Susan L Epstein

Abdel Lisser

Eric Monfroy

Barry O'sullivan

Frédéric Saubion

Alvaro Fialho

Romaric Gaudel

Raymond Roos

Luis Da Costa

Ibrahim Abdoulahi

Daniel Ricketts

Said Jabbour Also

Los Olarte

Andres Aristizabal

Luis Pino

Frank Valencia

Silway Hélène Collado

Tatiana Hernandez

Pierre Monceaux

Julien Cledera

Albin Andrieux

Sylvain Meurgue

Thomas Treal

Sébastien Gadelle

Alberto Delgado

Julian Gutierrez

Jorge Pérez

Alejandro Arbelaez Rodriguez

Keywords: 2, 3, 7 3, 3, 5, 6

Autonomous Search is a new emerging area in Constraint Programming, motivated by the demonstrated importance of the application of Machine Learning techniques to the Algorithm Selection Problem, and with potential applications ranging from planning and configuring to scheduling. This area aims at developing automatic tools to improve the performance of search algorithms to solve combinatorial problems, e.g., selecting the best parameter settings for a constraint solver to solve a particular problem instance. In this thesis, we study three different points of view to automatically solve combinatorial problems; in particular Constraint Satisfaction, Constraint Optimization, and SAT problems.

First, we present domFD, a new Variable Selection Heuristic whose objective is to heuristically compute a simplified form of functional dependencies called weak dependencies. These weak dependencies are then used to guide the search at each decision point.

Second, we study the Algorithm Selection Problem from two different angles. On the one hand, we review a traditional portfolio algorithm to learn offline a heuristics model for the Protein Structure Prediction Problem. On the other hand, we present the Continuous Search paradigm, whose objective is to allow any user to eventually get his constraint solver to achieve a top performance on their problems. Continuous Search comes in two modes: the functioning mode solves the user's problem instances using the current heuristics model; the exploration mode reuses these instances to training and improve the heuristics model through Machine Learning during the computer idle time. Finally, the last part of the thesis, considers the question of adding a knowledge-sharing layer to current portfolio-based parallel local search solvers for SAT. We show that by sharing the best configuration of each algorithm in the parallel portfolio on regular basis and aggregating this information in special ways, the overall performance can be greatly improved.

Chapter 1 Introduction

Motivation and Context

Nowadays, it is widely recognized that selecting the right algorithm for a given problem might considerably increase the overall performance to solve complex combinatorial problems. This is because, in general no algorithm outperforms all others on all possible problems. In order to understand this more precisely, we recall the No Free Lunch Theorem (NFL) [START_REF] Wolpert | No Fre Lunch Theorems for Optimization[END_REF] which states that without particular knowledge about a given class (or distribution) of problems, it is not possible to establish that a given algorithm is on average better than any other.

if an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems.

-Wolpert & Macready [START_REF] Wolpert | No Fre Lunch Theorems for Optimization[END_REF].

Interestingly, in the 70's (nearly 20 years ahead of the NFL) Rice [START_REF] Rice | The Algorithm Selection Problem[END_REF] introduced a framework for the Algorithm Selection Problem. Broadly speaking, this framework attempts to use Machine Learning to build a heuristics model. Such a model is mainly a function f (x) which maps a given instance x into an algorithm h i ∈ {h 1 , . . . , h n }, where h i is the most suitable algorithm to solve x, based on some performance criteria (e.g.,

INTRODUCTION

runtime, solution cost, etc). In fact, in general the application of Machine Learning to efficiently solve combinatorial problems is part of an emerging area called Autonomous Search [HMS11, O'S10] whose objective is to automatically tune the parameters of a given algorithm in two directions: offline and self-adaptive tuning. The former is based on extensive preliminary experimentation to identify promising parameters, while in the latter case (also called reactive search [START_REF] Battiti | Reactive Search: Machine Learning for Memory-Based Heuristics[END_REF]) the solver maintains an ongoing interaction with its environment to adapt on-the-fly the parameters of the search algorithm.

Constraint Programming

Constraint Programming (CP) is a powerful technique which allows the resolution of many combinatorial problems and is usually used as black-box for problem solving. That is, a user might only need to write down a model for his problem and push the "go" button to find a feasible solution. However, constraint solvers have been open since the beginning, and expose their parameters to a properly trained 'Constraint Programmer'. What seemed a correct standpoint in the 90's, at a time where the number of applications was pretty small, is seen today as a major weakness [START_REF] Puget | Constraint Programming Next Challenge: Simplicity of Use[END_REF].

In CP, properly crafting a constraint model capturing all constraints of a particular hard problem is often not enough to ensure an acceptable runtime performance. One way to improve performance is to use well-known techniques such as redundant and channeling constraints or to be aware that your constraint solver has a particular global constraint which can do part of the job more efficiently. The problem with these techniques (or tricks) is that they are far from obvious. Indeed, they do not change the solution space of the original modeling, and for a normal user (with a classical mathematical background), it might not be easy to understand why adding redundancy helps.

For this reason, Autonomous (or Automated) search has recently been established as

Contributions of this thesis

one of the main challenging areas in CP. This area consists in developing automatic techniques to tune the parameters of constraint solvers1 . Broadly speaking, current work extends Rice's framework and consists of the following three-step procedure: (1) definition of a proper set of features (or problem descriptors), (2) using Machine Learning to train and learn a heuristics model based on a set of representative training instances, and (3) testing the accuracy of the learnt model on a set of unseen instances.

In addition, current work (see [START_REF] Smith-Miles | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection[END_REF] and more in Chapter 3) can also be seen from two different perspectives. On the one hand, static portfolios (e.g., [PT07, LBNS02, GJK + 10, GHBF05, HHHLB06]) use the winner-takes-all approach by selecting a single (the best) algorithm to solve a given instance. On the other hand, dynamic portfolios (e.g., [OHH + 08, SM07, LL01, PT09, CB04]) refer to a current technology where the system maintains an ongoing interaction with its environment to identify on-the-fly the best algorithm for a given instance.

As pointed out earlier, there exist several approaches which have contributed to the current success of Autonomous Search. We would like to highlight SATzilla [START_REF] Xu | The Design and Analysis of an Algorithm Portfolio for SAT[END_REF] and CPHYDRA [OHH + 08] which are pioneer portfolios in SAT and CP. In addition, the Quickest First Principle [START_REF] Borrett | Adaptive Constraint Satisfaction: The Quickest First Principle[END_REF] is a reference framework for developing dynamic portfolios, that is, where a set of pre-determined algorithms interleaves their execution in order to speed up the search.

Contributions of this thesis

In this thesis we study three different viewpoints to automatically solve combinatorial problems, in particular Constraint Satisfaction, Constraints Optimization, and SAT problems.

The first contribution of this thesis concerns the development of domFD (see Chapter 4) a novel dynamic variable selection heuristic which learns Weak Dependencies during the course of the search. Weak Dependencies are actually a simplified form of functional dependencies which represent relations between the variables of the problem and are used

INTRODUCTION

to identify the most suitable variable at each choice point of the tree-based search algorithm.

The second contribution (see Chapter 5) refers to the Algorithm Selection Problem.

Here, we explore the application of two different feature sets to build a portfolio algorithm for the Protein Structure Prediction Problem. One feature set is from the application domain and the other is from the CP abstraction of the problem. Moreover, in this chapter we also propose the use of forward selection to identify a proper subset of heuristics candidates to build the final heuristics model. Furthermore, we propose the Continuous Search paradigm (see Chapter 6) which extends the typical point of view of the Algorithm Selection Problem. This new paradigm considers real-life situations where the user does not necessary dispose of a large number of training instances to train and learn a heuristics model. Instead, the heuristics model is set to its default parameter settings and it is enriched along a lifelong learning approach, exploiting the problem instances submitted by the user to the constraint solver.

Finally, our last contribution is devoted to a new parallel algorithm for the SAT problem (see Chapter 7). This parallel algorithm uses the well-known concept of parallel portfolio of algorithms, where several algorithms compete and cooperate to solve a given instance.

In this context, each algorithm in the parallel portfolio exchanges the best configuration found so far, in order to carefully craft a new starting point.

Thesis outline

In this section, we describe the structure of the thesis, as well as the connection between the publications associated to the thesis with each chapter.

Chapter 2 introduces the basic concepts and terminology used in this thesis. We briefly describe Constraint Satisfaction Problems, Constraint Optimization Problems, the Satisfiability Problem, and the main algorithms to solve these kinds of problems.

Including complete and incomplete search. Additionally, this chapter presents important concepts about Machine Learning.

Thesis outline

Chapter 3 presents an extensive literature review on the Algorithm Selection Problem in the context of Constraint Satisfaction Problems, Constraint Optimization Problems, the Satisfiability Problem, and Quantified Boolean Formulas. This way, this chapter describes the Algorithm Selection Problem using four different abstractions: traditional portfolio algorithms, per class learning, adaptive algorithms and other work in the area.

Chapter 4 presents our first contribution domFD, a new variable selection heuristic, which aims to compute a simplified form of functional dependencies, so-called weak dependencies. These weak dependencies are used to rank decision variables and guide the search procedure. The main contribution of this chapter was published as [START_REF] Arbelaez | Exploiting Weak Dependencies in Tree-Based Search[END_REF].

Chapter 5 investigates the use of Machine Learning techniques to build a portfolio algorithm by taking into account two different feature sets: features extracted directly from problem domain and features extracted from the CP abstraction of the problem.

Moreover, forward selection is used to automatically select the best subset of algorithms to build the final heuristics model. Finally, the selection of the best algorithm is based on the solution cost of each heuristic in the portfolio after a given amount of time. The main contribution of this chapter was published as [START_REF] Arbelaez | Building Portfolios for the Protein Structure Prediction Problem[END_REF].

Chapter 6 introduces the Continuous Search paradigm whose objective is to exploit computer's idle time to incrementally build a heuristic model for the current distribution of problems. Unlike other work related to the algorithm selection problem (e.g., [SM08, XHHLB07, PT07, SM07, HW09b]) Continuous Search does not require a large number of representative training examples to train and build a heuristics model. The main contributions of this chapter are described as follows: [START_REF] Arbelaez | Online Heuristic Selection in Constraint Programming[END_REF] presents the application of Support Vector Machines to select the best CSP heuristic at different states of the search, [START_REF] Arbelaez | Continuous Search in Constraint Programming: An Initial Investigation[END_REF] briefly introduces the Continuous Search paradigm, and [START_REF] Arbelaez | Continuous Search in Constraint Programming[END_REF][START_REF] Arbelaez | Continuous Search in Constraint Programming[END_REF] fully details this new paradigm.

Chapter 7 describes a new parallel local search solver for SAT which extends the traditional parallel portfolio algorithm by adding a knowledge-sharing framework.

INTRODUCTION

This way, each algorithm candidate exchanges its best configuration found so far, in order to carefully design a new starting point. The main contributions of this chapter were published as [START_REF] Arbelaez | Improving parallel local search for SAT[END_REF][START_REF] Arbelaez | Efficient Parallel Local Search for SAT[END_REF] Chapter 8 presents general conclusions of this thesis and gives some directions for future work.

List of Publications

Most of the material of this thesis has been previously reported in the following peer- Submitted to JAIR, 2011. [START_REF] Arbelaez | Efficient Parallel Local Search for SAT[END_REF] Chapter 2

Formalism

In the previous chapter, we have introduced and motivated the general objectives of this thesis. Now, in this chapter, we describe some basic concepts, such as Constraint Satisfaction Problems (CSPs), the Propositional Satisfiability Problem (SAT), and Constraint Optimization Problems (COPs). Additionally, we review notions on backtracking and local search, which are the most commonly used techniques to solve this kind of problems.

The chapter concludes by presenting Supervised Machine Learning.

Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a triple X, D, C where • X = {X 1 , X 2 , . . . , X n } represents a set of n variables.

• D = {D 1 , D 2 , . . . D n } represents a set of associated domains (i.e., possible values for the variables).

• C = {C 1 , C 2 , . . . , C m } represents a finite set of constraints.

Each constraint C i involves a set of variables in X and is used to restrict the combinations of values between these variables. Constraints are often expressed as mathematical expressions such as X 1 = X 2 + X 10 or particular declarations such as alldifferent(

FORMALISM

[X 1 , X 2 , . . . , X n]) indicating that variables X 1 to X n must have different values. The degree of a variable deg(X i) indicates the number of constraints involving X i and dom(X i) (dom(X i) = D i) denotes the current domain of a given variable X i . In theory, the domain of a variable can initially take an infinite set of values, however in practice it is usually restricted to a finite set of numbers (e.g., dom(X i) ∈ [1..100]) Solving a CSP involves finding a solution, i.e., an assignment of values to variables such as all constraint are satisfied. If a solution exits the problem is stated as satisfiable and unsatisfiable otherwise. Currently, there are two well established techniques for solving CSPs, complete and incomplete techniques [START_REF] Bordeaux | Propositional Satisfiability and Constraint Programming: A Comparative Survey[END_REF][START_REF]Handbook of Constraint Programming (Foundations of Artificial Intelligence)[END_REF], the former is developed on top of a backtracking algorithm which combines a tree-based search with constraint propagation, while the latter is based on local search algorithms to quickly find an assignment for each variable that satisfies all constraints. A well known CSP example is the sudoku problem [START_REF] Simonis | Sudoku as a Constraint Problem[END_REF]. This problem consists in completing a pre-filled 9 × 9 matrix with numbers from [1..9] such that every column, row, and 3 × 3 sub-matrix (see Figure 2.1) contain different values. A formal CSP definition of this problem is presented as follows:

Variables =              X 11 X 21 . . . X
Constraints =        ∀ i∈[1..9] alldif f erent([X i1 . . . X i9]) Columns ∀ i∈[1..9] alldif f erent([X 1i . . . X 9i]) Rows ∀ i,j∈[0..2] alldif f erent([X 3i+1,3j+1 . . . X 3i+3,3j+3]) Sub-matrices Domains = ∀ i,j∈[1..9] D ij ∈ [1..9]

Complete Search

Algorithm 2.1 depicts a depth-first search backtracking algorithm [START_REF] Van Beek | Backtracking search algorithms[END_REF] widely used to tackle CSPs. The algorithm starts with the problem definition s and at each node of the

Complete Search

FORMALISM

search select-variable (line 4) selects an unassigned variable x and select-value (line 5) selects a valid value for x, following that a constraint x = v is added to the search process.

In case of unfeasibility, the backtracking search can undo previous decisions (line 9) and add new constraints such as x = v (line 10). The search thus explores a so-called search tree (i.e., binary search tree), where each leaf-node corresponds to a solution or an inconsistent assignment of values for the variables (i.e., Failure).

Clearly, in the worst-case scenario the search process requires to explore an exponential space. Therefore, it is necessary to combine the exploration of variable/value candidates with a look-ahead strategy to narrow the domains of the variables and reduce the remaining search space through constraint propagation.

Algorithm 2.1 backtracking(Problem s)

1: if s = SOLU T ION or s = F AILU RE then 2:
return s 3: end if 4: x ← select-variable(s) 5: v ← select-value(x) 6: add-constraint-and-propagate(x = v) to s 7: result ←backtracking(s) 8: if result = F AILU RE then In order to illustrate how the backtracking algorithm solves a CSP, let us consider the sudoku example presented in Figure 2.1 1 . In this example, we assume that the alldifferent constraint implements domain consistency (so-called generalized arc consistency) which means that for each value for all variables there exists an assignment of variables that satisfies the constraint. Additionally, let us assume that the variable selection function returns the first none assigned variable in the list of candidates and the value selection returns the minimum value in the domain.

1 Instance 12 of the sudoku example in Gecode [START_REF]Gecode: Generic Constraint Development Environment[END_REF] Figure 2.2 shows a step by step execution of the algorithm, it starts by performing constraint propagation to remove inconsistent values for the variables (Figure 2.3(a), then the search starts and the constraint X 12 = 3 is added (Figure 2.3(b)), the resulting state of the search is still unknown, so that X 42 = 7 is also added (Figure 2.3(c)). As a results of this X 65 has no support because its remaining values are {1, 3} and those values are already assigned to X 64 and X 75 . The search backtracks to the previous step and tries

X 42 = 7 (Figure 2.3(d))
where the variable X 95 is inconsistent with X 45 and X 82 , at this point the search backtracks to the root node to post X 12 = 3 (Figure 2.3(e)) and X 13 = 3 (Figure 2.3(f)), after posting the last constraint the constraint propagation engine detects an inconsistency among X 48 , X 46 , X 44 and X 58 , therefore the algorithm backtracks to the previous state to post X 12 = 3 (Figure 2.3(g)) where a solution is finally obtained. that implements a static policy by means of restart every c backtracks, geometric restarts [START_REF] Walsh | Search in a Small World[END_REF] that systematically increase the cutoff c by multiplying it by a constant factor (e.g., ×1.2), Luby [START_REF] Luby | Optimal Speedup of Las Vegas Algorithms[END_REF] defines the cutoff of each restart based on the sequence Luby={1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . . }, which is formally defined as follows:

Luby(i) =            2 k-1 , if ∃k.i = 2 k -1 Luby(i -2 k-1 + 1), if ∃k.2 k-1 ≤ i < 2 k -1
In this way, the cutoff of the i th restart is p × Luby(i), where p is a constant factor.

Restarts are also an important component in nearly all complete SAT solvers as they have shown tremendous impact on the performance of the solvers [START_REF] Huang | The Effect of Restarts on the Efficiency of Clause Learning[END_REF].

Variable and Value ordering

This section briefly reviews the basic ideas and principles behind the last generation of CSP heuristics. As pointed out above, variable/value selection heuristics are critical when solving CSPs and selecting the right combination of heuristics for a given problem-instance might considerably improve the overall performance. Classical value ordering strategies can be summarized as follows: min-value selects the minimum value, max-value selects the maximum value, mid-value selects the median value and random-value selects a random value from the remaining domain of a given variable.

On the other hand, variable selection heuristics are more important and comprehend more sophisticated algorithms. lexico is one of the simplest heuristics for variable selection, selecting the first unassigned variable in the list of decision variables. random selects an unassigned variable with a uniform distribution. mindom [HE79] is a well established CSP heuristic based on the "First-Fail Principle: try first where you are more likely to fail", this strategy chooses the variable with minimum size domain. mindom is usually used to complement more sophisticated heuristics such as dom-deg, which selects the variable that minimizes the ration dom degree , where dom and degree denote the size of the domain of a given variable and its respectively dynamic degree.

In [START_REF] Boussemart | Boosting Systematic Search by Weighting Constraints[END_REF], Boussemart et al., proposed wdeg and dom-wdeg to focus the search on difficult constraints. The former selects the variable that is involved in most failed constraints. A weight is associated to each constraint and incremented each time the constraint fails. Using this information wdeg selects the variable whose weight is maximal. The latter dom-wdeg, is a mixture of the current domain and the weighted degree of a variable,

FORMALISM

choosing the variable that minimizes the ratio dom wdeg . In [START_REF] Refalo | Impact-Based Search Strategies for Constraint Programming[END_REF], Refalo proposed the impacts dynamic variable-value selection heuristic.

The rationale of impacts is to measure the size of the search space given by the Cartesian product of the domain of the variables (i.e., |dom(x

1)| × |dom(X 2)| × • • • × |dom(x n)|).
Using this information the impact of a variable is averaged over all previous decisions in the search tree and the variable with highest impact is selected.

Incomplete Search

Unlike the previously mentioned search algorithm that combines the variable/value selection process with constraint propagation to solve CSPs, incomplete methods are mainly based on local search algorithms to explore the search space. Algorithm 2.2 depicts a traditional local search algorithm used to solve CSPs. The algorithm starts with a random value assignment for each variable in the problem (initial-configuration line 2), and iteratively selects the best move (variable and value selection) that will most likely increase the chances of solving the CSP. min-conflict [START_REF] Minton | Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems[END_REF] is a well-known variable selection strategy in the context of local search, it firstly selects a random variable from an unsatisfied constraints and from that variable it chooses the value that minimize the number of failed constraints.

Incomplete Search

One of the main drawbacks of local search is that it can quickly reach a local minimum and at this point no improvement can be easily achieved. To overcome this limitation, the algorithm is usually equipped with a tabu list [START_REF] Gendreau | An Introduction to Tabu Search[END_REF] that prevents the search of visiting previous observed states. Another strategy to avoid local minimum is the random-walk [START_REF] Selman | Domain-Independent Extensions to GSAT: Solving Large Structured Satisfiability Problems[END_REF] method which adds noise to the variable/value selection process. This algorithm selects a random value from the selected variable with probability p and with probability 1p selects the value that minimizes the number of failed constraints. In addition, it is also a common practice to restart the local search algorithm with a new (fresh) random configuration after a given number of iterations (i.e., Max-Iter).

In order to illustrate the local search algorithm, let us consider again the sudoku instance described in Figure 2.1. In this example, we will assume that the variable selection process selects an unsatisfiable constraint and from this constraint it selects the best action (i.e., variable and value).

Let us assume that after completing with random values the pre-filled matrix we obtain the configuration observed in Figure 2.4(a), from this configuration a conflicting constraint is selected (blue constraint in Figure 2.4(a)). In this constraint it is observed that variables X 41 and X 52 are in conflict, and the best action would be replacing X 41 = 3 since this move satisfies 3 constraints while changing X 52 would only satisfy one. A similar behavior is obtained at the next iteration of the algorithm presented in Figure 2.4(b) by selecting X 34 = 3. Finally at the last iteration of the algorithm the only two unsatisfied constraints are observed in Figure 2.4(c) and here the best action is to assign X 77 = 1 to finally reach the solution depicted in Figure 2.4(d). demonstrating that no such assignment can be found. The latter is mainly developed on top of the local search algorithm described in Section 2.3, however, in this case at each iteration the main component is to flip the truth value of the selected variable. In the remaining of this section, we will focus on the main variable selection methods in the context of local search for SAT.

