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Resumé

Cette thèse de doctorat est dédiée à l’analyse automatique de visages 3D, incluant

la détection de points d’intérêt et la reconnaissance de l’expression faciale. En

effet, l’expression faciale joue un rôle important dans la communication verbale

et non verbale, ainsi que pour exprimer des émotions. Ainsi, la reconnaissance

automatique de l’expression faciale offre de nombreuses opportunités et applications,

et est en particulier au coeur d’interfaces homme-machine "intelligentes" centrées

sur l’être humain. Par ailleurs, la détection automatique de points d’intérêt du

visages (coins de la bouche et des yeux, ...) permet la localisation d’éléments du

visage qui est essentielle pour de nombreuses méthodes d’analyse faciale telle que

la segmentation du visage et l’extraction de descripteurs utilisée par exemple pour

la reconnaissance de l’expression. L’objectif de cette thèse est donc d’élaborer des

approches de détection de points d’intérêt sur les visages 3D et de reconnaissance de

l’expression faciale pour finalement proposer une solution entièrement automatique

de reconnaissance de l’activité faciale incluant l’expression et les unités d’action (ou

Action Units).

Dans ce travail, nous avons proposé un réseau de croyance bayésien (Bayesian

Belief Network ou BBN) pour la reconnaissance d’expressions faciales ainsi que

d’unités d’action. Un modèle statistique de caractéristiques faciales (Statistical Fa-

cial feAture Model ou SFAM) a également été élaboré pour permettre la localisation

des points d’intérêt sur laquelle s’appuie notre BBN afin de permettre la mise en

place d’un système entièrement automatique de reconnaissance de l’expression fa-

ciale. Nos principales contributions sont les suivantes. Tout d’abord, nous avons

proposé un modèle de visage partiel déformable, nommé SFAM, basé sur le principe

de l’analyse en composantes principales. Ce modèle permet d’apprendre à la fois les

variations globales de la position relative des points d’intérêt du visage (configura-

tion du visage) et les variations locales en terme de texture et de forme autour de
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chaque point d’intérêt. Différentes instances de visages partiels peuvent ainsi être

produites en faisant varier les valeurs des paramètres du modèle. Deuxièment, nous

avons dévoloppé un algorithme de localisation des points d’intérêt du visage basé sur

la minimisation d’une fontion objectif décrivant la corrélation entre les instances du

modèle SFAM et les visages requête. Troisièmement, nous avons élaboré un réseau

de croyance bayésien (BBN) dont la structure décrit les relations de dépendance

entre les sujets, les expressions et les descripteurs faciaux. Les expressions faciales

et les unités d’action sont alors modélisées comme les états du noeud correspondant

à la variable expression et sont reconnues en identifiant le maximum de croyance

pour tous les états. Nous avons également proposé une nouvelle approche pour

l’inférence des paramètres du BBN utilisant un modèle de caractéristiques faciales

pouvant être considéré comme une extension de SFAM. Finalement, afin d’enrichir

l’information utilisée pour l’analyse de visages 3D, et particulièrement pour la re-

connaissance de l’expression faciale, nous avons également élaboré un descripteur

de visages 3D, nommé SGAND, pour caractériser les propriétés géométriques d’un

point par rapport à son voisinage dans le nuage de points représentant un visage

3D.

L’efficacité de ces méthodes a été évaluée sur les bases FRGC, BU3DFE et

Bosphorus pour la localisation des points d’intérêt ainsi que sur les bases BU3DFE

et Bosphorus pour la reconnaissance des expressions faciales et des unités d’action.

Mots-clés : Visage 3D, reconnaissance de l’expression faciale, reconnaissance des

unités d’action, localisation de points d’intérêt, modèle statistique de caractéris-

tiques faciales, réseau de croyance bayésien.
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Abstract

This Ph.D thesis work is dedicated to automatic facial analysis in 3D, including

facial landmarking and facial expression recognition. Indeed, facial expression plays

an important role both in verbal and non verbal communication, and in express-

ing emotions. Thus, automatic facial expression recognition has various purposes

and applications and particularly is at the heart of "intelligent" human-centered

human/computer(robot) interfaces. Meanwhile, automatic landmarking provides a

prior knowledge on location of face landmarks, which is required by many face anal-

ysis methods such as face segmentation and feature extraction used for instance for

expression recognition. The purpose of this thesis is thus to elaborate 3D landmark-

ing and facial expression recognition approaches for finally proposing an automatic

facial activity (facial expression and action unit) recognition solution.

In this work, we have proposed a Bayesian Belief Network (BBN) for recognizing

facial activities, such as facial expressions and facial action units. A Statistical

Facial feAture Model (SFAM) has also been designed to first automatically locate

face landmarks so that a fully automatic facial expression recognition system can

be formed by combining the SFAM and the BBN. The key contributions are the

followings. First, we have proposed to build a morphable partial face model, named

SFAM, based on Principle Component Analysis. This model allows to learn both

the global variations in face landmark configuration and the local ones in terms of

texture and local geometry around each landmark. Various partial face instances

can be generated from SFAM by varying model parameters. Secondly, we have

developed a landmarking algorithm based on the minimization an objective function

describing the correlation between model instances and query faces. Thirdly, we

have designed a Bayesian Belief Network with a structure describing the casual

relationships among subjects, expressions and facial features. Facial expression or

action units are modelled as the states of the expression node and are recognized
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by identifying the maximum of beliefs of all states. We have also proposed a novel

method for BBN parameter inference using a statistical feature model that can be

considered as an extension of SFAM. Finally, in order to enrich information used

for 3D face analysis, and particularly 3D facial expression recognition, we have also

elaborated a 3D face feature, named SGAND, to characterize the geometry property

of a point on 3D face mesh using its surrounding points.

The effectiveness of all these methods has been evaluated on FRGC, BU3DFE

and Bosphorus datasets for facial landmarking as well as BU3DFE and Bosphorus

datasets for facial activity (expression and action unit) recognition.

Keywords: 3D face, facial expression recognition, action unit recognition, face

landmarking, statistical facial feature model, Bayesian belief network.
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Chapter 1

Introduction

1.1 Research topic

Human face contains important and rich visual information for identification and

communication, particularly for expressing emotion. Thus, analysing human face

benefits a wide variety of applications from public security to personal emotion

understanding, and from human computer interface (HCI) to robotics.

A problem of interest dealing with face analysis is facial expression recognition.

Indeed, the traditional HCI that neglects facial expression excludes important in-

formation which can stimulate computer/robot to initialize proactive and socially

appropriate behaviour during the communication process. This interaction between

human and computers/robots is computer-based. It emphasizes the transmission of

explicit information from texts, voices and gestures but ignores implicit information

about the user. However, studies on human interaction paradigm suggest that facial

expression contributes more than 50 percent to the effect of the spoken message as

a whole while verbal part of a message contributes less than 10 percent to the effect

of the message. Moreover, facial expression is one of the bases for understanding

human emotional state, which is expressed through the contraction of face muscles

resulting in facial appearance and geometry changes. Therefore, facial expression

is an important cue for understanding emotions and its automatic recognition is a

fundamental step for elaborating "intelligent" human/computer interactions.

Among various aspects of face analysis, we mainly focus on face landmarking and

facial expression recognition problems in 3D. Indeed, landmarking, which consists

in automatically detecting points of interest on the face, is a fundamental step for

further processing and is an important part in an automatic facial analysis system,
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particularly for facial expression recognition which is the second important contri-

bution of our work. Moreover, we have proposed contributions related to new 3D

face features, and to face tracking in 2D videos for people counting.

1.2 Problems and objective

Since images and videos can be easily accessed, 2D face analysis has been at the heart

of many research works for several years, such as detection, tracking, recognition

and expression recognition. However, head pose and illumination variations impose

strong hurdles on these problems. Recently, 3D face has emerged as a promising

solution in face processing and analysis. There are several reasons that the 3D face

has gained many interests. Firstly, 3D facial geometry is invariant to pose and illu-

mination conditions so that exploitation of 3D geometry can tackle various problems

encountered by 2D face analysis. Secondly, 3D face carries ample information on

both geometry and texture. This helps to improve the recognition accuracy and the

analysis of subtle facial motions. Finally, exploring the relationship between texture

and geometry of 3D face provides auxiliary means for 2D face analysis, making it

possible to reconstruct 3D shape from 2D face.

While 3D faces are theoretically reputed to be insensitive to lighting condition

changes, they still require to be pose normalized and correctly registered for further

face analysis. As most of the existing registration techniques assume that some 3D

face landmarks are available, a reliable localization of them is capital. There exist

many landmarking methods in 2D, such as PDM, ASM, AAM and CLM, which

can be applied to the texture maps of 3D faces. Landmarking on 3D faces is then

realized by mapping those 2D points to 3D face meshes. However, landmarking

directly on texture of 3D faces still encounters the pose and lighting problems.

Moreover, 3D face scans synthesized from stereovision systems generally do not

include this kind of mapping. Thus, most of existing 3D landmarking methods are

based on 3D geometry. They obtain a high accuracy when locating shape-salient

landmarks like nose tip. Unfortunately, the accuracy dramatically decreases when

they attempt to locate other landmarks such as mouth corners or eyebrow corners,
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which either are distributed on non-rigid regions of face or do not have salient local

shape. Consequently, the number of landmarks provided is limited and the locating

accuracy is not robust to conditions that cause changes on face geometry, such as

expression and occlusion. Therefore, our objective in this work is to develop an

approach robust to expression and occlusion making use of both shape and texture

properties so that a larger number of shape-salient and non-shape-salient landmarks

can be located.

Compared to 2D methods, facial expression analysis in 3D is more promising be-

cause 3D faces carry rich information and they are insensitive to lighting and head

pose conditions. This explains the more recent significant increase in the number

of studies dealing with 3D expression recognition. These studies are either based

on facial feature or based on deformable face models, both of which have their

own drawbacks. On the one hand, feature based approaches generally rely on a

large number of landmarks which are used either for feature extraction or for face

segmentation. Most of their performance highly depends on the landmark preci-

sion but automatically located landmarks do not have a sufficiently high precision.

Therefore, these approaches require manually located landmarks and are not suit-

able for automatic systems. On the other hand, model based approaches deform

3D deformable models to fit testing faces by minimizing energy functions on face

texture and/or geometry and recognize expression using fitted model parameters.

This limits the usage of those interesting features which have better discrimination

power on expression to enhance the recognition results. Therefore, our goal is to

propose an efficient approach that is applicable to real world use cases. To do so,

three requirements should be fulfilled: being robust to the imprecision of automati-

cally located landmarks, being easily extended to recognize more expressions other

than the universal expressions, and being flexible to integrate new features easily to

enrich the face knowledge for better recognition when more expressions other than

the six universal expressions or facial Action Units are considered.

3
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1.3 Our approach

Human face properties are carried by rigid parts corresponding to the skeleton and

by non-rigid parts corresponding to face muscles whose configuration mainly depends

on emotion. Since the variations of these properties influence both face shape and

texture, the problem of interest turns to be how we can learn these variations and

apply them to the face analysis. Statistical models have been widely used for this

purpose, which learn the major variations of face by Principle Component Analysis

(PCA) and synthesize new face instances by a combination of learnt variation modes.

This process can be understood as the construction of a face space, whose bases are

eigenvectors of variations from PCA and new face instances can be associated with

a point in this space. Previous statistical models of 3D faces are generally built

on the whole face, such as the 3D Morphable Model. The drawback is that they

cannot be properly fitted into new face scans when faces are partially occluded and

thus have local shape deformations. In order to solve this problem, we propose in

this thesis to build statistical face models from local regions configured by a global

morphology, and apply them to face landmarking and expression recognition.

Specifically, for face landmarking, to overcome the accuracy decrease when locat-

ing non shape-salient landmarks, we consider both geometry and texture information

so that all landmarks can be featured prominently. The statistical models are learnt

from training faces with all kinds of the universal expressions in order to include the

expression variations. By doing so, face instances with expression can be generated

for landmarking on those faces with expression. Moreover, our statistical models

are built from local regions so that it is still applicable for partially occluded faces

by fitting itself based on unoccluded face regions.

In order to develop a facial expression recognition method being robust to au-

tomatic landmark errors, features are extracted from local shape and local texture

around landmark locations. A graphical model Bayesian Belief Network (BBN) has

been designed to estimate the emotion states or facial action units. The structure of

this BBN allows integrating different features and expressions in a flexible manner.

The BBN parameters are computed thanks to our proposed statistical feature mod-
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els. By combining this graphical model with our automatic landmarking approach,

we are able to implement a fully automatic and efficient system for facial expression

recognition.

1.4 Our contributions

These two main contributions of this PhD thesis involve 3D face landmarking and 3D

facial expression recognition. Moreover, we also contribute to new 3D face features,

and to face tracking in 2D videos containing drastic changes on face scale for people

counting.

3D face landmarking: Landmarking is essential for most of the face processing

and analysis methods. We target on locating a large number of feature points on

3D faces under challenging conditions, i.e., expression and occlusion, so that auto-

matically detected landmarks can be used for facial expression analysis. We have

intentionally chosen those landmarks that can be used for face registration and facial

expression recognition. To do so, we have proposed a 3D statistical facial feature

model (SFAM), which learns both global variations in 3D face morphology and lo-

cal ones around each landmark in terms of local texture and geometry respectively

by PCA. By varying control parameters of their corresponding sub-models in the

SFAM, we can thus generate different 3D partial face instances. The fitting of SFAM

into an input face is based on an optimization of an objective function describing the

correlation between model instances and faces. It also contains a set of parameters

modeling local occlusion for which we proposed an automatic detection.

Facial expression recognition: In order to flexibly add expression/action unit

classes and combine features from different representations (morphology, texture and

shape) to improve the recognition rate, we have designed a Bayesian Belief Network

(BBN) for 3D facial expression recognition. The structure of the BBN describes the

casual relationships among subject, expression and facial features. Facial expression

or action unit are modeled as the states of the expression node and are recognized

by identifying the maximum of beliefs of all states that are inferred from the feature

evidence on the target face. Different from the other graphic models for expression
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analysis, we have proposed a novel method to compute BBN parameters based

on a statistical feature model, which can be considered as an extension of SFAM.

Systematical studies have been conducted to evaluate the effectiveness of the BBN

under different configurations as well as comparisons with other classifiers like SVM

and SRC. The combination of BBN used for expression recognition and SFAM used

for landmarking provides a fully automatic facial expression system that is applicable

to real world use cases.

Other contributions dealing with face analysis:

New Feature for 3D facial expression: Pose-invariant features for 3D faces can

be a shortcut for face analysis because it avoids the procedure of face alignment.

However, previous proposed curvature based features, such as shape index and HK

curvature, are sensitive to facial surface noise. We have proposed a novel feature

which derives only from point clouds of 3D faces to describe the local shape prop-

erties. It is easy to be implemented and can be used to enrich information used for

face analysis.

Face tracking and people counting: A problem of interest regarding face analysis

in image sequences is face tracking, which has numerous interesting applications

such as people counting, the problem we have addressed in this work. In order

to increase the face tracking accuracy under the scenarios where face scale varies

dramatically, such as faces moving towards the camera, we have improved Kalman

filter by integrating 3D information to better predict the face position. The improved

Kalman filter is further combined with a kernel based object tracking algorithm so

that the combined tracker is more robust to head pose variation and illumination.

This tracker is initialized by an Adaboost face detector and outputs tracked face

trajectories. People counting is then performed thanks to a trajectory classification

algorithm we proposed that is based on the histogram of trajectory angles.

1.5 Organization of the thesis

This thesis is organized as follows:

Chapter 2 focuses on facial landmarking. We first introduce the background
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about facial landmarking. Both facial landmarking methods in 2D and 3D are pre-

sented in the related works section. Then, we propose our 2.5D facial landmarking

approach in the following section. Section 2.4 presents the SFAM with a fitting al-

gorithm for 3D face landmarking. An occlusion detection and classification method

is also proposed here so that this approach is applicable to landmarking on partially

occluded faces. We draw our conclusion on facial landmarking at the end of this

chapter.

Chapter 3 covers 3D facial expression recognition. We start the chapter by first

introducing the development of facial expression analysis and motivations for facial

expression recognition. Section 3.2 presents the emotion theories, facial expression

properties and facial expression interpretations. We make a review of the state-of-

the-art dealing with the classification of facial expressions in both 2D and 3D. In

section 3.4, we present a 3D facial expression recognition approach based on a local

geometry-based feature. This feature, named SGAND, is proposed in conjunction

with a pose estimation algorithm for 3D faces since the face direction is required

for the feature extraction. Section 3.5 presents our graphical model, BBN, for rec-

ognizing facial expressions and AUs with an uniform structure. A fully automatic

facial expression recognition system is also presented in this section. Conclusions

are drawn in section 3.6.

Chapter 4 presents a minor contribution: a people counting system which is

based on face detection and tracking. The related works and the system framework

are introduced in sections 4.1 and 4.2. Section 4.3 presents our face tracker whereas

section 4.4 describes the people counter. Experimental results are given in section

4.5 and a conclusion is drawn in section 4.6.

Chapter 5 summarizes the main thesis results and contributions. Finally further

research suggestions are given.
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Chapter 2

3D Face Landmarking

2.1 Introduction

A problem of interest concerning face analysis is landmarking which consists in

locating facial landmarks. Facial landmarks are points of correspondence on faces

that matches between and within populations [Mardia & Dryden 1998]. They have

consistent reproducibility even in adverse conditions such as facial expression or

occlusion [Farkas 1994]. These facial landmarks generally include nose tip, inner

eye corners, outer eye corners, mouth corners, etc. They are not only characterized

by their own properties in terms of local texture and local shape but also by their

structural relationships which result from the global face morphology.

Uses of landmarks for face analysis are numerous and include important applica-

tions such as face alignment, registration, reconstruction, recognition and expression

recognition. For example, irises are often located in 2D face images for normalizing

the face scale and in-plane rotation; the triangle constructed by the nose tip and

the inner corners of eyes can be used for aligning 3D faces; a set of landmarks are

generally required from 2D face images and their corresponding peers on 3D face

models for 3D face reconstruction. Furthermore, various features are extracted such

as Gabor response and Local Binary Pattern for face recognition and facial expres-

sion recognition, either around facial landmarks or on face regions segmented by

landmarks. An example of face alignment using landmarks on 2D face images is

illustrated in Fig.2.1 .

2.5D/3D faces have recently emerged as a major solution in face processing and

analysis to deal with pose and lighting variations [Bowyer et al. 2006]. A 2.5D face is

a simplified three-dimensional (x, y, z) face representation that contains at most one
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Figure 2.1: Face Alignment using landmarks [Huang et al. 2007]

depth (z) value for every point in the (x, y) plane. While 2.5D/3D face models are

theoretically reputed to be insensitive to lighting condition changes, they still require

to be pose normalized and correctly registered for further face analysis, such as 3D

face matching [Lu et al. 2006, Zeng et al. 2008], tracking [Sun & Yin 2008], recog-

nition [Gokberk et al. 2008] [Kakadiaris et al. 2007], and facial expression analy-

sis [Niese et al. 2008]. As most of the existing registration techniques assume that

some 2.5D/3D face landmarks are available, a reliable localization of these facial

landmarks is essential.

When automatically locating landmarks on faces, approaches generally face the

challenges of head pose, illumination, facial expression and occlusion. Head pose

variations not only influence the facial appearance in images or video sequences but

also cause self-occlusion where some landmarks are hidden. Illumination changes,

including variations of lighting intensity and lighting source position, affect either

pixel values over the whole face or those on face parts. Facial expressions due to

facial muscle contractions cause non rigid deformations on face texture and shape,

especially in the mimic parts of faces such as mouth regions. Occlusion is usually

caused by face clusters, hand gesture or accessories such as glasses and masks. Some

landmarks may become hidden and thus changes may appear concerning the local

texture and shape around other landmarks. Although some approaches handle the

variations of head pose and illumination in their learning stages for a better precision

and robustness, these two problems are still challenging in 2D environment. Thus,

3D faces have gained interest since their processing and analysis may have the

ability to deal with pose and lighting variations. Indeed, landmarks on 3D faces can

be located through the face mesh analysing using curvature information or other

geometry-based features. However, expression and occlusion remain open problems

10



Chapter 2. 3D Face Landmarking

for landmarking on 3D faces.

In this chapter, we focus on locating facial landmarks on 3D face scans, includ-

ing those affected by the presence of facial expression and/or occlusion. We are

convinced that local feature information and the structural relationships are jointly

important for reliable face landmarking. Thus, contrary to the existing methods

which rely on geometric information for 3D landmarking, we propose to solve the

problem with statistical approaches using both local shape and texture of 3D faces

as well as their global structure.

The remainder of this chapter is organized as follows. A review of landmarking

algorithms in 2D and 3D is presented in section 2.2. Then, we present our statistical

approach for landmarking on 2.5 faces in section 2.3. In section 2.4, we describe

our statistical facial feature model and its application for locating landmarks on 3D

faces with expression and occlusion. Finally we draw a conclusion in section 2.5.

2.2 Related works

Even if our work is focused on 3D face landmarking, a review of approaches de-

veloped in 2D is essential to understand their foundations and challenges that ex-

tension studies in 3D can aim at. Thus, current 2D face landmarking approaches

are presented in subsection 2.2.1 followed by subsection 2.2.2 where state-of-the-art

approaches for 3D face landmarking are introduced.

2.2.1 Face landmarking in 2D

Face landmarking has been extensively studied on 2D face images. These approaches

can be divided into feature-based and structure-based categories.

2.2.1.1 2D face databases

2D landmarking approaches are tested on a variety of datasets due to the different

usage of landmarks and different pose, illumination, scale conditions. Thus, it is

hard to directly compare the efficiency of landmarking methods.

11
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Databases for 2D face analysis are dedicated to different research fields, mainly

including face detection, face tracking, face recognition, and facial expression

recognition. It is hard to include all datasets here so that we only present

some representative works. MIT Face Database [Database a], FERET Database

[Phillips et al. 1998], Yale Database [Database b] are among those mainly for face

detection; DXM2VTS [Teferi & Bigun 2007], A Video Database of Moving Faces

and People [O’Toole et al. 2005] for face tracking; FERET [Phillips et al. 1998],

Yale Database [Database b] for face recognition; Cohn-Kanade AU-Coded Facial Ex-

pression Database [Kanade et al. 2000], PIE database [Sim et al. 2003] and JAFFE

database [Lyons et al. 1998] for facial expression analysis. A detailed description on

these datasets and more datasets on 2D face analysis can be found following the

link: http://www.face-rec.org/databases/.

2.2.1.2 Feature-based approaches

Feature-based approaches associate features extracted around landmarks in order

to relocate them in new images. Features used for representing point properties

include color [Zhao et al. 2008] [Talafova & Rozinaj 2007] , local intensity value

[Beumer et al. 2006], Gabor wavelets [Feris et al. 2002] [Celiktutan et al. 2008]

[Shih & Chuang 2004], gradient orientations [Yun & Guan 2009], discrete cosine

transform (DCT) [Akakin et al. 2007], Scale-Invariant Feature Transform (SIFT)

[Asbach et al. 2008], Speed Up Robust Features (SURF) [Kim & Dahyot 2008], etc.

Landmarks are searched either based on some priori knowledge on face or based

on two-class classifiers and similarity scores. The locating results may be further

constrained or refined by geometrical information, like line properties between land-

marks (distance or angles) or a global geometrical model.

These feature-based approaches can be classified into three categories:

• Prior knowledge based strategies: [Zhao et al. 2008] uses the prior geometry

distances between eye regions as well as between the month region and eye

regions. In this approach, eye centers are located by calculating the sum of

RGB components difference and the mouth is supposed to be in a region lo-

12



Chapter 2. 3D Face Landmarking

cated by a certain distance below the eye centers. The mouth center is then

located from color distribution. An correction rate of 95.52% for locating eye

centers and mouth center is reached. When the Euclidean distance between

an automatic eye center and its corresponding manual eye center is less than

0.25 of the Euclidean distance (pixel) between two manual eye centers (drl),

automatic eye centers are considered as correctly detected. When the Eu-

clidean distance between an automatic mouth center and the manual mouth

center is less than 0.12 of drl, automatic mouth center is considered as cor-

rectly detected. [Talafova & Rozinaj 2007] search landmarks at the assumed

subregions in a face image using human skin chromaticity and face morpho-

logical characteristics. Author gives the average locating errors of 5 pixels

without indicating the resolution of testing face images. [Wang et al. 2009]

uses the horizontal and vertical projection curves of gray values for locating

eye, nose and mouth. The approach has been tested on JAFFE dataset with-

out providing quantitative analysis on landmarking result.

• Similarity score based strategies: [Feris et al. 2002] performs a brute-force

search within a limited window for a position that minimizes the score com-

puted in a wavelet subspace. An detection rate over 94% for eight landmarks

(four eye corners, two nostrils and two mouth corners) has been reached with

an precision of 3 pixels on selected images (resolution of 640*480) from the Yale

and FERET dataset. In [Beumer et al. 2006], the likelihood that a scanned

pixel is the position of the landmark is evaluated by Approximate Maximum

Discrimination Analysis (AMDA) using the texture values in a region sur-

rounding landmarks. They name this method ’the MLLL-BILBO combina-

tion’. Tested on the texture images from part of FRGC dataset, ’the MLLL-

BILBO combination’ achieves an average errors of 0.042 for right eye, 0.046

for left eye, 0.058 for nose and 0.037 for mouth. This error is computed as

the Euclidean distance (pixel) between automatic landmark and its manual

equivalent divided by the inter-ocular distance. In [Akakin et al. 2007], each

facial landmark is selected from the peaks in the corresponding matching score

13
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map, which is computed by correlating DCT template with the DCT vector

of the test block. Tested on texture images from FRGC dataset, at least

83% of outer eye corners, 90% of nose tip and 70% of mouth corners are

correctly detected. The correct detection is evaluated as if the Euclidean dis-

tance in terms of pixels of an automatic landmark from the true position is

less than 0.1 of the inter-ocular distance. [Asbach et al. 2008] compares po-

tential landmarks with vertices on a normalized face mesh using SIFT and

SURF description. They conclude that scale invariant Harris interest points

with SURF descriptions are the most promising combination for locating land-

marks. [Celiktutan et al. 2008] models facial landmarks redundantly by four

different feature, i.e., DCT, Non-negative Matrix Factorization, Independent

Component Analysis and Gabor Wavelets. Matching scores are later fused for

selecting candidate points. over 94.8% of inner eye corners, over 93.8% and

89.7% of outer eye corners and inner eyebrow corners are correctly detected

using a criterion of 0.1 of inter-ocular distance for correct detection.

• Classifier based strategies: another method presented in [Beumer et al. 2006]

uses the Viola-Jones detector to classify a combination of Haar-like features

on local texture around landmarks. Tested on the texture images from part

of FRGC dataset, the approach achieves an average errors of 0.032 for right

eye, 0.033 for left eye, 0.063 for nose and 0.041 for mouth. This error is com-

puted as the Euclidean distance (pixel) between automatic landmark and its

manual equivalent divided by the inter-ocular distance. Compared with ’the

MLLL-BILBO combination’ presented in the same paper, Viola-Jones detec-

tors perform better on upper part of face but worse on lower part of face. In

[Hanif et al. 2008], neural networks are trained to locate specific landmarks

such as eyes and mouth corners in orientation-free face images. They report

a mean location error of 0.12 over four landmarks. The normalized localiza-

tion error is defined as the mean Euclidean distance between the detected

landmark and the equivalent normalized with respect to the inter-ocular dis-

tance. In [Yun & Guan 2009], Adaboost classifiers are trained to classify gra-
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dient orientation histograms calculated from the direction of interest points

in their neighborhood. Tested on 480 image sequences of 120 subjects from

Cohn-Kanade dataset and another database, their approach achieves a good

performance of 90.69% average recognition rate for landmarking 26 landmarks

with a criterion of 5 pixels between automatic landmarks and ground truth

with a image resolution of 640*480. [Kim & Dahyot 2008] uses Support Vec-

tor Machines (SVM) to classify SURF local descriptors of landmarks. Tested

on their own collected dataset, they achieve correct detection rates over 90%

for detecting eye and mouth and 72% for detecting nose on images (resolution

of 130*140) without providing a clear definition on correct detection.

The located landmarks or candidates may be further filtered or constrained

by geometry information. In [Beumer et al. 2006], a shape correction algorithm is

performed after AMDA to relocate those landmarks which do not comply with

the constrains in a pre-trained shape model. In [Akakin et al. 2007], a prob-

abilistic graph model chooses the best combination of located landmarks. In

[Celiktutan et al. 2008], a structural completion method uses a graph composed

of 12 landmark points to recover the missing landmarks. [Kim & Dahyot 2008]

eliminates the wrongly classified descriptors based on geometrical constraints on

relationship of facial component positions.

2.2.1.3 Structure-based approaches

Structure-based approaches are usually implemented via fitting a face model com-

posed of both face shape and texture feature. Instead of extracting features from

texture or shape separately, these methods use texture and shape knowledge si-

multaneously in the locating process. There exist many popular face models or

approaches such as Active Shape Model and Active Appearance Model. Here we

review some representative studies.

