N

N

Efficacité énergétique et ordonnancement des systémes
temps-réel multiprocesseurs.
Muhammad Khurram Bhatti

» To cite this version:

Muhammad Khurram Bhatti. Efficacité énergétique et ordonnancement des systémes temps-réel mul-
tiprocesseurs. . Embedded Systems. Université Nice Sophia Antipolis, 2011. English. NNT:
tel-00599980

HAL Id: tel-00599980
https://theses.hal.science/tel-00599980

Submitted on 12 Jun 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00599980
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE - SOPHIA ANTIPOLIS

EcoLE DOCTORALE STIC

SCIENCES ET TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION

THESE

pour obtenir le titre de
Docteur en Sciences
de I’Université de Nice - Sophia Antipolis
Mention Informatique

présentée et soutenue par

Muhammad Khurram BHATTI

Energy-aware Scheduling for
Multiprocessor Real-time Systems

These dirigée par Cécile BELLEUDY
Laboratoire LEAT, Université de Nice-Sophia Antipolis -CNRS, Sophia Antipolis

soutenue le 18 avril 2011, devant le jury composé de:

Président du Jury Lionel TORRES Pr. Université de Montpellier-IT, France
Rapporteurs Isabelle PuAUT Pr. Université de Rennes-I, France
Guy GOGNIAT Pr. Université de Bretagne Sud, France

Eraminateurs Yvon TRINQUET Pr. Université de Nantes, France
Lionel TORRES Pr. Université de Montpellier-II, France
Michel AUGUIN DR. CNRS, France (Co-directeur de thése)

Directeur de thése Cécile BELLEUDY Maitre de Conférences,

Université de Nice-Sophia Antipolis, France

(© 2011
Muhammad Khurram Bhatti
ALL RIGHTS RESERVED

iii

Abstract

Real-time applications have become more sophisticated and complex in their
behavior and interaction over the time. Contemporaneously, multiprocessor archi-
tectures have emerged to handle these sophisticated applications. Inevitably, these
complex real-time systems, encompassing a range from small-scale embedded devices
to large-scale data centers, are increasingly challenged to reduce energy consump-
tion while maintaining assurance that timing constraints will be met. To address
this issue in real-time systems, many software-based approaches such as dynamic
voltage and frequency scaling and dynamic power management have emerged. Yet
their flexibility is often matched by the complexity of the solution, with the ac-
companying risk that deadlines will occasionally be missed. As the computational
demands of real-time embedded systems continue to grow, effective yet transpar-
ent energy-management approaches will become increasingly important to minimize
energy consumption, extend battery life, and reduce thermal losses. We believe
that power- and energy-efficiency and scheduling of real-time systems are closely re-
lated problems, which should be tackled together for best results. By exploiting the
characteristic parameters of real-time application tasks, the energy-consciousness of
scheduling algorithms and the quality of service of real-time applications can be
significantly improved.

To support our thesis, this dissertation proposes novel approaches for energy-
management within the paradigm of energy-aware scheduling for soft and hard real-
time applications, which are scheduled over identical multiprocessor platforms. Our
first contribution is a Two-level Hierarchical Scheduling Algorithm (2L-HiSA) for
multiprocessor systems, which falls in the category of restricted-migration schedul-
ing. 2L-HiSA addresses the sub-optimality of EDF scheduling algorithm in mul-
tiprocessors by dividing the problem into a two-level hierarchy of schedulers. Our
second contribution is a dynamic power management technique, called the Assertive
Dynamic Power Management (AsDPM) technique. AsDPM serves as an admission
control technique for real-time tasks, which decides when exactly a ready task shall
execute, thereby reducing the number of active processors, which eventually reduces
energy consumption. Our third contribution is a dynamic voltage and frequency
scaling technique, called the Deterministic Stretch-to-Fit (DSF') technique, which
falls in the category of inter-task DVFS techniques and works in conjunction with
global scheduling algorithms. DSF comprises an online Dynamic Slack Reclama-
tion algorithm (DSR), an Online Speculative speed adjustment Mechanism (OSM),
and an m-Task Extension (m-TE) technique. Our fourth and final contribution is
a generic power/energy management scheme for multiprocessor systems, called the
Hybrid Power Management (HyPowMan) scheme. HyPowMan serves as a top-level
entity that, instead of designing new power/energy management policies (whether
DPM or DVFS) for specific operating conditions, takes a set of well-known exist-
ing policies. Each policy in the selected policy set performs well for a given set of
operating conditions. At runtime, the best-performing policy for given workload is
adapted by the HyPowMan scheme through a machine-learning algorithm.

To my father Ismail, who always dared to dream,
and to my mother Mumtaz (late) for making it a reality.

vii

Acknowledgments

Completion of my PhD required countless selfless acts of support, generosity,
and time by people in my personal and academic life. I can only attempt to humbly
acknowledge and thank the people and institutions that have given so freely through-
out my PhD career and made this dissertation possible. I am thankful to the Higher
Education Commission (HEC) of Pakistan for providing uninterrupted funding sup-
port throughout my Masters and PhD career. I am sincerely thankful to Cécile
Belleudy, my advisor, for being a constant source of invaluable encouragement, aid,
and expertise during my years at University of Nice. While many students are for-
tunate to find a single mentor, I have been blessed with two. I am deeply grateful
to Michel Auguin, my co-advisor, for the guidance, support, respect, and kindness
that he has shown me over the last four years. The mentoring, friendship, and colle-
giality of both Cécile and Michel enriched my academic life and have left a profound
impression on how academic research and collaboration should ideally be conducted.

I am extremely thankful to the members of my dissertation committee. Guy
Gogniat and Isabelle Puaut have graciously accepted to serve on the committee
as reviewers and provided unique feedback, comments, and questions on multipro-
cessor scheduling, along with a lot of encouragement. Yvon Trinquet has provided
me with wise advice and support throughout my PhD and also accepted to be a
part of my dissertation committee. I have always admired his precise questions and
unique manner of addressing difficult research problems. Lionel Torres has been
very kind for accepting to be the president of dissertation committee and a source
of insightful comments and ideas to my research and its effective presentation. I
must acknowledge that all these people have greatly inspired me. Other colleagues
who I owe gratitude for their support of my research or major PhD milestones in-
clude: Sébastian Bilavarn, Francois Verdier, Ons Mbarek, and Jabran Khan. I am
also grateful to the always helpful LEAT research laboratory and University of Nice
staff. I would like to thank all my research collaborators who have enhanced my en-
thusiasm and understanding of real-time systems through various projects, namely;
the collaborators of Pherma, COMCAS, and STORM tool design and development
projects. Since the path through the PhD program would be much more difficult
without examples of success, I am indebted to Muhammad Farooq who has given
friendship and guidance as recent real-time system PhD graduate from LEAT.

My family and friends have been an unending source of love and inspiration
throughout my PhD career. My father, Ismail, has offered unconditional under-
standing and encouragement. My sisters, Shaista and Sofia, have kept me sane with
their humor and understanding even from distance. My brother, Asad, has been a
great and selfless support to me throughout these year of my absence from home.
My friends in French Riviera, Najam, Naveed, Uzair, Sabir, Chafic, Umer, Siouar,
Khawla, Amel, Alice, and Sébastian have provided hours of enjoyable distraction
from my work. I will always remember the time I have shared with them. Lastly,
I can only wish if my mother, Mumtaz, was still alive to embrace me on achieving
this milestone. She will always remain my constant.

I

Contents

Complete dissertation: English version 1
Introduction 3
1.1 Introduction 3
1.2 Contributions 5
1.3 Summary 8
Background on Real-time and Energy-efficient Systems 11
2.1 Real-time Systems 11
2.1.1 Real-time Workload 12
2.1.2 Processing Platform 16
2.1.3 Real-time Scheduling 17
2.1.4 Real-time Scheduling in Multiprocessor Systems 20
2.2 Power- and Energy-efficiency in Real-time Systems 23
2.2.1 Power and Energy Model 23
2.2.2 Energy-aware Real-time Scheduling 26
2.3 Simulation Environment 28
2.4 Summaryo e 29

Two-level Hierarchical Scheduling Algorithm for Multiprocessor

Systems 31
3.1 Imtroduction 31
3.2 Related Work 32
3.3 Two-level Hierarchical Scheduling Algorithm 35
3.3.1 BasicConcept. 36
3.3.2 Working Principle 000 37
3.3.3 Runtime View of Schedule from Different Levels of Hierarchy 41
3.3.4 Schedulability Analysis. 44
3.4 Experiments 47
341 Setup 47
3.4.2 Functional Evaluation 47
3.4.3 Energy-efficiency of 2L-HiSA 50
3.4.4 Performance Evaluation 52
3.5 Concluding Remarks 0 . 55
Assertive Dynamic Power Management Technique 57
4.1 Dynamic Power Management 57
4.2 Related Work 58
4.3 Assertive Dynamic Power Management Technique 61
4.3.1 Laxity Bottom Test (LBT) 62

4.3.2 Working Principle 64

Contents

4.3.3 Choice of Power-efficient State 68
4.4 Static Optimizations using AsDPM 69
4.5 Experiments 69
4.5.1 Target Application 69
4.5.2 Simulation Results 00 73
4.5.3 Comparative Analysis of the AsDPM Technique 78
4.6 Future Perspectives of the AsSDPM Technique 79
4.6.1 Memory Subsystem 80
4.6.2 Thermal Load Balancing 82
4.7 Concluding Remarks o oL 84
Deterministic Stretch-to-Fit DVFS Technique 85
5.1 Dynamic Voltage and Frequency Scaling 85
5.2 Related Work 87
5.3 Deterministic Stretch-to-Fit Technique 90
5.3.1 Dynamic Slack Reclamation (DSR) Algorithm 90
5.3.2 Online Canonical Schedule 93
5.3.3 Online Speculative speed adjustment Mechanism (OSM) . . . 97
5.3.4 m-Tasks Extension Technique (m-TE) 98
5.4 Experiments Lo 98
541 Setup 99
5.4.2 Target Application L. 99
5.4.3 Simulation Results 0 oL 99
5.5 Concluding Remarks 0 oL 104

Hybrid Power Management Scheme for Multiprocessor Systems 107

6.1 Introduction 107
6.2 Related Work oo 108
6.3 Hybrid Power Management Scheme 109
6.3.1 Machine-learning Algorithm 110
6.3.2 Selection of Experts 114
6.4 Experiments. 114
6.4.1 Setup 114
6.4.2 Description of Experts 115
6.4.3 Simulation Results 0oL, 116
6.5 Concluding Remarks 0 oL 120
Conclusions and Future Research Perspectives 123
7.1 Summary of Contributions and Results 124
7.2 Future Research Perspectives 127
721 Task Models 127
7.2.2 Platform Architectures L. 128
7.2.3 Scheduling Algorithms 128

7.2.4 Implementation strategy —Simulations vs Real Platforms . . . 129

Contents xi

7.2.5 Thermal Aspects 130

7.3 Summary 130

IT Selected chapters: French version 133
1 Introduction 135
1.1 Introduction 135
1.2 Contributions 137
1.3 Résumé e 140

2 Conclusions et Perspectives 143
2.1 Résumé des Contributions et Résultats 144
2.2 Perspectives 147
2.2.1 Modéledes taches 147

2.2.2 Architectures de Plate-forme Cible 148

2.2.3 Les algorithmes d’ordonnancement 149

2.2.4 Stratégie d’'implementation L 150

2.2.5 Aspects Thermiques 150

2.3 Résumé 151

A STORM: Simulation TOol for Real-time Multiprocessor Schedul-

ing 155
A.1 Functional Architecture 156
A.1.1 Software Entities 157
A.1.2 Hardware Entities 158
A.1.3 System Entities 159
A.14 Simulation Kernel 159

B HyPowMan Scheme: Additional Simulation Results 161
B.1 Simulation Results Using AsDPM & DSF Experts 161
B.1.1 Effect of variations in bcet/wcet ratio 161
B.1.2 Effect of variations in number of tasks 161
B.1.3 Effect of Variations in total utilization 162

B.2 Simulation Results Using ccEDF & DSF Experts 163

Bibliography 167

© 0 1 O Ot

List of Algorithms

Offline task partitioning to processors 38
Offline processor-grouping 39
Local-level scheduler: Online jobs assignment for partitioned tasks
present in Tp, 43
Top-level scheduler: Online jobs assignment for migrating tasks
present in Tgpop « v v oo oo 43
Assertive Dynamic Power Management 65
Dynamic Slack Reclamation 91
Online Speculation Mechanism 98
m-Tasks Extension Technique 98

Machine-learningo L o 113

2.1

2.2
2.3
2.4

2.5
2.6

2.7
2.8

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11

3.12

List of Figures

Illustration of various characteristic parameters of real-time tasks.
Periodic task T; has an implicit deadline (d;=F;) with the following
values of other parameters. 0;,=2, C;=3, d;=FP;=4, and L;=1. 15
High-level illustration of symmetric share-memory multiprocessor

(SMP) architecture layout of processing platform. 18
No migration scheduling. L. 21
Full migration scheduling. 21
Restricted migration scheduling. 21

Current and future trends in the evolution of portable embedded
system demand, their power consumption, and their energy-density
in batteries. (a) Evolution of the demand for portable equipment
over the years (SEMICO Research Corp.). (b) Power consumption
in portable equipment over the years (ITRS 2008). (c) Evolution of
energy-density in batteries over the years (EPoSS 2009). 24
Example of energy management decision-making of DPM technique. 27
Example of energy management decision-making of DVFS technique. 27

Job-splitting of a migrating task over three processors. 33
Two-level hierarchical scheduling approach based on restricted migra-
tlon. 36
Example schedule of partitioned tasks under EDF scheduling al-
gorithm on SMP architecture (n=6, m=4), illustrating the under-

utilization of platform. o 0oL 40
Illustration of T,gl occurring on different processors with respect to
the proportionate under-utilization available on each processor. . . . 42
View of runtime schedule by top-level and local-level schedulers under
2L-HiSA on an SMP architecture. 44
Simulation traces of partitioned tasks under EDF local scheduler on
each Processor. 49
Simulation traces of partitioned tasks in the presence of T,gl under
EDF local scheduler on each processor. 50
Simulation traces of migrating and partitioned tasks together under
EDF local- and top-level schedulers. 51
Simulation traces of EDF global scheduling of task set 7 on four
PTOCESSOTS. . . v v v v v v e e e e e e e e e e e 52
Simulation traces of individual tasks under global EDF scheduler . . 53
Number of task preemptions under 2L-HiSA, PFair (PD?), and
ASEDZL algorithms. 54

Number of task migrations under 2L-HiSA, PFair (PD?), and
ASEDZL algorithms. 55

xXvi

List of Figures

4.1
4.2

4.3

4.4
4.5
4.6
4.7
4.8

4.9

4.10

4.11

4.12

4.13

5.1
5.2
5.3

5.4

5.5

Laxity Bottom Test (LBT) using anticipative laxity ;. 64
Schedule of 7 using global EDF scheduler. (a) Without AsDPM. (b)
With AsDPM. 65
Impact of an intermediate priority task’s release. (a) Projected sched-

ule of tasks at time t, without intermediate priority task T5. (b) Pro-
jected schedule of tasks at time t.;; with intermediate priority task

5. o e 68
Block diagram of H.264 video decoding scheme. 70
Block diagram of H.264 decoding scheme slices version. 71
Block diagram of H.264 decoding scheme pipeline version. 72

Simulation results on the changes in energy consumption for H.264
video decoder application (slices version) for various frequencies. . . 73
Simulation results on energy consumption under statically non-
optimized EDF schedule and statically optimized EDF schedule using
AsDPM for H.264 video decoder application (slices version). 7
Simulation results on energy consumption under statically non-
optimized EDF schedule and statically optimized EDF schedule using
AsDPM for H.264 video decoder application (pipeline version). . . . 78
Simulation results on the energy consumption under statically non-
optimized EDF schedule, statically optimized EDF schedule using
AsDPM, and EDF schedule using online AsDPM for H.264 video
decoder application (slices version). 79
Simulation results on the energy consumption under statically non-
optimized EDF schedule, statically optimized EDF schedule using
AsDPM, and EDF schedule using online AsDPM for H.264 video
decoder application (pipeline version). 80
Simulation results on energy consumption of AsDPM in comparison
with ideal DPM technique under the control of EDF scheduling algo-
rithm for H.264 video decoder application (slices version). 81
Energy consumption in memory subsystem using multi-bank archi-
tecture. (a) Energy consumption of multi-bank memory under global
EDF schedule without AsDPM. (b) Energy consumption optimiza-
tion of multi-bank memory under global EDF schedule using AsDPM. 83

Dynamic slack redistribution of a task under various DVFS strategies. 88
Slack reclamation using the DSR algorithm. 93
Simulation traces of example task set on a single processor. a) Canon-
ical schedule of tasks where all tasks execute with worst-case execu-
tion time. b) Practical schedule of tasks where T} finishes earlier than
its WCET and T} exploits dynamic slack to elongate its WCET at
runtime. 94
Task 75 consumes € to elongate its execution up to its termination
instant in canonical schedule. 0000000 95
Task queues managed by a global scheduler at runtime. 95

List of Figures xvii

5.6

5.7
5.8
9.9

5.10
5.11

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8

Al
A2
A3
A4

B.1
B.2
B.3
B4
B.5

Construction of online canonical schedule ahead of practical schedule

for m-tasks. 96
Simulation results of H.264 slices version. 100
Simulation results of H.264 pipeline version. 101
Simulation results of H.264 pipeline version illustrating the effective-

ness of OSM. 102
Comparative analysis of simulation results of H.264 slices version. . . 103

