
HAL Id: tel-00599980
https://theses.hal.science/tel-00599980

Submitted on 12 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficacité énergétique et ordonnancement des systèmes
temps-réel multiprocesseurs.

Muhammad Khurram Bhatti

To cite this version:
Muhammad Khurram Bhatti. Efficacité énergétique et ordonnancement des systèmes temps-réel mul-
tiprocesseurs. . Embedded Systems. Université Nice Sophia Antipolis, 2011. English. �NNT : �.
�tel-00599980�

https://theses.hal.science/tel-00599980
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS

École Doctorale STIC

Sciences et Technologies de l’Information et de la Communication

THÈSE

pour obtenir le titre de

Docteur en Sciences

de l’Université de Nice - Sophia Antipolis

Mention Informatique

présentée et soutenue par

Muhammad Khurram BHATTI

Energy-aware Scheduling for
Multiprocessor Real-time Systems

Thèse dirigée par Cécile BELLEUDY

Laboratoire LEAT, Université de Nice-Sophia Antipolis -CNRS, Sophia Antipolis

soutenue le 18 avril 2011, devant le jury composé de:

Président du Jury Lionel Torres Pr. Université de Montpellier-II, France

Rapporteurs Isabelle Puaut Pr. Université de Rennes-I, France

Guy Gogniat Pr. Université de Bretagne Sud, France

Examinateurs Yvon Trinquet Pr. Université de Nantes, France

Lionel Torres Pr. Université de Montpellier-II, France

Michel Auguin DR. CNRS, France (Co-directeur de thèse)

Directeur de thèse Cécile Belleudy Maître de Conférences,
Université de Nice-Sophia Antipolis, France

c© 2011
Muhammad Khurram Bhatti
ALL RIGHTS RESERVED

iii

Abstract
Real-time applications have become more sophisticated and complex in their

behavior and interaction over the time. Contemporaneously, multiprocessor archi-
tectures have emerged to handle these sophisticated applications. Inevitably, these
complex real-time systems, encompassing a range from small-scale embedded devices
to large-scale data centers, are increasingly challenged to reduce energy consump-
tion while maintaining assurance that timing constraints will be met. To address
this issue in real-time systems, many software-based approaches such as dynamic
voltage and frequency scaling and dynamic power management have emerged. Yet
their flexibility is often matched by the complexity of the solution, with the ac-
companying risk that deadlines will occasionally be missed. As the computational
demands of real-time embedded systems continue to grow, effective yet transpar-
ent energy-management approaches will become increasingly important to minimize
energy consumption, extend battery life, and reduce thermal losses. We believe
that power- and energy-efficiency and scheduling of real-time systems are closely re-
lated problems, which should be tackled together for best results. By exploiting the
characteristic parameters of real-time application tasks, the energy-consciousness of
scheduling algorithms and the quality of service of real-time applications can be
significantly improved.

To support our thesis, this dissertation proposes novel approaches for energy-
management within the paradigm of energy-aware scheduling for soft and hard real-
time applications, which are scheduled over identical multiprocessor platforms. Our
first contribution is a Two-level Hierarchical Scheduling Algorithm (2L-HiSA) for
multiprocessor systems, which falls in the category of restricted-migration schedul-
ing. 2L-HiSA addresses the sub-optimality of EDF scheduling algorithm in mul-
tiprocessors by dividing the problem into a two-level hierarchy of schedulers. Our
second contribution is a dynamic power management technique, called the Assertive
Dynamic Power Management (AsDPM) technique. AsDPM serves as an admission
control technique for real-time tasks, which decides when exactly a ready task shall
execute, thereby reducing the number of active processors, which eventually reduces
energy consumption. Our third contribution is a dynamic voltage and frequency
scaling technique, called the Deterministic Stretch-to-Fit (DSF) technique, which
falls in the category of inter-task DVFS techniques and works in conjunction with
global scheduling algorithms. DSF comprises an online Dynamic Slack Reclama-
tion algorithm (DSR), an Online Speculative speed adjustment Mechanism (OSM),
and an m-Task Extension (m-TE) technique. Our fourth and final contribution is
a generic power/energy management scheme for multiprocessor systems, called the
Hybrid Power Management (HyPowMan) scheme. HyPowMan serves as a top-level
entity that, instead of designing new power/energy management policies (whether
DPM or DVFS) for specific operating conditions, takes a set of well-known exist-
ing policies. Each policy in the selected policy set performs well for a given set of
operating conditions. At runtime, the best-performing policy for given workload is
adapted by the HyPowMan scheme through a machine-learning algorithm.

v

To my father Ismail, who always dared to dream,
and to my mother Mumtaz (late) for making it a reality.

vii

Acknowledgments
Completion of my PhD required countless selfless acts of support, generosity,

and time by people in my personal and academic life. I can only attempt to humbly
acknowledge and thank the people and institutions that have given so freely through-
out my PhD career and made this dissertation possible. I am thankful to the Higher
Education Commission (HEC) of Pakistan for providing uninterrupted funding sup-
port throughout my Masters and PhD career. I am sincerely thankful to Cécile
Belleudy, my advisor, for being a constant source of invaluable encouragement, aid,
and expertise during my years at University of Nice. While many students are for-
tunate to find a single mentor, I have been blessed with two. I am deeply grateful
to Michel Auguin, my co-advisor, for the guidance, support, respect, and kindness
that he has shown me over the last four years. The mentoring, friendship, and colle-
giality of both Cécile and Michel enriched my academic life and have left a profound
impression on how academic research and collaboration should ideally be conducted.

I am extremely thankful to the members of my dissertation committee. Guy
Gogniat and Isabelle Puaut have graciously accepted to serve on the committee
as reviewers and provided unique feedback, comments, and questions on multipro-
cessor scheduling, along with a lot of encouragement. Yvon Trinquet has provided
me with wise advice and support throughout my PhD and also accepted to be a
part of my dissertation committee. I have always admired his precise questions and
unique manner of addressing difficult research problems. Lionel Torres has been
very kind for accepting to be the president of dissertation committee and a source
of insightful comments and ideas to my research and its effective presentation. I
must acknowledge that all these people have greatly inspired me. Other colleagues
who I owe gratitude for their support of my research or major PhD milestones in-
clude: Sébastian Bilavarn, Francois Verdier, Ons Mbarek, and Jabran Khan. I am
also grateful to the always helpful LEAT research laboratory and University of Nice
staff. I would like to thank all my research collaborators who have enhanced my en-
thusiasm and understanding of real-time systems through various projects, namely;
the collaborators of Pherma, COMCAS, and STORM tool design and development
projects. Since the path through the PhD program would be much more difficult
without examples of success, I am indebted to Muhammad Farooq who has given
friendship and guidance as recent real-time system PhD graduate from LEAT.

My family and friends have been an unending source of love and inspiration
throughout my PhD career. My father, Ismail, has offered unconditional under-
standing and encouragement. My sisters, Shaista and Sofia, have kept me sane with
their humor and understanding even from distance. My brother, Asad, has been a
great and selfless support to me throughout these year of my absence from home.
My friends in French Riviera, Najam, Naveed, Uzair, Sabir, Chafic, Umer, Siouar,
Khawla, Amel, Alice, and Sébastian have provided hours of enjoyable distraction
from my work. I will always remember the time I have shared with them. Lastly,
I can only wish if my mother, Mumtaz, was still alive to embrace me on achieving
this milestone. She will always remain my constant.

Contents

I Complete dissertation: English version 1

1 Introduction 3
1.1 Introduction . 3
1.2 Contributions . 5
1.3 Summary . 8

2 Background on Real-time and Energy-efficient Systems 11
2.1 Real-time Systems . 11

2.1.1 Real-time Workload . 12
2.1.2 Processing Platform . 16
2.1.3 Real-time Scheduling . 17
2.1.4 Real-time Scheduling in Multiprocessor Systems 20

2.2 Power- and Energy-efficiency in Real-time Systems 23
2.2.1 Power and Energy Model . 23
2.2.2 Energy-aware Real-time Scheduling 26

2.3 Simulation Environment . 28
2.4 Summary . 29

3 Two-level Hierarchical Scheduling Algorithm for Multiprocessor
Systems 31
3.1 Introduction . 31
3.2 Related Work . 32
3.3 Two-level Hierarchical Scheduling Algorithm 35

3.3.1 Basic Concept . 36
3.3.2 Working Principle . 37
3.3.3 Runtime View of Schedule from Different Levels of Hierarchy 41
3.3.4 Schedulability Analysis . 44

3.4 Experiments . 47
3.4.1 Setup . 47
3.4.2 Functional Evaluation . 47
3.4.3 Energy-efficiency of 2L-HiSA 50
3.4.4 Performance Evaluation . 52

3.5 Concluding Remarks . 55

4 Assertive Dynamic Power Management Technique 57
4.1 Dynamic Power Management . 57
4.2 Related Work . 58
4.3 Assertive Dynamic Power Management Technique 61

4.3.1 Laxity Bottom Test (LBT) 62
4.3.2 Working Principle . 64

x Contents

4.3.3 Choice of Power-efficient State 68
4.4 Static Optimizations using AsDPM 69
4.5 Experiments . 69

4.5.1 Target Application . 69
4.5.2 Simulation Results . 73
4.5.3 Comparative Analysis of the AsDPM Technique 78

4.6 Future Perspectives of the AsDPM Technique 79
4.6.1 Memory Subsystem . 80
4.6.2 Thermal Load Balancing . 82

4.7 Concluding Remarks . 84

5 Deterministic Stretch-to-Fit DVFS Technique 85
5.1 Dynamic Voltage and Frequency Scaling 85
5.2 Related Work . 87
5.3 Deterministic Stretch-to-Fit Technique 90

5.3.1 Dynamic Slack Reclamation (DSR) Algorithm 90
5.3.2 Online Canonical Schedule . 93
5.3.3 Online Speculative speed adjustment Mechanism (OSM) . . . 97
5.3.4 m-Tasks Extension Technique (m-TE) 98

5.4 Experiments . 98
5.4.1 Setup . 99
5.4.2 Target Application . 99
5.4.3 Simulation Results . 99

5.5 Concluding Remarks . 104

6 Hybrid Power Management Scheme for Multiprocessor Systems 107
6.1 Introduction . 107
6.2 Related Work . 108
6.3 Hybrid Power Management Scheme 109

6.3.1 Machine-learning Algorithm 110
6.3.2 Selection of Experts . 114

6.4 Experiments . 114
6.4.1 Setup . 114
6.4.2 Description of Experts . 115
6.4.3 Simulation Results . 116

6.5 Concluding Remarks . 120

7 Conclusions and Future Research Perspectives 123
7.1 Summary of Contributions and Results 124
7.2 Future Research Perspectives . 127

7.2.1 Task Models . 127
7.2.2 Platform Architectures . 128
7.2.3 Scheduling Algorithms . 128
7.2.4 Implementation strategy –Simulations vs Real Platforms . . . 129

Contents xi

7.2.5 Thermal Aspects . 130
7.3 Summary . 130

II Selected chapters: French version 133

1 Introduction 135
1.1 Introduction . 135
1.2 Contributions . 137
1.3 Résumé . 140

2 Conclusions et Perspectives 143
2.1 Résumé des Contributions et Résultats 144
2.2 Perspectives . 147

2.2.1 Modèle des tâches . 147
2.2.2 Architectures de Plate-forme Cible 148
2.2.3 Les algorithmes d’ordonnancement 149
2.2.4 Stratégie d’implementation 150
2.2.5 Aspects Thermiques . 150

2.3 Résumé . 151

A STORM: Simulation TOol for Real-time Multiprocessor Schedul-
ing 155
A.1 Functional Architecture . 156

A.1.1 Software Entities . 157
A.1.2 Hardware Entities . 158
A.1.3 System Entities . 159
A.1.4 Simulation Kernel . 159

B HyPowMan Scheme: Additional Simulation Results 161
B.1 Simulation Results Using AsDPM & DSF Experts 161

B.1.1 Effect of variations in bcet/wcet ratio 161
B.1.2 Effect of variations in number of tasks 161
B.1.3 Effect of Variations in total utilization 162

B.2 Simulation Results Using ccEDF & DSF Experts 163

Bibliography 167

List of Algorithms

1 Offline task partitioning to processors 38
2 Offline processor-grouping . 39
3 Local-level scheduler: Online jobs assignment for partitioned tasks

present in τπk . 43
4 Top-level scheduler: Online jobs assignment for migrating tasks

present in τglob . 43
5 Assertive Dynamic Power Management 65
6 Dynamic Slack Reclamation . 91
7 Online Speculation Mechanism . 98
8 m-Tasks Extension Technique . 98
9 Machine-learning . 113

List of Figures

2.1 Illustration of various characteristic parameters of real-time tasks.
Periodic task Ti has an implicit deadline (di=Pi) with the following
values of other parameters. Oi=2, Ci=3, di=Pi=4, and Li=1. 15

2.2 High-level illustration of symmetric share-memory multiprocessor
(SMP) architecture layout of processing platform. 18

2.3 No migration scheduling. 21
2.4 Full migration scheduling. 21
2.5 Restricted migration scheduling. 21
2.6 Current and future trends in the evolution of portable embedded

system demand, their power consumption, and their energy-density
in batteries. (a) Evolution of the demand for portable equipment
over the years (SEMICO Research Corp.). (b) Power consumption
in portable equipment over the years (ITRS 2008). (c) Evolution of
energy-density in batteries over the years (EPoSS 2009). 24

2.7 Example of energy management decision-making of DPM technique. 27
2.8 Example of energy management decision-making of DVFS technique. 27

3.1 Job-splitting of a migrating task over three processors. 33
3.2 Two-level hierarchical scheduling approach based on restricted migra-

tion. 36
3.3 Example schedule of partitioned tasks under EDF scheduling al-

gorithm on SMP architecture (n=6, m=4), illustrating the under-
utilization of platform. 40

3.4 Illustration of T dk occurring on different processors with respect to
the proportionate under-utilization available on each processor. . . . 42

3.5 View of runtime schedule by top-level and local-level schedulers under
2L-HiSA on an SMP architecture. 44

3.6 Simulation traces of partitioned tasks under EDF local scheduler on
each processor. 49

3.7 Simulation traces of partitioned tasks in the presence of T dk under
EDF local scheduler on each processor. 50

3.8 Simulation traces of migrating and partitioned tasks together under
EDF local- and top-level schedulers. 51

3.9 Simulation traces of EDF global scheduling of task set τ on four
processors. 52

3.10 Simulation traces of individual tasks under global EDF scheduler . . 53
3.11 Number of task preemptions under 2L-HiSA, PFair (PD2), and

ASEDZL algorithms. 54
3.12 Number of task migrations under 2L-HiSA, PFair (PD2), and

ASEDZL algorithms. 55

xvi List of Figures

4.1 Laxity Bottom Test (LBT) using anticipative laxity li. 64
4.2 Schedule of τ using global EDF scheduler. (a) Without AsDPM. (b)

With AsDPM. 65
4.3 Impact of an intermediate priority task’s release. (a) Projected sched-

ule of tasks at time tc without intermediate priority task T3. (b) Pro-
jected schedule of tasks at time tc+1 with intermediate priority task
T3. 68

4.4 Block diagram of H.264 video decoding scheme. 70
4.5 Block diagram of H.264 decoding scheme slices version. 71
4.6 Block diagram of H.264 decoding scheme pipeline version. 72
4.7 Simulation results on the changes in energy consumption for H.264

video decoder application (slices version) for various frequencies. . . 73
4.8 Simulation results on energy consumption under statically non-

optimized EDF schedule and statically optimized EDF schedule using
AsDPM for H.264 video decoder application (slices version). 77

4.9 Simulation results on energy consumption under statically non-
optimized EDF schedule and statically optimized EDF schedule using
AsDPM for H.264 video decoder application (pipeline version). . . . 78

4.10 Simulation results on the energy consumption under statically non-
optimized EDF schedule, statically optimized EDF schedule using
AsDPM, and EDF schedule using online AsDPM for H.264 video
decoder application (slices version). 79

4.11 Simulation results on the energy consumption under statically non-
optimized EDF schedule, statically optimized EDF schedule using
AsDPM, and EDF schedule using online AsDPM for H.264 video
decoder application (pipeline version). 80

4.12 Simulation results on energy consumption of AsDPM in comparison
with ideal DPM technique under the control of EDF scheduling algo-
rithm for H.264 video decoder application (slices version). 81

4.13 Energy consumption in memory subsystem using multi-bank archi-
tecture. (a) Energy consumption of multi-bank memory under global
EDF schedule without AsDPM. (b) Energy consumption optimiza-
tion of multi-bank memory under global EDF schedule using AsDPM. 83

5.1 Dynamic slack redistribution of a task under various DVFS strategies. 88
5.2 Slack reclamation using the DSR algorithm. 93
5.3 Simulation traces of example task set on a single processor. a) Canon-

ical schedule of tasks where all tasks execute with worst-case execu-
tion time. b) Practical schedule of tasks where T1 finishes earlier than
its WCET and T1 exploits dynamic slack to elongate its WCET at
runtime. 94

5.4 Task T2 consumes ε to elongate its execution up to its termination
instant in canonical schedule. 95

5.5 Task queues managed by a global scheduler at runtime. 95

List of Figures xvii

5.6 Construction of online canonical schedule ahead of practical schedule
for m-tasks. 96

5.7 Simulation results of H.264 slices version. 100
5.8 Simulation results of H.264 pipeline version. 101
5.9 Simulation results of H.264 pipeline version illustrating the effective-

ness of OSM. 102
5.10 Comparative analysis of simulation results of H.264 slices version. . . 103
5.11 Comparative analysis of simulation results of H.264 pipeline version. 104

6.1 Interplay of DPM and DVFS policies. 109
6.2 Arrangement of expert set under the HyPowMan scheme for an SMP

architecture. 110
6.3 Example of the weight and probability update of a DPM-based expert.112
6.4 Simulation results on variation of bcet/wcet ratio. 117
6.5 Simulation results on variation in number of tasks. 118
6.6 Simulation results on variation in aggregate utilization. 119
6.7 Simulation results on variation in α. 120
6.8 Simulation results on variation in β. 121

A.1 STORM simulator input and output file system. 156
A.2 Functional architecture of STORM simulator. 157
A.3 STORM: various states for application tasks. 157
A.4 STORM: example XML file. 158

B.1 Simulation results on variation of bcet/wcet ratio. 162
B.2 Simulation results on variation in number of tasks. 162
B.3 Simulation results on variation in aggregate utilization. 163
B.4 Simulation results on variation in bcet/wcet ratio. 164
B.5 Simulation results on the usage of experts under the HyPowMan scheme.164

List of Tables

2.1 Voltage-frequency levels of PXA270 processor 29
2.2 Power-efficient states of PXA270 processor @ 624-MHz & 1.55-volts . 29

3.1 Real-time periodic task set τ . 48
3.2 Parameters of dummy tasks (T dk) on each processor 48

4.1 H.264 video decoder application task set for slices version 71
4.2 H.264 video decoder application task set for pipeline version 72
4.3 Static architecture configurations for H.264 video decoder slices version 74
4.4 Static architecture configurations for H.264 video decoder pipeline

version . 75
4.5 Static optimal architecture configurations for H.264 video decoder

slices version for different QoS requirements 76
4.6 Static optimal architecture configurations for H.264 video decoder

pipeline version for different QoS requirements 76

5.1 Simulation settings for H.264 video decoder slices version 100
5.2 Simulation settings for H.264 video decoder pipeline version 101

6.1 Simulation settings for variable bcet/wcet ratio 116
6.2 Simulation settings for variable number of tasks 117
6.3 Simulation settings for variable aggregate utilization 118
6.4 Simulation settings for variable α . 119
6.5 Simulation settings for variable β . 120

B.1 Simulation settings for variable bcet/wcet ratio 163

xx List of Tables

Symbols and Acronyms

Symbols Definition

t Time instant
τ Task set
Ti Individual task indexed as i
Ti,j Individual job j of task Ti
J Job set
ri Release time of task Ti
Ci Worst-case execution time (WCET) of task Ti
di Relative deadline of task Ti
Pi Period of task Ti
Oi Offset of first job Ti,1 of Ti w.r.t. system activation
Li Absolute laxity of task Ti
li Anticipative laxity of task Ti
ui Utilization of individual task Ti
Usum(τ) Utilization of task set τ
πk Individual processor indexed as k
Π Processor set/ platform
n Number of tasks in τ
m Number of processors in Π

ν Speed of processor πk
Fop Operating frequency
Vop Operating voltage
Vth Threshold voltage
E Energy
ε Dynamic slack
φ Scaling factor
Pwr(ν) Power as function of speed ν
τπk Subset of tasks partitioned on processor πk
Scan Canonical Schedule of tasks
Spra Practical Schedule of tasks
DBF (τ, L) Demand Bound Function of task set τ over interval

of length L
N Number of Experts (where, expert is any power

management scheme)
w Weight factor for individual expert
W Weight vector for expert set

continued on next page

List of Tables xxi

– continued from previous page

Acronyms Description
h Probability factor for individual expert
H Probability vector for expert set

AET Actual Execution Time
AsDPM Assertive Dynamic Power Management
ASEDZL Anticipating Slack Earliest Deadline until Zero

Laxity
BCET Best-case Execution Time
BET Break-Even Time
ccEDF Cycle-conserving Earliest Deadline First
DeTQ Deferred Tasks Queue
DPM Dynamic Power Management
DSF Deterministic Stretch-to-Fit
DSR Dynamic Slack Reclamation
DVFS Dynamic Voltage and Frequency Scaling
EDF Earliest Deadline First
EDZL Earliest Deadline until Zero Laxity
HyPowMan Hybrid Power Management
LLF Least Laxity First
LLREF Least Local Remaining Execution First
m-TE m-Task Extension
OSM Online Speculative speed adjustment Mechanism
PFair Proportionate Fairness
ReTQ Ready Tasks Queue
RM Rate Monotonic
RuTQ Running Tasks Queue
SMP Symmetric shared-memory Multiprocessor
TQ Tasks Queue
WCET Worst-case Execution Time
2L-HiSA Two-level Hierarchical Scheduling Algorithm

Part I

Complete dissertation:
English version

Chapter 1

Introduction

Contents
1.1 Introduction . 3
1.2 Contributions . 5
1.3 Summary . 8

1.1 Introduction

In real-time systems, the temporal correctness of produced output is equally
important as the logical correctness [42]. That is, real-time systems must not
only perform correct operations, but also perform them at correct time. A
logically correct operation performed by a system can result in either an erroneous,
completely useless, or degraded output depending upon the strictness of time
constraints. Based on the level of strictness of timing constraints, real-time systems
can be classified into three broad categories: hard real-time, soft real-time, and
firm real-time systems[47, 77, 105]. Such systems must be predictable and provably
temporally correct. The designer must verify that the system is correct prior to
runtime –i.e., for instance, for any possible execution of a hard real-time system,
each execution results in all deadlines being met. Even for the simplest systems,
the number of possible execution scenarios is either infinite or prohibitively large.
Therefore, exhaustive simulation or testing cannot be used to verify the temporal
correctness of such systems. Instead, formal analysis techniques are necessary to
ensure that the designed systems are, by construction, provably temporally correct
and predictable [42, 47]. Over the time, real-time applications have become more
sophisticated and complex in their behavior and interaction. Contemporaneously,
multi-core architectures have emerged to handle these sophisticated applications
and since then, prevailed in many commercial systems. Although significant
research has been focused on the design of real-time systems during past decades,
the emergence of multi-core architectures have renewed some existing challenges
as well as brought some new ones for real-time research community. These
challenges can be classified into three broad categories: multiprocessor platform
architecture design, multiprocessor scheduling, and multiprocessor energy-efficiency.

As the multiprocessor architectures are already widely used, it becomes more
and more clear that future real-time systems will be deployed on multiprocessor

4 Chapter 1. Introduction

architectures. Multiprocessor architectures have certain new features that must
be taken into consideration. For instance, application programs executing on
different cores usually share fine-grained resources, like shared caches, interconnect
networks, and shared memory bandwidth, making the conventional design practices
not suitable to multi-core systems. Thus, multi-core architectures are significantly
challenging in their design, analysis, and implementation.

Another challenge for real-time systems is the scheduling problem. The real-time
scheduling problem on multiprocessor models is very different from and signifi-
cantly more difficult than single-processor scheduling. Single-processor scheduling
algorithms cannot be applied on multiprocessor systems without loss of optimality.
A scheduling algorithm is said to be optimal if it can successfully schedule any
feasible task system [105]. A task system is said to be feasible if it is guaranteed
that a schedule exists that meets all deadlines of all jobs, for all sequences of jobs
that can be generated by the task system. Optimality of scheduling algorithms is a
critical design issue in multiprocessor real-time systems as under-utilized platform
resources are not desirable. Multiprocessor scheduling algorithms employ either
a partitioned or global scheduling approach (or hybrids of the two). Partitioned
scheduling, under which tasks are statically assigned to processors and scheduled
on each processor using single-processor scheduling algorithms, have low scheduling
overheads. However, the management of globally-shared resources such as a shared
main memory and caches can become quite difficult under partitioning, precisely
because each processor is scheduled independently. Moreover, partitioning tasks
to processors is equivalent to solving a bin-packing problem: on an m-processor
system, each task with a size equal to its utilization must be placed into one of
m bins of size one representing a processor. Bin-packing is considered a strong
NP-hard problem [60]. In global scheduling algorithms, on the other hand, all
processors select jobs to schedule from a single run queue. As a result, jobs may
migrate among processors, and contention for shared data structures is likely. Until
recently, no multiprocessor optimal global scheduling algorithm existed before the
proposition of PFair and its heuristic algorithms in [13, 106]. Although few recently
proposed algorithms are known to be optimal [13, 106, 77, 28], multiprocessor
scheduling theory has many fundamental problems still open to address.

The ever-increasing complexity of real-time applications that are being scheduled
over multiprocessor architectures, ranging from multimedia and telecommunication
to aerospace applications, poses another great challenge –i.e., the power consump-
tion rate of computing devices which has been increasing exponentially. Power
densities in microprocessors have almost doubled every three years [103, 56]. This
increased power usage poses two types of difficulties: the energy consumption and
rise in device’s temperature. As energy is power integrated over time, supplying
the required energy may become prohibitively expensive, or even technologically
infeasible. This is a particular difficulty in portable systems that heavily rely on
batteries for energy, and will become even more critical as battery capacities are

1.2. Contributions 5

increasing at a much slower rate than power consumption. The energy consumed
in computing devices is in large part converted into heat. With processing plat-
forms heading towards 3D-stacked architectures [30, 104], thermal imbalances and
energy consumption in modern chips have resulted in power becoming a first-class
design constraint for modern embedded real-time systems. Therefore, complex real-
time systems must reduce energy consumption while providing guarantees that the
timing constraints will be met. Energy management in real-time systems has been
addressed from both hardware and software points of view. Many software-based
approaches, particularly scheduling-based approaches such as Dynamic Voltage and
Frequency Scaling (DVFS) and Dynamic Power Management (DPM) have been pro-
posed by real-time research community over the past few years. Yet their flexibility
is often matched by the complexity of the solution, with the accompanying risk that
deadlines will occasionally be missed. As the computational demands of real-time
embedded systems continue to grow, effective yet transparent energy-management
approaches will become increasingly important to minimize energy consumption,
extend battery life, and reduce thermal effects. We believe that energy-efficiency
and scheduling of real-time systems are closely related problems, which should be
tackled together for best results. By exploiting the characteristic parameters of
real-time application tasks, the energy-consciousness of scheduling algorithms and
the quality of service of real-time applications can be significantly improved. In the
following, we provide our thesis statement.

Thesis Statement. The goal of this dissertation is to ameliorate, through
scheduling, the energy-efficiency of real-time systems that can be proven predictable
and temporally correct over multiprocessor platforms. The proposed solution(s)
should be flexible to varying system requirements, less complex, and effective.
Achievement of this goal implies that battery-operated real-time systems can still meet
timing constraints while minimizing energy consumption, extending battery life, and
reducing thermal effects.

To support our thesis, this dissertation proposes energy-aware scheduling so-
lutions of complex real-time applications that are scheduled over multiprocessor
architectures. In section 1.2, we provide an overview of each technical contribution
presented in this dissertation. A detailed background on real-time and energy-aware
systems and real-time scheduling is provided in chapter 2. Note that we review state-
of-the-art related to our specific contributions in each chapter. However, related
research work is also referred throughout the document where pertinent.

1.2 Contributions

Energy-efficiency in real-time systems is a multi-faceted optimization problem. For
instance, energy optimization can be achieved at both hardware- and software-levels
while designing the system and at scheduling-level while executing application tasks.
Both the hardware and software are concerned and can play an important role in
the resulting energy consumption of overall system. In this dissertation, we focus

6 Chapter 1. Introduction

on the software-based aspects, particularly scheduling-based energy-consciousness
in real-time systems. We develop novel power and energy management techniques
while taking into account the features offered by existing and futuristic platform
architectures. In the following, we discuss specific contributions presented in each
chapter of this dissertation.

Chapter 3. In this chapter, we present our first contribution which is a multi-
processor scheduling algorithm, called Two-Level Hierarchical Scheduling Algorithm
(2L-HiSA). This algorithm falls in the category of restricted-migration scheduling.
The EDF scheduling algorithm has the least runtime complexity among job-level
fixed-priority algorithms for scheduling tasks on multiprocessor architecture. How-
ever, EDF suffers from sub-optimality in multiprocessor systems. 2L-HiSA addresses
the sub-optimality of EDF as global scheduling algorithm and divides the problem
into a two-level hierarchy of schedulers. We have ensured that basic intrinsic prop-
erties of optimal single-processor EDF scheduling algorithm appear in two-level
hierarchy of schedulers both at top-level scheduler as well as at local-level scheduler.
2L-HiSA partitions tasks statically onto processors by following the bin-packing ap-
proach, as long as schedulability of tasks partitioned on a particular processor is
not violated. Tasks that can not be partitioned on any processor in the platform
qualify as migrating or global tasks. Furthermore, it makes clusters of identical
processors such that, per cluster, the unused fragmented computation power equiv-
alent to at most one processor is available. We show that 2L-HiSA improves on the
schedulability bound of EDF for multiprocessor systems and it is optimal for hard
real-time tasks if a subset of tasks can be partitioned such that the under-utilization
per cluster of processors remain less than or equal to the equivalent of one proces-
sor. Partitioning tasks on processors reduces scheduling related overheads such as
context switch, preemptions, and migrations, which eventually help reducing overall
energy consumption. The NP-hardness of partitioning problem [60], however, can
often be a limiting factor. By using clusters of processors instead of considering
individual processors, 2L-HiSA alleviates bin-packing limitations by effectively in-
creasing bin sizes in comparison to item sizes. With a cluster of processors, it is
much easier to obtain the unused processing power per cluster less than or equal to
one processor. We provide simulation results to support our proposition.

Chapter 4. Our second contribution, presented in this chapter, is a dynamic
power management technique for multiprocessor real-time systems, called Assertive
Dynamic Power Management (AsDPM) technique. This technique works in con-
junction with global EDF scheduling algorithm. It is an admission control technique
for real-time tasks which decides when exactly a ready task shall execute. Without
this admission control, all ready tasks are executed as soon as there are enough com-
puting resources (processors) available in the system, leading to poor possibilities of
putting some processors in power-efficient states. AsDPM technique differs from the
existing DPM techniques in the way it exploits the idle time intervals. Conventional

1.2. Contributions 7

DPM techniques can exploit idle intervals only once they occur on a processor –i.e.,
once an idle time interval is detected. Upon detecting idle time intervals, these
techniques decide whether to transition target processor(s) to power-efficient state.
AsDPM technique, on the other hand, aggressively extracts most of the idle time
intervals from some processors and clusters them on some other processors of the
platform to elongate the duration of idle time. Transitioning processors to suit-
able power-efficient state then becomes a matter of comparing idle time interval’s
length against the break-even time of target processor. Although, AsDPM is an
online dynamic power management technique, its working principle can be used
to determine static optimal architecture configurations (i.e., number of processors
and their corresponding voltage-frequency level, which is required to meet real-time
constraints in worst-case with minimum energy consumption) for target application
through simulations. We demonstrate the use of AsDPM technique for both static
and dynamic energy optimization in this chapter.

Chapter 5. This chapter presents our third contribution, which is an inter-task
dynamic voltage and frequency scaling technique for real-time multiprocessor sys-
tems, called Deterministic Stretch-to-Fit (DSF) technique. The DSF technique is
mainly intended for multiprocessor systems. Though, applying it on single-processor
systems is also possible and in fact, rather trivial due to absence of migrating tasks.
DSF comprises three algorithms, namely, Dynamic Slack Reclamation (DSR) algo-
rithm, Online Speculative speed adjustment Mechanism (OSM), and m-Tasks Ex-
tension (m-TE) algorithm. The DSR algorithm is the principle slack reclamation
algorithm of DSF that assigns dynamic slack, produced by a precedent task, to
the appropriate priority next ready task that would execute on the same processor.
While using DSR, dynamic slack is not shared with other processors in the system.
Rather, slack is fully consumed on the same processor by the task, to which it is
once attributed. Such greedy allocation of slack allows the DSR algorithm to have
large slowdown factor for scaling voltage and frequency for a single task, which
eventually results in improved energy savings. The OSM and the m-TE algorithms
are extensions of the DSR algorithm. The OSM algorithm is an online, adaptive,
and speculative speed adjustment mechanism, which anticipates early completion
of tasks and performs aggressive slowdown on processor speed. Apart from sav-
ing more energy as compared to the stand-alone DSR algorithm, OSM also helps
to avoid radical changes in operating frequency and supply voltage, which results
in reduced peak power consumption, which leads to an increase in battery life for
portable embedded systems. The m-TE algorithm extends an already existing One-
Task Extension (OTE) technique for single-processor systems onto multiprocessor
systems. The DSF technique is generic in the sense that if a feasible schedule for
a real-time target application exists under worst-case workload using (optimal or
non-optimal) global scheduling algorithms, then the same schedule can be repro-
duced (using actual workload) with less power and energy consumption. Thus, DSF
can work in conjunction with various scheduling algorithms. DSF is based on the

8 Chapter 1. Introduction

principle of following the canonical execution of tasks at runtime –i.e., an offline or
static optimal schedule in which all jobs of tasks exhibit their worst-case execution
time. A track of the execution of all tasks in static optimal schedule needs to be
kept in order to follow it at runtime [10]. However, producing and keeping an entire
canonical schedule offline is impractical in multiprocessor systems due to a priori
unknown assignment of preemptive and migrating tasks to processors. Therefore,
we propose a scheme to produce an online canonical schedule ahead of practical
schedule, which mimics the canonical execution of tasks only for future m-tasks.
This reduces scheduler’s overhead at runtime as well as makes DSF an adaptive
technique.

Chapter 6. While new energy management techniques are still developed to deal
with specific set of operating conditions, recent research reports that both DPM
and DVFS techniques often outperform each other when their operating conditions
change [37, 20]. Thus, no single policy fits perfectly in all or most operating con-
ditions. Our fourth and final contribution in this dissertation addresses this issue.
We propose, in this chapter, a generic power and energy management scheme for
multiprocessor real-time systems, called Hybrid Power Management (HyPowMan)
scheme. This scheme serves as a top-level entity that, instead of designing new pow-
er/energy management policies (whether DPM or DVFS) for specific operating con-
ditions, takes a set of well-known existing policies. Each policy in the selected policy
set, when functions as a stand-alone policy, ensures deadline guarantees and per-
forms well for a given set of operating conditions. At runtime, the best-performing
policy for given workload is adapted by HyPowMan scheme through a machine-
learning algorithm. This scheme can enhance the ability of portable embedded
systems to adapt with changing workload (and platform configuration) by working
with a larger set of operating conditions and gives overall performance and energy
savings that are better than any single policy can offer.

Chapter 7. In this chapter, we provide general conclusions and remarks on our
contributions and results. Moreover, we discuss some future research perspectives
of this dissertation.

Appendixes. We provide two appendixes in this dissertation. Appendix A pro-
vides functional details on the simulation tool STORM (Simulation TOol for Real-
time Multiprocessor scheduling) [108] that we use in our simulations throughout this
dissertation. Appendix B provides some additional simulation results related to
chapter 6.

1.3 Summary

As a result of contemporaneous evolution in the complexity and sophistication of
real-time applications and multiprocessor platforms, the research on real-time sys-

1.3. Summary 9

tems has confronted with many emerging challenges. One such challenge that real-
time research community is facing is to reduce power and energy consumption of
these systems, while maintaining assurance that timing constraints will be met.
As the computational demands of real-time systems continue to grow, effective yet
transparent energy-management approaches are becoming increasingly important
to minimize energy consumption, extend battery life, and reduce thermal effects.
Power- and energy-efficiency and scheduling of real-time systems are closely related
problems, which should be tackled together for best results. Our dissertation mo-
tivates this thesis and attempts to address together the problem of overall energy-
awareness and scheduling of multiprocessor real-time systems. This dissertation
proposes novel approaches for energy-management within the paradigm of energy-
aware scheduling for soft and hard real-time applications, which are scheduled over
identical multiprocessor platforms of type symmetric shared-memory multiproces-
sor (SMP). We believe that by exploiting the characteristic parameters of real-time
application tasks, the energy-consciousness of scheduling algorithms and the qual-
ity of service of real-time applications can be significantly improved. Rest of this
document provides our contributions in detail.

Chapter 2

Background on Real-time and
Energy-efficient Systems

Contents
2.1 Real-time Systems . 11

2.1.1 Real-time Workload . 12
2.1.2 Processing Platform . 16
2.1.3 Real-time Scheduling . 17
2.1.4 Real-time Scheduling in Multiprocessor Systems 20

2.2 Power- and Energy-efficiency in Real-time Systems 23
2.2.1 Power and Energy Model . 23
2.2.2 Energy-aware Real-time Scheduling 26

2.3 Simulation Environment . 28
2.4 Summary . 29

2.1 Real-time Systems

Real-time systems can be classified, based on the strictness of timing constraints,
into three broad categories: hard real-time, soft real-time and firm real-time systems
[42, 47, 77, 80, 105].

Hard real-time systems. In hard real-time systems, the completion of a correct
operation after its deadline is considered as useless. Ultimately, this operation may
cause a critical failure of the system or expose end-users to hazardous situations. In
other words, the penalty for even a single temporal constraint violation is unaccept-
able in hard real-time systems. Aerospace, nuclear, power plant, and automobile
applications would use such systems.

Soft real-time systems. Soft real-time systems lower their strictness of timing
constraints as compared to hard real-time systems. In such systems, although it
is still preferred to have operations completed before their deadlines, violation of
timing constraints does not make produced outputs entirely useless or hazardous.
Even if deadlines of most operations are missed, the system can continue to oper-
ate. Such systems are nonetheless referred to as real-time since they use real-time

12 Chapter 2. Background on Real-time and Energy-efficient Systems

mechanisms (such as real-time operating systems for instance) in order to meet as
many deadlines as possible. Cellular phone and multimedia applications can use
such systems as the consequences of missing deadlines could be smaller than the
cost of meeting them in all possible circumstances.

Firm real-time systems. Firm real-time systems provide an intermediate
paradigm between hard and soft real-time systems. In contrast to hard real-time
systems, firm real-time systems tolerate some latency in operations –i.e., a deadline
miss results only in a decreased quality of service. Basically, the notion of firm real-
time is less strict than that of hard real-time since it allows deadlines to be missed,
but it is more strict than soft real-time in the sense that only a predefined ratio
of deadline miss is allowed. Systems such as flight ticketing data servers that re-
quire concurrency, but can afford a delay in seconds, may use firm real-time systems.

As mentioned in section 1.1, a real-time system must ensure that, by construc-
tion, it is provably temporally correct and predictable. A real-time system can be
proven predictable and temporally correct by specifying the following three aspects.
Firstly, the real-time workload –i.e., the computation produced by a real-time ap-
plication that must complete prior to its deadline, is specified in the form of tasks.
These tasks are often recurring in their nature in real-time systems. Secondly, the
processing platform or hardware resources upon which the application tasks are ex-
ecuted. Thirdly, a scheduling algorithm that determines, at any time, which set
of tasks execute on the processing platform. In the following, we discuss all three
aspects in more detail.

2.1.1 Real-time Workload

Real-time applications have become more sophisticated and complex in their behav-
ior and interaction over the time [3]. As mentioned in earlier section, an application
is said to be real-time when it is subject to timing constraints for its individual
jobs/events as well as for its overall system response. These timing constraints are
usually applied by the system designer, however, they typically reflect a need for
safety or sustainability of the system performance. Definition of these timing con-
straints categorize an application into hard real-time, soft real-time, or firm real-time
applications. For instance, the ABS breaking system in cars and video streaming
applications are good examples of hard and soft real-time systems, respectively.
Typically, hard real-time applications work in closed and highly predictable envi-
ronments. On the contrary, soft real-time applications execute in open and less
predictable environments.

In real-time systems, a common assumption is that it is possible to decompose a
real-time application into a finite set of discrete tasks. Each task represents certain
functionality of application. These tasks possess certain characteristic parameters
such as release instant, periodicity, deadline, and execution requirement. Based on
these parameters, tasks may be specified according to different task models. A task

2.1. Real-time Systems 13

model is the format and rules for specifying a task system. Before elaborating dif-
ferent task models, we present these characteristic parameters, which are associated
with real-time tasks. From now on, we say that a task Ti releases a job Ti,j (where
j is the index of the job) at time instant t to express the fact that Ti is instantiated
exactly at instant t so that its treatment can be carried out. A job can therefore be
seen as an instance of a task Ti. In the following, we recall classical definitions for
certain parameters that characterize tasks of real-time applications.

Deadline (di) of a real-time task is one of the key parameters which reflects the
timing constraint on its execution. This quantity can be expressed as a number
of CPU clock cycles but other reference units can be used, such as CPU ticks for
instance. Hereafter, we use the term time unit to refer to the used reference unit.
In this dissertation, deadline will denote the relative deadline of Ti –i.e., relative to
its last job release, with the interpretation that once the task releases a job, that
job must be completely executed by di time units.

Period (Pi) of a real-time task in another key parameter which reflects the
delay between two consecutive job releases of task Ti. This parameter can be
interpreted in three distinct ways, each of which leads to a well-defined type of
task. According to the interpretation given to the period, tasks can be classified
into three categories of task models: periodic task model, sporadic task model, and
aperiodic task model. We elaborate further these task models in section 2.1.1.1.

Note that, very often, the theoretical results proposed in the literature apply
only to tasks that provide a particular relation between their period and deadline.
Therefore, it is worth mentioning the specific vocabulary that characterizes such
relations. Ti is said to be constrained-deadline task if di ≤ Pi or implicit-deadline
task in the particular case where di = Pi. When the proposed result holds whatever
the relation between period and deadline, Ti is said to be arbitrary-deadline task.
Note that the following inclusion holds: an implicit-deadline task is a constrained-
deadline task which is in turn an arbitrary-deadline task. Thanks to this inclusive
relation between the task models, any property that holds for an arbitrary-deadline
task also holds for a constrained- and implicit-deadline task.

Offset (Oi) refers to the time delay before the release time of the first job of a
periodic real-time task. In other words, the offset corresponds to the release time
of the first job Ti,1 of task Ti. When the whole application is modeled by a single
set of tasks with identical offsets, the application is said to be synchronous; without
loss of generality, the offset of every task can be considered as 0 and can be ignored.
Otherwise, if the offsets for different tasks are not equal, the application is said
to be asynchronous. Notice that the offset of a task is defined only if the task is
periodic. This is because the release times of the jobs (including the first one) for
sporadic/aperiodic tasks are not known beforehand.

14 Chapter 2. Background on Real-time and Energy-efficient Systems

Worst-case execution time (Ci) refers to the largest execution time needed to
complete a distinct job of a task Ti, assuming that its execution is not interrupted.
Since real-time systems are designed to achieve only a few specific functions on a
specific processing platform, mostly it is assumed that the Worst-Case Execution
Time (WCET) of every task is known beforehand. WCET of a task is usually
expressed in the same units as deadline and period. Note that the value of Ci
depends not only on the functional code of Ti, but varies on different platforms.
Authors in [123] suggest that the estimated WCET of tasks must offer both tightness
and safety properties. Tightness means that they must be as close as possible to the
actual WCET of a task, not to overestimate the resources required by the system.
Safety is the guarantee that the computed WCET is greater than or equal to any
possible execution time. The process of determining Ci must account for issues like
worst-case cache behavior, pipeline stalls, memory contention, memory access time,
program structure, and worst-case execution paths within the code.

There are some other factors as well, which are not directly concerned with
the estimation of WCET, but contribute to the response time of tasks such as job
preemptions, context switching, state saving, and scheduling-decision processing
time by operating system. If a job is allowed to migrate between processors during
its scheduling window, there may be an added penalty of refreshing the cache of the
processor, to which the job is migrating. The preemption and migration costs are
typically dependent on the processor architecture and the scheduling algorithm.

Within the scope of this dissertation, we consider that the WCET of all tasks
is known beforehand. Interested reader may refer to some recent research work and
surveys presented in [123, 69, 70] for further investigations in this research field.

Laxity (Li) is a runtime parameter of a task’s job that is a measure of its urgency
to execute relative to its deadline. For instance, in a feasible task set, a job with
zero laxity is the most urgent job to execute in order to avoid deadline miss. The
absolute laxity (Li) of a task at its release time instant t is given by equation 2.1.

Li = di − (t+ Ci) (2.1)

Figure 2.1 illustrates a sample schedule of tasks and graphical representation
of various characteristic parameters. This figure illustrates the schedule of a single
periodic task Ti having implicit deadline –i.e., di=Pi, on a single processor. The
parameters of Ti are: Oi=2, Ci=3, and di=Pi=4. Each green box represents a job of
task Ti and its length corresponds to its worst-case execution time Ci. The release
and deadline time instants are represented by up and down arrows, respectively.
According to the definitions above, Ti releases a job noted Ti,j (∀j, j=1, 2, ...,∞)
at each instant ri. Each such job has a WCET of Ci and it must complete by its
relative deadline noted di. At release instant, a task has an absolute laxity of Li.

2.1. Real-time Systems 15

Figure 2.1: Illustration of various characteristic parameters of real-time tasks. Pe-
riodic task Ti has an implicit deadline (di=Pi) with the following values of other
parameters. Oi=2, Ci=3, di=Pi=4, and Li=1.

2.1.1.1 Task models

Based on the knowledge of characteristic parameters presented in section 2.1.1, we
briefly discuss various classical task models in the following.

Periodic Task Model: This task model, presented by Liu and Layland in [71],
allows the specification of homogeneous sets of jobs that recur at strict periodic
interval. A periodic task Ti is specified by its offset, WCET, and period. Note that
for such task models, every task has an exact inter-arrival time between successive
jobs. Along with this interpretation, it is often assumed that the release time of the
very first job of the tasks is also known beforehand, thus implying that the exact
release time instants of every job can be computed at the system design-time.

Sporadic Task Model: The sporadic task model with implicit deadlines, pre-
sented by Liu and Layland in [71], removes the restrictive assumption of generating
jobs at strict periodic intervals of time. In addition, an offset parameter is not
specified for sporadic tasks. The behavior of a sporadic task Ti can be character-
ized by only the WCET and its period. The parameter Pi indicates the minimum
inter-arrival time between successive jobs of Ti (note that Pi denoted the exact
inter-arrival time for periodic tasks). That is, the exact release time of every job is
not known before they are actually released at runtime.

Aperiodic Task Model: In this task model, the tasks do not have a period
parameter. That is, system designers have no prior information about the time-
instants at which jobs are released.

2.1.1.2 Description of workload model in this dissertation

Throughout this dissertation, we characterize a periodic and independent task
set τ as a finite collection of tasks such that τ = {T1, T2, Ti, ..., Tn−1, Tn}, and

16 Chapter 2. Background on Real-time and Energy-efficient Systems

a real-time task Ti composed of a finite or infinite collection of jobs such that
J = {Ti,1, Ti,2, ...}. The letter n will denote the number of tasks in a task set. Every
job Ti,j of a real-time task Ti, (∀i, 1 ≤ i ≤ n) will be characterized by the quadruplet
(ri, Ci, di, Pi): an arrival or release time ri, a worst-case execution requirement Ci,
a relative deadline di, and a period Pi. The interpretation of these parameters is
that the job Ti,j of a task Ti arrives after ri time units after the system start-time
(the offset will be assumed zero in our general system model) and must execute
for Ci time units over the time interval [ri, ri + di). Release instant ri is assumed
to be a non-negative real number while both Ci and di are positive real numbers.
The interval [ri, ri + di) is referred to as Ti,j ’s scheduling window. A job Ti,j is said
to be active at time instant t if t ∈ [ri, ri + di) and Ti,j has unfinished execution.
In general task model, we consider a completely specified system –i.e., the system
designer has complete knowledge of each job Ti,j and infinitely-repeating jobs are
generated by independent periodic tasks. We consider an implicit deadline task
model. Furthermore, we consider that preemption of tasks –i.e., a job suspends
while a different job executes and resumes execution at later time, is allowed. In all
figures that illustrate scheduling of tasks throughout this dissertation, an upward
arrow indicates a job’s release and a downward arrow indicates its deadline and
period. A rectangular box on the time line indicates that a task is executing during
that interval as illustrated in figure 2.1.
When analyzing a system, we need to know the execution requirement of each
task –i.e., the amortized amount of processing time the task will need. A task’s
utilization can be used to measure its processing requirement. The utilization of
task Ti is the proportion of processing time the task will require if it is executed
on a unit-speed (ν) processor: ui

def
= Ci/Pi. The aggregate utilization of a periodic

task set, Usum (τ)
def
=
∑n

i=1 ui, measures the proportion of processor’s time the
entire task set will require.

In the rest of this dissertation, we consider that the worst-case execution time
of tasks is known a priori, all jobs of tasks are preemptable, full migration of tasks
is allowed (except in case of chapter 3), task-level parallelism is allowed, however,
job-level parallelism is not permitted (i.e., a job may not execute concurrently with
itself on multiple processors), and tasks are independent of each other –i.e., the
execution of one task’s job is not contingent upon the status of another task’s job.
Blocking of shared resources in not permitted as well.

2.1.2 Processing Platform

A complete real-time system is a real-time task model paired with a specific pro-
cessing platform, which has a specific computing capacity. The platform may be
composed of a single processor denoted by π or it may contain multiple processors
denoted by Π such that Π = {π1, π2, ..., πm}. Letter m refers to the number of
processors in a multiprocessor platform. If the platform is a multiprocessor, the
individual processors may all be the same (identical) or they may differ from one

2.1. Real-time Systems 17

another. As highlighted by authors in [3, 4], multiprocessor platforms are more en-
ergy efficient than equally powerful single-processor platforms, because raising the
frequency of a single processor results in a multiplicative increase of the energy con-
sumption while adding processors leads to an additive increase. More details are
presented in section 2.2. In the following, we discuss certain categories of multipro-
cessor systems which differ from one another based on the speeds of the individual
processors.