• Active Shape Model (ASM): [Cootes et al. 1995] have first proposed to repre-

sent the shape of an object using landmark points and to learn shape variations

using Principle Component Analysis (PCA). Each landmark is associated with
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the corresponding local texture. ASM is fitted by minimizing an objective

function based on the sum of local texture similarity. [Park & Shin 2008] uses

ASM to detect four landmarks for facial recognition. To apply ASM which

is learnt from objects with great shape variations, [Xu & Ma 2008] introduce

a Procrustes analysis technique to match feature landmark points in training

and strengthening the edge in searching face profile. Tested on 240 images with

a resolution of 640*480, over 95% for all 58 landmarks are correctly detected

without detailing the correction criterion. For more accurate extraction of

feature, [Sun & Xie 2008] combines both the local texture constraint and the

global texture constraint in building and fitting ASM. Tested on 240 images

(resolution of 640*480) from IMM database, the average error (measured as

the Euclidean distance between an automatic landmark and its manual equiv-

alent) over all 240 images for each of 58 landmarks is between two to four

pixels in this method. [Huang et al. 2007] build separate Gaussian models for

shape components instead of using statistical analysis on the global shape so

that more detailed local shape deformations can be preserved. The nonlinear

inter-relationships among the shape components are described by the Gaus-

sian Process Latent Variable Model. Tested on 377 images (640*480) of group

1 from extended Yale Database, over 89.7% of all landmarks are localized with

a precision of 12 pixels. [Faling et al. 2009] project a 3D shape model into im-

ages during the searching process with a 3D transform method to handle the

great variance of head pose. Tested on their own dataset, the average errors

(measured as the Euclidean distance between an automatic landmark and its

manual equivalent) over all 200 images for ten landmarks is between three to

five pixels for nearly frontal face views.

• Active Appearance model (AAM): AAM, originally proposed in

[Cootes et al. 1998], learns a statistical shape model similar to ASM as

well as a model from shape-normalized texture. The two models are further

combined to form an appearance model by removing their correlations. The

searching algorithm uses the residual between the current estimation of
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appearance and the input image to drive an optimization process. Based on

AAM, [Hou et al. 2001] proposes a direct appearance model which uses tex-

ture information directly in the prediction of the shape and in the estimation

of position and appearance for faster convergence and higher accuracy. To

locate landmarks robustly against the expression changes and scale variations,

[Zhu & Zhao 2009] fits AAM with Lucas-Kanade algorithm, which minimizes

the square sum of the difference between a template and an input image

with respect to the warp parameters. They claim that about 90% of the test

images give good results for locating 60 landmarks without a definition of the

good criterion. [Yu & Yan 2009] applies AAM in automatically locating 17

landmarks for face recognition.

• Other Approaches combining local and global information: [Tu & Lien 2009]

use Singular Value Decomposition (SVD) to combine two related classes, shape

and texture, in a single eigenspace, named Direct Combined Model (DCM)

algorithm. It estimates the facial shape directly by applying the significant

texture-to-shape correlations. Tested on 450 images with resolution of 640*480

from their own database, they achieve an average error of 2 pixels for all 84

landmarks over images with the frontal pose. This average error increases

to 8 pixels when head pose varies to 35 degrees. [Cristinacce & Cootes 2008]

build a Constrained Local Model by learning global shape variations, local tex-

ture variations around landmarks, and their correlation. Correlation Meshes

describing the similarity between local instances and local regions around land-

marks are computed and used for optimizing a fitting function driven by shape

parameters. Results have proved the efficiency of CLM compared to AAM.

The fitting of this model is improved by using an optimization in the form of

subspace constrained mean-shifts [Saragih et al. 2009]. [Kozakaya et al. 2008]

proposes a weighted vector concentration approach, which integrates the global

shape vector and locally normalized Histogram of Oriented Gradients (HOG)

descriptor. Both the global and local information are combined in landmark-

ing by solving a single weighted objective function. Tested on 1918 images
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from FERET dataset, they achieve landmarking error between 0.03 and 0.07

for 14 landmarks. This error is measured as the average of Euclidean dis-

tance (normalized by inter ocular distance) between an automatic landmark

and its manual equivalent over all tested images. The mean error over all 14

landmarks is 0.05.

In order to overcome the lighting problem, the above studies perform either

an intensity normalization process [Cootes et al. 1995, Cootes et al. 1998], extract

illumination-insensitive features, such as facial component contour and corner

[Wang et al. 2009], or include illumination variations in their learnt facial mod-

els [Cristinacce & Cootes 2008]. Meanwhile, in order to overcome the head pose

problem caused by the in-plane rotation and face scale, [Celiktutan et al. 2008]

and [Xu & Ma 2008] detect landmark candidates under multi-directions and multi-

scales. However, locating landmarks remains too challenging 2D approaches when

dealing with faces with out-plane rotation and partially illuminated. Theoretically,

2D landmarking methods can be applied to 3D faces by locating landmarks on 2D

texture maps and then using correspondence from the scanner systems to map those

points onto 3D face meshes. However, due to the aforementioned limitations, dedi-

cated landmarking approaches are necessary for locating landmarks on 3D faces.

2.2.2 Face landmarking in 3D

3D face landmarking approaches can be classified into three categories: 3D face

mesh-based, 2.5D range map-based and geometry and texture combination-based

approaches.

2.2.2.1 3D face databases

Most of 3D face analysis focused on 3D face recognition. Moreover, most

of face recognition studies on 3D faces are conducted on the FRGC dataset

[Phillips et al. 2005]. Thus, as a preprocessing step for face recognition, landmark-

ing methods are often tested on this dataset. Other 3D datasets such as BU3DFE
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[Yin et al. 2006] and Bosphorus database [Savran et al. 2008] are also used for test-

ing 3D landmarking methods.

2.2.2.2 3D face mesh-based approaches

In this category, studies rely on face point cloud and triangulation.

[Conde & Serrano 2005] calculate the spin images [Johnson 1997] based on 3D face

meshes and uses Support Vector Machine (SVM) as classifiers to locate the nose

tip and inner eye points. [Xu et al. 2006] define the ’effective energy’ describing

local surface feature, and designs a hierarchical filtering scheme to filter both this

feature and a local shape statistical feature. SVM is then used to locate nose tip.

Tested on 280 scans from 3DPEF dataset, a correction rate up to 99.3% has been

achieved with a precision of 20mm on the unnormalized face scans. Nose tip is

also detected in [Bevilacqua et al. 2008] by applying a generalized Hough Trans-

form. In [Chang et al. 2006], nose tip and nose saddles are detected thanks to a

calculation of the local curvature surface. Descriptors of local shape are calcu-

lated in [Huertas & Pears 2008] from inner product of points and their local plane

normal. The search for nose tip and inner corner of eyes are based on matching

these descriptors with ones from training, constrained by a graph model. Tested

on 1507 non-normalized face scans from FRGCv2 dataset, over 90% of eye-corners

and the nose-tip are located with a precision of 12mm and 15mm. Other studies

fit a normalized face mesh with prior landmark knowledge to a new face for lo-

cating its landmarks. [Kakadiaris et al. 2007] build an annotated deformable face

model on face mesh. By fitting the model to new faces, landmarks are naturally

implied to the correspondence of the model annotation. [Irfanoglu et al. 2004] find

a dense correspondence between an annotated base mesh to new faces. A sim-

ilar surface model is built by [Hutton et al. 2003], however, their surface model

can be considered as a 3D point distribution model (PDM). A recent work done

by Nair [Nair & Cavallaro 2009] builds another 3D PDM model for face detection,

landmarking and registration. In order to be insensitive to expressions, its points

are located only in nasal and ocular regions. Tested on non-normalized face scans

from BU3DFE dataset, their methods locates inner corners of eyes (left and right),
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outer corners of eyes (left and right) and nose tip with mean errors (absolute dis-

tances between automatic landmarks and manual equivalent) of 11.89mm, 12.11mm,

19.38mm, 20.46mm and 8.83mm. Because features related to 3D face meshes are

only based on the geometry information, it is hard to distinguish geometry-non-

salient points e.g., eyebrow corners, and therefore the points that can be located are

limited. Moreover, shape variations like expression, occlusion and self-occlusion can

easily handicap this branch of landmarking approaches.

2.2.2.3 Range map-based approaches

Range maps from 3D faces can be considered as 2D images with pixel values corre-

sponding to the linear transformation of Z coordinates in 3D. Thus, besides calcu-

lating curvature and shape index, popular features in 2D, like Gabor wavelet, can

also be extracted from this representation. [Lu et al. 2004] and [Colbry et al. 2005]

first find nose tip by closest Z value to camera and then find other landmarks using

shape index within eye, mouth and chin regions. Tested on non-normalized 113

scans from their own database, the mean error for locating the five landmarks is

10mm. [Colbry & Stockman 2007] propose a canonical face depth map on range

image and locates nose tip and inner eye corners based on this representation.

[Colombo et al. 2006] and [Szeptycki et al. 2009] compute Gaussian (K) and Mean

(H) curvature for each point in range image and set threshold on curvature to

isolate candidate regions for nose tip and eye inner corners. The candidate land-

marks are further filtered according to the shape of the triangles they compose in

[Szeptycki et al. 2009]. Tested on 1600 face scans from FRGC dataset, over 99% of

the three landmarks are localized with a precision of 10mm in [Szeptycki et al. 2009].

HK curvature can also be used on range images of full 3D head scans [Li et al. 2002],

which locate six landmarks when point curvature properties fulfil a set of empirical

conditions. In [Segundo et al. 2007], nose tip, nose corners and eye corners are ini-

tially located using HK curvature and their positions are then corrected by finding

salient points on projection curves of range images. Over 99% of all these land-

marks are correctly detected. However, no specific criterion on good detection has

been provided. [D’House et al. 2007] use Gabor wavelets on range map for a coarse
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detection of landmarks and then apply Iterative Closest Points (ICP) algorithm to

enhance the location precision. They achieved 99.37% of correct nose tip location

with a precision of 10mm on FRGC v1.0 database, but their accuracy on the outer

corners of the eyes is relatively lower. [Dibeklioglu et al. 2008] propose a Gaussian

Mixture Models liked statistical model (MoFA), describing local gradient feature

distribution around each landmark. This model produces a likelihood map for each

landmark on new faces and the highest value in this map is located as landmark.

Tested on FRGC dataset, their approach achieves over 90%, 99%, 99% and 87% of

detection rates for outer eye corners, inner eye corners, nose tip and mouth corners

respectively with a precision of three pixels on texture maps (resolution of 480*640).

[Koudelka et al. 2005] develop an accurate approach by computing radial symmetry

maps, gradient and zero-crossing maps from range maps. Landmarks are chosen by

using a series of heuristic constraints. Over 97% of all five landmarks (nose tip, eye

inner corners, mouse center and sellion) are localized with a precision of 10mm on

FRGCv1 dataset. Compared with the first category, this branch of approaches can

localize more points with higher accuracy, because faces in range maps are normally

in frontal pose and facial landmarks can be represented with 2D features. Neverthe-

less, the drawbacks of these methods is their sensitivity to face scale and head pose

variations. Moreover, they have difficulty to locate non-salient points in geometry

and points in non-rigid face regions with the presence of expressions.

2.2.2.4 Approaches based on a combination of facial geometry and tex-

ture

Due to the above reasons, a single face representation may not provide enough infor-

mation for localizing some landmarks consistently. However, the perfect matching

of range map and texture map from scanner systems ensures the combination cor-

rectness of multi-representation. Accumulating evidence derived from different face

representations has the potential to make the feature extraction richer and more

robust. [Boehnen & Russ 2004] compute the eye and mouth maps based on both

color and range information and selects potential feature candidates of inner corner

of eyes, nose tip and sub-nasal. A 3D geometric-based confidence of candidates
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is computed to aid in the selection of best location. Tested on FRGC dataset,

their approach achieve 99.6% of correction location on FRGCv2 dataset without

providing a criterion for correct detection. [Wang et al. 2002] use "point signature"

representation to code face mesh as well as Gabor jets of landmarks from 2D texture

images. In [Jahanbin et al. 2008a] and [Jahanbin et al. 2008b], an extended elastic

bunch graph is proposed to locate landmarks, in which Gabor Wavelet coefficients

are used to model local appearance in texture map and local shape in range map.

Tested on ADIR dataset, their approach achieve a correct detection rate of 98% for

11 landmarks with a precision of 0.06me, where me is the inter-ocular distance in

terms of mm. In [Salah & Akarun 2006] and [Salah et al. 2007], the distribution of

Gabor response of texture images around landmarks are featured and modeled by

MoFA. 3D surface normals are used to remove illumination effects from texture im-

ages. They locate landmarks on downsampled images for a coarse locating. Tested

on FRGCv1 dataset, they achieve correct detection rate of 83.4%, 97.2%, 98% and

37.8% for outer eye corners, inner eye corners, nose and mouth corners with a pre-

cision of 3 pixels on downsampled images with a resolution of 60*80 pixels. A fine

detection can be found in [Akakin et al. 2006], where larger search regions on the

original texture images and range images are cropped to produce higher dimensional

Gabor-jets. The results prove obvious increase in locating accuracy when two stage

detection is performed. [Lu & Jain 2005] fit a statistical model constructed as the

average 3D position of landmarks based on pre-detected nose tip, and then com-

putes and fuses shape index response (range) and cornerness response (texture) in

local regions to locate seven points. They extend this method to be insensitive to

head pose variation in [Lu & Jain 2006]. Tested on non-normalized face scans from

FRGC dataset, seven landmarks are located with mean errors between 3.6mm to

7.9mm. The error is measured as the Euclidean distance (in 3D) between the au-

tomatically extracted landmarks and the manually labelled ones. These landmarks

are further tuned by Iterative Cloud Point algorithm in [Lu et al. 2006]. These

approaches demonstrate the robustness in landmarking both geometry salient and

appearance salient landmarks. However, since they extract features directly from

2D texture and range maps, pose and scale remains strong difficulties for methods
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in this category.

2.2.3 Discussion

Despite the increasing amount of related literature, face landmarking is still an

open problem. Indeed, current face landmarking techniques need to increase both

accuracy and robustness, especially in the presence of lighting variations, head pose,

scale changes, facial expressions, self-occlusion and occlusion by accessories such as

hair, moustache and eyeglasses [Salah et al. 2007]. This chapter aims at proposing

a general framework for precise 3D face landmarking robust to facial expression and

partial occlusion.

Face landmarking has been extensively studied on 2D facial texture images as

discussed in previous section. An interesting approach is 2D statistical models such

as the popular Active Appearance Model [Cootes et al. 2001] or more recently the

Constrained Local Model (CLM) [Cristinacce & Cootes 2008] which carry out statis-

tical analysis both on facial appearance and 2D shape. However, these approaches,

while working on 2D facial texture images, inherit the sensibility to lightening and

pose changes.

Works on 3D face landmarking are rather recent. Most of them

try to best embed a priori knowledge on landmarks on 3D face, com-

puting response of local 3D shape-related features, such as spin im-

age [Kakadiaris et al. 2007], effective energy [Xu et al. 2006], Gabor fil-

tering [D’House et al. 2007] [Colbry et al. 2005], generalized Hough Trans-

form [Bevilacqua et al. 2008], local gradients [Dibeklioglu et al. 2008], HK

curvature [Colombo et al. 2006], shape index [Lu et al. 2006] and curvedness

index [Nair & Cavallaro 2009], radial symmetry [Koudelka et al. 2005], etc. While

these approaches enable rather accurate shape prominent landmark detection such

as the nose tip or the inner corners of eyes, their localization precision drastically

decreases for other less prominent landmarks.

As current 3D imaging systems can deliver registered range and texture images,

a straightforward way for more discriminative local features is to accumulate ev-

idence from both the two face representations, i.e. face shape and texture. For
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instance, [Boehnen & Russ 2004] compute the eye and mouth maps based on both

color and range information. [Wang et al. 2002] use "point signature" representa-

tion coding 3D face mesh as well as Gabor jets of landmarks from 2D texture image.

In [Salah et al. 2007] [Jahanbin et al. 2008b], Gabor wavelet coefficients are used to

model local appearance in texture map and local shape in range map around each

landmark while [Lu & Jain 2006] propose to compute and fuse shape index response

(range) and cornerness response (texture) in local regions around seven landmarks.

As the combinations of candidate landmarks resulting from shape

and/or texture related descriptors are generally important, some authors

also propose to make use of structural relationships between landmarks,

for instance through heuristics [Nair & Cavallaro 2009], a 3D geometric-

based confidence [Boehnen & Russ 2004], an extended elastic bunch

graph [Jahanbin et al. 2008b], or a simple mean model constructed as the av-

erage 3D position of landmarks from a learning dataset [Lu & Jain 2005]. However,

there is no approved technique which best takes into account both configuration

relationships between landmarks and the local properties in terms of geometric

shape and/or texture around each landmark.

Few of the aforementioned studies address the issue of face landmarking in the

presence of facial expression or occlusion. [Nair & Cavallaro 2009] experiment their

3D Point Distribution Model to locate five landmarks (the two outer eye points, the

two inner eye points and the nose tip) under facial expressions with a locating accu-

racy ranging from 8.83 mm for nose tip to 20.46 mm for the right outer eye point.

However, these five landmarks are all located on face regions stable to facial expres-

sions. [Dibeklioglu et al. 2008] study 3D facial landmarking under expression, pose

and occlusion variations. However, only one landmark, the nose tip, was considered

in their work which is not sufficient for further accurate face analysis.

In this chapter, we address the facial landmarking problem in 3D with presence

of expression and occlusion, aiming at locating a sufficient number of landmarks

with good accuracy for other face analysis, especially for facial expression recogni-

tion. In order to do so, we propose a general learning-based framework for 3D face

landmarking which combines configuration relationships among the landmarks and
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their local properties of texture and geometry. Based on this principle, we propose

two approaches in section 2.3 and section 2.4 for landmarking 2.5D faces and 3D

faces respectively. Statistical face models are trained by applying Principle Compo-

nent Analysis (PCA) to face landmark configurations, local texture and local shape

around each landmark from training faces. Two different fitting algorithms are pro-

posed to fit the face models to new faces so that landmark locations can be found

by searching the closest points to known landmarks on fitted models. Provided with

3D training faces with expressions, our models are able to learn the expression vari-

ations and generate instances with these variations so that the accuracy in fitting

faces with expression can be increased. Moreover, in order to overcome the occlusion

problem, a classification system allowing to detect occluded faces and the type of

occlusion has been proposed, so that occlusion information can taken into account

during the fitting process of our second approach presented in section 2.4.

2.3 A 2.5D face landmarking method

In this section, we propose a statistical learning-based approach for 2.5D face land-

marking. Taking benefit from the rich information contained in 3D face data, our

model is built not only based on facial texture but also based on the geometry vari-

ations from a training face set. Specifically, a variety of face shape on texture maps

are analyzed and learnt as the global configuration of landmarks. Meanwhile, vari-

ations on local texture and range are also learnt from the scale-free patches around

each landmark. Thus, the statistical model is made up of a global face shape model,

a texture model and a range model. New patch instances can then be synthesized by

varying the model parameters. When fitted for a best match to a new 3D face, this

statistical model delivers the location of the landmarks on the texture map of the

input 3D face. The fitting process is the optimization of the global shape in order to

reach the highest correlation in both texture and range between local patches from

the input face and instances synthesized from our texture and range models.
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2.3.1 Methodology

2.3.1.1 Preprocessing face scans

3D face scans delivered by the current 3D imaging systems are usually noisy and

may contain holes and spikes, as shown in Fig. 2.2. In order to remove these noises,

we perform the following operations to enhance the quality of 3D face scans:

1. Median Cut: spikes are detected by checking the discontinuity of points and

are removed by the application of a median filter.

2. Hole Filling: holes are located by a morphological reconstruction and filled by

cubic interpolation.

Figure 2.2: Holes and spikes on a 3D face scan

Although faces are scanned from the frontal view, there still remain variations

in head pose which disturb the learning of global shape variations and consequently

also may perturb the learning of local shape and texture variations. To compensate

head pose, faces are first translated near to the origin of the coordinate system by

subtracting the gravity center of the point cloud. Then, Iterative Closest Point

(ICP) algorithm [Zhang 1994] is used to minimize the difference between two point

clouds of the new face and an arbitrarily selected face which holds a frontal and

straight pose, as illustrated in Fig. 2.3.
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Figure 2.3: Point clouds of the preset face (red) and new face (blue) before ICP
alignment (a) and after ICP alignment (b).

2.3.1.2 Creating scale-free patches in range and texture

Contrary to other methods which directly use texture and range maps for extracting

local information, we process a local remesh on 3D point clouds. This is because

the distance between subjects and the scanner affects the face scale of 3D face

scans, which influences the 3D point cloud density and resolution of face in texture

and range maps. Directly sampling from the texture map is sensitive to the scale

variation and thus creates local patches covering different areas of face parts around

landmarks. Therefore, we create the scale-free local patches with uniform scale

among all faces to normalize face scale in local regions.

We consider 15 landmarks on each 3D face model in a learning dataset which need

to be manually labelled as illustrated in Fig. 2.4. They are automatically associated

with the corresponding 2D landmarks in the texture maps. 3D coordinates of points

in the neighborhood of each landmark and their associated intensities are sampled.

The neighborhood is centered at the corresponding landmark with a fixed length

and width on the XY plane. The number of sampled points varies with the face

scale.

Uniform grids for texture and range respectively are created around each land-

mark with a fixed size (15*15 in this work, a compromise between accuracy and

efficiency) as shown in Fig. 2.5. We can benefit two factors from the uniform grids.

Firstly, because the distances between subjects and the 3D scanner are different so
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Figure 2.4: Manually labelled landmarks on a frontal 2.5D face.

that the number of points varies. This leads to variation on the density of point

clouds of 3D faces. By resampling local points, this variation can be normalized.

Secondly, there exists a nature correspondence of resampled points on grids centered

at a specific landmark of different faces. This find the point-to-point correspondence

among faces easily and efficiently.

Specifically, the centers of grids have the (x, y) values of their corresponding

landmark. The intervals of grids on X,Y dimensions are fixed to 1mm. The range

values (resp. intensity values) on the grids are interpolated from range values of

sampled points in the local regions (resp. the intensity values). The interpolation

methods used for range values and intensity values are different. Triangle-based

linear interpolation is used for the intensity values, which computes the current

intensity value based on the weighted distances from the point to three vertices of the

triangle covering the point. The Biharmonic Spline Interpolation [Sandwell 1987] is

used for the range values. The grids are then projected into 2D along Z direction

and then range and texture patches around the landmark can be obtained. This

process is repeated for all landmarks on a face.

Intensities and range values are then concatenated on all patches into two vectors

G and Z as in eq.2.1 and eq.2.2 where m is the total number of points on all grids,
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Figure 2.5: Creation of uniform grid in a local region associated with the left corner
of the left eye from two viewpoints (a) and (b). Circles are the sampled points
from the 3D face model and the grid composed of the interpolated points. The
interpolation is also performed for intensity values.

(3375 here).

G = (g1, g2, ..., gm)T (2.1)

Z = (z1, z2, ..., zm)T (2.2)

2.3.1.3 Building a statistical landmark configuration model

Since 3D scanner systems create a point-to-point matching between pixels in 2D

texture and vertex in 3D point cloud, the landmarks in 3D space can be mapped

into the 2D texture map. Therefore, their positions can be obtained in the texture

map and they are also concatenated into a vector X, as in eq. 2.3 where N is the

number of landmarks.

X = (x1, y1, x2, y2..., xN , yN )T (2.3)

Then, allX vectors are normalized from training faces using a procrustes analysis

in order to remove 2D global variations [Cootes et al. 1995]:

1. Select one shape to be the approximated mean shape.
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2. Align the shapes to the approximated mean shape. First, calculate the centroid

of each shape. Then, align all shapes centroid to the origin and normalize each

shape scale. Finally, rotate each shape to align with the newest approximate

mean.

3. Calculate the new approximate mean from the aligned shapes.

4. Repeat step 2 and 3 until the approximated mean converges.

Principal Component Analysis (PCA) is then applied where 95% major compo-

nents have been preserved. Taken PCA on the set {Xi} for example, the analysis is

as follows:

1. Compute the mean of the data,

X̄ =
1

Nx

Nx
∑

i=1

Xi (2.4)

2. Compute the covariance of the data,

Σ =
1

Nx − 1

Nx
∑

i=1

(Xi − X̄)(Xi − X̄)T (2.5)

3. Compute the eigenvectors, φi and corresponding eigenvalues λi of Σ (sorted

in descending order),

4. Retain a number of eigenvectors φi to compose Px so that the model represents

some proportion (eg the sum of first eigenvalues reaches 95% of the sum of all

eigenvalues) of the total variance of the data.

The same process is applied for the training sets of {Xi}, {Gi}, {Zi} to build

the following three linear models (eq.2.6-2.8).

30



Chapter 2. 3D Face Landmarking

X = X̄ + Pxbx (2.6)

G = Ḡ+ Pgbg (2.7)

Z = Z̄ + Pzbz (2.8)

where X̄, Ḡ, Z̄ are the mean 2D shape, mean normalized intensity and mean

range value respectively; Px, Pg, Pz are sets of modes of shape, intensity and range

value variation respectively; bx, bg, bz are sets of parameters of 2D shape, inten-

sity and range values respectively. The dimensions of Px, Pg, Pz are respectively

(2 ∗ N,nx), (m,ng), (m,nz), where nx, ng and nz are the number of eigenvectors

preserved, N is the number of landmarks and m is the total number of points from

all grids around the landmarks.

In 2D statistical models such as ASM and AAM [Dryden & Mardia 1998,

Cootes & C.J.Taylor 2004], the assumption that the control parameters in the model

follow the Gaussian distribution has been proved to be efficient in many cases. Thus,

following these studies, we assume that bi from PCA where bi ∈ {bx, bz, bg} are in-

dependent and Gaussian distributed with a zero mean and a standard derivation σji ,

where j refers to each parameter of bi. Figures 2.6, 2.7 and 2.8, illustrate the first

two modes (j ∈ {1, 2}) at their left and right ending variation (-3σji ,+3σji ), namely

-3std and +3std, respectively for 2D shape variation, texture variation and range

variation.

Thus, the statistical model built here includes three sub-models: shape, texture

and range models. Similar to other statistical models, our model can be trained

with different training sets and thus can learn different variation modes. The more

diverse training faces are provided, the more comprehensive variations the model

includes. For example, if we provide a training set including faces with different

expressions and illumination conditions, the model is learnt with expression and

illumination variations. However, if the model is trained with neutral faces under a

single illumination condition, it only contain variations due to subject physiognomy.
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Figure 2.6: First two modes of shape variation in 2D. Points represented by ’*’ are
current shapes while points represented by ’.’ are mean shape. The first variation
mode mostly explains the shape changes along the horizontal direction while the
second variation mode mostly explains the shape changes along the vertical direc-
tion.
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Figure 2.7: First two modes of texture variation. The first variation mode mostly
explains the intensity changes in the eyebrow region and the mouth region, while
the second variation mode explains the intensity changes in the nose region.
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Figure 2.8: First two modes of range variation. The first variation mode mostly
explains the range value changes in the lower part of face, while the second variation
mode explains the range value changes in the upper part of face.
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2.3.1.4 Estimating instances from a face

Px, Pg, Pz in eq. 2.6-2.8 contain the variation modes of shape, texture and range.

Thus, given the parameters bx, the 2D shape can be generated by using eq. 2.6.

In order to transform it into a 2D image coordinate system, 3 more parameters

are required, namely a translation parameter (Cx ,Cy), a scale parameter α and an

in-plane rotation parameter ρ as described in eq.2.9.

X = α · (R(ρ) · (X̄ + Pxbx) + C) (2.9)

where X is the created shape instance and R(ρ) is the rotation matrix. The

shape transformation parameters and shape parameters (bx) are concatenated into

a vector Θ = (bTx |C
T |α|ρ)T .

Given a shape instance X and a preprocessed 3D face scan, the 2D points in X

can be mapped back into 3D space based on the correspondence from the scanner

system and vectors G and Z (eq. 2.1-2.2) can be obtained through the same process

as the one described in section 2.3.1.2. They are further used to estimate bg and bz,

as follows:

bg = P T
g (G− ḡ) (2.10)

bz = P T
z (Z − z̄) (2.11)

However, in order to constrain the possible deformations, a boundary (±3σji )

is set for the corresponding parameter in bi (bi ∈ {bz, bg}). Thus, any bji , which

exceeds its boundary is replaced by its closest boundary. Then, texture and range

instances Ĝ and Ẑ can be generated according to eq. 2.7-2.8 using these constrained

bg and bz.

2.3.1.5 Model fitting

Given a new 2.5D face, the landmarking problem is how to best fit our learnt

statistical model on this face. This can be considered as an optimization problem
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with an objective function depending on variable Θ.

Thus, by initializing Θ, a starting 2D shape instance X̂ can be generated, and

texture and range instances Ĝ and Ẑ can be created as described in section 2.3.1.4.

A normalized correlation is further computed for texture FG (eq. 2.12) and range FZ

(eq. 2.13) on all local regions respectively, allowing to obtain the objective function

in eq. 2.14.

FG =
∑N

i=1

〈

Gi

‖Gi‖
,
Ĝi

∥

∥

∥
Ĝi

∥

∥

∥

〉

(2.12)

FZ =
∑N

i=1

〈

Zi

‖Zi‖
,
Ẑi

∥

∥

∥
Ẑi

∥

∥

∥

〉

(2.13)

where 〈·, ·〉 is the inner product and ‖·‖ is the L2 norm. N is the number of

landmarks.

f(Θ) = −(FG + FZ) (2.14)

The optimization of f(Θ) is performed based on the Nelder-Mead simplex algorithm

[Nelder & Mead 1965].

The fitting procedure is as follows:

1. The initial shape instance X̂0 is created from the vector Θ0 where bx are zeros

and CT , S, ρ are preset.

2. Scale-free patches on range Zk and texture Gk are interpolated as described

in section 2.3.1.2.

3. Texture and range instances Ĝk, Ẑk are estimated following eq. 2.11 in sec-

tion 2.3.1.4.

4. The function fk is computed following the eq. 2.12, eq. 2.13, eq. 2.14.

5. Taking the Θk as variables and fk as the objective function value, the opti-

mization algorithm predicts Θk+1 which leads to a lower value of the objective
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function.

6. Xk+1 is computed following the eq. 2.9 and compared with Xk to check the

convergence. If convergence is not reached, go to 2.