Comparative analysis of simulation results of H.264 pipeline version. 104

Interplay of DPM and DVFS policies. 109
Arrangement of expert set under the HyPowMan scheme for an SMP

architecture. 110
Example of the weight and probability update of a DPM-based expert.112
Simulation results on variation of beet/wcet ratio. 117
Simulation results on variation in number of tasks. 118
Simulation results on variation in aggregate utilization. 119
Simulation results on variation in ce. L. 120
Simulation results on variation in 5. 121
STORM simulator input and output file system. 156
Functional architecture of STORM simulator. 157
STORM: various states for application tasks. 157
STORM: example XML file. 158
Simulation results on variation of beet/wcet ratio. 162
Simulation results on variation in number of tasks. 162
Simulation results on variation in aggregate utilization. 163
Simulation results on variation in bcet/weet ratio. 164

Simulation results on the usage of experts under the HyPowMan scheme. 164

21
2.2

3.1
3.2

4.1
4.2
4.3
4.4

4.5

4.6

5.1
5.2

6.1
6.2
6.3
6.4
6.5

B.1

List of Tables

Voltage-frequency levels of PXA270 processor 29
Power-efficient states of PXA270 processor @ 624-MHz & 1.55-volts . 29
Real-time periodic task set 7o oL 48
Parameters of dummy tasks (7) on each processor 48
H.264 video decoder application task set for slices version 71
H.264 video decoder application task set for pipeline version 72

Static architecture configurations for H.264 video decoder slices version 74
Static architecture configurations for H.264 video decoder pipeline

VETSION . . v v v v v e e e e e e e e 75
Static optimal architecture configurations for H.264 video decoder

slices version for different QoS requirements 76
Static optimal architecture configurations for H.264 video decoder

pipeline version for different QoS requirements. 76
Simulation settings for H.264 video decoder slices version 100
Simulation settings for H.264 video decoder pipeline version 101
Simulation settings for variable becet/wcet ratio L. 116
Simulation settings for variable number of tasks 117
Simulation settings for variable aggregate utilization 118
Simulation settings for variable oo oo 119
Simulation settings for variable 3 0oL L. 120

Simulation settings for variable becet/wcet ratio L. 163

XX

List of Tables

Symbols

EENORAQS S8R

-

sum (T)

SISICRIEIERCE

e 0 <

Pwr(v)

SCCLTL
Spra
DBF(r, L)

=&

Symbols and Acronyms

Definition

Time instant
Task set
Individual task indexed as @
Individual job j of task T;
Job set
Release time of task T;
Worst-case execution time (WCET) of task T;
Relative deadline of task T;
Period of task T;
Offset of first job T; 1 of T; w.r.t. system activation
Absolute laxity of task T;
Anticipative laxity of task T;
Utilization of individual task T;
Utilization of task set 7
Individual processor indexed as k
Processor set/ platform
Number of tasks in 7
Number of processors in II
Speed of processor my
Operating frequency
Operating voltage
Threshold voltage
Energy
Dynamic slack
Scaling factor
Power as function of speed v
Subset of tasks partitioned on processor my
Canonical Schedule of tasks
Practical Schedule of tasks
Demand Bound Function of task set 7 over interval
of length L
Number of Experts (where, expert is any power
management scheme)
Weight factor for individual expert
Weight vector for expert set
continued on next page

List of Tables

xxi

Acronyms
h
H

AET
AsDPM
ASEDZL

BCET
BET
ccEDF
DeTQ
DPM
DSF
DSR
DVFS
EDF
EDZL
HyPowMan
LLF
LLREF
m-TE
OSM
PFair
ReTQ
RM
RuTQ
SMP
TQ
WCET
2L-HiSA

— continued from previous page

Description
Probability factor for individual expert
Probability vector for expert set

Actual Execution Time

Assertive Dynamic Power Management
Anticipating Slack Earliest Deadline until Zero
Laxity

Best-case Execution Time

Break-Even Time

Cycle-conserving Earliest Deadline First
Deferred Tasks Queue

Dynamic Power Management

Deterministic Stretch-to-Fit

Dynamic Slack Reclamation

Dynamic Voltage and Frequency Scaling
Earliest Deadline First

Earliest Deadline until Zero Laxity

Hybrid Power Management

Least Laxity First

Least Local Remaining Execution First
m-Task Extension

Online Speculative speed adjustment Mechanism
Proportionate Fairness

Ready Tasks Queue

Rate Monotonic

Running Tasks Queue

Symmetric shared-memory Multiprocessor
Tasks Queue

Worst-case Execution Time

Two-level Hierarchical Scheduling Algorithm

Part 1

Complete dissertation:
English version

CHAPTER 1

Introduction

Contents
1.1 Introductionttt 3
1.2 Contributions0 e e e e e e 5
1.3 SUMMATY . v v v v v v v v et e e ettt e e e e e e 8

1.1 Introduction

In real-time systems, the temporal correctness of produced output is equally
important as the logical correctness [42|. That is, real-time systems must not
only perform correct operations, but also perform them at correct time. A
logically correct operation performed by a system can result in either an erroneous,
completely useless, or degraded output depending upon the strictness of time
constraints. Based on the level of strictness of timing constraints, real-time systems
can be classified into three broad categories: hard real-time, soft real-time, and
firm real-time systems|47, 77, 105]. Such systems must be predictable and provably
temporally correct. The designer must verify that the system is correct prior to
runtime —i.e., for instance, for any possible execution of a hard real-time system,
each execution results in all deadlines being met. Even for the simplest systems,
the number of possible execution scenarios is either infinite or prohibitively large.
Therefore, exhaustive simulation or testing cannot be used to verify the temporal
correctness of such systems. Instead, formal analysis techniques are necessary to
ensure that the designed systems are, by construction, provably temporally correct
and predictable [42, 47]. Over the time, real-time applications have become more
sophisticated and complex in their behavior and interaction. Contemporaneously,
multi-core architectures have emerged to handle these sophisticated applications
and since then, prevailed in many commercial systems. Although significant
research has been focused on the design of real-time systems during past decades,
the emergence of multi-core architectures have renewed some existing challenges
as well as brought some new ones for real-time research community. These
challenges can be classified into three broad categories: multiprocessor platform
architecture design, multiprocessor scheduling, and multiprocessor energy-efficiency.

As the multiprocessor architectures are already widely used, it becomes more
and more clear that future real-time systems will be deployed on multiprocessor

4 Chapter 1. Introduction

architectures. Multiprocessor architectures have certain new features that must
be taken into consideration. For instance, application programs executing on
different cores usually share fine-grained resources, like shared caches, interconnect
networks, and shared memory bandwidth, making the conventional design practices
not suitable to multi-core systems. Thus, multi-core architectures are significantly
challenging in their design, analysis, and implementation.

Another challenge for real-time systems is the scheduling problem. The real-time
scheduling problem on multiprocessor models is very different from and signifi-
cantly more difficult than single-processor scheduling. Single-processor scheduling
algorithms cannot be applied on multiprocessor systems without loss of optimality.
A scheduling algorithm is said to be optimal if it can successfully schedule any
feasible task system [105]. A task system is said to be feasible if it is guaranteed
that a schedule exists that meets all deadlines of all jobs, for all sequences of jobs
that can be generated by the task system. Optimality of scheduling algorithms is a
critical design issue in multiprocessor real-time systems as under-utilized platform
resources are not desirable. Multiprocessor scheduling algorithms employ either
a partitioned or global scheduling approach (or hybrids of the two). Partitioned
scheduling, under which tasks are statically assigned to processors and scheduled
on each processor using single-processor scheduling algorithms, have low scheduling
overheads. However, the management of globally-shared resources such as a shared
main memory and caches can become quite difficult under partitioning, precisely
because each processor is scheduled independently. Moreover, partitioning tasks
to processors is equivalent to solving a bin-packing problem: on an m-processor
system, each task with a size equal to its utilization must be placed into one of
m bins of size one representing a processor. Bin-packing is considered a strong
NP-hard problem [60]. In global scheduling algorithms, on the other hand, all
processors select jobs to schedule from a single run queue. As a result, jobs may
migrate among processors, and contention for shared data structures is likely. Until
recently, no multiprocessor optimal global scheduling algorithm existed before the
proposition of PFair and its heuristic algorithms in [13, 106]. Although few recently
proposed algorithms are known to be optimal [13, 106, 77, 28|, multiprocessor
scheduling theory has many fundamental problems still open to address.

The ever-increasing complexity of real-time applications that are being scheduled
over multiprocessor architectures, ranging from multimedia and telecommunication
to aerospace applications, poses another great challenge —i.e., the power consump-
tion rate of computing devices which has been increasing exponentially. Power
densities in microprocessors have almost doubled every three years [103, 56]. This
increased power usage poses two types of difficulties: the energy consumption and
rise in device’s temperature. As energy is power integrated over time, supplying
the required energy may become prohibitively expensive, or even technologically
infeasible. This is a particular difficulty in portable systems that heavily rely on
batteries for energy, and will become even more critical as battery capacities are

1.2. Contributions 5

increasing at a much slower rate than power consumption. The energy consumed
in computing devices is in large part converted into heat. With processing plat-
forms heading towards 3D-stacked architectures [30, 104], thermal imbalances and
energy consumption in modern chips have resulted in power becoming a first-class
design constraint for modern embedded real-time systems. Therefore, complex real-
time systems must reduce energy consumption while providing guarantees that the
timing constraints will be met. Energy management in real-time systems has been
addressed from both hardware and software points of view. Many software-based
approaches, particularly scheduling-based approaches such as Dynamic Voltage and
Frequency Scaling (DVFS) and Dynamic Power Management (DPM) have been pro-
posed by real-time research community over the past few years. Yet their flexibility
is often matched by the complexity of the solution, with the accompanying risk that
deadlines will occasionally be missed. As the computational demands of real-time
embedded systems continue to grow, effective yet transparent energy-management
approaches will become increasingly important to minimize energy consumption,
extend battery life, and reduce thermal effects. We believe that energy-efficiency
and scheduling of real-time systems are closely related problems, which should be
tackled together for best results. By exploiting the characteristic parameters of
real-time application tasks, the energy-consciousness of scheduling algorithms and
the quality of service of real-time applications can be significantly improved. In the
following, we provide our thesis statement.

Thesis Statement. The goal of this dissertation is to ameliorate, through
scheduling, the energy-efficiency of real-time systems that can be proven predictable
and temporally correct over multiprocessor platforms. The proposed solution(s)
should be flexible to warying system requirements, less complexr, and effective.
Achievement of this goal implies that battery-operated real-time systems can still meet
timing constraints while minimizing energy consumption, extending battery life, and
reducing thermal effects.

To support our thesis, this dissertation proposes energy-aware scheduling so-
lutions of complex real-time applications that are scheduled over multiprocessor
architectures. In section 1.2, we provide an overview of each technical contribution
presented in this dissertation. A detailed background on real-time and energy-aware
systems and real-time scheduling is provided in chapter 2. Note that we review state-
of-the-art related to our specific contributions in each chapter. However, related
research work is also referred throughout the document where pertinent.

1.2 Contributions

Energy-efficiency in real-time systems is a multi-faceted optimization problem. For
instance, energy optimization can be achieved at both hardware- and software-levels
while designing the system and at scheduling-level while executing application tasks.
Both the hardware and software are concerned and can play an important role in
the resulting energy consumption of overall system. In this dissertation, we focus

6 Chapter 1. Introduction

on the software-based aspects, particularly scheduling-based energy-consciousness
in real-time systems. We develop novel power and energy management techniques
while taking into account the features offered by existing and futuristic platform
architectures. In the following, we discuss specific contributions presented in each
chapter of this dissertation.

Chapter 3. In this chapter, we present our first contribution which is a multi-
processor scheduling algorithm, called Two-Level Hierarchical Scheduling Algorithm
(2L-HiSA). This algorithm falls in the category of restricted-migration scheduling.
The EDF scheduling algorithm has the least runtime complexity among job-level
fixed-priority algorithms for scheduling tasks on multiprocessor architecture. How-
ever, EDF suffers from sub-optimality in multiprocessor systems. 2L-HiSA addresses
the sub-optimality of EDF as global scheduling algorithm and divides the problem
into a two-level hierarchy of schedulers. We have ensured that basic intrinsic prop-
erties of optimal single-processor EDF scheduling algorithm appear in two-level
hierarchy of schedulers both at top-level scheduler as well as at local-level scheduler.
2L-HiSA partitions tasks statically onto processors by following the bin-packing ap-
proach, as long as schedulability of tasks partitioned on a particular processor is
not violated. Tasks that can not be partitioned on any processor in the platform
qualify as migrating or global tasks. Furthermore, it makes clusters of identical
processors such that, per cluster, the unused fragmented computation power equiv-
alent to at most one processor is available. We show that 2L-HiSA improves on the
schedulability bound of EDF for multiprocessor systems and it is optimal for hard
real-time tasks if a subset of tasks can be partitioned such that the under-utilization
per cluster of processors remain less than or equal to the equivalent of one proces-
sor. Partitioning tasks on processors reduces scheduling related overheads such as
context switch, preemptions, and migrations, which eventually help reducing overall
energy consumption. The NP-hardness of partitioning problem [60], however, can
often be a limiting factor. By using clusters of processors instead of considering
individual processors, 2L-HiSA alleviates bin-packing limitations by effectively in-
creasing bin sizes in comparison to item sizes. With a cluster of processors, it is
much easier to obtain the unused processing power per cluster less than or equal to
one processor. We provide simulation results to support our proposition.

Chapter 4. Our second contribution, presented in this chapter, is a dynamic
power management technique for multiprocessor real-time systems, called Assertive
Dynamic Power Management (AsDPM) technique. This technique works in con-
junction with global EDF scheduling algorithm. It is an admission control technique
for real-time tasks which decides when exactly a ready task shall execute. Without
this admission control, all ready tasks are executed as soon as there are enough com-
puting resources (processors) available in the system, leading to poor possibilities of
putting some processors in power-efficient states. AsDPM technique differs from the
existing DPM techniques in the way it exploits the idle time intervals. Conventional

1.2. Contributions 7

DPM techniques can exploit idle intervals only once they occur on a processor —i.e.,
once an idle time interval is detected. Upon detecting idle time intervals, these
techniques decide whether to transition target processor(s) to power-efficient state.
AsDPM technique, on the other hand, aggressively extracts most of the idle time
intervals from some processors and clusters them on some other processors of the
platform to elongate the duration of idle time. Transitioning processors to suit-
able power-efficient state then becomes a matter of comparing idle time interval’s
length against the break-even time of target processor. Although, AsDPM is an
online dynamic power management technique, its working principle can be used
to determine static optimal architecture configurations (i.e., number of processors
and their corresponding voltage-frequency level, which is required to meet real-time
constraints in worst-case with minimum energy consumption) for target application
through simulations. We demonstrate the use of AsSDPM technique for both static
and dynamic energy optimization in this chapter.

Chapter 5. This chapter presents our third contribution, which is an inter-task
dynamic voltage and frequency scaling technique for real-time multiprocessor sys-
tems, called Deterministic Stretch-to-Fit (DSF) technique. The DSF technique is
mainly intended for multiprocessor systems. Though, applying it on single-processor
systems is also possible and in fact, rather trivial due to absence of migrating tasks.
DSF comprises three algorithms, namely, Dynamic Slack Reclamation (DSR) algo-
rithm, Online Speculative speed adjustment Mechanism (OSM), and m-Tasks Ex-
tension (m-TE) algorithm. The DSR algorithm is the principle slack reclamation
algorithm of DSF that assigns dynamic slack, produced by a precedent task, to
the appropriate priority next ready task that would execute on the same processor.
While using DSR,, dynamic slack is not shared with other processors in the system.
Rather, slack is fully consumed on the same processor by the task, to which it is
once attributed. Such greedy allocation of slack allows the DSR algorithm to have
large slowdown factor for scaling voltage and frequency for a single task, which
eventually results in improved energy savings. The OSM and the m-TE algorithms
are extensions of the DSR algorithm. The OSM algorithm is an online, adaptive,
and speculative speed adjustment mechanism, which anticipates early completion
of tasks and performs aggressive slowdown on processor speed. Apart from sav-
ing more energy as compared to the stand-alone DSR algorithm, OSM also helps
to avoid radical changes in operating frequency and supply voltage, which results
in reduced peak power consumption, which leads to an increase in battery life for
portable embedded systems. The m-TE algorithm extends an already existing One-
Task Extension (OTE) technique for single-processor systems onto multiprocessor
systems. The DSF technique is generic in the sense that if a feasible schedule for
a real-time target application exists under worst-case workload using (optimal or
non-optimal) global scheduling algorithms, then the same schedule can be repro-
duced (using actual workload) with less power and energy consumption. Thus, DSF
can work in conjunction with various scheduling algorithms. DSF is based on the

8 Chapter 1. Introduction

principle of following the canonical execution of tasks at runtime —i.e., an offline or
static optimal schedule in which all jobs of tasks exhibit their worst-case execution
time. A track of the execution of all tasks in static optimal schedule needs to be
kept in order to follow it at runtime [10]. However, producing and keeping an entire
canonical schedule offline is impractical in multiprocessor systems due to a priori
unknown assignment of preemptive and migrating tasks to processors. Therefore,
we propose a scheme to produce an online canonical schedule ahead of practical
schedule, which mimics the canonical execution of tasks only for future m-tasks.
This reduces scheduler’s overhead at runtime as well as makes DSF an adaptive
technique.