FORMALISM

Positive Literal Clause Negative Literal (X 1 ∨ X 2 ∨ -X 3) ∧ (-X 2 ∨ X 3 ∨ X 4) ∧ (-X 1 ∨ -X 5 ∨ X 3)

Variable Selection

This section briefly reviews the main characteristics of state-of-the-art local search solvers for SAT solving. As pointed out above these algorithms are developed to deal with the variable selection function (select-variable in Algorithm 2.2) which indicates the next variable

FORMALISM

to be flipped in the current iteration of the algorithm. Broadly speaking, there are two main categories of variable selection functions, the first one motivated by the GSAT algorithm [START_REF] Selman | A New Method for Solving Hard Satisfiability Problems[END_REF] is based on the following score function:

score(x) = make(x) -break(x)
Intuitively make(x) indicates the number of clauses that are currently satisfied but flipping x become unsatisfied, and break(x) indicates the number of clauses that are unsatisfied but flipping x become satisfied. In this way, local search algorithms select the variable with minimal score value (preferably with negative value), because flipping this variable would most likely increase the chances of solving the instance. It is also important to notice that GSAT-like algorithms have been previously used in [START_REF] Mazure | Boosting Complete Techniques Thanks to Local Search methods[END_REF] to guide the variable selection process of complete SAT solvers

The second category of variable selection functions is the WalkSAT-based one [START_REF] Selman | Noise Strategies for Improving Local Search[END_REF] which includes a diversification strategy in order to avoid local minimums, this extension selects, at random, an unsatisfied clause and then picks a variable from that clause. The variable that is generally picked will result in the fewest previously satisfied clauses becoming unsatisfied, with some probability of picking one of the variables at random.

• TSAT [START_REF] Mazure | Tabu Search for SAT[END_REF] extends the GSAT algorithm by proposing the use of a tabu list which contains a set of recently flipped variables in order to avoid flipping the same variables for a given number of flips. This way, the tabu list helps to scape from local minimums.

• Novelty [START_REF] Mcallester | Evidence for Invariants in Local Search[END_REF] firstly selects an unsatisfied clause c and from c selects the best v best and second best v 2best variable candidates, if v best is not the latest flipped variable in c then Novelty flips this variable, otherwise v 2best is flipped with a given probability p and v best with probability 1-p. Important extensions to this algorithm can be found in Novelty+, Novelty++ and Novelty+p.

• Novelty+ [START_REF] Holger | On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT[END_REF] with a given probability wp (random walk probability) randomly selects a variable from an unsatisfied clause and with probability 1-wp uses Novelty to select the variable.

The Propositional Satisfiability Problem

• Novelty++ [START_REF] Chu | Diversification and Determinism in Local Search for Satisfiability[END_REF] with a given probability dp (diversification probability) flips the latest flipped variable from the selected unsatisfied clause and with probability 1-dp uses Novelty to select the variable.

• Novelty+p [START_REF] Chu | Combining Adaptive Noise and Look-Ahead in Local Search for SAT[END_REF] introduces the concept of promising score (pscore) for a given variable as follows:

pscore(x) = score A (x) + score B (x)
where A is the current problem configuration (assignment for the variables), B is the configuration after flipping • Adaptive Novelty+ (AN+) [START_REF] Holger | An Adaptive Noise Mechanism for WalkSAT[END_REF] uses an adaptive mechanism to properly tune the noise parameter (wp) of walksat-like algorithms (e.g, Novelty+). This way, wp is initialized to 0 and if search stagnation is observed (i.e., no improvement has been observed for a while), then wp is incremented, i.e., wp=wp+(1+wp)×φ. On the other hand, whenever an improvement is observed wp is decreased, i.e., wp=wp-wp×φ/2.

This adaptive mechanism has shown impressive results, and is used to improve the performance of other local search algorithms in the context of SAT solving.

• Scaling and Probabilistic Smoothing (SAPS) [START_REF] Hutter | Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT[END_REF] adds a weight penalty to each

FORMALISM

clause. These weights are initialized to 1 and updated during the search process.

More precisely, as soon as a local minimum is reached SAPS implements a multiplicative increase rule to dynamically update the weight for unsatisfied clauses and at each step of the algorithm with a given probability P smooth weights are adjusted according to a given smoothing factor ρ. Additionally, a local minimum is assumed when no improvement has been observed for a while.

• Pure Additive Weighting Scheme (PAWS) [START_REF] Thornton | Additive versus Multiplicative Clause Weighting for SAT[END_REF] similarly to SAPS, each clause is associated with a weight penalty. However, in this case the authors implement an additive increase rule to dynamically modify the penalty for unsatisfied clauses and if a given clause penalty has been changed a given number of times this penalty value is adjusted.

• Reactive SAPS (RSAPS) [START_REF] Hutter | Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT[END_REF] extends SAPS by adding an automatic tuning mechanism to identify suitable values for the smoothing factor ρ.

• Adaptive G 2 WSAT (AG2) [START_REF] Chu | Combining Adaptive Noise and Look-Ahead in Local Search for SAT[END_REF] aims to integrate an adaptive noise mechanism into the G 2 WSAT algorithm. Similarly, Adaptive G 2 WSAT+p (AG2+p) also uses an adaptive noise mechanism into the G 2 WSAT+p algorithm.

Constraint Optimization Problems

A Constraint Optimization Problem (COP) is basically a CSP with an objective function f (X) to optimize. Unlike CSPs where we only need to explore the search space until a solution is found, solving a COP involves finding a solution (i.e., a valid value for all variables) and proving that the solution is optimal.

Algorithms 2.3 and 2.4 describe a well-known method used to solve COPs, here we assume without loss of generality a minimization problem. The algorithm starts with the Search Optimization method which sets the best solution found so far to N U LL and then executes a depth-first search branch and bound algorithm (Search-BB). This algorithm prunes (if possible) sub-optimal portions of the search by comparing the current state of the search with the best solution found so far (line 1). This pruning mechanic ensures

Constraint Optimization Problems

that every new solution is better than the previous best known one. After this point, the B&B algorithm behaves similar to the backtracking algorithm described above, selecting the most suitable variable/value pair (lines 8-9). However, in this case to prove optimality, the algorithm must explore the right and the left branches of the tree.

Supervised Machine Learning

Supervised Machine Learning exploits data labelled by the expert to automatically build hypotheses emulating the expert's decisions [START_REF] Vapnik | The Nature of Statistical Learning[END_REF]. Formally, a learning algorithm processes a training set E = {(x i , y i), . . . (x n , y n)} where x i is the example description (i.e., vector of features, Ω = IR d) and y i is the associated output. The output can be a numerical value (i.e., regression) or a class label (i.e., classification). In this chapter, we limit our study to the classification case and each feature can be a categorical, continuous or discrete value.

The learning algorithm outputs a hypothesis f : Ω → Y associating to each example description a desirable output y. Among machine learning applications are pattern recognition, ranging from computer vision to fraud detection [START_REF] Larochelle | Classification Using Discriminative Restricted Boltzmann Machines[END_REF], predicting protein function [START_REF] Al-Shahib | Predicting Protein Function by Machine Learning on Amino Acid Sequences -A Critical Evaluation[END_REF], game playing [START_REF] Gelly | Combining Online and Offline Knowledge in UCT[END_REF], or autonomic computing [RBM + 05]. In the following, we will describe Support Vector Machines and Decision Trees, two of the most popular machine learning algorithms for classification.

A common technique to evaluate the performance of a machine learning system is to use k-fold cross-validation [START_REF] Kohavi | A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection[END_REF]. In k-fold cross-validation the entire dataset D is divided into k disjoint sets (D 1 , D 2 , . . . , D k) . For each subset D i∈k , the hypothesis model is learn with D -D i and tested on D i .

Support Vector Machines

Support Vector Machines (SVM) is a well-known machine learning technique for binary classification, that is, the associated label y i is limited to two categories {-1, 1}. Linear SVM considers real-valued positive and negative instances (Ω = IR d) and constructs the separating hyperplane which maximizes the margin (Figure.

f (x) = < w, x > +b = α i < x i , x > +b
The SVM approach can be extended to non-linear spaces, by mapping the instance space Ω into a more expressive feature space Φ(Ω). This mapping is made implicit through the so-called kernel trick, by defining K(x, x) = < Φ(x), Φ(x) >; it preserves all good SVM properties provided the kernel be positive definite. Among the most widely used kernels are the Gaussian kernel (K(x, x) = exp{-||x-x || 2 σ 2 }) and the polynomial kernel

(K(x, x) = (< x, x > +c) d).
More complex separating hypotheses can be built on such kernels,

f (x) = α i K(x i , x) + b
using the same learning algorithm core as in the linear case. In all cases, a new instance x is classified as positive (respectively negative) if f (x) is positive (resp. negative).

Although SVMs are developed for binary classification, this machine learning technique can also be used in the context of multi-class classification using two main strategies:

FORMALISM

one-vs-all and one-vs-one [START_REF] Rifkin | In Defense of One-Vs-All Classification[END_REF]. The former creates N binary classifiers (one for each class) and to label a new example the classifier with largest score is selected. The latter creates all possible combinations of binary classifiers pairs, and to label a new example, all classifiers vote for a winning class.

Decision Trees

In decision tree learning the hypothesis model is represented in terms of a decision tree (see

Supervised Machine Learning

Finally, Figure 2.7 illustrates a resulting decision tree example for the well-known tennis problem [START_REF] Mitchell | Machine Learning[END_REF], which consists in defining whether to play tennis based on the weather conditions. An instance is classified by looking the attribute indicated by the root node and moving down in the tree using the branching decisions. It is also worth mentioning that unlike SVMs, decision tree learning supports multi-class classification without using the composition of several independent models.

Chapter 3

Related work

In the previous chapter, we have presented general concepts about Constraint Programming and Machine Learning. Now, in this chapter, we review a wide variety of methods devoted to the Algorithm Selection Problem in the context of Constraint Satisfaction Problems, and related areas such as the Satisfiability Problem and Quantified Boolean Formulas. In particular, we discuss how up to now this problem has been explored from different perspectives, including: portfolio algorithms, which select the most appropriate algorithm for a given problem instance; per-class learning, which aim to select the most appropriate parameter configuration for a given algorithm on a given class of problems; adaptive algorithms, which internally adapt the parameters of a given algorithm based on problem changing conditions. We also review some other work developed in the area.

The Algorithm Selection Problem

The study of the algorithm selection problem goes back to the seminal work of Rice in [START_REF] Rice | The Algorithm Selection Problem[END_REF] who proposed an abstract model to select the most suitable algorithm for a given instance taking into account some performance criteria. Figure 3.1 depicts the general framework of the proposed model. The basic idea behind the scheme is that each problem instance x in the problem space P is represented by a set of problem features f (x) ∈ F , where f is a function intended to extract the feature vector from x and F represents the feature space. Additionally, the selection function S(f (x), w) takes as an input the feature vector f and a set of user defined performance criteria (or criteria space) w which indicates a family of performance metrics (e.g., algorithm's runtime, solution quality, etc), and returns the most suitable algorithm a whose expected performance is indicated by p. Notice that p is a n-dimensional vector, where each element in the vector indicates a given performance criterion. Finally in order to identify a single performance measure for a given algorithm a the norm value ||p|| = g(p, w) is calculated such that p = P (a, w).

RELATED WORK

Portfolios for SAT

Over the last 15 years, the study of the application of Machine Learning to build a portfolio algorithm for the satisfiability problem has become a hot topic in the AI community. Early studies were devoted to dividing the expected runtime of a given algorithm into different categories. However, the current state-of-the-art portfolios focus on predicting the actual runtime of each algorithm candidate.

The Algorithm Selection Problem

In [HRG + 01] Horvitz et al., proposed a supervised machine learning approach to characterize the runtime of a given algorithm on a set Quasigroup instances. In an offline training procedure each training instance is described by means of a set of features or attributes such as: "ratio between unassigned variables and the size of the problem", "variance of unassigned variables across all rows and columns", "average of explored nodes", "average depth of the search tree", etc. This feature set is used to train a bayesian learning algorithm that will classify the runtime needed to solve a new problem instance into two main classes: short and long. short (resp. long) states that the solving time of a given instance is less (resp. greater) than the median time required to solve the entire training set. This information can later be used to discard low quality heuristics when solving new instances.

Later in [NLBH + 04, LBNS02, LBNS09] Nudelman et al. instead of characterizing the runtime to solve a SAT problem, faced the challenging task of predicting its runtime. To this end, the so-called Empirical Hardness Model methodology is proposed to estimate the runtime of a given algorithm to solve a given instance. Empirical Hardness Model consists of the following 5-steps procedure to build a linear regression model. This model will work as runtime predictor for a given algorithm based on a set of problem descriptors (so-called features)

1. Select a problem distribution.

2. Select a set of suitable features. This methodology is general enough to build a runtime predictor for any algorithm.

Among the most important steps are the identification of problem features and building the linear regression model. The feature extraction is an important step and it requires highly experimented users to come with an appropriate feature vector to fully describe the problem. For instance, in [START_REF] Leyton-Brown | Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions[END_REF][START_REF] Leyton-Brown | Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions[END_REF] features associated to the winner determination

RELATED WORK

problem are discussed and analyzed in the context of Empirical hardness model. Additionally, the learnt runtime function is defined as f (x) = w φ, where φ is the vector of features and w is a set of free variables which will be computed using ridge regression [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF].

Due to the high success of Empirical Hardness model, this methodology is also applied in SATzilla [START_REF] Xu | The Design and Analysis of an Algorithm Portfolio for SAT[END_REF][START_REF] Xu | SATzilla: Portfolio-based Algorithm Selection for SAT[END_REF] SATzilla has been extended in many directions. Firstly, incorporating a Mixture-ofexperts model, where the machine learning model combines the decision of two or more learners to improve the overall accuracy of the learnt system. In this way, [XHLB07] uses a Sparse Multinomial Logistic technique to compute the probability that a given instance is SAT or UNSAT, this information is then used to weight the previously mentioned linear regression model. In the same direction, Haim and Walsh [START_REF] Haim | Restart Strategy Selection Using Machine Learning Techniques[END_REF] also combine the decision of a logistic and linear regression models to build a portfolio for SAT, however, in this case the portfolio takes into account several restarts policies for a set of well-known SAT solvers. At this point, it is also worth mentioning [START_REF] Devlin | Satisfiability as a Classification Problem[END_REF] where Devlin and O'Sullivan show that we can use traditional classification algorithms (e.g., Random Forest, Decision Trees, k-Nearest Neighbor) to predict with high level of confidence whether a given SAT formula is SAT or UNSAT.

Another important contribution to SATzilla is presented in [START_REF] Hutter | Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms[END_REF][START_REF] Hutter | Parameter Adjustment Based on Performance Prediction: Towards an Instance-Aware Problem Solver[END_REF] where Hutter et al., extended SATzilla to deal with the parameter tuning problem. In this context,

The Algorithm Selection Problem

the goal is to use the SATzilla framework to identify promising parameter configurations for local search algorithms for SAT. The learnt runtime predictor is slightly modified to include two inputs f (x, y), where x is the vector of SAT features and y is a given parameter configuration. Thus, if the number of parameter configurations is long enough, once a new instance arrives one might select the configuration with minimal expected runtime, otherwise this approach can be used to identify a robust configuration during the training phase.

Most recently, Xu et al., proposed hydra [START_REF] Xu | Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection[END_REF] to build a portfolio for SAT considering highly parametrized algorithms. Thus, a solver candidate is a given algorithm running with a given parameter configuration. hydra is a robust methodology which begins with a given algorithm and then iteratively adds new solvers to the portfolio until a given timeout is reached or after a given number of iterations. More precisely, at every iteration a parameter tuning tool (e.g., [START_REF] Hutter | ParamILS: An Automatic Algorithm Configuration Framework[END_REF]) is used to identify a new solver candidate. Once the new solver is available, the portfolio is re-computed taking into account the latest obtained algorithm. Notice that the portfolio construction removes useless solvers that do not help to improve the performance, so that although new solvers are iteratively added, not all of them are necessarily considered in the portfolio.

Unlike previous methods that estimate the runtime of a given algorithm before actually solving the problem, Haim and Walsh studied a slightly different point of view in [START_REF] Haim | Online Estimation of SAT Solving Runtime[END_REF][START_REF] Haim | Online Search Cost Estimation for SAT Solvers[END_REF], proposing the Linear Model Prediction (LMP) method. This method aims to build a runtime prediction function which determines the remaining time from the current state until the end of the search, this way, the estimation is available at any time. To this end, the feature vector includes information regarding past performance of the search. For instance, learnt clauses size, conflict clause size, average clause size, search depth, etc., and the construction of the runtime function is defined using linear regression as previously stated for empirical hardness models.

Finally, another interesting application of Machine Learning to the algorithm selection problem in the context of SAT is presented in [START_REF] Lagoudakis | Learning to Select Branching Rules in the DPLL Procedure for Satisfiability[END_REF] where Lagoudakis and Littman proposed the use of reinforcement learning [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] to select branching rules for SAT. Although this work presented important results, the learning function is defined by considering only the total number of variables at a given state of the search tree.

RELATED WORK

Portfolios for QBF

This section is devoted to the use of machine learning to deal with the algorithm selection problem in the context of Quantified Boolean Formulas (QBF) [START_REF] Benedetti | QBF-Based Formal Verification: Experience and Perspectives[END_REF].

Unlike SATzilla, which selects the algorithm with minimal expected runtime before actually solving the problem, Samulowitz and Memisevic [START_REF] Samulowitz | Learning to Solve QBF[END_REF] proposed an adaptive solver, where at each node of the search tree a classification algorithm (i.e., multinomial logistic regression) is used to predict the best algorithm h best . After h best is obtained, it is used to choose the most promising variable. It is important to notice that although the best algorithm is dynamically selected while solving a given problem, the winner heuristic is determined by applying each single algorithm to solve the entire problem instance during the training phase. Therefore, this work requires an important number of training instances to build a model with good generalization properties.

Pulina and Tacchella in [START_REF] Pulina | A Multi-engine Solver for Quantified Boolean Formulas[END_REF] studied the application of four well-known machine learning techniques (Decision trees, 1-nearest neighbor, decision rules and logistic regression) to implement AQME (Adaptive QBF multi-engine) a portfolio for QBF. As opposed to previous work on QBF, this approach uses AQME to select the most appropriate algorithm to solve a given QBF instance and this algorithm is used for the entire search process.

Interestingly, the performance of AQME with all learning techniques was considerably better than individual QBF solvers. However, as one could have been expected none of the learning techniques is superior than the others for all the experimental scenarios.

Another important contribution in the context of QBF solving is presented in [START_REF] Pulina | A Self-Adaptive Multi-Engine Solver for Quantified Boolean Formulas[END_REF] where Pulina and Tacchella detailed self-AQME, which extends previous work on AQME with a new training algorithm to deal with several distributions of problems. self-AQME works in rounds, at each round an execution sequence [(t 1 , S 1), (t 2 , S 2), . . . , (t n , S n)] is obtained, where t i indicates the time cutoff for the i th solver in the sequence. The predicted best solver is always placed first in the sequence and the remaining solvers candidates are sorted with a given criteria (e.g., performance in previous QBF competitions), notice that (t 1 ,t 2 , . . . , t n) values might change between rounds. This procedure is repeated until a solution is found or a given global timeout is reached, if a solution is obtained with a nonexpected solver s (i.e., s = predicted best solver) then a new training example I, s is

The Algorithm Selection Problem

added to the classification model, where I represents the feature vector associated to the problem instance and s indicates the solver that found the solution.

self-AQME was experimented using the following three sorting criteria: Trust the Predicted Engine (TPE) grants a given L time cutoff for the first round by means of executing all available algorithms with a timeout of L N , where N indicates the number of candidates. If no solution is found during the first round, the predicted best solver is executed with all the remaining time budget. All engines are the same (AES) equally divides the global time budget for each solver candidate, notice that AES will always solve the same number of instances no matter the learning technique (even with random guesses). Increasing the time round-robin (ITR), all solver candidates are executed with a given ρ time cutoff at each round, and ρ is exponentially increased after finishing a round. Interestingly, using QBF competitions settings3 , TPE exhibited the worst performance among the three methodologies, and AES showed the overall best performance in terms of number of solved instances. However, when drastically decreasing the overall global time budget, TPE becomes a very effective algorithm, followed by ITR and AES was the worst. On the other hand, more recently, Stern et al., [SSH + 10] used a machine learning technique called MatchBox [START_REF] Stern | Matchbox: Large Scale Online Bayesian Recommendations[END_REF] to improve the performance of the TPE strategy.

Portfolios for CSP

Nowadays, there is an important number of methodologies for building portfolios for SAT and QBF solving, however few efforts have been devoted to CSP. An alternative explanation lies in the fact that CSPs are more diverse than SAT instances; SAT instances only involve boolean variables and clauses, contrasting with CSPs using variables with large domains, On the other hand, to the best of our knowledge the most remarkable work in the context of CSPs is the CPHYDRA solver [OHH + 08]. CPHYDRA is a portfolio-like algorithm that exhibited the overall best performance in the 2008 CSP competition 4 . Broadly speaking, CPHYDRA is a portfolio algorithm developed upon case-based reasoning; it maintains a database with all solved instances (so-called cases). Later on, once a new instance I arrives a set of similar cases C is computed and based on C it builds a switching policy to select (and execute) a set of black-box solvers that will maximize the possibilities of solving I within a given amount of time. Similar cases are retrieved using the k-nearest neighbor (knn) algorithm and a similarity metric (euclidean distance) which represents the distance between the feature vector of I and a training example.

CPHYDRA uses two set of features: syntactic and semantic. The syntactic feature set aims to capture general properties of the problem and is computed directly from the XCSP specification [START_REF] Roussel | XML Representation of Constraint Networks: Format XCSP 2[END_REF] of the instance, while the semantic features set aims to capture information about the structure of the problem and is computed by launching the mistral solver [START_REF] Hebrard | A Constraint Satisfaction Library[END_REF] during a preliminary testing period of 2 secs and mainly involves general search statistics obtained during the preliminary testing period. After computing the features and obtaining the k most similar cases, the following problem formulated to define the order in which each individual CSP solver will be executed.

maximize s∈S C(s,f (s)) d(c)+1 subject to s∈S f (s) ≤ 1800
Where C(s, t) indicates that a given solver s is able to solve a similar instance with a time limit of t seconds, and f (s) ≤ 1800 indicates that the overall time to solve a single instance is set to 1800 seconds, and d(c) indicates the distance between the similar case and the new instance. Intuitively, nearest instances are more likely to be more informative. As

Portfolios for Optimization problems

pointed out by the authors, solving this problem is NP-hard. However, as CPHYDRA uses a few number of solvers and k is not greater than 40, computing the schedule of solvers does not introduce any considerable overhead.