Unrelated multiprocessor platform. In these platforms, the processing speed
depends not only on the processor, but also on the job being executed. In such
platforms, a specific speed is associated to every processor-task couple with the
interpretation that, in any time interval of length L, task Ti executes ν×L execution
units when executed on processor πk. This model of platform was introduced in
order to reflect the fact that two distinct tasks (i.e., with different code-instructions)
executed on the same processor can require different execution times to complete
even though the length of their code is identical. This is due to internal architecture
of the processors and the type of the task instructions. Indeed, some processors are
optimized for some types of instructions while they require more time to complete
other types of instructions.

Uniform multiprocessor platform. In these platforms, the processing speed
depends only on the processor. For instance, considering two different jobs, for all
pairs of jobs Ti,j and Ti,j+1 that execute on the same processor πk, the processor
speed remains the same.

Identical multiprocessor platform. In these platforms, all processors have
the same speeds. Generally, in such systems, the speed is usually normalized to
one unit of work per unit of time. The identical multiprocessor platform model
considers that all the processors have the same characteristics, in term of power
consumption, computational capabilities, architecture, cache size and speed, I/O
and resource access, and access time to shared memory etc. In any interval of time,
two identical processors execute the same amount of work and consume the same
amount of energy.

In this dissertation, we consider an identical multiprocessor platforms for
scheduling real-time tasks. Precisely, we consider symmetric shared-memory multi-
processor (SMP) layout of multiprocessor identical platform as illustrated in figure
2.2.

2.1.3 Real-time Scheduling

Real-time scheduling is one of the three aspects that should be taken into account
to prove predictability and temporal correctness of real-time systems. The role
of a real-time scheduling algorithm is to determine which active jobs of real-time

18 Chapter 2. Background on Real-time and Energy-efficient Systems

Figure 2.2: High-level illustration of symmetric share-memory multiprocessor (SMP)
architecture layout of processing platform.

application tasks are executing on the processing platform at every time instant.
From an abstract point of view, real-time scheduling algorithm determines the
interleaving of execution for tasks’ jobs on the target processing platform. This
interleaving is called a schedule. The schedule must be produced to ensure that
every job of task executes on processor(s) for its execution requirement (WCET)
during its scheduling window. In a real-time schedule, generally, a task job can
be in either ready, running, blocked, or terminated state. For instance, when a
recurring job is released (for the first time as well as when it recurs), it becomes
ready for execution. A ready job competes for its priority in the schedule with
already present ready tasks. If a ready job has its priority high enough then it
is allocated to a processor for execution and becomes running. A running job
can be blocked due to the unavailability of a shared resource (other than the
processor) held by another job1. Upon completion of its execution requirement
(i.e., WCET), a job is said to be terminated until its next release. The instants
at which a job of a task is released, preempted, terminated, or reached its dead-
line (for constrained-deadline task system) are broadly referred as scheduling events.

Scheduling algorithms can be broadly classified into offline and online algo-
rithms [42, 47]. In offline scheduling algorithms, all scheduling decisions are made
before the system begins executing. These scheduling algorithms select jobs to
execute by referencing to a table describing the predetermined schedule. Usually,
offline schedules are repeated after a specific time period. For instance, if the
jobs being scheduled are generated by periodic tasks, an offline schedule may be
generated for an interval of length equal to the least common multiple of the periods
of the tasks (also referred as hyper-period) in the task set. After the hyper-period,
the arrival pattern of the jobs will repeat. When the schedule reaches the end of

1Note that, in this dissertation, we do not consider inter-task dependency due to shared re-
sources.

2.1. Real-time Systems 19

the predetermined table, it can simply return to the beginning of the table. In
online scheduling algorithms, on the other hand, all scheduling decisions are made
without specific knowledge of jobs that have not yet arrived. These scheduling
algorithms select jobs to execute by examining properties of active jobs. Online
algorithms can be more flexible than offline algorithms since they can schedule jobs
whose behavior cannot be predicted ahead of time. Online scheduling algorithms
can be divided into fixed-priority and dynamic-priority scheduling algorithms.

In fixed-priority scheduling algorithms, all jobs generated by the same task
have the same priority. More formally, if job Ti,j has higher priority than Tl,j then
Ti,j+1 has higher priority than Tl,j+1 for all values of j. Fixed-priority algorithms
also referred as Static-priority algorithms. One very well-known fixed-priority
scheduling algorithm is the Rate Monotonic (RM) algorithm proposed by [71].
In this algorithm, the task period is used to determine priority –i.e., tasks with
shorter periods have higher priority. This algorithm is known to be optimal among
single-processor fixed-priority algorithms –i.e., if it is possible for all jobs to meet
their deadlines using a fixed priority algorithm, then they will meet their deadlines
when scheduled using RM algorithm. In dynamic-priority scheduling algorithms,
jobs generated by the same task may have different priorities. The Earliest Deadline
First (EDF) algorithm [23, 71, 85] is a well-known dynamic-priority algorithm. EDF
scheduling algorithm is optimal among all single-processor scheduling algorithms
–i.e., if it is possible for all jobs to meet their deadlines, they will do so when
scheduled using EDF. Dynamic-priority algorithms can be further divided into two
categories –i.e., job-level fixed-priority and job-level dynamic-priority algorithms,
depending on whether individual jobs can change priority while they are active.
In job-level fixed-priority algorithms, jobs cannot change priorities. EDF is a
job-level fixed-priority algorithm. On the other hand, in job-level dynamic-priority
algorithms, jobs may change priority during execution. Least Laxity First (LLF)
algorithm [33, 71] is a job-level dynamic-priority algorithm. LLF scheduling
algorithm assigns a higher priority to a task with smaller laxity and it has been
known as an optimal preemptive scheduling algorithm on a single processor platform.

Another important aspect of scheduling algorithms is their optimality. A
scheduling algorithm is said to be optimal if it can successfully schedule any feasible
task system. A task system is said to be feasible if it is guaranteed that a schedule ex-
ists that meets all deadlines of all jobs, for all sequences of jobs that can be generated
by the task system. For instance, EDF is an optimal scheduling algorithm for single-
processor systems [85] whereas, Rate monotonic (RM) is not an optimal algorithm
for all single-processors. RM is optimal on single-processor systems only among
fixed-priority algorithms –i.e., if it is possible for a task set to meet all deadlines us-
ing a fixed-priority algorithm then that task set is RM-schedulable [85]. Authors in
[71] proved that for a set of n periodic tasks with unique periods, a feasible schedule
that will always meet deadlines exists if the aggregate utilization of tasks is below
a specific bound depending on the number of tasks –i.e.,

∑n
i=1 ui ≤ n

(
n
√

2− 1
)
.

20 Chapter 2. Background on Real-time and Energy-efficient Systems

When the number of tasks tends towards infinity, the schedulable utilization of RM
algorithms tends towards a constant value –i.e., n→∞;

∑n
i=1 ui ≈ 0.693. Authors

in [21] propose a hyperbolic bound relative to the Liu and Layland bound [71] and
show that for n tending to infinity, the hyperbolic bound was found to be equal to√

2. Single-processor systems that allow dynamic-priority scheduling will commonly
use the EDF scheduling algorithm, while systems that can only use fixed-priority
scheduling algorithms will use the RM scheduling algorithm. Since the focus of this
dissertation is mainly on multiprocessor real-time systems, therefore, we discuss in
the following how scheduling problem in multiprocessor systems is addressed.

2.1.4 Real-time Scheduling in Multiprocessor Systems

In multiprocessor systems, the problem of scheduling tasks is typically solved using
different approaches based on how much migration the system allows at runtime.
A task is said to be migrating if its successive jobs (or parts of the same job) are
executed on different processors. Based on the amount of allowable migration,
three types of migration strategies can be considered [8, 42, 47, 63].

No Migration. In this type of scheduling strategies, tasks can never migrate.
Each task is statically assigned to a specific processor before execution and, at
runtime, all job instances generated by a task execute on the processor to which,
the task is assigned. Figure 2.3 illustrates a partitioned scheduler in which,
every processor maintains a unique priority space associated only with the tasks
being partitioned on it. No migration strategies are also referred as partitioned
scheduling strategies. Partitioned scheduling approach has the virtue of permitting
schedulability of task set to be verified using well-established single-processor
schedulability analysis techniques.

Full Migration. In this type of scheduling strategies, jobs of a task can migrate
at any point in time during their execution. All jobs are permitted to execute on any
processor of the system. However, a job can only execute on at most one processor
at a time –i.e., job parallelism is not permitted. Figure 2.4 illustrates a full migra-
tion scheduling in which, a single priority space is associated with all processors in
the system. Full migration strategies are also referred as global scheduling strategies.

Restricted Migration. In this type of scheduling strategies, tasks can migrate
only at job boundaries. Whenever a new job of a task is released, a top-level
scheduler assigns this job to a particular processor. Once assigned, this job must
complete its execution on the processor to which it is assigned –i.e., it can not
migrate. However, the next job of the same task can execute on the same or different
processor. Once assigned, the execution of job is the responsibility of the local
scheduler on that processor. Figure 2.5 illustrates a restricted migration scheduler
in which, there is a global priority queue and local priority queues for each processor.

2.1. Real-time Systems 21

Figure 2.3: No migration scheduling.

Figure 2.4: Full migration scheduling.

Figure 2.5: Restricted migration scheduling.

22 Chapter 2. Background on Real-time and Energy-efficient Systems

Prohibiting migration, as in case of partitioned scheduling, may cause a system
to be under-utilized [8, 47] and for that reason, more than enough processing power
will be available on some processor when a new job arrives. If migration is allowed,
on the other hand, the job can execute for some time on one processor and then move
to another processor, allowing the spare processing power to be distributed among
all the processors. However, while full migration strategy is the most flexible, there
are clearly overheads associated with allowing migration such as increased context
switching, handling of shared resources, and cache-related overhead etc. Thus, there
is a trade-off between scheduling loss due to migration and scheduling loss due to
prohibiting migration.

2.1.4.1 Earliest Deadline First (EDF) as multiprocessor real-time
scheduling algorithm

In this dissertation, EDF scheduling algorithm is often used to schedule real-time
tasks on multiprocessor platform. In this section, we present EDF as a multi-
processor real-time scheduling algorithm. EDF is a job-level fixed-priority online
scheduling algorithm which is optimal for single-processor systems [23, 71]. Au-
thors in [34, 52] have shown that, for multiprocessor systems, there is no job-level
fixed-priority optimal online scheduling algorithm. Since EDF is a job-level fixed-
priority scheduling algorithm for multiprocessors, determining whether a given task
set is feasible on a multiprocessor platform will not tell us whether that task set
is EDF-schedulable on the same platform as well. Thus, EDF is not optimal for
multiprocessor systems. Nonetheless, there are still many compelling reasons for
using EDF for scheduling real-time applications on multiprocessor systems.

• Since EDF is an optimal single-processor scheduling algorithm, therefore, all
local scheduling decisions are taken using an optimal algorithm when EDF is
used in partitioning and restricted-migration based systems.

• EDF is considered as efficient from implementations point of view [74].

• The number of preemptions and migrations incurred by EDF can be bounded.
Bounds depend on which migration strategy is being used. Since migration
and preemption both incur overheads, it is important to be able to incorporate
the overheads into any system analysis. This can only be done if the associated
overheads can be bounded [52, 47].

On single-processor, EDF is well defined –i.e., for execution at every time in-
stant, the job that has the smallest deadline is selected for execution on the sole
processor. EDF is optimal scheduling algorithm for single-processo systems. When
more processors are added to the system, however, EDF suffers from sub-optimality.
The utilization bound for periodic tasks with implicit deadlines under EDF multi-
processor scheduling algorithm cannot be higher than (m+1)

2 for an m-processor
platform [7]. This is a sufficient condition bound. One of the contributions of this

2.2. Power- and Energy-efficiency in Real-time Systems 23

dissertation (in chapter 3) is to increase this schedulability bound of EDF algorithm
using restricted-migration strategy.

2.2 Power- and Energy-efficiency in Real-time Systems

The demand for portable systems is ever-increasing with more complex functionality
requirements as depicted in figure 2.6(a). The assessment of ITRS (International
Technology Road map for Semiconductors) in 2008 fore casted further increase in
power consumption in cell phones (see figure 2.6(b)). EPoSS (the European Tech-
nology Platform on Smart Systems Integration) suggested in 2009 that the energy
density in batteries would increase beyond 400 Wh/kg by 2020 (see figure 2.6(c)).
All these assessments suggest that complex real-time systems, which are composed of
sophisticated real-time applications being scheduled over multiprocessor platforms,
must be increasingly challenged to reduce energy consumption while maintaining
assurance that timing constraints will be met. Power and energy in these complex
systems is managed at both system design-time as well as runtime. In a post-design
scenario, energy saving is achieved by static (offline) optimizations as well as by
actively changing the power consumption profile of the system at runtime (online).

2.2.1 Power and Energy Model

There are two principle sources of power dissipation in CMOS (Complementary
Metal-Oxide Semiconductor) technology-based systems: dynamic power dissipation,
which arises from the repeated capacitance charge and discharge on the output of
the hundreds of millions of gates in modern chips, and static power dissipation which
arises from the electric current that leaks through transistors even when they are
turned off. Until very recently, only dynamic power dissipation has been a significant
source of power consumption. However, shrinking processor technology below 100

nanometer has allowed and actually required reducing the supply voltage. Reduced
feature-size favors dynamic power dissipation but unfortunately, smaller geometries
exacerbate leakage, so static power begins to dominate the power consumption in
deep sub-micron technology. Overall power consumption of CMOS technology-based
processors, represented as a function of speed (ν) in variable speed settings, is
composed of static and dynamic components which relate to supply voltage Vop,
operating frequency Fop, and leakage current (Iq) through an approximate relation
given by equation 2.2.

Pwr(ν) = γCeffV
2
opFop + IqVop (2.2)

Here, γ is the fraction of gates actively switching and Ceff refers to the total
load capacitance of all gates. The first addend in equation 2.2 corresponds to dy-
namically dissipated power and second addend models statically dissipated power.
We have ignored power lost to the momentary short circuit that occurs at the out-
put whenever the switching activity takes place. The loss is relatively small; it

24 Chapter 2. Background on Real-time and Energy-efficient Systems

(a) Evolution of the demand for portable equipment over the
years (SEMICO Research Corp.)

(b) Power consumption in portable equipment over the years
(ITRS 2008).

(c) Evolution of energy-density in batteries over the years
(EPoSS 2009).

Figure 2.6: Current and future trends in the evolution of portable embedded sys-
tem demand, their power consumption, and their energy-density in batteries. (a)
Evolution of the demand for portable equipment over the years (SEMICO Research
Corp.). (b) Power consumption in portable equipment over the years (ITRS 2008).
(c) Evolution of energy-density in batteries over the years (EPoSS 2009).

2.2. Power- and Energy-efficiency in Real-time Systems 25

contributes to dynamic power dissipation, and the first term in equation 2.2 can
absorb it, if necessary.

When dynamic power is the dominant source of power consumption –as it has
been historically in many less aggressive fabrication technologies– it is possible to
approximate equation 2.2 with just the first term. In that case, the relation of
V 2
op suggests reducing supply voltage as the most effective way to decrease power

consumption. For instance, halving the voltage will reduce the power consumption
by a factor of four. Supply voltage is also related to the operating frequency of the
processors by the relationship given in equation 2.3.

Fop ≈
(Vop − Vth)η

Vop
(2.3)

Where Vth is the threshold or switching voltage and the exponent η is an ex-
perimentally derived constant that depends on the technology in use. During the
past decades, the threshold voltage of the manufactured devices was too high to
generate a significant leakage current when the state of the device is off, but still
low enough compared to Vop to be ignored in the above expression. That is, the
expression above could be rewritten as in equation 2.4.

Fop ≈ (Vop)
η−1 (2.4)

For instance, in technology based on classical MOSFETs (Metal-Oxide Semicon-
ductor Field Effect Transistor), η= 2 [80], making the frequency a linear function
of the supply voltage. However, the exact knowledge of η is not essential. The most
important feature is the fact that the power function Pwr(ν) is a strictly increasing
convex function of the frequency. Historically, CMOS technology has dissipated
much less power. In fact, when not switching, CMOS transistors lost negligible
(static) power. However, the power they consume has increased dramatically with
increases in device speed and chip density. Continuously shrinking transistor size
have forced a reduction of the threshold voltage as well. This miniaturization
reduces the gap between the supply voltage and threshold voltage, resulting in a
significant sub-threshold leakage current. Nowadays, these leakage currents are
becoming a significant factor to portable devices because of their undesirable effect
on battery life time. Hence, static power dissipation can no more be ignored in
modern embedded systems. In this dissertation, we consider that static power is a
significant contributing factor to overall power and energy dissipation and cannot
be ignored any further.

Although power-efficiency and energy-efficiency are often perceived as overlap-
ping goals, there are certain differences when designing systems for one or the other.
Formally, the energy consumed by a system is the amount of power dissipated dur-
ing a certain period of time. For instance, if a task occupies a processor during an
execution interval of [t1, t2] then the energy consumed by the processor during this
time interval is given by equation 2.5.

26 Chapter 2. Background on Real-time and Energy-efficient Systems

E[t1, t2] =

∫ t2

t1

Pwr(ν(t))dt (2.5)

Equation 2.5 shows that there is an aspect of time involved in energy consump-
tion of the system. Every computation operation requires a specific interval of time
to be completed. The energy consumption decreases if the time required to perform
such operation decreases and/or the power consumption decreases. For instance,
power can be halved by simply halving the operating frequency, but at the same
time, overall computation time would be doubled, which might be leading to no ef-
fect on overall energy consumption. Thus, a technique that would purely minimize
power dissipation, but at the same moment increase the computational time, might
lead to non change or even an increase in energy consumption.

Power- and energy-efficiency and scheduling of real-time systems are therefore
closely related problems, which should be tackled together for best results. This dis-
sertation is an attempt to address together the problem of overall energy-awareness
and scheduling of multiprocessor real-time systems.

2.2.2 Energy-aware Real-time Scheduling

To address the issue of energy consumption, many scheduling-based software tech-
niques have been proposed over the years, e.g., [16, 17, 57, 79, 83, 92, 124]. Energy-
efficient scheduling techniques can be broadly classified into online and offline tech-
niques.
In the category of online power and energy management techniques, Dynamic Power
Management (DPM) technique is well studied and practiced in real-time systems.
This technique selectively puts system components into power-efficient states when-
ever they are idle due to unavailability of workload. The fundamental theory for the
applicability of DPM techniques is that systems (and their components) experience
nonuniform workloads during operation time and that it is possible to predict, with
a certain degree of confidence, the fluctuations of workload [102]. Hence, based on
these predictions, DPM encompasses a set of techniques that achieve energy-efficient
computation by selectively turning-off or reducing the performance of system com-
ponents when they are idle or partially unexploited, hence conserving power. How-
ever, the inconvenience with DPM techniques is that once in a power-efficient state,
bringing a component back to the active or running state requires additional energy
and/or latency to serve an incoming task. Once applied, DPM policies eliminate
both dynamic as well as static power dissipation. The input to the problem of man-
aging energy consumption under DPM techniques is the length of an upcoming idle
period, and the decision to be made is whether to transition system components to
a power-efficient state while the system is idle. There are several issues in coming to
this decision intelligently. For instance, immediate shutdown –shutdown as soon as
an idle period is detected– may not save overall energy if the idle period is so short
that the powering-up costs are greater than the energy saved in the sleep state. On
the other hand, waiting too long to power-down may not achieve the best-possible

2.2. Power- and Energy-efficiency in Real-time Systems 27

energy reductions either. Thus, there exists a need for effective and efficient decision
procedures to manage power consumption.

Dynamic power management attempts to make such decisions (usually, under
the control of scheduling algorithms) at runtime based on the dynamically changing
system state, functionality, and timing requirements [29, 55, 92, 100]. Figure 2.7
illustrates a simple example of how a DPM technique takes energy management
decision under the control of the scheduler. Upon the termination of a precedent
task Ti, an idle time interval of length Tidle is detected on processor π. A DPM
technique would compare the length of idle interval with the break-event time (BET)
of π. For system components associated with non-zero transition costs, break-even
time denotes the minimum length of idle interval which justifies (in terms of energy
consumption) a device’s transition from active state to power-efficient state [35]. A
minimum value of BET is the one during which keeping a device in active state
consumes exactly the same amount of energy as transitioning it from active to some
other power-efficient state and bringing it back to active state. If Tidle ≥ BET then
processor is transitioned to power-efficient state. Transition penalty in terms of time
is highlighted as red boxes in figure 2.7. DPM techniques are further discussed in
chapter 4.

Figure 2.7: Example of energy management decision-making of DPM technique.

Figure 2.8: Example of energy management decision-making of DVFS technique.

Real-time Dynamic Voltage and Frequency Scaling (DVFS) technique is another

28 Chapter 2. Background on Real-time and Energy-efficient Systems

online technique which is aimed at changing the system’s energy consumption pro-
file. Real-time applications potentially exhibit variations in their actual execution
time and therefore, often finish much earlier than their estimated worst-case exe-
cution time [10, 40]. DVFS technique exploits these variations in actual workload
for dynamically adjusting the voltage and frequency of processors in order to re-
duce power and energy consumption. The challenge for these techniques, however,
is to preserve the feasibility of schedule and provide deadline guarantees. These
techniques are of particular effectiveness and interest because energy consumption
of the processor is quadratically related to the supply voltage [87, 48]. Figure 2.8
illustrates a simple example of how a DVFS technique takes energy management
decision under the control of scheduler. Figure 2.8 depicts two jobs –i.e., Ti,1 and
Tq,1, of different tasks being released at the same time instant with exactly the
same offset and equal deadlines. For equal deadlines, the scheduling algorithm can
arbitrarily select any job in the absence of tie-breaking rules. Job Ti,1 executes
first and finishes after executing only 3 time units which is earlier than its WCET
–i.e., Ci,1=5 time units. Job Ti,1 generates 2 units of dynamic slack time (shown
in red box between time instants 5 − 7). Since Tq,1 is the only successor ready job
left, therefore, it consumes this dynamic slack to slowdown its execution on target
processor up to its deadline –i.e., time instant 10.

The key concern in a DVFS technique is to increase the utilization of slack time
as much as possible and to make the resultant power and energy consumption as flat
as possible by adjusting the operating frequency and supply voltage of a processor
under real-time constraints. DVFS techniques can exploit not only the dynamic
slack that is generated online by the workload variations, but also the worst-case
(offline) slack time that occurs because of the under-utilization of processor, even if
all tasks exhibit their worst-case execution times [68]. The worst-case slack time can
be extracted from an application’s schedule before task execution. DVFS techniques
are further discussed in chapter 5.

2.3 Simulation Environment

For experimental results and evaluation of our proposed techniques in this disser-
tation, we rely mainly on the simulations using a multiprocessor simulation tool
called STORM2 (Simulation TOol for Real-time Multiprocessor scheduling) [108].
This tool has been initially designed and developed to satisfy the evaluation and
validation needs of French national project PHERMA (Parallel Heterogeneous En-
ergy efficient real-time Multiprocessor Architecture) [86]. STORM is intended to: i)
use as input the specifications of the hardware and software architectures together
with the scheduling policy; ii) simulate the system behavior using all the character-
istics (task execution time, processor functioning conditions, etc.) in order to obtain
the chronological track of all the scheduling events that occurred at run time, and
iii) compute various real-time metrics in order to analyze the system behavior and

2STORM has been developed at IRCCyN laboratory of the University of Nantes, France [116].

2.4. Summary 29

performances from various point of views. Interested readers can see Appendix A
for details on the functional aspects of STORM simulator.

We use H.264 video decoder application, which is a high compression rate mul-
timedia application [88], and synthetic task sets as our target application model in
this dissertation. While H.264 video decoder represents a computation extensive
real-world multimedia application, the use of synthetic task sets allows us to vary
task parameters as desired and observe the output behavior of our proposed tech-
niques. These synthetic task sets are mostly auto-generated tasks. The criteria for
generating synthetic tasks is presented in the experimental setup of chapters, where
necessary. For processing platform, we use hardware parameters from Marvell’s
XScale R© technology-based embedded processor PXA270 [72] to carry-out simu-
lations. Although, PXA270 processor is not manufactured using most advanced
technology3, it is still a suitable choice. PXA270 supports six discrete voltage and
frequency levels as shown in table 2.1, which allows static and dynamic voltage
and frequency scaling. Moreover, it has five power-efficient states as shown in table
2.2, which allows dynamic power management. The power consumption parameters
presented in table 2.1 and table 2.2 will be used in all our simulation results.

Table 2.1: Voltage-frequency levels of PXA270 processor
Parameter Level1 Level2 Level3 Level4 Level5 Level6
Voltage 1.55 1.45 1.35 1.25 1.15 0.90
Frequency 624 520 416 312 208 104
Active Power 925 747 570 390 279 116
Idle Power 260 222 186 154 129 64

Table 2.2: Power-efficient states of PXA270 processor @ 624-MHz & 1.55-volts
States Power(mWatts) Recovery Time(ms)
Running 925 0
Idle 260 0.001
Standby 1.722 11.43
Sleep 0.163 136.65
Deep sleep 0.101 261.77

2.4 Summary

In this chapter, we provide the reader the background on real-time and energy-
efficient systems. We discuss various models for real-time workload and character-
istic parameters of real-time tasks, architecture of processing platforms, real-time
single-processor and multiprocessor scheduling paradigms. Moreover, we discuss

3PXA270 is manufactured at 180nm technology. It supports ARMv5TE instruction set.

30 Chapter 2. Background on Real-time and Energy-efficient Systems

power- and energy-efficiency in real-time systems. We have provided power and
energy models and simulation environment that we use throughout this disserta-
tion. Moreover, we use periodic and independent task model of real-time applica-
tions that are scheduled upon identical multiprocessor platform of type SMP using
mostly the full migration or global scheduling approach (except in chapter 3, where
restricted-migration scheduling approach is used). We discuss in this chapter that
energy-efficiency and scheduling of real-time systems are closely related problems,
which should be tackled together for best results. To support this thesis, we dis-
cuss how techniques that would purely minimize power dissipation can increase the
computational time and eventually lead to no change or even an increase in energy
consumption. The inter-dependency of scheduling and energy-awareness of real-time
systems serves as principle motivation for this dissertation.

Chapter 3

Two-level Hierarchical Scheduling
Algorithm for Multiprocessor

Systems

Contents
3.1 Introduction . 31
3.2 Related Work . 32
3.3 Two-level Hierarchical Scheduling Algorithm 35

3.3.1 Basic Concept . 36
3.3.2 Working Principle . 37
3.3.3 Runtime View of Schedule from Different Levels of Hierarchy 41
3.3.4 Schedulability Analysis . 44

3.4 Experiments . 47
3.4.1 Setup . 47
3.4.2 Functional Evaluation . 47
3.4.3 Energy-efficiency of 2L-HiSA 50
3.4.4 Performance Evaluation . 52

3.5 Concluding Remarks . 55

3.1 Introduction

In section 2.1.4, we have seen that the design space of preemptive real-time
multiprocessor scheduling algorithms can be categorized into full-migration,
restricted-migration, and partitioned scheduling strategies based on the allowable
migration in the system. In this chapter, we focus mainly on restricted-migration
scheduling strategies (recall: tasks are allowed to migrate at job-boundaries only)
and we present a hierarchical scheduling algorithm for multiprocessor real-time
systems.

Briefly looking at the full migration or global scheduling class of algorithms, they
are attractive in the worst-case schedulability. Few multiprocessor global scheduling
algorithms such as PFair [13], LLREF [28], and ASEDZL [77] are known to be

32
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

optimal. However, their scheduling overhead such as context switches and number
of migrations and preemptions in often criticized to be too large. Systems that
prohibit full migration, on the other hand, must use either partitioning or restricted-
migration strategy. Between these two, the partitioning strategy is more commonly
used in current systems, reason being that partitioning-based solutions can reduce
the problem of multiprocessor scheduling into multiple single-processor scheduling
problems. However, partitioning can only be used for fixed task sets. If tasks are
allowed to dynamically join and leave the system, partitioning is not a viable strategy
because a task joining the system may force the whole system to be repartitioned,
thus forcing tasks to migrate. Determining a new partition is a bin-packing problem,
which is strong NP-hard problem [60]. Thus, repartitioning dynamic task sets incurs
too much overheads.

Restricted-migration scheduling strategies (also referred as semi-partitioned
scheduling) provide a good compromise between the full migration and the par-
titioning strategies [24, 63, 62]. It is flexible enough to allow dynamic tasks to join
the system at runtime, but it does not incur large migration overheads as compared
to full-migration strategies. This strategy is particularly useful when consecutive
jobs of a task do not share any data since all data passed to subsequent jobs would
have to be migrated at job boundaries. Furthermore, the scheduler used as top-
level scheduler (if a hierarchy of schedulers exist) in restricted-migration is much
simpler than the full-migration global scheduler. The full migration global sched-
uler needs to maintain information about all active jobs in the system, whereas the
top-level scheduler in restricted migration strategy makes a single decision about
a job when it arrives and then passes the job to a local scheduler that maintains
information about the job from that point forward. Restricted migration strategies
offer relatively low scheduling overhead at runtime and they are potentially very
interesting from the point of view of system performance and energy consumption.
In this chapter, we propose a scheduling algorithm based on restricted migration
strategy, called the Two-level Hierarchical Scheduling Algorithm (2L-HiSA). Our
proposed scheduling strategy uses Earliest Deadline First (EDF) scheduling algo-
rithm in a hierarchical fashion at both top-level and local-level scheduler. Authors in
[8] highlight that a significant disparity in schedulability exists between EDF-based
scheduling algorithms and existing global optimal scheduling algorithms. This is un-
fortunate because EDF-based algorithms entail lower scheduling and task-migration
overheads. In this work, we show that by using multiple instances of EDF schedul-
ing algorithm at different levels of hierarchy, the wort-case schedulability bound of
EDF can be improved.

3.2 Related Work

Some novel and promising techniques in the category of restricted-migration schedul-
ing have been proposed very recently with the main objective of reducing the runtime
overhead of scheduler and improving the schedulability and system utilization bound

3.2. Related Work 33

for multiprocessor systems.
Kato et al. in [63] have presented a semi-partitioned scheduling algorithm for

sporadic tasks with arbitrary deadlines on identical multiprocessor platforms. In
this research work, authors propose to qualify a task as migrating task only if it
is not possible to partition them on any processor of the platform. Thus, there are
mostly partitioned tasks and few migrating tasks which are allowed to migrate from
one processor to another only once per period. The main idea of this algorithm
consists in using a job-splitting strategy for migrating tasks. In terms of utilization
share, a migrating task is split into more than one processor. A task is split in such
a way that a processor is filled to capacity by the portion of the task assigned to
that processor. However, only the last processor to which the portion is assigned
may not be filled to capacity. Figure 3.1 illustrates a migrating task is executed
exclusively among processors by splitting the deadline of each migrating task into
the same number of windows as the processors across which the task is qualified to
migrate. In figure 3.1, a migrating task Tk is split across the three processors. Task
Tk is presumed to be executed within these fixed windows with pseudo-deadlines
which are smaller than the actual deadline of task. Fixing such pseudo-deadlines
with limited allowable migration makes system much less flexible as the migrating
tasks must execute within these fixed time slots. Systems with fixed time windows
can not take full advantage of early completion of real-time tasks and consequently,
cannot apply aggressive energy management techniques. Moreover, the job-splitting
may still lead to prohibitive runtime overheads for the system.

Figure 3.1: Job-splitting of a migrating task over three processors.

Authors in [62] have presented a Earliest Deadline Deferrable Portion (EDDP)
algorithm, which is based on the portioned scheduling technique as well. Migrating
tasks in this case are permitted to migrate between any two particular processors.
In order to curb the cost of task migrations, EDDP makes at most (m − 1) mi-
grating tasks on m-processors. Authors in this work claim that no tasks ever miss
deadlines, if the system utilization does not exceed 65% using EDDP. The approach
of limiting the migration of tasks to at most two processors is used earlier as well
by authors in [8] who have proposed a scheduling algorithm which considers the

34
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

trade-off between system utilization and number of preemptions for recurring task
systems. The migration overhead is relaxed in this approach compared to the other
optimal multiprocessor algorithms by limiting the number of migrating tasks. The
algorithm trades an achievable system utilization with the cost of preemptions by
adjusting a parameter k, where 2 ≤ k ≤ m. For k < m, the achievable utilization
is claimed to be k/(k + 1). For k = m, on the other hand, it is 100%, thereby their
proposed algorithm performs optimally. Based on the work of [8, 62, 63], authors
in [38] have also propose a semi-partitioned hard real-time scheduling approach for
sporadic deadline-constrained tasks upon identical multiprocessor platforms. In this
work, migration of jobs is prohibited except that two subsequent jobs of a task can
be assigned to different processors by applying a periodic strategy. This technique
comprises two steps: an assigning phase and a scheduling phase. The assigning
phase is somewhat similar to that of [63]. That is, if it is not possible to partition
a task without violating schedulability guarantees then the concerned task is classi-
fied as migrating task. Authors propose to distribute jobs of migrating task among
several processors using a multi-frame tasking approach with a predefined periodic
sequence of the occurrence of jobs on various processors. This predefined sequence
of jobs repeats itself cyclically at runtime upon the selected processors. The limita-
tion of this approach is the assumption that the number of frames of each migrating
task over multiple processors must be available beforehand to provide schedulability
analysis. Moreover, in [38] and [62], the schedulability bound is 65% which is still
not considerably large w.r.t. previously proposed partitioned scheduling algorithms
offering 50% utilization bound in worst-case.

Calandrino et al. in [24] have proposed a hybrid scheduling approach for soft real-
time tasks on large-scale multiprocessor platforms with hierarchical shared caches.
In this approach, a multiprocessor platform is partitioned into clusters, tasks are
statically assigned to these clusters (rather than individual processors), and sched-
uled within each cluster using the preemptive global EDF scheduling algorithm. All
tasks are allowed to migrate within a cluster but not across clusters. Authors in this
work demonstrate that, by partitioning the system into clusters instead of individual
cores, bin-packing limitations can be alleviated by effectively increasing bin-sizes in
comparison to item-sizes. However, this work still uses a common global scheduler
at cluster-level which is equivalent to breaking a larger multiprocessor scheduling
problem into multiple smaller multiprocessor scheduling problems. Moreover, the
solution is limited to soft real-time applications. In contrast to [24], authors in
[114] have proposed a two-level scheduling scheme, which uses the idea of sporadic
servers. In this approach, first an application is partitioned into parallel tasks as
much as possible. Then the parallel tasks are dispatched to different processors, so
as to execute in parallel. On each processor, real-time tasks run concurrently with
non real-time tasks. At the top level, a sporadic server is assigned to each scheduling
policy while at the bottom level, a Rate-Monotonic (RM) scheduler is adopted to
maintain and schedule the top-level sporadic servers. While this research work uses
a two-level hierarchy of schedulers, only soft real-time applications are considered
for scheduling.

3.3. Two-level Hierarchical Scheduling Algorithm 35

Our proposed two-level hierarchical scheduling algorithm statically partitions as
much tasks as possible to processors, which is somewhat similar to that of [62].
However, neither the number of migrating tasks nor the number of migrations per
migrating task is limited in our approach, which is contrary to that of [24], [38], and
[62]. Moreover, unlike in [62], 2L-HiSA does not fix time slots for migrating tasks.
Rather it reserves a portion of processor time on each processor (in proportion to its
under-utilization) for migrating tasks and this portion of time can be dynamically
relocated by local-level scheduler within a specified period to allow the execution of
statically partitioned tasks. This dynamic relocation of reserved time for migrating
tasks improves system flexibility both at design-time and runtime. In section 3.3,
we provide the 2L-HiSA scheduling algorithm in detail.

3.3 Two-level Hierarchical Scheduling Algorithm

The 2L-HiSA scheduling algorithm uses multiple instances of single-processor opti-
mal EDF scheduling algorithm in a hierarchical fashion at two levels: an instance at
top-level scheduler and an instance at local-level scheduler on every processor of the
platform. Since EDF is an optimal single-processor scheduling algorithm, therefore,
in order to determine whether the given task set is EDF-schedulable, it suffices to
determine whether this task set is feasible on the single-processor systems. Unfortu-
nately, it has been shown in [34, 52] that there are no optimal job-level fixed-priority
scheduling algorithms for multiprocessors. Since EDF falls in this category, there-
fore, determining whether a given task set is feasible on a multiprocessor system will
not tell us whether the same task set is EDF-schedulable on the same system as well.
Baruah, et al. proved in [13] that there exists a job-level dynamic-priority scheduling
algorithm, referred as PFair, which is optimal for periodic task sets on multipro-
cessors. Srinivasan and Anderson later showed in [106] that this algorithm can be
modified to be optimal for sporadic task sets as well. However, these results do not
apply on EDF because they use a job-level dynamic-priority algorithm. On the is-
sue of determining EDF-schedulability, authors in [5] have provided schedulable uti-
lization bounds for job-level fixed-priority scheduling algorithms for full-migration,
restricted-migration, and partitioned scheduling strategies. EDF, being a job-level
fixed-priority algorithm, has schedulable utilization bounds of m2

2m−1 ≤ Usum ≤
m+1
2

for full-migration strategies, Usum = βm+1
β+1 (β =

⌊
1
α

⌋
) for no-migration strategies,

and m − α(m − 1) ≤ Usum ≤ m+1
2 or otherwise for restricted-migration strate-

gies, respectively. Here, the term α represents a cap on individual task utilizations.
Note that, if such a cap is not exploited, then the upper bound on schedulable
utilization is approximately m

2 or lower. Authors in [7] state that, for a periodic
task set with implicit deadlines, the schedulable utilization under EDF or any other
static-priority multiprocessor scheduling algorithm –partitioned or global– can not
be higher than m+1

2 for m processors. Clearly, under this schedulability bound, a
multiprocessor platform suffers heavily from under-utilization (i.e., by a factor of
m−1
2). For instance, in a system composed of three processors (m = 3), platform re-

36
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

source equivalent to at least one processor
(
m−1
2 = 1

)
is wasted. 2L-HiSA, instead of

using global EDF scheduling algorithm, proposes a hierarchical scheduling approach
using multiple single-processor optimal EDF instances. Section 3.3.1 provides the
basic concept of 2L-HiSA.

3.3.1 Basic Concept

The concept of two-level hierarchical scheduling algorithm slightly differs from the
conventional restricted migration-based scheduling strategies. In restricted migra-
tion scheduling with hierarchical schedulers, all tasks can migrate at job-boundaries
and they share a common top-level task queue as illustrated in figure 2.5 (chapter
2). That is, when a new job of a recurring task is released, the top-level sched-
uler assigns this job to any processor available in the platform. A released job,
once assigned to a particular processor, can execute only on that processor under
the control of local-level scheduler. Another job of the same task, however, can be
assigned to a different processor. Thus, for every new job of a task, the top-level
scheduler first decides its assignment to target processor in the platform and then
the local scheduler executes that job according to its appropriate local priority level.
In two-level hierarchical scheduling algorithm, however, local schedulers have cer-
tain number of partitioned tasks that do not migrate at all as in case of [62]. The
2L-HiSA algorithm is based on the concept of semi-partitioned scheduling, in which
most tasks are statically assigned to specific processors, while a few tasks migrate
across processors. Once partitioned, these tasks are entirely handled by local-level
scheduler and always remain in unique priority space associated only to their respec-
tive processor as illustrated in figure 3.2 by τπ1 , τπ2 , and τπm , respectively. A task is
qualified to become migrating task only if it cannot be partitioned on any processor
any more using simple bin-packing approach. Such tasks are fully migrating tasks,
unlike the migrating tasks in case of [62] and [38], which limit the number of possible
migrations per period or per processor. All migrating tasks are placed in a separate
subset of tasks referred as τglobal as illustrated in figure 3.2. Only subset τglobal is
handled by the top-level scheduler.

Figure 3.2: Two-level hierarchical scheduling approach based on restricted migra-
tion.

3.3. Two-level Hierarchical Scheduling Algorithm 37

Top-level scheduler assigns tasks from τglobal to processors at runtime within
suitable time slots. These suitable time slots are actually the portion of processor
time that is determined on every processor based on its under-utilization (if any).
Section 3.3.2 gives more details on the procedure for determining the size, periodic-
ity, and priority of these time slots. However, it is worth mentioning here that these
time slots occur explicitly on processors in an m-processor platform –i.e., they do not
occur in parallel. Moreover, these time slots are not fixed (like in case of [62]) and
occur dynamically within the specified period. Due to the NP-hardness of the par-
titioning problem, processors in a multiprocessor platform are often under-utilized
with a significant margin in a post-partitioned scenario.

3.3.2 Working Principle

In this section, we provide the main steps of our proposed algorithm. 2L-HiSA, as
mentioned earlier, is based on the concept of restricted migration scheduling and
consists of two phases:

1. The task-partitioning phase: In this phase, each non-migrating task is (of-
fline/statically) assigned to a specific processor by following the bin-packing
approach.

2. The processor-grouping phase: This is a post-partitioning phase in which,
processors are grouped together based on their workload characteristics.

3.3.2.1 The task-partitioning phase

Let us consider that a real-time task set τ containing at most n tasks such that
τ = {T1, Ti, ...Tn−1, Tn}, has to be scheduled on an identical multiprocessor plat-
form composed of m processors. The task set is considered feasible a priori -i.e.,
Usum(τ) =

∑n
i=1 ui ≤ m. In the first step of our algorithm, each task Ti is stati-

cally assigned to a particular processor πk by following the bin-packing approach,
as long as the task does not cause violation of schedulability of tasks being already

partitioned upon processor πk –i.e., Usum(τπk)
def
= (L>0)

DBF(τπk ,L)
L ≤ 1, where tasks

being partitioned on a particular processor πk are denoted by τπk , L refers to inter-
val length, and DBF refers to the classical Demand Bound Function [38, 77]. Note
that the task-partitioning can be performed using any suitable partitioning strategy.
Algorithm 1 illustrates the task partitioning phase. In the first step, before parti-
tioning any task to processors, the utilization of each processor πk is initialized to
zero –i.e., Uπk = 0 (lines 1−5). In the second step, each task is tested for partition-
ing on m processors of the platform according to the condition mentioned earlier
(lines 6− 14). If, for any task Ti, Usum(τπk) > 1 –i.e., it can not be partitioned on
πk (∀k, 1 ≤ k ≤ m), then this task is classified as migrating task and assigned to
τglob subset of tasks (lines 1− 18).

For a feasible task set τ , often it is not possible to partition all tasks due to the
NP-hardness of partitioning problem. Thus, in our algorithm, a given τ is divided

38
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

Algorithm 1 Offline task partitioning to processors
1: n← number of tasks in τ
2: m← number of processors in Π

3: for k = 1...m do
4: Uπk ← 0;
5: for i = 1...n do
6: for k = 1...m do
7: if Uπk + ui ≤ 1 then
8: assign Ti to πk;
9: Uπk=Uπk + ui;

10: remove Ti from τ ;
11: break;
12: if size(τ) 6= 0 then
13: assign all remaining tasks to τglob;

into two subsets of tasks such that Usum(τpart) + Usum(τglob) = Usum(τ) ≤ m. In a
post-partitioned scenario, we can calculate the aggregate utilization of tasks being
statically partitioned on (or assigned to) every processor (πk) individually using
equation 3.1. Here, np refers to the total number of tasks being partitioned on a
particular processor πk.

Uπk(τπk) =

np∑
i=1

Ci
Pi

(∀i, 1 ≤ i ≤ np, ∀Ti ∈ τpart) (3.1)

From equation 3.1, we can compute the under-utilization present on every pro-
cessor πk using equation 3.2. Let the under-utilization present on any processor πk
be referred as U ′

πk
.

U
′

πk
(τπk) = 1−

np∑
i=1

Ci
Pi

(∀i, 1 ≤ i ≤ np, ∀Ti ∈ τpart) (3.2)

3.3.2.2 The processor-grouping phase

In the second step, we group processors of the platform Π in such a way that the
cumulated under-utilization on all processors within a group is not greater than one
–i.e.,

∑
U

′
πk
≤ 1. In section 3.3.1, it is stated that a portion of processor time is

reserved on every processor in proportion to its U ′
πk

to which, the top-level scheduler
could exploit for scheduling tasks from τglob. Moreover, these portions of processor
time must appear explicitly. Now, if the cumulated under-utilization of processors
will be more than one, then the computation power equivalent to more than one
processor will be free within the system. This under-utilization will cause idle time
intervals to appear in parallel on certain processors which is not desirable. Thus,
grouping processors such that the sum of under-utilization on all processors within
a group is not greater than one allows to have a cumulated (but still fragmented)
computation power equivalent to at most one processor free within each group.
This condition helps avoiding parallelism of the idle time intervals that would occur

3.3. Two-level Hierarchical Scheduling Algorithm 39

due to under-utilization. Algorithm 2 illustrates processor-grouping phase. This
algorithm outputs the number of possible processor-groups or clusters within the
platform that respect above condition. However, limiting the amount of under-
utilization per group is not the only condition to ensure explicit occurrence of idle
time intervals. These idle intervals would still appear randomly within each group.
An issue of concern here is, how to make the idle intervals non-parallel and periodic
so that migrating tasks could consume them. In the following, we provide a simple
illustrative example of how the idle time intervals would appear at runtime in an
application’s schedule under EDF algorithm and then we should answer the concern
related to explicitness and periodicity of idle intervals required for 2L-HiSA.

Algorithm 2 Offline processor-grouping
1: m← number of processors in Π

2: Y ← 0; //number of processor-groups
3: U

′

sum ← 0;
4: for k = 1...m do
5: U

′

sum ← U
′

sum + U
′

πk
;

6: if U
′

sum ≥ 1 then
7: Y ← Y + 1;
8: U

′

sum ← 0;
9: output: Y processor-groups are created;

Example 3.1: Let us consider a periodic task set τ composed of six
tasks (n = 6) to be scheduled on a multiprocessor platform composed
of four identical processors (m = 4). Task set τ is scheduled using
EDF scheduling algorithm. The value of quadruplet of each task is se-
lected such that Usum(τ) respects sufficient condition bound provided by
[7] –i.e., Usum ≤ m+1

2 ≤ 2.5. The values of quadruplet (ri,Ci,di,Pi) are;
τ={T1(0, 3, 7, 7), T2(0, 7, 14, 14), T3(0, 5, 11, 11), T4(0, 4, 13, 13), T5(0, 4, 8, 8), T6(0, 3, 9, 9)}.

Let us partition these tasks on four processors1 such that; τπ1
={T4, T6}, τπ2

={T2},
τπ3

={T5}, and τπk={T1, T3}. Figure 3.3 illustrates the EDF-schedule of τ on four proces-
sors. In this figure, it can be noticed that (more or less) every processor is under-utilized
by a factor of U

′

πk
(τπk) as stated by equation 3.2. Moreover, due to this under-utilization,

idle intervals appear on processors at random (based on the EDF scheduler’s priority
mechanism) and in a non-periodic fashion.

2L-HiSA aims at exploiting these random idle intervals to schedule tasks from τglob
under the control of top-level scheduler. The problem, however, is that these idle intervals
are not periodic in their occurrence and therefore, can not be used to schedule periodic
tasks by the top-level scheduler. The intuitive idea behind the 2L-HiSA algorithm is to
force these idle time slots to appear in a periodic fashion on all those processors which
offer positive under-utilization such that the amount of periodic idle time should explicitly
appear on each processor πk in proportion to U

′

πk
offered by that processor. Once idle time

slots become periodic, tasks from τglob can then be placed in these time slots under the
control of top-level scheduler. To achieve this objective, a dummy task is added on every

1The partitioning of tasks performed in this example may not be the optimal solution.

40
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

Figure 3.3: Example schedule of partitioned tasks under EDF scheduling algorithm
on SMP architecture (n=6, m=4), illustrating the under-utilization of platform.

processor πk. Let us call this dummy task as T dk on processor πk. Task T dk is a periodic
task that appears on all processors, which offer U

′

πk
> 0. In the following, we calculate

the parameters of T dk such as its period P dk and worst-case execution time Cdk on every
processor.

Period of T dk is selected as the absolute minimum period of all the tasks present in τ

(τpart ∈ τ, τglob ∈ τ) as shown in equation 3.3.

P dk =
n

min
i=1
{Pi} (∀k, 1 ≤ k ≤ m) (3.3)

Note that, apart from being the smallest, the period of T dk is the same on all processors
(∀k, 1 ≤ k ≤ m). The advantage of having the smallest period for T dk on all processors
is that the cumulated under-utilization

∑
U

′

πk
present in a selected group of processors is

proportionately available within the smallest period, hence, available for the most recurring
migrating task. The advantage of having the same value for P dk on all processors is that it
ensures the release of T dk at the same time on all processors, which is helpful in managing
explicit execution of jobs of T dk on different processors. Once the period for T dk is determined,
its worst-case execution time Cdk can be calculated on every processor using equation 3.4,
which is proportionate to U

′

πk
available on each processor.

Cdk = P dk × U
′

πk
(∀k, 1 ≤ k ≤ m) (3.4)

Cdk refers to the size of idle time slots appearing on processor πk at runtime over a period
of P dk . Note that T dk is an empty task used only to reserve Cdk time units of processor time
over the smallest possible period P dk . At runtime, top-level scheduler fills these Cdk time
slots reserved by T dk with tasks from τglob. Since tasks in τglob are fully migrating tasks,
therefore, they can use Cdk time units on all processor if T dk does not appear in parallel.

3.3. Two-level Hierarchical Scheduling Algorithm 41

Thus, one of the design consideration of 2L-HiSA is to make sure that T dk is non-parallel or
explicit on processors within a group over the interval lengths of P dk .

Since T dk has the same period (P dk) on every processor, therefore, it releases at the same
time on all processors. Moreover, making P dk being the smallest period within the task
set τ also makes T dk the highest priority task on every processor under EDF scheduling
algorithm. Thus, to ensure explicit execution of T dk , the 2L-HiSA algorithm performs a
priority exchange of T dk with highest priority local task on all those processors within a
group on which T dk is not selected for execution at time instant t. This priority exchange is
non-blocking from the platform resources point of view –i.e., exchanging the priority of T dk
with local/partitioned task on a processor πk does not cause processor πk to become idle or
blocked as long as statically partitioned ready tasks exist. We illustrate this concept with
an example in the following.

