. Moreover, shape variations like expression, occlusion and self-occlusion can easily handicap this branch of landmarking approaches.

Range map-based approaches

Range maps from 3D faces can be considered as 2D images with pixel values corresponding to the linear transformation of Z coordinates in 3D. Thus, besides calculating curvature and shape index, popular features in 2D, like Gabor wavelet, can also be extracted from this representation. [START_REF] Lu | [END_REF]] and [START_REF] Colbry | [END_REF] first find nose tip by closest Z value to camera and then find other landmarks using shape index within eye, mouth and chin regions. Tested on non-normalized 113 scans from their own database, the mean error for locating the five landmarks is 10mm. [START_REF] Colbry | [END_REF] propose a canonical face depth map on range image and locates nose tip and inner eye corners based on this representation. [START_REF] Colombo | [END_REF]] and [START_REF] Szeptycki | [END_REF]] compute Gaussian (K) and Mean (H) curvature for each point in range image and set threshold on curvature to isolate candidate regions for nose tip and eye inner corners. The candidate landmarks are further filtered according to the shape of the triangles they compose in [START_REF] Szeptycki | [END_REF]]. Tested on 1600 face scans from FRGC dataset, over 99% of the three landmarks are localized with a precision of 10mm in [START_REF] Szeptycki | [END_REF].

HK curvature can also be used on range images of full 3D head scans [START_REF] Li | [END_REF], which locate six landmarks when point curvature properties fulfil a set of empirical conditions. In [Segundo et al. 2007], nose tip, nose corners and eye corners are initially located using HK curvature and their positions are then corrected by finding salient points on projection curves of range images. Over 99% of all these landmarks are correctly detected. However, no specific criterion on good detection has been provided. [D'House et al. 2007] use Gabor wavelets on range map for a coarse Chapter 2. 3D Face Landmarking detection of landmarks and then apply Iterative Closest Points (ICP) algorithm to enhance the location precision. They achieved 99.37% of correct nose tip location with a precision of 10mm on FRGC v1.0 database, but their accuracy on the outer corners of the eyes is relatively lower. [START_REF] Dibeklioglu | [END_REF] propose a Gaussian Mixture Models liked statistical model (MoFA), describing local gradient feature distribution around each landmark. This model produces a likelihood map for each landmark on new faces and the highest value in this map is located as landmark.

Tested on FRGC dataset, their approach achieves over 90%, 99%, 99% and 87% of detection rates for outer eye corners, inner eye corners, nose tip and mouth corners respectively with a precision of three pixels on texture maps (resolution of 480*640).

[ Koudelka et al. 2005] develop an accurate approach by computing radial symmetry maps, gradient and zero-crossing maps from range maps. Landmarks are chosen by using a series of heuristic constraints. Over 97% of all five landmarks (nose tip, eye inner corners, mouse center and sellion) are localized with a precision of 10mm on FRGCv1 dataset. Compared with the first category, this branch of approaches can localize more points with higher accuracy, because faces in range maps are normally in frontal pose and facial landmarks can be represented with 2D features. Nevertheless, the drawbacks of these methods is their sensitivity to face scale and head pose variations. Moreover, they have difficulty to locate non-salient points in geometry and points in non-rigid face regions with the presence of expressions.

Approaches based on a combination of facial geometry and texture

Due to the above reasons, a single face representation may not provide enough information for localizing some landmarks consistently. However, the perfect matching of range map and texture map from scanner systems ensures the combination correctness of multi-representation. Accumulating evidence derived from different face representations has the potential to make the feature extraction richer and more robust. [Boehnen & Russ 2004] compute the eye and mouth maps based on both color and range information and selects potential feature candidates of inner corner of eyes, nose tip and sub-nasal. A 3D geometric-based confidence of candidates Chapter 2. 3D Face Landmarking is computed to aid in the selection of best location. Tested on FRGC dataset, their approach achieve 99.6% of correction location on FRGCv2 dataset without providing a criterion for correct detection. [START_REF] Wang | [END_REF] use "point signature" representation to code face mesh as well as Gabor jets of landmarks from 2D texture images. In [Jahanbin et al. 2008a] and [Jahanbin et al. 2008b], an extended elastic bunch graph is proposed to locate landmarks, in which Gabor Wavelet coefficients are used to model local appearance in texture map and local shape in range map.

Tested on ADIR dataset, their approach achieve a correct detection rate of 98% for 11 landmarks with a precision of 0.06m e , where m e is the inter-ocular distance in terms of mm. In [START_REF] Salah | [END_REF]] and [START_REF] Salah | [END_REF], the distribution of Gabor response of texture images around landmarks are featured and modeled by MoFA. 3D surface normals are used to remove illumination effects from texture images. They locate landmarks on downsampled images for a coarse locating. Tested on FRGCv1 dataset, they achieve correct detection rate of 83.4%, 97.2%, 98% and 37.8% for outer eye corners, inner eye corners, nose and mouth corners with a precision of 3 pixels on downsampled images with a resolution of 60*80 pixels. A fine detection can be found in [Akakin et al. 2006], where larger search regions on the original texture images and range images are cropped to produce higher dimensional Gabor-jets. The results prove obvious increase in locating accuracy when two stage detection is performed. [START_REF] Lu & Jain | Multimodal Facial Feature Extraction for Automatic 3D Face Recognition[END_REF]] fit a statistical model constructed as the average 3D position of landmarks based on pre-detected nose tip, and then computes and fuses shape index response (range) and cornerness response (texture) in local regions to locate seven points. They extend this method to be insensitive to head pose variation in [START_REF] Lu | Matching 2.5D Face Scans to 3D Models[END_REF]. Tested on non-normalized face scans from FRGC dataset, seven landmarks are located with mean errors between 3.6mm to 7.9mm. The error is measured as the Euclidean distance (in 3D) between the automatically extracted landmarks and the manually labelled ones. These landmarks are further tuned by Iterative Cloud Point algorithm in [START_REF] Lu | Matching 2.5D Face Scans to 3D Models[END_REF]]. These approaches demonstrate the robustness in landmarking both geometry salient and appearance salient landmarks. However, since they extract features directly from 2D texture and range maps, pose and scale remains strong difficulties for methods Chapter 2. 3D Face Landmarking in this category.

Discussion

Despite the increasing amount of related literature, face landmarking is still an open problem. Indeed, current face landmarking techniques need to increase both accuracy and robustness, especially in the presence of lighting variations, head pose, scale changes, facial expressions, self-occlusion and occlusion by accessories such as hair, moustache and eyeglasses [START_REF] Salah | [END_REF]]. This chapter aims at proposing a general framework for precise 3D face landmarking robust to facial expression and partial occlusion.

Face landmarking has been extensively studied on 2D facial texture images as discussed in previous section. An interesting approach is 2D statistical models such as the popular Active Appearance Model [Cootes et al. 2001] or more recently the Constrained Local Model (CLM) [Cristinacce & Cootes 2008] which carry out statistical analysis both on facial appearance and 2D shape. However, these approaches, while working on 2D facial texture images, inherit the sensibility to lightening and pose changes.

Works on 3D face landmarking are rather recent.

Most of them try to best embed a priori knowledge on landmarks on 3D face, computing response of local 3D shape-related features, such as spin image [START_REF] Kakadiaris | 3D face recognition in the presence of facial expressions: an annotated deformable model approach[END_REF]], effective energy [START_REF] Xu | [END_REF]], Gabor filtering [D' House et al. 2007] [Colbry et al. 2005], generalized Hough Transform [START_REF] Bevilacqua | [END_REF], local gradients [START_REF] Dibeklioglu | [END_REF]], HK curvature [START_REF] Colombo | [END_REF]], shape index [START_REF] Lu | Matching 2.5D Face Scans to 3D Models[END_REF]] and curvedness index [Nair & Cavallaro 2009], radial symmetry [Koudelka et al. 2005], etc. While these approaches enable rather accurate shape prominent landmark detection such as the nose tip or the inner corners of eyes, their localization precision drastically decreases for other less prominent landmarks.

As current 3D imaging systems can deliver registered range and texture images, a straightforward way for more discriminative local features is to accumulate evidence from both the two face representations, i.e. face shape and texture. For

Chapter 2. 3D Face Landmarking instance, [Boehnen & Russ 2004] compute the eye and mouth maps based on both color and range information. [START_REF] Wang | [END_REF] use "point signature" representation coding 3D face mesh as well as Gabor jets of landmarks from 2D texture image.

In [START_REF] Salah | [END_REF]] [Jahanbin et al. 2008b], Gabor wavelet coefficients are used to model local appearance in texture map and local shape in range map around each landmark while [START_REF] Lu | Matching 2.5D Face Scans to 3D Models[END_REF] propose to compute and fuse shape index response (range) and cornerness response (texture) in local regions around seven landmarks.

As the combinations of candidate landmarks resulting from shape and/or texture related descriptors are generally important, some authors also propose to make use of structural relationships between landmarks, for instance through heuristics [Nair & Cavallaro 2009], a 3D geometricbased confidence [Boehnen & Russ 2004], an extended elastic bunch graph [Jahanbin et al. 2008b], or a simple mean model constructed as the average 3D position of landmarks from a learning dataset [START_REF] Lu & Jain | Multimodal Facial Feature Extraction for Automatic 3D Face Recognition[END_REF]. However, there is no approved technique which best takes into account both configuration relationships between landmarks and the local properties in terms of geometric shape and/or texture around each landmark.

Few of the aforementioned studies address the issue of face landmarking in the presence of facial expression or occlusion. [Nair & Cavallaro 2009] experiment their 3D Point Distribution Model to locate five landmarks (the two outer eye points, the two inner eye points and the nose tip) under facial expressions with a locating accuracy ranging from 8.83 mm for nose tip to 20.46 mm for the right outer eye point.

However, these five landmarks are all located on face regions stable to facial expressions. [START_REF] Dibeklioglu | [END_REF]] study 3D facial landmarking under expression, pose and occlusion variations. However, only one landmark, the nose tip, was considered in their work which is not sufficient for further accurate face analysis.

In this chapter, we address the facial landmarking problem in 3D with presence of expression and occlusion, aiming at locating a sufficient number of landmarks with good accuracy for other face analysis, especially for facial expression recognition. In order to do so, we propose a general learning-based framework for 3D face landmarking which combines configuration relationships among the landmarks and 3D training faces with expressions, our models are able to learn the expression variations and generate instances with these variations so that the accuracy in fitting faces with expression can be increased. Moreover, in order to overcome the occlusion problem, a classification system allowing to detect occluded faces and the type of occlusion has been proposed, so that occlusion information can taken into account during the fitting process of our second approach presented in section 2.4.

A 2.5D face landmarking method

In this section, we propose a statistical learning-based approach for 2.5D face landmarking. Taking benefit from the rich information contained in 3D face data, our model is built not only based on facial texture but also based on the geometry vari- The neighborhood is centered at the corresponding landmark with a fixed length and width on the XY plane. The number of sampled points varies with the face scale.

Uniform grids for texture and range respectively are created around each landmark with a fixed size (15*15 in this work, a compromise between accuracy and efficiency) as shown in Fig. 2.5. We can benefit two factors from the uniform grids.

Firstly, because the distances between subjects and the 3D scanner are different so Intensities and range values are then concatenated on all patches into two vectors G and Z as in eq.2.1 and eq.2.2 where m is the total number of points on all grids, (3375 here).

G = (g 1 , g 2 , ..., g m ) T (2.1) Z = (z 1 , z 2 , ..., z m ) T (2.2)

Building a statistical landmark configuration model

Since 3D scanner systems create a point-to-point matching between pixels in 2D texture and vertex in 3D point cloud, the landmarks in 3D space can be mapped into the 2D texture map. Therefore, their positions can be obtained in the texture map and they are also concatenated into a vector X, as in eq. 2.3 where N is the number of landmarks.

X = (x 1 , y 1 , x 2 , y 2 ..., x N , y N ) T (2.3)
Then, all X vectors are normalized from training faces using a procrustes analysis in order to remove 2D global variations [Cootes et al. 1995]:

1. Select one shape to be the approximated mean shape.

2. Align the shapes to the approximated mean shape. First, calculate the centroid of each shape. Then, align all shapes centroid to the origin and normalize each shape scale. Finally, rotate each shape to align with the newest approximate mean.

3. Calculate the new approximate mean from the aligned shapes.

4. Repeat step 2 and 3 until the approximated mean converges.

Principal Component Analysis (PCA) is then applied where 95% major components have been preserved. Taken PCA on the set {X i } for example, the analysis is as follows:

1. Compute the mean of the data,

X = 1 N x Nx i=1 X i (2.4) 2.
Compute the covariance of the data,

Σ = 1 N x -1 Nx i=1 (X i -X)(X i -X) T
(2.5)

3. Compute the eigenvectors, φ i and corresponding eigenvalues λ i of Σ (sorted in descending order), 4. Retain a number of eigenvectors φ i to compose P x so that the model represents some proportion (eg the sum of first eigenvalues reaches 95% of the sum of all eigenvalues) of the total variance of the data.

The same process is applied for the training sets of {X i }, {G i }, {Z i } to build the following three linear models (eq.2.6-2.8).
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X = X + P x b x (2.6) G = Ḡ + P g b g (2.7) Z = Z + P z b z (2.8)
where X, Ḡ, Z are the mean 2D shape, mean normalized intensity and mean range value respectively; P x , P g , P z are sets of modes of shape, intensity and range value variation respectively; b x , b g , b z are sets of parameters of 2D shape, intensity and range values respectively. The dimensions of P x , P g , P z are respectively

(2 * N, n x ), (m, n g ), (m, n z ), where n x , n g and n z are the number of eigenvectors preserved, N is the number of landmarks and m is the total number of points from all grids around the landmarks.

In 2D statistical models such as ASM and AAM [Dryden & Mardia 1998, Cootes & C.J.Taylor 2004], the assumption that the control parameters in the model follow the Gaussian distribution has been proved to be efficient in many cases. Thus, following these studies, we assume that b i from PCA where b i ∈ {b x , b z , b g } are independent and Gaussian distributed with a zero mean and a standard derivation σ j i , where j refers to each parameter of b i . Figures 2.6, 2.7 and 2.8, illustrate the first two modes (j ∈ {1, 2}) at their left and right ending variation (-3σ j i ,+3σ j i ), namely -3std and +3std, respectively for 2D shape variation, texture variation and range variation.

Thus, the statistical model built here includes three sub-models: shape, texture Chapter 2. 3D Face Landmarking 2.3.1.4 Estimating instances from a face P x , P g , P z in eq. 2.6-2.8 contain the variation modes of shape, texture and range.

Thus, given the parameters b x , the 2D shape can be generated by using eq. 2.6.

In order to transform it into a 2D image coordinate system, 3 more parameters are required, namely a translation parameter (C x ,C y ), a scale parameter α and an in-plane rotation parameter ρ as described in eq.2.9.

X = α • (R(ρ) • ( X + P x b x ) + C) (2.9)
where X is the created shape instance and R(ρ) is the rotation matrix. The shape transformation parameters and shape parameters (b x ) are concatenated into a vector Θ = (b T x |C T |α|ρ) T . Given a shape instance X and a preprocessed 3D face scan, the 2D points in X can be mapped back into 3D space based on the correspondence from the scanner system and vectors G and Z (eq. 2.1-2.2) can be obtained through the same process as the one described in section 2.3.1.2. They are further used to estimate b g and b z , as follows:

b g = P T g (G -ḡ) (2.10) b z = P T z (Z -z) (2.11)
However, in order to constrain the possible deformations, a boundary (±3σ j i ) is set for the corresponding parameter in b i (b i ∈ {b z , b g }). Thus, any b j i , which exceeds its boundary is replaced by its closest boundary. Then, texture and range instances Ĝ and Ẑ can be generated according to eq. 2.7-2.8 using these constrained b g and b z .

Model fitting

Given a new 2.5D face, the landmarking problem is how to best fit our learnt statistical model on this face. This can be considered as an optimization problem Chapter 2. 3D Face Landmarking with an objective function depending on variable Θ.

Thus, by initializing Θ, a starting 2D shape instance X can be generated, and texture and range instances Ĝ and Ẑ can be created as described in section 2.3.1.4.

A normalized correlation is further computed for texture F G (eq. 2.12) and range F Z (eq. 2.13) on all local regions respectively, allowing to obtain the objective function in eq. 2.14.

F G = N i=1 G i G i , Ĝi
Ĝi (2.12)

F Z = N i=1 Z i Z i , Ẑi Ẑi (2.13)
where •, • is the inner product and • is the L 2 norm. N is the number of landmarks.

f (Θ) = -(F G + F Z ) (2.14)
The optimization of f (Θ) is performed based on the Nelder-Mead simplex algorithm [Nelder & Mead 1965].

The fitting procedure is as follows:

1. The initial shape instance X0 is created from the vector Θ 0 where b x are zeros and C T , S, ρ are preset.

2. Scale-free patches on range Z k and texture G k are interpolated as described in section 2.3.1.2.

3. Texture and range instances Ĝk , Ẑk are estimated following eq. 2.11 in section 2.3.1.4.

4.

The function f k is computed following the eq. 2.12, eq. 2.13, eq. 2.14.

5. Taking the Θ k as variables and f k as the objective function value, the optimization algorithm predicts Θ k+1 which leads to a lower value of the objective Chapter 2. 3D Face Landmarking function.

6. X k+1 is computed following the eq. 2.9 and compared with X k to check the convergence. If convergence is not reached, go to 2.

In order to initialize C T and S, an Adaboost face detector [Viola & Jones 2002] can be applied on the 2D texture maps and outputs a box containing faces. Thus, these two parameters can be estimated by the center and length of the box respectively. However, in our implementation, this initialization is performed thanks to face masks obtained from the scanner system which has the advantage to be accurate and much simpler. ρ are preset to zero. In order to constrain the deformations and to ensure that the shape instance is plausible, b j x parameters are also limited within the boundary ±3σ j x . All trespassing b j x values are replaced by their closest boundary.

Note that it is not necessary to perform a size normalization before and during the fitting process since three parameters which project shape instances into the image coordinate are optimized during this fitting process. Moreover, there is no photometric normalization done before the model fitting since the objective function computes the correlation between scale free patches and their estimated instances. This process has more tolerance to illumination conditions compared to those directly extracting features on the images for landmarking.

Experimental results

Database

The datasets we have used are FRGC v1.0 and v2.0 [Phillips et al. 2005 For comparison purpose, we also applied to this testing set the curvature analysis based method developed within our team [START_REF] Szeptycki | [END_REF]]. However, only 9 landmarks can be used for comparison between these two techniques as the curvature analysis-based method can not locate the other 6 landmarks which do not have prominent curvature properties. In order to assess the generality of our statistical model which is learnt from 3D face models from FRGV v1.0, 1400 faces are randomly selected from FRGC v2.0 dataset as an extended testing set. The precision in all tests is measured as the mean locating error (P r = N i=1 d i ) where d i is the 3D Euclidean distance between a landmarks automatically located and its corresponding manually labelled landmark.

Results

Fig. 2.9 displays the accumulative precision of all landmarks located by our model on the testing set from FRGC v1.0 dataset. As we can see, our model can locate 97% cases in 10mm precision and 100% in 20mm precision for all landmarks. Our method achieves its best location result for landmark 13 (see legend in Fig. 2.9) with a 100% accuracy in the precision of 9mm, and the worst one for landmark 7 which displays 100% accuracy only in the precision of 19mm. Fig. 2.10 shows the precision curves displayed by the curvature analysis based method [START_REF] Szeptycki | [END_REF]] on the same testing set. As we can see from the figure, while the nose tip and inner corner of eyes, having each prominent geometric feature, are better located by the curvature analysis-based method, our statistical model displays better precision on all the other landmarks.

The first two rows in Table 2.1 shows the mean and std of locating error for each Mean 4,15 3,11 2,98 2,50 3,30 4,38 3,28 Std 2,82 1,90 2,23 1,51 2,04 2,81 2,43 Mean 8.76 3 The first group of mean and std of locating errors are from this approach, and the second group are from the method in [START_REF] Szeptycki | [END_REF]. Both tests are done on the same testing data set. When landmarking results are not available for the point, the symbol "-" is used.

landmark (d i ) from our method while the following rows are the results achieved by the curvature analysis-based method. The database that has been used is FRGC v1.0. The table is indexed by the landmark number referring to the legend in Fig. 2.9.