In order to initialize CT and S, an Adaboost face detector [Viola & Jones 2002]

can be applied on the 2D texture maps and outputs a box containing faces. Thus,

these two parameters can be estimated by the center and length of the box respec-

tively. However, in our implementation, this initialization is performed thanks to

face masks obtained from the scanner system which has the advantage to be accu-

rate and much simpler. ρ are preset to zero. In order to constrain the deformations

and to ensure that the shape instance is plausible, bjx parameters are also limited

within the boundary ±3σjx. All trespassing bjx values are replaced by their closest

boundary.

Note that it is not necessary to perform a size normalization before and dur-

ing the fitting process since three parameters which project shape instances into

the image coordinate are optimized during this fitting process. Moreover, there

is no photometric normalization done before the model fitting since the objective

function computes the correlation between scale free patches and their estimated

instances. This process has more tolerance to illumination conditions compared to

those directly extracting features on the images for landmarking.

2.3.2 Experimental results

2.3.2.1 Database

The datasets we have used are FRGC v1.0 and v2.0 [Phillips et al. 2005]. The

first version of the FRGC dataset contains 953 face scans from 275 people, captured

under controlled illumination conditions and generally neutral expressions. However,

these 953 face scans have slight head pose variation and scale variation. The second

version of the FRGC database contains 4,007 face scans from 466 persons. These 3D

face scans were captured under different illumination conditions and contain various

facial expressions, including happiness or surprise, etc..
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All faces have been manually labelled by our research group with 15 landmarks

as illustrated in Fig. 2.4. These manually labelled landmarks can be used as ground

truth for learning or quality assessment of automatic landmark location. In our

experiments, the whole FRGC v1.0 dataset is first cleaned by filtering out several

badly captured face models. It is further divided into two parts, the first half

part (452 faces) is used for training, and the second one (462 faces) for testing

our algorithm. Subjects in the training set are different from those in the testing

set. For comparison purpose, we also applied to this testing set the curvature

analysis based method developed within our team [Szeptycki et al. 2009]. However,

only 9 landmarks can be used for comparison between these two techniques as the

curvature analysis-based method can not locate the other 6 landmarks which do

not have prominent curvature properties. In order to assess the generality of our

statistical model which is learnt from 3D face models from FRGV v1.0, 1400 faces

are randomly selected from FRGC v2.0 dataset as an extended testing set. The

precision in all tests is measured as the mean locating error (Pr =
N
∑

i=1
di) where

di is the 3D Euclidean distance between a landmarks automatically located and its

corresponding manually labelled landmark.

2.3.2.2 Results

Fig. 2.9 displays the accumulative precision of all landmarks located by our model

on the testing set from FRGC v1.0 dataset. As we can see, our model can locate

97% cases in 10mm precision and 100% in 20mm precision for all landmarks. Our

method achieves its best location result for landmark 13 (see legend in Fig. 2.9) with

a 100% accuracy in the precision of 9mm, and the worst one for landmark 7 which

displays 100% accuracy only in the precision of 19mm. Fig. 2.10 shows the precision

curves displayed by the curvature analysis based method [Szeptycki et al. 2009] on

the same testing set. As we can see from the figure, while the nose tip and inner

corner of eyes, having each prominent geometric feature, are better located by the

curvature analysis-based method, our statistical model displays better precision on

all the other landmarks.

The first two rows in Table 2.1 shows the mean and std of locating error for each
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Figure 2.9: Precision curves for all landmarks located by our method

Figure 2.10: Precision curves for all landmarks located by the method in
[Szeptycki et al. 2009]
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Table 2.1: Mean and deviation of locating errors for all landmarks using FRGC v1.0
(mm)

1 2 3 4 5 6 7

Mean 4,15 3,11 2,98 2,50 3,30 4,38 3,28
Std 2,82 1,90 2,23 1,51 2,04 2,81 2,43

Mean 8.76 3.85 - - 3.84 7.16 -
Std 4.24 2.02 - - 2.03 3.46 -

8 9 10 11 12 13 14 15

2,72 4,00 2,68 4,93 3,91 2,72 3,76 3,95
1,57 3,61 1,85 3,76 2,50 1,51 2,07 2,56

- 6.07 2.27 6.29 8.68 - - 8.44
- 4.18 1.35 4.27 7.47 - - 7.47

The first group of mean and std of locating errors are from this approach, and the second group
are from the method in [Szeptycki et al. 2009]. Both tests are done on the same testing data set.
When landmarking results are not available for the point, the symbol "-" is used.

landmark (di) from our method while the following rows are the results achieved by

the curvature analysis-based method. The database that has been used is FRGC

v1.0. The table is indexed by the landmark number referring to the legend in Fig. 2.9.

As we can see, mean locating errors of all landmarks are less than 5mm. Notice

that, as mentioned previously, except the nose tip, the mean and std of locating

errors from our method are smaller than the ones from the curvature analysis-based

method.

Table 2.2 shows the experimental results on 1400 face models randomly selected

from FRGC v2.0 dataset. Recall that our statistical model was trained on selected

face models in FRGC v1.0 only having controlled illumination and neutral expression

while the 1400 face models randomly selected from FRGC v2.0 dataset display facial

expressions and drastic illumination changes. As we can see from the table, the

mean error in locating all landmarks only increases by 1mm compared with the

experimental results on face models from FRGC v1.0 dataset.

The time for localizing landmarks on a face used by our algorithm (coded in

Matlab) varies from 18min to 25min on a desktop PC with Intel Pentium4 1.8GHz

and 1 Go RAM. Two steps are time consuming: firstly, it takes over 1500 iterations

for the simplex algorithm to reach the convergence, which is more robust to local
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Table 2.2: Mean and deviation of locating errors for all landmarks using FRGC v2.0
(mm)

1 2 3 4 5 6 7

Mean 5.22 4.36 4.07 3.24 3.78 4.97 4.21
Std 3.14 2.21 2.32 1.67 1.91 2.83 2.55

8 9 10 11 12 13 14 15

3.10 6.65 4.88 6.95 5.38 3.53 6.48 4.67
1.64 4.50 2.52 4.24 3.14 1.86 3.16 2.99

minimum but is slower compared to other optimization algorithm. Secondly, the

interpolation on local regions includes point sampling and interpolating. The more

density the point clouds of a face are, the more time the process takes. Although

it takes less than 500ms in each iteration, the overall time which it accumulates is

quite noticeable due to the large number of iteration.

2.3.2.3 Discussion

Compared to others 3D landmarking algorithms mainly based on a prior

knowledge of facial geometry information [D’House et al. 2007] [Lu & Jain 2006]

[Faltemier et al. 2008] [Xua et al. 2006] [Colbry et al. 2005] [Szeptycki et al. 2009],

our learning based method enables locating a higher number of landmarks (15 points

to 3-9 points) while keeping a better location precision for all landmarks.

To further evaluate the location precision of our learning-based method, we

have also driven experiments to analyse the location precision on manually labelled

landmarks. Thus, we have asked 11 people to label the 15 landmarks on 10 faces,

and have computed the mean and std of locating errors. The result is given in

Table 2.3. As we can see, our statistical model applied to face models from FRGC

v1.0 dataset (Table 2.3.2.2) have close results as compared with the ones achieved

by human operators both in mean value and std. Moreover, these two results are

correlated with each other, as points 4 and 10 in both tables hold higher accuracy

while point 9 and 1 in both tables hold lower accuracy. This can be explained by the

fact that our approach makes use of manual landmarks during the training process,

which thus may be affected by errors in manual landmarking.
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Table 2.3: Mean and deviation of locating errors for individual manually labeled
landmarks(mm)

1 2 3 4 5 6 7

Mean 2,95 2,42 2,03 1,94 2,04 2,76 2,11
Std 1,48 1,05 1,38 0,85 1,07 1,58 1,64

8 9 10 11 12 13 14 15

1,84 3,80 1,90 4,50 1,98 1,99 3,04 2,06
0,81 1,98 1,04 2,15 1,10 1,19 1,53 1,31

There exist three major sources of errors in our experiments. Firstly, our method

requires an exact match between texture images and range ones. Although several

badly mismatched face scans have already been filtered out in FRGC v1.0, there

are still many face scans containing mismatches to a certain extent, especially in

FRGC v2.0. Secondly, the training set should contain the major variations of faces,

so that our learnt statistical model can synthesize instances as close as possible to

the testing faces, further leading to a better locating accuracy. In our last test,

variation of illumination and expression are not learnt in training. Last, as shown in

Table 2.3, manual labelling also leads to locating errors of landmarks which implies

a divergence for the global minimum of the objective function during the fitting

process. Thus, our approach could be improved with a better learning of the model

by using a training set containing more face variations, especially in expression and

lighting condition, and with higher manual landmarking accuracy.

2.3.3 Conclusion

We have presented in this section a learning-based statistical method for automatic

2.5D face landmarking. The proposed statistical model learns from a training set

both variations of global face shape as well as the local ones in terms of scale-free

texture and range patches around each landmark. The fitting of the model to a

new face is considered as an optimization problem according to shape parameters,

with an optimization function describing the similarity between the input face and

synthesized instances. Experiments have shown that our method has the ability to

locate a high number of landmarks with a high accuracy. Using the model learnt
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from half of the faces available from FRGC v1.0 dataset and experimented on 1400

faces randomly selected from FRGC v2.0 with uncontrolled illumination and facial

expressions, our method has reached an average of locating errors less than 7mm

for all 15 landmarks.

This approach is dedicated to 2.5D face landmarking. However, when the full

3D face information is available, this method can be improved by considering the

3D morphology as the global landmark configuration instead of the 2D shape on

texture maps of 3D faces. This is the purpose of the method we propose in next

section.

2.4 A 3D face landmarking method

In this section, we propose a general learning-based framework for 3D face land-

marking. Our approach relies on a statistical model, called 3D Statistical Facial

feAture Model (SFAM), which learns both global variations in 3D face morphology

and local ones around each 3D face landmark in local texture and geometry. Dif-

ferent from the approach presented in the previous section, this method is a full 3D

method which uses 3D morphology as the global landmark configuration instead of

2D shape on texture maps of 3D faces. Moreover, the fitting algorithm is based on

the computation of correlation meshes between local features and their instances,

which is more efficient. In this approach, in order to deal with the facial expression

problem, the model is learnt from 3D faces with expressions. Moreover, in order to

handle the occlusion problem, the detection of occluded faces and the identification

of the occlusion type are performed. This classification provides the occlusion state

for every local region around a landmark which allows the fitting algorithm to be

applicable even on partially occluded faces.

2.4.1 Statistical facial feature model

2.4.1.1 Preprocessing the training faces

In order to train a SFAM, the targeted anthropometric landmarks need to be man-

ually labelled for each aligned frontal 3D face. Contrary to most of the existing
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Figure 2.11: Two sets of landmarks are manually labelled on FRGC (a), BU-3DFE
(b) and Bosphorus (c) datasets. Landmark set in (a) contains 15 landmarks, in-
cluding nose tip and corners, inner and outer eye corners, mouth corners; landmark
sets in (b) and (c) contain 19 landmarks, including corners and middles of eyebrows,
inner and outer eye corners, nose saddles, nose tip and corners, left and right mouth
corners and middles of upper and lower lips.

3D face landmarking algorithms, the set of our targeted landmarks can be easily

changed provided a learning dataset. Through a statistical learning process, the

local properties around landmarks along with their morphological relationships in

training faces can be encoded independently of their locations and their number.

To prove this, we have manually labelled two sets of landmarks on three differ-

ent datasets, namely FRGC, BU-3DFE and Bosphorus datasets, as illustrated in

Fig. 2.11. The landmark set for FRGC dataset is the same as the one described in

the previous section.

The local regions around labelled landmarks are remeshed according to a prin-

ciple similar to the one used for the creation of scale free local patches presented in

subsection 2.3.1.2. Thus, points in local regions are first sampled and then interpo-

lated on the uniform grids with the resolution of 1mm.

2.4.1.2 Modeling the configuration relationships of the landmarks as

well as their local geometry and texture properties

Once a training 3D face has been preprocessed, 3D coordinates of all the landmarks,

called 3D morphology, are concatenated into a vector S, describing the configuration

relationships among local regions.
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S = (x1, y1, z1, x2, y2, z2, ..., xN , yN , zN )T (2.15)

where N is the number of landmarks, e.g. 15 or 19 in our work.

Two vectors G and Z are further generated, interpolated from local meshes as

in eq. (2.16) and (2.17) similarly to G, Z in the method presented in the previous

section. All Z vectors thus contain variations of local geometric shapes around

landmarks while G vectors describe local texture properties. Alternatively, other

local feature descriptors may also be computed from interpolated local 3D meshes

and used, such as HK curvature, shape index, etc. for local shape, and Gabor jets,

cornerness response, etc.

G = (g1, g2, ..., gm)T (2.16)

Z = (z1, z2, ..., zm)T (2.17)

Principal Component Analysis (PCA) is then applied to the three vector sets

{Si}, {Gi}, {Zi} and 95% of the variations in landmark configurations (morphology)

as well as local texture and shape around each landmark are retained.

S = S̄ + Psbs (2.18)

G = Ḡ+ Pgbg (2.19)

Z = Z̄ + Pzbz (2.20)

where S̄, Ḡ and Z̄ are respectively the mean landmark configuration, mean

intensity and mean range value while Ps, Pg, Pz are respectively the three sets of

corresponding variation modes. bs, bg, bz are the sets of controlling parameters.

All the individual parameters respectively in bs, bz and bg are independent and

follow Gaussian distributions with a zero mean and a standard deviation σi. The

dimensions of Ps, Pg, Pz are respectively (3 ∗N,ns, (m,ng), (m,nz, where ns, ng,

nz are the number of eigenvectors, N is the number of landmarks and m is the total

number of points from all grids around the landmarks.
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2.4.2 Locating landmarks

The SFAM based landmarking is performed through the optimization of an objec-

tive function which elegantly combines landmark configuration relationships with

their local texture and shape features. The objective function is presented in sec-

tion 2.4.2.1 whereas the fitting algorithm is given in section 2.4.2.3.

2.4.2.1 Objective function

Our objective function f(bs) is derived from a Bayesian approach by defining

f(bs) = p(S|T,R, ψ), the probability to find the local texture and shape features

at landmark configuration S given the 3D face with texture map T and range map

R, as well as the learnt statistical model SFAM ψ given by eq.2.18, 2.19, and 2.20.

By following Bayes rule, we obtain:

p(S|T,R, ψ) = p(T,R, S, ψ)/p(T,R, ψ)

∝ p(T,R|S, ψ)p(S|ψ)

∝ p(T |S, ψ)p(R|S, ψ)p(S|ψ)

(2.21)

where p(T |S, ψ), p(R|S, ψ) are the probabilities of the face texture and range

given a landmark configuration S and SFAM ψ. We assume the variable R and

T from different face representations are independent within a local face region.

p(S|ψ) is the probability of a given landmark configuration estimated by SFAM.

Probabilities p(T |S, ψ) and p(R|S, ψ) can be estimated using a Gibbs-Boltzmann

distribution as in eq. 2.22. This distribution has been widely used by PCA based sta-

tistical models in 2D, such as Constrained Local Model [Cristinacce & Cootes 2008],

and proved to be efficient. This assumption is quite reasonable and results from

the fact that the problem of 3D face landmarking is actually a Markov Random

Field (MRF) which consists in assigning to each vertex of a 3D facial scan a label

from a set of labels L. The set L encompasses all targeted landmarks (e.g., nose

tip, eye corners) and a null value labeling any vertex which is not the location of

any targeted landmark. Then, the theorem of the equivalence between MRFs and

Gibbs distributions by Hammersley and Clifford [Li 2009] implies that the problem

46



Chapter 2. 3D Face Landmarking

of 3D face landmarking as described by the probabilities p(T |S, ψ) and p(R|S, ψ)

are Gibbs-Boltzmann distributions [Duda et al. 2000].

p(S|T,R, ψ) ∝
N
∏

i=1
e−αηi

N
∏

i=1
e−βγi

k
∏

j=1
e−b2j/λj

log p(S|T,R, ψ) ∝
N
∑

i=1
−αηi +

N
∑

i=1
−βγi −

k
∑

j=1

b2j
λj

(2.22)

where N is the number of local regions, ηi and γi are the similarities between

instances and local regions, and α and β are weight factors. p(S|ψ) can be consid-

ered as a penalty factor referred to [Cootes et al. 1995], where k is the number of

landmark configuration or morphology modes, bj is similar to bs in eq. 2.18 and λj

denotes the corresponding eigenvalues of the landmark configuration model.

We have extended the objective function to deal with face occlusion. Indeed,

in the presence of occlusion, each local region around a landmark i will be associ-

ated with a probability of being uncovered mi. The objective function is therefore

rewritten as follows:

f(bs) = miα
N
∑

i=1

FGi(si) +miβ
N
∑

i=1

FZi(si)−
k

∑

j=1

b2j
λj

(2.23)

where FGi and FZi refer to eq. 2.26. mi is the probability whether the region

around the ith landmark is uncovered, thus being 0 if the local region is fully oc-

cluded and 1 if the local region is totally uncovered. si is landmark location from

the morphology model.

The value of α and β can be determined by computing the ratio of
N
∑

i=1
FGi and

k
∑

j=1

b2j
λj

,
N
∑

i=1
FZi and

k
∑

j=1

b2j
λj

separately when applied to verification faces with manually

labelled landmarks.

In this work, we have made use of a simple occlusion classification algorithm

which delivers a binary value for mi which is 0 is if the local region is occluded and

1 if not.
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2.4.2.2 Computation of the correlation meshes

In order to compute the FGi and FZi factors in eq. 2.23, the correlation meshes

are calculated in order to describe the similarity between instances and local face

regions in both texture and shape modalities. It makes the optimization faster in

the fitting process since those two factors can be directly obtained from the meshes

instead of computing the objective function at each iteration.

The correlation meshes are illustrated in Fig. 2.12 and their computation is

described as follows:

1. Given a new face scan, the closest point set S′ to the landmark configuration

S are computed on the face;

2. Texture and shape instances Ĝ, Ẑ are synthesized based on S′:

Based on points in S′, we can obtain vectors G′ and Z ′ through the local

remeshing process as in the training phase. They are used to estimate bg and

bz, as follows:

bg = P T
g (G′ − ḡ) (2.24)

bz = P T
z (Z ′ − z̄) (2.25)

by limiting bi ∈ {bz, bg} to the range ±3σi in order to constrain the possible

deformations, any bi exceeding this boundary is replaced by its closest bound-

ary. Then, texture and range instances Ĝ and Ẑ can be generated according

to eq. 2.19 and 2.20 using these constrained bg and bz.

3. Local regions around the points in S′ are remeshed for both texture and range

maps by using grids with a size of 51*51, as in the section 2.3.1.2;

4. For each local region i, a sliding window method is performed with the same

size as the local grid size in SFAM (15*15). At each step j, a local range map

Z and texture map G are extracted to compute the normalized correlation

between them and ẑ, ĝ respectively, which are the corresponding local parts
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in Ĝ and Ẑ (eq. 2.26). Then, the normalized correlations are set as the values

of the window center on the corresponding meshes.

FGi
j
=

〈

gij
∥

∥

∥
gij

∥

∥

∥

,
ĝj
‖ĝj‖

〉

, FZi
j
=

〈

zij
∥

∥

∥
zij

∥

∥

∥

,
ẑj

‖ẑj‖

〉

(2.26)

〈·, ·〉 is the inner product and ‖·‖ is the L2 norm.

2.4.2.3 Fitting algorithm

Before landmarking a 3D face through the fitting algorithm presented here, the

occlusion algorithm described in section 2.4.3 is first applied to identify the occluded

local regions and thus to set the corresponding mi coefficient to zero. Therefore,

only the unoccluded local regions will take part in the following fitting process. The

algorithm works as follows:

1. Given a 3D face, its head pose is first compensated using ICP algorithm.

2. The morphology parameters bs are optimized to minimize the distance between

corresponding morphology instances and their closest points on the input face.

The objective function is f =
N
∑

i=1
di) where di is the 3D Euclidean distance

between a point in a morphology instance and its closest points on the input

face. i refers to the landmarks located on the rigid facial parts, such as those

in the eyebrow, eye and nose regions.

3. The correlation meshes are computed as detailed in section 2.4.2.2, which is

initialized by the optimized morphology from the step 2.

4. Morphology parameters are optimized to reach the maximum of the sum of

values on two correlation meshes with the penalty factor. The objective func-

tion is f(bs) in eq.2.23 and its variables are bs. Specifically, at each iteration,

each point in morphology instances Sk generated from eq. 2.18 find its closest

points on its associated local part in both correlation meshes of texture and

shape. Correlation values from all local parts are summarized respectively and

weighted as the sum of values on two correlation meshes (the first two factors
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Figure 2.12: Correlation meshes from two viewpoints. Actually these meshes are in
four dimension space, where the first three dimensions are x, y, z and the last one
is correlation values. In these figures, we display the correlation values instead of z.
(a) and (b) are the same correlation mesh from two point of views, describing the
similarity of texture (intensity) instances from SFAM and texture (intensity) on the
given face. (c) and (d) are the correlation mesh describing the similarity of shape
(range) instances from SFAM and face shape (range). Red color corresponds to the
high correlation and blue color corresponds to the low correlation.
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in eq. 2.23). The penalty factor (the third factor in eq. 2.23) is computed

accordingly.

The optimization in the step 2 and 4 is processed by Nelder-Meade simplex

algorithm [Nelder & Mead 1965] because it is suitable for optimizing variables with

dimension less than 30 and it is robustness to local minima. In each iteration in

the simplex algorithm, the morphology parameters from the previous step are used

for computing the value of objective function. Then, this value is compared with

the function value in the previous step and simplex algorithm can thus predict a set

of updated morphology parameters for the next step. The algorithm is converged

when the morphology variation computed from morphology parameters between two

consecutive steps is less than a threshold (5mm) or maximum iteration number is

reached.

For partially occluded faces, occluded landmarks are excluded as well as their

corresponding local meshes in the computation in the steps 2 and 4. Indeed, in

wrong cases of occlusion classification, local non-face meshes lead the optimization

to converge at a unpredictable point far from the desired minimum.

2.4.3 Occlusion detection and classification

Face analysis in the presence of partial occlusions, due to diverse factors such as hair,

glasses, mustaches, scarf, etc. is a difficult problem. As far as 3D face landmarking

is concerned, we are only interested in occlusions which may occur in local regions

around landmarks. Thus, we have proposed a simple approach to classify occlusion

type and give a set of binary values to local regions, corresponding to ’occluded’ or

’unoccluded’ states. Alternatively, we may have computed a probability associated

with a local region being occluded or a measure indicating roughly how much a local

region is occluded.

In order to perform occlusion detection, features from the range map are ex-

tracted since the presence of occlusion definitively changes the face shape in relevant

local regions. Therefore, given an input face scan, its closest points s′ to the mean

landmark configuration (eq. 2.18) are computed. Then, 51*51 grids are used to
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remesh local regions around these points only for range values, as in section 2.3.1.1.

For each local region i, a sliding window method is performed with the same size

as the one of the local regions considered in SFAM. At each step j, a local depth

map Zα is computed and its local shape instance Zβ is calculated to further obtain

a similarity map LS as follows:

bαj = P T
zi(Zαj − z̄i) (2.27)

Zβj = z̄i + Pzibβj (2.28)

LSi
j =

〈

Zαj

‖Zαj‖
,
Zβj

‖Zβj‖

〉

(2.29)

Pzi is the submatrix composed of the rows in Pz associated with local region i.

z̄i is the subvector composed of rows in z̄ also associated with local region i. 〈·, ·〉

is the inner product and ‖·‖ is the L2 norm. bβ is obtained by limiting bα within a

predefined boundary used to limit the possible deformations.

In case of occlusion, the local deformations are too large to be handled by the

model. Thus, the instances Zβ generated from this model are quite different from

the occluded local shape Zα, which leads to a low similarity value in eq. 2.29. The

LSi
j describes the possibility to synthesize the local regions by learnt geometry

variations. Therefore, this possibility decreases when a part of a face is occluded

and thus contains non facial shape. This information is used for occlusion detection

and classification.

Once LS has been computed for all points in a local region, a histogram from

this similarity map is built. Then, histograms from all the local regions are further

concatenated into a single feature, labelled with the occlusion type, such as occluded

in the ocular region, occluded in the mouth region, occluded by glasses, or unoc-

cluded. The distances between histograms are valued by the Euclidean distance,

and the classification is performed by a simple K-NN classifier.

Since the available faces with occlusion in the dataset have certain patterns, as
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Figure 2.13: Different types of occlusion: a) occlusion in the mouth region, b)
occlusion in the ocular region, c) occlusion caused by glasses.

shown in Fig. 2.13, we have preset a set of binary values indicating the occluded

state in local regions for each type of occlusion. For example, for occlusion in the

mouth region, the set of binary values {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0 }

is used to initialize mi, where the first two 0 correspond to the nose corners and last

four 0 correspond to the mouth corners and lip middles. The classification leads to

the list of local regions being occluded (mi in eq. 2.23).

2.4.4 Experimentations

The SFAM model based framework for 3D face landmarking described so far has

been experimented on three datasets, namely FRGC, BU-3DFE and Bosphorus

datasets which are described in subsection 2.4.4.1 as well as the experimental setup.

Then, the results are given in the following subsections.

2.4.4.1 Datasets and experimental setup

In order to test the soundness of our SFAM model-based 3D face landmark-

ing framework, besides the Face Recognition Grand Challenge (FRGC) database

used in section 2.3, we have made use of two other datasets, namely BU-3DFE

database [Yin et al. 2006] and Bosphorus database [Savran et al. 2008].

The BU-3DFE database contains 100 subjects (56% female, 44% male). Each

subject performs seven expressions in front of a 3D face scanner. Each of the six

universal expressions (happiness, disgust, fear, angry, surprise and sadness) includes

four levels of intensity. In our experiments, we have used the neutral faces and faces
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with the 2 highest-level expressions from all subjects, thus 1300 face scans in total.

The Bosphorus dataset contains 4666 face scans from 105 subjects. This dataset

contains not only many samples of the six universal facial expressions and many

AUs, but also 3D face scans under realistic occlusions like glasses, hands around

mouth and eye rubbing. Moreover, many male subjects have moustache and beard.

As illustrated in Fig. 2.11, 15 facial landmarks have been manually landmarked

for the FRGC dataset and 19 for the BU-3DFE and Bosphorus datasets. They have

been used as ground truth for learning the SFAM model and testing our landmark

fitting algorithm. These three landmark sets contain some common landmarks,

such as eye corners, mouth corners and contain landmarks from both face rigid and

non-rigid regions.

2.4.4.2 Occlusion classification results

We have made use of the Bosphorus dataset including four kinds of occlusion, caused

respectively by hair, glasses, hand near the mouth region and hand near the ocu-

lar region. An illustration of these types of occlusion can be found in Fig. 2.22.

Occlusion caused by glasses occurs in front of two eyes, with changes mainly on

local geometry. Occlusion caused by hand near the ocular region occurs generally

in front of the right eye, with changes on both local geometry and local texture.

As occlusions caused by hair generally do not occur on the landmark regions, this

type of occlusion is excluded from our study. We consider for the experiments the

other three types of occlusions and an unoccluded neutral face from each subject.

We experimentally set K to five in the K-NN classifier and carried out a two-fold

cross-validation. 347 face scans of 105 subjects have been used based on the data

availability, where each subject contains at lease two scans out of four aforemen-

tioned types and at most four scans from each of the types. In each round, about

faces scans from half of the subjects are used for training and the rest for testing.

The subjects used in the training are different from those in the testing. After two

round, scans from all subjects are used once for training and once for testing. The

confusion matrix is given in table 2.4. As we can see, an average classification accu-

racy up to 93.8% can be achieved, which has been proved to be sufficient for further
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Table 2.4: Confusion Matrix of occlusion classification

Eye Mouth Glasses Unoccluded

Eye 0.932 0.02 0.02 0.02

Mouth 0.01 0.97 0.02 0

Glasses 0.07 0.03 0.84 0.05

Unoccluded 0 0 0 1

’Eye’ represents the occlusion caused by hand near ocular regions; ’Mouth’ represents the occlusion
caused by hand near the mouth regions; ’Glasses’ represents the occlusion caused by glasses;
’Unoccluded’ represents neutral faces without occlusion.

landmarking.

2.4.4.3 SFAM learning

We have made use of 452 face scans from FRGCv1 dataset to build our first SFAM

model which learns local properties of 15 regions and their configuration relation-

ships. The training face scans have limited illumination variations and do not con-

tain facial expressions. Fig. 2.14 illustrates the first mode of configuration, local

texture and local shape in the SFAM at their left and right boundaries (-3σ,3σ),

namely -3std and +3std.

Moreover, we have used the face scans from 11 subjects in BU-3DFE dataset

and the first 32 subjects in Bosphorus dataset to build our second and third SFAM

respectively which capture global relationships and local properties from 19 land-

marks. Every subject used for training has respectively 13 face scans in the case

of the BU-3DFE dataset (a neutral face scan and 2 face scans for each of the six

universal expressions in the intensity level 3 and 4), and 7 face scans including 6 ba-

sic expressions and the neutral one in the case of the Bosphorus dataset. Fig. 2.15,

2.16 and 2.17 illustrate the third SFAM learnt from Bosphorus dataset containing

the first and second modes of configuration, local texture and local shape at their

left and right boundaries (-3σ,3σ), namely -3std and +3std.
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Figure 2.14: SFAM learnt from FRGCv1 dataset: first variation modes on the
landmark configuration, local texture and local shape.First mode of morphology
explains the landmark configuration variations in terms of face size; first mode of
texture explains the intensity variation, especially in the eye region; first mode of
shape explains the geometry variation in the upper part of face.
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Figure 2.15: SFAM learnt from Bosphorus dataset: variations of the two first mor-
phology modes. The first variation mode mostly explains the face morphology
changes along the vertical direction, while the second variation mode explains the
face morphology changes along the horizontal direction.
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Figure 2.16: SFAM learnt from Bosphorus dataset: variations of the two first local
texture modes. The first variation mode mostly explains the facial texture changes
due to different skin color, while the second variation mode explains the facial texture
changes in the eye and mouth regions.
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Figure 2.17: SFAM learnt from Bosphorus dataset: variations of the two first lo-
cal geometry modes. The first variation mode mostly explains the face geometry
changes in the lower part of face, while the second variation mode explains face
geometry changes in the upper part of face.
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Figure 2.18: Cumulative error distribution of the precision for the 15 landmarks
using FRGCv1 (a) and FRGCv2 (b).