Let us consider a multiprocessor platform with three processors belonging to the same
group. Each processor has a dummy task T dk assigned to it. At time instant t = 0, T dk
is released on all three processors simultaneously. If T d1 , which is the dummy task on
processor π1, is assigned on π1 as illustrated in figure 3.4, then the local schedulers on π2
and π3 exchange the priority of T d2 and T d3 with local tasks, respectively, to give higher
priority to statically partitioned ready task that is having the highest priority (if any).
Upon termination of T d1 on π1 at time instant t = 1, remaining two processors π2 and π3
revert the priority of their respective dummy tasks T d2 and T d3 , respectively, to allow them
to compete for priority at local scheduler’s level. Since, at most one local scheduler can
assign T dk on a processor at any time to ensure explicit execution of jobs of T dk , therefore,
the other local schedulers exchange priority of their respective T dk again to allow partitioned
tasks to execute. In this example, after T d1 is terminated on π1, local scheduler on π2 assigns
T d2 and local scheduler on π3 again exchanges the priority of T d3 to let the partitioned tasks
run. Finally, at time instant t = 2, local scheduler on π3 assigns T d3 for execution. At time
t = 3, T d1 , T d2 , and T d3 are released again and compete for assignment on their respective
processors. Note that T dk has no specific order of occurrence –i.e., fixed time slot that can
be defined a priori on different processors. A newly released job of T dk has to, first, compete
for the priority among locally partitioned tasks and then compete for priority among T dk
present on other processors within a group. Failure to obtain highest priority at any of
the two levels cause a priority exchange for concerned task. This makes the portion of
processors’ time reserved for τglob to appear in a sequential fashion over P dk within a group
of processors. The priority exchange for T dk on the same processor can be performed up to
the time instant when laxity of T dk becomes zero.

3.3.3 Runtime View of Schedule from Different Levels of Hierarchy

In this section, we provide the reader the view-points of both top-level and local-level
schedulers under the 2L-HiSA algorithm.

3.3.3.1 Local-level Scheduler

From the earlier discussion, we know that single-processor optimal EDF scheduling algo-
rithm is used as local scheduler on every processor to schedule statically partitioned tasks.
Along with tasks being partitioned on each processor πk –i.e., τπk , there is a dummy task
T dk assigned on each processor that has an execution requirement of Cdk , which is exactly
equal to the amount of U

′

πk
available on πk –i.e., U

′

πk
= 1−Uπk =

Cdk
Pdk

. Thus, the worst-case

42
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

Figure 3.4: Illustration of T dk occurring on different processors with respect to the
proportionate under-utilization available on each processor.

workload of each processor is maximum –i.e., Uτπk +U
′

πk
= 1. Local EDF scheduler on each

processor visualizes the problem of scheduling τπk along with T dk reduced to single-processor
scheduling problem for which, EDF is optimal. Algorithm 3 illustrates jobs assignment on
processor by local-level scheduler. For each processor-group Y , the number of processors
within each group are known a priori and dummy task T dk is added to the local priority
queue (ReTQ) of each processor (lines 1− 8). Upon the arrival of a scheduling event, this
ReTQ is sorted according to EDF priority and highest priority ready task is selected for
execution (lines 9−11). If the selected task is not T dk then it is directly assigned to processor
π for execution (line 21). Otherwise, if selected task is T dk then local scheduler checks if
T dk is already executing on any other processor in the system. If T dk is not assigned on any
other processor then local scheduler schedules T dk on π. Otherwise, the priority of T dk is
exchanged to allow subsequent higher-priority partitioned task from τπk to execute on π.

Figure 3.4 illustrates how local scheduler on every processor schedules τπk along with
T dk . Being the highest priority tasks at time instant t = 0 on all processors, T dk qualifies to
execute on all three processors simultaneously. However, once T d1 starts its execution on
π1, priorities of T d2 and T d3 are exchanged with local tasks. Note that, for second job of T dk
at time instant t = 3, T d3 starts first on π3 instead of T d1 on π1. This dynamic relocation
of T dk comes from the priority order assigned by local scheduler. For instance, when T d1
has lower priority than any of the locally partitioned tasks on π1, it cannot compete for
priority among T d2 and T d3 present on π2 and π3, respectively, and therefore, the order in
which T dk appears will change.

3.3.3.2 Top-level Scheduler

Top-level scheduler also uses an instance of single-processor optimal EDF scheduling al-
gorithm for migrating sub-set of tasks –i.e., τglob. Recall that the overall task set τ is
considered a priori feasible and the tasks present in τglob are the tasks that were impossible
to be statically partitioned. Thus, the platform resource requirement of τglob is not more
than the under-utilization available in the system. Top-level EDF scheduler visualizes the

3.3. Two-level Hierarchical Scheduling Algorithm 43

Algorithm 3 Local-level scheduler: Online jobs assignment for partitioned tasks
present in τπk
1: define π: processor containing local-level scheduler
2: Y ← number of processor-groups
3: for i = 1...Y do
4: mi ← number of processors in processor-group i;
5: for k = 1...mi do
6: ReTQ(τπk)← T dk ; {adds dummy task to local ReTQ of every processor of group i}
7: for every scheduling event do
8: sort ReTQ(τπk) w.r.t. EDF priority
9: T ← highest priority ready task from ReTQ(τπk);

10: if T = T dk then
11: for k = 1...(mi − 1) do {for all processors other than π}
12: if T dk is already running on πk then
13: priority of T dk is exchanged;
14: T ← subsequent priority task from ReTQ(τπk);
15: break;
16: π ← T ;

fragmented amount of computation power available on different processors, which is ac-
cessible in a sequential manner. Algorithm 4 illustrates jobs assignment on processors by
top-level scheduler. If global ready task queue (ReTQ(τglob)) is not empty then at most
Y tasks (here, Y refers to the number of processor-groups in the system) are selected for
execution (lines 1 − 7) such that each selected task executes over each processor-group.
Within each group, the top-level scheduler looks for T dk task. If T dk is running on any of the
processors then selected task from ReTQ(τglob) for that group is assigned on the processor
for at most Cdk units of time (lines 8 − 14). Otherwise, if T dk is not running on any of the
processors of the selected group then task from ReTQ(τglob) remains suspended until T dk
starts running.

Algorithm 4 Top-level scheduler: Online jobs assignment for migrating tasks
present in τglob
1: Y ← number of processor-groups
2: sort ReTQ(τglob) w.r.t. EDF priority
3: for i = 1...Y do
4: mi ← number of processors in processor-group i;
5: if size(ReTQ(τglob)) 6= 0 then
6: Ti ← highest priority ready task among τglob;
7: for k = 1...mi do
8: if T dk is running then
9: πk ← Ti; // Ti executes for Cdk time units on πk

10: break;

Figure 3.5 illustrates that when T dk starts executing on a processor, top-level EDF
scheduler fills its empty Cdk with the execution requirement of highest priority task available
in τglob (recall that T dk is an empty task). As soon as T dk finishes on one processor, top-
level scheduler preempts the running tasks from ReTQ(τglob) and migrates it to the next
processor that runs T dk within the same processor-group.

44
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

Figure 3.5: View of runtime schedule by top-level and local-level schedulers under
2L-HiSA on an SMP architecture.

3.3.4 Schedulability Analysis

In this section, we provide the reader the schedulability analysis of two-level hierarchical
scheduling algorithm. We use demand bound analysis for this purpose [63, 77]. Demand
bound analysis is a general methodology for schedulability analysis of EDF scheduling
algorithm in single-processor systems. Demand bound analysis uses the concept of demand
function (df). Demand function computes the maximum amount of time, so-called processor
demand, consumed by all jobs of a task Ti that have both release times and deadlines within
an interval [t1, t2]. Demand function for a task Ti can be given by equation 3.5.

dfi (t1, t2) =
∑

rij≥t1,dij≤t2

Cij (3.5)

Similarly, for the entire task set, demand function is simply a sum of individual demand
functions of tasks over the same time interval as given by equation 3.6.

df (t1, t2) =

n∑
i=1

dfi (t1, t2) (3.6)

It has been shown in [15, 63] that the EDF-schedulability of arbitrarily-deadline task
systems can be tested by the demand function: all tasks are guaranteed to meet deadlines
by EDF on single processors, if and only if the condition in equation 3.7 holds for ∀L > 0,
where L=t2 − t1. On a single-processor system, this is a necessary and sufficient condition
for EDF-schedulability.

df (t1, t2) ≤ (t2 − t1) ∀t1, t2 (3.7)

3.3. Two-level Hierarchical Scheduling Algorithm 45

We divide the schedulability analysis of 2L-HiSA into two parts. In the first part, we
analyze the EDF-schedulability of migrating tasks and in second part, we analyze EDF-
schedulability of partitioned tasks.

3.3.4.1 Schedulability of migrating tasks

As discussed earlier in section 3.3.2, subset of migrating tasks can not have an aggregate
utilization (τglob) more than the under-utilization available in the system (Usum(τglob) ≤∑m
k=1 U

′

πk
). We have illustrated in figure 3.5 that this under-utilization is proportionately

fragmented over different processors of the system and the computation power not more
than the equivalent of one processor is freely available within each group. Top-level EDF
scheduler, thus, has this fragmented computation power (more than or equal to the cu-
mulated execution requirement of migrating tasks) available in the system to which, it can
access in a sequential manner thanks to the explicit occurrence of T dk (see figure 3.5). More-
over, T dk is the most frequently occurring task on every processor (i.e., it recurs over the
smallest period). Thus, migrating tasks always find the portion of processor time reserved
for them, which is sufficient w.r.t. their execution requirement. Partitioned tasks, on the
other hand, find the remaining non-reserved time units to execute.

3.3.4.2 Schedulability of partitioned tasks in the absence of T dk
In a multiprocessor system with fully partitioned task set, the problem of schedulability
analysis is reduced to multiple single-processor systems. Therefore, it is sufficient to prove
that all tasks that are partitioned on a processor πk(∀k, 1 ≤ k ≤ m) respect their deadlines.
We consider the EDF-schedulability on every processor individually. First, let us consider
that only statically partitioned tasks are present on every processor and T dk does not exist.
We assume that the complementary relation of equation 3.8 and equation 3.9 holds on any
processor πk due to NP-hardness of partitioning problem.

Uπk(τπk) =

np∑
i=1

Ci
Pi

< 1 (∀i, 1 ≤ i ≤ np, ∀Ti ∈ τpart) (3.8)

U
′

πk
(τπk) = 1−

np∑
i=1

Ci
Pi

> 0 (∀i, 1 ≤ i ≤ np, ∀Ti ∈ τpart) (3.9)

For synchronous task system, demand function changes values only at discrete time
instants corresponding to arrival times and deadlines of a task. Therefore, the demand
function needs to be verified only for those values of time intervals that are aligned with
deadlines of jobs. Moreover, the worst case demand is found for intervals starting at 0 due
to synchronized release instants of all tasks. The hyper-period (i.e., least-common-multiple
of task periods) is a safe interval length to analyze demand function for synchronous task
sets. Thus, we consider that the worst-case demand interval on every processor πk is
defined from 0 to the hyper-period (let us say H) of partitioned tasks -i.e., [t1, t2]=[0, H].
As long as Uπk(τπk) < 1 –i.e., the aggregate utilization of partitioned tasks is less than
the computation power of a single processor, the demand function of all partitioned tasks
on processor πk is strictly less than the amount of time available in the time interval
[0, H] as given by equation 3.10. Hence, all partitioned tasks respect the necessary and
sufficient schedulability condition of EDF scheduling in the absence of T dk on every processor
independently. Equation 3.10 also holds for any sub-interval of time [0, t] (∀t, 0 < t ≤ H).

∀t1, t2 df (t1, t2) ≤ (H − 0) (3.10)

46
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

3.3.4.3 Schedulability of partitioned tasks in the presence of T dk
In this section, we consider the EDF-schedulability of partitioned tasks in the presence
of T dk on every processor individually. In order to be EDF-schedulable, a single-processor
system must satisfy the inequality presented by equation 3.11 in the presence of T dk .∑

Ti∈τπk

dfi (Ti, H) + df(T dk , H) ≤ H (3.11)

The first addend refers to demand function of partitioned tasks and second addend
refers to the demand function of T dk on processor πk, respectively. Recalling from section
3.3.2, the size of time slot reserved by T dk –i.e., Cdk , on any processor πk is in proportion
to U

′

πk
available on πk. Moreover, T dk competes for priority at runtime at local scheduler’s

level, thus, T dk is treated as any other partitioned task by the local scheduler.
From equation 3.11, we can deduce that, by design, the demand function of partitioned

tasks on processor πk is always less than or equal to (H − 0) × Uπk as shown by equation
3.12. Similarly, from the complimentary relation of equation 3.9, we can deduce that the
amount of time allocated to T dk is less than or equal to (H − 0)×U ′

πk
as shown by equation

3.13 ∑
Ti∈τπk

dfi (Ti, H) = (H − 0)× Uπk (3.12)

df(T dk , H) = (H − 0)× U
′

πk
(3.13)

By substitution, the inequalities of equation 3.11 results in equation 3.14.

∑
Ti∈τπk

dfi (Ti, H) + df(T dk , H) ≤ H ×

[
np∑
i=1

Ci
Pi

+ 1−
np∑
i=1

Ci
Pi

]
(3.14)

∑
Ti∈τπk

dfi (Ti, H) + df(T dk , H) ≤ H (3.15)

Equation 3.15 illustrates that the overall demand function of partitioned tasks together
with T dk is still less than or equal to the amount of time available in hyper-period
(H). Therefore, necessary and sufficient conditions of EDF-schedulability holds at local
scheduler-level as well. The bound on schedulable utilization of tasks under the 2L-HiSA
scheduling algorithm depends on the following condition.

Condition-I: Subset τpart shall be partitioned on m-processors of the platform in such
a way that the under-utilization per group of processors is less than or equal to 1.

The assignment of tasks to processors is a bin-packing problem, which is considered
a strong NP-hard problem [44]. The NP-hardness of partitioning problem can often be a
limiting factor for our proposed algorithm. However, the fact that 2L-HiSA makes clusters
of identical processors such that, per cluster, the unused fragmented computation power
equivalent to at most one processor is available, improves on the schedulable utilization
bound of EDF for multiprocessor systems. Clustering of processors instead of considering
individual processors, helps in alleviating bin-packing limitations by effectively increasing
bin sizes in comparison to item sizes. With a cluster of processors, it is much easier to obtain
the under-utilization per cluster less than or equal to the processing power equivalent to one
processor as compared to finding an optimal partitioning of tasks on a single processor. 2L-
HiSA is an optimal algorithm for hard real-time tasks if a subset of tasks can be partitioned

3.4. Experiments 47

such that the under-utilization per cluster of processors remain less than or equal to the
processing power equivalent of one processor. General schedulable utilization bound of 2L-
HiSA is greater than EDF and less than m. However, the exact bound depends on efficient
partitioning.

3.4 Experiments

3.4.1 Setup

In this section, we provide the reader the simulation-based evaluation of the 2L-HiSA
scheduling algorithm. Our objective in these experiments is two-folds: 1) to validate
whether the analytical improvements claimed on the schedulability bounds of EDF using
2L-HiSA hold in practice and all tasks respect their timing constraints and 2) to analyze
performance-related overheads compared to existing optimal scheduling algorithms. We
evaluate the performance of 2L-HiSA using STORM (Simulation TOol for Real-time Mul-
tiprocessor Scheduling) [108] (see section 2.3 and Appendix A for more information). We
consider the same general system model –i.e., task model, processing platform, and power
and energy models, as discussed in chapter 2 except that all tasks of target application
are not fully migrating. We use synthetic real-time independent and periodic tasks for
evaluation. EDF scheduling algorithm is used for both top-level and local-level schedulers.

3.4.2 Functional Evaluation

In this section, we evaluate the functional aspects of 2L-HiSA –i.e., real-time constraints and
feasibility aspects. Let us consider a synthetic set of ten real-time periodic and independent
tasks (n = 10), such that τ={T5, T6, T7, T8, T9, T10, T11, T12, T13, T14}, to be scheduled on
a multiprocessor platform of type SMP composed of four processors (m = 4). Table 3.1
presents the quadruplet values of all these tasks. Note that the task names start from
T5 as the initial four tasks names (from T1 to T4) are reserved to represent dummy tasks
T dk on processors (from π1 to π4), respectively. Task set τ has an aggregate utilization
Usum (τ) = 4.00. In the first phase of our algorithm –i.e., the task-partitioning phase
(see section 3.3.2), each task is statically assigned to a particular processor by following
the bin-packing approach2. We obtain τpart = {T5, T6, T7, T8, T9, T10, T11, T12} such that
τπ1

={T5, T6}, τπ2
={T7, T8}, τπ3

={T9, T10}, τπ4
={T11, T12}, and τglob={T13, T14}.

Now, we simulate τ under the 2L-HiSA scheduling algorithm using STORM simulator.
In the first stage, only τpart is executed on Π. Figure 3.6 illustrates that idle time intervals
appear on every processor due to under-utilization. We calculate this under-utilization
using equation 3.9 as following.

U
′

π1
= 1− 0.70 = 0.30

U
′

π2
= 1− 0.70 = 0.30

U
′

π3
= 1− 0.80 = 0.20

U
′

π4
= 1− 0.80 = 0.20

2Tasks are partitioned manually to processors. This may not be the best possible partitioning
solution for given task set, but it is good enough to illustrate the functioning of the 2L-HiSA
algorithm. However, efficient task partitioning approaches can be used in this phase.

48
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

Table 3.1: Real-time periodic task set τ
Task Name ri Ci di Pi

T5 0 6 20 20
T6 0 6 15 15
T7 0 13 40 40
T8 0 15 40 40
T9 0 6 30 30
T10 0 12 20 20
T11 0 8 20 20
T12 0 10 25 25
T13 0 6 10 10
T14 0 8 20 20

Once the under-utilization per processor is known, we perform processor-grouping –i.e.,
the second phase of our algorithm, such that Condition-I is satisfied –i.e.,

∑m
k=1 U

′

πk
≤ 1

(see section 3.3.4). Since the cumulative under-utilization of all processors is exactly equal
to one in this case (

∑m
k=1 U

′

πk
= 1), therefore, all processors are grouped together in a

single group. After task-partitioning and processor-grouping phases are complete, we can
add dummy task T dk on every processor in proportion to the available under-utilization. The
parameters of T dk such as, its period P dk and worst-case execution time Cdk are calculated
using equation 3.3 and 3.4, respectively. From table 3.1, it is straightforward to obtain the
smallest period of all tasks, that is:

P dk =
n

min
i=1
{Pi} = 10

For the known value of period, we can calculate the worst-case execution time of T dk on
every processor πk w.r.t. U

′

πk
available on that processor over P dk as following.

Cd1 = P d1 × U
′

π1
= 10× 0.30 = 3

Cd2 = P d2 × U
′

π2
= 10× 0.30 = 3

Cd3 = P d3 × U
′

π3
= 10× 0.20 = 2

Cd4 = P d4 × U
′

π4
= 10× 0.20 = 2

Table 3.2: Parameters of dummy tasks (T dk) on each processor
Task Name ri Ci di Pi

T d1 0 3 10 10
T d2 0 3 10 10
T d3 0 2 10 10
T d4 0 2 10 10

All parameters of dummy tasks T dk are summarized in table 3.2. Figure 3.7 illustrates
simulation traces generated by local-level EDF scheduler on each processor in the presence

3.4. Experiments 49

Figure 3.6: Simulation traces of partitioned tasks under EDF local scheduler on
each processor.

of T dk (note that simulator outputs the task names as PTASK taskname). It can be noticed
in this figure that T dk tasks appear sequentially on processors. In figure 3.7, task T d1 (or
PTASK T1) appears first on processor π1 for exactly 3 time units. Since, T d1 starts its
execution first, therefore, T d2 , T d3 , and T d4 on π2, π3, and π4, respectively, exchange their
priorities to let the partitioned tasks execute. Once T d1 finishes its execution, T d2 starts
executing on π2 for its corresponding worst-case execution time (i.e., Cd2 = 3). This process
repeats itself for all dummy tasks within each period P dk . As mentioned in section 3.3.2,
note that T dk has neither a specific order of occurrence nor it is fixed a priori on processors.
Rather it can dynamically relocate itself within P dk . Every time T dk is released, first, it has
to compete for the priority among locally partitioned tasks (thanks to the choice of smallest
period, T dk often has highest priority among locally partitioned tasks) and then compete
for priority among T dk present on other processors within a group. Failure to obtain highest
priority at any of these two levels cause a priority inversion for concerned task itself and
corresponding processor can execute locally partitioned ready tasks (if any). However, once
any of the T dk tasks start executing, no other T dk tasks can execute in parallel. The priority
inversion for T dk on the same processor can be performed until the laxity of T dk becomes
zero. For instance, T d4 in figure 3.7 starts executing at time instant t = 8 at which, its laxity
becomes zero –i.e., Ld4 = 10 − (8 + 2) = 0. After instant t = 8, it was no more possible to
invert the priority of T d4 without a deadline miss.

Finally, figure 3.8 illustrates a complete simulation trace of τ under two-level hierarchical
scheduling algorithm along with T dk . Figure 3.8 illustrates that as long as any of the T dk
task is executing on any of the processors in platform, top-level scheduler can manage to
fill its Cdk with the execution time of highest priority migrating task. Moreover, top-level
scheduler can preempt and migrate the migrating task(s) to other processor(s) whenever
any of the T dk task finishes on a processor. In figure 3.8, blue rectangular boxes on the time

50
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

Figure 3.7: Simulation traces of partitioned tasks in the presence of T dk under EDF
local scheduler on each processor.

scale represent migrating task T13 and red rectangular boxes represent migrating task T14.
We simulate the same task set presented in table 3.1 using global EDF scheduling algo-

rithm in order to illustrate the sub-optimality of EDF. Figure 3.9 illustrates the execution
traces for τ . It can be noticed that despite 100% workload (Usum (τ) = 4.00), some pro-
cessors still remain momentarily idle. In figure 3.9, these idle time intervals are highlighted
with dotted line boxes. Idle time intervals appear due to the priority mechanism of global
EDF algorithm. Figure 3.10(a) and 3.10(b) illustrate that, due to the priority mechanism
of EDF, some of the lower priority tasks, for instance, T12 and T13 in this case, miss their
deadlines3. This illustration validates theoretically known sub-optimality of global EDF
scheduing algorithm.

3.4.3 Energy-efficiency of 2L-HiSA

In this section, we provide the reader the possibilities of applying online energy-aware
scheduling techniques such as; dynamic power management and dynamic voltage and fre-
quency scaling techniques in conjunction with 2L-HiSA.

In section 3.3.4, we have provided the worst-case schedulability analysis of 2L-HiSA.
This is a rather conservative analysis because during execution, real-time tasks often exhibit
large variations in their actual execution time. Tasks often finish earlier than their estimated
worst-case execution time and generate dynamic slack [39]. In this section, we implement a
simple DVFS technique under the control of 2L-HiSA in which, whenever a precedent task
generates dynamic slack time, the entire amount of slack is used to slowdown the execution
of immediate priority ready task on the same processor –i.e., all slack is consumed by

3Jobs for which deadline miss occurs is highlighted with oval-shaped red box beneath the sim-
ulation trace of each task.

3.4. Experiments 51

Figure 3.8: Simulation traces of migrating and partitioned tasks together under
EDF local- and top-level schedulers.

the next appropriate priority task. We have applied DVFS technique under the control
of local-level scheduler on each processor. Only statically partitioned tasks benefit from
this slack reclamation –i.e., whenever a partitioned task generates dynamic slack, only the
next partitioned ready task can consume it. Otherwise, the slack time is considered as
lost. However, it would also be possible to share slack between top-level and local-level
schedulers on each processor –i.e., whenever a partitioned task produces dynamic slack by
finishing early, the size of T dk ’s time window (i.e., Cdk) on that particular processor can
be dynamically enlarged to benefit from the workload variations. Slack sharing between
hierarchy of schedulers is not implemented.

We have simulated the task set presented in section 3.4.2 under global EDF scheduler,
under 2L-HiSA without DVFS technique, and under 2L-HiSA with DVFS technique. We
have kept the number of tasks and their aggregate utilization constant, however, the actual
execution time or bcet/wcet ratio of tasks is varied between 50% and 100% of their worst-
case execution time (Ci). The variation is auto-generated such that the actual execution
time (AET) has a uniform probability distribution function as suggested in [11]. Energy
consumption is estimated for processors only. Simulation results depict that, in best-case
–i.e., for bcet/wcet ratio = 50%, the energy savings can reach upto 42.6% under 2L-HiSA
with DVFS technique as compared to non-optimized EDF schedule. Furthermore, the
energy gains under 2L-HiSA with DVFS technique as compared to 2L-HiSA without DVFS

52
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

Figure 3.9: Simulation traces of EDF global scheduling of task set τ on four proces-
sors.

technique are estimated upto 44.7%. Simulation results show that applying such simple
DVFS techniques does not yield a very significant difference between 2L-HiSA with and
without DVFS technique. However, energy gains are remarkable as compared to non-
optimized EDF schedule.

We have three intuitive remarks on these results. Firstly, these results illustrate that
it is possible to integrate other energy-aware scheduling techniques with 2L-HiSA without
loss of schedulability of tasks. Secondly, even for processors only, 2L-HiSA gives significant
energy-efficiency. Thirdly, restricted-migration scheduling strategies naturally favor mem-
ory subsystems, especially L1 caches, for energy-efficiency due to reduced task migration
and more or less constant cache-contents.

3.4.4 Performance Evaluation

In this section, we provide analysis of the performance of 2L-HiSA as compared to already
existing global optimal scheduling algorithms such as PFair [14], LLREF [28], and ASEDZL
[77] algorithms.

PFair and its heuristic algorithms are based on the concept of fluid scheduling mecha-
nism in which, they select tasks to execute at each time instant. Doing so invokes the sched-
uler at every time instant, which introduces a lot of overhead in terms of increased release
instants (ri), task preemptions, and migrations. PFair is often criticized for its scheduling-
related complexity. Unlike PFair, LLREF algorithm4 is not based on time quanta but it
increases preemptions of tasks to a great extent. LLREF schedules all ready tasks between

4Although, we compare performance of LLREF algorithm with other algorithms analytically,
we are unable to provide comparative analysis based on simulations due to our development limi-
tations.

3.4. Experiments 53

(a) Simulation traces for T5 − T9.

(b) Simulation traces for T10 − T14.

Figure 3.10: Simulation traces of individual tasks under global EDF scheduler

any two release instants. Since all tasks are active at all time instants, therefore, context-
switching overhead and cache-related preemption delay is significantly large for LLREF.
ASEDZL algorithm, contrary to PFair, is not based on time quanta. Execution require-
ment and time periods of tasks can have any arbitrary value under ASEDZL algorithm.
It improves on LLREF algorithm by scheduling minimum number of tasks between any

54
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

two release instants. However, it still incurs higher number of scheduling events and pre-
emptions than EDF scheduler. 2L-HiSA scheduling algorithm uses multiple instances of
single-processor optimal EDF algorithm to schedule tasks both at top-level and local-level
schedulers. Since, EDF invokes the scheduler only at job boundaries, therefore, the overhead
in terms of release instants and number of preemptions is much less than the techniques
discussed earlier. Furthermore, 2L-HiSA has reduced overhead of L1 cache memories due
to the limited number of context-switches. Most of the tasks are partitioned under this
algorithm, which limits the number of task migrations (only migrating or global sub-set of
tasks migrate). Thus, the caches are mostly occupied by partitioned tasks, which helps in
reducing the recovery time that a task may suffer from cache-miss and eventually improve
performance.

Figure 3.11: Number of task preemptions under 2L-HiSA, PFair (PD2), and
ASEDZL algorithms.

We compare the number of task preemptions and task migrations under 2L-HiSA, PD2

PFair algorithm [6], and ASEDZL [77] algorithms for the task set presented in table 3.1 over
a simulation time equal to one hyper-period –i.e., 600 time units. Figure 3.11 illustrates
that the number of preemptions under PD2 PFair algorithm for various number of tasks
is the highest. We have estimated an average difference of 15-fold between preemptions
under PD2 PFair and ASEDZL and an average difference of 18-fold between PD2 PFair
and 2L-HiSA. An average difference in the number of preemption between ASEDZL and
2L-HiSA has been estimated up to 1.3-fold. Note that these results take into account the
preemptions of tasks under every local-level scheduler as well as top-level scheduler while
using 2L-HiSA. Similarly, figure 3.12 illustrates the number of task migrations for various
number of tasks. Still, migration of tasks under PD2 PFair algorithm is relatively very
high. We have estimated an average difference of 4-fold between task migration under PD2

PFair and ASEDZL and an average difference of 10-fold between PD2 PFair and 2L-HiSA.
An average difference in the number of task migration between ASEDZL and 2L-HiSA has

3.5. Concluding Remarks 55

Figure 3.12: Number of task migrations under 2L-HiSA, PFair (PD2), and ASEDZL
algorithms.

been estimated up to 2.6-fold. These results show that using the 2L-HiSA algorithm can
be benevolent from performance point of view.

3.5 Concluding Remarks

In this chapter, we present a multiprocessor scheduling algorithm, called two-level hierar-
chical scheduling algorithm (2L-HiSA), which falls in the category of restricted migration
scheduling. The EDF scheduling algorithm has the least runtime complexity among job-
level fixed-priority algorithms for scheduling tasks on multiprocessor architecture. However,
EDF suffers from sub-optimality in multiprocessor systems. 2L-HiSA addresses the sub-
optimality of EDF as global scheduling algorithm and divides the problem into a two-level
hierarchy of schedulers. We ensure that the basic intrinsic properties of optimal single-
processor EDF scheduling algorithm appear both at local-level as well as at top-level sched-
uler. This algorithm works in two phases: 1) A task-partitioning phase in which, each task
from application task set is assigned to a specific processor by following simple bin-packing
approach. If a task can not be partitioned on any processor in the platform, it qualifies as
migrating task. 2) A processor-grouping phase in which, processors are clustered together
such that, per cluster, the unused fragmented computation power equivalent to at most one
processor is available.

2L-HiSA improves on the schedulability bound of global EDF for multiprocessor systems
and it is optimal for independent and periodic hard real-time tasks if a subset of tasks
can be partitioned such that the under-utilization per cluster of processors remain less
than or equal to the computation power equivalent to at most one processor. The NP-
hardness of partitioning problem, however, can often be a limiting factor. By clustering
of processors instead of considering individual processors, 2L-HiSA alleviates bin-packing

56
Chapter 3. Two-level Hierarchical Scheduling Algorithm for

Multiprocessor Systems

limitations by effectively increasing bin sizes in comparison to item sizes. With a cluster of
processors, it is much easier to obtain the under-utilization per cluster less than or equal
to the computation power equivalent to one processor. This chapter provides simulation
results to support our proposition. We have illustrated that power- and energy-efficient
strategies like DVFS and/or DPM can be used in conjunction with 2L-HiSA to improve
energy savings. Furthermore, we have illustrated that the task preemption- and migration-
related overhead is significantly less while using 2L-HiSA as scheduling algorithm.

Chapter 4

Assertive Dynamic Power
Management Technique

Contents
4.1 Dynamic Power Management 57

4.2 Related Work . 58

4.3 Assertive Dynamic Power Management Technique 61

4.3.1 Laxity Bottom Test (LBT) 62

4.3.2 Working Principle . 64

4.3.3 Choice of Power-efficient State 68

4.4 Static Optimizations using AsDPM 69

4.5 Experiments . 69

4.5.1 Target Application . 69

4.5.2 Simulation Results . 73

4.5.3 Comparative Analysis of the AsDPM Technique 78

4.6 Future Perspectives of the AsDPM Technique 79

4.6.1 Memory Subsystem . 80

4.6.2 Thermal Load Balancing . 82

4.7 Concluding Remarks . 84

4.1 Dynamic Power Management

Dynamic Power Management(DPM) techniques achieve energy conservation in embedded
computing systems by actively changing the power consumption profile of the system by
selectively putting its components into power-efficient states sufficient to meeting function-
ality requirements [57]. These techniques, when applied, exploit the inherently present idle
time intervals (if any) in the real-time schedule of target application over a specific target
architecture at runtime. The idle time intervals can exist due to the variations in actual
workload at runtime or they can be statically present due to under-utilization of target
platform. Optimality of DPM techniques depends on the workload statistics. Based on
these statistics, the effectiveness of different DPM techniques vary.

In this chapter, we present a DPM technique for multiprocessor real-time systems,
called the Assertive Dynamic Power Management (AsDPM) technique. This technique
is intended for multiprocessor real-time platforms of type SMP and it works under the

58 Chapter 4. Assertive Dynamic Power Management Technique

control of global EDF and LLF scheduling algorithms1. Our proposed technique is called
assertive DPM technique because of its aggressiveness in extracting the idle time intervals (if
present) from the application’s runtime schedule, which is not the case in conventional DPM
techniques. The working principle presented in section 4.3 further elaborates this aspect.
Apart from being a DPM technique for processors, AsDPM can be useful in optimizing
energy consumption at memory subsystem level as well. Moreover, the AsDPM technique
can be used, based on the workload characteristics, for statically (offline) optimizing the
number of processors and their corresponding operating frequency and voltage level in a
multiprocessor system. As a future perspective, we discuss how heat dissipation can be
regulated while using this technique. Rest of this chapter is arranged as follows. In section
4.2, we review state-of-the-art on DPM techniques. AsDPM is presented in detail in section
4.3. Use of AsDPM for static optimizations in discussed in section 4.4. Experimental
evaluation is presented in section 4.5. Section 4.6 provides a brief discussion on ongoing
and future perspectives of the AsDPM technique.

4.2 Related Work

In two different surveys of DPM techniques presented in [16] and [102], authors classify DPM
techniques into two main categories: predictive schemes and stochastic schemes. Predictive
schemes attempt to predict the timing of future input events to the system and schedule
shutdown (usually to a single power-efficient state) based on these predictions. Usually, not
much is known regarding future input events in an online schedule and DPM decisions have
to be taken based on these so called uncertain predictions. The rationale in all predictive
schemes is to exploit the correlation between past history of the workload and its near
future in order to make reliable predictions about future events [53, 102]. The most common
predictive DPM policy is the fixed timeout DPM policy, which uses the elapsed idle time as
observed event to predict the total duration of the current idle period. Such policies have
obvious advantage of being general and their safety can be improved simply by increasing
the timeout values. The obvious disadvantage of these techniques is that they trade-off
efficiency for safety: large timeouts cause a large number of under-predictions, that represent
missed opportunity of saving power, and a sizable amount of power is wasted waiting for the
timeout to expire. The predictive shutdown policies improve upon timeout-based schemes
by taking decisions as soon as a new idle period starts, based on the observation of past idle
and busy periods. One of the early research work on such techniques was presented in [107]
in which, authors have proposed a predictive DPM technique for event-driven applications.
The basic idea in [107] is to predict the length of idle periods and shutdown the system
when the predicted idle period is long enough to amortize the cost (in latency and power)
of shutting down and later reactivating the system. A shortcoming of predictive shutdown
approach is that it is based on offline analysis of usage traces, hence it is not suitable for non-
stationary workload whose statistical properties are not known a priori. This shortcoming
is addressed by Hwang and Wu in [53]. They proposed online adaptive methods that
predict the duration of an idle period with an exponentially weighted average of previous
idle periods. Predictive DPM techniques improve on performance penalty as well, that
is always paid on wakeup, by performing predictive wakeup when the predicted idle time
expires, even if no new task service requests have arrived. This choice may increase power

1Although we have implemented the AsDPM technique with both the EDF and the LLF schedul-
ing algorithms, rest of this chapter will consider only EDF being the controlling scheduling algo-
rithm.

4.2. Related Work 59

dissipation if idle time has been under-predicted, but decreases the delay for servicing the
first incoming request after an idle period.

In some relatively recent work, researches have addressed the problem of inaccurate
predictions in DPM strategies in the real-time context. In real-time systems, predicting
the next time instant when a device will be needed is crucial not only because it is the
key for effective energy management, but also because inaccurate predictions may hurt the
feasibility of the system, in view of the non-trivial activation/de-activation delays. Hence,
the real- time DPM has a number of unique characteristics. Authors in [112, 109] have pro-
posed heuristic-based DPM schemes that can be used with both EDF and RMS scheduling
polices. However, the schemes consider only non-preemptive real-time task execution. In
another work presented in [110], the same group of authors present an offline scheme, called
Maximum Device Overlap (MDO), for preemptive task scheduling. The MDO algorithm
uses a real-time scheduling algorithm, e.g., EDF, to generate a feasible real-time job sched-
ule and then iteratively swaps job segments to reduce energy consumption in device power
state transitions. After the heuristic-based job schedule is generated, the device schedule
is extracted. That is, device power state transition actions and times are recorded prior
to runtime and used at runtime. However, a problem with MDO is that the schedule is
generated with jobs’ WCET. Even without resource blocking, the actual job executions
can be very different from the pre-generated job schedule. A fixed device schedule cannot
effectively adapt to changes in the operating environment, such as if dynamic task join or
jobs complete early. Moreover, MDO involves very high time complexity (proportional to
the square of the hyper-period) and it cannot be successfully adapted to dynamic/online
settings where job release and execution times can vary considerably. Adaptive predictive
DPM techniques have also been proposed to deal with non-stationary workloads [102].

In another recent research work presented in [36], authors have proposed their solution
to the online real- time DPM problem, which is based on the observation that creating
long device sleep intervals is the key for effective power management. Authors propose
to explicitly and periodically enforce such intervals for each system’s device at run time.
These intervals, called the device forbidden regions (DFRs), enable the system to put these
devices to sleep states. Authors propose to determine parameters, such as duration and
separation time of DFRs, through static analysis. Authors also ensure that none of the
statically determined DFRs should have its duration shorter than the device’s break-even
times. This approach, however, can only exploit the inherently present idle time intervals in
the offline schedule to determine DFRs. Moreover, during a forbidden region, none of the
tasks using the related device can be dispatched; hence, the duration and period of DFRs
must be carefully selected to preserve temporal correctness. This limits the possibility of
fully exploiting the offline slack time. The proposed approach in [36] is unable to exploit
the online slack time (online slack time can be generated due to the early completion of
tasks) that can be used for further enlargement of device sleep intervals at runtime. The
same authors have extended their DFR-based DPM solution to a unified framework in [35].
The proposed framework, called DFR-EDF, assumes a general system- level energy model
and includes both static and dynamic (online) components. The static part is based on
the extension of their work in [36] for preemptive EDF scheduling. The online component
integrates the predictive DPM techniques and offers a generalized slack reclaiming mech-
anism that can be used by DVFS and DPM simultaneously. This framework is intended
for system-wide energy-efficiency. In this work, authors claim to develop a unified energy
management framework for deadline-driven periodic real-time applications by exploiting
the interplay between DVFS and DPM with both static and dynamic (runtime) solution
components. This interplay of DPM and DVFS techniques, however, is not completely

60 Chapter 4. Assertive Dynamic Power Management Technique

online and adaptive. DPM is mainly used for static optimizations using device forbidden
regions.

Stochastic DPM techniques, rather than eliminating uncertainty by prediction, formu-
late policy optimization as an optimization problem under uncertainty [18, 57, 84]. More
specifically, power management optimization has been studied within the framework of con-
trolled Markov processes. In this case, it is assumed that the system and the workload can
be modeled as Markov chains [16, 55]. Under this assumption, it is possible to: model
the uncertainty in system power consumption and response (transition) times; model com-
plex systems with many power states, buffers, queues, etc.; compute power management
policies that are globally optimum; explore trade-offs between power and performance in
a controlled fashion. Stochastic optimum control is a well-researched category of DPM
techniques [29, 90, 100]. These techniques have several advantages over predictive tech-
niques. First, it captures the global view of the system, thus allowing the designer to search
for a global optimum that possibly exploits multiple inactive states of multiple interacting
resources. Second, it enables the exact solution (in polynomial time) of the performance-
constrained power optimization problem. Third, it exploits the strength and optimality of
randomized policies [29, 83]. However, stochastic optimization techniques assume complete
a priori knowledge of the system and its workload statistics which can be a limiting factor
in some cases. Even though it is generally possible to construct a model for the system
once for all, the workload is generally much harder to characterize in advance. Furthermore,
workloads are often non-stationary.

DPM techniques can be applied at several different levels in a system such as at
processor-level, at peripheries, or a combination of both. Previously, significant amount
of research has focused on applying (both predictive and stochastic) DPM techniques on
either processors only [18, 29, 55, 57, 100] or on peripheral devices only [26, 113]. However,
system-wide energy conservation has received little attention. Some recent research work
has focused on applying DPM techniques together on processors as well as other system
components such as peripheral or I/O devices, memory subsystems, flash drives, and
wireless network interfaces in order to achieve system-wide energy savings. Authors in [27]
suggest that these devices are pervasive in modern embedded systems which consume con-
siderable amount of energy. Authors in [27] propose an online system-wide energy-efficient
scheduling algorithm called SYS-EDF, which integrates dynamic power management for
I/O devices and dynamic voltage scaling for the processor. SYS-EDF algorithm supports
periodic task sets with non-preemptive shared resources. This algorithm takes advantage
of slowed-down execution of tasks on processors by applying DVS on processors and
consequently, elongated idle periods on unused I/O devices.

The AsDPM technique considers mainly the processors for power and energy consump-
tion optimization. It is not based on predictive mechanisms that predict either the arrival
time or the length of an already arrived idle interval. Rather, it works on the principle of
admission control for ready tasks by delaying the execution of ready tasks as much as pos-
sible, thereby controlling the maximum number of active/running processors in the system
at any time instant. Tasks are delayed based on their remaining runtime laxity in a deter-
ministic way. Section 4.3 further elaborates this concept. Although AsDPM is also based
on on the observation that creating long device sleep intervals is the key for effective power
management, unlike presented in [36], AsDPM is not based on device forbidden regions.
Moreover, it can be used to exploit statically present idle time intervals as well as dynamic
slack time generated by the early completion of tasks. Unlike [36] and [35], AsDPM does
not need to be coupled with other DVFS or predictive DPM techniques in order to exploit

4.3. Assertive Dynamic Power Management Technique 61

dynamic slack. Also, unlike [110], AsDPM does not extract the device schedule -i.e., device
power state transition actions and times are not recorded prior to runtime.

4.3 Assertive Dynamic Power Management Technique

In the following, we define some notations related to AsDPM technique, which are used in
this chapter.

Notations:

Scheduler’s Task Queues: In order to simplify later discussion, we define certain
task queues. Their role is specified as following:

1. Tasks Queue (TQ): Contains all tasks which are neither running nor ready/deferred
at any point in time.

2. Released Tasks Queue (ReTQ): Contains tasks that are released but not execut-
ing currently on any processor due to their priority level. When released, a task is
immediately put in this queue.

3. Running Tasks Queue (RuTQ): Contains tasks that are released and currently
running on some processors. When a task Ti is running on a processor πj , it is
represented as πj [Ti] (∀i, j; 1 ≤ i ≤ n, 1 ≤ j ≤ m).

4. Deferred Tasks Queue (DeTQ): Contains tasks that are released but deferred
from execution. A released task that is not the highest priority task but has its prior-
ity high enough to execute on an m-processor platform (i.e., it is among the m highest
priority tasks) can be deferred from execution under AsDPM at any scheduling event.
Such a task is said to be deferred task. When released, this task is put in ReTQ and
upon analyzing its priority, this task is either put in RuTQ (if the highest priority
task) or in DeTQ. When a task is deferred, it is assigned a virtual affinity to one of the
processors in the system and represented as Ti[πj] (∀i, j; 1 ≤ i ≤ n, 1 ≤ j ≤ m). Cri-
terion of assigning this virtual affinity and its advantage is discussed later in section
4.3.1. All tasks present in DeTQ are referred as subset τdeff .

Anticipative Laxity (li): We define the anticipative laxity of a task within the
context of AsDPM only as follows.

Definition: Anticipative laxity of a task’s job is the measure of its urgency to execute
relative to its deadline in the presence of all higher-priority released job(s) running and
deferred on a particular processor.

It differs from absolute laxity2 is the sense that, in a multiprocessor system, a job having
zero or negative anticipative laxity does not imply that it will eventually miss its deadline.
Rather, it is used to project future execution of low priority jobs in the presence of higher
priority jobs by AsDPM. Anticipative laxity is further elaborated in section 4.3.1.

The proportion of processors’ time that an entire real-time task set τ will require in
worst-case is given by Usum (τ)

def
=
∑n
i=1 ui (section 2.1.1.2). For a specific architecture

platform composed of m processors, the worst-case under-utilization caused by such task

2See section 2.1.1 for the definition of absolute laxity Li of task.

62 Chapter 4. Assertive Dynamic Power Management Technique

set is m− Usum(τ). This under-utilization appears at runtime in the form of random and
variable length idle time intervals on different processors for non-stationary workload. A
conventional DPM technique, whether predictive or stochastic, can exploit these idle inter-
vals only once they occur on a processor –i.e., once an idle interval is detected. Upon de-
tecting idle time intervals, these techniques decide whether to transition target processor(s)
to power-efficient state. AsDPM, on the other hand, differs from the existing techniques in
the way it exploits idle time intervals. It aggressively extracts all idle time intervals from
some processors (let us say k processors) and clusters them on some other processors (let
us say m-k processors) to elongate the duration of idle time on m − k processors. Tran-
sitioning these m − k processors to suitable power-efficient state then becomes a matter
of comparing idle interval’s length against the break-even time (BET) of target processor.
It is worth mentioning here that AsDPM is an admission control technique for real-time
tasks that makes a feasible task set energy-efficient by deciding when exactly a ready task
shall execute. Without this admission control, all ready tasks are executed as soon as
there are enough computing resources (processors) available in the system, leading to poor
possibilities of putting some system components in power-efficient states. AsDPM works
only in conjunction with multiprocessor global scheduling algorithms. Moreover, it does
not intervene in the priority-related decision making of the scheduling algorithm. That is,
the priority order of all tasks, whether deferred or executing, is preserved while using As-
DPM in conjunction with global scheduling algorithms. However, a released lower priority
job may be deferred/delayed from execution unless its urgency level becomes critical. In
order to control the admission of tasks into RuTQ, AsDPM performs a test, called Laxity
Bottom Test (LBT), on all released jobs of tasks (except the highest priority job) at every
scheduling event.

4.3.1 Laxity Bottom Test (LBT)

Laxity bottom test is performed at every scheduling event for all tasks (except the highest
priority job) present in ReTQ. It is based on the anticipative laxity li of tasks. Every
time LBT is performed, at first, it is assumed that at most one processor is running in the
system3 (i.e., present in active state) at current scheduling event that invoked the scheduler.
This assumption allows to assign (and/or defer) maximum tasks on one processor as long
as possible. The highest priority ready task from ReTQ is assigned to processor directly
for execution and for all remaining ready jobs in ReTQ, LBT is performed. LBT works
as follows. If the anticipative laxity of a ready job results in a negative value (< 0) then
the test is said to be failed for that job and the job would miss its deadline if no further
computing resources are provided (i.e., processor must be activated). On the other hand, if
LBT passes for a task –i.e., the anticipative laxity results in a positive value (≥ 0) then the
job in question can still meet its deadline in future, if it would be deferred from execution
at current scheduling event (until the next event). LBT ensures deadlines for all released
jobs between successive scheduling events. In the following, we describe how anticipative
laxity is calculated.

Recall the definition of anticipative laxity from section 4.3, which states that all higher
priority released and deferred tasks should be considered while calculating the value of
anticipative laxity li of a particular low priority task Ti on a target processor πj . In a
multiprocessor system, where tasks may execute in parallel, multiple higher priority tasks

3There can be more than one processors running in the system. This is just an assumption to
start the LBT test. Once the LBT is complete for all tasks, resulting number of required running
processors can be the same as previously available or it may be different.

4.3. Assertive Dynamic Power Management Technique 63

(than Ti) might be simultaneously running on different processors and some higher priority
tasks might be already present in τdeff . Moreover, some or all higher priority tasks might
have already completed a portion of their execution requirement (C), therefore, only the
remaining execution requirement (Crem) of higher priority tasks shall be considered for
calculating li. Since all higher priority tasks are not supposed to run on πj sequentially
(rather, there will be at most (m− 1) higher priority tasks running in parallel), therefore,
considering the Crem of all higher priority tasks would result in a very pessimistic value of
li on πj . To avoid this pessimism in calculation, anticipative laxity li of task Ti is calculated
on processor πj in the presence of only those higher priority tasks which are either currently
running on πj or are deferred earlier with an associativity with πj processor –i.e., Tk[πj]

(∀k; i < k). Here, Tk refers to any task having higher priority than Ti and currently
running or deferred on processor πj . Equation 4.1 illustrates how li for task Ti is calculated
on processor πj in the presence of higher priority tasks.

li = di −

t+ Cremj + Cremi +
∑

Tk[πj]∈τdeff
Cremk

 (4.1)

In equation 4.1, t refers to the time instant at which the scheduling event has occurred,
Cremi refers to the remaining execution time of task Ti for which li is calculated, Cremj refers
to the remaining execution time of task which is currently running on processor πj , and Cremk

refers to the remaining execution time of all higher priority deferred tasks present in τdeff

having an affinity with processor πj . When a task is deferred –i.e., its LBT is passed on a
processor, the task is assigned a affinity to that processor. This affinity is valid between two
successive scheduling events only as the LBT is performed again at next scheduling event.
The purpose of assigning this affinity is to make the calculation of anticipative laxity non-
pessimistic by avoiding the reconsideration of those higher priority tasks that are already
being deferred to some other processors. Following example elaborates the working of LBT
further.

Example–1: Let us consider a task set composed of three periodic, independent, and
synchronous tasks such that τ={T1, T2, T3}. The quadruplet (ri,Ci,di,Pi) values for T1,
T2, and T3 are {0, 6, 12, 12}, {0, 8, 14, 14}, and {0, 5, 20, 20}, respectively. Task set τ is
scheduled under preemtive EDF scheduling policy –i.e., smaller the deadline, greater the
priority. In figure 4.1, time instant tc marks a scheduling event at which all three task
jobs are released. According to the priority order, task T1 has the highest priority and
it is directly assigned to processor πj for execution. At the same time instant tc = 0,
LBT is performed on other two lower priority tasks. Using equation 4.1, the anticipative
laxity of task T2 –i.e., l2, in the presence of higher priority task T1 is non-negative –i.e., l2=
14−(0 + 6 + 8 + 0)=0. This result shows that, at time instant tc = 0, task T2 can still meet
its deadline if it will be executed after the worst-case completion of T1. Thus, T2 can be
deferred at this stage on processor πj –i.e., T2[πj] at time tc = 0. Similarly, the anticipative
laxity of task T3 –i.e., l3, is calculated in the presence of higher priority tasks T1 and T2 such
that, l3= 20− (0 + 5 + 8 + 6)>0. Like T2, T3 can also meet its deadline after the worst-case
completion of T1 and T2 and therefore, can be deferred until next scheduling event occurs.
Note that tasks T2 and T3 are shown dotted because this is only an anticipation of the
future schedule of tasks at current scheduling event that may change upon the arrival of
next event.

64 Chapter 4. Assertive Dynamic Power Management Technique

Figure 4.1: Laxity Bottom Test (LBT) using anticipative laxity li.