CPHYDRA was trained using instances from the 2007 CSP competition, this way before entering in the 2008 competition the database of stored cases (or instances) was completely filled with respectively features and runtimes for each particular training sample, and the information in the database remained constant during the competition (as incremental learning is not allowed). Finally, it is important to notice that CPHYDRA won 4 out of 5 categories in the competition and in the remaining category was placed 2nd.

Other researchers have also used machine learning to build portfolio algorithms in the context of constraint programming; in [XSS09] Xu et al., used Q-learning to identify branching rules and on the other hand, [KMN10, GKMN10] used a AdaBoost-like approach [START_REF] Schapire | Advances in Boosting[END_REF] to automatically tune the minion solver [START_REF] Gent | Minion: A Fast Scalable Constraint Solver[END_REF].

Portfolios for Optimization problems

So far, we have presented methodologies for solving satisfiability problems in the context of SAT, QBF and CSP. In this section, we switch our attention to optimization problems.

Unlike satisfiability problems, solving an optimization problem involves finding the best solution and prove that the solution is the optimal. Unfortunately, in many cases this process cannot be completed within a reasonable amount of time and the system must provide to the user the best solution found so far.

Beck and Freuder in [START_REF] Beck | Simple Rules for Low-Knowledge Algorithm Selection[END_REF] proposed the low-knowledge approach to automatically select the most appropriate algorithm in the context of optimization problems. To this end, a given time limit of L secs is available to find the best solution for a given instance. In this way, during a prediction phase, each algorithm candidate A i is executed with a timeout of L/N seconds. Every t secs the best solution found so far is stored in

K i =[b 1 ,b 2 , . . . ,
b n] indicating the best solution for the i th algorithm up to each time interval (i.e., t, 2t, 3t, . . . , nt seconds). Taking this into account, three methods to select the best algorithm are proposed: pcost selects the algorithm with final best solution cost, pslope selects the algorithm considering the best observed improvement in between stored solutions, and

RELATED WORK

pextrap selects the algorithm based on an extrapolation of the current solution at a time L/N to L. Overall the quality of the prediction technique depends on the characteristics of the problem and the amount of time given for the prediction phase.

In [START_REF] Carchrae | Applying Machine Learning to Low-Knowledge Control of Optimization Algorithms[END_REF][START_REF] Carchrae | Low-Knowledge Algorithm Control[END_REF] Carchrae and Beck extended the low-knowledge approach including machine learning techniques to select the most appropriate algorithm. On the one hand, the low-knowledge strategy is used to identify a set of generic features common to all optimization problems (i.e., solution cost for each algorithm in the portfolio), these features are categorical values (i.e., 1/0 variables) obtained during the prediction time. This way, each algorithm is equipped with n features, one for each value in K i , the algorithm with best performance at the i th interval gets value 1, and while the remaining algorithms get value 0. These features or attributes are a very elegant solution when there is absolutely no information about the distribution of problems. However, these descriptors did not include enough generalization to perform better than a simple strategy such as pcost which selects the best algorithm during the prediction phase On the other hand, also in [START_REF] Carchrae | Applying Machine Learning to Low-Knowledge Control of Optimization Algorithms[END_REF] a reinforcement learning method is used to interleave and assign computational runtime to all available algorithms according to the current performance of each one. In this context, algorithms are executed in rounds (or iterations), at each round the reinforcement learning method assigns computational runtime to each algorithm according to latest previous improvements. Intuitively algorithms with current best performance improvement would be assigned with more computational resources. This dynamic switching mechanism showed very good results as it was able to outperform the best pure single algorithm.

Beck and co-author's work in the low-knowledge framework is an interesting methodology, however it is important to note that this framework by itself can not be applied straightforward to satisfiability problems because it requires the algorithm to provide results of intermediate solutions (best solution found up to some time limit), and as pointed out above, the goal of a CSP is precisely to find a single solution.

On the other hand, the Bid Evaluation Problem (BEP) in Combinatorial auctions has been studied using empirical hardness models in [START_REF] Leyton-Brown | Empirical Hardness Models for Combinatorial Auctions[END_REF] and decision trees in [START_REF] Guerri | Learning Techniques for Automatic Algorithm Portfolio Selection[END_REF].

The former uses a SATzilla-like model, learning a runtime prediction function for each algorithm in the portfolio, while the latter uses decision trees to build a classification model

Per class learning

by considering the winner algorithm as the one with minimal runtime for each instance during the training phase. Notice that the main difference between these two approaches and Beck's work with low-knowledge is that low-knowledge is general enough to be applied to any optimization problems, while [START_REF] Leyton-Brown | Empirical Hardness Models for Combinatorial Auctions[END_REF] and [START_REF] Guerri | Learning Techniques for Automatic Algorithm Portfolio Selection[END_REF] need experimented users to define a suitable feature vector of the problem.

Per class learning

So far, we have presented preliminary work devoted to the use of Machine Learning to the algorithm selection problem in the context of Rice's framework (see Section 3.1), that is the selection of the best algorithm is based on some features or descriptors of the problem.

In this section, we would like to switch our attention to per-class methods for automatic parameter tuning. Contrasting with previous approaches which select the best algorithm for each particular instance, the following set of algorithms aim to select the best parameter configuration for a set of problems. In other words, The training data set is used to properly identify a single parameter configuration and it will be used to tackle all testing instances.

The automatic parameter problem was formally described in [START_REF] Birattari | A Racing Algorithm for Configuring Metaheuristics[END_REF][START_REF] Birattari | The Problem of Tuning Metaheuristics as Seen from a Machine Learning Perspective[END_REF] as an optimization problem where the search space is the space of all possible parameter configurations. In this context, Birattari et al., proposed the application of a racing algorithm called F-RACE to identify the most suitable configuration for a given algorithm. F-RACE aims to use a machine learning idea, typically used in feature selection [START_REF] Maron | The Racing Algorithm: Model Selection for Lazy Learners[END_REF] to avoid exhaustive search among all possible candidates. Broadly speaking, F-RACE iteratively executes each parameter configuration on a set of problem instances and as soon as enough statistical evidence (based on the Friedman's test) shows that a given configuration is inferior than the rest, this configuration is discarded and no longer considered as a candidate, F-RACE iterates until a single parameter configuration is found or a given timeout is reached.

Although F-RACE is a very effective technique, it involves the execution of each parameter configuration until enough statistical evidence is found to discard poor candidates.

Therefore, F-RACE is limited to few parameter configurations. To overcome this limitation paramILS [HHLBS09, Hut09] and GGA [START_REF] Ansótegui | A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms[END_REF] are developed to deal with large (order

RELATED WORK

of hundreds of thousands) number of parameters configurations. However, ironically these tools themselves require some parameters to be tuned.

paramILS is an iterative local search algorithm that executes the following two steps procedure until no improvement is found or a given time limit is reached.

1. Identification of the initial parameter configuration (usually algorithm's default configuration).

2. Using local search operators to explore the parameter configuration space, and the best known configuration found so far is updated according to some performance criteria.

paramILS is build on top of a restart-based search algorithm which involves three parameters (r,s,p restart). p restart indicates the probability of restarting the search, r and s indicate respectively the degree of perturbation added to the initial configuration when restarting the search and at each iteration of the algorithm.

Recent work conducted in [START_REF] Ansótegui | A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms[END_REF] uses genetic algorithms in combination with a gender separation strategy to focus the search on promising parameter configurations. In this context, one of the primary goals of GGA is to reduce the overall fitness evaluations, because computing the fitness value for a given population (or configuration) x involves running the solver several times with the same configuration x. The gender separation requires 5 parameters that were experimentally tuned in [START_REF] Ansótegui | A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms[END_REF]. The main advantage of GGA compared to paramILS is that the genetic algorithm approach supports continuous values, so that no discretization step is required. However, GGA requires the user to define a variable tree structure which basically indicates dependencies between parameters.

Early work on the automatic configuration problem studied the CALIBRA system [START_REF] Adenso | Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search[END_REF].

CALIBRA initially performs a full factorial design to define the initial and worse values. Straight-after a local search algorithm is used until a local minimum is obtained. At this point a new configuration is carefully crafted using past local optima and worst solutions, and this procedure is repeated until a user defined stopping criterium is reached (e.g., max.

number of experiments). The major limitation of CALIBRA is that it is limited to up to 5 parameters.

Adaptive Control

Adaptive Control

Methodologies described in this section differ from the above mentioned work as they do not require descriptors to characterize problem instances. Instead, algorithms automatically adapt their internal parameters when solving a problem instance. That is, the algorithm provides some feedback based on the current performance and the system decides the next action.

The quickest first principle (QFP) [START_REF] Borrett | Adaptive Constraint Satisfaction: The Quickest First Principle[END_REF] is a methodology for combining CSP heuristics. QFP relies on the fact that easy instances can frequently be solved by simple algorithms, while exceptionally difficult instances will require more complex heuristics. In this context, it is necessary to pre-define an execution order of heuristics and the switching mechanics is set according to the thrashing indicator (i.e., when the search seems to be stuck at a given portion of the tree), once the thrashing value of the current strategy reach some cutoff value, it becomes necessary to stop the current search procedure and try again with the next heuristic in the sequence.

The purpose in The Adaptive Constraint Engine (ACE) [EFW + 02] is to unify the decision of several heuristics in order to guide the search process. In this way, a voting mechanism selects a mixture of variable/value ordering heuristics by means using some offline learned weights associated to each heuristic candidate.

In [START_REF] Petrovic | Random Subsets Support Learning a Mixture of Heuristics[END_REF] Petrovic and Epstein presented an extension of ACE. In this work the authors showed that a subset of powerful heuristics is more effective than using all available ones. Therefore, the objective of this method is to select the most suitable subset of heuristics in order to explore the search space with promising candidates. This method uses the weights learned during the training phase in order to discard heuristics whose weights are lower than their corresponding benchmark heuristics. Generally speaking, there are two benchmark heuristics, one for variable-ordering and one for value-ordering and these benchmark heuristics represents random behavior. Taking this into account, ACE learns a mixture of better-than-random heuristics.

It is also important to highlight that ACE also includes the transfer learning [START_REF] Daniel | Efficient Bayesian Task-Level Transfer Learning[END_REF] concept. In particular, ACE learns on a class of problems, and then continue to learn on other classes, adapting weights as it goes. However, during the testing phase ACE

RELATED WORK

drops heuristics with poor weights values (below-benchmark heuristics) and weights of the remaining heuristics are not updated during the testing phase.

Another contribution to the ACE framework is presented in [START_REF] Petrovic | Full Restart Speeds Learning[END_REF]. This work uses a restart-based learning method with two objectives: speed up the overall learning time and improve the quality of the learnt function. Thus, once ACE identifies that the current learnt information is no longer useful, it throws away the current learning model by re-initializing the associated weights to each heuristic. This way, two new parameters k, r are added to the ACE framework. In this context, a restart is activated if k consecutive unsuccessful runs have been observed during the last l training problems. Notice that the performance of this new approach is very sensitive to these two parameters. On the one hand, if k is too low the restart engine will be launched too often, while on the other hand, if k is too high it could be too late for restarting, because ACE could had already restored the learning values. [START_REF] Battiti | Reactive Search: Machine Learning for Memory-Based Heuristics[END_REF] deeply studied the reactive search framework to online tune the parameters of a given algorithm. In this way, the reactive search framework typically uses Machine Learning to on-the-fly adjust the parameters of a given algorithm in order to better react to fast changing conditions while solving a problem-instance. Taking this into account, reactive search requires to balance the intensification-diversification dilemma.

Battiti et al., in

That is, focussing the search on known good actions (intensification) and trying new actions to diversify the search (diversification). An interesting application of the reactive search framework is described and analyzed in [START_REF] Battiti | The Reactive Tabu Search[END_REF] where Battiti and Tecchinolli proposed a mechanism for adapting the size of the tabu list by increasing (resp. decreasing) its size according to the recent progress of the search.

Another family of adaptive methods are developed in local search-based algorithms for SAT. Hoos [START_REF] Holger | An Adaptive Noise Mechanism for WalkSAT[END_REF] studied an adaptive noise (degree of randomization) mechanism for the Novely+ algorithm by systematically increasing (resp. decreasing) the noise if no improvement has been observed for a while. A similar strategy has been adopted for other algorithms such as: AdaptG 2 WSAT and AdaptG 2 WSAT+ in [START_REF] Chu | Combining Adaptive Noise and Look-Ahead in Local Search for SAT[END_REF]. On the other hand, modern local search algorithms for SAT such as gNovelty+ [START_REF] Duc | gNovelty+. In Solver description, SAT competition[END_REF][START_REF] Duc | Combining Adaptive and Dynamic Local Search for Satisfiability[END_REF] are developed by carefully selecting the main components of existing algorithms. Therefore according to the current conditions of the problem gNovelty+ chooses the most appropriate component.

Finally, important efforts have been devoted to study the adaptive operator selection 3.5 Other work (AOS) in the context of Genetic Algorithms in [START_REF] Da | Adaptive Operator Selection with Dynamic Multi-Armed Bandits[END_REF] and evolutionary computation in [START_REF] Fialho | Comparison-Based Adaptive Strategy Selection with Bandits in Differential Evolution[END_REF]. Broadly speaking, The main idea behind the AOS is to select the most appropriate operator based on the past history of each individual one by means of balancing the trade-off between exploration and exploitation 5 . Supporting this claim, Fialho and coauthors studied several methods for the AOS such as: Probabilistic Matching, Adaptive Pursuit and Multi-armed Bandit with some extensions developed for the AOS framework. An Extensive experimental validation described and analyzed in [START_REF] Fialho | Analyzing Bandit-based Adaptive Operator Selection Mechanisms[END_REF] indicates that multi-armed bandits methods were superior on artificial problems. Since these methods have been extensively verified, it would be interesting to study their performance in the low-knowledge framework described in Section 3.2

Other work

In order to conclude our description of previous work, we would like to highlight some extra strategies developed to combine different heuristics to solve combinatorial problems.

Back to 1996 in [START_REF] Minton | Automatically Configuring Constraint Satisfaction Programs: A Case Study[END_REF][START_REF] Minton | An Analytic Learning System for Specializing Heuristics[END_REF] Minton proposed the Multi-Tactic Analytic Compiler (MULTI-TAC) system to automatically configure LISP programs. Initially MULTI-TAC is equipped with a set of generic variable/value selection heuristics to automatically infer problem-specific algorithms which will effectively solve a family of problem instances.

During a training phase MULTI-TAC analyzes the CSP specification of the problem to generate rules for variable/value selection, that are later compared against the generic variable/value heuristics to filter out low-quality ones. Finally, beam search [R.B92] is used to select the final subset of rules which will be then applied on a testing set of instances.

Although several methods for the variable selection problem have been thoroughly studied in the literature, less effort has been devoted to the value selection problem. Nevertheless, a remarkable work presented in [START_REF] Zhang | Learned Value-Ordering Heuristics for Constraint Satisfaction[END_REF] aims to select the most suitable value for a given variable in a binary CSP. In this work, Zhang and Epstein keep track of the frequency in which the domain of a variable is modified through constraint propagation, and less frequently removed values are most likely to be used. Experimental results suggest that this simple strategy is an interesting alternative to traditional value ordering methods.

RELATED WORK

In [MCC06] Monfroy et al., proposed an adaptive enumeration of CSP strategies (or heuristics) in order to dynamically replace strategies exhibiting poor performances. The proposed engine maintains a priority value v for each strategy and v is updated using a given set of indicators that measure the progress of the search (e.g., thrashing, search deep, number of nodes, etc.). In this way, if the search observes some progress using a given strategy c, then c is rewarded, otherwise c is penalized. This work also proposes a metabacktrack engine which monitors the thrashing value in order to backtrack n steps or restarting the search from scratch. For instance, if the current thrashing is too high it might be better to jump to the root node, but if the thrashing is not critical it should backtracks few steps in the tree.

SATenstein [START_REF] Ashiqur | SATenstein: Automatically Building Local Search SAT Solvers from Components[END_REF][START_REF] Ashiqur | SATenstein: Automatically Building Local Search SAT Solvers from Components[END_REF] is motivated by the fact that current state-of-the-art dynamic local search algorithms for SAT are built by mixing the main properties of existing algorithms. For instance novelty [START_REF] Mcallester | Evidence for Invariants in Local Search[END_REF] as most WalkSAT-based [START_REF] Selman | Noise Strategies for Improving Local Search[END_REF] algorithms firstly selects an unsatisfied clause and then uses the GSAT [START_REF] Selman | A New Method for Solving Hard Satisfiability Problems[END_REF] score function to select the next variable to flip. Supporting this claim, SATenstein is developed on top of a carefully selected set of components which consider the main characteristics (or properties) of a wide variety of local search algorithms and leave the selection of critical components to an automatic parameter tuning tool (e.g., paramILS, see Section 3.3). Finally, it is worth mentioning that SATenstein has been extensively tested in problems from a wide variety of domains.

In [START_REF] Gomes | Algorithm Portfolios[END_REF] Gomes and Selman studied the applicability of building an algorithm portfolio for combinatorial problems by launching several algorithms (or different copies of the same algorithm with different random seeds) in parallel settings or interleaving the execution of all candidates in a single machine. This work showed that when exploring the use of several independent randomized algorithms, one might rather explore the use of algorithms with large variance to obtain better performance improvements. However, there are still open questions in the use of a portfolio algorithm, for instance the definition of the number of processors or the amount of time to interleave the execution of each algorithm. Notice that the definition of a portfolio algorithm in this paper differs from the one used earlier on in this chapter (see Section 3.1), because here the portfolio executes several independent searches until at least one of them find a solution or a given time out is reached.

Other work

The estimation of the number of nodes in tree search algorithms goes back to the seminal work of Knuth in [START_REF] Donald | Estimating the Efficiency of Backtrack Programs[END_REF] where the Knuth's method is proposed. The algorithm starts with the root node and moves down the tree by selecting random successors, once the algorithm reach a leaf-node the estimation is computed as

1 + d 1 + d 1 × d 2 + d 1 × d 2 × d 3 + . . . ,
where d i indicates the number of successors at the i th level of the tree. This procedure is repeated several times (each time with a different random seed) and the final estimation is the average across all samples.

Knuth's estimator is a very elegant algorithm but it might not work properly when the search tree is not known in advance, for instance in the case of branch and bound algorithms, where the search tree is systematically pruned to avoid non-optimal solutions. Therefore, Lobjois and Lemaître in [START_REF] Lobjois | Branch and Bound Algorithm Selection by Performance Prediction[END_REF] extended the knuth's estimator to deal with upper bound solutions which systematically help to prune useless portions of the search. This way, the so-called selection by performance prediction (SPP) method estimates the runtime of a given optimization algorithm. SPP estimates the total number of nodes of a branch and bound algorithm as well as the average time to explore a single node. Finally, once a new instance arrives the portfolio selects the algorithm with minimal overall runtime (number of times × average per node). In addition to this work, other extensions of the Knuth's estimator have been explored in [START_REF] Kilby | Estimating Search Tree Size[END_REF] in the context of SAT and in [START_REF] Cornuéjols | Early Estimates of the Size of Branch-and-Bound Trees[END_REF] in the context of Mixed Integer Programming.

In [START_REF] Smith-Miles | Understanding Relationships between Scheduling Problem Structure and Heuristic Performance[END_REF] Smith-Miles et al., proposed the use of machine learning algorithms to identify the structure of a given problem. To this end, a portfolio algorithm is built on top of Supervised learning methods (Decision trees and Neural Networks) and an unsupervised learning method (Self-organized maps) to select the best between two heuristics.

After extensive experiments with more than 70000 instances, all the three learning methods performed much better than independent heuristics. However, the self-organized map provides an interesting graphical representation which helps to understand the relationship between the features and the structure of the problem.

Another interesting approach was presented by Kautz et al., [KHR + 02] who proposed the use supervised machine learning techniques to build an optimal restart policy R={t 1 ,t 2 , . . . , t n } for a given algorithm in order to quickly solve a distribution of problem instances.

In this context t i indicates the cutoff for the i th restart. In order to build R Kautz et al.,

RELATED WORK

assume independent restarts, where no information is shared between restarts. This work was extended by Ruan et al., [START_REF] Ruan | Restart Policies with Dependence Among Runs: A Dynamic Programming Approach[END_REF] by exchanging information between restarts (e.g., runtime from previous restarts) to on-the-fly update the cutoff for the upcoming restarts.

In [START_REF] Rachelson | Combining Mixed Integer Programming and Supervised Learning for Fast Re-Planning[END_REF] Rachelson et al., used machine learning to predict values for a subset of variables in the context of Mixed Integer Programming (MIP). This way, the initial problem formulation is relaxed by instantiating some variables with the suggested values. This work has two main limitations. Firstly, the new solution is not necessary the optimal one.

Secondly the learnt model is not generic enough to be applied to any MIP problem-instance since the input feature vector is restricted to a static number of variables and constraints.

Rather than using supervised learning techniques to select the most appropriate algorithm for a given instance, another option is to define a scheduler policy to interleave the execution of black-box solvers while solving a new problem instance. Roughly speaking, there are two main approaches for building the scheduler. On the one hand, Portfolios with deadlines [START_REF] Wu | Portfolios With Deadlines For Backtracking Search[END_REF] defines an execution sequence

[(t 1 , A 1), (t 2 , A 2), . . . , (t n , A n)],
where t i indicates the time cutoff for the i th algorithm in the sequence. As soon as a given algorithm reachs its associated time limit, this algorithm is discarded and no longer considered for the current instance. On the other hand, Combining Multiples Heuristics Online [START_REF] Streeter | Combining Multiple Heuristics Online[END_REF][START_REF] Streeter | Combining Multiple Constraint Solvers: Results on the CPAI'06 Competition Data[END_REF] allows multiples executions of a given algorithm by using two functioning modes: suspend-restart and stop-restart. The former allows an algorithm to be suspended and then resumed at a later time, while the latter stops an algorithm and restart it at a later time. Additionally, [START_REF] Streeter | New Techniques for Algorithm Portfolio Design[END_REF] uses a set of boolean features to identify the most suitable scheduler for a given instance.