Table 2.5: Mean error and standard deviation (mm) associated with each of the 15
landmarks on the FRGC dataset

lcle rcle ucle lwcle lcre rcre ucre

Mean 4.17/4.31 3.07/3.21 2.92/3.17 2.76/2.75 3.15/3.24 3.67/3.89 2.84/3.18
Std 2.13/2.05 1.42/1.44 1.39/1.66 1.21/1.31 1.56/1.43 1.90/2.04 1.45/1.63

lwcre lsn nt rsn lcm cul cll rcm

2.68/2.83 3.96/4.21 4.11/4.43 4.39/5.07 3.61/4.09 2.74/3.37 3.81/4.65 3.58/4.34
1.21/1.38 1.65/1.71 2.20/2.56 1.85/2.36 1.92/2.32 1.42/1.89 1.97/3.41 1.99/2.50

The index of the landmarks is the abbreviation of the legend in Fig. 2.18. The left number in each
cell gives the result on FRGCv1 data while the right one the result on FRGCv2 data.

2.4.4.4 Results on landmarking

Using the learnt statistical models, the fitting algorithm for 3D face landmarking has

been evaluated on 3 different experimental setups. In all these experiments, errors

are calculated as the Euclidean distance between automatically located landmarks

and the corresponding manual ones (ground truth). We do not set a general criterion

or maximum allowed error to separate outliers in the following statistical results,

which means almost all landmarking results are taken into consideration. A small

number of landmarking results (around 20 face scans) which has mean errors over

20mm are excluded. The reason for this unreasonable error may be mostly due to

the failure of ICP alignment.

Using the first SFAM, the fitting algorithm has first been experimented on the
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Figure 2.19: Landmark locating examples from the FRGC dataset.

remaining roughly half FRGCv1 dataset not used for training, i.e. 462 face scans

from subjects different from those in training. We have then tested SFAM on 1500

face scans randomly selected from the FRGCv2 dataset which contains illumination

variations and facial expressions. Fig. 2.18 shows the cumulative distribution of the

fitting accuracy for all 15 landmarks while Table 2.4.4.4 displays the mean and std of

locating errors associated with each landmark. As we can see from the figure, most

landmarks are automatically located within 9mm precision in both tests. Mean error

and the corresponding standard deviation indicate that landmarks in the upper face

region are located with better precision. A slight increase on mean error and the

standard deviation in the second test is caused by uncontrolled illumination and

facial expressions on tested face scans. Fig. 2.19 illustrates some landmark locating

examples from these two experiments.

The third experiment has been carried out on the BU-3DFE dataset. Recall

that 143 face scans from the first five male subjects and six female subjects have

been used for training the second SFAM. 1157 face scans in total from the remaining

89 subjects are used for testing. Each testing subject has a neutral expression and

six basic facial expressions with intensity level three and four. Fig 2.20 illustrates

several locating examples with facial expression. Fig. 2.21 shows effect of expressions

on landmarking accuracy. As we can see from this figure, landmarks with less

deformation in expressions are better located, like eye corner, nose tip, nose corner.

Mouth corners and the middle of lower lip are located with the worst precision
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Figure 2.20: Landmarking examples from the BU-3DFE dataset with expressions of
anger (a), disgust (b), fear (c), joy (d), sadness (e) and surprise (f).

Table 2.6: Mean error and the corresponding standard deviation (mm) of the 19
automatically located landmarks on the face scans, all expressions included, from
the BU-3DFE dataset

1 2 3 4 5 6 7 8 9

Mean 6.26 4.58 4.87 4.88 4.51 6.07 4.11 2.93 2.90
Std 3.72 2.82 2.99 2.97 2.77 3.35 1.89 1.40 1.36

10 11 12 13 14 15 16 17 18 19

4.07 3.30 3.27 3.32 4.04 3.62 7.15 4.19 7.52 8.82
2.00 1.70 1.56 1.94 1.99 1.91 4.64 2.34 4.75 7.12

The index of landmarks is as in Fig. 2.21.
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Figure 2.21: Landmarking accuracy on different expressions with the BU-3DFE
dataset. (1: left corner of left eyebrow, 2: middle of left eyebrow, 3: right corner
of left eyebrow, 4: left corner of right eyebrow, 5: middle of left eyebrow, 6: right
corner of right eyebrow, 7: left corner of left eye, 8: right corner of left eye, 9: left
corner of right eye, 10: right corner of right eye, 11: left nose saddle, 12: right nose
saddle, 13: left corner of nose, 14: nose tip, 15: right corner of nose, 16: left corner
of mouth, 17: middle of upper lip, 18: right corner of mouth, 19: middle of lower
lip).

63



Chapter 2. 3D Face Landmarking

and the greatest standard deviation in face scans expressing surprise because of the

significant deformation in this region induced by this emotional state. Table 2.6

summarizes the mean error along with the std of the landmarking algorithm with

all expressions. The mean errors for all 19 landmarks stay within 10mm while most

of standard deviations are lower than 5mm. The locating accuracy of landmarks in

rigid face region is comparable to those of the corresponding landmarks located in

FRGCv1.

The last experiment has tested the fitting algorithm using the third SFAM to

locate 19 landmarks on 3D face scans under occlusion from the Bosphorus dataset.

Fig. 2.22 illustrates several locating examples under occlusion. This experiment is

carried out on 292 face scans from all the subjects different from the ones used for

training in the Bosphorus dataset. In order to evaluate the efficiency of our proposed

occlusion classifier for landmarking, the fitting algorithm is compared between the

test with occlusion knowledge directly provided by the dataset and the test using

occlusion knowledge from our proposed occlusion detection and classification algo-

rithm (Table 2.7). The mean errors generally range from 6 to 11 mm, and more than

97% landmarks are located in 20mm precision in both configurations. Noting that

this precision is considered as a criterion by some other works. Meanwhile, there

exists an increase on mean error and std in average for the latter test, which is due

to occlusion classification errors. However, these results remain acceptable, all the

more since this automatic approach offers the ability to be generalized to datasets

without occlusion information.

The time for localizing landmarks on a face used by this algorithm (coded in

Matlab) varies from 10min to 16min on a desktop PC with Intel Pentium4 1.8GHz

and 1 Go RAM. Similar to the previous algorithm, the simplex algorithm is used

which is quite time consuming. The time consumed by the optimization in the step

2 is around 2 to 3 minutes. The computation of the correlation meshes saves time

great, because it finishes the computation of the local interpolation once in the step

3 instead of computing them in each iteration as in the previous algorithm.
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Figure 2.22: Landmarking examples from the Bosphorus dataset with occlusion.
From left to right, faces are occluded in eye region, mouth region, by glasses and by
hair.

Table 2.7: Mean error and the corresponding standard deviation (mm) associated
with the each of the 19 automatically located landmarks on the face scans from the
Bosphorus dataset under occlusion

1 2 3 4 5 6

Mean 9.66/11.95 8.29/8.47 7.33/7.15 7.02/6.77 8.21/8.20 9.74/10.05
Std 6.08/8.85 3.92/4.39 3.41/3.36 3.23/3.38 4.27/4.45 5.23/6.08

7 8 9 10 11 12

Mean 7.01/8.83 6.25/6.87 6.44/6.51 7.46/7.86 7.5/7.56 7.58/6.92
Std 3.77/6.37 3.42/4.21 3.08/3.58 3.56/4.73 3.60/3.88 3.63/4.02

13 14 15 16 17 18 19

6.35/7.19 8.46/8.39 8.03/7.79 7.96/9.75 8.67/9.01 8.21/9.65 10.41/10.61
3.11/2.99 3.64/3.64 3.31/3.36 4.18/6.28 4.84/4.93 4.25/4.97 5.37/5.61

The landmark indexes are as in Fig. 2.21. The left number in each cell represents the testing result
using occlusion information provided by the dataset while the right one displays locating result
using occlusion information provided by our occlusion detection and classification algorithm. In
the latter tests, the knowledge of occlusion by hair (not considered by our occlusion detection and
classification algorithm) was provided by the dataset
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2.4.4.5 Failure cases and analysis

Fig. 2.23 illustrates several failure cases of landmarking under different conditions.

The cases a and b are mainly due to the great deformation on the mouth region

when face are displaying expressions. The morphology model in SFAM can not

contain a specific mode for the deformation of a expression, however it generally

learns variation modes from a mixture of expression and identity. Thus, when

fitting SFAM on a face with great morphology deformation, like happiness and

surprise, the fitting algorithm sometimes can not generate morphology instances

which can approximate this extreme deformation. The cases c and d are mainly

due to the information reduction in the fitting process when occlusion occurs. The

occluded local parts are not considered in the fitting algorithm so that less part

of correlation meshes are used in the objective function. Thus, the prediction of

morphology parameters uses less information and is not as accurate and robust to

local minimum as the prediction when no occlusion happens. Moreover, the missing

values on occluded local correlation meshes introduce errors in the objective function

as the weights α and β are determined when all local regions are considered.

2.4.4.6 Discussion

Compared to other 3D face landmarking algorithms in the literature, such as the ones

in [D’House et al. 2007] [Lu & Jain 2006] [Faltemier et al. 2008] [Xua et al. 2006]

[Colbry et al. 2005] [Jahanbin et al. 2008a] [Dibeklioglu et al. 2008], our SFAM-

based approach is a general 3D landmarking framework which encodes the configu-

ration relationships of the landmarks and their local properties in terms of texture

and shape by a statistical learning instead of heuristic knowledge directly embed-

ded within the algorithm. Our algorithm is thus more flexible and enables locating

landmarks which are not necessary shape prominent or texture salient.

Most existing works on 3D face landmarking in the literature are only experi-

mented on the FRGCv1 dataset. We can thus compare these results with the ones

achieved in our first experiment described in the previous subsection.

Using the same dataset and a heuristic guided statistical method, Dibeklioglu et
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Figure 2.23: Some failure cases. a: failure case on face with surprise expression; b:
failure case on face with happy expression; c: failure case on face with occlusion in
mouth region; d: failure case on face with occlusion in eye region.
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al. [Dibeklioglu et al. 2008] report an accuracy rate of around 99% for nose tips and

inner eye, around 90% for the outer eyes and mouth corners within around 19mm

precision (3 pixels precision on a reduced face texture with the reduction rate 8:1

in the paper. The 3D distance between pixels are 0.8mm to 1mm in FRGCv1).

Compared to this result, our locating technique localize more landmarks (15 instead

of 7) in better detection rates with the same precision.

In [Lu & Jain 2006], Lu et al. located seven landmarks, namely nose tips, corners

of eyes and mouth on face scans from FRGCv1. The mean errors for these landmarks

are around 6.0mm to 10mm, while our technique displays locating errors for 15

landmarks around 2mm to 5mm with much smaller standard derivation. Using the

Bosphorus dataset with 3D face scans under occlusion, most mean errors of our

landmarks range from 6mm to 10mm with a much lower standard deviation.

In [Koudelka et al. 2005], Koudelka et al. located five landmarks, namely inner

corners of eyes, Sellion, nose tip and middle mouth with a mean error of 3.57mm

over all the five landmarks and 97.22% of all the landmarks are correct detected

with a precision of 10mm. In our case, we reach a mean error of 3.43mm over all

the 15 landmarks and over 99% of all the landmarks are correct detected with a

precision of 10mm.

Compared between our two methods, the average of error mean and std over

15 landmarks are 3.49mm and 2.34mm in the first method and those are 3.43mm

and 1.68mm in the second method. All these results have a lower average er-

ror and better reliability compared with the curvature analysis based method

[Szeptycki et al. 2009], 6.15mm and 4.05mm for seven landmarks included by 15

landmarks in our methods.

To the best of our knowledge, there exists only one work in the literature at-

tempting to locate several landmarks on 3D face scans under facial expressions

[Nair & Cavallaro 2009]. In their study, a 3D point distribution model is proposed

to landmark five landmarks, namely the two inner eye corners, the two outer eye

corners and the nose tip. Note that these landmarks are on face regions rather

stable to expressions. Trained on 150 unnormalized face scans and tested on 2350

faces from the BU-3DFE dataset, their technique displays respectively a mean error
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of 12.11mm, 11.89mm, 20.46mm, 19.38mm and 8.83mm for these five landmarks.

Using the same dataset and a comparable quantity of training faces (143 faces), we

display respectively a mean error of 4.11mm, 2.93mm, 2.90mm, 4.07mm, 4.04mm for

these five landmarks and our technique also located other landmarks from mimic

face region on 1157 face scans which produce the two higher levels of expression

intensity out of the whole dataset.

We have also studied the reproducibility and the corresponding precision of

manual landmarking for two reasons. First, manually labelled landmarks are used

as the ground truth of automatic landmarks. Because of subjective variance, it is not

necessary that manual landmarks are labelled at the precise location of landmarks.

This imprecision may disturb the evaluation of the automatic landmarks. Thus, this

study can provide a reference on the errors of manual landmarks used for evaluation.

Secondly, this study can also give a reference on the variance of landmarking done

by human and plays as a comparison with machine variance. For these purposes,

11 subjects are asked to manually label the 15 landmarks as shown in Table 2.3.

The mean error of 15 manual landmarks is 2.49mm with the std at 1.34mm. For

comparison, the second landmarking method achieves a mean error of 3.43mm with

the corresponding standard deviation at 1.68mm on the same dataset.

2.4.5 Conclusion

We have presented in this section a general learning-based framework for 3D face

landmarking which characterizes the configuration relationships between the land-

marks as well as their local properties in terms of texture and shape, through a

statistical model called SFAM. The fitting algorithm then locates the landmarks

through the optimization of an objective function derived from a Bayesian approach.

Such a framework is also quite suitable to deal with facial expressions and partial

occlusions. Indeed, the consideration of both global and local properties helps to

characterize landmarks deformed under expression and partial occlusion. Mean-

while, partial occlusion is taken into account in the objective function provided

that occlusion probability around each landmark can be estimated. Based on this

evidence, we have also introduced a 3D face occlusion detection and classification
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Figure 2.24: Flowchart of the first landmarking method.

algorithm which displays a 93% classification accuracy on the Bosphorus dataset.

The detection is based on shape similarity between local range information of an

input 3D face scan and the instances synthesized from SFAM. Experimented on

FRGC datasets (v1 and v2) and BU-3DFE containing expressions and the Bospho-

rus dataset containing facial expressions along with partial occlusion, our 3D face

locating technique has demonstrated its effectiveness.

2.5 Conclusion on 3D face landmarking

We have presented in this chapter two statistical model based methods for locating

landmarks on 3D face scans. Both methods rely on statistical models by learning

the variations in global landmark structure as well as local texture and range. How-

ever, the major difference between the methods are: firstly, the global landmark

configuration in the first method is on 2D texture images while the SFAM is a full

3D statistical model; secondly, the fitting algorithm of the former is similar to ac-

tive shape model in 2D while the second one introduces correlation meshes in the

fitting; thirdly, combined with an occlusion detection algorithm, SFAM is able to

perform landmarking on partial occluded faces. Flowcharts of these two methods
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Figure 2.25: Flowchart of the second landmarking method.

are provided in fig 2.24 and fig 2.25 for a clear comparison. Experimental results

have demonstrated that by considering both texture and geometry information, our

methods is able to locate a set of landmarks beyond those characterized by salient

shape with a better accuracy. Thus, SFAM has reached better landmarking accu-

racy than the previous models proposed in the literature in terms of accuracy and

robustness when encountering severe conditions such as expression and occlusion.

In this chapter, only range and texture maps are used as simple descriptors of

local shape and texture around landmarks. In the future, the landmark location may

be improved by considering other descriptors such as HK curvature, shape index,

etc. for shape feature or Local Binary Pattern, Gabor filtering, etc. for texture

property.
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Chapter 3

3D Facial Expression Recognition

3.1 Introduction

A facial expression communicates information about the characteristics of a person,

a message about something internal to the subject, and results from one or more

motions or positions of the face muscles. The source of facial expressions includes

mental states, physiological activities and interpersonal communication, as shown

in fig.3.1. Mental state or affect is one of the main sources, including felt emotions,

conviction and cogitation. Physiological states such as pain, tiredness also influence

unconscious face muscle activities appearing in forms of expressions. Verbal and non-

verbal communications are other causes of facial expressions. [Fasel & Luettin 2003]

Facial expression analysis has interested researchers as early as Darwin in the

nineteenth century, who had demonstrated the universality of human facial expres-

sions [Darwin 1872]. In the past facial expression analysis was primarily a research

subject for psychologists. In the 70s, few preliminary investigations on automatic fa-

cial expression analysis through images were presented [Suwa et al. 1978]. From 90s

on, automatic facial expression analysis gained much interest due to advancements

in related areas such as face detection, face tracking, etc, as well as the availability

of more powerful computational facilities.

The recognition of facial expressions has various purposes and applications. It

contributes to the development of human-centered human/computer (or robot) in-

terfaces, which have the ability to detect user’s affective behaviour and initialize

proactive and socially appropriate behaviour during the communication process

[Lisetti & Nasoz 2002]. It improves face recognition system by providing a prior

knowledge on expression state allowing to overcome the difficulty caused by facial
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Figure 3.1: Sources of Facial Expressions[Fasel & Luettin 2003].

expressions [Mpiperis et al. 2008]. Other applications involve image understanding,

psychological studies, tiredness detection, face image compression, face animation,

robotics as well as virtual reality etc.

In this chapter, we focus on recognizing facial expression on 3D face scans. Two

approaches are proposed to solve this task: first, we have elaborated a facial surface

geometry based feature that is extracted and used to feed a Support Vector Machine

(SVM) classifier for identifying the face expression; second, we have proposed to

fuse the contribution of features from face landmark configuration, texture and

geometry representations thanks to a Bayesian Belief Network (BBN) to recognize

both universal expressions and facial action units. A fully automatic expression

recognition system has also been proposed by combining the BBN with the SFAM

presented in the previous chapter.

The reminder of this chapter is organized as follows. In section 3.2 we will firstly

introduce the review of the state-of-art techniques dealing with facial expression

recognition in both 2D and 3D environment. Then, we will present our first approach

using the proposed geometry feature for facial expression recognition in section 3.4.

Our BBN will be presented in the following section 3.5. Finally, we draw a conclusion

in section 3.6.
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3.2 The Problem

3.2.1 Theories of emotion

Most of studies on facial expression recognition aim at analysing human affect.

Thus, it is important for designers of these systems to understand the structure and

description of affect since it provides information about the affective classes to be

detected. However, as there exists for the moment no consensus on the emotion

taxonomy, the different theories of human affect have led to different streams of

facial expression recognition approaches.

According to psychological theories of emotion, the emotion domain could be

characterized by different qualitative states or dimensions. The two traditional the-

ories that have most widely been considered in the past are discrete and dimensional

theories of emotion.

Researchers working on the discrete theories propose that there exists a small

number of basic or fundamental emotions, shown in table 3.1. Among them, the

prototypical (universal) emotion categories and their corresponding facial expression

have been proved to be perceived by humans in the same way regardless of culture.

As a result, most of existing facial expression recognition approaches focus on rec-

ognizing these emotions. However, discrete theories fail to cover the whole range

of emotions that people may experience in their everyday lives, and in particular

subtle emotions and combination of emotions.

In the dimensional theories of emotion, emotional states are often mapped into

a two or three-dimensional space. The two major dimensions consist in a valence di-

mension (pleasant - unpleasant, agreeable - disagreeable, also presented as appraisal

dimension) and an activity dimension (active - passive, also presented as energy

dimension or arousal dimension) [Greenwald et al. 1989]. If a third dimension is

used, it often represents either power or control [Griffith ]. Usually, several discrete

emotion terms are mapped into the dimensional space according to their relation-

ships to the dimensions, as shown in figure 3.2. Contrary to the discrete theories,

a wider range of emotions and their relationships can be defined and described in

the dimensional theories. However, it is difficult for facial expression recognition
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Table 3.1: Some propositions for the definition of basic emotions
[Ortony & Tumer 1990]

Researchers Definition of basic emotion

Plutchik Acceptance, anger, anticipation, disgust, joy, fear, sadness,
surprise

Amold Anger, aversion, courage, dejection, desire, despair, fear,
hate, hope, love, sadness

Ekman, Friesen and Ellsworth Anger, disgust, fear, joy, sadness, surprise

Frijda Desire, happiness, interest, surprise, wonder, sorrow

Gray Rage, terror, anxiety, joy

Izard Anger, contempt, disgust, distress, fear, guilt, interest, joy,
shame, surprise

James Fear, grief, love, rage

McDougall Anger, disgust,elation, fear, subjection, tender, wonder

Mowere Pain, pleasure

Oatley, Johnson-Laird Anger, disgust,anxiety, happiness, sadness

Panksepp Expectancy, fear, rage, panic

Tomkins Anger, interest, contempt, disgust, distress, fear, joy, shame,
surprise

Watson Fear, love, rage

Weiner and Graham Happiness, sadness

systems to directly interpret face appearance into the emotional spaces.

3.2.2 Facial expression properties

Emotional states, like many other internal physiological activities (see fig. 3.1) are

conveyed by facial expressions, which are generated by facial muscle contractions

and result in temporal facial deformations in both facial geometry and/or texture.

Facial activities not only cause wrinkles, bulges and other kinds of appearance de-

formation due to stretch and shrink on facial surface which produce variances on

facial texture on captured face data, but also modify the facial geometry. Specifi-

cally, facial geometry here includes facial feature locations such as distance between

landmarks (nose tip, inner and outer eye corners, mouth corners, ...) or feature

point displacement, and geometrical shape of face surface. Because 2D cameras can

not capture the 3D face information, face surface shape is seldom investigated by

2D approaches. Although facial muscle activities inherently change the facial ap-

pearance for the three face representations, including facial landmark configuration,

texture and surface shape, the consequences on them are not necessarily displayed

at the same level. For example, blinking eyes causes obvious variance on texture and
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Figure 3.2: Example of emotions plotted into the arousal/valence plane
[Wieczorkowska et al. 2005].

shape in the eye region without displacing eye corners, as shown in fig.3.3b; pulling

a lip corner deforms local shape around mouth corners but causes subtle variance

in texture from certain views, as shown in fig.3.3c. Meanwhile, it is difficult and

challenging to detect certain facial activities using facial landmark configurations,

such as deepening nasolabial furrow, sucking the lips inward, raising chins which are

not apparent from movements of facial points but rather noticeable from variations

in other two representations, as shown in fig.3.3d,e,f.

Not only the nature of facial deformation carries the message, but also the rela-

tive timing and temporal evolution of expression conveys an important meaning. It

is suggested that the dynamics of facial expression provide an unique information

about emotion that is not available in static images. [Schmidt & Cohn 2001] have

shown that spontaneous smiles reach onsets faster than posed smiles and can have

multiple rises of the mouth corners. Moreover, they are accompanied by other mus-

cle activities that appear either simultaneously with mouth corner rises or follow

them within 1s. Generally an expression process can be segmented into 4 steps:

neutral, onset, apex and offset. The duration of typical muscle activities varies from

250ms to 5 seconds. Thus, using facial expression temporal dynamics are of impor-

tance for evaluating expression intensity level and categorizing facial expressions or

muscle activities.
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a: Neutral b: Closing eyes c: Pulling lip corner

d: Deepening nasolabial furrow e: Sucking the lips inward f: Raising chins

Figure 3.3: Facial activity examples [Ekman et al. 2002].

3.2.3 Facial expression interpretation

According to the two types of aforementioned emotion theories (discrete and dimen-

sional), we can distinguish two main streams on analysis of the facial expressions:

message-based approaches and sign-based approaches.

Message-based approaches are concerned with the message conveyed by facial

expressions. They directly associate specific facial patterns with emotions and clas-

sify expressions into a predefined number of discrete categories. The most commonly

used facial expression categories are the six basic emotions (fear, sadness, happiness,

anger, disgust, surprise), proposed by Ekman [Ekman & Friesen 1971].

Sign-based approaches aim at describing face deformation objectively rather than

inferring meaning underlying the appearance. Facial muscle activities are hereby ab-

stracted and coded by facial action units and then mapped into a variety of states in

emotional space by high-level decision making. To completely describe all possible

perceptible changes, the Facial Action Coding System (FACS) has been proposed

[Ekman & Friesen 1978]. It is a comprehensive and anatomically based system used
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to measure all visually discernible facial movements in terms of atomic facial ac-

tions called Action Units (AUs). Over 7000 different AU combinations have been

observed and some of these combinations are mapped into basic emotions accord-

ing to Emotional FACS (EMFACS) rules and various affective states according to

FACS Affect Interpretation Database (FACSAID). For example, the combination of

AU1, AU2, AU5 and AU26 can be interpreted as the surprise expression while the

combination of AU6 and AU 12 is interpreted as happiness. With the assistance of

a high-level making process, it is applicable to identify AUs for recognizing spon-

taneous facial expression in the dimensional space rather than classifying into the

universal expressions. A detailed interpretation of AU combinations to emotions

can be found in the appendix.

3.3 Related works

Over the past 20 years, facial expression recognition has gained growing interests

within the computer vision community. Progress in recently five years has been

observed in two main aspects. New methods are proposed to detect facial action

units for recognizing more affect states as well as spontaneous expressions besides

the six universal expressions. Meanwhile, many studies have begun to consider 3D

faces for expression recognition.

3.3.1 Facial expression recognition: 2D vs 3D

Majority of facial expression recognizers have been developed in 2D environment

partly because of the data availability. Indeed, most of the databases for facial

expression analysis are made up of 2D images with nearly frontal faces displaying

expressions. Other researches on spontaneous facial expressions are based on self-

captured 2D video sequences. Another reason is that the applications such as HCI

and robots are generally equipped with 2D cameras, which limits the type of face

data.

Typical features used in 2D approaches are either geometric-based or

appearance-based. Geometric features are extracted from contours of face com-
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ponents and facial feature points, including shapes and positions of face compo-

nents, as well as the location of facial feature points [Sohail & Bhattacharya 2007,

Tai & Chung 2007, Chang et al. 2009a, Ari et al. 2008]. In the case of 2D videos,

the position and shape of these components and/or landmarks are often detected

in the first frame and then tracked throughout the sequence [Obaid et al. 2009,

Gunes & Piccardi 2009, Brick et al. 2009]. The geometric features are easy to ex-

tract and quite efficient, however they ignore texture information reflecting facial

texture variations and may not have enough discriminative power for identifying

subtle expressions and action units. Appearance features such as Gabor wavelets,

Haar features and Local Binary Pattern represent facial texture and transient varia-

tions due to wrinkles, bulges and furrows [Savran et al. 2010, Littlewort et al. 2006,

Bartlett et al. 2006, Koutlas & Fotiadis 2008, Tong et al. 2010, Uddin et al. 2009,

He et al. 2009, Yang et al. 2007, Zhao & Pietikainen 2007]. These features are very

informative but they exclude global configuration of facial components and may be

sensitive to illumination variations. Some studies adopt both global facial shape and

features extracted from texture. The advantage is the mutually compensation on

discrimination power for expression from both representations. Good examples of

such a scheme are those in [Park et al. 2008, Park & Kim 2008, Mahoor et al. 2009]

using Active Appearance Model (AAM) to capture the characteristics of the facial

texture and the shape of facial expressions.

Generally these 2D recognizers face the challenges of illumination and head pose.

The appearance of facial expressions varies with the viewpoint of an observer. Thus,

head pose variation on face images includes the in-plane and out-of-plane rotations

as well as the face scale. The in-plane rotation occurs around roll axis and can be

rectified by face alignment. Face scale is generally normalized by interpolation or

subsampling. However, it is difficult to handle the out-of-plane rotations due to the

missing data caused by self-occlusion. Illumination has also a great influence on

face appearance in images. It has been observed that the face image modifications

caused by illumination changes can exceed the differences caused by expression and

identity factors. Although some lighting models have been proposed, this problem

is not yet completely solved, especially for expressions displayed on faces which are
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partly lightened.

3D faces, which contain not only facial texture but also facial surface shape, are

reputed to be insensitive to illumination and head pose. Since the geometry prop-

erty of face can be computed, such as normal of vertices or curvatures, the Phong

reflection mode is used to rectify the texture variance caused by different lighting

conditions. Head pose can be simply normalized by multiplying the rotation matrix

with each vertex and summarizing the translation vector. Because the unit of the

3D face coordinate system is mm instead of pixel in 2D, 3D face size does not vary

with the distance between 3D scanner and subjects when taking the scan. Thus,

recognizing facial expression in 3D offers the ability to handle illumination and head

pose problems contrary to 2D-based approaches. Moreover, because subjects can

be recorded with less controlled head pose using 3D scanner, spontaneous facial

expression can be displayed on faces and analysed by 3D facial expression recog-

nizers. [Savran et al. 2010] compares the effectiveness of 2D and 3D modality for

detecting 25 AUs and demonstrates 3D modality generally performs better than 2D

modality, especially for lower facial AUs and a fusion of both modality achieves the

best performance. Specifically, Adaboost feature selection is applied on the Gabor

magnitude responses for each AU on both 2D images and 2D conformal maps of 3D

faces for comparison.