Chapter 6. While new energy management techniques are still developed to deal
with specific set of operating conditions, recent research reports that both DPM
and DVFS techniques often outperform each other when their operating conditions
change [37, 20]. Thus, no single policy fits perfectly in all or most operating con-
ditions. Our fourth and final contribution in this dissertation addresses this issue.
We propose, in this chapter, a generic power and energy management scheme for
multiprocessor real-time systems, called Hybrid Power Management (HyPowMan)
scheme. This scheme serves as a top-level entity that, instead of designing new pow-
er/energy management policies (whether DPM or DVFS) for specific operating con-
ditions, takes a set of well-known existing policies. Each policy in the selected policy
set, when functions as a stand-alone policy, ensures deadline guarantees and per-
forms well for a given set of operating conditions. At runtime, the best-performing
policy for given workload is adapted by HyPowMan scheme through a machine-
learning algorithm. This scheme can enhance the ability of portable embedded
systems to adapt with changing workload (and platform configuration) by working
with a larger set of operating conditions and gives overall performance and energy
savings that are better than any single policy can offer.

Chapter 7. In this chapter, we provide general conclusions and remarks on our
contributions and results. Moreover, we discuss some future research perspectives
of this dissertation.

Appendixes. We provide two appendixes in this dissertation. Appendix A pro-
vides functional details on the simulation tool STORM (Simulation TOol for Real-
time Multiprocessor scheduling) [108| that we use in our simulations throughout this
dissertation. Appendix B provides some additional simulation results related to
chapter 6.

1.3 Summary

As a result of contemporaneous evolution in the complexity and sophistication of
real-time applications and multiprocessor platforms, the research on real-time sys-

1.3. Summary 9

tems has confronted with many emerging challenges. One such challenge that real-
time research community is facing is to reduce power and energy consumption of
these systems, while maintaining assurance that timing constraints will be met.
As the computational demands of real-time systems continue to grow, effective yet
transparent energy-management approaches are becoming increasingly important
to minimize energy consumption, extend battery life, and reduce thermal effects.
Power- and energy-efficiency and scheduling of real-time systems are closely related
problems, which should be tackled together for best results. Our dissertation mo-
tivates this thesis and attempts to address together the problem of overall energy-
awareness and scheduling of multiprocessor real-time systems. This dissertation
proposes novel approaches for energy-management within the paradigm of energy-
aware scheduling for soft and hard real-time applications, which are scheduled over
identical multiprocessor platforms of type symmetric shared-memory multiproces-
sor (SMP). We believe that by exploiting the characteristic parameters of real-time
application tasks, the energy-consciousness of scheduling algorithms and the qual-
ity of service of real-time applications can be significantly improved. Rest of this
document provides our contributions in detail.

CHAPTER 2
Background on Real-time and
Energy-efficient Systems

Contents
2.1 Real-time Systems 00 0o 11
2.1.1 Real-time Workload 12
2.1.2 Processing Platform 16
2.1.3 Real-time Scheduling 17
2.1.4 Real-time Scheduling in Multiprocessor Systems 20
2.2 Power- and Energy-efficiency in Real-time Systems 23
2.2.1 Power and Energy Model 23
2.2.2 Energy-aware Real-time Scheduling 26
2.3 Simulation Environment 28
2.4 SUIMMATY « v v v v v v v et e e e e e e e e e e e e 29

2.1 Real-time Systems

Real-time systems can be classified, based on the strictness of timing constraints,
into three broad categories: hard real-time, soft real-time and firm real-time systems
[42, 47, 77, 80, 105].

Hard real-time systems. In hard real-time systems, the completion of a correct
operation after its deadline is considered as useless. Ultimately, this operation may
cause a critical failure of the system or expose end-users to hazardous situations. In
other words, the penalty for even a single temporal constraint violation is unaccept-
able in hard real-time systems. Aerospace, nuclear, power plant, and automobile
applications would use such systems.

Soft real-time systems. Soft real-time systems lower their strictness of timing
constraints as compared to hard real-time systems. In such systems, although it
is still preferred to have operations completed before their deadlines, violation of
timing constraints does not make produced outputs entirely useless or hazardous.
Even if deadlines of most operations are missed, the system can continue to oper-
ate. Such systems are nonetheless referred to as real-time since they use real-time

12 Chapter 2. Background on Real-time and Energy-efficient Systems

mechanisms (such as real-time operating systems for instance) in order to meet as
many deadlines as possible. Cellular phone and multimedia applications can use
such systems as the consequences of missing deadlines could be smaller than the
cost of meeting them in all possible circumstances.

Firm real-time systems. Firm real-time systems provide an intermediate
paradigm between hard and soft real-time systems. In contrast to hard real-time
systems, firm real-time systems tolerate some latency in operations —i.e., a deadline
miss results only in a decreased quality of service. Basically, the notion of firm real-
time is less strict than that of hard real-time since it allows deadlines to be missed,
but it is more strict than soft real-time in the sense that only a predefined ratio
of deadline miss is allowed. Systems such as flight ticketing data servers that re-
quire concurrency, but can afford a delay in seconds, may use firm real-time systems.

As mentioned in section 1.1, a real-time system must ensure that, by construc-
tion, it is provably temporally correct and predictable. A real-time system can be
proven predictable and temporally correct by specifying the following three aspects.
Firstly, the real-time workload —i.e., the computation produced by a real-time ap-
plication that must complete prior to its deadline, is specified in the form of tasks.
These tasks are often recurring in their nature in real-time systems. Secondly, the
processing platform or hardware resources upon which the application tasks are ex-
ecuted. Thirdly, a scheduling algorithm that determines, at any time, which set
of tasks execute on the processing platform. In the following, we discuss all three
aspects in more detail.

2.1.1 Real-time Workload

Real-time applications have become more sophisticated and complex in their behav-
ior and interaction over the time [3]. As mentioned in earlier section, an application
is said to be real-time when it is subject to timing constraints for its individual
jobs/events as well as for its overall system response. These timing constraints are
usually applied by the system designer, however, they typically reflect a need for
safety or sustainability of the system performance. Definition of these timing con-
straints categorize an application into hard real-time, soft real-time, or firm real-time
applications. For instance, the ABS breaking system in cars and video streaming
applications are good examples of hard and soft real-time systems, respectively.
Typically, hard real-time applications work in closed and highly predictable envi-
ronments. On the contrary, soft real-time applications execute in open and less
predictable environments.

In real-time systems, a common assumption is that it is possible to decompose a
real-time application into a finite set of discrete tasks. Each task represents certain
functionality of application. These tasks possess certain characteristic parameters
such as release instant, periodicity, deadline, and execution requirement. Based on
these parameters, tasks may be specified according to different task models. A task

2.1. Real-time Systems 13

model is the format and rules for specifying a task system. Before elaborating dif-
ferent task models, we present these characteristic parameters, which are associated
with real-time tasks. From now on, we say that a task T; releases a job T; ; (where
j is the index of the job) at time instant ¢ to express the fact that 7T; is instantiated
exactly at instant ¢ so that its treatment can be carried out. A job can therefore be
seen as an instance of a task T;. In the following, we recall classical definitions for
certain parameters that characterize tasks of real-time applications.

Deadline (d;) of a real-time task is one of the key parameters which reflects the
timing constraint on its execution. This quantity can be expressed as a number
of CPU clock cycles but other reference units can be used, such as CPU ticks for
instance. Hereafter, we use the term time unit to refer to the used reference unit.
In this dissertation, deadline will denote the relative deadline of T; —i.e., relative to
its last job release, with the interpretation that once the task releases a job, that
job must be completely executed by d; time units.

Period (P;) of a real-time task in another key parameter which reflects the
delay between two consecutive job releases of task 7;. This parameter can be
interpreted in three distinct ways, each of which leads to a well-defined type of
task. According to the interpretation given to the period, tasks can be classified
into three categories of task models: periodic task model, sporadic task model, and
aperiodic task model. We elaborate further these task models in section 2.1.1.1.

Note that, very often, the theoretical results proposed in the literature apply
only to tasks that provide a particular relation between their period and deadline.
Therefore, it is worth mentioning the specific vocabulary that characterizes such
relations. T; is said to be constrained-deadline task if d; < P; or implicit-deadline
task in the particular case where d; = P;. When the proposed result holds whatever
the relation between period and deadline, T; is said to be arbitrary-deadline task.
Note that the following inclusion holds: an implicit-deadline task is a constrained-
deadline task which is in turn an arbitrary-deadline task. Thanks to this inclusive
relation between the task models, any property that holds for an arbitrary-deadline
task also holds for a constrained- and implicit-deadline task.

Offset (O;) refers to the time delay before the release time of the first job of a
periodic real-time task. In other words, the offset corresponds to the release time
of the first job T;; of task 7T;. When the whole application is modeled by a single
set of tasks with identical offsets, the application is said to be synchronous; without
loss of generality, the offset of every task can be considered as 0 and can be ignored.
Otherwise, if the offsets for different tasks are not equal, the application is said
to be asynchronous. Notice that the offset of a task is defined only if the task is
periodic. This is because the release times of the jobs (including the first one) for
sporadic/aperiodic tasks are not known beforehand.

14 Chapter 2. Background on Real-time and Energy-efficient Systems

Worst-case execution time (C;) refers to the largest execution time needed to
complete a distinct job of a task T;, assuming that its execution is not interrupted.
Since real-time systems are designed to achieve only a few specific functions on a
specific processing platform, mostly it is assumed that the Worst-Case Execution
Time (WCET) of every task is known beforehand. WCET of a task is usually
expressed in the same units as deadline and period. Note that the value of Cj
depends not only on the functional code of T;, but varies on different platforms.
Authors in [123] suggest that the estimated WCET of tasks must offer both tightness
and safety properties. Tightness means that they must be as close as possible to the
actual WCET of a task, not to overestimate the resources required by the system.
Safety is the guarantee that the computed WCET is greater than or equal to any
possible execution time. The process of determining C; must account for issues like
worst-case cache behavior, pipeline stalls, memory contention, memory access time,
program structure, and worst-case execution paths within the code.

There are some other factors as well, which are not directly concerned with
the estimation of WCET, but contribute to the response time of tasks such as job
preemptions, context switching, state saving, and scheduling-decision processing
time by operating system. If a job is allowed to migrate between processors during
its scheduling window, there may be an added penalty of refreshing the cache of the
processor, to which the job is migrating. The preemption and migration costs are
typically dependent on the processor architecture and the scheduling algorithm.

Within the scope of this dissertation, we consider that the WCET of all tasks
is known beforehand. Interested reader may refer to some recent research work and
surveys presented in [123, 69, 70] for further investigations in this research field.

Laxity (L;) is aruntime parameter of a task’s job that is a measure of its urgency
to execute relative to its deadline. For instance, in a feasible task set, a job with
zero laxity is the most urgent job to execute in order to avoid deadline miss. The
absolute laxity (L;) of a task at its release time instant ¢ is given by equation 2.1.

Li=d;— (t+C)) (2.1)

Figure 2.1 illustrates a sample schedule of tasks and graphical representation
of various characteristic parameters. This figure illustrates the schedule of a single
periodic task 7; having implicit deadline —i.e., d;=F;, on a single processor. The
parameters of T; are: O;=2, (;=3, and d;=P;=4. Each green box represents a job of
task T; and its length corresponds to its worst-case execution time C;. The release
and deadline time instants are represented by up and down arrows, respectively.
According to the definitions above, T; releases a job noted T;; (Vj, j=1,2,...,00)
at each instant r;. Each such job has a WCET of C; and it must complete by its
relative deadline noted d;. At release instant, a task has an absolute laxity of L;.

2.1. Real-time Systems 15

Ti1 rip=dj; riz=di,
1 1 1 1] | 1]]
1 A ! 1 | A ' 1 1 A 1 '
1 ! ' 1) [l 1 1 :
| PP : . P | b
] T T T T T T 1 1
1 1 1 1 1 1 1 [} '
1 | :
H 1051 Ti» N
) 1 '
1 ! 1 1 1 1 1 1)
T T T [} T T I 1 :
i O; v G v L 1 Gio . Lo
1 1 1 1 | 1 | | |
1 1 1 [1 1 1 A [l '
0 1 2 3 4 3 6 7 8 9 10 11 12 time

Figure 2.1: Illustration of various characteristic parameters of real-time tasks. Pe-
riodic task 7; has an implicit deadline (d;=P;) with the following values of other
parameters. O0;=2, C;=3, d;=F;=4, and L;=1.

2.1.1.1 Task models

Based on the knowledge of characteristic parameters presented in section 2.1.1, we
briefly discuss various classical task models in the following.

Periodic Task Model: This task model, presented by Liu and Layland in [71],
allows the specification of homogeneous sets of jobs that recur at strict periodic
interval. A periodic task T; is specified by its offset, WCET, and period. Note that
for such task models, every task has an exact inter-arrival time between successive
jobs. Along with this interpretation, it is often assumed that the release time of the
very first job of the tasks is also known beforehand, thus implying that the exact
release time instants of every job can be computed at the system design-time.

Sporadic Task Model: The sporadic task model with implicit deadlines, pre-
sented by Liu and Layland in [71], removes the restrictive assumption of generating
jobs at strict periodic intervals of time. In addition, an offset parameter is not
specified for sporadic tasks. The behavior of a sporadic task T; can be character-
ized by only the WCET and its period. The parameter P; indicates the minimum
inter-arrival time between successive jobs of T; (note that P; denoted the exact
inter-arrival time for periodic tasks). That is, the exact release time of every job is
not known before they are actually released at runtime.

Aperiodic Task Model: In this task model, the tasks do not have a period
parameter. That is, system designers have no prior information about the time-
instants at which jobs are released.

2.1.1.2 Description of workload model in this dissertation

Throughout this dissertation, we characterize a periodic and independent task
set 7 as a finite collection of tasks such that 7 = {T1,75,T;,...,T,—1,T,,}, and

16 Chapter 2. Background on Real-time and Energy-efficient Systems

a real-time task 7; composed of a finite or infinite collection of jobs such that
J =A{T;1,T;2,...}. The letter n will denote the number of tasks in a task set. Every
job T; ; of a real-time task Tj, (Vi,1 < i < n) will be characterized by the quadruplet
(ri, Cy, di, P;): an arrival or release time r;, a worst-case execution requirement Cj,
a relative deadline d;, and a period P;. The interpretation of these parameters is
that the job T; ; of a task T; arrives after r; time units after the system start-time
(the offset will be assumed zero in our general system model) and must execute
for C; time units over the time interval [r;,r; + d;). Release instant r; is assumed
to be a non-negative real number while both C; and d; are positive real numbers.
The interval [r;, 7; + d;) is referred to as T; j’s scheduling window. A job Tj ; is said
to be active at time instant ¢ if ¢t € [r;,r; + d;) and T;; has unfinished execution.
In general task model, we consider a completely specified system —i.e., the system
designer has complete knowledge of each job T;; and infinitely-repeating jobs are
generated by independent periodic tasks. We consider an implicit deadline task
model. Furthermore, we consider that preemption of tasks —i.e., a job suspends
while a different job executes and resumes execution at later time, is allowed. In all
figures that illustrate scheduling of tasks throughout this dissertation, an upward
arrow indicates a job’s release and a downward arrow indicates its deadline and
period. A rectangular box on the time line indicates that a task is executing during
that interval as illustrated in figure 2.1.

When analyzing a system, we need to know the execution requirement of each
task —i.e., the amortized amount of processing time the task will need. A task’s
utilization can be used to measure its processing requirement. The utilization of
task T; is the proportion of processing time the task will require if it is executed

. di - . ..
on a unit-speed (v) processor: u; 2] C;/P;. The aggregate utilization of a periodic
d . .
task set, Usym (7) lof > i u;, measures the proportion of processor’s time the
entire task set will require.

In the rest of this dissertation, we consider that the worst-case execution time
of tasks is known a priori, all jobs of tasks are preemptable, full migration of tasks
is allowed (except in case of chapter 3), task-level parallelism is allowed, however,
job-level parallelism is not permitted (i.e., a job may not execute concurrently with
itself on multiple processors), and tasks are independent of each other —i.e., the
execution of one task’s job is not contingent upon the status of another task’s job.
Blocking of shared resources in not permitted as well.

2.1.2 Processing Platform

A complete real-time system is a real-time task model paired with a specific pro-
cessing platform, which has a specific computing capacity. The platform may be
composed of a single processor denoted by 7 or it may contain multiple processors
denoted by II such that II = {m, 7, ..., 7 }. Letter m refers to the number of
processors in a multiprocessor platform. If the platform is a multiprocessor, the
individual processors may all be the same (identical) or they may differ from one

2.1. Real-time Systems 17

another. As highlighted by authors in [3, 4|, multiprocessor platforms are more en-
ergy efficient than equally powerful single-processor platforms, because raising the
frequency of a single processor results in a multiplicative increase of the energy con-
sumption while adding processors leads to an additive increase. More details are
presented in section 2.2. In the following, we discuss certain categories of multipro-
cessor systems which differ from one another based on the speeds of the individual
processors.