Chapter 4 Exploiting Weak Dependencies in

Tree-based Search

So far in this thesis, we have presented background material in Chapter 2 and an extensive literature review in Chapter 3. From now on, we move our attention to the main contributions. This way, in this chapter, our objective is to heuristically discover a simplified form of functional dependencies between variables called weak dependencies. Once discovered, these relations are used to rank the variables. Our method shows that these relations can be detected with some acceptable overhead during constraint propagation. More precisely, each time a variable y gets instantiated as a result of the instantiation of x, a weak dependency (x, y) is recorded. As a consequence, the weight of x is raised, and the variable becomes more likely to be selected by the variable ordering heuristic.

Introduction

The relationships between the variables of a combinatorial problem are key to its resolution. Among all the possible relations, explicit constraints are the most straightforward and were widely used. For instance, they are used to support classical look-ahead and lookback schemes. During look-ahead, they can limit the scope of the enforcement of some consistency level. During look-back, they can improve the backtracking by jumping to

EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

related and/or guilty decisions. These relationships are also used in dynamic variable ordering (DVO) to relate the current variable selection to past decisions (e.g., [START_REF] Brelaz | New Methods to Color the Vertices of a Graph[END_REF]), or to give preference to the most constrained parts of the problem, etc.

Recently, backdoors have been illustrated. A backdoor can be informally defined as a subset of the variables such that, once assigned values, the remaining instance simplifies to a computationally tractable class. Backdoors can be explained by the presence of a particular relation between variables, e.g., functional dependencies. Unfortunately, detecting backdoors can be computationally expensive [START_REF] Bistra | Tradeoffs in the Complexity of Backdoor Detection[END_REF], and their exploitation is often restricted to restart-based strategies like in modern SAT solvers [START_REF] Williams | Backdoors To Typical Case Complexity[END_REF].

In this chapter, our objective is to heuristically discover a simplified form of functional dependencies between variables called weak dependencies. Once discovered, these relations are used to rank the importance of each variable. Our method assumes that these relations can be detected with low overhead during constraint propagation. More precisely, each time a variable y gets instantiated as a result of the instantiation of x, a weak dependency (x, y) is recorded. As a consequence, the weight of x is raised, and the variable becomes more likely to be selected by the variable ordering heuristic.

In the following section, we start with a general description of the constraint propagation algorithm. Section 4.3 describes our new heuristic. Section 4.4 presents experimental results. Finally, before summarizing the chapter, Section 4.5, presents related work.

Constraint propagation

Constraint propagation is usually based on some constraint network property which determines its locality and therefore its computational cost. Arc-consistency is widely used, and the results of its combination with backtrack search is called (MAC) for Maintain Arc- end for 8: end while represents the set of propagators that need to be revised. Revising a propagator corresponds to the enforcement of some consistency level on the domains of the associated variables.

Initially, Q is set to the entire set of constraints. This is used to enforce the arcconsistency property before the search process. During depth-first exploration, each decision is added to an empty queue, and propagated through this algorithm.

The function choose removes a propagator p ∈ Q, run applies the filtering algorithm associated to p, and schedule adds all propagators associated to X i , i.e., prop(X i), to Q. The algorithm terminates when the queue is empty. A fix-point is reached and more propagations can only appear as the result of a tree-based decision. Definition 4.1 f (X, y) is a functional dependency between the variables in the set X and the variable y, if and only if, for each combination of values in X there is precisely one value for y satisfying f . Many constraints of arity k can be seen as functional dependencies between a set of k -1 variables and some remaining variable y. For instance, the arithmetic constraint

X + Y = Z, gives the dependencies f ({X, Y }, Z), f ({X, Z}, Y),

and f ({Y, Z}, X).

There are also many exceptions like the constraint X = Y , where in the general case, one variable is not functionally dependent of the other one. The proof is straightforward if we consider Algorithm 4.1.

Example

To illustrate our definition, we consider the following set of constraints: The initial filtering does not remove any value and the search process has to be started.

• p 1 ≡ X 1 + X 2 < X 3 • p 2 ≡ X 1 = X 4 • p 3 ≡ X 4 = X 5
Figure 4.1 shows the graph of weak dependencies assuming that the search is started on X 1 with value 1, the propagator X 1 = 1 is added to Q, and after its execution the domain D 1 has been narrowed, so that it is necessary to schedule p 1 and p 2 .

Running p 1 sets X 2 to 0, and X 3 to 2, and gives the weak dependencies (X 1 , X 2) and (X 1 , X 3). Afterwards, p 2 sets X 4 to 0 which corresponds to (X 1 , X 4). Finally, the narrowing of D 4 schedules p 3 which sets X 5 to 1, and gives the weak dependency (X 4 , X 5).

In this example, it can also be observed that propagator p 1 assigns variables X 2 and X 3 .

However, weak dependencies (X 2 , X 3) or (X 3 , X 2) are not computed, since these variables are narrowed due to the nature of the propagator instead of a direct consequence between these two variables.

Weak dependencies are binary, therefore they only roughly approximate functional dependencies. For example, with the constraint X + Y = Z they will never record ({X, Y }, Z). On the other hand, weak dependencies exploit the current domains of the variables and can record relations which are not true in general but hold in particular cases.

For instance, the propagator p 3 above creates (X 4 , X 5). This represents a real functional dependency since the domains of the variables are binary and equal. for all p in prop(X i) do 5:

p .assigned.add(X i);

6:

end for 7: end if this set are the ones whose assignment was the reason for propagating p. After that, a reference to X i is added to its propagators prop(X i). This is done to ensure that if these propagators assign other variables, a subsequent call to the schedule procedure will be able to create dependencies between X i and these variables.

The domFD dynamic variable ordering

In the previous section, we have seen that a generic constraint propagation algorithm can be modified to compute weak dependencies. As we pointed out above, weak dependencies can be seen as a weighted digraph relation among the variables. Using this graph, we propose to define a function F D(X i) which computes the out-degree weight of a variable X i taking into account only uninstantiated variables.

F D(X i) = X j ∈Γ + (X i) weight(X i , X j)
Where Γ + (x) (resp. Γ -(x)) represents the set of outgoing (resp. ingoing) edges from (resp. to) x in the graph of dependencies. It is also important to note that when there is no outgoing edge associated to X i we assume F D(X i) = 1.

Given the definition of F D, we propose to define domFD, a new DVO heuristic based on both: the observed weak dependencies of the problem and the well-known fail-first mindom heuristic:

domFD(X i) = |X i | F D(X i)

EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

Then, the heuristic selects the variable whose domFD value is minimal.

Complexities of domFD Space

We know from Property 4.1 that dependencies are created between variables which share a constraint. Therefore, computing the weak dependency graph requires in the worst case a space proportional to the space used for the representation of the problem. Assuming n variables and m constraints, the space is proportional to n + m.

Time

The computation of weak dependencies is tightly linked to constraint propagation. The original schedule procedure only enqueues the propagators related to X i in Q, therefore its original cost is O(m). Our new procedure creates dependencies each time a variable gets instantiated. Dependencies between variables can be recorded as the result of the instantiation of one or several variables. In the latter case, up to n -1 dependencies can be created since the instantiation of up to n -1 variables can be responsible for the scheduling of the current propagator (line 3 in Algorithm 4.2). Once dependencies are created, the propagators associated to X i need to reference it. Here the cost is bounded by m. Overall, the time complexity of the new schedule procedure is O(n + m).

We now have to consider the cost of maintaining the weak dependency graph. Since our heuristic only considers the weights related to the variables which are not instantiated we have to disconnect variables from the graph when they get a value, and we have to reconnect them when the search backtracks. This can be done incrementally. Practically, we do not have to physically remove a variable from the dependency graph, we can just offset the weight of the recorded dependencies between other variables and that variable. For instance, when X i gets instantiated as the result of a tree decision or as the result of constraint propagation, we only need to update the out degrees of variables X j ∈ Γ -(X i). The update is done by decreasing their associated counter X j .F D by weight(X j , X i). These counters represent the number of times the weak dependency (X j , X i) was observed during the search process. During backtracking, X i gets back its domain, and we just have to "reconnect" the associated X j ∈ Γ -(X i) by adding weight(X j , X i) to X j .F D. Since a variable can be linked to m propagators, an update of the dependency graph cost O(m). In the worst case, each branching holds no propagation and therefore at each node, the cost of updating the dependency graph is O(m).

Experiments

In this section, we propose to study the performance of domFD when compared to domwdeg, a recently introduced heuristic able to focus on the difficult parts of a problem [START_REF] Boussemart | Boosting Systematic Search by Weighting Constraints[END_REF].

In dom-wdeg, the priority is given to variables which are frequently involved in failed constraints. A weight is added to each constraint and updated (i.e, incremented by one) each time a constraint fails. Using this value variables are selected based on their domain size and their total associated weight. X i , the selected variable minimizes dom-wdeg

(X i)= |X i |/ c∈prop(X i) weight(c).
This heuristic is used in the Abscon solver which appeared to be the most robust in the 2006 CSP-competition2 where it finished 1 time first, 3 times second, 3 times third, and 2 times fourth, when compared against 15 other solvers.

To compare domFD against the powerful dom-wdeg, we implemented them in Gecode-2.0.1 [START_REF]Gecode: Generic Constraint Development Environment[END_REF] and used them to tackle several problems. Since Gecode is now widely used, we decided to take from the Internet problems already encoded for the Gecode library. We paid attention to the fact that overall our problems cover a large set of Gecode's constraints.

We used 35 instances coming from 9 different benchmark families. They involve satisfaction, counting, and optimization problems. They were solved using the default Gecode's branch-and-prune strategy, and a modified restart technique based on the default strategy. In

Experiments

• magic-squ: Magic-square [Wei], problem 19 of CSPLib, this problem consists of completing a N × N matrix with the numbers 1, 2, . . . , N 2 where each column, row and the two main diagonals sum the same number.

• lfn: Langford-number [START_REF] Habbas | The Langford's Problem:A Challenge for Parallel Resolution of CSP[END_REF], problem 24 of CSPLib, this problem consists in arranging k set of N numbers, such as each occurrence of a given number m is m times in from the last one.

• sport-lea: Sport league tournament [START_REF] Henz | Constraint-based Round Robin Tournament Planning[END_REF], problem 26 of CSPLib, this problem consists 4 in scheduling a round-robin tournament such that: there are t teams, the season lasts t-1 weeks, each game between two different teams occurs exactly once, every team plays one game in each week of the season, there are t/2 periods and each week every period is scheduled for one game, no team plays more than twice in the same period over the course of the season. Notice that due to the specifications of the problem, t must be an even number.

• bibd: Balanced Incomplete Block Design [START_REF] Prestwich | Balance Incomplete Block Design as Satisfiability[END_REF], problem 28 of CSPLib, this problem consists of a v × b matrix such that: the number of ones for each column (resp. rows) is equal to r (resp. k), and the scalar product for each pair of distinct rows is equal to λ. The original problem contains 5 parameters, however b and r can be derived from λ, v and k.

• crow-ch: Crowded-chess [START_REF] Lagerkvist | Techniques for Efficient Constraint Propagation[END_REF], this problem consists in arranging n queens, n rooks, 2n -1 bishops and k knights on a n × n chessboard, so that queens cannot attack each others, no rook can attack another rook and no bishop can attack another bishop. Note that two queens (in general two pieces of the same type) are attacking each other even if there is a bishop (in general another piece of different type) between them.

In the following, when an instance is solved, the number of nodes in the tree(s) (#nodes), the number of failures (#failures) and the time (time (s)) in seconds are reported. If the 10 minutes time-out is reached, TO is reported, and the best performing algorithm (w.r.t. runtime efficiency) is indicated in bold.

EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

Searching for all solutions or for an optimal solution

The first part of Table 4.1, presents results related to the finding of all the solutions of allinterval problems of order 11 to 14. We can observe that the trees generated with domFD are usually far smaller than the ones generated by dom-wdeg. Most of the time, domFD runtime is also better. However, the time per nodes (i.e., #nodes/time in Table 4.1) is more important for our heuristic. For instance, on all-int-14, dom-wdeg does 89973 nodes/s while domFD runs at 54122 nodes/s.

The second part of the table presents results for the optimal Golomb-rulers of orders 10 to 12. Here, we can observe that order 10 is easier for dom-wdeg, but sizes trees are comparable. Order 11, and 12 give the advantages to domFD, with far smaller search trees and better runtimes. As before, the time per node is more important for our heuristic (31771 vs 35852 on gol-rul-11).

Instance

Experiments

Quasi-groups

Three instances of order 30 with 316 unassigned positions were produced with the generator presented in [START_REF] Achlioptas | Generating Satisfiable Problem Instances[END_REF]. On these instances, domFD always generates smaller search trees. When this difference is large enough e.g., second instance, the runtime is also better.

Balance incomplete block design

Our heuristic always explores smaller trees which allows better runtimes. Interestingly the third instance is solved in 0.03 seconds by domFD while dom-wdeg cannot solve it in 10 minutes.

Langford numbers

On these problems, domFD is always superior to dom-wdeg. For instance, lfn-3-10 can be solved by both heuristics but the performance of domFD is far better: 190 times faster.

Nonograms

Table 4.2 shows results for the nonogram problem. Three instances of orders 5, 8, and 9

were generated. Here again, the trees are systematically smaller with domFD and when the difference is large enough runtimes are always better.

Searching for a solution with a restart-based branch-and-prune strategy

Restart-based searches are very efficient since they can alleviate the effects of early bad decisions. Therefore, it is important to test our new heuristic with a restart strategy.

A restart is done when some cutoff limit in the number of fails is met, i.e., at some node in a tree. There, the actual domFD-graph is stored and used to start the next tree-based search. This allows the early selection of well ranked variables. The same technique is used with dom-wdeg, and the next search tree can branch early on well ranked variables. This part presents results with a restart-based branch-and-prune where the cutoff value used to restart the search was initially set to 1000, and the cutoff increase policy to ×1.2

EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

(geometric factor). The same 10 minutes time-out was used.

Table 4.3 presents the results for magic square, crowded chess, sport league tournament, quasi-groups, and bibd problems.

Magic square

Instances of orders 5 to 11 were solved. Clearly, domFD is the only heuristic able to solve large orders within the time limit. For example, dom-wdeg cannot deal orders greater than 8, while our technique can. The reduction in the search tree sizes is very significant, e.g., on mag-squ-8, dom-wdeg develops 35.18M nodes and domFD 152466, which allows it to be more than 100 times faster.

Crowded chess

As before, domFD can tackle large problems while dom-wdeg cannot.

Experiments

Instance

EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

Sport league tournament

If we exclude the last instance, domFD is always better than dom-wdeg.

Quasi-groups

Here, on most problems, domFD generates smaller search trees, and can return a solution more quickly. On the hardest problem, (order 35), domFD is nearly two time faster.

Balanced incomplete block design

Here domFD performs very well, with both smaller search trees and small runtime. We can observe that the search trees generated by domFD are on the average three times smaller. The difference in the number of fails is similar. Finally, even if domFD is 2 times slower on the time per node, it is 31% faster overall.

Synthesis

Technically, our integration into Gecode is quite straightforward and not particularly optimized. For instance we use Leda [LED], an external library to maintain the graph, while a bespoke light class with the right set of features should be used. The way we record weak dependencies is also not optimized and requires extra data structures whose accesses could be easily improved, e.g., the assigned list of variables shown in Algorithm 4.5 Previous work 4.2. For all these reasons, we think that it must be possible to increase the speed of our heuristic by some factor.

We also did some experiments to see if the computation of domFD could be cheaply approximated. We used a counter with each variable to record the number of times that variable was at the origin of a weak dependency. This represents an approximation of domFD since the counter considers dependencies on instantiated variables. Unfortunately, this -fast -approximation is always beaten by domFD on large instances.

Previous work

In [START_REF] Boussemart | Boosting Systematic Search by Weighting Constraints[END_REF], the authors have proposed dom-wdeg, an heuristic which gives priority to variables frequently involved in failed constraints. It adds a weight to each constraint which is updated (i.e, incremented by one) each time the constraint fails. Using this value variables are ranked according to domain size and associated weight. X i , the selected variable minimizes dom-wdeg

(X i)= |X i |/ c∈prop(X i) weight(c).
As shown in the previous section, domFD is superior to dom-wdeg on many problems. Interestingly, while dom-wdeg can only learn information from conflicts, domFD can also learn from successful branchings. This is an important difference between these two techniques.

In [START_REF] Refalo | Impact-Based Search Strategies for Constraint Programming[END_REF], Refalo proposes the impact dynamic variable-value selection heuristic. The rational here is to maximize the reduction of the remaining search space. In this context, an impact is computed taking into account the reduction of the search space due to an instantiated variable. As a result of this, at each decision point this heuristic suggests a variable, as well as the best value instantiation for such variable.

With domFD, a variable is well ranked if its instantiation has generated several others instantiation. This is equivalent to an important pruning of the search space. In that respect domFD is close to impact. However, its principle is the dynamic exploitation of functional dependencies, not the explicit quantification of search space reductions. More generally, since DVO heuristics are all based on some understanding of the fail-first principle they are all aiming at an important reduction of the search space.

To improve SAT solving, [START_REF] Mazure | Recovering and Exploiting Structural Knowledge from CNF Formulas[END_REF] proposes a new pre-processing step that exploits the structural knowledge that is hidden in a CNF formula. It delivers an hybrid formula made

EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

of clauses together with a set of equations of the form y = f (x 1 , ..., x n). This set of functional dependencies is then exploited to eliminate clauses and variables, while preserving satisfiability. This work detects real functions while our heuristic observes weak dependencies. Moreover, it uses a pre-processing step while we perform our learning during constraint propagation.

Summary

In this chapter, we have presented a simplified form of functional dependencies between variables called weak dependencies. Once discovered, these relations are used to rank the branching variables. More precisely, each time a variable y gets instantiated as a result of the instantiation of x, a weak dependency (x, y) is recorded. As a consequence, the weight of x is raised, and the variable becomes more likely to be selected by the variable ordering heuristic.

Experiments done on 9 benchmarks families showed that on the average domFD reduces search trees by a factor 3 and runtime by 31% when compared against dom-wdeg, one of the best dynamic variable ordering heuristic. domFD is also more expensive to compute since it puts some overhead on the propagation engine. However, it seems that our implementation can be improved, for example by using incremental data structures to record potential dependencies in the propagation engine.

Our heuristic learns from successes, allowing a quick exploitation of the solver's work.

In a way, this is complementary to dom-wdeg which learns from failures. Moreover, both techniques rely on the computation of mindom. Combining their respective strengths seems obvious. We did extensive experiments around a new mixture, dom(x)/(wdeg(x) + F D(x)) but found out that domFD was better than this straightforward combination.

Chapter 5

Building Portfolios for the Protein

Structure Prediction Problem

While in the previous chapter we have proposed a new variable selection for CSPs, in this chapter, we explore the application of Machine Learning to select the best COP heuristic in the context of the Protein Structure Prediction Problem. This contribution is twofold. First, the selection criterion is the quality (minimal cost) in expectation of the solution found after a fixed amount of time, as opposed to the expected runtime. Second, the presented approach, based on supervised Machine Learning algorithms, considers the original description of the protein structure prediction problem, as well as the features associated to the CP encoding of the problem.

Introduction

The protein structure prediction problem (PSP Problem) has been widely studied in the field of bioinformatics, since the three dimensional (3D) conformation of a given protein helps to determine its function. This problem is usually tackled using simplified models such as HP-models in [START_REF] Backofen | Fast, Constraint-based Threading of HP-Sequences to Hydrophobic Cores[END_REF] and a constraint logic programming approach in [START_REF] Dal Palù | Protein Folding in CLP(FD) with Empirical Contact Energies[END_REF].

However, even considering these abstractions the problem is computationally very difficult and traditional strategies cannot reach a solution within a reasonable time. Also, there has been several attempts to predict the structure and proteins fold using well known machine This chapter is organized as follows. The PSP problem is described in Section 5.2.

Section 5.3 shows the features or attributes used in this work. Section 5.4 presents the general idea of algorithms portfolio. Section 5.5 reports our experimental validation and Section 5.6 presents a summary of the chapter.

The protein structure prediction problem

The PSP problem is well known in computational biology and is currently considered as one of the grand challenges in this field. Broadly speaking the problem consists in finding the 3D conformation (so-called ternary structure) of a protein defined by its primary structure or a sequence of residues S = {s 1 , s 2 , . . . , s n } where each residue s i of the sequence represents one of the 20 amino-acids. The ternary structure is often defined by the minimal energy conformation. that two consecutive amino-acids cannot overlap one another and each amino-acid occupies a single sphere. This way, the final goal of the PSP problem is to minimize the overall energy conformation of a protein which is defined by the following formula:

E(w) = 1≤i<n i+2≤j≤n
contact(w(i), w(j)) × P ot(s i , s j)

BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION PROBLEM

where, contact is 1 iff two amino-acids are immediate neighbors in the three dimensional cube (or lattice) and not sequential in the primary structure, otherwise contact is set to 0. And Pot defines the energy contribution of two adjacent residues. It is important to note that some other lattice models have been proposed such as the HP-Model [START_REF] Backofen | Fast, Constraint-based Threading of HP-Sequences to Hydrophobic Cores[END_REF] where each amino-acid in the sequence is translated from the 20 symbols alphabet into a two symbols alphabet (i.e., hydrophobic (H) and polar (P)).

Features

In order to describe a given problem instance in terms of descriptors or features, a user might choose one of the following kinds of features: Problem Features encoding general information about the problem itself and CP features (or solver codification features) encoding general information about the CP abstraction of the problem. On the one hand, the Problem Features set is flexible enough no matter the solving technique (e.g., SAT, CP, LP, LS, etc.), however, are restricted to a particular problem domain. On the other hand, the CP feature set is general enough to be used for several problem domains but is limited to a CP abstraction of the problem.