3.3.2 Facial expression recognition: static vs dynamic

Since a face in a static image can express an emotion, faces necessarily carry static

emotion properties. Thus, a majority of studies in the literature dealing with fa-

cial expressions considers static images. However, a facial expression also implies a

change of a visual pattern over time. This explains why more and more researchers

attempt to characterize the dynamic evolution of expressions in order to improve

the interpretation of facial activities [Hammal et al. 2007]. To do so, features rep-

resenting the temporal dynamics of facial expression are extracted. The speed of

a facial point displacement or the persistence of facial parameters over time can

be extracted [Chakraborty et al. 2009, Brick et al. 2009] either for action phrase

segmentation or recognition. In [Tong et al. 2007, Tong et al. 2010], the dynamic
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Table 3.2: Facial Expression Recognition in the 2D environment requiring human
intervention
Legend: exp - Spontaneous/Posed expression; class - Nnumber of expressions or AUs (Action Units corresponding to AU
detection); sub - number of subjects, person Dependent / Independent, JAFFE, CK, FABO, MMI are the database, OD -
Other database; ? - missing entry; acc: Im / Vi - Image / Video-based.

References Facial Fea-
ture

Classifier Performance

exp class sub acc (%)
[Vretos et al. 2009] location of

the Candide
vertices

SVM P 7 ?, D, CK Vi: 88.7

[Hu et al. 2008b] Feature point
displacement

LBNC;
QBNC;
Parzen; SVM

P 6 100, I, OD Im: 86

[Tong et al. 2007] Gabor
wavelet

Ababoost
and DBN

P, S 14 AUs 30, I, CK; 11,
I, MMI; OD

Vi: 80.8
(CK)

[Tong et al. 2010] Gabor
wavelet

Ababoost
and DBN

P,S 14 AUs 30, I, CK; 13,
I, OD,

Vi: 85.8(CK)

[Uddin et al. 2009] Texture HMM P 7 ?,?I, CK Vi?: 92.2
[Bai et al. 2009] LBP and Ga-

bor wavelet
LDA P 6 10, I, JAFFE Im: 92.4

[Zhi et al. 2009] Image Inten-
sity

GSNMF +
KNN

P 6 ?, I, CK Im: 93.5

[He et al. 2009] Gabor
wavelet

HMM P 7 10, ?, JAFFE Im: 96.2

[Li et al. 2009] SIFT,
PHOG,
Hist of edge

SVM P 6 97, I, CK Im: 96.3

[Zhi et al. 2008] Image Inten-
sity

FDP + KNN P 6 ?, D, CK Im: 96.8

relationships between AUs are proved to be effective to enhance the recognition

performance compared with the one directly derived from Gabor Wavelet.

Table 3.2 and 3.3 provide an overview of the main approaches for facial ex-

pression recognition from the year 2007 with respect to the facial features, clas-

sifiers, and performances. The methods based on static images are tagged by

’Im’ in acc(%) columns and those based on videoes are tagged by ’Vi’. A de-

tailed survey for systems before the year 2007 can be found in the Table 2 in

[Zeng et al. 2009]. Other surveys for 2D facial expression recognition are proposed

in [Pantic & Rothkrantz 2000, Fasel & Luettin 2003].

3.3.3 3D facial expression recognition

The number of studies dealing with 3D facial expression recognition has recently sig-

nificantly increased in particular thanks to the publication of 3D facial expression

databases. These databases are interesting since they allow researchers to develop

and tune their approach, and then to compare their efficiency with the community.

Currently, there exist three public databases which contain 3D face scans for facial

expression analysis. The most widely used is the BU3DFE database [Yin et al. 2006]

which contains face scans from 100 subjects displaying the six universal expressions
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Table 3.3: Fully Automatic Facial Expression Recognition in the 2D environment
Legend: same as the legend in table 3.2.

References Facial Fea-
ture

Classifier Performance

exp class sub acc (%)
[Obaid et al. 2009] the defor-

mation of
tracked
points

Rule-based P 6 30, I, CK Im:88.9

[Koutlas & Fotiadis 2008] Gabor
wavelets

NN P 7 10, I, JAFFE Im: 90.2

[Tai & Chung 2007] Geometry
property of
lines between
landmarks

NN P 7 10, I, JAFFE Im: 88.2

[Sohail & Bhattacharya 2007] Distance SVM P 7 10, I,
JAFFE;
30, I , CK

Im: 89.4;
84.8

[Chang et al. 2009a] Distance NN S 4 6, D , OD Vi: 95.0
[Park et al. 2008] AAM SVM P 4 20, I, OD Vi: 88.1
[Park & Kim 2008] AAM SVM S 4 20, I, OD Vi: 88.1
[Ari et al. 2008] point dis-

placement
SVM S 7 11, D, OD VI:90

[Song et al. 2009] Image Ratio
Features

SVM P 7 ?, ?, CK; ?, ?,
JAFFE; ?,?,
OD

Im: 88.9;
90.1; 87.0

[Mahoor et al. 2009] AAM SVM S 2 AU 6, I ,OD Vi: 82.5
[Martin et al. 2008] AAM Rule-based;

MLP; SVM
S 7 18, D,

FEEDTUM
Vi: 92

[Zeng et al. 2007] local de-
formations
of facial
features

HMM P 11 20, I, OD Vi: 72.4

[Whitehill et al. 2008] Gabor
wavelet

SVM S 12 AUs 8, D, OD Vi: 75

[Gunes & Piccardi 2009] Feature point
and texture

HMM, rule-
based

S 12 10, D, OD Vi: 78

[Yang et al. 2007] Haar features Adaboost P 8 AUs; 6
emotion

96, I, CK Vi: 77.8(AU)
97.5(ex)

[Orozco et al. 2008] Confidence
on AAM
parameter

KNN P 7 30, I, FGnet
MMI

Vi: 96.9

[Kim & Bien 2008] Geometry
property of
lines between
landmarks

LNN P 7 ?, D, CK, Vi: 91.8

[Zhu et al. 2009] SIFT Adaboost S 10 AUs 29, I, OD Vi: 78.8
[Zhao & Pietikainen 2007] LBP K-NN P 7 97, I, CK Vi: 96.3
[Chakraborty et al. 2009] Motion vec-

tor and fuzzy
descriptor

Rule-based S 6 50, ?, OD Vi: 96.0

[Asthana et al. 2009] AAM SVM P 7 30, I, CK Vi: 94.3
[Hammal et al. 2007] Geometry

property of
lines between
landmarks

Transferable
Belief Model

P 4 21, I, CK,
OD

Vi: 77.8%

[Kotsia & Pitas 2007] Geometric
Deformation

SVM P 8 AUs; 6 ?, I, CK Im: 84.7%
(AU); 92.5
(EX)

[Brick et al. 2009] Landmark
displacement
and velocity

SVM P 16 AUs 100, I , CK Im: 90.2

[Martins & Batista 2009] Landmarks Laplacian
EigenMaps
+ HMM

P 7 4, I , OD Vi: 75.7%

[Chang et al. 2009b] Gabor
wavelet

HCRF P 15 AUs;
6

97, I , CK Im: 92.9
(EX); 80.4
(AU)

[Shang & Chan 2009] Landmark
displacement

EM + HMM P 6 100, I, CMU Vi: 97.2

[Koelstra & Pantic 2008] Orient his-
togram

GentleBoost
+ HMM

P 27 AUs 15, I, MMI Vi: 65.1

[Sung & Kim 2008] AAM GDA S 4 20, I , OD Vi: 91.2
[Li et al. 2008] Face texture PCA + LDA P 6 ?, I , CK Vi: 86.0
[Tsalakanidou & Malassiotis 2009] Face defor-

mation
Rule-based S 10 AUs;

4
52, ?, OD Vi: 82.5

(AU); 84.0
[Niese et al. 2008] Geometry

property of
lines between
landmarks

SVM S 5 ?, P, OD Im: 97.2
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as well as the neutral one. Each expression is displayed with 4 intensity levels from

onset to apex. The BU4DFE database [Yin et al. 2008] contains 606 facial expres-

sion sequences in 3D captured from 101 subjects, with a total of approximately

60,600 frame models. For each subject, there are six model sequences showing six

prototypic facial expressions respectively. This is the only database which contains

3D video sequences displaying facial expressions. Finally, the Bosphorus database

[Savran et al. 2008] contains 105 subjects scanned with both the six universal ex-

pressions and facial action units. This is the only public database that contains

dedicated scans displaying action units in 3D.

Existing approaches on expression recognition based on 3D faces can be divided

into two categories: feature-based and model-based facial expression recognition.

These approaches are further detailed in next subsections.

3.3.3.1 Feature-based 3D facial expression recognition approaches

Feature-based 3D facial expression recognition approaches rely on the extrac-

tion of facial features, which are further used to feed a classifier such as

SVM, LDA etc. [Berretti et al. 2010, Tang & Huang 2008a, Soyel & Demirel 2008,

Tang & Huang 2008b, Wang et al. 2006, Hu et al. 2008a]. Among them, features

extracted from landmarks can discriminate the six universal expressions at a

quite high recognition rate, over 94% [Tang & Huang 2008a]. In general, feature-

based approaches rely on a set of precisely located landmarks, either for feature

extraction [Tang & Huang 2008a, Soyel & Demirel 2008, Tang & Huang 2008b,

Venkatesh et al. 2009] or for face segmentation [Wang et al. 2006, Hu et al. 2008a].

Similar to geometry-based features in 2D approaches, 3D geometry information

is widely extracted for its easiness and efficiency. In [Venkatesh et al. 2009], the 3D

location of 68 landmarks have been extracted around eyebrows, eyes, nose and mouth

and used for classification. Distances among 3D landmarks are invariant to head

pose and illumination and thus enable a rather robust recognition under different

conditions. Soyel and Demirel [Soyel & Demirel 2008] have retrieved six distances

between facial landmarks, describing the openness of eyes, height of eyebrows, open-

ness of mouth, width of mouth, stretching of lip and openness of jaw. They achieve
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a recognition rate of 87.9%. Such distance-like features have been further explored

in [Tang & Huang 2008a], where less than 30 ’best’ features were automatically se-

lected from candidate pool (all distances between 83 feature points). They achieve a

recognition rate of 94.7% with a requirement of one neutral scan from each subject.

Besides distance feature, Hao and Huang [Tang & Huang 2008b] have also extracted

properties (the slope and length) of the line segments connecting 83 feature points,

to make up 96 distinguishing features for recognizing the six universal facial expres-

sions. They achieve a recognition rate of 87.1%. Landmark based features are easy

to extract and invariant to head pose. However, its robustness to landmark precision

has not yet been investigated. The recognition performance may highly rely on the

landmark location accuracy which is difficult to achieve by automatic landmarking

methods. Moreover, as a face contains information related to both person identity

and expression, a normalization process is generally adopted to exclude the identity

information that may disturb the expression recognition process.

Another kind of geometrical features is surface shape-based features, which

are extracted from 3D face meshes and describe local shape properties. In

[Wang et al. 2006], principal curvatures, surface principal directions and steepness

of the surface have been calculated and further mapped into one of 12 primitive

features on each vertex. Histograms of these primitive features from manual de-

fined regions are extracted for classification. They achieve a recognition rate of

83.6%. However, 64 manually labeled landmarks are still required for defining the

face regions. In [Savran & Sankur 2009], least squares conformal maps and elastic

registration are used to map 3D faces into 2D images and register mapped faces

into a reference one automatically. 22 AUs are detected by estimating the deforma-

tion between the registered face and the reference. The average of overall correct

recognition rate is 91.4%.

3.3.3.2 Model-based 3D facial expression recognition approaches

Instead of directly extracting features, model based approaches make use of a generic

face model, generally deformable, as an intermediate [Ramanathan et al. 2006,

Mpiperis et al. 2008, Rosato et al. 2008, Venkatesh et al. 2009]. The expression
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is recognized either from model parameters or features extracted from fitted

models. In 2D, the Active Appearance Model (AAM) has been well explored

for recognizing expressions. Usually, a set of model parameters are first ob-

tained by fitting AAM on the target face. Then, they are used to ex-

tract distances among fitted parameters and training parameters in the pa-

rameter space for measuring the degree of similarity [Abboud et al. 2004] or to

feed classifiers like SVM, MLP etc [Martin & Gross 2008]. In 3D environment,

a number of generic face models has been proposed, such as annotated face

model (AFM) [Kakadiaris et al. 2007], 3D morphable model [Blanz & Vetter 2003],

bilinear model [Mpiperis et al. 2008]. They are widely applied in 3D face

recognition [Kakadiaris et al. 2007, Blanz & Vetter 2003], 3D face reconstruc-

tion [Hu et al. 2004] and 3D facial expression recognition [Rosato et al. 2008,

Mpiperis et al. 2008, Ramanathan et al. 2006]. These face models include a prior

knowledge on 3D face, such as landmark location, face segmentation and deforma-

tion modes. As the transfer of the knowledge from the models to new faces naturally

happens during the fitting process, it is promising to base an automatic expression

recognition system on this category. Moreover, most of them contain deformation

knowledge so that new faces can be registered by fitting the model into them via

a model parameter optimization. The optimized parameters are further classified

into expression classes [Mpiperis et al. 2008, Ramanathan et al. 2006]. However, fit-

ting face models introduce errors since the learnt deformation modes can not be

so comprehensive to synthesize every face precisely and perfectly without resid-

ual. Meanwhile, the model is built on limited features, usually on 3D face mesh

[Mpiperis et al. 2008] and face texture [Ramanathan et al. 2006]. Using the model

parameters from these two raw features may not have sufficient discriminant power

for classifying various expressions.

Morphable Expression Model (MEM) [Ramanathan et al. 2006] is built by ap-

plying a Principal Components Analysis (PCA) on both 3D face shape and texture,

whose process is similar to AAM. The morphable MEM learns expression variation

modes from faces with expression. After fitting MEM into new faces by minimizing

an energy function, model parameters are projected as a point into a low-dimensional
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space made of the eigen-expressions for recognition. They achieved a recognition

rate of 97% for 4 expressions in their own dataset. Similarly, 3D point distribution

models [Venkatesh et al. 2009] are built for each expression by applying PCA. The

difference between the coefficients of test faces and those of each expression from

training are computed for recognition. They achieve a recognition rate of 81.7%.

Mpiperis [Mpiperis et al. 2008] has done a joint recognition based on decoupling

identity and expression components of face appearance by bilinear models. A subdi-

vidable base mesh has been used to build point-to-point correspondence for building

a symmetric and asymmetric bilinear models. Using these two models, identity and

expression parameters for new faces have been optimized and further classified to

perform face and expression recognition respectively. They achieve a recognition

rate of 90.5%.

Instead of using model parameters, Rosato [Rosato et al. 2008] has extracted

the distribution of primitive features from a generic 3D face model. The model has

been fitted into new faces through 2D planer meshes, which are generated based

on a circle pattern-based conformal mapping. They achieve the average recognition

rate at 80.1% for recognizing seven prototypic facial expressions.

Because face models carry a prior information on landmark locations, extract-

ing features on fitted model naturally do not need human intervention. Moreover,

generic model may be built with a low resolution so that computation burden can

be reduced. The limitation of this kind of approach is that a dense correspondence

among face is necessary, which normally has high computation complexity.

3.3.4 Discussion

Overall, when comparing the state-of-the-art methods for recognizing 3D facial ex-

pression, one can observe that most of approaches:

• aimed at recognizing of a small number of universal expression (i.e., happiness,

sadness, anger, fear, surprise, and disgust) using posed, controlled, static 3D

face scans;

• are generally not fully automatic since they require human intervention for
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locating landmarks or for fitting the initial model, due to the lack of reliable

facial landmarking technology in 3D.

• are based on single feature or face model and thus do not contain sufficient

information to describe a wide range of expressions or action units which are

commonly investigated in 2D environment as a promising alternative solution

for spontaneous expression recognition .

As it was mentioned in section 3.2.2, different facial actions deform different face

representations to different level/extent. Thus, we are convinced that features from

all face representations, including landmark location, facial texture and facial surface

shape/geometry, should be extracted and combined in order to characterize a wide

variety of facial expressions and action units comprehensively. In section 3.5, we will

present a unified probabilistic framework for both expression and AU recognition

problems, which aims at fusing the discriminative power of features from different

facial representations. Combined with the automatic landmarking methods we pro-

posed in the previous chapter, this framework is able to recognize facial expression

efficiently in a fully automatic manner. Before this work, we will first propose in

next section a local geometry based feature for describing face shape deformation

caused by expressions that can be used to feed a classical classifier such as SVM for

identifying the six universal expressions. Most of existing geometry based features

are based on curvature computation, which are computation complex and sensitive

to surface noise, or based on landmark configuration, which are easy to implement

but exclude the rich surface shape information. So we propose here a feature which

can be easy computed and effective in expression recognition.

3.4 3D Facial expression recognition based on a local

geometry-based feature

Although features such as Gabor wavelet [Tong et al. 2010, He et al. 2009,

Chang et al. 2009b] or Local Binary Patterns (LBP) [Zhao & Pietikainen 2007,

Bai et al. 2009] have been widely used for recognizing facial expression or action
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units in 2D environment, they can not carry information related to surface defor-

mation occurring on faces in the real 3D world since they do not integrate shape

information, and thus can not accurately reflect complex and authentic facial expres-

sions. Moreover, the assumption of frontal images of faces under good illumination

generally required by approaches in 2D is unrealistic in 3D. Therefore, there is a

high demand to represent efficiently facial expressions in 3D.

Thus, several 3D geometry-based features have been proposed previously, such as

HK curvature [Szeptycki et al. 2009], shape index [Dorai & Jain 1997] or primitive

surface feature [Wang et al. 2006]. They are generally based on curvature computa-

tion from 3D face meshes [Szeptycki et al. 2009][Dorai & Jain 1997] or a fitted local

surface patch [Wang et al. 2006]. They have the advantages of being pose free and

efficient to describe the local surface property. In this section, we will propose a

novel feature that derives directly from point clouds of 3D faces to describe the

local shape property to enrich information for 3D face analysis, and particularly 3D

facial expression recognition. Compared to the curvature based features, it is easy

and fast to extract, but requires of a priori knowledge on head pose which is not

needed by aforementioned features.

3.4.1 Brief introduction of popular 3D surface feature

Because of the explicitness of 3D visible surfaces, analysing faces thanks to their

geometric shape should be easy and robust to illumination and head pose contrary

to the intensity images conventionally used. In order to describe surface properties,

principal curvatures are computed for extracting HK curvatures, shape index and

primitive surface feature on a vertex. These curvatures (κ1, κ2) can be computed as

the maximum and the minimum degrees of a surface bending around the vertex (see

[Wang et al. 2006] for details) or as the extrema of the normal curvature function

at the vertex ([Besl & Jain 1986]).

Shape index is a scale value computed as:

SI =
1

2
−

1

π
arctan(

κ1 + κ2
κ1 − κ2

) (3.1)
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Note that the value of shape index is necessarily between 0 and 1.

H (mean), K (gaussian) curvatures are computed as:

H =
(κ1 + κ2)

2
,K = κ1κ2 (3.2)

The primitive surface feature derives from the principal curvatures κ1, κ2, the

surface principal directions v1, v2 and the ‖∇z‖ representing steepness of the surface

around a vertex. Specifically, the local surface around a point is estimated by locally

approximating it with a smooth polynomial function, z(x, y) = 1
2Ax

2 + Bxy +

1
2Cy

2 + Dx3 + Ex2y + Fxy2 + Gy3. The Weingarten matrix for the local surface

is W =





A B

B C



 = ( ṽ1 ṽ2 ) · diag( λ1 λ2 ) · ( ṽ1 ṽ2 )T , where λ1, λ2 are

eigenvalues and ṽ1, ṽ2 are the orthogonal eigenvectors in local coordinate system.

v1, v2 are further computed by rotating ṽ1, ṽ2 into the global coordinate system.

The gradient magnitude ‖∇Z‖ is computed from the smooth polynomial function.

Two thresholds are defined, namely TG and Tλ.

These features represent local surface characteristics and their categorization

allows to label every vertex with one of the basic surface types. Using the value of

shape index, five basic surface types can be characterized, as shown in fig. 3.4; the

signs of mean and Gaussian curvature yield eight basic surface types, as shown in

fig. 3.5; twelve primitive surface can be defined from the value of primitive surface

feature using the rule shown in fig. 3.6. In general, if ‖∇z‖ < TG or there is a zero

crossing in the direction of the maximum curvature, one of the non-hillside labels is

assigned; otherwise, one of the hill-side labels is assigned using the rule defined in

the table.

All of the aforementioned features are obtained by computing principal curva-

tures either on the discrete mesh of the underlying surface or on a fitted continuous

local surface. However, this curvature approximation is sensitive to noise, such as

spikes. Generally, such noises can be reduced by surface smoothing techniques or

enlarging the size of neighborhood in computing curvatures [Szeptycki et al. 2009].

Consequently, either errors on face meshes may be introduced by the smoothing tech-
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Figure 3.4: Five basic visible-invariant surface types defined by shape index
[Yoshida et al. 2002].

niques or computational complexity increases. Moreover, the fitting of local surface

and calculating principal curvatures are computational complex. In the following,

we propose a surface characterizing method which relies on the point clouds instead

of face meshes. This feature is relatively easy to implement and quick to compute,

but requires to evaluate head pose. Therefore, a 3D pose estimation approach has

also been proposed.

3.4.2 SGAND: a new Surface Geometry feAture from poiNt clouD

Instead of using curvature to characterize local surface, we directly sample the pe-

ripheral vertices of a vertex and characterize the vertex by comparing their geo-

metrical relationship. We name this feature: Surface Geometry feAture from poiNt

clouD (SGAND). From the fig. 3.4 and 3.5, we can observe that the basic surface

types can be modeled by the geometrical relationship between the center part and

the peripheral parts. For example, the center part of peek surfaces is higher than

the peripheral parts while the center part of pit surfaces is lower; the center of

saddle ridge surfaces is lower than some peripheral parts and higher than others.

Here, we use the investigated vertex p to represent the center and eight clusters of

vertices around to represent the peripheral parts. Their relationships are detected
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Figure 3.5: Eight basic visible-invariant surface types defined by HK curvatures
[Besl & Jain 1986].

as shown in fig. 3.7. Specifically, we first find a plane M which is perpendicular

to the z axis of the coordinate system and crosses the vertex p, as the red plane in

the figure. Then, eight virtual cylinders C1−8 are placed perpendicular to the plane

M and uniformly distributed on a circle S centered on p. The plane formed by the

axis of the top cylinder C1 and the axis of the bottom cylinder C5 is parallel to the

yz plane in the coordinate system. To obtain the geometrical relationship, vertices

inside all cylinders are sampled and compared with the plane M . Taken C1 in the

picture c of the figure as an example, the sampled vertices inside of C1 are grouped

into two parts, those above the M plane and those below. A binary value is then

set to this cylinder following the rule: if the number of vertices above is larger than

the vertices below, we set 1; otherwise, we set 0. We repeat this process clockwise

for all Ci, i ∈ 1, 2, ..., 8 and concatenate the binary array into a scalar value which

is necessarily between 0 to 255 for the vertex p. Therefore, the peak surface can be

featured as 0 and the pit surface as 255. Other surfaces as flat and minimal have

multiple values as 7, 28, 112, 193 for flat and 34, 136 for minimal surface because of

the in-plane rotation. Furthermore, SGAND allows to model not only these basic

surface type but also other surfaces since totally 256 slots can be generated.

The radius of the cylinders C and the circle S are respectively defined as 2mm

and 7mm in fig. 3.7. We fix the radius of C because local surfaces with a size smaller

than 2mm can be considered as a flat surface. The radius of circle S can vary so that
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Figure 3.6: Classification rule of primitive 3D surface labels [Wang et al. 2006].

the vertex P can be featured by different peripheral parts on a surface and thus be

more informative. fig. 3.8 illustrates the variation of the radius S. We compute and

compare the quantity of sampled vertices within the same cylinder above and below

the plane. Since these two set of vertices always have the same density, SGAND is

invariant to face scale.

When the investigated vertex p and the main direction (the normal of plane M)

are fixed, the feature varies with the radius of the circle S over which the cylinders

C are distributed. Different vertices are sampled with varying radii and thus may

influence the binary values. The implicit reason for changing the radius is the

different geometrical properties of facial surfaces at different distances. For example,

the feature for the nose tip is always 0 because it is the highest vertex on the face

and this property does not change with the radius. However, the feature value of the

inner corner of eyes definitively changes with the radius since the sampled regions

move across the nose saddle region and thus cause variations on sampled surface

property. fig.3.9 displays our feature extracted from one face scan with various

radiuses of the circle S. Each color corresponds to a value in SGAND ranging from

0 to 255. We can see the SGAND distribution on faces and how this distribution is

affect by radius of the S.
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Figure 3.7: Extraction of our proposed feature. a: frontal view, b: side view, c:
one cylinder for clearance. The green dot represents the investigated vertex which
is located in the nasal region of a face. A plane and eight cylinders are involved as
displayed.

Figure 3.8: The radius variation of circle S. a: 7mm, b: 4mm.

Unlike the primitive surface feature which is extracted using a local coordinate

system, we always extract SGAND using the direction vertical to the plane M in the

3D coordinate system. This is more intuitive and matches human perception habit

since we look at faces through the gaze direction. Usually, the M plane is formed

perpendicular to the z axes of the coordinate system for frontal 3D faces. If a face

has an other head pose, we need to define another direction for the M plane instead

of the z axes which varies with the head pose and indicates the frontal direction

of the face. Thus, we propose an automatic approach to estimate head pose and

find the direction in order to form the face planes for our feature extraction. This
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Figure 3.9: Influence of the radius of circle S on our feature extracted from a neutral
face: a: 3mm, b: 5mm, c: 7mm, d: 9mm, e: 11mm, f: 13mm.

approach will be presented in subsection 3.4.3.

3.4.3 Pose estimation of 3D faces

Pose estimation of a 3D facial model aims at finding how the 3D face surface is

embedded into the 3D coordinate system [Besl & Jain 1986]. A reliable pose es-

timation plays an important role in face alignment and feature extraction. For

example, a plane is required vertical to the face frontal direction when extract-

ing the SGAND. There are some existing methods that have been proposed both

in 2D [Bailly et al. 2009] and in 3D. These approaches either use range data

[Breitenstein et al. 2008], which is applied to 2.5D faces, or require a training process

for a generic face model [Kinoshita et al. 2006]. Thus, we propose in the following

a fast and efficient pose estimation approach which is based on face mesh and does

not require any training process. Therefore, this method is suitable to be adopted

as a preprocessing step in 3D face analysis systems.

The basic idea is to use the vertices on the frontal side of a face to generate a

face plane by regression. With the normal of the plane and a direction from top to

bottom of faces, head pose in 3D coordinate system can be estimated and thus the
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Figure 3.10: A face with vertex normals

roll, yaw and pitch directions can be computed.

In order to find the frontal vertices on a face, we take the normals of vertices

into consideration because they are rotation invariant and represent the directions

of vertices on facial surface. The normal of a vertex is computed by averaging the

normals of surrounding triangle facets. fig. 3.10 illustrates a face with normals on

all vertices.

In order to select vertices on the frontal side of a face, we use a clustering

method to cluster those with normals pointing to the frontal direction as well as

those whose normals point to the left and right direction. This idea is intuitive

since a facial part of a skull can be roughly approximated by three planes from

frontal, left and right side respectively. Thus, the clustering of normals can perfectly

group vertices into three sets. There are several clustering methods conceivable such

as Mixture of Gaussians, K-means, etc.. Among them, the K-Means algorithm has

been chosen because of its efficiency and easiness to be implemented. Given normals

of all vertices (n1, n2, ..., nN ), where each normal is a 3D real vector, the K-means

clustering partitions the N normals into 3 sets: S = S1, S2, S3 by minimizing the

within-cluster variance:
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argmin
s

3
∑

i=1

∑

xj∈Si

‖xj − ui‖
2 (3.3)

where ui is the mean of Si. The K-means algorithm is enumerated as follows:

1. Place three points into the space represented by the normal data that are

being clustered. These points represent initial centroid groups.

2. Assign each normal to the group that has the closest centroid.

3. When all normals have been assigned, recalculate the positions of the K cen-

troids.

4. Repeat Steps 2 and 3 until the centroids stabilization. This produces a sepa-

ration of the normals into groups from which the metric to be minimized can

be calculated.

We have compared the clustering results between K-means and Mixture of Gaus-

sians, and display one example in fig. 3.11. We can observe that normals separated

by K-means are more symmetrical than the results obtained from Mixture of Gaus-

sians.

The clustering process outputs three normals u1, u2, u3 which are the centroids

of S1, S2, S3 respectively. In order to distinguish the mean normal which represents

the normals pointing to the front, we compute the inner products of each pair of

u1, u2, u3. Indeed, the angle between the left mean normals and the right mean

normals is the biggest among all 3 angles formed by any pair of u1, u2, u3. Thus, we

can find the minimum inner product from the pair and the other centroid represents

the frontal vertices.

After the group of frontal vertices have successfully been obtained, a Principal

Component Analysis (PCA) is used to fit a linear regression that minimizes the

perpendicular distances from the those points to a plane and a line. The process

is as follows. The coefficients D1, D2 for the first two principal components define

vectors that form a basis for the plane. The third principal component is orthogonal

to the first two, and its coefficient D3 defines the normal vector of the plane. The
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Figure 3.11: Separation of vertices into 3 sets: left (red), frontal (blue), right (green).
a: K-means, b: Mixture of Gaussians

plane passes through the mean point Pm of the group. Meanwhile, the coefficient

D1 of the first principal component is the vertical direction of the face. Indeed,

the first component explains the most prominent variance in the data which is the

vertex location variance along the top-bottom direction as seen in blue points in fig.