As we can see, mean locating errors of all landmarks are less than 5mm. Notice that, as mentioned previously, except the nose tip, the mean and std of locating errors from our method are smaller than the ones from the curvature analysis-based method.

Table 2.2 shows the experimental results on 1400 face models randomly selected from FRGC v2.0 dataset. Recall that our statistical model was trained on selected face models in FRGC v1.0 only having controlled illumination and neutral expression while the 1400 face models randomly selected from FRGC v2.0 dataset display facial expressions and drastic illumination changes. As we can see from the table, the mean error in locating all landmarks only increases by 1mm compared with the experimental results on face models from FRGC v1.0 dataset.

The time for localizing landmarks on a face used by our algorithm (coded in Matlab) varies from 18min to 25min on a desktop PC with Intel Pentium4 1.8GHz

and 1 Go RAM. Two steps are time consuming: firstly, it takes over 1500 iterations for the simplex algorithm to reach the convergence, which is more robust to local our learning based method enables locating a higher number of landmarks (15 points to 3-9 points) while keeping a better location precision for all landmarks.

To further evaluate the location precision of our learning-based method, we have also driven experiments to analyse the location precision on manually labelled landmarks. Thus, we have asked 11 people to label the 15 landmarks on 10 faces, and have computed the mean and std of locating errors. The result is given in correlated with each other, as points 4 and 10 in both tables hold higher accuracy while point 9 and 1 in both tables hold lower accuracy. This can be explained by the fact that our approach makes use of manual landmarks during the training process, which thus may be affected by errors in manual landmarking. process. Thus, our approach could be improved with a better learning of the model by using a training set containing more face variations, especially in expression and lighting condition, and with higher manual landmarking accuracy.

Conclusion

We have presented in this section a learning-based statistical method for automatic This approach is dedicated to 2.5D face landmarking. However, when the full 3D face information is available, this method can be improved by considering the 3D morphology as the global landmark configuration instead of the 2D shape on texture maps of 3D faces. This is the purpose of the method we propose in next section.

A 3D face landmarking method

In this section, we propose a general learning-based framework for 3D face landmarking. Our approach relies on a statistical model, called 3D Statistical Facial feAture Model (SFAM), which learns both global variations in 3D face morphology and local ones around each 3D face landmark in local texture and geometry. Different from the approach presented in the previous section, this method is a full 3D method which uses 3D morphology as the global landmark configuration instead of 2D shape on texture maps of 3D faces. Moreover, the fitting algorithm is based on the computation of correlation meshes between local features and their instances, which is more efficient. In this approach, in order to deal with the facial expression problem, the model is learnt from 3D faces with expressions. Moreover, in order to handle the occlusion problem, the detection of occluded faces and the identification of the occlusion type are performed. This classification provides the occlusion state for every local region around a landmark which allows the fitting algorithm to be applicable even on partially occluded faces.

Statistical facial feature model

Preprocessing the training faces

In order to train a SFAM, the targeted anthropometric landmarks need to be manually labelled for each aligned frontal 3D face. Contrary to most of the existing To prove this, we have manually labelled two sets of landmarks on three different datasets, namely FRGC, BU-3DFE and Bosphorus datasets, as illustrated in Fig. 2.11. The landmark set for FRGC dataset is the same as the one described in the previous section. 

G = (g 1 , g 2 , ..., g m ) T (2.16) Z = (z 1 , z 2 , ..., z m ) T (2.17)
Principal Component Analysis (PCA) is then applied to the three vector sets {S i }, {G i }, {Z i } and 95% of the variations in landmark configurations (morphology)

as well as local texture and shape around each landmark are retained.

S = S + P s b s (2.18) G = Ḡ + P g b g (2.19) Z = Z + P z b z (2.20)
where S, Ḡ and Z are respectively the mean landmark configuration, mean intensity and mean range value while P s , P g , P z are respectively the three sets of follow Gaussian distributions with a zero mean and a standard deviation σ i . The dimensions of P s , P g , P z are respectively (3 * N, n s , (m, n g ), (m, n z , where n s , n g , n z are the number of eigenvectors, N is the number of landmarks and m is the total number of points from all grids around the landmarks.

Locating landmarks

The SFAM based landmarking is performed through the optimization of an objective function which elegantly combines landmark configuration relationships with their local texture and shape features. The objective function is presented in section 2.4.2.1 whereas the fitting algorithm is given in section 2.4.2.3.

Objective function

Our objective function f (b s ) is derived from a Bayesian approach by defining f (b s ) = p(S|T, R, ψ), the probability to find the local texture and shape features at landmark configuration S given the 3D face with texture map T and range map R, as well as the learnt statistical model SFAM ψ given by eq.2.18, 2.19, and 2.20.

By following Bayes rule, we obtain:

p(S|T, R, ψ) = p(T, R, S, ψ)/p(T, R, ψ) ∝ p(T, R|S, ψ)p(S|ψ) ∝ p(T |S, ψ)p(R|S, ψ)p(S|ψ) (2.21)
where p(T |S, ψ), p(R|S, ψ) are the probabilities of the face texture and range given a landmark configuration S and SFAM ψ. We assume the variable R and T from different face representations are independent within a local face region.

p(S|ψ) is the probability of a given landmark configuration estimated by SFAM.

Probabilities p(T |S, ψ) and p(R|S, ψ) can be estimated using a Gibbs-Boltzmann distribution as in eq. 2.22. This distribution has been widely used by PCA based statistical models in 2D, such as Constrained Local Model [Cristinacce & Cootes 2008],

and proved to be efficient. This assumption is quite reasonable and results from the fact that the problem of 3D face landmarking is actually a Markov Random Field (MRF) which consists in assigning to each vertex of a 3D facial scan a label from a set of labels L. The set L encompasses all targeted landmarks (e.g., nose tip, eye corners) and a null value labeling any vertex which is not the location of any targeted landmark. Then, the theorem of the equivalence between MRFs and Gibbs distributions by Hammersley and Clifford [Li 2009] implies that the problem Chapter 2. 3D Face Landmarking of 3D face landmarking as described by the probabilities p(T |S, ψ) and p(R|S, ψ)

are Gibbs-Boltzmann distributions [START_REF] Duda | [END_REF].

p(S|T, R, ψ) ∝ N i=1 e -αη i N i=1 e -βγ i k j=1 e -b 2 j /λ j log p(S|T, R, ψ) ∝ N i=1 -αη i + N i=1 -βγ i - k j=1 b 2 j λ j (2.22)
where N is the number of local regions, η i and γ i are the similarities between instances and local regions, and α and β are weight factors. p(S|ψ) can be considered as a penalty factor referred to [Cootes et al. 1995], where k is the number of landmark configuration or morphology modes, b j is similar to b s in eq. 2.18 and λ j denotes the corresponding eigenvalues of the landmark configuration model.

We have extended the objective function to deal with face occlusion. Indeed, in the presence of occlusion, each local region around a landmark i will be associated with a probability of being uncovered m i . The objective function is therefore rewritten as follows:

f (b s ) = m i α N i=1 F G i (s i ) + m i β N i=1 F Z i (s i ) - k j=1 b 2 j λ j (2.23)
where F G i and F Z i refer to eq. 2.26. m i is the probability whether the region around the ith landmark is uncovered, thus being 0 if the local region is fully occluded and 1 if the local region is totally uncovered. s i is landmark location from the morphology model.

The value of α and β can be determined by computing the ratio of In this work, we have made use of a simple occlusion classification algorithm which delivers a binary value for m i which is 0 is if the local region is occluded and

1 if not.
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Computation of the correlation meshes

In order to compute the F G i and F Z i factors in eq. 2.23, the correlation meshes are calculated in order to describe the similarity between instances and local face regions in both texture and shape modalities. It makes the optimization faster in the fitting process since those two factors can be directly obtained from the meshes instead of computing the objective function at each iteration.

The correlation meshes are illustrated in Fig. 2.12 and their computation is described as follows: 

b g = P T g (G ′ -ḡ) (2.24) b z = P T z (Z ′ -z) (2.
F G i j = g i j g i j , ĝj ĝj , F Z i j = z i j z i j , ẑj ẑj (2.26)
•, • is the inner product and • is the L 2 norm.

Fitting algorithm

Before landmarking a 3D face through the fitting algorithm presented here, the occlusion algorithm described in section 2.4.3 is first applied to identify the occluded local regions and thus to set the corresponding m i coefficient to zero. Therefore, only the unoccluded local regions will take part in the following fitting process. The algorithm works as follows:

1. Given a 3D face, its head pose is first compensated using ICP algorithm. Chapter 2. 3D Face Landmarking in eq. 2.23). The penalty factor (the third factor in eq. 2.23) is computed accordingly.

The optimization in the step 2 and 4 is processed by Nelder-Meade simplex algorithm [Nelder & Mead 1965] because it is suitable for optimizing variables with dimension less than 30 and it is robustness to local minima. In each iteration in the simplex algorithm, the morphology parameters from the previous step are used for computing the value of objective function. Then, this value is compared with the function value in the previous step and simplex algorithm can thus predict a set of updated morphology parameters for the next step. The algorithm is converged when the morphology variation computed from morphology parameters between two consecutive steps is less than a threshold (5mm) or maximum iteration number is reached.

For partially occluded faces, occluded landmarks are excluded as well as their corresponding local meshes in the computation in the steps 2 and 4. Indeed, in wrong cases of occlusion classification, local non-face meshes lead the optimization to converge at a unpredictable point far from the desired minimum.

Occlusion detection and classification

Face analysis in the presence of partial occlusions, due to diverse factors such as hair, glasses, mustaches, scarf, etc. is a difficult problem. As far as 3D face landmarking is concerned, we are only interested in occlusions which may occur in local regions around landmarks. Thus, we have proposed a simple approach to classify occlusion type and give a set of binary values to local regions, corresponding to 'occluded' or 'unoccluded' states. Alternatively, we may have computed a probability associated with a local region being occluded or a measure indicating roughly how much a local region is occluded.

In order to perform occlusion detection, features from the range map are extracted since the presence of occlusion definitively changes the face shape in relevant local regions. Therefore, given an input face scan, its closest points s ′ to the mean landmark configuration (eq. 2.18) are computed. Then, 51*51 grids are used to Chapter 2. 3D Face Landmarking remesh local regions around these points only for range values, as in section 2.3.1.1.

For each local region i, a sliding window method is performed with the same size as the one of the local regions considered in SFAM. At each step j, a local depth map Z α is computed and its local shape instance Z β is calculated to further obtain a similarity map LS as follows:

b αj = P T zi (Z αj -zi ) (2.27) Z βj = zi + P zi b βj (2.28) LS i j = Z αj Z αj , Z βj Z βj (2.29)
P zi is the submatrix composed of the rows in P z associated with local region i.

zi is the subvector composed of rows in z also associated with local region i. •, •

is the inner product and • is the L 2 norm. b β is obtained by limiting b α within a predefined boundary used to limit the possible deformations.

In case of occlusion, the local deformations are too large to be handled by the model. Thus, the instances Z β generated from this model are quite different from the occluded local shape Z α , which leads to a low similarity value in eq. 2.29. The LS i j describes the possibility to synthesize the local regions by learnt geometry variations. Therefore, this possibility decreases when a part of a face is occluded and thus contains non facial shape. This information is used for occlusion detection and classification.

Once LS has been computed for all points in a local region, a histogram from this similarity map is built. Then, histograms from all the local regions are further concatenated into a single feature, labelled with the occlusion type, such as occluded in the ocular region, occluded in the mouth region, occluded by glasses, or unoccluded. The distances between histograms are valued by the Euclidean distance, and the classification is performed by a simple K-NN classifier.

Since the available faces with occlusion in the dataset have certain patterns, as shown in Fig. 2.13, we have preset a set of binary values indicating the occluded state in local regions for each type of occlusion. For example, for occlusion in the mouth region, the set of binary values {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0 } is used to initialize m i , where the first two 0 correspond to the nose corners and last four 0 correspond to the mouth corners and lip middles. The classification leads to the list of local regions being occluded (m i in eq. 2.23).

Experimentations

The SFAM model based framework for 3D face landmarking described so far has been experimented on three datasets, namely FRGC, BU-3DFE and Bosphorus datasets which are described in subsection 2.4.4.1 as well as the experimental setup.

Then, the results are given in the following subsections.

Datasets and experimental setup

In order to test the soundness of our SFAM model-based 3D face landmarking framework, besides the Face Recognition Grand Challenge (FRGC) database used in section 2.3, we have made use of two other datasets, namely BU-3DFE database [START_REF] Yin | [END_REF]] and Bosphorus database [START_REF] Savran | [END_REF]].

The BU-3DFE database contains 100 subjects (56% female, 44% male). Each subject performs seven expressions in front of a 3D face scanner. Each of the six universal expressions (happiness, disgust, fear, angry, surprise and sadness) includes four levels of intensity. In our experiments, we have used the neutral faces and faces Chapter 2. 3D Face Landmarking with the 2 highest-level expressions from all subjects, thus 1300 face scans in total.

The Bosphorus dataset contains 4666 face scans from 105 subjects. This dataset contains not only many samples of the six universal facial expressions and many AUs, but also 3D face scans under realistic occlusions like glasses, hands around mouth and eye rubbing. Moreover, many male subjects have moustache and beard.

As illustrated in Fig. 2.11, 15 facial landmarks have been manually landmarked for the FRGC dataset and 19 for the BU-3DFE and Bosphorus datasets. They have been used as ground truth for learning the SFAM model and testing our landmark fitting algorithm. These three landmark sets contain some common landmarks, such as eye corners, mouth corners and contain landmarks from both face rigid and non-rigid regions.

Occlusion classification results

We have made use of the Bosphorus dataset including four kinds of occlusion, caused respectively by hair, glasses, hand near the mouth region and hand near the ocular region. An illustration of these types of occlusion can be found in Fig. 2 As occlusions caused by hair generally do not occur on the landmark regions, this type of occlusion is excluded from our study. We consider for the experiments the other three types of occlusions and an unoccluded neutral face from each subject.

We experimentally set K to five in the K-NN classifier and carried out a two-fold cross-validation. 347 face scans of 105 subjects have been used based on the data availability, where each subject contains at lease two scans out of four aforementioned types and at most four scans from each of the types. In each round, about faces scans from half of the subjects are used for training and the rest for testing.

The subjects used in the training are different from those in the testing. After two round, scans from all subjects are used once for training and once for testing. The confusion matrix is given in table 2.4. As we can see, an average classification accuracy up to 93.8% can be achieved, which has been proved to be sufficient for further landmarking.

SFAM learning

We The index of the landmarks is the abbreviation of the legend in Fig. 2.18. The left number in each cell gives the result on FRGCv1 data while the right one the result on FRGCv2 data.

Results on landmarking

Using the learnt statistical models, the fitting algorithm for 3D face landmarking has been evaluated on 3 different experimental setups. In all these experiments, errors are calculated as the Euclidean distance between automatically located landmarks and the corresponding manual ones (ground truth). We do not set a general criterion or maximum allowed error to separate outliers in the following statistical results, which means almost all landmarking results are taken into consideration. A small number of landmarking results (around 20 face scans) which has mean errors over 20mm are excluded. The reason for this unreasonable error may be mostly due to the failure of ICP alignment.

Using the first SFAM, the fitting algorithm has first been experimented on the The index of landmarks is as in Fig. 2.21. Chapter 2. 3D Face Landmarking and the greatest standard deviation in face scans expressing surprise because of the significant deformation in this region induced by this emotional state. Table 2.6

summarizes the mean error along with the std of the landmarking algorithm with all expressions. The mean errors for all 19 landmarks stay within 10mm while most of standard deviations are lower than 5mm. The locating accuracy of landmarks in rigid face region is comparable to those of the corresponding landmarks located in FRGCv1.

The last experiment has tested the fitting algorithm using the third SFAM to locate 19 landmarks on 3D face scans under occlusion from the Bosphorus dataset. 2.7). The mean errors generally range from 6 to 11 mm, and more than 97% landmarks are located in 20mm precision in both configurations. Noting that this precision is considered as a criterion by some other works. Meanwhile, there exists an increase on mean error and std in average for the latter test, which is due to occlusion classification errors. However, these results remain acceptable, all the more since this automatic approach offers the ability to be generalized to datasets without occlusion information.

The time for localizing landmarks on a face used by this algorithm (coded in The landmark indexes are as in Fig. 2.21. The left number in each cell represents the testing result using occlusion information provided by the dataset while the right one displays locating result using occlusion information provided by our occlusion detection and classification algorithm. In the latter tests, the knowledge of occlusion by hair (not considered by our occlusion detection and classification algorithm) was provided by the dataset Chapter 2. 3D Face Landmarking 2.4.4.5 Failure cases and analysis Most existing works on 3D face landmarking in the literature are only experimented on the FRGCv1 dataset. We can thus compare these results with the ones achieved in our first experiment described in the previous subsection.

Using the same dataset and a heuristic guided statistical method, Dibeklioglu et Chapter 2. 3D Face Landmarking al. [START_REF] Dibeklioglu | [END_REF]] report an accuracy rate of around 99% for nose tips and inner eye, around 90% for the outer eyes and mouth corners within around 19mm precision (3 pixels precision on a reduced face texture with the reduction rate 8:1 in the paper. The 3D distance between pixels are 0.8mm to 1mm in FRGCv1).

Compared to this result, our locating technique localize more landmarks (15 instead of 7) in better detection rates with the same precision.

In [START_REF] Lu | Matching 2.5D Face Scans to 3D Models[END_REF]], Lu et al. located seven landmarks, namely nose tips, corners of eyes and mouth on face scans from FRGCv1. The mean errors for these landmarks are around 6.0mm to 10mm, while our technique displays locating errors for 15 landmarks around 2mm to 5mm with much smaller standard derivation. Using the Bosphorus dataset with 3D face scans under occlusion, most mean errors of our landmarks range from 6mm to 10mm with a much lower standard deviation.

In [Koudelka et al. 2005], Koudelka et al. located five landmarks, namely inner corners of eyes, Sellion, nose tip and middle mouth with a mean error of 3.57mm over all the five landmarks and 97.22% of all the landmarks are correct detected with a precision of 10mm. In our case, we reach a mean error of 3.43mm over all the 15 landmarks and over 99% of all the landmarks are correct detected with a precision of 10mm.

Compared between our two methods, the average of error mean and std over 15 landmarks are 3.49mm and 2.34mm in the first method and those are 3.43mm and 1.68mm in the second method. All these results have a lower average error and better reliability compared with the curvature analysis based method [START_REF] Szeptycki | [END_REF]], 6.15mm and 4.05mm for seven landmarks included by 15 landmarks in our methods.

To the best of our knowledge, there exists only one work in the literature attempting to locate several landmarks on 3D face scans under facial expressions [Nair & Cavallaro 2009]. In their study, a 3D point distribution model is proposed to landmark five landmarks, namely the two inner eye corners, the two outer eye corners and the nose tip. Note that these landmarks are on face regions rather stable to expressions. Trained on 150 unnormalized face scans and tested on 2350 faces from the BU-3DFE dataset, their technique displays respectively a mean error Chapter 2. 3D Face Landmarking of 12.11mm, 11.89mm, 20.46mm, 19.38mm and 8.83mm for these five landmarks.

Using the same dataset and a comparable quantity of training faces (143 faces), we display respectively a mean error of 4.11mm, 2.93mm, 2.90mm, 4.07mm, 4.04mm for these five landmarks and our technique also located other landmarks from mimic face region on 1157 face scans which produce the two higher levels of expression intensity out of the whole dataset.

We have also studied the reproducibility and the corresponding precision of manual landmarking for two reasons. First, manually labelled landmarks are used as the ground truth of automatic landmarks. Because of subjective variance, it is not necessary that manual landmarks are labelled at the precise location of landmarks.

This imprecision may disturb the evaluation of the automatic landmarks. Thus, this study can provide a reference on the errors of manual landmarks used for evaluation.

Secondly, this study can also give a reference on the variance of landmarking done by human and plays as a comparison with machine variance. For these purposes, 11 subjects are asked to manually label the 15 landmarks as shown in Table 2.3.