In general, using one feature set or another is up to the user, in the context of the PSP problem a user with a bioinformatics background might prefer a biological set of features, while one with a mathematical and/or constraint programming knowledge might prefer the CP features. In the following we present both kinds of features taking into account its pros and cons.

Problem features

This feature set aims to characterize the PSP problem and was obtained from the extensive machine learning literature on protein fold prediction [START_REF] Nikhil | Some New Features for Protein Fold Prediction[END_REF][START_REF] Dehzangi | Using Random Forest for Protein Fold Prediction Problem: An Empirical Study[END_REF][START_REF] Cheng | A Machine Learning Information Retrieval Approach to Protein Fold Recognition[END_REF]. In order to build the feature set, every amino-acid in the primary structure is replaced by the index 1, 2 or 3 according to the group it belongs, i.e., Hydrophobicity, Volume, Polarity and Polarizability (see Table 5.1). For instance, the sequence RSTVVH is encoded as 122332 based on the hydrophobicity attribute. This encoding is used to compute the following set

Features of descriptors:

• Composition: 3 features representing the percentage of each group in the sequence.

• Transition: 3 features representing the frequency with which a residue from group i is followed by a residue from group j (or vice versa).

• Distribution: 15 features representing the fraction in the sequence where the first residue, 25%, 50%, 75% and 100% of the residues are contained for each encoding in Table 5.1. In total the feature set is a composition of 105 (84+20+1) features or descriptors: 84 ((15+3+3)×4) according to Table 5.1 and the previous descriptors, i.e., Composition, Transition and Distribution. 20 descriptors which represent the proportion of each aminoacid in the sequence. Finally the size of the sequence.

Attribute Group 1 Group 2 Group 3 Hydrophobicity R,K,E,D,Q,N G,A,S,T,P,H,Y C,V,L,I,M,F,W Volume G,A,S,C,T,P,D N,V,E,Q,I,L M,H,K,F,R,Y,W Polarity L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D Polarizability G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

CP features

This feature set is a collection of 32 descriptors. These features include general information about the CP encoding of the problem and are described as follows:

• Problem definition (4 features): Number of variables, constraints, variables assigned/not assigned at the beginning of the search.

• Variables size information (6 features): Size prod, sum, min, max, mean and variance of all variables domain size.

• Variables degree information (8 features): min, max, mean and variance of all variables degree (resp. variables' domain/degree)

BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION PROBLEM

• Constraints information (6 features): The degree (or arity) of a given constraint c is represented by the total number of variables involved in c. Likewise the size of c is represented by the product of its corresponding variables. Taking into account this information, the following features are computed: min, max, mean of constraints size and degree.

• Filtering cost category (8 features): Each constraint c is associated a category2 .

In this way, we compute the number of constraints for each category. Intuitively each category represents the implementation cost of the filtering algorithm. Cat = {Exponential, Cubic, Quadratic, Linear expensive, Linear cheap, Ternary, Binary, Unary}. Where Linear expensive (resp. cheap) indicates the complexity of a linear equation constraint and the last three categories indicate the number of variables involved in the constraint. More information about the filtering cost category can be found in [START_REF]Gecode: Generic Constraint Development Environment[END_REF].

Notice that similar features have been previously used to characterize SAT problems in [START_REF] Xu | The Design and Analysis of an Algorithm Portfolio for SAT[END_REF] and CSPs in [START_REF] Gent | Machine Learning for Constraint Solver Design -A Case Study for the alldifferent Constraint[END_REF]. The former set of features is limited to SAT, while the latter, among other properties, include information about partial satisfiability of the constraints (so called alldifferent statistics).

Algorithm portfolios

A portfolio algorithm is usually built on top of the general framework described in Figure 5.2. This framework is divided in two main phases: offline and online. During the offline phase a heuristic model is defined and used later on during the online (or testing) phase to identify the most appropriate algorithm to solve a given problem instance.

The offline phase requires an experimented user to identify a target distribution of problems in order to define a representative set of training instances. Afterwards, a pair x i , y i is computed for each training instance, where x i and y i represent respectively the vector of As pointed out in Chapter 3, in the literature, there exists a wide variety of machine learning algorithms to build a portfolio. For instance, SATzilla [START_REF] Xu | The Design and Analysis of an Algorithm Portfolio for SAT[END_REF] uses linear regression to build the portfolio based on an estimation of algorithm's runtime, CPHYDRA

[OHH + 08] uses a case-based reasoning framework to build a heuristics model, and AQBF [START_REF] Pulina | A Multi-engine Solver for Quantified Boolean Formulas[END_REF] uses traditional machine learning algorithms (decision trees, 1-nearest neighbor, decision rules and logistic regression). However, it is also worth mentioning that none of these learning techniques can be expected to be the best one for all existing problems. Indeed, the selection of the machine learning algorithm can also be seen as another layer of

BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION PROBLEM

the algorithm selection problem [START_REF] Breiman | Heuristics of Instability and Stabilization in Model Selection[END_REF].

A classical portfolio is learned by taking into account the overall computational time to solve a set of problem instances. For instance, SATzilla [START_REF] Xu | The Design and Analysis of an Algorithm Portfolio for SAT[END_REF], a well known portfolio for SAT problems, builds a regression model in order to estimate the solving time of each constitutive SAT solver. In this way, once an unseen instance arrives SATzilla selects the algorithm with minimal expected run-time.

However, solving a constraint optimization problem involves finding the best solution and proving that such a solution is indeed the optimal one. Unfortunately, in many cases this process cannot be completed within a reasonable amount of time and the system must provide the user with the best solution found so far. Following this idea, building the portfolio using algorithm's runtime is not an alternative. A solution would be building the portfolio taking into account the quality or cost of the solution found after some fixed amount of computational time (e.g., time-out parameter).

Algorithm subset selection

An important consideration before building a portfolio is the definition of its constitutive algorithms. In many situations, selecting the right subset of algorithms might improve the overall performance of the system. For instance, SATzilla selects the best subset of solvers by selecting candidates that are not well correlated with each other, and executes an exhaustive search with the remaining subset. However, exhaustive search involves exploring 2 n -1 (where n is the number of solvers) subsets which is computationally very expensive, so that exhaustive search is not desirable for a large pool of heuristics. Additionally, it is also necessary to determine when two solvers are not well correlated, which is still an open question.

Supporting this claim, we propose to borrow the ideas from feature selection methods [START_REF] Guyon | An Introduction to Variable and Feature Selection[END_REF] to choose the best subset of algorithms. Usually a feature selection method implements grid search in order to find the best feature set. The two most common algorithms are forward and backward selection. The former starts with an empty subset and incrementally adds variables until no improvement is found; while the latter starts with the full set and incrementally removes one variable at a time until no improvement is reached. Here,

Experiments

we chose forward selection since we would prefer a small subset of algorithms to build the classifier.

As a performance metric, we consider the overall mean solution cost. Notice that we could have also used the accuracy of the machine learning algorithm; however, higher accuracy does not necessarily lead to a better performance, since misclassifying near-optimal heuristics is not as critical as correctly classifying the ones with a high solution cost.

In order to validate the algorithm subset selection method we used the traditional 10fold cross-validation technique (see Chapter 2), but for each iteration the learner selects the best subset of algorithms by performing an inner 10-fold cross-validation. stores the final subset of algorithms that will be then used to build the portfolio for the current iteration of the outer 10-fold cross-validation procedure. Therefore algorithms not included in SS are not considered at this iteration.

Experiments

In this chapter, we use the Gecode model proposed in [START_REF] Cipriano | A Hybrid Approach Mixing Local Search and Constraint Programming Applied to the Protein Structure Prediction Problem[END_REF]. All algorithms (see Chapter 2) are home-made implementations integrated into the Gecode-2.1.1 constraint solver.

We experimented with 180 real sequences from [START_REF] Chris | Multi-Class Protein Fold Recognition Using Support Vector Machines and Neural Networks[END_REF] of sizes ranging from 31 to 1003 , and performed 10-fold cross-validation to evaluate the model with an inner 10-fold crossvalidation for learning the final subset of heuristics. All experiments were conducted on if BestA == N one then Initial experiments in [START_REF] Cipriano | A Hybrid Approach Mixing Local Search and Constraint Programming Applied to the Protein Structure Prediction Problem[END_REF] suggested that lexico is a powerful heuristic for the PSP problem, therefore we explored an extension of traditional variable selection algorithms, this novel version is presented as follows:

. . L 1 L 2 L 3 L 10 L 1 L 2 L 3 L 10 L 1 L 2 L 3 L 10 1 D 2 D 10
1. Select the first unassigned variable X i if and only if X i+1 is assigned.

2. If the previous step cannot be satisfied, then select the variable according to a given heuristic criterion (e.g., dom-wdeg, domFD, etc.). The algorithms which follow the strategy mentioned above would be named as: domwdeg + , wdeg + domFD + and impacts + . Figure 5.4 shows the performance of wdeg (red points) against its novel version wdeg + (black points), each point (either red and black)

! "! #!! #"! !$!%&" !% !#&" !# !!&" ! '(#!) *+,-.+/0, 1+0234 -30000 -25000 -20000 -15000 -10000 -5000 -0 Energy
indicates the solution cost (y-axis) for a given instance (x-axis) and red points above the black ones indicate that wdeg + is better than wdeg. The data have been sorted according to the performance of wdeg + . In this figure we observe that wdeg + is pretty effective for the PSP problem, therefore it is worth including the novel version of each algorithm into the portfolio.

BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION PROBLEM

Overall, we are considering a set of 10 variable selection heuristics H var = {lexico, mindom, dom-wdeg, wdeg, domFD, impacts, dom-wdeg + , wdeg + , domFD + , impacts + }, 2 value selection algorithms H val = {min-val, med-val}, and finally it is also well known that restarting the search might improve the performance, therefore the initial cutoff value c is set to 1000; the cutoff increase policy is by multiplying c by 1.2 (geometric factor).

The restart policy is considered for all heuristics, (except lexico and mindom). In total we consider a collection of 18 heuristics candidates, 8 variable selection × 2 value selection + 2 (impacts and impacts +). Notice that impacts and impacts + are variable/value selection techniques.

We use the weka [FHH + 05] implementation, i.e., J48, of the C4.5 algorithm [START_REF] Quinlan | C4.5: Programs for Machine Learning[END_REF] with its default parameter settings. Although J48 supports continuous features values we experimentally found that including a feature discretization step improved the accuracy of the machine learning algorithm. So that, a supervised discretization method is used to translate continuous features values into discrete values (see [START_REF] Witten | Data Mining: Practical Machine Learning Tools and Techniques, Second Edition[END_REF] for further details). The first three rows indicate the performance of the best three single heuristics, i.e., domFD + ,med-val , domFD + ,min-val and lexico,min-val . The next three rows indicate the performance of the portfolios considering all heuristics candidates, i.e., ALL,bio , ALL,cp , and ALL,cp+bio . Finally, the last three rows indicate the performance of the portfolio using Forward Selection (FS) to automatically identify the best subset of heuristics, i.e., FS,bio , FS,cp , and FS,cp+bio .

Strategy

As can be observed the three features sets exhibit close performances; however, using the cp feature set is slightly better than the bio and cp+bio features sets. An alternative explanation lies in the fact that the model is a CP codification of the biological problem which represents a high level abstraction and does not cover all biological properties of the PSP problem. For instance, in real situations amino-acids can be placed anywhere in IR 3 , but in the CP codification amino-acids must be placed inside the lattice model.

Another observation is that the portfolio with the best accuracy is not necessarily the one with best solution cost. For instance ALL,cp reached the best accuracy but its solution cost is -11502 against -12168 for FS,cp which reported the second best accuracy overall strategies. Moreover, as one might have expected, the overall solution cost is on average better when considering the automatic algorithm selection process. It is also worth mentioning that we also experimented with a random heuristic selection by computing the mean across 10 independent runs for each instance. However, this random selection strategy exhibited a mean solution cost of -6631 which is outperformed by all the portfolio strategies in Table 5.2.

A detailed examination of the cp+bio feature set is presented in Figures 5.5 and 5.6.

Each black point represents the performance of the portfolio for a given instance and each red point represents the performance of each comparative algorithm, i.e., domFD + , minval and domFD + , med-val , the two best single heuristics. For analysis purposes hereafter, data have been sorted according to the performance of black points. Notice that since the optimization goal is to find the minimal energy configuration, red points above the black ones indicate that the portfolio is better. (building the portfolio using all available heuristics); in this figure ALL, cp+bio is better Finally, Figure 5.7 depicts the performance using all algorithms, i.e., ALL, cp+bio , against the selection of the right subset of them, i.e., FS, cp+bio . In this figure we observe that in 43 instances is better to use the forward heuristic selection method and only in 27 instances is better to build the portfolio with all candidates.

BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION PROBLEM

! "! #! $! %! &!! &"! &#! &$! &%! !"'!!! !"!!!! !&'!!! !&!!!! (!'!!! (((((!)*+,-*./+ 0*/123 &$(!!!(&!!"!&!!!(4!&5!#676&/8!#9 (a) domFD + , med-val Vs ALL, cp+bio ! "! #! $! %! &!! &"! &#! &$! &%! !"'!!! !"!!!! !&'!!! !&!!!! (!'!!! (((((!)*+,-*./+ 0*/123 &'(!!!(&!!&!&!!!(4!&5!6&!$#/7!#8 (b) domFD + , min-val Vs ALL, cp+bio

Experiments

! "! #! $! %! &!! &"! &#! &$! &%! !"'!!! !"!!!! !&'!!! !&!!!! (!'!!! (((((!)*+,-*./+ 0*/123 &$(!!!(&!!"!&!!!(4!&5!#676&/8!#9 (a) domFD + , med-val Vs FS, cp+bio ! "! #! $! %! &!! &"! &#! &$! &%! !"'!!! !"!!!! !&'!!! !&!!!! (!'!!! (((((!)*+,-*./+ 0*/123 &'(!!!(&!!&!&!!!(4!&5!6&!$#/7!#8 (b) domFD + , min-val Vs FS, cp+bio

Introduction

In order to efficiently solve a Constraint Satisfaction Problem the user is usually left with the tedious task of tuning the search parameters of the constraint solver, and this is both time consuming and not necessary straightforward. Parameter tuning indeed appears to be conceptually simple, (i/ try different parameter settings on representative problem instances, ii/ pick up the setting yielding best average performance). Still, most users would easily consider instances which are not representative of their problems, and get misled.

The goal of this contribution is to allow any user to eventually get their constraint

CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

solver achieving a top performance on their problems. The proposed approach is based on the original concept of Continuous Search (CS), gradually building a heuristics model tailored to the user's problems, and mapping a problem instance onto some appropriate parameter setting. A main contribution compared to the state-of-the-art (see Chapter 3) is to relax the requirement of a large set of representative problem instances to be available beforehand to support offline training. The heuristics model is initially empty (set to the initial default parameter setting of the constraint solver) and it is enriched along a lifelong learning approach, exploiting the problem instances submitted by the user to the constraint solver.

Formally, CS interleaves two functioning modes. In production or exploitation mode, the instance submitted by the user is processed by the constraint solver; the current heuristics model is used to parameterize the constraint solver depending on the instance at hand.

In learning or exploration mode, CS reuses the last submitted instance, running other heuristics than the one used in production mode in order to find which heuristics would have been most efficient for this instance. CS thus gains some expertise relative to this particular instance, which is used to refine the general heuristics model through Machine Learning (see Chapter 2). During the exploration mode, new information is thus generated and exploited in order to refine the heuristics model, in a transparent manner: without requiring the user's input and by only using the idle computer's CPU cycles.

The chapter claim is that the CS methodology is realistic (most computational systems are always on, especially production ones) and compliant with real-world settings, where the solver is critically embedded within large and complex applications. The CS computational cost must be balanced against the huge computational cost of offline training [GHBF05, HW09b, GS01, PT07, WB08, XHHLB07]. Finally, lifelong learning appears a good way to construct an efficient and agnostic heuristics model, and able to adapt to new modeling styles or new classes of problem. This chapter is organized as follows. Section 6.2 introduces the Continuous Search paradigm. Section 6.3 details the proposed algorithm. Section 6.4 reports on its experimental validation. Section 6.5 discusses previous work and the chapter concludes with a summary in Section 6.6.

Continuous Search in Constraint Programming

Continuous Search in Constraint Programming

The Continuous Search paradigm, illustrated on Figure 6.1, considers a functioning system governed from a heuristics model (which could be expressed as e.g., a set of rules, a knowledge base, a neural net). The core of continuous search is to exploit the problem instances submitted to the system along a 3-step process:

1. unseen problem instances are solved using the current heuristics model;

2. these instances are solved with other heuristics, yielding new information. This information associates to the description x of the example (accounting for the problem instance and the heuristics), a boolean label y (the heuristics improves/does not improve on the current heuristics model);

3. the training set E, augmented with these new examples (x, y), is used to revise or relearn the heuristics model.

The Exploitation or production mode (step 1) aims at solving new problem instances as quickly as possible. The exploration or learning mode (steps 2 and 3) aims at learning a more accurate heuristics model. Definition 6.1 A continuous search system is endowed with a heuristics model, which is used as is to solve the current problem instance in production mode, and which is improved using the previously seen instances in learning mode.

Initially, the heuristics model of a continuous search system is empty, that is, it is set to the default settings of the search system. In the proposed CS-based constraint programming, the default setting is a given heuristics noted DEF in the following (Section 6.3).

Assumedly, DEF is a reasonably good strategy on average; the challenge is to improve on DEF for the particular types of instances which have been encountered in production mode.

Dynamic Continuous Search

The Continuous Search paradigm is applied to a restart-based constraint solver, defining the dyn-CS algorithm. After a general overview of dyn-CS, this section details the different modules thereof. Before starting the tree-based search and after each subsequent restarts, the description x of the problem instance is computed (Section 6.3.1). We will call checkpoints the calculation of these descriptions.

...

Checkpoint f(x)=H k Checkpoint f(x)=H k Checkpoint f(x)=H k

Dynamic Continuous Search

depth. From the latest non-failed node, we consider the total number of assigned variables, satisfied constraints, sum of variables wdeg (resp. size and degree) and product of variables degree (resp. domain, wdeg and impacts) of non assigned variables. Finally using the previous 11 features the mean and variance is computed taking into account all visited checkpoints.

The attributes listed above include a collection of 95 features.

Feature pre-processing

Feature pre-processing is a most important step in Machine Learning [START_REF] Witten | Data Mining: Practical Machine Learning Tools and Techniques, Second Edition[END_REF], which can significantly improve the prediction accuracy of the learned hypothesis. Typically, the descriptive feature detailed above are on different scales; the number of variables and/or constraints can be high while the impact of (variable, value) is between 0 and 1. A data normalization step is performed using the min-max normalization [START_REF] Luai | Data Mining: A Preprocessing Engine[END_REF] formula: If there exists a single h such that f (x h) is positive, it is selected and used in the subsequent search effort.

v i = v i -min i max i -min i × (
If there exists several heuristics with positive f (x h), the one with maximal value is selected1 .

If f (x h) is negative for all h, the default heuristic DEF is selected.

Generating examples in Exploration mode

The Continuous Search paradigm uses the idle computer's CPU cycles to explore different heuristic combinations on the last seen problem instance, and see whether one could have done better than the current heuristics model on this instance. The rationale for this exploration is that improving on the last seen instance (albeit meaningless from a production viewpoint since the user already got a solution) will deliver useful indications as to how to best deal with further similar instances. In this way, the heuristics model will expectedly be tailored to the distribution of problem instances actually dealt with by the user.

Dynamic Continuous Search

The CS exploration proceeds by slightly perturbing the heuristics model. Let dyn-CS -i,h denote the policy defined as: use heuristics model dyn-CS at all checkpoints except the i-th one, and use heuristic h at the i-checkpoint. for all h in H // loop over all heuristics do 4:

Compute x describing the current checkpoint and h 5:

if h = dyn-CS then 6:
Launch dyn-CS -i,h 7:

Define y = 1 iff dyn-CS -i,h improves on dyn-CS and -1 otherwise 8:

E ← E ∪ {x, y} a lesion study is conducted, applying h instead of dyn-CS at the i-th checkpoint (heuristics model dyn-CS -i,h); the example (described from the i-th checkpoint and h) is labelled positive iff dyn-CS -i,h improves on dyn-CS, and added to the training set E, once the exploration mode for a given instance is finished the hypothesis model is updated by retraining the SVM including the feature pre-processing as stated in Section 6.3.2.

Imbalanced examples

It is well known that one of the heuristics often performs much better than the others for a particular distribution of problems [START_REF] Correira | On the Efficiency of Impact Based Heuristics[END_REF]. Accordingly, negative training examples considerably outnumber the positive ones (it is difficult to improve on the winning heuristics). This phenomenon, known as Imbalanced distribution, might severely hinder the SVM algorithm [START_REF] Akbani | Applying Support Vector Machines to Imbalanced Datasets[END_REF]. Two simple ways of enforcing a balanced distribution in such cases, Another options is to use prior knowledge to rebalance the training distribution. Formally, instead of labeling an example positive (resp, negative) iff the associated runtime is strictly less (resp. greater) than that of the heuristic model, we consider the difference between the runtimes. If the difference is less than some tolerance value dt, then the example is relabeled as positive.

The number of positive examples and hence the coverage of the learned heuristics model increase with dt; in the experiments (Section 6.4), dt is set to 20% of the time limit iff time-exploitation (time required to solve a given instance in production mode) is greater than the 20% of the time limit, otherwise dt is set to time-exploitation.

Experimental validation

This section reports on the experimental validation of the proposed Continuous Search approach. All tests were conducted on Linux Mandriva-2009 boxes with 8 GB of RAM and 2.33 Ghz Intel processors.

Experimental setting

The presented experiments consider 496 CSP instances taken from different repositories.