Unrelated multiprocessor platform. In these platforms, the processing speed
depends not only on the processor, but also on the job being executed. In such
platforms, a specific speed is associated to every processor-task couple with the
interpretation that, in any time interval of length L, task T; executes v x L execution
units when executed on processor m;. This model of platform was introduced in
order to reflect the fact that two distinct tasks (i.e., with different code-instructions)
executed on the same processor can require different execution times to complete
even though the length of their code is identical. This is due to internal architecture
of the processors and the type of the task instructions. Indeed, some processors are
optimized for some types of instructions while they require more time to complete
other types of instructions.

Uniform multiprocessor platform. In these platforms, the processing speed
depends only on the processor. For instance, considering two different jobs, for all
pairs of jobs T; ; and T; j11 that execute on the same processor 7, the processor
speed remains the same.

Identical multiprocessor platform. In these platforms, all processors have
the same speeds. Generally, in such systems, the speed is usually normalized to
one unit of work per unit of time. The identical multiprocessor platform model
considers that all the processors have the same characteristics, in term of power
consumption, computational capabilities, architecture, cache size and speed, 1/O
and resource access, and access time to shared memory etc. In any interval of time,
two identical processors execute the same amount of work and consume the same
amount of energy.

In this dissertation, we consider an identical multiprocessor platforms for
scheduling real-time tasks. Precisely, we consider symmetric shared-memory multi-
processor (SMP) layout of multiprocessor identical platform as illustrated in figure
2.2.

2.1.3 Real-time Scheduling

Real-time scheduling is one of the three aspects that should be taken into account
to prove predictability and temporal correctness of real-time systems. The role
of a real-time scheduling algorithm is to determine which active jobs of real-time

18 Chapter 2. Background on Real-time and Energy-efficient Systems

Processor 1 Processor 2 Processor m

cache cache P cache

system bus

shared memory

Figure 2.2: High-level illustration of symmetric share-memory multiprocessor (SMP)

architecture layout of processing platform.

application tasks are executing on the processing platform at every time instant.
From an abstract point of view, real-time scheduling algorithm determines the
interleaving of execution for tasks’ jobs on the target processing platform. This
interleaving is called a schedule. The schedule must be produced to ensure that
every job of task executes on processor(s) for its execution requirement (WCET)
during its scheduling window. In a real-time schedule, generally, a task job can
be in either ready, running, blocked, or terminated state. For instance, when a
recurring job is released (for the first time as well as when it recurs), it becomes
ready for execution. A ready job competes for its priority in the schedule with
already present ready tasks. If a ready job has its priority high enough then it
is allocated to a processor for execution and becomes running. A running job
can be blocked due to the unavailability of a shared resource (other than the
processor) held by another job!. Upon completion of its execution requirement
(i.e., WCET), a job is said to be terminated until its next release. The instants
at which a job of a task is released, preempted, terminated, or reached its dead-
line (for constrained-deadline task system) are broadly referred as scheduling events.

Scheduling algorithms can be broadly classified into offline and online algo-
rithms [42, 47]. In offline scheduling algorithms, all scheduling decisions are made
before the system begins executing. These scheduling algorithms select jobs to
execute by referencing to a table describing the predetermined schedule. Usually,
offline schedules are repeated after a specific time period. For instance, if the
jobs being scheduled are generated by periodic tasks, an offline schedule may be
generated for an interval of length equal to the least common multiple of the periods
of the tasks (also referred as hyper-period) in the task set. After the hyper-period,
the arrival pattern of the jobs will repeat. When the schedule reaches the end of

'Note that, in this dissertation, we do not consider inter-task dependency due to shared re-
sources.

2.1. Real-time Systems 19

the predetermined table, it can simply return to the beginning of the table. In
online scheduling algorithms, on the other hand, all scheduling decisions are made
without specific knowledge of jobs that have not yet arrived. These scheduling
algorithms select jobs to execute by examining properties of active jobs. Online
algorithms can be more flexible than offline algorithms since they can schedule jobs
whose behavior cannot be predicted ahead of time. Online scheduling algorithms
can be divided into fixed-priority and dynamic-priority scheduling algorithms.

In fixed-priority scheduling algorithms, all jobs generated by the same task
have the same priority. More formally, if job 7T} ; has higher priority than 7; ; then
T; j+1 has higher priority than 7j ;; for all values of j. Fixed-priority algorithms
also referred as Static-priority algorithms. Omne very well-known fixed-priority
scheduling algorithm is the Rate Monotonic (RM) algorithm proposed by [71].
In this algorithm, the task period is used to determine priority —i.e., tasks with
shorter periods have higher priority. This algorithm is known to be optimal among
single-processor fized-priority algorithms —i.e., if it is possible for all jobs to meet
their deadlines using a fixed priority algorithm, then they will meet their deadlines
when scheduled using RM algorithm. In dynamic-priority scheduling algorithms,
jobs generated by the same task may have different priorities. The Earliest Deadline
First (EDF) algorithm [23, 71, 85] is a well-known dynamic-priority algorithm. EDF
scheduling algorithm is optimal among all single-processor scheduling algorithms
—i.e., if it is possible for all jobs to meet their deadlines, they will do so when
scheduled using EDF. Dynamic-priority algorithms can be further divided into two
categories —i.e., job-level fixed-priority and job-level dynamic-priority algorithms,
depending on whether individual jobs can change priority while they are active.
In job-level fixed-priority algorithms, jobs cannot change priorities. EDF is a
job-level fixed-priority algorithm. On the other hand, in job-level dynamic-priority
algorithms, jobs may change priority during execution. Least Laxity First (LLF)
algorithm [33, 71| is a job-level dynamic-priority algorithm. LLF scheduling
algorithm assigns a higher priority to a task with smaller laxity and it has been
known as an optimal preemptive scheduling algorithm on a single processor platform.

Another important aspect of scheduling algorithms is their optimality. A
scheduling algorithm is said to be optimal if it can successfully schedule any feasible
task system. A task system is said to be feasible if it is guaranteed that a schedule ex-
ists that meets all deadlines of all jobs, for all sequences of jobs that can be generated
by the task system. For instance, EDF is an optimal scheduling algorithm for single-
processor systems [85] whereas, Rate monotonic (RM) is not an optimal algorithm
for all single-processors. RM is optimal on single-processor systems only among
fixed-priority algorithms —i.e., if it is possible for a task set to meet all deadlines us-
ing a fixed-priority algorithm then that task set is RM-schedulable [85]. Authors in
[71] proved that for a set of n periodic tasks with unique periods, a feasible schedule
that will always meet deadlines exists if the aggregate utilization of tasks is below
a specific bound depending on the number of tasks —i.e., > ju; < n (W — 1).

20 Chapter 2. Background on Real-time and Energy-efficient Systems

When the number of tasks tends towards infinity, the schedulable utilization of RM
algorithms tends towards a constant value —i.e., n — oo; i | u; =~ 0.693. Authors
in [21] propose a hyperbolic bound relative to the Liu and Layland bound [71] and
show that for n tending to infinity, the hyperbolic bound was found to be equal to
V2. Single-processor systems that allow dynamic-priority scheduling will commonly
use the EDF scheduling algorithm, while systems that can only use fixed-priority
scheduling algorithms will use the RM scheduling algorithm. Since the focus of this
dissertation is mainly on multiprocessor real-time systems, therefore, we discuss in
the following how scheduling problem in multiprocessor systems is addressed.

2.1.4 Real-time Scheduling in Multiprocessor Systems

In multiprocessor systems, the problem of scheduling tasks is typically solved using
different approaches based on how much migration the system allows at runtime.
A task is said to be migrating if its successive jobs (or parts of the same job) are
executed on different processors. Based on the amount of allowable migration,
three types of migration strategies can be considered [8, 42, 47, 63].

No Migration. In this type of scheduling strategies, tasks can never migrate.
Each task is statically assigned to a specific processor before execution and, at
runtime, all job instances generated by a task execute on the processor to which,
the task is assigned. Figure 2.3 illustrates a partitioned scheduler in which,
every processor maintains a unique priority space associated only with the tasks
being partitioned on it. No migration strategies are also referred as partitioned
scheduling strategies. Partitioned scheduling approach has the virtue of permitting
schedulability of task set to be verified using well-established single-processor
schedulability analysis techniques.

Full Migration. In this type of scheduling strategies, jobs of a task can migrate
at any point in time during their execution. All jobs are permitted to execute on any
processor of the system. However, a job can only execute on at most one processor
at a time —i.e., job parallelism is not permitted. Figure 2.4 illustrates a full migra-
tion scheduling in which, a single priority space is associated with all processors in
the system. Full migration strategies are also referred as global scheduling strategies.

Restricted Migration. In this type of scheduling strategies, tasks can migrate
only at job boundaries. Whenever a new job of a task is released, a top-level
scheduler assigns this job to a particular processor. Once assigned, this job must
complete its execution on the processor to which it is assigned —.e., it can not
migrate. However, the next job of the same task can execute on the same or different
processor. Once assigned, the execution of job is the responsibility of the local
scheduler on that processor. Figure 2.5 illustrates a restricted migration scheduler
in which, there is a global priority queue and local priority queues for each processor.

2.1. Real-time Systems

21

T = {TLT‘_), ceey Tn—l* Tn}

T4
Local-level
\ > scheduler 7-(- 1
,7_7-‘-2 \
Local-level ¢
\ > scheduler > 772
7-7"771 T
\ . Local-level o | 7'(' .
L scheduler L m
Local priority queues
Figure 2.3: No migration scheduling.
T = {TLTZ:-“»ﬂz—LTn} —p] 7T1
Tglobal ™~
gLoudi Global
\ Scheduler > 7-‘-2
Global priority . e
queue
> 7T‘7 n
Figure 2.4: Full migration scheduling.
Local priority queues
SR UTASE A 3 N L
T
g lobal § Top-level R Local-level 7'[' ¢
P Scheduler g > scheduler — 2
Global priority queue 0% e e
Local-level
—>|) scheduler > ﬂ-]’n

Figure 2.5: Restricted migration scheduling.

22 Chapter 2. Background on Real-time and Energy-efficient Systems

Prohibiting migration, as in case of partitioned scheduling, may cause a system
to be under-utilized [8, 47| and for that reason, more than enough processing power
will be available on some processor when a new job arrives. If migration is allowed,
on the other hand, the job can execute for some time on one processor and then move
to another processor, allowing the spare processing power to be distributed among
all the processors. However, while full migration strategy is the most flexible, there
are clearly overheads associated with allowing migration such as increased context
switching, handling of shared resources, and cache-related overhead etc. Thus, there
is a trade-off between scheduling loss due to migration and scheduling loss due to
prohibiting migration.

2.1.4.1 Earliest Deadline First (EDF) as multiprocessor real-time
scheduling algorithm

In this dissertation, EDF scheduling algorithm is often used to schedule real-time
tasks on multiprocessor platform. In this section, we present EDF as a multi-
processor real-time scheduling algorithm. EDF is a job-level fixed-priority online
scheduling algorithm which is optimal for single-processor systems [23, 71]. Au-
thors in [34, 52| have shown that, for multiprocessor systems, there is no job-level
fixed-priority optimal online scheduling algorithm. Since EDF is a job-level fixed-
priority scheduling algorithm for multiprocessors, determining whether a given task
set is feasible on a multiprocessor platform will not tell us whether that task set
is EDF-schedulable on the same platform as well. Thus, EDF is not optimal for
multiprocessor systems. Nonetheless, there are still many compelling reasons for
using EDF for scheduling real-time applications on multiprocessor systems.

e Since EDF is an optimal single-processor scheduling algorithm, therefore, all
local scheduling decisions are taken using an optimal algorithm when EDF is
used in partitioning and restricted-migration based systems.

e EDF is considered as efficient from implementations point of view [74].

e The number of preemptions and migrations incurred by EDF can be bounded.
Bounds depend on which migration strategy is being used. Since migration
and preemption both incur overheads, it is important to be able to incorporate
the overheads into any system analysis. This can only be done if the associated
overheads can be bounded [52, 47].

On single-processor, EDF is well defined —i.e., for execution at every time in-
stant, the job that has the smallest deadline is selected for execution on the sole
processor. EDF is optimal scheduling algorithm for single-processo systems. When
more processors are added to the system, however, EDF suffers from sub-optimality.
The utilization bound for periodic tasks with implicit deadlines under EDF multi-
processor scheduling algorithm cannot be higher than w for an m-processor
platform [7]. This is a sufficient condition bound. One of the contributions of this

2.2. Power- and Energy-efficiency in Real-time Systems 23

dissertation (in chapter 3) is to increase this schedulability bound of EDF algorithm
using restricted-migration strategy.

2.2 Power- and Energy-efficiency in Real-time Systems

The demand for portable systems is ever-increasing with more complex functionality
requirements as depicted in figure 2.6(a). The assessment of ITRS (International
Technology Road map for Semiconductors) in 2008 fore casted further increase in
power consumption in cell phones (see figure 2.6(b)). EPoSS (the European Tech-
nology Platform on Smart Systems Integration) suggested in 2009 that the energy
density in batteries would increase beyond 400 Wh/kg by 2020 (see figure 2.6(c)).
All these assessments suggest that complex real-time systems, which are composed of
sophisticated real-time applications being scheduled over multiprocessor platforms,
must be increasingly challenged to reduce energy consumption while maintaining
assurance that timing constraints will be met. Power and energy in these complex
systems is managed at both system design-time as well as runtime. In a post-design
scenario, energy saving is achieved by static (offline) optimizations as well as by
actively changing the power consumption profile of the system at runtime (online).

2.2.1 Power and Energy Model

There are two principle sources of power dissipation in CMOS (Complementary
Metal-Oxide Semiconductor) technology-based systems: dynamic power dissipation,
which arises from the repeated capacitance charge and discharge on the output of
the hundreds of millions of gates in modern chips, and static power dissipation which
arises from the electric current that leaks through transistors even when they are
turned off. Until very recently, only dynamic power dissipation has been a significant
source of power consumption. However, shrinking processor technology below 100
nanometer has allowed and actually required reducing the supply voltage. Reduced
feature-size favors dynamic power dissipation but unfortunately, smaller geometries
exacerbate leakage, so static power begins to dominate the power consumption in
deep sub-micron technology. Overall power consumption of CMOS technology-based
processors, represented as a function of speed (v) in variable speed settings, is
composed of static and dynamic components which relate to supply voltage V,,,
operating frequency F,,, and leakage current (Ig) through an approximate relation
given by equation 2.2.

P'lUT‘(I/) = ’YCeffVo2pFop + Iq‘/op (22)

Here, «y is the fraction of gates actively switching and Cys refers to the total
load capacitance of all gates. The first addend in equation 2.2 corresponds to dy-
namically dissipated power and second addend models statically dissipated power.
We have ignored power lost to the momentary short circuit that occurs at the out-
put whenever the switching activity takes place. The loss is relatively small; it

24 Chapter 2. Background on Real-time and Energy-efficient Systems

500

Digital Cameras
as0 - g

s MP3 Players
W0 High-End Cell
350 Phones

300 -
250 -

200 -

Units (millions)

150 -
100 -

50 -

0 L L L L L L L L L

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

(a) Evolution of the demand for portable equipment over the
years (SEMICO Research Corp.)

2009 2010 2012 2014 2016 2018 2020

)
E
o
3
8
e

Year

(b) Power consumption in portable equipment over the years
(ITRS 2008).

2009 2012 Year 2016 2020

(%3]
[=]
(=)

e
[=]
(=)

(¥
(=)
(=]

200

Capacity (Wh/kg)

(=)

(c) Evolution of energy-density in batteries over the years
(EPoSS 2009).

Figure 2.6: Current and future trends in the evolution of portable embedded sys-
tem demand, their power consumption, and their energy-density in batteries. (a)
Evolution of the demand for portable equipment over the years (SEMICO Research
Corp.). (b) Power consumption in portable equipment over the years (ITRS 2008).
(c) Evolution of energy-density in batteries over the years (EPoSS 2009).

2.2. Power- and Energy-efficiency in Real-time Systems 25

contributes to dynamic power dissipation, and the first term in equation 2.2 can
absorb it, if necessary.

When dynamic power is the dominant source of power consumption —as it has
been historically in many less aggressive fabrication technologies— it is possible to
approximate equation 2.2 with just the first term. In that case, the relation of
Vogp suggests reducing supply voltage as the most effective way to decrease power
consumption. For instance, halving the voltage will reduce the power consumption
by a factor of four. Supply voltage is also related to the operating frequency of the
processors by the relationship given in equation 2.3.

Fop = Vop — Vin)" (2.3)
Vop

Where Vi, is the threshold or switching voltage and the exponent 7 is an ex-
perimentally derived constant that depends on the technology in use. During the
past decades, the threshold voltage of the manufactured devices was too high to
generate a significant leakage current when the state of the device is off, but still
low enough compared to V;, to be ignored in the above expression. That is, the

expression above could be rewritten as in equation 2.4.

Fop = (Vop)"™ (2.4)

For instance, in technology based on classical MOSFETs (Metal-Oxide Semicon-
ductor Field Effect Transistor), n= 2 [80], making the frequency a linear function
of the supply voltage. However, the exact knowledge of 7 is not essential. The most
important feature is the fact that the power function Pwr(v) is a strictly increasing
convex function of the frequency. Historically, CMOS technology has dissipated
much less power. In fact, when not switching, CMOS transistors lost negligible
(static) power. However, the power they consume has increased dramatically with
increases in device speed and chip density. Continuously shrinking transistor size
have forced a reduction of the threshold voltage as well. This miniaturization
reduces the gap between the supply voltage and threshold voltage, resulting in a
significant sub-threshold leakage current. Nowadays, these leakage currents are
becoming a significant factor to portable devices because of their undesirable effect
on battery life time. Hence, static power dissipation can no more be ignored in
modern embedded systems. In this dissertation, we consider that static power is a
significant contributing factor to overall power and energy dissipation and cannot
be ignored any further.