The mean error of 15 manual landmarks is 2.49mm with the std at 1.34mm. For comparison, the second landmarking method achieves a mean error of 3.43mm with the corresponding standard deviation at 1.68mm on the same dataset.

Conclusion

We have presented in this section a general learning-based framework for 3D face landmarking which characterizes the configuration relationships between the landmarks as well as their local properties in terms of texture and shape, through a statistical model called SFAM. The fitting algorithm then locates the landmarks through the optimization of an objective function derived from a Bayesian approach.

Such a framework is also quite suitable to deal with facial expressions and partial occlusions. Indeed, the consideration of both global and local properties helps to characterize landmarks deformed under expression and partial occlusion. Meanwhile, partial occlusion is taken into account in the objective function provided that occlusion probability around each landmark can be estimated. Based on this evidence, we have also introduced a 3D face occlusion detection and classification 

Conclusion on 3D face landmarking

We have presented in this chapter two statistical model based methods for locating landmarks on 3D face scans. Both methods rely on statistical models by learning the variations in global landmark structure as well as local texture and range. However, the major difference between the methods are: firstly, the global landmark configuration in the first method is on 2D texture images while the SFAM is a full 3D statistical model; secondly, the fitting algorithm of the former is similar to active shape model in 2D while the second one introduces correlation meshes in the fitting; thirdly, combined with an occlusion detection algorithm, SFAM is able to perform landmarking on partial occluded faces. Flowcharts of these two methods have demonstrated that by considering both texture and geometry information, our methods is able to locate a set of landmarks beyond those characterized by salient shape with a better accuracy. Thus, SFAM has reached better landmarking accuracy than the previous models proposed in the literature in terms of accuracy and robustness when encountering severe conditions such as expression and occlusion.

In this chapter, only range and texture maps are used as simple descriptors of local shape and texture around landmarks. In the future, the landmark location may be improved by considering other descriptors such as HK curvature, shape index, etc. for shape feature or Local Binary Pattern, Gabor filtering, etc. for texture property.

Chapter 3 Facial expression analysis has interested researchers as early as Darwin in the nineteenth century, who had demonstrated the universality of human facial expressions [START_REF] Darwin | The expression of the emotions in man and animals[END_REF]]. In the past facial expression analysis was primarily a research subject for psychologists. In the 70s, few preliminary investigations on automatic facial expression analysis through images were presented [Suwa et al. 1978]. From 90s on, automatic facial expression analysis gained much interest due to advancements in related areas such as face detection, face tracking, etc, as well as the availability of more powerful computational facilities.

3D Facial Expression Recognition

Introduction

The recognition of facial expressions has various purposes and applications. It In this chapter, we focus on recognizing facial expression on 3D face scans. Two approaches are proposed to solve this task: first, we have elaborated a facial surface geometry based feature that is extracted and used to feed a Support Vector Machine (SVM) classifier for identifying the face expression; second, we have proposed to fuse the contribution of features from face landmark configuration, texture and geometry representations thanks to a Bayesian Belief Network (BBN) to recognize both universal expressions and facial action units. A fully automatic expression recognition system has also been proposed by combining the BBN with the SFAM presented in the previous chapter.

The reminder of this chapter is organized as follows. In section 3.2 we will firstly introduce the review of the state-of-art techniques dealing with facial expression recognition in both 2D and 3D environment. Then, we will present our first approach using the proposed geometry feature for facial expression recognition in section 3.4.

Our BBN will be presented in the following section 3.5. Finally, we draw a conclusion in section 3.6.
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The Problem

Theories of emotion

Most of studies on facial expression recognition aim at analysing human affect.

Thus, it is important for designers of these systems to understand the structure and description of affect since it provides information about the affective classes to be detected. However, as there exists for the moment no consensus on the emotion taxonomy, the different theories of human affect have led to different streams of facial expression recognition approaches.

According to psychological theories of emotion, the emotion domain could be characterized by different qualitative states or dimensions. The two traditional theories that have most widely been considered in the past are discrete and dimensional theories of emotion.

Researchers working on the discrete theories propose that there exists a small number of basic or fundamental emotions, shown in table 3.1. Among them, the prototypical (universal) emotion categories and their corresponding facial expression have been proved to be perceived by humans in the same way regardless of culture.

As a result, most of existing facial expression recognition approaches focus on recognizing these emotions. However, discrete theories fail to cover the whole range of emotions that people may experience in their everyday lives, and in particular subtle emotions and combination of emotions.

In the dimensional theories of emotion, emotional states are often mapped into a two or three-dimensional space. The two major dimensions consist in a valence dimension (pleasant -unpleasant, agreeable -disagreeable, also presented as appraisal dimension) and an activity dimension (active -passive, also presented as energy dimension or arousal dimension) [Greenwald et al. 1989]. If a third dimension is used, it often represents either power or control [Griffith ]. Usually, several discrete emotion terms are mapped into the dimensional space according to their relationships to the dimensions, as shown in figure 3.2. Contrary to the discrete theories, a wider range of emotions and their relationships can be defined and described in the dimensional theories. However, it is difficult for facial expression recognition systems to directly interpret face appearance into the emotional spaces.

Facial expression properties

Emotional states, like many other internal physiological activities (see fig. 

Facial expression interpretation

According to the two types of aforementioned emotion theories (discrete and dimensional), we can distinguish two main streams on analysis of the facial expressions:

message-based approaches and sign-based approaches.

Message-based approaches are concerned with the message conveyed by facial expressions. They directly associate specific facial patterns with emotions and classify expressions into a predefined number of discrete categories. The most commonly used facial expression categories are the six basic emotions (fear, sadness, happiness, anger, disgust, surprise), proposed by Ekman [START_REF] Ekman | [END_REF].

Sign-based approaches aim at describing face deformation objectively rather than inferring meaning underlying the appearance. Facial muscle activities are hereby abstracted and coded by facial action units and then mapped into a variety of states in emotional space by high-level decision making. To completely describe all possible perceptible changes, the Facial Action Coding System (FACS) has been proposed [Ekman & Friesen 1978]. It is a comprehensive and anatomically based system used Chapter 3. 3D Facial Expression Recognition to measure all visually discernible facial movements in terms of atomic facial actions called Action Units (AUs). Over 7000 different AU combinations have been observed and some of these combinations are mapped into basic emotions according to Emotional FACS (EMFACS) rules and various affective states according to FACS Affect Interpretation Database (FACSAID). For example, the combination of AU1, AU2, AU5 and AU26 can be interpreted as the surprise expression while the combination of AU6 and AU 12 is interpreted as happiness. With the assistance of a high-level making process, it is applicable to identify AUs for recognizing spontaneous facial expression in the dimensional space rather than classifying into the universal expressions. A detailed interpretation of AU combinations to emotions can be found in the appendix.

Related works

Over the past 20 years, facial expression recognition has gained growing interests within the computer vision community. Progress in recently five years has been observed in two main aspects. New methods are proposed to detect facial action units for recognizing more affect states as well as spontaneous expressions besides the six universal expressions. Meanwhile, many studies have begun to consider 3D faces for expression recognition. 

Facial expression recognition: 2D vs 3D

Facial expression recognition: static vs dynamic

Since a face in a static image can express an emotion, faces necessarily carry static emotion properties. Thus, a majority of studies in the literature dealing with facial expressions considers static images. However, a facial expression also implies a change of a visual pattern over time. This explains why more and more researchers attempt to characterize the dynamic evolution of expressions in order to improve the interpretation of facial activities [Hammal et al. 2007]. To do so, features representing the temporal dynamics of facial expression are extracted. The speed of a facial point displacement or the persistence of facial parameters over time can be extracted [START_REF] Chakraborty | [END_REF], Brick et al. 2009] either for action phrase segmentation or recognition. In [Tong et al. 2007, Tong et al. 2010], the dynamic relationships between AUs are proved to be effective to enhance the recognition performance compared with the one directly derived from Gabor Wavelet.

Table 3.2 and 3.3 provide an overview of the main approaches for facial expression recognition from the year 2007 with respect to the facial features, classifiers, and performances. The methods based on static images are tagged by 'Im' in acc(%) columns and those based on videoes are tagged by 'Vi'. A detailed survey for systems before the year 2007 can be found in the Table 2 in [START_REF] Zeng | [END_REF]]. Other surveys for 2D facial expression recognition are proposed in [Pantic & Rothkrantz 2000[START_REF] Fasel | [END_REF].

3D facial expression recognition

The number of studies dealing with 3D facial expression recognition has recently significantly increased in particular thanks to the publication of 3D facial expression databases. These databases are interesting since they allow researchers to develop and tune their approach, and then to compare their efficiency with the community.

Currently, there exist three public databases which contain 3D face scans for facial expression analysis. The most widely used is the BU3DFE database [START_REF] Yin | [END_REF] which contains face scans from 100 subjects displaying the six universal expressions as well as the neutral one. Each expression is displayed with 4 intensity levels from onset to apex. The BU4DFE database [START_REF] Yin | [END_REF]] contains 606 facial expression sequences in 3D captured from 101 subjects, with a total of approximately 60,600 frame models. For each subject, there are six model sequences showing six prototypic facial expressions respectively. This is the only database which contains 3D video sequences displaying facial expressions. Finally, the Bosphorus database [START_REF] Savran | [END_REF]] contains 105 subjects scanned with both the six universal expressions and facial action units. This is the only public database that contains dedicated scans displaying action units in 3D.

Existing approaches on expression recognition based on 3D faces can be divided into two categories: feature-based and model-based facial expression recognition.

These approaches are further detailed in next subsections. a recognition rate of 87.9%. Such distance-like features have been further explored in [Tang & Huang 2008a], where less than 30 'best' features were automatically selected from candidate pool (all distances between 83 feature points). They achieve a recognition rate of 94.7% with a requirement of one neutral scan from each subject.

Feature-based 3D facial expression recognition approaches

Besides distance feature, Hao and Huang [Tang & Huang 2008b] have also extracted properties (the slope and length) of the line segments connecting 83 feature points, to make up 96 distinguishing features for recognizing the six universal facial expressions. They achieve a recognition rate of 87.1%. Landmark based features are easy to extract and invariant to head pose. However, its robustness to landmark precision

has not yet been investigated. The recognition performance may highly rely on the landmark location accuracy which is difficult to achieve by automatic landmarking methods. Moreover, as a face contains information related to both person identity and expression, a normalization process is generally adopted to exclude the identity information that may disturb the expression recognition process.

Another kind of geometrical features is surface shape-based features, which are extracted from 3D face meshes and describe local shape properties. In [Wang et al. 2006], principal curvatures, surface principal directions and steepness of the surface have been calculated and further mapped into one of 12 primitive features on each vertex. Histograms of these primitive features from manual defined regions are extracted for classification. They achieve a recognition rate of 83.6%. However, 64 manually labeled landmarks are still required for defining the face regions. In [START_REF] Savran | [END_REF], least squares conformal maps and elastic registration are used to map 3D faces into 2D images and register mapped faces into a reference one automatically. 22 AUs are detected by estimating the deformation between the registered face and the reference. The average of overall correct recognition rate is 91.4%.

Model-based 3D facial expression recognition approaches

Instead of directly extracting features, model based approaches make use of a generic face model, generally deformable, as an intermediate [START_REF] Ramanathan | [END_REF][START_REF] Mpiperis | Bilinear models for 3-D face and facial expression recognition[END_REF], Rosato et al. 2008, Venkatesh et al. 2009]. The expression rameter space for measuring the degree of similarity [Abboud et al. 2004] or to feed classifiers like SVM, MLP etc [START_REF] Martin | A real-time facial expression recognition system based on Active Appearance Models using gray images and edge images[END_REF]. In 3D environment, a number of generic face models has been proposed, such as annotated face model (AFM) [START_REF] Kakadiaris | 3D face recognition in the presence of facial expressions: an annotated deformable model approach[END_REF]], 3D morphable model [Blanz & Vetter 2003],

bilinear model [START_REF] Mpiperis | Bilinear models for 3-D face and facial expression recognition[END_REF].

They are widely applied in 3D face recognition [START_REF] Kakadiaris | 3D face recognition in the presence of facial expressions: an annotated deformable model approach[END_REF], Blanz & Vetter 2003], 3D face reconstruction [START_REF] Hu | [END_REF]] and 3D facial expression recognition [START_REF] Rosato | [END_REF][START_REF] Mpiperis | Bilinear models for 3-D face and facial expression recognition[END_REF], Ramanathan et al. 2006]. These face models include a prior knowledge on 3D face, such as landmark location, face segmentation and deformation modes. As the transfer of the knowledge from the models to new faces naturally happens during the fitting process, it is promising to base an automatic expression recognition system on this category. Moreover, most of them contain deformation knowledge so that new faces can be registered by fitting the model into them via a model parameter optimization. The optimized parameters are further classified into expression classes [START_REF] Mpiperis | Bilinear models for 3-D face and facial expression recognition[END_REF], Ramanathan et al. 2006]. However, fitting face models introduce errors since the learnt deformation modes can not be so comprehensive to synthesize every face precisely and perfectly without residual. Meanwhile, the model is built on limited features, usually on 3D face mesh [START_REF] Mpiperis | Bilinear models for 3-D face and facial expression recognition[END_REF]] and face texture [START_REF] Ramanathan | [END_REF]]. Using the model parameters from these two raw features may not have sufficient discriminant power for classifying various expressions.

Morphable Expression Model (MEM) [START_REF] Ramanathan | [END_REF]] is built by applying a Principal Components Analysis (PCA) on both 3D face shape and texture, whose process is similar to AAM. The morphable MEM learns expression variation modes from faces with expression. After fitting MEM into new faces by minimizing an energy function, model parameters are projected as a point into a low-dimensional space made of the eigen-expressions for recognition. They achieved a recognition rate of 97% for 4 expressions in their own dataset. Similarly, 3D point distribution models [Venkatesh et al. 2009] are built for each expression by applying PCA. The difference between the coefficients of test faces and those of each expression from training are computed for recognition. They achieve a recognition rate of 81.7%.

Mpiperis [START_REF] Mpiperis | Bilinear models for 3-D face and facial expression recognition[END_REF]] has done a joint recognition based on decoupling identity and expression components of face appearance by bilinear models. A subdividable base mesh has been used to build point-to-point correspondence for building a symmetric and asymmetric bilinear models. Using these two models, identity and expression parameters for new faces have been optimized and further classified to perform face and expression recognition respectively. They achieve a recognition rate of 90.5%.

Instead of using model parameters, Rosato [START_REF] Rosato | [END_REF] Because face models carry a prior information on landmark locations, extracting features on fitted model naturally do not need human intervention. Moreover, generic model may be built with a low resolution so that computation burden can be reduced. The limitation of this kind of approach is that a dense correspondence among face is necessary, which normally has high computation complexity.

Discussion

Overall, when comparing the state-of-the-art methods for recognizing 3D facial expression, one can observe that most of approaches:

• aimed at recognizing of a small number of universal expression (i.e., happiness, sadness, anger, fear, surprise, and disgust) using posed, controlled, static 3D face scans;

• are generally not fully automatic since they require human intervention for locating landmarks or for fitting the initial model, due to the lack of reliable facial landmarking technology in 3D.

• are based on single feature or face model and thus do not contain sufficient information to describe a wide range of expressions or action units which are commonly investigated in 2D environment as a promising alternative solution for spontaneous expression recognition .

As it was mentioned in section 3.2.2, different facial actions deform different face representations to different level/extent. Thus, we are convinced that features from all face representations, including landmark location, facial texture and facial surface shape/geometry, should be extracted and combined in order to characterize a wide variety of facial expressions and action units comprehensively. In section 3.5, we will present a unified probabilistic framework for both expression and AU recognition problems, which aims at fusing the discriminative power of features from different facial representations. Combined with the automatic landmarking methods we proposed in the previous chapter, this framework is able to recognize facial expression efficiently in a fully automatic manner. Before this work, we will first propose in next section a local geometry based feature for describing face shape deformation caused by expressions that can be used to feed a classical classifier such as SVM for identifying the six universal expressions. Most of existing geometry based features are based on curvature computation, which are computation complex and sensitive to surface noise, or based on landmark configuration, which are easy to implement but exclude the rich surface shape information. So we propose here a feature which can be easy computed and effective in expression recognition.

3D Facial expression recognition based on a local geometry-based feature

Although features such as Gabor wavelet [Tong et al. 2010, He et al. 2009, Chang et al. 2009b] or Local Binary Patterns (LBP) [Zhao & Pietikainen 2007, Bai et al. 2009] have been widely used for recognizing facial expression or action Chapter 3. 3D Facial Expression Recognition units in 2D environment, they can not carry information related to surface deformation occurring on faces in the real 3D world since they do not integrate shape information, and thus can not accurately reflect complex and authentic facial expressions. Moreover, the assumption of frontal images of faces under good illumination generally required by approaches in 2D is unrealistic in 3D. Therefore, there is a high demand to represent efficiently facial expressions in 3D.

Thus, several 3D geometry-based features have been proposed previously, such as

HK curvature [START_REF] Szeptycki | [END_REF], shape index [START_REF] Dorai | [END_REF] or primitive surface feature [Wang et al. 2006]. They are generally based on curvature computation from 3D face meshes [START_REF] Szeptycki | [END_REF][START_REF] Dorai | [END_REF] or a fitted local surface patch [Wang et al. 2006]. They have the advantages of being pose free and efficient to describe the local surface property. In this section, we will propose a novel feature that derives directly from point clouds of 3D faces to describe the local shape property to enrich information for 3D face analysis, and particularly 3D facial expression recognition. Compared to the curvature based features, it is easy and fast to extract, but requires of a priori knowledge on head pose which is not needed by aforementioned features.

Brief introduction of popular 3D surface feature

Because of the explicitness of 3D visible surfaces, analysing faces thanks to their geometric shape should be easy and robust to illumination and head pose contrary to the intensity images conventionally used. In order to describe surface properties, principal curvatures are computed for extracting HK curvatures, shape index and primitive surface feature on a vertex. These curvatures (κ 1 , κ 2 ) can be computed as the maximum and the minimum degrees of a surface bending around the vertex (see [Wang et al. 2006] for details) or as the extrema of the normal curvature function at the vertex ( [START_REF] Besl | [END_REF]).

Shape index is a scale value computed as:

SI = 1 2 - 1 π arctan( κ 1 + κ 2 κ 1 -κ 2 ) (3.1)
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Note that the value of shape index is necessarily between 0 and 1.

H (mean), K (gaussian) curvatures are computed as:

H = (κ 1 + κ 2 ) 2 , K = κ 1 κ 2 (3.2)
The primitive surface feature derives from the principal curvatures κ 1 , κ 2 , the surface principal directions v 1 , v 2 and the ∇z representing steepness of the surface around a vertex. Specifically, the local surface around a point is estimated by locally approximating it with a smooth polynomial function, z(x, y) = 1 2 Ax 2 + Bxy + 1 2 Cy 2 + Dx 3 + Ex 2 y + F xy 2 + Gy 3 . The Weingarten matrix for the local surface

is W =   A B B C   = ( ṽ1 ṽ2 ) • diag( λ 1 λ 2 ) • ( ṽ1 ṽ2 ) T
, where λ 1 , λ 2 are eigenvalues and ṽ1 , ṽ2 are the orthogonal eigenvectors in local coordinate system.

v 1 , v 2 are further computed by rotating ṽ1 , ṽ2 into the global coordinate system.

The gradient magnitude ∇Z is computed from the smooth polynomial function.

Two thresholds are defined, namely T G and T λ .

These features represent local surface characteristics and their categorization allows to label every vertex with one of the basic surface types. Using the value of shape index, five basic surface types can be characterized, as shown in fig. 3.4; the signs of mean and Gaussian curvature yield eight basic surface types, as shown in fig. 3.5; twelve primitive surface can be defined from the value of primitive surface feature using the rule shown in fig. 3.6. In general, if ∇z < T G or there is a zero crossing in the direction of the maximum curvature, one of the non-hillside labels is assigned; otherwise, one of the hill-side labels is assigned using the rule defined in the table.

All of the aforementioned features are obtained by computing principal curvatures either on the discrete mesh of the underlying surface or on a fitted continuous local surface. However, this curvature approximation is sensitive to noise, such as spikes. Generally, such noises can be reduced by surface smoothing techniques or enlarging the size of neighborhood in computing curvatures [START_REF] Szeptycki | [END_REF].