4.3.2 Working Principle

The working principle of AsDPM is illustrated in algorithm 5. As stated earlier in section
4.3.1, at every scheduling event, AsDPM performs laxity bottom test starting with the
assumption that at most one processor is running to accommodate most of the workload
and gradually increases the computational resources. Variable j in algorithm 5 refers to
the number of processors. Upon the arrival of a scheduling event, all task queues (TQ,
RuTQ, ReTQ, and DeTQ) are updated and sorted in accordance with the priority order of
tasks specified by the governing scheduling algorithm (lines 1−3). Once all task queues are
sorted, highest priority j task(s) from ReTQ are assigned to j processor(s) (line 5). For rest
of the ready tasks present in ReTQ, LBT is performed considering the first target processor
(line 6− 9). If a task passes LBT, it is moved into DeTQ –i.e., it is deferred from execution
at current scheduling event. Otherwise, if a task does not pass LBT then it implies that
currently available running processors are not sufficient to satisfy the concurrent resource
requirement of ready tasks and some tasks may miss their deadline in future. In this case,
all tasks which are deferred or running –i.e., present in RuTQ or DeTQ, are put into ReTQ
again and more processors are activated. This procedure is repeated until ReTQ becomes
empty –i.e., until all tasks present in ReTQ are either moved to RuTQ or DeTQ.

Note that when more than one processors are active, a task has to pass its LBT on at
least one processor. For instance, with two processors considered as running at a particular
scheduling event, if a task has its LBT failed on first processor, let us say πj , but passed on
the other processor, let us say πj+1, then the task is deferred on πj+1 and next task from
ReTQ is taken for test. Also note that, deferring of tasks is valid only between any two
successive scheduling events. Upon the arrival of next scheduling event, the same process
repeats itself and as a result, the number of active processors may change.

Let us consider another simple example that demonstrates the working principle of
AsDPM.

Example–2: Let us consider a task set composed of three periodic, independent, and syn-
chronous tasks such that τ={T1, T2, T3}. Th quadruplet values for T1, T2, T3 are {0, 3, 8, 8},
{0, 6, 10, 10}, and {0, 4, 16, 16}, respectively. Task set τ is scheduled over two processors
under global EDF scheduling algorithm. Figure 4.2(a) illustrates the schedule of τ using
global EDF scheduler. In this schedule, some random idle time intervals (gray dashed
area) are generated due to the priority mechanism of EDF. These idle time intervals, when
considered individually, may not be long enough as compared to BET for transitioning pro-
cessors into power-efficient state. Figure 4.2(b) illustrates the same schedule using global
EDF scheduler with AsDPM in place. It can be noticed in figure 4.2(b) that all idle time
intervals from processor π1 are extracted and clustered on π2 to elongate the idle time on π2.
It becomes much easier to transition processor π2 to power-efficient state after elongating
idle time interval.

4.3. Assertive Dynamic Power Management Technique 65

Algorithm 5 Assertive Dynamic Power Management
1: assign j = 1

2: for each scheduling event do
3: sort TQ, ReTQ, RuTQ, and DeTQ w.r.t. scheduler’s priority order
4: repeat
5: move highest priority j task(s) from ReTQ to RuTQ
6: for every remaining task i in ReTQ do
7: if li ≥ 0 on j processor(s) then
8: move Ti to DeTQ
9: else

10: move all tasks from DeTQ and RuTQ to ReTQ
11: assign j = j + 1

12: activate j processors
13: until ReTQ is empty

(a) Execution trace of τ using global EDF scheduler

(b) Execution trace of τ using global EDF scheduler in the presence of AsDPM.

Figure 4.2: Schedule of τ using global EDF scheduler. (a) Without AsDPM. (b)
With AsDPM.

66 Chapter 4. Assertive Dynamic Power Management Technique

In algorithm 5 (line 12), it is mentioned that additional processor(s) should be activated
if the anticipative laxity of any low priority task results in negative value –i.e., that task will
miss its deadline for its currently released job while using the available platform resources.
In other words, the number of processors running at current scheduling event are insufficient
to fulfill the execution requirement of all released tasks and therefore, more processor(s)
should be brought to running state. However, a processor cannot be immediately recovered
from power-efficient state due to temporal penalties associated with state-transition. The
AsDPM technique solves this issue by using its a priori (online) knowledge of the increased
platform resource requirement, thanks to anticipative laxity. From the definition of antic-
ipative laxity, we know that it does not represent the real urgency or real laxity of a low
priority task to execution. Rather, it makes a futuristic projection of resource requirement
in order to ensure deadlines of all released jobs with currently available platform resources.
Due to this futuristic projection, a processor has time to recover when it is required. Since
the highest priority j task(s) do not pass LBT and are assigned immediately to j proces-
sor(s) (line 5), therefore, anticipative laxity of only lower priority tasks is tested. Hence,
only lower priority tasks can potentially miss deadlines if their anticipative laxity results
negative and if the number of running processor is not increased. By the time these lower
priority tasks really start executing, additional processor(s) can be recovered from power-
efficient state. Thus, the recovery time of a processor from power-efficient state to running
state can be masked with the execution of higher priority executing task(s) before the time
a processor is actually required to be functional. In the following, we describe how AsDPM
deals with some corner cases.

Case 1: A processor’s recovery time from power-efficient state to running state might be
greater than the absolute laxity (Li) offered by a task Ti at its release instant.

Let us consider that a lower priority task Ti is released at any point in time. At this
time instant, τdeff is empty –i.e., there is no higher priority deferred task and all the higher
priority task (than Ti) are currently running. Let us suppose that the anticipative laxity
of Ti results negative immediately after it is released. This implies that, Ti will miss its
deadline on all processors currently running. Hence, it immediately requires additional
computing resources to meet its deadline. In this scenario, if a processor’s recovery time is
larger than both the absolute laxity (Li) of Ti and the remaining execution time (Crem)
of currently executing higher priority tasks then Ti will miss its deadline. To avoid such
scenario, we propose two modifications.

1. Use a maximum value between remaining execution time (Cremj) of currently execut-
ing higher priority task on processor πj and processor’s recovery time (ttrans) from
the most power-efficient state.

Cremmax = max
(
Cremj , ttrans

)
(4.2)

li = di −

t+ Cremmax + Cremi +
∑

Tk[πj]∈τdeff
Cremk

 (4.3)

2. Target application tasks should not have their absolute laxity (Li) smaller than the
recovery time (ttrans) of target processors from their most power-efficient state.

4.3. Assertive Dynamic Power Management Technique 67

Case 2: Release of an intermediate priority task might cause an already deferred higher
priority task to miss its deadline.

Let us consider an example task set composed of four periodic tasks (n = 4), such
that τ={T1, T2, T3, T4}. This task set is scheduled over two processors (m = 2) such that
Π={π1, π2} under global EDF scheduler. At time instant tc, tasks T1, T2, and T4 are re-
leased. According to the working principle of AsDPM, task T1 starts executing immediately
on π1 and T2 and T4 were deferred on π1 as illustrated in figure 4.3(a). At this stage, one
processor seemed sufficient to meet deadlines of all released tasks. Let us consider that
an intermediate priority task T3 is released at time instant tc+1 and invokes the scheduler
again as illustrated in figure 4.3(b). At this scheduling event, scheduler updates the priority
order of all released tasks. AsDPM performs LBT on all sorted tasks present in ReTQ as
mentioned in the algorithm 5. Due to updated priority order, task T4 fails the LBT which
implies the requirement of additional processors to meet deadlines of all tasks. Thus, pro-
cessor π2 should be activated at time tc+1. In figure 4.3(b), red rectangular box represents
the recovery time ttrans of processor π2.

Since AsDPM preserves the order of execution of tasks, therefore, the newly activated
processor π2 must execute T2 ahead of T3 or T4 as it is the next highest priority task in
ReTQ. However, at this point in time, the runtime laxity of T2 is decreased from its absolute
laxity Li due to earlier deferring and it cannot meet its deadline if it is forced to wait for
execution on π2 processor. To avoid this situation, the real laxity of highest priority deferred
task, which is T2 in this case, is compared with the newly activated processor’s recovery
time, which is π2 in this case, and if the resultant value is positive then T2 is assigned to
π2. Otherwise, immediate next priority task after T2 is assigned to π2 processor –i.e., T3
is assigned to π2. Note that the order of execution of tasks does not change as T2 start
executing on π1 before T3 starts executing on π2.

Case 3: Energy inefficient state transitions might occur on processors due to varying
platform resource utilization.

Every scheduling event has an impact on the concurrent resource utilization of the
system. For instance, release of a new job potentially increases concurrent platform resource
utilization while completion of a job potentially decreases it. However, the exact impact
of future scheduling events on the overall platform resource utilization of the system is not
known a priori to the scheduler. This uncertainty may cause AsDPM to be over-optimistic
in the sense that it would extract all idle intervals in the beginning and might require more
processing power to meet deadlines later. This over-optimism can be avoided for periodic
task models for which, knowing the future/upcoming scheduling event is possible thanks
to recurring nature of tasks. While using AsDPM, the information concerning the type of
upcoming scheduling event is extracted from sorted TQ, ReTQ and RuTQ. For implicit
deadline tasks, the deadline of a task also refers to the release event of its next job and
therefore, it is sufficient to compare the deadlines of highest priority tasks present in TQ,
ReTQ, and RuTQ to determine the earliest future release event using equation 4.4.

rnext = min (dTQ, dReTQ, dRuTQ) (4.4)

Here, dTQ, dReTQ, and dRuTQ refer to the deadlines of highest priority tasks present in
TQ, ReTQ, and RuTQ, respectively. The knowledge of next release instant of any upcoming
job(s) is helpful for AsDPM in determining when exactly the platform resource utilization
might increase. Consequently, the idle intervals which occur very close to rnext are not

68 Chapter 4. Assertive Dynamic Power Management Technique

(a) Projected schedule of tasks at time tc without intermediate priority task T3.

(b) Projected schedule of tasks at time tc+1 with intermediate priority task T3.

Figure 4.3: Impact of an intermediate priority task’s release. (a) Projected schedule
of tasks at time tc without intermediate priority task T3. (b) Projected schedule of
tasks at time tc+1 with intermediate priority task T3.

extracted. Thus, state transitions on processors which might result is an energy loss are
avoided. The closeness to rnext is user-specified. For instance, it can be equal to BET of
the processor.

4.3.3 Choice of Power-efficient State

Modern processors support multiple power-efficient states. Since, there are temporal and
energy penalties associated with state transitions, therefore, a processor needs to be put in
the power-efficient state long enough to save energy –i.e., at least equal to the break-even
time (BET). Under AsDPM, some processors of the platform have larger workload while
others have less workload. For those processors having larger workload, and consequently
shorter idle time intervals, it is not so beneficial, some times even penalizing, to transition
them into deeper power-efficient states. This is because the number of transitions on such
processors is greater and accumulates large transition cost. In addition, generally, the more
a state is power-efficient, the more it takes (time and energy) to recover a processor from
that state. However, for other processors having longer idle time intervals, it is advantageous
to put them in more power-efficient states as they are not often recovered to running state.
Once the AsDPM technique has extracted idle time intervals, processors are then assigned
suitable power-efficient state with respect to their worst-case workload. Processors, from
which idle time intervals are mostly extracted at runtime, are either assigned no power-
efficient state at all or they are assigned state having least recovery time penalty. Other
processors, on which idle time intervals are accumulated at runtime, are assigned more
power-efficient states.

4.4. Static Optimizations using AsDPM 69

4.4 Static Optimizations using AsDPM

In section 4.3, it has been mentioned that AsDPM itself is an online admission control
technique which decides when exactly a ready task shall execute. Without this admission
control, all ready tasks are executed as soon as there are enough computing resources (pro-
cessors) available in the system. This feature of AsDPM not only helps optimizing the
use of platform resources in an online fashion, but also can be used for static/offline opti-
mizations of platform resources. By optimized platform resources, we mean the minimum
number of required processors under worst-case workload and the corresponding operating
voltage-frequency level of processors which can result in an optimal architecture configura-
tion from energy consumption point of view. All timing constraints of real-time tasks must
always be respected by the resultant architecture configuration.

The static optimal architecture configuration is determined for worst-case workload
requirements of a target application. Note that this configuration may vary from one target
application to another. The process of determining static optimal architecture configuration
is based on simulations under worst-case application workload. The number of processors
in the target processing platform are not specified a priori (in simulations only). The
scheduler, by using AsDPM, can activate as many processors as required to meet timing
constraints of target application at runtime. For every voltage-frequency level supported by
the target processors, starting from the maximum voltage-frequency level, simulation of one
complete frame (i.e., the first hyper-period) of target application tasks is performed under
worst-case workload. As a result, the number of processors used in the simulated trace
and the energy consumed are obtained. The number of processors used and corresponding
voltage-frequency level would be considered as a static architecture configuration which is
not necessarily the static optimal configuration. The process is repeated for every voltage-
frequency level. This is similar to static voltage and frequency scaling (SVFS) process with
the exception that the number of processors are not fixed a priori. Once all configurations
for different voltage-frequency levels are obtained, the configuration consuming least energy
while respecting physical constraints of platform architecture (i.e., maximum allowable
number of processors in real platform) and timing constraints of target application is chosen
to be the static optimal architecture configuration. Note that no power-efficient state is
assigned at this stage to any processor if it remains idle. In section 4.5, we shall elaborate
further how static optimal architecture configuration is achieved through simulations.

4.5 Experiments

In this section, we provide the reader the evaluation of the AsDPM technique, which is based
on simulation results. The performance of AsDPM is evaluated using STORM simulator
(Simulation TOol for Real-time Multiprocessor Scheduling) [108]. We consider the same
system model –i.e., task model, processing platform, and power and energy models, as
presented in chapter 2. Simulations are carried out using global EDF scheduling algorithm.

4.5.1 Target Application

H.264 video decoder application is taken as main use case application. H.264 is a high
compression rate algorithm [88] relying on several efficient techniques extracting spatial
(within a frame) and temporal dependencies (between frames). The main steps of the
H.264 decoding process are depicted in figure 4.4 and consist in the following:

70 Chapter 4. Assertive Dynamic Power Management Technique

1. A compressed bit stream coming from the NAL layer is received at the input of the
decoder.

2. Data are entropy decoded and sorted to produce a set of quantized coefficients.

3. These coefficients are then inverse quantized and inverse transformed.

4. Data obtained are then added to the predicted data from the previous frames de-
pending upon the header information.

5. Finally the original block is obtained after the de-blocking filter to compensate the
block artifacts effect.

Figure 4.4: Block diagram of H.264 video decoding scheme.

The H.264 video decoder application can be broken down into various tasks sets corre-
sponding to different types of parallelization. In our experiments, we use two different task
models of H.264 proposed by Thales Group, France [115] in the context of French national
project Pherma [86]. The proposed task models are:

• H.264 slices version

• H.264 pipeline version

In both versions, the defined timing constraint is that an output frame must be produced,
lets say every X ms, where X is a Quality of Service (QoS) level set by the user. In the
following, each version is discussed briefly.

4.5.1.1 H.264 slices version

The main characteristic of this version is that the algorithm is parallelized on the slices
of the frame as illustrated in figure 4.5. This parallelization is of SPMD (Single Program
Multiple Data) shape since the same algorithm is performed on different data. For this
version, it is considered that frames are made up of 4 slices. Since slices inside a frame can
be computed independently, therefore, one task is assigned for each slice to be computed.
Thus, four tasks, named slice-processing, can run simultaneously in this version. There are
some synchronizations required between tasks that must be handled to ensure a proper
processing without data corruption. These synchronization are handled through the task
named SYNC on the left hand side in figure 4.5. At the beginning of each new frame,
tasks can access only sequentially to the input data buffer. Therefore, there is a slight

4.5. Experiments 71

overhead in the real beginning of each start up of the task named Slice. This behavior is
due to the access of shared resource which is protected by a semaphore. Due to temporal
dependencies between frames, it is not possible to compute the next frame if the previous
one has not been completely decoded. Thus, at the end of each slice computation, tasks
need to be resynchronized using task named SYNC (on the right hand side in figure 4.5).
As a result, input data must be present and the previous frame must be decoded at the
start of decoding a new frame. Hence, H.264 slices version comprises of seven periodic tasks
as shown in table 4.1. All values for Bi and Ci are given at maximum frequency of PXA270
processor (i.e., 624-MHz).

Figure 4.5: Block diagram of H.264 decoding scheme slices version.

Table 4.1: H.264 video decoder application task set for slices version
Task Name ri Ci Bi di Pi

NEW-FRAME (T1) 0 1 1 40 40
NAL-DISPATCH (T2) 0 2 1 10 10
SLICE1-PROCESSING (T3) 10 42 21 120 120
SLICE2-PROCESSING (T4) 20 42 21 120 120
SLICE3-PROCESSING (T5) 30 42 21 120 120
SLICE4-PROCESSING (T6) 40 42 21 120 120
REBUILD-FRAME (T7) 160 2 1 120 120

4.5.1.2 H.264 pipeline version

Main characteristics of the pipeline version are that the whole processing has been pipelined
into seven tasks, namely; TG, NA, SI, RE, LI, and RA. Figure 4.6 illustrates the order of
execution for these tasks. The task related to the image rendering process RE has also been
parallelized into sub tasks. In the physical implementation of pipelined version provided by

72 Chapter 4. Assertive Dynamic Power Management Technique

Thales Group, France [115], synchronization between tasks are handled through a blocking
FIFO communication mechanism -i.e., tasks are blocked when the FIFO is empty or full
or also when there is not enough data to be read inside the FIFO. In this version, the only
constrain to start the decoding of a new frame is the availability of the input data. Once
new data are available, another pipeline stage can start. In simulation, we extract this
sequential execution of tasks by adding an offset at each periodic task’s release. With the
help of this offset, tasks process different data at different pipeline depth and input data
are assumed to be always available. Table 4.2 gives the resulting task set for H.264 video
decoder pipeline version with offsets at release of tasks.

Figure 4.6: Block diagram of H.264 decoding scheme pipeline version.

Table 4.2: H.264 video decoder application task set for pipeline version
Task Name ri Ci Bi di Pi

TG (T1) 0 2 1 15 15
SI (T2) 15 3 2 15 15
RE-1 (T3) 30 17 8 30 30
RE-2 (T4) 30 17 8 30 30
RE-F (T5) 60 8 4 30 30
LI (T6) 90 3 2 30 30
RA (T7) 120 2 1 30 30

4.5. Experiments 73

4.5.2 Simulation Results

Simulation results for both versions of H.264 video decoder application are provided using
different throughput requirements. Throughput requirement is a user-specified parameter,
measured as frames per second (fps), which determines different levels of Quality of Service
(QoS). We demonstrate that how static optimal architecture configuration for different
frame rates is obtained using AsDPM.

4.5.2.1 Determining static optimal architecture configurations

Figure 4.7: Simulation results on the changes in energy consumption for H.264 video
decoder application (slices version) for various frequencies.

As mentioned in section 4.4, static optimal architecture configuration is obtained
through simulations on every voltage-frequency level supported by target processors using
worst-case execution requirement of all tasks. For both H.264 slices and pipeline version, we
carry-out simulations at different quality of service requirements –i.e., frames per second.
Table 4.3 refers to the results we obtain for H.264 slices version. These results are obtained
for a simulation trace of 10-seconds. In the following, we analyze these results.

We observe that in order to meet the timing constraints of all tasks, e.g., for throughput
rate of 8.33-fps with an operating voltage-frequency level of (1.55V, 624MHz), there must
be at least 3 processors. Energy consumption in this case will rise up to 17.6-joules. Note
that, based on these results, the static optimal architecture configuration seems to be with 6

processors at (1.25V, 312MHz) with 14.719-joules for a throughput rate of 8.33-fps as shown
in table 4.3. However, if the operating voltage-frequency level is decreased below (1.25V,
312MHz), it will not be possible to meet the timing constraints of tasks as mentioned in the

74 Chapter 4. Assertive Dynamic Power Management Technique

Table 4.3: Static architecture configurations for H.264 video decoder slices version
Frame
Rate(FPS)

Frequency
(MHz)

Processors
(m)

Energy
(Joules)

Deadline
Miss

8.33

624 3 17.630 NO
520 3 16.319 NO
416 5 17.188 NO
312 6 14.719 NO
208 7 8.979 YES
104 – – –

10.0

624 4 24.553 NO
520 5 22.116 NO
416 6 20.185 NO
312 6 15.554 NO
208 7 8.980 YES
104 – – –

11.11

624 4 25.851 NO
520 4 21.098 NO
416 6 21.117 NO
312 6 16.110 NO
208 7 8.975 YES
104 – – –

15.15

624 4 30.551 NO
520 6 29.101 NO
416 6 24.036 NO
312 7 15.724 YES
208 – – –
104 – – –

17.24

624 6 37.826 NO
520 6 30.885 NO
416 6 19.466 YES
312 – – –
208 – – –
104 – – –

20.83

624 6 42.131 NO
520 6 25.049 YES
416 – – –
312 – – –
208 – – –
104 – – –

22.27

624 6 44.247 NO
520 6 25.901 YES
416 – – –
312 – – –
208 – – –
104 – – –

last column of table 4.3. An interesting observation on these results is that reducing voltage-
frequency level might not necessarily always decrease overall energy consumption. For

4.5. Experiments 75

Table 4.4: Static architecture configurations for H.264 video decoder pipeline version
Frame
Rate(FPS)

Frequency
(MHz)

Processors
(m)

Energy
(Joules)

Deadline
Miss

10.0

624 1 9.204 NO
520 1 6.716 NO
416 2 6.458 NO
312 2 5.349 NO
208 6 7.362 NO
104 5 2.703 YES

12.0

624 1 9.211 NO
520 2 8.785 NO
416 2 6.721 NO
312 2 5.520 NO
208 3 3.809 NO
104 6 3.281 YES

15.0

624 1 9.224 NO
520 2 9.600 NO
416 2 8.514 NO
312 3 7.611 NO
208 5 6.317 NO
104 6 3.301 YES

20.0

624 2 11.982 NO
520 2 10.402 NO
416 2 8.561 NO
312 3 7.848 NO
208 5 6.367 YES
104 – – –

25.0

624 2 14.631 NO
520 2 12.665 NO
416 3 11.327 NO
312 3 8.048 NO
208 4 5.111 YES
104 – – –

32.0

624 2 17.768 NO
520 3 16.860 NO
416 4 15.651 NO
312 5 11.589 YES
208 – – –
104 – – –

instance, static architecture configuration at (1.45V, 520MHz) with 3 processors consumes
less energy than (1.35V, 416MHz) with 5 processors. As a result, the increase in number of
processor must be followed by an sufficient decrease in the operating voltage-frequency level,
otherwise, the overall energy consumption will not be lowered enough. For each throughput
requirement, the optimal configuration from the energy saving point of view is highlighted in
red color in table 4.3. Note that an optimal or most suitable static architecture configuration
depends also on the available physical platform. Figure 4.7 graphically illustrates the results
presented in table 4.3 for those frequencies only, for which no deadline is missed. Figure

76 Chapter 4. Assertive Dynamic Power Management Technique

4.7 illustrates that reducing operating frequency does not always result in a linear decrease
in energy consumption.

Table 4.4 represents similar results on static architecture configurations for H.264
pipeline version for different throughput rates. Note that with pipeline version (see ta-
ble 4.2), the achievable throughput rate is up to 32-fps. Configurations highlighted in red
color against each throughput requirement are the optimal configurations only from energy
consumption point of view. Figure 4.8 illustrates the difference in energy consumption
between a statically non-optimized EDF schedule and a statically optimized EDF sched-
ule of H.264 video decoder application (slices version) using AsDPM. Similar results are
presented in figure 4.9 for pipeline version of H.264 video decoder application. Energy con-
sumed under statically non-optimized EDF-based schedule refers to the energy consumption
at maximum voltage-frequency level –i.e., (1.55V, 624MHz), and m processors as required
by the schedulability analysis of EDF for every QoS requirement.

The use of AsDPM for determining static optimal architecture configurations enables
the designer to explore target architecture. Indeed, we have been able to test the timing
constraints of target application at different throughput requirements. Moreover, we have
been able to identify what would be the minimum needs in terms of processing platform
resources (i.e., number of processors and their corresponding operating voltage-frequency
level) to fit different throughput requirements. If the end-user has an energy budget to
respect, this technique helps him/her to have an energy forecast of the target configuration.

Table 4.5: Static optimal architecture configurations for H.264 video decoder slices
version for different QoS requirements

Frame Rate
(FPS)

Frequency
(MHz)

Processors
(m)

Energy
(Joules)

8.33 312 6 14.719
10.0 312 6 15.554
11.11 312 6 16.110
15.15 416 6 24.036
17.24 520 6 30.885
20.83 624 6 42.131
22.27 624 6 44.247

Table 4.6: Static optimal architecture configurations for H.264 video decoder
pipeline version for different QoS requirements

Frame Rate
(FPS)

Frequency
(MHz)

Processors
(m)

Energy
(Joules)

10.0 312 2 5.349
12.0 208 3 3.809
15.0 208 5 6.317
20.0 312 3 7.848
25.0 312 3 8.048
32.0 416 4 15.651

4.5. Experiments 77

Figure 4.8: Simulation results on energy consumption under statically non-optimized
EDF schedule and statically optimized EDF schedule using AsDPM for H.264 video
decoder application (slices version).

4.5.2.2 Results using AsDPM as an online technique

Once the static optimal architecture configurations are obtained for different QoS require-
ments as presented in section 4.5.2.1, AsDPM can be applied as an online DPM technique
on these configurations to further optimize energy consumption. Since real-time applica-
tions potentially exhibit variations in their actual execution time and generate dynamic
slack, therefore, there are more opportunities to save energy at runtime.

To demonstrate the effectiveness of AsDPM as an online DPM technique, we simulate
the task sets for slices and pipeline versions of H.264 video decoder present in table 4.1
and table 4.2, respectively, using static optimal architecture configurations present in table
4.5 and table 4.6, respectively. Note that the best-case to worst-case execution time ratio
(bcet/wcet ratio) for each task is varied randomly between 50% and 100% of its wcet such
that the actual execution time of each task has a uniform probability distribution function
as suggested in [10]. Simulation results obtained using STORM simulator are presented in
figure 4.10 for slices version and in figure 4.11 for pipelined version. Figure 4.10 illustrates
the difference in energy consumption of non-optimized EDF schedule, statically optimized
EDF schedule using AsDPM, and EDF schedule using online AsDPM. It can be noticed that
the online AsDPM technique further increases energy gains of statically optimized schedule
for more or less every QoS requirement. Energy gains obtained by the online AsDPM
technique reach from 14% up to 30% compared to the results presented in table 4.5. In
the best-case (for QoS requirement of 8.33-fps), energy savings are observed up to 32.7%.
Similar results are presented in figure 4.11. Energy gains obtained by the online AsDPM
technique for H.264 pipelined version range from 11% to 35% as compared to statically
optimized results presented in table 4.6 for different QoS requirements. The best-case

78 Chapter 4. Assertive Dynamic Power Management Technique

Figure 4.9: Simulation results on energy consumption under statically non-optimized
EDF schedule and statically optimized EDF schedule using AsDPM for H.264 video
decoder application (pipeline version).

energy savings in this case are observed up to 35.8% for QoS requirement of 15-fps.
Note that the results provided on the percentage of energy gains while using the online

AsDPM technique are given as compared to the energy gains of statically optimized results.
If no static optimizations are performed, achievable gains on energy using the online AsDPM
technique alone would be significantly large as compared to the presented results.

4.5.3 Comparative Analysis of the AsDPM Technique

Although, many of the existing DPM techniques claim significant power and energy savings
for real-time application models, producing the same results for such techniques in simula-
tion settings other than the one used by authors is neither straightforward nor trivial. This
is one of the limitations for us as well while comparing the performance of our proposed
technique with existing techniques. Nevertheless, in order to give a reasonable idea on the
performance of our proposed technique, in this section, we provide a comparative analysis
of energy savings under AsDPM and a theoretically ideal DPM technique. A theoretically
ideal DPM technique is the one that would have no temporal or energy penalty while tran-
sitioning a processor to power-efficient states and it could transition a processor as soon
as an idle time interval is detected. Moreover, all idle time intervals could be exploited
for energy savings under such technique. Although, it is impossible to have zero penalties
in existing processor technology, energy-efficiency of such an ideal DPM technique gives a
good theoretical reference for measuring the performance of other techniques.

Figure 4.12 illustrates the results we obtain while comparing the energy savings under
non-optimized EDF schedule, static optimal AsDPM, online AsDPM, and ideal DPM for

4.6. Future Perspectives of the AsDPM Technique 79

Figure 4.10: Simulation results on the energy consumption under statically non-
optimized EDF schedule, statically optimized EDF schedule using AsDPM, and
EDF schedule using online AsDPM for H.264 video decoder application (slices ver-
sion).

the slices version of H.264 video decoder. We have measured the energy gains obtained by
statically optimized EDF schedule of tasks using AsDPM within 50% to 55% of ideal DPM
technique, and within 8% to 16% of ideal DPM technique while using the online AsDPM
technique with EDF scheduler for the same application. These results are encouraging
and depict that AsDPM, when used for both static and dynamic energy optimization,
can achieve significantly large percentage of energy-efficiency that is close to the best-
possible energy savings. Obviously, it is impossible to achieve energy gains of an ideal
DPM technique due to the realistic temporal and energy penalties involved in transitioning
processor states. Thus, AsDPM performs well while taking into account the transition
penalties.

4.6 Future Perspectives of the AsDPM Technique

In this section, we highlight some future perspectives of AsDPM that are mainly related to
the system-wide energy-efficiency and thermal issues in multiprocessor systems. Authors in
[58, 130, 27] have suggested that devices such as memory banks, flash drives and wireless
network interfaces are pervasive in modern embedded systems which consume considerable
amount of energy. Hence, limiting the scope of energy-efficient techniques only to processors
may not result in considerable overall energy savings. Moreover, while battery operated
embedded systems need to meet an ever-increasing demand for performance with longer
battery life, high performance systems, on the other hand, contend with the issues of heat-
ing. Authors in [27, 78] highlighted that heating issue is becoming a crucial design criterion

80 Chapter 4. Assertive Dynamic Power Management Technique

Figure 4.11: Simulation results on the energy consumption under statically non-
optimized EDF schedule, statically optimized EDF schedule using AsDPM, and
EDF schedule using online AsDPM for H.264 video decoder application (pipeline
version).

in order to ensure QoS requirements and limit the performance degradation for multi-core
and many-core systems with 2-dimensional and 3-dimensional chip manufacturing. In this
section, we briefly describe how AsDPM can be useful for other system components, es-
pecially memory subsystem. Moreover, we describe how AsDPM confronts with heating
issue.

4.6.1 Memory Subsystem

Authors in [81] report that multi-banking in static and dynamic RAM-based main memory
architectures has been used as a popular method for reducing energy consumption. In
multi-banking, memory space is divided into multiple banks, each of which can be controlled
independently of the others. One example of this type of memory architecture is RDRAM
[93] in which each bank can work with four power-efficient states –i.e., active, standby, nap,
and power-down. A memory bank can service a read/write request only in the active mode.
If it is not servicing a memory request, it can be placed into one of aforementioned power-
efficient state. Results reported by many researchers [31, 32, 41, 67, 82, 81] suggest that
significant reduction in energy consumption of memories is achieved through multi-banking
approach. Authors in [81, 82] propose techniques based on clustering dynamically created
data with temporal affinity in the physical address space such that the data occupies a
small number of memory banks and remaining (unused) banks can be shutdown to save
leakage power. There is a trade off between energy saving and performance penalty (i.e.,
resynchronization cost in terms of time and energy required to bring back a memory bank

4.6. Future Perspectives of the AsDPM Technique 81

Figure 4.12: Simulation results on energy consumption of AsDPM in comparison
with ideal DPM technique under the control of EDF scheduling algorithm for H.264
video decoder application (slices version).

to the active state) when selecting a power-efficient state to use for a given idle bank. The
time between successive accesses to a given bank is the major determining factor in selecting
the most suitable power-efficient state. Typically, larger the inter-access time of a bank,
deeper the power-efficient state that can be applied and higher the energy saving of a state,
higher the resynchronization cost.

We foresee that applying AsDPM (on processors) in systems which are based on multi-
bank memory architectures can be potentially interesting. We consider a simplified multi-
bank memory system in which each independent application task uses a separate memory
bank and its data are not compacted using physical address space optimization techniques.
However, all data and code concerning a single task can completely reside in one memory
bank. For such system, the number of active memory banks would be equal to the number
of tasks running at any time instant over a multiprocessor platform. Here, we recall from
section 4.3.2 that AsDPM works as an admission control technique and seeks to optimize
the number of running processors as much as possible (provided that no task misses its
deadline) even if there is exploitable parallelism present in the application tasks. Even-
tually, resulting in an optimized minimum number of tasks (often less than total number
of processors available in the platform) running at any given time instant. The working
mechanism of AsDPM leads to reduce the number of active memory banks at runtime.
That is, even if AsDPM is applied only on processors, energy consumption can be reduced
at memory subsystem level by manipulating state of memory banks in accordance with the
order of execution of tasks. Further energy savings can be obtained using physical address
space optimization techniques –i.e, by putting multiple tasks in single bank (if possible) or
allocating memory banks to various tasks in specific order so that some banks can remain

82 Chapter 4. Assertive Dynamic Power Management Technique

idle for longer duration.
Only for illustration purpose, we consider a simulation trace obtained from STORM

simulator in which certain number of tasks are scheduled over three processors using global
EDF scheduling algorithm. Figure 4.13(a) illustrates the case when AsDPM is not applied.
In this figure, it can be noticed that the number of banks being used at different time instants
vary quite frequently. Moreover, the number of state transitions is also significantly large.
Whereas, in figure 4.13(b) which refers to the case when AsDPM is applied at processors,
fewer than maximum number of memory banks are active most of the time and the number
of transitions is reduced as well. We did not carry out detailed experiments to validate this
observation due to some limitations with the simulation tool. However, we feel confident
that with larger application task sets, the gains on energy at memory subsystem level can
be capitalized.

4.6.2 Thermal Load Balancing

Authors in [27, 78] have highlighted that, due to the scaling-down of transistor, the avail-
able chip surface for heat dissipation is reducing which results in increased power densities.
Multiprocessor systems also behave as multiple heat sources which increase the likelihood
of temperature variations over shorter time and chip area rather than just a uniform tem-
perature distribution over entire die.

In fact, in its actual state, AsDPM can potentially cause thermal imbalance on pro-
cessors of the system. The source of (potential) thermal imbalance in the system is the
working principle of AsDPM, which seeks to minimize the number of running processors.
That is, processors that are in running state are intended to be continuously running while
processors in power-efficient state are supposed to remain in their state as long as possible,
resulting in increased temperature for the running processors and eventually reduce life
time. To address this issue, we consider the thermal model of microprocessors presented by
authors in [73]. Authors state that, once the energy consumption of a processor is known,
it can be used as an input for thermal model of processors. Using such a model, the tem-
perature of processor can be estimated quite accurately. The temperature follows power,
but does not change at once, rather it increases exponentially over time. The course of
processor’s temperature over time is modeled by authors in [73] through equation 4.5.

υ(t) =
−C̃
C2
· e−C2t +

C1

C2
· Pwr + υ0 (4.5)

Here, υ0 is the ambient temperature. C1 and C2 are constants depending on the thermal
resistance and the thermal capacitance of processor and heat sink. C̃ is an integration con-
stant depending on the initial temperature of processor. Equation 4.5 consists of a dynamic
part (first addend) and a static part (second and third addend). Static part depends only
on the ambient temperature and power consumption of processor. It models the amount
of temperature that a processor reaches after operating with constant power for long time.
The dynamic part is an exponential function with time constant C2 and models the expo-
nential rise or decay of a processor’s temperature after a change in power consumption. C2

can be determined by starting a computation-intensive task, which produces a maximum of
heat on a processor formerly idle, recording the temperature values over time, and fitting an
exponential function to the experimental data. With knowledge of C2, the constant C1 can
then be determined from the static part of equation 4.5 by measuring temperature against
known power consumption of the processor. Note that this thermal model does not take
into account the physical placement of multiple cores which can potentially create thermal
hot-spots.

4.6. Future Perspectives of the AsDPM Technique 83

(a) Energy consumption of multi-bank memory under global EDF schedule with-
out AsDPM.

(b) Energy consumption optimization of multi-bank memory under global EDF
schedule using AsDPM.

Figure 4.13: Energy consumption in memory subsystem using multi-bank architec-
ture. (a) Energy consumption of multi-bank memory under global EDF schedule
without AsDPM. (b) Energy consumption optimization of multi-bank memory un-
der global EDF schedule using AsDPM.

84 Chapter 4. Assertive Dynamic Power Management Technique

Equation 4.5 links the thermal variations of processor with the power consumption
variations. Since power consumption can be estimated very precisely using many simula-
tion tools, therefore, thermal variations of processor can be approximated using the model
presented by [73]. The thermal imbalance in AsDPM can be dealt with using this model
by maintaining a power consumption profile, which could be approximated to temperature
variations of processors, and evaluate this profile at suitable time instants, such as every
scheduling event. Based on the evolution of temperature over time, AsDPM can suggest
the controlling scheduler to replace the heated processors with relatively cooler proces-
sors present in the platform at runtime. This could be a simple preventive measure to
homogenize temperature among all processors using only the power consumption models
and scheduling decisions. However, more sophisticated approaches that deal with thermal
imbalance can be used. This aspect still remains a future perspective of this dissertation.

4.7 Concluding Remarks

In this chapter, we have presented a new dynamic power management technique, called the
Assertive Dynamic Power Management (AsDPM) technique, for multiprocessor real-time
systems. AsDPM is an admission control technique for real-time tasks which improves
energy-efficiency of feasible task sets by deciding when exactly a ready task shall execute.
Without this admission control, all ready tasks are executed as soon as there are enough
computing resources (processors) available in the system, leading to poor possibilities of
putting some processors in to power-efficient states. We have illustrated in this chapter
that although, AsDPM is an online dynamic power management technique, its working
principle can be used to determine static optimal architecture configurations (i.e., number
of processors and their corresponding voltage-frequency level required to meet real-time
constraints in worst-case with reduced energy consumption) for target application through
simulations, thus allowing static as well as dynamic power and energy optimization. We
have provided experiments with H.264 video decoder application to support our proposi-
tion. In the first step, we have demonstrated, through simulations, the use of the AsDPM
technique for determining static optimal architecture configurations for H.264 video decoder
application. In the second step, we have demonstrated the use of AsDPM as an online DPM
technique which can further increase energy-efficiency of an already (statically) optimized
architecture configuration for any given application. For H.264 video decoder application,
average achieved energy gains range from 14% to 35% depending on different QoS require-
ments, while using AsDPM. Furthermore, we have briefly discussed the future perspectives
of the AsDPM technique, especially from the point of view of energy-efficiency at memory
subsystem level. We have briefly discussed heating issue in multiprocessor systems and pos-
sible thermal load-balancing while using AsDPM. The AsDPM technique is also integrated
in a hybrid power and energy management scheme which is presented in chapter 6.

Chapter 5

Deterministic Stretch-to-Fit
DVFS Technique

Contents
5.1 Dynamic Voltage and Frequency Scaling 85

5.2 Related Work . 87

5.3 Deterministic Stretch-to-Fit Technique 90

5.3.1 Dynamic Slack Reclamation (DSR) Algorithm 90

5.3.2 Online Canonical Schedule 93

5.3.3 Online Speculative speed adjustment Mechanism (OSM) . . . 97

5.3.4 m-Tasks Extension Technique (m-TE) 98

5.4 Experiments . 98

5.4.1 Setup . 99

5.4.2 Target Application . 99

5.4.3 Simulation Results . 99

5.5 Concluding Remarks . 104

5.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage reduction is one of the effective techniques, which aim at changing energy
consumption profile of real-time embedded systems. This is because energy consumption
of processors is a quadratic function of supply voltage of processors [48] (see section 2.2.1).
However, reduction in supply voltage also requires reduction in operating frequency, which
implies a trade-off between energy consumption and system’s performance. Thanks to the
significant evolution in processor-technology over the last few years, processors with vari-
able voltages and frequencies are now available, thus allowing the design of highly flexible
systems. Some examples of such processors are Marvell’s XScale R© technology-based em-
bedded processors [72], Intel Speedstep [54], AMD PowerNow! [2], ARM [9], and Transmeta
Crusoe [117]. In real-time systems that use variable voltage and frequency processors, choice
of voltage and frequency has direct impact on processor’s speed and consequently, on the
ordering and the execution of tasks. Thus, scheduling techniques and voltage/frequency se-
lection mechanisms are tightly coupled and should be addressed together to ensure feasibility
of application tasks. In the last few years, Dynamic Voltage and Frequency Scaling(DVFS)
techniques have emerged, which address the issue of energy-efficiency in real-time systems
together with the scheduling. Real-time applications potentially exhibit variations in their

86 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

actual execution time and therefore, often finish earlier than their estimated worst-case exe-
cution time [10, 40]. Real-time DVFS techniques exploit these variations in actual workload
in order to dynamically adjust voltage and frequency of processors to reduce their power
and energy consumption. However, one of the challenges for these techniques is to preserve
the feasibility of schedule and provide deadline guarantees.

Real-time DVFS techniques are broadly classified into inter-task and intra-task strate-
gies [79]. Inter-task DVFS techniques redistribute dynamic slack time either to all ready
tasks [51, 79] or to immediate priority single ready task only at task boundaries. That is,
inter-task DVFS techniques make decisions related to slack reclamation only at scheduling
events referring to the termination of a job. On the other hand, in intra-task strategies,
available (dynamic) slack time is reallocated inside the same task. These techniques often
require insertion points in application’s code to measure its evolution over its execution
time. Some major drawbacks of intra-task scaling methods are that they require excessive
analysis, runtime tracking and modification of the task source code, which is not always
feasible in reality [76, 79, 98, 121]. Furthermore, they normally result in large number of
additional voltage and frequency switching points and most of them assume continuous volt-
age levels [96, 95]. In this chapter, we propose an inter-task dynamic voltage and frequency
scaling technique for real-time multiprocessor systems, called Deterministic Stretch-to-Fit
(DSF) technique. The DSF technique comprises three algorithms, namely, Dynamic Slack
Reclamation (DSR) algorithm, Online Speculative speed adjustment Mechanism (OSM),
and m-Tasks Extension (m-TE) algorithm. The DSR algorithm is the principle slack recla-
mation algorithm of DSF that assigns dynamic slack, produced by a precedent task, to the
appropriate priority next ready task that would execute on the same processor. While using
DSR, dynamic slack is not shared with other processors in the system. Rather, slack is fully
consumed on the same processor by the task, to which it is once attributed. Such greedy al-
location of slack allows the DSR algorithm to have large slowdown factor for scaling voltage
and frequency for a single task, which eventually results in improved energy savings. DSR
works in conjunction with global scheduling algorithms on identical multiprocessor real-
time systems. The OSM and the m-TE algorithms are extensions of the DSR algorithm.
The OSM algorithm is an online, adaptive, and speculative speed adjustment mechanism,
which anticipates early completion of tasks and performs aggressive slowdown on processor
speed. Apart from saving more energy as compared to the stand-alone DSR algorithm, this
speculative speed adjustment mechanism also helps to avoid radical changes in operating
frequency and supply voltage, which results in reduced peak power consumption, which
leads to an increase in battery life for portable embedded systems. The m-TE algorithm
extends an already existing One-Task Extension (OTE) technique for single-processor sys-
tems onto multiprocessor systems. The DSF technique is implemented in conjunction with
the EDF global scheduling algorithm.

The DSF technique is mainly intended for multiprocessor systems. Though, applying
it on single-processor systems is also possible and in fact, rather trivial due to absence
of migrating tasks. The DSF technique is generic in the sense that if a feasible schedule
for a real-time target application exists under worst-case workload using (optimal or non-
optimal) global scheduling algorithms, then the same schedule can be reproduced (using
actual workload) with less power and energy consumption. Thus, DSF can work in con-
junction with various scheduling algorithms. We illustrate that tasks meet their deadlines
if the speed of processors is reduced, due to dynamic slack reclamation, according to the
rules that we provide for the DSR algorithm. We achieve these objectives by exploiting only
the online information of tasks. DSF is based on the principle of following the canonical
execution of tasks at runtime –i.e., an offline or static optimal schedule in which all jobs

5.2. Related Work 87

of tasks exhibit their worst-case execution time. A track of the execution of all tasks in
static optimal schedule needs to be kept in order to follow it at runtime [10]. However,
producing and keeping an entire canonical schedule offline is impractical in multiprocessor
systems due to a priori unknown assignment of preemptive and migrating tasks to proces-
sors. Therefore, we propose a scheme to produce an online canonical schedule ahead of
practical schedule, which mimics the canonical execution of tasks only for future m-tasks.
This reduces scheduler’s overhead at runtime as well as makes DSF an adaptive technique.
The DSF technique can work for different processor technologies supporting discrete as well
as continuous voltage and frequency scaling. Processors that are able to operate on (more
or less) continuous voltage and frequency spectrum are becoming a reality [10]. Therefore,
we provide our solution for systems that support both discrete and continuous dynamic
voltage and frequency scaling.

In this chapter, we use the following notations from the literature on scheduling theory
and low-power techniques.

Canonical schedule (Scan) is a static optimal schedule in which each task instance
presents its worst-case workload under a given scheduling algorithm.

Practical schedule (Spra) is an online schedule in which each task instance presents
variations to its worst-case workload. These variations are bounded by best-case (Bi) and
worst-case (Ci) execution times of that task.

Dynamic slack (ε) refers to the amount of time spared by a task due to its early
completion. It is the difference between worst-case execution requirement and actual
execution time exhibited by a task at runtime. It can be known only when a task
terminates its running job.

Scaling factor (φ) refers to factor by which the worst-case execution time of a task
is scaled (increased or decreased). It is calculated based on the amount of available slack
(ε) on a processor and it is bounded by the task’s deadline.

We assume that it is possible to vary supply voltage and operating frequency (also
referred as a tuple (Vdd, Fop) hereafter) on every processor independently and over a con-
tinuous spectrum between defined lower and upper bounds. This assumption can be lifted
for processors offering only discrete operating frequencies by adapting to the nearest pos-
sible operating frequency. The focus of this chapter in mainly on the online optimization
of power/energy consumption techniques. Thus, we do not consider static optimization of
(Vdd, Fop)1. It is also assumed that statically specified optimum speed ϑmax and corre-
sponding optimum (Vdd, Fop) are known a priori. Speed of a processor at any time instant
is referred as ϑ and minimum allowable processor speed is referred as ϑmin such that (∀ϑ,
ϑmin ≤ ϑ ≤ ϑmax).

5.2 Related Work

In this section, we provide the reader a review of the stat-of-the-art on existing real-time
DVFS techniques. Figure 5.1, which is adopted from [79] with slight modifications, gives a
perspective of how the dynamic slack time is redistributed under different real-time DVFS

1The problem of static power optimization is briefly discussed in chapter 4

88 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

strategies. Figure 5.1 illustrates the evolution of processor’s frequency during the execution
of a job Ti,j under different DVFS strategies. The worst-case execution time Ci,j of Ti,j is
known a priori. However, job Ti,j requires only AETi,j units of actual execution time to
complete. Figure 5.1 (i) illustrates the case, in which Ti,j executes with maximum frequency
of processor, which is least effective from the point of view of energy consumption optimiza-
tion. Figure 5.1 (ii) illustrates an ideal stretch strategy. An ideal stretch, however, is not
feasible in practice because it is not possible to know a priori the exact amount of actual
execution time of a task’s job. Thus, it is impossible to scale processor’s frequency with an
ideal scaling factor. Nevertheless, an ideal stretch strategy provides a good benchmark to
assess a posteriori performance of other DVFS strategies. Figure 5.1 (iii) and (iv) illustrate
stochastic scheduling-based strategy and code instrumentation-based strategy, respectively.
Both these strategies have opposite power consumption profiles. Indeed, the speed of pro-
cessor increases with time in case of stochastic scheduling-based strategy (figure 5.1(iii)),
while it decreases in case of code instrumentation-based strategy (figure 5.1(iv)) as the
knowledge of remaining execution time becomes clearer. Figure 5.1 (v) illustrates the case
in which dynamic slack time is distributed to all ready tasks. This technique results in
small values of scaling factor for frequency, which eventually results in insignificant gains
on energy consumption. Figure 5.1 (vi) illustrates the case in which processor’s frequency
is reduced such that a tasks’s job finishes exactly at the same time instant, which was pre-
viewed worst-case workload at maximum frequency. The idea to stretch a task’s execution
time to its worst-case boundary, as illustrated in figure 5.1(vi), is used in single-processor
systems. However, in multiprocessor systems, it is not trivial to apply simple stretching
due to migrations and preemptions of jobs.

Figure 5.1: Dynamic slack redistribution of a task under various DVFS strategies.

Although real-time dynamic voltage and frequency scaling has become a major focus

5.2. Related Work 89

by real-time research community in recent years, its proposition stems back as early as in
1994 when Weiser et al. first presented their work in [122]. Later on, numerous researchers
have explored DVFS on single-processor systems such as [75, 98, 87, 10, 97, 122]. However,
relatively few researchers have considered the problem of applying DVFS on multiprocessor
platforms such as [50, 99, 124]. A recent survey by Chen et al. [25] summarizes the state-
of-art on energy-efficient scheduling for real-time systems on DVFS platforms, including
single-processor and multiprocessor systems.

For single processor systems, authors in [125] have proposed one of the earliest works,
which presents an inter-task voltage scaling optimal algorithm to schedule a job set with
specified arrival times and deadlines on a continuous voltage processor. The analysis and
correctness of this algorithm is based on EDF scheduler on a single processor system. Au-
thors in [66] later extend the algorithm proposed by [125] to compute optimal slowdown
factors for the case of discrete voltage levels. Authors in [87, 10] have proposed inter-task
DVFS techniques using single-processor optimal scheduling algorithms such as EDF and
FPP. In [87], authors have presented a cycle-conserving approach in which cumulative re-
source utilization is recomputed at every scheduling event to rescale voltage and frequency
appropriately. This approach, however, distributes dynamic slack time to all ready tasks
which makes overall slowdown factor very small. Authors in [65] propose a power-aware
scheduling technique using slack reclamation for systems with two voltage levels. Thus,
limiting the number of scalable voltage levels to two. Authors in [75] have proposed and
analyzed several techniques for dynamic speed adjustment of processors with slack recla-
mation. Authors in [91] propose an efficient heuristic technique to find the voltage schedule
of an FP real-time system –i.e., different voltage settings at different time for job instances
of aperiodic and periodic tasks.