Experimental validation

• js: 130 Job Shop instances [START_REF] Boussemart | Description and Representation of the Problems Selected for the First International Constraint Satisfaction Solver Competition[END_REF] from the XCSP repository. This problem consists in finding the schedule that minimizes the time to complete a set of n jobs with a set of m shared resources. Each job consists of a set of operations that might sequentially finished. That is, one operation should be completed before starting the next one. The original problem formulation is an optimization problem, however, instances in the XCSP repository were formulated as CSPs by accepting solutions with a given solution cost.

• geom: 100 Geometric [BHL05] instances from the XCSP repository. This problem consists of a graph with n variables that are randomly placed in a two dimensional cartesian plane. Edges are added to the graph iff the distance between the two variables is less or equal to √ 2. Finally, similarly to homogeneous random CSPs, some edges from the resulting graph are chosen to select pairs of incompatible values for the variables.

• lfn: 83 Langford-number instances, translated into Gecode using global and channelling constraints.

The learning algorithm used in the experimental validation of the proposed approach is a Support Vector Machine with Gaussian kernel, using the libSVM implementation with default parameters [START_REF] Chang | LIBSVM: A Library for Support Vector Machines[END_REF]. All considered CSP heuristics (see Chapter 2.2.1) are homemade implementations integrated in the Gecode 2.1.1 [START_REF]Gecode: Generic Constraint Development Environment[END_REF] constraint solver. dyn-CS was used as a heuristics model on the top of the heuristics2 set H = {dom-wdeg, wdeg, dom-deg, min-dom, impacts }, taking min-value as value selection heuristic. The cutoff value used to restart the search was initially set to 1000 and the cutoff increase policy to ×1.5 (geometric factor), the same cutoff policy is used in all the experimental scenarios.

Continuous Search was assessed comparatively to the best two dynamic variable ordering heuristics on the considered problems, namely dom-wdeg and wdeg. It must be noted that Continuous Search, being a lifelong learning system, will depend on the curriculum, that is the order of the submitted instances. If the user "pedagogically" starts by submitting

CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

informative instances first, the performance in the first stages will be better than if untypical and awkward instances are considered first. For the sake of fairness, the performance reported for Continuous Search on each problem instance is the median performance over 10 random orderings of the CSP instances.

Practical performances

The first experimental scenario involves a timeout of 5 Minutes. problem families, respectively (bibd, js, nsp, and geom). On the bibd (Figure 6.6) and js (Figure 6.7) problems, the best heuristics is dom-wdeg, solving 3 more instances than dyn-CS. Note that dom-wdeg and wdeg coincide on bibd since all decision variables are boolean.

On nsp (Figure 6.8), dyn-CS solves 9 more problems than dom-wdeg, but is outperformed by wdeg by 11 problems. On geom (Figure 6.5), dyn-CS improves on the other heuristics, solving respectively 3 more instances and 40 more instances than dom-wdeg and wdeg.

These results suggest that dyn-CS is most often able to pick up the best heuristics on a given problem family, and sometimes able to significantly improve on the best of the available heuristics.

All experimental results concerning the first scenario are summarized in Table 6 The second experimental results using a timeout of 3 Minutes are presented in table 6.2, as can be observed, decreasing the time limit drastically reduce the total number of solved

CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

instances for dom-wdeg and wdeg. Therefore, selecting the right heuristic becomes critical.

Here dyn-CS is able to solve 24 and 45 more instances than dom-wdeg and wdeg.

Exploration time

Now we turn our attention to the CPU time required to complete the exploration mode. Tables 6.4 and 6.5 show the total exploration time considering a timeout of five and three minutes for each problem family, the median value is computed taking into account all instance orderings and instance estimates the total exploration time for a single probleminstance.

As can be seen the time required to complete the exploration mode after solving a problem-instance is on average no longer than 2 hours. On the other hand, we would like to point out that since the majority of the instances for the bibd and geom problems can be quickly solved by dyn-CS, it is not surprising that the required time is significantly inferior compared with nsp, js and lfn. In this context, Table 6.6 reports the results on the geom (left) and bibd (right) problems by considering the following two scenarios. In the first scenario, we are going to emulate a portfolio-based search which would use the wrong domain to train. In nsp-geom ‡ , CS incrementally learns while solving the 100 nsp instances, and then solves one by one the 100 geom instances. However, when switching to this second domain, incremental learning is switched off, and checkpoints adaptation uses the model learnt on nsp. In the second scenario, nsp-geom † we solve nsp, then geom instances one by one, but this time, we keep the incremental learning on when switching from the first domain to the second one -as if CS was not aware of the transition.

As we can see in the first line of the Unfortunately, this mechanism is only applicable to optimization problems and cannot be straightforward used to solve CSPs.

Summary

The main contribution of the presented approach, the Continuous Search framework aims at designing a heuristics model tailored to the user problem distribution, allowing her to get top performance from the constraint solver. The representative instances needed to train a good heuristics model are not assumed to be available beforehand; they are gradually built and exploited to improve the current heuristics model, by stealing the idle CPU cycles of the computing system. Metaphorically speaking, the constraint solver uses its spare time to play against itself and gradually improve its strategy along time; further, this expertise is relevant to the real-world problems considered by the user, all the more so as it directly relates to the problem instances submitted to the system.

Introduction

Complete parallel solvers for the propositional satisfiability problem have received significant attention recently. These solvers can be divided into two main categories the classical divide-and-conquer model and the portfolio-based approach. The first one, typically divides the search space into several sub-spaces while the second one lets algorithms compete on the original formula [START_REF] Hamadi | ManySAT: A Parallel SAT Solver[END_REF]. Both take advantage of the modern SAT solving architecture [MMZ + 01], to exchange the conflict-clauses generated in the system and improve the overall performance.

EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

This push towards parallelism in complete SAT solvers has been motivated by their practical applicability. Indeed, many domains, from software verification to computational biology and automated planning rely on their performance. This method sorts the configurations of the shared matrix from worst to best according to their cost. The worst ranked one gets weight of 1 (i.e., RankW 1 =1), and the best ranked c (i.e., RankW c =c).

Normalized Performance

This method assigns weights (N ormW) considering a normalized value of the number of unsatisfied clauses of the configuration:

N ormW j = |C| -C j |C|
Using the previous two weighting mechanisms, we define the following four extra methods to determine initial configurations.

To this end, we define Φ(val, W eight) = k∈{j|X ji =val} W eight k .

1. Majority RankW: if there exists two values v and v such that Φ(v, RankW) > Φ(v , RankW) then init i =v, otherwise a random value is used.

2. Majority NormalizedW: if there exists two values v and v such that Φ(v, N ormW) > Φ(v , N ormW) then init i =v, otherwise a random value is used.

3. Prob RankW: init i =1 with probability P Rones = Rones Rones+Rzeros and init i =0 with probability 1-P Rones , where Rones=Φ(1, RankW) and Rzeros=Φ(0, RankW).

4.

Prob NormalizedW: init i =1 with probability P N ones = N ones N ones+N zeros and init i =0 with probability 1-P N ones , where N ones=Φ(1, N ormW) and N zeros=Φ(0, N ormW)

Restart Policy

As mentioned earlier on, shared knowledge is exploited when a given algorithm is restarted.

At this point the current working configuration of a given algorithm is re-initialized according to a given aggregation strategy. However, it is important to restrict cooperation since it adds overheads and more importantly tend to generate similar configurations. In this

EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

On the other hand, the previous knowledge aggregation mechanisms were built on top of a portfolio with 4 algorithms (same algorithms as 4cores-No sharing) and a portfolio with 8 algorithms (same algorithms as 8cores-No sharing). There, we used the modified restart policy described in Section 7.2.3 with M axF lips set to 10 6 .

All tests were conducted on a cluster of 8 Linux Mandriva machines with 8 GB of RAM and two quad-core (8 cores) 2.33 Ghz Intel Processors. In all the experiments, we used a timeout of 5 minutes (300 seconds) for each algorithm in the portfolio, so that for each experiment the total CPU time was set to c × 300 seconds, where c indicates the number of algorithms in the portfolio.

We executed each instance 10 times (each time with a different random seed) and reported two metrics, the Penalized Average Runtime (PAR) [START_REF] Hutter | Tradeoffs in the Empirical Evaluation of Competing Algorithm Designs[END_REF] which computes the average runtime overall instances, but where unsolved instances are considered as 10× the cutoff time, and the runtime for each instance which is calculated as the median across the 10 runs. Overall, our experiments for these 359 SAT instances took 187 days of CPU time. As expected, the portfolio with the top 4 best algorithms (4cores-No Sharing) performs better (309) that the one with 4 copies of the best algorithms (4cores-PAWS) (275). Additionally, Figure 7.1(b) shows the performance when considering the PAR metric. The y-axis shows the Penalized Average Runtime for a given time cutoff given on the x-axis. In this figure, it can be observed that the aggregation policies are also efficient when varying the time limit to solve problem instances.

Practical Performances with 4 Cores

The performance of the portfolios with knowledge sharing is quite good. Overall, it seems that adding a weighting mechanism can often hurt the performance of the underlying aggregation strategy. Among the weighting options, it seems that the Normalized Performance performs better. The best portfolio implements the Prob strategy without any weighting (329). This corresponds to a gain of 20 problems against the corresponding Indeed, as it will be detailed in Section 7.3. These experimental results show that Prob (4 and 8 cores) exhibited the overall best performance. We attribute this to the fact that the probability component of this method balances the exploitation of best solutions found so far with the exploration of other values for the variables, helping in this way, to diversify the new starting configuration.

Analysis of the Diversification/Intensification Trade off

Maintaining an appropriate balance between diversification and intensification of the acquired knowledge is an important step of the proposed cooperative portfolios to improve the performance. In this chapter, diversification (resp. intensification) refers to the ability of generating different (resp. similar) initial configuration at each restart. In [START_REF] Kroc | Integrating Systematic and Local Search Paradigms: A New Strategy for MaxSAT[END_REF], the authors studied the application of a parallel hybrid algorithm to deal with the MaxSAT problem. This algorithm combines a complete solver (minisat) and an incomplete one (Walksat). Broadly speaking both solvers are launched in parallel and minisat is used to guide Walksat to promising regions of the search space by means of suggesting values for the selected variables.

Cooperative Algorithms

In [START_REF] Hogg | Solving the Really Hard Problems with Cooperative Search[END_REF] a set of algorithms running in parallel exchange hints (i.e., partial valid solutions) to solve hard graph coloring instances. To this end, they share a blackboard where they can write a hint with a given probability q and read a hint with a given probability p.

In [START_REF] Silva | Asynchronous Cooperative Local Search for the Office-Space-Allocation Problem[END_REF] the authors studied a sequential cooperative algorithm to deal with the officespace-allocation problem. In this chapter cooperation takes place when a given algorithm is not able to improve its own best solution, at this point a cooperative mechanism is used to explore suitable partial solutions stored by individual heuristics. This algorithm is also equipped with a diversification strategy to explore different regions of the search space.

Although Averaging in Previous Near Solutions [START_REF] Selman | Domain-Independent Extensions to GSAT: Solving Large Structured Satisfiability Problems[END_REF] is not a cooperative algorithm by itself, this method is used to determine the initial configuration for the i th restart in the GSAT algorithm. Broadly speaking, the initial configuration is computed by performing a bitwise average between variables of the best solution found during the previous restart (restart i-1) and two restarts before (restart i-2). That is, variables with same values in both configurations are re-used, and the extra set of variables are initialized with random values. Since overtime, configurations with a few conflicting clauses tend to become similar, all the variables are randomly initialized after a given number of restarts.

EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

Summary

In this chapter, we have studied several knowledge sharing strategies in parallel local search for SAT. We were motivated by the recent developments in parallel DPLL solvers. We decided to restrict the information shared to the best configuration found so far by the algorithms in a portfolio. From that we defined several simple knowledge aggregation strategies along a specific lazy restart policy which creates a new initial configuration when a fix cutoff is meet and when the quality of the shared information has been improved.

Extensive experiments were done on a large number of instances coming from the latest SAT competition. They showed that adding the proposed sharing policies improves the performance of a parallel portfolio, this improvement is exhibited in both number of solved instances and the Penalized Average Runtime (PAR). It is also reflected in the best configuration cost of problems which could not be solved within the time limit.

CONCLUSIONS AND PERSPECTIVES

of algorithms is able to improve the overall quality of the solutions when compared against the best individual strategy. Subsequently, we have proposed the Continuous Search paradigm whose main objective is to relax the requirement of a large number of representative instances to be available before hand in order to build a heuristics model. To this end, Continuous Search comes in two modes: the functioning (or exploitation) mode uses the current heuristics model to solve a given problem instance as soon as possible, while the learning (or exploration) mode reuses previous seen instances in order to gradually improve the quality of the heuristics model to become an expert on the user's problem instance distribution. Experimental validation showed that Continuous Search can design efficient mixed strategies after considering a moderate number of problem instances.

In the final part of the thesis, we have explored several knowledge sharing strategies to improve the performance of a parallel portfolio of local search algorithms. The main objective of these strategies is to aggregate the best configuration found so far for each algorithm in the portfolio to carefully build a new configuration to start with. Our results, showed that these simple cooperative strategies along with a specific lazy restart policy help to considerably improve the performance of a parallel portfolio.

Perspectives

The work presented in this thesis can be extended in many directions. The following are, in the author's opinion, some interesting directions of future work.

• Variable Selection Heuristics. A straightforward extension of the domFD heuristic would be considering the Multi-level Dynamic Variable Ordering approach [START_REF] Bessière | Neighborhood-Based Variable Ordering Heuristics for the Constraint Satisfaction Problem[END_REF] which selects the most promising variable by considering neighbors in the constraint graph, in the case of domFD one might consider different neighbors in the Weak Dependencies graph. Another interesting area of research would be considering [START_REF] Dave | Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT[END_REF] to build new score functions by normalizing and combining several score metrics (e.g., domFD, mindom, dom-wdeg, etc).

• Algorithm Selection Problem. We plan to extend our work in this area mainly 8.2 Perspectives considering the application of Active Learning [START_REF] Bordes | Fast Kernel Classifiers with Online and Active Learning[END_REF][START_REF] Dasgupta | A General Agnostic Active Learning Algorithm[END_REF] in order to select the most informative training examples and focus the exploration mode on the most promising heuristics. Another point regards the feature design; better features would be needed to get a higher predictive accuracy, governing the efficiency of the approach. Indeed, we plan to investigate a set of recently proposed descriptors [GJK + 10, GKMN10], and also a combination of the low-knowledge feature set proposed in [START_REF] Carchrae | Applying Machine Learning to Low-Knowledge Control of Optimization Algorithms[END_REF] with the CP feature set studied in this thesis.

A longer term perspective regards the use of Reinforcement Learning for learning good restart policies; beyond characterizing the best heuristics at a given checkpoint, the goal becomes to find the best sequence of heuristics, to be applied in each checkpoint, in order to solve the instance as fast as possible.

• Parallel Portfolio Algorithms. The framework proposed in Chapter 7 intends to be the basics for new parallel local search solvers for SAT. Here much work remains to be done, in particular the use of additional information to exchange, for instance: tabu-list, the age and score of a variable, information on local minima, etc. It should also be important to investigate the best way to integrate this extra knowledge in the course of a given algorithm. As pointed out in Chapter 7, state-of-the-art local search algorithms for SAT perform better when they do not restart. Incorporating extra information without forcing the algorithm to restart is likely to be important.

In this direction, we plan to equip the local search algorithms used in Chapter 7 with clause learning, as described in [START_REF] Cha | Adding New Clauses for Faster Local Search[END_REF][START_REF] Audemard | Learning in local search[END_REF] to exchange learnt clauses, borrowing ideas from portfolios for complete parallel SAT solvers. Another interesting area of research would be designing a parallel portfolio of algorithms which combine complete and incomplete algorithms, and exchange the knowledge achieved for each strategy.

 reviewed publications: • Alejandro Arbelaez and Youssef Hamadi. Exploiting Weak Dependencies in Tree-Based Search. In ACM Symposium on Applied Computing (SAC), pages 1385-1391, Honolulu, Hawaii, USA, March 2009. ACM. [AH09b] • Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Building Portfolios for the Protein Structure Prediction Problem. In Workshop on Constraint Based Methods for Bioinformatics (WCB), Edinburgh, UK, July 2010. [AHS10a] • Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Online Heuristic Selection in Constraint Programming. In International Symposium on Combinatorial Search, Lake Arrowhead, USA, July 2009. [AHS09] • Alejandro Arbelaez and Youssef Hamadi. Continuous Search in Constraint Programming: An Initial Investigation. In Karen Petrie and Olivia Smith, editors, Constraint Programming Doctoral Program, pages 7-12, Lisbon, Portugal, September 2009. [AH09a] • Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Continuous Search in Constraint Programming. In Eric Gregoire, editor, 22th International Conference on Tools With Artificial Intelligence (ICTAI), volume 1, pages 53-60, Arras, France, October 2010. IEEE. [AHS10b] 1.5 List of Publications • Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Continuous Search in Constraint Programming. In Youssef Hamadi, Eric Monfroy, and Frédéric Saubion, editors, Autonomous Search. Springer-Verlag, 2011. [AHS11] • Alejandro Arbelaez and Youssef Hamadi. Improving parallel local search for SAT. In Learning and Intelligent Optimization, Fifth International Conference, LION 2011 (to appear), 2011. [AH11b] • Alejandro Arbelaez and Youssef Hamadi. Efficient Parallel Local Search for SAT.

 Figure 2.1: Sudoku

 (x = v) from s 10: add-constraint-and-propagate(x = v) to s 11: return backtracking(s) 12: end if 13: return result

Figure 2 . 2 :

 22 Figure 2.2: Resulting search tree for the sudoku example

Figure 2 . 3 :

 23 Figure 2.3: Sudoku resolution step-by-step (Backtracking)

 Algorithm 2.2 local search(Problem s)1: for try := 1 to Max-Tries do for 12: return 'No solution found'

Figure 2 . 4 :

 24 Figure 2.4: Sudoku resolution step-by-step (Local Search)

Figure 2 . 5 :

 25 Figure 2.5: SAT example

Figure 2 . 6 :

 26 Figure 2.6: Linear Support Vector Machine. The optimal hyperplane is the one maximizing the minimal distance to the examples.

Figure 2 . 7)Figure 2 . 7 :

 2727 Figure 2.7) where each non-leaf node represents a given attribute (or feature), each branch represents the value of the node indicating a decision, and each leaf node represents a class label. A widely used algorithm to build the hypothesis model is the ID3 algorithm [Qui86]which uses a greedy technique to recursively select the best feature for each node in the tree.

 Figure 3.1: Rice's abstract model for the algorithm selection problem

3.

 Compute the runtime and feature values for all training examples. 4. Perform feature selection in order to use the most informative subset of features, x 5. Use linear regression to learn f (x) a runtime function prediction.

 and a variety of constraints and pruning rules [BCDP07, BHZ06, PBG05]. Gebruers, et al., in [GHBF05] studied the application of two well known classification algorithms such as: decision trees (C4.5) and k-nearest neighbor (3-NN) to select the most suitable strategy for the Social Golfer problem [AV06]. In this context a strategy is a tuple model, variable selection, value selection , where model indicates the set of constraints used to codify the problem and variable selection (resp. value selection) chooses a variable 3. RELATED WORK (resp. value) during the tree search procedure. Overall the experiments, 3-NN exhibited the best performance by frequently selecting the most appropriate strategy. It is important to note that this portfolio uses features and heuristics only applicable to the social golfer problem.

 consistency [SF94]. Constraints are high-level abstractions implemented by propagators 1 [ST08, Tac09], these propagators help to remove invalid values from the variables through constraint propagation Algorithm 4.1 describes a classic constraint propagation engine [SC06]. In this algorithm, constraints are managed as propagators in a propagation queue, Q. This structure 4.2 Constraint propagation Algorithm 4.1 Classic propagation engine 1: Q = {p1, p2, ...} 2: while Q = {} do for all X i ∈ vars(p) s.t. D i was narrowed do 6:schedule(Q, p, X i); 7:

4 .

 4 EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH 4.3 Exploiting weak dependencies in tree-based search 4.3.1 Weak dependenciesIn general, functional dependencies are difficult to obtain as they require to check the consequences of assigning each value for a given set of variables. Therefore, Our objective is to take advantage of functional dependencies during search. We propose to heuristically discover a weaker form of relation called weak dependency between pairs of variables. A weak dependency is observed when a variable gets instantiated as the result of another instantiation. Our new DVO heuristic records these weak dependencies and exploits them to prioritize the variables during the search process. Definition 4.2 During constraint propagation based on Algorithm 4.1, we call (X, Y) a weak dependency if the two following conditions hold: 1. Y is instantiated as the result of the execution of a propagator p. 2. p was inserted in Q as the result of the instantiation of X. Notice that the previous definition excludes intermediate constraint propagation narrowing the domain of other variables or narrowing the domain of Y . This excludes a situation where Y gets instantiated as a consequence of domain narrowing. Property 4.1 Weak dependency relations (X, Y) can be recorded as the result of the execution of a propagator p iff X ∈ vars(p) and Y ∈ vars(p).

50 4 . 3 Figure 4

 434 Figure 4.1: Weak dependencies

Finally, selecting the

 variable which minimizes domFD can cost an iteration over n variables if no special data structure is used. Now if we consider all the operations, constraint propagation with the new schedule procedure, disconnecting a single variable, and selection of the variable which minimizes domFD, we have O(n + m) -as opposed to O(m) initially.

5 .

 5 BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION PROBLEM learning techniques.In this chapter, we propose the use of machine learning to automatically select the most promising Constraint Optimization algorithm for the PSP problem. In this context, proteins are represented as a feature vector in IR d and the algorithm selection process is based on a well known multi-class classification algorithm called decision tree. This way, the decision tree technique would suggest the most appropriate variable/value selection strategy used by a branch-and-bound algorithm in order to determine the 3D conformation of a given protein.Unlike other portfolio-based selection approaches [HHHLB06, XHHLB07, AHS09, HW09b, GHBF05] which select the algorithm that minimizes the expected runtime, our approach selects the strategy that minimizes the expected cost of the solution found after a fixed amount of time. To the best of our knowledge, this is the first work which performs algorithm selection in an optimization setting by taking into account algorithm's solution cost instead of algorithm's runtime. Moreover, and unlike previous works which only extract the features exploited during machine learning from the SAT or CP encoding of the problem (see Chapter 3), our work explores the application of two features sets. In this way, we use features formulated directly from the application domain (Problem Features), as well as features from the CP encoding of the problem (CP Features).