Consequently, either errors on face meshes may be introduced by the smoothing tech-Figure 3.4: Five basic visible-invariant surface types defined by shape index [START_REF] Yoshida | [END_REF].

niques or computational complexity increases. Moreover, the fitting of local surface and calculating principal curvatures are computational complex. In the following, we propose a surface characterizing method which relies on the point clouds instead of face meshes. This feature is relatively easy to implement and quick to compute, but requires to evaluate head pose. Therefore, a 3D pose estimation approach has also been proposed.

SGAND: a new Surface Geometry feAture from poiNt clouD

Instead of using curvature to characterize local surface, we directly sample the peripheral vertices of a vertex and characterize the vertex by comparing their geometrical relationship. We name this feature: Surface Geometry feAture from poiNt clouD (SGAND). From the fig. 3.4 and 3.5, we can observe that the basic surface types can be modeled by the geometrical relationship between the center part and the peripheral parts. For example, the center part of peek surfaces is higher than the peripheral parts while the center part of pit surfaces is lower; the center of saddle ridge surfaces is lower than some peripheral parts and higher than others.

Here, we use the investigated vertex p to represent the center and eight clusters of vertices around to represent the peripheral parts. Their relationships are detected Unlike the primitive surface feature which is extracted using a local coordinate system, we always extract SGAND using the direction vertical to the plane M in the 3D coordinate system. This is more intuitive and matches human perception habit since we look at faces through the gaze direction. Usually, the M plane is formed perpendicular to the z axes of the coordinate system for frontal 3D faces. If a face has an other head pose, we need to define another direction for the M plane instead of the z axes which varies with the head pose and indicates the frontal direction of the face. Thus, we propose an automatic approach to estimate head pose and find the direction in order to form the face planes for our feature extraction. This approach will be presented in subsection 3.4.3.

Pose estimation of 3D faces

Pose estimation of a 3D facial model aims at finding how the 3D face surface is embedded into the 3D coordinate system [START_REF] Besl | [END_REF]. A reliable pose estimation plays an important role in face alignment and feature extraction. For example, a plane is required vertical to the face frontal direction when extracting the SGAND. There are some existing methods that have been proposed both in 2D [START_REF] Bailly | [END_REF]] and in 3D. These approaches either use range data [Breitenstein et al. 2008], which is applied to 2.5D faces, or require a training process for a generic face model [START_REF] Kinoshita | [END_REF]]. Thus, we propose in the following a fast and efficient pose estimation approach which is based on face mesh and does not require any training process. Therefore, this method is suitable to be adopted as a preprocessing step in 3D face analysis systems.

The basic idea is to use the vertices on the frontal side of a face to generate a face plane by regression. With the normal of the plane and a direction from top to bottom of faces, head pose in 3D coordinate system can be estimated and thus the In order to select vertices on the frontal side of a face, we use a clustering method to cluster those with normals pointing to the frontal direction as well as those whose normals point to the left and right direction. This idea is intuitive since a facial part of a skull can be roughly approximated by three planes from frontal, left and right side respectively. Thus, the clustering of normals can perfectly group vertices into three sets. There are several clustering methods conceivable such as Mixture of Gaussians, K-means, etc.. Among them, the K-Means algorithm has been chosen because of its efficiency and easiness to be implemented. Given normals of all vertices (n 1 , n 2 , ..., n N ), where each normal is a 3D real vector, the K-means clustering partitions the N normals into 3 sets: S = S 1 , S 2 , S 3 by minimizing the within-cluster variance:
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s 3 i=1 x j ∈S i x j -u i 2 (3.3)
where u i is the mean of S i . The K-means algorithm is enumerated as follows:

1. Place three points into the space represented by the normal data that are being clustered. These points represent initial centroid groups.

2. Assign each normal to the group that has the closest centroid.

3. When all normals have been assigned, recalculate the positions of the K centroids.

4. Repeat Steps 2 and 3 until the centroids stabilization. This produces a separation of the normals into groups from which the metric to be minimized can be calculated.

We have compared the clustering results between K-means and Mixture of Gaussians, and display one example in fig. 3.11. We can observe that normals separated by K-means are more symmetrical than the results obtained from Mixture of Gaussians.

The clustering process outputs three normals u 1 , u 2 , u 3 which are the centroids of S 1 , S 2 , S 3 respectively. In order to distinguish the mean normal which represents the normals pointing to the front, we compute the inner products of each pair of u 1 , u 2 , u 3 . Indeed, the angle between the left mean normals and the right mean normals is the biggest among all 3 angles formed by any pair of u 1 , u 2 , u 3 . Thus, we can find the minimum inner product from the pair and the other centroid represents the frontal vertices.

After the group of frontal vertices have successfully been obtained, a Principal Component Analysis (PCA) is used to fit a linear regression that minimizes the perpendicular distances from the those points to a plane and a line. The process is as follows. The coefficients D 1 , D 2 for the first two principal components define vectors that form a basis for the plane. The third principal component is orthogonal to the first two, and its coefficient D 3 defines the normal vector of the plane. The 3.11. The direction is the best 1-D linear approximation to the data. In summary, D 3 and P m form the face plane while D 1 and P m form the line.

The plane can also be fitted by using other methods on the group of frontal vertices, such as the least square method. Overall, the least square method is only able to approximate a face plane whose normal can be used in our feature extraction.

Thus, our method offers the advantage of allowing the estimation not only of the face plane but of three head pose directions including yaw, pitch and roll.

3D expression description and classification based on SGAND

Our proposed SGAND has been designed for 3D face analysis including face detection, facial landmarking, face recognition and facial expression recognition. In this subsection, we propose to make use of it for 3D facial expression recognition. Thus, it is useless to include nose region since no expression information provided.

Meanwhile, because of the flaw of 3D face scan capture, the interiors of eyes generally contain hole and thus can not accurately record the local shape.

In short, the selected nine local regions cover the most mimic facial areas. In Figure 3.13: Nine selected facial regions labeled by colors other than blue.

each selected region, we model the feature distribution by computing a histogram as follows:

L i = [ n i1 n i , n i2 n i , ... n im n i , ..., n iM n i ] (3.4) 
where n im is the number of vertices having a feature value m from 0 to 255, and n i is the total number of vertices in the ith local region (

n i = M m=1 n im ). M = 256
is the number of the slot of our feature value.

The concatenation of nine histogram distributions of the selected entire regions generates an expression descriptor.

E = [L 1 , ..., L i , ..., L K ] (3.5)
where K is the number of selected regions (K=9 in our experiments).

The descriptor E is computed under multiple radiuses of the circle C in order to precisely represent the local surface around each vertex, and is used to feed Support Vector Machines (SVM) classifiers [START_REF] Chang | [END_REF], each one being associated to a radius value. These classifiers allow to obtain, for all expressions from a given face, a set of probabilities following a one-against-one strategy. Specifically, each classifier has been trained with the same number of faces from the six universal expressions. When testing on an unknown face, it is able to output six probabilities (P i in eqn. 3.6 ) corresponding to the six classes. Sets of probabilities from all classifier associated with different radiuses are summarized respectively to obtain the overall probability set, as shown in eq. 3.7.

P i = [P 1 i , P j i ..., P E i ] (3.6)
where E is the number of expressions and i represents the index to radius of the circle C. The expression can be recognized by choosing the one with the maximum in the overall probability set. Eq. 3.7 can be tantamount as score fusion for easy understanding.

X = arg max( S i [P 1 i , P j i ..., P E i ]) (3.7)
where X ∈ anger; disgust; f ear; happinees; sadness; surprise and S the number of different radius.

Experimental results

In this section, we present the experimental results obtained for the evaluation of our approaches on pose orientation estimation and on our SGAND for facial expression recognition. The database we have used in the tests is the BU-3DFE dataset.

Results on pose estimation

For the evaluation of the pose estimation approach, we have used the neutral faces and faces with the six universal expressions of the two highest level from all subjects so that 1300 face scans have been tested in total.

In fig. 3.14, faces with six universal expressions are displayed with the estimated planes (the black rectangles) and three directions (green, blue, red lines) from PCA.

We have further analysed quantitatively the test results on the 1300 facial models with different number of vertices, poses and expressions. For evaluation, we have manually selected the feature points of inner eye corners and nose corners of each model and derived its orientation as the ground truth of pose orientation. We then displayed as blue lines. The approach in [Breitenstein et al. 2008] achieve a correct rate of 80.8% with the same criterion for correct estimation using their own dataset.

In [START_REF] Seemann | [END_REF]], a pose success rate of 75.2% for 10 • has been achieved.

Compared with them, our method appears to be more accurate. However, no direct comparison is possible because different datasets have been used.
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Results on facial expression recognition

For the evaluation of facial expression recognition, we have used faces with the six universal expressions of the 2 highest level from 60 subjects so that the results can be compared with other works in the literature. Each face has been manually labelled with 83 fiducial points for the face segmentation.

Our facial expression recognition experiments have been conducted in a personindependent way, which is believed to be more challenging than a person-dependent approach. We have followed a ten-fold person-independent cross-validation method, where 60 subjects have been partitioned into two subsets in each round (totally 10 rounds): one with 54 subjects for training and the other with 6 subjects for testing.

This experiment setup guarantees that each subject appears once in testing set and 9 times in training set and any subject used for testing does not appear in the training set since the partition is based on the subjects rather than the individual expression.

For these tests, we have set the radius of the circle C to 3, 5, 7, 9, 11, 13mm

and have computed the expression descriptor E with these radiuses respectively.

Because most of the faces are in rough frontal pose, we have used the Z axis as the main direction and have extracted our features directly on the faces. Then, we have trained an SVM for each E and have fixed its parameter for all rounds of the test.

Table 3.4 shows the confusion matrix of the average case for the test. Expressions surprise, happiness, sadness and disgust are well identified with accuracies over 90%, especially 100% recognition rate for the recognition of surprise. However, the anger and fear have quite lower recognition rates. Most of anger expressions are confused with sadness, and fear expressions are more likely to be misclassified to happiness.

The average recognition rate for all the six universal expressions is 75.3%.

We mainly compare our results with those in [Wang et al. 2006]. The main purpose of the comparison is to show the performance of the proposed feature. The scheme of our method is very similar to theirs so that the efficiency of features can be compared directly and fairly. [Wang et al. 2006] extracts another geometrybased feature (primitive features) and compute histogram of features from different 

Conclusion

In this section, we have discussed and analyzed the popular geometry-based features, including HK curvatures, shape index and primitive surface features. Then, we have proposed our geometry-based feature SGAND, which can be extracted from point clouds of 3D faces and is invariant to face scale, contrary to the other approaches.

Indeed, instead of computing the principal curvatures, we describe the local geometry by comparing the number of vertices within the sampled regions above and below a plane defined by center vertex and a frontal face direction. Thus, the extraction of this feature is fast and easy to be implemented.

In order to extract the feature on faces under various pose, we have proposed a pose estimation approach which estimates the frontal, vertical and horizontal orientations of 3D faces. This approach first clusters normals of vertices on a face to detect those vertices on the frontal side. Then, the directions are estimated by a PCA-based regression. Thanks to this approach, our geometry-based feature can be extracted under various head poses.

In order to apply our feature to facial expression recognition, we have used manual landmarks to segment faces into 9 regions, and extract the histogram of the SGAND as the expression descriptors. We have then used SVM to classify the descriptors computed from SGAND under multiple conditions and obtain the final results via score-level fusion.

The experimental results on pose orientation estimation have demonstrated the efficiency and robustness of our approach on faces with various expressions and poses. The experimental results on facial expression are comparable to other works Chapter 3. 3D Facial Expression Recognition which use the similar scheme and experimental setup. However, more expressions are better recognized by our approach which is computationally more efficient. Thus, experiments have brought to the fore the ability of our proposed feature to describe efficiently facial local geometry.

However, the local geometry may not carry sufficient information to represent all kinds of deformations caused by various expressions and more information about the local shape property may be necessary, such as texture for characterizing for example bulges and furrows. Thus, in order to identify expressions and action units with high precision, features from different facial representations should be considered. In the next section, we will present our approach based on a Bayesian Belief Net for fusing the features extracted from different face representations.

3D expression and Action Unit recognition based on a Bayesian Belief Network

Existing 3D facial expression recognition systems mostly aim at identifying the six universal expressions, using geometry-based features extracted from the face surface.

Line properties between landmarks, such as angles and distances, are often used and can achieve rather good results. [Tang & Huang 2008a, Soyel & Demirel 2008, Tang & Huang 2008b, Wang et al. 2006, Hu et al. 2008a] However, as we discussed previously, expressions are created by facial muscle contractions and result in the variations of landmark locations as well as texture and surface shape in mimic facial parts. By means of these variations, a wide range of expressions other than the universal ones can be exhibited on a face as well as all the 44 basic facial action units (AUs). The geometry based approaches exclude information on other face representations and thus do not make use of the comprehensive characteristics of facial appearance. Although experiments have proved their good performance in recognizing the universal expressions, the geometry based features may be not rich enough to discriminate other subtle expressions or facial action units.

Moreover, feature based approaches generally rely on a large number of precisely located landmarks, either for feature extraction or for face segmentation. Thus, their performance highly depends on the landmark precision, which can not be achieved by automatically located landmarks. Thus human intervention is generally required in these approaches.

On the other hand, morphable facial models are built by learning the deformation modes on texture and geometry representations, and use the deformation parameters as features for recognition [START_REF] Ramanathan | [END_REF][START_REF] Mpiperis | Bilinear models for 3-D face and facial expression recognition[END_REF], Rosato et al. 2008, Venkatesh et al. 2009]. Two major problems arise: firstly, the deformation modes learnt from whole faces describe the major variations globally and thus can not properly reflect local deformation patterns caused by AUs. Secondly, the learnt variation modes are not necessarily consistent with the variations among AUs and expressions, thus may not synthesize expressions accurately. In other words, AUs or expressions can only be approximated by combining a set of variation modes, rather than being modeled by one specific mode in the models. For certain expressions such as happiness or surprise, or action units such as AU27 (mouth opening), the deformation is prominent and thus can be approximated modelled well enough to be distinguishable. However, for some of other moderate expressions and AUs, small variances in parameters yield different expressions.

Therefore, in order to characterize the facial deformations comprehensively, features from all three face representations (facial landmark location or global geometry, texture and local geometry) should be considered. This raises the problem on how to fuse the contribution from each feature efficiently. In this section, we propose to use a Bayesian Belief Network to solve this problem. Beliefs on the expression node for different expressions or AU states are inferred from network parameters of neighboring nodes. Statistical feature models (SFM) are learnt for estimating these parameters on those nodes corresponding to the subject and the facial features.

A distance-like feature is extracted to describe the global geometry relationships of face components. Meanwhile, local information is also extracted not only from the raw facial texture and shape but also from other features such as shape index, LBP so that subtle local deformations can be well characterized and different kind of expressions or AUs can be more distinguishable. Thus, SFMs are learnt for each Chapter 3. 3D Facial Expression Recognition type of feature and the parameters are estimated following an uniform process in our BBN. This leads to a flexible system where any new feature can be modeled by a SFM, and the corresponding knowledge directly "plugged" into the BBN.

Moreover, the BBN can be further combined with our SFAM proposed in the previous chapter to realize a fully automatic expression and AU recognition system.

Indeed, the adopted features are extracted from local regions on important facial parts. Our SFAM is able to locate landmarks in those regions automatically. We thus use the SFAM as the first part of the automatic system to locate feature points and then extract features around those landmarks for recognition. Because we consider features from three face representations, our system is more robust to landmarking errors than state-of-the-art approaches as it has been proved by the evaluation of the system.

Graphical models have already been used in facial expression analysis in 2D.

A Dynamic Bayesian Network is developed in [Tong et al. 2007] to model the dynamic and semantic relationships among facial action units. The network has been extended to a more sophisticated one in [Tong et al. 2010] which coherently represents head pose and action units. A Bayesian Belief Net aiming at describing the relationship between expression and facial action units is developed in [START_REF] Datcu | [END_REF] for expression recognition.

However, the BBN we propose differs from them in three aspects:

1. The purpose of our graphical modal is to recognizing expressions and AUs within one framework based on data fusion whereas the one in [Tong et al. 2007] aims at enhancing the system performance of AUs or facial expression recognized by other classifiers and [START_REF] Datcu | [END_REF] use BBN to interpret the AUs according to the six universal expressions.

2. The structure of our BBN is different. In [Tong et al. 2007], the learnt structure of the Bayesian Network explores the dynamic relationship among AUs.

In [START_REF] Datcu | [END_REF], the structure of BBN describes the relationship between AUs and the six universal expressions. However, our BBN concentrates on describing the causal relationship among subject, expression and Chapter 3. 3D Facial Expression Recognition facial features.

3. Because the objects and the structure of the graphic models are not same, the computation of their parameters is consequently different.

In the following sections, we will present our Bayesian Belief Network as well as feature extractions adopted in this network.

A bayesian belief network for 3D facial expression recognition

In this subsection, we first introduce some background knowledge on BBN and then specify its usage for facial expression and AU recognition. The belief computation in BBN is then presented. Since the BBN structure is elaborated in a unified way for recognizing both facial expressions and AUs with the same procedure, we will use the term 'facial activity' to represent the six universal expressions as well as AUs.

Overview of BBN

A Bayesian Belief Network [START_REF] Duda | [END_REF]] is a probabilistic graphical model with the topology of a directed acyclic graph (DAG), shown as fig. 3.16. It is made up of a collection of nodes and directed edges, but without directed cycles, as shown in fig. 3.17. Nodes represent a set of random variables and directed edges represent their conditional dependencies.

In fig. 3.17, the 'belief' of a variable on a node X (X = (x 1 , x 2 , ..., x n )) describes the probability of its states in condition of knowing evidences e (observations) on its connected neighbor nodes. These nodes can be divided into parents (nodes pointed directly to X via an edge) and children (those nodes pointed directly from X via an edge) to compute the belief as:

P (X|e) ∝ P (e c |X)P (X|e p ) (3.8)
where e p is evidence on all parents and e c is evidence on all children. The factor about parent nodes in eq. 3.8 is calculated as the conditional probabilities of X under all combinations of all 'parents' states as well as their probabilities given evidences, as in eq. 3.9.

P (X|e p ) = P (X|e p 1 , e p 2 ..., e p N p ) = I,J,...,K i,j,..,k

P (X|p i 1 , p j 2 , ..., p k N p )P (p i 1 |e p 1 )P (p j 2 |e p 2 )...P (p k N p |e p N p ) (3.9)
where e p is the evidence of parents, p i 1 means the ith state of the first parent, p j 2 means the jth state of the second parent, etc. P (p i 1 |e p 1 ) is the probability of the ith state (I states in total) of the first parent given its evidence e p 1 . P (p j 2 |e p 2 ) is the probabilitiy of the jth state (J states in total) of the second parent, etc. The

P (X|e p ) is a sum of totally I * J * ... * K factors.
The factor about children nodes can be rewritten as:

P (e c |X) = P (e c 1 , e c 2 , ..., e c N c |X) = N c l=1 P (e c l |X) (3.10)
where e c l is the evidence or observation of the lth child node, N c is the number of children, P (e c l |X) is the probability of evidence knowing the X state. The structure of our BBN is illustrated in fig. 3.17. The node X represents the facial activity variable and has as many states as the kinds of facial expressions or AUs that are to be recognized, such as six states for the six universal expressions or 16 states for the 16 AUs mentioned later in this section. The node S is X's parent, representing human subjects that we explore. It has as many states as the number of subjects. X's children F 1 ,F 2 , ... ,F N f represent the facial features that are extracted to carry face information.

Since there is only one parent for the node X, the factor P (X|e p ) in eq. 3.8 can be expressed as:

P (X|e p ) = N f i P (X|p i S )P (p i S |e p S ) (3.11)
where N f is the total number of subjects that we explore, P (p i S |e p S ) is the prior Chapter 3. 3D Facial Expression Recognition 95% of major components are preserved.

