Combining Granularity-based Topic-Dependent and Topic-Independent Evidences for Opinion Detection - TEL - Thèses en ligne Access content directly
Theses Year : 2011

Combining Granularity-based Topic-Dependent and Topic-Independent Evidences for Opinion Detection

Abstract

Opinion mining is a sub-discipline within Information Retrieval (IR) and Computational Linguistics. It refers to the computational techniques for extracting, classifying, understanding, and assessing the opinions expressed in various online sources like news articles, social media comments, and other user-generated content. It is also known by many other terms like opinion finding, opinion detection, sentiment analysis, sentiment classification, polarity detection, etc. Defining in more specific and simpler context, opinion mining is the task of retrieving opinions on an issue as expressed by the user in the form of a query. There are many problems and challenges associated with the field of opinion mining. In this thesis, we focus on some major problems of opinion mining. One of the foremost and major challenges of opinion mining is to find opinions specifically relevant to the given topic (query). A document can contain information about many topics at a time and it is possible that it contains opinionated text about each of the topic being discussed or about only few of them. Therefore, it becomes very important to choose topic-relevant document segments with their corresponding opinions. We approach this problem on two granularity levels, sentences and passages. In our first approach for sentence-level, we use semantic relations of WordNet to find this opinion-topic association. In our second approach for passage-level, we use more robust IR model (i.e., language model) to focus on this problem. Basic idea behind both contributions for opinion-topic association is that if a document contains more opinionated topic-relevant textual segments (i.e., sentences or passages) then it is more opinionated than a document with less opinionated topic-relevant textual segments. Most of the machine-learning based approaches for opinion mining are domain-dependent (i.e., their performance vary from domain to domain). On the other hand, a domain or topic-independent approach is more generalized and can sustain its effectiveness across different domains. However, topic-independent approaches suffer from poor performance generally. It is a big challenge in the field of opinion mining to develop an approach which is both effective and generalized at the same time. Our contributions for this thesis include the development of such approach which combines simple heuristics-based topic-independent and topic-dependent features to find opinionated documents. Entity-based opinion mining aims at identifying the relevant entities for a given topic and extract the opinions associated to them from a set of textual documents. However, identifying and determining the relevancy of entities is itself a big challenge for this task. In this thesis, we focus on this challenge by proposing an approach which takes into account both information from the current news article as well as from the past relevant articles in order to detect the most important entities in the current news. We look at different features at both local (document) and global (data collection) level to analyse their importance to assess the relevance of an entity. Experimentation with a machine learning algorithm shows the effectiveness of our approach by giving significant improvements over baseline. In addition to this, we also present idea of a framework for opinion mining related tasks. This framework exploits content and social evidences of blogosphere for the tasks of opinion finding, opinion prediction and multidimensional ranking. This premature contribution lays foundations for our future work. Evaluation of our approaches include the use of TREC Blog 2006 data collection and TREC Novelty track data collection 2004. Most of the evaluations were performed under the framework of TREC Blog track.
Fouille des opinion, une sous-discipline dans la recherche d'information (IR) et la linguistique computationnelle, fait référence aux techniques de calcul pour l'extraction, la classification, la compréhension et l'évaluation des opinions exprimées par diverses sources de nouvelles en ligne, social commentaires des médias, et tout autre contenu généré par l'utilisateur. Il est également connu par de nombreux autres termes comme trouver l'opinion, la détection d'opinion, l'analyse des sentiments, la classification sentiment, de détection de polarité, etc. Définition dans le contexte plus spécifique et plus simple, fouille des opinion est la tâche de récupération des opinions contre son besoin aussi exprimé par l'utilisateur sous la forme d'une requête. Il ya de nombreux problèmes et défis liés à l'activité fouille des opinion. Dans cette thèse, nous nous concentrons sur quelques problèmes d'analyse d'opinion. L'un des défis majeurs de fouille des opinion est de trouver des opinions concernant spécifiquement le sujet donné (requête). Un document peut contenir des informations sur de nombreux sujets à la fois et il est possible qu'elle contienne opiniâtre texte sur chacun des sujet ou sur seulement quelques-uns. Par conséquent, il devient très important de choisir les segments du document pertinentes à sujet avec leurs opinions correspondantes. Nous abordons ce problème sur deux niveaux de granularité, des phrases et des passages. Dans notre première approche de niveau de phrase, nous utilisons des relations sémantiques de WordNet pour trouver cette association entre sujet et opinion. Dans notre deuxième approche pour le niveau de passage, nous utilisons plus robuste modèle de RI i.e. la language modèle de se concentrer sur ce problème. L'idée de base derrière les deux contributions pour l'association d'opinion-sujet est que si un document contient plus segments textuels (phrases ou passages) opiniâtre et pertinentes à sujet, il est plus opiniâtre qu'un document avec moins segments textuels opiniâtre et pertinentes. La plupart des approches d'apprentissage-machine basée à fouille des opinion sont dépendants du domaine i.e. leurs performances varient d'un domaine à d'autre. D'autre part, une approche indépendant de domaine ou un sujet est plus généralisée et peut maintenir son efficacité dans différents domaines. Cependant, les approches indépendant de domaine souffrent de mauvaises performances en général. C'est un grand défi dans le domaine de fouille des opinion à développer une approche qui est plus efficace et généralisé. Nos contributions de cette thèse incluent le développement d'une approche qui utilise de simples fonctions heuristiques pour trouver des documents opiniâtre. Fouille des opinion basée entité devient très populaire parmi les chercheurs de la communauté IR. Il vise à identifier les entités pertinentes pour un sujet donné et d'en extraire les opinions qui leur sont associées à partir d'un ensemble de documents textuels. Toutefois, l'identification et la détermination de la pertinence des entités est déjà une tâche difficile. Nous proposons un système qui prend en compte à la fois l'information de l'article de nouvelles en cours ainsi que des articles antérieurs pertinents afin de détecter les entités les plus importantes dans les nouvelles actuelles. En plus de cela, nous présentons également notre cadre d'analyse d'opinion et tâches relieés. Ce cadre est basée sur les évidences contents et les évidences sociales de la blogosphère pour les tâches de trouver des opinions, de prévision et d'avis de classement multidimensionnel. Cette contribution d'prématurée pose les bases pour nos travaux futurs. L'évaluation de nos méthodes comprennent l'utilisation de TREC 2006 Blog collection et de TREC Novelty track 2004 collection. La plupart des évaluations ont été réalisées dans le cadre de TREC Blog track.
Fichier principal
Vignette du fichier
Thesis5.0.pdf (3.62 Mo) Télécharger le fichier

Dates and versions

tel-00600439 , version 1 (15-06-2011)

Identifiers

  • HAL Id : tel-00600439 , version 1

Cite

Malik Muhammad Saad Missen. Combining Granularity-based Topic-Dependent and Topic-Independent Evidences for Opinion Detection. Human-Computer Interaction [cs.HC]. Université Paul Sabatier - Toulouse III, 2011. English. ⟨NNT : ⟩. ⟨tel-00600439⟩
577 View
1806 Download

Share

Gmail Mastodon Facebook X LinkedIn More