In multiprocessor systems, the problem of energy minimization by dynamic slack recla-
mation and dynamic speed adjustment for globally scheduled systems and independent task
model is considered in [129]. Authors in [129] consider dynamic slack sharing among mul-
tiple processors and reducing the speed globally on all processors. This work is extended
in [128] to address the case of dependent tasks with AND/OR dependency constraints.
Authors in [12] have proposed their solution for periodic hard real-time tasks on identical
multiprocessors with DVS support when only partitioned scheduling is used. Authors in [12]
adopt the EDF scheduling policy and investigate the joint effect of partitioning heuristics
on the energy consumption and the feasibility. For systems with two-processors running
at two different but fixed voltage levels, authors in [124] proposed a two-phase schedul-
ing scheme that minimizes energy consumption under the time constraints by choosing
different scheduling options determined at compile time. Authors in [10] have proposed
an inter-task voltage scheduling solution for hard real-time systems comprised of a static
(offline) solution to compute the optimal speed beforehand and an online solution based
on dynamic speed reduction mechanism. Authors in [127] highlight that processor energy
optimization solutions are not necessarily efficient from the perspective of whole system.
They provide their solution for periodic and sporadic task models with a perspective of
system-wide energy-efficiency.

Apart from dynamic voltage and frequency scaling techniques for real-time multipro-
cessor systems, some of the existing research work focuses on real-time static voltage and
frequency scaling as well [94, 46, 45]. The thesis for such work is based on the fact that
changing voltage and frequency takes some time to ensure system synchronization due to
physical limitations. For instance, Intel Pentium M [49] processors require 10 − 15µs per
voltage and frequency scaling. It is possible to ignore the overhead in some cases. However,
next-generation real-time systems are more rapid and controlled in faster control loops. For

90 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

such systems, frequent voltage and frequency scaling incurs significant overhead. Further-
more, the optimal real-time scheduling algorithms for multiprocessors cause more frequent
context switches than other algorithms. Thus, static voltage and frequency scaling is a
good solution for these systems. One such solution is provided in [46]. Authors in [46] have
highlighted that, in currently available practical systems, optimal real-time static voltage
and frequency scaling on multiprocessors is NP-hard partition problem since selectable pro-
cessor frequency is discontinuous. Although static optimizations for voltage and frequency
are desirable, solutions based on only SVFS techniques are not good enough for systems
that are likely to vary their configurations without system standstill. Moreover, systems
with aperiodic tasks would become sub-optimized online if the tasks’ arrival frequency
varies. DVFS techniques are known to reduce dynamic power consumption (see section
2.2.1). However, apart from latency issue related to changing voltage and frequency, DVFS
techniques also cause increased leakage energy drain by lengthening the interval over which
a computation is carried out. As a solution, authors in [59] have proposed a leakage-aware
DVFS technique for real-time systems in which, processor slowdown factors are computed
based on the critical speed for energy minimization. They have shown up to 5% gains using
critical speed slowdown over a leakage oblivious DVFS solution.

The DSF technique is intended for periodic and independent tasks, which are scheduled
over multiprocessor real-time systems. DSF is based on the idea of stretching the execution
time of a job, which consumes dynamic slack, to its worst-case boundary as illustrated in
figure 5.1(vi). This stretching permits a hard real-time application to benefit from the same
timeliness guarantees as provided by worst-case schedulability analysis since the aggregate
utilization of task set does not change due to processors’ frequency scaling.

5.3 Deterministic Stretch-to-Fit Technique

In this section, we present the algorithms proposed in the DSF technique –i.e., the DSR
algorithm, the OSM algorithm, and the m-TE algorithm.

5.3.1 Dynamic Slack Reclamation (DSR) Algorithm

Timeliness guarantees for real-time applications are provided through statically performed
worst-case schedulability analysis. This, however, is a conservative analysis because at
runtime, real-time tasks can exhibit large variations in their actual execution time and
thereby produce dynamic slack due to their early completion [39]. The DSR algorithm is
based on detecting early completion of tasks. DSR determines the amount of dynamic slack
(if any) by comparing the worst-case execution requirement of a task’s job with its actual
execution requirements. Since it is not possible to know a priori the exact amount of actual
execution requirement of a running task until it terminates, therefore, DSR computes the
amount of dynamic slack at task boundaries only.

The DSR algorithm does not not share dynamic slack with other processors in the
system. Rather, the slack is fully consumed on the same processor by a subsequent job,
which is assigned to that processor. For instance, if a terminating job, let us say Ti−1,j ,
produces positive dynamic slack time ε on a processor πk then the DSR algorithm, based
on the amount of available slack, determines a scaling factor φ for subsequently assigned
appropriate priority job, let us say Ti,j , on πk. Scaling factor is calculated such that the
consumer task (i.e., task that consumes ε) finishes its slowed down execution by at most the
same time instant of its worst-case boundary as defined in the canonical schedule (Scan).
An issue of concern in calculating φ is the knowledge of entire canonical schedule of tasks.

5.3. Deterministic Stretch-to-Fit Technique 91

In multiprocessor systems, unlike the single-processor systems, producing and keeping a
priori an entire canonical schedule and then following it online is clearly impractical in the
absence of tie-breaking rules and preemptive and migrating task models. This is due to
the fact that tasks migrate in non-partitioned scheduling. Moreover, different jobs of the
same task can be assigned to different processors in two successive simulation traces even
if their priorities are the same. As a solution, we produce an online canonical schedule of
tasks ahead of practical schedule that mimics the canonical execution of tasks at runtime.
We present the criterion for producing online canonical schedule in section 5.3.2. At this
stage, we assume that the canonical schedule for given task set is known beforehand.

Algorithm 6 Dynamic Slack Reclamation
1: obtain Scan

2: sort ready tasks queue w.r.t. preemptive EDF priority order
3: assign m highest priority tasks on m processors
4: set ε← 0; φ← 1.0; ϑ← ϑmax
5: for each scheduling event do
6: if scheduling event=termination then
7: ε← Ci−1,j −AETi−1,j

8: if ε > 0 then
9: compute available time tav for Ti,j at ϑ (tav=Ci,j + ε)

10: compute required time Ci,j by Ti,j at ϑ (Cϑi,j)
11: φ← tav/C

ϑ
i,j

12: update ϑ w.r.t. φ
13: if ϑ < ϑmin then
14: ϑ← ϑmin
15: execute Ti,j at ϑ
16: else if ε = 0 then
17: ϑ← ϑmax
18: else if scheduling event=release then
19: if released task has higher priority then
20: preempt least priority task
21: ϑ← ϑmax

The DSR algorithm exploits the fact that different scheduling events have different
impact on an application’s schedule. For instance, a terminating job may produce dynamic
slack, but it does not increase concurrent utilization of the platform and therefore, can only
update the priority order of remaining ready tasks. A release event, on the other hand,
increases the concurrent platform utilization and may cause preemptions as well. This
difference in the impact of scheduling events is exploited by DSR. Pseudo code for DSR is
provided in algorithm 6.

In algorithm 6, for a feasible task set, the Scan is assumed to be known a priori and
all tasks are sorted according to their priority order under the preemptive EDF scheduling
algorithm (lines 1− 2). Highest priority m-tasks are assigned to m-processors of platform
(line 3). Parameters like dynamic slack (ε), scaling factor (φ), and initial speed (ϑ) for
all processors are set to 0, 1.0, and ϑmax, respectively (lines 1 − 4). Once the system is
initialized, DSR updates ϑ only at scheduling events. Whenever a scheduling event arrives,
DSR makes a distinction between the release and the termination events (line 6 and line 18).

92 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

If a termination event is detected on a processor πk, DSR examines whether the completing
job (let us say Ti−1,j) has generated any positive dynamic slack (line 7). If dynamic slack is
available (i.e., ε > 0) then the execution of subsequent appropriate priority job (let us say
Ti,j) can be slowed down. To do so, the algorithm computes additional available time tav
on πk at current processor speed ϑ. The worst-case execution time Cϑi,j of Ti,j is estimated
at ϑ that would have been required if πk continues to run at current speed ϑ (lines 8− 10).
Once these two values are known, the scaling factor for Ti,j is computed and ϑ is updated
on πk accordingly (lines 11− 12). It is possible that the precedent job Ti−1,j has produced
enough dynamic slack to reduce ϑ below the allowable minimum processor speed ϑmin. To
avoid such situation, ϑ is bounded by ϑmin in DSR (lines 13 − 15). If there is no positive
slack generated by Ti−1,j , processor πk continues to execute with maximum speed ϑmax
(lines 16− 17).

If, on the other hand, a release event is detected on processor πk, DSR examines if the
released job has its priority higher than the currently running m-tasks. If so, least priority
running job is preempted in order to run higher priority job and the speed of processor
is set to maximum (lines 18 − 21). Note that when a higher priority task is released, the
DSR algorithm increases the speed of processor to statically determined maximum (ϑmax)
in order to respect the worst-case schedulability of released job. This is due to the fact
that actual execution time of preempting task is unknown a priori. A speculative speed
adjustment mechanism can be helpful in determining a probabilistic actual execution time
that would allow to keep the speed of processor less than ϑmax. Note that if the preempted
job was executing with a speed other than ϑmax then its remaining execution time is
always restored w.r.t. maximum speed -i.e., ϑmax so that, upon resuming its execution, the
preempted job can always meet its deadline. In the following, we provide a simple example
to elaborate the working of DSR. In this example, we provide an analytical view at first
and then support it with a simulation trace.

Example 5.1: Let us consider two real-time tasks, namely T1 and T2, which are scheduled
under the EDF scheduling algorithm. Figure 5.2 illustrates that T1 has higher priority over
T2 due to smaller deadline. Let us consider that the job T1,j of T1 finishes its execution
earlier than its worst-case execution requirement (C1,1) for its first job T1,1 as shown in inset
(a). In the canonical schedule Scan –i.e., if job T1,1 would have finished with its worst-case
execution time, the termination of T1,1 was estimated at time instant tcan1,1 . However, T1,1
terminates at time instant tpra1,1 after consuming AET1,1 time units and produces ε units of
dynamic slack. Similarly, job T2,1 of T2 was expected to start its execution at time instant
tcan1,1 and finish by tcan2,1 as illustrated in inset (b). However, due to the early completion
of T1,1, now T2,1 has tav time units available (rather than C2,1 time units under worst-
case) to finish its execution as expected in its Scan. Since AET2,1 is not known a priori,
therefore, C2,1 is considered as the execution requirement for T2,1. Based on the knowledge
of available slack ε and task boundary in Scan (i.e., time instant tcan2,1), execution of T2,1 is
slowed down by a factor of φ as shown in inset (c).

We simulate the same example using STORM simulator to validate the concept. Let
us consider that the quadruplet values for T1 and T2 are (0, 6, 8, 8) and (0, 5, 20, 20), re-
spectively. Let us consider that T1 has a best-case execution time of 3 time units and
often finishes earlier than its worst-case, whereas T2 always executes with its worst-case
execution time. Figure 5.3(a) illustrates the canonical schedule of T1 and T2, in which both
tasks always consume their respective Ci time units at runtime. On the other hand, figure
5.3(b) illustrates a practical schedule of the same tasks, in which T1 always finishes with its
best-case execution time –i.e., 3 time units, and produces a dynamic slack of 3 time units
(ε = 3). In figure 5.3(b) and figure 5.4, it is shown that task T2 consumes ε time units

5.3. Deterministic Stretch-to-Fit Technique 93

Figure 5.2: Slack reclamation using the DSR algorithm.

of dynamic slack to elongate its own execution time. However, the elongated execution
time always coincides with the boundaries of T2 in its canonical schedule at runtime. For
instance, when first job T1,1 of T1 finishes at time instant 3 in Spra and generates 3 time
units of slack, the first job T2,1 of T2 starts executing early at time instant 3 but still finishes
at time instant 8 which coincides with its termination instant in Scan. Vertical dotted lines
highlight termination instants of T2 in both Scan and Spra.

Moreover, in figure 5.4, it can be noticed in Spra that at simulation time instant 37,
dynamic slack is available but not exploited. This is due to the fact that there is no
subsequent ready task available in ReTQ. This slack time could have been exploited using
the m-Task Extension algorithm, which scales down the processor frequency when there are
only m tasks left in ReTQ. Section 5.3.4 elaborates the m-TE technique.

5.3.2 Online Canonical Schedule

For single-processor systems, it is possible to statically construct an entire canonical sched-
ule that does not change at runtime over successive hyper-periods if all tasks execute with
their worst-case workload and tie-breaking rules are applied. Moreover, a canonical schedule
for single-processor systems is not very complex to store offline and then follow at runtime.
Unfortunately, for multiprocessor systems, it is not trivial to construct an offline canonical
schedule. In multiprocessor systems, unlike single-processor systems, producing and keeping
a priori an entire canonical schedule offline and then following it at runtime is impractical
due to the fact that tasks migrate to other processors in non-partitioned scheduling. Even
if the priorities of tasks are similar over multiple hyper-periods and tie-breaking rules in
place, tasks can be allocated to different processors by the scheduler over successive hyper-
periods. For instance, at a given scheduling event, if two processors are available to execute
two fully migrating equal priority tasks, then the scheduler can assign tasks to processors in
any order. Thus, a practical schedule can result in different ordering of tasks than statically
constructed canonical schedule. Nonetheless, storage of entire canonical schedule before-
hand requires additional memory space and additional workload for scheduler to retrieve
stored schedule at runtime. Thus, it becomes impractical in multiprocessor systems with
fully preemptive and migrating tasks to follow a statically constructed canonical schedule.

94 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

(a) Canonical schedule of tasks where all tasks execute with worst-case execution time.

(b) Practical schedule of tasks where T1 finishes earlier than its WCET and T1 exploits
dynamic slack to elongate its WCET at runtime.

Figure 5.3: Simulation traces of example task set on a single processor. a) Canonical
schedule of tasks where all tasks execute with worst-case execution time. b) Practical
schedule of tasks where T1 finishes earlier than its WCET and T1 exploits dynamic
slack to elongate its WCET at runtime.

As a solution, we propose to construct an online (reduced version of) canonical schedule
ahead of practical schedule in multiprocessor systems. This online canonical schedule is
constructed only for the future m-tasks that are present in ReTQ. For illustration purpose,
we can state that a multiprocessor global scheduling algorithm maintains, at runtime, at
least three types of sorted task queues as presented in section 4.3 of chapter 4, that is:

5.3. Deterministic Stretch-to-Fit Technique 95

Figure 5.4: Task T2 consumes ε to elongate its execution up to its termination
instant in canonical schedule.

running tasks’ queue (RuTQ), ready tasks’ queue (ReTQ) and a general purpose tasks’
queue (TQ) for all non-ready and non-running tasks as illustrated in figure 5.5.

Figure 5.5: Task queues managed by a global scheduler at runtime.

Let us consider a multiprocessor system composed of m processors having n tasks to
be scheduled under the EDF global scheduling algorithm such that n ≥ m. At any time
instant t, at most m tasks can be running on m-processors (and therefore present in RuTQ).
Since it is not possible to know a priori the exact amount of actual execution time (AETi,j)
of these running tasks before they complete, therefore, we make a conservative assumption
that all tasks in RuTQ consume their worst-case execution time before their completion.
Rest of n −m tasks should be present in either ReTQ or TQ. Figure 5.6 illustrates that
jobs T1,1, T2,1, and T3,1, being the highest priority jobs, run over processors π1, π2, and π3
respectively. Let us construct an online canonical schedule at time instant t as shown in
figure 5.6. From the sorted ReTQ and TQ queues, the next highest priority task, lets say
Tnext, can be identified using equation 5.1 (also see figure 5.5 as well). Here, Tm+1,j and
Ti+1,j represent the highest priority tasks in ReTQ and TQ, respectively. Since all running
tasks are supposed to consume their worst-case execution requirement, therefore, the earliest
possible time instant tearliest at which any of the m processors will become available for next

96 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

Figure 5.6: Construction of online canonical schedule ahead of practical schedule
for m-tasks.

task allocation can be identified using equation 5.22. For instance, in figure 5.6, tearliest
arrives on π2. In Scan, Tnext will start executing on π2 at time instant tearliest. Once Tnext
and tearliest are identified, the time instant tter, at which Tnext will finish, is identified by
equation 5.3. It is sufficient to determine Tnext for at most m processors of the platform at
any scheduling event to construct an online canonical schedule ahead of practical schedule.
Doing so, requires storage capacity for the canonical schedule of only m tasks.

Tnext = max_priority [(Tm+1,j) , (Ti+1,j)] (5.1)

tearliest = t+minmi=1 [Ci,j] (5.2)

tter = tearliest + Cnext (5.3)

Canonical schedule constructed in an online fashion is adaptive to the changes in task
allocation on different processors over different hyper-periods. Note that, at any time
instant t referring to a scheduling event, the online canonical schedule is only a virtual
projection of how the schedule will evolve over time. Moreover, this evolution is limited
by the number of tasks present in ReTQ. If another scheduling event occurs before the
projected termination of running jobs then the online canonical schedule also updates its
projection. This ensures that the practical schedule always follows a correct canonical
schedule at runtime.

A real-time task set, which is feasible, remains feasible as far as its aggregate utilization
remains the same, for which static schedulability analysis holds. The idea of DSR is based
on the fact that no task shall execute beyond the time instant that corresponds to its worst-
case completion in online canonical schedule (Scan). Moreover, under the DSR algorithm,

2Note that only the remaining execution time of Ci,j is considered at time instant t while using
equation 5.2.

5.3. Deterministic Stretch-to-Fit Technique 97

the aggregate utilization of task set remains constant because whatever slack is produced,
due to early completion of precedent tasks, is consumed by subsequent tasks and no task
executes beyond its worst-case completion time instant in online canonical schedule (Scan).

5.3.3 Online Speculative speed adjustment Mechanism (OSM)

In section 5.3.1, we have mentioned that when a higher priority task is released and it
preempts an already running lower priority task, the DSR algorithm increases the speed of
processor to statically determined maximum (ϑmax) in order to respect worst-case timing
constraints of released job. This is due to the fact that actual execution time of preempting
task remains unknown until it finishes its execution. Thus, processor speed cannot be kept
lower than ϑmax. If processor speed is reduced for a newly released hard real-time job,
it can cause the deadline miss. In real-time systems, not all the tasks are hard real-time.
Often there are some soft real-time tasks which coexist with hard real-time tasks. In this
section, we extend the DSR algorithm with an online speculation mechanism for soft real-
time tasks. Whenever, under maximum speed (ϑmax), tasks (both soft and hard real-time
tasks) exhibit large variations in their execution time, starting a task with the assumption
that it will execute with its worst-case workload can be too conservative. For hard real-
time tasks, speculation about their WCET is not possible. However, an online speculation
at release instant of a soft real-time job can be helpful in determining its probabilistic
actual execution time, which could help in maintaining the processor speed lower than
maximum. We propose an online speculative speed adjustment mechanism based on the
average execution behavior of soft real-time tasks. With the help of runtime profiling, it is
possible to maintain a history of actual execution time exhibited by each task fr all its past
jobs. This actual execution time is then averaged to achieve a speculative execution time
for future jobs. Use of speculative workload helps avoiding a radical change in processor
speed and improves energy savings. However, this speculative move might shift a task’s
worst-case completion time to a point later than the one in Scan under an actually high
workload. If this pessimistic scenario turns out to be true, processor’s speed should be
increased later (for instance, when a job reaches its termination time instant in Scan) to
guarantee feasibility of future jobs. Upon completion of every job, the speculation on next
job is updated using average actual execution time.

Algorithm 7 presents the pseudo-code for the OSM algorithm. It can be noticed that
every time a real-time job finishes, the actual execution time (AETi,j) for its most recent
job is used to update an average actual execution time (AvAETi,j+1) for the next job Ti,j+1

(lines 1− 4) using all previous job instances that have occurred up to current time instant.
Once updated, this average execution time is treated as a probable worst-case execution
time Ci,j+1 for succeeding job of the same task (line 5). The DSR algorithm is then called to
evaluate scaling of processor speed, if possible, in a normal fashion (line 6). In the presence
of speculation mechanism, algorithm 6 does not execute a soft real-time task with ϑmax
upon its release. Rather, it uses Ci,j+1 of all jobs to figure out an appropriate value for ϑ
and therefore, reduces peak power and overall energy consumption.

Note that, currently, the average actual execution time (AvAETi,j+1) for the next job
Ti,j+1 of each task is updated using all previous job instances that have occurred up to
current time. This approach may not be very efficient and lead to inaccurate speculation
because certain tasks may have different behavior (different variations in their AET) during
different phases of application’s execution. For instance, a task belonging to image process-
ing application may have small, medium, or large variations in its AET while processing
different image frames. Thus, more sophisticated mechanism to update AvAETi,j+1 shall
be used for OSM.

98 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

Algorithm 7 Online Speculation Mechanism
1: for each scheduling event do
2: if scheduling event=termination then
3: obtain AETi,j of terminating task’s job Ti,j
4: AvAETi,j+1 ←

(∑j−1
u=1 (AvAET)u +AETi,j

)
/j

5: Ci,j+1 ← AvAETi,j+1

6: call the DSR algorithm

5.3.4 m-Tasks Extension Technique (m-TE)

This technique actually extends the One-Task Extension technique from single-processor
systems onto multiprocessor systems. As demonstrated in [10, 97] that in a single processor
system, one can further slow down the speed of processor when there is only one task left in
the ready task’s queue (ReTQ) and its worst-case completion time at current speed ϑ does
not extend beyond the next scheduling event (next arrival or closest deadline of any task).
One-task extension technique can be used in conjunction with any scheduling policy. To
demonstrate how m-tasks extension technique works, let us start from a single-processor
system. Suppose that Ti,j is the last remaining ready job in ReTQ at time instant t and
the earliest possible release instant of any other task present in TQ is tearliest such that
tearliest > t. If (Y = tearliest − (t+ Ci,j) > 0) at current processor speed ϑ then the
execution of Ti,j can be further slowed down to consume additional Y time units, implied
that the lower bound on speed ϑmin is respected. One task extension technique can be
extended to multiprocessor systems as shown in algorithm 8 using the same criterion. If
there are at most m tasks left in ready task’s queue (lines 1-2) then the available execution
time for each ready task can be extended up to the earliest time instant corresponding to a
scheduling event -i.e., either deadline of task or earliest next release rnext (lines 4-6). The
earliest next release instant rnext refers to the arrival time instant of the highest priority
job from TQ. Scaling factor φ is then updated using newly updated available time tav and
Cϑi,j . Processors’ speed is updated using φ (line 8) as in algorithm 6.

Algorithm 8 m-Tasks Extension Technique
1: for each scheduling event do
2: if tasks in ReTQ ≤ m then
3: obtain earliest release instant rnext from TQ
4: for each task in ReTQ do
5: if Ci,j ≤ rnext then
6: tav ← min (di,j , rnext)

7: φ ← tav/C
ϑ
i,j

8: update ϑ w.r.t. φ

5.4 Experiments

In this section, we provide simulation-based evaluation of DSF. These simulations are car-
ried out with mainly two objectives in mind. First is to validate that applying DSF does
not effect the schedulability of real-time tasks and second is to evaluate the gains on overall

5.4. Experiments 99

energy savings of the system.

5.4.1 Setup

We evaluate the performance of DSF using STORM simulator [108]. We consider the same
system model –i.e., task model, processing platform, and power and energy models, as
presented in chapter 2. One of the difference w.r.t. system model presented in chapter 2
is that, we assume that it is possible to vary supply voltage and operating frequency (Vdd,
Fop) on every processor independently and over a continuous spectrum between defined
lower and upper bounds. This assumption can be lifted for processors that offer only a
finite number of discrete operating frequencies. As suggested in [22], if the desired optimal
speed (corresponding to the achievable scalability of voltage/frequency) is not available on a
processor, it has to be approximated with one of the existing values. To prevent any deadline
miss, the processor speed should be set equal to the closest discrete level higher than the
optimal speed. This solution, however, may cause a waste of computational capacity and,
consequently, of energy, especially when the choice for available operating frequencies is
limited.

The EDF scheduling algorithm is used in the evaluation of DSF.

5.4.2 Target Application

The H.264 video decoder application is taken as main use case target application for eval-
uating DSF. The main steps of the H.264 decoding process are depicted in figure 4.4 of
section 4.5.1. In simulations related to the DSF technique, we use both versions (i.e., slices
and pipeline versions) of H.264 video decoder application as presented in chapter 4.

5.4.3 Simulation Results

We provide simulation results for both versions of H.264 video decoder application using
different throughput requirements. Recall that throughput requirement is a user-specified
parameter, measured as frames per second (fps), which determines different levels of Quality
of Service (QoS) for the H.264 application. The number of processors corresponding to
different QoS (fps) requirement at maximum operating voltage and frequency level are
already determined (see table 5.1) using AsDPM presented in section 4.4 (see chapter 4).
Performance of the DSF technique is analyzed based on energy consumption compared to
non-optimized case while using DSR lone, both DSR and OSM together, and using all
three algorithms together –i.e., DSR, OSM, and m-TE. Furthermore, we have compared
our results with two existing DVFS algorithms. Details are presented in section 5.4.3.4.

5.4.3.1 Simulation results of H.264 slices version

We simulate the task model presented in table 4.1 under the simulation settings provided in
table 5.1. The bcet/wcet ratio is varied between 50% and 100% of wcet of tasks such that
AET of all tasks has a uniform probability distribution function as suggested in [10]. For
different frame rates, we obtain results as illustrated in figure 5.7. These results represent
the average energy consumption over three complete frames (i.e., hyper-periods). In figure
5.7, it can be noticed that energy gains of the DSF technique, while using all its algorithms
in different combinations, result from 12% to 35% as compared to the non-optimizaed
energy consumption under EDF schedule. In the best-case, energy gains reach upto 45%,
which reduces energy consumed per frame to 1.5J/frame as compared to 2.45J/frame in

100 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

Table 5.1: Simulation settings for H.264 video decoder slices version
Frame rate (fps) No. of tasks (n) No. of processors (m) bcet/wcet ratio
8.33 7 3 50%− 100%

10.0 7 3 50%− 100%

11.11 7 4 50%− 100%

15.15 7 4 50%− 100%

17.24 7 4 50%− 100%

20.83 7 6 50%− 100%

22.27 7 6 50%− 100%

Figure 5.7: Simulation results of H.264 slices version.

non-optimized case. Moreover, it can be noticed that when the DSR algorithm is applied
alongwith its extension algorithms –i.e., OSM and m-TE, gains on energy savings can be
a little bit further improved. In these results, however, there is no difference in energy
savings when DSR is used with OSM only. The reason for no change in energy in this case
is that tasks presented in table 4.1 are all considered as hard real-time and therefore, no
speculation is performed on the actual execution time of tasks during these simulations.
We have illustrated the effectiveness of OSM in section 5.4.3.3.

5.4.3.2 Simulation results of H.264 pipeline version

Similar to section 5.4.3.1, we perform simulations for H.264 pipeline version of tasks pre-
sented in table 4.2. Simulation settings for pipeline version are given in table 5.2. Simulation

5.4. Experiments 101

results obtained in this case are presented in figure 5.8. In figure 5.8, it can be noticed that
energy gains of DSF, while using all its algorithms in different combinations, result from
5% to 35% as compared to the non-optimizaed energy consumption under EDF schedule.
In the best-case, the energy consumed per frame is reduced to 0.45J/frame compared to
0.73J/frame in non-optimized case. When the DSR algorithm is applied along with its
extension algorithms –i.e., OSM and m-TE, it works almost the same way as in section
5.4.3.1.

Table 5.2: Simulation settings for H.264 video decoder pipeline version
Frame rate (fps) No. of tasks (n) No. of processors (m) bcet/wcet ratio
10 7 1 50%− 100%

12 7 1 50%− 100%

15 7 2 50%− 100%

20 7 2 50%− 100%

25 7 2 50%− 100%

32 7 2 50%− 100%

Figure 5.8: Simulation results of H.264 pipeline version.

5.4.3.3 Simulation results of H.264 pipeline version: Effect of OSM

In the results presented so far, we consider that all tasks of H.264 video decoder application
are hard real-time tasks and therefore, the online speculation mechanism can not speculate

102 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

an average actual execution time for tasks. In order to demonstrate the effectiveness of
OSM, we assume that it is possible to speculate on the AET of task T3 (RE−1), T4 (RE−2),
and T5 (RE-F). Figure 5.9 illustrates that speculating on the AET of task slightly improves
energy savings. For speculative AET for large number of tasks, energy gains could become
significant.

Figure 5.9: Simulation results of H.264 pipeline version illustrating the effectiveness
of OSM.

5.4.3.4 Comparative analysis

In this section, we compare simulation results obtained for both versions of H.264 video
decoder under non-optimized EDF scheduling technique, the ccEDF (DVFS) technique [87],
the RBSS (DVFS) technique [88], and the DSF (DVFS) technique. A brief description of
the ccEDF and the RBSS DVFS techniques is provided in the following.

ccEDF (Cycle-conserving EDF) is a classical DVFS technique presented in [87].
In this technique, dynamic slack time is redistributed globally to all ready tasks. The
ccEDF technique considers actual execution time (AET) of all terminated tasks until their
next release and worst-case execution time of all ready and running tasks to determine
concurrent resource utilization of target application. Based on these values, ccEDF then
calculates required scaling factor for speed. Once scaling factor is determined, frequency
and voltage are scaled globally on all processors.

RBSS (Resource Based Slack Sharing Algorithm) is coupled to a job-level
dynamic-priority scheduling policy, called Enhanced Least Laxity First (ELLF), allowing
task preemption and migration for a better resource utilization. In this method, the slack

5.4. Experiments 103

is bound to the originator resource meaning that a slack produced on a processor is dis-
tributed to the next task allocated on it. To ensure a real-time execution, the slack reclaimed
is upper bounded by the task’s laxity. This slack decrements with the time if no other task
is allocated on this processor. Real-time periodic application tasks start execution on all
the processors at maximum frequency (or at an offline computed frequency allowing to
meet the application deadline considering task WCETs) and changing to a more interesting
voltage and frequency level when cumulating enough slack on a given processor. Further
details on RBSS algorithm can be found in [88].

Figure 5.10: Comparative analysis of simulation results of H.264 slices version.

Figure 5.10 illustrates energy consumed under different techniques for H.264 slices ver-
sion. In figure 5.10, it can be noticed that, for different frame rates, generally the DSF
technique performs better than its counterparts except at 11.11fps frame rate where, RBSS
technique performs better. This difference might arise due to the fact that RBSS works
under the ELLF scheduling algorithm, while DSF works under the EDF algorithm. The
EDF and the ELLF algorithms have different scheduling events, which can eventually re-
sult in completely different schedule of tasks. In best case, the difference in energy savings
under DSF is measured up to 47% as compared to EDF, up to 29% as compared to ccEDF,
and upto 43% as compared to RBSS technique. Note that only those cases are considered
where there is no deadline miss under any technique. Similarly, figure 5.11 illustrates energy
consumed under different techniques for H.264 pipeline version. DSF performs generally
better except at 20fps frame rate where, RBSS technique performs better. This is a similar
situation as for slice version. For pipeline version, best-case energy savings are measured
up to 41% as compared to EDF, up to 31% as compared to ccEDF, and up to 23% as
compared to RBSS.

104 Chapter 5. Deterministic Stretch-to-Fit DVFS Technique

Figure 5.11: Comparative analysis of simulation results of H.264 pipeline version.

5.5 Concluding Remarks

In this chapter, we have proposed a dynamic voltage and frequency scaling technique for
real-time systems, called the Deterministic Stretch-to-Fit (DSF) technique, which falls in
the category of inter-task DVFS techniques. DSF comprises of an online Dynamic Slack
Reclamation algorithm (DSR), an Online Speculative speed adjustment Mechanism (OSM),
and an m-Task Extension technique (m-TE). The DSF technique is mainly intended for
multiprocessor systems. Though, applying it on single-processor systems is also possible
and in fact, rather trivial. DSF works on the principle of following the canonical execution
of tasks, which implies that the implicit deadline guarantees available under worst-case
schedulability analysis of tasks hold. That is, the aggregate utilization of tasks does not
change at runtime because variations in actual execution time of tasks is compensated by
proportionate variation in applied frequency by DSF. We have demonstrated in this chapter
that if dynamic slack is reclaimed in such a way that no task finishes its execution later
than the completion time in canonical schedule then the real-time deadlines can be guar-
anteed with less energy consumption. To evaluate DSF, H.264 video decoder application is
taken as main use case application. Two different task models of H.264 video decoder ap-
plication, which are developed at Thales Group, France [115], are used. Simulation results
illustrate that the DSR algorithm, along with the OSM algorithm and the m-TE algorithm,
can obtain energy savings up to 43% in best-case. Note that reported results are based on
the assumption that it is possible to vary the supply voltage and operating frequency on
every processor independently and over a continuous spectrum between defined lower and
upper bounds. In the existing processors, however, these parameters can only be changed

5.5. Concluding Remarks 105

in predefined discrete steps. This assumption can be lifted in this case such that if the
desired optimal speed (corresponding to the achievable scalability of voltage/frequency) is
not available on a processor, it has to be approximated to the closest discrete level higher
than the optimal speed to prevent any deadline miss. Doing so could slightly marginalized
the gains on energy. Through experiments, we illustrate that DSF is a competitive tech-
nique for dynamic voltage and frequency scaling on a multiprocessor platform. Its runtime
complexity is reduced, thanks to the online construction of canonical schedule, compared
to other techniques presented in [10] and [88]. The DSF technique is also integrated in a
hybrid power and energy management scheme which is presented in chapter 6.

Currently, we are implementing DSF on a virtual platform for processor emulation,
called QEMU [89], which is a generic and open source machine emulator and virtualizer.

Chapter 6

Hybrid Power Management
Scheme for Multiprocessor

Systems

Contents
6.1 Introduction . 107
6.2 Related Work . 108
6.3 Hybrid Power Management Scheme 109

6.3.1 Machine-learning Algorithm 110
6.3.2 Selection of Experts . 114

6.4 Experiments . 114
6.4.1 Setup . 114
6.4.2 Description of Experts . 115
6.4.3 Simulation Results . 116

6.5 Concluding Remarks . 120

6.1 Introduction

As discussed in chapter 4 and 5, dynamic power management (DPM) and dynamic volt-
age and frequency scaling (DVFS) policies are the most commonly used scheduling-based
policies for power and energy consumption management in modern embedded systems. In
this chapter, we analyze some limitations of both these policies under different operating
conditions and discuss a mixed solution.

Dynamic Power management policies, as discussed in chapter 4, put system components
into power-efficient states whenever they are idle due to unavailability of workload. Once
applied, DPM policies eliminate both dynamic as well as static power dissipation. How-
ever, the inconvenience is that once in a power-efficient state, bringing a system component
back to the active/running state requires additional energy and/or latency to service an
incoming task. Dynamic voltage and frequency scaling policies, on the other hand, exploit
the variations in actual workload of real-time tasks for dynamically adjusting voltage and
frequency to eventually reduce dynamic power dissipation. DVFS policies are known for
reducing dynamic power dissipation quite aggressively, however, there are certain inconve-
niences of DVFS policies due to physical limitations such as they cause increased leakage
energy drain by lengthening the interval over which a computation is carried out. Due to
the increasingly reduced feature-size, leakage power is becoming a significant contributing

108
Chapter 6. Hybrid Power Management Scheme for Multiprocessor

Systems

factor in overall energy consumption. Moreover, the discrete number of voltage and fre-
quency levels available in existing processor technology is a bottle-neck. Finding optimal
real-time voltage and frequency scaling on multiprocessors is NP-hard partition problem
since selectable processor frequency is discontinuous [46].

Both DPM and DVFS policies have their advantages and drawbacks. They both per-
form well for specific set of operating conditions such as, for particular target applications,
specific architecture configuration, and/or specific scheduling algorithms. However, both
policies often outperform each other when these operating conditions change [37]. For in-
stance, a DVFS policy might perform well for applications that have large number of tasks
with non-deterministic execution time of tasks (due to conditional branches) as compared to
applications that have small number of tasks or more deterministic execution time of tasks.
Similarly, a DPM policy might perform well on processors, which have small recovery time
as compared to those who have large recovery time from power-efficient states for the same
application. Thus, no single policy, whether DPM or DVFS, fits perfectly in all or most
operating conditions. This leads a designer to choose for an appropriate policy every time
there is a (desired or undesired) change in target application, architecture configuration, or
scheduling algorithm. In this chapter, we have addressed the need of a common solution
which is adaptive to changing operating conditions. Based on the fact that most of the
power and energy management policies are designed for specific conditions, we propose a
novel and generic scheme for energy and power management, called Hybrid Power Man-
agement (HyPowMan) scheme. Instead of designing new power and energy management
policies to target specific operating conditions, this scheme takes a set of well-known exist-
ing policies (DPM and/or DVFS), each of which performs well for a given set of conditions,
and proposes a machine-learning mechanism to adapt at runtime to the best-performing
policy for any given workload. The decision of applying suitable policy is taken online and
adaptive to the varying workload. The HyPowMan scheme is generic in the sense that it
permits to integrate existing as well as new power and energy management policies and
it can be applied under the control of global as well as partitioning-based scheduling al-
gorithms. HyPowMan is intended mainly for multiprocessor real-time systems. However,
applying it on single-processor systems is also possible. HyPowMan enhances the ability
of portable embedded systems to work with larger set of operating conditions by adapting
to the changing workloads and gives an overall performance that is better than any single
policy can offer.

6.2 Related Work

There exists an abundant literature about the DPM and the DVFS techniques that we have
previously discussed in chapter 4 and chapter 5. In this chapter, we review the state-of-the-
art on some recent research work related to the interplay of DPM and DVFS policies. The
growing importance of system-wide energy management clearly mandates the integration
of both DPM and DVFS policies. Yet, there are not many solutions available today which
use both DVFS and DPM policies and capture their intriguing trade-off in a precise way.

Authors in [126] show that both DVFS and DPM solutions often work against each
other. That is, if the processing frequency is lowered through DVFS to save energy as
illustrated in figure 6.1, the task execution time is extended (here, Cdvfs refers to elon-
gated WCET of task due to slowdown). As a result, the idle time is shortened, which
prevents DPM from putting the devices into the power-efficient states (as the idle interval
may become smaller than break-even time (BET)). On the other hand, the device energy
can be reduced by executing the task at higher frequency to obtain enough idle time for

6.3. Hybrid Power Management Scheme 109

Figure 6.1: Interplay of DPM and DVFS policies.

putting the devices to the power-efficient state. However, this results in additional transi-
tion energy overhead and processor energy consumption. Moreover, the application may be
using multiple devices with different power and break-even time characteristics, making an
optimal solution non-trivial. While the research efforts that focus only on DVFS or DPM
policies are many (as discussed in chapter 4 and 5), solutions that propose integrating both
policies under a unified framework are relatively few, e.g., [27, 35, 64, 101, 131]. Authors
in [101] apply a stochastic DPM policy by using the different DVFS voltage levels as mul-
tiple active power modes. The work in [131] proposes a DVFS-DPM policy that maximizes
the operational lifetime of an embedded system powered by a fuel cell based hybrid power
source. The frequency scaling level is chosen in [64] by investigating the trade-offs between
the DVS-enabled CPU and the DPM-enabled devices. Authors in [37] propose to apply
multiple DPM policies on a single-processor system in order to achieve best performance
and adaptability to the varying workload. The SYS-EDF algorithm is a heuristic-based
energy management scheme for periodic real-time tasks proposed in [27]. SYS-EDF applies
DVFS only on processors, whereas DPM on I/O devices to save overall energy consump-
tion. In [58], the authors introduce the concept of critical or energy-efficient speed. The
energy-efficient speed is calculated by considering both the device’s energy and processor’s
energy consumed during task executions. This stems from the observation that lowering
the processor speed below a certain threshold can have negative effects on the system-wide
energy consumption. Each task can potentially have a unique energy-efficient speed, de-
pending on the devices it uses during its execution. Thus authors have proposed a single
policy to manage both processor’s leakage energy and device’s energy in [58]. None of the
previous research work has attempted to apply an entirely online and adaptive interplay
of multiple DVFS and DPM policies together on an identical multiprocessor platform to
manage system-wide energy while handling variable workload.

6.3 Hybrid Power Management Scheme

HyPowMan devises a top-level policy selection mechanism, which could select best-
performing policy among the available ones for a given type of workload. This policy selec-
tion mechanism is implemented through a machine-learning algorithm. Machine-learning
algorithm provides theoretical guarantee on overall performance converging to that of the
best-performing policy among the available ones. This is somewhat similar to that of hybrid
branch predictors employed in microprocessors and used in [37] as well. Each participating
power and energy management policy is referred as an expert and the set of all participating

110
Chapter 6. Hybrid Power Management Scheme for Multiprocessor

Systems

policies collectively as expert set. Any multiprocessor DPM or DVFS policy that can guar-
antee timing constraints for real-time systems is eligible to become member of expert set.
When a processor is busy in executing tasks (also referred as active time), all DPM-based
experts are inactive and are said to be dormant experts. However, DVFS-based experts
can (or cannot) be in inactive state depending on the workload. Conversely, whenever the
processor is idle, all DVFS-based experts are dormant. Any expert, which is currently
active, is said to be working expert. A working expert solely governs all decisions related
to power management on processors under the control of applied scheduling policy. Figure
6.2 illustrates how different experts are arranged by the HyPowMan scheme in an SMP
architecture configuration under the control of global scheduling algorithm. For instance,
expert3 in figure 6.2 is selected as working expert. Working expert returns to dormant state,
which is the default state for all experts, once it finishes its job or another working expert
replaces it. The most critical task for HyPowMan is to select an appropriate expert for a
given power management opportunity. Power management opportunities such as idle time
intervals and dynamic slack time are also referred as input in the remaining of this chapter.
Before the machine-learning algorithm is presented in detail, we emphasize a fundamental
difference between DPM-based and DVFS-based experts. The power management oppor-
tunities or input for DPM-based experts are the idle time intervals, which are inherently
present in an application’s schedule. Whereas, input for DVFS-based experts is dynamic
slack, which is generated at runtime due to the variations in actual workload (to which,
DPM-based experts can also exploit while chosen as working expert). Thus, challenges for
the HyPowMan scheme are: how to measure the performance (at runtime) for different
experts that work for different kind of inputs, how to evaluate them, and how to employ
them in a multiprocessor context. Note that the objective of HyPowMan is to converge
towards the best-performing policy within given expert set only and not to find the best
possible energy savings under given operating conditions.

Figure 6.2: Arrangement of expert set under the HyPowMan scheme for an SMP
architecture.

6.3.1 Machine-learning Algorithm

Machine-learning algorithm employed in HyPowMan, which is an adaptation of Freund and
Schapire’s online allocation algorithm presented in [43] and also used in [37], considers that
at most N (∀N , N ≥ 1) experts are present in expert set. The algorithm associates a
weight vector W input with expert set, where W input= (winput1 , winput2 , ..., winputN) consists
of weight factors corresponding to each expert k (∀k, 1 ≤ k ≤ N) for a given input. Every

6.3. Hybrid Power Management Scheme 111

time an input arrives, this weight vector is updated. Initially, weight factors of all individ-
ual experts are equal and sum to one in order to provide equal opportunity for all experts
to perform well. However, these weights may not sum to one later during execution. Hy-
PowMan maintains a probability vector Hinput associated with expert set, where Hinput=
(hinput1 , hinput2 , ..., hinputN) consists of probability factors corresponding to each expert k such
that, (0 ≤ hinputk ≤ 1). This probability reflects the performance of an expert based on its
weight factor. It is obtained by normalizing weight factors as shown in equation 6.1. The
probability factor provides a measure on each expert’s performance on previous input such
that, at any point in time, the best-performing expert has the highest probability.

Hinput = W input/

N∑
k=1

winputk (6.1)

HyPowMan selects expert with highest probability amongst all experts to become a
working expert on next input. In case the probability factors of multiple experts are equal,
working expert is chosen randomly. Once selected, a working expert governs all decisions
related to power management under the control of scheduling policy. When an input is
finished, the performance of all experts is evaluated. Working expert is evaluated based on
how much energy was saved and how much performance degradation was incurred under
that particular expert. Dormant experts are evaluated based on how they would have
performed if they had been selected as working expert. This evaluation is based on the
loss factor of each expert. Loss factor is evaluated with respect to an ideal (offline) power
management policy that offers maximum possible energy savings and zero performance
degradation. The loss factor incurred by an expert k is referred as linputk . The value of
loss factor is a composition of loss in energy saving and performance degradation and it is
influenced by their relative importance, which is expressed by factor α (∀α, 0 ≤ α ≤ 1).
We refer to the loss factors corresponding to energy and performance as linputke and linputkp ,
respectively, for expert k. Equation 6.2 represents joint loss factor of individual experts.

linputk = αlinputke + (1− α)linputkp (6.2)

Computation of loss factor slightly differs for DPM and DVFS experts. We elaborate
this difference in section 6.3.1.1. Once the joint loss factor linputk is calculated, final step in
algorithm is to update weight factors for each expert based on the loss they have incurred
as shown by equation 6.3.

winput+1
k = winputk βl

input
k (6.3)

Here, β is a constant such that (0 ≤ β ≤ 1). The value of β should be set between 0

and 1 depending on the granularity of weight factors, i.e. the higher the value of β is set,
the lower the variation in weight occurs for a given input. Equation 6.3 depicts that the
weight factors corresponding to experts with higher loss factors are reduced while for the
experts with lower loss factors are increased by simple multiplicative rule. This gives higher
probability of selecting better performing experts for the next input. Note that weight and
probability factors for all experts are updated once the input is terminated. Calculations
related to selecting the working expert (for next input) are performed during the active
time (i.e., the time when processors are executing tasks) and hence no additional overhead
or latency is incurred when the inputs actually occur. In other words, the time consumed
in updating weight and probability factors should be masked with the execution time of
running tasks (for instance, in cases where dedicated hardware is used for schedulers) and
therefore, when a scheduling event arrives, a working expert is already selected. HyPowMan

112
Chapter 6. Hybrid Power Management Scheme for Multiprocessor

Systems

has linear time-complexity of the order O(N), where N refers to the size of expert set. At
any scheduling event, however, the overall time-complexity of the HyPowMan scheme would
be bounded by the expert having largest time-complexity within expert set. This is because,
after selecting an expert as working expert, HyPowMan does not participate in decision-
making process. Thus, at any scheduling event, the time complexity is that of applied
working expert only. During active time, when weight and probability factors are updated,
the computation time is equal to the sum of all experts’ computation time. This time is
assumed to be masked with the execution time of running tasks. However, the computation
operations still consume energy.

6.3.1.1 Loss factor for DPM and DVFS experts

For DPM experts, the input is an idle time interval. Energy loss factor (linputke) is calculated
by comparing the length of idle period with the time a processor has or would have spent
in power-efficient state. If this time is less than the break-even time (see section 2.2.2) of
processor, then there is no savings on energy and loss is maximum (linputke =1). Otherwise,
for sleep time greater than break-even time, equation 6.4 is used to compute linputke .

linputke = 1− (Tsleep−k/Tidle) (6.4)

Here, Tsleep−k < Tidle and Tidle and Tsleep−k refer to the length of available idle time
interval and the time a processor passed in power-efficient state, respectively. Performance
loss is computed based on whether a processor switched to a power-efficient state or not.
If processor was transitioned to power-efficient state, the loss on performance is incurred
(linputkp = 1). Otherwise, loss of performance is zero (linputkp = 0).

Figure 6.3: Example of the weight and probability update of a DPM-based expert.

Let us consider a simple example in figure 6.3 in which, a DPM expert is applied. Let
us consider that there are at most two experts in expert set and initial weight of both
experts is equal to 0.5, α = 0.60, and β = 0.80. In the first step, length of idle period is
compared with the break-even time of processor. Let us consider that the idle time (input)
is sufficiently large to transition the processor in energy-efficient state. Then, in the second
step, energy loss factor is computed using equation 6.4, i.e., (linputke = 1− (11/15) = 0.266).
Since processor is transitioned, therefore, performance loss (linputkp) has incurred and it is
equal to 1 (linputkp = 1). Based on energy and performance loss factors, weight factor of
DPM expert is updated -i.e., winput+1

k = 0.88 × winputk = 0.441. In the last step, this
updated weight factor is normalized with current weights of all other experts to eventually
obtain the probability factor using equation 6.1 (hinput+1

k = 0.468). This hinput+1
k serves

HyPowMan to judge the performance of DPM expert in comparison to other expert.

6.3. Hybrid Power Management Scheme 113

For DVFS experts, the input is dynamic slack time. Similar to DPM experts, whenever
there is an input available, the time it takes to scale Fop and Vdd is compared to available
slack time. If the amount of slack justifies the scaling of Fop and Vop to lower values and
back to Fref and Vdd then the loss on energy is calculated using frequency scaling ratio.
Otherwise, no gain on energy can be achieved by applying DVFS and thus, the loss is
maximum (linputke = 1). Performance loss is computed based on whether Fop and Vop were
scaled or not. If scaling is applied, performance loss is incurred (linputkp = 1). Otherwise, no
loss would have incurred (linputkp = 0).

Algorithm-9 presents our machine-learning algorithm. Suitable values for parameters
(α and β corresponding to DPM and DVFS experts) should be specified by the user in
accordance with the relative importance of energy and performance loss factors for soft
real-time applications (lines 1-4). Initial weights, as described earlier, are equal and sum to
one in the beginning. Then the expert, which offers highest probability is selected to become
working expert at the start of next input (line 6). If all probability factors are equal, (which
is the case at start up) then any expert is chosen randomly to become working expert. Upon
the arrival of an input, the already selected working expert is applied (lines 7-8) and at the
end of an input, each expert is evaluated and its weight and probability factors are updated
(lines 9-11).

Algorithm 9 Machine-learning
1: set parameters
2:

{
αdpm, αdvfs

}
∈ [0, 1]

3:
{
βdpm, βdvfs

}
∈ [0, 1]

4: w1
k ∈ [0, 1] (∀k, 1 ≤ k ≤ N)

5: for all future inputs do
6: select expert with maximum probability: hinput+1 = max

[
hinputk

]
7: if input arrives then
8: apply selected expert as working expert
9: else if input terminates then

10: update weight vector W input (apply equation 6.3)
11: update probability vector H input (apply equation 6.1)

Note that HyPowMan has no direct control on the decision-making process of either
experts or scheduling algorithm itself. This scheme rather functions as a top-level entity,
which evaluates the performance of different experts and based on previous performance,
selects best-performing expert. Once selected, its the responsibility of an expert to provide
temporal guarantees for real-time tasks as long as it is a working expert. Only those policies
providing real-time guarantees are chosen to be member of expert set. Whenever a DVFS-
based expert is switched by any other expert, all parameters of running/preempted tasks
are reinstated with respect to nominal operating conditions (Vop, Fop). Similarly, when a
DPM-based expert is switched by any other expert, all processors from power-efficient state
(if any) are recovered until the newly selected working expert makes any decision about
their future state. Experts are switched, if necessary, only at scheduling events. Note
that once an expert is selected to be a working expert by HyPowMan, it has to wait for
suitable power management opportunities to appear in the application’s schedule before
making any decision according to its own rules. For instance, selection of a DPM expert
as working expert does not imply that there are processors immediately put in power-

114
Chapter 6. Hybrid Power Management Scheme for Multiprocessor

Systems

efficient state. Similarly, selection of a DVFS expert as working expert does not imply
that processors’ speed is currently scaled. To take into account the latency in recovering
processors from energy-efficient states, processors are recovered before the newly selected
expert starts decision-making.