F ix l = F ix l + P ix l b ix l (3.14)
where F ix l is the feature mean, P ix l is the set of eigenvectors resulting from PCA, and b ix l is a set of parameters which are supposed to follow Gaussian distributions with a zero mean and a standard deviation σ ix lj where j refers to each parameter of b ix l . The feature instances F ix lκ can be generated from the above equation using feature F lκ to estimate the best parameter b ix l :

b ix l = P ix l T (F lκ -F ix l ) (3.15)
We set a boundary (±0.5σ ix lj ) for the corresponding parameter in b ix l to form bix l in order to constrain the instance deformations and thus to increase their separability.

F ix lκ is computed by inputting bix l in eq.3.14.

The probability P (e c l |X) can be considered as the probability of matching the feature F lκ with its instances F ix lκ knowing the expression state X, which follows a Gibbs distribution.

P (e c l |X) ∝ e A l Q l (3.16)
Q l is the matching quality, computed as the normalized cross-correlation between evidence F lκ and its instance F ix lκ , and A l is a normalization constant.

Inserting the Gibbs distribution into eq. 3.12 and taking logarithm gives:

log p(X|e κ ) = log( N c l=1 P (e c l |X)) + c = Nc l=1 A l Q l + c (3.17)
Through the above process, eq. 3.13 can be computed by taking 3.17. A block diagram illustrating the recognition process using the BBN is demonstrated in fig.

3.18.

Chapter 3. 3D Facial Expression Recognition appearance in the regions where the corresponding muscles are located. However, some AUs can influence appearance in other regions besides where they happen. For instance, AU10 raises the upper lip while deepens the nasolabial furrow between the nose and the eyes. Thus, the description scheme we use is based on local regions that are distributed on the important facial parts where most of AUs occur, including the eyebrows, the eye, the nose and the mouth, as it is detailed in the next subsection. The pixel values are bilinearly interpolated whenever the sampling point is not in the center of a pixel.

In our case, LBP are computed and extracted from scale 1 to 5 respectively for all points on the local grids on both texture LBP U 2 (16,1) t, LBP U 2 (16,2) t , ..., LBP U 2 (16,5) t and range maps LBP U 2 (16,1) r , LBP U 2 (16,2) r , ..., LBP U 2 (16,5) r. Superscript U 2 indicates that the definition relates to uniform patterns with a U value of at most 2 (refer to [Chan et al. 2007] To describe local surface curvature information, we compute shape index of all vertices on the local grids and concatenate them into vector SI. We choose shape index because it has been proven to be an efficient feature to describe local curvature information and is independent of the coordinate system. The computation and more details about shape index can be found in section 3.4.1. The shape index is computed on each vertex on local grids as illustrated in fig. 3.23.

To summarize, 15 types of features are extracted to represent the knowledge used in the BBN as children nodes : D, G, Z, L, SI, LBP t 1 -5, LBP r 1 -5.

Therefore, N f is equal to 15. These features are summarized in Table 3.7.

Fully automatic expression recognition system

By combining the BBN with SFAM, a fully automatic 3D facial expression recognition system can be realized. Table 3.7: 15 adopted features and their textual description.

tion, and finally online facial expression/AU recognition. Thus, SFAM is trained using a small set of faces with all kinds of expressions or AUs. A set of statistical feature models are also trained corresponding to these classes and for each feature respectively. During online recognition, faces are first landmarked by SFAM, then a variety of features are extracted and used as evidence by the BBN for computing belief of states for the facial activity node X. Specifically, feature instances are generated corresponding to trained feature models and further used to compute the post-probability of each extracted feature. The output of the system is the type of expression whose corresponding state has the highest belief among different expression or AU states, which are computed from probabilities on both parents and children nodes. Of course, this system is also applicable with manual landmarks.

In this case, the landmarking process is skipped for input faces where features are directly extracted based on manual landmarks.

Figure 3.24: Flow chart of the automatic facial expression/AU recognition system

Experimental results

We present in this section our experiments driven in order to evaluate the performance and efficiency of our facial expression/AUs recognition approach based on statistical feature models merged by a BBN. To do so, we have compared the performance of our BBN against other popular classifiers, i.e. Support Vector Machine (SVM) and Sparse Representation Classifier (SRC) on identifying the six universal expressions. Then, in order to prove BBN flexibility and robustness, we have experimented the recognition of 16 AUs. Finally, we have tested the expression 123 Chapter 3. 3D Facial Expression Recognition recognition scheme which combines the SFAM and the BBN in order to recognize the six universal expression in a fully automatic manner.

Database and experimental setup

In the experiments for facial AU recognition, face scans displaying 16 AUs have been used from 60 subjects in the Bosphorus database [START_REF] Savran | [END_REF], which are AU2, AU4, AU7, AU9, AU10, AU12, AU14, AU17, AU18, AU22, AU24, AU26, AU27, AU28, AU34 and AU43. Thus, 60*16=960 3D face scans have been involved in this tests. Noting that these acted AUs are not FACS coded and singly occurring

AUs. The FACS coded version of the database will soon be available.

In the experiments for facial expression recognition, face scans of two highintensity from each expression have been used from each subject in BU3DFE

database [START_REF] Yin | [END_REF]]. For both tests using manual landmarks and automatic landmarks, we have used the data of 60 subjects. A part of subjects are different between the tests using manual landmark and those using automatic landmarks, because face scans from a group of subjects are consumed to build the SFAM, which is used to obtain the automatic landmarks on the left face scans. In fact, SFAM has been trained using the data of 11 subjects with scans displaying the six universal expressions at two high-intensity level and neutral. The trained SFAM has then been used to locate 19 landmarks for scans of other 89 subjects.

All tests in AU and facial expression recognition have followed a 10-fold personindependent cross-validation process. The results are given in Table 3.8 in terms of average positive rates and average false-alarm rates for all AUs. Indeed, recognizing each AU i can be considered as a two-class classification according to the AU i and the non-AU i . The positive rate is defined as P R = T P T P +F N and the false-alarm rate is F AR = F P T P +F P where T P stands for "True Positive", F N for "False negative" and F P for "False Positive" (see Table 3.9 for details) .

Among the 16 AUs, 7 of them (AU10 , AU18, AU22, AU26, AU27, AU2, AU43) have an average PR over 90%, while 4 of them (AU14, AU24, AU7, AU4) have average PR below 80%. Meanwhile, AU24 has the highest FAR, which suggests that it is easily confused with other AUs, which is also the case for AU34 and AU4 having a FAR above 20%. On the contrary, AU43, AU27, AU22 having a FAR below 5% are relatively clearly identified. Globally, our BBN achieves an overall average PR for all 16 AUs of 85.6% with an overall average FAR of 13.6%.

To further demonstrate the performance of our system, we have performed a ROC analysis for each AU. In order to obtain these ROC curves, we have first normalized the set of scores for all 16 AUs of a face to the range from 0 to 1, where 0 corresponds to the minimum and 1 corresponds to the maximum of the individual AU recognition score. Then, for a given AU, all normalized scores from all faces (960) have been computed and used for computing its ROC curve. The decision threshold has been changed from 0 to 1 and the ROC curves are obtained Chapter 3. 3D Facial Expression Recognition by plotting the true-positive rates against the false-positive rates. Notice that the values on the left end of ROC curves correspond to the positive rates in table 3.8 because our decision threshold in use is 1 after score normalization. Specifically, the highest score of an AU is always transformed into 1. Actually we choose the state which have this score as the predicted AU. fig. 3.25 and fig. 3.26 are the ROC curves for 16 AUs respectively. The ROC curves which have a greater area below indicates a better recognition. Thus, we can see AU43, AU27 and AU10 are among those best recognized, which correspond to the results in table 3.8.

In [START_REF] Savran | [END_REF], 22 AUs are detected automatically by estimating the deformation between the registered face and the reference. Based on the same dataset, they achieve an average PR of 91.1% . In [Sun et al. 2008], 7 AUs are considered and a AU combination on their own database is performed allowing to achieve a PR of 89.1%. In [Tong et al. 2010], authors use a Dynamic Bayesian Net to learn the relationship between AUs on 2D Cohn-Kanade database in order to enhance the recognition performance using gabor features and Ababoost classifier.

They achieve an 85.8% PR on 14 AUs. Our approach achieves an average PR of 85.6% for 16 AUs, which achieves a consistent result with the highly optimized 2D method [Tong et al. 2010].

Results for 3D facial expression recognition

In order to evaluate the performance of our BBN, we have compared it with two other classifiers, the Support Vector Machine (SVM) [START_REF] Chang | [END_REF] and the Sparse Representation Classifier (SRC) [START_REF] Wright | [END_REF]]. All tests have followed a 10-fold cross validation process. The face scans in level 3 and level 4 are tested separately and the final recognition rate is obtained by averaging the results from two intensity levels for all three approaches. For classification tests using SVM, a multi-class SVM has been trained respectively for each feature extracted from each level of expression (30 SVMs in total).

Parameters have been empirically tuned to gain the best performance for each of them. The output of the SVMs is a set of probabilities describing how likely the face belongs to each expression class according to the testing feature. These prob-abilities (15 in total per level) have been added together and the testing faces have been labeled according to the maximum probability score.

For classification tests using SRC, 30 SRCs have been trained respectively following the principle of the approach proposed in [START_REF] Wright | [END_REF], with a l 1norm minimization via orthogonal matching pursuit. Parameters have also been set empirically to obtain the best performance. The SRC output is a set of distances between the testing feature and its six approximations which are generated from a set of coefficients associated with each class. These distances (15 in total per expression intensity level) have been added together and the testing faces have been labelled according to the minimum distance. These results (90.3% vs 89.3% vs 89.2%) suggest that it is sufficient and has a lower computation burden to use the grids on the 19 locations with the size of 15mm*15mm to extract features.

SVM

Results for the fully automatic facial expression recognition

For the fully automatic 3D facial expression recognition, the SFAM has first be used to locate 19 landmarks automatically and then features have been extracted around these landmarks.

The results are given in Table 3.11 with different child node setup for the BBN similar to those in Table 3.10. We can see that the recognition rate increases with the number of child nodes, and finally achieved 84.9% when adopting all children nodes, corresponding to the 15 features. Unlike the results based on manual landmarks, we can not observe an notable contribution of M in the recognition rates (0% vs 3.1%) in the last row which may be due to the inaccuracy of automatic landmarks.

Besides, when using only M, an obvious decrease on the recognition rate is observed from using manual landmarks to using automatic ones. This confirms the claim that landmark-based features have a high reliance on locating accuracy and thus classified more likely into sadness because their confusion, even for humans, is much larger than for other expressions. Faces with sadness are more easily to be misclassified into anger in the tests on automatic landmarks. However, the case of fear is different. The motions of this expression are moderate compared to happiness or surprise for example, and thus more difficult to discriminate.

Discussion

Table 3.13 presents a comparison with typical results of the literature. While most of other works are dedicated to the recognition of the six universal expressions in 3D, our classification scheme based on BBN and statistical feature models performs the recognition of both expressions and AUs with an uniform structure. It is also found that the proposed BBN outperforms most of the other methods while it requires no parameter tuning and less constraints, such as a large number of landmarks and the neutral face from each subject. Indeed, our approach has achieved the second rank in the literature, the first one having been obtained by [Tang & Huang 2008a]. However, their method requires a neutral face from each subject for distance normalization, which introduce subject bias.

Concerning the fully automatic expression recognition, our results are also of good quality since the second rank in the literature has been reached. Compared with [START_REF] Mpiperis | Bilinear models for 3-D face and facial expression recognition[END_REF], our approach has two advantages. Firstly, the building and fitting of the SFAM can be easily implemented. Secondly, the recognition by BBN is not only efficient according to the accuracy but also in terms of computational cost. The normalized cross-correlations are computed between each feature and its instances within 0.24s for each child node in average on a desktop PC with Intel Core2 E4400@2.00GHz CPU.

Conclusion

We have proposed a new 3D facial expression and AU recognition approach based on a BBN associated with statistical feature models. We have further combined it with a morphable SFAM to realize a fully automatic recognition of facial expression. we can change the facial expressions or AUs that need to be recognized. Furthermore, we have proposed a novel parameter estimation method for the BBN which evaluates the similarity between features and their instances generated from statistical feature models. Our experiments have proved that the BBN is more effective than score-level fusion approaches using SVM, SRC when employing features from all three representations. Meanwhile, it is easy to apply BBN in fusing information from a group of features for recognizing since it does not require any parameter tuning procedure. In general, our approach has achieved an average positive rates of 85.6% for 16 AUs and 89.2% for the six universal expressions. Furthermore, thanks to using the feature extracted from three representations, it is robust to the landmarking errors, which allows it to be implemented as an automatic FER approaches.

The recognition rate of 84.9% has been achieved for recognizing the six universal expressions automatically. Compared to other existing 3D FER approaches, our method offers the advantages of good performance and implementation simplicity with the ability to be fully automatic.

Conclusion on 3D expression and Action Unit recognition

In this chapter, we have proposed two approaches for analysing 3D facial expression.

In the first approach, a new feature named SGAND, has been proposed to describe Chapter 3. 3D Facial Expression Recognition local facial geometry property by comparing the number of sampled peripheral vertices above and below a face plane around a vertex. A head pose estimation method has been elaborated in conjunction with the feature so that it can be extracted under various head poses. SGAND has been evaluated for the purpose of recognizing the six universal expressions.

The results demonstrate the efficiency of SGAND when classifying disgust, happiness, sadness and surprise. However the other two universal expressions are not classified satisfyingly. There are two conceivable directions to improve this approach:

• Feature extraction process: currently, we use a binary value obtained from the numbers of local sampled points on the two sides of the plane to describe the local surface. It is enough to describe the bending trend of the local surface, which is more like a qualitative analysis. However, this binary value is not sufficient to analyse the surface bending quantitatively. Thus, in order to represent the local surface characteristic more precisely, more values will be set according to the distances of sampled vertices to the plane. Moreover, a lookup table will be created to map the value arrays to the typical surface types.

• Expression representation and classification process: We currently use SGAND histograms from face segments to represent expressions. However, this global strategy is reputed to be less effective than the local based face representation.

So, we will consider other local-based face representations or a hybrid way to represent facial expressions. Moreover, for the classifiers, besides using SVM classifier, we will evaluate other classifiers such as SRC, LDA, KNN, etc.

In the second approach a Bayesian Belief Network associated with statistical 

Related work

Traditional counting systems are generally based on infrared or pressure sensors.

They are low cost but not easy to integrate with video surveillance system. Visionbased people counting systems become more popular these years for different scenes, like in buildings, streets and hot spots. In the literature, authors developed approaches relying on two main strategies: non-tracking based approaches and tracking based approaches. In the first case, authors try to discriminate foreground from background and count interesting targets. Mehta et al [START_REF] Mehta | [END_REF] made use of classifiers such as neural networks trained to recognize the background in order to facilitate the location and counting of objects in the scene. Moreover, Schlögl et al [START_REF] Schlögl | [END_REF]] used motion features to classify each pixel as moving, stationary or background, and then grouped similar pixels together into blobs.

They were compared later with the average human size varying with positions in the Chapter 4. A minor contribution: People Counting based on Face Tracking scene to estimate people number inside. Chao et al [START_REF][END_REF] segmented crowd by motion model and extracted features from each segmentation. The correspondence between features and number of people were learned by Gaussian Process regression. [START_REF] Dalal | [END_REF] proved that locally normalized Histograms of Oriented Gradient (HOG) in a dense overlapping grid can be applied as a successful feature in a pedestrian detector. The speed of HOG based pedestrian detector has been increased significantly in [Cui et al. 2008], which make the detector applicable in practical application. However, HOG based pedestrian detector is not applicable to our study because the full body of pedestrian are not always presented in our collected datasets. In the second case, authors either count tracked people at a defined counting line or count people trajectories from tracking. In [START_REF] Kim | [END_REF], a tracking region was partitioned off from the scene with counting line on the edge. people were tracked by motion prediction combined with background subtraction and counted at the line. Another approach consists in getting feature trajectories in the scene by Kanade-Lucas-Tomasi (KLT) tracker, and then clustered trajectories with similar movement together for representing one moving object [Rabaud & Belongie 2006]. This kind of methods are generally able to count a large number of people in a homogeneous crowd. From the state of the art, it appears that most of people counting approaches rely on the assumption that any moving objects in scenes are humans and suffer the miscount of other moving objects. In [START_REF] Schlögl | [END_REF]], a model of humans is defined based on average people size. In [Harasse et al. 2005], a skin color model is used to detect human. These are among the first tentatives to elaborate more accurate people counting systems but still lack accuracy. In order to avoid this kind of miscounting, the basic idea of our approach is to use the most discriminant human feature: their face.

One fundamental problem of this approach is face detection. Hundreds of approaches have been address on this problem, among which the study by Viola

and John [Viola & Jones 2002] has made face detection applicable in real world.

[ Zhang & Zhang 2010] presents the recent advances in face detection. Earlier studies (before 2004) have been comprehensively surveyed in [START_REF] Tsishkou | [END_REF]] and [Yang et al. 2002]. In our work, we use the face detector of [START_REF] Tsishkou | [END_REF] 

System framework

T k G k = T k-1 AG k-1 + W k-1 (4.1)
where
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where For each tracked face, the predicted position from Kalman filter is used to locate the center of sub-image whose size varies dynamically with the face scale. A coarse scan procedure is first processed in this sub-image to approximate the face position.

J k =   S x S k 0 0 S x S k   , p(V ) ∼ N (0, R) H =   1 0 0 0 0 0 0 0 0 1 0 0   , M k = Z k x Z k y T ( 
q u = C n i=1 k( x * i 2 )δ [b (x * i ) -u], C = 1 n i=1 k( x * i 2 ) (4.
The location with the maximum similarity ρ is used to initialize a fine tracking procedure.

Then, the kernel-based tracking algorithm is used to move the face location iteratively to reach the maximum of similarity between the face model and the face candidate. A dynamic threshold ε k is set and updated every frame, as shown in (4.6). If the maximum of ρ is above this threshold ε, we consider that the face has been measured at the position obtaining the maximum of ρ .

ε k = (1 -a)ε k-2 + aε k-1 (4.6)
where a is a weight factor, preset as 0.7.

In the cases where the maximum of ρ does not reach the threshold, we consider that face occlusion happens or the face being tracked has left the scenario. In the 

Experimental results

In this section, we present some experimental results of our scale invariant Kalman filter, face detection and tracking algorithm, and people counting application. They are carried out on different video sequences with multiple faces appearing at different scales.

Scale invariant Kalman filter implementation

We 

= E s E o , E = i∈I (X i -X GT i ) 2 + (Y i -Y GT i ) 2 (4.8)
where I is different parts of test videos, (X,Y) is the location states of face in Kalman filter(X GT , Y GT ) is the ground truth of face locations. trajectories can be filtered out to enhance the system's counting accuracy but also the automatic classification can avoid the manual and empiric elaboration of rules for counting in a given scene. Our approach has been validated by our experimental results which have demonstrated a good performance on these different aspects and finally a people counting accuracy of around 93%.

In our future work, we envisage to extend our system to other more complex contexts, such as outdoor where illuminations changes drastically. Moreover, the classification of face trajectories will be improved to better fit different contexts by online learning and the adaptation of a more robust classifier.

Chapter 5

Conclusion and Future Works

Contributions

This research work mainly addresses the problem of 3D face analysis, including facial landmarking and facial expression recognition. The approaches we have proposed for these purposes can also be combined to build a fully automatic facial expression recognition system.

The contributions in this thesis are discussed as follows.