Figure 5 .Figure 5 . 1 :

 551 Figure 5.1: 3D conformation of the 3SDHA protein

Figure 5 . 2 :

 52 Figure 5.2: Traditional algorithms portfolio framework

 Figure 5.3 depicts the strategy, the entire data-set D is divided into 10 subsets {D 1 , D 2 , . . . , D 10 } for each subset D i the heuristics model is defined with L = D -D i , where L itself employs an inner 10-fold cross-validation to determine the right subset of heuristics in the portfolio before testing on D i . Algorithm 5.1 shows the forward heuristic selection method used in order to compute the right subset of algorithms at each iteration of the 10-fold cross-validation procedure. Alg represents the full set of algorithms and D indicates the current training set. It is also important to notice that EnergyEval uses an inner 10-fold cross-validation in order to obtain the mean energy evaluation considering D and SS , where D represents a set of instances and SS represents a subset of algorithms to build the portfolio. Finally, SS

 BestA == N one or SS = Alg 16: return SS

Figure 5 . 3 :

 53 Figure 5.3: Experimental validation using 10-fold cross-validation and an inner forward selection

Figure 5 . 4 :

 54 Figure 5.4: wdeg Vs wdeg +

 considering a perfect portfolio and Mean indicates the mean solution cost overall instances using 10-fold cross-validation as explained in Section 5.4.1. Additionally, cp, bio, cp+bio indicate respectively the use of the CP feature set, the bio feature set and a concatenation of CP+bio features, and the best performing strategy (w.r.t. both accuracy and mean solution 5.5 Experiments cost) is indicated in bold.

Figure 5 .

 5 Figure 5.5(a) shows the performance of domFD + , med-val against ALL, cp+bio

Figure 5 . 5 :

 55 Figure 5.5: Experimental evaluation using all available heuristics

Figure 5 . 6 :

 56 Figure 5.6: Experimental evaluation using forward heuristic selection

Figure 5 .

 5 5(b) shows the performance of domFD + , min-val against ALL, cp+bio ; here the portfolio is better in 108 instances and worse in 62 instances.

Figure 5 .

 5 Figure 5.6(a) shows the performance of domFD + , med-val againts FS, cp+bio (building the portfolio using the algorithm subset selection); in this figure FS, cp+bio is better than domFD + , med-val in 109 instances and worse in 43 instances.Figure 5.5(b) shows

Figure 5 .

 5 5(b) shows the performance of domFD + , min-val against FS, cp+bio ; here the portfolio is better in 96 instances and worse in 45 instances.

Figure 5 . 7 :

 57 Figure 5.7: ALL, cp+bio Vs FS, cp+bio

 chapter, we studied a potential application of Machine Learning to the Algorithm Selection Problem for optimization settings by means of a well-known problem drawn from bioinformatics. In this chapter, we extend the traditional viewpoint of the Algorithm Selection Problem with Continuous Search, a novel paradigm. Continuous Search comes in two functioning modes: the production mode, which intends to solve new problem instances by means of using the current heuristics model; and the exploration mode, which reuses these instances to train and improve the heuristics model through Machine Learning during the computer idle time.

Figure 6 . 1 :

 61 Figure 6.1: Continuous Search scenario

Figure 6 .

 6 Figure 6.2 depicts the general scheme of dyn-CS. The constraint-based solver involves several restarts of the search. A restart is launched after the number of backtracks in the search tree reaches a user-specified threshold. The search stops after a given time limit.

Figure 6 .

 6 Figure 6.2: dyn-CS: selecting the best heuristic at each restart point

Figure 6 . 3 :

 63 Figure 6.3: Continuous Search in Constraint Programming

Algorithm 6 . 1

 61 Exploration-time(instance: I) 1: E = {} //initialize the training set 2: for all i in checkpoints(I) // loop over checkpoints (I) do 3:

 for 12: return E Algorithm 6.1 describes the proposed Exploration mode for Continuous Search. A limited number (10 in this work) of checkpoints in the dyn-CS based resolution of instance I are considered (line 2); for each checkpoint and each heuristic h (distinct from the dyn-CS),

6 .

 6 CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING intensively examined in the literature and considered in earlier work [AHS09], are to oversample examples in the minority class (generating additional positive examples by Gaussianly perturbing the available ones) and/or undersample examples in the majority class.

 Details of the bibd and lfn problem families are presented in Chapter 4 (see Section 4.4.1).• nsp: 100 nurse-scheduling [DT00] instances from the MiniZinc [NSB + 07] repository. This problem consists in defining the work schedule for a set of nurses such that each nurse might have at least n days off after m consecutive working days, and no nurse can work x consecutive nights.• bibd: 83 Balance Incomplete Block Design instances from the XCSP [RL09] repository, translated into Gecode using Tailor[START_REF] Gent | Tailoring Solver-Independent Constraint Models: A Case Study with Essence' and Minion[END_REF].

Figure 6 .Figure 6 . 4 :Figure 6 . 5 :Figure 6 . 6 :Figure 6 . 7 :Figure 6 . 8 :

 66465666768 Figure 6.4: Langford-number (lfn)

Figure 7 .

 7 Figure 7.1(a) shows the results of each aggregation strategy using a portfolio with 4 cores, comparatively to the 4 cores baseline portfolios. The x-axis gives the number of problems solved and the y-axis presents the cumulated runtime.

Figure 7 . 2 :

 72 Figure 7.2: Runtime comparison, each point indicates the runtime to solve a given instance using 4cores-Prob (y-axis) and 4cores-No Sharing (x-axis)

Figure 7 . 3 :

 73 Figure 7.3: Best configuration cost comparison on unsolved instances. Each point indicates the best configuration (median) cost of a given instance using 4cores-Prob (y-axis) and 4cores-No Sharing (x-axis)

 We now move on to portfolios with 8 cores. The results of these experiments are depicted in Figure7.4 indicating the total number of solved instances within a given amount of time.As in previous experiments, we report the results of baseline portfolios 8cores-No Sharing and 8cores-PAWS, as well as the seven cooperative strategies. We can observe than the cooperative portfolios (except 8cores-Agree) largely outperform the non-cooperative ones in both the number of solved instances (Figure7.4(a)) and the PAR metric (Figure7.4(b)).

Figure 7 .

 7 Figure 7.5 aims to analysis the balance between diversification and intensification by means of computing the average Hamming distance between all pairs of best known configurations (HamDis) vs the number of flips for a typical SAT instance. Notice that some lines are of different sizes because some strategies required less flips to solve the instance.HamDis is formally described as follows:

Figure 7 . 5 :

 75 Figure 7.5: Pairwise average Hamming distance (x-axis) vs Number of flips every 10 6 steps (y-axis) to solve the unif-k3-r4.2-v16000-c67200-S2082290699-014.cnf instance

Figure 7 . 6 :

 76 Figure 7.6: Individual algorithms performance to solve the unif-k3-r4.2-v16000-c67200-S2082290699-014.cnf instance

Figure 7 . 7 :

 77 Figure 7.7: Runtime comparison using parallel local search portfolios made of respectively 1, 4, and 8 identical copies of PAWS (same random seed). Red points indicate the performance of 4 cores vs 1 core. Black points indicate the performance of 8 cores vs 1 core, points above the blue line indicate that 1 core is faster

 x, and x the best promising decreasing variable with respect to B. Similarly to Novelty, Novelty+p starts by selecting v best and v 2best from an unsatisfied clause c. Afterwards, if v best is the latest flipped variable in c, then with a probability p selects v 2best and with probability 1-p uses the promising score to select the next variable. Finally, if v best is not the latest flipped variable in c but was flipped after v 2best , then v best is selected, otherwise the promising score is used to select the best variable.

	• G 2 WSAT [LH05] (G2) maintains a list of promising decreasing variables to deter-mine the most suitable variable to be flipped at each iteration of Algorithm 2.2, where
	a variable is decreasing if score(x) > 0. This way, G 2 WSAT selects the best variable
	from the list, breaking ties using the flip history. If the list of decreasing variables is
	empty the algorithm uses Novely++ as a backup heuristic. G 2 WSAT+p (G2+p) uses
	a similar strategy that G 2 WSAT however in this case the backup solver is Novelty+p.

 4.3 Exploiting weak dependencies in tree-based search Algorithm 4.2 Schedule(Queue Q, Propagator p, Variable X i)

	1: enqueue(Q, prop(X i));
	2: if |D i | = 1 then 3: dependencies(p.assigned, X i);
	4:

Table 4 .

 4

	Instance		dom-wdeg			domFD	
		#nodes #failures time (s) #nodes #failures time (s)
	qwh-30-316-1	1215	603	0.22	234	115	0.32
	qwh-30-316-2	48141	24063	8.09 10454	5220	3.62
	qwh-30-316-3	6704	3347	1.11	2880	1437	1.15
	bibd-7-3-2	100	39	0.01	65	28	0.01
	bibd-7-3-3	383	180	0.03	96	42	0.01
	bibd-7-3-4	-	-	TO	132	56	0.03
	lfn-3-9	168638	84316	6.16	7527	3760	0.26
	lfn-2-19	-	-	TO 1.64M 822500	43.05
	lfn-3-10	2.21M	1.10M	87.15 12440	6218	0.46
	nono-5	1785	879	0.12	491	239	0.11
	nono-8	17979	8983	3.54	1084	537	0.54
	nono-9	248	115	0.04	120	58	0.12

2: First solution, branch-and-prune strategy

Table 4 .

 4

			dom-wdeg			domFD
		#nodes #failures time (s)	#nodes #failures time (s)
	mag-squ-5	2239	1113	0.02	3025	0.06
	mag-squ-6	33238	16564	0.32	4924	0.08
	mag-squ-7	9963	4868	0.20	33422	0.86
	mag-squ-8	35.18M 17.59M 460.40	152446	4.51
	mag-squ-9	-	-	TO	66387	1.64
	mag-squ-10	-	-	TO	83737	2.17
	mag-squ-11	-	-	TO	8.52M	4.26M 374.62
	crow-ch-7	2029	1002	0.04	3340	0.22
	crow-ch-8	16147	8036	0.67	2041	0.14
	crow-ch-9	129827	64788	6.15	228480	37.97
	crow-ch-10	-	-	TO 1134052 263.01
	sport-lea-14	4746	2327	0.68	4814	0.65
	sport-lea-16	28508	14073	4.05	3913	0.61
	sport-lea-18	546475 272510 101.70	51680	10.72
	sport-lea-20	182074	90355	36.69	2.07M	1.03M 514.18
	qwh-30-316-1	1215	603	0.22	234	0.32
	qwh-30-316-2 118348	59104	20.06	8828	2.7
	qwh-30-316-3	8944	4451	1.68	3114	1.01
	qwh-35-405	2.38M	1.19M 562.62	475053 236.05
	bibd-7-3-2	100	39	0.01	65	0.01
	bibd-7-3-3	383	180	0.03	96	0.01
	bibd-7-3-4	6486	3210	0.79	132	0.03

3: First solution, restart-based strategy

Table 4 .

 4

	heuristic		average
		#nodes #failures time (s) nodes/s
	dom-wdeg	2.14M	1.07M	56.99 37664
	domFD	717202 358419	39.53 18139

4

summarizes the performance of the heuristics. These results were generated by only taking into account the problems which can be solved by both domFD and dom-wdeg i.e., we removed 6 instances which cannot be solved by dom-wdeg.

Table 4 .

 4

4: Synthesis of the experiments

Table 5

 5

.1: Amino-acid feature's group

Table 5 .

 5 2: Overall strategies solution cost with a 5-minute timeout Table5.2 summarizes the performance for all strategies with a 5-minute timeout. In this table Accuracy indicates the percentage of times that a given strategy S i is the winner

		Accuracy % Mean
	domFD + , med-val	18.3	-10437
	domFD + , min-val	17.3	-10310
	lexico,min-val	21.1	-10109
	ALL, bio	38.9	-11418
	ALL, cp	42.7	-11502
	ALL, cp+bio	38.9	-11401
	FS, bio	40.6	-12021
	FS, cp	42.2	-12168
	FS, cp+bio	40.0	-12085

 max newmin new) + min new Where min new =-1, max new =1 and min i (resp. max i) correspond to the normalization value for the i-th feature. In this way, feature values are scaled down in [-1, 1]. Although selecting the most informative features might improve the performance, in this chapter we do not consider any feature selection algorithm, and only features that are constant over all examples are removed as they offer no discriminant information.The selection of the best heuristic for a given problem instance is formulated as a binary classification problem, as follows. Let H denote the set of k candidate heuristics, two particular elements in H being DEF (the default heuristics yielding reasonably good results on average) and dyn-CS, the (dynamic) ML-based heuristics model initially set to DEF. Each training example p i = (x i , y i) is generated by applying some heuristics h (h ∈ H, h = dyn-CS) at some checkpoint in the search tree of a given problem6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMINGinstance. Description x i (∈ IR 97) is made of the static feature values describing the problem instance, the dynamic feature values computed at this check point and describing the current search state, and two additional features: checkpoint-id gives the number of checkpoints up to now and cutoff-information gives the cutoff limit of the next restart. The associated label y i is positive iff the associated runtime (using heuristic h instead of dyn-CS at the current checkpoint) improves on the heuristics model-based runtime (using dyn-CS at every checkpoint); otherwise, label y i is negative.If the problem instance cannot be solved (whatever the heuristics used, i.e., time out during the exploration and exploitation modes), it is discarded (since the associate training examples do not provide any relevant information).In production mode, the hypothesis f learned from the above training examples (their generation is detailed in next subsection) is used as follows: Definition 6.3 At each checkpoint, for each h ∈ H, the description x h and the associated value f (x h) are computed.

	6.3.3 Learning and using the heuristics model
	Definition 6.2

 .1, reporting for each considered heuristics the number of instances solved (#sol), the total computational cost for all instances (time, in hour), the average time (avg-time, in minutes) per instance, and the number of instances for each problem family indicated in parentheses. It is important to notice that the best performing algorithm (w.r.t. runtime efficiency) is indicated in bold. These results confirm that dyn-CS outperforms dom-wdeg and wdeg, solving respectively 18 and 41 instances more out of 315. Furthermore, it shows that dyn-CS is slightly faster than the other heuristics, with an average time of 2.11 minutes, against respectively 2.39 for dom-wdeg and 2.61 for wdeg.

	Problem	dom-wdeg #sol time(h) avg-time(m) #sol time(h) avg-time(m) #sol time(h) avg-time(m) wdeg dyn-CS
	nsp (100)	68	3.9	2.34	88	2.6	1.56	77	2.9	1.74
	bibd (83)	68	1.8	1.37	68	1.8	1.37	65	2.0	1.44
	js (130)	76	4.9	2.26	73	5.1	2.35	73	5.2	2.4
	lfn (83)	21	5.2	3.75	21	5.3	3.83	33	4.1	2.96
	geom (100)	64	3.9	2.34	27	6.8	4.08	67	3.3	1.98
	Total (496)	297	19.7	2.39	274	21.6	2.61	315	17.5	2.11
			Table 6.1: Total solved instances (5 Minutes)			

Table 6 .

 6 2: Total solved instances (3 Minutes) Another interesting lesson learned from the experiments concerns the difficulty of the underlying learning problem, and the generalization error of the learned hypothesis. The generalization error in the Continuous Search framework is estimated by 10-fold Cross Validation [BE93] on the whole training set (including all training examples generated in exploration mode). Table6.3 reports on the predictive accuracy of the SVM algorithm (with same default setting) on all problem families, with an average accuracy of 67.8%.

	Problem	dom-wdeg #sol time(h) avg-time(m) #sol time(h) avg-time(m) #sol time(h) avg-time(m) wdeg dyn-CS
	nsp (100)	61	2.8		1.68	81	2.1	1.26	75	2.2	1.32
	bibd (83)	62	1.3		0.94	62	1.3	0.94	60	1.4	1.01
	js (130)	74	3.1		1.43	69	3.3	1.52	67	3.4	1.57
	lfn (83)	20	3.2		2.31	20	3.2	2.31	32	2.5	1.81
	geom (100)	56	2.6		1.56	20	4.3	2.58	63	2.2	1.32
	Total (496)	273	13.0		1.57	252	14.2	1.72	297	11.7	1.42
	As could have been expected, the predictive accuracy is correlated to the performance of
	Continuous Search: the problems with best accuracy and best performance improvement
	are geom and lfn.								
	To give an order of idea, 62% predictive accuracy was reported in the context of
	SATzilla [XHHLB07], aimed at selecting of the best heuristic in a portfolio.	
	A direct comparison of the predictive accuracy might however be biased. On the one
	hand SATzilla errors are attributed to the selection of some near-optimal heuristics, after
	the authors; on the other hand, Continuous Search would involve several selection steps (in
	each checkpoint) and could thus compensate from earlier errors.		
		Timeout	bibd	nsp	geom	js	lfn	Total	
		3 Min		64.5% 64.2% 79.2% 65.6% 68.2% 68.3%	
		5 Min		63.2% 58.8% 76.9% 63.6% 73.8% 67.3%	
		Average 63.9% 61.5% 78.0% 64.6% 71.0% 67.8%

Table 6 .

 6 3: Predictive Accuracy of the heuristics model (10-fold Cross Validation)

Table 6 . 4 :

 64 Exploration time in Hours (time-out 3 Minutes)

	Problem Median Instance
	nsp	106.8	1.1
	bibd	48.3	0.6
	js	135.6	1.0
	lfn	100.3	1.0
	geom	37.6	0.4
	Problem Median Instance
	nsp	151.1	1.5
	bibd	73.6	0.9
	js	215.6	1.7
	lfn	161.8	1.9
	geom	71.6	0.7

Table 6 . 5 :

 65 Exploration time in Hours (time-out 5 Minutes)

	6.4.4 The power of adaptation
	Our third experimental test combines instances from different domains in order to show
	how CS is able to adapt to changing problems distribution. Indeed, unlike classical portfolio-
	based approaches which can only be applied if the training and exploitation sets come from

Table 6 . 6 :

 66 Total solved instances(5 Minutes)

 Table, training on the wrong domain gives poor performance (55 instances solved in 4.1 hours). At contrary, the second line shows that CS can recover from training on the wrong domain thanks to its incremental adaptation (solving 67 instances in 3.4 hours). The right part of the Table reports similar results for the bibd problem.Although previous mentioned strategies were designed for their respective competitions, i.e., SAT, CSP and QBF, some of them can also be used in incremental learning scenarios. However, at this point we would like to remark that the goal of this contribution is not only describing another methodology for using Machine Learning in the context of the Algorithm Selection Problem. Instead, we present the Continuous Search paradigm which uses computer's IDLE time to incrementally learn and tune the parameters of a constraint solver. Nevertheless, the continuous search paradigm can also be used in this context to automatically identify the most informative cases during the exploration mode and defining new switching policies based on those important examples.In contrast to dyn-CS which is proposed to identify the best CSP heuristic at different steps of the search, self -AQME was designed for a slightly different context, i.e., QBF problems. This portfolio solver updates the heuristic model after processing each training example during the training phase. This procedure can be extended to the testing phase, however, we foresee two main difficulties. On the one hand, if the expected best solver finds a solution, the heuristics model is not updated even if there exists another solver with better runtime. On the other hand, if the runtime cutoff for each solver candidate is6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMINGnot properly defined, the heuristics model can be misled with sub-optimal solvers, again because no other heuristic is tried after a solution is reached. These two main disadvantages can be overcome by using the continuous search paradigm and exploiting computer's IDLE time to obtain the true winner solver. Moreover, the exploration mode can also be used to update the runtime cutoff parameter for each solver candidate by considering the current distribution of problems.

	6.5 Previous Work
	6.5 Previous Work
	As pointed out in Chapter 3, the application of Machine Learning algorithms to build a port-
	folio solver has been widely studied during the last decade. Methods such as: SATzilla
	[XHHLB07], CPHYDRA [OHH + 08], self -AQME [PT09], etc., typically require a rep-
	resentative set of training examples to properly learn a heuristic model to solve a set of
	testing instances. Hydra [XHLB10] iteratively exploits highly parameterized algorithms (algorithms with
	hundreds of thousands of parameters) to incrementally obtain promising configurations for
	such algorithm. This algorithm represents an important contribution to the well-known
	SATzilla portfolio solver, however, unfortunately such parameterized algorithm does not
	exists yet to solve CSPs.
	As can be observed in nsp-geom † and lfn-bibd † , CS successfully identifies the new
	distribution of problems solving respectively the same number and 2 less instances than
	geom and bibd when CS is only applied to this domain starting from scratch. However the
	detection of the new distribution introduces an overhead in the solving time (see results for
	single domain in Table 6.1).

CPHYDRA is based on lazy learning which means that new cases (or samples) can be easily added to the heuristics model, however, after the training phase is completed each new case would be defined as a list L=[A 1 ,t 1 , A 2 ,t 2 , . . . , A n ,t n]. L represents a switching policy to execute a selected subset of solvers, t i indicates the time cutoff for the i th solver in L, and no communication is allowed between the solvers. Therefore, each new case after the training phase is a combination of solvers by itself. Thus, including such new case could be impractical as the system might suggest complex switching policies in the future.

Finally, in

[START_REF] Carchrae | Applying Machine Learning to Low-Knowledge Control of Optimization Algorithms[END_REF]

low-knowledge is used to select the best algorithm in the context of optimization problems, this work assumes a black-box optimization scenario where the user has no information about the problem or even about the domain of the problem, and the only known information is the output (i.e., solution cost for each algorithm in the portfolio).

 The experimental results suggest that Continuous Search is able to pick up the best of a set of heuristics on a diverse set of problems, by exploiting the incoming instances; in

	Chapter 7
	Efficient Parallel Local Search for SAT

Up to now, in this thesis we have explored different approaches to solve combinatorial problems in sequential settings. In this chapter, our objective is to study the impact of knowledge sharing on the performance of portfolio-based parallel local search algorithms.