6.3.2 Selection of Experts

The idea of HyPowMan is to propose an adaptive power and energy management scheme
for relatively larger set of operating conditions. With the changes in workload characteris-
tics and/or architecture configuration, it is possible that the designer/user is uncertain of
the online behavior (strictly from energy consumption point of view) of a feasible target
application. In such case, it becomes tricky to choose an appropriate power-management
policy for changed operating conditions. In this section, we present some possible scenarios
and discuss how HyPowMan can be used in each scenario.

Statically selected single expert: HyPowMan is able to apply a statically selected
single expert throughout runtime. This scenario is equivalent to applying any expert de-
signed for specific operating conditions. However, offline decision of choosing specific expert
is entirely dependent on user’s knowledge of application’s runtime behavior and target ar-
chitecture. It is trivial to select an expert if designer has sufficient knowledge of operating
conditions and expert’s power- and energy-efficiency. There shall be no need to adapt online
to other experts.

Statically selected profiling-based experts: In this scenario, when designer does
not have sufficient knowledge of target application’s runtime behavior in order to determine
a unique expert statically, profiling can be used to determine which experts would be
suitable and in which order. In this scenario, the designer may statically apply each available
expert and perform multiple iterations of simulation to determine how each expert performs
during various segments of simulation time. Based on these profiles, designer can determine
which experts should be used and can also specify a priori order of selected experts for
different simulation segments -i.e., predefined instants at which, experts must be switched.
Since statically selected single expert might not perform better throughout runtime of a
target application, therefore, profiling-based selection of experts permits a target application
to exploit maximum energy gains under different experts as the time evolves.

Online selected experts: This is the scenario in which profiling does not help in deter-
mining suitable expert(s) due to varying runtime behavior of target application. Machine-
learning algorithm of HyPowMan is applied in this case to determine best-performing expert
for different simulation time segments online and experts are switched at runtime based on
how they perform. No predefined order of switching experts exists in this scenario.

6.4 Experiments

6.4.1 Setup

System model used for experiments in this chapter is the same as presented in chapter
2 and used in chapters 4 and 5. EDF scheduling algorithm is used to schedule real-time
periodic tasks. Energy consumption in processors is measured under the control of each
selected policy alone as well as under the control of HyPowMan. All results on energy

6.4. Experiments 115

consumption are scaled between 0.0 and 1.0 w.r.t. the worst-case energy consumption under
non-optimized algorithm within each simulation setting. That is, the energy consumed in
a schedule of tasks under non-optimized algorithm, when all tasks execution with their
worst-case execution time, becomes reference (1.0) and all other values, including that of
non-optimized algorithm, are scaled. Moreover, it is demonstrated how the variations in α
and β alter the convergence of HyPowMan towards best-performing expert. All simulations
are performed for online selected experts scenario as mentioned in section 6.3.2.

6.4.2 Description of Experts

In this section, different experts that are used for experiments are described. There are
three power/energy management policies (one DPM and two DVFS policies) being selected
for experiments. These policies are: Timeout DPM policy, DSF (DVFS) policy, and ccEDF
(DVFS) policy. In the following, we provide a brief description of these policies.

Timeout DPM policy: Timeout DPM policy is presented in [61]. In this policy,
whenever there is no task to service, processor waits for a specified amount of time before
transitioning to energy-efficient state. Value of timeout can be fixed or it may be changed
over time statically. Timeout DPM policy is one of the most widely used policies in many
applications because of its simplicity.

DSF (DVFS) policy: Deterministic Stretch-to-Fit (DSF) DVFS policy is presented
in detail in chapter 5 and also in [19]. This policy is based on an online slack reclamation
algorithm, which permits the dynamic slack, produced by the precedent task, to be fully
consumed by single subsequent task at the appropriate priority level. Such greedy allocation
of slack allows large variations in Fop and Vop, which eventually results in larger gains on
energy consumption.

ccEDF (DVFS) policy: Cycle-conserving Earliest Deadline First (ccEDF) DVFS pol-
icy is presented in [87]. In this policy, the dynamic slack time is redistributed globally to all
ready tasks. ccEDF considers actual execution time of all terminated tasks until their next
release and worst-case execution time of all ready and running tasks to determine concur-
rent resource utilization of application and calculate required scaling factor for speed. Once
scaling factor is determined, frequency and voltage are scaled globally on all processors.

6.4.2.1 Target application

Synthetic task sets are considered in these experiments in order to estimate energy con-
sumption as a function of variations in three parameters –i.e., variations in total utilization
Usum(τ), number of tasks (n), and best-case to worst-case execution time ratio (bcet/wcet)
of each task. For each data point, a task set is randomly generated, in which, each task has
a uniform probability to have small (5− 25ms), medium (25− 75ms), or long (75− 120ms)
periods. All task periods are uniformly distributed among these three ranges. Note that a
similar period generation scheme is used in [1, 87]. Individual utilization of each task ui is
also generated randomly.

116
Chapter 6. Hybrid Power Management Scheme for Multiprocessor

Systems

6.4.3 Simulation Results

6.4.3.1 Effect of variations in bcet/wcet ratio

Simulation settings for this scenario are presented in table 6.1. The bcet/wcet ratio is varied
between 50% and 100% of wcet of tasks such that aet of all tasks has a uniform probability
distribution function as suggested in [10]. Following are the observations on these results.
For bcet/wcet ratio = 1, figure 6.4 depicts no change in total energy consumption due
to constant dynamic and static power consumption. Since aet remains constant, energy
consumed by processors under non-optimized case and under DVFS experts remains un-
changed. DPM expert, however, saves energy by exploiting the presence of inherent idle
intervals. HyPowMan, in this case, converges to DPM expert in a straightforward manner
as shown in figure 6.4. As bcet/wcet ratio decreases (< 1), opportunities for both DVFS
experts to save energy are created as well. Figure 6.4 shows that all experts, while working
alone, save energy as compared to non-optimized case. For bcet/wcet ratio between 0.5

and 0.9, it can be observed that HyPowMan converges to the best energy savings offered
by either expert. This convergence validates our earlier claims that under the HyPowMan
scheme, (more or less) best possible energy savings can be achieved. Figure 6.4 shows
that under HyPowMan, in some cases, processors consume slightly more energy than the
one offered by best-performing expert alone. This is due to the convergence mechanism in
which, initially, experts are frequently switched amongst them in an attempt to figure out
the best-performing expert. We have estimated best-case energy savings up to 23.12% for
DSF expert alone, up to 47.94% for timout-DPM expert alone, up to 18.03% for ccEDF
expert alone, and up to 47.22% for HyPowMan by interplaying all experts.

Table 6.1: Simulation settings for variable bcet/wcet ratio
Parameters Settings
Number of processors(m) in platform 4
Number of tasks (n) in task set 8
Utilization (usum) of task set 2.50
α for DPM expert 0.80
α for DVFS experts 0.90
β for DPM expert 0.70
β for DVFS experts 0.90
bcet/wcet ratio 50%− 100% of wcet

6.4.3.2 Effect of variations in number of tasks

Simulation settings for this scenario are presented in table 6.2. Simulations are performed
by doubling and tripling the number of tasks. Results in figure 6.5 depict that, increasing
the number of tasks increases the energy savings in all cases (in best-case up to 18.05% for
DSF expert alone, 10.23% for timeout-DPM expert alone, 30.38% for ccEDF expert alone,
and 24.71% for HyPowMan). Based on simulation results, we make two very interesting
observations. Firstly, in case when all experts are applied as stand-alone policies, DVFS
experts generally save more energy than DPM expert does. This is because the main
determinant of variations in energy consumption is actual workload and with increased
number of tasks, there are potentially more opportunities for tasks to generate dynamic slack
and therefore, more possibilities for DVFS experts to reclaim energy. Secondly, HyPowMan

6.4. Experiments 117

Figure 6.4: Simulation results on variation of bcet/wcet ratio.

can even result in energy savings more than any stand-alone policy in some cases. This
is because, over entire simulation time, a single expert cannot always change a processor’s
power consumption profile (often due to transition costs). HyPowMan, on the other hand,
switches an expert with the other if it is not performing well under such conditions and
eventually results is better energy savings.

Table 6.2: Simulation settings for variable number of tasks
Parameters Settings
Number of processors(m) in platform 4
Number of tasks (n) in task set 8, 16, & 24
Utilization (usum) of task set 2.50
α for DPM expert 0.80
α for DVFS experts 0.90
β for DPM expert 0.70
β for DVFS experts 0.90
bcet/wcet ratio 60% of wcet

6.4.3.3 Effect of variations in aggregate utilization

Simulation settings for this scenario are presented in table 6.3. Multiple task sets with
total utilization varying between 50% (lower workload) and 100% (maximum workload) of
platform capacity have been generated. Results in figure 6.6 depict that the difference in
energy savings for a given utilization is more or less the same in all cases. That is, the
variations in aggregate utilization do not significantly vary the performance of these poli-
cies and lesser workload naturally favors more energy savings on fixed capacity platforms.

118
Chapter 6. Hybrid Power Management Scheme for Multiprocessor

Systems

Figure 6.5: Simulation results on variation in number of tasks.

Simulation results indicate best-case energy savings compared to non-optimized case by up
to 22.8% for DSF expert alone, 41.6% for timout-DPM expert alone, 34.34% for ccEDF
expert alone, and 48.2% for HyPowMan for varying utilization values. Simulation results
show that no particular usage pattern exists for different experts under HyPowMan and the
only factor that affects the percetange of using an expert is how it performs at runtime.

Table 6.3: Simulation settings for variable aggregate utilization
Parameters Settings
Number of processors(m) in platform 4
Number of tasks (n) in task set 8
Utilization (usum) of task set 60%− 100%

α for DPM expert 0.80
α for DVFS experts 0.90
β for DPM expert 0.70
β for DVFS experts 0.90
bcet/wcet ratio 60% of wcet

6.4.3.4 Effect of variations in α (low, medium, high)

Simulation settings for this scenario are presented in table 6.4. Recall from section 6.3.1
that value of α indicates the desirable settings of the importance of energy savings compared
to the performance degradation. A high value of α indicates a higher preference to energy
savings, a low value indicates higher preference to performance while a medium value indi-
cates a reasonable ratio of both. In our experiments, we vary the value of α ranging from 0.6
(low) to 0.9 (high). We use values of α around 0.7 and 0.75 for the medium values. Results

6.4. Experiments 119

Figure 6.6: Simulation results on variation in aggregate utilization.

in figure 6.7 show that, as the value of α increases, the convergence of HyPowMan is refined
with respect to energy savings -i.e., the gains achieved on energy become closer to that of
best-performing individual expert. For lower values of α, the relative importance of energy
savings is reduced and as a result, HyPowMan converges to the individual expert offering
lesser performance degradation (an expert gaining less on energy does not transition often
and therefore, performance loss is less for such experts). Note that we limit the value of α
between 0.6 and 0.9. For α = 1, performance loss will be completely overlooked, which is
not realistic.

Table 6.4: Simulation settings for variable α
Parameters Settings
Number of processors(m) in platform 4
Number of tasks (n) in task set 8
Utilization (usum) of task set 2.50

α 0.60− 0.90

β for DPM expert 0.70
β for DVFS experts 0.90
bcet/wcet ratio 60% of wcet

6.4.3.5 Effect of variations in β (low, medium, high)

Simulation settings for this scenario are presented in table 6.5. Recall from section 6.3.1
that the value of β determines the granularity of weight factors, i.e. the higher the value
of β is set, the lower the variation in weight of each expert occurs for a given input. From
results in figure 6.8, we observe that as the value of β increases, the granularity of weight
update (and hence the probability factor) associated with individual experts with respect

120
Chapter 6. Hybrid Power Management Scheme for Multiprocessor

Systems

Figure 6.7: Simulation results on variation in α.

Table 6.5: Simulation settings for variable β
Parameters Settings
Number of processors(m) in platform 4
Number of tasks (n) in task set 8
Utilization (usum) of task set 2.50

α for DPM expert 0.80
α for DVFS experts 0.90
β 0.60− 0.90

bcet/wcet ratio 60% of wcet

to their performance is refined. This refinement in weight update permits HyPowMan to
more precisely evaluate the performance of working expert as well as dormant experts, which
eventually leads to a better convergence to best-performing expert. However, increasing β
too much can result in increasing the sensitivity of HyPowMan towards weight updates
and can cause increased switching of experts. Moreover, when the value of β is decreased
too much, HyPowMan has lesser precision in weight updates and therefore, frequently
switches the working expert again, which eventually leads to lesser gains on energy and
more performance loss.

6.5 Concluding Remarks

In this chapter, we have proposed a generic power and energy management scheme for
multiprocessor systems, called Hybrid Power Management (HyPowMan) scheme. HyPow-
Man serves as a top-level entity which, instead of designing new power management policies
(whether DPM or DVFS) for specific operating conditions, takes a set of well-known existing
policies, each of which performs well for a given set of conditions, and adapts at runtime to

6.5. Concluding Remarks 121

Figure 6.8: Simulation results on variation in β.

the best-performing policy for any given workload. A machine-learning algorithm is imple-
mented to evaluate the performance of all policies and the decision to select best-performing
policy at any point in time is taken online and adaptive to the varying workload. Experi-
ments validate that our proposed scheme adapts well to the changing workload and quickly
converges to the best-performing policy within the selected expert set by a margin of 1.5%

to 11% (w.r.t. best-case) on energy savings. Through experiments, we have validated that
HyPowMan is robust to variations in application task parameters such as actual execution
time, number of tasks, and aggregate utilization. The expert set used for experiments in
this chapter is composed of both DPM and DVFS policies. However, we have also validated
the working of HyPowMan by using similar policies only –i.e., only DVFS or only DPM
policies. Moreover, experiments using AsDPM policy (chapter 4), along with DSF policy
(chapter 5), were also performed. Interested reader can find those results in Appendix B.
One of the limitations of HyPowMan is that it evaluates the performance of all experts
(working as well as dormant) for every input (i.e. power- and energy-saving opportunity),
which may increase the computational overhead if larger expert sets are used. This aspect
requires improvements for an efficient implementation on hardware platforms.

Chapter 7

Conclusions and Future Research
Perspectives

Real-time embedded systems have become ubiquitous in our life, ranging from hand-held
cell phones and home appliances to more sophisticated systems like data centers, signal-
processing systems, satellites, and military applications. As the uses for real-time systems
become diverse, the research on these systems has confronted with many emerging chal-
lenges. Nowadays, real-time applications have become sophisticated and complex in their
behavior and interaction. Their sophistication and complexity has led to the emergence of
multiprocessor architectures. Another reason for multiprocessor architectures to be read-
ily acceptable in commercial sector is that they have been considered as a solution to the
thermal roadblock imposed by single-processor architectures. It has become clearer that
in future, most of the sophisticated real-time applications will be deployed on multipro-
cessor platforms. Inevitably, the change in platform architecture design and complexity
of real-time applications have renewed some existing challenges as well as brought some
new ones for real-time research community. One of the major renewed challenge is that
single-processor optimal scheduling algorithms can not be applied on multiprocessor sys-
tems without loss of optimality. Thus, the real-time research community has to develop
alternative scheduling strategies to incorporate the aspects of multiprocessor systems. One
of the new challenges that real-time systems are facing is to reduce power and energy
consumption while maintaining assurance that timing constraints will be met. As the com-
putational demands of real-time embedded systems continue to grow, effective yet trans-
parent energy-management approaches are becoming increasingly important to minimize
energy consumption, extend battery life, and reduce thermal effects. Power and energy
consumption in real-time systems has earned great importance over the last few years and
many software-based approaches to statically as well as dynamically reduce power and
energy consumption have been proposed. Software-based solutions, particularly energy-
aware scheduling techniques such as dynamic voltage & frequency scaling and dynamic
power management techniques have emerged. Furthermore, system-wide energy-efficient
techniques that include other system components such as memory sub-systems and inter-
connect network have been proposed as well. Yet their flexibility is often matched by the
complexity of the solution.

This dissertation is an attempt to ameliorate energy-management in real-time embed-
ded systems by proposing new flexible and effective energy-aware scheduling strategies.
Techniques proposed in this dissertation increase the set of operating conditions in which,
real-time applications can be scheduled in an energy-efficient manner while maintaining
their temporal guarantees on multiprocessor platforms. We divide this chapter into two
parts. First part summarizes our contributions and the significance of results obtained.
The second part presents some future research perspectives and ameliorations related to
this dissertation.

124 Chapter 7. Conclusions and Future Research Perspectives

7.1 Summary of Contributions and Results

In this section, we summarize the contributions of this dissertation.

Two-Level Hierarchical Scheduling Algorithm. Restricted-migration schedul-
ing strategies provide a good compromise between the full migration and the partitioning
strategies [24, 63, 62]. It is flexible enough to allow dynamic tasks to join the system at
runtime, but it does not incur large migration overheads as compared to full-migration
strategies. In this dissertation, in chapter 3, we have presented a multiprocessor schedul-
ing algorithm, called two-level hierarchical scheduling algorithm (2L-HiSA), which falls in
the category of restricted migration scheduling. The EDF scheduling algorithm has the
least runtime complexity among job-level fixed-priority algorithms for scheduling tasks on
multiprocessor architecture. However, EDF suffers from sub-optimality in multiprocessor
systems. 2L-HiSA addresses the sub-optimality of EDF as global scheduling algorithm and
divides the problem into a two-level hierarchy of schedulers. 2L-HiSA uses multiple in-
stances of single-processor optimal EDF scheduling algorithm in a hierarchical fashion at
two levels: an instance of EDF at top-level scheduler and an instance at local-level scheduler
on every processor of the platform.

Moreover, 2L-HiSA consists of two phases: 1) the task-partitioning phase, in which, each
non-migrating task is assigned to a specific processor by following the bin-packing approach,
2) the processor-grouping phase, in which, processors are grouped together based on their
workload characteristics. 2L-HiSA partitions application tasks statically onto processors
by following the bin-packing approach, as long as schedulability of tasks partitioned on a
particular processor is not violated. Tasks that can not be partitioned on any processor in
the platform qualify as migrating or global tasks. Furthermore, it makes clusters of identical
processors such that, per cluster, the unused fragmented computation power equivalent to
at most one processor is available. We show that 2L-HiSA improves on the schedulability
bound of restricted-migration based scheduling using multiple instances of preemptive EDF
for multiprocessor systems. 2L-HiSA can ensure deadline guarantees if a subset of tasks can
be partitioned such that the under-utilization per cluster of processors remain less than or
equal to the equivalent of one processor. Partitioning tasks on processors reduces scheduling
related overheads such as context switch, preemptions, and migrations, which eventually
help reducing overall energy consumption. The NP-hardness of partitioning problem [60],
however, can often be a limiting factor. By using clusters of processors instead of considering
individual processors, 2L-HiSA alleviates bin-packing limitations by effectively increasing
bin sizes in comparison to item sizes. With a cluster of processors, it is much easier to
obtain the unused processing power per cluster less than or equal to one processor. We
provide simulation results to support our proposition. We have illustrated that power- and
energy-efficient strategies like DVFS and/or DPM can be used in conjunction with 2L-HiSA
to improve energy savings. Furthermore, we have illustrated that the task preemption- and
migration-related overhead is significantly less when using 2L-HiSA as compared to PFair
and ASEDZL, which are multiprocessor optimal scheduling algorithms.

Assertive Dynamic Power Management Technique. Another contribution of
this dissertation, presented in chapter 4, is the proposition of a dynamic power management
technique for multiprocessor real-time systems. DPM techniques achieve energy conserva-
tion in embedded computing systems by actively changing the power consumption profile
of the system by selectively putting its components into power-efficient states sufficient to
meeting functionality requirements. Our proposed technique is called Assertive Dynamic

7.1. Summary of Contributions and Results 125

Power Management (AsDPM) technique because of its aggressiveness towards the extrac-
tion of the idle time intervals, if present, from the application’s runtime schedule which is
not the case in conventional DPM techniques. AsDPM technique works under the control
of global EDF and global LLF scheduling algorithms. It is an admission control technique
for real-time tasks which makes a feasible task set energy efficient by deciding when exactly
a ready task shall execute. Without this admission control, all ready tasks are executed as
soon as there are enough computing resources (processors) available in the system, leading
to poor possibilities of putting some processors into power-efficient states. AsDPM tech-
nique differs from the existing DPM techniques in the way it exploits the idle time intervals.
A conventional DPM technique can exploit idle intervals only once they occur on a processor
–i.e., once an idle interval is detected. Upon detecting idle time intervals, these techniques
decide whether to transition target processor(s) to power-efficient state. AsDPM technique,
on the other hand, aggressively extracts all idle intervals from some processors and clusters
them on some other processors of the platform to elongate the duration of idle time. Tran-
sitioning processors to suitable power-efficient state then become a matter of comparing
idle interval’s length against the break-even time (BET) of target processor. Although,
AsDPM is an online dynamic power management technique, its working principle can be
used to determine static optimal architecture configurations (i.e., number of processors and
their corresponding voltage-frequency level, which is required to meet real-time constraints
in worst-case with minimum energy consumption) for target application through simula-
tions. In this dissertation, we have demonstrated the use of AsDPM for determining static
optimal architecture configurations at first, and then as an online DPM technique, which
can further increase energy-efficiency of already (statically) optimized configurations.

Deterministic Stretch-to-Fit DVFS Technique. Dynamic voltage and frequency
scaling is one of the effective techniques, which aim at changing energy consumption pro-
file of real-time embedded systems. This is because energy consumption of processors is a
quadratic function of supply voltage of processors [48]. Real-time applications potentially
exhibit variations in their actual execution time and therefore, often finish much earlier than
their estimated worst-case execution time. Real-time DVFS techniques exploit these varia-
tions in actual workload for dynamically adjusting the voltage and frequency of processors
in order to reduce power consumption. In this dissertation, in chapter 5, we propose an
inter-task dynamic voltage and frequency scaling technique for real-time multiprocessor sys-
tems, called Deterministic Stretch-to-Fit (DSF) technique. The DSF technique comprises
three algorithms, namely, Dynamic Slack Reclamation (DSR) algorithm, Online Specula-
tive speed adjustment Mechanism (OSM), and m-Tasks Extension (m-TE) algorithm. The
DSR algorithm is the principle slack reclamation algorithm of DSF that assigns dynamic
slack, produced by a precedent task, to the appropriate priority next ready task that would
execute on the same processor. While using DSR, dynamic slack is not shared with other
processors in the system. Rather, slack is fully consumed on the same processor by the
task, to which it is once attributed. Such greedy allocation of slack allows the DSR al-
gorithm to have large slowdown factor for scaling voltage and frequency for a single task,
which eventually results in improved energy savings. DSR works in conjunction with global
scheduling algorithms on identical multiprocessor real-time systems. The OSM and the
m-TE algorithms are extensions of the DSR algorithm. The OSM algorithm is an online,
adaptive, and speculative speed adjustment mechanism, which anticipates early completion
of tasks and performs aggressive slowdown on processor speed. Apart from saving more
energy as compared to the stand-alone DSR algorithm, this speculative speed adjustment
mechanism also helps to avoid radical changes in operating frequency and supply voltage,

126 Chapter 7. Conclusions and Future Research Perspectives

which results in reduced peak power consumption, which leads to an increase in battery life
for portable embedded systems. The m-TE algorithm extends an already existing One-Task
Extension (OTE) technique for single-processor systems onto multiprocessor systems.

DSF works on the principle of following the canonical execution of tasks, which implies
that the implicit deadline guarantees available under worst-case schedulability analysis of
tasks hold. That is, the aggregate utilization of tasks does not change at runtime because
variations in actual execution time of tasks is compensated by proportionate variation in
applied frequency by DSF. We have demonstrated in this chapter that if dynamic slack
is reclaimed in such a way that no task finishes its execution later than the completion
time in canonical schedule then the real-time deadlines can be guaranteed with less energy
consumption. To evaluate DSF, H.264 video decoder application is taken as main use
case application. Two different task models of H.264 video decoder application, which are
developed at Thales Group, France [115], are used. Simulation results illustrate that the
DSR algorithm, along with the OSM algorithm and the m-TE algorithm, can obtain energy
savings up to 43% in best-case. Note that reported results are based on the assumption
that it is possible to vary the supply voltage and operating frequency on every processor
independently and over a continuous spectrum between defined lower and upper bounds.
In section 7.2, we discuss how removing this assumption can effect the working of DSF.

Hybrid Power Management Technique. Both dynamic power management
(DPM) and dynamic voltage & frequency scaling (DVFS) policies are the most commonly
used scheduling-based policies for power/energy consumption management in modern
embedded systems. They both perform well for specific set of operating conditions such
as, for particular target applications, specific architecture configuration, and/or specific
scheduling algorithms. However, both policies often outperform each other when these
operating conditions change. Thus, no single policy, whether DPM or DVFS, fits perfectly
in all or most operating conditions, leading a designer to choose for an appropriate policy
every time there is a change in target application, architecture configuration, or scheduling
algorithm. In this dissertation, in chapter 6, we have addressed the need of a common
solution which is adaptive to changing operating conditions. Based on the fact that
most of the power/energy management policies are designed for specific conditions, we
propose a generic power/energy management scheme called Hybrid Power Management
(HyPowMan) scheme. Instead of designing new power/energy management policies (DPM
or DVFS) to target specific operating conditions, HyPowMan scheme takes a set of
well-known existing policies, each of which performs well for a given set of conditions,
and proposes a machine-learning mechanism to adapt at runtime to the best-performing
policy for any given workload. The decision of applying suitable policy is taken online
and adaptive to the varying workload. HyPowMan scheme is generic in the sense that it
permits to integrate existing as well as new power/energy management policies and it can
be applied under the control of global as well as partitioning-based scheduling algorithms.
This scheme serves as a top-level entity of all power management policies within an
expert-set. It does not intervene in decision-making process of either controlling scheduling
algorithm or applied (working) expert. The job of HyPowMan scheme is only to select a
best-performing expert from expert-set based on its performance. Once selected, an expert
makes all power management decisions under the control of scheduling algorithm. Thus,
HyPowMan scheme enhances the ability of embedded real-time systems to adapt with
changing workload by working with a larger set of operating conditions and gives overall
performance and energy savings that are better than any single policy can offer. Utility
of HyPowMan scheme can be extended beyond energy-efficiency –i.e., the adaptivity of

7.2. Future Research Perspectives 127

HyPowMan scheme allows to define other performance parameters as principle criteria for
converging to the best-performing expert. For instance, peak power consumption, battery
life, and temperature threshold can be the principle criteria for HyPowMan scheme for
adapting to the best-performing expert.

7.2 Future Research Perspectives

Real-time systems have very complex characteristics. Changing one aspect of the system
can result in a very different problem. In this dissertation, we have focused mainly on
achieving the energy-efficiency in real-time multiprocessor systems through scheduling. Our
contributions deal with specific models of tasks and processing platform which are discussed
in chapter 2. Generalization of these models expands the number of possible systems that
can be used by the real-time applications. Therefore, further extensions of this work include
generalizing the task model and processing model. Many of these generalized models will
require certain ameliorations in our proposed techniques that we discuss in this section.

7.2.1 Task Models

Inter-Task Dependency. The research work presented in this dissertation assumes
an independent and preemptive task model –i.e., the execution of one task’s job is not
contingent upon the status of another task’s job. There are many problems in which in-
dependence is an unreasonable assumption. Also, in some cases preemption may not be
allowed. Jobs may have dependencies for a variety of reasons. Two types of job dependen-
cies are resource sharing and precedence constraints. Incorporating resource sharing and
precedence constraints into the results presented in this dissertation would be a natural
extension. However, dependencies between tasks can cause priority inversions –situations
where a higher priority job is blocked while a lower priority job executes. Such priority
inversions may violate our assumptions. For instance, in case of 2L-HiSA scheduling algo-
rithm, two tasks with precedence constraint may require to be statically assigned on the
same processor, thus adding another limitation along with the partitioning problem. Sim-
ilarly, in case of AsDPM technique, resource sharing between tasks may cause a processor
to stand still in idle state that could have been otherwise, transitioned to power-efficient
state as soon as the runtime workload is reduced.

Task Preemption. Task preemption is a common assumption in real-time systems,
however, there are situations when jobs may not be preempted. Removing the ability to
preempt jobs may cause priority inversions. Moreover, non-preemptive systems can also
suffer from scheduling anomalies whereby a feasible system may miss deadlines if one or
more jobs are removed from the system or complete executing early. Accounting for priority
inversions and scheduling anomalies can be an important extension to the research presented
in this dissertation. However, we did not consider non-preemptive systems. Moreover, we
have considered only feasible task systems with no scheduling anomalies.

Period of Task. Another common assumption in real-time systems is about the task
models based on their periodicity. This parameter can be interpreted in three distinct ways,
each of which leads to a well-defined type of task. According to the interpretation given to
the period, tasks can be classified into three categories: periodic task model, sporadic task
model, and aperiodic task model. In this dissertation, we have considered periodic task

128 Chapter 7. Conclusions and Future Research Perspectives

models –i.e., every task has an exact inter-arrival time between successive jobs. Extending
our proposed techniques to sporadic and aperiodic task models would be an interesting
contribution as it would allow the handling of a wide range of real-time applications.

7.2.2 Platform Architectures

This dissertation considers homogeneous multiprocessor platform of type SMP (Symmet-
ric shared-memory Multiprocessor) composed of identical processors. There are a variety
of ways in which the processing platform model can be generalized. For instance, uni-
form multiprocessor or unrelated multiprocessor platforms can be used instead of identical
multiprocessor platform. Certain contributions of this dissertation, such as AsDPM and
DSF techniques, have been used in French national project Pherma [86]. This project
proposes a heterogeneous CMP (Chip Multi-Processing) processing platform model called
SCMP (Scalable Chip Multi-Processing) that supports dynamic migration and preemption
of tasks by using physically distributed, logically shared memories [120]. The heterogene-
ity in SCMP platform is inter-cluster of processing units (i.e., multiple clusters/groups
of identical processors are formed, however, different clusters can contain different type
of processing units). SCMP is good alternative platform compared to SMP platform for
further extensions of our proposed techniques. Furthermore, the results presented in this
dissertation consider mostly the power and energy consumption of processors only and did
not include energy consumed by other sub-systems such as memory and interconnect net-
work. Recent research reports that peripheral devices, memory subsystems, flash drives,
and wireless network interfaces are pervasive in modern embedded systems that consume
considerable amount of energy. In order to achieve system-wide energy savings, energy-
aware I/O scheduling algorithms need to be developed for real-time systems. Extension of
our proposed techniques to system-wide energy-efficient techniques is a possible direction.
For instance, we have demonstrated in chapter 4 that AsDPM technique can be useful for
memory subsystems. HyPowMan scheme can also incorporate the energy consumption of
peripheral devices and other subsystems while selecting suitable experts.

Another aspect concerning the generalization of processing platform is the method of
scaling voltage & frequency in processors that support multiple voltage-frequency levels.
In this dissertation, we have considered that it is possible to vary the voltage & frequency
on every processor independently and over a continuous spectrum between defined lower
and upper bounds. This consideration is based on the fact that processors that are able to
operate on a (more or less) continuous voltage and frequency spectrum are fast becoming
a reality [10]. However, this assumption can be lifted for processors offering only discrete
voltage-frequency levels such that if the (calculated) optimal processor speed is not available
on a processor, it has to be approximated to the closest discrete level higher than the
optimal speed to prevent any deadline miss. This conversion is straightforward for tasks
that satisfy sufficient schedulability bound. For a feasible task set satisfying only necessary
schedulability condition, converting to discrete operating frequency would mean variation
in concurrent utilization at runtime, which could lead to deadline misses. This aspect would
require slight ameliorations for DSF technique for instance, which is based on the principle
of following canonical execution of tasks.

7.2.3 Scheduling Algorithms

Most of the contributions presented in this dissertation consider the earliest deadline first
(EDF) scheduling algorithm for scheduling real-time tasks on a multiprocessor platform.
Even though there are many reasons why EDF is a reasonable scheduling algorithm to

7.2. Future Research Perspectives 129

consider, it is pertinent to ask whether the contributions presented in this dissertation
can work in conjunction with other scheduling algorithms as well. We have discussed in
chapter 3 that EDF algorithm has the least runtime complexity for scheduling tasks on
multiprocessor architectures, but it suffers from sub-optimality in multiprocessor context.
To improve the schedulability bound of EDF-based systems, we have proposed 2L-HiSA
algorithm which uses multiple instances of single-processor optimal EDF algorithm in a
hierarchy of schedulers. For the remaining contributions of this dissertation, extending
them while using other algorithms would be a valuable future contribution. We discuss
the possibilities of extending our proposed techniques to other multiprocessor scheduling
algorithms in the following.

AsDPM Technique. Extending AsDPM technique to any of the multiprocessor
scheduling algorithm which is based on the fluid scheduling mechanism (for instance, PFair
[13] and LLREF [28] algorithms) is not possible due to their contradiction with the work-
ing principle of AsDPM technique. In algorithms based on fluid scheduling mechanism,
all ready tasks should execute proportionately to their respective utilization (or so called
weight). In AsDPM technique, on the other hand, a ready task can be deferred (delayed)
from execution until and unless its anticipative laxity becomes negative (see chapter 4),
which is contrary to the working principles of LLREF, PFair, and its heuristic algorithms.
It is possible, however, to extend AsDPM technique to other algorithms such as LLF [71].

DSF Technique. It is possible to extend all three algorithms –i.e., DSR, OSM, and m-
TE, presented under DSF technique to other scheduling algorithms. Since DSF technique
works on the principle of following canonical execution of tasks, therefore, it is possible
to integrate DSF technique with other algorithms with slight changes in the method of
calculating and attributing dynamic slack at runtime.

HyPowMan Scheme. HyPowMan scheme itself does not intervene in the decision-
making process of either scheduling algorithm or selected working expert (power-
management strategy). Thus, it is possible to implement HyPowMan scheme with other
scheduling algorithms. The only limiting factor can be the overall time complexity of the
system. For instance, applying HyPowMan scheme with PFair algorithm, which is known
to be complex due to its scheduling overheads, would considerably increase system’s time
complexity.

7.2.4 Implementation strategy –Simulations vs Real Platforms

In this dissertation, we have relied mainly on simulations for the evaluation and validation of
our proposed techniques. Our motivation for using simulation-based approach comes from
the fact that, initially, it is difficult to validate the analytical results if the assumptions on
task and platform models are not satisfied. Satisfying assumptions on system model using
real platforms is not straightforward. Furthermore, in simulations, it is easier to approxi-
mate the scheduling- and performance-related overheads of proposed energy-management
techniques by varying system configurations such as processor type, cache behavior, inter-
processor communications, inter-task dependencies, workload variations, and scheduling al-
gorithms. We have used a modern simulation tool called STORM [108] for our simulations.
STORM is a free-ware Java-based simulation tool for multiprocessor scheduling algorithms
incorporating both hardware and software architecture parameters (see Appendix A for
details). After evaluating the performance of our proposed techniques using simulations,

130 Chapter 7. Conclusions and Future Research Perspectives

we are already focusing on their implementation on a real platform. The platform we are
using for development is from the ARM R© (ARM1176JZF − S) [9]. This platform offers
TrustZone R© and the Intelligent Energy Management (IEM) technologies. Moreover, we are
currently implementing AsDPM and DSF techniques using virtual platform for processor
emulation called QEMU [89]. QEMU is a generic and open source machine emulator and
virtualizer. It provides a set of device models, allowing it to run a variety of unmodified
guest operating systems; it can thus be viewed as a hosted virtual machine monitor.

7.2.5 Thermal Aspects

One of the new challenges faced by the real-time systems is the increasing per-chip
transistor-density due to reduced feature-sizes. The increased chip-density and high-speed
computation requirements further lead to the increase in heat dissipation in multiprocessor
systems as well. This increase in temperature causes the creation of hot-spots, which greatly
reduces the component’s shelf-life. Moreover, designers are now focusing on fabrication of
3D-stacked architectures for multi-core platforms [30, 104] in order to satisfy ever-increasing
computation requirements. Due to scaling-down of transistor, the available chip surface for
heat dissipation is reducing which results in increased power-densities as the leakage current
is not scaled down with the same factor. Multiprocessor systems also behave as multiple
heat sources which increase the likelihood of temperature variations over shorter time and
chip area rather than just a uniform temperature distribution over entire die [78]. The
energy consumed in computing devices is in large part converted into heat. Thus, thermal
imbalances, along with the power and energy consumption, have become a first-class design
consideration for modern embedded systems. The system model considered in this disser-
tation contain power and energy consumption models, which are somewhat independent of
thermal aspects. This would most definitely be an interesting and useful contribution to ex-
tend our proposed techniques to incorporate thermal aspects. In chapter 4, we have briefly
described the handling of thermal imbalances that can appear due to AsDPM technique.
Clearly, more precise and thorough investigation of thermal aspects is required.

7.3 Summary

The emergence of multi-core technology has brought a paradigm shift for the research on
real-time embedded systems. Real-time applications that run upon multiprocessor plat-
forms are likely to be extremely diverse and characterized by complex software behavior
and interactions. The sophistication and the complexity of real-time applications that run
upon multiprocessor platforms have renewed, among many other challenges, the challenge
of power and energy consumption optimization, while providing assurance that timing con-
straints will be met. This dissertation is based on the thesis that energy-efficiency and
scheduling of real-time systems are closely related problems, which should be tackled to-
gether for best results. The contributions proposed in this dissertation ameliorate, through
scheduling, the energy-efficiency of real-time systems that can be proven predictable and
temporally correct over multiprocessor platforms. Our proposed solutions are flexible to
varying system requirements, less complex, and effective. Future research will continue
to remove some of the simplifying assumptions from the real-time task models and the
platform architecture that we have used. Moreover, we have highlighted that system-wide
energy-efficiency and thermal effects should be taken into account for best results.

7.3. Summary 131

Publication List

Refereed Journal Papers

1. M. K. Bhatti, C. Belleudy, M. Auguin, "Hybrid Power Management in Real-time
Embedded Systems: An Interplay of DVFS and DPM Techniques", In Springer’s
journal on Real-time Systems (RTS), special issue on Temperature/Energy Aware
Real-Time Systems. DOI: 10.1007/s11241 − 011 − 9116 − y. (To appear in early
2011).

2. M. K. Bhatti, C. Belleudy, M. Auguin, "Two-level Hierarchical Scheduling
Algorithm for Real-time Multiprocessor Systems", In Journal of Software (JSW),
Academy Publishers. (Accepted for publication).

Refereed Conference Papers

1. M. K. Bhatti, M. Farooq, C. Belleudy, M. Auguin, O. Mbarek, "Assertive Dynamic
Power Management (AsDPM) Strategy for Globally Scheduled RT Multiprocessor
Systems", In the proceedings of Power and Timing Modeling, Optimization and Sim-
ulation, PATMOS’09, and Integrated Circuit and System Design, chapter 8, Springer
LNCS Vol. 5953/2010, ISBN 978− 3− 642− 11801− 2, Pages 116− 126, 2010.

2. M. K. Bhatti, C. Belleudy, M. Auguin, "Power Management in Real-time Embed-
ded Systems through Online and Adaptive Interplay of DPM and DVFS Policies", In
the proceedings of International Conference on Embedded and Ubiquitous Computing,
EUC’10, December 2010, Hong Kong, SAR, China.

3. M. K. Bhatti, C. Belleudy, M. Auguin, "An Inter-Task Real-time DVFS Scheme for
Multiprocessor Embedded Systems", In the proceedings of International Conference
on Design and Architectures for Signal and Image Processing, DASIP’10, October
2010, Edinburgh, UK.

4. K. Ben Chehida, R. David, F. Thabet, M. K. Bhatti, M. Auguin, C. Belleudy, A.M.
Déplanche, Y. Trinquet, R. Urunuela, , F. Broekaert, V.Seignole, A. M. Fouillart,
"PHERMA, A global approach for system-level energy consumption optimization for
Real-time heterogeneous MPSoC architectures", In Proceedings of Low Voltage &
Low Power Consumption Conference, FTFC ′09, 2009, Neuchâtel, Switzerland.

5. M. K. Bhatti, C. Belleudy, M. Auguin, "A Framework for Offline Optimization
of Energy Consumption in Real-time Multiprocessor System-on-Chip", In the pro-
ceedings of IEEE International Conference on Electronics, Circuits, and Systems,
ICECS′09, December 2009, Hammamet, Tunisia.

6. M. K. Bhatti, M. Farooq, C. Belleudy, M. Auguin, "Improving resource utilization
under EDF-based mixed scheduling in multiprocessors real-time systems", In the
proceedings of IFIP/IEEE International Conference on Very Large Scale Integration,
VLSI-SoC’08, 2008, Rhodes Island, Greece.

7. M. Farooq, M. K. Bhatti, F. Muller, C. Belleudy, M. Auguin, " Precognitive DVFS:
Minimizing Switching Points to Further Reduce the Energy Consumption", In the
proceedings of 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2008, St. Louis, MO, USA.

132 Chapter 7. Conclusions and Future Research Perspectives

Non-Refereed Workshop/Conference Papers

1. M. K. Bhatti, C. Belleudy, M. Auguin, "Controlling Energy Profile of Real-time
Multiprocessor Systems by Anticipating Application’s Workload at Runtime", In
the proceedings of SYMPosium on new Machine Architectures SympA′13, 2009,
Toulouse, France.

2. M. K. Bhatti, C. Belleudy, M. Auguin, "A hybrid scheduling algorithm for opti-
mizing resource utilization & energy consumption in RT multiprocessor systems", In
the proceedings of 3rd National Symposium of Research Group on System-on-Chip,
System-in-Package, GDR SoC − SiP ′08, 2008, Paris, France.

3. M. K. Bhatti, M. Farooq, C. Belleudy, M. Auguin, "Mixed Scheduling for Im-
proved Resource Utilization and Energy Consumption in Real-time Multiprocessor
Systems", In the proceedings of Sophia Antipolis MicroElectronics, SAME’08, 2008,
Sophia Antipolis, France.

Part II

Selected chapters:
French version

Chapter 1

Introduction

Contents
1.1 Introduction . 135
1.2 Contributions . 137
1.3 Résumé . 140

1.1 Introduction

Dans les systèmes temps réel, le respect des contraintes temporelles est aussi important
que la validité des résultats [42]. Ces systèmes doivent donc non seulement effectuer des
opérations correctes, mais aussi les exécuter au bon moment. Une opération logiquement
correcte peut produire une sortie erronée, qui devient alors totalement inutile, ou dégradée
en fonction de la sévérité des contraintes temporelles. Selon le niveau de sévérité des con-
traintes temporelles, les systèmes temps réel peuvent être classés en trois grandes catégories:
les systèmes temps réel dur, souple ou ferme [47, 77, 105]. Ces systèmes doivent être pré-
dictibles et il est nécessaire de prouver le respect des échéances temporelles. Le concepteur
doit vérifier que le système soit correct avant son implémentation, c’est-â-dire, par exemple,
pour toutes les exécutions possibles d’un système temps réel dur, les échéances temporelles
doivent être respectées. Même pour des systèmes les plus simples, le nombre de scénarios
d’exécution peut être est soit infini soit très grand. Par conséquent, la simulation ou les
tests exhaustifs ne peuvent pas être utilisés pour vérifier le comportement temporel de ces
systèmes. Aussi, des techniques d’analyse formelle sont nécessaires pour garantir que les
systèmes conçus sont, par construction, temporellement correct et prédictible [42, 47]. Au
fil du temps, les applications temps réel sont devenues de plus en plus sophistiquées et com-
plexes dans leurs comportements et leurs interactions. Ces exigences applicatives ont per-
mis le développement d’architectures multi-cœur, architectures fortement répandues dans
les systèmes commerciaux actuels. Bien que des recherches importantes aient été menées
sur la conception de systémes temps-réel au cours des derni‘eres décennies, l’émergence des
architectures multi-cœurs a entrainé de nouveaux défis notamment pour la communauté de
recherche sur les systèmes temps réel. Ces défis peuvent être classés en trois grandes caté-
gories: la conception d’architecture multiprocesseur, l’ordonnancement multiprocesseur, et
la gestion de l’énergie dans les systèmes multiprocesseurs.

Comme les architectures multiprocesseurs sont déjà largement utilisées, il devient de
plus en plus évident que les futurs systèmes temps réel seront déployés sur ces architectures.
Les architectures multiprocesseurs possèdent de nouvelles fonctionnalités qui doivent être
prises en considération. Par exemple, les programmes applicatifs qui s’exécutent sur dif-
férents cœurs partagent en général des ressources (grain fin), comme les caches unifiés, les
réseaux d’interconnexion et la bande passante de la mémoire, ce qui rend les pratiques clas-
siques employées lors de la conception non applicables à ces systèmes multi-cœurs. Aussi, les

136 Chapter 1. Introduction

architectures multi-cœurs présentent plus de difficultés lors de leur conception, leur analyse
et leur mise en œuvre.

Un autre défi pour les systèmes temps réel réside dans le problème de l’ordonnancement.
Le problème de l’ordonnancement temps réel pour des systèmes multiprocesseurs est très
différent et plus complexe que pour des systèmes mono-processeur. Les algorithmes
d’ordonnancement développés dans un contexte mono-processeur ne peuvent pas être
appliqués sur les systèmes multiprocesseurs sans perte d’optimalité. Un algorithme
d’ordonnancement est dit optimal s’il est capable d’ordonnancer n’importe quel système
de tâches qualifié d’ordonnancable [105]. Un système de tâche est dit ordonnancable si il
existe un ordonnancement tel que les échéances temporelles des jobs soient respectées, et
ceci pour toutes les séquences de jobs qui peuvent être générées à partir du système de
tâches initial. L’optimalité des algorithmes d’ordonnancement est une question critique
lors de la conception de systèmes temps réel multiprocesseurs compte tenu du fait que la
sous-utilisation des ressources n’est pas souhaitable. Les algorithmes d’ordonnancement
multiprocesseur utilisent soit une approche d’ordonnancement partitionné soit global (ou
hybride des deux). Pour les ordonnancements partitionnés, les tâches sont attribuées de
manière statique aux processeurs et ordonnancée sur chaque processeur en utilisant des
algorithmes d’ordonnancement monoprocesseur. Ce type d’ordonnancement présente un
surcoût faible d’un point de vue de l’ordonnancement. Toutefois, la gestion des ressources
globalement partagées comme une mémoire principale et les caches peut devenir très dif-
ficile lors du partitionnement, précisément parce que chaque processeur construit son or-
donnancement de façon indépendante. En outre, l’affectation des tâches aux processeurs
est souvent considérée comme la résolution d’un problème de bin-packing : sur un système
de m-processeurs, chaque tâche avec une taille égale à son utilisation doit être placée dans
un des m bins de taille un et qui représente un processeur. Le bin-packing est considéré
comme un problème NP-complet [60]. Dans les algorithmes d’ordonnancement global, tous
les processeurs sélectionnent les jobs â ordonnancer dans une file d’exécution unique. En
conséquence, les jobs peuvent migrer entre les processeurs, et les conflits liés aux struc-
tures de données partagées sont probables. Jusqu’â présent, aucun algorithme optimal
d’ordonnancement global multiprocesseur n’existait avant la proposition de PFair et ses
algorithmes heuristiques [13, 106]. Bien que quelques algorithmes récemment proposés sont
connus pour être optimaux [13, 106, 77, 28], la théorie de l’ordonnancement multiprocesseur
pose de nombreux problèmes fondamentaux qui sont toujours non résolus.

La complexité croissante des applications temps réel qui sont ordonnancées sur des
architectures multiprocesseurs, issues aussi bien du multimédia, des télécommunications
ou des applications aérospatiales, pose un autre grand problème, celui de la consomma-
tion énergétique de ces équipements électroniques qui a augmenté de façon exponentielle.
La densité de puissance au sein des microprocesseurs a presque double tous les trois ans
[103, 56]. L’augmentation de la consommation engendre deux types de difficultés: la con-
sommation d’énergie intrinsèque et l’élévation de la température dans les circuits. Comme
l’énergie correspond à l’intégration de la puissance en fonction du temps, fournir l’énergie
nécessaire peut devenir complexe et onéreux, voir même techniquement impossible. Cette
difficulté est d’autant plus problématique dans les systèmes portables alimentés par des
batteries et elle deviendra encore plus critique dans le futur car la capacité des batteries
augmente à un rythme beaucoup plus lent que celui de la puissance consommée.

L’énergie consommée dans les systèmes électroniques est en grande partie transformée
en chaleur. Les plates-formes de traitement se tournent actuellement vers des architectures
3D [30, 104], pour lesquelles la distribution de la température et la consommation d’énergie
deviennent des contraintes de conception de premier ordre. Par conséquent, les systèmes

1.2. Contributions 137

temps réel complexes doivent impérativement réduire leur consommation d’énergie tout en
garantissant le respect des contraintes temporelles. La gestion de l’énergie dans les systèmes
temps réel a été abordée d’un point de vue matériel et/ou logiciel. De nombreuses approches
logicielles, en particulier des approches d’ordonnancement, basées sur l’ajustement conjoint
en tension et en fréquence (Dynamic Voltage and frequency scaling: DVFS) et la gestion des
modes repos (Dynamic Power Management: DPM) ont été proposées par la communauté
de recherche temps réel au cours de ces dernières années. Malheureusement, leur flexibilité
va souvent de pair avec la complexité de la solution, et avec le risque que les délais ne soient
parfois pas respectés. Comme la demande en terme de puissance de calcul des systèmes
temps réel embarqués continue de croítre, le développement d’approches efficientes et trans-
parentes à l’utilisateur de gestion de l’énergie va devenir de plus en plus important afin de
minimiser la consommation d’énergie, de prolonger la vie de la batterie, et de réduire les ef-
fets thermiques. L’efficacité énergétique et la programmation des systèmes temps-réel sont
des problèmes étroitement liés, qui doivent être traités ensemble pour obtenir de meilleurs
résultats. En exploitant les paramètres caractéristiques des tâches des applications temps
réel, l’efficacité énergétique des algorithmes d’ordonnancement et la qualité de service rela-
tive à ces applications peuvent être sensiblement améliorée. Dans la suite de ce document,
nous établissons les objectifs de la thèse.