Landmarking on 3D faces

Most of 3D landmarking approaches have a limited capacity for locating non-shape salient feature points since they rely on the landmark geometry. Thus, the possible landmarks that can be located are very limited. Moreover, these methods hardly handle face deformations caused in particular by expressions and occlusions. We think that this limitation can be solved to some extent by characterizing landmarks using both texture and geometry knowledge. We also believe that local properties of landmarks organized by global shape constraints perform better than directly extracting local features. Thus, we have proposed in this thesis to build statistical face models which learn variations of texture and geometry on local regions and variations of global shape configuring those local regions. Two approaches have been proposed for this purpose. In the first method, we have use the global shape on 2D texture map of 3D faces to locate landmarks by varying parameters of shape model to find the best match between the query face and our model. This method is dedicated to 2.5D faces scans. Thus, we have provided a second approach making use of the full 3D information when it is available. This method relies on a 3D morphable Experimental results have demonstrated that by considering both texture and geometry information, our methods is able to locate a set of landmarks beyond those characterized by salient shape with a better accuracy. Thus, SFAM has reached a better landmarking ability than the previous models proposed in the literature in terms of accuracy and robustness when encountering severe conditions such as expression and occlusion. Moreover, in order to enrich information used for 3D face analysis, we have also proposed in this Ph.D work a new 3D facial feature, named SGAND, to characterize the face geometry properties. Indeed, pose-invariant features for 3D faces can be a shortcut for face analysis because using this kind of features avoids the procedure of face alignment. However, most of pose-invariant features, such as shape index, HK curvature, are sensitive to face scale because they are extracted from face meshes which varies with face scale. On the contrary, the SGAND feature we have elaborated to characterize surface properties only relies on the point clouds instead of face meshes. Thus, this feature is insensitive to scale, easy to implement and quick to compute. It relies on the comparison of numbers of vertices above and below face planes with a preset direction in sampled local regions of 3D faces. In order to compute this direction, a head pose estimation method has been developed in conjunction with the feature so that the feature can be extracted under various head poses. As experiments have shown, SGAND feature has been applied successfully to the recognition of the six universal expressions.

3D facial expression recognition

People counting based on face tracking

Finally, our last contribution concerning face analysis deals with people counting based on face tracking. Existing people counting systems rely on the assumption that detected or tracked objects are humans. Some of them have a preliminary people model to verify this assumption, such as the ratio of height and width of ob-jects. Unfortunately, these methods suffer from inaccuracy when validating humans.

Thus, we have proposed a method that makes use of the face, the most discriminative feature of human to accomplish this validation. This approach is composed of a face detector and a face tracker that collaborate to detect and track faces in 2D videos. The face detector is cascade Adaboost classifiers and the tracker is a combination of Kalman filter and the kernel based object tracking algorithm. The tracker is improved to be used in the senarios when people move towards the camera.

In this case, face scale varies drastically so that it introduces errors to the tracking process using traditional Kalman filter. Thus, we have designed a scale-invariant Kalman filter which tracks faces in an image plane where the face trajectories are projected, so that 2.5D face movements (face movement with scale changes) can be normalized to 2D face movements. Face trajectories from the tracker are featured by histogram of moving directions and classified using a K-NN classifier. By doing this, bad trajectories caused by false face detection and tracking fragment can be filter out so that only correct face trajectories are counted for people counting. Our approach has been validated by our experimental results which have demonstrated a good performance on these different aspects and finally a people counting accuracy of around 93% as been reached.

Perspectives for future work

Extensions of this work that we envisage are presented in the following paragraphs.

Further investigations on 3D landmarking

In this thesis, local range and texture maps have been used as simple features to represent local shape and texture around a landmark. In the future, the landmark location may be improved by extracting other features such as our proposed SGAND feature, HK curvature, shape index, etc. for shape feature, and Local Binary Pattern, Gabor filtering, etc. for texture property within our statistical landmarking framework.

Another improvement may concern the constraints applied to instances gener-Chapter 5. Conclusion and Future Works ated by SFAM during the fitting process. Indeed, SFAM parameters (b i ) are empirically limited to constrain possible deformations. We plan to add a process to set the boundaries of their variation range according to the face properties available in the training data.

Further investigations on 3D facial expression recognition

The sign-based AU recognition allows to interpret facial muscle activities as expressions or affect states thanks to high-level decision making rules. Approaches using the mapping rules require that the prior knowledge on the relevant AUs is available in the training so that they can recognize these AUs on a testing face and thereafter identify expressions by applying rules. For example, the combination of AU1, AU2, AU5 and AU27 corresponds to the surprise in FACS rules. However, in no face displaying AU5 is present in the training set, this AU can not be recognized on the testing faces even if the face displays a combination of AU1, AU2, AU5 and AU27.

Therefore, the recognition of surprise fails because of the absence of AU5 from AU recognizer. Thus, instead of using existing high-level decision rules, we envisage to build a latent AU space with the basis of available AUs that can be recognized by our BBN. Then, for a given face, the set of its AU beliefs can be projected in this space and the corresponding position can be used for expression recognition.

Concerning the universal expression recognition approach relying on our SGAND feature, we envisage to enhance the performance as follows. Fuzzy neighborhood relationships between some expressions or emotional states, for instance between anger and sadness, lead to unnecessary confusion between them when a single global classifier is applied. In the future we will propose a multi-stage classification method dealing with the expression classification in several stages. The basic idea will be that affect states can first be categorized into some broad and rough emotional classes according to the dimensional emotion model in one of the dimensions, such as arousal dimension, and then each broad emotional class can then be further classified into final emotional states according to other dimensions, such as appraisal dimension.

The learning methods used in this thesis is mainly based on PCA, which can only learn linear face models. The learnt models contains mixture variations on identi-fication, expression and illumination. More recently TensorFace has been proposed for a multi-linear analysis to model explicitly the multiple modes of variations in these factors and their inter-relationships [START_REF] Jia | [END_REF]. Thus, in the future, we will investigate 3D TensorFace for a joint recognition of facial expression recognition and face recognition.

Chapter 6

Appendix: FACS and used Action Units FACS describes all visually distinguishable muscular activities that produce momentary changes in facial appearance on the basis of 44 unique AUs, as well as several categories of head and eye positions and movements. Each AU has a numeric code. Nostril Dilator (38),Nostril Compressor (39). It is crucial to note that while FACS is anatomically based, there is not a one-to-one correspondence between muscle groups and AUs, since a given muscle may act in different ways and thus produce different appearance.

Chapter 6. Appendix: FACS and used Action Units

AU Examples

Totally 16 facial AUs are analyzed in the chapter 3. They are AU2, AU4, AU7, AU9, AU10, AU12, AU14, AU17, AU18, AU22, AU24, AU26, AU27, AU28, AU34, AU43 respectively. In order to analyze their characteristics, we demonstrate these AUs here and give explanations on them.

AU2 Outer Brow Raiser: The muscle that underlies AU2 originates in the fore- AU34 Puff: The cheeks puff out as air is forced into the mouth, but the lips remain closed keeping the air in.

AU43 Eye Closure: The same muscle, which when contracted raises the upper eyelid and when partially relaxed lets it droop, allows the eye to close when totally Chapter 6. Appendix: FACS and used Action Units relaxed. In AU43, the eyelid droops down reducing the eye aperture and more surface of the upper eyelid is exposed than usual. Some of AU combinations can be converted into emotions using high level decision making rules. Fig. 6.2 cites the Table 10-1 in the FACS Investigator's Guide [Ekman et al. 2002] demonstrating some prototypes and major variants of AU combinations corresponding to the six universal emotions.

Translating AU Scores Into Emotion Terms

Excluded from the table are dozens of minor variants for each of the emotions, AU combinations for variations in the intensity of each emotion, and AU combinations for blends of two or more emotions [Ekman et al. 2002].
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  model (SFAM), which learns both global variations in 3D face morphology and local ones around each landmark in terms of local texture and geometry respectively by PCA. By varying control parameters of their corresponding sub-models in the SFAM, we can thus generate different 3D partial face instances. The fitting of SFAM into an input face is based on an optimization of an objective function describing the correlation between model instances and faces. It also contains a set of parameters modeling local occlusion for which we proposed an automatic detection. Facial expression recognition: In order to flexibly add expression/action unit classes and combine features from different representations (morphology, texture and shape) to improve the recognition rate, we have designed a Bayesian Belief Network (BBN) for 3D facial expression recognition. The structure of the BBN describes the casual relationships among subject, expression and facial features. Facial expression or action unit are modeled as the states of the expression node and are recognized by identifying the maximum of beliefs of all states that are inferred from the feature evidence on the target face. Different from the other graphic models for expression Chapter 1. Introduction analysis, we have proposed a novel method to compute BBN parameters based on a statistical feature model, which can be considered as an extension of SFAM. Systematical studies have been conducted to evaluate the effectiveness of the BBN under different configurations as well as comparisons with other classifiers like SVM and SRC. The combination of BBN used for expression recognition and SFAM used

Chapter 2 .

 2 3D Face Landmarking Databases for 2D face analysis are dedicated to different research fields, mainly including face detection, face tracking, face recognition, and facial expression recognition. It is hard to include all datasets here so that we only present some representative works. MIT Face Database [Database a], FERET Database [Phillips et al. 1998], Yale Database [Database b] are among those mainly for face detection; DXM2VTS [Teferi & Bigun 2007], A Video Database of Moving Faces and People [O'Toole et al. 2005] for face tracking; FERET [Phillips et al. 1998], Yale Database [Database b] for face recognition; Cohn-Kanade AU-Coded Facial Ex-

  introduce a Procrustes analysis technique to match feature landmark points in training and strengthening the edge in searching face profile. Tested on 240 images with a resolution of 640*480, over 95% for all 58 landmarks are correctly detected without detailing the correction criterion. For more accurate extraction of feature, [Sun & Xie 2008] combines both the local texture constraint and the global texture constraint in building and fitting ASM. Tested on 240 images (resolution of 640*480) from IMM database, the average error (measured as

  build a Constrained Local Model by learning global shape variations, local texture variations around landmarks, and their correlation. Correlation Meshes describing the similarity between local instances and local regions around landmarks are computed and used for optimizing a fitting function driven by shape parameters. Results have proved the efficiency of CLM compared to AAM.

Chapter 2 .

 2 3D Face Landmarking their local properties of texture and geometry. Based on this principle, we propose two approaches in section 2.3 and section 2.4 for landmarking 2.5D faces and 3D faces respectively. Statistical face models are trained by applying Principle Component Analysis (PCA) to face landmark configurations, local texture and local shape around each landmark from training faces. Two different fitting algorithms are proposed to fit the face models to new faces so that landmark locations can be found by searching the closest points to known landmarks on fitted models. Provided with

  ations from a training face set. Specifically, a variety of face shape on texture maps are analyzed and learnt as the global configuration of landmarks. Meanwhile, variations on local texture and range are also learnt from the scale-free patches around each landmark. Thus, the statistical model is made up of a global face shape model, a texture model and a range model. New patch instances can then be synthesized by varying the model parameters. When fitted for a best match to a new 3D face, this statistical model delivers the location of the landmarks on the texture map of the input 3D face. The fitting process is the optimization of the global shape in order to reach the highest correlation in both texture and range between local patches from the input face and instances synthesized from our texture and range models. face scans 3D face scans delivered by the current 3D imaging systems are usually noisy and may contain holes and spikes, as shown in Fig.2.2. In order to remove these noises, we perform the following operations to enhance the quality of 3D face scans:1. Median Cut: spikes are detected by checking the discontinuity of points and are removed by the application of a median filter.2. Hole Filling: holes are located by a morphological reconstruction and filled by cubic interpolation.

Figure 2 . 2 :

 22 Figure 2.2: Holes and spikes on a 3D face scan

Figure 2 . 3 :

 23 Figure 2.3: Point clouds of the preset face (red) and new face (blue) before ICP alignment (a) and after ICP alignment (b).

Chapter 2 .

 2 Figure 2.4: Manually labelled landmarks on a frontal 2.5D face.

Figure 2

 2 Figure 2.5: Creation of uniform grid in a local region associated with the left corner of the left eye from two viewpoints (a) and (b). Circles are the sampled points from the 3D face model and the grid composed of the interpolated points. The interpolation is also performed for intensity values.

  and range models. Similar to other statistical models, our model can be trained with different training sets and thus can learn different variation modes. The more diverse training faces are provided, the more comprehensive variations the model includes. For example, if we provide a training set including faces with different expressions and illumination conditions, the model is learnt with expression and illumination variations. However, if the model is trained with neutral faces under a single illumination condition, it only contain variations due to subject physiognomy.
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 26 Figure 2.6: First two modes of shape variation in 2D. Points represented by '*' are current shapes while points represented by '.' are mean shape. The first variation mode mostly explains the shape changes along the horizontal direction while the second variation mode mostly explains the shape changes along the vertical direction.

Figure 2 . 7 :

 27 Figure 2.7: First two modes of texture variation. The first variation mode mostly explains the intensity changes in the eyebrow region and the mouth region, while the second variation mode explains the intensity changes in the nose region.

Figure 2 . 8 :

 28 Figure 2.8: First two modes of range variation. The first variation mode mostly explains the range value changes in the lower part of face, while the second variation mode explains the range value changes in the upper part of face.

  ]. The first version of the FRGC dataset contains 953 face scans from 275 people, captured under controlled illumination conditions and generally neutral expressions. However, these 953 face scans have slight head pose variation and scale variation. The second version of the FRGC database contains 4,007 face scans from 466 persons. These 3D face scans were captured under different illumination conditions and contain various facial expressions, including happiness or surprise, etc.. Chapter 2. 3D Face Landmarking All faces have been manually labelled by our research group with 15 landmarks as illustrated in Fig. 2.4. These manually labelled landmarks can be used as ground truth for learning or quality assessment of automatic landmark location. In our experiments, the whole FRGC v1.0 dataset is first cleaned by filtering out several badly captured face models. It is further divided into two parts, the first half part (452 faces) is used for training, and the second one (462 faces) for testing our algorithm. Subjects in the training set are different from those in the testing set.

Figure 2 . 9 :

 29 Figure 2.9: Precision curves for all landmarks located by our method

  2.5D face landmarking. The proposed statistical model learns from a training set both variations of global face shape as well as the local ones in terms of scale-free texture and range patches around each landmark. The fitting of the model to a new face is considered as an optimization problem according to shape parameters, with an optimization function describing the similarity between the input face and synthesized instances. Experiments have shown that our method has the ability to locate a high number of landmarks with a high accuracy. Using the model learnt Chapter 2. 3D Face Landmarking from half of the faces available from FRGC v1.0 dataset and experimented on 1400 faces randomly selected from FRGC v2.0 with uncontrolled illumination and facial expressions, our method has reached an average of locating errors less than 7mm for all 15 landmarks.

Figure 2 .

 2 Figure 2.11: Two sets of landmarks are manually labelled on FRGC (a), BU-3DFE (b) and Bosphorus (c) datasets. Landmark set in (a) contains 15 landmarks, including nose tip and corners, inner and outer eye corners, mouth corners; landmark sets in (b) and (c) contain 19 landmarks, including corners and middles of eyebrows, inner and outer eye corners, nose saddles, nose tip and corners, left and right mouth corners and middles of upper and lower lips.

  corresponding variation modes. b s , b g , b z are the sets of controlling parameters. All the individual parameters respectively in b s , b z and b g are independent and

  when applied to verification faces with manually labelled landmarks.

  1. Given a new face scan, the closest point set S ′ to the landmark configuration S are computed on the face; 2. Texture and shape instances Ĝ, Ẑ are synthesized based on S ′ : Based on points in S ′ , we can obtain vectors G ′ and Z ′ through the local remeshing process as in the training phase. They are used to estimate b g and b z , as follows:

  2. The morphology parameters b s are optimized to minimize the distance between corresponding morphology instances and their closest points on the input face. The objective function is f = N i=1 d i ) where d i is the 3D Euclidean distance between a point in a morphology instance and its closest points on the input face. i refers to the landmarks located on the rigid facial parts, such as those in the eyebrow, eye and nose regions. 3. The correlation meshes are computed as detailed in section 2.4.2.2, which is initialized by the optimized morphology from the step 2. 4. Morphology parameters are optimized to reach the maximum of the sum of values on two correlation meshes with the penalty factor. The objective function is f (b s ) in eq.2.23 and its variables are b s . Specifically, at each iteration, each point in morphology instances S k generated from eq. 2.18 find its closest points on its associated local part in both correlation meshes of texture and shape. Correlation values from all local parts are summarized respectively and weighted as the sum of values on two correlation meshes (the first two factors

Figure 2 . 12 :

 212 Figure 2.12: Correlation meshes from two viewpoints. Actually these meshes are in four dimension space, where the first three dimensions are x, y, z and the last one is correlation values. In these figures, we display the correlation values instead of z. (a) and (b) are the same correlation mesh from two point of views, describing the similarity of texture (intensity) instances from SFAM and texture (intensity) on the given face. (c) and (d) are the correlation mesh describing the similarity of shape (range) instances from SFAM and face shape (range). Red color corresponds to the high correlation and blue color corresponds to the low correlation.

Figure 2 .

 2 Figure 2.13: Different types of occlusion: a) occlusion in the mouth region, b) occlusion in the ocular region, c) occlusion caused by glasses.

. 22 .

 22 Occlusion caused by glasses occurs in front of two eyes, with changes mainly on local geometry. Occlusion caused by hand near the ocular region occurs generally in front of the right eye, with changes on both local geometry and local texture.

  have made use of 452 face scans from FRGCv1 dataset to build our first SFAM model which learns local properties of 15 regions and their configuration relationships. The training face scans have limited illumination variations and do not contain facial expressions. Fig. 2.14 illustrates the first mode of configuration, local texture and local shape in the SFAM at their left and right boundaries (-3σ,3σ), namely -3std and +3std. Moreover, we have used the face scans from 11 subjects in BU-3DFE dataset and the first 32 subjects in Bosphorus dataset to build our second and third SFAM respectively which capture global relationships and local properties from 19 landmarks. Every subject used for training has respectively 13 face scans in the case of the BU-3DFE dataset (a neutral face scan and 2 face scans for each of the six universal expressions in the intensity level 3 and 4), and 7 face scans including 6 basic expressions and the neutral one in the case of the Bosphorus dataset. Fig. 2.15, 2.16 and 2.17 illustrate the third SFAM learnt from Bosphorus dataset containing the first and second modes of configuration, local texture and local shape at their left and right boundaries (-3σ,3σ), namely -3std and +3std.
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 214 Figure 2.14: SFAM learnt from FRGCv1 dataset: first variation modes on the landmark configuration, local texture and local shape.First mode of morphology explains the landmark configuration variations in terms of face size; first mode of texture explains the intensity variation, especially in the eye region; first mode of shape explains the geometry variation in the upper part of face.

Figure 2 .

 2 Figure 2.15: SFAM learnt from Bosphorus dataset: variations of the two first morphology modes. The first variation mode mostly explains the face morphology changes along the vertical direction, while the second variation mode explains the face morphology changes along the horizontal direction.

Figure 2 .

 2 Figure 2.16: SFAM learnt from Bosphorus dataset: variations of the two first local texture modes. The first variation mode mostly explains the facial texture changes due to different skin color, while the second variation mode explains the facial texture changes in the eye and mouth regions.
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 217 Figure 2.17: SFAM learnt from Bosphorus dataset: variations of the two first local geometry modes. The first variation mode mostly explains the face geometry changes in the lower part of face, while the second variation mode explains face geometry changes in the upper part of face.

Figure 2 .

 2 Figure 2.18: Cumulative error distribution of the precision for the 15 landmarks using FRGCv1 (a) and FRGCv2 (b).
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 219 Figure 2.19: Landmark locating examples from the FRGC dataset.

Figure 2 .

 2 Figure 2.21: Landmarking accuracy on different expressions with the BU-3DFE dataset. (1: left corner of left eyebrow, 2: middle of left eyebrow, 3: right corner of left eyebrow, 4: left corner of right eyebrow, 5: middle of left eyebrow, 6: right corner of right eyebrow, 7: left corner of left eye, 8: right corner of left eye, 9: left corner of right eye, 10: right corner of right eye, 11: left nose saddle, 12: right nose saddle, 13: left corner of nose, 14: nose tip, 15: right corner of nose, 16: left corner of mouth, 17: middle of upper lip, 18: right corner of mouth, 19: middle of lower lip).

Fig. 2 .

 2 Fig. 2.22 illustrates several locating examples under occlusion. This experiment is carried out on 292 face scans from all the subjects different from the ones used for training in the Bosphorus dataset. In order to evaluate the efficiency of our proposed occlusion classifier for landmarking, the fitting algorithm is compared between the test with occlusion knowledge directly provided by the dataset and the test using occlusion knowledge from our proposed occlusion detection and classification algorithm (Table2.7). The mean errors generally range from 6 to 11 mm, and more than

  Matlab) varies from 10min to 16min on a desktop PC with Intel Pentium4 1.8GHz and 1 Go RAM. Similar to the previous algorithm, the simplex algorithm is used which is quite time consuming. The time consumed by the optimization in the step 2 is around 2 to 3 minutes. The computation of the correlation meshes saves time great, because it finishes the computation of the local interpolation once in the step 3 instead of computing them in each iteration as in the previous algorithm.
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 222 Figure 2.22: Landmarking examples from the Bosphorus dataset with occlusion. From left to right, faces are occluded in eye region, mouth region, by glasses and by hair.