Although power-efficiency and energy-efficiency are often perceived as overlap-
ping goals, there are certain differences when designing systems for one or the other.
Formally, the energy consumed by a system is the amount of power dissipated dur-
ing a certain period of time. For instance, if a task occupies a processor during an
execution interval of [t1,?2] then the energy consumed by the processor during this
time interval is given by equation 2.5.

26 Chapter 2. Background on Real-time and Energy-efficient Systems

Elt1,ts] = / ’ Pur(v(t))dt (2.5)

t1

Equation 2.5 shows that there is an aspect of time involved in energy consump-
tion of the system. Every computation operation requires a specific interval of time
to be completed. The energy consumption decreases if the time required to perform
such operation decreases and/or the power consumption decreases. For instance,
power can be halved by simply halving the operating frequency, but at the same
time, overall computation time would be doubled, which might be leading to no ef-
fect on overall energy consumption. Thus, a technique that would purely minimize
power dissipation, but at the same moment increase the computational time, might
lead to non change or even an increase in energy consumption.

Power- and energy-efficiency and scheduling of real-time systems are therefore
closely related problems, which should be tackled together for best results. This dis-
sertation is an attempt to address together the problem of overall energy-awareness
and scheduling of multiprocessor real-time systems.

2.2.2 Energy-aware Real-time Scheduling

To address the issue of energy consumption, many scheduling-based software tech-
niques have been proposed over the years, e.g., [16, 17, 57, 79, 83, 92, 124|. Energy-
efficient scheduling techniques can be broadly classified into online and offline tech-
niques.

In the category of online power and energy management techniques, Dynamic Power
Management (DPM) technique is well studied and practiced in real-time systems.
This technique selectively puts system components into power-efficient states when-
ever they are idle due to unavailability of workload. The fundamental theory for the
applicability of DPM techniques is that systems (and their components) experience
nonuniform workloads during operation time and that it is possible to predict, with
a certain degree of confidence, the fluctuations of workload [102|. Hence, based on
these predictions, DPM encompasses a set of techniques that achieve energy-efficient
computation by selectively turning-off or reducing the performance of system com-
ponents when they are idle or partially unexploited, hence conserving power. How-
ever, the inconvenience with DPM techniques is that once in a power-efficient state,
bringing a component back to the active or running state requires additional energy
and/or latency to serve an incoming task. Once applied, DPM policies eliminate
both dynamic as well as static power dissipation. The input to the problem of man-
aging energy consumption under DPM techniques is the length of an upcoming idle
period, and the decision to be made is whether to transition system components to
a power-efficient state while the system is idle. There are several issues in coming to
this decision intelligently. For instance, immediate shutdown —shutdown as soon as
an idle period is detected— may not save overall energy if the idle period is so short
that the powering-up costs are greater than the energy saved in the sleep state. On
the other hand, waiting too long to power-down may not achieve the best-possible

2.2. Power- and Energy-efficiency in Real-time Systems 27

energy reductions either. Thus, there exists a need for effective and efficient decision
procedures to manage power consumption.

Dynamic power management attempts to make such decisions (usually, under
the control of scheduling algorithms) at runtime based on the dynamically changing
system state, functionality, and timing requirements [29, 55, 92, 100]. Figure 2.7
illustrates a simple example of how a DPM technique takes energy management
decision under the control of the scheduler. Upon the termination of a precedent
task T;, an idle time interval of length T4, is detected on processor #. A DPM
technique would compare the length of idle interval with the break-event time (BET)
of 7. For system components associated with non-zero transition costs, break-even
time denotes the minimum length of idle interval which justifies (in terms of energy
consumption) a device’s transition from active state to power-efficient state [35]. A
minimum value of BET is the one during which keeping a device in active state
consumes exactly the same amount of energy as transitioning it from active to some
other power-efficient state and bringing it back to active state. If T;3. > BET then
processor is transitioned to power-efficient state. Transition penalty in terms of time
is highlighted as red boxes in figure 2.7. DPM techniques are further discussed in
chapter 4.

Transition penalty

v

rip=dj,
SRR YN rgo=dg,

i
=

—_ __‘:_Q_______------

0 [m==-
O |m==-
(=}

Figure 2.8: Example of energy management decision-making of DVFS technique.

Real-time Dynamic Voltage and Frequency Scaling (DVFS) technique is another

28 Chapter 2. Background on Real-time and Energy-efficient Systems

online technique which is aimed at changing the system’s energy consumption pro-
file. Real-time applications potentially exhibit variations in their actual execution
time and therefore, often finish much earlier than their estimated worst-case exe-
cution time [10, 40]. DVFS technique exploits these variations in actual workload
for dynamically adjusting the voltage and frequency of processors in order to re-
duce power and energy consumption. The challenge for these techniques, however,
is to preserve the feasibility of schedule and provide deadline guarantees. These
techniques are of particular effectiveness and interest because energy consumption
of the processor is quadratically related to the supply voltage [87, 48]. Figure 2.8
illustrates a simple example of how a DVFS technique takes energy management
decision under the control of scheduler. Figure 2.8 depicts two jobs —i.e., Tj and
Ty 1, of different tasks being released at the same time instant with exactly the
same offset and equal deadlines. For equal deadlines, the scheduling algorithm can
arbitrarily select any job in the absence of tie-breaking rules. Job T;; executes
first and finishes after executing only 3 time units which is earlier than its WCET
—i.e., C;1=5 time units. Job T;; generates 2 units of dynamic slack time (shown
in red box between time instants 5 — 7). Since Ty ; is the only successor ready job
left, therefore, it consumes this dynamic slack to slowdown its execution on target
processor up to its deadline —i.e., time instant 10.

The key concern in a DVFS technique is to increase the utilization of slack time
as much as possible and to make the resultant power and energy consumption as flat
as possible by adjusting the operating frequency and supply voltage of a processor
under real-time constraints. DVFS techniques can exploit not only the dynamic
slack that is generated online by the workload variations, but also the worst-case
(offline) slack time that occurs because of the under-utilization of processor, even if
all tasks exhibit their worst-case execution times [68]. The worst-case slack time can
be extracted from an application’s schedule before task execution. DVFS techniques
are further discussed in chapter 5.

2.3 Simulation Environment

For experimental results and evaluation of our proposed techniques in this disser-
tation, we rely mainly on the simulations using a multiprocessor simulation tool
called STORM? (Simulation TOol for Real-time Multiprocessor scheduling) [108].
This tool has been initially designed and developed to satisfy the evaluation and
validation needs of French national project PHERMA (Parallel Heterogeneous En-
ergy efficient real-time Multiprocessor Architecture) [86]. STORM is intended to: i)
use as input the specifications of the hardware and software architectures together
with the scheduling policy; ii) simulate the system behavior using all the character-
istics (task execution time, processor functioning conditions, etc.) in order to obtain
the chronological track of all the scheduling events that occurred at run time, and
iii) compute various real-time metrics in order to analyze the system behavior and

2STORM has been developed at IRCCyN laboratory of the University of Nantes, France [116].

2.4. Summary 29

performances from various point of views. Interested readers can see Appendix A
for details on the functional aspects of STORM simulator.

We use H.264 video decoder application, which is a high compression rate mul-
timedia application [88], and synthetic task sets as our target application model in
this dissertation. While H.264 video decoder represents a computation extensive
real-world multimedia application, the use of synthetic task sets allows us to vary
task parameters as desired and observe the output behavior of our proposed tech-
niques. These synthetic task sets are mostly auto-generated tasks. The criteria for
generating synthetic tasks is presented in the experimental setup of chapters, where
necessary. For processing platform, we use hardware parameters from Marvell’s
XScale® technology-based embedded processor PXA270 [72]| to carry-out simu-
lations. Although, PXA270 processor is not manufactured using most advanced
technology?, it is still a suitable choice. PXA270 supports six discrete voltage and
frequency levels as shown in table 2.1, which allows static and dynamic voltage
and frequency scaling. Moreover, it has five power-efficient states as shown in table
2.2, which allows dynamic power management. The power consumption parameters
presented in table 2.1 and table 2.2 will be used in all our simulation results.

Table 2.1: Voltage-frequency levels of PXA270 processor

Parameter Levell Level2 Level3 Leveld Leveld Level6
Voltage 1.55 1.45 1.35 1.25 1.15 0.90
Frequency 624 520 416 312 208 104
Active Power 925 747 570 390 279 116
Idle Power 260 222 186 154 129 64

Table 2.2: Power-efficient states of PXA270 processor @ 624-MHz & 1.55-volts

States Power(mWatts) Recovery Time(ms)
Running 925 0

Idle 260 0.001

Standby 1.722 11.43

Sleep 0.163 136.65

Deep sleep 0.101 261.77

2.4 Summary

In this chapter, we provide the reader the background on real-time and energy-
efficient systems. We discuss various models for real-time workload and character-
istic parameters of real-time tasks, architecture of processing platforms, real-time
single-processor and multiprocessor scheduling paradigms. Moreover, we discuss

3PXA270 is manufactured at 180nm technology. It supports ARMv5TE instruction set.

30 Chapter 2. Background on Real-time and Energy-efficient Systems

power- and energy-efficiency in real-time systems. We have provided power and
energy models and simulation environment that we use throughout this disserta-
tion. Moreover, we use periodic and independent task model of real-time applica-
tions that are scheduled upon identical multiprocessor platform of type SMP using
mostly the full migration or global scheduling approach (except in chapter 3, where
restricted-migration scheduling approach is used). We discuss in this chapter that
energy-efficiency and scheduling of real-time systems are closely related problems,
which should be tackled together for best results. To support this thesis, we dis-
cuss how techniques that would purely minimize power dissipation can increase the
computational time and eventually lead to no change or even an increase in energy
consumption. The inter-dependency of scheduling and energy-awareness of real-time
systems serves as principle motivation for this dissertation.

CHAPTER 3

Two-level Hierarchical Scheduling

Algorithm for Multiprocessor
Systems

Contents
3.1 Imtroduction 31
3.2 Related Work oo i i i i i ittt i it 32
3.3 Two-level Hierarchical Scheduling Algorithm 35
3.3.1 BasicConcept s 36
3.3.2 Working Principle 37
3.3.3 Runtime View of Schedule from Different Levels of Hierarchy 41
3.3.4 Schedulability Analysis 44
3.4 Experimentst 47
341 Setup 47
3.4.2 Functional Evaluation 47
3.4.3 Energy-efficiency of 2L-HiSA 50
3.4.4 Performance Evaluation 52
3.5 Concluding Remarks, 55

3.1 Introduction

In section

2.1.4, we have seen that the design space of preemptive real-time

multiprocessor scheduling algorithms can be categorized into full-migration,
restricted-migration, and partitioned scheduling strategies based on the allowable
migration in the system. In this chapter, we focus mainly on restricted-migration

scheduling

strategies (recall: tasks are allowed to migrate at job-boundaries only)

and we present a hierarchical scheduling algorithm for multiprocessor real-time

systems.

Briefly looking at the full migration or global scheduling class of algorithms, they
are attractive in the worst-case schedulability. Few multiprocessor global scheduling

algorithms

such as PFair [13]|, LLREF [28|, and ASEDZL [77] are known to be

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
32 Multiprocessor Systems

optimal. However, their scheduling overhead such as context switches and number
of migrations and preemptions in often criticized to be too large. Systems that
prohibit full migration, on the other hand, must use either partitioning or restricted-
migration strategy. Between these two, the partitioning strategy is more commonly
used in current systems, reason being that partitioning-based solutions can reduce
the problem of multiprocessor scheduling into multiple single-processor scheduling
problems. However, partitioning can only be used for fixed task sets. If tasks are
allowed to dynamically join and leave the system, partitioning is not a viable strategy
because a task joining the system may force the whole system to be repartitioned,
thus forcing tasks to migrate. Determining a new partition is a bin-packing problem,
which is strong NP-hard problem [60]. Thus, repartitioning dynamic task sets incurs
too much overheads.

Restricted-migration scheduling strategies (also referred as semi-partitioned
scheduling) provide a good compromise between the full migration and the par-
titioning strategies |24, 63, 62]. It is flexible enough to allow dynamic tasks to join
the system at runtime, but it does not incur large migration overheads as compared
to full-migration strategies. This strategy is particularly useful when consecutive
jobs of a task do not share any data since all data passed to subsequent jobs would
have to be migrated at job boundaries. Furthermore, the scheduler used as top-
level scheduler (if a hierarchy of schedulers exist) in restricted-migration is much
simpler than the full-migration global scheduler. The full migration global sched-
uler needs to maintain information about all active jobs in the system, whereas the
top-level scheduler in restricted migration strategy makes a single decision about
a job when it arrives and then passes the job to a local scheduler that maintains
information about the job from that point forward. Restricted migration strategies
offer relatively low scheduling overhead at runtime and they are potentially very
interesting from the point of view of system performance and energy consumption.
In this chapter, we propose a scheduling algorithm based on restricted migration
strategy, called the Two-level Hierarchical Scheduling Algorithm (2L-HiSA). Our
proposed scheduling strategy uses FEarliest Deadline First (EDF') scheduling algo-
rithm in a hierarchical fashion at both top-level and local-level scheduler. Authors in
[8] highlight that a significant disparity in schedulability exists between EDF-based
scheduling algorithms and existing global optimal scheduling algorithms. This is un-
fortunate because EDF-based algorithms entail lower scheduling and task-migration
overheads. In this work, we show that by using multiple instances of EDF schedul-
ing algorithm at different levels of hierarchy, the wort-case schedulability bound of
EDF can be improved.

3.2 Related Work

Some novel and promising techniques in the category of restricted-migration schedul-
ing have been proposed very recently with the main objective of reducing the runtime
overhead of scheduler and improving the schedulability and system utilization bound

3.2. Related Work 33

for multiprocessor systems.

Kato et al. in [63] have presented a semi-partitioned scheduling algorithm for
sporadic tasks with arbitrary deadlines on identical multiprocessor platforms. In
this research work, authors propose to qualify a task as migrating task only if it
is not possible to partition them on any processor of the platform. Thus, there are
mostly partitioned tasks and few migrating tasks which are allowed to migrate from
one processor to another only once per period. The main idea of this algorithm
consists in using a job-splitting strategy for migrating tasks. In terms of utilization
share, a migrating task is split into more than one processor. A task is split in such
a way that a processor is filled to capacity by the portion of the task assigned to
that processor. However, only the last processor to which the portion is assigned
may not be filled to capacity. Figure 3.1 illustrates a migrating task is executed
exclusively among processors by splitting the deadline of each migrating task into
the same number of windows as the processors across which the task is qualified to
migrate. In figure 3.1, a migrating task T} is split across the three processors. Task
Ty}, is presumed to be executed within these fized windows with pseudo-deadlines
which are smaller than the actual deadline of task. Fixing such pseudo-deadlines
with limited allowable migration makes system much less flexible as the migrating
tasks must execute within these fixed time slots. Systems with fixed time windows
can not take full advantage of early completion of real-time tasks and consequently,
cannot apply aggressive energy management techniques. Moreover, the job-splitting
may still lead to prohibitive runtime overheads for the system.

7 i
1€ >

o []
3 |_|

Figure 3.1: Job-splitting of a migrating task over three processors.

Authors in [62] have presented a Farliest Deadline Deferrable Portion (EDDP)
algorithm, which is based on the portioned scheduling technique as well. Migrating
tasks in this case are permitted to migrate between any two particular processors.
In order to curb the cost of task migrations, EDDP makes at most (m — 1) mi-
grating tasks on m-processors. Authors in this work claim that no tasks ever miss
deadlines, if the system utilization does not exceed 65% using EDDP. The approach
of limiting the migration of tasks to at most two processors is used earlier as well
by authors in [8] who have proposed a scheduling algorithm which considers the

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
34 Multiprocessor Systems

trade-off between system utilization and number of preemptions for recurring task
systems. The migration overhead is relaxed in this approach compared to the other
optimal multiprocessor algorithms by limiting the number of migrating tasks. The
algorithm trades an achievable system utilization with the cost of preemptions by
adjusting a parameter k, where 2 < k < m. For k < m, the achievable utilization
is claimed to be k/(k +1). For k = m, on the other hand, it is 100%, thereby their
proposed algorithm performs optimally. Based on the work of [8, 62, 63], authors
in [38] have also propose a semi-partitioned hard real-time scheduling approach for
sporadic deadline-constrained tasks upon identical multiprocessor platforms. In this
work, migration of jobs is prohibited except that two subsequent jobs of a task can
be assigned to different processors by applying a periodic strategy. This technique
comprises two steps: an assigning phase and a scheduling phase. The assigning
phase is somewhat similar to that of [63]. That is, if it is not possible to partition
a task without violating schedulability guarantees then the concerned task is classi-
fied as migrating task. Authors propose to distribute jobs of migrating task among
several processors using a multi-frame tasking approach with a predefined periodic
sequence of the occurrence of jobs on various processors. This predefined sequence
of jobs repeats itself cyclically at runtime upon the selected processors. The limita-
tion of this approach is the assumption that the number of frames of each migrating
task over multiple processors must be available beforehand to provide schedulability
analysis. Moreover, in [38] and [62], the schedulability bound is 65% which is still
not considerably large w.r.t. previously proposed partitioned scheduling algorithms
offering 50% utilization bound in worst-case.