3.11. The direction is the best 1-D linear approximation to the data. In summary,

D3 and Pm form the face plane while D1 and Pm form the line.

The plane can also be fitted by using other methods on the group of frontal

vertices, such as the least square method. Overall, the least square method is only

able to approximate a face plane whose normal can be used in our feature extraction.

Thus, our method offers the advantage of allowing the estimation not only of the

face plane but of three head pose directions including yaw, pitch and roll.

3.4.4 3D expression description and classification based on

SGAND

Our proposed SGAND has been designed for 3D face analysis including face detec-

tion, facial landmarking, face recognition and facial expression recognition. In this

subsection, we propose to make use of it for 3D facial expression recognition.
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Figure 3.12: Feature extracted from faces with six universal expressions. a: anger,
b: disgust, c: fear, d: happiness, e: sadness, f: surprise.

After having extracted the features from a face, facial expressions can be rep-

resented by the distribution of the features over the facial region. Indeed, facial

expression is the consequence of human emotion and implies facial muscle acti-

vation that modifies the facial surface geometry. Such a variation results in the

distribution variations of SGAND, as illustrated in fig. 3.12. Thus, one can identify

facial expressions by using SGAND.

To find an explicit description of the fundamental structure of facial surface

details, we have investigated the statistical distributions of the feature for nine

expressive facial regions. As shown in fig. 3.13, 83 manually labelled landmarks are

defined on the facial surface, and accordingly, the nine expressive local regions are

constructed based on these points. Note that the nose region and interiors of eyes

are currently not included in the nine local regions. Nose region is widely accepted

as a rigid facial region whose surface shape does not vary with facial expression.

Thus, it is useless to include nose region since no expression information provided.

Meanwhile, because of the flaw of 3D face scan capture, the interiors of eyes generally

contain hole and thus can not accurately record the local shape.

In short, the selected nine local regions cover the most mimic facial areas. In
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Figure 3.13: Nine selected facial regions labeled by colors other than blue.

each selected region, we model the feature distribution by computing a histogram

as follows:

Li = [
ni1
ni
,
ni2
ni
, ...

nim
ni

, ...,
niM
ni

] (3.4)

where nim is the number of vertices having a feature value m from 0 to 255, and

ni is the total number of vertices in the ith local region (ni =
M
∑

m=1
nim). M = 256

is the number of the slot of our feature value.

The concatenation of nine histogram distributions of the selected entire regions

generates an expression descriptor.

E = [L1, ..., Li, ..., LK ] (3.5)

where K is the number of selected regions (K=9 in our experiments).

The descriptor E is computed under multiple radiuses of the circle C in order to

precisely represent the local surface around each vertex, and is used to feed Support

Vector Machines (SVM) classifiers [Chang & Lin 2001], each one being associated

to a radius value. These classifiers allow to obtain, for all expressions from a given

face, a set of probabilities following a one-against-one strategy. Specifically, each

classifier has been trained with the same number of faces from the six universal

expressions. When testing on an unknown face, it is able to output six probabilities
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(Pi in eqn. 3.6 ) corresponding to the six classes. Sets of probabilities from all

classifier associated with different radiuses are summarized respectively to obtain

the overall probability set, as shown in eq. 3.7.

Pi = [P 1
i , P

j
i ..., P

E
i ] (3.6)

where E is the number of expressions and i represents the index to radius of the

circle C. The expression can be recognized by choosing the one with the maximum

in the overall probability set. Eq. 3.7 can be tantamount as score fusion for easy

understanding.

X = argmax(
S
∑

i

[P 1
i , P

j
i ..., P

E
i ]) (3.7)

where X ∈ anger; disgust; fear;happinees; sadness; surprise and S the num-

ber of different radius.

3.4.5 Experimental results

In this section, we present the experimental results obtained for the evaluation of our

approaches on pose orientation estimation and on our SGAND for facial expression

recognition. The database we have used in the tests is the BU-3DFE dataset.

3.4.5.1 Results on pose estimation

For the evaluation of the pose estimation approach, we have used the neutral faces

and faces with the six universal expressions of the two highest level from all subjects

so that 1300 face scans have been tested in total.

In fig. 3.14, faces with six universal expressions are displayed with the estimated

planes (the black rectangles) and three directions (green, blue, red lines) from PCA.

We have further analysed quantitatively the test results on the 1300 facial models

with different number of vertices, poses and expressions. For evaluation, we have

manually selected the feature points of inner eye corners and nose corners of each

model and derived its orientation as the ground truth of pose orientation. We then
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Figure 3.14: Results of pose estimation on faces with the six universal expressions.
a: anger, b: disgust, c: fear, d: happiness, f: sadness, e: surprise

compared the estimated pose orientation using our approach with the ground truth

orientation, and have considered that the estimated pose is correct if the difference

between the estimated and the ground truth pose orientation is less than 10◦. The

correct pose estimation rates of face models are 94.36% for the normal of the face

planes (D3), displayed as the red lines in fig. 3.14 , 98.24% for the vertical directions

(D1), displayed as the green lines and 96.44% for the horizontal directions(D2)

displayed as blue lines. The approach in [Breitenstein et al. 2008] achieve a correct

rate of 80.8% with the same criterion for correct estimation using their own dataset.

In [Seemann et al. 2004], a pose success rate of 75.2% for 10◦ has been achieved.

Compared with them, our method appears to be more accurate. However, no direct

comparison is possible because different datasets have been used.
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3.4.5.2 Results on facial expression recognition

For the evaluation of facial expression recognition, we have used faces with the six

universal expressions of the 2 highest level from 60 subjects so that the results can be

compared with other works in the literature. Each face has been manually labelled

with 83 fiducial points for the face segmentation.

Our facial expression recognition experiments have been conducted in a person-

independent way, which is believed to be more challenging than a person-dependent

approach. We have followed a ten-fold person-independent cross-validation method,

where 60 subjects have been partitioned into two subsets in each round (totally 10

rounds): one with 54 subjects for training and the other with 6 subjects for testing.

This experiment setup guarantees that each subject appears once in testing set and

9 times in training set and any subject used for testing does not appear in the

training set since the partition is based on the subjects rather than the individual

expression.

For these tests, we have set the radius of the circle C to 3, 5, 7, 9, 11, 13mm

and have computed the expression descriptor E with these radiuses respectively.

Because most of the faces are in rough frontal pose, we have used the Z axis as the

main direction and have extracted our features directly on the faces. Then, we have

trained an SVM for each E and have fixed its parameter for all rounds of the test.

Table 3.4 shows the confusion matrix of the average case for the test. Expressions

surprise, happiness, sadness and disgust are well identified with accuracies over 90%,

especially 100% recognition rate for the recognition of surprise. However, the anger

and fear have quite lower recognition rates. Most of anger expressions are confused

with sadness, and fear expressions are more likely to be misclassified to happiness.

The average recognition rate for all the six universal expressions is 75.3%.

We mainly compare our results with those in [Wang et al. 2006]. The main

purpose of the comparison is to show the performance of the proposed feature. The

scheme of our method is very similar to theirs so that the efficiency of features

can be compared directly and fairly. [Wang et al. 2006] extracts another geometry-

based feature (primitive features) and compute histogram of features from different
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Input \ Output Anger Disgust Fear Happiness Sadness Surprise

Anger 21.7% 13.3% 4.9% 1.7% 56.7% 16.7%

Disgust 0.0% 91.7% 1.7% 4.9% 0.0% 1.7%

Fear 0.0% 3.3% 48.3% 26.7% 15.0% 6.7%

Happiness 0.0 % 1.7% 3.4% 94.9% 0.0% 0.0 %

Sadness 1.7% 0.0% 1.7% 0.0 % 94.9% 1.7%

Surprise 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 100.0 %

Table 3.4: Confusion Matrix of the person-independent expression recognition.

face regions (segmented by manual landmarks) for facial expression representation.

Our average recognition rate (75.3%) is comparable to the average recognition rate

(77.8%) using the same classifier (SVM) in their method. Because they have not

provided the confusion matrix on recognizing the six universal expressions using the

primitive surface feature and a SVM classifier, we can only provide their confusion

matrix result in Table 3.5 obtained by a combination of their proposed feature and a

LDA classifier. This classifier performs better than SVM, which achieves an average

recognition rate of 83.6%. By comparing the two confusion matrix, we can see

that our recognition rates for identifying anger and fear are quite lower than theirs.

However, the recognition results for other expressions is better, especially for disgust,

sadness and surprise. Fig. 3.15 illustrates some failure cases. The distributions of

the proposed features (extracted with the radius of 11mm) are quite similar between

the left column and the right column. This suggests that the major reason for the

significant performance drops for anger and fear compared to [Wang et al. 2006] is

the lack of discriminant power of the expression description for these two expressions.

Table 3.13 lists several recognition results in the literature using the same

database. Among them, [Tang & Huang 2008a] achieves the best average recog-

nition rate of 94.7%, which selects good features from all distances between 83

landmarks by Adaboost algorithm. However, this study requires a neutral face from

each subject for distance normalization and thus is subject biased. The recognition

rates of other works are reported between 83% and 90% using manual landmarks.
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Figure 3.15: Failure cases for expression recognition using the proposed SGAND
features. The first and second row show the misclassification of anger into sadness
for subject 2 and 4. The third row shows the misclassification of fear into happiness
for subject 64. It can be observed that the distribution of extracted features under
different expressions are quite similar, which is the main reason for confusion.
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Input \ Output Anger Disgust Fear Happiness Sadness Surprise

Anger 80.0% 1.7% 6.3% 0.0% 11.3% 0.8%

Disgust 4.6% 80.4% 4.2% 3.8% 6.7% 0.4%

Fear 0.0% 2.5% 75.0% 12.5% 7.9% 2.1%

Happiness 0.0 % 0.8% 3.8% 95.0% 0.4% 0.0 %

Sadness 8.3% 2.5% 2.9% 0.0 % 80.4% 5.8%

Surprise 1.7 % 0.8 % 1.2 % 0.0 % 5.4 % 90.8 %

Table 3.5: Confusion Matrix of expression recognition in [Wang et al. 2006].

3.4.6 Conclusion

In this section, we have discussed and analyzed the popular geometry-based features,

including HK curvatures, shape index and primitive surface features. Then, we have

proposed our geometry-based feature SGAND, which can be extracted from point

clouds of 3D faces and is invariant to face scale, contrary to the other approaches.

Indeed, instead of computing the principal curvatures, we describe the local geome-

try by comparing the number of vertices within the sampled regions above and below

a plane defined by center vertex and a frontal face direction. Thus, the extraction

of this feature is fast and easy to be implemented.

In order to extract the feature on faces under various pose, we have proposed

a pose estimation approach which estimates the frontal, vertical and horizontal

orientations of 3D faces. This approach first clusters normals of vertices on a face

to detect those vertices on the frontal side. Then, the directions are estimated by

a PCA-based regression. Thanks to this approach, our geometry-based feature can

be extracted under various head poses.

In order to apply our feature to facial expression recognition, we have used

manual landmarks to segment faces into 9 regions, and extract the histogram of

the SGAND as the expression descriptors. We have then used SVM to classify the

descriptors computed from SGAND under multiple conditions and obtain the final

results via score-level fusion.

The experimental results on pose orientation estimation have demonstrated the

efficiency and robustness of our approach on faces with various expressions and

poses. The experimental results on facial expression are comparable to other works
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which use the similar scheme and experimental setup. However, more expressions

are better recognized by our approach which is computationally more efficient. Thus,

experiments have brought to the fore the ability of our proposed feature to describe

efficiently facial local geometry.

However, the local geometry may not carry sufficient information to represent all

kinds of deformations caused by various expressions and more information about the

local shape property may be necessary, such as texture for characterizing for example

bulges and furrows. Thus, in order to identify expressions and action units with high

precision, features from different facial representations should be considered. In the

next section, we will present our approach based on a Bayesian Belief Net for fusing

the features extracted from different face representations.

3.5 3D expression and Action Unit recognition based on

a Bayesian Belief Network

Existing 3D facial expression recognition systems mostly aim at identifying the six

universal expressions, using geometry-based features extracted from the face surface.

Line properties between landmarks, such as angles and distances, are often used

and can achieve rather good results. [Tang & Huang 2008a, Soyel & Demirel 2008,

Tang & Huang 2008b, Wang et al. 2006, Hu et al. 2008a]

However, as we discussed previously, expressions are created by facial muscle

contractions and result in the variations of landmark locations as well as texture

and surface shape in mimic facial parts. By means of these variations, a wide range

of expressions other than the universal ones can be exhibited on a face as well as

all the 44 basic facial action units (AUs). The geometry based approaches exclude

information on other face representations and thus do not make use of the com-

prehensive characteristics of facial appearance. Although experiments have proved

their good performance in recognizing the universal expressions, the geometry based

features may be not rich enough to discriminate other subtle expressions or facial

action units.

Moreover, feature based approaches generally rely on a large number of precisely
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located landmarks, either for feature extraction or for face segmentation. Thus, their

performance highly depends on the landmark precision, which can not be achieved

by automatically located landmarks. Thus human intervention is generally required

in these approaches.

On the other hand, morphable facial models are built by learning the deforma-

tion modes on texture and geometry representations, and use the deformation pa-

rameters as features for recognition [Ramanathan et al. 2006, Mpiperis et al. 2008,

Rosato et al. 2008, Venkatesh et al. 2009]. Two major problems arise: firstly, the

deformation modes learnt from whole faces describe the major variations globally

and thus can not properly reflect local deformation patterns caused by AUs. Sec-

ondly, the learnt variation modes are not necessarily consistent with the variations

among AUs and expressions, thus may not synthesize expressions accurately. In

other words, AUs or expressions can only be approximated by combining a set

of variation modes, rather than being modeled by one specific mode in the mod-

els. For certain expressions such as happiness or surprise, or action units such as

AU27 (mouth opening), the deformation is prominent and thus can be approximated

modelled well enough to be distinguishable. However, for some of other moderate

expressions and AUs, small variances in parameters yield different expressions.

Therefore, in order to characterize the facial deformations comprehensively, fea-

tures from all three face representations (facial landmark location or global geometry,

texture and local geometry) should be considered. This raises the problem on how

to fuse the contribution from each feature efficiently. In this section, we propose

to use a Bayesian Belief Network to solve this problem. Beliefs on the expression

node for different expressions or AU states are inferred from network parameters of

neighboring nodes. Statistical feature models (SFM) are learnt for estimating these

parameters on those nodes corresponding to the subject and the facial features.

A distance-like feature is extracted to describe the global geometry relationships

of face components. Meanwhile, local information is also extracted not only from

the raw facial texture and shape but also from other features such as shape index,

LBP so that subtle local deformations can be well characterized and different kind

of expressions or AUs can be more distinguishable. Thus, SFMs are learnt for each
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type of feature and the parameters are estimated following an uniform process in

our BBN. This leads to a flexible system where any new feature can be modeled by

a SFM, and the corresponding knowledge directly "plugged" into the BBN.

Moreover, the BBN can be further combined with our SFAM proposed in the

previous chapter to realize a fully automatic expression and AU recognition system.

Indeed, the adopted features are extracted from local regions on important facial

parts. Our SFAM is able to locate landmarks in those regions automatically. We

thus use the SFAM as the first part of the automatic system to locate feature

points and then extract features around those landmarks for recognition. Because

we consider features from three face representations, our system is more robust to

landmarking errors than state-of-the-art approaches as it has been proved by the

evaluation of the system.

Graphical models have already been used in facial expression analysis in 2D.

A Dynamic Bayesian Network is developed in [Tong et al. 2007] to model the dy-

namic and semantic relationships among facial action units. The network has been

extended to a more sophisticated one in [Tong et al. 2010] which coherently rep-

resents head pose and action units. A Bayesian Belief Net aiming at describ-

ing the relationship between expression and facial action units is developed in

[Datcu & Rothkrantz 2004] for expression recognition.

However, the BBN we propose differs from them in three aspects:

1. The purpose of our graphical modal is to recognizing expressions and

AUs within one framework based on data fusion whereas the one in

[Tong et al. 2007] aims at enhancing the system performance of AUs or fa-

cial expression recognized by other classifiers and [Datcu & Rothkrantz 2004]

use BBN to interpret the AUs according to the six universal expressions.

2. The structure of our BBN is different. In [Tong et al. 2007], the learnt struc-

ture of the Bayesian Network explores the dynamic relationship among AUs.

In [Datcu & Rothkrantz 2004], the structure of BBN describes the relationship

between AUs and the six universal expressions. However, our BBN concen-

trates on describing the causal relationship among subject, expression and
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facial features.

3. Because the objects and the structure of the graphic models are not same, the

computation of their parameters is consequently different.

In the following sections, we will present our Bayesian Belief Network as well as

feature extractions adopted in this network.

3.5.1 A bayesian belief network for 3D facial expression recogni-

tion

In this subsection, we first introduce some background knowledge on BBN and then

specify its usage for facial expression and AU recognition. The belief computation

in BBN is then presented. Since the BBN structure is elaborated in a unified way

for recognizing both facial expressions and AUs with the same procedure, we will

use the term ’facial activity’ to represent the six universal expressions as well as

AUs.

3.5.1.1 Overview of BBN

A Bayesian Belief Network [Duda et al. 2000] is a probabilistic graphical model with

the topology of a directed acyclic graph (DAG), shown as fig. 3.16. It is made up

of a collection of nodes and directed edges, but without directed cycles, as shown

in fig. 3.17. Nodes represent a set of random variables and directed edges represent

their conditional dependencies.

In fig. 3.17, the ’belief’ of a variable on a node X (X = (x1, x2, ..., xn)) describes

the probability of its states in condition of knowing evidences e (observations) on its

connected neighbor nodes. These nodes can be divided into parents (nodes pointed

directly to X via an edge) and children (those nodes pointed directly from X via

an edge) to compute the belief as:

P (X|e) ∝ P (ec|X)P (X|ep) (3.8)

where ep is evidence on all parents and ec is evidence on all children.
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Figure 3.16: An example of Bayesian Belief Network.

The factor about parent nodes in eq. 3.8 is calculated as the conditional proba-

bilities ofX under all combinations of all ’parents’ states as well as their probabilities

given evidences, as in eq. 3.9.
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∑
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(3.9)

where ep is the evidence of parents, pi1 means the ith state of the first parent, pj2

means the jth state of the second parent, etc. P (pi1|e
p
1) is the probability of the

ith state (I states in total) of the first parent given its evidence ep1. P (pj2|e
p
2) is

the probabilitiy of the jth state (J states in total) of the second parent, etc. The

P (X|ep) is a sum of totally I ∗ J ∗ ... ∗K factors.

The factor about children nodes can be rewritten as:

P (ec|X) = P (ec1, e
c
2, ..., e

c
Nc|X) =

Nc
∏

l=1

P (ecl |X) (3.10)

where ecl is the evidence or observation of the lth child node, Nc is the number of

children, P (ecl |X) is the probability of evidence knowing the X state.
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3.5.1.2 BBN for expression & AU recognition

Figure 3.17: The proposed Bayesian Belief Network. We infer belief of states in
node X, which represents facial activity (expression or AU), from its parent node
S, which represents 3D face scans and its children nodes F1 ,F2 ,..., FNf

which
represent facial features (landmark displacement, raw local texture and range around
landmarks, etc...)

The structure of our BBN is illustrated in fig. 3.17. The node X represents the

facial activity variable and has as many states as the kinds of facial expressions or

AUs that are to be recognized, such as six states for the six universal expressions

or 16 states for the 16 AUs mentioned later in this section. The node S is X’s

parent, representing human subjects that we explore. It has as many states as the

number of subjects. X’s children F1 ,F2, ... ,FNf
represent the facial features that

are extracted to carry face information.

Since there is only one parent for the node X, the factor P (X|ep) in eq. 3.8 can

be expressed as:

P (X|ep) =
Nf
∑

i
P (X|piS)P (p

i
S |e

p
S) (3.11)

where Nf is the total number of subjects that we explore, P (piS |e
p
S) is the prior
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probability of the ith subject and P (X|piS) is the conditional probability of X given

the state of the ith subject. When all tested subjects perform the same number of

expressions (as it is the case for the available face databases), P (X|piS) and P (piS |e
p
S)

follow an uniform distribution. Thus, P (X|ep) also follows an uniform distribution.

In other cases, the computation of P (piS |e
p
S) can be based on face recognition ap-

proaches while P (X|piS) can be computed either from expression probability distri-

bution in databases, or in a realistic situation, from the frequency of each expression

appearing on subjects’ face in a period of time in daily life.

Therefore, for a given face κ, eq. 3.8 can be rewritten as follows:

P (X|eκ) ∝

Nc
∏

l=1

P (ecl |X) (3.12)

where eκ refers to observations from the face κ. Thus, the belief for each expression

state is computed from eκ and the state holding the highest belief is considered as

the most probable expression (or AU) of the face κ, as in eq. 3.13.

X = argmax
X

P(X|eκ) (3.13)

Our BBN is derived from the Bayesian Belief Network in [Duda et al. 2000], a

general example of which is presented in section 3.5.1.1. However, the method to

obtain P (ecl |X) has to be designed for our specific problem. In our case, we propose

to use a statistical feature model (SFM) to estimate P (ecl |X) as in the following

section.

3.5.1.3 Belief computation for BBN

To know the beliefs for the X node, we need to estimate P (ecl |X) for each child node,

which is computed based on a statistical feature model (SFM) method. SFMs are

built for all features in an uniform manner. Specifically, given a training set for the

feature Fl, we divide it into Ne (number of expressions or AUs) subsets containing

the corresponding faces. For each subset ix, Principle Component Analysis (PCA)

is applied to learn the variation modes of the feature under the ix expression, where
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95% of major components are preserved.

F ix
l = F̄ ix

l + P ix
l b

ix
l (3.14)

where F̄ ix
l is the feature mean, P ix

l is the set of eigenvectors resulting from PCA,

and bixl is a set of parameters which are supposed to follow Gaussian distributions

with a zero mean and a standard deviation σixlj where j refers to each parameter

of bixl . The feature instances F̂ ix
lκ can be generated from the above equation using

feature Flκ to estimate the best parameter bixl :

bixl = P ix
l

T
(Flκ − F̄ ix

l ) (3.15)

We set a boundary (±0.5σixlj ) for the corresponding parameter in bixl to form b̂ixl in

order to constrain the instance deformations and thus to increase their separability.

F̂ ix
lκ is computed by inputting b̂ixl in eq.3.14.

The probability P (ecl |X) can be considered as the probability of matching the

feature Flκ with its instances F̂ ix
lκ knowing the expression state X, which follows a

Gibbs distribution.

P (ecl |X) ∝ eAlQl (3.16)

Ql is the matching quality, computed as the normalized cross-correlation between

evidence Flκ and its instance F̂ ix
lκ , and Al is a normalization constant.

Inserting the Gibbs distribution into eq. 3.12 and taking logarithm gives:

log p(X|eκ) = log(

Nc
∏

l=1

P (ecl |X)) + c =

Nc
∑

l=1

AlQl + c (3.17)

Through the above process, eq. 3.13 can be computed by taking 3.17. A block

diagram illustrating the recognition process using the BBN is demonstrated in fig.

3.18.
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Figure 3.18: Block diagram of the BBN for expression and AU recognition.

3.5.2 Characterization of facial deformations

Two strategies for recognizing facial expressions can be drawn: detection of affects

(emotions) and detection of facial muscle actions (AUs). The first one infers what

underlies a displayed face, such as the six universal expressions, while the second

one aims at describing objectively the facial appearance mostly by FACS. Both rely

on the representation and analysis of facial deformations. Our approach for this
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purpose is detailed in the following subsections.

3.5.2.1 Facial deformation analysis

Facial activities including expressions and AUs are both consequences of facial mus-

cle activities and the difference between them lies on the muscles involved and the

intensity of their contraction. AUs describe facial deformation locally at a low level

manner while facial expressions can be considered as a combination of AUs at a

high-level manner over the whole face. Some combinations of AUs correspond to

basic expressions according to decision making rules. For instance, the combination

of AU4, AU5, AU7 and AU24 corresponds to anger. Thus, we are convinced that

a good characterization on AUs at a low level can also be effective to represent the

six universal expression at a higher level. In the following paragraphs, facial repre-

sentations are drawn mainly by analysing AUs. However, this representation also

applies to facial expressions.

Totally, 16 facial AUs are analyzed in this work which are chosen based on the

3D data availability. They are AU2, AU4, AU7, AU9, AU10, AU12, AU14, AU17,

AU18, AU22, AU24, AU26, AU27, AU28, AU34, AU43, illustrated in fig. 3.19. More

details on AUs and their combination rules for recognizing emotions can be found

in the appendix part.

From fig. 3.19, we can observe that the variations of facial appearance occur

in three face representations: facial morphology, facial texture and facial geometry.

Specifically, facial morphology consists in a set of reproducible landmarks located

on different facial parts. Facial texture contains the unique lines, patterns, and

spots apparent in a face skin whereas facial geometry contains facial surface shape

information delivered by a face surface mesh. Facial variations caused by AU or

expression have an influence on these representations to different extents. For ex-

ample, AU7 and AU43 change the texture in the eye region significantly without

moving corners of the eyes. AU24 changes the local geometry and texture in mouth

region mostly while having less influence on landmark location. However, most of

AUs influence all three face representations simultaneously and notably, such as

AU4, AU10, AU22, AU26, AU27, etc. AUs normally occur locally and change the
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AU2 AU4 AU7 AU9

AU10 AU12 AU14 AU17

AU18 AU22 AU24 AU26

AU27 AU28 AU34 AU43

Figure 3.19: Examples of Facial AUs.

appearance in the regions where the corresponding muscles are located. However,

some AUs can influence appearance in other regions besides where they happen. For

instance, AU10 raises the upper lip while deepens the nasolabial furrow between the
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nose and the eyes. Thus, the description scheme we use is based on local regions that

are distributed on the important facial parts where most of AUs occur, including the

eyebrows, the eye, the nose and the mouth, as it is detailed in the next subsection.

3.5.2.2 Feature extraction

In order to describe facial deformations simultaneously according to the three rep-

resentations, 19 landmarks are first located manually or automatically and then raw

texture and range data are extracted from the local regions around them. Based

on these local informations, we further compute other features for enriching face

representation to better characterize the morphology described by the relationships

between landmarks as well as local texture and geometry.

After a manual labeling of landmarks or an automatic fitting of SFAM on a face,

the corresponding configuration is represented by a vector S made up of the con-

catenation of the landmarks 3D coordinates. Texture feature G and shape feature

Z are also extracted by concatenating intensity and range values on remeshed local

grids centered at landmarks as in the previous chapter. Local patches in fig. 3.20

correspond to the remeshed grids formed by local shape and rendered by local tex-

ture.

S = (x1, y1, z1, x2, y2, z2, ..., xN , yN , zN )T (3.18)

G = (g1, g2, ..., gm)T (3.19)

Z = (z1, z2, ..., zm)T (3.20)

where N is the number of landmarks and m is the number of vertex in all local

regions.

For representing the morphology representation, S is used to compute a distance

feature L and a point displacement feature D. 11 distances between the involved

landmarks are computed and then concatenated into feature vector L. The distances

are pictorially shown as green lines in the fig. 3.20 and their textual descriptions are

118



Chapter 3. 3D Facial Expression Recognition

Figure 3.20: Feature extraction

Index Textual description

1 distance between left outer eyebrow and left outer eye corner
2 distance between left inner eyebrow and left inner eye corner
3 distance between right inner eyebrow and right inner eye corner
4 distance between right outer eyebrow and right outer eye corner
5 distance between left and right eyebrows
6 distance between left outer eye corner and left outer mouth corner
7 distance between right outer eye corner and right outer mouth corner
8 distance between left nose corner and upper mid lip
9 distance between right nose corner and upper mid lip
10 width of mouth
11 height of mouth

Table 3.6: Distances between some strategical facial landmarks on the 3D facial
expression model. Distance index refers to the fig. 3.20.

given in Table 3.6.

Feature point displacements represent a change of landmark locations when an

expression appears from a neutral face. It is very informative since it represents the

shape difference between the face with expression and the neutral one. However, it

imposes the constraint that one neutral face from a subject is available and therefore

is subject biased. To loosen this constraint, we use a mean landmark set computed

from all training neutral faces instead of using landmarks on neutral face of every

subject. Thus, D is computed by subtracting the mean of S for training neutral faces

(S̄neutral) from S (eq. 3.21), represented as red lines in fig. 3.20. This solution avoid
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the need for providing a neutral face in conjunction with the face to be recognized

with expression, which is unrealistic in a real application.

D = S − S̄neutral (3.21)

The LBP operator, a powerful texture measure used widely in 2D face analysis,

extracts information which is invariant to local gray-scale variations of the image

with low computational complexity. Multi-Scale LBP [Shan & Gritti 2008] is an im-

proved facial representation compared to standard LBP (eq. 3.22). We have adopted

multi-scale LBP features for three reasons: first, LBP describes local property of

images, which is consistent with the local deformations that correspond to AUs;

second, the variance in the apparent AU magnitude is large since some are quite

notable while some are subtle, thus it is necessary to analyze them under different

scales; third, LBP is efficient and easy to compute.

LBPP,R(x, y) =
P−1
∑

p=0

s(gp − gc)2
p (3.22)

where s(x) = 1 if x ≥ 0; s(x) = 0 if x < 0, gc is the value of current pixel and

gp is the value of the neighbors, R is the radius of neighborhood circular and P is

number of pixels in the neighborhood. Examples of LBP operator are shown in fig.

3.21. A subset of these 2P binary patterns, called uniform patterns, can be used to

represent spot, flat area, edge and corner [Chan et al. 2007].