Fig. 2 .

 2 Fig. 2.23 illustrates several failure cases of landmarking under different conditions.The cases a and b are mainly due to the great deformation on the mouth region when face are displaying expressions. The morphology model in SFAM can not contain a specific mode for the deformation of a expression, however it generally learns variation modes from a mixture of expression and identity. Thus, when fitting SFAM on a face with great morphology deformation, like happiness and surprise, the fitting algorithm sometimes can not generate morphology instances which can approximate this extreme deformation. The cases c and d are mainly due to the information reduction in the fitting process when occlusion occurs. The occluded local parts are not considered in the fitting algorithm so that less part of correlation meshes are used in the objective function. Thus, the prediction of morphology parameters uses less information and is not as accurate and robust to local minimum as the prediction when no occlusion happens. Moreover, the missing values on occluded local correlation meshes introduce errors in the objective function as the weights α and β are determined when all local regions are considered.

Figure 2 .

 2 Figure 2.23: Some failure cases. a: failure case on face with surprise expression; b: failure case on face with happy expression; c: failure case on face with occlusion in mouth region; d: failure case on face with occlusion in eye region.

Figure 2 .

 2 Figure 2.24: Flowchart of the first landmarking method.

Chapter 2 .

 2 Figure 2.25: Flowchart of the second landmarking method.

A

  facial expression communicates information about the characteristics of a person, a message about something internal to the subject, and results from one or more motions or positions of the face muscles. The source of facial expressions includes mental states, physiological activities and interpersonal communication, as shown in fig.3.1. Mental state or affect is one of the main sources, including felt emotions, conviction and cogitation. Physiological states such as pain, tiredness also influence unconscious face muscle activities appearing in forms of expressions. Verbal and nonverbal communications are other causes of facial expressions.[START_REF] Fasel | [END_REF] 

  Figure 3.1: Sources of Facial Expressions[Fasel & Luettin 2003].

  Figure 3.2: Example of emotions plotted into the arousal/valence plane [Wieczorkowska et al. 2005].

  Majority of facial expression recognizers have been developed in 2D environmentpartly because of the data availability. Indeed, most of the databases for facial expression analysis are made up of 2D images with nearly frontal faces displaying expressions. Other researches on spontaneous facial expressions are based on selfcaptured 2D video sequences. Another reason is that the applications such as HCI and robots are generally equipped with 2D cameras, which limits the type of face data.Typical features used in 2D approaches are either geometric-based or appearance-based. Geometric features are extracted from contours of face com-ponents and facial feature points, including shapes and positions of face components, as well as the location of facial feature points[Sohail & Bhattacharya 2007[START_REF] Tai | [END_REF], Chang et al. 2009a[START_REF]Facial feature tracking and expression recognition for sign language[END_REF]]. In the case of 2D videos, the position and shape of these components and/or landmarks are often detected in the first frame and then tracked throughout the sequence[START_REF] Obaid | [END_REF], Gunes & Piccardi 2009, Brick et al. 2009]. The geometric features are easy to extract and quite efficient, however they ignore texture information reflecting facial texture variations and may not have enough discriminative power for identifying subtle expressions and action units. Appearance features such as Gabor wavelets, Haar features and Local Binary Pattern represent facial texture and transient variations due to wrinkles, bulges and furrows[Savran et al. 2010, Littlewort et al. 2006, Bartlett et al. 2006, Koutlas & Fotiadis 2008, Tong et al. 2010, Uddin et al. 2009, He et al. 2009, Yang et al. 2007, Zhao & Pietikainen 2007]. These features are very informative but they exclude global configuration of facial components and may be sensitive to illumination variations. Some studies adopt both global facial shape and features extracted from texture. The advantage is the mutually compensation on discrimination power for expression from both representations. Good examples of such a scheme are those in[Park et al. 2008[START_REF] Park | Facial expression analysis with facial expression deformation[END_REF], Mahoor et al. 2009] using Active Appearance Model (AAM) to capture the characteristics of the facial texture and the shape of facial expressions.Generally these 2D recognizers face the challenges of illumination and head pose.The appearance of facial expressions varies with the viewpoint of an observer. Thus, head pose variation on face images includes the in-plane and out-of-plane rotations as well as the face scale. The in-plane rotation occurs around roll axis and can be rectified by face alignment. Face scale is generally normalized by interpolation or subsampling. However, it is difficult to handle the out-of-plane rotations due to the missing data caused by self-occlusion. Illumination has also a great influence on face appearance in images. It has been observed that the face image modifications caused by illumination changes can exceed the differences caused by expression and identity factors. Although some lighting models have been proposed, this problemis not yet completely solved, especially for expressions displayed on faces which are Chapter 3. 3D Facial Expression Recognition partly lightened. 3D faces, which contain not only facial texture but also facial surface shape, are reputed to be insensitive to illumination and head pose. Since the geometry property of face can be computed, such as normal of vertices or curvatures, the Phong reflection mode is used to rectify the texture variance caused by different lighting conditions. Head pose can be simply normalized by multiplying the rotation matrix with each vertex and summarizing the translation vector. Because the unit of the 3D face coordinate system is mm instead of pixel in 2D, 3D face size does not vary with the distance between 3D scanner and subjects when taking the scan. Thus, recognizing facial expression in 3D offers the ability to handle illumination and head pose problems contrary to 2D-based approaches. Moreover, because subjects can be recorded with less controlled head pose using 3D scanner, spontaneous facial expression can be displayed on faces and analysed by 3D facial expression recognizers.[Savran et al. 2010] compares the effectiveness of 2D and 3D modality for detecting 25 AUs and demonstrates 3D modality generally performs better than 2D modality, especially for lower facial AUs and a fusion of both modality achieves the best performance. Specifically, Adaboost feature selection is applied on the Gabor magnitude responses for each AU on both 2D images and 2D conformal maps of 3D faces for comparison.

Feature

  -based 3D facial expression recognition approaches rely on the extraction of facial features, which are further used to feed a classifier such as SVM, LDA etc.[Berretti et al. 2010, Tang & Huang 2008a, Soyel & Demirel 2008, Tang & Huang 2008b, Wang et al. 2006, Hu et al. 2008a]. Among them, features extracted from landmarks can discriminate the six universal expressions at a quite high recognition rate, over 94%[Tang & Huang 2008a]. In general, featurebased approaches rely on a set of precisely located landmarks, either for feature extraction[Tang & Huang 2008a, Soyel & Demirel 2008, Tang & Huang 2008b, Venkatesh et al. 2009] or for face segmentation[Wang et al. 2006, Hu et al. 2008a].Similar to geometry-based features in 2D approaches, 3D geometry information is widely extracted for its easiness and efficiency. In[Venkatesh et al. 2009], the 3D location of 68 landmarks have been extracted around eyebrows, eyes, nose and mouth and used for classification. Distances among 3D landmarks are invariant to head pose and illumination and thus enable a rather robust recognition under different conditions.Soyel and Demirel [Soyel & Demirel 2008] have retrieved six distances between facial landmarks, describing the openness of eyes, height of eyebrows, openness of mouth, width of mouth, stretching of lip and openness of jaw. They achieve Chapter 3. 3D Facial Expression Recognition

Chapter 3 .

 3 3D Facial Expression Recognitionis recognized either from model parameters or features extracted from fitted models. In 2D, the Active Appearance Model (AAM) has been well explored for recognizing expressions. Usually, a set of model parameters are first obtained by fitting AAM on the target face.Then, they are used to extract distances among fitted parameters and training parameters in the pa-

  has extracted the distribution of primitive features from a generic 3D face model. The model has been fitted into new faces through 2D planer meshes, which are generated based on a circle pattern-based conformal mapping. They achieve the average recognition rate at 80.1% for recognizing seven prototypic facial expressions.

Figure 3 . 5 :

 35 Figure 3.5: Eight basic visible-invariant surface types defined by HK curvatures [Besl & Jain 1986].

Figure 3 . 7 :

 37 Figure 3.7: Extraction of our proposed feature. a: frontal view, b: side view, c: one cylinder for clearance. The green dot represents the investigated vertex which is located in the nasal region of a face. A plane and eight cylinders are involved as displayed.

Figure 3 . 8 :

 38 Figure 3.8: The radius variation of circle S. a: 7mm, b: 4mm.

Figure 3 . 9 :

 39 Figure 3.9: Influence of the radius of circle S on our feature extracted from a neutral face: a: 3mm, b: 5mm, c: 7mm, d: 9mm, e: 11mm, f: 13mm.

Figure 3 .

 3 Figure 3.10: A face with vertex normals

Figure 3 .

 3 Figure 3.11: Separation of vertices into 3 sets: left (red), frontal (blue), right (green). a: K-means, b: Mixture of Gaussians

Figure 3 . 12 :

 312 Figure 3.12: Feature extracted from faces with six universal expressions. a: anger, b: disgust, c: fear, d: happiness, e: sadness, f: surprise.

Figure 3 . 14 :

 314 Figure 3.14: Results of pose estimation on faces with the six universal expressions. a: anger, b: disgust, c: fear, d: happiness, f: sadness, e: surprise

Figure 3 .

 3 Figure 3.15: Failure cases for expression recognition using the proposed SGAND features. The first and second row show the misclassification of anger into sadness for subject 2 and 4. The third row shows the misclassification of fear into happiness for subject 64. It can be observed that the distribution of extracted features under different expressions are quite similar, which is the main reason for confusion.

Figure 3 .

 3 Figure 3.16: An example of Bayesian Belief Network.

Figure 3 . 17 :

 317 Figure3.17: The proposed Bayesian Belief Network. We infer belief of states in node X, which represents facial activity (expression or AU), from its parent node S, which represents 3D face scans and its children nodes F 1 ,F 2 ,..., F N f which represent facial features (landmark displacement, raw local texture and range around landmarks, etc...)

Figure 3 .

 3 Figure 3.18: Block diagram of the BBN for expression and AU recognition.

Figure 3 . 19 :

 319 Figure 3.19: Examples of Facial AUs.

  Figure 3.20: Feature extraction

  pg c )2 p (3.22) where s(x) = 1 if x ≥ 0; s(x) = 0 if x < 0, g c is the value of current pixel and g p is the value of the neighbors, R is the radius of neighborhood circular and P is number of pixels in the neighborhood. Examples of LBP operator are shown in fig.3.21. A subset of these 2 P binary patterns, called uniform patterns, can be used to represent spot, flat area, edge and corner[Chan et al. 2007].

Figure 3 .

 3 Figure 3.21: LBP Operator. The circular (8,1), (16,2), and (8,2) neighborhoods. The pixel values are bilinearly interpolated whenever the sampling point is not in the center of a pixel.

Figure 3 . 22 :

 322 Figure 3.22: Multi-Scale LBP extracted from local texture and range map on a 3D face scan. In the first row are LBP features extracted from texture and in the second row are LBP features extracted from range. In the third row are the (P,R) values of the corresponding columns.

10 :

 10 Average recognition rates for the six universal expressions with different features configurations (Morphology, Texture and Geometry) and different classifiers using manual landmarks. The standard deviations over 10 fold tests are the values in the brackets. Table3.10 shows the performance in terms of average recognition rates for BBN with different setups on children nodes, as well as the comparison with other classifiers. The first row contains the results where the BBN only has two children nodes for inference, i.e. L, D features extracted from the morphology representation M . The second and third rows contain the results where the BBN adopt features from texture T and geometry representation Ge respectively, i.e. G, LBP t 1 -5 and Z, LBP r 1 -5, SI. The following rows contain the results with different combinations of these features. We can see that SVM performs better in the tests on each of the single representation, named M, T, Ge. However, BBN is comparable with it in tests on two representations for manual landmarks and finally outperforms SVM on Chapter 3. 3D Facial Expression Recognition all three representations with an average recognition rate of 89.2% and least std of 3.6%. Therefore, proved by the tests, BBN is more effective than score-level fusion strategy with SVM and SRC when adopting features from all three representations. Moreover, BBN uses an uniform non-parameter-tuning process for building SFM and estimate parameters, which avoids the trouble for manually tuning parameters to optimize the performances in SVM and SRC.We have also evaluated the influence of the local grids size and the number of local grids in the feature extraction process. Using the same data as in the previous test, we have first extracted the feature from the same 19 local grids which has a 25mm*25mm size, as shown in fig.3.27a; then we have extracted the feature from selected 32 local grids which has a 15mm*15mm size same as the one in the previous test, as shown in fig.3.27b. The average recognition rate for the test on faces sampled on 19 grids with a size of 25mm*25mm is 90.3% and the average recognition rate for the test on faces sampled on 32 grids with a size of 15mm*15mm is 89.3%.

Figure 3 . 26 :

 326 Figure 3.25: ROC curves for the 16 AUs on the Borphorus database. The area under ROC curve is in the bracket. (Part 1)

Chapter 4 .

 4 A minor contribution: People Counting based on Face Tracking4.1.2 Our approachIn this work, we address the problem of counting people moving toward the camera in a close space such as the entrance of a supermarket, bank or bus, where lighting conditions are relatively stable and people are generally facing the camera. Based on these scenes, we propose an approach that presents several improvements compared to the literature. The first improvement is the use of the face detector to ensure that counted objects are people. Second, in order to deal with drastic changes of face scales in our scene, a scale-invariant Kalman filter is proposed. It is further combined with a kernel-based object tracking algorithm to handle face occlusions. Finally, we propose a strategy to count people by automatically classify face trajectories, which are characterized by an angle histogram of neighboring points. Two Earth Mover's Distance based classifiers are used to discriminate true trajectories and false trajectories. The advantages are twofold. On the one hand, a filtering of the trajectories can be realized in order to reject false trajectories caused by false face detection and thus to improve counting accuracy. On the other hand, the automatic classification of the trajectories allows to avoid the manual and empirical elaboration of rules for counting people in a given scene.

Fig. 4 .

 4 Fig. 4.1 shows the framework of this system. It combines a face detection module, a face tracking module and a counting module. Synchronizing periodically with the face tracker (every 5 frames), the face detector can initialize tracking for new faces as soon as it detect them, and verify faces being tracked. Moreover, the synchronization results can reveal the events that new faces appear in the video, faces disappear temporarily caused by occlusion and faces leave the scene. After they leave, the face trajectories are sent to the counter for further analysis.

  X, Y ) is the face location, and (v x , v y ), (a x , a y ) are the velocity and acceleration of the face movement. A and H are process model and measurement model for Kalman filter. T is the time interval between two continuous frames, k is the index of frames. W k is the process noise, white Gaussian noise with diagonal variance Q. M k is the measurement of face location. V k is the measurement noise, white Gaussian noise with diagonal variance R. S is the face scale, S x is the face scale in the fixed image plane, like the plane x in fig. 4.2b. In our implementation, S x is set to 20 pixels, which is the lower boundary of face scale for our face detector.Chapter 4. A minor contribution: People Counting based on Face Tracking 4.3.2 Face representation and tracking Each tracked faces are assigned with a Kalman filter and kernal based tracker. For each frame, Kalman filter first predicts the face position for tracker. Then, a coarseto-fine tracking process is performed by the tracker which handles back a measured face position and scale to Kalman filter for measurement update. In cases of tracking failure due to occlusion or pose variance, the predicted face position and previous scale are give back to Kalman filter. This process is illustrated in fig. 4.3.

Figure 4 . 3 :

 43 Figure 4.3: Flowchart of the tracking process

  4) where δ is the Kronecker Delta function, k is the Epanechnikov kernel function and b is the function projecting pixel (x * i ) into color feature (rg) space. The distance among target model and candidates are evaluated by the similarity function ρ in eq 4.5. The maximum value of the function indicates the potential position y * of the target. ρ = n u=1 p u q u (y * ) (4.5) where p, q is the histogram of face model and face candidate respectively with a dimension of 400 * 1; n is the number of bins in the color histogram. The p of face model is initially computed when face is first time detected and updated when a face is detected close to tracked position. Face detector scans every five frames for a balance of accuracy and efficiency.

  Figure 4.4: Testing video and face annotation

  Figure 4.6: Face tracking with occlusion

Chapter 5 .

 5 Conclusion and Future Works partial face model (SFAM) which learns variations in 3D shape as well as local texture and local geometry. The fitting is performed thanks to the minimization of an objective function describing the similarity between a query face and SFAM with consideration of partial occlusion, thus enabling landmarking on partial occluded faces. The optimization of the objective function is accelerated by pre-computing correlation meshes. Moreover, an occlusion detection method has been proposed to detect the local regions occluded and give a set of occlusion parameters for the objective function.

  Most of works dedicated to expression recognition on 3D faces use holistic features or deformable model, such as line property between landmarks, histogram of primitive surface feature, and morphable face model. Either they require a high precision on landmark locations for feature extraction and face segmentation or they are limited to use raw texture and range contained in the model for computing parameters.However, expressions or action units are consequences of facial muscle contraction reflecting in both facial texture and geometry. Moreover AUs generally appear locally and subtly and thus it is hard to distinguish them by raw face texture and geometry feature, such as color, intensity or range data. Thus, we have proposed in this thesis to extract features from multiple face representations, including face morphology, texture and geometry. In order to combine the contribution of all these features, we have proposed a graphical model which is a Bayesian Belief Network with a structure organizing all features as children nodes of the expression node.Contrary to previous proposed BBN for 2D facial expression, our BBN has an uniform structure which describes the casual relationship among subjects, expression or AUs appearing on faces and features extracted from face appearance. Moreover, it has a flexible topology allowing to integrate knowledge carried on new features and to express facial activity as expression or AUS. Thus, it can be applied on both expression recognition and AU recognition problems. By combining BBN with SFAM, a fully automatic facial expression recognition system is elaborated.The experimental results have demonstrated the efficiency of BBN compared with SVM and SRC to fuse features from different face representations. Using a uniform structure, the BBN achieves good results for recognizing both expressions (second rank in the literature) and facial AUs. Tested on automatically located landmarks by SFAM, the BBN shows its robustness to landmark locating errors.

  Figure 6.1: Examples of Facial AUs.

Figure 6 . 2 :

 62 Figure 6.2: Emotion predictions based on AUs [Ekman et al. 2002].
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 2 1: Mean and deviation of locating errors for all landmarks using FRGC v1.0

	(mm)						
	1	2	3	4	5	6	7

Table 2 .

 2 2: Mean and deviation of locating errors for all landmarks using FRGC v2.0

	(mm)							
		1	2	3	4	5	6	7
	Mean 5.22 4.36 4.07 3.24 3.78 4.97 4.21
	Std	3.14 2.21 2.32 1.67 1.91 2.83 2.55
	8	9	10	11	12	13	14	15
	3.10	6.65 4.88 6.95 5.38 3.53 6.48 4.67
	1.64	4.50 2.52 4.24 3.14 1.86 3.16 2.99
	minimum but is slower compared to other optimization algorithm. Secondly, the

interpolation on local regions includes point sampling and interpolating. The more density the point clouds of a face are, the more time the process takes. Although it takes less than 500ms in each iteration, the overall time which it accumulates is quite noticeable due to the large number of iteration.

2.3.2.3 Discussion

Compared to others 3D landmarking algorithms mainly based on a prior knowledge of facial geometry information [D'

House et al. 2007[START_REF] Lu | Matching 2.5D Face Scans to 3D Models[END_REF]] [Faltemier et al. 2008] [Xua et al. 2006] [Colbry et al. 2005] [Szeptycki et al. 2009

],

Table 2 .