Our motivation is the demonstrated importance of clause-sharing in the performance of complete parallel SAT solvers. Unlike complete solvers, state-of-the-art local search algorithms for SAT are not able to generate redundant clauses during their execution. In our settings, each member of the portfolio shares its best configuration (i.e., one which minimizes conflicting clauses) in a common structure. At each restart point, instead of classically generating a random configuration to start with, each algorithm aggregates the shared knowledge to carefully craft a new starting point.

 On the contrary, since local search techniques only outperform complete ones on random SAT instances, their parallelizing has not received much attention so far. The main contribution on the parallelization of local search algorithms for SAT solving basically executes a portfolio of independent algorithms which compete without any communication between them. In our settings, each member of the portfolio shares its best configuration (i.e., one which minimizes the number of conflicting clauses) in a common structure. At each restart point, instead of classically generating a random configuration to start with, each algorithm aggregates the shared knowledge to carefully craft a new starting point. We present several aggregation strategies and evaluate them on a large set of instances. Our best strategies largely improve over a parallel portfolio of non cooperative local searches. We also present an analysis of configurations diversity during parallel search, and find out that the best aggregation strategies are the one which are able to maintain a good diversification/intensification trade off.

	7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT
	7.2.2.1 Ranking			
	This chapter is organized as follows: Section 7.2 presents our methodology and our
	aggregation strategies, Section 7.3 evaluates them, Section 7.4 highlights previous work
	on parallel SAT and cooperative algorithms, and Section 7.5 presents a summary of the
	chapter.				
	7.2 Knowledge Sharing in Parallel Local Search for SAT
	Our objective is to extend a parallel portfolio of state-of-the-art local search solvers for
	SAT with knowledge sharing or cooperation. Each algorithm is going to share with others
	the best configuration it has found so far with its respective cost (number of unsatisfied
	clauses) in a shared pair M, C .		
			X 11 X 12 . . . X 1n		
	M =	   	X 21 X 22 . . . X 2n	   	C = [C 1 , C 2 , . . . , C c]
			X c1 X c2 . . . X cn		

Table 7 .

 7 7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT 1:Overall evaluation using 4 cores7.3.3 Practical Performances with 8 Cores

	Strategy	#solved median time	PAR	never solved
	1core-PAWS	249	1.76	911.17	71
	4cores-PAWS	275	1.63	2915.19	61
	4cores-No Sharing	309	2.19	1901.00	7
	4cores-Agree	321	2.54	1431.33	2
	4cores-Majority	313	2.53	1724.94	11
	4cores-Prob	329	2.51	1257.93	4
	4cores-Majority RankW	304	2.47	1930.61	11
	4cores-Majority NormalizedW	314	2.48	1807.42	9
	4cores-Prob RankW	316	2.53	1621.33	7
	4cores-Prob NormalizedW	326	2.50	1261.82	2

Table 7 .

 7 4, 8cores-Agree exhibits a poor performance mainly because best known configurations stored in the shared data structure tend to be different from each other. Therefore, this policy tends to generate completely random starting points, and cannot exploit the acquired knowledge. The Table7.2 summarizes these results, and once again it includes the best individual algorithm running in a single core. We can remark that 8cores-Prob , 8cores-Prob RankW , and 8cores-Prob NormalizedW solve respectively 24, 22, and 16 more instances than 8cores-No Sharing. Furthermore, it shows that knowledge sharing portfolios are faster than individual searches, with a PAR of 3743.63 seconds for 8cores-No Sharing against respectively 2247.97 for 8cores-Prob , 2312.80 for 8cores-Prob RankW and 2295.99 for 8cores-Prob NormalizedW . Finally, it is also important to note that only 1 instance timed out in all the 10 runs for 8cores-Prob NormalizedW against 8 for 8cores-No Sharing. 2: Overall evaluation using 8 cores

	7.3 Experiments

 7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

			7.3 Experiments
		PAWS	
		G2+p	
		AG2	
		AG2+p	
	Solution cost	Strategy 4cores-PAWS 4cores-No Sharing	HamIns 38.2 39.0
		4cores-Agree	35.0
		4cores-Majority	31.7
	1	4cores-Prob 10 100	33.1
		4cores-Majority RankW Flips	25.9
		4cores-Majority NormalizedW	27.1
		4cores-Prob RankW	30.8
		4cores-Prob NormalizedW	32.8
		8cores-PAWS	38.3
		8cores-No Sharing	39.5
		8cores-Agree	38.3
		8cores-Majority	30.8
		8cores-Prob	33.4
		8cores-Majority RankW	29.3
		8cores-Majority NormalizedW	29.5
		8cores-Prob RankW	33.1
		8cores-Prob NormalizedW	33.8
		Table 7.3: Diversification-Intensification analysis using 8 cores

In this thesis, we assume that a constraint solver is a black-box technology whose parameters need to be carefully tuned to efficiently solve combinatorial problems. For instance, selecting the right search heuristic, constraint pruning level, restart strategy, etc.

www.satcompetition.org/2007

www.satcompetition.org/2009

http://www.qbflib.org/index eval.php

http://www.cril.univ-artois.fr/CPAI08/

exploration-exploration is also known as intensification-diversification

In the following, we will use the term propagator as a synonym for constraint.

http://www.cril.univ-artois.fr/ CPAI06/round2/results/ranking.php?idev=6

Available from http://www.gecode.org/gecode-doc -latest/ group ExProblem.html.

This problem description was taken from the gecode[START_REF]Gecode: Generic Constraint Development Environment[END_REF] definition of the problem.

The 3D position for each atom was obtained using[START_REF] Nielsen | CPHmodels-3.0-Remote Homology Modeling Using Structure-Guided Sequence Profiles[END_REF], a specialized bioinformatics package, and the figure was produced with DINO[START_REF] Philippsen | DINO: Visualizing Structural Biology[END_REF]

Out of 8 categories, detailed in http://www.gecode.org/doc-latest/reference/classGecode 1 1PropCost.html

It is important to notice that other constraint programming approaches (e.g.,[START_REF] Dal Palù | A new constraint solver for 3d lattices and its application to the protein folding problem[END_REF], [MSR + 09]) are able to deal with instances up to 250 elements.

The rationale for this decision is that the margin, i.e. the distance of the example w.r.t the separating hyperplane, is interpreted as the confidence of the prediction[START_REF] Vapnik | The Nature of Statistical Learning[END_REF].

It is also important to notice that domFD is not considered in this chapter due to the complexity of computing weak dependencies might include an overhead when this heuristic is not used at a particular state of the search.

http://www.satcompetition.org/2009/

Acknowledgements

Marc Schoenauer for giving me the opportunity of being part of the TAO research group. Special thanks also go to Camilo Rueda and Nestor Cataño who supported my appli-

EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

Computing weak dependencies

We can represent weak dependencies as a weighted digraph relation among the variables of the problem, where the nodes of the graph are the variables and the edges indicate weak dependencies relations between two variables, i.e, when there is an edge between two variables X and Y , the direction of the edge shows the relation and its weight indicates the number of observed occurrences of that relation (e.g., Figure 4.1, assuming that the weight for each edge is 1).

In a propagation centered approach [START_REF] Lagerkvist | Advisors for Incremental Propagation[END_REF] each variable has a list of dependent propagators and each propagator knows its variables (see Figure 4.2). In this way, once the domain of a variable is narrowed it is necessary to schedule its associated propagators into the propagator pool. Since we are interested in capturing weak dependencies, we have to track the reasons for constraint propagation. More specifically, when a propagator gets activated as the result of the direct assignment of some variable, we need to keep a reference to that variable. Since the assignment of several variables can activate a propagator, we might have to keep several references.

X2 X1 X3

A modified schedule procedure is shown in Algorithm 4.2. The algorithm starts by enqueueing all the propagators associated to a given variable X i into the propagators pool.

If the propagator p was called as the result of the assignment of X i (|D i | = 1), a weak dependency is created between each variable of the set p.assigned and X i . Variables from

The problems

In the following, we list the different benchmark families used in this chapter, all these problems (except Crowded-chess) have been widely studied in the CSPLib [START_REF] Gent | CSPLIB: A Benchmark Library for Constraints[END_REF]. Note that for all problems (except Quasigroup) the model and its implementation is the one proposed in the Gecode repository 3 .

• qwh: Quasigroup [AGKS00], problem 3 of CSPLib, this problem consists in completing a pre-filled N × N matrix with the numbers [1, 2, . . . , N] such that for each column (resp. row) of the matrix, each element occurs exactly once.

• gol-rul: Golomb-ruler [START_REF] Smith | Modelling the Golomb Ruler Problem[END_REF], problem 6 of CSPLib, this problem consists in finding a list M of numbers (so-called marks) such that the difference between any pair of marks M i -M j (i = j) in M are all distinct. The number of elements in M indicate the order of the ruler, and the maximum distance between any two pair of elements in M indicates the length of the ruler. The goal is to find a golomb-ruler with minimal length for a pre-defined order.

• all-int: All-interval [START_REF] Gent | Conditional Symmetry in the All-Interval Series Problem[END_REF], problem 7 of CSPLib, this problem consists in finding

• nono: Nonogram [START_REF] Bosch | Painting by numbers[END_REF], problem 12 of CSPLib, this problem consists of a matrix with a list of number for each column (resp. row), this list represents a set of rules indicating how many consecutively filled squares are for each column (resp. row).

Summary

In this chapter, we have studied the application of Machine Learning techniques to build algorithms portfolios in the context of the PSP problem. We experimented two different feature sets. That is, features describing general biological properties of the problem and features extracted directly from the CP abstraction of the problem. Interestingly, in both situations, the resulting portfolio outperformed (w.r.t. solution quality) the best single algorithm.

The second contribution lies in the use of algorithm's cost solution in order to build the heuristics model which itself is based on a traditional multi-class classification algorithm, i.e., decision tree learning. Finally, our last contribution corresponds to the use of forward heuristic selection in order to chose the right subset of algorithms before building the heuristics model.

CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

Static features

This feature set is a collection of 32 features previously defined in Chapter 5 (see Section 5.3.2), these features encode general information of a given problem instance; they are computed once for each instance as they are not modified along the resolution process.

The static features also allow one to discriminate between types of problems, and different instances.

Dynamic features

Two kinds of dynamic features are used to monitor the performance of the search effort at a given checkpoint: global statistics describe the progress of the overall search process; local statistics check the evolution of a given strategy.

• Heuristic criteria (15 features): each heuristic criteria (i.e., wdeg, dom-wdeg, impacts) is computed for each variable; their prod, min, max, mean and variance over all variables are used as features.

• Constraints weight (12 features): likewise report the min, max, mean and variance of all constraints weight (i.e., constraints wdeg). Additionally the mean for each filtering cost category is used as feature. Where category is defined as follows, Cat = {Exponential, Cubic, Quadratic, Linear expensive, Linear cheap, Ternary, Binary, Unary }. Where Linear expensive (resp. cheap) indicates the complexity of a linear equation constraint and the last three categories indicate the number of variables involved in the constraint. More information about the filtering cost category can be found in [START_REF]Gecode: Generic Constraint Development Environment[END_REF].

• Constraints information (3 features): min, max and mean of constraint's run-prop,

where run-prop indicates the number of times the propagation engine has called the filtering algorithm of a given constraint.

• Checkpoint information (33 features): for every checkpoint i relevant information from the previous checkpoint i-1 (when available) is included into the feature vector. From checkpoint i-1 we include the total number of nodes and maximum search

Using Best Known Configurations

In this section, we propose three methods to build the new initial configuration init by aggregating best known configurations. In this way, we define init i for all the variables

.n] as follows:

1. Agree: if there exists a value v such that v=X ji for all j ∈ [1..c] then init i =v, otherwise a random value is used.

2. Majority: if there exists two values v and v such that

.c]}| then init i =v, otherwise a random value is used.

3. Prob: init i =1 with probability p ones = ones c and init i =0 with probability 1-p ones , where

Weighting Best Known Configurations

In contrast with our previous methods where all best known solutions are treated equally important, the methods proposed in this section use a weighting mechanism to consider the cost of best known configurations. The computation of the initial configuration init uses one of the following two weighting systems: Ranking and Normalized Performance, where values from better configurations are most likely to be used.

Experiments

context, we propose a new restart policy to avoid re-initializing the working configuration again and again. This new policy re-initializes the working configuration for a given restart (i.e., every MaxFlips) if and only if, performance improvements in best known solutions have been observed during the latest restart window. This new restart policy is formally described in the following definition, where we assume that bc ki is the cost of the best known configuration for a given algorithm i up to the (k -1) th restart. Definition 7.1 At a given restart k for a given algorithm i the working configuration is reinitialized iff there exists an algorithm q such that bc kq = bc (k-1)q and q = i.

Experiments

This section reports on the experimental validation of the proposed aggregation strategies.

Experimental Settings

We conducted experiments using instances from the RANDOM category of the 2009 SAT competition. Since state-of-the-art local search solvers are unable to solve UNSAT instances, we filtered out these instances. We also removed instances whose status was reported as UNKNOWN in the competition. This way, we collected 359 satisfiable instances.

We decided to build our parallel portfolio on UBCSAT-1.1, a well known local search library which provides efficient implementation of the latest local search for SAT algorithms [START_REF] Dave | UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT[END_REF]. We did preliminary experiments to extract from this library the 8 algorithms which perform best on our set of problems. From that, we defined the following three baseline portfolio constructions where algorithms are independent searches without cooperation. The first one pcores-PAWS uses p copies of the best single algorithm (PAWS), the second portfolio 4cores-No sharing uses the best subset of 4 algorithms (PAWS, G2+p, AG2, AG2+p) and the last one 8cores-No sharing uses all the 8 algorithms (PAWS, G2+p, AG2, AG2+p, G2, SAPS, RSAPS, AN+). All the algorithms were used with their default parameters, and without any restart. Indeed these techniques are equipped with important diversification strategies and usually perform better when the restart flag is switched off (i.e., MaxFlips=∞). we observe that easy instances are correlated as they require few steps to be solved, and for the remaining set of instances 4cores-Prob usually exhibits a better performance. On the other hand, the second figure shows that when the instances are not solved, the median cost of the best configuration (number of unsatisfied clauses) found by 4cores-Prob is usually better than for 4cores-No Sharing. Notice that some points are overlapped because the two strategies reported the same cost.

All the experiments using 4 cores are summarized in Table 7.1, reporting for each portfolio the number of solved instances (#solved), the median time across all instances (median time), the Penalized Average Runtime (PAR) and the total number of instances that timed out in all the 10 runs (never solved). These results confirm that sharing best known configurations outperforms independent searches, for instance 4cores-Prob and 4cores-Prob NormalizedW solved respectively 20 and 17 more instances than 4cores-No Sharing and all the cooperative strategies (except 4cores-Majority RankW) exhibit better PAR. Interestingly, 4cores-PAWS exhibited the best median runtime overall the experiments with 4 cores, this fact suggests that PAWS by itself is able to quickly solve an important number of instances. Moreover, only 2 instances timeout in all the 10 runs for 4cores-Agree and 4cores-Prob NormalizedW against 7 for 4cores-No Sharing. Notice that this Table also includes 1core-PAWS, the best sequential local search on this set of problems. The PAR score for 1core-PAWS is lower than the other values of the table because this portfolio uses only 1 algorithm, therefore the timeout is only 300 seconds, while 4 cores portfolios use a timeout of 1200 seconds. Notice that the best performing strategy (w.r.t. each performing metric) is indicated in bold.

EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

Experiments

Where, Hamming(X i , X j) indicates the Hamming distance between the best configurations found so far for the i th and j th algorithms in the portfolio. The Figure 7.5(a) shows the diversificationintensification analysis using 4 cores. As one might have expected, among the cooperative strategies 4cores-Majority reduces diversification and shows a high convergence rate, 4cores-Agree reduces intensification and shows a slow convergence rate. In contrast to these two methods, 4cores-Prob is balancing diversification and intensification. This phenomenon helps to understand the superiority of this method in the experiments presented in Section 7.3.2.

A similar observation is drawn from the experiments with 8 cores presented in Figure 7.5(b). However, in this case 8cores-Agree exhibits a dramatic diversification increase which actually degrades its overall performance compared against its counterpart portfolio with 4cores (see Table 7.2). Additionally, Figure 7.5(c) shows the behavior of 8cores-Majority NormalizedW and 8cores-Prob NormalizedW , while Figure 7.5(d) shows the behavior of 8cores-Majority RankW and 8cores-Prob RankW . From these two last figures, it can be observed that Majority-based strategies provide less diversification than the Probbased ones. Now we switch our attention to Table 7.3, where we extend our analysis to all problem instances. To this end, we launched an extra run for each portfolio strategy to compute HamIns, which is formally defined as follows:

Where, HamDis(i) computes the mean overall HamDis values achieved when solving i and total-vars(i) indicates the number of variables involved in i. This way, HamIns reports the mean HamIns over all the instances that required at least 10 6 flips to be solved.

Notice that instances requiring less flips do not employ cooperation because the first restart is not reached. On the other hand, strategies reporting the highest degree of intensification (resp. diversification) using 4 and 8 cores are indicated in bold.

As can be observed, prob-based strategies have shown the best performance as they balance diversification-intensification. For instance, excluding 4cores-agree which is already known that provides more diversification than intensification, 4cores-prob provides

EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

the highest HamIns variation among all the cooperative portfolios using 4 cores. Moreover, Majority-based strategies are bad for diversification as they might tend to start with a configuration similar to the one given by the best single algorithm. It is also worth mentioning that our baseline portfolios 4cores-PAWS and 4cores-No Sharing exhibit the highest values, which is not surprising as no cooperation is allowed.

On the other hand, a similar observation is seen in the case of 8 cores. However, it is worth mentioning that 8cores-agree gives too much diversification which actually degrades the overall performance when compared against its counterpart with 4 cores (see Tables 7.2

and 7.1).

Finally, Figure 7.6 shows a trace of the best configuration cost found so far for each

Analysis of the Limitations of the Hardware

In this section, we wanted to assess the inherent slowdown caused by increased cache, and bus contingency when more processing cores are used at the same time. Indeed, having an understanding of this slowdown is helpful to assess the real benefits of parallel search. To this end we decided to run our PAWS baseline portfolio where each independent algorithm uses the same random seed on respectively 1, 4 and 8 cores. Since all the algorithms are executing the same search, this experiment measures the slowdown caused by hardware limitations. The results are presented in Figure . 7.7.

The first case executes a single copy of PAWS with a timeout of 300 seconds, the second case executes 4 parallel copies of PAWS with a timeout of 1200 seconds (4 × 300) and the third case executes 8 parallel copies of PAWS with a timeout of 2400 seconds (8 × 300).

Previous Work

Finally, we estimate the runtime of each instance as the median across 10 runs (each time with the same seed) divided by the number of cores. In this figure, it can be observed that the performance overhead is almost not distinguishable between 1 and 4 cores (red points). However, the overhead between 1 and 8 cores is important for difficult instances (black points).

This simple test can help us to assess the remarkable performance of our aggregation techniques. Indeed, on 8 cores, the best technique is able to solve 86 more problems than the sequential search. This is achieved despite the slowdown caused by cache and bus contingencies revealed by this experiment.

Previous Work

In this section, we review the most important contributions devoted to parallel SAT solving and cooperative algorithms. In plingeling, [START_REF] Biere | PicoSAT and PrecoSAT at SAT Race[END_REF] the original SAT instance is duplicated by a boss thread and allocated to worker threads. The strategies used by these workers are mainly differentiated around the amount of pre-processing, random seeds, and variables branching. Conflict clause sharing is restricted to units which are exchanged through the boss thread. This solver won the parallel track of the 2010 SAT Race.

In [START_REF] Zhang | Parallel Execution of Stochastic Search Procedures on Reduced SAT Instances[END_REF] the authors proposed a hybrid algorithm which starts with a traditional DPLL algorithm to divide the problem space into sub-spaces. Each sub-space is then allocated to a given local search algorithm (Walksat).

Incomplete Methods for Parallel SAT

PGSAT [START_REF] Roli | Criticality and Parallelism in Structured SAT Instances[END_REF] is a parallel version of the GSAT algorithm. The entire set of variables is randomly divided into τ subsets and allocated to different processors. In this way at each iteration, if no global solution has been obtained, the i th processor uses the GSAT score function (see Chapter 2) to select and flip the best variable for the i th subset. Another contribution to this parallelization architecture is described in [START_REF] Roli | Random Walk and Parallelism in Local Search[END_REF] where the authors aim to combine PGSAT and random walk, therefore at each iteration, with a given probability wp an unsatisfiable clause c is selected and a random variable from c is flipped and with probability 1-wp. PGSAT is used to flip τ variables in parallel at a cost of reconciling partial configurations to test if a solution has been found. gNovelty+ (v.2) [START_REF] Duc | gNovelty+ (v.2)[END_REF], belongs to the portfolio approach, this algorithm executes n

Chapter 8

Conclusions and Perspectives

Along this thesis, we have studied different approaches to efficiently solve combinatorial problems. In particular, we have focussed on Constraint Satisfaction, Constraint Optimization, and SAT problems. In this chapter we conclude this thesis by summarizing our contributions and describing perspectives for future work. This chapter is meant as a complement to the more detailed summaries at the end of previous chapters.

Overview of the main contributions

In this thesis, we have studied three different perspectives to efficiently solve combinatorial problems. In the first part of the thesis, we have proposed domFD, a new variable selection heuristic which exploits the concept of weak dependencies to guide the search at each decision point. Experiments on several problem families showed that domFD usually generate search trees smaller than the well-known dom-wdeg thus leading this way to better runtimes on the experimented problems.

In the second part of the thesis, we have explored the Algorithm Selection Problem from two different angles. Initially, we investigated the application of a tradition portfolio algorithm to select the best search heuristic for the Protein Structure Prediction Problem by considering features (or descriptors) coming from two different domains. That is, features extracted directly from the biological application, and features from the Constraint Programming encoding of the problem. In both situations, we have observed that the portfolio