Objectifs de la thèse: L’objectif de cette thèse est d’améliorer, à travers la probléma-
tique de l’ordonnancement, l’efficacité énergétique des systèmes temps réel qui peuvent être
prouvés (démontrés) prédictible et temporellement correct et ceci dans un contexte multi-
processeurs. Les solutions proposées doivent être flexibles afin de s’adapter aux exigences
variables des systèmes, de faible complexité, et les plus efficaces possibles. Pour atteindre cet
objectif, il est nécessaire que les systèmes temps réel fonctionnant sur batterie puissent tou-
jours répondre aux contraintes temporelles tout en: minimisant la consommation d’énergie,
prolongeant la vie de la batterie, et réduisant des effets thermiques.

Aussi, cette thèse propose des solutions au sein des algorithmes d’ordonnancement en
intégrant une gestion de l’énergie pour des applications temps-réel complexes qui seront
ordonnancées sur des architectures multiprocesseurs. Dans le paragraphe 1.2, nous don-
nons un aperçu de chaque contribution technique présentée tout au long de cette thèse.
Les fondamentaux relatifs aux systèmes temps réel et à la gestion de l’énergie lors de
l’ordonnancement de ces systèmes sont fournis au chapitre 2. Il faut noter que l’état de
l’art relatif aux différentes contributions se trouve en début de chaque chapitre. Toutefois,
les travaux de recherche connexes sont également référencés dans le document au moment
opportun.

1.2 Contributions

L’efficacité énergétique dans les systèmes temps réel est un problème d’optimisation multi-
facettes. Par exemple, l’optimisation énergétique peut être réalisée à la fois à des niveaux
matériel et logiciel, pendant la conception du système et lors de l’ordonnancement pendant
l’exécution de tâches de l’application. A la fois le matériel et le logiciel sont concernés
et peuvent jouer un rôle important dans la consommation énergétique de l’ensemble du
système. Dans ce mémoire, nous nous concentrons sur les aspects logiciels, plus partic-
ulièrement sur la gestion de l’énergie lors de l’ordonnancement dans les systèmes temps
réel. Nous développons des techniques novatrices de gestion de la puissance et de l’énergie
tout en prenant en compte les fonctionnalités offertes par les architectures existantes et fu-
tures de plateformes. Dans la suite, nous discutons des différentes contributions présentées
dans chaque chapitre de cette thèse.

138 Chapter 1. Introduction

Chapitre 3. Dans ce chapitre, nous présentons notre première contribution qui est
un algorithme d’ordonnancement multiprocesseur, appelé 2L-HiSA (Two-Level Hierarchi-
cal Scheduling Algorithm) algorithme d’ordonnancement hiérarchique à deux niveaux.
Cet algorithme se situe dans la catégorie des ordonnancements à migration restreinte.
L’algorithme d’ordonnancement EDF possède la plus faible complexité d’exécution parmi
les algorithmes à priorité fixe au niveau des jobs pour une architecture multiprocesseur.
Cependant, EDF souffre de sous-optimalité dans les systèmes multiprocesseurs. 2L-HiSA
adresse la sous-optimalité d’EDF comme algorithme d’ordonnancement global et décompose
le problème en une hiérarchie d’ordonnanceurs à deux niveaux. Nous avons veillé à ce que
les propriétés intrinsèques de base de l’algorithme d’ordonnancement EDF mono-processeur
apparaissent dans la hiérarchie d’ordonnanceurs à deux niveaux tant à l’ordonnanceur haut
niveau qu’à l’ordonnanceur au niveau local. 2L-HiSA alloue (partitionne) les tâches sta-
tiquement aux processeurs en utilisant l’approche du bin-packing, tel que l’ordonnancabilité
des tâches partitionnées sur un processeur donné ne soit pas violé. Les tâches qui ne peuvent
être partitionnées sur un processeur de la plateforme sont appelées tâches migrantes ou glob-
ales. En outre, des clusters de processeurs identiques sont construits de telle sorte que, par
cluster, l’équivalent de la puissance de calcul non utilisée fragmentée soit disponible par au
plus un processeur. Nous montrons que 2L-HiSA améliore les limites de l’ordonnancabilité
d’EDF pour des systèmes multiprocesseurs et il est optimal pour des tâches temps réel dur
si un sous-ensemble des tâches peut être partitionné de telle sorte que la sous-utilisation
par cluster des processeurs reste inférieure ou égale â l’équivalent d’un processeur. Le par-
titionnement des tâches sur les processeurs réduit le surcout dû à l’ordonnancement tel que
les changements de contexte, les préemptions et les migrations, ce qui contribue à réduire
la consommation énergétique globale. Cependant, la nature NP-difficile du problème du
partitionnement [60], peut souvent être un facteur limitant. En utilisant des clusters de
processeurs au lieu de considérer des processeurs individuels, 2L-HiSA atténue les limita-
tions du bin-packing en augmentant effectivement la taille des bin par rapport à la taille
des objets. Avec un cluster de processeurs, il est beaucoup plus facile d’obtenir la puissance
inutilisée de traitement par cluster inférieure ou égale à un seul processeur. Les résultats
de la simulation obtenus montrent tout l’intérêt de cette proposition.

Chapitre 4. La seconde contribution, présentée dans ce chapitre, est une technique de
gestion dynamique de la puissance pour les systèmes temps réel multiprocesseurs, appelée
Assertive Dynamic Power Management (AsDPM). Cette technique travaille en conjonc-
tion avec l’algorithme d’ordonnancement EDF global. Il s’agit d’une technique de contrôle
d’admission des tâches temps réel qui décide à quel moment exactement une tâche prête
peut être exécutée. Sans ce contrôle d’admission, toutes les tâches prêtes seraient exécutées
dès qu’il y a suffisamment de ressources de calcul (processeurs) disponibles dans le système,
conduisant à une faible possibilité de mettre des processeurs dans un état faible consom-
mation. La technique AsDPM diffère de la technique DPM existante dans la façon dont
il exploite les intervalles de temps d’inactivité. Les techniques classiques de DPM peuvent
exploiter des intervalles d’inactivité lorsqu’ils se produisent sur un processeur, c’est-à-dire,
une fois que l’intervalle temporel d’inactivité est détecté. Lors de la détection des inter-
valles temporels d’inactivité, ces techniques décident de passer le processeur cible dans un
mode faible consommation. Par contre, la technique AsDPM extrait de manière agressive
les intervalles d’inactivité de certain processeurs et les groupent sur d’autres processeurs
de la plateforme pour allonger la durée d’inactivité. Le passage des processeurs dans un
mode faible consommation approprié revient alors à comparer la durée des intervalles tem-
porels d’inactivité avec les temps minimumde pause du processeur cible correspondant à un

1.2. Contributions 139

bilan énergétique. Bien que AsDPM soit une technique dynamique en ligne de gestion de
l’énergie, son principe de fonctionnement peut être utilisé pour déterminer les configurations
statiques architecturales optimisées (le nombre de processeurs et le couple tension-fréquence
correspondant nécessaires pour répondre aux contraintes temps réel dans le pire des cas avec
une consommation d’énergie minimale) pour l’application cible par le biais de simulations.
Nous démontrons dans ce chapitre l’utilisation de la technique AsDPM pour l’optimisation
statique et dynamique de l’énergie.

Chapitre 5. Ce chapitre présente la troisième contribution, qui est une technique dy-
namique d’ajustement conjoint de la tension et de la fréquence inter-tâches pour les systèmes
multiprocesseurs temps réel, appelée Deterministic Stretch-to-Fit (DSF). La technique DSF
est principalement destinée aux systèmes multiprocesseurs. Il est également possible de
l’appliquer aux systèmes mono-processeurs, dans ce cas elle devient alors triviale en raison de
l’absence de migration des tâches. DSF est composé de trois algorithmes: l’algorithme Dy-
namic Slack Reclamation (DSR), Online Speculative speed adjustment Mechanism (OSM),
et l’algorithme m-Tasks Extension (m-TE). L’algorithme DSR est l’algorithme de gestion
des intervalles de temps inutilisés qui attribue l’intervalle de temps inutilisé par une tâche
précédente à la tâche prête suivante ayant la priorité locale la plus élevées s’exécutant sur
le même processeur. Lors de l’utilisation de l’algorithme DSR, les intervalles de temps
inutilisés ne sont pas partagés avec d’autres processeurs du système. Un intervalle tem-
porel inutilisé par une tâche est entièrement consommé par le processeur auquel la tâche
a été allouée. Cette attribution gloutonne des intervalles permet à l’algorithme DSR de
calculer un facteur de ralentissement plus important afin de réduire à la fois la tension et la
fréquence de fonctionnement pour une tâche unique, permettant au final une augmentation
des économies d’énergie. Les algorithmes OSM et m-TE sont des extensions de l’algorithme
de DSR. L’algorithme OSM est un mécanisme en ligne adaptatif et spéculatif d’ajustement
de la vitesse de fonctionnement qui prévoit les dates de fin d’exécution des tâches et ef-
fectue un ralentissement agressif de la vitesse du processeur. En plus de économie d’énergie
réalisée par l’algorithme de DSR, OSM contribue également à éviter des changements la
fréquence de fonctionnement et de la tension d’alimentation, ce qui réduites consommation
d’énergie fournisant une augmentation de la durée de vie des batteries notamment pour les
systèmes embarqués portables. L’algorithme m-TE étend la technique One-Task Extension
(OTE) pour des systèmes mono-processeur aux systèmes multiprocesseurs. La technique
de DSF est générique en ce sens que, si pour une application cible temps réel donnée, un
ordonnancement existe basé sur le pire cas de la charge de travail (optimal ou non-optimal)
en utilisant un algorithme d’ordonnancement global, alors le même ordonnancement peut
être reproduit (en utilisant la charge de travail réelle) avec une consommation de puissance
et d’énergie moindre. Ainsi, DSF peut travailler en collaboration avec divers algorithmes
d’ordonnancement. DSF est basé sur le principe du suivre de l’exécution canonique des
tâches au moment de l’exécution, c’est-à-dire, l’ordonnancement calculé hors ligne (ou sta-
tique) dans lequel le temps d’exécution au pire cas de tous les jobs des tâches est con-
sidéré. Une trace d’exécution de toutes les tâches de l’ordonnancement optimale statique
doit être conservée afin de le suivre lors de l’exécution [10]. Cependant, l’établissement
et la mémorisation de cet ordonnancement canonique dans son intégralité est impossible
dans le cas des systèmes multiprocesseurs en raison du fait que l’affectation des tâches
préemptives et migrantes aux processeurs n’est pas connue a priori. Par conséquent, nous
proposons un schéma pour produire un ordonnancement en ligne canonique en avance sur
l’ordonnancement pratique, qui imite l’exécution canonique des tâches seulement pour les
m-tâches futures. Cette caractéristique réduit les surcoûts d’exécution liés à l’ordonnanceur

140 Chapter 1. Introduction

ce qui fait de DSF une technique adaptative.

Chapter 6. Alors que de nouvelles techniques de gestion de l’énergie sont encore en
développement pour répondre à des conditions spécifiques d’exploitation, des recherches
plus récentes montrent que l’efficacité des deux techniques DPM et DVFS est très vari-
able lorsque les conditions de fonctionnement changent [37, 20]. Ainsi, aucune politique ne
s’inscrit parfaitement dans la totalité ou la plupart des conditions de fonctionnement. En
réponse à ce probléme une quatrième et dernière contribution a été étudiée. Aussi, nous
proposons, dans ce chapitre, un schéma générique de gestion de l’énergie et de la puissance
pour des systèmes multiprocesseurs temps réel appeléeÊHybrid Power Management (Hy-
PowMan). Ce schéma est utilisé comme une entité de contrôle qui au lieu de concevoir
une ou des politiques de gestion de la puissance et de l’énergie pour des conditions opéra-
toires spécifiques, exploite un ensemble de politiques existantes. Chaque politique présente
dans l’ensemble des politiques utilisée, quand elle fonctionne seule, doit pouvoir fournir les
garanties des échéances des tâches. En cours d’exécution, la politique la plus performante
pour une charge de travail donnée est adoptée par le schéma HyPowMan grâce à un al-
gorithme de type machine-learning. Ce schéma peut améliorer la capacité des systèmes
embarqués portables pour s’adapter aux variations de la charge de travail (et de configura-
tion des plateformes) en travaillant avec un plus large ensemble de conditions opératoires
et fournir des performances globales avec des gains énergétiques qui soient meilleures que
ceux que pourrait offrir une politique unique d’optimisation.

Chapter 7. Dans ce chapitre, nous présentons les conclusions générales et les remar-
ques sur nos contributions et nos résultats. De plus nous discuterons des perspectives de
recherches liées à ce travail de thèse.

Annexes. Deux annexes sont fournies dans ce mémoire de thèse. L’annexe A présente les
détails fonctionnels relatifs à l’outil de simulation STORM (Simulation TOol for Realtime
Multiprocessor scheduling) [108] que nous avons utilisé dans nos simulations tout au long de
ce mémoire. L’annexe B donne des résultats de simulation additionnels relatifs au chapitre
6.

1.3 Résumé

Suite à l’évolution récente de la complexité et du niveau de sophistication des applica-
tions temps réel et des plateformes multiprocesseurs, la recherche sur les systèmes temps
réel est confrontée à de nombreux défis émergents. Un de ces défis auquel la commu-
nauté de recherche temps réel est confrontée est de réduire la consommation d’énergie
et de puissance de ces systèmes, tout en assurant que les contraintes temporelles seront
respectées. Comme les exigences en puissance de calcul des systèmes temps-réel contin-
uent de croître, il apparaît de plus en plus indispensable de développer des approches de
minimisation de la consommation d’énergie afin de prolonger la durée de vie de la bat-
terie, et de réduire les effets thermiques. L’efficacité en termes de puissance et d’énergie
et l’ordonnancement de systèmes temps réel sont des problèmes étroitement liés, qui de-
vraient être traités ensemble afin d’obtenir de meilleurs résultats. Ces différentes raisons
ont motivé ce travail de thèse qui tente d’apporter des solutions aux problèmes de l’efficacité
énergétique et de l’ordonnancement des systèmes temps-réel multiprocesseurs. Cette thèse
propose de nouvelles approches pour la gestion énergétique au travers du paradigme de
l’ordonnancement faible consommation pour des applications temps réel souple et dur sur

1.3. Résumé 141

des plateformes multiprocesseurs. Les plateformes considérées sont de type SMP (Sym-
metric shared-memory MultiProcessor). Nous mentrons qu’en exploitant les paramètres
caractéristiques des tâches des applications temps réel, l’efficacité énergétique au travers
des algorithmes d’ordonnancement à qualité de service constante peut être améliorée. Dans
le reste de ce document, les différentes contributions de ce travail de thèse sont détaillées.

Chapter 2

Conclusions et Perspectives

Les systèmes embarqués temps réel sont devenus omniprésents dans notre vie, que ce soit
les téléphones cellulaires portatifs, les appareils ménagers ou des systèmes plus sophistiqués
comme les systèmes de traitement de signal, les satellites, et les applications militaires.
Comme l’utilisation de ces systèmes temps réel est diversifiée, les travaux de recherche relat-
ifs à ces systèmes sont confrontés à de nombreux défis émergents. Actuellement, les applica-
tions temps réel sont devenues sophistiquées et complexes dans leurs comportement et leurs
interactions. Ce phénomène a permis l’émergence des architectures multiprocesseurs. Le
développement de ces architectures multiprocesseurs dans le secteur commercial, est aussi
du au fait que ces architectures sont considérées comme une solution à la barrière thermique
rencontrée dans les architectures mono-processeur. Il est devenu clair qu’à l’avenir, la plu-
part des applications temps réel complexes seront déployées sur des plateformes multipro-
cesseurs. Inévitablement, cette évolution lors de la conception de ces nouvelles architectures
ainsi que la complexité des applications temps réel a réactualisé certains défis actuels qui
impactent (ou intéressent fortement) fortement la communauté de recherche temps réel.

Un des problèmes majeurs, c’est que les algorithmes d’ordonnancement optimal
monoprocesseur ne peuvent être appliqués sur les systèmes multiprocesseurs sans perte
d’optimalité. Ainsi, la communauté de recherche en temps réel doit élaborer des stratégies
d’ordonnancement alternatives pour intégrer des aspects relatifs aux systèmes multipro-
cesseurs. Un autre challenge auxquels sont confrontés les systèmes temps réel est de réduire
la consommation d’énergie et de puissance tout en s’assurant que les contraintes de temps
seront respectées. Comme les exigences en termes de puissance de calcul des systèmes temps
réel embarqués ne cessent de croître, il est nécessaire de développer des approches efficientes
de gestion de l’énergie afin de minimiser la consommation d’énergie, d’étendre la durée de
vie de la batterie, et de réduire les effets thermiques. La consommation d’énergie et de puis-
sance dans les systèmes temps réel revêt une importance capitale depuis ces dernières années
et de nombreuses approches logiciel, aussi bien statique que dynamique, permettant de ré-
duire la consommation ont été proposées. Ces solutions logicielles, notamment les politiques
d’ordonnancement conscientes du problème énergétique comme l’adaptation dynamique de
la tension et de la fréquence (DVFS) et la gestion des modes faible consommation (ou mode
repos)(DPM) ont vu le jour. En outre, des techniques efficaces énergétiquement à l’échelle
du système c’est-à-dire qui agissent sur des sous-systèmes comme la mémoire et le réseau
d’interconnexion ont aussi été proposées. Malheureusement, leur flexibilité va souvent de
pair avec la complexité de la solution. Les travaux présentés dans cette thèse visent à
améliorer la gestion de l’énergie et de la puissance dans les systèmes embarqués temps réel
en proposant de nouvelles stratégies flexibles et efficientes au sein de l’ordonnancement
portant alors le qualificatif energy-aware. Les techniques proposées dans cette thèse aug-
mentent le spectre des conditions de fonctionnement dans lequel, les applications temps réel
peuvent être ordonnancées de manière à réduire l’énergie consommée tout en conservant
leurs garanties temporelles pour des plateformes multiprocesseurs. Nous avons choisi de
diviser ce chapitre en deux parties. La première résume les différentes contributions et les
résultats significatifs obtenus. La deuxième partie présente des améliorations relatives et

144 Chapter 2. Conclusions et Perspectives

des perspectives de recherche.

2.1 Résumé des Contributions et Résultats

Dans ce paragraphe, nous résumons les contributions de cette thèse.

Algorithme d’ordonnancement hiérarchique à 2 niveaux (Two-Level Hi-
erarchical Scheduling Algorithm 2L-HiSA). Les stratégies d’ordonnancement
à migration restreinte fournissent un bon compromis entre la migration complète et les
approches partitionnées [24, 63, 62]. Ces stratégies sont suffisamment flexibles pour
permettre aux tâches dynamiques de se joindre au système lors de l’exécution, et elles
n’engendrent pas de surcoût importante lié à la migration par rapport à des straté-
gies avec migration non restreinte. Dans cette thèse, et plus spécifiquement dans le
chapitre 3, nous avons présenté un algorithme d’ordonnancement multiprocesseur hiérar-
chique à deux niveaux (appelé 2L-HiSA), qui tombe dans la catégorie des ordonnance-
ments avec migration restreinte. L’algorithme d’ordonnancement EDF possède la plus
faible complexité d’exécution parmi les algorithmes à priorité fixe au niveau des jobs
lors l’ordonnancement des tâches sur une architecture multiprocesseur. Toutefois, EDF
souffre de sous-optimalité dans les systèmes multiprocesseurs. 2L-HiSA exploite la sous-
optimalité d’EDF comme algorithme d’ordonnancement global et divise le problème en
une hiérarchie à deux niveaux d’ordonnanceurs. 2L-HiSA utilise plusieurs instances de
l’algorithme optimal d’ordonnancement EDF mono-processeur par une hiérarchie à deux
niveaux : une instance d’EDF au niveau de l’ordonnancement haut niveau et une instance
d’ordonnancement au niveau local pour chaque processeur de la plateforme. En outre,
2L-HiSA comporte deux phases: 1) la phase de partitionnement des tâches, dans laquelle,
chaque tâche non-migrante est attribuée à un processeur spécifique en suivant l’approche
de bin-packing, 2) la phase de regroupement processeur, dans laquelle, les processeurs sont
regroupés en fonction de leurs caractéristiques de charge de travail. 2L-HiSA partition-
nent statiquement les tâches de l’application sur les processeurs en utilisant l’approche de
bin-packing tant que l’ordonnancabilit des tâches partitionnées sur un processeur partic-
ulier est respctée. Les tâches qui ne peuvent être partitionnées sur aucun processeur de la
plateforme sont considérées migrantes ou globales. De plus, la construction des clusters de
processeurs identiques fait que, par cluster, la puissance de calcul fragmentée non utilisée
équivalente au plus un processeur est disponible. Nous montrons que 2L-HiSA améliore les
limites de l’ordonnanabilité d’EDF pour les systèmes multiprocesseurs et est optimal pour
des tâches temps réel dur si un sous-ensemble de tâches partitionnées peut être de telle
sorte que la sous-utilisation par cluster de processeurs reste inférieure ou égale à la charge
d’un processeur. Le partitionnement des tâches sur les processeurs réduit le surcoût lié à
l’ordonnancement comme par exemple le changement de contexte, les préemptions et les
migrations. Ce fait contribue à réduire la consommation d’énergie globale. Cependant, la
difficulté NP-complet du problème du partitionnement [60], est souvent un facteur limitant.
En utilisant des clusters de processeurs plutôt que des processeurs individuels, 2L-HiSA at-
ténue les limites du bin-packing en augmentant les tailles des bin par rapport à la taille des
objets. Avec un cluster de processeurs, il est beaucoup plus facile d’extraire la puissance
inutilisée de traitement par cluster, qui est inférieure ou égale à un seul processeur. Des
résultats de simulation ont permis de vérifier la validité de cette proposition. Nous avons
montré que les stratégies efficaces en termes d’énergie et de puissance comme le DVFS et
/ ou DPM peuvent être utilisées en conjonction avec 2L-HiSA pour améliorer les gains én-
ergétiques. De plus, nous avons montré que la préemption des tâches et les surcoûts liés à la

2.1. Résumé des Contributions et Résultats 145

migration sont beaucoup moins importants pour 2L-HiSA par rapport à PFair et ASEDZL,
qui sont des algorithmes d’ordonnancement multiprocesseur optimal.

La Technique AsDPM (Assertive Dynamic Power Management). La sec-
onde contribution de cette thèse, qui est présentée dans le chapitre 4, fut de proposer une
technique dynamique de gestion de l’énergie pour les systèmes temps-réel multiprocesseur.
Les techniques DPM permettent d’obtenir des gains énergétiques dans les systèmes élec-
troniques embarqués en changeant le profil de consommation du système c’est-à-dire en
plaçant les composants dans des modes faible consommation adéquats pour respecter les
exigences applicatives. La technique proposée est appelée Assertive Dynamic Power Man-
agementÊ (AsDPM) en raison de sa capacité d’extraction et de cumul des intervalles tem-
porels d’inactivité, ce qui n’est pas le cas dans les techniques classiques DPM. La tech-
nique AsDPM travaille sous le contrôle des algorithmes d’ordonnancement, global EDF et
global LLF. Il s’agit d’une technique de contrôle d’admission des tâches temps réel qui rend
l’ensemble des tâches efficaces énergétiquement en décidant quand exactement une tâche
prête doit être exécutée. Sans ce contrôle d’admission, toutes les tâches seraient exécutées
lorsque un nombre suffisant de ressources seraient disponibles dans le système, menant à
de faible possibilité de faire transiter les processeurs en mode faible consommation. La
technique AsDPM se différencie des autres techniques DPM existantes dans le sens où elle
exploite les intervalles de temps d’inactivité. Une technique DPM conventionnelle peut ex-
ploiter une période d’inactivité seulement lorsqu’elle apparait sur un processeur c’est-à-dire
lorsque cet intervalle d’inactivité est détecté. Une fois les intervalles d’inactivité détectés,
ces techniques décident de transiter en mode faible consommation les processeurs cibles. La
technique AsDPM, d’un autre coté, extrait tous les intervalles d’inactivité des processeurs
et les groupent sur un ou plusieurs processeurs de la plateforme pour allonger la durée de
ces temps d’inactivité. Le fait de placer les processeurs dans un mode repos adapté, revient
alors à comparer la longueur des intervalles de repos avec le seuil de rentabilité du mode
repos concerné du processeur cible. Bien qu’AsDPM soit une technique dynamique en ligne
de gestion de la consommation, son principe de travail peut être utilisé pour déterminer des
configurations architecturales statiques optimales (c’est à dire, nombre de processeurs, et
leur couple tension/fréquence qui sont exigées pour satisfaire les contraintes temps réel au
cas pire avec le minimum d’énergie) pour des applications cibles au travers de simulations.
Dans cette thèse, nous avons démontré, l’utilisation d’AsDPM pour déterminer en premier
lieu les configurations statiques optimales et par la suite, comme une technique en ligne qui
peut encore réduire l’efficacité énergétique des configurations déjà statiquement optimisées.

La Technique DSF (Deterministic Stretch-to-Fit DVFS). L’ajustement con-
joint en tension et en fréquence est une des techniques dont le but est de changer le profile
de consommation des systèmes embarqués temps réel. Ceci est du au fait que la consom-
mation est une fonction quadratique de la tension d’alimentation des processeurs [48]. Les
applications temps réel offrent potentiellement des variations dans leur temps d’exécution
et par conséquent finissent plutôt que le pire temps d’exécution estimé. Les techniques
DVFS temps réels exploitent ces variations au travers de la charge de travail réelle en ajus-
tant dynamiquement la tension et la fréquence des processeurs afin de réduire la puissance
consommée. Dans cette thèse, chapitre 5, nous proposons une technique dynamique inter-
tâche d’ajustement conjoint en tension et en fréquence pour des systèmes multiprocesseurs
temps réel appelé:Deterministic Stretch-to-Fit (DSF). La technique DSF est principalement
destinée aux systèmes multiprocesseurs. Il est également possible de l’appliquer aux sys-
tèmes mono-processeurs, dans ce cas elle devient alors triviale en raison de l’absence de

146 Chapter 2. Conclusions et Perspectives

migration des tâches. DSF est composé de trois algorithmes: un algorithme Dynamic Slack
Reclamation (DSR), algorithme Online Speculative speed adjustment Mechanism (OSM),
et l’algorithme m-Tasks Extension (m-TE). L’algorithme DSR est l’algorithme de gestion
des intervalles de temps inutilisés qui attribue l’intervalle de temps inutilisé par une tâche
précédente à la tâche prête suivante ayant la priorité locale la plus élevée s’exécutant sur
le même processeur. Lors de l’utilisation de l’algorithme DSR, les intervalles de temps
inutilisés ne sont pas partagés avec d’autres processeurs du système. Un intervalle tem-
porel inutilisé par une tâche est entièrement consommé par le processeur auquel la tâche
a été allouée. Cette attribution gloutonne des intervalles permet à l’algorithme DSR de
calculer un facteur de ralentissement plus important afin de réduire à la fois la tension
et la fréquence de fonctionnement pour une tâche unique, permettant au final une aug-
mentation des économies d’énergie. Les algorithmes OSM et m-TE sont des extensions
de l’algorithme de DSR. L’algorithme OSM est un mécanisme en ligne adaptatif et spécu-
latif d’ajustement de la vitesse de fonctionnement qui prévoit les dates de fin d’exécution
des tâches et effectue un ralentissement agressif de la vitesse du processeur. En plus de
l’économie d’énergie réalisée par l’algorithme de DSR, OSM contribue également à éviter
des changements de la fréquence de fonctionnement et de la tension d’alimentation, ce qui
réduits consommation d’énergie fournisant une augmentation de la durée de vie des bat-
teries notamment pour les systèmes embarqués portables. L’algorithme m-TE étend la
technique One-Task Extension (OTE) pour des systèmes mono-processeur aux systèmes
multiprocesseurs. La technique de DSF est générique en ce sens que, si pour une applica-
tion cible temps réel donnée, un ordonnancement existe basé sur le pire cas de la charge de
travail (optimal ou non-optimal) en utilisant un algorithme d’ordonnancement global, alors
le même ordonnancement peut être reproduit (en utilisant la charge de travail réelle) avec
une consommation de puissance et d’énergie moindre. Ainsi, DSF peut travailler en collabo-
ration avec divers algorithmes d’ordonnancement. DSF est basé sur le principe du suivre de
l’exécution canonique des tâches au moment de l’exécution, c’est-à-dire, l’ordonnancement
calculé hors ligne (ou statique) dans lequel le temps d’exécution au pire cas de tous les jobs
des tâches est considéré. Une trace d’exécution de toutes les tâches de l’ordonnancement
optimale statique doit être conservée afin de le suivre lors de l’exécution [10]. Cependant,
l’établissement et la mémorisation de cet ordonnancement canonique dans son intégralité
est impossible dans le cas des systèmes multiprocesseurs en raison du fait que l’affectation
des tâches préemptives et migrantes aux processeurs n’est pas connue a priori. Par con-
séquent, nous proposons un schéma pour produire un ordonnancement en ligne canonique
en avance sur l’ordonnancement pratique, qui imite l’exécution canonique des tâches seule-
ment pour les m-tâches futures. Cette caractéristique réduit les surcoûts d’exécution liés à
l’ordonnanceur ce qui fait de DSF une technique adaptative.

La technique HyPowMan (Hybrid Power Management). Les stratégies, à la
fois, de gestion des modes faible consommation (DPM) et d’ajustement conjoint en tension
et en fréquence (DVFS), sont très souvent utilisés par les politiques d’ordonnancement pour
gérer la consommation d’énergie et de puissance dans les systèmes embarqués modernes.
Alors que de nouvelles techniques de gestion de l’énergie sont encore en développement pour
répondre à des conditions spécifiques d’exploitation, des recherches plus récentes montrent
que l’efficacité des deux techniques DPM et DVFS est très variable lorsque les conditions
de fonctionnement changent [37, 20]. Ainsi, aucune politique ne s’inscrit parfaitement dans
la totalité ou la plupart des conditions de fonctionnement. En réponse à ce probléme
une quatrième et dernière contribution a été étudiée. Aussi, nous proposons, dans ce
chapitre, un schéma générique de gestion de l’énergie et de la puissance pour des systèmes

2.2. Perspectives 147

multiprocesseur temps réel appelé:Hybrid Power Management (HyPowMan). Ce schéma
est utilisé comme une entité au plus haut niveau qui au lieu de concevoir des politiques de
gestion de la puissance et de l’énergie pour des conditions opératoires spécifiques, exploite un
ensemble de politiques existantes. Chaque politique présente dans l’ensemble des politiques
sélectionnées, et quand fonctionnent seules, peut fournir les garanties des échéances. En
cours d’exécution, la politique la plus performante pour une charge de travail donnée est
adoptée par le schéma HyPowMan grâce à un algorithme de type machine-learning. Ce
schéma peut améliorer la capacité des systèmes embarqués portables pour s’adapter aux
variations de la charge de travail (et de configuration des plateformes) en travaillant avec
un plus large ensemble de conditions opératoires et fournir des performances globales et des
gains énergétiques qui soient meilleurs que ceux que pourrait offrir une politique unique.

2.2 Perspectives

Les systèmes temps réel ont des caractéristiques très complexes. La modification de l’un des
aspects du système peut amener a se placer devant un problème très différent. Dans cette
thèse, nous nous sommes concentrés principalement sur la réalisation des techniques de ges-
tion de l’énergie dans les systèmes multiprocesseurs temps réel autour de l’ordonnancement.
Nos contributions s’appuient des modéles spécifiques des tâches et des plate-formes de traite-
ment qui sont présentées dans le chapitre 2. La généralisation de ces modèles augmente
le nombre de systèmes possibles qui peuvent être utilisés par les applications temps réel.
Par conséquent, des extensions de ce travail serait de généraliser le modèle de tâche et
le modèle de traitement. Certaines modèles plus généralistes nécessitent d’à apporter des
améliorations aux techniques proposées.

2.2.1 Modèle des tâches

Dépendance des tâches. Les travaux présentés dans cette thèse suppose un modèle
des tâches indépendantes et préemptives, c’est-à-dire, l’exécution d’un job d’une tâche ne
dépend pas du statut du job d’une autre tâche. Il y a beaucoup des systèmes pour lesquels
l’hypothèse que les tâches son indépendantes n’est pas une hypothèse raisonnable. En outre,
dans certains cas, la préemption des tâches ne peut pas être permise. Les tâches peuvent
avoir des dépendances pour une variété de raisons. Les deux principaux types de dépen-
dances sont liées aux contraintes du partage des ressources et de précédence. L’intégration
des contraintes du partage des ressources et de précédences dans les résultats présentés tout
au long de cette thèse serait un prolongement naturel. Toutefois, les dépendances entre les
tâches peuvent provoquer des inversions de priorités, des situations où un job avec une pri-
orité plus élevée est bloqué et un job avec une priorité faible s’exécute. Les inversions des
priorités peuvent constituer une violation de nos hypothèses. Par exemple, dans le cas de
l’algorithme d’ordonnancement 2L-HiSA, deux tâches avec des contraintes de précédence
peuvent exiger d’être affectées de façon statique sur le même processeur, ajoutant ainsi une
autre limitation au problème de partitionnement. Aussi, dans le cas de la technique As-
DPM, le partage des ressources entre les tâches peut exiger qu’un processeur soit toujours
en état idle qui aurait pu être autrement, mise dans l’état repos dès que la charge de travail
est réduite.

Préemption des Tâches. La préemption de tâche est une hypothèse faite dans un
grande nombre des systèmes temps réel, cependant, il y a des situations où les tâches ne

148 Chapter 2. Conclusions et Perspectives

peuvent être préemptées. Le fait de ne pas autoriser la préemption des tàches peut provo-
quer des inversions de priorité. En outre, les systèmes non-préemptif peuvent aussi souffrir
d’anomalies d’ordonnancement, c’est-à-dire, un système faisable peut dépasser les échéances
si une ou plusieurs tâches sont retirées du système ou si l’exécution se terminent plustôt. La
comptabilisation des problèmes d’inversions de priorité et des anomalies d’ordonnancement
peut être un prolongement important du travail de la recherche présentée dans cette thèse.
Cependant, nous n’avons pas considéré les systèmes non-préemptif. En outre, nous avons
seulement examiné les systèmes faisable qui n’ont aucune anomalie d’ordonnancement.

Période de la Tâche. Une autre hypothèse courante dans les systèmes temps réel
porte sur les modèles de tâche et de leur périodicité. Ce paramètre peut être interprété
de trois manières distinctes, dont chacune conduit à un type de tâche bien défini. Selon
l’interpretation donnée à la période de la tâche, les tâches peuvent être classées en trois
catégories: modèle de tâche périodique, modèle de tâche sporadique, et modèle de tâche
apériodique. Dans cette thèse, nous avons considéré un modèles périodique des tâches, c’est-
à-dire, chaque tâche a un délai précise d’arrivée entre deux job successifs. L’extension de nos
techniques proposées pour les modèles de tâches sporadique et apériodique serait une contri-
bution intéressante car elle permettrait de considérer une plus large gamme d’applications
temps réel.

2.2.2 Architectures de Plate-forme Cible

Cette thèse considère la plate-forme multiprocesseur homogène de type SMP (symétriric
multiprocesseurs à mémoire partagée), composée de processeurs identiques. Il existe dif-
férentes façons pour généraliser le modèle de plate-forme de traitement. Certaines contri-
butions de cette thèse, comme les techniques de AsDPM et DSF, ont été utilisés dans le
projet national français PHERMA [86]. Ce projet propose un modèle hétérogène de plate-
forme de traitement type CMP (Chip Multi-Processing) et qui est appelé SCMP (Scal-
able Chip Multi-Processing) qui prend en charge la migration dynamique et la préemption
des tâches en utilisant la mémoire physiquement distribuée et logiquement partagée [120].
L’hétérogénité dans la plate-forme SCMP réside dans des clusters d’unités de traitement
(c’est-à-dire, plusieurs clusters / groupes de processeurs identiques sont formés, toutefois,
différents groupes peuvent contenir différents types d’unités de traitement). SCMP est une
plate-forme qui se présente comme une alternative par rapport à la plate-forme SMP en
prolongation de nos techniques proposées. En outre, les résultats présentés dans cette thèse
considèrent surtout la consommation d’énergie au niveau des processeurs seuls et n’intégrent
pas l’énergie consommée par d’autres sous-systèmes, comme par exemple, la mémoire et le
réseau de d’interconnexion. Dans des travaux de recherche récents, il est démontré que les
périphériques, les sous-systèmes de mémoire, les lecteurs de mémoire flash et les interfaces
de réseau sans fil qui sont omniprésents dans les systémes embarqués modernes qui con-
somment aussi beaucoup d’énergie. Afin d’optimiser l’énergie de l’ensemble du système,
des algorithmes d’ordonnancement qui permettent d’optimiser l’énergie au niveau des I/O
doivent être développés pour les systèmes temps réel. L’extension des techniques proposées
dans cette thèse au niveau système est une orientation possible. Par exemple, nous avons
démontré au chapitre 4 que la technique AsDPM peut être utile pour les sous-systèmes
comme la mémoire. La technique HyPowMan pout également intégrer la consommation
d’énergie des périphériques et d’autres sous-systèmes tout en sélectionnant les experts ap-
propriés.

Un autre aspect concernant la généralisation de la plate-forme matérielle réside dans

2.2. Perspectives 149

la mise de à l’échelle de la tension et la fréquence des processeurs qui prennent en charge
plusieurs points de fonctionnement tension-fréquence. Dans cette thèse, nous avons estimé
qu’il est possible de faire varier la tension et la fréquence de chaque processeur de façon
indépendante et sur un spectre continu entre des bornes inférieures et supérieures définies.
Cette considration est basée sur le fait que les processeurs qui sont capables de fonctionner
sur un spectre de fréquence (plus ou moins) continue est en train de devenir une réalité
[10]. Cependant, cette hypothèse peut être levée pour les processeurs offrant des points de
fonctionnement discrets de fréquence tels que, si la vitesse optimale (calculée) du processeur
n’est pas disponible sur un processeur, il doit être rapproché du niveau le plus proche discrèt
et supérieur à la vitesse optimale pour respecter les contraintes temporelles. Cette conver-
sion est simple pour les tâches qui satisfont la condition suffisante d’ordonnançabilité. Pour
un ensemble de tâches qui satisfait à la condition nécessaire d’ordonnançabilité, la conver-
sion de fréquence au discret aménerait une variation de l’utilisation au cours d’exécution,
qui pourrait conduire à une perte d’échéance. Cet aspect nécessiterait des améliorations
légères pour la technique de DSF, par exemple, qui est basée sur le principe que les tâches
en cours d’éxecution doivent suivrent l’exécution canonique des tâches.

2.2.3 Les algorithmes d’ordonnancement

La plupart des contributions présentées dans cette thèse considèrent l’algorithme
d’ordonnancement EDF pour l’ordonnancement des tâches temps réel sur une plate-forme
multiprocesseurs. Même s’il existe plusieurs raisons pour lesquelles EDF est un algorithme
d’ordonnancement raisonnable à considérer, il est pertinent de se demander si les contri-
butions présentées dans ce mémoire peuvent aussi fonctionner en conjonction avec d’autres
algorithmes d’ordonnancement. Nous avons discuté dans le chapitre 3 que l’algorithme
EDF a une complexité d’exécution très faible pour l’ordonnancement des tâches sur des
architectures multiprocesseurs, mais il souffre de sous-optimalité dans un contexte multi-
processeurs. Afin d’améliorer l’ordonnancement des systèmes liés avec EDF, nous avons
proposé l’algorithme 2L-HiSA qui utilise plusieurs instances d’EDF, qui est optimal pour
des systèmes mono-processeurs, dans une hiérarchie d’ordonnanceurs. Pour toutes les autres
contributions de cette thèse, des extensions vers d’autres algorithmes serait une contribu-
tion précieuse. Nous discutons après des possibilités d’étendre nos techniques proposées à
d’autres algorithmes d’ordonnancement multiprocesseur.

La Technique AsDPM. L’extension de la technique AsDPM à l’un des algorithmes
d’ordonnancement multiprocesseur qui est basé sur le mécanisme d’ordonnancement flu-
ide (par exemple, algorihme PFair [13] et algorithme LLREF [28]) n’est pas possible en
raison de leur contradiction avec le principe de travail de la technique AsDPM. Dans les
algorithmes d’ordonnancement basés sur le mécanisme des fluides, toutes les tâches prêtes
doivent s’exécuter au prorata de leur utilisation respective (alors appelé poids). Dans la
technique AsDPM, d’autre part, une tâche prête peut être différée (retarder) de l’exécution
jusqu’à ce que sa laxité anticipative devienne négative (voir chapitre 4), ce qui est contraire
aux principes de travail LLREF, PFair, et ses algorithmes heuristiques. Il est possible,
cependant, d’appliquer cette technique à d’autres algorithmes comme LLF [71].

La Technique DSF. Il est possible d’appliquer les trois algorithmes, c’est-à-dire, DSR,
OSM, et m-TE, présenté sous la technique DSF à d’autres algorithmes d’ordonnancement.
Puisque la technique DSF fonctionne sur le principe de suivre l’exécution des tàches canon-
iques, par conséquent, il est possible d’intégrer la technique du DSF avec d’autres algo-

150 Chapter 2. Conclusions et Perspectives

rithmes avec des modifications légères dans la méthode de calcul et l’attribution du slack
dynamique.

La Technique HyPowMan. La technique HyPowMan elle-même n’intervient pas
dans le processus décisionnel soit de l’algorithme d’ordonnancement soit d’expert sélec-
tionné (stratégie de gestion de énergie). Ainsi, il est possible de coupler la technique Hy-
PowMan avec d’autres algorithmes d’ordonnancement. Le seul facteur limitant peut être
la complexité temporelle du système au global. Par exemple, l’association de la technique
HyPowMan avec l’algorithme de PFair, qui est connu pour être complexe en raison de sa
complexité d’ordonnancement, augmenterait considérablement la complexité (temps) du
système.

2.2.4 Stratégie d’implementation

Dans cette thèse, nous nous sommes appuyés essentiellement sur des simulations pour
l’évaluer et valider des techniques proposées. Notre motivation vient du fait que, tout
d’abord, il est difficile de valider les résultats d’analyse, si les hypothèses sur les modèles
de tâche et la plate-forme ne sont pas satisfaits. Satisfaire les hypothèses sur le modèle
du système à l’aide de véritables plateformes n’est pas simple. En outre, dans les sim-
ulations, il est plus facile d’estimer les coûts associés à l’ordonnancement et d’évaluer la
performance des techniques de gestion de l’énergie proposées en faisant varier les configura-
tions système comme le type de processeur, le comportement du cache, les communications
inter-processeurs, les dépendances entre les tâches, les variations du charge de travail, et
les algorithmes d’ordonnancement. Nous avons utilisé un outil de simulation récent ap-
pelé STORM [108]. STORM est un outil de simulation basé sur Java pour les algorithmes
d’ordonnancement multiprocesseur comprenant à la fois les paramètres de l’architecture
matérielle et logicielle (voir l’annexe A pour plus de détails). Après avoir évalué la per-
formance de nos techniques proposées en utilisant des simulations, nous travaillons à la
mise en œuvre sur une véritable plate-forme. La plate-forme que nous utilisons pour le
développement est ARM R© (ARM1176JZF − S) [9]. Cette plate-forme offre la technique
TrustZone R© et une (IEM) gestion de l’énergie intelligente. En outre, nous sommes actuelle-
ment en train de mettre en œuvre les techniques AsDPM et DSF en utilisant la plate-forme
virtuelle pour l’émulation de processeur appelée Rabbits (QEMU) [89]. Rabbits est un ému-
lateur et virtualiseur. Il fournit un ensemble de modèles de plate-forme, ce qui lui permet
d’exécuter une variété de systèmes d’exploitation. Il peut donc être considéré comme un
moniteur de machine virtuelle hébergée.

2.2.5 Aspects Thermiques

Un des nouveaux défis auxquels sont confrontés les systèmes temps-réel est l’augmentation
de la densité des transistors par puce en raison de la miniaturisation. L’autmentation de
la densité sur puce et les exigences de calcul à haute vitesse conduisent à l’augmentation
de la dissipation de chaleur dans les systèmes multiprocesseurs. Cette augmentation de la
température provoque la création de hot-spots (point chaud), ce qui réduit considérablement
la durée de vie du composant. En outre, les concepteurs se concentrent désormais sur la
fabrication d’architectures de plate-forme multi-core 3D [30, 104], afin de satisfaire aux
exigences de calcul. Grâce à la miniaturisation, la surface disponible sur puce pour la
dissipation thermique est réduite ce qui se traduit par une augmentation de la puissance
dissipée et il faut aussi noté que le courant de fuite n’est pas réduit avec le même facteur.
Les systèmes multiprocesseurs se comportent aussi comme plusieurs sources de chaleur ce

2.3. Résumé 151

qui augmentent la probabilité des variations de température. L’énergie consommée dans le
circuit est en grande partie transformée en chaleur. Aussi, les déséquilibres thermiques, ainsi
que la consommation d’énergie sont devenus très important dans la conception des systèmes
embarqués modernes. Le modèle du système considéré dans cette thèse contient des modèles
de consommation de puissance et d’ènergie, qui sont relativement indépendants des aspects
thermiques. Ce serait certainement une contribution intéressante et utile d’étendre nos
techniques afin d’intégrer les aspects thermiques. Dans le chapitre 4, nous avons brièvement
décrit le traitement des déséquilibres thermiques qui peuvent apparaître en raison de la
technique AsDPM. De toute évidence, une étude plus précise et approfondie des aspects
thermiques serait nécessaire.

2.3 Résumé

L’émergence de la technologie multi-core a apporté un changement de paradigme pour la
recherche sur les systèmes temps réel embarqués. Les applications temps réel qui s’exécutent
sur des plates-formes multiprocesseurs sont susceptibles d’être extrêmement diversifiés et
caractérisées par le comportement du logiciel et des interactions complexes. La complexité
des applications temps réel qui s’exécutent sur des plates-formes multiprocesseurs à remis
au goût du jour, parmi les nombreux autres défis, le défi de l’optimisation de la consom-
mation de puissance et d’énergie, tout en donnant l’assurance que les contraintes temps
réel seront respectées. Cette thèse est basée sur l’hypothèse que l’efficacité énergétique et
l’ordonnancement des systèmes temps-réel sont des problèmes étroitement liès, qui devraient
être traités ensemble afin d’obtenir de meilleurs gaines. Les contributions proposées dans ce
mémoire de thèse améliore, à travers l’ordonnancement, l’efficacité énergètique des systèmes
temps réel qui peut être prouvé prédictibles et correctes dans son comportement temporele
par rapport aux plateformes multiprocesseurs. Les solutions proposées sont flexibles au re-
gard des exigences de système variable, moins complexes, et efficaces. La recherche à venir
permettra d’éliminer certaines des hypothèses simplificatrices des modèles temps réel et
d’architecture de la plateforme que nous avons utilisés. En outre, nous avons souligné que
l’ensemble de l’efficacité énergétique et les effets thermiques devraient être pris en compte
pour de meilleurs résultats au niveau système.

152 Chapter 2. Conclusions et Perspectives

Liste des Publications

Refereed Journal Papers

1. M. K. Bhatti, C. Belleudy, M. Auguin, "Hybrid Power Management in Real-time
Embedded Systems: An Interplay of DVFS and DPM Techniques", In Springer’s
journal on Real-time Systems (RTS), special issue on Temperature/Energy Aware
Real-Time Systems. DOI: 10.1007/s11241 − 011 − 9116 − y. (To appear in early
2011).

2. M. K. Bhatti, C. Belleudy, M. Auguin, "Two-level Hierarchical Scheduling
Algorithm for Real-time Multiprocessor Systems", In Journal of Software (JSW),
Academy Publishers. (Accepted for publication).

Refereed Conference Papers

1. M. K. Bhatti, M. Farooq, C. Belleudy, M. Auguin, O. Mbarek, "Assertive Dynamic
Power Management (AsDPM) Strategy for Globally Scheduled RT Multiprocessor
Systems", In the proceedings of Power and Timing Modeling, Optimization and Sim-
ulation, PATMOS’09, and Integrated Circuit and System Design, chapter 8, Springer
LNCS Vol. 5953/2010, ISBN 978− 3− 642− 11801− 2, Pages 116− 126, 2010.

2. M. K. Bhatti, C. Belleudy, M. Auguin, "Power Management in Real-time Embed-
ded Systems through Online and Adaptive Interplay of DPM and DVFS Policies", In
the proceedings of International Conference on Embedded and Ubiquitous Computing,
EUC’10, December 2010, Hong Kong, SAR, China.

3. M. K. Bhatti, C. Belleudy, M. Auguin, "An Inter-Task Real-time DVFS Scheme for
Multiprocessor Embedded Systems", In the proceedings of International Conference
on Design and Architectures for Signal and Image Processing, DASIP’10, October
2010, Edinburgh, UK.

4. K. Ben Chehida, R. David, F. Thabet, M. K. Bhatti, M. Auguin, C. Belleudy, A.M.
Déplanche, Y. Trinquet, R. Urunuela, , F. Broekaert, V.Seignole, A. M. Fouillart,
"PHERMA, A global approach for system-level energy consumption optimization for
Real-time heterogeneous MPSoC architectures", In Proceedings of Low Voltage &
Low Power Consumption Conference, FTFC ′09, 2009, Neuchâtel, Switzerland.

5. M. K. Bhatti, C. Belleudy, M. Auguin, "A Framework for Offline Optimization
of Energy Consumption in Real-time Multiprocessor System-on-Chip", In the pro-
ceedings of IEEE International Conference on Electronics, Circuits, and Systems,
ICECS′09, December 2009, Hammamet, Tunisia.

6. M. K. Bhatti, M. Farooq, C. Belleudy, M. Auguin, "Improving resource utilization
under EDF-based mixed scheduling in multiprocessors real-time systems", In the
proceedings of IFIP/IEEE International Conference on Very Large Scale Integration,
VLSI-SoC’08, 2008, Rhodes Island, Greece.

7. M. Farooq, M. K. Bhatti, F. Muller, C. Belleudy, M. Auguin, " Precognitive DVFS:
Minimizing Switching Points to Further Reduce the Energy Consumption", In the
proceedings of 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2008, St. Louis, MO, USA.

2.3. Résumé 153

Non-Refereed Workshop/Conference Papers

1. M. K. Bhatti, C. Belleudy, M. Auguin, "Controlling Energy Profile of Real-time
Multiprocessor Systems by Anticipating Application’s Workload at Runtime", In
the proceedings of SYMPosium on new Machine Architectures SympA′13, 2009,
Toulouse, France.

2. M. K. Bhatti, C. Belleudy, M. Auguin, "A hybrid scheduling algorithm for opti-
mizing resource utilization & energy consumption in RT multiprocessor systems", In
the proceedings of 3rd National Symposium of Research Group on System-on-Chip,
System-in-Package, GDR SoC − SiP ′08, 2008, Paris, France.