 2 3. As we can see, our statistical model applied to face models from FRGC v1.0 dataset (Table 2.3.2.2) have close results as compared with the ones achieved by human operators both in mean value and std. Moreover, these two results are

Table 2

 2 

	.3: Mean and deviation of locating errors for individual manually labeled
	landmarks(mm)							
		1	2	3	4	5	6	7
	Mean 2,95 2,42 2,03 1,94 2,04 2,76 2,11
	Std	1,48 1,05 1,38 0,85 1,07 1,58 1,64
	8	9	10	11	12	13	14	15
	1,84	3,80 1,90 4,50 1,98 1,99 3,04 2,06
	0,81	1,98 1,04 2,15 1,10 1,19 1,53 1,31
	There exist three major sources of errors in our experiments. Firstly, our method

requires an exact match between texture images and range ones. Although several badly mismatched face scans have already been filtered out in FRGC v1.0, there are still many face scans containing mismatches to a certain extent, especially in FRGC v2.0. Secondly, the training set should contain the major variations of faces, so that our learnt statistical model can synthesize instances as close as possible to the testing faces, further leading to a better locating accuracy. In our last test, variation of illumination and expression are not learnt in training. Last, as shown in Table

2

.3, manual labelling also leads to locating errors of landmarks which implies a divergence for the global minimum of the objective function during the fitting

  , y 1 , z 1 , x 2 , y 2 , z 2 , ..., x N , y N , z N )T (2.15) where N is the number of landmarks, e.g. 15 or 19 in our work.Two vectors G and Z are further generated, interpolated from local meshes as in eq. (2.16) and (2.17) similarly to G, Z in the method presented in the previous section. All Z vectors thus contain variations of local geometric shapes around landmarks while G vectors describe local texture properties. Alternatively, other local feature descriptors may also be computed from interpolated local 3D meshes and used, such as HK curvature, shape index, etc. for local shape, and Gabor jets, cornerness response, etc.

	Chapter 2. 3D Face Landmarking
	S = (x 1
	2.4.1.2 Modeling the configuration relationships of the landmarks as
	well as their local geometry and texture properties
	Once a training 3D face has been preprocessed, 3D coordinates of all the landmarks,
	called 3D morphology, are concatenated into a vector S, describing the configuration
	relationships among local regions.

The local regions around labelled landmarks are remeshed according to a principle similar to the one used for the creation of scale free local patches presented in subsection 2.3.1.2. Thus, points in local regions are first sampled and then interpolated on the uniform grids with the resolution of 1mm.

  Chapter 2. 3D Face Landmarking in Ĝ and Ẑ (eq. 2.26). Then, the normalized correlations are set as the values of the window center on the corresponding meshes.

	maps by using grids with a size of 51*51, as in the section 2.3.1.2;
	4. For each local region i, a sliding window method is performed with the same
	size as the local grid size in SFAM (15*15). At each step j, a local range map

25) by limiting b i ∈ {b z , b g } to the range ±3σ i in order to constrain the possible deformations, any bi exceeding this boundary is replaced by its closest boundary. Then, texture and range instances Ĝ and Ẑ can be generated according to eq. 2.19 and 2.20 using these constrained b g and b z . 3. Local regions around the points in S ′ are remeshed for both texture and range Z and texture map G are extracted to compute the normalized correlation between them and ẑ, ĝ respectively, which are the corresponding local parts

Table 2 .

 2 4: Confusion Matrix of occlusion classification'Eye' represents the occlusion caused by hand near ocular regions; 'Mouth' represents the occlusion caused by hand near the mouth regions; 'Glasses' represents the occlusion caused by glasses; 'Unoccluded' represents neutral faces without occlusion.

		Eye Mouth Glasses Unoccluded
	Eye	0.932	0.02	0.02	0.02
	Mouth	0.01	0.97	0.02	0
	Glasses	0.07	0.03	0.84	0.05
	Unoccluded	0	0	0	1

Table 2

 2 

		lcle	rcle	ucle	lwcle	lcre	rcre	ucre
	Mean	4.17/4.31 3.07/3.21 2.92/3.17 2.76/2.75 3.15/3.24 3.67/3.89 2.84/3.18
	Std	2.13/2.05 1.42/1.44 1.39/1.66	1.21/1.31 1.56/1.43 1.90/2.04 1.45/1.63
	lwcre	lsn	nt	rsn	lcm	cul	cll	rcm
	2.68/2.83 3.96/4.21 4.11/4.43 4.39/5.07 3.61/4.09 2.74/3.37 3.81/4.65 3.58/4.34
	1.21/1.38 1.65/1.71 2.20/2.56 1.85/2.36 1.92/2.32 1.42/1.89 1.97/3.41 1.99/2.50

.5: Mean error and standard deviation (mm) associated with each of the 15 landmarks on the FRGC dataset
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 2 

	the BU-3DFE dataset								
		1	2	3	4	5	6	7	8	9
	Mean 6.26 4.58 4.87 4.88 4.51 6.07 4.11 2.93 2.90
	Std	3.72 2.82 2.99 2.97 2.77 3.35 1.89 1.40 1.36
	10	11	12	13	14	15	16	17	18	19
	4.07	3.30 3.27 3.32 4.04 3.62 7.15 4.19 7.52 8.82
	2.00	1.70 1.56 1.94 1.99 1.91 4.64 2.34 4.75 7.12

6: Mean error and the corresponding standard deviation (mm) of the 19 automatically located landmarks on the face scans, all expressions included, from

Table 2 .

 2 7: Mean error and the corresponding standard deviation (mm) associated with the each of the 19 automatically located landmarks on the face scans from the Bosphorus dataset under occlusion

		1	2	3	4	5	6
	Mean	9.66/11.95 8.29/8.47 7.33/7.15 7.02/6.77 8.21/8.20	9.74/10.05
	Std	6.08/8.85	3.92/4.39 3.41/3.36 3.23/3.38 4.27/4.45	5.23/6.08
		7	8	9	10	11	12
	Mean	7.01/8.83	6.25/6.87 6.44/6.51 7.46/7.86	7.5/7.56	7.58/6.92
	Std	3.77/6.37	3.42/4.21 3.08/3.58 3.56/4.73 3.60/3.88	3.63/4.02
	13	14	15	16	17	18	19
	6.35/7.19	8.46/8.39	8.03/7.79 7.96/9.75 8.67/9.01 8.21/9.65 10.41/10.61
	3.11/2.99	3.64/3.64	3.31/3.36 4.18/6.28 4.84/4.93 4.25/4.97	5.37/5.61
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	.1:	Some propositions for the definition of basic emotions
	[Ortony & Tumer 1990]
	Researchers		Definition of basic emotion
	Plutchik		Acceptance, anger, anticipation, disgust, joy, fear, sadness,
			surprise
	Amold		Anger, aversion, courage, dejection, desire, despair, fear,
			hate, hope, love, sadness
	Ekman, Friesen and Ellsworth	Anger, disgust, fear, joy, sadness, surprise
	Frijda		Desire, happiness, interest, surprise, wonder, sorrow
	Gray		Rage, terror, anxiety, joy
	Izard		Anger, contempt, disgust, distress, fear, guilt, interest, joy,
			shame, surprise
	James		Fear, grief, love, rage
	McDougall		Anger, disgust,elation, fear, subjection, tender, wonder
	Mowere		Pain, pleasure
	Oatley, Johnson-Laird	Anger, disgust,anxiety, happiness, sadness
	Panksepp		Expectancy, fear, rage, panic
	Tomkins		Anger, interest, contempt, disgust, distress, fear, joy, shame,
			surprise
	Watson		Fear, love, rage
	Weiner and Graham	Happiness, sadness

Table 3 .

 3 2: Facial Expression Recognition in the 2D environment requiring human interventionLegend: exp -Spontaneous/Posed expression; class -Nnumber of expressions or AUs (Action Units corresponding to AU detection); sub -number of subjects, person Dependent / Independent, JAFFE, CK, FABO, MMI are the database, OD -

	Other database; ? -missing entry; acc: Im / Vi -Image / Video-based.		
	References	Facial	Fea-	Classifier				Performance
		ture						
						exp	class	sub	acc (%)
	[Vretos et al. 2009]	location	of	SVM		P	7	?, D, CK	Vi: 88.7
		the Candide					
		vertices						
	[Hu et al. 2008b]	Feature point	LBNC;		P	6	100, I, OD	Im: 86
		displacement	QBNC;				
				Parzen; SVM			
	[Tong et al. 2007]	Gabor		Ababoost		P, S	14 AUs	30, I, CK; 11,	Vi:	80.8
		wavelet		and DBN				I, MMI; OD	(CK)
	[Tong et al. 2010]	Gabor		Ababoost		P,S	14 AUs	30, I, CK; 13,	Vi: 85.8(CK)
		wavelet		and DBN				I, OD,
	[Uddin et al. 2009]	Texture		HMM		P	7	?,?I, CK	Vi?: 92.2
	[Bai et al. 2009]	LBP and Ga-	LDA		P	6	10, I, JAFFE	Im: 92.4
		bor wavelet					
	[Zhi et al. 2009]	Image Inten-	GSNMF	+	P	6	?, I, CK	Im: 93.5
		sity		KNN				
	[He et al. 2009]	Gabor		HMM		P	7	10, ?, JAFFE	Im: 96.2
		wavelet						
	[Li et al. 2009]	SIFT,		SVM		P	6	97, I, CK	Im: 96.3
		PHOG,						
		Hist of edge					
	[Zhi et al. 2008]	Image Inten-	FDP + KNN	P	6	?, D, CK	Im: 96.8
		sity						

Table 3 .

 3 5: Confusion Matrix of expression recognition in[Wang et al. 2006].

Table 3

 3 D is computed by subtracting the mean of S for training neutral faces ( Sneutral ) from S (eq. 3.21), represented as red lines in fig.3.20. This solution avoid Chapter 3. 3D Facial Expression Recognition the need for providing a neutral face in conjunction with the face to be recognized with expression, which is unrealistic in a real application. LBP features for three reasons: first, LBP describes local property of images, which is consistent with the local deformations that correspond to AUs; second, the variance in the apparent AU magnitude is large since some are quite notable while some are subtle, thus it is necessary to analyze them under different scales; third, LBP is efficient and easy to compute.

	.6: Distances between some strategical facial landmarks on the 3D facial
	expression model. Distance index refers to the fig. 3.20.
	given in Table 3.6.
	Feature point displacements represent a change of landmark locations when an
	expression appears from a neutral face. It is very informative since it represents the
	shape difference between the face with expression and the neutral one. However, it
	imposes the constraint that one neutral face from a subject is available and therefore
	is subject biased. To loosen this constraint, we use a mean landmark set computed
	from all training neutral faces instead of using landmarks on neutral face of every
	subject. Thus,

  It consists of 4 main stages, as shown in fig. 4.3: offline SFAM construction, offline BBN training, online landmarking and feature extrac-Figure 3.23: Shape index computed on local grids of a face LBP feature extracted at scale 1 from 19 local texture maps LBP t 2 LBP feature extracted at scale 2 from 19 local texture maps LBP t 3 LBP feature extracted at scale 3 from 19 local texture maps LBP t 4 LBP feature extracted at scale 4 from 19 local texture maps LBP t 5 LBP feature extracted at scale 5 from 19 local texture maps

	Symbol	Textual description	Dimension
	D	Person independent point displacement of 19 landmarks	57
	Z	Range values extracted from 19 local patches	
	G	Intensity values extracted from 19 local patches	
	L	Distances extracted from landmarks	11
	SI	Shape index extracted from 19 local patches	
	LBP t 1 LBP r 1	LBP feature extracted at scale 1 from 19 local range maps	
	LBP r 2	LBP feature extracted at scale 2 from 19 local range maps	
	LBP r 3	LBP feature extracted at scale 3 from 19 local range maps	
	LBP r 4	LBP feature extracted at scale 4 from 19 local range maps	
	LBP r 5	LBP feature extracted at scale 5 from 19 local range maps	

Table 3 .
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	SRC	BBN

Table 3 .

 3 13: Comparison of the results from different facial expression recognition methods.Different from graphical models built for 2D facial expression analysis, the proposed BBN has a flexible topology allowing to integrate knowledge carried on new features by adding new children nodes of the X node. By defining the states in the X node,

  Chapter 4. A minor contribution: People Counting based on Face Tracking Based on this representation of trajectories by angle histograms and EMD, we make use of a classifier trained to recognize true trajectories and count them. Two types of classifiers based on EMD are considered: a K-Nearest Neighbors classifier and a mean-trajectory classifier. For the K-NN method, we use the same amount of true trajectories and false trajectories for training, and find k nearest neighbors for new trajectories by EMD. In mean-trajectory method, we calculate a general direction histogram by averaging histograms from several true trajectories as training procedure. A threshold is set for EMDs between this general histogram and new coming trajectories for discriminating two classes. Trajectories have excessive distances between two frames, which obviously can not be motions from faces. Some trajectories with an extent too smaller are considered as a trajectory fragment. So we pre-filter out those trajectories with these two unreasonable features.

Table 4 .

 4 1 shows the comparison between two Kalman filters. We can see that compared to the original one, when face scale increases, the error of our Kalman filter decreases more. In other words, our Kalman filter works more accurately when face scales increase.

	Index	Video Part 1		Video Part 2	
		Face	ω	Face	ω
		Scale		Scale	
		Range		Range	
	1	45∼89	1	89∼117	0.67
	2	41∼69	0.83 69∼88	0.5
	3	33∼65	0.92 65∼92	0.67

Table 4

 4 

.1: Comparison between two Kalman filters

  They are sorted into three categories: upper face AU, lower face AU and Miscellaneous AU. The first category includes AUs named Inner Brow Raiser (1), Outer Brow Raiser (2), Brow lowerer (4), Upper Lid Raiser (5), Cheek Raiser (6), Lid Tightener (7), Eyes Closure (43), Blink (45), Wink (46). The second category includes AUs named Nose Wrinkler (9), Upper Lip Raiser (10), Nasolabial Fold Deepener (11), Lip Corner Puller (12), Cheek Puffer (13), Sharp Lip Puller, Dimpler (14), Lip Corner Depressor (15), Lower Lip Depressor (16), Chin Raiser (17), Lip Puckerer (18), Lip Stretcher (20), Lip Funneler (22), Lip Tightener (23), Lip Presser (24), Lips Part (25), Jaw Drop (26), Mouth Stretch(27) and Lip Suck[START_REF] Sandwell | Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter Data[END_REF]. The third category includes Lips Toward Each Other (8), Tongue Show(19),

	Neck Tightener (21), Jaw Thrust (29), Jaw Sideways (30), Jaw Clencher (31), Lip
	Bite (32), Blow (33), Puff (34), Cheek suck (35), Tongue Bulge (36), Lip Wipe (37),

X. Zhao, E. Dellandréa, L. Chen: An Unified Probabilistic Framework for Automatic 3D Facial Expression Analysis based on a Bayesian Belief Inference and Statistical Feature Models, submitted to Pattern Recognition.
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Chapter 3. 3D Facial Expression Recognition face regions (segmented by manual landmarks) for facial expression representation.

Our average recognition rate (75.3%) is comparable to the average recognition rate (77.8%) using the same classifier (SVM) in their method. Because they have not provided the confusion matrix on recognizing the six universal expressions using the primitive surface feature and a SVM classifier, we can only provide their confusion matrix result in Table 3.5 obtained by a combination of their proposed feature and a LDA classifier. This classifier performs better than SVM, which achieves an average recognition rate of 83.6%. By comparing the two confusion matrix, we can see that our recognition rates for identifying anger and fear are quite lower than theirs.

However, the recognition results for other expressions is better, especially for disgust, sadness and surprise. Fig. 3.15 illustrates some failure cases. The distributions of the proposed features (extracted with the radius of 11mm) are quite similar between the left column and the right column. This suggests that the major reason for the significant performance drops for anger and fear compared to [Wang et al. 2006] is the lack of discriminant power of the expression description for these two expressions.

Table 3.13 lists several recognition results in the literature using the same database. Among them, [Tang & Huang 2008a] achieves the best average recognition rate of 94.7%, which selects good features from all distances between 83 landmarks by Adaboost algorithm. However, this study requires a neutral face from each subject for distance normalization and thus is subject biased. The recognition rates of other works are reported between 83% and 90% using manual landmarks.

Chapter 3. 3D Facial Expression Recognition probability of the ith subject and P (X|p i S ) is the conditional probability of X given the state of the ith subject. When all tested subjects perform the same number of expressions (as it is the case for the available face databases), P (X|p i S ) and P (p i S |e p S ) follow an uniform distribution. Thus, P (X|e p ) also follows an uniform distribution.

In other cases, the computation of P (p i S |e p S ) can be based on face recognition approaches while P (X|p i S ) can be computed either from expression probability distribution in databases, or in a realistic situation, from the frequency of each expression appearing on subjects' face in a period of time in daily life.

Therefore, for a given face κ, eq. 3.8 can be rewritten as follows:

where e κ refers to observations from the face κ. Thus, the belief for each expression state is computed from e κ and the state holding the highest belief is considered as the most probable expression (or AU) of the face κ, as in eq. 3.13.

Our BBN is derived from the Bayesian Belief Network in [START_REF] Duda | [END_REF]], a general example of which is presented in section 3.5.1.1. However, the method to obtain P (e c l |X) has to be designed for our specific problem. In our case, we propose to use a statistical feature model (SFM) to estimate P (e c l |X) as in the following section.

Belief computation for BBN

To know the beliefs for the X node, we need to estimate P (e c l |X) for each child node, which is computed based on a statistical feature model (SFM) method. SFMs are built for all features in an uniform manner. Specifically, given a training set for the feature F l , we divide it into N e (number of expressions or AUs) subsets containing the corresponding faces. For each subset i x , Principle Component Analysis (PCA) is applied to learn the variation modes of the feature under the i x expression, where 3.12: Confusion Matrix of the expression recognition. Left value on each cell is the result based on manual landmarks and right value is the result based on automatic landmarks. Table 3.12 contains the average recognition rates for the six universal expressions based on manual landmarks (first value in each cell) and by the fully automatic approach (second value in each cell), using the combination of all features (M+T+Ge).

The average recognition rate is 89.2% based on manual landmarks and 84.9% for automatic ones. The decrease is mainly due to localization errors for automatic landmarks. Most of the expressions are indeed identified with high accuracy in both tests, while anger and fear have comparatively lower recognition rates. Anger is 

Face tracking

Existing trackers usually track objects without large scale changes. However, our system faces the difficulties of drastic face scale changes in the scene. Thus, we make an improvement on the original Kalman filter to track objects more accurately under this situation. Face occlusion is another problem we aim to solve. By the prediction of face position from Kalman filter, we can continue tracking the occluded faces 

Scale invariant Kalman filter

In the scenes where faces move towards a camera, an expansion on the face scale is inevitable. As a consequence, faces seem to move faster when they are near a camera in a video. This phenomenon may change the evaluation of movements and introduce process noises into Kalman filter. As shown in fig. 4.2a, the red line is a face's trajectory moving towards the camera O, and the red points are its positions in image sequence with the same time interval. After projected into camera coordinate system, the movement changes from uniform motion (points along the trajectory) to variable motion (points on X axis). This variable motion requires a more complicated movement model than the linear one commonly used in Kalman filter, which is hard to develop.

However, the complexity can be reduced as follows. We consider that face movements with scale changing in a video is "2.5D" movements through image planes, planes vertical to the camera optical axis. Face scales imply some information on Chapter 4. A minor contribution: People Counting based on Face Tracking algorithm, the face positions are always predicted no matter the face is occluded or not. If the face is really occluded, we assume the face is at the prediction position.

The prediction and the assumption are always made until the face appears again or the face has not been detected for 20 frames consecutively.

Trajectory analysis and people counting

We have based people counting on classifying potential face trajectories. When trajectories are sent from the tracking module, the counting module is activated.

Trajectories caused by false face detection or tracking fragments, meaning that a single face trajectory has been divided into two separated trajectories, are also sent to this module. It is necessary to distinguish them from true trajectories. Since true ones reflect real face movements in the scene, we take the advantage of face moving pattern which is decided by the scene context. An angle histogram featuring the moving direction of a trajectory is used. For one trajectory, its directions in each step are calculated to build an angle histogram, which consists of 36 bins with a 10 degree span for each bin. The value of each bin is calculated for the trajectory T as (4.7).

where, δ is the Kronecker Delta function, b is the function projecting degree κ into direction feature space and C is the factor for normalizing the sum of all J u to 1, u ∈ [1, 2..., 36]. n is the number of bins.

In order to measure the similarity between two groups of J u from two trajectories, the Earth Mover's Distance (EMD) [START_REF] Rubner | [END_REF]] is used. It is more efficient than other distances because it evaluates the similarity of histogram shapes rather than the similarity between their corresponding bins. 
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