Calandrino et al. in [24] have proposed a hybrid scheduling approach for soft real-
time tasks on large-scale multiprocessor platforms with hierarchical shared caches.
In this approach, a multiprocessor platform is partitioned into clusters, tasks are
statically assigned to these clusters (rather than individual processors), and sched-
uled within each cluster using the preemptive global EDF scheduling algorithm. All
tasks are allowed to migrate within a cluster but not across clusters. Authors in this
work demonstrate that, by partitioning the system into clusters instead of individual
cores, bin-packing limitations can be alleviated by effectively increasing bin-sizes in
comparison to item-sizes. However, this work still uses a common global scheduler
at cluster-level which is equivalent to breaking a larger multiprocessor scheduling
problem into multiple smaller multiprocessor scheduling problems. Moreover, the
solution is limited to soft real-time applications. In contrast to [24], authors in
[114] have proposed a two-level scheduling scheme, which uses the idea of sporadic
servers. In this approach, first an application is partitioned into parallel tasks as
much as possible. Then the parallel tasks are dispatched to different processors, so
as to execute in parallel. On each processor, real-time tasks run concurrently with
non real-time tasks. At the top level, a sporadic server is assigned to each scheduling
policy while at the bottom level, a Rate-Monotonic (RM) scheduler is adopted to
maintain and schedule the top-level sporadic servers. While this research work uses
a two-level hierarchy of schedulers, only soft real-time applications are considered
for scheduling.

3.3. Two-level Hierarchical Scheduling Algorithm 35

Our proposed two-level hierarchical scheduling algorithm statically partitions as
much tasks as possible to processors, which is somewhat similar to that of [62].
However, neither the number of migrating tasks nor the number of migrations per
migrating task is limited in our approach, which is contrary to that of [24], [38], and
[62]. Moreover, unlike in [62], 2L-HiSA does not fiz time slots for migrating tasks.
Rather it reserves a portion of processor time on each processor (in proportion to its
under-utilization) for migrating tasks and this portion of time can be dynamically
relocated by local-level scheduler within a specified period to allow the execution of
statically partitioned tasks. This dynamic relocation of reserved time for migrating
tasks improves system flexibility both at design-time and runtime. In section 3.3,
we provide the 2L-HiSA scheduling algorithm in detail.

3.3 Two-level Hierarchical Scheduling Algorithm

The 2L-HiSA scheduling algorithm uses multiple instances of single-processor opti-
mal EDF scheduling algorithm in a hierarchical fashion at two levels: an instance at
top-level scheduler and an instance at local-level scheduler on every processor of the
platform. Since EDF is an optimal single-processor scheduling algorithm, therefore,
in order to determine whether the given task set is EDF-schedulable, it suffices to
determine whether this task set is feasible on the single-processor systems. Unfortu-
nately, it has been shown in [34, 52| that there are no optimal job-level fized-priority
scheduling algorithms for multiprocessors. Since EDF falls in this category, there-
fore, determining whether a given task set is feasible on a multiprocessor system will
not tell us whether the same task set is EDF-schedulable on the same system as well.
Baruah, et al. proved in [13] that there exists a job-level dynamic-priority scheduling
algorithm, referred as PFair, which is optimal for periodic task sets on multipro-
cessors. Srinivasan and Anderson later showed in [106] that this algorithm can be
modified to be optimal for sporadic task sets as well. However, these results do not
apply on EDF because they use a job-level dynamic-priority algorithm. On the is-
sue of determining EDF-schedulability, authors in [5] have provided schedulable uti-
lization bounds for job-level fixed-priority scheduling algorithms for full-migration,
restricted-migration, and partitioned scheduling strategies. EDF, being a job-level
fixed-priority algorithm, has schedulable utilization bounds of 5" < Usym < mTH

71 —
for full-migration strategies, Ugym = 8 g}:l (8 = LéJ) for no-migration strategies,

and m — a(m — 1) < Usym < mTH or otherwise for restricted-migration strate-
gies, respectively. Here, the term « represents a cap on individual task utilizations.
Note that, if such a cap is not exploited, then the upper bound on schedulable
utilization is approximately % or lower. Authors in [7] state that, for a periodic
task set with implicit deadlines, the schedulable utilization under EDF or any other
static-priority multiprocessor scheduling algorithm —partitioned or global- can not
be higher than mTH for m processors. Clearly, under this schedulability bound, a

multiprocessor platform suffers heavily from under-utilization (i.e., by a factor of
m—1

5—). For instance, in a system composed of three processors (m = 3), platform re-

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
36 Multiprocessor Systems

source equivalent to at least one processor (mTfl = 1) is wasted. 2L-HiSA, instead of
using global EDF scheduling algorithm, proposes a hierarchical scheduling approach
using multiple single-processor optimal EDF instances. Section 3.3.1 provides the
basic concept of 2L-HiSA.

3.3.1 Basic Concept

The concept of two-level hierarchical scheduling algorithm slightly differs from the
conventional restricted migration-based scheduling strategies. In restricted migra-
tion scheduling with hierarchical schedulers, all tasks can migrate at job-boundaries
and they share a common top-level task queue as illustrated in figure 2.5 (chapter
2). That is, when a new job of a recurring task is released, the top-level sched-
uler assigns this job to any processor available in the platform. A released job,
once assigned to a particular processor, can execute only on that processor under
the control of local-level scheduler. Another job of the same task, however, can be
assigned to a different processor. Thus, for every new job of a task, the top-level
scheduler first decides its assignment to target processor in the platform and then
the local scheduler executes that job according to its appropriate local priority level.
In two-level hierarchical scheduling algorithm, however, local schedulers have cer-
tain number of partitioned tasks that do not migrate at all as in case of [62]. The
2L-HiSA algorithm is based on the concept of semi-partitioned scheduling, in which
most tasks are statically assigned to specific processors, while a few tasks migrate
across processors. Once partitioned, these tasks are entirely handled by local-level
scheduler and always remain in unique priority space associated only to their respec-
tive processor as illustrated in figure 3.2 by 7r,, 7r,, and 7, , respectively. A task is
qualified to become migrating task only if it cannot be partitioned on any processor
any more using simple bin-packing approach. Such tasks are fully migrating tasks,
unlike the migrating tasks in case of [62| and [38|, which limit the number of possible
migrations per period or per processor. All migrating tasks are placed in a separate
subset of tasks referred as 7gopq as illustrated in figure 3.2. Only subset 7yjopq is
handled by the top-level scheduler.

7= {1, Ty, ... Tn1, T,}

Local priority queues
Local-level >

Tglobal
L 1
9 Top-level T. Local-level > 7T2
Scheduler [T} 2 scheduler R
LA s o0 v e

Global priority
queue

Local-level >

Figure 3.2: Two-level hierarchical scheduling approach based on restricted migra-
tion.

3.3. Two-level Hierarchical Scheduling Algorithm 37

Top-level scheduler assigns tasks from 7y epq to processors at runtime within
suitable time slots. These suitable time slots are actually the portion of processor
time that is determined on every processor based on its under-utilization (if any).
Section 3.3.2 gives more details on the procedure for determining the size, periodic-
ity, and priority of these time slots. However, it is worth mentioning here that these
time slots occur explicitly on processors in an m-processor platform —i.e., they do not
occur in parallel. Moreover, these time slots are not fixed (like in case of [62]) and
occur dynamically within the specified period. Due to the NP-hardness of the par-
titioning problem, processors in a multiprocessor platform are often under-utilized
with a significant margin in a post-partitioned scenario.

3.3.2 Working Principle

In this section, we provide the main steps of our proposed algorithm. 2L-HiSA, as
mentioned earlier, is based on the concept of restricted migration scheduling and
consists of two phases:

1. The task-partitioning phase: In this phase, each non-migrating task is (of-
fline/statically) assigned to a specific processor by following the bin-packing
approach.

2. The processor-grouping phase: This is a post-partitioning phase in which,
processors are grouped together based on their workload characteristics.

3.3.2.1 The task-partitioning phase

Let us consider that a real-time task set 7 containing at most n tasks such that
T ={N,T;,..Th-1,T,}, has to be scheduled on an identical multiprocessor plat-
form composed of m processors. The task set is considered feasible a priori -i.e.,
Usum(7) = >0y ui < m. In the first step of our algorithm, each task T; is stati-
cally assigned to a particular processor 7 by following the bin-packing approach,
as long as the task does not cause violation of schedulability of tasks being already

partitioned upon processor 7y —i.e., Ugym (Tx,) déf(L>0) DBF (7 L) < 1, where tasks
being partitioned on a particular processor 7y are denoted by 7, , L refers to inter-
val length, and DBF refers to the classical Demand Bound Function [38, 77|. Note
that the task-partitioning can be performed using any suitable partitioning strategy.
Algorithm 1 illustrates the task partitioning phase. In the first step, before parti-
tioning any task to processors, the utilization of each processor 7y is initialized to
zero —.e., Uy, = 0 (lines 1 —5). In the second step, each task is tested for partition-
ing on m processors of the platform according to the condition mentioned earlier
(lines 6 — 14). If, for any task T;, Ugym(7x,) > 1 —i.e., it can not be partitioned on
7, (Vk,1 < k < m), then this task is classified as migrating task and assigned to
Tglob Subset of tasks (lines 1 — 18).

For a feasible task set 7, often it is not possible to partition all tasks due to the
NP-hardness of partitioning problem. Thus, in our algorithm, a given 7 is divided

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
38 Multiprocessor Systems

Algorithm 1 Offline task partitioning to processors

1: n < number of tasks in 7

2: m < number of processors in II
3: for k=1..m do

4: Uy, + 0

5. for i =1...n do

6 for k =1...m do

7: if Ur, +u; <1 then
8: assign T; to mg;

9 Ur,=Uxr, + u;;

10: remove T; from 7;
11: break:;

12: if size(7) # 0 then
13: assign all remaining tasks to Tg0p;

into two subsets of tasks such that Usum (Tpart) + Usum (Tgiob) = Usum(7) < m. In a
post-partitioned scenario, we can calculate the aggregate utilization of tasks being
statically partitioned on (or assigned to) every processor (m) individually using
equation 3.1. Here, np refers to the total number of tasks being partitioned on a
particular processor 7.

np
Ci : .
Ur (Tr,) = Z ol (Vi,1 < i < np,VT; € Tpart) (3.1)
i=1 "
From equation 3.1, we can compute the under-utilization present on every pro-
cessor Ty using equation 3.2. Let the under-utilization present on any processor my,
be referred as U;rk.

np

U/ (ka) =1- Z % (Vl’ 1 S { S np,VTz € Tpart) (32)

Tk
i=1""

3.3.2.2 The processor-grouping phase

In the second step, we group processors of the platform II in such a way that the
cumulated under-utilization on all processors within a group is not greater than one
—i.e., ZU;UC < 1. In section 3.3.1, it is stated that a portion of processor time is
reserved on every processor in proportion to its U;rk to which, the top-level scheduler
could exploit for scheduling tasks from 74,,. Moreover, these portions of processor
time must appear explicitly. Now, if the cumulated under-utilization of processors
will be more than one, then the computation power equivalent to more than one
processor will be free within the system. This under-utilization will cause idle time
intervals to appear in parallel on certain processors which is not desirable. Thus,
grouping processors such that the sum of under-utilization on all processors within
a group is not greater than one allows to have a cumulated (but still fragmented)
computation power equivalent to at most one processor free within each group.
This condition helps avoiding parallelism of the idle time intervals that would occur

3.3. Two-level Hierarchical Scheduling Algorithm 39

due to under-utilization. Algorithm 2 illustrates processor-grouping phase. This
algorithm outputs the number of possible processor-groups or clusters within the
platform that respect above condition. However, limiting the amount of under-
utilization per group is not the only condition to ensure explicit occurrence of idle
time intervals. These idle intervals would still appear randomly within each group.
An issue of concern here is, how to make the idle intervals non-parallel and periodic
so that migrating tasks could consume them. In the following, we provide a simple
illustrative example of how the idle time intervals would appear at runtime in an
application’s schedule under EDF algorithm and then we should answer the concern
related to explicitness and periodicity of idle intervals required for 2L-HiSA.

Algorithm 2 Offline processor-grouping

1: m < number of processors in II

2: Y « 0; //number of processor-groups
3 Uy = 0;

4: for {c = 1m/ do /
5 Ugum < Ugum + U
6. if U.,, > 1 then

7 Y«Y+1;

8 U,
9

sum

— 0
: output: Y processor-groups are created;

Example 3.1: Let us consider a periodic task set 7 composed of six
tasks (n = 6) to be scheduled on a multiprocessor platform composed
of four identical processors (m = 4). Task set 7 is scheduled using
EDF scheduling algorithm. The value of quadruplet of each task is se-
lected such that Ugyn(7) respects sufficient condition bound provided by
[7] —ie., Usum < mTH < 2.5. The values of quadruplet (r;,C;,d;,P;) are;
7—{T1(0,3,7,7),T5(0,7, 14, 14), T5(0, 5,11, 11), T4 (0, 4,13, 13), T5(0, 4, 8, 8), T5(0, 3,9, 9) }.

Let us partition these tasks on four processors' such that; 7., ={Ty,Ts}, Twy,={T2},
Tns={T5}, and 7, ={T1,T3}. Figure 3.3 illustrates the EDF-schedule of 7 on four proces-
sors. In this figure, it can be noticed that (more or less) every processor is under-utilized
by a factor of U;rk (Tx,) as stated by equation 3.2. Moreover, due to this under-utilization,
idle intervals appear on processors at random (based on the EDF scheduler’s priority
mechanism) and in a non-periodic fashion.

2L-HiSA aims at exploiting these random idle intervals to schedule tasks from 7y
under the control of top-level scheduler. The problem, however, is that these idle intervals
are not periodic in their occurrence and therefore, can not be used to schedule periodic
tasks by the top-level scheduler. The intuitive idea behind the 2L-HiSA algorithm is to
force these idle time slots to appear in a periodic fashion on all those processors which
offer positive under-utilization such that the amount of periodic idle time should explicitly
appear on each processor 7y in proportion to U;k offered by that processor. Once idle time
slots become periodic, tasks from 74, can then be placed in these time slots under the
control of top-level scheduler. To achieve this objective, a dummy task is added on every

!The partitioning of tasks performed in this example may not be the optimal solution.

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
40 Multiprocessor Systems

i T T ! T I = I I"
) 1l 12 13 14 15 16 17 18 19 20 20 22 time

9 1C

i | I | i | i i
T T T

|
of1t" 2" 3 4 5 6 7 8 9o 10 1 12 13

L e e

i | | | I | | | Ly
"8 9l 10 1l 12 13 14 15 16 17 18 19 20 2f 22 time

—
S 6 7

(N R R R R R R R R |
ur ‘Tu. . T,m‘ I . ‘TL2 I ‘Ta,z I ‘T1,3. , Ts3 WI T1.4+

L i
ot 27 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 time

Figure 3.3: Example schedule of partitioned tasks under EDF scheduling algorithm
on SMP architecture (n=6, m—4), illustrating the under-utilization of platform.

processor 7. Let us call this dummy task as T,f on processor m. Task T, ,f is a periodic
task that appears on all processors, which offer U,;k > 0. In the following, we calculate
the parameters of T,f such as its period P,gl and worst-case execution time C,f on every
processor.

Period of T,f is selected as the absolute minimum period of all the tasks present in 7
(Tpart € T, Tgiob € T) as shown in equation 3.3.

P = n;i{l{Pi} (Vk,1 <k <m) (3.3)

Note that, apart from being the smallest, the period of T,f is the same on all processors
(Vk,1 < k < m). The advantage of having the smallest period for T,f on all processors
is that the cumulated under-utilization) U;rk present in a selected group of processors is
proportionately available within the smallest period, hence, available for the most recurring
migrating task. The advantage of having the same value for P,g on all processors is that it
ensures the release of T,f at the same time on all processors, which is helpful in managing
explicit execution of jobs of T,f on different processors. Once the period for T,gl is determined,
its worst-case execution time C,‘f can be calculated on every processor using equation 3.4,
which is proportionate to U;rk available on each processor.

Cl=PixU, (Vk1<k<m) (3.4)

C,ff refers to the size of idle time slots appearing on processor mj at runtime over a period
of P,f. Note that T,f is an empty task used only to reserve C’g time units of processor time
over the smallest possible period P,f. At runtime, top-level scheduler fills these C’g time
slots reserved by Tg with tasks from 7g0p. Since tasks in 74, are fully migrating tasks,
therefore, they can use C’g time units on all processor if T,f does not appear in parallel.

3.3. Two-level Hierarchical Scheduling Algorithm 41

Thus, one of the design consideration of 2L-HiSA is to make sure that T,f is non-parallel or
explicit on processors within a group over the interval lengths of P,;i.

Since T,f has the same period (Pg) on every processor, therefore, it releases at the same
time on all processors. Moreover, making P,;i being the smallest period within the task
set 7 also makes T,gl the highest priority task on every processor under EDF scheduling
algorithm. Thus, to ensure explicit execution of T,;i, the 2L-HiSA algorithm performs a
priority exchange of T{! with highest priority local task on all those processors within a
group on which T,gl is not selected for execution at time instant ¢. This priority exchange is
non-blocking from the platform resources point of view —i.e., exchanging the priority of T,f
with local /partitioned task on a processor 7, does not cause processor m; to become idle or
blocked as long as statically partitioned ready tasks exist. We illustrate this concept with
an example in the following.