Figure 3.21: LBP Operator. The circular (8,1), (16,2), and (8,2) neighborhoods.
The pixel values are bilinearly interpolated whenever the sampling point is not in
the center of a pixel.

In our case, LBP are computed and extracted from scale 1 to 5 respectively for

all points on the local grids on both texture LBPU2

(16,1)t, LBP
U2

(16,2)t , ..., LBP
U2

(16,5)t

120



Chapter 3. 3D Facial Expression Recognition

and range maps LBPU2

(16,1)r , LBP
U2

(16,2)r , ..., LBP
U2

(16,5)r. Superscript U2 indicates

that the definition relates to uniform patterns with a U value of at most 2 (refer

to [Chan et al. 2007] for details). fig.3.22 illustrates the extraction of LBP feature

at different scales and on both local texture and range maps. Finally, the values

for each (P,R) pair on local grids are concatenated into a vector to build 10 LBP

feature vectors: (LBPt1− 5, LBPr1− 5).

(16,1) (16,2) (16,3) (16,4) (16,5)

Figure 3.22: Multi-Scale LBP extracted from local texture and range map on a 3D
face scan. In the first row are LBP features extracted from texture and in the second
row are LBP features extracted from range. In the third row are the (P,R) values
of the corresponding columns.

To describe local surface curvature information, we compute shape index of all

vertices on the local grids and concatenate them into vector SI. We choose shape

index because it has been proven to be an efficient feature to describe local curvature

information and is independent of the coordinate system. The computation and

more details about shape index can be found in section 3.4.1. The shape index is

computed on each vertex on local grids as illustrated in fig. 3.23.

To summarize, 15 types of features are extracted to represent the knowledge

used in the BBN as children nodes : D, G, Z, L, SI, LBPt1− 5, LBPr1− 5.

Therefore, Nf is equal to 15. These features are summarized in Table 3.7.

3.5.3 Fully automatic expression recognition system

By combining the BBN with SFAM, a fully automatic 3D facial expression recogni-

tion system can be realized. It consists of 4 main stages, as shown in fig. 4.3: offline

SFAM construction, offline BBN training, online landmarking and feature extrac-
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Figure 3.23: Shape index computed on local grids of a face

Symbol Textual description Dimension

D Person independent point displacement of 19 landmarks 57
Z Range values extracted from 19 local patches 4275
G Intensity values extracted from 19 local patches 4275
L Distances extracted from landmarks 11
SI Shape index extracted from 19 local patches 4275

LBPt1 LBP feature extracted at scale 1 from 19 local texture maps 4275
LBPt2 LBP feature extracted at scale 2 from 19 local texture maps 4275
LBPt3 LBP feature extracted at scale 3 from 19 local texture maps 4275
LBPt4 LBP feature extracted at scale 4 from 19 local texture maps 4275
LBPt5 LBP feature extracted at scale 5 from 19 local texture maps 4275
LBPr1 LBP feature extracted at scale 1 from 19 local range maps 4275
LBPr2 LBP feature extracted at scale 2 from 19 local range maps 4275
LBPr3 LBP feature extracted at scale 3 from 19 local range maps 4275
LBPr4 LBP feature extracted at scale 4 from 19 local range maps 4275
LBPr5 LBP feature extracted at scale 5 from 19 local range maps 4275

Table 3.7: 15 adopted features and their textual description.
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tion, and finally online facial expression/AU recognition. Thus, SFAM is trained

using a small set of faces with all kinds of expressions or AUs. A set of statistical

feature models are also trained corresponding to these classes and for each feature

respectively. During online recognition, faces are first landmarked by SFAM, then

a variety of features are extracted and used as evidence by the BBN for computing

belief of states for the facial activity node X. Specifically, feature instances are

generated corresponding to trained feature models and further used to compute the

post-probability of each extracted feature. The output of the system is the type

of expression whose corresponding state has the highest belief among different ex-

pression or AU states, which are computed from probabilities on both parents and

children nodes. Of course, this system is also applicable with manual landmarks.

In this case, the landmarking process is skipped for input faces where features are

directly extracted based on manual landmarks.

Figure 3.24: Flow chart of the automatic facial expression/AU recognition system

3.5.4 Experimental results

We present in this section our experiments driven in order to evaluate the perfor-

mance and efficiency of our facial expression/AUs recognition approach based on

statistical feature models merged by a BBN. To do so, we have compared the per-

formance of our BBN against other popular classifiers, i.e. Support Vector Machine

(SVM) and Sparse Representation Classifier (SRC) on identifying the six univer-

sal expressions. Then, in order to prove BBN flexibility and robustness, we have

experimented the recognition of 16 AUs. Finally, we have tested the expression
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recognition scheme which combines the SFAM and the BBN in order to recognize

the six universal expression in a fully automatic manner.

3.5.4.1 Database and experimental setup

In the experiments for facial AU recognition, face scans displaying 16 AUs have

been used from 60 subjects in the Bosphorus database[Savran et al. 2008], which

are AU2, AU4, AU7, AU9, AU10, AU12, AU14, AU17, AU18, AU22, AU24, AU26,

AU27, AU28, AU34 and AU43. Thus, 60*16=960 3D face scans have been involved

in this tests. Noting that these acted AUs are not FACS coded and singly occurring

AUs. The FACS coded version of the database will soon be available.

In the experiments for facial expression recognition, face scans of two high-

intensity from each expression have been used from each subject in BU3DFE

database [Yin et al. 2006]. For both tests using manual landmarks and automatic

landmarks, we have used the data of 60 subjects. A part of subjects are different

between the tests using manual landmark and those using automatic landmarks, be-

cause face scans from a group of subjects are consumed to build the SFAM, which

is used to obtain the automatic landmarks on the left face scans. In fact, SFAM has

been trained using the data of 11 subjects with scans displaying the six universal

expressions at two high-intensity level and neutral. The trained SFAM has then

been used to locate 19 landmarks for scans of other 89 subjects.

All tests in AU and facial expression recognition have followed a 10-fold person-

independent cross-validation process. Thus, 60 subjects have been partitioned into

two subsets in each round (totally 10 rounds): one with 54 subjects for training and

the other with 6 subjects for testing. This experiment setup guarantees that each

subject appears once in testing set and 9 times in training set and any subject used

for testing does not appear in the training set because the partition is based on the

subjects rather than the individual expressions.

3.5.4.2 Results for 3D AU recognition

In the test for AU recognition, we have defined the states of the X in the BBN

corresponding to the aforementioned 16 AUs.
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AU2 AU4 AU7 AU9 AU10 AU12 AU14 AU17

PR 90.0% 75.0% 78.3% 81.7% 95.0 % 85.0 % 75.0 % 80.0%

FAR 3.6% 26.2% 13.0% 5.8% 10.9% 19.0% 23.7% 7.7%

AU18 AU22 AU24 AU26 AU27 AU28 AU34 AU43

PR 91.7% 90.0% 76.7% 91.7% 91.7% 81.7% 88.3% 98.3%

FAR 14.1% 3.6% 40.3% 12.7% 3.5% 7.5% 20.9% 4.8%

Table 3.8: Average positive rates (PR) and Average false-alarm rates (FAR) of AUs.

Real \ Predicted AUi non-AUi

AUi True Positive (TP) False Negative (FN)
non-AUi False Positive (FP) True Negative (TN)

Table 3.9: Explanation of TP and FAR definition.

The results are given in Table 3.8 in terms of average positive rates and average

false-alarm rates for all AUs. Indeed, recognizing each AUi can be considered as

a two-class classification according to the AUi and the non-AUi. The positive rate

is defined as PR = TP
TP+FN and the false-alarm rate is FAR = FP

TP+FP where TP

stands for "True Positive", FN for "False negative" and FP for "False Positive"

(see Table 3.9 for details) .

Among the 16 AUs, 7 of them (AU10 , AU18, AU22, AU26, AU27, AU2, AU43)

have an average PR over 90%, while 4 of them (AU14, AU24, AU7, AU4) have

average PR below 80%. Meanwhile, AU24 has the highest FAR, which suggests

that it is easily confused with other AUs, which is also the case for AU34 and AU4

having a FAR above 20%. On the contrary, AU43, AU27, AU22 having a FAR below

5% are relatively clearly identified. Globally, our BBN achieves an overall average

PR for all 16 AUs of 85.6% with an overall average FAR of 13.6%.

To further demonstrate the performance of our system, we have performed a

ROC analysis for each AU. In order to obtain these ROC curves, we have first

normalized the set of scores for all 16 AUs of a face to the range from 0 to 1,

where 0 corresponds to the minimum and 1 corresponds to the maximum of the

individual AU recognition score. Then, for a given AU, all normalized scores from

all faces (960) have been computed and used for computing its ROC curve. The

decision threshold has been changed from 0 to 1 and the ROC curves are obtained
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by plotting the true-positive rates against the false-positive rates. Notice that the

values on the left end of ROC curves correspond to the positive rates in table 3.8

because our decision threshold in use is 1 after score normalization. Specifically,

the highest score of an AU is always transformed into 1. Actually we choose the

state which have this score as the predicted AU. fig. 3.25 and fig. 3.26 are the ROC

curves for 16 AUs respectively. The ROC curves which have a greater area below

indicates a better recognition. Thus, we can see AU43, AU27 and AU10 are among

those best recognized, which correspond to the results in table 3.8.

In [Savran & Sankur 2009], 22 AUs are detected automatically by estimating

the deformation between the registered face and the reference. Based on the same

dataset, they achieve an average PR of 91.1% . In [Sun et al. 2008], 7 AUs are

considered and a AU combination on their own database is performed allowing to

achieve a PR of 89.1%. In [Tong et al. 2010], authors use a Dynamic Bayesian Net

to learn the relationship between AUs on 2D Cohn-Kanade database in order to

enhance the recognition performance using gabor features and Ababoost classifier.

They achieve an 85.8% PR on 14 AUs. Our approach achieves an average PR of

85.6% for 16 AUs, which achieves a consistent result with the highly optimized 2D

method [Tong et al. 2010].

3.5.4.3 Results for 3D facial expression recognition

In order to evaluate the performance of our BBN, we have compared it with two

other classifiers, the Support Vector Machine (SVM) [Chang & Lin 2001] and the

Sparse Representation Classifier (SRC) [Wright et al. 2009]. All tests have followed

a 10-fold cross validation process. The face scans in level 3 and level 4 are tested

separately and the final recognition rate is obtained by averaging the results from

two intensity levels for all three approaches.

For classification tests using SVM, a multi-class SVM has been trained respec-

tively for each feature extracted from each level of expression (30 SVMs in total).

Parameters have been empirically tuned to gain the best performance for each of

them. The output of the SVMs is a set of probabilities describing how likely the

face belongs to each expression class according to the testing feature. These prob-
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abilities (15 in total per level) have been added together and the testing faces have

been labeled according to the maximum probability score.

For classification tests using SRC, 30 SRCs have been trained respectively follow-

ing the principle of the approach proposed in [Wright et al. 2009], with a l1−norm

minimization via orthogonal matching pursuit. Parameters have also been set em-

pirically to obtain the best performance. The SRC output is a set of distances

between the testing feature and its six approximations which are generated from a

set of coefficients associated with each class. These distances (15 in total per ex-

pression intensity level) have been added together and the testing faces have been

labelled according to the minimum distance.

SVM SRC BBN

M 83.6% (4.4%) 61.7% (7.9%) 76.9% (8.7%)

T 76.9% (6.8%) 74.7% (6.4%) 75.8% (7.5%)

Ge 84.3% (5.6%) 81.3% (6.7%) 82.9% (5.9%)

M+T 83.1% (6.1%) 78.3% (8.2%) 84.9% (5.8%)

M+Ge 86.4% (5.7%) 83.1% (5.6%) 86.5% (5.1%)

T+Ge 87.2% (4.3%) 83.5% (7.0%) 86.1% (4.5%)

M+T+Ge 88.1% (4.1%) 85.3% (6.8%) 89.2% (3.6%)

Table 3.10: Average recognition rates for the six universal expressions with different
features configurations (Morphology, Texture and Geometry) and different classifiers
using manual landmarks. The standard deviations over 10 fold tests are the values
in the brackets.

Table 3.10 shows the performance in terms of average recognition rates for BBN

with different setups on children nodes, as well as the comparison with other clas-

sifiers. The first row contains the results where the BBN only has two children

nodes for inference, i.e. L,D features extracted from the morphology representation

M . The second and third rows contain the results where the BBN adopt features

from texture T and geometry representation Ge respectively, i.e. G,LBPt1− 5 and

Z,LBPr1 − 5, SI. The following rows contain the results with different combina-

tions of these features. We can see that SVM performs better in the tests on each of

the single representation, named M, T, Ge. However, BBN is comparable with it in

tests on two representations for manual landmarks and finally outperforms SVM on
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all three representations with an average recognition rate of 89.2% and least std of

3.6%. Therefore, proved by the tests, BBN is more effective than score-level fusion

strategy with SVM and SRC when adopting features from all three representations.

Moreover, BBN uses an uniform non-parameter-tuning process for building SFM

and estimate parameters, which avoids the trouble for manually tuning parameters

to optimize the performances in SVM and SRC.

We have also evaluated the influence of the local grids size and the number of

local grids in the feature extraction process. Using the same data as in the previous

test, we have first extracted the feature from the same 19 local grids which has a

25mm*25mm size, as shown in fig.3.27a; then we have extracted the feature from

selected 32 local grids which has a 15mm*15mm size same as the one in the previous

test, as shown in fig.3.27b. The average recognition rate for the test on faces sampled

on 19 grids with a size of 25mm*25mm is 90.3% and the average recognition rate

for the test on faces sampled on 32 grids with a size of 15mm*15mm is 89.3%.

These results (90.3% vs 89.3% vs 89.2%) suggest that it is sufficient and has a

lower computation burden to use the grids on the 19 locations with the size of

15mm*15mm to extract features.

3.5.4.4 Results for the fully automatic facial expression recognition

For the fully automatic 3D facial expression recognition, the SFAM has first be used

to locate 19 landmarks automatically and then features have been extracted around

these landmarks.

The results are given in Table 3.11 with different child node setup for the BBN

similar to those in Table 3.10. We can see that the recognition rate increases with the

number of child nodes, and finally achieved 84.9% when adopting all children nodes,

corresponding to the 15 features. Unlike the results based on manual landmarks,

we can not observe an notable contribution of M in the recognition rates (0% vs

3.1%) in the last row which may be due to the inaccuracy of automatic landmarks.

Besides, when using only M, an obvious decrease on the recognition rate is observed

from using manual landmarks to using automatic ones. This confirms the claim

that landmark-based features have a high reliance on locating accuracy and thus
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BBN (m) BBN (a)

M 76.9% 51.1%

T 75.8% 67.8%

Ge 82.9% 77.3%

M+T 84.9% 67.8%

M+Ge 86.5% 77.5%

T+Ge 86.1% 84.9%

M+T+Ge 89.2% 84.9%

Table 3.11: Recognition rates for 6 universal expressions with different features con-
figurations (Morphology, Texture and Geometry) using both manual and automatic
landmarks. The left column is results based on manual landmarks (m) and the right
column is results based on automatic landmarks (a).

are sensitive to landmarking errors.

Input \ Out-
put

Anger Disgust Fear Happiness Sadness Surprise

Anger 86.7 /
83.3%

2.5 /
3.3%

1.7/
1.7%

0.0 /
0.0%

9.1 /
11.7%

0.0 /
0.0%

Disgust 3.3 /
3.3%

89.3 /
86.7%

3.3 /
6.7%

0.8 /
0.0%

3.3
/0.0%

0.0/
3.3%

Fear 1.7 /
5.1%

6.7 /
8.5%

79.1 /
67.8%

6.7/
8.5%

5.0 /
1.7%

0.8 /
8.5%

Happiness 0.0 /
0.0%

0.0 /
1.7%

5.8 /
3.3%

94.2 /
93.3%

0.0 /
0.0%

0.0 /
1.7%

Sadness 6.7 /
13.3%

0.8/
0.0%

2.5 /
1.7%

0.0 /
0.0%

90.0 /
83.3%

0.0 /
1.7%

Surprise 0.0 /
1.8%

1.7 /
1.8%

2.5 /
1.8%

0.0 /
0.0%

0.0 /
0.0%

95.8/
94.6%

Table 3.12: Confusion Matrix of the expression recognition. Left value on each
cell is the result based on manual landmarks and right value is the result based on
automatic landmarks.

Table 3.12 contains the average recognition rates for the six universal expressions

based on manual landmarks (first value in each cell) and by the fully automatic ap-

proach (second value in each cell), using the combination of all features (M+T+Ge).

The average recognition rate is 89.2% based on manual landmarks and 84.9% for

automatic ones. The decrease is mainly due to localization errors for automatic

landmarks. Most of the expressions are indeed identified with high accuracy in both

tests, while anger and fear have comparatively lower recognition rates. Anger is
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classified more likely into sadness because their confusion, even for humans, is much

larger than for other expressions. Faces with sadness are more easily to be misclas-

sified into anger in the tests on automatic landmarks. However, the case of fear is

different. The motions of this expression are moderate compared to happiness or

surprise for example, and thus more difficult to discriminate.

3.5.4.5 Discussion

Table 3.13 presents a comparison with typical results of the literature. While most

of other works are dedicated to the recognition of the six universal expressions in 3D,

our classification scheme based on BBN and statistical feature models performs the

recognition of both expressions and AUs with an uniform structure. It is also found

that the proposed BBN outperforms most of the other methods while it requires

no parameter tuning and less constraints, such as a large number of landmarks and

the neutral face from each subject. Indeed, our approach has achieved the second

rank in the literature, the first one having been obtained by [Tang & Huang 2008a].

However, their method requires a neutral face from each subject for distance nor-

malization, which introduce subject bias.

Concerning the fully automatic expression recognition, our results are also of

good quality since the second rank in the literature has been reached. Compared

with [Mpiperis et al. 2008], our approach has two advantages. Firstly, the building

and fitting of the SFAM can be easily implemented. Secondly, the recognition by

BBN is not only efficient according to the accuracy but also in terms of computa-

tional cost. The normalized cross-correlations are computed between each feature

and its instances within 0.24s for each child node in average on a desktop PC with

Intel Core2 E4400@2.00GHz CPU.

3.5.5 Conclusion

We have proposed a new 3D facial expression and AU recognition approach based

on a BBN associated with statistical feature models. We have further combined it

with a morphable SFAM to realize a fully automatic recognition of facial expression.
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Method Methodology Express -ions Manual Landmarks Results

[Soyel & Demirel 2008] Neural network 7 Yes (23) 87.9 %
[Tang & Huang 2008a] SVM 6 Yes (83) 94.7%

[Wang et al. 2006] LDA 6 Yes (64) 83.6%
[Tang & Huang 2008b] AdaBoost 6 Yes (83) 87.1%

Our approach BBN 6 Yes(19) 89.2%
[Mpiperis et al. 2008] Bilinear model 6 No 90.5%
[Venkatesh et al. 2009] Modified PCA 6 No 81.7%

Our approach BBN & SFAM 6 No 84.9%

Table 3.13: Comparison of the results from different facial expression recognition
methods.

Different from graphical models built for 2D facial expression analysis, the proposed

BBN has a flexible topology allowing to integrate knowledge carried on new features

by adding new children nodes of the X node. By defining the states in the X node,

we can change the facial expressions or AUs that need to be recognized. Further-

more, we have proposed a novel parameter estimation method for the BBN which

evaluates the similarity between features and their instances generated from statis-

tical feature models. Our experiments have proved that the BBN is more effective

than score-level fusion approaches using SVM, SRC when employing features from

all three representations. Meanwhile, it is easy to apply BBN in fusing information

from a group of features for recognizing since it does not require any parameter tun-

ing procedure. In general, our approach has achieved an average positive rates of

85.6% for 16 AUs and 89.2% for the six universal expressions. Furthermore, thanks

to using the feature extracted from three representations, it is robust to the land-

marking errors, which allows it to be implemented as an automatic FER approaches.

The recognition rate of 84.9% has been achieved for recognizing the six universal

expressions automatically. Compared to other existing 3D FER approaches, our

method offers the advantages of good performance and implementation simplicity

with the ability to be fully automatic.

3.6 Conclusion on 3D expression and Action Unit recog-

nition

In this chapter, we have proposed two approaches for analysing 3D facial expression.

In the first approach, a new feature named SGAND, has been proposed to describe
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local facial geometry property by comparing the number of sampled peripheral ver-

tices above and below a face plane around a vertex. A head pose estimation method

has been elaborated in conjunction with the feature so that it can be extracted un-

der various head poses. SGAND has been evaluated for the purpose of recognizing

the six universal expressions.

The results demonstrate the efficiency of SGAND when classifying disgust, hap-

piness, sadness and surprise. However the other two universal expressions are not

classified satisfyingly. There are two conceivable directions to improve this approach:

• Feature extraction process: currently, we use a binary value obtained from the

numbers of local sampled points on the two sides of the plane to describe the

local surface. It is enough to describe the bending trend of the local surface,

which is more like a qualitative analysis. However, this binary value is not

sufficient to analyse the surface bending quantitatively. Thus, in order to

represent the local surface characteristic more precisely, more values will be

set according to the distances of sampled vertices to the plane. Moreover, a

lookup table will be created to map the value arrays to the typical surface

types.

• Expression representation and classification process: We currently use SGAND

histograms from face segments to represent expressions. However, this global

strategy is reputed to be less effective than the local based face representation.

So, we will consider other local-based face representations or a hybrid way to

represent facial expressions. Moreover, for the classifiers, besides using SVM

classifier, we will evaluate other classifiers such as SRC, LDA, KNN, etc.

In the second approach a Bayesian Belief Network associated with statistical

feature models has been proposed to recognize the six universal expressions as well

as facial AUs. The BBN can be further combined with the SFAM proposed in the

previous chapter to build a fully automatic facial expression recognition system.

The results demonstrate the efficiency of BBN compared with SVM and SRC

to fuse features from different face representations. Using an uniform structure,
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the BBN achieves good results for recognizing both expressions (second rank in the

literature) and facial AUs. Tested on automatically located landmarks, the BBN

shows its robustness to landmark locating errors. In the future, we envisage to build

a probabilistic latent semantic space of AUs and recognize spontaneous expressions

based on this space.
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AU2 (99.6) AU4 (96.0)

AU7 (99.0) AU9 (98.3)

AU10 (99.1) AU12 (98.4)

AU14 (97.7) AU17 (98.2)

Figure 3.25: ROC curves for the 16 AUs on the Borphorus database. The area
under ROC curve is in the bracket. (Part 1)

134



Chapter 3. 3D Facial Expression Recognition

AU18 (98.7) AU22 (99.3)

AU24 (95.3) AU26 (98.9)

AU27 (99.8) AU28 (99.3)

AU34 (97.1) AU43 (99.7)

Figure 3.26: ROC curves for the 16 AUs on the Borphorus database. (Part 2)
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a b

Figure 3.27: Two examples of local grid configuration (number and size).
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Chapter 4

A minor contribution: People

Counting based on Face Tracking

4.1 Introduction

People counting systems aim at automatically estimating the number of people

in open or close places. They have wide potential applications including public

transportation management system and video surveillance. Several technologies

could be envisaged to elaborate such systems. The vision-based approaches are more

promising because they can take advantage of the widely used video surveillance

systems.

4.1.1 Related work

Traditional counting systems are generally based on infrared or pressure sensors.

They are low cost but not easy to integrate with video surveillance system. Vision-

based people counting systems become more popular these years for different scenes,

like in buildings, streets and hot spots. In the literature, authors developed ap-

proaches relying on two main strategies: non-tracking based approaches and track-

ing based approaches. In the first case, authors try to discriminate foreground from

background and count interesting targets. Mehta et al [Mehta & Stonham 1996]

made use of classifiers such as neural networks trained to recognize the background

in order to facilitate the location and counting of objects in the scene. Moreover,

Schlögl et al [Schlögl et al. 2003] used motion features to classify each pixel as mov-

ing, stationary or background, and then grouped similar pixels together into blobs.

They were compared later with the average human size varying with positions in the
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scene to estimate people number inside. Chao et al [Chan et al. 2008] segmented

crowd by motion model and extracted features from each segmentation. The corre-

spondence between features and number of people were learned by Gaussian Process

regression. [Dalal & Triggs 2005] proved that locally normalized Histograms of Ori-

ented Gradient (HOG) in a dense overlapping grid can be applied as a successful

feature in a pedestrian detector. The speed of HOG based pedestrian detector

has been increased significantly in [Cui et al. 2008], which make the detector ap-

plicable in practical application. However, HOG based pedestrian detector is not

applicable to our study because the full body of pedestrian are not always pre-

sented in our collected datasets. In the second case, authors either count tracked

people at a defined counting line or count people trajectories from tracking. In

[Kim et al. 2002], a tracking region was partitioned off from the scene with counting

line on the edge. people were tracked by motion prediction combined with back-

ground subtraction and counted at the line. Another approach consists in getting

feature trajectories in the scene by Kanade-Lucas-Tomasi (KLT) tracker, and then

clustered trajectories with similar movement together for representing one moving

object [Rabaud & Belongie 2006]. This kind of methods are generally able to count

a large number of people in a homogeneous crowd. From the state of the art, it

appears that most of people counting approaches rely on the assumption that any

moving objects in scenes are humans and suffer the miscount of other moving ob-

jects. In [Schlögl et al. 2003], a model of humans is defined based on average people

size. In [Harasse et al. 2005], a skin color model is used to detect human. These are

among the first tentatives to elaborate more accurate people counting systems but

still lack accuracy. In order to avoid this kind of miscounting, the basic idea of our

approach is to use the most discriminant human feature: their face.

One fundamental problem of this approach is face detection. Hundreds of ap-

proaches have been address on this problem, among which the study by Viola

and John [Viola & Jones 2002] has made face detection applicable in real world.

[Zhang & Zhang 2010] presents the recent advances in face detection. Earlier stud-

ies (before 2004) have been comprehensively surveyed in [Tsishkou et al. 2004] and

[Yang et al. 2002].
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4.1.2 Our approach

In this work, we address the problem of counting people moving toward the camera

in a close space such as the entrance of a supermarket, bank or bus, where lighting

conditions are relatively stable and people are generally facing the camera. Based on

these scenes, we propose an approach that presents several improvements compared

to the literature. The first improvement is the use of the face detector to ensure that

counted objects are people. Second, in order to deal with drastic changes of face

scales in our scene, a scale-invariant Kalman filter is proposed. It is further combined

with a kernel-based object tracking algorithm to handle face occlusions. Finally,

we propose a strategy to count people by automatically classify face trajectories,

which are characterized by an angle histogram of neighboring points. Two Earth

Mover’s Distance based classifiers are used to discriminate true trajectories and

false trajectories. The advantages are twofold. On the one hand, a filtering of the

trajectories can be realized in order to reject false trajectories caused by false face

detection and thus to improve counting accuracy. On the other hand, the automatic

classification of the trajectories allows to avoid the manual and empirical elaboration

of rules for counting people in a given scene.

4.2 System framework

Fig. 4.1 shows the framework of this system. It combines a face detection module,

a face tracking module and a counting module. Synchronizing periodically with

the face tracker (every 5 frames), the face detector can initialize tracking for new

faces as soon as it detect them, and verify faces being tracked. Moreover, the

synchronization results can reveal the events that new faces appear in the video,

faces disappear temporarily caused by occlusion and faces leave the scene. After

they leave, the face trajectories are sent to the counter for further analysis.

In our work, we use the face detector of [Tsishkou et al. 2004] which is based on

Viola’s one [Viola & Jones 2002]. The overall form of the detection process is that

of a degenerate decision tree, what is called a "cascade". Because overwhelming

majority of sub-windows is negative for face detection, the cascade attempts to
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Figure 4.1: System framework

reject as many negatives as possible at the earliest stages. Subsequent classifiers

are trained using those examples which pass through all the previous stages. The

architecture is extremely efficient in fast and accurate face detection.

After faces have been detected in a frame, rectangle shaped face regions are

sent to face tracking. Tracking algorithm adopts linear Kalman Filter for modelling

the tracking process, and use a kernel based mean-shift algorithm for evaluating the

prediction of Kalman Filter. When faces are severely occluded, mean-shift procedure

can hardly find the proper face location. With the prediction from the Kalman filter

as an alternative for potential face locations, even if correspond faces are not found

in the current frame, it survives the chance to track them in the next few frames till

they appear again.

4.3 Face tracking

Existing trackers usually track objects without large scale changes. However, our

system faces the difficulties of drastic face scale changes in the scene. Thus, we make

an improvement on the original Kalman filter to track objects more accurately under

this situation. Face occlusion is another problem we aim to solve. By the prediction

of face position from Kalman filter, we can continue tracking the occluded faces
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Figure 4.2: Two ways of project face’s motion into X plane

until they appear again within a period of several frames.

4.3.1 Scale invariant Kalman filter

In the scenes where faces move towards a camera, an expansion on the face scale

is inevitable. As a consequence, faces seem to move faster when they are near a

camera in a video. This phenomenon may change the evaluation of movements

and introduce process noises into Kalman filter. As shown in fig. 4.2a, the red

line is a face’s trajectory moving towards the camera O, and the red points are its

positions in image sequence with the same time interval. After projected into camera

coordinate system, the movement changes from uniform motion (points along the

trajectory) to variable motion (points on X axis). This variable motion requires a

more complicated movement model than the linear one commonly used in Kalman

filter, which is hard to develop.

However, the complexity can be reduced as follows. We consider that face move-

ments with scale changing in a video is "2.5D" movements through image planes,

planes vertical to the camera optical axis. Face scales imply some information on
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the distance between faces and camera. Based on [Azarbayejani & Pentland 1995]

which presented a 3D central projection model to recover 3D positions of tracking

objects, we propose a scale-invariant Kalman filter as (4.1) and (4.2), taking the ad-

vantage that a face has the constant size in real world but different sizes in different

image planes. In our Kalman filter, face movements are projected into a fixed image

plane using on face scales and thus "2.5D" tracking problem can be simplified into

"2D" tracking problem, like shown in fig. 4.2b.