3. M. K. Bhatti, M. Farooq, C. Belleudy, M. Auguin, "Mixed Scheduling for Im-
proved Resource Utilization and Energy Consumption in Real-time Multiprocessor
Systems", In the proceedings of Sophia Antipolis MicroElectronics, SAME’08, 2008,
Sophia Antipolis, France.

Appendix A

STORM: Simulation TOol for
Real-time Multiprocessor

Scheduling

In this dissertation, we have mainly relied on simulations for validating our proposed tech-
niques. We use STORM (Simulation TOol for Real-time Multiprocessor Scheduling) simu-
lator for this purpose. STORM is a free-ware Java-based simulation tool for multiprocessor
scheduling algorithms developed by IRCCyN [116] and available under Creative Commons
License. This tool has been initially designed and developed to evaluate the performance
in term of energy efficiency for specific hardware and software architectures which are
developed for French national project PHERMA (Parallel Heterogeneous Energy efficient
real-time Multiprocessor Architecture) [86]. In this part of the dissertation, we provide
some functional details of this simulation tool. These details are taken from [108, 119, 118].

Some of the main specifications of STORM are highlighted in the following.

• It is designed specifically for validating scheduling algorithms for multiprocessor ar-
chitectures (composed of homogeneous or heterogeneous processors); single-processor
architectures being the simplest case.

• It takes into account:

– The features of hardware architecture: multi-core design, multiprocessor ar-
chitecture with shared memory, distributed architecture with communication
network, memory architecture (L1 and L2 caches, banked memory).

– The features concerning energy consumption for the processors and memories, in
particular the capabilities for DPM (Dynamic Power Management) and DVFS
(Dynamic Voltage & Frequency Scaling).

• It is a flexible, portable, and open tool: flexible means the possibility to program and
to add easily simulation entities (such as scheduling policies) through well-defined
APIs; portable means the possibility to run it on various OS thanks to the Java
programming language; and open means that the input/output data are formatted
using xml.

• It is intended to provide a simulation language to drive experiments (statistical studies
or domain explorations) via a simulation controller. Upstream from the simulator,
this controller computes the inputs, runs the simulations, and downstream computes
the required metrics from simulation results.

Figure A.1 illustrates that STORM simulator needs the specification of the studied
real-time application as input –i.e., a set of tasks with execution requirements, that has
to run on a multiprocessor hardware architecture. It is described in a XML input file
in which specific tags and attributes have to be used, and where references to predefined

156
Appendix A. STORM: Simulation TOol for Real-time Multiprocessor

Scheduling

Figure A.1: STORM simulator input and output file system.

components are made. Thus, for a given application, the simulator is able to play its
execution over a specified time interval while taking into account the requirements of tasks,
the characteristics and functional conditions of hardware components, and the scheduling
rules with the highest timing faithfulness. The simulation itself consists in building a
chronological track of all the run-time events that occurred during the simulated execution.
As a result, simulated outputs can be computed as: either user readable in the form of
diagrams or reports, or machine readable intended for a subsequent analysis tool. The user
interacts with STORM through a user-friendly graphical user interface which is composed
of command and display windows.

The notion of time used in STORM is discrete time –i.e., the overall simulation interval
is cut into a sequence of indivisible unitary slots such as [0, 1], [1, 2],..., [t, t + 1], etc., and
simulation moves forward at each instant 0, 1, ...t, t + 1. Thus, at instant t, the next
simulation state (for instant t+ 1) is computed from the current instant.

A.1 Functional Architecture

The internal architecture of the STORM simulator is composed of a set of entities built
around a simulation kernel as illustrated in figure A.2. Tasks and data compose the software
architecture while processors, memories, and interconnect compose the hardware architec-
ture of STORM simulator. There are as many task, data link and processor entities as
specified in the XML input file, and they are automatically instantiated from the library
components. Those libraries provide a large collection of task behaviors: recurrent, periodic
or aperiodic, with or without activation recording, with or without deadline abort. It’s also
the case for the data links that enable quite complex synchronization relations between
tasks. For the time, two processor types are available: a basic one and another with DPM
and DVFS capabilities.

A.1. Functional Architecture 157

Figure A.2: Functional architecture of STORM simulator.

Figure A.3: STORM: various states for application tasks.

A.1.1 Software Entities

Software entities stand for the tasks and data that compose the software architecture for
which the simulation is conducted. There are as many task and data link entities as specified
in the xml input file. Figure A.4 illustrates and example XML file. It is important to note
that these entities capture the behavior of the real components they represent only from
a control viewpoint and not a functional one, i.e. no applicative programs run for the
tasks, nor true exchanged data values exist. It means that a task is considered only from
the execution time point of view and a data from the possible task synchronizations it
may give rise to. STORM provides various task types (depending on their activation and
deadline control conditions). New task behaviors can be easily specified and added to the
tool. Whatever its type, the generic state diagram of a task entity inside the simulator

158
Appendix A. STORM: Simulation TOol for Real-time Multiprocessor

Scheduling

is shown on figure A.3. At the very beginning, a task is unexisting. As soon as its first
activation occurs, it becomes ready and falls under the control of a task list manager.
Depending on the scheduling decisions, it may run and possibly be preempted. On its
definitive completion (case of an aperiodic task), the task goes back into the unexisting
state. On a job completion (for a sporadic or periodic task), it becomes waiting until all its
execution conditions be met, i.e. only its next release in case of an independent task, but
together with the availability of all the data it requires in case of a consumer task. It is the
simulator which is in charge of setting the computation time of the jobs each time they are
released. By default, the actual execution time (AET) of a new arriving job is simply set
equal to the WCET of its task (the value that is specified in the xml input file). But, thanks
to the specific attribute calcAET (related to the definition of a task in the xml input file),
it is possible to specify another selection strategy (BCET, random value between BCET
WCET, value read from an input data log file, etc.). The specification of data in the xml
input file of STORM is a way to introduce functional dependence constraints in the form
of precedence relations between some producer and consumer tasks. Indeed a task which is
the destination of a data has to stay in the waiting state up to (at least) this data becomes
available –i.e. in the simplest case, up to the completion of the task which is the source of
this data. Possibly a data rate (if specified in the xml input file) needs to be taken into
account to determine when the data is really available for consumption.

Figure A.4: STORM: example XML file.

A.1.2 Hardware Entities

For the moment, hardware architectures are composed of processors only. In the future,
it will be most probably extended to take into account other hardware components such
as memories and interconnect network, which have some impacts on the behavior and
performances of the overall system such as memory banks for instance. Each processor
of the considered hardware architecture has its equivalent processor entity. No control is
modeled in such an entity but instead it encapsulates some properties stating about its

A.1. Functional Architecture 159

current activity such as running, idle, or busy. In case of a processor with DVFS (Dynamic
Voltage and Frequency Scaling) and DPM(Dynamic Power Management) capabilities, the
corresponding entity owns additional properties about its current functionality such as
power consumption mode, operating voltage, and frequency etc. together with the functions
for updating them.

A.1.3 System Entities

At the moment, system entities are the task list manager, the scheduling algorithms, and the
power management policies. The part of the task list manager entity is twofold. It controls
the very first release of each task: after a successful comparison between a task activation
date and the current time, it produces a specific activation kernel message that is relayed
by the kernel towards the concerned task entity and the scheduler entity too. Moreover
it manages functional constraints between tasks that appear when data dependencies have
been specified: at each simulation slot, depending on the availability or consumption of
data, it produces specific task block or unblock kernel messages. The scheduler entity is
in charge of sharing the processor(s) between the ready tasks. Its election rules depend
on the scheduling strategy it implements. It owns proper queue(s) about ready tasks and
manages them thanks to the task state change indications the kernel sends to it and the
tick indication too. The election rules it implements may lead it to run and/or to preempt
a task. STORM provides most of the standard real-time global event-driven or time-driven
schedulers.

A.1.4 Simulation Kernel

The behavior of simulation kernel is a cyclic one –i.e., one cycle for one slot. After a
necessary initial step where all the simulation entities are created and the global time
variable is initialized, the loop of cycles is entered. Any cycle performs successive steps
that come down to manage the watchdogs –i.e., to detect those possible watchdogs that
expire and to call the specified function of the specified entity, process all the currently
pending kernel messages, call upon the scheduler, manage time passing, ask for the task list
manager to operate, and increment the time variable. Furthermore, all along its cycles, the
kernel records all the event occurrences and associated data that are relevant for building
the simulation outputs.

Appendix B

HyPowMan Scheme: Additional
Simulation Results

B.1 Simulation Results Using AsDPM & DSF Experts

In this appendix, we provide additional simulation results on HyPowMan scheme using
AsDPM technique (see chapter 4) and DSF technique (see chapter 5) together as experts.
These results are obtained for the same target application and simulation settings as used
in chapter 6. We observe that the results obtained using DSF and AsDPM as experts are
similar to the results obtained in chapter 6 as far as validating the working of HyPowMan
is concerned. One exception in these results is that, consistently, AsDPM technique results
in better energy savings as compared to DSF technique against all variations –i.e., variation
in bcet/wcet ratio, number of tasks, and aggregate utilization. Based on this observation,
it is obvious that using only AsDPM technique in this particular case could have yielded
best energy savings. Moreover, these results also demonstrate that if the designer/user does
not select a single best-performing expert statically based on prior knowledge, HyPowMan
scheme can still converge to the single best policy in an online fashion. However, the
computational overheads related to HyPowMan scheme could have be avoided in case of
statically selected single expert. We have not included these results in chapter 6 as it could
have limited the reader from understanding the full potential of HyPowMan scheme. Here,
we present these results for reference.

B.1.1 Effect of variations in bcet/wcet ratio

We make the following observations on these results. For bcet/wcet ratio= 1, figure B.1
depicts no change in total energy consumption due to constant dynamic and static power
consumption. Since actual execution time remains constant, energy consumed by processors
under non-optimized case and under DSF expert alone remains unchanged. AsDPM expert
alone, however, saves energy by exploiting the presence of inherent (static) idle intervals.
HyPowMan scheme, in this case, converges to AsDPM expert in a straightforward manner
as shown in figure B.1. As bcet/wcet ratio decreases (< 1), opportunities for DSF expert
to save energy are created as well. Figure B.1 shows that both DSF and AsDPM experts,
while working alone, save energy as compared to non-optimized case. For bcet/wcet ratio
between 0.5 and 0.9, HyPowMan scheme converges to the best energy savings offered by
either expert.

B.1.2 Effect of variations in number of tasks

Similar to the settings in section 6.4.3.2, we double and triple the number of tasks. Results
in figure B.2 depict that, increasing the number of tasks increases the energy savings in
all cases. These results are very much similar to those obtained in section 6.4.3.2 with the
exception that AsDPM expert performed better than DSF expert in all cases.

162 Appendix B. HyPowMan Scheme: Additional Simulation Results

Figure B.1: Simulation results on variation of bcet/wcet ratio.

Figure B.2: Simulation results on variation in number of tasks.

B.1.3 Effect of Variations in total utilization

Similar to the settings in section 6.4.3.3, multiple task sets with total utilization varying
between 50% (lower workload) and 100% (maximum workload) of platform capacity have
been generated in this case. Results in figure B.3 depict that lower aggregate utilization

B.2. Simulation Results Using ccEDF & DSF Experts 163

Figure B.3: Simulation results on variation in aggregate utilization.

natually favors energy savings as in case of results presented in section 6.4.3.3 as well.
AsDPM expert still performs better than DSF expert in this case.

B.2 Simulation Results Using ccEDF & DSF Experts

In chapter 6, we present our simulation results obtained while using heterogeneous tech-
niques –i.e., techniques from different categories such as DPM and DVFS techniques as
experts. We have also applied HyPowMan scheme on techniques belonging to the same cat-
egory, particularly, DVFS techniques. The purpose of these experiments is to demonstrate
that HyPowMan scheme is flexible enough to incorporate power management policies from
various categories in its expert set. In the following, we present simulation results obtained
using ccEDF DVFS technique [87] and DSF DVFS technique (see chapter 5) as experts on
an H.264 video decoder application (slices version) as presented in section 4.5.1. Simulation
settings are presented in table B.1.

Table B.1: Simulation settings for variable bcet/wcet ratio
Parameters Settings
Simulation time 10,000-ms
Number of tasks (n) in task set 7
α for DSF expert 0.70
α for ccEDF expert 0.70
β for DSF expert 0.92
β for ccEDF experts 0.95
bcet/wcet ratio (rule) bcet+1/3(wcet-bcet)+random[2/3(wcet-bcet)]

164 Appendix B. HyPowMan Scheme: Additional Simulation Results

Figure B.4: Simulation results on variation in bcet/wcet ratio.

Figure B.5: Simulation results on the usage of experts under the HyPowMan scheme.

B.2. Simulation Results Using ccEDF & DSF Experts 165

Figure B.4 depicts the normalized energy consumption of target application under three
cases: non-optimized case –i.e., when no expert is applied, under each expert alone, and
under HyPowMan scheme for different QoS (frame rates). Figure B.4 illustrates that both
experts, while working alone, save energy with relatively variable gains as compared to
non-optimized case. Figure B.4 clearly depicts that HyPowMan scheme converges to the
best energy savings offered by either expert. These simulation results demonstrate that
HyPowMan scheme can equally work with power management policies from the same as well
as different categories and gives energy savings either equivalent to that of best-performing
expert in the expert set or even better (which is the case for 11-fps, 17-fps, 20-fps, and
22-fps in figure B.4). We measure best-case energy gains up to 43.77% as compared to
non-optimized case and up to 32.45% as compared to best-performing expert.

Figure B.5 depicts the distribution of online usage of experts under HyPowMan scheme.
This distribution varies greatly based on instantaneous performance (in response to a pow-
er/energy management opportunity) by each expert at any point in time. Higher percentage
of usage of any single expert means lesser substitutions are performed online and lesser en-
ergy is consumed in substitution. In a converse situation, more energy is consumed and
latency to service application tasks is increased. An important observation in figure B.5,
with respect to the results presented in figure B.4, is that for higher frame rates, ccEDF
expert also becomes effective and consequently being used more frequently by HyPowMan.
This indicates that variations in workload can shift the balance of performance amongst
different DVFS policies at runtime.

Bibliography

[1] Tarek A. AlEnawy and Hakan Aydin. Energy-aware task allocation for rate monotonic
scheduling. In procs. of IEEE Symposium, RTAS-2005, pages 213–223, 2005. 115

[2] AMD. AMD Technical Docs, 2010. http://support.amd.com. 85

[3] James H. Anderson and Sanjoy K. Baruah. Energy-aware implementation of hard-
real-time systems upon multiprocessor platforms. In In Proceedings of the ISCA
16th International Conference on Parallel and Distributed Computing Systems, pages
430–435, 2002. 12, 17

[4] James H. Anderson and Sanjoy K. Baruah. Energy-efficient synthesis of periodic
task systems upon identical multiprocessor platforms. In Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS’04), ICDCS ’04,
pages 428–435, Washington, DC, USA, 2004. IEEE Computer Society. 17

[5] James H. Anderson, Vasile Bud, and UmaMaheswari C. Devi. An edf-based schedul-
ing algorithm for multiprocessor soft real-time systems. In Proceedings of the 17th
Euromicro Conference on Real-Time Systems, pages 199–208, Washington, DC, USA,
2005. IEEE Computer Society. 35

[6] James H. Anderson and Anand Srinivasan. Mixed pfair/erfair scheduling of asyn-
chronous periodic tasks. In Proceedings of the 13th Euromicro Conference on Real-
Time Systems, ECRTS ’01, pages 76–, Washington, DC, USA, 2001. IEEE Computer
Society. 54

[7] Bjorn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on
multiprocessors. In Proceedings of the 22nd IEEE Real-Time Systems Symposium,
RTSS ’01, pages 93–, Washington, DC, USA, 2001. IEEE Computer Society. 22, 35,
39

[8] Bjorn Andersson and Eduardo Tovar. Multiprocessor scheduling with few preemp-
tions. In Proceedings of the 12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA ’06, pages 322–334, Wash-
ington, DC, USA, 2006. IEEE Computer Society. 20, 22, 32, 33, 34

[9] ARM. ARM Architecture, 2010. http://www.arm.com/. 85, 130, 150

[10] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejía-Alvarez. Power-aware
scheduling for periodic real-time tasks. IEEE Trans. Comput., 53:584–600, May 2004.
8, 28, 77, 86, 87, 89, 98, 99, 105, 116, 128, 139, 146, 149

[11] Hakan AYDIN, Rami MELHEM, Daniel MOSSÉ, and P. MEJIA-ALVAREZ. Power-
aware scheduling for periodic real-time tasks. In IEEE Transactions on Computers,
pages 584 – 600. IEEE, vol. 53, n◦5, 2004. 51

[12] Hakan Aydin and Qi Yang. Energy-aware partitioning for multiprocessor real-time
systems. In Proceedings of the 17th International Symposium on Parallel and Dis-
tributed Processing, IPDPS ’03, pages 113.2–, Washington, DC, USA, 2003. IEEE
Computer Society. 89

[13] Sanjoy Baruah, Neil Cohen, Greg Plaxton, and Don Varvel. Proportionate progress:
A notion of fairness in resource allocation. In Algorithmica, page 600 625, 1996. 4,
31, 35, 129, 136, 149

168 Bibliography

[14] Sanjoy K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate
progress: a notion of fairness in resource allocation. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, STOC ’93, pages 345–354, New
York, NY, USA, 1993. ACM. 52

[15] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In In Proceedings of the 11th Real-
Time Systems Symposium, pages 182–190. IEEE Computer Society Press, 1990. 44

[16] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey of design
techniques for system-level dynamic power management. In Giovanni De Micheli,
Rolf Ernst, and Wayne Wolf, editors, Readings in hardware/software co-design, pages
231–248. Kluwer Academic Publishers, Norwell, MA, USA, 2002. 26, 58, 60

[17] Luca Benini and Giovanni de Micheli. Dynamic Power Management: Design Tech-
niques and CAD Tools. Springer, 1997. 26

[18] Luca Benini and Giovanni De Micheli. Dynamic Power Management: Design Tech-
niques and CAD Tools. Springer; 1st edition (November 30, 1997), 1997. 60

[19] Muhammad Khurram Bhatti, Cécile Belleudy, and Michel Auguin. An inter-task real
time dvfs scheme for multiprocessor embedded systems. In Proceedings of IEEE in-
ternational conference on Design and Architectures for Signal and Image Processing,
DASIP, 2010. 115

[20] Muhammad Khurram Bhatti, Cécile Belleudy, and Michel Auguin. Power manage-
ment in real time embedded systems through online and adaptive interplay of dpm
and dvfs policies. In proceedings of International Conference on Embedded and Ubiq-
uitous Computing, EUC’10, EUC’10, 2010. 8, 140, 146

[21] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M. Buttazzo. Rate monotonic anal-
ysis: The hyperbolic bound. IEEE Trans. Comput., 52:933–942, July 2003. 20

[22] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe Lipari. Speed modulation in energy-
aware real-time systems. In IEEE Proceedings of the Euromicro Conference on Real-
Time Systems, ECRTS, 2005. 99

[23] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages
(Third Edition). Ada 95, Real-Time Java and Real-Time POSIX. Hardback - 611
pages. Addison Wesley Longmain, 2001. 19, 22

[24] John M. Calandrino, James H. Anderson, and Dan P. Baumberger. A hybrid real-
time scheduling approach for large-scale multicore platforms. In Proceedings of the
19th Euromicro Conference on Real-Time Systems, ECRTS’07, pages 247–256, 2007.
32, 34, 35, 124, 144

[25] Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time systems on
dynamic voltage scaling (dvs) platforms. In Proceedings of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA ’07, pages 28–38, Washington, DC, USA, 2007. IEEE Computer Society. 89

[26] Hui Cheng and Steve Goddard. Online energy-aware i/o device scheduling for hard
real-time systems. In Proceedings of the conference on Design, automation and test in
Europe: Proceedings, DATE ’06, pages 1055–1060, 3001 Leuven, Belgium, Belgium,
2006. European Design and Automation Association. 60

Bibliography 169

[27] Hui Cheng and Steve Goddard. Sys-edf: a system-wide energy-efficient scheduling
algorithm for hard real-time systems. In International Journal of Embedded Systems,
pages 141 – 151. Inderscience, Volume 4, Number 2 / 2009, 2009. 60, 79, 82, 109

[28] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An optimal real-time
scheduling algorithm for multiprocessors. In Proceedings of the 27th IEEE Interna-
tional Real-Time Systems Symposium, pages 101–110, Washington, DC, USA, 2006.
IEEE Computer Society. 4, 31, 52, 129, 136, 149

[29] Eui-Young Chung, Luca Benini, Alessandro Bogiolo, and Giovanni De Micheli. Dy-
namic power management for non-stationary service requests. In Proceedings of the
conference on Design, automation and test in Europe, DATE ’99, New York, NY,
USA, 1999. ACM. 27, 60

[30] Ayse K. Coskun, David Atienza, Tajana Simunic Rosing, Thomas Brunschwiler, and
Bruno Michel. Energy-efficient variable-flow liquid cooling in 3d stacked architectures.
In Proceedings of the Conference on Design, Automation and Test in Europe, DATE
’10, pages 111–116, 3001 Leuven, Belgium, Belgium, 2010. European Design and
Automation Association. 5, 130, 136, 150

[31] Victor De La Luz, Mahmut Kandemir, and Ugur Sezer. Improving off-chip memory
energy behavior in a multi-processor, multi-bank environment. In Proceedings of
the 14th international conference on Languages and compilers for parallel computing,
LCPC’01, pages 100–114, Berlin, Heidelberg, 2003. Springer-Verlag. 80

[32] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin.
Dram energy management using sof ware and hardware directed power mode control.
In Proceedings of the 7th International Symposium on High-Performance Computer
Architecture, HPCA ’01, pages 159–, Washington, DC, USA, 2001. IEEE Computer
Society. 80

[33] M. L. Dertouzos and A. K. Mok. Multiprocessor online scheduling of hard-real-time
tasks. IEEE Trans. Softw. Eng., 15:1497–1506, December 1989. 19

[34] Michael Dertouzos and Aloysius Mok. Multiprocessor scheduling in a hard real-time
environment. In IEEE Transactions on Software Engineering, page 1497 1506, 1989.
22, 35

[35] Vinay Devadas and Hakan Aydin. On the interplay of dynamic voltage scaling and
dynamic power management in real-time embedded applications. In Proceedings of
the 8th ACM international conference on Embedded software, EMSOFT ’08, pages
99–108, New York, NY, USA, 2008. ACM. 27, 59, 60, 109

[36] Vinay Devadas and Hakan Aydin. Real-time dynamic power management through
device forbidden regions. In Proceedings of the 2008 IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 34–44, Washington, DC, USA, 2008.
IEEE Computer Society. 59, 60

[37] Gaurav Dhiman and Tajana Simunic Rosing. Dynamic power management using
machine learning. In Proceedings of the 2006 IEEE/ACM international conference
on Computer-aided design, ICCAD ’06, pages 747–754, New York, NY, USA, 2006.
ACM. 8, 108, 109, 110, 140, 146

[38] Francois Dorin, Patrick Meumeu Yomsi, Joel Goossens, and Pascal Richard. Semi-
partitioned hard real-time scheduling with restricted migrations upon identical multi-
processor platforms. In Operating Systems (cs.OS), arXiv:1006.2637v1 [cs.OS], Cor-
nell University Library Archives, Technical Report, June, 2010. 34, 35, 36, 37

170 Bibliography

[39] R. ERNST and W. YE. Embedded program timing analysis based on path clustering
and architecture classification. In the proceedings of International Conference on
Computer-Aided Design (ICCAD 97), pages 598 – 604, 1997. 50, 90

[40] Rolf Ernst and Weisong Ye. Embedded program timing analysis based on path clus-
tering and architecture classification. In Proceedings of the 1997 IEEE/ACM interna-
tional conference on Computer-aided design, ICCAD ’97, pages 598–604, Washington,
DC, USA, 1997. IEEE Computer Society. 28, 86

[41] Amir H. Farrahi, Gustavo E. Téllez, and Majid Sarrafzadeh. Memory segmentation to
exploit sleep mode operation. In Proceedings of the 32nd annual ACM/IEEE Design
Automation Conference, DAC ’95, pages 36–41, New York, NY, USA, 1995. ACM.
80

[42] Nathan Wayne Fisher. The Multiprocessor Real-Time Scheduling of General Task
Systems, 2007. PhD Thesis, University of North-Carolina at Chapel Hill,. 3, 11, 18,
20, 135

[43] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In Proceedings of the Second European Con-
ference on Computational Learning Theory, pages 23–37, London, UK, 1995. Springer-
Verlag. 110

[44] Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. A context cache replacement
algorithm for pfair scheduling. In Proceedings of the 15th International Conference
on Real-Time and Network Systems (RTNS), pages 57 – 64, 2007. 46

[45] Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. Dynamic voltage and fre-
quency scaling for optimal real-time scheduling on multiprocessors. In Proceedings
of Industrial Embedded Systems, 2008. SIES 2008. International Symposium, pages
27–33, Le Grande Motte, France, 2008. 89

[46] Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. Energy-efficient optimal real-
time scheduling on multiprocessors. In Proceedings of the 2008 11th IEEE Symposium
on Object Oriented Real-Time Distributed Computing, pages 23–30, Washington, DC,
USA, 2008. IEEE Computer Society. 89, 90, 108

[47] Shelby Hyatt Funk. Edf scheduling on heterogeneous multiprocessors. In PhD thesis,
department of computer science. University of North Carolina at Chapel Hill, 2004.
3, 11, 18, 20, 22, 135

[48] Bruno Gaujal and Nicolas Navet. Dynamic voltage scaling under edf revisited. Real-
Time Syst., 37:77 – 97, October 2007. 28, 85, 125, 145

[49] S. Gochman, R. Ronen, I. Anati, A. Berkovis, T. Kurts, A. Naveh, A. Saeed, Z. Sper-
ber, and R. C. Valentine. The intel pentium m processor: Microarchitecture and
performance. In Proceedings of Intel Technology Journal, Vol. 7, Issue 2, pages 21–
36, 2003. 89

[50] Flavius Gruian. System-level design methods for low-energy architectures containing
variable voltage processors. In Proceedings of the First International Workshop on
Power-Aware Computer Systems-Revised Papers, PACS ’00, pages 1–12, London, UK,
2001. Springer-Verlag. 89

[51] Flavius GRUIAN. Energy-centric scheduling for real-time systems. In PhD thesis.
http://www.cs.lth.se/home/Flavius Gruian, 2002. 86

Bibliography 171

[52] Kwang Soo Hong and Joseph Y.-T. Leung. On-line scheduling of real-time tasks. In
IEEE Real-Time Systems Symposium, page 244 250, Huntsville,Alabama, 1988. 22,
35

[53] Chi-Hong Hwang and Allen C.-H. Wu. A predictive system shutdown method for
energy saving of event-driven computation. ACM Trans. Des. Autom. Electron. Syst.,
5:226–241, April 2000. 58

[54] Intel. Intel Technical Docs, 2010. http://www.intel.com. 85

[55] S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dynamic power manage-
ment strategies for systems with multiple power savings states. In Proceedings of
the conference on Design, automation and test in Europe, DATE ’02, pages 117–,
Washington, DC, USA, 2002. IEEE Computer Society. 27, 60

[56] Sandy Irani and Kirk R. Pruhs. Algorithmic problems in power management.
SIGACT News, 36:63–76, June 2005. 4, 136

[57] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies for dynamic power
management in systems with multiple power-saving states. ACM Trans. Embed.
Comput. Syst., 2:325–346, August 2003. 26, 57, 60

[58] Ravindra Jejurikar and Rajesh Gupta. Dynamic voltage scaling for systemwide energy
minimization in real-time embedded systems. In Proceedings of the 2004 international
symposium on Low power electronics and design, ISLPED ’04, pages 78–81, New York,
NY, USA, 2004. ACM. 79, 109

[59] Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. Leakage aware dynamic
voltage scaling for real-time embedded systems. In Proceedings of the 41st annual
Design Automation Conference, DAC ’04, pages 275–280, New York, NY, USA, 2004.
ACM. 90

[60] David Johnson. Near-optimal bin packing algorithms. In PhD thesis, Department of
Mathematics, Massachusetts Institute of Technology, 1973. 4, 6, 32, 124, 136, 138,
144

[61] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Owicki. Compet-
itive randomized algorithms for non-uniform problems. In Proceedings of the first
annual ACM-SIAM symposium on Discrete algorithms, SODA ’90, pages 301–309,
Philadelphia, PA, USA, 1990. Society for Industrial and Applied Mathematics. 115

[62] Shinpei Kato and Nobuyuki Yamasaki. Portioned edf-based scheduling on multi-
processors. In Proceedings of the 8th ACM international conference on Embedded
software, EMSOFT ’08, pages 139–148, New York, NY, USA, 2008. ACM. 32, 33, 34,
35, 36, 37, 124, 144

[63] Shinpei Kato, Nobuyuki Yamasaki, and Yutaka Ishikawa. Semi-partitioned scheduling
of sporadic task systems on multiprocessors. In Proceedings of the 2009 21st Euromi-
cro Conference on Real-Time Systems, pages 249–258, Washington, DC, USA, 2009.
IEEE Computer Society. 20, 32, 33, 34, 44, 124, 144

[64] Minyoung Kim and Soonhoi Ha. Hybrid run-time power management technique for
real-time embedded system with voltage scalable processor. In Proceedings of the 2001
ACM SIGPLAN workshop on Optimization of middleware and distributed systems,
OM ’01, pages 11–19, New York, NY, USA, 2001. ACM. 109

172 Bibliography

[65] C. M. Krishna and Yann-Hang Lee. Voltage-clock-scaling adaptive scheduling tech-
niques for low power in hard real-time systems. IEEE Trans. Comput., 52:1586–1593,
December 2003. 89

[66] Woo-Cheol Kwon and Taewhan Kim. Optimal voltage allocation techniques for dy-
namically variable voltage processors. In Proceedings of the 40th annual Design Au-
tomation Conference, DAC ’03, pages 125–130, New York, NY, USA, 2003. ACM.
89

[67] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis. Power aware page alloca-
tion. SIGARCH Comput. Archit. News, 28:105–116, November 2000. 80

[68] Seongsoo Lee and Takayasu Sakurai. Run-time voltage hopping for low-power real-
time systems. In Proceedings of the 37th Annual Design Automation Conference,
DAC ’00, pages 806–809, New York, NY, USA, 2000. ACM. 28

[69] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared data cache conflicts
reduction for wcet computation in multi-core architectures. In Proceedings of 18th
International Conference on Real-Time and Network Systems, Toulouse, France, 2010.
14

[70] Benjamin Lesage and Isabelle Puaut. Estimation of cache related migration delays for
multi-core processors with shared instruction caches. In Proceedings of 17th Interna-
tional Conference on Real-Time and Network Systems, pages 45 – 54, Paris, France,
2009. 14

[71] Chung L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of ACM, 20:46–61, January 1973. 15, 19,
20, 22, 129, 149

[72] Marvell. Marvell’s XScale Microarchitecture. http://www.marvell.com/. 29, 85

[73] Andreas Merkel and Frank Bellosa. Balancing power consumption in multiprocessor
systems. SIGOPS Oper. Syst. Rev., 40:403–414, April 2006. 82, 84

[74] Aloysius K. Mok. Task management techniques for enforcing ed scheduling on a
periodic task set. Proceedings of 5th IEEE Workshop on Real-Time Software and
Operating Systems, pages 42–46, 1988. 22

[75] Daniel Mosse, Hakan Aydin, Bruce Childers, and Rami Melhem. Compiler-assisted
dynamic power-aware scheduling for real-time applications. In In Workshop on Com-
pilers and Operating Systems for Low Power, 2000. 89

[76] Daniel MOSSE, Hakan AYDIN, Buce CHILDERS, and Rami MELHEM. Compiler-
assisted dynamic power-aware scheduling for real-time applications. In Workshop on
Compiler and Operating Sys for Low-Power, 2000. 86

[77] Farooq Muhammad. Ordonnancement de tâches efficace et â complexitè maîtrisèe
pour des systèmes temps rèel. In PhD thesis. University of Nice-Sophia Antipolis,
2009. 3, 4, 11, 31, 37, 44, 52, 54, 135, 136

[78] Fabrizio Mulas, David Atienza, Andrea Acquaviva, Salvatore Carta, Luca Benini, and
Giovanni De Micheli. Thermal balancing policy for multiprocessor stream computing
platforms. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28:1870–1882, December 2009.
79, 82, 130

Bibliography 173

[79] N. NAVET and B. GAUJAL. Ordonnancement temps reel et minimisation de la
consommation de energie. Chapter-4 in System Temps Reel -Volume 2. Kluwer Pub-
lishers, 2006. 26, 86, 87

[80] Vincent Nelis. Energy-Aware Real-Time Scheduling in Embedded Multiprocessor
Systems, 2010. PhD Thesis, Université Libre de Bruxelles, Belgium. 11, 25

[81] Ozcan Ozturk and Mahmut Kandemir. Nonuniform banking for reducing memory
energy consumption. In Proceedings of the conference on Design, Automation and
Test in Europe - Volume 2, DATE ’05, pages 814–819, Washington, DC, USA, 2005.
IEEE Computer Society. 80

[82] Ozcan Ozturk, Mahmut Kandemir, and I. Koleu. Reducing memory energy consump-
tion of embedded applications that process dynamically allocated data. In IEEE
transactions on computer-aided design of integrated circuits and systems, vol. 25,
no.9, 2006. 80

[83] G. A. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli. Policy optimization for
dynamic power management. In Proceedings of the 35th annual Design Automation
Conference, DAC ’98, pages 182–187, New York, NY, USA, 1998. ACM. 26, 60

[84] G. A. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli. Policy optimization for
dynamic power management. In Proceedings of the 35th annual Design Automation
Conference, DAC ’98, pages 182–187, New York, NY, USA, 1998. ACM. 60

[85] Minkyu Park, Sangchul Han, Heeheon Kim, Seongje Cho, and Yookun Cho. Com-
parison of deadline-based scheduling algorithms for periodic real-time tasks on mul-
tiprocessor*this work is supported in part by brain korea 21 project and in part by
ict. IEICE - Trans. Inf. Syst., E88-D:658–661, March 2005. 19

[86] PHERMA. ANR project Pherma (Reference: ANR-06-ARFU06-003) , 2007 - 2010.
http://pherma.irccyn.ec-nantes.fr. 28, 70, 128, 148, 155

[87] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-
power embedded operating systems. In Proceedings of the eighteenth ACM symposium
on Operating systems principles, SOSP ’01, pages 89–102, New York, NY, USA, 2001.
ACM. 28, 89, 102, 115, 163

[88] Pherma project technical report. Validation of the offline and online optimization
tools, 2010. http://pherma.irccyn.ec-nantes.fr/publications.php. 29, 69, 102, 103,
105

[89] QEMU. QEMU, 2010. http://wiki.qemu.org/. 105, 130, 150

[90] Qinru Qiu and Massoud Pedram. Dynamic power management based on continuous-
time markov decision processes. In Proceedings of the 36th annual ACM/IEEE Design
Automation Conference, DAC ’99, pages 555–561, New York, NY, USA, 1999. ACM.
60

[91] Gang Quan and Xiaobo Sharon Hu. Energy efficient dvs schedule for fixed-priority
real-time systems. ACM Trans. Embed. Comput. Syst., 6, September 2007. 89

[92] Dinesh Ramanathan, Sandy Irani, and Rajesh Gupta. Latency effects of system level
power management algorithms. In Proceedings of the 2000 IEEE/ACM international
conference on Computer-aided design, ICCAD ’00, pages 350–356, Piscataway, NJ,
USA, 2000. IEEE Press. 26, 27

174 Bibliography

[93] Rambus. Rambus Inc.,, 1999. http://www.rambus.com/. 80

[94] Saowanee Saewong and Ragunathan Rajrajkumar. Optimal static voltage-scaling for
real-time systems, 2007. 89

[95] Jaewon Seo, Taewhan Kim, and Ki-Seok Chung. Profile-based optimal intra-task
voltage scheduling for hard real-time applications. In Proceedings of the 41st annual
Design Automation Conference, DAC ’04, pages 87–92, New York, NY, USA, 2004.
ACM. 86

[96] Dongkun Shin and Jihong Kim. Optimizing intra-task voltage scheduling using data
flow analysis. In Proceedings of the 2005 Asia and South Pacific Design Automation
Conference, ASP-DAC ’05, pages 703–708, New York, NY, USA, 2005. ACM. 86

[97] Youngsoo Shin and Kiyoung Choi. Power conscious fixed priority scheduling for hard
real-time systems. In Proceedings of the 36th annual ACM/IEEE Design Automation
Conference, DAC ’99, pages 134–139, New York, NY, USA, 1999. ACM. 89, 98

[98] Youngsoo Shin, Kiyoung Choi, and Takayasu Sakurai. Power optimization of real-
time embedded systems on variable speed processors. In Proceedings of the 2000
IEEE/ACM international conference on Computer-aided design, ICCAD ’00, pages
365–368, Piscataway, NJ, USA, 2000. IEEE Press. 86, 89

[99] Patrick M. Shriver, Maya B. Gokhale, Scott D. Briles, Dong-In Kang, Michael Cai,
Kevin McCabe, Stephen P. Crago, and Jinwoo Suh. A power-aware, satellite-based
parallel signal processing scheme, pages 243–259. Kluwer Academic Publishers, Nor-
well, MA, USA, 2002. 89

[100] Sandeep K. Shukla and Rajesh K. Gupta. A model checking approach to evaluating
system level dynamic power management policies for embedded systems. In Proceed-
ings of the Sixth IEEE International High-Level Design Validation and Test Workshop
(HLDVT’01), HLDVT ’01, pages 53–, Washington, DC, USA, 2001. IEEE Computer
Society. 27, 60

[101] Tajana Simunic, Luca Benini, Andrea Acquaviva, Peter Glynn, and Giovanni
De Micheli. Dynamic voltage scaling and power management for portable systems.
In Proceedings of the 38th annual Design Automation Conference, DAC ’01, pages
524–529, New York, NY, USA, 2001. ACM. 109

[102] Pushkar Singh and Vinay Chinta. Survey report on dynamic power management.
In Survey report of the University of Illinois, Chicago (ECE Department), Chicago,
USA, 2008. 26, 58, 59

[103] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivakumar
Velusamy, and David Tarjan. Temperature-aware microarchitecture: Modeling and
implementation. ACM Trans. Archit. Code Optim., 1:94–125, March 2004. 4, 136

[104] Arvind Sridhar, Alessandro Vincenzi, Martino Ruggiero, Thomas Brunschwiler, and
David Atienza Alonso. 3d-ICE: Fast compact transient thermal modeling for 3D-ICs
with inter-tier liquid cooling. In Proceedings of the 2010 (ICCAD 2010), volume 1,
pages 463–470, New York, 2010. ACM and IEEE Press. 5, 130, 136, 150

[105] Anand Srinivasan. Efficient and flexible fair scheduling of real-time tasks on multipro-
cessors. In PhD thesis, department of computer science. University of North Carolina
at Chapel Hill, 2003. 3, 4, 11, 135, 136

Bibliography 175

[106] Anand Srinivasan and James Anderson. Fair scheduling of dynamic task systems on
multiprocessors. J. Syst. Softw., 77:67 – 80, July 2005. 4, 35, 136

[107] Mani B. Srivastava, Anantha P. Chandrakasan, and R. W. Brodersen. Predictive
system shutdown and other architectural techniques for energy efficient programmable
computation. IEEE Trans. Very Large Scale Integr. Syst., 4:42–55, March 1996. 58

[108] STORM. STORM simulation tool. http://storm.rts-software.org. 8, 28, 47, 69, 99,
129, 140, 150, 155

[109] Vishnu Swaminathan and Krishnendu Chakrabarty. Energy-conscious, deterministic
i/o device scheduling in hard . . . IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(7):858, 2003. 59

[110] Vishnu Swaminathan and Krishnendu Chakrabarty. Pruning-based, energy-optimal,
deterministic i/o device scheduling for hard real-time systems. ACM Trans. Embed.
Comput. Syst., 4:141–167, February 2005. 59, 61

[111] Vishnu Swaminathan and Krishnendu Chakrabarty. Pruning-based, energy-optimal,
deterministic i/o device scheduling for hard real-time systems. ACM Trans. Embed.
Comput. Syst., 4:141–167, February 2005.

[112] Vishnu Swaminathan, Krishnendu Chakrabarty, and S. S. Iyengar. Dynamic i/o
power management for hard real-time systems, 2001. 59

[113] Vishnu Swaminathan, Krishnendu Chakrabarty, and S. S. Iyengar. Dynamic i/o
power management for hard real-time systems. In Proceedings of the ninth interna-
tional symposium on Hardware/software codesign, CODES ’01, pages 237–242, New
York, NY, USA, 2001. ACM. 60

[114] Pengliu Tan, Jian Shu, and Zhenhua Wu. A hybrid real-time scheduling approach on
multi-core architectures. In Journal of software, vol. 5, No. 9, September 2010, pages
958–965. Academy Publisher, 2010. 34

[115] Thales. Thales group (France), 2010. http://www.thalesgroup.com/. 70, 72, 104, 126

[116] Real time systems group. IRCyN research laboratory, University of Nantes, France.,
2009. 28, 155

[117] Transmeta. Transmera. http://www.transmeta.com/. 85

[118] Richard Urunuela, Anne-Marie Déplanche, and Yvon Trinquet. Simulation for multi-
processor real-time scheduling evaluation. In Proceedings of 7th EUROSIM Congress
on Modelling and Simulation, Eurosim’10, 2010. 155

[119] Richard Urunuela, Anne-Marie Déplanche, and Yvon Trinquet. Storm: A simula-
tion tool for real-time multiprocessor scheduling evaluation. In Proceedings of 15th
IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA’10, 2010. 155

[120] Nicolas Ventroux and Raphaël David. Scmp architecture: an asymmetric multipro-
cessor system-on-chip for dynamic applications. In Proceedings of the Second Interna-
tional Forum on Next-Generation Multicore/Manycore Technologies, IFMT ’10, pages
6:1–6:12, New York, NY, USA, 2010. ACM. 128, 148

[121] Weixun Wang and Prabhat Mishra. Predvs: preemptive dynamic voltage scaling for
real-time systems using approximation scheme. In Proceedings of the 47th Design
Automation Conference, DAC ’10, pages 705–710, New York, NY, USA, 2010. ACM.
86

176 Bibliography

[122] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced
cpu energy. In Proceedings of the 1st USENIX conference on Operating Systems De-
sign and Implementation, OSDI ’94, Berkeley, CA, USA, 1994. USENIX Association.
89

[123] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschu-
lat, and Per Stenström. The worst-case execution-time problem - overview of methods
and survey of tools. In ACM Transaction on Embedded Computing Systems, vl. 7,
No.03, 2008. 14

[124] Peng Yang, Chun Wong, Paul Marchal, Francky Catthoor, Dirk Desmet, Diederik
Verkest, and Rudy Lauwereins. Energy-aware runtime scheduling for embedded-
multiprocessor socs. volume 18, pages 46–58, Los Alamitos, CA, USA, September
2001. IEEE Computer Society Press. 26, 89

[125] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
FOCS ’95, pages 374–, Washington, DC, USA, 1995. IEEE Computer Society. 89

[126] Baoxian Zhao and Hakan Aydin. Minimizing expected energy consumption through
optimal integration of dvs and dpm. In Proceedings of the 2009 International Confer-
ence on Computer-Aided Design, ICCAD ’09, pages 449–456, New York, NY, USA,
2009. ACM. 108

[127] Xiliang Zhong and Cheng-Zhong Xu. System-wide energy minimization for real-
time tasks: lower bound and approximation. In Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design, ICCAD ’06, pages 516–521, New
York, NY, USA, 2006. ACM. 89

[128] Dakai Zhu, Nevine AbouGhazaleh, Daniel Mosse, and Rami Melhem. Power aware
scheduling for and/or graphs in multi-processor real-time systems. In In Proc. of The
Intl Conference on Parallel Processing, pages 593–601, 2002. 89

[129] Dakai Zhu, Rami Melhem, and Bruce R. Childers. Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in multiprocessor real-time systems.
IEEE Trans. Parallel Distrib. Syst., 14:686–700, July 2003. 89

[130] Jianli Zhuo and Chaitali Chakrabarti. System-level energy-efficient dynamic task
scheduling. In Proceedings of the 42nd annual Design Automation Conference, DAC
’05, pages 628–631, New York, NY, USA, 2005. ACM. 79

[131] Jianli Zhuo, Chaitali Chakrabarti, and Naehyuck Chang. Energy management of
dvs-dpm enabled embedded systems powered by fuel cell-battery hybrid source. In
Proceedings of the 2007 international symposium on Low power electronics and design,
ISLPED ’07, pages 322–327, New York, NY, USA, 2007. ACM. 109

Abstract

Modern real-time applications have become more sophisticated and complex in their
behavior over the time. Contemporaneously, multiprocessor architectures have emerged.
Multiprocessor systems, due to their autonomy and reliability, face critical problem of
energy consumption. To address this issue in real-time systems, many software-based ap-
proaches have emerged. This thesis proposes new techniques for energy-efficient scheduling
of multiprocessor systems. Our first contribution is a hierarchical scheduling algorithm that
allows restricted migration of tasks. This algorithm aims at reducing the sub-optimality of
global EDF algorithm. The second contribution of this thesis is a dynamic power manage-
ment technique called Assertive Dynamic Power Management (AsDPM). This technique
is an admission control technique for real-time tasks, which decides when exactly a ready
task shall execute, thereby reducing the number of active processors. The third contri-
bution of this dissertation is a DVFS technique, referred as Deterministic Stretch-to-Fit
(DSF) technique, which falls in the category of inter-task DVFS techniques. Both DPM
and DVFS techniques are efficient for specific operating conditions. However, they often
outperform each other when these conditions change. Our fourth and final contribution is
a generic power/energy management scheme, called Hybrid Power Management (HyPow-
Man) scheme. This scheme, instead of designing new power/energy management techniques
for specific operating conditions, takes a set of well-known existing policies. At runtime,
the best-performing policy for given workload is adapted by HyPowMan scheme through
machine-learning approach.

Résumé

Les applications temps réel modernes deviennent plus exigeantes en termes de ressources
et de débit amenant la conception d’architectures multiprocesseurs. Ces systèmes,
des équipements embarqués au calculateur haute performance, sont, pour des raisons
d’autonomie et de fiabilité, confrontés des problèmes cruciaux de consommation d’énergie.
Pour ces raisons, cette thèse propose de nouvelles techniques d’optimisation de la con-
sommation d’énergie dans l’ordonnancement de systèmes multiprocesseur. La premiére
contribution est un algorithme d’ordonnancement hiérarchique á deux niveaux qui autorise
la migration restreinte des tâches. Cet algorithme vise á réduire la sous-optimalité de
l’algorithme global EDF. La deuxiéme contribution de cette thèse est une technique de
gestion dynamique de la consommation nommée Assertive Dynamic Power Management
(AsDPM). Cette technique, qui régit le contrôle d’admission des tâches, vise á exploiter
de manière optimale les modes repos des processeurs dans le but de réduire le nombre
de processeurs actifs. La troisiéme contribution propose une nouvelle technique, nommée
Deterministic Stretch-to-Fit (DSF), permettant d’exploiter le DVFS des processeurs. Les
gains énergétiques observés s’approchent des solutions déjà existantes tout en offrant une
complexité plus réduite. Ces techniques ont une efficacité variable selon les applications,
amenant á définir une approche plus générique de gestion de la consommation appelée Hy-
brid Power Management (HyPowMan). Cette approche sélectionne, en cours d’exécution,
la technique qui répond le mieux aux exigences énergie/performance.

	I Complete dissertation: English version
	Introduction
	Introduction
	Contributions
	Summary
	Background on Real-time and Energy-efficient Systems
	Real-time Systems
	Real-time Workload
	Processing Platform
	Real-time Scheduling
	Real-time Scheduling in Multiprocessor Systems

	Power- and Energy-efficiency in Real-time Systems
	Power and Energy Model
	Energy-aware Real-time Scheduling
	Simulation Environment
	Summary
	Two-level Hierarchical Scheduling Algorithm for Multiprocessor Systems
	Introduction
	Related Work
	Two-level Hierarchical Scheduling Algorithm
	Basic Concept
	Working Principle
	Runtime View of Schedule from Different Levels of Hierarchy
	Schedulability Analysis

	Experiments
	Setup
	Functional Evaluation
	Energy-efficiency of 2L-HiSA
	Performance Evaluation

	Concluding Remarks

	Assertive Dynamic Power Management Technique
	Dynamic Power Management
	Related Work
	Assertive Dynamic Power Management Technique
	Laxity Bottom Test (LBT)
	Working Principle
	Choice of Power-efficient State

	Static Optimizations using AsDPM
	Experiments
	Target Application
	Simulation Results
	Comparative Analysis of the AsDPM Technique

	Future Perspectives of the AsDPM Technique
	Memory Subsystem
	Thermal Load Balancing

	Concluding Remarks

	Deterministic Stretch-to-Fit DVFS Technique
	Dynamic Voltage and Frequency Scaling
	Related Work
	Deterministic Stretch-to-Fit Technique
	Dynamic Slack Reclamation (DSR) Algorithm
	Online Canonical Schedule
	Online Speculative speed adjustment Mechanism (OSM)
	m-Tasks Extension Technique (m-TE)

	Experiments
	Setup
	Target Application
	Simulation Results

	Concluding Remarks

	Hybrid Power Management Scheme for Multiprocessor Systems
	Introduction
	Related Work
	Hybrid Power Management Scheme
	Machine-learning Algorithm
	Selection of Experts

	Experiments
	Setup
	Description of Experts
	Simulation Results

	Concluding Remarks

	Conclusions and Future Research Perspectives
	Summary of Contributions and Results
	Future Research Perspectives
	Task Models
	Platform Architectures
	Scheduling Algorithms
	Implementation strategy –Simulations vs Real Platforms
	Thermal Aspects

	Summary

	II Selected chapters: French version
	Introduction
	Introduction
	Contributions
	Résumé
	Conclusions et Perspectives
	Résumé des Contributions et Résultats
	Perspectives
	Modèle des tâches
	Architectures de Plate-forme Cible
	Les algorithmes d'ordonnancement
	Stratégie d'implementation
	Aspects Thermiques
	Résumé
	STORM: Simulation TOol for Real-time Multiprocessor Scheduling
	Functional Architecture
	Software Entities
	Hardware Entities
	System Entities
	Simulation Kernel

	HyPowMan Scheme: Additional Simulation Results
	Simulation Results Using AsDPM & DSF Experts
	Effect of variations in bcet/wcet ratio
	Effect of variations in number of tasks
	Effect of Variations in total utilization

	Simulation Results Using ccEDF & DSF Experts

	Bibliography