Let us consider a multiprocessor platform with three processors belonging to the same
group. Each processor has a dummy task T assigned to it. At time instant t = 0, T}
is released on all three processors simultaneously. If T, which is the dummy task on
processor 71, is assigned on 7 as illustrated in figure 3.4, then the local schedulers on
and 73 exchange the priority of T and T with local tasks, respectively, to give higher
priority to statically partitioned ready task that is having the highest priority (if any).
Upon termination of T on 7; at time instant ¢ = 1, remaining two processors my and 73
revert the priority of their respective dummy tasks T3 and T¥, respectively, to allow them
to compete for priority at local scheduler’s level. Since, at most one local scheduler can
assign T,f on a processor at any time to ensure explicit execution of jobs of T,f, therefore,
the other local schedulers exchange priority of their respective T again to allow partitioned
tasks to execute. In this example, after T is terminated on 7y, local scheduler on 7 assigns
T3 and local scheduler on 73 again exchanges the priority of Téi to let the partitioned tasks
run. Finally, at time instant ¢ = 2, local scheduler on 73 assigns T for execution. At time

=3, T, T§, and T are released again and compete for assignment on their respective
processors. Note that T,‘j has no specific order of occurrence —i.e., fixed time slot that can
be defined a priori on different processors. A newly released job of T,f has to, first, compete
for the priority among locally partitioned tasks and then compete for priority among T}
present on other processors within a group. Failure to obtain highest priority at any of
the two levels cause a priority exchange for concerned task. This makes the portion of
processors’ time reserved for 74,05 to appear in a sequential fashion over P,ff within a group
of processors. The priority exchange for T,f on the same processor can be performed up to
the time instant when laxity of T,‘j becomes zero.

3.3.3 Runtime View of Schedule from Different Levels of Hierarchy

In this section, we provide the reader the view-points of both top-level and local-level
schedulers under the 2L-HiSA algorithm.

3.3.3.1 Local-level Scheduler

From the earlier discussion, we know that single-processor optimal EDF scheduling algo-
rithm is used as local scheduler on every processor to schedule statically partitioned tasks.
Along with tasks being partitioned on each processor m —i.e., 7, , there is a dummy task
T¢ assigned on each processor that has an execution requirement of C¢, which is exactly

’ ’ d
equal to the amount of U, available on 7 —i.e., U, =1-Uz, = %. Thus, the worst-case
k

Chapter 3. Two-level Hierarchical Scheduling Algorithm for

42 Multiprocessor Systems

4 A ! A '

T d B d

" T ' T | T
0 1 2 3 4 5 6 7 8 9

2 T§ | ¢ e
0 i 3 3 4 s L 9

T3 s T Ty
0 I 2 3 g 5 6 7 8 9

= partitioned tasks

Figure 3.4: Illustration of T,f occurring on different processors with respect to the
proportionate under-utilization available on each processor.

workload of each processor is maximum -i.e., Ur, + U;k = 1. Local EDF scheduler on each
processor visualizes the problem of scheduling 7., along with T} reduced to single-processor
scheduling problem for which, EDF is optimal. Algorithm 3 illustrates jobs assignment on
processor by local-level scheduler. For each processor-group Y, the number of processors
within each group are known a priori and dummy task T,f is added to the local priority
queue (ReTQ) of each processor (lines 1 — 8). Upon the arrival of a scheduling event, this
ReTQ is sorted according to EDF priority and highest priority ready task is selected for
execution (lines 9—11). If the selected task is not T,gl then it is directly assigned to processor
7 for execution (line 21). Otherwise, if selected task is T then local scheduler checks if
T¢ is already executing on any other processor in the system. If T¢ is not assigned on any
other processor then local scheduler schedules 7, ,f on 7. Otherwise, the priority of T,gl is
exchanged to allow subsequent higher-priority partitioned task from 7., to execute on .

Figure 3.4 illustrates how local scheduler on every processor schedules 7., along with
T,‘j. Being the highest priority tasks at time instant ¢ = 0 on all processors, T,‘j qualifies to
execute on all three processors simultaneously. However, once T{ starts its execution on
71, priorities of 7§ and T¥ are exchanged with local tasks. Note that, for second job of T}
at time instant ¢ = 3, T4 starts first on 73 instead of T on 7;. This dynamic relocation
of T,f comes from the priority order assigned by local scheduler. For instance, when T
has lower priority than any of the locally partitioned tasks on 7y, it cannot compete for
priority among TQd and Tgi present on 7o and w3, respectively, and therefore, the order in
which T,f appears will change.

3.3.3.2 Top-level Scheduler

Top-level scheduler also uses an instance of single-processor optimal EDF scheduling al-
gorithm for migrating sub-set of tasks —i.e., Tg05. Recall that the overall task set 7 is
considered a priori feasible and the tasks present in 74,5 are the tasks that were impossible
to be statically partitioned. Thus, the platform resource requirement of 74, is not more
than the under-utilization available in the system. Top-level EDF scheduler visualizes the

3.3. Two-level Hierarchical Scheduling Algorithm 43

Algorithm 3 Local-level scheduler: Online jobs assignment for partitioned tasks
present in 7,

1: define m: processor containing local-level scheduler
2: Y < number of processor-groups
3: fori=1..Y do

4: m; < number of processors in processor-group i;
5 for k=1..m; do
6: ReTQ(7r,) + Tg; {adds dummy task to local ReTQ of every processor of group i}
7: for every scheduling event do
8 sort ReTQ(7r,) w.r.t. EDF priority
9: T < highest priority ready task from ReTQ(7,);
10: if T =T¢ then
11: for k= 1...(m; — 1) do {for all processors other than m}
12: if T¢ is already running on 7, then
13: priority of T,‘j is exchanged;
14: T < subsequent priority task from ReTQ(7r,);
15: break;
16: 7« T,

fragmented amount of computation power available on different processors, which is ac-
cessible in a sequential manner. Algorithm 4 illustrates jobs assignment on processors by
top-level scheduler. If global ready task queue (ReT'Q(7405)) is not empty then at most
Y tasks (here, Y refers to the number of processor-groups in the system) are selected for
execution (lines 1 — 7) such that each selected task executes over each processor-group.
Within each group, the top-level scheduler looks for T,gl task. If T]g is running on any of the
processors then selected task from ReT'Q(7g04) for that group is assigned on the processor
for at most C¢ units of time (lines 8 — 14). Otherwise, if T is not running on any of the
processors of the selected group then task from ReT'Q(74i05) remains suspended until T,‘j
starts running.

Algorithm 4 Top-level scheduler: Online jobs assignment for migrating tasks
present in 7yop

1: 'Y < number of processor-groups
2: sort ReTQ(7gi00) w.r.t. EDF priority
3: fori=1..Y do
m; < number of processors in processor-group i;
if size(ReTQ(Tgiop)) # 0 then
T; «+ highest priority ready task among 740p;
for k =1...m; do
if T,f is running then
mg < Ty; /) T; executes for C¢ time units on 7,
10: break;

Figure 3.5 illustrates that when T,f starts executing on a processor, top-level EDF
scheduler fills its empty Cg with the execution requirement of highest priority task available
in Ty (recall that T, ,gl is an empty task). As soon as T| ,f finishes on one processor, top-
level scheduler preempts the running tasks from ReT'Q(74:05) and migrates it to the next
processor that runs T,f within the same processor-group.

Chapter 3. Two-level Hierarchical Scheduling Algorithm for

44 Multiprocessor Systems
A A A
rd) i : : : ’
Tii ! H i ! { : :
7T d d d
_+ 1 | . TS
Tmy ! ! i : >
— 0 1 ;. 3 4 5 6 7 8 9
) ' A A
P : :
Td :
;| ™ T§ | T T3
— 70 i 2 3 4 5 ¢ 7 8 9
TR 3
+ m3 Trg Téi | Tg
= 0 i 2 3 4 5 6 7 g 9
N : , 4 : ‘ 4 ‘ :
Tipedevel ! ! : ¢ i : i f
SCl(':s(hleleiS T{j T Qd Tg Tgl Tld ng Tld TQd Tg
0 1 2 3 4 5 6 7 N 9

Figure 3.5: View of runtime schedule by top-level and local-level schedulers under
2L-HiSA on an SMP architecture.

3.3.4 Schedulability Analysis

In this section, we provide the reader the schedulability analysis of two-level hierarchical
scheduling algorithm. We use demand bound analysis for this purpose [63, 77]. Demand
bound analysis is a general methodology for schedulability analysis of EDF scheduling
algorithm in single-processor systems. Demand bound analysis uses the concept of demand
function (df). Demand function computes the maximum amount of time, so-called processor
demand, consumed by all jobs of a task T; that have both release times and deadlines within
an interval [t1,?2]. Demand function for a task 7T; can be given by equation 3.5.

dfi (t1,t2) = Z Cij (3.5)

Tij >t1,di; <t2

Similarly, for the entire task set, demand function is simply a sum of individual demand
functions of tasks over the same time interval as given by equation 3.6.

n

df (t1,t2) = Y df; (t1,t2) (3.6)
i=1
It has been shown in [15, 63] that the EDF-schedulability of arbitrarily-deadline task
systems can be tested by the demand function: all tasks are guaranteed to meet deadlines
by EDF on single processors, if and only if the condition in equation 3.7 holds for VL > 0,
where L=ty — t;. On a single-processor system, this is a necessary and sufficient condition
for EDF-schedulability.

df (t1,ty) < (to —t1) Vi, lo (3.7)

3.3. Two-level Hierarchical Scheduling Algorithm 45

We divide the schedulability analysis of 2L-HiSA into two parts. In the first part, we
analyze the EDF-schedulability of migrating tasks and in second part, we analyze EDF-
schedulability of partitioned tasks.

3.3.4.1 Schedulability of migrating tasks

As discussed earlier in section 3.3.2, subset of migrating tasks can not have an aggregate
utilization (74,) more than the under-utilization available in the system (Usym (Tgiop) <
Y orey U;rk) We have illustrated in figure 3.5 that this under-utilization is proportionately
fragmented over different processors of the system and the computation power not more
than the equivalent of one processor is freely available within each group. Top-level EDF
scheduler, thus, has this fragmented computation power (more than or equal to the cu-
mulated execution requirement of migrating tasks) available in the system to which, it can
access in a sequential manner thanks to the explicit occurrence of T,f (see figure 3.5). More-
over, T is the most frequently occurring task on every processor (i.e., it recurs over the
smallest period). Thus, migrating tasks always find the portion of processor time reserved
for them, which is sufficient w.r.t. their execution requirement. Partitioned tasks, on the
other hand, find the remaining non-reserved time units to execute.

3.3.4.2 Schedulability of partitioned tasks in the absence of T,gl

In a multiprocessor system with fully partitioned task set, the problem of schedulability
analysis is reduced to multiple single-processor systems. Therefore, it is sufficient to prove
that all tasks that are partitioned on a processor 7 (Vk, 1 < k < m) respect their deadlines.
We consider the EDF-schedulability on every processor individually. First, let us consider
that only statically partitioned tasks are present on every processor and T,‘j does not exist.
We assume that the complementary relation of equation 3.8 and equation 3.9 holds on any
processor 7 due to NP-hardness of partitioning problem.

np
C;
Un(rn) =5 <1 (¥i,1 <0 < np, YT} € Tyars) (3.8)
i=1 "t
’ P C
U’n‘k (ka) =1- Z ?Z >0 (Vlv 1<:< np, VT‘Z € Tpart) (39)
i=1""

For synchronous task system, demand function changes values only at discrete time
instants corresponding to arrival times and deadlines of a task. Therefore, the demand
function needs to be verified only for those values of time intervals that are aligned with
deadlines of jobs. Moreover, the worst case demand is found for intervals starting at 0 due
to synchronized release instants of all tasks. The hyper-period (i.e., least-common-multiple
of task periods) is a safe interval length to analyze demand function for synchronous task
sets. Thus, we consider that the worst-case demand interval on every processor mj is
defined from 0 to the hyper-period (let us say H) of partitioned tasks -i.e., [t1, t2]=[0, H].
As long as Uy, (7r,) < 1 —i.e., the aggregate utilization of partitioned tasks is less than
the computation power of a single processor, the demand function of all partitioned tasks
on processor 7 is strictly less than the amount of time available in the time interval
[0, H] as given by equation 3.10. Hence, all partitioned tasks respect the necessary and
sufficient schedulability condition of EDF scheduling in the absence of T,gl ON every processor
independently. Equation 3.10 also holds for any sub-interval of time [0,¢] (V¢,0 <t < H).

ity df (t,ts) < (H —0) (3.10)

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
46 Multiprocessor Systems

3.3.4.3 Schedulability of partitioned tasks in the presence of T,f

In this section, we consider the EDF-schedulability of partitioned tasks in the presence
of T on every processor individually. In order to be EDF-schedulable, a single-processor
system must satisfy the inequality presented by equation 3.11 in the presence of T, g.

> dfi (T, H) + df(T{, H) < H (3.11)
T €Tr,

The first addend refers to demand function of partitioned tasks and second addend
refers to the demand function of Tk‘f on processor 7, respectively. Recalling from section
3.3.2, the size of time slot reserved by T,f —i.e., C,‘f, on any processor 7 is in proportion
to U;rk available on 7. Moreover, T,f competes for priority at runtime at local scheduler’s
level, thus, T,f is treated as any other partitioned task by the local scheduler.

From equation 3.11, we can deduce that, by design, the demand function of partitioned
tasks on processor 7, is always less than or equal to (H — 0) x U, as shown by equation
3.12. Similarly, from the complimentary relation of equation 3.9, we can deduce that the
amount of time allocated to T} is less than or equal to (H — 0) x U,,r]c as shown by equation
3.13

> dfi (Ti, H) = (H = 0) x Ug, (3.12)
TiETWk
df (T3, H) = (H —0) x Uy, (3.13)

By substitution, the inequalities of equation 3.11 results in equation 3.14.

np np
C; C;
(T d il _ t
§ df; (T;, H) + df (T, H) < H x § P +1 E 2 (3.14)
Tieka =1 =1
> dfi (T, H) +df (T¢, H) < H (3.15)

Ti€Tx,,

Equation 3.15 illustrates that the overall demand function of partitioned tasks together
with T,f is still less than or equal to the amount of time available in hyper-period
(H). Therefore, necessary and sufficient conditions of EDF-schedulability holds at local
scheduler-level as well. The bound on schedulable utilization of tasks under the 2L-HiSA
scheduling algorithm depends on the following condition.

Condition-1: Subset T,y shall be partitioned on m-processors of the platform in such
a way that the under-utilization per group of processors is less than or equal to 1.

The assignment of tasks to processors is a bin-packing problem, which is considered
a strong NP-hard problem [44]. The NP-hardness of partitioning problem can often be a
limiting factor for our proposed algorithm. However, the fact that 2L-HiSA makes clusters
of identical processors such that, per cluster, the unused fragmented computation power
equivalent to at most one processor is available, improves on the schedulable utilization
bound of EDF for multiprocessor systems. Clustering of processors instead of considering
individual processors, helps in alleviating bin-packing limitations by effectively increasing
bin sizes in comparison to item sizes. With a cluster of processors, it is much easier to obtain
the under-utilization per cluster less than or equal to the processing power equivalent to one
processor as compared to finding an optimal partitioning of tasks on a single processor. 2L-
HiSA is an optimal algorithm for hard real-time tasks if a subset of tasks can be partitioned

3.4. Experiments 47

such that the under-utilization per cluster of processors remain less than or equal to the
processing power equivalent of one processor. General schedulable utilization bound of 2L-
HiSA is greater than EDF and less than m. However, the exact bound depends on efficient
partitioning.

3.4 Experiments

3.4.1 Setup

In this section, we provide the reader the simulation-based evaluation of the 2L-HiSA
scheduling algorithm. Our objective in these experiments is two-folds: 1) to validate
whether the analytical improvements claimed on the schedulability bounds of EDF using
2L-HiSA hold in practice and all tasks respect their timing constraints and 2) to analyze
performance-related overheads compared to existing optimal scheduling algorithms. We
evaluate the performance of 2L-HiSA using STORM (Simulation TOol for Real-time Mul-
tiprocessor Scheduling) [108] (see section 2.3 and Appendix A for more information). We
consider the same general system model —i.e., task model, processing platform, and power
and energy models, as discussed in chapter 2 except that all tasks of target application
are not fully migrating. We use synthetic real-time independent and periodic tasks for
evaluation. EDF scheduling algorithm is used for both top-level and local-level schedulers.

3.4.2 Functional Evaluation

In this section, we evaluate the functional aspects of 2L-HiSA —i.e., real-time constraints and
feasibility aspects. Let us consider a synthetic set of ten real-time periodic and independent
tasks (n = 10), such that 7={Ts, T4, T7, Ts, Ty, Th0, T11, T12, T13, T4}, to be scheduled on
a multiprocessor platform of type SMP composed of four processors (m = 4). Table 3.1
presents the quadruplet values of all these tasks. Note that the task names start from
T5 as the initial four tasks names (from T3 to Ty) are reserved to represent dummy tasks
T,‘j on processors (from m; to my), respectively. Task set 7 has an aggregate utilization
Usum (7) = 4.00. In the first phase of our algorithm —i.e., the task-partitioning phase
(see section 3.3.2), each task is statically assigned to a particular processor by following
the bin-packing approach?. We obtain 7y = {75, Ts, T7, Ts, To, Tho, T11, Ti2} such that
TTH:{TE’,, Tﬁ}, TﬂQZ{T7, Tg}, 7‘-,.-3:{T9, Tlo}, Tﬂ4:{T11, Tlg}, and Tglob:{Tliia T14}.