T kGk = T k−1AGk−1 +W k−1 (4.1)

where Gk = [Xk, vkx, a
k
x, Y

k, vky , a
k
y ]
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(X,Y ) is the face location,

and (vx, vy), (ax, ay) are the velocity and acceleration of the face movement. A

and H are process model and measurement model for Kalman filter. T is the time

interval between two continuous frames, k is the index of frames. W k is the process

noise, white Gaussian noise with diagonal variance Q. Mk is the measurement of

face location. V k is the measurement noise, white Gaussian noise with diagonal

variance R. S is the face scale, Sx is the face scale in the fixed image plane, like the

plane x in fig. 4.2b. In our implementation, Sx is set to 20 pixels, which is the lower

boundary of face scale for our face detector.
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4.3.2 Face representation and tracking

Each tracked faces are assigned with a Kalman filter and kernal based tracker. For

each frame, Kalman filter first predicts the face position for tracker. Then, a coarse-

to-fine tracking process is performed by the tracker which handles back a measured

face position and scale to Kalman filter for measurement update. In cases of tracking

failure due to occlusion or pose variance, the predicted face position and previous

scale are give back to Kalman filter. This process is illustrated in fig. 4.3.

Figure 4.3: Flowchart of the tracking process

Color-based features can be used for tracking non-rigid objects and can keep

consistency when face scales change. They also tolerate more changes in pose than

edge and texture features. Thus, we use chromatic colors defined in (4.3) to reduce

the influence from lighting changes.

r =
R

R+G+B
, g =

G

R+G+B
(4.3)

Detected faces are represented by a kernel based 2-D color histogram, which
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consists of 200 bins in each axis. The value of each bin u is calculated as in 4.4.

qu = C

n
∑

i=1

k(‖x∗i ‖
2)δ [b (x∗i )− u], C =

1
∑n

i=1 k(‖x
∗

i ‖
2)

(4.4)

where δ is the Kronecker Delta function, k is the Epanechnikov kernel function

and b is the function projecting pixel (x∗i ) into color feature (rg) space.

The distance among target model and candidates are evaluated by the similarity

function ρ in eq 4.5. The maximum value of the function indicates the potential

position y∗ of the target.

ρ =
n
∑

u=1

√

puqu(y∗) (4.5)

where p, q is the histogram of face model and face candidate respectively with a

dimension of 400 ∗ 1; n is the number of bins in the color histogram. The p of face

model is initially computed when face is first time detected and updated when a

face is detected close to tracked position. Face detector scans every five frames for

a balance of accuracy and efficiency.

For each tracked face, the predicted position from Kalman filter is used to locate

the center of sub-image whose size varies dynamically with the face scale. A coarse

scan procedure is first processed in this sub-image to approximate the face position.

The location with the maximum similarity ρ is used to initialize a fine tracking

procedure.

Then, the kernel-based tracking algorithm is used to move the face location

iteratively to reach the maximum of similarity between the face model and the face

candidate. A dynamic threshold εk is set and updated every frame, as shown in

(4.6). If the maximum of ρ is above this threshold ε, we consider that the face has

been measured at the position obtaining the maximum of ρ .

εk = (1− a)εk−2 + aεk−1 (4.6)

where a is a weight factor, preset as 0.7.

In the cases where the maximum of ρ does not reach the threshold, we consider

that face occlusion happens or the face being tracked has left the scenario. In the
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algorithm, the face positions are always predicted no matter the face is occluded or

not. If the face is really occluded, we assume the face is at the prediction position.

The prediction and the assumption are always made until the face appears again or

the face has not been detected for 20 frames consecutively.

4.4 Trajectory analysis and people counting

We have based people counting on classifying potential face trajectories. When

trajectories are sent from the tracking module, the counting module is activated.

Trajectories caused by false face detection or tracking fragments, meaning that a

single face trajectory has been divided into two separated trajectories, are also sent

to this module. It is necessary to distinguish them from true trajectories. Since true

ones reflect real face movements in the scene, we take the advantage of face moving

pattern which is decided by the scene context. An angle histogram featuring the

moving direction of a trajectory is used. For one trajectory, its directions in each

step are calculated to build an angle histogram, which consists of 36 bins with a 10

degree span for each bin. The value of each bin is calculated for the trajectory T as

(4.7).

Ju = C
n
∑

i=1
δ[b(κ)− u],

κ =























θ, if xi > xi−1

π + θ, if xi < xi−1&yi > yi−1

−π + θ, if xi < xi−1&yi < yi−1

θ = arctan yi−yi−1

xi−xi−1

, (xi, yi) ∈ T

(4.7)

where, δ is the Kronecker Delta function, b is the function projecting degree κ

into direction feature space and C is the factor for normalizing the sum of all Ju to

1, u ∈ [1, 2..., 36]. n is the number of bins.

In order to measure the similarity between two groups of Ju from two trajectories,

the Earth Mover’s Distance (EMD) [Rubner et al. 1998] is used. It is more efficient

than other distances because it evaluates the similarity of histogram shapes rather

than the similarity between their corresponding bins.
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Based on this representation of trajectories by angle histograms and EMD, we

make use of a classifier trained to recognize true trajectories and count them. Two

types of classifiers based on EMD are considered: a K-Nearest Neighbors classifier

and a mean-trajectory classifier. For the K-NN method, we use the same amount

of true trajectories and false trajectories for training, and find k nearest neighbors

for new trajectories by EMD. In mean-trajectory method, we calculate a general

direction histogram by averaging histograms from several true trajectories as train-

ing procedure. A threshold is set for EMDs between this general histogram and

new coming trajectories for discriminating two classes. Trajectories have excessive

distances between two frames, which obviously can not be motions from faces. Some

trajectories with an extent too smaller are considered as a trajectory fragment. So

we pre-filter out those trajectories with these two unreasonable features.

4.5 Experimental results

In this section, we present some experimental results of our scale invariant Kalman

filter, face detection and tracking algorithm, and people counting application. They

are carried out on different video sequences with multiple faces appearing at different

scales.

4.5.1 Scale invariant Kalman filter implementation

We compared our Kalman filter with the original Kalman filter in 3 videos, where

a single face moves towards the camera and its scale increases. The frontal face is

always showed in the video and we manually measure the nose tips for ground truth

position of faces, as in fig. 4.4. Each video was divided into two parts according

to face scales. Face scales in first parts varies from the minimum face scale in the

whole sequence to around 0.6 of the maximum face scale, and face scales in second

parts are from around 0.6 of the maximum to the maximum. ω is a ratio of our

Kalman filter’s error to the original Kalman filter’s error, defined as (4.8):
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Figure 4.4: Testing video and face annotation

ω =
Es

Eo
, E =

∑

i∈I

√

(Xi −XGTi)2 + (Yi − YGTi)2 (4.8)

where I is different parts of test videos, (X,Y) is the location states of face in Kalman

filter(XGT , YGT ) is the ground truth of face locations.

Table 4.1 shows the comparison between two Kalman filters. We can see that

compared to the original one, when face scale increases, the error of our Kalman

filter decreases more. In other words, our Kalman filter works more accurately when

face scales increase.

Index
Video
Part 1

Video
Part 2

Face
Scale
Range

ω Face
Scale
Range

ω

1 45∼89 1 89∼117 0.67

2 41∼69 0.83 69∼88 0.5

3 33∼65 0.92 65∼92 0.67

Table 4.1: Comparison between two Kalman filters
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Figure 4.5: Testing video for Kalman filter

4.5.2 Face tracking performance

We evaluated the robustness of the framework when multiple faces appear and

occlusion happens. fig. 4.5 shows the results of tracking multiple faces. Three faces

moved together in this video and have been detected and tracked separately. Because

of the partial face occlusion, the trajectory of first detected face is not smooth in

the last frame.

fig 4.6 shows the results when the tracked face experience a totally occlusion.

The tracked face had been detected and was tracked for several frames before it was

totally occluded by another face. Our tracking algorithm overcame the occlusion

and continued to track the face until it appeared again.
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Figure 4.6: Face tracking with occlusion

4.5.3 Trajectory analysis and people counting

We tested the people counting application on our database, which contains 5 videos

(6345 frames in total) recorded by the cameras installed at the corridor of our

building and the entrance of our conference room, as scenes in fig. 4.4 and 4.5. In

these video, people passed either individually or in group more than 100 times. All

videos were processed at the size 320*240 pixels. Different databases, like CAVIAR

can not readily be used since we require frontal faces detectable by the face detector.

In order to train and test the K-NN classifier and the mean-trajectory classifier,

we process our dataset to obtain trajectories. To get more false trajectories to

balance the two classes, we tune the detector to have more false detection. Thus

105 true trajectories and 56 false trajectories are obtained. For K-NN classifier, we
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Figure 4.7: Accuracy of Two trajectory classifiers

randomly choose n true trajectories and n number of false trajectories for training

and use other trajectories for testing. For mean trajectory classifier, we also choose

n trajectories for training and use other trajectories for testing. For each pair of K

and n in first classifier and each pair of n and threshold T in second classifier, we

test the classification rate for 20 times and choose 10 continuous results with higher

scores for evaluation. Results are shown in fig. 4.7. The best counting accuracy we

reached 93% by 1-nearest neighbor classification algorithm.
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4.6 Conclusion

We have presented in this chapter a novel video-based people counting system that

integrates several improvements as compared to the literature. The detection of faces

allows to validate that counted objects are human. Then, scale-invariant Kalman fil-

ter is proposed to deal with drastic changes in face scales. Moreover, a combination

of it and a kernel based object tracking algorithm enhance the robustness of tracking

faces with head pose variations and face occlusions. Finally, we have proposed a

strategy for counting people based on the automatic classification of potential face

trajectories. They are characterized by an angle histogram and the similarities be-

tween histograms are evaluated by the Earth Mover’s Distance. Thus, not only bad

trajectories can be filtered out to enhance the system’s counting accuracy but also

the automatic classification can avoid the manual and empiric elaboration of rules

for counting in a given scene. Our approach has been validated by our experimental

results which have demonstrated a good performance on these different aspects and

finally a people counting accuracy of around 93%.

In our future work, we envisage to extend our system to other more complex

contexts, such as outdoor where illuminations changes drastically. Moreover, the

classification of face trajectories will be improved to better fit different contexts by

online learning and the adaptation of a more robust classifier.
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Conclusion and Future Works

5.1 Contributions

This research work mainly addresses the problem of 3D face analysis, including facial

landmarking and facial expression recognition. The approaches we have proposed

for these purposes can also be combined to build a fully automatic facial expression

recognition system.

The contributions in this thesis are discussed as follows.

5.1.1 Landmarking on 3D faces

Most of 3D landmarking approaches have a limited capacity for locating non-shape

salient feature points since they rely on the landmark geometry. Thus, the possible

landmarks that can be located are very limited. Moreover, these methods hardly

handle face deformations caused in particular by expressions and occlusions. We

think that this limitation can be solved to some extent by characterizing landmarks

using both texture and geometry knowledge. We also believe that local properties

of landmarks organized by global shape constraints perform better than directly

extracting local features. Thus, we have proposed in this thesis to build statistical

face models which learn variations of texture and geometry on local regions and

variations of global shape configuring those local regions. Two approaches have been

proposed for this purpose. In the first method, we have use the global shape on 2D

texture map of 3D faces to locate landmarks by varying parameters of shape model to

find the best match between the query face and our model. This method is dedicated

to 2.5D faces scans. Thus, we have provided a second approach making use of the

full 3D information when it is available. This method relies on a 3D morphable
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partial face model (SFAM) which learns variations in 3D shape as well as local

texture and local geometry. The fitting is performed thanks to the minimization of

an objective function describing the similarity between a query face and SFAM with

consideration of partial occlusion, thus enabling landmarking on partial occluded

faces. The optimization of the objective function is accelerated by pre-computing

correlation meshes. Moreover, an occlusion detection method has been proposed

to detect the local regions occluded and give a set of occlusion parameters for the

objective function.

Experimental results have demonstrated that by considering both texture and

geometry information, our methods is able to locate a set of landmarks beyond those

characterized by salient shape with a better accuracy. Thus, SFAM has reached

a better landmarking ability than the previous models proposed in the literature

in terms of accuracy and robustness when encountering severe conditions such as

expression and occlusion.

5.1.2 3D facial expression recognition

Most of works dedicated to expression recognition on 3D faces use holistic features or

deformable model, such as line property between landmarks, histogram of primitive

surface feature, and morphable face model. Either they require a high precision on

landmark locations for feature extraction and face segmentation or they are limited

to use raw texture and range contained in the model for computing parameters.

However, expressions or action units are consequences of facial muscle contraction

reflecting in both facial texture and geometry. Moreover AUs generally appear lo-

cally and subtly and thus it is hard to distinguish them by raw face texture and

geometry feature, such as color, intensity or range data. Thus, we have proposed

in this thesis to extract features from multiple face representations, including face

morphology, texture and geometry. In order to combine the contribution of all these

features, we have proposed a graphical model which is a Bayesian Belief Network

with a structure organizing all features as children nodes of the expression node.

Contrary to previous proposed BBN for 2D facial expression, our BBN has an uni-

form structure which describes the casual relationship among subjects, expression
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or AUs appearing on faces and features extracted from face appearance. Moreover,

it has a flexible topology allowing to integrate knowledge carried on new features

and to express facial activity as expression or AUS. Thus, it can be applied on

both expression recognition and AU recognition problems. By combining BBN with

SFAM, a fully automatic facial expression recognition system is elaborated.

The experimental results have demonstrated the efficiency of BBN compared

with SVM and SRC to fuse features from different face representations. Using a

uniform structure, the BBN achieves good results for recognizing both expressions

(second rank in the literature) and facial AUs. Tested on automatically located

landmarks by SFAM, the BBN shows its robustness to landmark locating errors.

Moreover, in order to enrich information used for 3D face analysis, we have also

proposed in this Ph.D work a new 3D facial feature, named SGAND, to characterize

the face geometry properties. Indeed, pose-invariant features for 3D faces can be a

shortcut for face analysis because using this kind of features avoids the procedure of

face alignment. However, most of pose-invariant features, such as shape index, HK

curvature, are sensitive to face scale because they are extracted from face meshes

which varies with face scale. On the contrary, the SGAND feature we have elab-

orated to characterize surface properties only relies on the point clouds instead of

face meshes. Thus, this feature is insensitive to scale, easy to implement and quick

to compute. It relies on the comparison of numbers of vertices above and below

face planes with a preset direction in sampled local regions of 3D faces. In order

to compute this direction, a head pose estimation method has been developed in

conjunction with the feature so that the feature can be extracted under various head

poses. As experiments have shown, SGAND feature has been applied successfully

to the recognition of the six universal expressions.

5.1.3 People counting based on face tracking

Finally, our last contribution concerning face analysis deals with people counting

based on face tracking. Existing people counting systems rely on the assumption

that detected or tracked objects are humans. Some of them have a preliminary

people model to verify this assumption, such as the ratio of height and width of ob-
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jects. Unfortunately, these methods suffer from inaccuracy when validating humans.

Thus, we have proposed a method that makes use of the face, the most discrimi-

native feature of human to accomplish this validation. This approach is composed

of a face detector and a face tracker that collaborate to detect and track faces in

2D videos. The face detector is cascade Adaboost classifiers and the tracker is a

combination of Kalman filter and the kernel based object tracking algorithm. The

tracker is improved to be used in the senarios when people move towards the camera.

In this case, face scale varies drastically so that it introduces errors to the tracking

process using traditional Kalman filter. Thus, we have designed a scale-invariant

Kalman filter which tracks faces in an image plane where the face trajectories are

projected, so that 2.5D face movements (face movement with scale changes) can be

normalized to 2D face movements. Face trajectories from the tracker are featured

by histogram of moving directions and classified using a K-NN classifier. By doing

this, bad trajectories caused by false face detection and tracking fragment can be

filter out so that only correct face trajectories are counted for people counting. Our

approach has been validated by our experimental results which have demonstrated a

good performance on these different aspects and finally a people counting accuracy

of around 93% as been reached.

5.2 Perspectives for future work

Extensions of this work that we envisage are presented in the following paragraphs.

5.2.1 Further investigations on 3D landmarking

In this thesis, local range and texture maps have been used as simple features to

represent local shape and texture around a landmark. In the future, the landmark

location may be improved by extracting other features such as our proposed SGAND

feature, HK curvature, shape index, etc. for shape feature, and Local Binary Pat-

tern, Gabor filtering, etc. for texture property within our statistical landmarking

framework.

Another improvement may concern the constraints applied to instances gener-
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ated by SFAM during the fitting process. Indeed, SFAM parameters (bi) are empir-

ically limited to constrain possible deformations. We plan to add a process to set

the boundaries of their variation range according to the face properties available in

the training data.

5.2.2 Further investigations on 3D facial expression recognition

The sign-based AU recognition allows to interpret facial muscle activities as expres-

sions or affect states thanks to high-level decision making rules. Approaches using

the mapping rules require that the prior knowledge on the relevant AUs is available

in the training so that they can recognize these AUs on a testing face and thereafter

identify expressions by applying rules. For example, the combination of AU1, AU2,

AU5 and AU27 corresponds to the surprise in FACS rules. However, in no face

displaying AU5 is present in the training set, this AU can not be recognized on the

testing faces even if the face displays a combination of AU1, AU2, AU5 and AU27.

Therefore, the recognition of surprise fails because of the absence of AU5 from AU

recognizer. Thus, instead of using existing high-level decision rules, we envisage to

build a latent AU space with the basis of available AUs that can be recognized by

our BBN. Then, for a given face, the set of its AU beliefs can be projected in this

space and the corresponding position can be used for expression recognition.

Concerning the universal expression recognition approach relying on our SGAND

feature, we envisage to enhance the performance as follows. Fuzzy neighborhood

relationships between some expressions or emotional states, for instance between

anger and sadness, lead to unnecessary confusion between them when a single global

classifier is applied. In the future we will propose a multi-stage classification method

dealing with the expression classification in several stages. The basic idea will be that

affect states can first be categorized into some broad and rough emotional classes

according to the dimensional emotion model in one of the dimensions, such as arousal

dimension, and then each broad emotional class can then be further classified into

final emotional states according to other dimensions, such as appraisal dimension.

The learning methods used in this thesis is mainly based on PCA, which can only

learn linear face models. The learnt models contains mixture variations on identi-
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fication, expression and illumination. More recently TensorFace has been proposed

for a multi-linear analysis to model explicitly the multiple modes of variations in

these factors and their inter-relationships [Jia & Gong 2005]. Thus, in the future, we

will investigate 3D TensorFace for a joint recognition of facial expression recognition

and face recognition.
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Appendix: FACS and used Action

Units

FACS describes all visually distinguishable muscular activities that produce mo-

mentary changes in facial appearance on the basis of 44 unique AUs, as well as

several categories of head and eye positions and movements. Each AU has a nu-

meric code. They are sorted into three categories: upper face AU, lower face AU

and Miscellaneous AU. The first category includes AUs named Inner Brow Raiser

(1), Outer Brow Raiser (2), Brow lowerer (4), Upper Lid Raiser (5), Cheek Raiser

(6), Lid Tightener (7), Eyes Closure (43), Blink (45), Wink (46). The second cat-

egory includes AUs named Nose Wrinkler (9), Upper Lip Raiser (10), Nasolabial

Fold Deepener (11), Lip Corner Puller (12), Cheek Puffer (13), Sharp Lip Puller,

Dimpler (14), Lip Corner Depressor (15), Lower Lip Depressor (16), Chin Raiser

(17), Lip Puckerer (18), Lip Stretcher (20), Lip Funneler (22), Lip Tightener (23),

Lip Presser (24), Lips Part (25), Jaw Drop (26), Mouth Stretch(27) and Lip Suck

(28). The third category includes Lips Toward Each Other (8), Tongue Show (19),

Neck Tightener (21), Jaw Thrust (29), Jaw Sideways (30), Jaw Clencher (31), Lip

Bite (32), Blow (33), Puff (34), Cheek suck (35), Tongue Bulge (36), Lip Wipe (37),

Nostril Dilator (38), Nostril Compressor (39). It is crucial to note that while FACS is

anatomically based, there is not a one-to-one correspondence between muscle groups

and AUs, since a given muscle may act in different ways and thus produce different

appearance.
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6.1 AU Examples

Totally 16 facial AUs are analyzed in the chapter 3. They are AU2, AU4, AU7,

AU9, AU10, AU12, AU14, AU17, AU18, AU22, AU24, AU26, AU27, AU28, AU34,

AU43 respectively. In order to analyze their characteristics, we demonstrate these

AUs here and give explanations on them.

AU2 Outer Brow Raiser: The muscle that underlies AU2 originates in the fore-

head and is attached to the skin in the area around the brows. In AU2 the action

is upwards, pulling the eyebrows and the adjacent skin in the outer portion of the

forehead upwards towards the hairline. It produces an arched shape to the eyebrows

and causes the lateral portion of the eye cover fold to be stretched upwards.

AU4 Brow Lowerer: Three muscle strands that underlie AU4. One strand runs

obliquely in the forehead. Another strand emerges from the root of the nose. A

third strand runs from the glabella to the medial corner of the eyebrow. It lowers

the eyebrow and pushes the eye cover fold downwards and may narrow the eye

aperture. Meanwhile, it pulls the eyebrows closer together and produces vertical

wrinkles between the eyebrows as well as an oblique wrinkle or bulge running from

the middle of the forehead down to the inner corner of the brow.

AU7 Lid Tightener: The muscle that circles the eye orbit is the basis for AU7.

This muscle runs in and near the eyelids. When it is contracted, AU7 pulls both

upper and lower eyelids and some adjacent skin below the eye together and towards

the inner eye corner. It tightens eyelids and narrows eye aperture. It raises the

lower lid so it covers more of the eyeball than is usually covered. Meanwhile, the

raising of the skin below the lower eyelid causes a bulge to appear in the lower lid.

AU9 Nose Wrinkler: The muscle underlying AU9 reaches from the area near

the root of the nose downward to a point adjacent to the nostril wings. When

contracted, this muscle pulls skin from the area below the nostril wings upwards

towards the root of the nose. It pulls the skin along the sides of the nose upwards

towards the root of the nose causing wrinkles to appear. It also lowers the medial

portion of the eyebrows and pulls the center of the upper lip upwards as well as

narrows the eye aperture.
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AU2 AU4 AU7 AU9

AU10 AU12 AU14 AU17

AU18 AU22 AU24 AU26

AU27 AU28 AU34 AU43

Figure 6.1: Examples of Facial AUs.
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AU10 Upper Lip Raiser: The muscle underlying AU10 emerges from the center

of the infraorbital triangle and attaches in the area of the nasolabial furrow. In

AU10 the skin above the upper lip is pulled upwards and towards the cheek, pulling

the upper lip up. It raises the upper lip, where center of upper lip is drawn straight

up and the outer portions of upper lip are drawn up but not as high as the center.

It pushes the infraorbital triangle up, widens the nostril wings and deepens the

nasolabial furrow.

AU12 Lip Corner Puller: The muscle underlying AU 12 emerges high up in the

lower face by the cheek bones and attaches at the corner of the lips. In AU12, the

direction of the action is to pull the lip corners up towards the cheek bone in an

oblique direction. It pulls the corners of the lips back and upward and deepens the

nasolabial furrow by pulling it laterally and up. In a strong action, it bags the skin

below the lower eyelid, narrows the eye aperture and produces crow’s feet at eye

corners.

AU14 Dimpler: The muscle underlying AU 14 emerges far back in the cheek

bones and attaches in the center portion of the lips. In AU14 the skin beyond the

lip corners is pulled inwards towards the lip corners, which are themselves drawn

somewhat towards the ears. It tightens the corners of the mouth, pulling the corners

somewhat inwards, and narrowing the lip corners. It also produces wrinkles and/or

a bulge at the lip corner and pulls the skin below the lip corners and the chin boss

up towards the lip corners, flattening and stretching the chin boss skin.

AU17 Chin Raiser: The muscle underlying AU 17 emerges from an area below

the lower lip and attaches far down the chin. In AU 17 the skin of the chin is pushed

upwards, pushing up the lower lip. It pushes the chin boss and the low lip upward

and may cause wrinkles to appear on the chin boss. It causes shape of mouth to

appear an inverted - U shape.

AU18 Lip Puckerer: The muscle relevant to AU18 is located above and below

the upper and lower lips. AU 18 draws the lips medially, pursing or puckering them,

causing the lips to protrude. It pushes the lips of the mouth forward and pulls

medially and de-elongates the mouth opening, making the mouth opening smaller

and rounder, and the lips appear tight. It makes short wrinkles on the skin above
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the upper lip and also may cause wrinkles on the skin below the lower lip, and

wrinkles in the lips themselves.

AU22 Lip Funneler: It is based on the outer strands of the muscle that runs

around the mouth. It pulls in medially on the lip corners and makes lips funnel

outwards taking on the shape as though the person were saying the word flirt. It

exposes the teeth, gums and more of the red parts of the lips.

AU24 Lip Presser: It is based on the inner portion of the muscle orbiting the

mouth within the lips. The lips are pulled in medially and pressed together. It

lowers the upper lip and raises the lower lip to a small extent, without pushing up

the chin boss. It tightens and narrows the lips and may cause small lines or wrinkles

to appear on the upper lip and a bulging of the skin above and/or below the lips.

AU26 Jaw Drop: It describes the limited opening of the oral cavity (i.e., teeth

parting) that can be produced by relaxing the muscle that closes the jaw. In AU26,

the mandible is lowered by relaxation so that separation of the teeth can at least

be inferred. Mouth appears as if jaw has dropped or fallen with no sign of the jaw

being pulled open or stretching of the lips due to opening the jaw wide.

AU27 Mouth Stretch: AU 27 measures the forced opening and stretching of

the mouth by muscles that act in opposition to muscles that close the jaw. It pull

down the mandible and open the mouth quite far, changing the shape of the mouth

opening from an oval with the long axis in the horizontal plane to one in the vertical

direction. It flattens and stretched cheeks and changes shape of skin on the chin

boss and the appearance under the chin.

AU28 Lips Suck: It involves the orbital muscles surrounding the mouth and

lips. In AU28 the lips are pulled into the mouth. This movement can involve only

the upper or lower lip. It sucks the red parts of the lips causing the red parts to

disappear and adjacent skin into the mouth, covering the teeth. It stretches the

skin above and below the lips and flattens the chin boss.

AU34 Puff: The cheeks puff out as air is forced into the mouth, but the lips

remain closed keeping the air in.

AU43 Eye Closure: The same muscle, which when contracted raises the upper

eyelid and when partially relaxed lets it droop, allows the eye to close when totally
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relaxed. In AU43, the eyelid droops down reducing the eye aperture and more

surface of the upper eyelid is exposed than usual.

6.2 Translating AU Scores Into Emotion Terms

Figure 6.2: Emotion predictions based on AUs [Ekman et al. 2002].

Some of AU combinations can be converted into emotions using high level deci-

sion making rules. Fig. 6.2 cites the Table 10-1 in the FACS Investigator’s Guide

[Ekman et al. 2002] demonstrating some prototypes and major variants of AU com-

binations corresponding to the six universal emotions.

Excluded from the table are dozens of minor variants for each of the emotions,

AU combinations for variations in the intensity of each emotion, and AU combina-

tions for blends of two or more emotions [Ekman et al. 2002].
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Publications

The results obtained during my PhD study have been the subject of five publications
in international conferences and one in a national conference. Moreover, two journal
paper have been submitted.

International Conferences:

1. X. Zhao, E. Dellandréa, L. Chen: A People Counting System based on Face
Detection and Tracking in a Video, 6th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), Genova, pp. 67-72,
ISBN 978-1-4244-4755-8, 2009;

2. X. Zhao, E. Dellandréa, L. Chen: A 3D statistical facial feature model and
its application on locating facial landmarks, Advanced Concepts for Intelligent
Vision Systems (ACIVS 2009), Bordeaux, pp. 686-697, ISBN 978-3-642-04696-
4, ISSN 0302-9743, 2009;

3. X. Zhao, P. Szeptycki, E. Dellandréa, L. Chen: Precise 2.5D Facial Land-
marking via an Analysis by Synthesis approach, 2009 IEEE Workshop on
Applications of Computer Vision (WACV 2009), Snowbird, Utah, pp. 1-7,
ISBN 978-1-4244-5497-6, ISSN 1550-5790, 2009;

4. X. Zhao, D. Huang, E. Dellandréa, L. Chen: Automatic 3D facial expression
recognition based on a Bayesian Belief Net and a Statistical Facial Feature
Model, International Conference on Pattern Recognition, 2010.

5. X. Zhao, E. Dellandréa, L. Chen, D. Samaras: AU Recognition on 3D Faces
Based On An Extended Statistical Facial Feature Model, IEEE Fourth In-
ternational Conference on Biometrics: Theory, Applications and Systems, to
appear, 2010.

National Conferences:

1. X. Zhao, E. Dellandréa, L. Chen: Multiple Face Tracking for People Counting,
CORESA, Toulouse, pp. 192-196, 2009.

Submissions to International Journals:

1. X. Zhao, E. Dellandréa, L. Chen: Precise landmarking on 3D faces with ex-
pression and occlusion based on a 3D statistical facial feature model, submitted
to IEEE Transaction on SYSTEMS, MAN, AND CYBERNETICS, PART B:
CYBERNETICS.



Chapter 6. Publications

2. X. Zhao, E. Dellandréa, L. Chen: An Unified Probabilistic Framework for
Automatic 3D Facial Expression Analysis based on a Bayesian Belief Inference
and Statistical Feature Models, submitted to Pattern Recognition.
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