Now, we simulate 7 under the 2L-HiSA scheduling algorithm using STORM simulator.
In the first stage, only 7,4,+ is executed on II. Figure 3.6 illustrates that idle time intervals
appear on every processor due to under-utilization. We calculate this under-utilization
using equation 3.9 as following.

U, =1-0.70 = 0.30
U,, =1-0.70 = 0.30
U,, =1-0.80=0.20
U,, =1-0.80=0.20

e

2Tasks are partitioned manually to processors. This may not be the best possible partitioning
solution for given task set, but it is good enough to illustrate the functioning of the 2L-HiSA
algorithm. However, efficient task partitioning approaches can be used in this phase.

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
48 Multiprocessor Systems

Table 3.1: Real-time periodic task set 7

Task Name T C; d; P,
T5 0 6 20 20
Ts 0 6 15 15
T 0 13 40 40
T3 0 15 40 40
Ty 0 6 30 30
Tio 0 12 20 20
T 0 8 20 20
T 0 10 25 25
T3 0 6 10 10
T4 0 8 20 20

Once the under-utilization per processor is known, we perform processor-grouping —i.e.,
the second phase of our algorithm, such that Condition-I is satisfied —i.e., >pr Uy <1

k=
(see section 3.3.4). Since the cumulative under-utilization of all processors is exactly equal
to one in this case (> -, U;Tk_ = 1), therefore, all processors are grouped together in a

single group. After task-partitioning and processor-grouping phases are complete, we can
add dummy task T ,? on every processor in proportion to the available under-utilization. The
parameters of T,g such as, its period Pg and worst-case execution time C,‘f are calculated
using equation 3.3 and 3.4, respectively. From table 3.1, it is straightforward to obtain the
smallest period of all tasks, that is:

d_ torpy—
P —111_1{1{P1}—10

For the known value of period, we can calculate the worst-case execution time of T,f on
/ . .
every processor m, w.r.t. U, —available on that processor over P as following.

Cd=PlxU, =10x0.30=3
Cd=PlxU, =10x030=3
Cd=PixU, =10x0.20=2

Ci =Pl xU, =10x0.20=2

Table 3.2: Parameters of dummy tasks (Tg) on each processor

Task Name T C; d; P;
T 0 3 10 10
T4 0 3 10 10
T4 0 2 10 10
T4 0 2 10 10

All parameters of dummy tasks Tg are summarized in table 3.2. Figure 3.7 illustrates
simulation traces generated by local-level EDF scheduler on each processor in the presence

3.4. Experiments 49

Ut

o] 50 100 1560 200 250 300 350 400 450 500

T2

3

4

Figure 3.6: Simulation traces of partitioned tasks under EDF local scheduler on
each processor.

of T (note that simulator outputs the task names as PTASK taskname). It can be noticed
in this figure that T{ tasks appear sequentially on processors. In figure 3.7, task 7¢ (or
PTASK Ty) appears first on processor 7; for exactly 3 time units. Since, T{ starts its
execution first, therefore, T, Téj, and T§ on o, 73, and 4, respectively, exchange their
priorities to let the partitioned tasks execute. Once T{ finishes its execution, Ty starts
executing on my for its corresponding worst-case execution time (i.e., C¢ = 3). This process
repeats itself for all dummy tasks within each period P,‘j. As mentioned in section 3.3.2,
note that T,f has neither a specific order of occurrence nor it is fixed a priori on processors.
Rather it can dynamically relocate itself within P¢. Every time T¢ is released, first, it has
to compete for the priority among locally partitioned tasks (thanks to the choice of smallest
period, T,f often has highest priority among locally partitioned tasks) and then compete
for priority among T¢ present on other processors within a group. Failure to obtain highest
priority at any of these two levels cause a priority inversion for concerned task itself and
corresponding processor can execute locally partitioned ready tasks (if any). However, once
any of the T tasks start executing, no other T¢ tasks can execute in parallel. The priority
inversion for 7 on the same processor can be performed until the laxity of T becomes
zero. For instance, T} in figure 3.7 starts executing at time instant ¢ = 8 at which, its laxity
becomes zero —i.e., L} = 10 — (8 +2) = 0. After instant ¢ = 8, it was no more possible to
invert the priority of T without a deadline miss.

Finally, figure 3.8 illustrates a complete simulation trace of 7 under two-level hierarchical
scheduling algorithm along with Tg. Figure 3.8 illustrates that as long as any of the T,‘j
task is executing on any of the processors in platform, top-level scheduler can manage to
fill its C¢ with the execution time of highest priority migrating task. Moreover, top-level
scheduler can preempt and migrate the migrating task(s) to other processor(s) whenever
any of the T,;i task finishes on a processor. In figure 3.8, blue rectangular boxes on the time

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
50 Multiprocessor Systems

PTASK T1
Periad 10.0 WCET 3.0

2
. o S 25 20 35 40 45 50
T PTASK T2
T3 Period 10.0 WCET 3.0
T3
o » 5 PTASk-T3 T T o 30 35 40 45 50
T3 Period 10.0 WCET 2.0
T4

30 35 40 45 50

T PTASKTY
€y Petiod 10.0 WCET 2.0

Figure 3.7: Simulation traces of partitioned tasks in the presence of T,gl under EDF
local scheduler on each processor.

scale represent migrating task 773 and red rectangular boxes represent migrating task T74.

We simulate the same task set presented in table 3.1 using global EDF scheduling algo-
rithm in order to illustrate the sub-optimality of EDF. Figure 3.9 illustrates the execution
traces for 7. It can be noticed that despite 100% workload (Usym (7) = 4.00), some pro-
cessors still remain momentarily idle. In figure 3.9, these idle time intervals are highlighted
with dotted line boxes. Idle time intervals appear due to the priority mechanism of global
EDF algorithm. Figure 3.10(a) and 3.10(b) illustrate that, due to the priority mechanism
of EDF, some of the lower priority tasks, for instance, 115 and Ti3 in this case, miss their
deadlines®. This illustration validates theoretically known sub-optimality of global EDF
scheduing algorithm.

3.4.3 Energy-efficiency of 2L-HiSA

In this section, we provide the reader the possibilities of applying online energy-aware
scheduling techniques such as; dynamic power management and dynamic voltage and fre-
quency scaling techniques in conjunction with 2L-HiSA.

In section 3.3.4, we have provided the worst-case schedulability analysis of 2L-HiSA.
This is a rather conservative analysis because during execution, real-time tasks often exhibit
large variations in their actual execution time. Tasks often finish earlier than their estimated
worst-case execution time and generate dynamic slack [39]. In this section, we implement a
simple DVFS technique under the control of 2I.-HiSA in which, whenever a precedent task
generates dynamic slack time, the entire amount of slack is used to slowdown the execution
of immediate priority ready task on the same processor —i.e., all slack is consumed by

3Jobs for which deadline miss occurs is highlighted with oval-shaped red box beneath the sim-
ulation trace of each task.

3.4. Experiments 51

Trl W
DPTASKﬂ i t g v 25 30 35 40 45 50
Period 10.0 WCET 3.0
7T2 W
o - o o 25 30 35 40 45 50
PTASK T2
Period 10.0 WCET 3.0
(u} 5 PTASK_T3 o o - 30 35 40 45 &0
Fetiod 10.0WCET 2.0
4
o 5 PTASK T4 30 35 40 45 a0
Period 10.0 WCET 2.0
Migrating

Tasks

Figure 3.8: Simulation traces of migrating and partitioned tasks together under
EDF local- and top-level schedulers.

the next appropriate priority task. We have applied DVFS technique under the control
of local-level scheduler on each processor. Only statically partitioned tasks benefit from
this slack reclamation —i.e., whenever a partitioned task generates dynamic slack, only the
next partitioned ready task can consume it. Otherwise, the slack time is considered as
lost. However, it would also be possible to share slack between top-level and local-level
schedulers on each processor —i.e., whenever a partitioned task produces dynamic slack by
finishing early, the size of T{@’s time window (i.e., C{) on that particular processor can
be dynamically enlarged to benefit from the workload variations. Slack sharing between
hierarchy of schedulers is not implemented.

We have simulated the task set presented in section 3.4.2 under global EDF scheduler,
under 2L-HiSA without DVFS technique, and under 2L-HiSA with DVFS technique. We
have kept the number of tasks and their aggregate utilization constant, however, the actual
execution time or beet/wcet ratio of tasks is varied between 50% and 100% of their worst-
case execution time (C;). The variation is auto-generated such that the actual execution
time (AET) has a uniform probability distribution function as suggested in [11|. Energy
consumption is estimated for processors only. Simulation results depict that, in best-case
—i.e., for beet/weet ratio = 50%, the energy savings can reach upto 42.6% under 2L-HiSA
with DVFS technique as compared to non-optimized EDF schedule. Furthermore, the
energy gains under 2L-HiSA with DVFS technique as compared to 2L-HiSA without DVFS

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
52 Multiprocessor Systems

r=----

1

450 - - - s0b

Figure 3.9: Simulation traces of EDF global scheduling of task set 7 on four proces-
SOTS.

technique are estimated upto 44.7%. Simulation results show that applying such simple
DVFS techniques does not yield a very significant difference between 2L-HiSA with and
without DVFS technique. However, energy gains are remarkable as compared to non-
optimized EDF schedule.

We have three intuitive remarks on these results. Firstly, these results illustrate that
it is possible to integrate other energy-aware scheduling techniques with 2L-HiSA without
loss of schedulability of tasks. Secondly, even for processors only, 2L-HiSA gives significant
energy-efficiency. Thirdly, restricted-migration scheduling strategies naturally favor mem-
ory subsystems, especially L1 caches, for energy-efficiency due to reduced task migration
and more or less constant cache-contents.

3.4.4 Performance Evaluation

In this section, we provide analysis of the performance of 2L-HiSA as compared to already
existing global optimal scheduling algorithms such as PFair [14], LLREF [28], and ASEDZL
[77] algorithms.

PFair and its heuristic algorithms are based on the concept of fluid scheduling mecha-
nism in which, they select tasks to execute at each time instant. Doing so invokes the sched-
uler at every time instant, which introduces a lot of overhead in terms of increased release
instants (r;), task preemptions, and migrations. PFair is often criticized for its scheduling-
related complexity. Unlike PFair, LLREF algorithm? is not based on time quanta but it
increases preemptions of tasks to a great extent. LLREF schedules all ready tasks between

4 Although, we compare performance of LLREF algorithm with other algorithms analytically,
we are unable to provide comparative analysis based on simulations due to our development limi-
tations.

3.4. Experiments

53

Ts

Te

T

Ty

Figure 3.10:

150 251 500

ﬁ @T [f f’@IluT’uI ﬁu [

(a) Simulation traces for T5 — To.

o 8%

(b) Simulation traces for Tig — Tha.

Simulation traces of individual tasks under global EDF scheduler

any two release instants. Since all tasks are active at all time instants, therefore, context-
switching overhead and cache-related preemption delay is significantly large for LLREF.
ASEDZL algorithm, contrary to PFair, is not based on time quanta. Execution require-
ment and time periods of tasks can have any arbitrary value under ASEDZL algorithm.
It improves on LLREF algorithm by scheduling minimum number of tasks between any

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
54 Multiprocessor Systems

two release instants. However, it still incurs higher number of scheduling events and pre-
emptions than EDF scheduler. 2L-HiSA scheduling algorithm uses multiple instances of
single-processor optimal EDF algorithm to schedule tasks both at top-level and local-level
schedulers. Since, EDF invokes the scheduler only at job boundaries, therefore, the overhead
in terms of release instants and number of preemptions is much less than the techniques
discussed earlier. Furthermore, 2L-HiSA has reduced overhead of L1 cache memories due
to the limited number of context-switches. Most of the tasks are partitioned under this
algorithm, which limits the number of task migrations (only migrating or global sub-set of
tasks migrate). Thus, the caches are mostly occupied by partitioned tasks, which helps in
reducing the recovery time that a task may suffer from cache-miss and eventually improve
performance.

2200

l2L-HisA
[IASEDZL
2000 ElPFair (PD2)

1800

1600

<] =

=1 =)

S [=1
| |

1000—

800

Number of task preemptions

600

400

~ all =

7

Number of tasks

Figure 3.11: Number of task preemptions under 2L-HiSA, PFair (PD?), and
ASEDZL algorithms.

We compare the number of task preemptions and task migrations under 2L-HiSA, PD?
PFair algorithm [6], and ASEDZL [77] algorithms for the task set presented in table 3.1 over
a simulation time equal to one hyper-period —.e., 600 time units. Figure 3.11 illustrates
that the number of preemptions under PD? PFair algorithm for various number of tasks
is the highest. We have estimated an average difference of 15-fold between preemptions
under PD? PFair and ASEDZL and an average difference of 18-fold between PD? PFair
and 2L-HiSA. An average difference in the number of preemption between ASEDZL and
21-HiSA has been estimated up to 1.3-fold. Note that these results take into account the
preemptions of tasks under every local-level scheduler as well as top-level scheduler while
using 2L-HiSA. Similarly, figure 3.12 illustrates the number of task migrations for various
number of tasks. Still, migration of tasks under PD? PFair algorithm is relatively very
high. We have estimated an average difference of 4-fold between task migration under P.D?
PFair and ASEDZL and an average difference of 10-fold between PD? PFair and 2L-HiSA.
An average difference in the number of task migration between ASEDZL and 2L-HiSA has

3.5. Concluding Remarks 55

2L HisA
1600 [_JASEDZL b
IlFrair (PD2)

1400

1200-

=)

=1

=1
|

o

=1

S
|

Number of task migrations

o)

=]

S
|

400

. m N]

7 10 12
Number of tasks

Figure 3.12: Number of task migrations under 2L-HiSA, PFair (PD?), and ASEDZL

algorithms.

been estimated up to 2.6-fold. These results show that using the 2L-HiSA algorithm can
be benevolent from performance point of view.

3.5 Concluding Remarks

In this chapter, we present a multiprocessor scheduling algorithm, called two-level hierar-
chical scheduling algorithm (2L-HiSA), which falls in the category of restricted migration
scheduling. The EDF scheduling algorithm has the least runtime complexity among job-
level fixed-priority algorithms for scheduling tasks on multiprocessor architecture. However,
EDF suffers from sub-optimality in multiprocessor systems. 2L-HiSA addresses the sub-
optimality of EDF as global scheduling algorithm and divides the problem into a two-level
hierarchy of schedulers. We ensure that the basic intrinsic properties of optimal single-
processor EDF scheduling algorithm appear both at local-level as well as at top-level sched-
uler. This algorithm works in two phases: 1) A task-partitioning phase in which, each task
from application task set is assigned to a specific processor by following simple bin-packing
approach. If a task can not be partitioned on any processor in the platform, it qualifies as
migrating task. 2) A processor-grouping phase in which, processors are clustered together
such that, per cluster, the unused fragmented computation power equivalent to at most one
processor is available.

2L-HiSA improves on the schedulability bound of global EDF for multiprocessor systems
and it is optimal for independent and periodic hard real-time tasks if a subset of tasks
can be partitioned such that the under-utilization per cluster of processors remain less
than or equal to the computation power equivalent to at most one processor. The NP-
hardness of partitioning problem, however, can often be a limiting factor. By clustering
of processors instead of considering individual processors, 2L.-HiSA alleviates bin-packing

Chapter 3. Two-level Hierarchical Scheduling Algorithm for
56 Multiprocessor Systems

limitations by effectively increasing bin sizes in comparison to item sizes. With a cluster of
processors, it is much easier to obtain the under-utilization per cluster less than or equal
to the computation power equivalent to one processor. This chapter provides simulation
results to support our proposition. We have illustrated that power- and energy-efficient
strategies like DVFS and/or DPM can be used in conjunction with 2L-HiSA to improve
energy savings. Furthermore, we have illustrated that the task preemption- and migration-
related overhead is significantly less while using 2L-HiSA as scheduling algorithm.

CHAPTER 4
Assertive Dynamic Power
Management Technique

Contents
4.1 Dynamic Power Management 57
4.2 Related Work oo 58
4.3 Assertive Dynamic Power Management Technique 61
4.3.1 Laxity Bottom Test (LBT) 62
4.3.2 Working Principle 0L 64
4.3.3 Choice of Power-efficient State 68
4.4 Static Optimizations using AsDPM 69
4.5 Experiments ¢ ittt et e e e 69
4.5.1 Target Application 69
4.5.2 Simulation Results L. 73
4.5.3 Comparative Analysis of the AsDPM Technique 78
4.6 Future Perspectives of the AsDPM Technique 79
4.6.1 Memory Subsystem o0 80
4.6.2 Thermal Load Balancing 82
4.7 Concluding Remarks00, 84

4.1 Dynamic Power Management

Dynamic Power Management(DPM) techniques achieve energy conservation in embedded
computing systems by actively changing the power consumption profile of the system by
selectively putting its components into power-efficient states sufficient to meeting function-
ality requirements [57]. These techniques, when applied, exploit the inherently present idle
time intervals (if any) in the real-time schedule of target application over a specific target
architecture at runtime. The idle time intervals can exist due to the variations in actual
workload at runtime or they can be statically present due to under-utilization of target
platform.